
Legal Information
Windows Sockets 2 Application Program Interface
Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

©1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, Win32, Windows, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

All other product and company names mentioned herein are the trademarks of their respective owners.

Welcome To Windows Sockets 2
This document describes the Windows Sockets 2 Application Programming Interface (API). It consists,
primarily, of information from the Windows Sockets 2 API specification, but also includes additional
information. The information in this document is not presented in exactly the same way as specification.

Using This Document

This document provides the on-line material needed to create a Windows Sockets application for the
Windows NT and the Windows 95 operating systems, using the Microsoft implementation of Windows
Sockets 2. It is intended as a reference tool and outlines the functions in the Windows Sockets API.

You should be familiar with Win32 programming concepts to make the best use of this document. Thus,
you may want to refer to other references that provide a more systematic guide to writing Windows
Sockets applications.

Note This documentation is intended for application developers. If you are developing a transport or
service provider, see the "Service Provider Documentation" installed with the Win32 SDK.

Overview of Windows Sockets 2

Windows Sockets 2 utilizes the sockets paradigm that was first popularized by Berkeley Software
Distribution (BSD) UNIX. It was later adapted for Microsoft Windows in the Windows Sockets 1.1.

One of the primary goals of Windows Sockets 2 has been to provide a protocol-independent interface
fully capable of supporting the emerging networking capabilities, such as real-time multimedia
communications.

Windows Sockets 2 is an interface, not a protocol. As an interface, it is used to discover and utilize the
communications capabilities of any number of underlying transport protocols. Because it is not a protocol,
it does not in any way affect the "bits on the wire", and does not need to be utilized on both ends of a
communications link.

Windows Sockets programming previously centered around TCP/IP. Some of the programming practices
that worked with TCP/IP do not work with every protocol. As a result, the Windows Sockets 2 API added
new functions where necessary.

Windows Sockets 2 has changed its architecture to provide easier access to multiple transport protocols.
Following the Windows Open System Architecture (WOSA) model, Windows Sockets 2 now defines a
standard service provider interface (SPI) between the application programming interface (API), with its
functions exported from WS2_32.DLL, and the protocol stacks. Consequently, Windows Sockets 2
support is not limited to TCP/IP protocol stacks as is the case for Windows Sockets 1.1. For more
information, see Windows Sockets 2 Architecture.

There are new challenges in developing Windows Sockets 2 applications. When sockets only supported
TCP/IP, a developer could create an application that supported only two socket types: connectionless and
connection-oriented. Connectionless protocols used SOCK_DGRAM sockets and connection-oriented
protocols used SOCK_STREAM sockets. Now, these are just two of the many new socket types.
Additionally, developers can no longer rely on socket type to describe all the essential attributes of a
transport protocol.

Windows Sockets 2 Features
The new Windows Sockets 2 extends functionality in a number of areas.

Windows Sockets 2 Features

Access to protocols other than
TCP/IP

Windows Sockets 2 allows an
application to use the familiar socket
interface to achieve simultaneous
access to a number of installed
transport protocols.

Overlapped I/O with
scatter/gather

Windows Sockets 2 incorporates the
overlapped paradigm for socket I/O
and incorporates scatter/gather
capabilities as well, following the
model established in Win32
environments.

Protocol-independent name
resolution facilities:

Windows Sockets 2 includes a
standardized set of functions for
querying and working with the
myriad of name resolution domains
that exist today (for example DNS,
SAP, and X.500).

Protocol-independent multicast
and multipoint:

Windows Sockets 2 applications
discover what type of multipoint or
multicast capabilities a transport
provides and use these facilities in a
generic manner.

Quality of service Window Sockets 2 establishes
conventions applications use to
negotiate required service levels for
parameters such as bandwidth and
latency. Other QOS-related
enhancements include socket
grouping and prioritization, and
mechanisms for network-specific
QOS extensions.

Other frequently requested
extensions

Windows Sockets 2 incorporates
shared sockets and conditional
acceptance; exchange of user data
at connection setup/teardown time;
and protocol-specific extension
mechanisms.

Conventions for New Functions
Windows Sockets 2, with its expanded scope, takes the socket paradigm beyond the original design. As a
result, a number of new functions have been added. These have been assigned names that begin with
"WSA." In all but a few instances, these new functions are expanded versions of existing functions from
BSD sockets.

The new functions are described in the reference section of the document, following the conventions of
the Win32 SDK. The new functions are also listed in Summary of New Functions.

Microsoft Extensions and Windows Sockets 2

The Windows Sockets 2 specification defines an extension mechanism that exposes advanced transport
functionality to application programs. For more information, see Function Extension Mechanism.

The following Microsoft-specific extensions were added to Windows Sockets 1.1. They are also available
in Windows Sockets 2.

AcceptEx

GetAcceptExSockaddrs

TransmitFile

WSARecvEx

These functions are not exported from the WS2_32.DLL; they are exported from MSWSOCK.DLL.

An application written to use the Microsoft-specific extensions to Windows Sockets will not run correctly
over a Windows Sockets service provider that does not support those extensions.

Socket Handles for Windows Sockets 2
A socket handle can optionally be a file handle In Windows Sockets 2. It is possible to use socket handles
with ReadFile, WriteFile, ReadFileEx, WriteFileEx, DuplicateHandle, and other Win32 functions. Not
all transport service providers will support this option. For an application to run over the widest possible
number of service providers, it should not assume that socket handles are file handles.

Windows Sockets 2 has expanded certain functions used for transferring data between sockets using
handles. The functions offer advantages specific to sockets for transferring data and include WSARecv,
WSASend, and WSADuplicateSocket.

New Concepts, Additions and Changes
for Windows Sockets 2

This section summarizes Windows Sockets 2 and describes the major changes and additions it contains.
Windows Sockets 2 differs from Windows Sockets 1.1 in several ways, particularly in the architecture.
The new architecture, discussed in Windows Sockets 2 Architecture, provides the foundation for many
of the new concepts that have been incorporated into Windows Sockets 2.

An overview of the additions and changes in Windows Sockets 2 follows the discussion of the new
architecture.

Many of the functions in Windows Sockets 2 are the same as in the other versions of sockets. However,
there are several new functions, which are summarized in Summary of New Functions. For detailed
information on how to use a specific function or feature, refer to the Reference section.

Windows Sockets 2 Architecture

A number of Windows Sockets 2 features required a substantial change in the Windows Sockets
architecture. The resulting architecture is considerably different from previous versions, but the benefits
are numerous. Foremost among these is Simultaneous Access to Multiple Transport Protocols, explained
in detail in the following section.

Other features include the adoption of protocol-independent name resolution facilities, provisions for
layered protocols and protocol chains, and a different mechanism for Windows Sockets service providers
to offer extended, provider-specific functionality.

Simultaneous Access to Multiple Transport Protocols
In order to provide simultaneous access to multiple transport protocols, the architecture has changed for
Windows Sockets 2. With Windows Sockets 1.1, the DLL that implements the Windows Sockets interface
is supplied by the vendor of the TCP/IP protocol stack. The interface between the Windows Sockets DLL
and the underlying stack was both unique and proprietary. Windows Sockets 2 changes the model by
defining a standard service provider interface (SPI) between the Windows Sockets DLL and protocol
stacks. In this way, multiple stacks from different vendors can be accessed simultaneously from a single
Windows Sockets DLL. Furthermore, Windows Sockets 2 support is not limited to TCP/IP protocol stacks
as it is in Windows Sockets 1.1.

The Windows Open System Architecture (WOSA) compliant Windows Sockets 2 architecture is illustrated
as follows:

{ewc msdncd, EWGraphic, bsd23510 0 /a "SDK_1.WMF"}

Windows Sockets 2 Architecture

With the Windows Sockets 2 architecture, it is not necessary, or desirable, for stack vendors to supply
their own implementation of WS2_32.DLL, since a single WS2_32.DLL must work across all stacks. The
WS2_32.DLL and compatibility shims should be viewed in the same way as an operating system
component.

Backward Compatibility For Windows Sockets 1.1 Applications
Windows Sockets 2 has been made backward compatible with Windows Sockets 1.1 on two levels:
source and binary. This maximizes interoperability between Windows Sockets applications of any version
and Windows Sockets implementations of any version. It also minimizes problems for users of Windows
Sockets applications, network stacks, and service providers. Current Windows Sockets 1.1-compliant
applications will run over a Windows Sockets 2 implementation without modification of any kind, as long
as at least one TCP/IP service provider is properly installed.

Source Code Compatibility
Source code compatibility in Windows Sockets 2 means, with few exceptions, that all the Windows
Sockets 1.1 functions are preserved in Windows Sockets 2. Windows Sockets 1.1 applications that make
use of blocking hooks will need to be modified since blocking hooks are no longer supported in Windows
Sockets 2. (For more information, see Windows Sockets 1.1 Blocking routines & EINPROGRESS.)

Thus, existing Windows Sockets 1.1 application source code can easily be moved to the Windows
Sockets 2 system by including the new header file, WINSOCK2.H, and performing a straightforward relink
with the appropriate Windows Sockets 2 libraries. Application developers are encouraged to view this as
the first step in a full transition to Windows Sockets 2 because there are numerous ways in which a
Windows Sockets 1.1 application can be improved by exploring and using the new functionality in
Windows Sockets 2.

Binary Compatibility
A major design goal for Windows Sockets 2 was to enable existing Windows Sockets 1.1 applications to
work, unchanged at a binary level, with Windows Sockets 2. Since Windows Sockets 1.1 applications are
TCP/IP-based, binary compatibility implies that TCP/IP-based Windows Sockets 2 Transport and Name
Resolution Service Providers are present in the Windows Sockets 2 system. In order to enable Windows
Sockets 1.1 applications in this scenario, the Windows Sockets 2 system has an additional "shim"
component supplied with it: a Version 1.1-compliant WINSOCK.DLL.

Installation guidelines for Windows Sockets 2 ensure there will be no negative impact to existing Windows
Sockets-based applications on an end user system by the introduction of any Windows Sockets 2
components.

{ewc msdncd, EWGraphic, bsd23510 1 /a "SDK_2A.WMF"}

Windows Sockets 1.1 Compatibility Architecture

Important To obtain information about the underlying TCP/IP stack, Windows Sockets 1.1
applications currently use certain members of the WSAData structure (obtained through a call to
WSAStartup). These members include: iMaxSockets, iMaxUdpDg, and lpVendorInfo.

While Windows Sockets 2 applications ignore these values (since they cannot uniformly apply to all
available protocol stacks), safe values are supplied to avoid breaking Windows Sockets 1.1
applications.

Making Transport Protocols Available To Windows Sockets

A transport protocol must be properly installed on the system and registered with Windows Sockets to be
accessible to an application. The WS2_32.DLL exports a set of functions to facilitate the registration
process. This includes creating a new registration and removing an existing one.

When new registrations are created, the caller (that is, the stack vendor's installation script) supplies one
or more filled in WSAPROTOCOL_INFO structures containing a complete set of information about the
protocol. (See the SPI document, installed with the SPK, for information on how this is accomplished.)
Any transport stack that is installed this way will be referred to as a Windows Sockets service provider.

The Windows Sockets 2 SDK includes a small Windows applet that allows the user to view and modify
the order in which service providers are enumerated. By using this applet, a user can manually establish
a particular TCP/IP protocol stack as the default TCP/IP provider if more than one such stack is present.

Layered Protocols and Protocol Chains
Windows Sockets 2 incorporates the concept of a layered protocol. A layered protocol is one that
implements only higher level communications functions while relying on an underlying transport stack for
the actual exchange of data with a remote endpoint. An example of this type of layered protocol is a
security layer that adds a protocol to the socket connection process in order to perform authentication and
establish an encryption scheme. Such a security protocol generally requires the services of an underlying,
reliable transport protocol such as TCP or SPX.

The term base protocol refers to a protocol, such as TCP or SPX, that is fully capable of performing data
communications with a remote endpoint. A layered protocol is a protocol that cannot stand alone, while a
protocol chain is one or more layered protocols strung together and anchored by a base protocol.

A protocol chain is created by having the layered protocols support the Windows Sockets 2 SPI at both
their upper and lower edges. A special WSAPROTOCOL_INFO structure is created that refers to the
protocol chain as a whole, and that describes the explicit order in which the layered protocols are
joined. This is illustrated in the figure Layered Protocol Architecture. Since only base protocols and
protocol chains are directly usable by applications, they are the only ones listed when the installed
protocols are enumerated with the WSAEnumProtocols function.

{ewc msdncd, EWGraphic, bsd23510 2 /a "SDK_3.WMF"}

Layered Protocol Architecture

Using Multiple Protocols
An application uses the WSAEnumProtocols function to determine which transport protocols and
protocol chains are present, and to obtain information about each as contained in the associated
WSAPROTOCOL_INFO structure.

In most instances, there is a single WSAPROTOCOL_INFO structure for each protocol or protocol chain.
However, some protocols exhibit multiple behaviors. For example, the SPX protocol is message oriented
(that is, the sender's message boundaries are preserved by the network), but the receiving socket can
ignore these message boundaries and treat it as a byte stream. Thus, two different
WSAPROTOCOL_INFO structure entries could exist for SPX¾one for each behavior.

In Windows Sockets 2, several new address family, socket type, and protocol values appear. Windows
Sockets 1.1 supported a single address family (AF_INET) comprising a small number of well-known
socket types and protocol identifiers. The existing address family, socket type, and protocol identifiers are
retained for compatibility reasons, but new transport protocols with new media types are supported.

A Windows Sockets 2 clearinghouse has been established for protocol stack vendors to obtain unique
identifiers for new address families, socket types, and protocols. FTP and World Wide Web servers are
used to supply current identifier/value mappings, and email is used to request allocation of new ones.
This is the World Wide Web URL for the Windows Sockets 2 Identifier Clearinghouse:

http://www.stardust.com/wsresource/winsock2/ws2ident.html

New, unique identifiers are not necessarily well known, but this should not pose a problem. Applications
that need to be protocol-independent are encouraged to select a protocol on the basis of its suitability
rather than the values assigned to their socket_type or protocol fields. Protocol suitability is indicated by
the communications attributes, such as message versus byte stream, and reliable versus unreliable, that
are contained in the protocol WSAPROTOCOL_INFO structure. Selecting protocols on the basis of
suitability as opposed to well-known protocol names and socket types lets protocol-independent
applications take advantage of new transport protocols and their associated media types, as they become
available.

The server half of a client/server application benefits by establishing listening sockets on all suitable
transport protocols. Then, the client can establish its connection using any suitable protocol. For example,
this would let a client application be unmodified whether it was running on a desktop system connected
through LAN or on a laptop using a wireless network.

Multiple Provider Restrictions on select
The select function is used to determine the status of one or more sockets in a set. For each socket, the
caller can request information on read, write, or error status. A set of sockets is indicated by an FD_SET
structure.

Windows Sockets 2 allows an application to use more than one service provider, but the select function is
limited to a set of sockets associated with a single service provider. This does not in any way restrict an
application from having multiple sockets open through multiple providers.

There are two ways to determine the status of set of sockets that span more than one service provider: 1)
using the WSAWaitForMultipleEvents or WSAEventSelect functions when blocking semantics are
employed, and 2) using the WSAAsyncSelect function when nonblocking operations are employed.

When an application needs to use blocking semantics on a set of sockets that spans multiple providers,
WSAWaitForMultipleEvents is recommended. The application can also use the WSAEventSelect
function, which allows the FD_XXX network events (see WSAEventSelect) to associate with an event
object and be handled from within the event object paradigm (described in Overlapped I/O and Event
Objects).

The WSAAsyncSelect function is recommended when nonblocking operations are preferred. This
function is not restricted to a single provider because it takes a socket descriptor as an input parameter.

Function Extension Mechanism

The Windows Sockets DLL, WS2_32.DLL, is no longer supplied by each individual stack vendor. As a
result, it is no longer possible for a stack vendor to offer extended functionality by just adding entry points
to the WS2_32.DLL. To overcome this limitation, Windows Sockets 2 takes advantage of the new
WSAIoctl function to accommodate service providers who want to offer provider-specific functionality
extensions. This mechanism assumes, of course, that an application is aware of a particular extension
and understands both the semantics and syntax involved. Such information would typically be supplied by
the service provider vendor.

In order to invoke an extension function, the application must first ask for a pointer to the desired function.
This is done through the WSAIoctl function using the SIO_GET_EXTENSION_FUNCTION_POINTER
command code. The input buffer to the WSAIoctl function contains an identifier for the desired extension
function while the output buffer contains the function pointer itself. The application can then invoke the
extension function directly without passing through the WS2_32.DLL.

The identifiers assigned to extension functions are globally unique identifiers (GUIDs) that are allocated
by service provider vendors. Vendors who create extension functions are urged to publish full details
about the function including the syntax of the function prototype. This makes it possible for common and
popular extension functions to be offered by more than one service provider vendor. An application can
obtain the function pointer and use the function without needing to know anything about the particular
service provider that implements the function.

Debug and Trace Facilities

When the developer of a Windows Sockets 2 application encounters a Windows Sockets-related bug
there is a need to isolate the bug in 1) the application, 2) the WS2_32.DLL, or 3) the service provider.
Windows Sockets 2 addresses this need through a specially devised version of the WS2_32.DLL and a
separate debug/trace DLL. This combination allows all procedure calls across the Windows Sockets 2 API
or SPI to be monitored and, to some extent, be controlled.

Developers can use this mechanism to trace procedure calls, procedure returns, parameter values, and
return values. Parameter values and return values can be altered on procedure call or procedure return. If
desired, a procedure call can be prevented or redirected. With access to this level of information and
control, a developer can isolate any problem in the application, WS2_32.DLL, or service provider.

The Windows Sockets 2 SDK includes the debug WS2_32.DLL, a sample debug/trace DLL, and a
document containing a detailed description of the components. The sample debug/trace DLL is provided
in both source and object form. Developers are free to use the source to develop versions of the
debug/trace DLL that meet their specific needs.

Name Resolution

Windows Sockets 2 includes provisions for standardizing the way applications access and use the
various network name resolution services. Windows Sockets 2 applications do not need to be aware of
the widely differing interfaces associated with name services such as DNS, NIS, X.500, SAP, and others.
An introduction to this topic and the details of the functions are currently located in Protocol-Independent
Name Resolution.

Overlapped I/O and Event Objects

Windows Sockets 2 introduces overlapped I/O and requires that all transport providers support this
capability. Overlapped I/O follows the model established in Win32 and can be performed only on sockets
that were created through the WSASocket function with the WSA_FLAG_OVERLAPPED flag set.

Note Creating a socket with the overlapped attribute has no impact on whether a socket is currently
in the blocking or nonblocking mode. Sockets created with the overlapped attribute can be used to
perform overlapped I/O¾doing so does not change the blocking mode of a socket. Since overlapped
I/O operations do not block, the blocking mode of a socket is irrelevant for these operations.

For receiving, applications use the WSARecv or WSARecvFrom functions to supply buffers into which
data is to be received. If one or more buffers are posted prior to the time when data has been received by
the network, that data could be placed in the user's buffers immediately as it arrives. Thus, it can avoid
the copy operation that would otherwise occur at the time the recv or recvfrom function is invoked. If
data is already present when receive buffers are posted, it is copied immediately into the user's buffers.

If data arrives when no receive buffers have been posted by the application, the network resorts to the
familiar synchronous style of operation. That is, the incoming data is buffered internally until the
application issues a receive call and thereby supplies a buffer into which the data can be copied. An
exception to this is when the appliation uses setsockopt to set the size of the receive buffer to zero. In
this instance, reliable protocols would only allow data to be received when application buffers had been
posted and data on unreliable protocols would be lost.

On the sending side, applications use WSASend or WSASendTo to supply pointers to filled buffers and
then agree to not disturb the buffers in any way until the network has consumed the buffer's contents.

Overlapped send and receive calls return immediately. A return value of zero indicates that the I/O
operation was completed immediately and that the corresponding completion indication already occurred.
That is, the associated event object has been signaled, or a completion routine has been queued and will
be executed when the calling thread gets into the alertable wait state.

A return value of SOCKET_ERROR coupled with an error code of WSA_IO_PENDING indicates that the
overlapped operation has been successfully initiated and that a subsequent indication will be provided
when send buffers have been consumed or when a receive operation has been completed. However, for
sockets that are byte-stream style, the completion indication occurs whenever the incoming data is
exhausted, regardless of whether the buffers are full. Any other error code indicates that the overlapped
operation was not successfully initiated and that no completion indication will be forthcoming.

Both send and receive operations can be overlapped. The receive functions can be invoked several times
to post receive buffers in preparation for incoming data, and the send functions can be invoked several
times to queue multiple buffers to send. While the application can rely upon a series of overlapped send
buffers being sent in the order supplied, the corresponding completion indications might occur in a
different order. Likewise, on the receiving side, buffers will be filled in the order they are supplied, but the
completion indications might occur in a different order.

The deferred completion feature of overlapped I/O is also available for WSAIoctl, which is an enhanced
version of ioctlsocket.

Event Objects
Introducing overlapped I/O requires a mechanism for applications to unambiguously associate send and
receive requests with their subsequent completion indications. In Windows Sockets 2, this is
accomplished with event objects that are modeled after Win32 events. Windows Sockets event objects
are fairly simple constructs that can be created and closed, set and cleared, and waited upon and polled.
Their prime utility is the ability of an application to block and wait until one or more event objects become
set.

Applications use WSACreateEvent to obtain an event object handle that can then be supplied as a
required parameter to the overlapped versions of send and receive calls (WSASend, WSASendTo,
WSARecv, WSARecvFrom). The event object, which is cleared when first created, is set by the transport
providers when the associated overlapped I/O operation has completed (either successfully or with
errors). Each event object created by WSACreateEvent should have a matching WSACloseEvent to
destroy it.

Event objects are also used in WSAEventSelect to associate one or more FD_XXX network events with
an event object. This is described in Asynchronous Notification Using Event Objects.

In 32-bit environments, event object - related functions, including WSACreateEvent, WSACloseEvent,
WSASetEvent, WSAResetEvent, WSAWaitForMultipleEvents, and WSAGetOverlappedResult, are
directly mapped to the corresponding native Win32 functions, using the same function name, but without
the WSA prefix.

Receiving Completion Indications
Several options are available for receiving completion indications, thus providing applications with
appropriate levels of flexibility. These include: waiting (or blocking) on event objects, polling event objects,
and socket I/O completion routines.

Blocking and Waiting for Completion Indication
Applications can block while waiting for one or more event objects to become set using the
WSAWaitForMultipleEvents function. In Win32 implementations, the process or thread will truly block.
Since Windows Sockets 2 event objects are implemented as Win32 events, the native Win32 function,
WaitForMultipleObjects can also be used for this purpose. This is especially useful if the thread needs
to wait on both socket and nonsocket events.

Polling for Completion Indication
Applications that prefer not to block can use the WSAGetOverlappedResult function to poll for the
completion status associated with any particular event object. This function indicates whether or not the
overlapped operation has completed, and if completed, arranges for the WSAGetLastError function to
retrieve the error status of the overlapped operation.

Using socket I/O completion routines
The functions used to initiate overlapped I/O (WSASend, WSASendTo, WSARecv, WSARecvFrom) all
take lpCompletionRoutine as an optional input parameter. This is a pointer to an application-specific
function that will be called after a successfully initiated overlapped I/O operation was completed
(successfully or otherwise). The completion routine follows the same rules as stipulated for Win32 file I/O
completion routines. That is, the completion routine will not be invoked until the thread is in an alertable
wait state, such as when the function WSAWaitForMultipleEvents is invoked with the fAlertable flag set.

The transports allow an application to invoke send and receive operations from within the context of the
socket I/O completion routine and guarantee that, for a given socket, I/O completion routines will not be
nested. This permits time-sensitive data transmissions to occur entirely within a preemptive context.

Summary of overlapped completion indication mechanisms
The particular overlapped I/O completion indication to be used for a given overlapped operation is
determined by whether the application supplies a pointer to a completion function, whether a
WSAOVERLAPPED structure is referenced, and by the value of the hEvent member within the
WSAOVERLAPPED structure (if supplied). The following table summarizes the completion semantics for
an overlapped socket and shows the various combinations of lpOverlapped, hEvent, and
lpCompletionRoutine:

lpOverlapped hEvent lpCompletionRoutineCompletion Indication

NULL not
applicable

ignored Operation completes
synchronously. It behaves as
if it were a nonoverlapped
socket.

!NULL NULL NULL Operation completes
overlapped, but there is no
Windows Sockets 2-
supported completion
mechanism. The completion
port mechanism (if
supported) can be used in
this case. Otherwise, there
will be no completion

notification.

!NULL !NULL NULL Operation completes
overlapped, notification by
signaling event object.

!NULL ignored !NULL Operation completes
overlapped, notification by
scheduling completion
routine.

Asynchronous Notification Using Event Objects

The WSAEventSelect and WSAEnumNetworkEvents functions are provided to accommodate
applications such as daemons and services that have no user interface (and hence do not use Windows
handles). The WSAEventSelect function behaves exactly like the WSAAsyncSelect function. However,
instead of causing a Windows message to be sent on the occurrence of an FD_XXX network event (for
example, FD_READ and FD_WRITE), an application-designated event object is set.

Also, the fact that a particular FD_XXX network event has occurred is "remembered" by the service
provider. The application can call WSAEnumNetworkEvents to have the current contents of the network
event memory copied to an application-supplied buffer and to have the network event memory
automatically cleared. If needed, the application can also designate a particular event object that is
cleared along with the network event memory.

Quality of Service

The basic Quality of Service (QOS) mechanism in Windows Sockets 2 descends from the flow
specification as described in RFC 1363, dated September 1992. Following is a brief overview of this
concept:

Flow specifications describe a set of characteristics about a proposed, unidirectional flow through the
network. An application can associate a pair of flow specifications with a socket (one for each direction) at
the time a connection request is made using WSAConnect, or at other times using WSAIoctl with the
SIO_SET_QOS/SIO_SET_GROUP_QOS command. Flow specifications indicate parametrically what
level of service is required and provide a feedback mechanism for applications to use in adapting to
network conditions.

This is the usage model for QOS in Windows Sockets 2. An application can establish its QOS
requirements at any time with WSAIoctl or coincident with the connect operation with WSAConnect. For
connection-oriented transports, it is often most convenient for an application to use the WSAConnect
function because any QOS values supplied at connect time supersede those supplied earlier with the
WSAIoctl function. If the WSAConnect function completes successfully, the application knows that its
QOS request has been honored by the network. The application is then free to use the socket for data
exchange. If the connect operation fails because of limited resources, an appropriate error indication is
given. At this point, the application can scale down its service request and try again, or it can give up.

Transport providers update the associated flowspec structures after every connection attempt (successful
or otherwise) in order to indicate, as well as possible, the existing network conditions. (Updating with the
Default Values will indicate that information about the current network conditions is not available.) This
update from the service provider about current network conditions is especially useful when the
application's QOS request consists entirely of the default (unspecified) values, which any service provider
should be able to meet.

Applications expect to use this information about current network conditions to guide their use of the
network, including any subsequent QOS requests. However, the information provided by the transport in
the updated flowspec structure is only an indication. It might be little more than a rough estimate that only
applies to the first hop and not to the complete, end-to-end connection. The application must take
appropriate precautions in interpreting this information.

Connectionless sockets can also use the WSAConnect function to establish a specified QOS level to a
single designated peer. Otherwise, connectionless sockets use the WSAIoctl function to stipulate the
initial QOS request, and any subsequent QOS renegotiations.

Even after a flow is established, conditions in the network can change or one of the communicating
parties might invoke a QOS renegotiation that results in a reduction (or increase) in the available service
level. A notification mechanism is included that utilizes the usual Windows Sockets notification techniques
(FD_QOS and FD_GROUP_QOS events) to indicate to the application that QOS levels have changed.

A service provider generates FD_QOS/FD_GROUP_QOS notifications when the current level of service
supported is significantly different (especially in the negative direction) from what was last reported as a
basic guideline. The application should use the WSAIoctl function with SIO_GET_QOS and/or
SIO_GET_GROUP_QOS to retrieve the corresponding flowspec structure and examine them in order to
discover what aspect of the service level has changed. The QOS structures will be updated where
appropriate. regardless of whether FD_QOS/FD_GROUP_QOS is registered and generated.

If the updated level of service is not acceptable, the application can adjust itself to accommodate it,
attempt to renegotiate QOS, or close the socket. If a renegotiation is attempted, a successful return from
the WSAIoctl function indicates that the revised QOS request was accepted., Otherwise, an appropriate
error will be indicated.

The flow specifications proposed for Windows Sockets 2 divide QOS characteristics into the following
general areas:

Source Traffic Description
The manner in which the application's traffic will be injected into the network. This includes
specifications for the token rate, the token bucket size, and the peak bandwidth. Though the
bandwidth requirement is expressed in terms of a token rate, a service provider need not implement
token buckets. Any traffic management scheme that yields equivalent behavior is permitted.

Latency
Upper limits on the amount of delay and delay variation that are acceptable.

Level of service guarantee
Whether or not an absolute guarantee is required as opposed to best effort. Providers that have no
feasible way to provide the level of service requested are expected to fail the connection attempt.

Cost
This is a placeholder for a future time when a meaningful cost metric can be determined.

Provider-specific parameters
The flow specification itself can be extended in ways that are particular to specific providers.

QOS Templates
It is possible for QOS templates to be established for well-known media flows such as H.323, G.711, and
others. The WSAGetQOSByName function can be used to obtain the appropriate QOS structure for
named media streams. It is up to each service provider to determine the appropriate values for each
element in the QOS structure, as well as any protocol or media-dependent QOS extensions.

Default Values
A default flowspec structure is associated with each eligible socket at the time it is created. The member
values for the default flowspec structure, in all cases, indicate that no particular flow characteristics are
being requested from the network. Applications only need to modify values important to that application,
but must be aware that there is some coupling between fields such as TokenRate and TokenBucketSize.
These are the values for the default flow spec:

TokenRate = -1 (not specified)
TokenBucketSize = -1 (not specified)
PeakBandwidth = -1 (not specified)
Latency = -1 (not specified)
DelayVariation = -1 (not specified)
LevelOfGuarantee = BestEffortService
CostOfCall = 0 (reserved for future use)
NetworkAvailability = (read-only value)

Socket Groups

Windows Sockets 2 introduces the concept of a socket group as a means for an application (or
cooperating set of applications) to indicate to an underlying service provider that a particular set of
sockets are related, and that the group thus formed has certain attributes. Group attributes include
relative priorities of the individual sockets within the group and a group's quality of service specification.

Applications needing to exchange multimedia streams over the network benefit by establishing a specific
relationship among the set of sockets being utilized. This can include, as a minimum, an indication to the
service provider about the relative priorities of the media streams being carried. For example, a
conferencing application would likely give the socket used for carrying the audio stream a higher priority
than the socket used for the video stream. Furthermore, there are transport providers (for example, digital
telephony and ATM) that can utilize a group, quality-of-service specification to determine the appropriate
characteristics for the underlying call or circuit connection. The sockets within a group are then
multiplexed in the usual manner over this call. By allowing the application to identify the sockets that
make up a group and to specify the required group attributes, service providers can operate with
maximum effectiveness.

The WSASocket and WSAAccept functions are two new functions used to specifically create and join a
socket group coincident with creating a new socket. Socket group identifiers can be retrieved by using
getsockopt with option SO_GROUP_ID. Relative priority can be accessed by using get/setsockopt with
option SO_GROUP_PRIORITY.

Shared Sockets

The WSADuplicateSocket function is introduced to enable socket sharing across processes. A source
process calls WSADuplicateSocket to obtain a special WSAPROTOCOL_INFO structure. It uses some
interprocess communications (IPC) mechanism to pass the contents of this structure to a target process.
The target process then uses the WSAPROTOCOL_INFO structure in a call to WSPSocket. The socket
descriptor returned by this function will be an additional socket descriptor to an underlying socket which
thus becomes shared. Sockets can be shared among threads in a given process without using the
WSADuplicateSocket function because a socket descriptor is valid in all threads of a process.

The two (or more) descriptors that reference a shared socket can be used independently as far as I/O is
concerned. However, the Windows Sockets interface does not implement any type of access control, so
the processes must coordinate any operations on a shared socket. A typical example of sharing sockets
is to use one process for creating sockets and establishing connections. This process then hands off
sockets to other processes that are responsible for information exchange.

The WSADuplicateSocket function creates socket descriptors and not the underlying socket. As a result,
all the states associated with a socket are held in common across all the descriptors. For example, a
setsockopt operation performed using one descriptor is subsequently visible using a getsockopt from
any or all descriptors. A process can call closesocket on a duplicated socket and the descriptor will
become deallocated. The underlying socket, however, will remain open until closesocket is called with
the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of the WSAAsyncSelect and
WSAEventSelect functions. Issuing either of these calls using any of the shared descriptors cancels any
previous event registration for the socket, regardless of which descriptor was used to make that
registration. Thus, for example, it would not be possible to have process A receive FD_READ events and
process B receive FD_WRITE events. For situations when such tight coordination is required, it is
suggested that developers use threads instead of separate processes.

Enhanced Functionality During Connection Setup and Teardown

The WSAAccept function lets an application obtain caller information such as caller ID and QOS before
deciding whether to accept an incoming connection request. This is done with a callback to an
application-supplied condition function.

User-to-user data specified by parameters in the WSAConnect function and the condition function of
WSAAccept can be transferred to the peer during connection establishment, provided this feature is
supported by the service provider.

It is also possible (for protocols that support this) to exchange user data between the endpoints at
connection teardown time. The end that initiates the teardown can call the WSASendDisconnect
function to indicate that no more data be sent and to initiate the connection teardown sequence. For
certain protocols, part of this teardown sequence is the delivery of disconnect data from the teardown
initiator. After receiving notice that the remote end has initiated the teardown sequence (typically by the
FD_CLOSE indication), the WSARecvDisconnect function can be called to receive the disconnect data,
if any.

To illustrate how disconnect data can be used, consider the following scenario. The client half of a
client/server application is responsible for terminating a socket connection. Coincident with the
termination, it provides (using disconnect data) the total number of transactions it processed with the
server. The server in turn responds with the cumulative total of transactions that it has processed with all
clients. The sequence of calls and indications might occur as follows:

Client Side Server Side

(1) Invoke WSASendDisconnect
to conclude session and supply
transaction total

(2) Get FD_CLOSE, recv with a
return value of zero, or
WSAEDISCON error return from
WSARecv indicating graceful
shutdown in progress

(3) Invoke WSARecvDisconnect
to get client's transaction total

(4) Compute cumulative grand total
of all transactions

(5) Invoke WSASendDisconnect
to transmit grand total

(6) Receive FD_CLOSE
indication

(5a) Invoke closesocket

(7) Invoke WSARecvDisconnect
to receive and store cumulative
grand total of transactions

(8) Invoke closesocket

Note that step (5a) must follow step (5), but has no timing relationship with step (6), (7), or (8).

Extended Byte Order Conversion Routines

Windows Sockets 2 does not assume that the network byte order for all protocols is the same. A set of
conversion routines is supplied for converting 16-bit and 32-bit quantities to and from network byte order.
These routines take as an input parameter an integer whose value is generally a manifest constant that
specifies what the desired network byte order is (currently "big-endian" or "little-endian"). Also, the
WSAPROTOCOL_INFO structure for each protocol includes a field for use as the input parameter for the
byte-ordering functions.

Support for Scatter/Gather I/O

The WSASend, WSASendTo, WSARecv, and WSARecvFrom functions all take an array of application
buffers as input parameters and can be used for scatter/gather (or vectored) I/O. This can be very useful
in instances where portions of each message being transmitted consist of one or more fixed-length
"header" components in addition to message body. Such header components need not be concatenated
by the application into a single contiguous buffer prior to sending. Likewise on receiving, the header
components can be automatically split off into separate buffers, leaving the message body "pure."

When receiving into multiple buffers, completion occurs as data arrives from the network, regardless of
whether all the supplied buffers are utilized.

Protocol-Independent Multicast and Multipoint

Windows Sockets 2 provides a generic method for utilizing the multipoint and multicast capabilities of
transports. This generic method implements these features just as it allows the basic data transport
capabilities of numerous transport protocols to be accessed. The term multipoint is used hereafter to refer
to both multicast and multipoint communications.

Current multipoint implementations (for example, IP multicast, ST-II, T.120, and ATM UNI) vary widely.
How nodes join a multipoint session, whether a particular node is designated as a central or root node,
and whether data is exchanged between all nodes or only between a root node and the various leaf
nodes differ among implementations. The WSAPROTOCOL_INFO structure for Windows Sockets 2 is
used to declare the various multipoint attributes of a protocol. By examining these attributes, the
programmer knows what conventions to follow with the applicable Windows Sockets 2 functions to setup,
utilize and teardown multipoint sessions.

Following is a summary of the features of Windows Sockets 2 that support multipoint:

· Two attribute bits in the WSAPROTOCOL_INFO structure.

· Four flags defined for the dwFlags parameter of the WSASocketfunction.

· One function, WSAJoinLeaf, for adding leaf nodes into a multipoint session

· Two WSAIoctl command codes for controlling multipoint loopback and establishing the scope for
multicast transmissions. (The latter corresponds to the IP multicast time-to-live or TTL parameter.)

Note The inclusion of these multipoint features in Windows Sockets 2 does not preclude an
application from using an existing protocol-dependent interface, such as the Deering socket options
for IP multicast.

See Multipoint and Multicast Semantics for detailed information on how the various multipoint schemes
are characterized and how the applicable features of Windows Sockets 2 are utilized.

Summary of New Socket Options

The new socket options for Windows Sockets 2 are summarized in the following table. See getsockopt
and setsockopt for detailed information on these options. The other new protocol-specific socket options
can be found in the Protocol-specific Annex (a separate document included with the Win32 SDK).

Value Type Meaning Default Note

SO_GROUP_ID GROUP The identifier of
the group to which
this socket
belongs.

NULL get
only

SO_GROUP
_PRIORITY

int The relative
priority for sockets
that are part of a
socket group.

0

SO_MAX_MSG
_SIZE

int Maximum size of
a message for
message-oriented
socket types. Has
no meaning for
stream-oriented
sockets.

Implementation
dependent

get
only

SO_PROTOCOL
_INFO

struct
WSAPROTOCOL_INFO

Description of
protocol info for
protocol that is
bound to this
socket.

protocol
dependent

get
only

PVD_CONFIG char FAR * An opaque data
structure object
containing
configuration
information of the
service provider.

Implementation
dependent

Summary of New Socket Ioctl Opcodes

The new socket ioctl opcodes for Windows Sockets 2 are summarized in the following table. See
WSAIoctl for detailed information on these opcodes. The WSAIoctl function also supports all the ioctl
opcodes specified in ioctlsocket. Theother new protocol-specific ioctl opcodes can be found in the
Protocol-specific Annex (a separate document included with the Win32 SDK).

Opcode Input Type Output Type Meaning

SIO_ASSOCIATE
_HANDLE

companion
API
dependent

<not used> Associate the socket
with the specified handle
of a companion
interface.

SIO_ENABLE
_CIRCULAR
_QUEUEING

<not used> <not used> Circular queuing is
enabled.

SIO_FIND_ROUTE struct
sockaddr

<not used> Request the route to the
specified address to be
discovered.

SIO_FLUSH <not used> <not used> Discard current contents
of the sending queue.

SIO_GET
_BROADCAST
_ADDRESS

<not used> struct
sockaddr

Retrieve the protocol-
specific broadcast
address to be used in
sendto/WSASendTo.

SIO_GET_QOS <not used> QOS Retrieve current flow
specification(s) for the
socket.

SIO_GET_GROUP
_QOS

<not used> QOS Retrieve current group
flow specification(s) for
the group this socket
belongs to.

SIO_MULTIPOINT
_LOOKBACK

BOOL <not used> Control whether data
sent in a multipoint
session will also be
received by the same
socket on the local host.

SIO_MULTICAST
_SCOPE

int <not used> Specify the scope over
which multicast
transmissions will occur.

SIO_SET_QOS QOS <not used> Establish new flow
specification(s) for the
socket.

SIO_SET_GROUP
_QOS

QOS <not used> Establish new group
flow specification(s) for
the group this socket
belongs to.

SIO_TRANSLATE
_HANDLE

int companion
API
dependent

Obtain a corresponding
handle for socket s that
is valid in the context of
a companion interface.

Summary of New Functions

The new API functions for Windows Sockets 2 are summarized in the following table.

Data Transport Functions

Function Description

WSAAccept1 An extended version of accept which
allows for conditional acceptance and
socket grouping.

WSACloseEvent Destroys an event object.

WSAConnect1 An extended version of connect which
allows for exchange of connect data
and QOS specification.

WSACreateEvent Creates an event object.

WSADuplicateSocket Creates a new socket descriptor for a
shared socket.

WSAEnumNetworkEvents Discovers occurrences of network
events.

WSAEnumProtocols Retrieves information about each
available protocol.

WSAEventSelect Associates network events with an
event object.

WSAGetOverlappedResult Gets completion status of overlapped
operation.

WSAGetQOSByName Supplies QOS parameters based on a
well-known service name.

WSAHtonl Extended version of htonl.

WSAHtons Extended version of htons.

WSAIoctl1 Overlapped-capable version of
ioctlsocket.

WSAJoinLeaf1 Joins a leaf node into a multipoint
session.

WSANtohl Extended version of ntohl.

WSANtohs Extended version of ntohs.

WSARecv1 An extended version of recv which
accommodates scatter/gather I/O,
overlapped sockets, and provides the
flags parameter as IN OUT.

WSARecvDisconnect Terminates reception on a socket and
retrieves the disconnect data, if the
socket is connection-oriented.

WSARecvFrom1 An extended version of recvfrom which
accommodates scatter/gather I/O,
overlapped sockets, and provides the
flags parameter as IN OUT.

WSAResetEvent Resets an event object.

WSASend1 An extended version of send which
accommodates scatter/gather I/O and
overlapped sockets.

WSASendDisconnect Initiates termination of a socket

connection and optionally sends
disconnect data.

WSASendTo1 An extended version of sendto which
accommodates scatter/gather I/O and
overlapped sockets.

WSASetEvent Sets an event object.

WSASocket An extended version of socket which
takes a WSAPROTOCOL_INFO
structure as input and allows
overlapped sockets to be created. Also
allows socket groups to be formed.

WSAWaitForMultipleEvents1 Blocks on multiple event objects.
1 The routine can block if acting on a blocking socket.

Windows Sockets Programming
Considerations

This section provides programmers with important information on a number of topics. It is especially
pertinent to those who are porting socket applications from UNIX-based environments or who are
upgrading their Windows Sockets 1.1 applications to Windows Sockets 2.

Deviation from Berkeley Sockets

There are a few limited instances where Windows Sockets has had to divert from strict adherence to the
Berkeley conventions, usually because of difficulties of implementation in a Windows environment.

Socket Data Type
A new data type, SOCKET, has been defined. This is needed because a Windows Sockets application
cannot assume that socket descriptors are equivalent to file descriptors as they are in UNIX. Furthermore,
in UNIX, all handles, including socket handles, are small, non-negative integers, and some applications
make assumptions that this will be true. Windows Sockets handles have no restrictions, other than that
the value INVALID_SOCKET is not a valid socket. Socket handles may take any value in the range 0 to
INVALID_SOCKET-1.

Because the SOCKET type is unsigned, compiling existing source code from, for example, a UNIX
environment may lead to compiler warnings about signed/unsigned data type mismatches.

This means, for example, that checking for errors when the socket and accept routines return should not
be done by comparing the return value with -1, or seeing if the value is negative (both common, and legal,
approaches in BSD). Instead, an application should use the manifest constant INVALID_SOCKET as
defined in WINSOCK2.H. For example:

TYPICAL BSD STYLE:

s = socket(...);
if (s == -1) /* or s < 0 */
 {...}

PREFERRED STYLE:

s = socket(...);
if (s == INVALID_SOCKET)
 {...}

select and FD_*
Because a SOCKET is no longer represented by the UNIX-style "small non-negative integer", the
implementation of the select function was changed in Windows Sockets. Each set of sockets is still
represented by the fd_set type, but instead of being stored as a bitmask the set is implemented as an
array of SOCKETs. To avoid potential problems, applications must adhere to the use of the FD_XXX
macros to set, initialize, clear, and check the fd_set structures.

Error codes - errno, h_errno & WSAGetLastError
Error codes set by Windows Sockets are NOT made available via the errno variable. Additionally, for the
getXbyY class of functions, error codes are NOT made available via the h_errno variable. Instead, error
codes are accessed by using the WSAGetLastError function. This function is provided in Windows
Sockets as a precursor (and eventually an alias) for the Win32 function GetLastError. This is intended to
provide a reliable way for a thread in a multi-threaded process to obtain per-thread error information.

For compatibility with BSD, an application may choose to include a line of the form:

#define errno WSAGetLastError

This will allow networking code which was written to use the global errno to work correctly in a single-
threaded environment. There are, obviously, some drawbacks. If a source file includes code which
inspects errno for both socket and non-socket functions, this mechanism cannot be used. Furthermore, it
is not possible for an application to assign a new value to errno. (In Windows Sockets the function
WSASetLastError may be used for this purpose.)

TYPICAL BSD STYLE:

r = recv(...);
if (r == -1
 && errno == EWOULDBLOCK)
 {...}

PREFERRED STYLE:

r = recv(...);
if (r == -1 /* (but see below) */
 && WSAGetLastError == EWOULDBLOCK)
 {...}

Although error constants consistent with 4.3 Berkeley Sockets are provided for compatibility purposes,
applications should, where possible, use the "WSA" error code definitions. This is because error codes
returned by certain WinSock routines fall into the standard range of error codes as defined by Microsoft
C. Thus, a better version of the above source code fragment is:

r = recv(...);
if (r == -1 /* (but see below) */
 && WSAGetLastError == WSAEWOULDBLOCK)
 {...}

This specification defines a recommended set of error codes, and lists the possible errors that can be
returned as a result of each function. It may be the case in some implementations that other Windows
Sockets error codes will be returned in addition to those listed, and applications should be prepared to
handle errors other than those enumerated under each function description. However Windows Sockets
will not return any value that is not enumerated in the table of legal Windows Sockets errors given in the
section Error Codes.

Pointers
All pointers used by applications with Windows Sockets should be FAR. To facilitate this, data type
definitions such as LPHOSTENT are provided.

Renamed functions
In two cases it was necessary to rename functions which are used in Berkeley Sockets in order to avoid
clashes with other Win32 API functions.

close & closesocket
Sockets are represented by standard file descriptors in Berkeley Sockets, so the close function can be
used to close sockets as well as regular files. While nothing in the Windows Sockets prevents an
implementation from using regular file handles to identify sockets, nothing requires it either. Sockets must
be closed by using the closesocket routine. Using the close routine to close a socket is incorrect and the
effects of doing so are undefined by this specification.

ioctl & ioctlsocket/WSAIoctl
Various C language run-time systems use the ioctl routine for purposes unrelated to Windows Sockets.
As a consequence, the ioctlsocket function and the WSAIoctl function were defined to handle socket
functions that were performed by ioctl and fcntl in the Berkeley Software Distribution.

Maximum number of sockets supported
The maximum number of sockets supported by a particular Windows Sockets service provider is
implementation specific. An application should make no assumptions about the availability of a certain
number of sockets. For more information on this topic see WSAStartup.

The maximum number of sockets that an application can actually use is independent of the number of
sockets supported by a particular implementation. The maximum number of sockets that a Windows
Sockets application can use is determined at compile time by the manifest constant FD_SETSIZE. This
value is used in constructing the fd_set structures used in select. The default value in WINSOCK2.H is
64. If an application is designed to be capable of working with more than 64 sockets, the implementor
should define the manifest FD_SETSIZE in every source file before including WINSOCK2.H. One way of
doing this may be to include the definition within the compiler options in the makefile. For example, you
could add "-DFD_SETSIZE=128" as an option to the compiler command line for Microsoft C. It must be
emphasized that defining FD_SETSIZE as a particular value has no effect on the actual number of
sockets provided by a Windows Sockets service provider.

Include files
A number of standard Berkeley include files are supported for ease of porting existing source code based
on Berkeley sockets. However, these Berkeley header files merely include the WINSOCK2.H include file,
and it is therefore sufficient (and recommended) that Windows Sockets application source files just
include WINSOCK2.H.

Return values on function failure
The manifest constant SOCKET_ERROR is provided for checking function failure. Although use of this
constant is not mandatory, it is recommended. The following example illustrates the use of the
SOCKET_ERROR constant:

TYPICAL BSD STYLE:

r = recv(...);
if (r == -1 /* or r < 0 */
 && errno == EWOULDBLOCK)
 {...}

PREFERRED STYLE:

r = recv(...);
if (r == SOCKET_ERROR
 && WSAGetLastError == WSAEWOULDBLOCK)
 {...}

Raw Sockets
The Windows Sockets specification does not mandate that a Windows Sockets service provider support
raw sockets, that is, sockets of type SOCK_RAW. However, service providers are encouraged to supply
raw socket support. A Windows Sockets-compliant application that wishes to use raw sockets should
attempt to open the socket with the socket call, and if it fails either attempt to use another socket type or
indicate the failure to the user.

Byte Ordering

Care must always be taken to account for any differences between the byte ordering used by Intel
Architecture and the byte ordering used on the wire by individual transport protocols. Any reference to an
address or port number passed to or from a Windows Sockets routine must be in the network order for
the protocol being utilized. In the case of IP, this includes the IP address and port fields of a sockaddr_in
structure (but not the sin_family field).

Consider an application which normally contacts a server on the TCP port corresponding to the "time"
service, but which provides a mechanism for the user to specify that an alternative port is to be used. The
port number returned by getservbyname() is already in network order, which is the format required for
constructing an address, so no translation is required. However if the user elects to use a different port,
entered as an integer, the application must convert this from host to TCP/IP network order (using the
WSAHtons() function) before using it to construct an address. Conversely, if the application wishes to
display the number of the port within an address (returned via, e.g., getpeername()), the port number
must be converted from network to host order (using WSANtohs()) before it can be displayed.

Since the Intel Architecture and Internet byte orders are different, the conversions described above are
unavoidable. Application writers are cautioned that they should use the standard conversion functions
provided as part of WinSock rather than writing their own conversion code, since future implementations
of WinSock are likely to run on systems for which the host order is identical to the network byte order.
Only applications which use the standard conversion functions are likely to be portable.

Consider an application that normally contacts a server on the TCP port corresponding to the "time"
service, but provides a mechanism for the user to specify an alternative port. The port number returned by
getservbyname is already in network order, which is the format required for constructing an address so
no translation is required. However, if the user elects to use a different port, entered as an integer, the
application must convert this from host to TCP/IP network order (using the WSAHtons function) before
using it to construct an address. Conversely, if the application were to display the number of the port
within an address (returned by getpeername for example), the port number must be converted from
network to host order (using WSANtohs) before it can be displayed.

Since the Intel and Internet byte orders are different, the conversions described above are unavoidable.
Application writers are cautioned that they should use the standard conversion functions provided as part
of Windows Sockets rather than writing their own conversion code since future implementations of
Windows Sockets are likely to run on systems for which the host order is identical to the network byte
order. Only applications that use the standard conversion functions are likely to be portable.

Windows Sockets Compatibility Issues

Windows Sockets 2 continues to support all of the Windows Sockets 1.1 semantics and function calls
except for those dealing with psuedo-blocking. Since Windows Sockets 2 runs only in 32-bit, pre-
emptively scheduled environments such as Windows NT and Windows 95, there is no need to implement
the psuedo-blocking found in Windows Sockets 1.1. This means that the WSAEINPROGRESS error code
will never be indicated and that the following Windows Sockets 1.1 functions are not available to Windows
Sockets 2 applications:

· WSACancelBlockingCall

· WSAIsBlocking

· WSASetBlockingHook

· WSAUnhookBlockingHook

Windows Sockets 1.1 programs that are written to utilize psuedo-blocking will continue to operate
correctly since they link to either WINSOCK.DLL or WSOCK32.DLL. Both continue to support the
complete set of Windows Sockets 1.1 functions. In order for programs to become Windows Sockets 2
applications, some amount of code modification must occur. In most cases, you will substitute the
judicious use of threads to accommodate processing that was being accomplished with a blocking hook
function.

Default state for a socket's overlapped attribute
The socket function created sockets with the overlapped attribute set by default in the first
WSOCK32.DLL, the 32-bit version of Windows Sockets 1.1. In order to insure backward compatibility with
currently deployed WSOCK32.DLL implementations, this will continue to be the case for WinSock 2 as
well. That is, in WinSock 2, sockets created with the socket function will have the overlapped attribute.
However, in order to be more compatible with the rest of the Win32 API, sockets created with
WSASocket will, by default, NOT have the overlapped attribute. This attribute will only be applied if the
WSA_FLAG_OVERLAPPED bit is set.

Windows Sockets 1.1 Blocking routines & EINPROGRESS
One major issue in porting applications from a Berkeley sockets environment to a Windows environment
involves "blocking"; that is, invoking a function that does not return until the associated operation is
completed. A problem arises when the operation takes an arbitrarily long time to complete: an example is
a recv, which might block until data has been received from the peer system. The default behavior within
the Berkeley sockets model is for a socket to operate in a blocking mode unless the programmer explicitly
requests that operations be treated as nonblocking. Windows Sockets 1.1 environments could not
assume pre-emptive scheduling. Therefore, it was strongly recommended that programmers use the
nonblocking (asynchronous) operations if at all possible. Because this was not always possible, the
psuedo-blocking facilities described below were provided.

Even on a blocking socket, some functions ¾ bind, getsockopt, and getpeername for example ¾
complete immediately. There is no difference between a blocking and a nonblocking operation for those
functions. Other operations, such as recv, can complete immediately or could take an arbitrary time to
complete, depending on various transport conditions. When applied to a blocking socket, these
operations are referred to as blocking operations. All routines that can block are listed with an asterisk in
the tables above and below.

With Windows Sockets 1.1, a blocking operation that cannot complete immediately is handled by psuedo-
blocking as follows. The service provider initiates the operation, then enters a loop in which it dispatches
any Windows messages (yielding the processor to another thread if necessary), and then checks for the
completion of the Windows Sockets function. If the function has completed, or if
WSACancelBlockingCall has been invoked, the blocking function completes with an appropriate result.

A service provider must allow installation of a blocking hook function that does not process messages in
order to avoid the possibility of re-entrant messages while a blocking operation is outstanding. The
simplest such blocking hook function would return FALSE. If a Windows Sockets DLL depends on
messages for internal operation, it can execute PeekMessage(hMyWnd...) before executing the
application blocking hook so that it can get its messages without affecting the rest of the system.

In a Windows Sockets 1.1 environment, if a Windows message is received for a process for which a
blocking operation is in progress, there is a risk that the application will attempt to issue another Windows
Sockets call. Because of the difficulty in managing this condition safely, Windows Sockets 1.1 does not
support such application behavior. An application it not permitted to make more than one nested Windows
Sockets function calls. Only one outstanding function call will be allowed for a particular task. The only
exceptions are two functions that are provided to assist the programmer in this situation: WSAIsBlocking
and WSACancelBlockingCall.

The WSAIsBlocking function can be called at any time to determine whether or not a blocking Windows
Sockets 1.1 call is in progress. Similarly, the WSACancelBlockingCall fucntion can be called at any time
to cancel an in-progress blocking call. Any other nesting of Windows Sockets functions will fail with the
error WSAEINPROGRESS. It should be emphasized that this restriction applies to both blocking and non-
blocking operations.

Although this mechanism is sufficient for simple applications, it cannot support the complex message-
dispatching requirements of more advanced applications (for example, those using the MDI model). For
such applications, the Windows Sockets API includes the function WSASetBlockingHook, which allows
the application to specify a special routine which will be called instead of the default message dispatch
routine described above.

The Windows Sockets provider calls the blocking hook only if all of the following are true: the routine is
one that is defined as being able to block, the specified socket is a blocking socket, and the request
cannot be completed immediately. (A socket is set to blocking by default, but the IOCTL FIONBIO or the
WSAAsyncSelect function set a socket to nonblocking mode.)

The blocking hook will never be called and the application does not need to be concerned with the re-

entrancy issues the blocking hook can introduce if an application follows these guideline:

· It uses only nonblocking sockets, and;

· It uses the WSAAsyncSelect and/or the WSAAsyncGetXByY routines instead of select and the
getXbyY routines.

If a Windows Sockets 1.1 application invokes an asynchronous or nonblocking operation that takes a
pointer to a memory object (a buffer, or a global variable for example) as an argument, it is the
responsibility of the application to ensure that the object is available to Windows Sockets throughout the
operation. The application must not invoke any Windows function that might affect the mapping or
addressability of the memory involved.

Graceful shutdown, linger options and socket closure

The following material is provided as clarification for the subject of shutting down socket connections
closing the sockets. It is important to distinguish the difference between shutting down a socket
connection and closing a socket. Shutting down a socket connection involves an exchange of protocol
messages between the two endpoints, hereafter referred to as a shutdown sequence. Two general
classes of shutdown sequences are defined: graceful and abortive (also called "hard"). In a graceful
shutdown sequence, any data that has been queued but not yet transmitted can be sent prior to the
connection being closed. In an abortive shutdown, any unsent data is lost. The occurrence of a shutdown
sequence (graceful or abortive) can also be used to provide an FD_CLOSE indication to the associated
applications signifying that a shutdown is in progress.

Closing a socket, on the other hand, causes the socket handle to become deallocated so that the
application can no longer reference or use the socket in any manner.

In Windows Sockets, both the shutdown function, and the WSASendDisconnect function can be used
to initiate a shutdown sequence, while the closesocket function is used to deallocate socket handles and
free up any associated resources. Some amount of confusion arises, however, from the fact that the
closesocket function will implicitly cause a shutdown sequence to occur if it has not already happened.
In fact, it has become a rather common programming practice to rely on this feature and use closesocket
to both initiate the shutdown sequence and deallocate the socket handle.

To facilitate this usage, the sockets interface provides for controls by way of the socket option mechanism
that allow the programmer to indicate whether the implicit shutdown sequence should be graceful or
abortive, and also whether the closesocket function should linger (that is not complete immediately) to
allow time for a graceful shutdown sequence to complete. These important distinctions and the
ramifications of using closesocket in this manner have not been widely understood.

By establishing appropriate values for the socket options SO_LINGER and SO_DONTLINGER, the
following types of behavior can be obtained with the closesocket function:

· Abortive shutdown sequence, immediate return from closesocket.

· Graceful shutdown, delaying return until either shutdown sequence completes or a specified time
interval elapses. If the time interval expires before the graceful shutdown sequence completes, an
abortive shutdown sequence occurs, and closesocket returns.

· Graceful shutdown, immediate return ¾ allowing the shutdown sequence to complete in the
background. Although this is the default behavior, the application has no way of knowing when (or
whether) the graceful shutdown sequence actually completes.

One technique that can be used to minimize the chance of problems occurring during connection
teardown is to avoid relying on an implicit shutdown being initiated by closesocket. Instead, use one of
the two explicit shutdown functions, shutdown or WSASendDisconnect). This in turn will cause an
FD_CLOSE indication to be received by the peer application indicating that all pending data has been
received. To illustrate this, the following table shows the functions that would be invoked by the client and
server components of an application, where the client is responsible for initiating a graceful shutdown.

Client Side Server Side

(1) Invoke shutdown(s,
SD_SEND) to signal end of
session and that client has no
more data to send.

(2) Receive FD_CLOSE, indicating
graceful shutdown in progress and
that all data has been received.

(3) Send any remaining response

data.

(5') Get FD_READ and invoke
recv to get any response data
sent by server

(4) Invoke shutdown(s,
SD_SEND) to indicate server has
no more data to send.

(5) Receive FD_CLOSE
indication

(4') Invoke closesocket

(6) Invoke closesocket

Note The timing sequence is maintained from step (1) to step (6) between the client and the server,
except for step (4') and (5') which only has local timing significance in the sense that step (5) follows
step (5') on the client side while step (4') follows step (4) on the server side, with no timing
relationship with the remote party.

Out-Of-Band data
The stream socket abstraction includes the notion of "out of band'' (OOB) data. Many protocols allow
portions of incoming data to be marked as special in some way, and these special data blocks can be
delivered to the user out of the normal sequence. Examples include "expedited data" in X.25 and other
OSI protocols, and "urgent data" in BSD Unix's use of TCP. The next section describes OOB data
handling in a protocol-independent manner. A discussion of OOB data implemented using TCP "urgent
data" follows it. In the each discussion, the use of recv also implies recvfrom, WSARecv, and
WSARecvFrom, and references to WSAAsyncSelect also apply to WSAEventSelect.

Protocol Independent OOB data
OOB data is a logically independent transmission channel associated with each pair of connected stream
sockets. OOB data may be delivered to the user independently of normal data. The abstraction defines
that the OOB data facilities must support the reliable delivery of at least one OOB data block at a time.
This data block can contain at least one byte of data, and at least one OOB data block can be pending
delivery to the user at any one time. For communications protocols that support in-band signaling (such
as TCP, where the "urgent data" is delivered in sequence with the normal data), the system normally
extracts the OOB data from the normal data stream and stores it separately (leaving a gap in the "normal"
data stream). This allows users to choose between receiving the OOB data in order and receiving it out of
sequence without having to buffer all the intervening data. It is possible to "peek'' at out-of-band data.

A user can determine if there is any OOB data waiting to be read using the ioctlsocket(SIOCATMARK)
function (q.v.). For protocols where the concept of the "position" of the OOB data block within the normal
data stream is meaningful such as TCP, a Windows Sockets service provider will maintain a conceptual
"marker" indicating the position of the last byte of OOB data within the normal data stream. This is not
necessary for the implementation of the ioctlsocket(SIOCATMARK) functionality - the presence or
absence of OOB data is all that is required.

For protocols where the concept of the "position" of the OOB data block within the normal data stream is
meaningful, an application might process out-of-band data "in-line", as part of the normal data stream.
This is achieved by setting the socket option SO_OOBINLINE with setsockopt. For other protocols
where the OOB data blocks are truly independent of the normal data stream, attempting to set
SO_OOBINLINE will result in an error. An application can use the SIOCATMARK ioctlsocket command
to determine whether there is any unread OOB data preceding the mark. For example, it can use this to
resynchronize with its peer by ensuring that all data up to the mark in the data stream is discarded when
appropriate.

With SO_OOBINLINE disabled (the default setting):

· Windows Sockets notifies an application of an FD_OOB event, if the application registered for
notification with WSAAsyncSelect, in exactly the same way FD_READ is used to notify of the
presence of normal data. That is, FD_OOB is posted when OOB data arrives with no OOB data
previously queued. The FD_OOB is also posted when data is read using the MSG_OOB flag while
some OOB data remains queued after the read operation has returned. FD_READ messages are not
posted for OOB data.

· Windows Sockets returns from select with the appropriate exceptfds socket set if OOB data is
queued on the socket.

· The application can call recv with MSG_OOB to read the urgent data block at any time. The block of
OOB data "jumps the queue".

· The application can call recv without MSG_OOB to read the normal data stream. The OOB data
block will not appear in the data stream with "normal data." If OOB data remains after any call to recv,
Windows Sockets notifies the application with FD_OOB or with exceptfds when using select.

· For protocols where the OOB data has a position within the normal data stream, a single recv
operation will not span that position. One recv will return the normal data before the "mark", and a
second recv is required to begin reading data after the "mark".

With SO_OOBINLINE enabled:

· FD_OOB messages are NOT posted for OOB data. OOB data is treated as normal for the purpose of
the select and WSAAsyncSelect functions, and indicated by setting the socket in readfds or by
sending an FD_READ message respectively.

· The application can not call recv with the MSG_OOB flag set to read the OOB data block. The error
code WSAEINVAL will be returned.

· The application can call recv without the MSG_OOB flag set. Any OOB data will be delivered in its
correct order within the "normal" data stream. OOB data will never be mixed with normal data. There
must be three read requests to get past the OOB data. The first returns the normal data prior to the
OOB data block, the second returns the OOB data, the third returns the normal data following the
OOB data. In other words, the OOB data block boundaries are preserved.

The WSAAsyncSelect routine is particularly well suited to handling notification of the presence of out-of-
band-data when SO_OOBINLINE is off.

OOB data in TCP

Important The following discussion of out-of-band (OOB) data, implemented using TCP Urgent
data, follows the model used in the Berkeley software distribution. Users and implementors should be
aware that there are, at present, two conflicting interpretations of RFC 793 (where the concept is
introduced), and that the implementation of out-of-band data in the Berkeley Software Distribution
(BSD) does not conform to the Host Requirements laid down in RFC 1122.

Specifically, the TCP urgent pointer in BSD points to the byte after the urgent data byte, and an RFC-
compliant TCP urgent pointer points to the urgent data byte. As a result, if an application sends urgent
data from a BSD-compatible implementation to an RFC-1122 compatible implementation, the receiver
will read the wrong urgent data byte (it will read the byte located after the correct byte in the data
stream as the urgent data byte).

To minimize interoperability problems, applications writers are advised not to use out-of-band data
unless this is required to interoperate with an existing service. Windows Sockets suppliers are urged
to document the out-of-band semantics (BSD or RFC 1122) that their product implements.

Arrival of a TCP segment with the "URG" (for urgent) flag set indicates the existence of a single byte of
"OOB" data within the TCP data stream. The "OOB data block" is one byte in size. The urgent pointer is a
positive offset from the current sequence number in the TCP header that indicates the location of the
"OOB data block" (ambiguously, as noted above). It might, therefore, point to data that has not yet been
received.

If SO_OOBINLINE is disabled (the default) when the TCP segment containing the byte pointed to by the
urgent pointer arrives, the OOB data block (one byte) is removed from the data stream and buffered. If a
subsequent TCP segment arrives with the urgent flag set (and a new urgent pointer), the OOB byte
currently queued can be lost as it is replaced by the new OOB data block (as occurs in Berkeley Software
Distribution). It is never replaced in the data stream, however.

With SO_OOBINLINE enabled, the urgent data remains in the data stream. As a result, the OOB data
block is never lost when a new TCP segment arrives containing urgent data. The existing OOB data
"mark" is updated to the new position.

Summary of Windows Sockets 2 Functions

The following 2 tables summarize the functions included in Windows Sockets 2. The functions are sorted
into Berkeley-style functions and Microsoft Windows-specific Extension functions.

Socket Functions
The Windows Sockets specification includes the following Berkeley-style socket routines:

accept1 An incoming connection is acknowledged and
associated with an immediately created socket.
The original socket is returned to the listening
state.

bind Assign a local name to an unnamed socket.

closesocket1 Remove a socket from the per-process object
reference table. Only blocks if SO_LINGER is
set with a non-zero timeout on a blocking
socket.

connect1 Initiate a connection on the specified socket.

getpeername Retrieve the name of the peer connected to the
specified socket.

getsockname Retrieve the local address to which the specified
socket is bound.

getsockopt Retrieve options associated with the specified
socket.

htonl2 Convert a 32-bit quantity from host byte order to
network byte order.

htons2 Convert a 16-bit quantity from host byte order to
network byte order.

inet_addr2 Converts a character string representing a
number in the Internet standard ".'' notation to
an Internet address value.

inet_ntoa2 Converts an Internet address value to an ASCII
string in ".'' notation i.e. "a.b.c.d''.

ioctlsocket Provide control for sockets.

listen Listen for incoming connections on a specified
socket.

ntohl2 Convert a 32-bit quantity from network byte
order to host byte order.

ntohs2 Convert a 16-bit quantity from network byte
order to host byte order.

recv1 Receive data from a connected or unconnected
socket.

recvfrom1 Receive data from either a connected or
unconnected socket.

select1 Perform synchronous I/O multiplexing.

send1 Send data to a connected socket.

sendto1 Send data to either a connected or unconnected
socket.

setsockopt Store options associated with the specified
socket.

shutdown Shut down part of a full-duplex connection.

socket Create an endpoint for communication and
return a socket descriptor.

1 The routine can block if acting on a blocking socket.

2 The routine is retained for backward compatibility with Windows Sockets 1.1, and should
only be used for sockets created with AF_INET address family.

Microsoft Windows-specific Extension Functions
The Windows Sockets specification provides a number of extensions to the standard set of Berkeley
Sockets routines. Principally, these extended functions allow message or function-based, asynchronous
access to network events, as well as enable overlapped I/O. While use of this extended API set is not
mandatory for socket-based programming (with the exception of WSAStartup and WSACleanup), it is
recommended for conformance with the Microsoft Windows programming paradigm. For features
introduced in Windows Sockets 2, please see New Concepts, Additions and Changes for Windows
Sockets 2.

WSAAccept1 An extended version of accept which
allows for conditional acceptance and
socket grouping.

WSAAsyncGetHostByAddr2

WSAAsyncGetHostByName2

WSAAsyncGetProtoByName2

WSAAsyncGetProtoByNumber2

WSAAsyncGetServByName2

WSAAsyncGetServByPort2

A set of functions which provide
asynchronous versions of the standard
Berkeley getXbyY functions. For
example, the
WSAAsyncGetHostByName function
provides an asynchronous message
based implementation of the standard
Berkeley gethostbyname function.

WSAAsyncSelect Perform asynchronous version of
select

WSACancelAsyncRequest2 Cancel an outstanding instance of a
WSAAsyncGetXByY function.

WSACleanup Sign off from the underlying Windows
Sockets DLL.

WSACloseEvent Destroys an event object.

WSAConnect1 An extended version of connect which
allows for exchange of connect data
and QOS specification.

WSACreateEvent Creates an event object.

WSADuplicateSocket Allow an underlying socket to be
shared by creating a virtual socket.

WSAEnumNetworkEvents Discover occurrences of network
events.

WSAEnumProtocols Retrieve information about each
available protocol.

WSAEventSelect Associate network events with an
event object.

WSAGetLastError Obtain details of last Windows Sockets
error

WSAGetOverlappedResult Get completion status of overlapped
operation.

WSAGetQOSByName Supply QOS parameters based on a
well-known service name.

WSAHtonl Extended version of htonl

WSAHtons Extended version of htons

WSAIoctl1 Overlapped-capable version of ioctl

WSAJoinLeaf1 Add a multipoint leaf to a multipoint
session

WSANtohl Extended version of ntohl

WSANtohs Extended version of ntohs

WSARecv1 An extended version of recv which
accommodates scatter/gather I/O,
overlapped sockets and provides the
flags parameter as IN OUT

WSARecvFrom1 An extended version of recvfrom which
accommodates scatter/gather I/O,
overlapped sockets and provides the
flags parameter as IN OUT

WSAResetEvent Resets an event object.

WSASend1 An extended version of send which
accommodates scatter/gather I/O and
overlapped sockets

WSASendTo1 An extended version of sendto which
accommodates scatter/gather I/O and
overlapped sockets

WSASetEvent Sets an event object.

WSASetLastError Set the error to be returned by a
subsequent WSAGetLastError

WSASocket An extended version of socket which
takes a WSAPROTOCOL_INFO struct
as input and allows overlapped sockets
to be created. Also allows socket
groups to be formed.

WSAStartup Initialize the underlying Windows
Sockets DLL.

WSAWaitForMultipleEvents1 Blocks on multiple event objects.
1 The routine can block if acting on a blocking socket.

2 The routine is always realized by the name resolution provider associated with the default
TCP/IP service provider, if any.

Registration and Name Resolution
Windows Sockets 2 includes a new set of API functions that standardize the way applications access and
use the various network naming services. When using these new functions, Windows Sockets 2
applications need not be cognizant of the widely differing interfaces associated with name services such
as DNS, NIS, X.500, SAP, etc. To maintain full backward compatibility with Windows Sockets 1.1, all of
the existing getXbyY and asynchronous WSAAsyncGetXbyY database lookup functions continue to be
supported, but are implemented in the Windows Sockets service provider interface in terms of the new
name resolution capabilities. For more information, see Windows Sockets 1.1 Compatibile Name
Resolution for TCP/IP.

Protocol-Independent Name Resolution

In developing a protocol-independent client/server application, there are two basic requirements that exist
with respect to name resolution and registration:

· The ability of the server half of the application (hereafter referred to as a service) to register its
existence within (or become accessible to) one or more name spaces

· The ability of the client application to find the service within a name space and obtain the required
transport protocol and addressing information

For those accustomed to developing TCP/IP based applications, this may seem to involve little more than
looking up a host address and then using an agreed upon port number. Other networking schemes,
however, allow the location of the service, the protocol used for the service, and other attributes to be
discovered at run-time. To accommodate the broad diversity of capabilities found in existing name
services, the Windows Sockets 2 interface adopts the model described below.

Name Resolution Model
A name space refers to some capability to associate (as a minimum) the protocol and addressing
attributes of a network service with one or more human-friendly names. Many name spaces are currently
in wide use including the Internet's Domain Name System(DNS), the bindery and Netware Directory
Services (NDS) from Novell, X.500, etc. These name spaces vary widely in how they are organized and
implemented. Some of their properties are particularly important to understand from the perspective of
Windows Sockets name resolution.

Types of Name Spaces
There are three different types of name spaces in which a service could be registered:

· dynamic

· static

· persistent

Dynamic name spaces allow services to register with the name space on the fly, and for clients to
discover the available services at run-time. Dynamic name spaces frequently rely on broadcasts to
indicate the continued availability of a network service. Examples of dynamic name spaces include the
SAP name space used within a Netware environment and the NBP name space used by Appletalk.

Static name spaces require all of the services to be registered ahead of time, i.e. when the name space is
created. The DNS is an example of a static name space. Although there is a programmatic way to resolve
names, there is no programmatic way to register names.

Persistent name spaces allow services to register with the name space on the fly. Unlike dynamic name
spaces however, persistent name spaces retain the registration information in non-volatile storage where
it remains until such time as the service requests that it be removed. Persistent name spaces are typified
by directory services such as X.500 and the NDS (Netware Directory Service). These environments allow
the adding, deleting, and modification of service properties. In addition, the service object representing
the service within the directory service could have a variety of attributes associated with the service. The
most important attribute for client applications is the service's addressing information.

Name Space Organization
Many name spaces are arranged hierarchically. Some, such as X.500 and NDS, allow unlimited nesting.
Others allow services to be combined into a single level of hierarchy or "group." This is typically referred
to as a workgroup. When constructing a query, it is often necessary to establish a context point within a
name space hierarchy from which the search will begin.

Name Space Provider Architecture
Naturally, the programmatic interfaces used to query the various types of name spaces and to register
information within a name space (if supported) differ widely. A name space provider is a locally-resident
piece of software that knows how to map between Windows Sockets's name space SPI and some
existing name space (which could be implemented locally or be accessed via the network). This is
illustrated as follows:

{ewc msdncd, EWGraphic, bsd23511 0 /a "SDK_1.WMF"}

Name Space Provider Architecture

Note that it is possible for a given name space, say DNS, to have more than one name space provider
installed on a given machine.

As mentioned above, the generic term service refers to the server-half of a client/server application. In
Windows Sockets, a service is associated with a service class, and each instance of a particular service

has a service name which must be unique within the service class. Examples of service classes include
FTP Server, SQL Server, XYZ Corp. Employee Info Server, etc. As the example attempts to illustrate,
some service classes are "well known" while others are very unique and specific to a particular vertical
application. In either case, every service class is represented by both a class name and a class ID. The
class name does not necessarily need to be unique, but the class ID must be. Globally Unique Identifiers
(GUIDs) are used to represent service class IDs. For well-known services, class names and class ID's
(GUIDs) have been pre-allocated, and macros are available to convert between, for example, TCP port
numbers and the corresponding class ID GUIDs. For other services, the developer chooses the class
name and uses the UUIDGEN.EXE utility to generate a GUID for the class ID.

The notion of a service class exists to allow a set of attributes to be established that are held in common
by all instances of a particular service. This set of attributes is provided at the time the service class is
defined to Windows Sockets, and is referred to as the service class schema information. When a service
is installed and made available on a host machine, that service is considered instantiated, and its service
name is used to distinguish a particular instance of the service from other instances which may be known
to the name space.

Note that the installation of a service class only needs to occur on machines where the service executes,
not on all of the clients which may utilize the service. Where possible, the WS2_32.DLL will provide
service class schema information to a name space provider at the time an instantiation of a service is to
be registered or a service query is initiated. The WS2_32.DLL does not, of course, store this information
itself, but attempts to retrieve it from a name space provider that has indicated its ability to supply this
data. Since there is no guarantee that the WS2_32.DLL will be able to supply the service class schema,
name space providers that need this information must have a fallback mechanism to obtain it through
name space-specific means.

As noted above, the Internet has adopted what can be termed a host-centric service model. Applications
needing to locate the transport address of a service generally must first resolve the address of a specific
host known to host the service. To this address they add in the well-known port number and thus create a
complete transport address. To facilitate the resolution of host names, a special service class identifier
has been pre-allocated (SVCID_HOSTNAME). A query that specifies SVCID_HOSTNAME as the service
class and uses the host name the service instance name will, if the query is successful, return host
address information.

In Windows Sockets 2, applications that are protocol-independent wish to avoid the need to comprehend
the internal details of a transport address. Thus the need to first get a host address and then add in the
port is problematic. To avoid this, queries may also include the well-known name of a particular service
and the protocol over which the service operates, such as "ftp/tcp". In this case, a successful query will
return a complete transport address for the specified service on the indicated host, and the application will
not be required to "crack open" a sockaddr structure. This is described in more detail below.

The Internet's Domain Name System does not have a well-defined means to store service class schema
information. As a result, DNS name space providers will only be able to accommodate well-known TCP/IP
services for which a service class GUID has been preallocated. In practice this is not a serious limitation
since service class GUIDs have been preallocated for the entire set of TCP and UDP ports, and macros
are available to retrieve the GUID associated with any TCP or UDP port. Thus all of the familiar services
such as ftp, telnet, whois, etc. are well supported.

Continuing with our service class example, instance names of the ftp service may be "alder.intel.com" or
"rhino.microsoft.com" while an instance of the XYZ Corp. Employee Info Server might be named "XYZ
Corp. Employee Info Server Version 3.5". In the first two cases, the combination of the service class
GUID for ftp and the machine name (supplied as the service instance name) uniquely identify the desired
service. In the third case, the host name where the service resides can be discovered at service query
time, so the service instance name does not need to include a host name.

Summary of Name Resolution Functions
The name resolution functions can be grouped into three categories: Service installation, client queries,
and helper functions (and macros). The sections that follow identify the functions in each category and
briefly describe their intended use. Key data structures are also described.

Service Installation
· WSAInstallServiceClass

· WSARemoveServiceClass

· WSASetService

When the required service class does not already exist, an application uses WSAInstallServiceClass to
install a new service class by supplying a service class name, a GUID for the service class ID, and a
series of WSANSCLASSINFO structures. These structures are each specific to a particular name space,
and supply common values such as recommended TCP port numbers or Netware SAP Identifiers. A
service class can be removed by calling WSARemoveServiceClass and supplying the GUID
corresponding to the class ID.

Once a service class exists, specific instances of a service can be installed or removed via
WSASetService. This function takes a WSAQUERYSET structure as an input parameter along with an
operation code and operation flags. The operation code indicates whether the service is being installed or
removed. The WSAQUERYSET structure provides all of the relevant information about the service
including service class ID, service name (for this instance), applicable name space identifier and protocol
information, and a set of transport addresses at which the service listens. Services should invoke
WSASetService when they initialize in order to advertise their presence in dynamic name spaces.

Client Query
· WSAEnumNameSpaceProviders

· WSALookupServiceBegin

· WSALookupServiceNext

· WSALookupServiceEnd

The WSAEnumNameSpaceProviders function allows an application to discover which name spaces are
accessible via Windows Sockets's name resolution facilities. It also allows an application to determine
whether a given name space is supported by more than one name space provider, and to discover the
provider ID for any particular name space provider. Using a provider ID, the application can restrict a
query operation to a specified name space provider.

Windows Sockets' name space query operations involves a series of calls: WSALookupServiceBegin,
followed by one or more calls to WSALookupServiceNext and ending with a call to
WSALookupServiceEnd. WSALookupServiceBegin takes a WSAQUERYSET structure as input in
order to define the query parameters along with a set of flags to provide additional control over the search
operation. It returns a query handle which is used in the subsequent calls to WSALookupServiceNext
and WSALookupServiceEnd.

The application invokes WSALookupServiceNext to obtain query results, with results supplied in an
application-supplied WSAQUERYSET buffer. The application continues to call WSALookupServiceNext
until the error code WSA_E_NO_MORE is returned indicating that all results have been retrieved. The
search is then terminated by a call to WSALookupServiceEnd. The WSALookupServiceEnd function
can also be used to cancel a currently pending WSALookupServiceNext when called from another
thread.

Helper Functions
· WSAGetServiceClassNameByServiceClassId

· WSAAddressToString

· WSAStringToAddress

· WSAGetServiceClassInfo

The name resolution helper functions include a function to retrieve a service class name given a service
class ID, a pair of functions used to translate a transport address between a sockaddr struct and an
ASCII string representation, a function to retrieve the service class schema information for a given service
class, and a set of macros for mapping well known services to pre-allocated GUIDs.

The following macros from winsock2.h aid in mapping between well known service classes and these
name spaces.

SVCID_TCP(Port)

SVCID_UDP(Port)

SVCID_NETWARE(Object Type)

Given a port for TCP/IP or
UDP/IP or the object type
in the case of Netware,
return the GUID

IS_SVCID_TCP(GUID)

IS_SVCID_UDP(GUID)

IS_SVCID_NETWARE(GUID)

Returns TRUE if the GUID
is within the allowable
range

PORT_FROM_SVCID_TCP(GUID)

PORT_FROM_SVCID_UDP(GUID)

SAPID_FROM_SVCID_NETWARE(GUID
)

Returns the port or object
type associated with the
GUID

Name Resolution Data Structures
There are several important data structures that are used extensively throughout the name resolution
functions. These are described below.

Query-Related Data Structures
The WSAQUERYSET structure is used to form queries for WSALookupServiceBegin, and used to
deliver query results for WSALookupServiceNext. It is a complex structure since it contains pointers to
several other structures, some of which reference still other structures. The relationship between
WSAQUERYSET and the structures it references is illustrated as follows:

{ewc msdncd, EWGraphic, bsd23511 1 /a "SDK_2.WMF"}

WSAQUERYSET and Friends

Within the WSAQUERYSET structure, most of the fields are self explanatory, but some deserve additional
explanation. The dwSize field must always be filled in with sizeof(WSAQUERYSET), as this is used by
name space providers to detect and adapt to different versions of the WSAQUERYSET structure that may
appear over time.

The dwOutputFlags field is used by a name space provider to provide additional information about query
results. For details, see WSALookupServiceNext.

The WSAECOMPARATOR structure referenced by lpversion is used for both query constraint and results.
For queries, the dwVersion field indicates the desired version of the service. The ecHow field is an
enumerated type which specifies how the comparison will be made. The choices are COMP_EQUALS
which requires that an exact match in version occurs, or COMP_NOTLESS which specifies that the
service's version number be no less than the value of dwVersion.

The interpretation of dwNameSpace and lpNSProviderId depends upon how the structure is being used
and is described further in the individual function descriptions that utilize this structure.

The lpszContext field applies to hierarchical name spaces, and specifies the starting point of a query or
the location within the hierarchy where the service resides. The general rules are:

· A value of NULL, blank ("") will start the search at the default context.

· A value of "\" starts the search at the top of the name space.

· Any other value starts the search at the designated point.

Providers that do not support containment may return an error if anything other than "" or "\" is specified.
Providers that support limited containment, such as groups, should accept "", '\", or a designated point.
Contexts are name space specific. If dwNameSpace is NS_ALL, then only "" or "\" should be passed as
the context since these are recognized by all name spaces.

The lpszQueryString field is used to supply additional, name space-specific query information such as a
string describing a well-known service and transport protocol name, as in "ftp/tcp".

The AFPROTOCOLS structure referenced by lpafpProtocols is used for query purposes only, and
supplies a list of protocols to constrain the query. These protocols are represented as (address family,
protocol) pairs, since protocol values only have meaning within the context of an address family.

The array of CSADDR_INFO structure referenced by lpcsaBuffer contain all of the information needed to
for either a service to use in establishing a listen, or a client to use in establishing a connection to the
service. The LocalAddr and RemoteAddr fields both directly contain a SOCKET_ADDRESS structure. A
service would create a socket using the tuple (LocalAddr.lpSockaddr->sa_family, iSocketType, iProtocol).
It would bind the socket to a local address using LocalAddr.lpSockaddr, and

LocalAddr.lpSockaddrLength. The client creates its socket with the tuple (RemoteAddr.lpSockaddr-
>sa_family, iSocketType, iProtocol), and uses the combination of RemoteAddr.lpSockaddr, and
RemoteAddr.lpSockaddrLength when making a remote connection.

Service Class Data Structures
When a new service class is installed, a WSASERVICECLASSINFO structure must be prepared and
supplied. This structure also consists of substructures which contain a series of parameters that apply to
specific name spaces.

{ewc msdncd, EWGraphic, bsd23511 2 /a "SDK_3.WMF"}

Class Info Data Structures

For each service class, there is a single WSASERVICECLASSINFO structure. Within the
WSASERVICECLASSINFO structure, the service class' unique identifier is contained in lpServiceClassId,
and an associated display string is referenced by lpServiceClassName. This is the string that will be
returned by WSAGetServiceClassNameByServiceClassId.

The lpClassInfos field in the WSASERVICECLASSINFO structure references an array of
WSANSCLASSINFO structures, each of which supplies a named and typed parameter that applies to a
specified name space. Examples of values for the lpszName field include: "SapId", "TcpPort", "UdpPort",
etc. These strings are generally specific to the name space identified in dwNameSpace. Typical values for
dwValueType might be REG_DWORD, REG_SZ, etc. The dwValueSize field indicates the length of the
data item pointed to by lpValue.

The entire collection of data represented in a WSASERVICECLASSINFO structure is provided to each
name space provider when WSAInstallServiceClass is invoked. Each individual name space provider
then sifts through the list of WSANSCLASSINFO structures and retain the information applicable to it.

Windows Sockets 1.1 Compatibile Name Resolution for TCP/IP

Windows Sockets 1.1 defined a number of routines that were used for name resolution with TCP/IP
networks. These are customarily called the getXbyY functions and include the following:

gethostname

gethostbyaddr

gethostbyname

getprotobyname

getprotobynumber

getservbyname

getservbyport

Asynchronous versions of these functions were also defined:

WSAAsyncGetHostByAddr

WSAAsyncGetHostByName

WSAAsyncGetProtoByName

WSAAsyncGetProtoByNumber

WSAAsyncGetServByName

WSAAsyncGetServByPort

There are also two functions (now implemented in the WinSock 2 DLL) used to convert dotted internet
address notation to and from string and binary representations, respectively:

inet_addr

inet_ntoa

All of these functions are specific to TCP/IP networks and developers of protocol-independent
applications are discouraged from continuing to utilize these transport-specific functions. However, in
order to retain strict backwards compatibility with Windows Sockets 1.1, all of the above functions
continue to be supported as long as at least one name space provider is present that supports the
AF_INET address family.

The WS2_32.DLL implements these compatibility functions in terms of the new, protocol-independent
name resolution facilities using an appropriate sequence of WSALookupServiceBegin/Next/End function
calls. The details of how the getXbyY functions are mapped to name resolution functions are provided
below. The WS2_32.DLL handles the differences between the asynchronous and synchronous versions
of the getXbyY functions, so only the implementation of the synchronous getXbyY functions are
discussed.

Basic Approach for getxbyy
Most getXbyY functions are translated by the WS2_32.DLL to a WSAServiceLookupBegin/Next/End
sequence that uses one of a set of special GUIDs as the service class. These GUIDs identify the type of
getXbyYoperation that is being emulated. The query is constrained to those NSPs that support AF_INET.
Whenever a getXbyY function returns a hostent or servent structure, the WS2_32.DLL will specify the
LUP_RETURN_BLOB flag in WSALookupServiceBegin so that the desired information will be returned
by the NSP. These structures must be modified slightly in that the pointers contained within must be be
replaced with offsets that are relative to the start of the blob's data. All values referenced by these pointer
fields must, of course, be completely contained within the blob, and all strings are ASCII.

The getprotobyname and getprotobynumber functions
These functions are implemented within the WS2_32.DLL by consulting a local protocols database. They
do not result in any name resolution query.

The getservbyname and getservbyport functions
The WSAServiceLookupBegin query uses SVCID_INET_SERVICEBYNAME as the service class
GUID. The lpszServiceInstanceName field references a string which indicates the service name or
service port, and (optionally) the service protocol. The formatting of the string is illustrated as "ftp/tcp" or
"21/tcp" or just "ftp". The string is not case sensitive. The slash mark, if present, separates the protocol
identifier from the preceding part of the string. The WS2_32.DLL will specify LUP_RETURN_BLOB and
the NSP will place a servent struct in the blob (using offsets instead of pointers as described above).
NSPs should honor these other LUP_RETURN_* flags as well:

LUP_RETURN_NAME return the s_name field from
servent struct in
lpszServiceInstanceName.

LUP_RETURN_TYPE return canonical GUID in
lpServiceClassId It is understood
that a service identified either as
"ftp" or "21" may in fact be on
some other port according to
locally established conventions.
The s_port field of the servent
structure should indicate where the
service can be contacted in the
local environment. The canonical
GUID returned when
LUP_RETURN_TYPE is set should
be one of the predefined GUIDs
from svcs.h that corresponds to the
port number indicated in the
servent structure.

The gethostbyname function
The WSAServiceLookupBegin query uses SVCID_INET_HOSTADDRBYNAME as the service class
GUID. The host name is supplied in lpszServiceInstanceName. The WS2_32.DLL specifies
LUP_RETURN_BLOB and the NSP places a hostent struct in the blob (using offsets instead of pointers
as described above). NSPs should honor these other LUP_RETURN_* flags as well:

LUP_RETURN_NAME return the h_name field from
hostent struct in
lpszServiceInstanceName.

LUP_RETURN_ADDR return addressing info from hostent
in CSADDR_INFO structs, port
information is defaulted to zero.
Note that this routine does not
resolve host names that consist of
a dotted internet address.

The gethostbyaddr function
The WSAServiceLookupBegin query uses SVCID_INET_HOSTNAMEBYADDR as the service class
GUID. The host address is supplied in lpszServiceInstanceName as a dotted internet string (e.g.
"192.9.200.120"). The WS2_32.DLL specifies LUP_RETURN_BLOB and the NSP places a hostent struct
in the blob (using offsets instead of pointers as described above). NSPs should honor these other
LUP_RETURN_* flags as well:

LUP_RETURN_NAME return the h_name field from
hostent struct in
lpszServiceInstanceName.

LUP_RETURN_ADDR return addressing info from hostent
in CSADDR_INFO structs, port
information is defaulted to zero.

The gethostname function
The WSAServiceLookupBegin query uses SVCID_HOSTNAME as the service class GUID. If
lpszServiceInstanceName is NULL or references a NULL string (that is . ""), the local host is to be
resolved. Otherwise, a lookup on a specified host name shall occur. For the purposes of emulating
gethostname the WS2_32.DLL will specify a null pointer for lpszServiceInstanceName, and specify
LUP_RETURN_NAME so that the host name is returned in the lpszServiceInstanceName field. If an
application uses this query and specifies LUP_RETURN_ADDR then the host address will be provided in
a CSADDR_INFO struct. The LUP_RETURN_BLOB action is undefined for this query. Port information
will be defaulted to zero unless the lpszQueryString references a service such as "ftp", in which case the
complete transport address of the indicated service will be supplied.

Multipoint and Multicast Semantics
In considering how to support multipoint and multicast in Windows Sockets 2 a number of existing and
proposed multipoint/multicast schemes (including IP-multicast, ATM point-to-multipoint connection, ST-II,
T.120, H.320 (MCU), etc.) were examined. While common in some aspects, each is widely different in
others. To enable a coherent discussion of the various schemes, it is valuable to first create a taxonomy
that characterizes the essential attributes of each. For simplicity, the term "multipoint" will hereafter be
used to represent both multipoint and multicast.

Multipoint Taxonomy

The taxonomy described in this section first distinguishes the control plane that concerns itself with the
way a multipoint session is established, from the data plane that deals with the transfer of data amongst
session participants.

In the control plane there are two distinct types of session establishment: rooted and non-rooted. In the
case of rooted control, there exists a special participant, called c_root, that is different from the rest of the
members of this multipoint session, each of which is called a c_leaf. The c_root must remain present for
the whole duration of the multipoint session, as the session will be broken up in the absence of the
c_root. The c_root usually initiates the multipoint session by setting up the connection to a c_leaf, or a
number of c_leafs. The c_root may add more c_leafs, or (in some cases) a c_leaf can join the c_root at a
later time. Examples of the rooted control plane can be found in ATM and ST-II.

For a non-rooted control plane, all the members belonging to a multipoint session are leaves, i.e., no
special participant acting as a c_root exists. Each c_leaf needs to add itself to a pre-existing multipoint
session that either is always available (as in the case of an IP multicast address), or has been set up
through some out-of-band mechanism which is outside the scope of the Windows Sockets specification.
Another way to look at this is that a c_root still exists, but can be considered to be in the network cloud as
opposed to one of the participants. Because a control root still exists, a non-rooted control plane could
also be considered to be implicitly rooted. Examples for this kind of implicitly rooted multipoint schemes
are: a teleconferencing bridge, the IP multicast system, a Multipoint Control Unit (MCU) in a H.320 video
conference, etc.

In the data plane, there are two types of data transfer styles: rooted and non-rooted. In a rooted data
plane, a special participant called d_root exists. Data transfer only occurs between the d_root and the rest
of the members of this multipoint session, each of which is referred to as a d_leaf. The traffic could be
undsi-directional, or bi-directional. The data sent out from the d_root will be duplicated (if required) and
delivered to every d_leaf, while the data from d_leafs will only go to the d_root. In the case of a rooted
data plane, there is no traffic allowed among d_leafs. An example of a protocol that is rooted in the data
plane is ST-II.

In a non-rooted data plane, all the participants are equal in the sense that any data they send will be
delivered to all the other participants in the same multipoint session. Likewise each d_leaf node will be
able to receive data from all other d_leafs, and in some cases, from other nodes which are not
participating in the multipoint session as well. No special d_root node exists. IP-multicast is non-rooted in
the data plane.

Note that the question of where data unit duplication occurs, or whether a shared single tree or multiple
shortest-path trees are used for multipoint distribution are protocol issues, and are irrelevant to the
interface the application would use to perform multipoint communications. Therefore these issues are not
addressed either in this appendix or by the Windows Sockets interface.

The following table depicts the taxonomy described above and indicates how existing schemes fit into
each of the categories. Note that there does not appear to be any existing schemes that employ a non-
rooted control plane along with a rooted data plane.

rooted control plane non-rooted (implicit
rooted) control plane

rooted data plane ATM, ST-II No known examples.

non-rooted data
plane

T.120 IP-multicast, H.320
(MCU)

Windows Sockets 2 Interface Elements for Multipoint and Multicast

The mechanisms that have been incorporated into Windows Sockets 2 for utilizing multipoint capabilities
can be summarized as follows:

Three attribute bits in the WSAPROTOCOL_INFO struct

1. Four flags defined for the dwFlags parameter of WSASocket

2. One function, WSAJoinLeaf, for adding leaf nodes into a multipoint session

3. Two WSAIoctl command codes for controlling multipoint loopback and the scope of multicast
transmissions.

The paragraphs which follow describe these interface elements in more detail.

Attributes in WSAPROTOCOL_INFO struct
In support of the taxonomy described above, three attribute fields in the WSAPROTOCOL_INFO structure
are use to distinguish the different schemes used in the control and data planes respectively:

1. XP1_SUPPORT_MULTIPOINT with a value of 1 indicates this protocol entry supports multipoint
communications, and that the following two fields are meaningful.

2. XP1_MULTIPOINT_CONTROL_PLANE indicates whether the control plane is rooted (value = 1) or
non-rooted (value = 0).

3. XP1_MULTIPOINT_DATA_PLANE indicates whether the data plane is rooted (value = 1) or non-
rooted (value = 0).

Note that two WSAPROTOCOL_INFO entries would be present if a multipoint protocol supported both
rooted and non-rooted data planes, one entry for each.

The application can use WSAEnumProtocols to discover whether multipoint communications is
supported for a given protocol and, if so, how it is supported with respect to the control and data planes,
respectively.

Flag bits for WSASocket

In some instances sockets joined to a multipoint session may have some behavioral differences from
point-to-point sockets. For example, a d_leaf socket in a rooted data plane scheme can only send
information to the d_root participant. This creates a need for the application to be able to indicated the
intended use of a socket coincident with its creation. This is done through four flag bits that can be set in
the dwFlags parameter to WSASocket:

· WSA_FLAG_MULTIPOINT_C_ROOT, for the creation of a socket acting as a c_root, and only
allowed if a rooted control plane is indicated in the corresponding WSAPROTOCOL_INFO entry.

· WSA_FLAG_MULTIPOINT_C_LEAF, for the creation of a socket acting as a c_leaf, and only allowed
if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding WSAPROTOCOL_INFO entry.

· WSA_FLAG_MULTIPOINT_D_ROOT, for the creation of a socket acting as a d_root, and only
allowed if a rooted data plane is indicated in the corresponding WSAPROTOCOL_INFO entry.

· WSA_FLAG_MULTIPOINT_D_LEAF, for the creation of a socket acting as a d_leaf, and only allowed
if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding WSAPROTOCOL_INFO entry.

Note that when creating a multipoint socket, exactly one of the two control plane flags, and one of the two
data plane flags must be set in WSASocket's dwFlags parameter. Thus, the four possibilities for creating
multipoint sockets are: "c_root/d_root", "c_root/d_leaf", "c_leaf/d_root", or "c_leaf /d_leaf".

SIO_MULTIPOINT_LOOPBACK command code for WSAIoctl

When d_leaf sockets are used in a non-rooted data plane, it is generally desirable to be able to control
whether traffic sent out is also received back on the same socket. The SIO_MULTIPOINT_LOOPBACK
command code for WSAIoctl is used to enable or disable loopback of multipoint traffic.

SIO_MULTICAST_SCOPE command code for WSAIoctl

When multicasting is employed, it is usually necessary to specify the scope over which the multicast
should occur. Scope is defined as the number of routed network segments to be covered. A scope of zero
would indicate that the multicast transmission would not be placed "on the wire" but could be
disseminated across sockets within the local host. A scope value of one (the default) indicates that the
transmission will be placed on the wire, but will not cross any routers. Higher scope values determine the
number of routers that may be crossed. Note that this corresponds to the time-to-live (TTL) parameter in
IP multicasting.

The function WSAJoinLeaf is used to join a leaf node into the multipoint session. See below for a
discussion on how this function is utilized.

Semantics for joining multipoint leaves

In the following, a multipoint socket is frequently described by defining its role in one of the two planes
(control or data). It should be understood that this same socket has a role in the other plane, but this is
not mentioned in order to keep the references short. For example when a reference is made to a "c_root
socket", this could be either a c_root/d_root or a c_root/d_leaf socket.

In rooted control plane schemes, new leaf nodes are added to a multipoint session in one or both of two
different ways. In the first method, the root uses WSAJoinLeaf to initiate a connection with a leaf node
and invite it to become a participant. On the leaf node, the peer application must have created a c_leaf
socket and used listen to set it into listen mode. The leaf node will receive an FD_ACCEPT indication
when invited to join the session, and signals its willingness to join by calling WSAAccept. The root
application will receive an FD_CONNECT indication when the join operation has been completed.

In the second method, the roles are essentially reversed. The root application creates a c_root socket and
sets it into listen mode. A leaf node wishing to join the session creates a c_leaf socket and uses
WSAJoinLeaf to initiate the connection and request admittance. The root application receives
FD_ACCEPT when an incoming admittance request arrives, and admits the leaf node by calling
WSAAccept. The leaf node receives FD_CONNECT when it has been admitted.

In a non-rooted control plane, where all nodes are c_leaf's, the WSAJoinLeaf is used to initiate the
inclusion of a node into an existing multipoint session. An FD_CONNECT indication is provided when the
join has been completed and the returned socket descriptor is useable in the multipoint session. In the
case of IP multicast, this would correspond to the IP_ADD_MEMBERSHIP socket option.

(Readers familiar with IP multicast's use of the connectionless UDP protocol may be concerned by the
connection-oriented semantics presented here. In particular the notion of using WSAJoinLeaf on a UDP
socket and waiting for an FD_CONNECT indication may be troubling. There is, however, ample precedent
for applying connection-oriented semantics to connectionless protocols. It is allowed and sometime
useful, for example, to invoke the standard connect function on a UDP socket. The general result of
applying connection-oriented semantics to connectionless sockets is a restriction in how such sockets
may be used, and such is the case here as well. A UDP socket used in WSAJoinLeaf will have certain
restrictions, and waiting for an FD_CONNECT indication (which in this case simply indicates that the
corresponding IGMP message has been sent) is one such limitation.)

There are, therefore, three instances where an application would use WSAJoinLeaf:

1. Acting as a multipoint root and inviting a new leaf to join the session

2. Acting as a leaf making an admittance request to a rooted multipoint session

3. Acting as a leaf seeking admittance to a non-rooted multipoint session (e.g. IP multicast)

Using WSAJoinLeaf

As mentioned previously, the function WSAJoinLeaf is used to join a leaf node into a multipoint session.
WSAJoinLeaf has the same parameters and semantics as WSAConnect except that it returns a socket
descriptor (as in WSAAccept), and it has an additional dwFlags parameter. The dwFlags parameter is
used to indicate whether the socket will be acting only as a sender, only as a receiver, or both. Only
multipoint sockets may be used for input parameter s in this function. If the multipoint socket is in the non-
blocking mode, the returned socket descriptor will not be useable until after a corresponding
FD_CONNECT indication has been received. A root application in a multipoint session may call
WSAJoinLeaf one or more times in order to add a number of leaf nodes, however at most one multipoint
connection request may be outstanding at a time.

The socket descriptor returned by WSAJoinLeaf is different depending on whether the input socket
descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the name parameter designates a
particular leaf node to be added and the returned socket descriptor is a c_leaf socket corresponding to

the newly added leaf node. It is not intended to be used for exchange of multipoint data, but rather is used
to receive FD_XXX indications (e.g. FD_CLOSE) for the connection that exists to the particular c_leaf.
Some multipoint implementations may also allow this socket to be used for "side chats" between the root
and an individual leaf node. An FD_CLOSE indication will be received for this socket if the corresponding
leaf node calls closesocket to drop out of the multipoint session. Symmetrically, invoking closesocket on
the c_leaf socket returned from WSAJoinLeaf will cause the socket in the corresponding leaf node to get
FD_CLOSE notification.

When WSAJoinLeaf is invoked with a c_leaf socket, the name parameter contains the address of the
root application (for a rooted control scheme) or an existing multipoint session (non-rooted control
scheme), and the returned socket descriptor is the same as the input socket descriptor. In a rooted
control scheme, the root application would put its c_root socket in the listening mode by calling listen.
The standard FD_ACCEPT notification will be delivered when the leaf node requests to join itself to the
multipoint session. The root application uses the usual accept/WSAAccept functions to admit the new
leaf node. The value returned from either accept or WSAAccept is also a c_leaf socket descriptor just
like those returned from WSAJoinLeaf. To accommodate multipoint schemes that allow both root-initiated
and leaf-initiated joins, it is acceptable for a c_root socket that is already in listening mode to be used as
in input to WSAJoinLeaf.

A multipoint root application is generally responsible for the orderly dismantling of a multipoint session.
Such an application may use shutdown or closesocket on a c_root socket to cause all of the associated
c_leaf sockets, including those returned from WSAJoinLeaf and their corresponding c_leaf sockets in the
remote leaf nodes, to get FD_CLOSE notification.

Semantic differences between multipoint sockets and regular sockets

In the control plane, there are some significant semantic differences between a c_root socket and a
regular point-to-point socket:

1. the c_root socket can be used in WSAJoinLeaf to join a new a leaf;

2. placing a c_root socket into the listening mode (by callings listen) does not preclude the c_root
socket from being used in a call to WSAJoinLeaf to add a new leaf, or for sending and receiving
multipoint data;

3. the closing of a c_root socket will cause all the associated c_leaf sockets to get FD_CLOSE
notification.

There is no semantic differences between a c_leaf socket and a regular socket in the control plane,
except that the c_leaf socket can be used in WSAJoinLeaf, and the use of c_leaf socket in listen
indicates that only multipoint connection requests should be accepted.

In the data plane, the semantic differences between the d_root socket and a regular point-to-point socket
are

1. the data sent on the d_root socket will be delivered to all the leaves in the same multipoint session;

2. the data received on the d_root socket may be from any of the leaves.

The d_leaf socket in the rooted data plane has no semantic difference from the regular socket, however,
in the non-rooted data plane, the data sent on the d_leaf socket will go to all the other leaf nodes, and the
data received could be from any other leaf nodes. As mentioned earlier, the information about whether the
d_leaf socket is in a rooted or non-rooted data plane is contained in the corresponding
WSAPROTOCOL_INFO structure for the socket.

How existing multipoint protocols support these extensions

In this section we indicate how IP multicast and ATM point-to-multipoint capabilities would be accessed
via the Windows Sockets 2 multipoint functions. We chose these two as examples because they are very
popular and well understood.

IP multicast
IP multicast falls into the category of non-rooted data plane and non-rooted control plane. All applications
play a leaf role. Currently most IP multicast implementations use a set of socket options proposed by
Steve Deering to the IETF. Five operations are made thus available:

· IP_MULTICAST_TTL - set time to live, controls scope of multicast session

· IP_MULTICAST_IF - determine interface to be used for multicasting

· IP_ADD_MEMBERSHIP - join a specified multicast session

· IP_DROP_MEMBERSHIP - drop out of a multicast session

· IP_MULTICAST_LOOP - control loopback of multicast traffic

Setting the time-to-live for an IP multicast socket maps directly to using the SIO_MULTICAST_SCOPE
command code for WSAIoctl. The method for determining the IP interface to be used for multicasting is
via a TCP/IP-specific socket option as described in the Windows Sockets 2 Protocol Specific Annex.

The remaining three operations are covered well with the Windows Sockets 2 semantics described here.
The application would open sockets with c_leaf/d_leaf flags in WSASocket. It would use WSAJoinLeaf
to add itself to a multicast group on the default interface designated for multicast operations. If the flag in
WSAJoinLeaf indicates that this socket is only a sender, then the join operation is essentially a no-op
and no IGMP messages need to be sent. Otherwise, an IGMP packet is sent out to the router to indicate
interests in receiving packets sent to the specified multicast address. Since the application created
special c_leaf/d_leaf sockets used only for performing multicast, the standard closesocket function
would be used to drop out of the multicast session. The SIO_MULTIPOINT_LOOPBACK command code
for WSAIoctl provides a generic control mechanism for determining whether data sent on a d_leaf socket
in a non-rooted multipoint scheme will be also received on the same socket.

ATM Point to Multipoint
ATM falls into the category of rooted data and rooted control planes. An application acting as the root
would create c_root sockets and counterparts running on leaf nodes would utilize c_leaf sockets. The root
application will use WSAJoinLeaf to add new leaf nodes. The corresponding applications on the leaf
nodes will have set their c_leaf sockets into listen mode. WSAJoinLeaf with a c_root socket specified will
be mapped to the Q.2931 ADDPARTY message. The leaf-initiated join is not supported in ATM UNI 3.1,
but will be supported in ATM UNI 4.0. Thus WSAJoinLeaf with a c_leaf socket specified will be mapped
to the appropriate ATM UNI 4.0 message.

Additional Windows Socket Information
This section contains information on the Windows Sockets 2 header file, additional Windows Sockets
reference material, and the error codes encountered in programming for Windows Sockets 2.

Windows Sockets 2 Header File - WINSOCK2.H

New versions of WINSOCK2.H will appear periodically as new identifiers are allocated by the Windows
Sockets Identifier Clearinghouse. The clearinghouse can be reached via the world wide web at

http://www.stardust.com/wsresource/winsock2/ws2ident.html

Developers are urged to stay current with successive revisions of WINSOCK2.H as they are made
available by the clearinghouse.

Additional Documentation

This specification is intended to cover the Windows Sockets interface in detail. Many details of specific
protocols and Windows, however, are intentionally omitted in the interest of brevity, and this specification
often assumes background knowledge of these topics. For more information, the following references
may be helpful:

Networking Books
Braden, R.[1989], RFC 1122, Requirements for Internet Hosts--Communication Layers, Internet
Engineering Task Force.

Comer, D. [1991], Internetworking with TCP/IP Volume I: Principles, Protocols, and Architecture, Prentice
Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume II: Design, Implementation, and
Internals, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume III: Client-Server Programming
and Applications, Prentice Hall, Englewood Cliffs, New Jersey.

Leffler, S. et al., An Advanced 4.3BSD Interprocess Communication Tutorial.

Petzold, C. [1992], Programming Windows 3.1, Microsoft Press, Redmond, Washington.

Stevens, W.R. [1990], Unix Network Programming, Prentice Hall, Englewood Cliffs, New Jersey.

Stevens, W.R. [1994]. TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, Massachusetts

Wright, G.R. and Stevens, W.R. [1995], TCP/IP Illustrated Volume 2: The Implementation, Addison-
Wesley., Massachusetts

Windows Sockets Books
Bonner, P. [1995], Network Programming with Windows Sockets, ISBN: 0-13-230152-0, Prentice Hall,
Englewood Cliffs, New Jersey.

Dumas, A. [1995], Programming Windows Sockets, ISBN: 0-672-30594-1, Sams Publishing, Indianapolis,
Indiana

Quinn, B. and Shute, D. [1995], Windows Sockets Network Programming, ISBN: 0-201-63372-8, Addison-
Wesley Publishing Company, Reading, Massachusetts

Roberts, D. [1995], Developing for the Internet with Winsock, ISBN 1-883577-42-X, Coriolis Group Books.

Error Codes
The following is a list of possible error codes returned by the WSAGetLastError call, along with their
extended explanations. Errors are listed in alphabetical order by error macro. Some error codes defined
in WINSOCK2.H are not returned from any function - these have not been listed here.

WSAEACCES
(10013)

Permission denied.
An attempt was made to access a socket in a way forbidden by its access permissions. An
example is using a broadcast address for sendto without broadcast permission being set using
setsockopt(SO_BROADCAST).

WSAEADDRINUSE
(10048)

Address already in use.
Only one usage of each socket address (protocol/IP address/port) is normally permitted. This error
occurs if an application attempts to bind a socket to an IP address/port that has already been used
for an existing socket, or a socket that wasn't closed properly, or one that is still in the process of
closing. For server applications that need to bind multiple sockets to the same port number,
consider using setsockopt(SO_REUSEADDR). Client applications usually need not call bind at all
- connect will choose an unused port automatically.

WSAEADDRNOTAVAIL
(10049)

Cannot assign requested address.
The requested address is not valid in its context. Normally results from an attempt to bind to an
address that is not valid for the local machine, or connect/sendto an address or port that is not
valid for a remote machine (e.g. port 0).

WSAEAFNOSUPPORT
(10047)

Address family not supported by protocol family.
An address incompatible with the requested protocol was used. All sockets are created with an
associated "address family" (i.e. AF_INET for Internet Protocols) and a generic protocol type (i.e.
SOCK_STREAM). This error will be returned if an incorrect protocol is explicitly requested in the
socket call, or if an address of the wrong family is used for a socket, e.g. in sendto.

WSAEALREADY
(10037)

Operation already in progress.
An operation was attempted on a non-blocking socket that already had an operation in progress -
i.e. calling connect a second time on a non-blocking socket that is already connecting, or
canceling an asynchronous request (WSAAsyncGetXbyY) that has already been canceled or
completed.

WSAECONNABORTED
(10053)

Software caused connection abort.
An established connection was aborted by the software in your host machine, possibly due to a
data transmission timeout or protocol error.

WSAECONNREFUSED
(10061)

Connection refused.
No connection could be made because the target machine actively refused it. This usually results
from trying to connect to a service that is inactive on the foreign host - i.e. one with no server

application running.

WSAECONNRESET
(10054)

Connection reset by peer.
A existing connection was forcibly closed by the remote host. This normally results if the peer
application on the remote host is suddenly stopped, the host is rebooted, or the remote host used a
"hard close" (see setsockopt for more information on the SO_LINGER option on the remote
socket.)

WSAEDESTADDRREQ
(10039)

Destination address required.
A required address was omitted from an operation on a socket. For example, this error will be
returned if sendto is called with the remote address of ADDR_ANY.

WSAEFAULT
(10014)

Bad address.
The system detected an invalid pointer address in attempting to use a pointer argument of a call.
This error occurs if an application passes an invalid pointer value, or if the length of the buffer is
too small. For instance, if the length of an argument which is a struct sockaddr is smaller than
sizeof(struct sockaddr).

WSAEHOSTDOWN
(10064)

Host is down.
A socket operation failed because the destination host was down. A socket operation encountered
a dead host. Networking activity on the local host has not been initiated. These conditions are
more likely to be indicated by the error WSAETIMEDOUT.

WSAEHOSTUNREACH
(10065)

No route to host.
A socket operation was attempted to an unreachable host. See WSAENETUNREACH

WSAEINPROGRESS
(10036)

Operation now in progress.
A blocking operation is currently executing. Windows Sockets only allows a single blocking
operation to be outstanding per task (or thread), and if any other function call is made (whether or
not it references that or any other socket) the function fails with the WSAEINPROGRESS error.

WSAEINTR
(10004)

Interrupted function call.
A blocking operation was interrupted by a call to WSACancelBlockingCall.

WSAEINVAL
(10022)

Invalid argument.
Some invalid argument was supplied (for example, specifying an invalid level to the setsockopt
function). In some instances, it also refers to the current state of the socket - for instance, calling
accept on a socket that is not listening.

WSAEISCONN
(10056)

Socket is already connected.
A connect request was made on an already connected socket. Some implementations also return
this error if sendto is called on a connected SOCK_DGRAM socket (For SOCK_STREAM sockets,
the to parameter in sendto is ignored), although other implementations treat this as a legal

occurrence.

WSAEMFILE
(10024)

Too many open files.
Too many open sockets. Each implementation may have a maximum number of socket handles
available, either globally, per process or per thread.

WSAEMSGSIZE
(10040)

Message too long.
A message sent on a datagram socket was larger than the internal message buffer or some other
network limit, or the buffer used to receive a datagram into was smaller than the datagram itself.

WSAENETDOWN
(10050)

Network is down.
A socket operation encountered a dead network. This could indicate a serious failure of the
network system (i.e. the protocol stack that the WinSock DLL runs over), the network interface, or
the local network itself.

WSAENETRESET
(10052)

Network dropped connection on reset.
The host you were connected to crashed and rebooted. May also be returned by setsockopt if an
attempt is made to set SO_KEEPALIVE on a connection that has already failed.

WSAENETUNREACH
(10051)

Network is unreachable.
A socket operation was attempted to an unreachable network. This usually means the local
software knows no route to reach the remote host.

WSAENOBUFS
(10055)

No buffer space available.
An operation on a socket could not be performed because the system lacked sufficient buffer
space or because a queue was full.

WSAENOPROTOOPT
(10042)

Bad protocol option.
An unknown, invalid or unsupported option or level was specified in a getsockopt or setsockopt
call.

WSAENOTCONN
(10057)

Socket is not connected.
A request to send or receive data was disallowed because the socket is not connected and (when
sending on a datagram socket using sendto) no address was supplied. Any other type of operation
might also return this error - for example, setsockopt setting SO_KEEPALIVE if the connection
has been reset.

WSAENOTSOCK
(10038)

Socket operation on non-socket.
An operation was attempted on something that is not a socket. Either the socket handle parameter
did not reference a valid socket, or for select, a member of an fd_set was not valid.

WSAEOPNOTSUPP
(10045)

Operation not supported.
The attempted operation is not supported for the type of object referenced. Usually this occurs
when a socket descriptor to a socket that cannot support this operation, for example, trying to
accept a connection on a datagram socket.

WSAEPFNOSUPPORT
(10046)

Protocol family not supported.
The protocol family has not been configured into the system or no implementation for it exists. Has
a slightly different meaning to WSAEAFNOSUPPORT, but is interchangeable in most cases, and
all Windows Sockets functions that return one of these specify WSAEAFNOSUPPORT.

WSAEPROCLIM
(10067)

Too many processes.
A Windows Sockets implementation may have a limit on the number of applications that may use it
simultaneously. WSAStartup may fail with this error if the limit has been reached.

WSAEPROTONOSUPPORT
(10043)

Protocol not supported.
The requested protocol has not been configured into the system, or no implementation for it exists.
For example, a socket call requests a SOCK_DGRAM socket, but specifies a stream protocol.

WSAEPROTOTYPE
(10041)

Protocol wrong type for socket.
A protocol was specified in the socket function call that does not support the semantics of the
socket type requested. For example, the ARPA Internet UDP protocol cannot be specified with a
socket type of SOCK_STREAM.

WSAESHUTDOWN
(10058)

Cannot send after socket shutdown.
A request to send or receive data was disallowed because the socket had already been shut down
in that direction with a previous shutdown call. By calling shutdown a partial close of a socket is
requested, which is a signal that sending or receiving or both has been discontinued.

WSAESOCKTNOSUPPORT
(10044)

Socket type not supported.
The support for the specified socket type does not exist in this address family. For example, the
optional type SOCK_RAW might be selected in a socket call, and the implementation does not
support SOCK_RAW sockets at all.

WSAETIMEDOUT
(10060)

Connection timed out.
A connection attempt failed because the connected party did not properly respond after a period of
time, or established connection failed because connected host has failed to respond.

WSAEWOULDBLOCK
(10035)

Resource temporarily unavailable.
This error is returned from operations on non-blocking sockets that cannot be completed
immediately, for example recv when no data is queued to be read from the socket. It is a non-fatal
error, and the operation should be retried later. It is normal for WSAEWOULDBLOCK to be
reported as the result from calling connect on a non-blocking SOCK_STREAM socket, since some
time must elapse for the connection to be established.

WSAHOST_NOT_FOUND

(11001)

Host not found.
No such host is known. The name is not an official hostname or alias, or it cannot be found in the
database(s) being queried. This error may also be returned for protocol and service queries, and
means the specified name could not be found in the relevant database.

WSA_INVALID_HANDLE
(OS dependent)

Specified event object handle is invalid.
An application attempts to use an event object, but the specified handle is not valid.

WSA_INVALID_PARAMETER
(OS dependent)

One or more parameters are invalid.
An application used a Windows Sockets function which directly maps to a Win32 function. The
Win32 function is indicating a problem with one or more parameters.

WSAINVALIDPROCTABLE
(OS dependent)

Invalid procedure table from service provider.
A service provider returned a bogus proc table to WS2_32.DLL. (Usually caused by one or more of
the function pointers being NULL.)

WSAINVALIDPROVIDER
(OS dependent)

Invalid service provider version number.
A service provider returned a version number other than 2.0.

WSA_IO_PENDING
(OS dependent)

Overlapped operations will complete later.
The application has initiated an overlapped operation which cannot be completed immediately. A
completion indication will be given at a later time when the operation has been completed.

WSA_IO_INCOMPLETE
(OS dependent)

Overlapped I/O event object not in signaled state.
The application has tried to determine the status of an overlapped operation which is not yet
completed. Applications that use WSAWaitForMultipleEvents in a polling mode to determine
when an overlapped operation has completed will get this error code until the operation is
complete.

WSA_NOT_ENOUGH_MEMORY
(OS dependent)

Insufficient memory available.
An application used a Windows Sockets function which directly maps to a Win32 function. The
Win32 function is indicating a lack of required memory resources.

WSANOTINITIALISED
(10093)

Successful WSAStartup not yet performed.
Either the application hasn't called WSAStartup or WSAStartup failed. The application may be
accessing a socket which the current active task does not own (i.e. trying to share a socket
between tasks), or WSACleanup has been called too many times.

WSANO_DATA
(11004)

Valid name, no data record of requested type.
The requested name is valid and was found in the database, but it does not have the correct
associated data being resolved for. The usual example for this is a hostname -> address

translation attempt (using gethostbyname or WSAAsyncGetHostByName) which uses the DNS
(Domain Name Server), and an MX record is returned but no A record - indicating the host itself
exists, but is not directly reachable.

WSANO_RECOVERY
(11003)

This is a non-recoverable error.
This indicates some sort of non-recoverable error occurred during a database lookup. This may be
because the database files (e.g. BSD-compatible HOSTS, SERVICES or PROTOCOLS files) could
not be found, or a DNS request was returned by the server with a severe error.

WSAPROVIDERFAILEDINIT
(OS dependent)

Unable to initialize a service provider.
Either a service provider's DLL could not be loaded (LoadLibrary failed) or the provider's
WSPStartup/NSPStartup function failed.

WSASYSCALLFAILURE
(OS dependent)

System call failure.
Returned when a system call that should never fail does. For example, if a call to
WaitForMultipleObjects fails or one of the registry functions fails trying to manipulate
theprotocol/namespace catalogs.

WSASYSNOTREADY
(10091)

Network subsystem is unavailable.
This error is returned by WSAStartup if the Windows Sockets implementation cannot function at
this time because the underlying system it uses to provide network services is currently
unavailable. Users should check:

· that the appropriate Windows Sockets DLL file is in the current path,

· that they are not trying to use more than one Windows Sockets implementation simultaneously. If
there is more than one WINSOCK DLL on your system, be sure the first one in the path is
appropriate for the network subsystem currently loaded.

· the Windows Sockets implementation documentation to be sure all necessary components are
currently installed and configured correctly.

WSATRY_AGAIN
(11002)

Non-authoritative host not found.
This is usually a temporary error during hostname resolution and means that the local server did
not receive a response from an authoritative server. A retry at some time later may be successful.

WSAVERNOTSUPPORTED
(10092)

WINSOCK.DLL version out of range.
The current Windows Sockets implementation does not support the Windows Sockets specification
version requested by the application. Check that no old Windows Sockets DLL files are being
accessed.

WSAEDISCON
(10094)

Graceful shutdown in progress.
Returned by recv, WSARecv to indicate the remote party has initiated a graceful shutdown
sequence.

WSA_OPERATION_ABORTED
(OS dependent)

Overlapped operation aborted.

An overlapped operation was canceled due to the closure of the socket, or the execution of the
SIO_FLUSH command in WSAIoctl.

accept   

The Windows Sockets accept function accepts a connection on a socket.

SOCKET accept (
 SOCKET s,
 struct sockaddr FAR* addr,
 int FAR* addrlen
);

Parameters
s

[in] A descriptor identifying a socket which is listening for connections after a listen.

addr
[out] An optional pointer to a buffer which receives the address of the connecting entity, as known to
the communications layer. The exact format of the addr argument is determined by the address family
established when the socket was created.

addrlen
[out] An optional pointer to an integer which contains the length of the address addr.

Remarks
This routine extracts the first connection on the queue of pending connections on s, creates a new socket
and returns a handle to the new socket. The newly created socket has the same properties as s including
asynchronous events registered with WSAAsyncSelect or with WSAEventSelect, but not including the
listening socket's group ID, if any. If no pending connections are present on the queue, and the socket is
not marked as nonblocking, accept blocks the caller until a connection is present. If the socket is marked
nonblocking and no pending connections are present on the queue, accept returns an error as described
below. The accepted socket cannot be used to accept more connections. The original socket remains
open.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is determined by the address
family in which the communication is occurring. The addrlen is a value-result parameter; it should initially
contain the amount of space pointed to by addr; on return it will contain the actual length (in bytes) of the
address returned. This call is used with connection-oriented socket types such as SOCK_STREAM. If
addr and/or addrlen are equal to NULL, then no information about the remote address of the accepted
socket is returned.

Return Values
If no error occurs, accept returns a value of type SOCKET which is a descriptor for the accepted socket.
Otherwise, a value of INVALID_SOCKET is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

The integer referred to by addrlen initially contains the amount of space pointed to by addr. On return it
will contain the actual length in bytes of the address returned.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this FUNCTION.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The addrlen argument is too small or
addr is not a valid part of the user
address space.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEINVAL listen was not invoked prior to accept.

WSAEMFILE The queue is nonempty upon entry to
accept and there are no descriptors
available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that
supports connection-oriented service.

WSAEWOULDBLOCK The socket is marked as nonblocking
and no connections are present to be
accepted.

See Also
bind, connect, listen, select, socket, WSAAsyncSelect, WSAAccept

AcceptEx   

Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets AcceptEx function accepts a new connection, returns the local and remote
address, and receives the first block of data sent by the client application.

BOOL AcceptEx (
 SOCKET sListenSocket,
 SOCKET sAcceptSocket,
 PVOID lpOutputBuffer,
 DWORD dwReceiveDataLength,
 DWORD dwLocalAddressLength,
 DWORD dwRemoteAddressLength,
 LPDWORD lpdwBytesReceived,
 LPOVERLAPPED lpOverlapped
);

Parameters
sListenSocket

[in] A descriptor identifying a socket that has already been called with the listen function. A server
application waits for attempts to connect on this socket.

sAcceptSocket
[in] A descriptor identifying a socket on which to accept an incoming connection. This socket must not
be bound or connected.

lpOutputBuffer
[in] A pointer to a buffer that receives the first block of data sent on a new connection, the local
address of the server, and the remote address of the client. The receive data is written to the first part
of the buffer starting at offset zero, while the addresses are written to the latter part of the buffer. This
parameter must be specified.

dwReceiveDataLength
[in] The number of bytes in the buffer that will be used for receiving data. If this parameter is specified
as zero, then no receive operation is performed in conjunction with accepting the connection. Instead,
the AcceptEx function completes as soon as a connection arrives without waiting for any data.

dwLocalAddressLength
[in] The number of bytes reserved for the local address information. This must be at least 16 bytes
more than the maximum address length for the transport protocol in use.

dwRemoteAddressLength
[in] The number of bytes reserved for the remote address information. This must be at least 16 bytes
more than the maximum address length for the transport protocol in use.

lpdwBytesReceived
[out] A pointer to a DWORD that receives the count of bytes received. This is set only if the operation
completes synchronously. If it returns ERROR_IO_PENDING and is completed later, then this
DWORD is never set and you must obtain the number of bytes read from the completion notification
mechanism.

lpOverlapped
[in] An OVERLAPPED structure that is used to process the request. This parameter must be
specified; it cannot be NULL.

Return Values
If no error occurs, the AcceptEx function was successfully completed and a value of TRUE is returned. If
the function was unsuccesful, the AcceptEx function returns FALSE. The GetLastError function can then

be called to return extended error information. If GetLastError returns ERROR_IO_PENDING, then the
operation was successfully initiated and is still in progress.

Remarks
The AcceptEx function combines several socket functions into a single API/kernel transition. The
AcceptEx function, when successful, performs three tasks: a new connection is accepted, both the local
and remote addresses for the connection are returned, and the first block of data sent by the remote is
received. A program will make a connection to a socket more quickly using the AcceptEx function instead
of the Accept function.

A single output buffer receives the data, the local socket address (the server), and the remote socket
address (the client). Using a single buffer improves performance, but the GetAcceptExSockaddrs
function must be called to parse the buffer into its three distinct parts.

Because the addresses are written in an internal format, the buffer size for the local and remote address
must be 16 bytes more than the size of the SOCKADDR structure for the transport protocol in use. For
example, the size of a SOCKADDR_IN ¾ the address structure for TCP/IP ¾ is 16 bytes, so specify a
buffer size of at least 32 bytes for the local and remote addresses.

The AcceptEx function uses overlapped I/O, unlike the Windows Sockets 1.1 accept function. If your
application uses the AcceptEx function, it can service a large number of clients with a relatively small
number of threads.

As with all overlapped Win32 functions, either Win32 events or completion ports can be used as a
completion notification mechanism.

Another key difference between the AcceptEx function and the Windows Sockets 1.1 accept function is
that the AcceptEx function requires the caller to already have two sockets: one that specifies the socket
on which to listen and one that specifies the socket on which to accept the connection. The
sAcceptSocket parameter must be an open socket that is neither bound nor connected.

The lpNumberOfBytesTransferred parameter of the GetQueuedCompletionStatus function or the
GetOverlappedResult function indicates the number of bytes received in the request.

When this operation is successfully completed, sAcceptHandle can be passed only to the following
functions:

ReadFile
WriteFile
send
recv
TransmitFile
closesocket

Note If you have called the TransmitFile function with both the TF_DISCONNECT and
TF_REUSE_SOCKET flags, the specified socket has been returned to a state in which it is neither
bound nor connected. You can then pass the handle of the socket to the AcceptEx function in the
sAcceptSocket parameter.

In order to use sAcceptHandle with other Window Sockets 1.1 functions, call the setsockopt function
with the SO_UPDATE_ACCEPT_CONTEXT option. This option initializes the socket so that other
Windows Sockets routines to access the socket correctly.

When the AcceptEx function returns, sAcceptSocket is in the default state for a connected socket. The
socket associated with the sAcceptSocket parameter does not inherit the properties of the socket
associated with sListenSocket parameter until SO_UPDATE_ACCEPT_CONTEXT is set on the socket.

Use the setsockopt function to set the SO_UPDATE_ACCEPT_CONTEXT option, specifying
sAcceptSocket as the socket handle and sListenSocket as the option value.

For example:

err = setsockopt(sAcceptSocket,
 SOL_SOCKET,
 SO_UPDATE_ACCEPT_CONTEXT,
 (char *)&sListenSocket,
 sizeof(sListenSocket));

You can use the getsockopt function with the SO_CONNECT_TIME option to check whether a
connection has been accepted. If it has been accepted, you can determine how long the connection has
been established. The return value is the number of seconds that the socket has been connected. If the
socket is not connected, the getsockopt returns 0xFFFFFFFF. Checking a connection like this is
necessary in order to check for connections that have been established for awhile, but no data has been
received. You can then kill those connections.

For example:

INT seconds;
INT bytes = sizeof(seconds);

err = getsockopt(sAcceptSocket, SOL_SOCKET, SO_CONNECT_TIME,
 (char *)&seconds, (PINT)&bytes);
if (err != NO_ERROR) {
 printf("getsockopt(SO_CONNECT_TIME) failed: %ld\n",
WSAGetLastError());
 exit(1);
}

bind   

The Windows Sockets bind function associates a local address with a socket.

int bind (
 SOCKET s,
 const struct sockaddr FAR* name,
 int namelen
);

Parameters
s

[in] A descriptor identifying an unbound socket.

name
[in] The address to assign to the socket. The sockaddr structure is defined as follows:

struct sockaddr {
u_short sa_family;
char sa_data[14];
};

Except for the sa_family field, sockaddr contents are expressed in network byte order.

namelen
[in] The length of the name.

Remarks
This routine is used on an unconnected connectionless or connection-oriented socket, before subsequent
connects or listens. When a socket is created with socket, it exists in a name space (address family),
but it has no name assigned. bind establishes the local association of the socket by assigning a local
name to an unnamed socket.

As an example, in the Internet address family, a name consists of three parts: the address family, a host
address, and a port number which identifies the application. In Windows Sockets 2, the name parameter
is not strictly interpreted as a pointer to a "sockaddr" structure. It is cast this way for Windows Sockets
compatibility. Service Providers are free to regard it as a pointer to a block of memory of size namelen.
The first two bytes in this block (corresponding to "sa_family" in the "sockaddr" declaration) must contain
the address family that was used to create the socket. Otherwise, an error WSAEFAULT will occur.

If an application does not care what local address is assigned to it, it can specify the manifest constant
value ADDR_ANY for the sa_data field of the name parameter. This allows the underlying service
provider to use any appropriate network address, potentially simplifying application programming in the
presence of multihomed hosts (that is, hosts that have more than one network interface and address). For
TCP/IP, if the port is specified as zero, the service provider will assign a unique port to the application with
a value between 1024 and 5000. The application can use getsockname after bind to learn the address
and the port that has been assigned to it, but note that if the Internet address is equal to INADDR_ANY,
getsockname will not necessarily be able to supply the address until the socket is connected, since
several addresses can be valid if the host is multihomed.

Return Values
If no error occurs, bind returns zero. Otherwise, it returns SOCKET_ERROR, and a specific error code
can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The specified address is already in use.
(See the SO_REUSEADDR socket
option under setsockopt.)

WSAEFAULT The name or the namelen argument is
not a valid part of the user address
space, the namelen argument is too
small, the name argument contains
incorrect address format for the
associated address family, or the first
two bytes of the memory block specified
by name does not match the address
family associated with the socket
descriptor s.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEINVAL The socket is already bound to an
address.

WSAENOBUFS Not enough buffers available, too many
connections.

WSAENOTSOCK The descriptor is not a socket.

See Also
connect, getsockname, listen, setsockopt, socket, WSACancelBlockingCall

closesocket   

The Windows Sockets closesocket function closes a socket.

int closesocket (
 SOCKET s
);

Parameters
s

[in] A descriptor identifying a socket.

Remarks
This function closes a socket. More precisely, it releases the socket descriptor s, so that further
references to s will fail with the error WSAENOTSOCK. If this is the last reference to an underlying
socket, the associated naming information and queued data are discarded. Any pending blocking,
asynchronous calls issued by any thread in this process are canceled without posting any notification
messages, or signaling any event objects. Any pending overlapped send and receive operations
(WSASend/WSASendTo/WSARecv/WSARecvFrom with an overlapped socket) issued by any thread in
this process are also canceled without setting the event object or invoking the completion routine, if
specified. In this case, the pending overlapped operations fail with the error status
WSA_OPERATION_ABORTED. An application should always have a matching call to closesocket for
each successful call to socket to return socket resources to the system.

The semantics of closesocket are affected by the socket options SO_LINGER and SO_DONTLINGER
as follows (Note: by default SO_DONTLINGER is enabled. That is, SO_LINGER is disabled):

Option Interval Type of close Wait for close?

SO_DONTLINGER Don't care Graceful No

SO_LINGER Zero Hard No

SO_LINGER Nonzero Graceful Yes

If SO_LINGER is set (that is, the l_onoff field of the linger structure is nonzero; see Multipoint and
Multicast Semantics) with a zero time-out interval (l_linger is zero), closesocket is not blocked even if
queued data has not yet been sent or acknowledged. This is called a "hard" or "abortive" close, because
the socket's virtual circuit is reset immediately, and any unsent data is lost. Any recv call on the remote
side of the circuit will fail with WSAECONNRESET.

If SO_LINGER is set with a nonzero time-out interval on a blocking socket, the closesocket call blocks
on a blocking socket until the remaining data has been sent or until the time-out expires. This is called a
graceful disconnect. If the time-out expires before all data has been sent, the Windows Sockets
implementation terminates the connection before closesocket returns.

Enabling SO_LINGER with a nonzero time-out interval on a nonblocking socket is not recommended. In
this case, the call to closesocket will fail with an error of WSAEWOULDBLOCK if the close operation
cannot be completed immediately. If closesocket fails with WSAEWOULDBLOCK the socket handle is
still valid, and a disconnect is not initiated. The application must call closesocket again to close the
socket, although closesocket can continue to fail unless the application disables SO_DONTLINGER,
enables SO_LINGER with a zero time-out, or calls shutdown to initiate closure.

If SO_DONTLINGER is set on a stream socket (that is, the l_onoff field of the linger structure is zero; see
Multipoint and Multicast Semantics) the closesocket call will return immediately. However, any data
queued for transmission will be sent if possible before the underlying socket is closed. This is also called
a graceful disconnect. Note that in this case, the Windows Sockets provider cannot release the socket
and other resources for an arbitrary period, which can affect applications which expect to use all available

sockets. This is the default behavior.

Note To assure that all data is sent and received on a connection, an application should call
shutdown before calling closesocket (see Graceful shutdown, linger options and socket closure for
more information). Also note, FD_CLOSE will not be posted after closesocket is called.

Here is a summary of closesocket behavior:

· if SO_DONTLINGER enabled (the default setting) it always returns immediately - connection is
gracefully closed "in the background"

· if SO_LINGER enabled with a zero time-out: it always returns immediately - connection is
reset/terminated

· if SO_LINGER enabled with nonzero time-out:

- with blocking socket it blocks until all data sent or time-out expires

- with nonblocking socket it returns immediately indicating failure

For additional information please see Graceful shutdown, linger options and socket closure for more
information.

Return Values
If no error occurs, closesocket returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEWOULDBLOCK The socket is marked as nonblocking
and SO_LINGER is set to a nonzero
time-out value.

See Also
accept, ioctlsocket, setsockopt, socket, WSAAsyncSelect, WSADuplicateSocket

connect   

The Windows Sockets connect function establishes a connection to a peer.

int connect (
 SOCKET s,
 const struct sockaddr FAR* name,
 int namelen
);

Parameters
s

[in] A descriptor identifying an unconnected socket.

name
[in] The name of the peer to which the socket is to be connected.

namelen
[in] The length of the name.

Remarks
This function is used to create a connection to the specified destination. If the socket, s, is unbound,
unique values are assigned to the local association by the system, and the socket is marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active connection is initiated to
the foreign host using name (an address in the name space of the socket; for a detailed description,
please see bind). When the socket call completes successfully, the socket is ready to send/receive data.
If the address field of the name structure is all zeroes, connect will return the error
WSAEADDRNOTAVAIL. Any attempt to re-connect an active connection will fail with the error code
WSAEISCONN.

For a connectionless socket (for example, type SOCK_DGRAM), the operation performed by connect is
merely to establish a default destination address which will be used on subsequent send/WSASend and
recv/WSARecv calls. Any datagrams received from an address other than the destination address
specified will be discarded. If the address field of the name structure is all zeroes, the socket will be "dis-
connected." Then, the default remote address will be indeterminate, so send/WSASend and
recv/WSARecv calls will return the error code WSAENOTCONN. However, sendto/WSASendTo and
recvfrom/WSARecvFrom can still be used. The default destination can be changed by simply calling
connect again, even if the socket is already "connected". Any datagrams queued for receipt are
discarded if name is different from the previous connect.

For connectionless sockets, name can indicate any valid address, including a broadcast address.
However, to connect to a broadcast address, a socket must have setsockopt SO_BROADCAST
enabled. Otherwise, connect will fail with the error code WSAEACCES.

Comments
When connected sockets break (that is, become closed for whatever reason), they should be discarded
and recreated. It is safest to assume that when things go awry for any reason on a connected socket, the
application must discard and recreate the needed sockets in order to return to a stable point.

Return Values
If no error occurs, connect returns zero. Otherwise, it returns SOCKET_ERROR, and a specific error
code can be retrieved by calling WSAGetLastError.

On a blocking socket, the return value indicates success or failure of the connection attempt.

With a nonblocking socket, the connection attempt cannot be completed immediately. In this case,
connect will return SOCKET_ERROR, and WSAGetLastError will return WSAEWOULDBLOCK. In this
case, the application can:

1. Use select to determine the completion of the connection request by checking if the socket is
writeable, or

2. If your application is using WSAAsyncSelect to indicate interest in connection events, then your
application will receive an FD_CONNECT notification when the connect operation is complete, or

3. If your application is using WSAEventSelect to indicate interest in connection events, then the
associated event object will be signaled when the connect operation is complete.

For a nonblocking socket, until the connection attempt completes all subsequent calls to connect on the
same socket will fail with the error code WSAEALREADY.

If the return error code indicates the connection attempt failed (that is, WSAECONNREFUSED,
WSAENETUNREACH, WSAETIMEDOUT) the application can call connect again for the same socket.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The specified address is already in use.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEALREADY A nonblocking connect call is in
progress on the specified socket.

Note In order to preserve backward
compatibility, this error is reported as
WSAEINVAL to Windows Sockets 1.1
applications that link to either
WINSOCK.DLL or WSOCK32.DLL.

WSAEADDRNOTAVAIL The specified address is not available
from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family
cannot be used with this socket.

WSAECONNREFUSED The attempt to connect was forcefully
rejected.

WSAEFAULT The name or the namelen argument is
not a valid part of the user address
space, the namelen argument is too
small, or the name argument contains
incorrect address format for the
associated address family.

WSAEINVAL The parameter s is a listening socket, or
the destination address specified is not
consistent with that of the constrained
group the socket belongs to.

WSAEISCONN The socket is already connected
(connection-oriented sockets only).

WSAENETUNREACH The network cannot be reached from
this host at this time.

WSAENOBUFS No buffer space is available. The socket
cannot be connected.

WSAENOTSOCK The descriptor is not a socket.

WSAETIMEDOUT Attempt to connect timed out without
establishing a connection.

WSAEWOULDBLOCK The socket is marked as nonblocking
and the connection cannot be
completed immediately. It is possible to
select the socket while it is connecting
by selecting it for writing.

WSAEACCES Attempt to connect datagram socket to
broadcast address failed because
setsockopt SO_BROADCAST is not
enabled.

See Also
accept, bind, getsockname, select, socket, WSAAsyncSelect, WSAConnect

EnumProtocols   

Important The EnumProtocols function is a Microsoft-specific extension to the Windows Sockets
1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1 developers,
the reference material is below.

In Windows Sockets 2, this functionality is realized with the function WSAEnumProtocols.

The EnumProtocols function obtains information about a specified set of

network protocols that are active on a local host.

INT EnumProtocols(
 LPINT lpiProtocols, // pointer to array of protocol identifiers
 LPVOID lpProtocolBuffer, // pointer to buffer to receive protocol information
 LPDWORD lpdwBufferLength // pointer to variable that specifies the size of the receiving buffer
);

Parameters
lpiProtocols

Pointer to a null-terminated array of protocol identifiers. The EnumProtocols function obtains
information about the protocols specified by this array.

If lpiProtocols is NULL, the function obtains information about all available protocols.

The following protocol identifier values are defined:

Value Protocol

IPPROTO_TCP TCP/IP, a connection/stream-oriented
protocol

IPPROTO_UDP User Datagram Protocol (UDP/IP), a
connectionless datagram protocol

ISOPROTO_TP4 ISO connection-oriented transport protocol

NSPROTO_IPX IPX

NSPROTO_SPX SPX

NSPROTO_SPXII SPX II

lpProtocolBuffer
Pointer to a buffer that the function fills with an array of PROTOCOL_INFO data structures.

lpdwBufferLength
Pointer to a variable that, on input, specifies the size, in bytes, of the buffer pointed to by
lpProtocolBuffer.

On output, the function sets this variable to the minimum buffer size needed to retrieve all of the
requested information. For the function to succeed, the buffer must be at least this size.

Return Values
If the function succeeds, the return value is the number of PROTOCOL_INFO data structures written to
the buffer pointed to by lpProtocolBuffer.

If the function fails, the return value is SOCKET_ERROR (- 1). To get extended error information, call
GetLastError. GetLastError may return the following extended error code:

Value Meaning

ERROR_INSUFFICIENT_BUFFER The buffer pointed to by
lpProtocolBuffer was too small to

receive all of the relevant
PROTOCOL_INFO structures. Call the
function with a buffer at least as large
as the value returned in
*lpdwBufferLength.

Remarks
In the following sample code, the EnumProtocols function obtains information about all protocols that
are available on a system. The code then examines each of the protocols in greater detail.

SOCKET
OpenConnection (
 PTSTR ServiceName,
 PGUID ServiceType,
 BOOL Reliable,
 BOOL MessageOriented,
 BOOL StreamOriented,
 BOOL Connectionless,
 PINT ProtocolUsed
)
{
 // local variables
 INT protocols[MAX_PROTOCOLS+1];
 BYTE buffer[2048];
 DWORD bytesRequired;
 INT err;
 PPROTOCOL_INFO protocolInfo;
 PCSADDR_INFO csaddrInfo;
 INT protocolCount;
 INT addressCount;
 INT i;
 DWORD protocolIndex;
 SOCKET s;

 // First look up the protocols installed on this machine.
 //
 bytesRequired = sizeof(buffer);
 err = EnumProtocols(NULL, buffer, &bytesRequired);
 if (err <= 0)
 return INVALID_SOCKET;

 // Walk through the available protocols and pick out the ones which
 // support the desired characteristics.
 //
 protocolCount = err;
 protocolInfo = (PPROTOCOL_INFO)buffer;

 for (i = 0, protocolIndex = 0;
 i < protocolCount && protocolIndex < MAX_PROTOCOLS;
 i++, protocolInfo++) {

 // If connection-oriented support is requested, then check if
 // supported by this protocol. We assume here that connection-
 // oriented support implies fully reliable service.
 //

 if (Reliable) {
 // Check to see if the protocol is reliable. It must
 // guarantee both delivery of all data and the order in
 // which the data arrives.
 //
 if ((protocolInfo->dwServiceFlags &
 XP_GUARANTEED_DELIVERY) == 0
 ||
 (protocolInfo->dwServiceFlags &
 XP_GUARANTEED_ORDER) == 0) {

 continue;
 }

 // Check to see that the protocol matches the stream/message
 // characteristics requested.
 //
 if (StreamOriented &&
 (protocolInfo->dwServiceFlags & XP_MESSAGE_ORIENTED)
 != 0 &&
 (protocolInfo->dwServiceFlags & XP_PSEUDO_STREAM)
 == 0) {
 continue;
 }

 if (MessageOriented &&
 (protocolInfo->dwServiceFlags & XP_MESSAGE_ORIENTED)
 == 0) {
 continue;
 }

 }
 else if (Connectionless) {
 // Make sure that this is a connectionless protocol.
 //
 if ((protocolInfo->dwServiceFlags & XP_CONNECTIONLESS)
 != 0)
 continue;
 }

 // This protocol fits all the criteria. Add it to the list of
 // protocols in which we're interested.
 //
 protocols[protocolIndex++] = protocolInfo->iProtocol;
 }

See Also
GetAddressByName, PROTOCOL_INFO

GetAcceptExSockaddrs   

Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets GetAcceptExSockaddrs function parses the data obtained from a call to the
AcceptEx function and passes the local and remote addresses to a SOCKADDR structure.

VOID GetAcceptExSockaddrs (
 PVOID lpOutputBuffer,
 DWORD dwReceiveDataLength,
 DWORD dwLocalAddressLength,
 DWORD dwRemoteAddressLength,
 LPSOCKADDR *LocalSockaddr,
 LPINT LocalSockaddrLength,
 LPSOCKADDR *RemoteSockaddr,
 LPINT RemoteSockaddrLength
);

Parameters
lpOutputBuffer

[in] A pointer to a buffer that receives the first block of data sent on a connection resulting from an
AcceptEx call. It must be the same lpOutputBuffer parameter that was passed to the AcceptEx
function.

dwReceiveDataLength
[in] The number of bytes in the buffer that will be used for receiving the first data. This must be equal
to the dwReceiveDataLength parameter that was passed to the AcceptEx function.

dwLocalAddressLength
[in] The number of bytes reserved for the local address information. This must be equal to the
dwLocalAddressLength parameter that was passed to the AcceptEx function.

dwRemoteAddressLength
[in] The number of bytes reserved for the remote address information. This must be equal to the
dwRemoteAddressLength parameter that was passed to the AcceptEx function.

LocalSockaddr
[out] A pointer to the SOCKADDR structure that receives the local address of the connection (the
same information that would be returned by the Windows Sockets getsockname function). This
parameter must be specified.

LocalSockaddrLength
[out] The size of the local address. This parameter must be specified.

RemoteSockaddr
[out] A pointer to the SOCKADDR structure that receives the remote address of the connection (the
same information that would be returned by the Windows Sockets getpeername function). This
parameter must be specified.

RemoteSockaddrLength
[out] The size of the local address. This parameter must be specified.

Return Values
This function does not return a value.

Remarks
The GetAcceptExSockaddrs function is used exclusively with the AcceptEx function to parse the first
data that the socket receives into local and remote addresses. You are required to use this function

because the AcceptEx function writes address information in an internal (TDI) format. The
GetAcceptExSockaddrs routine is required to locate the SOCKADDR structures in the buffer.

GetAddressByName   

Important The GetAddressByName function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

In Windows Sockets 2, this functionality is realized with the functions detailed in Protocol-Independent
Name Resolution.

The GetAddressByName function queries a name space, or a set of default name spaces, in order to
obtain network address information for a specified network service. This process is known as service
name resolution. A network service can also use the function to obtain local address information that it
can use with the bind function.

INT GetAddressByName(
 DWORD dwNameSpace, // name space to query for service address information
 LPGUID lpServiceType, // the type of the service
 LPTSTR lpServiceName, // the name of the service
 LPINT lpiProtocols, // points to array of protocol identifiers
 DWORD dwResolution, // set of bit flags that specify aspects of name resolution
 LPSERVICE_ASYNC_INFO lpServiceAsyncInfo, // reserved for future use, must be NULL
 LPVOID lpCsaddrBuffer, // points to buffer to receive address information
 LPDWORD lpdwBufferLength, // points to variable with address buffer size information
 LPTSTR lpAliasBuffer, // points to buffer to receive alias information
 LPDWORD lpdwAliasBufferLength // points to variable with alias buffer size information
);

Parameters
dwNameSpace

Specifies the name space, or a set of default name spaces, that the operating system will query for
network address information.

Use one of the following constants to specify a name space:

Value Name Space

NS_DEFAULT A set of default name spaces. The
function queries each name space within
this set. The set of default name spaces
typically includes all the name spaces
installed on the system. System
administrators, however, can exclude
particular name spaces from the set.
This is the value that most applications
should use for dwNameSpace.

NS_DNS The Domain Name System used in the
Internet for host name resolution.

NS_NETBT The NetBIOS over TCP/IP layer. All
Windows NT systems register their
computer names with NetBIOS. This
name space is used to convert a
computer name to an IP address that
uses this registration. Note that
NS_NETBT may access a WINS server
to perform the resolution.

NS_SAP The Netware Service Advertising

Protocol. This may access the Netware
bindery if appropriate. NS_SAP is a
dynamic name space that allows
registration of services.

NS_TCPIP_HOSTS Lookup value in the
<systemroot>\system32\drivers\etc\host
s file.

NS_TCPIP_LOCAL Local TCP/IP name resolution
mechanisms, including comparisons
against the local host name and looks up
host names and IP addresses in cache
of host to IP address mappings.

Most calls to GetAddressByName should use the special value NS_DEFAULT. This lets a client get
by with no knowledge of which name spaces are available on an internetwork. The system
administrator determines name space access. Name spaces can come and go without the client
having to be aware of the changes.

lpServiceType
Points to a globally unique identifier (GUID) that specifies the type of the network service. The header
file SVCGUID.H includes definitions of several GUID service types, and macros for working with
them.

lpServiceName
Points to a zero-terminated string that uniquely represents the service name. For example, "MY SNA
SERVER".

Setting lpServiceName to NULL is the equivalent of setting dwResolution to RES_SERVICE. The
function operates in its second mode, obtaining the local address to which a service of the specified
type should bind. The function stores the local address within the LocalAddr member of the
CSADDR_INFO structures stored into *lpCsaddrBuffer.

If dwResolution is set to RES_SERVICE, the function ignores the lpServiceName parameter.

If dwNameSpace is set to NS_DNS, *lpServiceName is the name of the host.

lpiProtocols
Points to a zero-terminated array of protocol identifiers. The function restricts a name resolution
attempt to name space providers that offer these protocols. This lets the caller limit the scope of the
search.

If lpiProtocols is NULL, the function obtains information on all available protocols.

dwResolution
A set of bit flags that specify aspects of the service name resolution process. The following bit flags
are defined:

Value Meaning

RES_SERVICE If this flag is set, the function obtains the
address to which a service of the
specified type should bind. This is the
equivalent of setting lpServiceName to
NULL.

If this flag is clear, normal name
resolution occurs.

RES_FIND_MULTIPLE If this flag is set, the operating system
performs an extensive search of all
name spaces for the service. It will ask
every appropriate name space to resolve
the service name. If this flag is clear, the
operating system stops looking for
service addresses as soon as one is

found.

RES_SOFT_SEARCH This flag is valid if the name space
supports multiple levels of searching.

If this flag is valid and set, the operating
system performs a simple and quick
search of the name space. This is useful
if an application only needs to obtain
easy-to-find addresses for the service.

If this flag is valid and clear, the
operating system performs a more
extensive search of the name space.

lplpServiceAsyncInfo
Reserved for future use; must be set to NULL.

lpCsaddrBuffer
Points to a buffer to receive one or more CSADDR_INFO data structures. The number of structures
written to the buffer depends on the amount of information found in the resolution attempt. You should
assume that multiple structures will be written, although in many cases there will only be one.

lpdwBufferLength
Points to a variable that, upon input, specifies the size, in bytes, of the buffer pointed to by
lpCsaddrBuffer.

Upon output, this variable contains the total number of bytes required to store the array of
CSADDR_INFO structures. If this value is less than or equal to the input value of *lpdwBufferLength,
and the function is successful, this is the number of bytes actually stored in the buffer. If this value is
greater than the input value of *lpdwBufferLength, the buffer was too small, and the output value of
*lpdwBufferLength is the minimal required buffer size.

lpAliasBuffer
Points to a buffer to receive alias information for the network service.

If a name space supports aliases, the function stores an array of zero-terminated name strings into
the buffer pointed to by lpAliasBuffer. There is a double zero-terminator at the end of the list. The first
name in the array is the service's primary name. Names that follow are aliases. An example of a
name space that supports aliases is DNS.

If a name space does not support aliases, it stores a double zero-terminator into the buffer.

This parameter is optional, and can be set to NULL.

lpdwAliasBufferLength
Points to a variable that, upon input, specifies the size, in bytes, of the buffer pointed to by
lpAliasBuffer.

Upon output, this variable contains the total number of bytes required to store the array of name
strings. If this value is less than or equal to the input value of *lpdwAliasBufferLength, and the
function is successful, this is the number of bytes actually stored in the buffer. If this value is greater
than the input value of *lpdwAliasBufferLength, the buffer was too small, and the output value of
*lpdwAliasBufferLength is the minimal required buffer size.

If lpAliasBuffer is NULL, lpdwAliasBufferLength is meaningless and can also be NULL.

Return Values
If the function succeeds, the return value is the number of CSADDR_INFO data structures written to the
buffer pointed to by lpCsaddrBuffer.

If the function fails, the return value is SOCKET_ERROR(- 1). To get extended error information, call
GetLastError. GetLastError may return the following extended error value:

Value Meaning

ERROR_INSUFFICIENT_BUFFE
R

The buffer pointed to by
lpCsaddrBuffer was too small to
receive all of the relevant
CSADDR_INFO structures. Call
the function with a buffer at least
as large as the value returned in
*lpdwBufferLength.

Remarks
This function is a more powerful version of the Windows Sockets function gethostbyname The
GetAddressByName function works with multiple name services.

The GetAddressByName function lets a client obtain a Windows Sockets address for a network service.
The client specifies the service of interest by its service type and service name.

Many name services support a default prefix or suffix that the name service provider considers when
resolving service names. For example, in the DNS name space, if a domain is named "nt.microsoft.com",
and "ftp millikan" is provided as input, the DNS software fails to resolve "millikan", but successfully
resolves "millikan.nt.microsoft.com".

Note that the GetAddressByName function can search for a service address in two ways: within a
particular name space, or within a set of default name spaces. Using a default name space, an
administrator can specify that certain name spaces will be searched for service addresses only if
specified by name. An administrator or name space setup program can also control the ordering of name
space searches.

See Also
gethostbyname, CSADDR_INFO

gethostbyaddr   

The Windows Sockets gethostbyaddr function gets host information corresponding to an address.

struct hostent FAR * gethostbyaddr (
 const char FAR * addr,
 int len,
 int type
);

Parameters
addr

[in] A pointer to an address in network byte order.

len
[in] The length of the address.

type
[in] The type of the address.

Remarks
gethostbyaddr returns a pointer to the following hostent structure which contains the name(s) and
address which correspond to the given address. All strings are null terminated.

Return Values
If no error occurs, gethostbyaddr returns a pointer to the hostent structure described above. Otherwise,
it returns a NULL pointer and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
server failed.

WSANO_RECOVERY Nonrecoverable error occurred.

WSANO_DATA Valid name, no data record of
requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEAFNOSUPPORT The type specified is not supported by
the Windows Sockets implementation.

WSAEFAULT The addr argument is not a valid part of
the user address space, or the len
argument is too small.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

See Also
gethostbyname, hostent, WSAAsyncGetHostByAddr

gethostbyname   

The Windows Sockets gethostbyname function gets host information corresponding to a hostname.

struct hostent FAR * gethostbyname (
 const char FAR * name
);

Parameters
name

[out] A pointer to the null terminated name of the host.

Remarks
gethostbyname returns a pointer to a hostent structure. The contents of this structure correspond to the
hostname name.

The pointer which is returned points to a structure which is allocated by Windows Sockets. The
application must never attempt to modify this structure or to free any of its components. Furthermore, only
one copy of this structure is allocated per thread, and so the application should copy any information
which it needs before issuing any other Windows Sockets function calls.

gethostbyname does not resolve IP address strings passed to it. Such a request is treated exactly as if
an unknown host name were passed. An application with an IP address string to resolve should use
inet_addr to convert the string to an IP address, then gethostbyaddr to obtain the hostent structure.

gethostbyname will resolve the string returned by a successful call to gethostname.

Return Values
If no error occurs, gethostbyname returns a pointer to the hostent structure described above. Otherwise,
it returns a NULL pointer and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
server failure.

WSANO_RECOVERY Nonrecoverable error occurred.

WSANO_DATA Valid name, no data record of
requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEFAULT The name argument is not a valid part
of the user address space.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

See Also
gethostbyaddr, WSAAsyncGetHostByName

gethostname   

The Windows Sockets gethostname function returns the standard host name for the local machine.

int gethostname (
 char FAR * name,
 int namelen
);

Parameters
name

[out] A pointer to a buffer that will receive the host name.

namelen
[in] The length of the buffer.

Remarks
This routine returns the name of the local host into the buffer specified by the name parameter. The host
name is returned as a null-terminated string. The form of the host name is dependent on the Windows
Sockets provider ¾ it can be a simple host name, or it can be a fully qualified domain name. However, it is
guaranteed that the name returned will be successfully parsed by gethostbyname and
WSAAsyncGetHostByName.

Note If no local host name has been configured gethostname must succeed and return a token
host name that gethostbyname or WSAAsyncGetHostByName can resolve.

Return Values
If no error occurs, gethostname returns zero. Otherwise, it returns SOCKET_ERROR and a specific error
code can be retrieved by calling WSAGetLastError.

Error Codes
WSAEFAULT The name argument is not a valid part

of the user address space, or the buffer
size specified by namelen argument is
too small to hold the complete host
name.

WSANOTINITIALISED A successful WSAStartup must occur
before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

See Also
gethostbyname, WSAAsyncGetHostByName

GetNameByType   

Important The GetNameByType function is a Microsoft-specific extension to the Windows Sockets
1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1 developers,
the reference material is below.

In Windows Sockets 2, this functionality is realized with the functions detailed in Protocol-Independent
Name Resolution.

The GetNameByType function obtains the name of a network service. The network service is specified
by its service type.

INT GetNameByType(
 LPGUID lpServiceType, // points to network service type GUID
 LPTSTR lpServiceName, // points to buffer to receive name of network service
 DWORD dwNameLength // points to variable that specifies buffer size
);

Parameters
lpServiceType

Points to a globally unique identifier (GUID) that specifies the type of the network service. The header
file SVCGUID.H includes definitions of several GUID service types, and macros for working with
them.

lpServiceName
Points to a buffer to receive a zero-terminated string that uniquely represents the name of the network
service.

dwNameLength
Points to a variable that, on input, specifies the size of the buffer pointed to by lpServiceName. On
output, the variable contains the actual size of the service name string.

Return Values
If the function succeeds, the return value is not SOCKET_ERROR (-1).

If the function fails, the return value is SOCKET_ERROR (-1). To get extended error information, call
GetLastError.

See Also
GetTypeByName

getpeername   

The Windows Sockets getpeername function gets the address of the peer to which a socket is
connected.

int getpeername (
 SOCKET s,
 struct sockaddr FAR* name,
 int FAR* namelen
);

Parameters
s

[in] A descriptor identifying a connected socket.

name
[out] The structure which is to receive the name of the peer.

namelen
[out] A pointer to the size of the name structure.

Remarks
getpeername retrieves the name of the peer connected to the socket s and stores it in the struct
sockaddr identified by name. It can be used only on a connected socket. For datagram sockets, only the
name of a peer specified in a previous connect call will be returned¾any name specified by a previous
sendto call will not be returned by getpeername.

On return, the namelen argument contains the actual size of the name returned in bytes.

Return Values
If no error occurs, getpeername returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The name or the namelen argument is
not a valid part of the user address
space, or the namelen argument is too
small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

See Also
bind, getsockname, socket

getprotobyname   

The Windows Sockets getprotobyname function gets protocol information corresponding to a protocol
name.

struct protoent FAR * getprotobyname (
 const char FAR * name
);

Parameters
name

[in] A pointer to a null terminated protocol name.

Remarks
getprotobyname returns a pointer to the following structure which contains the name(s) and protocol
number which correspond to the given protocol name. All strings are null terminated.

struct protoent {
 char FAR * p_name;
 char FAR * FAR * p_aliases;
 short p_proto;
};

The members of this structure are:

Element Usage

p_name Official name of the protocol.

p_aliases A NULL-terminated array of alternate names.

p_proto The protocol number, in host byte order.

The pointer which is returned points to a structure which is allocated by the Windows Sockets library. The
application must never attempt to modify this structure or to free any of its components. Furthermore only
one copy of this structure is allocated per thread, and so the application should copy any information
which it needs before issuing any other Windows Sockets function calls.

Return Values
If no error occurs, getprotobyname returns a pointer to the protoent structure described above.
Otherwise, it returns a NULL pointer and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not
found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or
server failure.

WSANO_RECOVERY Nonrecoverable errors, the protocols
database is not accessible.

WSANO_DATA Valid name, no data record of
requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEFAULT The name argument is not a valid part
of the user address space.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

See Also
getprotobynumber, WSAAsyncGetProtoByName

getprotobynumber   

The Windows Sockets getprotobynumber function gets protocol information corresponding to a protocol
number.

struct protoent FAR * getprotobynumber (
 int number
);

Parameters
number

[in] A protocol number, in host byte order.

Remarks
This function returns a pointer to a protoent structure as described above in getprotobyname. The
contents of the structure correspond to the given protocol number.

The pointer which is returned points to a structure which is allocated by Windows Sockets. The
application must never attempt to modify this structure or to free any of its components. Furthermore, only
one copy of this structure is allocated per thread, and so the application should copy any information
which it needs before issuing any other Windows Sockets function calls.

Return Values
If no error occurs, getprotobynumber returns a pointer to the protoent structure described above.
Otherwise, it returns a NULL pointer and a specific error number can be retrieved by calling
WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not
found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or
server failure.

WSANO_RECOVERY Nonrecoverable errors, the protocols
database is not accessible.

WSANO_DATA Valid name, no data record of
requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

See Also
getprotobyname, WSAAsyncGetProtoByNumber

getservbyname   

The Windows Sockets getsservbyname function gets service information corresponding to a service
name and protocol.

struct servent FAR * getservbyname (
 const char FAR * name,
 const char FAR * proto
);

Parameters
name

[in] A pointer to a null terminated service name.

proto
[in] An optional pointer to a null terminated protocol name. If this pointer is NULL, getservbyname
returns the first service entry for which the name matches the s_name or one of the s_aliases.
Otherwise, getservbyname matches both the name and the proto.

Remarks
getservbyname returns a pointer to the following structure which contains the name(s) and service
number which correspond to the given service name. All strings are null terminated.

struct servent {
 char FAR * s_name;
 char FAR * FAR * s_aliases;
 short s_port;
 char FAR * s_proto;
};

The members of this structure are:

Element Usage

s_name Official name of the service.

s_aliases A NULL-terminated array of alternate names.

s_port The port number at which the service can be contacted.
Port numbers are returned in network byte order.

s_proto The name of the protocol to use when contacting the
service.

The pointer which is returned points to a structure which is allocated by the Windows Sockets library. The
application must never attempt to modify this structure or to free any of its components. Furthermore only
one copy of this structure is allocated per thread, and so the application should copy any information
which it needs before issuing any other Windows Sockets function calls.

Return Values
If no error occurs, getservbyname returns a pointer to the servent structure described above. Otherwise,
it returns a NULL pointer and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Service not found.

WSATRY_AGAIN Non-Authoritative Service not found, or
server failure.

WSANO_RECOVERY Nonrecoverable errors, the services
database is not accessible.

WSANO_DATA Valid name, no data record of
requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

See Also
getservbyport, WSAAsyncGetServByName

getservbyport   

The Windows Sockets getservbyport function gets service information corresponding to a port and
protocol.

struct servent FAR * getservbyport (
 int port,
 const char FAR* proto
);

Parameters
port

[in] The port for a service, in network byte order.

proto
[in] An optional pointer to a protocol name. If this is NULL, getservbyport returns the first service
entry for which the port matches the s_port. Otherwise, getservbyport matches both the port and the
proto.

Remarks
getservbyport returns a pointer to a servent structure as described above for getservbyname.

The pointer which is returned points to a structure which is allocated by Windows Sockets. The
application must never attempt to modify this structure or to free any of its components. Furthermore, only
one copy of this structure is allocated per thread, and so the application should copy any information
which it needs before issuing any other Windows Sockets function calls.

Return Values
If no error occurs, getservbyport returns a pointer to the servent structure described above. Otherwise, it
returns a NULL pointer and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Service not found.

WSATRY_AGAIN Non-Authoritative Service not found, or
server failure.

WSANO_RECOVERY Nonrecoverable errors, the services
database is not accessible.

WSANO_DATA Valid name, no data record of
requested type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEFAULT The proto argument is not a valid part of
the user address space.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

See Also
getservbyname, WSAAsyncGetServByPort

GetService   

Important The GetService function is a Microsoft-specific extension to the Windows Sockets 1.1
specification. This function is obsolete. For the convenience of Windows Sockets 1.1 developers, the
reference material is below..

In Windows Sockets 2, this functionality is realized with the functions detailed in Protocol-Independent
Name Resolution.

The GetService function obtains information about a network service in the context of a set of default
name spaces or a specified name space. The network service is specified by its type and name. The
information about the service is obtained as a set of NS_SERVICE_INFO data structures.

INT GetService(
 DWORD dwNameSpace, // specifies name space or spaces to search
 PGUID lpGuid, // points to a GUID service type
 LPTSTR lpServiceName, // points to a service name
 DWORD dwProperties, // specifies service information to be obtained
 LPVOID lpBuffer, // points to buffer to receive service information
 LPDWORD lpdwBufferSize, // points to size of buffer, size of service information
 LPSERVICE_ASYNC_INFO lpServiceAsyncInfo // reserved for future use, must be NULL
);

Parameters
dwNameSpace

Specifies the name space, or a set of default name spaces, that the operating system will query for
information about the specified network service.

Use one of the following constants to specify a name space:

Value Name Space

NS_DEFAULT A set of default name spaces. The
operating system will query each name
space within this set. The set of default
name spaces typically includes all the
name spaces installed on the system.
System administrators, however, can
exclude particular name spaces from the
set. NS_DEFAULT is the value that most
applications should use for
dwNameSpace.

NS_DNS The Domain Name System used in the
Internet for host name resolution.

NS_NETBT The NetBIOS over TCP/IP layer. All
Windows NT systems register their
computer names with NetBIOS. This
name space is used to resolve a
computer name into an IP address using
this registration. Note that NS_NETBT
may access a WINS server to perform
the resolution.

NS_SAP The Netware Service Advertising
Protocol. This may access the Netware
bindery if appropriate. NS_SAP is a
dynamic name space that allows

registration of services.

NS_TCPIP_HOSTS Looks up host names and IP addresses
in the
<systemroot>\system32\drivers\etc\host
s file.

NS_TCPIP_LOCAL Local TCP/IP name resolution
mechanisms, including comparisons
against the local host name and looks up
host names and IP addresses in cache
of host to IP address mappings.

Most calls to GetService should use the special value NS_DEFAULT. This lets a client get by with no
knowledge of which name spaces are available on an internetwork. The system administrator
determines name space access. Name spaces can come and go without the client having to be
aware of the changes.

lpGuid
Points to a globally unique identifier (GUID) that specifies the type of the network service. The header
file SVCGUID.H includes GUID service types from many well-known services within the DNS and
SAP name spaces.

lpServiceName
Points to a zero-terminated string that uniquely represents the service name. For example, "MY SNA
SERVER".

dwProperties
A set of bit flags that specify the service information that the function obtains. Each of these bit flag
constants, other than PROP_ALL, corresponds to a particular member of the SERVICE_INFO data
structure. If the flag is set, the function puts information into the corresponding member of the data
structures stored in *lpBuffer. The following bit flags are defined:

Value Name Space

PROP_COMMENT If this flag is set, the function stores data
in the lpComment member of the data
structures stored in *lpBuffer.

PROP_LOCALE If this flag is set, the function stores data
in the lpLocale member of the data
structures stored in *lpBuffer.

PROP_DISPLAY_HINT If this flag is set, the function stores data
in the dwDisplayHint member of the
data structures stored in *lpBuffer.

PROP_VERSION If this flag is set, the function stores data
in the dwVersion member of the data
structures stored in *lpBuffer.

PROP_START_TIME If this flag is set, the function stores data
in the dwTime member of the data
structures stored in *lpBuffer.

PROP_MACHINE If this flag is set, the function stores data
in the lpMachineName member of the
data structures stored in *lpBuffer.

PROP_ADDRESSES If this flag is set, the function stores data
in the lpServiceAddress member of the
data structures stored in *lpBuffer.

PROP_SD If this flag is set, the function stores data
in the ServiceSpecificInfo member of
the data structures stored in *lpBuffer.

PROP_ALL If this flag is set, the function stores data
in all of the members of the data
structures stored in *lpBuffer.

lpBuffer
Points to a buffer to receive an array of NS_SERVICE_INFO structures and associated service
information. Each NS_SERVICE_INFO structure contains service information in the context of a
particular name space. Note that if dwNameSpace is NS_DEFAULT, the function stores more than
one structure into the buffer; otherwise, just one structure is stored.

Each NS_SERVICE_INFO structure contains a SERVICE_INFO structure. The members of these
SERVICE_INFO structures will contain valid data based on the bit flags that are set in the
dwProperties parameter. If a member's corresponding bit flag is not set in dwProperties, the
member's value is undefined.

The function stores the NS_SERVICE_INFO structures in a consecutive array, starting at the
beginning of the buffer. The pointers in the contained SERVICE_INFO structures point to information
that is stored in the buffer between the end of the NS_SERVICE_INFO structures and the end of the
buffer.

lpdwBufferSize
Points to a variable that, on input, contains the size, in bytes, of the buffer pointed to by lpBuffer. On
output, this variable contains the number of bytes required to store the requested information. If this
output value is greater than the input value, the function has failed due to insufficient buffer size.

lpServiceAsyncInfo
This parameter is reserved for future use. It must be set to NULL.

Return Values
If the function succeeds, the return value is the number of NS_SERVICE_INFO structures stored in
*lpBuffer. Zero indicates that no structures were stored.

If the function fails, the return value is SOCKET_ERROR (- 1). To get extended error information, call
GetLastError. GetLastError may return one of the following extended error values:

Value Meaning

ERROR_INSUFFICIENT_BUFFE
R

The buffer pointed to by lpBuffer
is too small to receive all of the
requested information. Call the
function with a buffer at least as
large as the value returned in
*lpdwBufferSize.

ERROR_SERVICE_NOT_FOUNDThe specified service was not
found, or the specified name
space is not in use. The function
return value is zero in this case.

See Also
SetService, NS_SERVICE_INFO, SERVICE_INFO

getsockname   

The Windows Sockets getsockname function gets the local name for a socket.

int getsockname (
 SOCKET s,
 struct sockaddr FAR* name,
 int FAR* namelen
);

Parameters
s

[in] A descriptor identifying a bound socket.

name
[out] Receives the address (name) of the socket.

namelen
[out] The size of the name buffer.

Remarks
getsockname retrieves the current name for the specified socket descriptor in name. It is used on a
bound and/or connected socket specified by the s parameter. The local association is returned. This call
is especially useful when a connect call has been made without doing a bind first; this call provides the
only means by which you can determine the local association which has been set by the system.

On return, the namelen argument contains the actual size of the name returned in bytes.

If a socket was bound to an unspecified address (for example, ADDR_ANY), indicating that any of the
host's addresses within the specified address family should be used for the socket, getsockname will not
necessarily return information about the host address, unless the socket has been connected with
connect or accept. A Windows Sockets application must not assume that the address will be specified
unless the socket is connected. This is because for a multihomed host the address that will be used for
the socket is unknown unless the socket is connected.

Return Values
If no error occurs, getsockname returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The name or the namelen argument is
not a valid part of the user address
space, or the namelen argument is too
small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an
address with bind, or ADDR_ANY is
specified in bind but connection has not

yet occurs.

See Also
bind, getpeername, socket

getsockopt   

The Windows Sockets getsockopt function retrieves a socket option.

int getsockopt (
 SOCKET s,
 int level,
 int optname,
 char FAR* optval,
 int FAR* optlen
);

Parameters
s

[in] A descriptor identifying a socket.

level
[in] The level at which the option is defined; the supported levels include SOL_SOCKET and
IPPROTO_TCP. (See annex for more protocol-specific levels.)

optname
[in] The socket option for which the value is to be retrieved.

optval
[out] A pointer to the buffer in which the value for the requested option is to be returned.

optlen
[in/out] A pointer to the size of the optval buffer.

Remarks
getsockopt retrieves the current value for a socket option associated with a socket of any type, in any
state, and stores the result in optval. Options can exist at multiple protocol levels, but they are always
present at the uppermost "socket'' level. Options affect socket operations, such as the packet routing and
out-of-band data transfer.

The value associated with the selected option is returned in the buffer optval. The integer pointed to by
optlen should originally contain the size of this buffer; on return, it will be set to the size of the value
returned. For SO_LINGER, this will be the size of a struct linger; for most other options it will be the size
of an integer.

The application is responsible for allocating any memory space pointed to directly or indirectly by any of
the parameters it specified.

If the option was never set with setsockopt, then getsockopt returns the default value for the option.

The following options are supported for getsockopt. The Type identifies the type of data addressed by
optval.

level = SOL_SOCKET

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening.

SO_BROADCAST BOOL Socket is configured for the
transmission of broadcast
messages.

SO_DEBUG BOOL Debugging is enabled.

SO_DONTLINGER BOOL If true, the SO_LINGER

option is disabled.

SO_DONTROUTE BOOL Routing is disabled.

SO_ERROR int Retrieve error status and
clear.

SO_GROUP_ID GROUP The identifier of the group to
which this socket belongs.

SO_GROUP_PRIORITY int The relative priority for
sockets that are part of a
socket group.

SO_KEEPALIVE BOOL Keepalives are being sent.

SO_LINGER struct linger Returns the current linger
options.

SO_MAX_MSG_SIZE unsigned int Maximum size of a
message for message-
oriented socket types (for
example, SOCK_DGRAM).
Has no meaning for stream-
oriented sockets.

SO_OOBINLINE BOOL Out-of-band data is being
received in the normal data
stream. (See section
Windows Sockets 1.1
Blocking Routines &
EINPROGRESS for a
discussion of this topic.)

SO_PROTOCOL_INFO WSAPROTOCOL_INFO Description of protocol info
for protocol that is bound to
this socket.

SO_RCVBUF int Buffer size for receives

SO_REUSEADDR BOOL The socket may be bound
to an address which is
already in use.

SO_SNDBUF int Buffer size for sends

SO_TYPE int The type of the socket (for
example, SOCK_STREAM).

PVD_CONFIG Service Provider
Dependent

An "opaque" data structure
object from the service
provider associated with
socket s. This object stores
the current configuration
information of the service
provider. The exact format
of this data structure is
service provider specific.

level = IPPROTO_TCP

TCP_NODELAY BOOL Disables the Nagle
algorithm for send
coalescing.

BSD options not supported for getsockopt are:

Value Type Meaning

SO_RCVLOWAT int Receive low water mark

SO_RCVTIMEO int Receive time-out

SO_SNDLOWAT int Send low water mark

SO_SNDTIMEO int Send time-out

TCP_MAXSEG int Get TCP maximum segment
size

Calling getsockopt with an unsupported option will result in an error code of WSAENOPROTOOPT being
returned from WSAGetLastError.

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply output debug
information if the SO_DEBUG option is set by an application. The mechanism for generating the
debug information and the form it takes are beyond the scope of this specification.

SO_ERROR
The SO_ERROR option returns and resets the per-socket based error code, which is different from
the per-thread based error code that is handled using the WSAGetLastError and WSASetLastError
function calls. A successful call using the socket does not reset the socket based error code returned
by the SO_ERROR option.

SO_GROUP_ID
This is a get-only socket option which indicates the identifier of the group this socket belongs to. Note
that socket group IDs are unique across all processes for a give service provider. If this socket is not
a group socket, the value is NULL.

SO_GROUP_PRIORITY
Group priority indicates the priority of the specified socket relative to other sockets within the socket
group. Values are non-negative integers, with zero corresponding to the highest priority. Priority
values represent a hint to the underlying service provider about how potentially scarce resources
should be allocated. For example, whenever two or more sockets are both ready to transmit data, the
highest priority socket (lowest value for SO_GROUP_PRIORITY) should be serviced first, with the
remainder serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error code is indicated for non group sockets or for service providers
which do not support group sockets.

SO_KEEPALIVE
An application can request that a TCP/IP service provider enable the use of "keep-alive" packets on
TCP connections by turning on the SO_KEEPALIVE socket option. A Windows Sockets provider need
not support the use of keep-alive: if it does, the precise semantics are implementation-specific but
should conform to section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts ¾ Communication
Layers. If a connection is dropped as the result of "keep-alives" the error code WSAENETRESET is
returned to any calls in progress on the socket, and any subsequent calls will fail with
WSAENOTCONN.

SO_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a closesocket is
performed. See closesocket for a description of the way in which the SO_LINGER settings affect the
semantics of closesocket. The application gets the current behavior by retrieving a struct linger
(pointed to by the optval argument) with the following elements:

struct linger {
 u_short l_onoff;
 u_short l_linger;
}

SO_MAX_MSG_SIZE
This is a get-only socket option which indicates the maximum size of a message for message-

oriented socket types (for example, SOCK_DGRAM) as implemented by a particular service provider.
It has no meaning for byte stream oriented sockets

SO_PROTOCOL_INFO
This is a get-only option which supplies the WSAPROTOCOL_INFO structure associated with this
socket. See WSAEnumProtocols for more information about this structure.

SO_RCVBUF
SO_SNDBUF

When a Windows Sockets implementation supports the SO_RCVBUF and SO_SNDBUF options, an
application can request different buffer sizes (larger or smaller). The call to setsockopt can succeed,
although the implementation did not provide the whole amount requested. An application must call
this function with the same option to check the buffer size actually provided.

SO_REUSEADDR
By default, a socket cannot be bound (see bind) to a local address which is already in use. On
occasion, however, it may be necessary to "re-use" an address in this way. Since every connection is
uniquely identified by the combination of local and remote addresses, there is no problem with having
two sockets bound to the same local address as long as the remote addresses are different. To inform
the Windows Sockets provider that a bind on a socket should not be disallowed because the desired
address is already in use by another socket, the application should set the SO_REUSEADDR socket
option for the socket before issuing the bind. Note that the option is interpreted only at the time of the
bind: it is therefore unnecessary (but harmless) to set the option on a socket which is not to be bound
to an existing address, and setting or resetting the option after the bind has no effect on this or any
other socket.

PVD_CONFIG
This option retrieves an "opaque" data structure object from the service provider associated with
socket s. This object stores the current configuration information of the service provider. The exact
format of this data structure is service provider specific.

TCP_NODELAY
The Nagle algorithm is disabled if the TCP_NODELAY option is enabled (and vice versa). The Nagle
algorithm (described in RFC 896) is very effective in reducing the number of small packets sent by a
host by essentially buffering send data if there is unacknowledged data already "in flight" or until a
full-size packet can be sent. It is highly recommended that Windows Sockets implementations enable
the Nagle Algorithm by default, and for the vast majority of application protocols the Nagle Algorithm
can deliver significant performance enhancements. However, for some applications this algorithm can
impede performance, and setsockopt with the same option can be used to turn it off. These are
applications where many small messages are sent, which need to be received by the peer with the
time delays between the messages maintained.

Return Values
If no error occurs, getsockopt returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT One of the optval or the optlen
arguments is not a valid part of the user
address space, or the optlen argument
is too small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEINVAL level is unknown or invalid

WSAENOPROTOOPT The option is unknown or unsupported
by the indicated protocol family.

WSAENOTSOCK The descriptor is not a socket.

See Also
setsockopt, socket, WSAAsyncSelect, WSAConnect, WSAGetLastError, WSASetLastError

GetTypeByName   

Important The GetTypeByName function is a Microsoft-specific extension to the Windows Sockets
1.1 specification. This function is obsolete. For the convenience of Windows Sockets 1.1 developers,
the reference material is below.

In Windows Sockets 2, this functionality is realized with the functions detailed in Protocol-Independent
Name Resolution.

The GetTypeByName function obtains a service type GUID for a network service specified by name.

INT GetTypeByName(
 LPTSTR lpServiceName, // points to the name of the network service
 PGUID lpServiceType // points to a variable to receive network service type
);

Parameters
lpServiceName

Points to a zero-terminated string that uniquely represents the name of the service. For example, "MY
SNA SERVER".

lpServiceType
Points to a variable to receive a globally unique identifier (GUID) that specifies the type of the network
service. The header file SVCGUID.H includes definitions of several GUID service types and macros
for working with them.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is SOCKET_ERROR(- 1). To get extended error information, call
GetLastError. GetLastError may return the following extended error value:

Value Meaning

ERROR_SERVICE_DOES_NOT_EXIS
T

The specified service type is
unknown.

See Also
GetNameByType

htonl   

The Windows Sockets htonl function converts a u_long from host to TCP/IP network byte order.

u_long htonl (
 u_long hostlong
);

Parameters
hostlong

[in] A 32-bit number in host byte order.

Remarks
This routine takes a 32-bit number in host byte order and returns a 32-bit number in the network byte
order used in TCP/IP networks.

Return Values
htonl returns the value in TCP/IP's network byte order.

See Also
htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

htons   

The Windows Sockets htons function converts a u_short from host to TCP/IP network byte order.

u_short htons (
 u_short hostshort
);

Parameters
hostshort

[in] A 16-bit number in host byte order.

Remarks
This routine takes a 16-bit number in host byte order and returns a 16-bit number in network byte order
used in TCP/IP networks.

Return Values
htons returns the value in TCP/IP network byte order.

See Also
htonl, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

inet_addr   

The Windows Sockets inet_addr function converts a string containing an Internet Protocol dotted
address into an in_addr.

unsigned long inet_addr (
 const char FAR * cp
);

Parameters
cp

[in] A null-terminated character string representing a number expressed in the Internet standard ".''
notation.

Remarks
This function interprets the character string specified by the cp parameter. This string represents a
numeric Internet address expressed in the Internet standard ".'' notation. The value returned is a number
suitable for use as an Internet address. All Internet addresses are returned in IP's network order (bytes
ordered from left to right).

Internet Addresses

Values specified using the ".'' notation take one of the following forms:

a.b.c.d a.b.c a.b a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the
four bytes of an Internet address. Note that when an Internet address is viewed as a 32-bit integer
quantity on the Intel architecture, the bytes referred to above appear as "d.c.b.a''. That is, the bytes on an
Intel processor are ordered from right to left.

Note The following notations are only used by Berkeley, and nowhere else on the Internet. In the
interests of compatibility with their software, they are supported as specified.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in the
right most two bytes of the network address. This makes the three part address format convenient for
specifying Class B network addresses as "128.net.host''.

When a two part address is specified, the last part is interpreted as a 24-bit quantity and placed in the
right most three bytes of the network address. This makes the two part address format convenient for
specifying Class A network addresses as "net.host''.

When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

Return Values
If no error occurs, inet_addr returns an unsigned long containing a suitable binary representation of the
Internet address given. If the passed-in string does not contain a legitimate Internet address, for example
if a portion of an "a.b.c.d" address exceeds 255, inet_addr returns the value INADDR_NONE.

See Also
inet_ntoa

inet_ntoa   

The Windows Sockets inet_ntoa function converts a network address into a string in dotted format.

char FAR * inet_ntoa (
 struct in_addr in
);

Parameters
in

[in] A structure which represents an Internet host address.

Remarks
This function takes an Internet address structure specified by the in parameter. It returns an ASCII string
representing the address in ".'' notation as "a.b.c.d''. Note that the string returned by inet_ntoa resides in
memory which is allocated by Windows Sockets. The application should not make any assumptions about
the way in which the memory is allocated. The data is guaranteed to be valid until the next Windows
Sockets function call within the same thread, but no longer.

Return Values
If no error occurs, inet_ntoa returns a char pointer to a static buffer containing the text address in
standard ".'' notation. Otherwise, it returns NULL. The data should be copied before another Windows
Sockets call is made.

See Also
inet_addr

ioctlsocket   

The Windows Sockets ioctlsocket function controls the mode of a socket.

int ioctlsocket (
 SOCKET s,
 long cmd,
 u_long FAR* argp
);

Parameters
s

[in] A descriptor identifying a socket.

cmd
[in] The command to perform on the socket s.

argp
[in/out] A pointer to a parameter for cmd.

Remarks
This routine can be used on any socket in any state. It is used to get or retrieve operating parameters
associated with the socket, independent of the protocol and communications subsystem. Here are the
supported commands and their semantics:

FIONBIO
Enable or disable nonblocking mode on socket s. argp points at an unsigned long, which is nonzero
if nonblocking mode is to be enabled and zero if it is to be disabled. When a socket is created, it
operates in blocking mode (that is, nonblocking mode is disabled). This is consistent with BSD
sockets.

The WSAAsyncSelect or WSAEventSelect routine automatically sets a socket to nonblocking
mode. If WSAAsyncSelect or WSAEventSelect has been issued on a socket, then any attempt to
use ioctlsocket to set the socket back to blocking mode will fail with WSAEINVAL. To set the socket
back to blocking mode, an application must first disable WSAAsyncSelect by calling
WSAAsyncSelect with the lEvent parameter equal to zero, or disable WSAEventSelect by calling
WSAEventSelect with the lNetworkEvents parameter equal to zero.

FIONREAD
Determine the amount of data which can be read atomically from socket s. argp points to an
unsigned long in which ioctlsocket stores the result. If s is stream oriented (for example, type
SOCK_STREAM), FIONREAD returns an amount of data which can be read in a single recv; this
may or may not be the same as the total amount of data queued on the socket. If s is message
oriented (for example, type SOCK_DGRAM), FIONREAD returns the size of the first datagram
(message) queued on the socket.

SIOCATMARK
Determine whether or not all out-of-band data has been read. (See section Windows Sockets 1.1
Blocking Routines & EINPROGRESS for a discussion of this topic.) This applies only to a socket of
stream style (for example, type SOCK_STREAM) which has been configured for in-line reception of
any out-of-band data (SO_OOBINLINE). If no out-of-band data is waiting to be read, the operation
returns TRUE. Otherwise, it returns FALSE, and the next recv or recvfrom performed on the socket
will retrieve some or all of the data preceding the "mark"; the application should use the
SIOCATMARK operation to determine whether any remains. If there is any normal data preceding the
"urgent" (out of band) data, it will be received in order. (Note that a recv or recvfrom will never mix
out-of-band and normal data in the same call.) argp points to an unsigned long in which ioctlsocket
stores the boolean result.

Compatibility
This function is a subset of ioctl as used in Berkeley sockets. In particular, there is no command which is
equivalent to FIOASYNC, while SIOCATMARK is the only socket-level command which is supported.

Return Values
Upon successful completion, the ioctlsocket returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTSOCK The descriptor s is not a socket.

WSAEFAULT The argp argument is not a valid part of
the user address space.

See Also
getsockopt, setsockopt, socket, WSAAsyncSelect, WSAEventSelect, WSAIoctl

listen   

The Windows Sockets listen function establishes a socket to listen for an incoming connection.

int listen (
 SOCKET s,
 int backlog
);

Parameters
s

[in] A descriptor identifying a bound, unconnected socket.

backlog
[in] The maximum length to which the queue of pending connections can GROW. If this value is
SOMAXCONN, then the underlying service provider responsible for socket s will set the backlog to a
maximum "reasonable" value.

Remarks
To accept connections, a socket is first created with socket, a backlog for incoming connections is
specified with listen, and then the connections are accepted with accept. listen applies only to sockets
that are connection oriented, for example, those of type SOCK_STREAM. The socket s is put into
"passive'' mode where incoming connection requests are acknowledged and queued pending acceptance
by the process.

This function is typically used by servers that could have more than one connection request at a time: if a
connection request arrives with the queue full, the client will receive an error with an indication of
WSAECONNREFUSED.

listen attempts to continue to function rationally when there are no available descriptors. It will accept
connections until the queue is emptied. If descriptors become available, a later call to listen or accept will
refill the queue to the current or most recent "backlog'', if possible, and resume listening for incoming
connections.

An application can call listen more than once on the same socket. This has the effect of updating the
current backlog for the listening socket. Should there be more pending connections than the new backlog
value, the excess pending connections will be reset and dropped.

Compatibility
The backlog parameter is limited (silently) to a reasonable value as determined by the underlying service
provider. Illegal values are replaced by the nearest legal value.

Return Values
If no error occurs, listen returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE An attempt has been made to listen on
an address in use.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is

still processing a callback function.

WSAEINVAL The socket has not been bound with
bind.

WSAEISCONN The socket is already connected.

WSAEMFILE No more socket descriptors are
available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not of a type
that supports the listen operation.

See Also
accept, connect, socket

ntohl   

The Windows Sockets ntohl function converts a u_long from TCP/IP network order to host byte order.

u_long ntohl (
 u_long netlong
);

Parameters
netlong

[in] A 32-bit number in TCP/IP network byte order.

Remarks
This routine takes a 32-bit number in TCP/IP network byte order and returns a 32-bit number in host byte
order.

Return Values
ntohl returns the value in host byte order.

See Also
htonl, htons, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

ntohs   

The Windows Sockets ntohs function converts a u_short from TCP/IP network byte order to host byte
order.

u_short ntohs (
 u_short netshort
);

Parameters
netshort

[in] A 16-bit number in TCP/IP network byte order.

Remarks
This routine takes a 16-bit number in TCP/IP network byte order and returns a 16-bit number in host byte
order.

Return Values
ntohs returns the value in host byte order.

See Also
htonl, htons, ntohl, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

recv   

The Windows Sockets recv function receives data from a socket.

int recv (
 SOCKET s,
 char FAR* buf,
 int len,
 int flags
);

Parameters
s

[in] A descriptor identifying a connected socket.

buf
[out] A buffer for the incoming data.

len
[in] The length of buf.

flags
[in] Specifies the way in which the call is made.

Remarks
This function is used on connected sockets or bound connectionless sockets specified by the s parameter
and is used to read incoming data.

For byte stream style socket (for example, type SOCK_STREAM), as much information as is currently
available up to the size of the buffer supplied is returned. If the socket has been configured for in-line
reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band data is unread, only out-
of-band data will be returned. The application can use the ioctlsocket SIOCATMARK to determine
whether any more out-of-band data remains to be read.

For message-oriented sockets (for example, type SOCK_DGRAM), data is extracted from the first
enqueued datagram (message) from the destination address specified in the connect call. If
unconnected, the socket must be bound, and there are no source address restrictions on datagrams
received. If the datagram or message is larger than the buffer supplied, the buffer is filled with the first
part of the datagram, and recv generates the error WSAEMSGSIZE. For unreliable protocols (for
example, UDP) the excess data is lost, for reliable protocols the data is retained by the service provider
until it is successfully read by calling recv with a large enough buffer.

If no incoming data is available at the socket, the recv call waits for data to arrive unless the socket is
nonblocking. In this case, a value of SOCKET_ERROR is returned with the error code set to
WSAEWOULDBLOCK. The select, WSAAsyncSelect, or WSAEventSelect calls can be used to
determine when more data arrives.

If the socket is connection oriented and the remote side has shut down the connection gracefully, a recv
will complete immediately with zero bytes received. If the connection has been reset, a recv will fail with
the error WSAECONNRESET.

The flags parameter can be used to influence the behavior of the function invocation beyond the options
specified for the associated socket. That is, the semantics of this function are determined by the socket
options and the flags parameter. The latter is constructed by or'ing any of the following values:

Value Meaning

MSG_PEEK Peek at the incoming data. The data is copied
into the buffer but is not removed from the input

queue.

MSG_OOB Process out-of-band data. (See section Out-Of-
Band data for a discussion of this topic.)

Return Values
If no error occurs, recv returns the number of bytes received. If the connection has been gracefully
closed, the return value is zero. Otherwise, a value of SOCKET_ERROR is returned, and a specific error
code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buf argument is not totally
contained in a valid part of the user
address space.

WSAENOTCONN The socket is not connected.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENETRESET The connection has been broken due to
the remote host resetting.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the
socket is not stream style such as type
SOCK_STREAM, out-of-band data is
not supported in the communication
domain associated with this socket, or
the socket is unidirectional and
supports only send operations.

WSAESHUTDOWN The socket has been shut down; it is
not possible to recv on a socket after
shutdown has been invoked with how
set to SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking
and the receive operation would block.

WSAEMSGSIZE The message was too large to fit into
the specified buffer and was truncated.

WSAEINVAL The socket has not been bound with
bind, or an unknown flag was specified,
or MSG_OOB was specified for a
socket with SO_OOBINLINE enabled or
(for byte stream sockets only) len was
zero or negative.

WSAECONNABORTED The virtual circuit was terminated due to
a time-out or other failure. The
application should close the socket as it
is no longer usable.

WSAETIMEDOUT The connection has been dropped

because of a network failure or because
the peer system failed to respond.

WSAECONNRESET The virtual circuit was reset by the
remote side executing a "hard" or
"abortive" close. The application should
close the socket as it is no longer
usable. On a UDP datagram socket this
error would indicate that a previous
send operation resulted in an ICMP
"Port Unreachable" message.

See Also
recvfrom, select, send, socket, WSAAsyncSelect

recvfrom   

The Windows Sockets recvfrom function receives a datagram and stores the source address.

int recvfrom (
 SOCKET s,
 char FAR* buf,
 int len,
 int flags,
 struct sockaddr FAR* from,
 int FAR* fromlen
);

Parameters
s

[in] A descriptor identifying a bound socket.

buf
[out] A buffer for the incoming data.

len
[in] The length of buf.

flags
[in] Specifies the way in which the call is made.

from
[out] An optional pointer to a buffer which will hold the source address upon return.

fromlen
[in/out] An optional pointer to the size of the from buffer.

Remarks
This function is used to read incoming data on a (possibly connected) socket and capture the address
from which the data was sent.

For stream-oriented sockets such as those of type SOCK_STREAM, as much information as is currently
available up to the size of the buffer supplied is returned. If the socket has been configured for in-line
reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band data is unread, only out-
of-band data will be returned. The application can use the ioctlsocket SIOCATMARK to determine
whether any more out-of-band data remains to be read. The from and fromlen parameters are ignored for
connection-oriented sockets.

For message-oriented sockets, data is extracted from the first enqueued message, up to the size of the
buffer supplied. If the datagram or message is larger than the buffer supplied, the buffer is filled with the
first part of the datagram, and recvfrom generates the error WSAEMSGSIZE. For unreliable protocols
(for example, UDP) the excess data is lost.

If from is nonzero, and the socket is not connection oriented (for example, type SOCK_DGRAM), the
network address of the peer which sent the data is copied to the corresponding struct sockaddr. The
value pointed to by fromlen is initialized to the size of this structure, and is modified on return to indicate
the actual size of the address stored there.

If no incoming data is available at the socket, the recvfrom call waits for data to arrive unless the socket
is nonblocking. In this case, a value of SOCKET_ERROR is returned with the error code set to
WSAEWOULDBLOCK. The select, WSAAsyncSelect, or WSAEventSelect can be used to determine
when more data arrives.

If the socket is connection oriented and the remote side has shut down the connection gracefully, a

recvfrom will complete immediately with zero bytes received. If the connection has been reset recvfrom
will fail with the error WSAECONNRESET.

Flags can be used to influence the behavior of the function invocation beyond the options specified for the
associated socket. That is, the semantics of this function are determined by the socket options and the
flags parameter. The latter is constructed by or-ing any of the following values:

Value Meaning

MSG_PEEK Peek at the incoming data. The data is copied
into the buffer but is not removed from the input
queue.

MSG_OOB Process out-of-band data. (See section Out-Of-
Band data for a discussion of this topic.)

Return Values
If no error occurs, recvfrom returns the number of bytes received. If the connection has been gracefully
closed, the return value is zero. Otherwise, a value of SOCKET_ERROR is returned, and a specific error
code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buf or from parameters are not part
of the user address space, or the
fromlen argument is too small to
accommodate the peer address.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEINVAL The socket has not been bound with
bind, or an unknown flag was specified,
or MSG_OOB was specified for a
socket with SO_OOBINLINE enabled,
or (for byte stream style sockets only)
len was zero or negative.

WSAENETRESET The connection has been broken due to
the remote host resetting.

WSAENOTCONN The socket is not connected
(connection-oriented sockets only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the
socket is not stream style such as type
SOCK_STREAM, out-of-band data is
not supported in the communication
domain associated with this socket, or
the socket is unidirectional and
supports only send operations.

WSAESHUTDOWN The socket has been shut down; it is
not possible to recvfrom on a socket

after shutdown has been invoked with
how set to SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking
and the recvfrom operation would
block.

WSAEMSGSIZE The message was too large to fit into
the specified buffer and was truncated.

WSAECONNABORTED The virtual circuit was terminated due to
a time-out or other failure. The
application should close the socket as it
is no longer usable.

WSAETIMEDOUT The connection has been dropped,
because of a network failure or because
the system on the other end went down
without notice.

WSAECONNRESET The virtual circuit was reset by the
remote side executing a "hard" or
"abortive" close. The application should
close the socket as it is no longer
usable. On a UDP datagram socket this
error would indicate that a previous
send operation resulted in an ICMP
"Port Unreachable" message.

See Also
recv, send, socket, WSAAsyncSelect, WSAEventSelect

select   

The Windows Sockets select function determines the status of one or more sockets, waiting if necessary.

int select (
 int nfds,
 fd_set FAR * readfds,
 fd_set FAR * writefds,
 fd_set FAR * exceptfds,
 const struct timeval FAR * timeout
);

Parameters
nfds

[in] This argument is ignored and included only for the sake of compatibility.

readfds
[in/out] An optional pointer to a set of sockets to be checked for readability.

writefds
[in/out] An optional pointer to a set of sockets to be checked for writability

exceptfds
[in/out] An optional pointer to a set of sockets to be checked for errors.

timeout
[in] The maximum time for select to wait, or NULL for blocking operation.

Remarks
This function is used to determine the status of one or more sockets. For each socket, the caller can
request information on read, write or error status. The set of sockets for which a given status is requested
is indicated by an fd_set structure. The sockets contained within the fd_set structures must be associated
with a single service provider. Upon return, the structures are updated to reflect the subset of these
sockets which meet the specified condition, and select returns the number of sockets meeting the
conditions. A set of macros is provided for manipulating an fd_set. These macros are compatible with
those used in the Berkeley software, but the underlying representation is completely different.

The parameter readfds identifies those sockets which are to be checked for readability. If the socket is
currently listening, it will be marked as readable if an incoming connection request has been received, so
that an accept is guaranteed to complete without blocking. For other sockets, readability means that
queued data is available for reading so that a recv or recvfrom is guaranteed not to block.

For connection-oriented sockets, readability can also indicate that a close request has been received
from the peer. If the virtual circuit was closed gracefully, then a recv will return immediately with zero
bytes read. If the virtual circuit was reset, then a recv will complete immediately with an error code, such
as WSAECONNRESET. The presence of out-of-band data will be checked if the socket option
SO_OOBINLINE has been enabled (see setsockopt).

The parameter writefds identifies those sockets which are to be checked for writability. If a socket is
connecting (nonblocking), writability means that the connection establishment successfully completed. If
the socket is not in the process of connecting, writability means that a send or sendto are guaranteed to
succeed. However, they can block on a blocking socket if the len exceeds the amount of outgoing system
buffer space available. [It is not specified how long these guarantees can be assumed to be valid,
particularly in a multithreaded environment.]

The parameter exceptfds identifies those sockets which are to be checked for the presence of out-of-
band data (see section Out-Of-Band data for a discussion of this topic) or any exceptional error
conditions. Note that out-of-band data will only be reported in this way if the option SO_OOBINLINE is

FALSE. If a socket is connecting (nonblocking), failure of the connect attempt is indicated in exceptfds.
This specification does not define which other errors will be included.

Any two of readfds, writefds, or exceptfds can be given as NULL if no descriptors are to be checked for
the condition of interest. At least one must be non-NULL, and any non-NULL descriptor set must contain
at least one socket descriptor.

Summary: A socket will be identified in a particular set when select returns if:

readfds:

· If listening, a connection is pending, accept will succeed

· Data is available for reading (includes OOB data if SO_OOBINLINE is enabled)

· Connection has been closed/reset/terminated

writefds:

· If connecting (nonblocking), connection has succeeded

· Data can be sent

exceptfds:

· If connecting (nonblocking), connection attempt failed

· OOB data is available for reading (only if SO_OOBINLINE is disabled)

Four macros are defined in the header file WINSOCK2.H for manipulating and checking the descriptor
sets. The variable FD_SETSIZE determines the maximum number of descriptors in a set. (The default
value of FD_SETSIZE is 64, which can be modified by #defining FD_SETSIZE to another value before
#including WINSOCK2.H.) Internally, socket handles in a fd_set are not represented as bit flags as in
Berkeley Unix. Their data representation is opaque. Use of these macros will maintain software portability
between different socket environments. The macros to manipulate and check fd_set contents are:

FD_CLR(s, *set)
Removes the descriptor s from set.

FD_ISSET(s, *set)
Nonzero if s is a member of the set. Otherwise, zero.

FD_SET(s, *set)
Adds descriptor s to set.

FD_ZERO(*set)
Initializes the set to the NULL set.

The parameter timeout controls how long the select can take to complete. If timeout is a null pointer,
select will block indefinitely until at least one descriptor meets the specified criteria. Otherwise, timeout
points to a struct timeval which specifies the maximum time that select should wait before returning.
When select returns, the contents of the struct timeval are not altered. If the timeval is initialized to {0, 0},
select will return immediately; this is used to "poll" the state of the selected sockets. If this is the case,
then the select call is considered nonblocking and the standard assumptions for nonblocking calls apply.
For example, the blocking hook will not be called, and Windows Sockets will not yield.

Return Values
select returns the total number of descriptors which are ready and contained in the fd_set structures,
zero if the time limit expired, or SOCKET_ERROR if an error occurred. If the return value is
SOCKET_ERROR, WSAGetLastError can be used to retrieve a specific error code.

Comments

select has no effect on the persistence of socket events registered with WSAAsyncSelect or
WSAEventSelect.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAEFAULT The Windows Sockets implementation
was unable to allocated needed
resources for its internal operations, or
the readfds, writefds, exceptfds, or
timeval parameters are not part of the
user address space.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL The timeout value is not valid, or all
three descriptor parameters were
NULL.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTSOCK One of the descriptor sets contains an
entry which is not a socket.

See Also
accept, connect, recv, recvfrom, send, WSAAsyncSelect, WSAEventSelect

send   

The Windows Sockets send function sends data on a connected socket.

int send (
 SOCKET s,
 const char FAR * buf,
 int len,
 int flags
);

Parameters
s

[in] A descriptor identifying a connected socket.

buf
[in] A buffer containing the data to be transmitted.

len
[in] The length of the data in buf.

flags
[in] Specifies the way in which the call is made.

Remarks
send is used to write outgoing data on a connected socket. For message-oriented sockets, care must be
taken not to exceed the maximum packet size of the underlying provider, which can be obtained by
getting the value of socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through
the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a send does not indicate that the data was successfully delivered.

If no buffer space is available within the transport system to hold the data to be transmitted, send will
block unless the socket has been placed in a nonblocking I/O mode. On nonblocking stream-oriented
sockets, the number of bytes written can be between 1 and the requested length, depending on buffer
availability on both the local and foreign hosts. The select, WSAAsyncSelect or WSAEventSelect call
can be used to determine when it is possible to send more data.

Calling send with a len of zero is to be treated by implementations as successful. In this case, send can
return zero as a valid return value. For message-oriented sockets, a zero-length transport datagram is
sent.

Flags can be used to influence the behavior of the function invocation beyond the options specified for the
associated socket. That is, the semantics of this function are determined by the socket options and the
flags parameter. The latter is constructed by or-ing any of the following values:

Value Meaning

MSG_DONTROUTE Specifies that the data should not be
subject to routing. A Windows Sockets
service provider can choose to ignore this
flag.

MSG_OOB Send out-of-band data (stream-style
socket such as SOCK_STREAM only.
Also see Out-Of-Band data for a
discussion of this topic).

Return Values

If no error occurs, send returns the total number of bytes sent. (Note that this can be less than the
number indicated by len.) Otherwise, a value of SOCKET_ERROR is returned, and a specific error code
can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast
address, but the appropriate flag was not
set.

WSAEINTR The (blocking) call was canceled through
WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still
processing a callback function.

WSAEFAULT The buf argument is not totally contained
in a valid part of the user address space.

WSAENETRESET The connection has been broken due to
the remote host resetting.

WSAENOBUFS No buffer space is available.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket
is not stream style such as type
SOCK_STREAM, out-of-band data is not
supported in the communication domain
associated with this socket, or the socket
is unidirectional and supports only
receive operations.

WSAESHUTDOWN The socket has been shut down; it is not
possible to send on a socket after
shutdown has been invoked with how
set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking and
the requested operation would block.

WSAEMSGSIZE The socket is message oriented, and the
message is larger than the maximum
supported by the underlying transport.

WSAEHOSTUNREACH The remote host cannot be reached from
this host at this time.

WSAEINVAL The socket has not been bound with
bind, or an unknown flag was specified,
or MSG_OOB was specified for a socket
with SO_OOBINLINE enabled.

WSAECONNABORTED The virtual circuit was terminated due to a
time-out or other failure. The application
should close the socket as it is no longer
usable.

WSAECONNRESET The virtual circuit was reset by the remote
side executing a "hard" or "abortive"

close. For UPD sockets, the remote host
was unable to deliver a previously sent
UDP datagram and responded with a
"Port Unreachable" ICMP packet. The
application should close the socket as it
is no longer usable.

 WSAETIMEDOUT The connection has been dropped,
because of a network failure or because
the system on the other end went down
without notice.

See Also
recv, recvfrom, select, sendto, socket, WSAAsyncSelect, WSAEventSelect

sendto   

The Windows Sockets sendto function sends data to a specific destination.

int sendto (
 SOCKET s,
 const char FAR * buf,
 int len,
 int flags,
 const struct sockaddr FAR * to,
 int tolen
);

Parameters
s

[in] A descriptor identifying a socket.

buf
[in] A buffer containing the data to be transmitted.

len
[in] The length of the data in buf.

flags
[in] Specifies the way in which the call is made.

to
[in] An optional pointer to the address of the target socket.

tolen
[in] The size of the address in to.

Remarks
sendto is used to write outgoing data on a socket. For message-oriented sockets, care must be taken not
to exceed the maximum packet size of the underlying subnets, which can be obtained by getting the
value of socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the
underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

The to parameter can be any valid address in the socket's address family, including a broadcast or any
multicast address. To send to a broadcast address, an application must have setsockopt
SO_BROADCAST enabled. Otherwise, sendto will fail with the error code WSAEACCES. For TCP/IP, an
application can send to any multicast address (without becoming a group member).

If the socket is unbound, unique values are assigned to the local association by the system, and the
socket is marked as bound. An application can use getsockname to determine the local socket name in
this case.

Note that the successful completion of a sendto does not indicate that the data was successfully
delivered.

sendto is normally used on a connectionless socket to send a datagram to a specific peer socket
identified by the to parameter. Even if the connectionless socket has been previously connected to a
specific address, to overrides the destination address for that particular datagram only. On a connection-
oriented socket, the to and tolen parameters are ignored; in this case, the sendto is equivalent to send.

For sockets using IP:

To send a broadcast (on a SOCK_DGRAM only), the address in the to parameter should be constructed
using the special IP address INADDR_BROADCAST (defined in WINSOCK2.H) together with the

intended port number. It is generally inadvisable for a broadcast datagram to exceed the size at which
fragmentation can occur, which implies that the data portion of the datagram (excluding headers) should
not exceed 512 bytes.

If no buffer space is available within the transport system to hold the data to be transmitted, sendto will
block unless the socket has been placed in a nonblocking I/O mode. On nonblocking stream-oriented
sockets, the number of bytes written can be between 1 and the requested length, depending on buffer
availability on both the local and foreign hosts. The select, WSAAsyncSelect or WSAEventSelect call
can be used to determine when it is possible to send more data.

Calling sendto with a len of zero is legal and, in this case, sendto will return zero as a valid return value.
For message-oriented sockets, a zero-length transport datagram is sent.

Flags can be used to influence the behavior of the function invocation beyond the options specified for the
associated socket. That is, the semantics of this function are determined by the socket options and the
flags parameter. The latter is constructed by or-ing any of the following values:

Value Meaning

MSG_DONTROUTE Specifies that the data should not be
subject to routing. A Windows Sockets
service provider can choose to ignore
this flag.

MSG_OOB Send out-of-band data (stream-style
socket such as SOCK_STREAM only.
Also see Out-Of-Band data for a
discussion of this topic.)

Return Values
If no error occurs, sendto returns the total number of bytes sent. (Note that this can be less than the
number indicated by len.) Otherwise, a value of SOCKET_ERROR is returned, and a specific error code
can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast
address, but the appropriate flag was
not set.

WSAEINVAL An unknown flag was specified, or
MSG_OOB was specified for a socket
with SO_OOBINLINE enabled.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEFAULT The buf or to parameters are not part of
the user address space, or the tolen
argument is too small.

WSAENETRESET The connection has been broken due to
the remote host resetting.

WSAENOBUFS No buffer space is available.

WSAENOTCONN The socket is not connected
(connection-oriented sockets only)

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the
socket is not stream style such as type
SOCK_STREAM, out-of-band data is
not supported in the communication
domain associated with this socket, or
the socket is unidirectional and
supports only receive operations.

WSAESHUTDOWN The socket has been shut down; it is
not possible to sendto on a socket after
shutdown has been invoked with how
set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as nonblocking
and the requested operation would
block.

WSAEMSGSIZE The socket is message oriented, and
the message is larger than the
maximum supported by the underlying
transport.

WSAEHOSTUNREACH The remote host cannot be reached
from this host at this time.

WSAECONNABORTED The virtual circuit was terminated due to
a time-out or other failure. The
application should close the socket as it
is no longer usable.

WSAECONNRESET The virtual circuit was reset by the
remote side executing a "hard" or
"abortive" close. For UPD sockets, the
remote host was unable to deliver a
previously sent UDP datagram and
responded with a "Port Unreachable"
ICMP packet. The application should
close the socket as it is no longer
usable.

WSAEADDRNOTAVAIL The specified address is not available
from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family
cannot be used with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network cannot be reached from
this host at this time.

WSAETIMEDOUT The connection has been dropped,
because of a network failure or because
the system on the other end went down
without notice.

See Also
recv, recvfrom, select, send, socket, WSAAsyncSelect, WSAEventSelect

SetService   

Important The SetService function is obsolete. For the convenience of Windows Sockets 1.1
developers, the reference material is below.

In Windows Sockets 2, this functionality is realized with the functions detailed in Protocol-Independent
Name Resolution.

The SetService function registers or deregisters a network service within

one or more name spaces. The function can also add or remove a network service type within one or
more name spaces.

INT SetService(
 DWORD dwNameSpace, // specifies name space(s) to operate within
 DWORD dwOperation, // specifies operation to perform
 DWORD dwFlags, // set of bit flags that modify function operation
 LPSERVICE_INFO lpServiceInfo, // points to structure containing service information
 LPSERVICE_ASYNC_INFO lpServiceAsyncInfo, // reserved for future use, must be NULL
 LPDWORD lpdwStatusFlags // points to set of status bit flags
);

Parameters
dwNameSpace

Specifies the name space, or a set of default name spaces, within which the function will operate.

Use one of the following constants to specify a name space:

Value Name Space

NS_DEFAULT A set of default name spaces. The
function queries each name space within
this set. The set of default name spaces
typically includes all the name spaces
installed on the system. System
administrators, however, can exclude
particular name spaces from the set.
NS_DEFAULT is the value that most
applications should use for
dwNameSpace.

NS_DNS The Domain Name System used in the
Internet to resolve the name of the host.

NS_NDS The NetWare 4 provider.

NS_NETBT The NetBIOS over TCP/IP layer. All
Windows NT and Windows 95 systems
register their computer names with
NetBIOS. This name space is used to
convert a computer name to an IP
address that uses this registration.

NS_SAP The NetWare Service Advertising
Protocol. This can access the Netware
bindery, if appropriate. NS_SAP is a
dynamic name space that enables the
registration of services.

NS_TCPIP_HOSTS Lookup value in the
<systemroot>\system32\drivers\etc\posts

file.

NS_TCPIP_LOCAL Local TCP/IP name resolution
mechanisms, including comparisons
against the local host name and lookup
value in the cache of host to IP address
mappings.

dwOperation
Specifies the operation that the function will perform. Use one of the following values to specify an
operation:

Value Meaning

SERVICE_REGISTER Register the network service with the
name space. This operation may be used
with the SERVICE_FLAG_DEFER and
SERVICE_FLAG_HARD bit flags.

SERVICE_DEREGISTER Deregister the network service from the
name space. This operation can be used
with the SERVICE_FLAG_DEFER and
SERVICE_FLAG_HARD bit flags.

SERVICE_FLUSH Perform any operation that was called
with the SERVICE_FLAG_DEFER bit
flag set to one.

SERVICE_ADD_TYPE Add a service type to the name space.

For this operation, use the
ServiceSpecificInfo member of the
SERVICE_INFO structure pointed to by
lpServiceInfo to pass a
SERVICE_TYPE_INFO_ABS structure.
You must also set the ServiceType
member of the SERVICE_INFO
structure. Other SERVICE_INFO
members are ignored.

SERVICE_DELETE_TYPE Remove a service type, added by a
previous call specifying the
SERVICE_ADD_TYPE operation, from
the name space.

dwFlags
A set of bit flags that modify the function's operation. You can set one or more of the following bit
flags:

Value Name Space

SERVICE_FLAG_DEFER This bit flag is valid only if the operation
is SERVICE_REGISTER or
SERVICE_DEREGISTER.

If this bit flag is one, and it is valid, the
name-space provider should defer the
registration or deregistration operation
until a SERVICE_FLUSH operation is
requested.

SERVICE_FLAG_HARD This bit flag is valid only if the operation
is SERVICE_REGISTER or
SERVICE_DEREGISTER.

If this bit flag is one, and it is valid, the

name-space provider updates any
relevant persistent store information
when the operation is performed.

For example: If the operation involves
deregistration in a name space that uses
a persistent store, the name-space
provider would remove the relevant
persistent store information.

lpService_Info
Points to a SERVICE_INFO structure that contains information about the network service or service
type.

lpServiceAsyncInfo
This parameter is reserved for future use. It must be set to NULL.

lpdwStatusFlags
A set of bit flags that receive function status information. The following bit flag is defined:

Value Meaning

SET_SERVICE_PARTIAL_SUCCE
SS

One or more name-space
providers were unable to
successfully perform the
requested operation.

Return Values
If the function succeeds, the return value is not SOCKET_ERROR.

If the function fails, the return value is SOCKET_ERROR. To get extended error information, call
GetLastError. GetLastError may return the following extended error value:

Value Meaning

ERROR_ALREADY_REGISTERED The function tried to register a
service that was already
registered.

See Also
GetService, SERVICE_INFO, SERVICE_TYPE_INFO_ABS

setsockopt   

The Windows Sockets setsockopt function sets a socket option.

int setsockopt (
 SOCKET s,
 int level,
 int optname,
 const char FAR * optval,
 int optlen
);

Parameters
s

[in] A descriptor identifying a socket.

level
[in] The level at which the option is defined; the supported levels include SOL_SOCKET and
IPPROTO_TCP. (See annex for more protocol-specific levels.)

optname
[in] The socket option for which the value is to be set.

optval
[in] A pointer to the buffer in which the value for the requested option is supplied.

optlen
[in] The size of the optval buffer.

Remarks
setsockopt sets the current value for a socket option associated with a socket of any type, in any state.
Although options can exist at multiple protocol levels, they are always present at the uppermost "socket''
level. Options affect socket operations, such as whether expedited data is received in the normal data
stream, whether broadcast messages can be sent on the socket.

There are two types of socket options: Boolean options that enable or disable a feature or behavior, and
options which require an integer value or structure. To enable a Boolean option, optval points to a
nonzero integer. To disable the option optval points to an integer equal to zero. optlen should be equal to
sizeof(int) for Boolean options. For other options, optval points to the an integer or structure that contains
the desired value for the option, and optlen is the length of the integer or structure.

The following options are supported for setsockopt. The Type identifies the type of data addressed by
optval.

level = SOL_SOCKET

Value Type Meaning

SO_BROADCAST BOOL Allow transmission of broadcast
messages on the socket.

SO_DEBUG BOOL Record debugging information.

SO_DONTLINGER BOOL Do not block close waiting for
unsent data to be sent. Setting
this option is equivalent to
setting SO_LINGER with
l_onoff set to zero.

SO_DONTROUTE BOOL Do not route: send directly to
interface.

SO_GROUP_PRIORITY int Specify the relative priority to
be established for sockets that
are part of a socket group.

SO_KEEPALIVE BOOL Send keepalives

SO_LINGER struct linger Linger on close if unsent data is
present

SO_OOBINLINE BOOL Receive out-of-band data in the
normal data stream. (See
section Out-Of-Band data for a
discussion of this topic.)

SO_RCVBUF int Specify buffer size for receives

SO_REUSEADDR BOOL Allow the socket to be bound to
an address which is already in
use. (See bind.)

SO_SNDBUF int Specify buffer size for sends.

PVD_CONFIG Service Provider
Dependent

This object stores the
configuration information for the
service provider associated
with socket s. The exact format
of this data structure is service
provider specific.

level = IPPROTO_TCP1

TCP_NODELAY BOOL Disables the Nagle algorithm for
send coalescing.

1 included for backward compatibility with Windows Sockets 1.1

BSD options not supported for setsockopt are:

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening

SO_RCVLOWAT int Receive low water mark

SO_RCVTIMEO int Receive time-out

SO_SNDLOWAT int Send low water mark

SO_SNDTIMEO int Send time-out

SO_TYPE int Type of the socket

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply output debug
information if the SO_DEBUG option is set by an application. The mechanism for generating the
debug information and the form it takes are beyond the scope of this specification.

SO_GROUP_PRIORITY
Group priority indicates the relative priority of the specified socket relative to other sockets within the
socket group. Values are non-negative integers, with zero corresponding to the highest priority.
Priority values represent a hint to the underlying service provider about how potentially scarce
resources should be allocated. For example, whenever two or more sockets are both ready to
transmit data, the highest priority socket (lowest value for SO_GROUP_PRIORITY) should be
serviced first, with the remainder serviced in turn according to their relative priorities.

The WSAENOPROTOOPT error is indicated for nongroup sockets or for service providers which do
not support group sockets.

SO_KEEPALIVE

An application can request that a TCP/IP provider enable the use of "keep-alive" packets on TCP
connections by turning on the SO_KEEPALIVE socket option. A Windows Sockets provider need not
support the use of keep-alives: if it does, the precise semantics are implementation-specific but
should conform to section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts ¾ Communication
Layers. If a connection is dropped as the result of "keep-alives" the error code WSAENETRESET is
returned to any calls in progress on the socket, and any subsequent calls will fail with
WSAENOTCONN.

SO_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a closesocket is
performed. See closesocket for a description of the way in which the SO_LINGER settings affect the
semantics of closesocket. The application sets the desired behavior by creating a struct linger
(pointed to by the optval argument) with the following elements:

struct linger {
 u_short l_onoff;
 u_short l_linger;
}

To enable SO_LINGER, the application should set l_onoff to a nonzero value, set l_linger to zero or
the desired time-out (in seconds), and call setsockopt. To enable SO_DONTLINGER (that is, disable
SO_LINGER) l_onoff should be set to zero and setsockopt should be called. Note that enabling
SO_LINGER with a nonzero time-out on a nonblocking socket is not recommended.

Enabling SO_LINGER also disables SO_DONTLINGER, and vice versa. Note that if
SO_DONTLINGER is DISABLED (that is, SO_LINGER is ENABLED) then no time-out value is
specified. In this case, the time-out used is implementation dependent. If a previous time-out has
been established for a socket (by enabling SO_LINGER), then this time-out value should be
reinstated by the service provider.

SO_REUSEADDR
By default, a socket cannot be bound (see bind) to a local address which is already in use. On
occasion, however, it may be necessary to "re-use" an address in this way. Since every connection is
uniquely identified by the combination of local and remote addresses, there is no problem with having
two sockets bound to the same local address as long as the remote addresses are different. To inform
the Windows Sockets provider that a bind on a socket should not be disallowed because the desired
address is already in use by another socket, the application should set the SO_REUSEADDR socket
option for the socket before issuing the bind. Note that the option is interpreted only at the time of the
bind: it is therefore unnecessary (but harmless) to set the option on a socket which is not to be bound
to an existing address, and setting or resetting the option after the bind has no effect on this or any
other socket.

SO_RCVBUF
SO_SNDBUF

When a Windows Sockets implementation supports the SO_RCVBUF and SO_SNDBUF options, an
application can request different buffer sizes (larger or smaller). The call to setsockopt can succeed,
although the implementation did not provide the whole amount requested. An application must call
getsockopt with the same option to check the buffer size actually provided.

PVD_CONFIG
This object stores the configuration information for the service provider associated with socket s. The
exact format of this data structure is service provider specific.

TCP_NODELAY
The TCP_NODELAY option is specific to TCP/IP service providers. Enabling the TCP_NODELAY
option disables the TCP Nagle Algorithm (and vice versa). The Nagle algorithm (described in RFC
896) is very effective in reducing the number of small packets sent by a host by essentially buffering
send data if there is unacknowledged data already "in flight" or until a full-size packet can be sent. It is
highly recommended that TCP/IP service providers enable the Nagle Algorithm by default, and for the
vast majority of application protocols the Nagle Algorithm can deliver significant performance
enhancements. However, for some applications this algorithm can impede performance, and

TCP_NODELAY can be used to turn it off. These are applications where many small messages are
sent, which need to be received by the peer with the time delays between the messages maintained.
Application writers should not set TCP_NODELAY unless the impact of doing so is well-understood
and desired, since setting TCP_NODELAY can have a significant negative impact of network and
application performance.

Return Values
If no error occurs, setsockopt returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT optval is not in a valid part of the
process address space or optlen
argument is too small.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEINVAL level is not valid, or the information in
optval is not valid.

WSAENETRESET Connection has timed out when
SO_KEEPALIVE is set.

WSAENOPROTOOPT The option is unknown or unsupported
for the specified provider.

WSAENOTCONN Connection has been reset when
SO_KEEPALIVE is set.

WSAENOTSOCK The descriptor is not a socket.

See Also
bind, getsockopt, ioctlsocket, socket, WSAAsyncSelect, WSAEventSelect

shutdown   

The Windows Sockets shutdown function disables sends and/or receives on a socket.

int shutdown (
 SOCKET s,
 int how
);

Parameters
s

[in] A descriptor identifying a socket.

how
[in] A flag that describes what types of operation will no longer be allowed.

Remarks
shutdown is used on all types of sockets to disable reception, transmission, or both.

If how is SD_RECEIVE, subsequent receives on the socket will be disallowed. This has no effect on the
lower protocol layers. For TCP sockets, if there is still data queued on the socket waiting to be received,
or data arrives subsequently, the connection is reset, since the data cannot be delivered to the user. For
UDP sockets, incoming datagrams are accepted and queued. In no case will an ICMP error packet be
generated.

If how is SD_SEND, subsequent sends are disallowed. For TCP sockets, a FIN will be sent.

Setting how to SD_BOTH disables both sends and receives as described above.

Note that shutdown does not close the socket, and resources attached to the socket will not be freed
until closesocket is invoked.

To assure that all data is sent and received on a connected socket before it is closed, an application
should use shutdown to close connection before calling closesocket. For example, to initiate a graceful
disconnect, an application could:

1. call WSAAsyncSelect to register for FD_CLOSE notification,

2. call shutdown with how=SD_SEND,

3. when FD_CLOSE received, call recv until zero returned, or SOCKET_ERROR, and

4. call closesocket,

Comments
shutdown does not block regardless of the SO_LINGER setting on the socket.

An application should not rely on being able to re-use a socket after it has been shut down. In particular, a
Windows Sockets provider is not required to support the use of connect on such a socket.

Return Values
If no error occurs, shutdown returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL how is not valid, or is not consistent
with the socket type, for example,
SD_SEND is used with a UNI_RECV
socket type.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTCONN The socket is not connected
(connection-oriented sockets only).

WSAENOTSOCK The descriptor is not a socket.

See Also
connect, socket

socket   

The Windows Sockets socket function creates a socket which is bound to a specific service provider.

SOCKET socket (
 int af,
 int type,
 int protocol
);

Parameters
af

[in] An address family specification.

type
[in] A type specification for the new socket.

protocol
[in] A particular protocol to be used with the socket which is specific to the indicated address family.

Remarks
The socket function causes a socket descriptor and any related resources to be allocated and bound to a
specific transport service provider. Windows Sockets will utilize the first available service provider that
supports the requested combination of address family, socket type and protocol parameters. Note that the
socket created will have the overlapped attribute. Sockets without the overlapped attribute can only be
created by using WSASocket.

Note The manifest constant AF_UNSPEC continues to be defined in the header file but its use is
strongly discouraged, as this can cause ambiguity in interpreting the value of the protocol
parameter.

The following are the only two type specifications supported for Windows Sockets 1.1:

Type Explanation

SOCK_STREAM Provides sequenced, reliable, two-way,
connection-based byte streams with an out-of-
band data transmission mechanism. Uses TCP
for the Internet address family.

SOCK_DGRAM Supports datagrams, which are
connectionless, unreliable buffers of a fixed
(typically small) maximum length. Uses UDP
for the Internet address family.

In Windows Sockets 2, many new socket types will be introduced. However, since an application can
dynamically discover the attributes of each available transport protocol through the WSAEnumProtocols
function, the various socket types need not be called out in the API specification. Socket type definitions
will appear in WINSOCK2.H which will be periodically updated as new socket types, address families and
protocols are defined.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections, and must be in a
connected state before any data can be sent or received on it. A connection to another socket is created
with a connect call. Once connected, data can be transferred using send and recv calls. When a session
has been completed, a closesocket must be performed.

The communications protocols used to implement a reliable, connection-oriented socket ensure that data

is not lost or duplicated. If data for which the peer protocol has buffer space cannot be successfully
transmitted within a reasonable length of time, the connection is considered broken and subsequent calls
will fail with the error code set to WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to and from
arbitrary peers using sendto and recvfrom. If such a socket is connected to a specific peer, datagrams
can be sent to that peer using send and can be received only from this peer using recv.

Support for sockets with type RAW is not required, but service providers are encourage to support raw
sockets whenever it makes sense to do so.

Return Values
If no error occurs, socket returns a descriptor referencing the new socket. Otherwise, a value of
INVALID_SOCKET is returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must

occur before using this function.

WSAENETDOWN The network subsystem or the
associated service provider has
failed.

WSAEAFNOSUPPORT The specified address family is not
supported.

WSAEINPROGRESS A blocking Windows Sockets 1.1
call is in progress, or the service
provider is still processing a
callback function.

WSAEMFILE No more socket descriptors are
available.

WSAENOBUFS No buffer space is available. The
socket cannot be created.

WSAEPROTONOSUPPORT The specified protocol is not
supported.

WSAEPROTOTYPE The specified protocol is the wrong
type for this socket.

WSAESOCKTNOSUPPORT The specified socket type is not
supported in this address family.

See Also
accept, bind, connect, getsockname, getsockopt, ioctlsocket, listen, recv, recvfrom, select, send,
sendto, setsockopt, shutdown, WSASocket

TransmitFile   

Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets TransmitFile function transmits file data over a connected socket handle. This
function uses the operating system's cache manager to retrieve the file data, and provides high-
performance file data transfer over sockets.

BOOL TransmitFile(
 SOCKET hSocket,
 HANDLE hFile,
 DWORD nNumberOfBytesToWrite,
 DWORD nNumberOfBytesPerSend,
 LPOVERLAPPED lpOverlapped,
 LPTRANSMIT_FILE_BUFFERS lpTransmitBuffers,
 DWORD dwFlags
);

Parameters
hSocket

A handle to a connected socket. The function will transmit the file data over this socket.

The socket specified by hSocket must be a connection-oriented socket.

Sockets of type SOCK_STREAM, SOCK_SEQPACKET, or SOCK_RDM are connection-oriented
sockets. The TransmitFile function does not support datagram sockets.

hFile
A handle to an open file. The function transmits this file's data. The operating system reads the file
data sequentially. You can improve caching performance by opening the handle with the
FILE_FLAG_SEQUENTIAL_SCAN.

nNumberOfBytesToWrite
The number of bytes to transmit. The function completes when it has sent this many bytes, or if an
error occurs.

Set this parameter to zero to transmit the entire file.

nNumberOfBytesPerSend
The size of each block of data sent per send operation. This specification is for use by the sockets
layer of the operating system.

Set this parameter to zero to have the sockets layer select a default send size.

This parameter is useful for message protocols that have limitations on the size of individual send
requests.

lpOverlapped
Pointer to an OVERLAPPED structure. If the socket handle has been opened as overlapped, specify
this parameter in order to achieve an overlapped (aysnchronous) I/O operation. By default, socket
handles are opened as overlapped.

You can use lpOverlapped to specify an offset within the file at which to start the file data transfer by
setting the Offset and OffsetHigh member of the OVERLAPPED structure. If lpOverlapped is NULL,
the transmission of data always starts at the current byte offset in the file.

When lpOverlapped is not NULL, the overlapped I/O might not finish before TransmitFile returns. In
that case, the TransmitFile function returns FALSE, and GetLastError returns
ERROR_IO_PENDING. This lets the caller continue processing while the file transmission operation
completes. The operating system will set the event specified by the hEvent member of the
OVERLAPPED structure, or the socket specified by hSocket, to the signaled state upon completion of
the data transmission request.

lpTransmitBuffers
Pointer to a TRANSMIT_FILE_BUFFERS data structure that contains pointers to data to send before
and after the file data is sent. Set this parameter to NULL if you only want to transmit the file data.

dwFlags
An attribute that has three settings:

TF_DISCONNECT
Start a transport-level disconnect after all the file data has been queued for transmission.

TF_REUSE_SOCKET
Prepare the socket handle to be reused. When the TransmitFile request completes, the socket
handle can be passed to the AcceptEx function. It is only valid if TF_DISCONNECT is also
specified.

TF_WRITE_BEHIND
Complete the TransmitFile request immediately, without pending. If this flag is specified and
TransmitFile succeeds, then the data has been accepted by the system but not necessarily
acknowledged by the remote end. If TransmitFile returns TRUE, there will be no completion port
indication for the I/O. Do not use this setting with the other two settings.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError. The
function returns FALSE if an overlapped I/O operation is not complete before TransmitFile returns. In that
case, GetLastError returns ERROR_IO_PENDING.

Remarks
The Windows NT Server optimizes the TransmitFile function for high performance. The Windows NT
Workstation optimizes the function for minimum memory and resource utilization. Expect better
performance results when using TransmitFile on Windows NT Server.

WSAAccept     

 

The Windows Sockets WSAAccept function conditionally accepts a connection based on the return value
of a condition function, and optionally creates and/or joins a socket group.

SOCKET WSAAccept (
 SOCKET s,
 struct sockaddr FAR * addr,
 LPINT addrlen,
 LPCONDITIONPROC lpfnCondition,
 DWORD dwCallbackData
);

Parameters
s

[in] A descriptor identifying a socket which is listening for connections after a listen.

addr
[out] An optional pointer to a buffer which receives the address of the connecting entity, as known to
the communications layer. The exact format of the addr argument is determined by the address family
established when the socket was created.

addrlen
[in/out] An optional pointer to an integer which contains the length of the address addr.

lpfnCondition
[in] The procedure instance address of the optional, application-supplied condition function which will
make an accept/reject decision based on the caller information passed in as parameters, and
optionally create and/or join a socket group by assigning an appropriate value to the result parameter
g of this function.

dwCallbackData
[in] The callback data passed back to the application as a condition function parameter. This
parameter is not interpreted by Windows Sockets.

Remarks
This routine extracts the first connection on the queue of pending connections on s, and checks it against
the condition function, provided the condition function is specified (that is, not NULL). If the condition
function returns CF_ACCEPT, this routine creates a new socket and performs any socket grouping as
indicated by the result parameter g in the condition function. The newly created socket has the same
properties as s including asynchronous events registered with WSAAsyncSelect or with
WSAEventSelect, but not including the listening socket's group ID, if any. If the condition function returns
CF_REJECT, this routine rejects the connection request. The condition function runs in the same thread
as this routine does, and should return as soon as possible. If the decision cannot be made immediately,
the condition function should return CF_DEFER to indicate that no decision has been made, and no
action about this connection request should be taken by the service provider. When the application is
ready to take action on the connection request, it will invoke WSAAccept again and return either
CF_ACCEPT or CF_REJECT as a return value from the condition function.

For sockets which remain in the (default) blocking mode, if no pending connections are present on the
queue, WSAAccept blocks the caller until a connection is present. For sockets in a nonblocking mode, if
this function is called when no pending connections are present on the queue, WSAAccept returns an
error as described below. The accepted socket cannot be used to accept more connections. The original
socket remains open.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is determined by the address
family in which the communication is occurring. The addrlen is a value-result parameter; it should initially
contain the amount of space pointed to by addr. On return, it will contain the actual length (in bytes) of the
address returned. This call is used with connection-oriented socket types such as SOCK_STREAM. If
addr and/or addrlen are equal to NULL, then no information about the remote address of the accepted
socket is returned. Otherwise, these two parameters will be filled in regardless of whether the condition
function is specified or what it returns.

The prototype of the condition function is as follows:

int CALLBACK ConditionFunc(
 IN LPWSABUF lpCallerId,
 IN LPWSABUF lpCallerData,
 IN OUT LPQOS lpSQOS,
 IN OUT LPQOS lpGQOS,
 IN LPWSABUF lpCalleeId,
 OUT LPWSABUF lpCalleeData,
 OUT GROUP FAR * g,
 IN DWORD dwCallbackData
);

ConditionFunc is a placeholder for the application-supplied function name. In 16-bit Windows
environments, it is invoked in the same thread as WSAAccept, thus no other Windows Sockets functions
can be called except WSAIsBlocking and WSACancelBlockingCall. The actual condition function must
reside in a DLL or application module and be exported in the module definition file. You must use
MakeProcInstance to get a procedure-instance address for the callback function.

The lpCallerId and lpCallerData are value parameters which contain the address of the connecting entity
and any user data that was sent along with the connection request, respectively. If no caller ID or caller
data is available, the corresponding parameters will be NULL.

lpSQOS references the flow specifications for socket s specified by the caller, one for each direction,
followed by any additional provider-specific parameters. The sending or receiving flow specification
values will be ignored as appropriate for any unidirectional sockets. A NULL value for lpSQOS indicates
no caller supplied QOS. QOS information can be returned if a QOS negotiation is to occur.

lpGQOS references the flow specifications for the socket group the caller is to create, one for each
direction, followed by any additional provider-specific parameters. A NULL value for lpGQOS indicates no
caller-supplied group QOS. QOS information can be returned if a QOS negotiation is to occur.

The lpCalleeId is a value parameter which contains the local address of the connected entity. The
lpCalleeData is a result parameter used by the condition function to supply user data back to the
connecting entity. lpCalleeData->len initially contains the length of the buffer allocated by the service
provider and pointed to by lpCalleeData->buf. A value of zero means passing user data back to the caller
is not supported. The condition function should copy up to lpCalleeData->len bytes of data into
lpCalleeData->buf, and then update lpCalleeData->len to indicate the actual number of bytes transferred.
If no user data is to be passed back to the caller, the condition function should set lpCalleeData->len to
zero. The format of all address and user data is specific to the address family to which the socket
belongs.

The result parameter g is assigned within the condition function to indicate the following actions:

1. if &g is an existing socket group ID, add s to this group, provided all the requirements set by this
group are met; or

2. if &g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket group and have s as the
first member; or

3. if &g = SG_CONSTRAINED_GROUP, create a constrained socket group and have s as the first
member; or

4. if &g = zero, no group operation is performed.

For unconstrained groups, any set of sockets can be grouped together as long as they are supported by a
single service provider. A constrained socket group can consist only of connection-oriented sockets, and
requires that connections on all grouped sockets be to the same address on the same host. For newly
created socket groups, the new group ID can be retrieved by using getsockopt with option
SO_GROUP_ID, if this operation completes successfully. A socket group and its associated ID remain
valid until the last socket belonging to this socket group is closed. Socket group IDs are unique across all
processes for a given service provider.

Return Values
If no error occurs, WSAAccept returns a value of type SOCKET which is a descriptor for the accepted
socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific error code can be retrieved
by calling WSAGetLastError.

The integer referred to by addrlen initially contains the amount of space pointed to by addr. On return it
will contain the actual length in bytes of the address returned.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAECONNREFUSED The connection request was forcefully
rejected as indicated in the return value
of the condition function (CF_REJECT).

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The addrlen argument is too small or
the lpfnCondition is not part of the user
address space.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress.

WSAEINVAL listen was not invoked prior to
WSAAccept, parameter g specified in
the condition function is not a valid
value, the source address of the
incoming connection request is not
consistent with that of the constrained
group the parameter g is referring to,
the return value of the condition
function is not a valid one, or any case
where the specified socket is in an
invalid state.

WSAEMFILE The queue is nonempty upon entry to
WSAAccept and there are no socket
descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that
supports connection-oriented service.

WSATRY_AGAIN The acceptance of the connection
request was deferred as indicated in the
return value of the condition function
(CF_DEFER).

WSAEWOULDBLOCK The socket is marked as nonblocking
and no connections are present to be
accepted.

WSAEACCES The connection request that was
offered has timed out or been
withdrawn.

See Also
accept, bind, connect, getsockopt, listen, select, socket, WSAAsyncSelect, WSAConnect

WSAAddressToString   

The Windows Sockets WSAAddressToString function converts all components of a SOCKADDR
structure into a human-readable string representation of the address.

This is intended to be used mainly for display purposes. If the caller wants the translation to be done by a
particular provider, it should supply the corresponding WSAPROTOCOL_INFO structure in the
lpProtocolInfo parameter.

INT WSAAddressToString(
 LPSOCKADDR lpsaAddress,
 DWORD dwAddressLength,
 LPWSAPROTOCOL_INFO lpProtocolInfo,
 OUT LPTSTR lpszAddressString,
 OUT LPDWORD lpdwAddressStringLength
);

Parameters
lpsaAddress

[in] Points to a SOCKADDR structure to translate into a string.

dwAddressLength
[in] The length of the Address SOCKADDR.

lpProtocolInfo
[in] (Optional) The WSAPROTOCOL_INFO structure for a particular provider.

lpszAddressString
[in] A buffer which receives the human-readable address string.

lpdwAddressStringLength
[in] On input, the length of the AddressString buffer. On output, returns the length ofthe string actually
copied into the buffer.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number can be retrieved by calling WSAGetLastError.

Error Codes
WSAEFAULT The specified AddressString buffer is

too small. Pass in a larger buffer

WSAEINVAL The specified address is not a valid
socket address.

WSAAsyncGetHostByAddr   

The Windows Sockets WSAAsyncGetHostByAddr function gets host information corresponding to an
address¾asynchronous version.

HANDLE WSAAsyncGetHostByAddr (
 HWND hWnd,
 unsigned int wMsg,
 const char FAR * addr,
 int len,
 int type,
 char FAR * buf,
 int buflen
);

Parameters
hWnd

[in] The handle of the window which should receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

addr
[in] A pointer to the network address for the host. Host addresses are stored in network byte order.

len
[in] The length of the address.

type
[in] The type of the address.

buf
[out] A pointer to the data area to receive the hostent data. Note that this must be larger than the size
of a hostent structure. This is because the data area supplied is used by Windows Sockets to contain
not only a hostent structure but any and all of the data which is referenced by members of the hostent
structure. It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen
[in] The size of data area buf above.

Remarks
This function is an asynchronous version of gethostbyaddr, and is used to retrieve host name and
address information corresponding to a network address. Windows Sockets initiates the operation and
returns to the caller immediately, passing back an opaque "asynchronous task handle" which the
application can use to identify the operation. When the operation is completed, the results (if any) are
copied into the buffer provided by the caller and a message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives message wMsg.
The wParam argument contains the asynchronous task handle as returned by the original function call.
The high 16 bits of lParam contain any error code. The error code can be any error as defined in
WINSOCK2.H. An error code of zero indicates successful completion of the asynchronous operation. On
successful completion, the buffer supplied to the original function call contains a hostent structure. To
access the elements of this structure, the original buffer address should be cast to a hostent structure
pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in
the original call was too small to contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetHostByAddr function call

with a buffer large enough to receive all the desired information (that is, no smaller than the low 16 bits of
lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values
The return value specifies whether or not the asynchronous operation was successfully initiated. Note
that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetHostByAddr returns a nonzero value of type
HANDLE which is the asynchronous task handle (not to be confused with a Windows HTASK) for the
request. This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest. It can also be used to match up asynchronous operations and completion
messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetHostByAddr returns a zero value,
and a specific error number can be retrieved by calling WSAGetLastError.

Comments
The buffer supplied to this function is used by Windows Sockets to construct a structure together with the
contents of data areas referenced by members of the same hostent structure. To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

Error Codes
The following error codes can be set when an application window receives a message. As described
above, they can be extracted from the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT addr or buf is not in a valid part of the
process address space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Nonrecoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of
requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup must occur
before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is

in progress, or the service provider is
still processing a callback function.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource
or other constraints within the Windows
Sockets implementation.

See Also
gethostbyaddr, hostent, WSACancelAsyncRequest

WSAAsyncGetHostByName   

The Windows Sockets WSAAsyncGetHostByName function gets host information corresponding to a
hostname¾asynchronous version.

HANDLE WSAAsyncGetHostByName (
 HWND hWnd,
 unsigned int wMsg,
 const char FAR * name,
 char FAR * buf,
 int buflen
);

Parameters
hWnd

[in] The handle of the window which should receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

name
[in] A pointer to the null terminated name of the host.

buf
[out] A pointer to the data area to receive the hostent data. Note that this must be larger than the size
of a hostent structure. This is because the data area supplied is used by Windows Sockets to contain
not only a hostent structure but any and all of the data which is referenced by members of the hostent
structure. It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen
[in] The size of data area buf above.

Remarks
This function is an asynchronous version of gethostbyname, and is used to retrieve host name and
address information corresponding to a hostname. Windows Sockets initiates the operation and returns to
the caller immediately, passing back an opaque "asynchronous task handle" which the application can
use to identify the operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives message wMsg.
The wParam argument contains the asynchronous task handle as returned by the original function call.
The high 16 bits of lParam contain any error code. The error code can be any error as defined in
WINSOCK2.H. An error code of zero indicates successful completion of the asynchronous operation. On
successful completion, the buffer supplied to the original function call contains a hostent structure. To
access the elements of this structure, the original buffer address should be cast to a hostent structure
pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in
the original call was too small to contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetHostByName function call
with a buffer large enough to receive all the desired information (that is, no smaller than the low 16 bits of
lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

WSAAsyncGetHostByName is guaranteed to resolve the string returned by a successful call to
gethostname.

Return Values
The return value specifies whether or not the asynchronous operation was successfully initiated. Note
that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetHostByName returns a nonzero value of type
HANDLE which is the asynchronous task handle (not to be confused with a Windows HTASK) for the
request. This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest. It can also be used to match up asynchronous operations and completion
messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetHostByName returns a zero value,
and a specific error number can be retrieved by calling WSAGetLastError.

Comments
The buffer supplied to this function is used by Windows Sockets to construct a hostent structure together
with the contents of data areas referenced by members of the same hostent structure. To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

Error Codes
The following error codes can be set when an application window receives a message. As described
above, they can be extracted from the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT name or buf is not in a valid part of the
process address space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Nonrecoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of
requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup must occur
before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource
or other constraints within the Windows
Sockets implementation.

See Also
gethostbyname, hostent, WSACancelAsyncRequest

WSAAsyncGetProtoByName   

The Windows Sockets WSAAsyncGetProtoByName function gets protocol information corresponding to
a protocol name¾asynchronous version.

HANDLE WSAAsyncGetProtoByName (
 HWND hWnd,
 unsigned int wMsg,
 const char FAR * name,
 char FAR * buf,
 int buflen
);

Parameters
hWnd

[in] The handle of the window which should receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

name
[in] A pointer to the null terminated protocol name to be resolved.

buf
[out] A pointer to the data area to receive the protoent data. Note that this must be larger than the size
of a protoent structure. This is because the data area supplied is used by Windows Sockets to contain
not only a protoent structure but any and all of the data which is referenced by members of the
protoent structure. It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen
[out] The size of data area buf above.

Remarks
This function is an asynchronous version of getprotobyname, and is used to retrieve the protocol name
and number corresponding to a protocol name. Windows Sockets initiates the operation and returns to
the caller immediately, passing back an opaque "asynchronous task handle" which the application can
use to identify the operation. When the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives message wMsg.
The wParam argument contains the asynchronous task handle as returned by the original function call.
The high 16 bits of lParam contain any error code. The error code can be any error as defined in
WINSOCK2.H. An error code of zero indicates successful completion of the asynchronous operation. On
successful completion, the buffer supplied to the original function call contains a protoent structure. To
access the elements of this structure, the original buffer address should be cast to a protoent structure
pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in
the original call was too small to contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetProtoByName function call
with a buffer large enough to receive all the desired information (that is, no smaller than the low 16 bits of
lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values
The return value specifies whether or not the asynchronous operation was successfully initiated. Note
that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetProtoByName returns a nonzero value of type
HANDLE which is the asynchronous task handle for the request (not to be confused with a Windows
HTASK). This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest. It can also be used to match up asynchronous operations and completion
messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetProtoByName returns a zero value,
and a specific error number can be retrieved by calling WSAGetLastError.

Comments
The buffer supplied to this function is used by Windows Sockets to construct a protoent structure together
with the contents of data areas referenced by members of the same protoent structure. To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

Error Codes
The following error codes can be set when an application window receives a message. As described
above, they can be extracted from the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT name or buf is not in a valid part of the
process address space.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not
found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or
server failure.

WSANO_RECOVERY Nonrecoverable errors, the protocols
database is not accessible.

WSANO_DATA Valid name, no data record of
requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup must occur
before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource

or other constraints within the Windows
Sockets implementation.

See Also
getprotobyname, WSACancelAsyncRequest

WSAAsyncGetProtoByNumber   

The Windows Sockets WSAAsyncGetProtoByNumber function gets protocol information corresponding
to a protocol number¾asynchronous version.

HANDLE WSAAsyncGetProtoByNumber (
 HWND hWnd,
 unsigned int wMsg,
 int number,
 char FAR * buf,
 int buflen
);

Parameters
hWnd

[in] The handle of the window which should receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

number
[in] The protocol number to be resolved, in host byte order.

buf
[out] A pointer to the data area to receive the protoent data. Note that this must be larger than the size
of a protoent structure. This is because the data area supplied is used by Windows Sockets to contain
not only a protoent structure but any and all of the data which is referenced by members of the
protoent structure. It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen
[in] The size of data area buf above.

Remarks
This function is an asynchronous version of getprotobynumber, and is used to retrieve the protocol
name and number corresponding to a protocol number. Windows Sockets initiates the operation and
returns to the caller immediately, passing back an opaque "asynchronous task handle" which the
application can use to identify the operation. When the operation is completed, the results (if any) are
copied into the buffer provided by the caller and a message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives message wMsg.
The wParam argument contains the asynchronous task handle as returned by the original function call.
The high 16 bits of lParam contain any error code. The error code can be any error as defined in
WINSOCK2.H. An error code of zero indicates successful completion of the asynchronous operation. On
successful completion, the buffer supplied to the original function call contains a protoent structure. To
access the elements of this structure, the original buffer address should be cast to a protoent structure
pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in
the original call was too small to contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetProtoByNumber function
call with a buffer large enough to receive all the desired information (that is, no smaller than the low 16
bits of lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values
The return value specifies whether or not the asynchronous operation was successfully initiated. Note
that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetProtoByNumber returns a nonzero value of
type HANDLE which is the asynchronous task handle for the request (not to be confused with a Windows
HTASK). This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest. It can also be used to match up asynchronous operations and completion
messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetProtoByNumber returns a zero
value, and a specific error number can be retrieved by calling WSAGetLastError.

Comments
The buffer supplied to this function is used by Windows Sockets to construct a protoent structure together
with the contents of data areas referenced by members of the same protoent structure. To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

Error Codes
The following error codes can be set when an application window receives a message. As described
above, they can be extracted from the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT buf is not in a valid part of the process
address space.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not
found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or
server failure.

WSANO_RECOVERY Nonrecoverable errors, the protocols
database is not accessible.

WSANO_DATA Valid name, no data record of
requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup must occur
before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource

or other constraints within the Windows
Sockets implementation.

See Also
getprotobynumber, WSACancelAsyncRequest

WSAAsyncGetServByName   

The Windows Sockets WSAAsyncGetServByName function gets service information corresponding to a
service name and port¾asynchronous version.

HANDLE WSAAsyncGetServByName (
 HWND hWnd,
 unsigned int wMsg,
 const char FAR * name,
 const char FAR * proto,
 char FAR * buf,
 int buflen
);

Parameters
hWnd

[in] The handle of the window which should receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

name
[in] A pointer to a null terminated service name.

proto
[in] A pointer to a protocol name. This can be NULL, in which case WSAAsyncGetServByName will
search for the first service entry for which s_name or one of the s_aliases matches the given name.
Otherwise, WSAAsyncGetServByName matches both name and proto.

buf
[out] A pointer to the data area to receive the servent data. Note that this must be larger than the size
of a servent structure. This is because the data area supplied is used by Windows Sockets to contain
not only a servent structure but any and all of the data which is referenced by members of the servent
structure. It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen
[in] The size of data area buf above.

Remarks
This function is an asynchronous version of getservbyname, and is used to retrieve service information
corresponding to a service name. Windows Sockets initiates the operation and returns to the caller
immediately, passing back an opaque "asynchronous task handle" which the application can use to
identify the operation. When the operation is completed, the results (if any) are copied into the buffer
provided by the caller and a message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives message wMsg.
The wParam argument contains the asynchronous task handle as returned by the original function call.
The high 16 bits of lParam contain any error code. The error code can be any error as defined in
WINSOCK2.H. An error code of zero indicates successful completion of the asynchronous operation. On
successful completion, the buffer supplied to the original function call contains a servent structure. To
access the elements of this structure, the original buffer address should be cast to a servent structure
pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in
the original call was too small to contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetServByName function call
with a buffer large enough to receive all the desired information (that is, no smaller than the low 16 bits of

lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values
The return value specifies whether or not the asynchronous operation was successfully initiated. Note
that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetServByName returns a nonzero value of type
HANDLE which is the asynchronous task handle for the request (not to be confused with a Windows
HTASK). This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest. It can also be used to match up asynchronous operations and completion
messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncServByName returns a zero value, and
a specific error number can be retrieved by calling WSAGetLastError.

Comments
The buffer supplied to this function is used by Windows Sockets to construct a servent structure together
with the contents of data areas referenced by members of the same servent structure. To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

Error Codes
The following error codes can be set when an application window receives a message. As described
above, they can be extracted from the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT buf is not in a valid part of the process
address space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Service not found, or
server failure.

WSANO_RECOVERY Nonrecoverable errors, the services
database is not accessible.

WSANO_DATA Valid name, no data record of
requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup must occur
before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is

still processing a callback function.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource
or other constraints within the Windows
Sockets implementation.

See Also
getservbyname, WSACancelAsyncRequest

WSAAsyncGetServByPort   

The Windows Sockets WSAAsyncGetServByPort function gets service information corresponding to a
port and protocol¾asynchronous version.

HANDLE WSAAsyncGetServByPort (
 HWND hWnd,
 unsigned int wMsg,
 int port,
 const char FAR * proto,
 char FAR * buf,
 int buflen
);

Parameters
hWnd

[in] The handle of the window which should receive a message when the asynchronous request
completes.

wMsg
[in] The message to be received when the asynchronous request completes.

port
[in] The port for the service, in network byte order.

proto
[in] A pointer to a protocol name. This can be NULL, in which case WSAAsyncGetServByPort will
search for the first service entry for which s_port match the given port. Otherwise,
WSAAsyncGetServByPort matches both port and proto.

buf
[out] A pointer to the data area to receive the servent data. Note that this must be larger than the size
of a servent structure. This is because the data area supplied is used by Windows Sockets to contain
not only a servent structure but any and all of the data which is referenced by members of the servent
structure. It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.

buflen
[in] The size of data area buf above.

Remarks
This function is an asynchronous version of getservbyport, and is used to retrieve service information
corresponding to a port number. Windows Sockets initiates the operation and returns to the caller
immediately, passing back an opaque "asynchronous task handle" which the application can use to
identify the operation. When the operation is completed, the results (if any) are copied into the buffer
provided by the caller and a message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives message wMsg.
The wParam argument contains the asynchronous task handle as returned by the original function call.
The high 16 bits of lParam contain any error code. The error code can be any error as defined in
WINSOCK2.H. An error code of zero indicates successful completion of the asynchronous operation. On
successful completion, the buffer supplied to the original function call contains a servent structure. To
access the elements of this structure, the original buffer address should be cast to a servent structure
pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in
the original call was too small to contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite information. If the application
decides that the partial data is inadequate, it can reissue the WSAAsyncGetServByPort function call
with a buffer large enough to receive all the desired information (that is, no smaller than the low 16 bits of

lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in WINSOCK2.H as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

Return Values
The return value specifies whether or not the asynchronous operation was successfully initiated. Note
that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetServByPort returns a nonzero value of type
HANDLE which is the asynchronous task handle for the request (not to be confused with a Windows
HTASK). This value can be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest. It can also be used to match up asynchronous operations and completion
messages, by examining the wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetServByPort returns a zero value,
and a specific error number can be retrieved by calling WSAGetLastError.

Comments
The buffer supplied to this function is used by Windows Sockets to construct a servent structure together
with the contents of data areas referenced by members of the same servent structure. To avoid the
WSAENOBUFS error noted above, the application should provide a buffer of at least
MAXGETHOSTSTRUCT bytes (as defined in WINSOCK2.H).

Error Codes
The following error codes can be set when an application window receives a message. As described
above, they can be extracted from the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT proto or buf is not in a valid part of the
process address space.

WSAHOST_NOT_FOUND Authoritative Answer Port not found.

WSATRY_AGAIN Non-Authoritative Port not found, or
server failure.

WSANO_RECOVERY Nonrecoverable errors, the services
database is not accessible.

WSANO_DATA Valid name, no data record of
requested type.

The following errors can occur at the time of the function call, and indicate that the asynchronous
operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup must occur
before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is

still processing a callback function.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource
or other constraints within the Windows
Sockets implementation.

See Also
getservbyport, WSACancelAsyncRequest

WSAAsyncSelect   

The Windows Sockets WSAAsyncSelect function requests Windows message-based notification of
network events for a socket.

int WSAAsyncSelect (
 SOCKET s,
 HWND hWnd,
 unsigned int wMsg,
 long lEvent
);

Parameters
s

[in] A descriptor identifying the socket for which event notification is required.

hWnd
[in] A handle identifying the window which should receive a message when a network event occurs.

wMsg
[in] The message to be received when a network event occurs.

lEvent
[in] A bitmask which specifies a combination of network events in which the application is interested.

Remarks
This function is used to request that the Windows Sockets DLL should send a message to the window
hWnd whenever it detects any of the network events specified by the lEvent parameter. The message
which should be sent is specified by the wMsg parameter. The socket for which notification is required is
identified by s.

This function automatically sets socket s to nonblocking mode, regardless of the value of lEvent. See
ioctlsocket about how to set the nonoverlapped socket back to blocking mode.

The lEvent parameter is constructed by or'ing any of the values specified in the following list.

Value Meaning

FD_READ Want to receive notification of readiness for
reading

FD_WRITE Want to receive notification of readiness for
writing

FD_OOB Want to receive notification of the arrival of
out-of-band data

FD_ACCEPT Want to receive notification of incoming
connections

FD_CONNECT Want to receive notification of completed
connection

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of socket Quality
of Service (QOS) changes

FD_GROUP_QOS Want to receive notification of socket group
Quality of Service (QOS) changes

Issuing a WSAAsyncSelect for a socket cancels any previous WSAAsyncSelect or WSAEventSelect
for the same socket. For example, to receive notification for both reading and writing, the application must
call WSAAsyncSelect with both FD_READ and FD_WRITE, as follows:

rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ|FD_WRITE);

It is not possible to specify different messages for different events. The following code will not work; the
second call will cancel the effects of the first, and only FD_WRITE events will be reported with message
wMsg2:

rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);
rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);

To cancel all notification (that is, to indicate that Windows Sockets should send no further messages
related to network events on the socket) lEvent should be set to zero.

rc = WSAAsyncSelect(s, hWnd, 0, 0);

Although in this instance WSAAsyncSelect immediately disables event message posting for the socket,
it is possible that messages can be waiting in the application's message queue. The application must
therefore be prepared to receive network event messages even after cancellation. Closing a socket with
closesocket also cancels WSAAsyncSelect message sending, but the same caveat about messages in
the queue prior to the closesocket still applies.

Since an accept'ed socket has the same properties as the listening socket used to accept it, any
WSAAsyncSelect events set for the listening socket apply to the accepted socket. For example, if a
listening socket has WSAAsyncSelect events FD_ACCEPT, FD_READ, and FD_WRITE, then any
socket accepted on that listening socket will also have FD_ACCEPT, FD_READ, and FD_WRITE events
with the same wMsg value used for messages. If a different wMsg or events are desired, the application
should call WSAAsyncSelect, passing the accepted socket and the desired new information.

When one of the nominated network events occurs on the specified socket s, the application's window
hWnd receives message wMsg. The wParam argument identifies the socket on which a network event
has occurred. The low word of lParam specifies the network event that has occurred. The high word of
lParam contains any error code. The error code be any error as defined in WINSOCK2.H.

Note Upon receipt of an event notification message the WSAGetLastError function cannot be used
to check the error value, because the error value returned can differ from the value in the high word of
lParam.

The error and event codes can be extracted from the lParam using the macros WSAGETSELECTERROR
and WSAGETSELECTEVENT, defined in WINSOCK2.H as:

#define WSAGETSELECTERROR(lParam) HIWORD(lParam)
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the application.

The possible network event codes which can be returned are as follows:

Value Meaning

FD_READ Socket s ready for reading

FD_WRITE Socket s ready for writing

FD_OOB Out-of-band data ready for reading on socket
s

FD_ACCEPT Socket s ready for accepting a new incoming
connection

FD_CONNECT Connection initiated on socket s completed

FD_CLOSE Connection identified by socket s has been
closed

FD_QOS Quality of Service associated with socket s
has changed

FD_GROUP_QOS Quality of Service associated with the socket
group to which s belongs has changed

Return Values
The return value is zero if the application's declaration of interest in the network event set was successful.
Otherwise, the value SOCKET_ERROR is returned, and a specific error number can be retrieved by
calling WSAGetLastError.

Comments
Although WSAAsyncSelect can be called with interest in multiple events, the application window will
receive a single message for each network event.

As in the case of the select function, WSAAsyncSelect will frequently be used to determine when a data
transfer operation (send or recv) can be issued with the expectation of immediate success. Nevertheless,
a robust application must be prepared for the possibility that it can receive a message and issue a
Windows Sockets 2 call which returns WSAEWOULDBLOCK immediately. For example, the following
sequence of events is possible:

1. data arrives on socket s; Windows Sockets 2 posts WSAAsyncSelect message

2. application processes some other message

3. while processing, application issues an ioctlsocket(s, FIONREAD...) and notices that there is data
ready to be read

4. application issues a recv(s,...) to read the data

5. application loops to process next message, eventually reaching the WSAAsyncSelect message
indicating that data is ready to read

6. application issues recv(s,...), which fails with the error WSAEWOULDBLOCK.

Other sequences are possible.

The Windows Sockets DLL will not continually flood an application with messages for a particular network
event. Having successfully posted notification of a particular event to an application window, no further
message(s) for that network event will be posted to the application window until the application makes the
function call which implicitly re-enables notification of that network event.

Event Re-enabling function

FD_READ recv, recvfrom, WSARecv, or
WSARecvFrom

FD_WRITE send, sendto, WSASend, or WSASendTo

FD_OOB recv, recvfrom, WSARecv, or
WSARecvFrom

FD_ACCEPT accept or WSAAccept unless the error code
is WSATRY_AGAIN indicating that the
condition function returned CF_DEFER

FD_CONNECT NONE

FD_CLOSE NONE

FD_QOS WSAIoctl with command SIO_GET_QOS

FD_GROUP_QOS WSAIoctl with command
SIO_GET_GROUP_QOS

Any call to the re-enabling routine, even one which fails, results in re-enabling of message posting for the
relevant event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is "level-triggered." This means
that if the re-enabling routine is called and the relevant condition is still met after the call, a
WSAAsyncSelect message is posted to the application. This allows an application to be event-driven
and not be concerned with the amount of data that arrives at any one time. Consider the following
sequence:

1. Network transport stack receives 100 bytes of data on socket s and causes Windows Sockets 2 to
post an FD_READ message.

2. The application issues recv(s, buffptr, 50, 0) to read 50 bytes.

3. Another FD_READ message is posted since there is still data to be read.

With these semantics, an application need not read all available data in response to an FD_READ
message¾a single recv in response to each FD_READ message is appropriate. If an application issues
multiple recv calls in response to a single FD_READ, it can receive multiple FD_READ messages. Such
an application may need to disable FD_READ messages before starting the recv calls by calling
WSAAsyncSelect with the FD_READ event not set.

The FD_QOS and FD_GROUP_QOS events are considered edge triggered. A message will be posted
exactly once when a QOS change occurs. Further messages will not be forthcoming until either the
provider detects a further change in QOS or the application renegotiates the QOS for the socket.

If any event has already happened when the application calls WSAAsyncSelect or when the re-enabling
function is called, then a message is posted as appropriate. For example, consider the following
sequence:

1. an application calls listen,

2. a connect request is received but not yet accepted,

3. the application calls WSAAsyncSelect specifying that it wants to receive FD_ACCEPT messages for
the socket. Due to the persistence of events, Windows Sockets 2 posts an FD_ACCEPT message
immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE message is posted when a socket is
first connected with connect/WSAConnect (after FD_CONNECT, if also registered) or accepted with
accept/WSAAccept, and then after a send operation fails with WSAEWOULDBLOCK and buffer space
becomes available. Therefore, an application can assume that sends are possible starting from the first
FD_WRITE message and lasting until a send returns WSAEWOULDBLOCK. After such a failure the
application will be notified that sends are again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-band data separately. (See
section Out-Of-Band data for a discussion of this topic.) If the socket is configured to receive out-of-band
data in-line, the out-of-band (expedited) data is treated as normal data and the application should register
an interest in, and will receive, FD_READ events, not FD_OOB events. An application may set or inspect
the way in which out-of-band data is to be handled by using setsockopt or getsockopt for the
SO_OOBINLINE option.

The error code in an FD_CLOSE message indicates whether the socket close was graceful or abortive. If
the error code is zero, then the close was graceful; if the error code is WSAECONNRESET, then the
socket's virtual circuit was reset. This only applies to connection-oriented sockets such as
SOCK_STREAM.

The FD_CLOSE message is posted when a close indication is received for the virtual circuit
corresponding to the socket. In TCP terms, this means that the FD_CLOSE is posted when the
connection goes into the TIME WAIT or CLOSE WAIT states. This results from the remote end performing

a shutdown on the send side or a closesocket. FD_CLOSE should only be posted after all data is read
from a socket, but an application should check for remaining data upon receipt of FD_CLOSE to avoid
any possibility of losing data.

Please note your application will receive ONLY an FD_CLOSE message to indicate closure of a virtual
circuit, and only when all the received data has been read if this is a graceful close. It will not receive an
FD_READ message to indicate this condition.

The FD_QOS or FD_GROUP_QOS message is posted when any field in the flow specification associated
with socket s or the socket group that s belongs to has changed, respectively. Applications should use
WSAIoctl with command SIO_GET_QOS or SIO_GET_GROUP_QOS to get the current QOS for socket
s or for the socket group s belongs to, respectively.

Here is a summary of events and conditions for each asynchronous notification message:

· FD_READ:

1. when WSAAsyncSelect called, if there is data currently available to receive,

2. when data arrives, if FD_READ not already posted,

3. after recv or recvfrom called (with or without MSG_PEEK), if data is still available to receive.

Note when setsockopt SO_OOBINLINE is enabled "data" includes both normal data and out-of-
band (OOB) data in the instances noted above.

· FD_WRITE:

1. when WSAAsyncSelect called, if a send or sendto is possible

2. after connect or accept called, when connection established

3. after send or sendto fail with WSAEWOULDBLOCK, when send or sendto are likely to succeed,

4. after bind on a datagram socket.

· FD_OOB: Only valid when setsockopt SO_OOBINLINE is disabled (default).

1. when WSAAsyncSelect called, if there is OOB data currently available to receive with the
MSG_OOB flag,

2. when OOB data arrives, if FD_OOB not already posted,

3. after recv or recvfrom called with or without MSG_OOB flag, if OOB data is still available to
receive.

· FD_ACCEPT:

1. when WSAAsyncSelect called, if there is currently a connection request available to accept,

2. when a connection request arrives, if FD_ACCEPT not already posted,

3. after accept called, if there is another connection request available to accept.

· FD_CONNECT:

1. when WSAAsyncSelect called, if there is currently a connection established,

2. after connect called, when connection is established (even when connect succeeds immediately,
as is typical with a datagram socket)

· FD_CLOSE: Only valid on connection-oriented sockets (for example, SOCK_STREAM)

1. when WSAAsyncSelect called, if socket connection has been closed,

2. after remote system initiated graceful close, when no data currently available to receive (note: if
data has been received and is waiting to be read when the remote system initiates a graceful
close, the FD_CLOSE is not delivered until all pending data has been read),

3. after local system initiates graceful close with shutdown and remote system has responded with
"End of Data" notification (for example, TCP FIN), when no data currently available to receive,

4. when remote system terminates connection (for example, sent TCP RST), and lParam will contain
WSAECONNRESET error value.

Note FD_CLOSE is not posted after closesocket is called.

· FD_QOS:

1. when WSAAsyncSelect called, if the QOS associated with the socket has been changed,

2. after WSAIoctl with SIO_GET_QOS called, when the QOS is changed.

· FD_GROUP_QOS:

1. when WSAAsyncSelect called, if the group QOS associated with the socket has been changed,

2. after WSAIoctl with SIO_GET_GROUP_QOS called, when the group QOS is changed.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified
parameters was invalid such as the
window handle not referring to an
existing window, or the specified socket
is in an invalid state.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTSOCK The descriptor is not a socket.

Additional error codes may be set when an application window receives a message. This error code is
extracted from the lParam in the reply message using the WSAGETSELECTERROR macro. Possible
error codes for each network event are:

Event: FD_CONNECT

Error Code Meaning

WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available
from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family
cannot be used with this socket.

WSAECONNREFUSED The attempt to connect was forcefully
rejected.

WSAENETUNREACH The network cannot be reached from
this host at this time.

WSAEFAULT The namelen argument is incorrect.

WSAEINVAL The socket is already bound to an
address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available. The socket
cannot be connected.

WSAENOTCONN The socket is not connected.

WSAETIMEDOUT Attempt to connect timed out without
establishing a connection.

Event: FD_CLOSE

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the
remote side.

WSAECONNABORTED The connection was terminated due to
a time-out or other failure.

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

See Also
select, WSAEventSelect

WSACancelAsyncRequest   

The Windows Sockets WSACancelAsyncRequest function cancels an incomplete asynchronous
operation.

int WSACancelAsyncRequest (
 HANDLE hAsyncTaskHandle
);

Parameters
hAsyncTaskHandle

[in] Specifies the asynchronous operation to be canceled.

Remarks
The WSACancelAsyncRequest function is used to cancel an asynchronous operation which was
initiated by one of the WSAAsyncGetXByY functions such as WSAAsyncGetHostByName. The
operation to be canceled is identified by the hAsyncTaskHandle parameter, which should be set to the
asynchronous task handle as returned by the initiating WSAAsyncGetXByY function.

Return Values
The value returned by WSACancelAsyncRequest is zero if the operation was successfully canceled.
Otherwise, the value SOCKET_ERROR is returned, and a specific error number may be retrieved by
calling WSAGetLastError.

Comments
An attempt to cancel an existing asynchronous WSAAsyncGetXByY operation can fail with an error code
of WSAEALREADY for two reasons. First, the original operation has already completed and the
application has dealt with the resultant message. Second, the original operation has already completed
but the resultant message is still waiting in the application window queue.

Note It is unclear whether the application can usefully distinguish between WSAEINVAL and
WSAEALREADY, since in both cases the error indicates that there is no asynchronous operation in
progress with the indicated handle. [Trivial exception: zero is always an invalid asynchronous task
handle.] The Windows Sockets specification does not prescribe how a conformant Windows Sockets
provider should distinguish between the two cases. For maximum portability, a Windows Sockets
application should treat the two errors as equivalent.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that the specified
asynchronous task handle was invalid

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEALREADY The asynchronous routine being
canceled has already completed.

See Also
WSAAsyncGetHostByAddr, WSAAsyncGetHostByName, WSAAsyncGetProtoByName,

WSAAsyncGetProtoByNumber, WSAAsyncGetServByName, WSAAsyncGetServByPort

WSACancelBlockingCall   

This function has been removed in compliance with the Windows Sockets 2 specification, revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications should not
use this function. Windows Sockets 1.1 applications that call this function are still supported through the
WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during calls to
blocking functions. Instead of using blocking hooks, an applications should use a separate thread
(separate from the main GUI thread) for network activity.

WSACleanup   

The Windows Sockets WSACleanup function terminates use of the Windows Sockets DLL.

int WSACleanup (void);

Remarks
An application or DLL is required to perform a successful WSAStartup call before it can use Windows
Sockets services. When it has completed the use of Windows Sockets, the application or DLL must call
WSACleanup to deregister itself from a Windows Sockets implementation and allow the implementation
to free any resources allocated on behalf of the application or DLL. Any pending blocking or
asynchronous calls issued by any thread in this process are canceled without posting any notification
messages, or signaling any event objects. Any pending overlapped send and receive operations
(WSASend/WSASendTo/WSARecv/WSARecvFrom with an overlapped socket) issued by any thread in
this process are also canceled without setting the event object or invoking the completion routine, if
specified. In this case, the pending overlapped operations fail with the error status
WSA_OPERATION_ABORTED. Any sockets open when WSACleanup is called are reset and
automatically deallocated as if closesocket was called; sockets which have been closed with
closesocket but which still have pending data to be sent may be affected¾the pending data may be lost
if the Windows Sockets DLL is unloaded from memory as the application exits. To insure that all pending
data is sent an application should use shutdown to close the connection, then wait until the close
completes before calling closesocket and WSACleanup. All resources and internal state, such as
queued un-posted messages, must be deallocated so as to be available to the next user.

There must be a call to WSACleanup for every successful call to WSAStartup made by a task. Only the
final WSACleanup for that task does the actual cleanup; the preceding calls simply decrement an internal
reference count in the Windows Sockets DLL.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Comments
Attempting to call WSACleanup from within a blocking hook and then failing to check the return code is a
common Windows Sockets programming error. If an application needs to quit while a blocking call is
outstanding, the application must first cancel the blocking call with WSACancelBlockingCall then issue
the WSACleanup call once control has been returned to the application.

In a multithreaded environment, WSACleanup terminates Windows Sockets operations for all threads.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

See Also
closesocket, shutdown, WSAStartup

WSACloseEvent     

 

The Windows Sockets WSACloseEvent function closes an open event object handle.

BOOL WSACloseEvent(
 WSAEVENT hEvent
);

Parameters
hEvent

[in] Identifies an open event object handle.

Remarks
The handle to the event object is closed so that further references to this handle will fail with the error
WSA_INVALID_HANDLE.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSA_INVALID_HANDLE hEvent is not a valid event object
handle.

See Also
WSACreateEvent, WSAEnumNetworkEvents, WSAEventSelect, WSAGetOverlappedResult,
WSARecv, WSARecvFrom, WSAResetEvent, WSASend, WSASendTo, WSASetEvent,
WSAWaitForMultipleEvents

WSAConnect     

 

The Windows Sockets WSAConnect function establishes a connection to a peer, exchanges connect
data, and specifies needed quality of service based on the supplied flow specification.

int WSAConnect (
 SOCKET s,
 const struct sockaddr FAR * name,
 int namelen,
 LPWSABUF lpCallerData,
 LPWSABUF lpCalleeData,
 LPQOS lpSQOS,
 LPQOS lpGQOS
);

Parameters
s

[in] A descriptor identifying an unconnected socket.

name
[in] The name of the peer to which the socket is to be connected.

namelen
[in] The length of the name.

lpCallerData
[in] A pointer to the user data that is to be transferred to the peer during connection establishment.

lpCalleeData
[out] A pointer to the user data that is to be transferred back from the peer during connection
establishment.

lpSQOS
[in] A pointer to the flow specifications for socket s, one for each direction.

lpGQOS
[in] A pointer to the flow specifications for the socket group (if applicable).

Remarks
This function is used to create a connection to the specified destination, and to perform a number of other
ancillary operations that occur at connect time as well. If the socket, s, is unbound, unique values are
assigned to the local association by the system, and the socket is marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active connection is initiated to
the foreign host using name (an address in the name space of the socket; for a detailed description,
please see bind). When this call completes successfully, the socket is ready to send/receive data. If the
address field of the name structure is all zeroes, WSAConnect will return the error
WSAEADDRNOTAVAIL. Any attempt to reconnect an active connection will fail with the error code
WSAEISCONN.

For a connectionless socket (for example, type SOCK_DGRAM), the operation erformed by
WSAConnect is merely to establish a default destination address so that the socket may be used on
subsequent connection-oriented send and receive operations (send, WSASend, recv, WSARecv). Any
datagrams received from an address other than the destination address specified will be discarded. If the
address field of the name structure is all zeroes, the socket will be "dis-connected." Then, the default
remote address will be indeterminate, so send/WSASend and recv/WSARecv calls will return the error
code WSAENOTCONN. However, sendto/WSASendTo and recvfrom/WSARecvFrom can still be used.

The default destination may be changed by simply calling WSAConnect again, even if the socket is
already "connected". Any datagrams queued for receipt are discarded if name is different from the
previous WSAConnect.

For connectionless sockets, name may indicate any valid address, including a broadcast address.
However, to connect to a broadcast address, a socket must have setsockopt SO_BROADCAST
enabled. Otherwise, WSAConnect will fail with the error code WSAEACCES.

On connectionless sockets, exchange of user to user data is not possible and the corresponding
parameters will be silently ignored.

The application is responsible for allocating any memory space pointed to directly or indirectly by any of
the parameters it specifies.

The lpCallerData is a value parameter which contains any user data that is to be sent along with the
connection request. If lpCallerData is NULL, no user data will be passed to the peer. The lpCalleeData is
a result parameter which will contain any user data passed back from the peer as part of the connection
establishment. lpCalleeData->len initially contains the length of the buffer allocated by the application and
pointed to by lpCalleeData->buf. lpCalleeData->len will be set to zero if no user data has been passed
back. The lpCalleeData information will be valid when the connection operation is complete. For blocking
sockets, this will be when the WSAConnect function returns. For nonblocking sockets, this will be after
the FD_CONNECT notification has occurred. If lpCalleeData is NULL, no user data will be passed back.
The exact format of the user data is specific to the address family to which the socket belongs.

At connect time, an application may use the lpSQOS and/or lpGQOS parameters to override any previous
QOS specification made for the socket through WSAIoctl with either the SIO_SET_QOS or
SIO_SET_GROUP_QOS opcodes.

lpSQOS specifies the flow specifications for socket s, one for each direction, followed by any additional
provider-specific parameters. If either the associated transport provider in general or the specific type of
socket in particular cannot honor the QOS request, an error will be returned as indicated below. The
sending or receiving flow specification values will be ignored, respectively, for any unidirectional sockets.
If no provider-specific parameters are supplied, the buf and len fields of lpSQOS->ProviderSpecific should
be set to NULL and zero, respectively. A NULL value for lpSQOS indicates no application supplied QOS.

lpGQOS specifies the flow specifications for the socket group (if applicable), one for each direction,
followed by any additional provider-specific parameters. If no provider-specific parameters are supplied,
the buf and len fields of lpSQOS->ProviderSpecific should be set to NULL and zero, respectively. A NULL
value for lpGQOS indicates no application-supplied group QOS. This parameter will be ignored if s is not
the creator of the socket group.

Comments
When connected sockets break (that is, become closed for whatever reason), they should be discarded
and recreated. It is safest to assume that when things go awry for any reason on a connected socket, the
application must discard and recreate the needed sockets in order to return to a stable point.

Return Values
If no error occurs, WSAConnect returns zero. Otherwise, it returns SOCKET_ERROR, and a specific
error code may be retrieved by calling WSAGetLastError. On a blocking socket, the return value
indicates success or failure of the connection attempt.

With a nonblocking socket, the connection attempt may not be completed immediately. In this case,
WSAConnect will return SOCKET_ERROR, and WSAGetLastError will return WSAEWOULDBLOCK. In
this case, the application may:

1. Use select to determine the completion of the connection request by checking if the socket is

writeable, or

2. If your application is using WSAAsyncSelect to indicate interest in connection events, then your
application will receive an FD_CONNECT notification when the connect operation is complete, or

3. If your application is using WSAEventSelect to indicate interest in connection events, then the
associated event object will be signaled when the connect operation is complete.

For a nonblocking socket, until the connection attempt completes all subsequent calls to WSAConnect
on the same socket will fail with the error code WSAEALREADY.

If the return error code indicates the connection attempt failed (that is, WSAECONNREFUSED,
WSAENETUNREACH, WSAETIMEDOUT) the application may call WSAConnect again for the same
socket.

Error Codes
WSANOTINITIALISED A successful WSAStartup must

occur before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The specified address is already in
use.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1
call is in progress, or the service
provider is still processing a
callback function.

WSAEALREADY A nonblocking
connect/WSAConnect call is in
progress on the specified socket.

WSAEADDRNOTAVAIL The specified address is not
available from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family
cannot be used with this socket.

WSAECONNREFUSED The attempt to connect was
rejected.

WSAEFAULT The name or the namelen argument
is not a valid part of the user
address space, the namelen
argument is too small, the buffer
length for lpCalleeData, lpSQOS,
and lpGQOS are too small, or the
buffer length for lpCallerData is too
large.

WSAEINVAL The parameter s is a listening
socket, or the destination address
specified is not consistent with that
of the constrained group the socket
belongs to.

WSAEISCONN The socket is already connected
(connection-oriented sockets only).

WSAENETUNREACH The network cannot be reached
from this host at this time.

WSAENOBUFS No buffer space is available. The

socket cannot be connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The flow specifications specified in
lpSQOS and lpGQOS cannot be
satisfied.

WSAEPROTONOSUPPORT The lpCallerData augment is not
supported by the service provider.

WSAETIMEDOUT Attempt to connect timed out
without establishing a connection.

WSAEWOULDBLOCK The socket is marked as
nonblocking and the connection
cannot be completed immediately. It
is possible to select the socket
while it is connecting by selecting it
for writing.

WSAEACCES Attempt to connect datagram socket
to broadcast address failed because
setsockopt SO_BROADCAST is
not enabled.

See Also
accept, bind, connect, getsockname, getsockopt, select, socket, WSAAsyncSelect,
WSAEventSelect

WSACreateEvent     

 

The Windows Sockets connect function creates a new event object.

WSAEVENT WSACreateEvent(void);

Remarks
The event object created by this function is manual reset, with an initial state of nonsignaled. Windows
Sockets 2 event objects are system objects in Win32 environments. Therefore, if a Win32 application
desires auto reset events, it may call the native CreateEvent Win32 function directly. The scope of an
event object is limited to the process in which it is created.

Return Values
If the function succeeds, the return value is the handle of the event object.

If the function fails, the return value is WSA_INVALID_EVENT. To get extended error information, call
WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must

occur before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1
call is in progress, or the service
provider is still processing a
callback function.

WSA_NOT_ENOUGH_MEMORY Not enough free memory available
to create the event object.

See Also
WSACloseEvent, WSAEnumNetworkEvents, WSAEventSelect, WSAGetOverlappedResult,
WSARecv, WSARecvFrom, WSAResetEvent, WSASend, WSASendTo, WSASetEvent,
WSAWaitForMultipleEvents

WSADuplicateSocket     

 

The Windows Sockets WSADuplicateSocket function returns a WSAPROTOCOL_INFO structure that
can be used to create a new socket descriptor for a shared socket.

int WSADuplicateSocket (
 SOCKET s,
 DWORD dwProcessId,
 LPWSAPROTOCOL_INFO lpProtocolInfo
);

Parameters
s

[in] Specifies the local socket descriptor.

dwProcessId
[in] Specifies the ID of the target process for which the shared socket will be used.

lpProtocolInfo
[out] A pointer to a buffer allocated by the client that is large enough to contain a
WSAPROTOCOL_INFO structure. The service provider copies the protocol info structure contents to
this buffer.

Remarks
This function is used to enable socket sharing between processes. A source process calls
WSADuplicateSocket to obtain a special WSAPROTOCOL_INFO structure. It uses some interprocess
communications (IPC) mechanism to pass the contents of this structure to a target process, which in turn
uses it in a call to WSASocket to obtain a descriptor for the duplicated socket. Note that the special
WSAPROTOCOL_INFO structure may only be used once by the target process.

Sockets can be shared among threads in a given process without using the WSADuplicateSocket
function, since a socket descriptor is valid in all of a process's threads.

One possible scenario for establishing and using a shared socket in a handoff mode is illustrated below:

Source Process IPC Destination Process

1) WSASocket, WSAConnect

2) Request target process ID Þ
3) Receive process ID
request and respond

4) Receive process ID Ü
5) Call WSADuplicateSocket to
get a special
WSAPROTOCOL_INFO structure

6) Send WSAPROTOCOL_INFO
structure to target

Þ 7) Receive
WSAPROTOCOL_INFO
structure

8) Call WSASocket to create
shared socket descriptor.

10) closesocket 9)Use shared socket for data
exchange

Return Values
If no error occurs, WSADuplicateSocket returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError.

Comments
The descriptors that reference a shared socket may be used independently as far as I/O is concerned.
However, the Windows Sockets interface does not implement any type of access control, so it is up to the
processes involved to coordinate their operations on a shared socket. A typical use for shared sockets is
to have one process that is responsible for creating sockets and establishing connections, hand off
sockets to other processes which are responsible for information exchange.

Since what is duplicated are the socket descriptors and not the underlying socket, all of the state
associated with a socket is held in common across all the descriptors. For example a setsockopt
operation performed using one descriptor is subsequently visible using a getsockopt from any or all
descriptors. A process may call closesocket on a duplicated socket and the descriptor will become
deallocated. The underlying socket, however, will remain open until closesocket is called by the last
remaining descriptor.

Notification on shared sockets is subject to the usual constraints of WSAAsyncSelect and
WSAEventSelect. Issuing either of these calls using any of the shared descriptors cancels any previous
event registration for the socket, regardless of which descriptor was used to make that registration. Thus,
for example, a shared socket cannot deliver FD_READ events to process A and FD_WRITE events to
process B. For situations when such tight coordination is required, it is suggested that developers use
threads instead of separate processes.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified
parameters was invalid.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEMFILE No more socket descriptors are
available.

WSAENOBUFS No buffer space is available. The socket
cannot be created.

WSAENOTSOCK The descriptor is not a socket.

See Also
WSASocket

WSAEnumNameSpaceProviders   

The Windows Sockets WSAEnumNameSpaceProviders function retrieves information about available
name spaces.

INT WSAAPI WSAEnumNameSpaceProviders (
 LPDWORD lpdwBufferLength,
 LPWSANAMESPACE_INFO lpnspBuffer
);

Parameters
lpdwBufferLength

[in/out] On input, the number of bytes contained in the buffer pointed to by lpnspBuffer. On output (if
the function fails, and the error is WSAEFAULT), the minimum number of bytes to pass for the
lpnspBuffer to retrieve all the requested information. The passed-in buffer must be sufficient to hold all
of the name space information.

lpnspBuffer
[out] A buffer which is filled with WSANAMESPACE_INFO structuresdescribed below. The returned
structures are located consecutively at the head of the buffer. Variable sized information referenced
by pointers in the structures point to locations within the buffer located between the end of the fixed
sized structures and the end of the buffer. The number of structures filled in is the return value of
WSAEnumNameSpaceProviders.

Return Values
WSAEnumNameSpaceProviders returns the number of WSANAMESPACE_INFO structures copied
into lpnspBuffer. Otherwise, the value SOCKET_ERROR is returned, and a specific error number may be
retrieved by calling WSAGetLastError.

Error Codes
WSAEFAULT the buffer length was too small to

receive all the relevant
WSANAMESPACE_INFO structures
and associated information. Pass in a
buffer at least as large as the value
returned in lpdwBufferLength.

WSANOTINITIALIZED The Windows Sockets 2 DLL has not
been initialized. The application must
first call WSAStartup before calling any
Windows Sockets functions.

WSAEnumNetworkEvents     

 

The Windows Sockets WSAEnumNetworkEvents function discovers occurrences of network events for
the indicated socket.

int WSAEnumNetworkEvents (
 SOCKET s,
 WSAEVENT hEventObject,
 LPWSANETWORKEVENTS lpNetworkEvents
);

Parameters
s

[in] A descriptor identifying the socket.

hEventObject
[in] An optional handle identifying an associated event object to be reset.

lpNetworkEvents
[out] A pointer to a WSANETWORKEVENTS structure which is filled with a record of occurred
network events and any associated error codes.

Remarks
This function is used to discover which network events have occurred for the indicated socket since the
last invocation of this function. It is intended for use in conjunction with WSAEventSelect, which
associates an event object with one or more network events. Recording of network events commences
when WSAEventSelect is called with a nonzero lNetworkEvents parameter and remains in effect until
another call is made to WSAEventSelect with the lNetworkEvents parameter set to zero, or until a call is
made to WSAAsyncSelect.

The socket's internal record of network events is copied to the structure referenced by lpNetworkEvents,
whereafter the internal network events record is cleared. If hEventObject is non-null, the indicated event
object is also reset. The Windows Sockets provider guarantees that the operations of copying the network
event record, clearing it and resetting any associated event object are atomic, such that the next
occurrence of a nominated network event will cause the event object to become set. In the case of this
function returning SOCKET_ERROR, the associated event object is not reset and the record of network
events is not cleared.

The WSANETWORKEVENTS structure is defined as follows:

typedef struct _WSANETWORKEVENTS {
 long lNetworkEvents;
 int iErrorCodes[FD_MAX_EVENTS];
} WSANETWORKEVENTS, FAR * LPWSANETWORKEVENTS;

The lNetworkEvents field of the structure indicates which of the FD_XXX network events have occurred.
The iErrorCodes array is used to contain any associated error codes, with array index corresponding to
the position of event bits in lNetworkEvents. The identifiers such as FD_READ_BIT and FD_WRITE_BIT
can be used to index the iErrorCodes array.

The following error codes may be returned along with the respective network event:

Event: FD_CONNECT

Error Code Meaning

WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available
from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family
cannot be used with this socket.

WSAECONNREFUSED The attempt to connect was forcefully
rejected.

WSAENETUNREACH The network cannot be reached from
this host at this time.

WSAENOBUFS No buffer space is available. The
socket cannot be connected.

WSAETIMEDOUT Attempt to connect timed out without
establishing a connection

Event: FD_CLOSE

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the
remote side.

WSAECONNABORTED The connection was terminated due to
a time-out or other failure.

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code Meaning

WSAENETDOWN The network subsystem has failed.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified
parameters was invalid.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTSOCK The descriptor is not a socket.

See Also
WSAEventSelect

WSAEnumProtocols     

 

The Windows Sockets WSAEnumProtocols function retrieves information about available transport
protocols.

int WSAEnumProtocols (
 LPINT lpiProtocols,
 LPWSAPROTOCOL_INFO lpProtocolBuffer,
 ILPDWORD lpdwBufferLength
);

Parameters
lpiProtocols

[in] A NULL-terminated array of iProtocol values. This parameter is optional; if lpiProtocols is NULL,
information on all available protocols is returned. Otherwise, information is retrieved only for those
protocols listed in the array.

lpProtocolBuffer
[out] A buffer which is filled with WSAPROTOCOL_INFO structures. See below for a detailed
description of the contents of the WSAPROTOCOL_INFO structure.

lpdwBufferLength
[in/out] On input, the count of bytes in the lpProtocolBuffer buffer passed to WSAEnumProtocols. On
output, the minimum buffer size that can be passed to WSAEnumProtocols to retrieve all the
requested information. This routine has no ability to enumerate over multiple calls; the passed-in
buffer must be large enough to hold all entries in order for the routine to succeed. This reduces the
complexity of the API and should not pose a problem because the number of protocols loaded on a
machine is typically small.

Remarks
This function is used to discover information about the collection of transport protocols and protocol
chains installed on the local machine. Since layered protocols are only usable by applications when
installed in protocol chains, information on layered protocols is not included in lpProtocolBuffer. The
lpiProtocols parameter can be used as a filter to constrain the amount of information provided. Normally it
will be supplied as a NULL pointer which will cause the routine to return information on all available
transport protocols and protocol chains.

A WSAPROTOCOL_INFO structure is provided in the buffer pointed to by lpProtocolBuffer for each
requested protocol. If the supplied buffer is not large enough (as indicated by the input value of
lpdwBufferLength), the value pointed to by lpdwBufferLength will be updated to indicate the required
buffer size. The application should then obtain a large enough buffer and call this function again.

The order in which the WSAPROTOCOL_INFO structures appear in the buffer coincides with the order in
which the protocol entries were registered by the service provider with the Windows Sockets DLL, or with
any subsequent re-ordering that may have occurred through the Windows Sockets applet supplied for
establishing default TCP/IP providers.

Return Values
If no error occurs, WSAEnumProtocols returns the number of protocols to be reported on. Otherwise, a
value of SOCKET_ERROR is returned and a specific error code may be retrieved by calling
WSAGetLastError.

Error Codes

WSANOTINITIALISED A successful WSAStartup must occur
before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress.

WSAEINVAL Indicates that one of the specified
parameters was invalid.

WSAENOBUFS The buffer length was too small to
receive all the relevant
WSAPROTOCOL_INFO structures and
associated information. Pass in a buffer
at least as large as the value returned
in lpdwBufferLength.

WSAEventSelect     

 

The Windows Sockets WSAEventSelect function specifies an event object to be associated with the
supplied set of FD_XXX network events.

int WSAEventSelect (
 SOCKET s,
 WSAEVENT hEventObject,
 long lNetworkEvents
);

Parameters
s

[in] A descriptor identifying the socket.

hEventObject
[in] A handle identifying the event object to be associated with the supplied set of FD_XXX network
events.

lNetworkEvents
[in] A bitmask which specifies the combination of FD_XXX network events in which the application has
interest.

Remarks
This function is used to specify an event object, hEventObject, to be associated with the selected
FD_XXX network events, lNetworkEvents. The socket for which an event object is specified is identified
by s. The event object is set when any of the nominated network events occur.

WSAEventSelect operates very similarly to WSAAsyncSelect, the difference being in the actions taken
when a nominated network event occurs. Whereas WSAAsyncSelect causes an application-specified
Windows message to be posted, WSAEventSelect sets the associated event object and records the
occurrence of this event in an internal network event record. An application can use
WSAWaitForMultipleEvents to wait or poll on the event object, and use WSAEnumNetworkEvents to
retrieve the contents of the internal network event record and thus determine which of the nominated
network events have occurred.

This function automatically sets socket s to nonblocking mode, regardless of the value of lNetworkEvents.
See ioctlsocket/WSAIoctl about how to set the socket back to blocking mode.

The lNetworkEvents parameter is constructed by or'ing any of the values specified in the following list.

Value Meaning

FD_READ Want to receive notification of readiness for
reading

FD_WRITE Want to receive notification of readiness for
writing

FD_OOB Want to receive notification of the arrival of
out-of-band data

FD_ACCEPT Want to receive notification of incoming
connections

FD_CONNECT Want to receive notification of completed
connection

FD_CLOSE Want to receive notification of socket closure

FD_QOS Want to receive notification of socket Quality of
Service (QOS) changes

FD_GROUP_QOS Want to receive notification of socket group
Quality of Service (QOS) changes

Issuing a WSAEventSelect for a socket cancels any previous WSAAsyncSelect or WSAEventSelect for
the same socket and clears the internal network event record. For example, to associate an event object
with both reading and writing network events, the application must call WSAEventSelect with both
FD_READ and FD_WRITE, as follows:

rc = WSAEventSelect(s, hEventObject, FD_READ|FD_WRITE);

It is not possible to specify different event objects for different network events. The following code will not
work; the second call will cancel the effects of the first, and only FD_WRITE network event will be
associated with hEventObject2:

rc = WSAEventSelect(s, hEventObject1, FD_READ);
rc = WSAEventSelect(s, hEventObject2, FD_WRITE); //bad

To cancel the association and selection of network events on a socket, lNetworkEvents should be set to
zero, in which case the hEventObject parameter will be ignored.

rc = WSAEventSelect(s, hEventObject, 0);

Closing a socket with closesocket also cancels the association and selection of network events specified
in WSAEventSelect for the socket. The application, however, still must call WSACloseEvent to explicitly
close the event object and free any resources.

Since an accept'ed socket has the same properties as the listening socket used to accept it, any
WSAEventSelect association and network events selection set for the listening socket apply to the
accepted socket. For example, if a listening socket has WSAEventSelect association of hEventOject with
FD_ACCEPT, FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also
have FD_ACCEPT, FD_READ, and FD_WRITE network events associated with the same hEventObject.
If a different hEventObject or network events are desired, the application should call WSAEventSelect,
passing the accepted socket and the desired new information.

Return Values
The return value is zero if the application's specification of the network events and the associated event
object was successful. Otherwise, the value SOCKET_ERROR is returned, and a specific error number
may be retrieved by calling WSAGetLastError.

As in the case of the select and WSAAsyncSelect functions, WSAEventSelect will frequently be used to
determine when a data transfer operation (send or recv) can be issued with the expectation of immediate
success. Nevertheless, a robust application must be prepared for the possibility that the event object is
set and it issues a Windows Sockets call which returns WSAEWOULDBLOCK immediately. For example,
the following sequence of operations is possible:

1. data arrives on socket s; Windows Sockets sets the WSAEventSelect event object

2. application does some other processing

3. while processing, application issues an ioctlsocket(s, FIONREAD...) and notices that there is data
ready to be read

4. application issues a recv(s,...) to read the data

5. application eventually waits on event object specified in WSAEventSelect, which returns immediately
indicating that data is ready to read

6. application issues recv(s,...), which fails with the error WSAEWOULDBLOCK.

Other sequences are possible.

Having successfully recorded the occurrence of the network event (by setting the corresponding bit in the
internal network event record) and signaled the associated event object, no further actions are taken for
that network event until the application makes the function call which implicitly re-enables the setting of
that network event and signaling of the associated event object.

Network Event Re-enabling function

FD_READ recv, recvfrom, WSARecv, or
WSARecvFrom

FD_WRITE send, sendto, WSASend, or WSASendTo

FD_OOB recv, recvfrom, WSARecv, or
WSARecvFrom

FD_ACCEPT accept or WSAAccept unless the error code
returned is WSATRY_AGAIN indicating that
the condition function returned CF_DEFER

FD_CONNECT NONE

FD_CLOSE NONE

FD_QOS WSAIoctl with command SIO_GET_QOS

FD_GROUP_QOS WSAIoctl with command
SIO_GET_GROUP_QOS

Any call to the re-enabling routine, even one which fails, results in re-enabling of recording and signaling
for the relevant network event and event object, respectively.

For FD_READ, FD_OOB, and FD_ACCEPT network events, network event recording and event object
signaling are "level-triggered." This means that if the re-enabling routine is called and the relevant
network condition is still valid after the call, the network event is recorded and the associated event object
is set. This allows an application to be event-driven and not be concerned with the amount of data that
arrives at any one time. Consider the following sequence:

1. Transport provider receives 100 bytes of data on socket s and causes Windows Sockets DLL to
record the FD_READ network event and set the associated event object.

2. The application issues recv(s, buffptr, 50, 0) to read 50 bytes.

3. The transport provider causes Windows Sockets DLL to record the FD_READ network event and sets
the associated event object again since there is still data to be read.

With these semantics, an application need not read all available data in response to an FD_READ
network event¾a single recv in response to each FD_READ network event is appropriate.

The FD_QOS and FD_GROUP_QOS events are considered edge triggered. A message will be posted
exactly once when a QOS change occurs. Further messages will not be forthcoming until either the
provider detects a further change in QOS or the application renegotiates the QOS for the socket.

If a network event has already happened when the application calls WSAEventSelect or when the re-
enabling function is called, then a network event is recorded and the associated event object is set as
appropriate. For example, consider the following sequence:

1. an application calls listen,

2. a connect request is received but not yet accepted,

3. the application calls WSAEventSelect specifying that it is interested in the FD_ACCEPT network
event for the socket. Due to the persistence of network events, Windows Sockets records the

FD_ACCEPT network event and sets the associated event object immediately.

The FD_WRITE network event is handled slightly differently. An FD_WRITE network event is recorded
when a socket is first connected with connect/WSAConnect or accepted with accept/WSAAccept, and
then after a send fails with WSAEWOULDBLOCK and buffer space becomes available. Therefore, an
application can assume that sends are possible starting from the first FD_WRITE network event setting
and lasting until a send returns WSAEWOULDBLOCK. After such a failure the application will find out that
sends are again possible when an FD_WRITE network event is recorded and the associated event object
is set.

The FD_OOB network event is used only when a socket is configured to receive out-of-band data
separately. If the socket is configured to receive out-of-band data in-line, the out-of-band (expedited) data
is treated as normal data and the application should register an interest in, and will get, FD_READ
network event, not FD_OOB network event. An application may set or inspect the way in which out-of-
band data is to be handled by using setsockopt or getsockopt for the SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was graceful or
abortive. If the error code is zero, then the close was graceful; if the error code is WSAECONNRESET,
then the socket's virtual circuit was reset. This only applies to connection-oriented sockets such as
SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the virtual circuit
corresponding to the socket. In TCP terms, this means that the FD_CLOSE is recorded when the
connection goes into the FIN WAIT or CLOSE WAIT states. This results from the remote end performing a
shutdown on the send side or a closesocket.

Please note Windows Sockets will record ONLY an FD_CLOSE network event to indicate closure of a
virtual circuit. It will not record an FD_READ network event to indicate this condition.

The FD_QOS or FD_GROUP_QOS network event is recorded when any field in the flow specification
associated with socket s or the socket group that s belongs to has changed, respectively. Applications
should use WSAIoctl with command SIO_GET_QOS or SIO_GET_GROUP_QOS to get the current QOS
for socket s or for the socket group s belongs to, respectively.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified
parameters was invalid, or the specified
socket is in an invalid state.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTSOCK The descriptor is not a socket.

See Also
WSACloseEvent, WSACreateEvent, WSAEnumNetworkEvents, WSAWaitForMultipleEvents

WSAGetLastError   

The Windows Sockets WSAGetLastError function gets the error status for the last operation which failed.

int WSAGetLastError (void);

Remarks
This function returns the last network error that occurred. When a particular Windows Sockets function
indicates that an error has occurred, this function should be called to retrieve the appropriate error code.
This error code may be different from the error code obtained from getsockopt SO_ERROR.

A successful function call, or a call to WSAGetLastError, does not reset the error code. To reset the error
code, use the WSASetLastError function call with iError set to zero.

This function should not be used to check for an error value on receipt of an asynchronous message. In
this case, the error value is passed in the lParam field of the message, and this may differ from the value
returned by WSAGetLastError.

Return Values
The return value indicates the error code for this thread's last Windows Sockets operation that failed.

See Also
getsockopt, WSASetLastError

WSAGetOverlappedResult     

 

The Windows Sockets WSAGetOverlappedResult function returns the results of an overlapped
operation on the specified socket.

BOOL WSAGetOverlappedResult (
 SOCKET s,
 LPWSAOVERLAPPED lpOverlapped,
 LPDWORD lpcbTransfer,
 BOOL fWait,
 LPDWORD lpdwFlags
);

Parameters
s

[in] Identifies the socket. This is the same socket that was specified when the overlapped operation
was started by a call to WSARecv, WSARecvFrom, WSASend, WSASendTo, or WSAIoctl.

lpOverlapped
[in] Points to a WSAOVERLAPPED structure that was specified when the overlapped operation was
started.

pcbTransfer
[out] Points to a 32-bit variable that receives the number of bytes that were actually transferred by a
send or receive operation, or by WSAIoctl.

fWait
[in] Specifies whether the function should wait for the pending overlapped operation to complete. If
TRUE, the function does not return until the operation has been completed. If FALSE and the
operation is still pending, the function returns FALSE and the WSAGetLastError function returns
WSA_IO_INCOMPLETE.

lpdwFlags
[out] Points to a 32-bit variable that will receive one or more flags that supplement the completion
status. If the overlapped operation was initiated through WSARecv or WSARecvFrom, this
parameter will contain the results value for lpFlags parameter.

Remarks
The results reported by the WSAGetOverlappedResult function are those of the specified socket's last
overlapped operation to which the specified WSAOVERLAPPED structure was provided, and for which
the operation's results were pending. A pending operation is indicated when the function that started the
operation returns FALSE, and the WSAGetLastError function returns WSA_IO_PENDING. When an I/O
operation is pending, the function that started the operation resets the hEvent member of the
WSAOVERLAPPED structure to the nonsignaled state. Then when the pending operation has been
completed, the system sets the event object to the signaled state.

If the fWait parameter is TRUE, WSAGetOverlappedResult determines whether the pending operation
has been completed by waiting for the event object to be in the signaled state.

Return Values
If WSAGetOverlappedResult succeeds, the return value is TRUE. This means that the overlapped
operation has completed successfully and that the value pointed to by lpcbTransfer has been updated. If
WSAGetOverlappedResult returns FALSE, this means that either the overlapped operation has not
completed or the overlapped operation completed but with errors, or that completion status could not be
determined due to errors in one or more parameters to WSAGetOverlappedResult. On failure, the value

pointed to by lpcbTransfer will not be updated. Use WSAGetLastError to determine the cause of the
failure (either of WSAGetOverlappedResult or of the associated overlapped operation).

Error Codes
WSANOTINITIALISED A successful WSAStartup must

occur before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSA_INVALID_HANDLE The hEvent field of the
WSAOVERLAPPED structure does
not contain a valid event object
handle.

WSA_INVALID_PARAMETER One of the parameters is
unacceptable.

WSA_IO_INCOMPLETE fWait is FALSE and the I/O
operation has not yet completed.

See Also
WSAAccept, WSAConnect, WSACreateEvent, WSAIoctl, WSARecv, WSARecvFrom, WSASend,
WSASendTo, WSAWaitForMultipleEvents

WSAGetQOSByName     

 

The Windows Sockets WSAGetQOSByName function initializes a QOS structure based on a named
template.

BOOL WSAGetQOSByName(
 SOCKET s,
 LPWSABUF lpQOSName,
 LPQOS lpQOS
);

Parameters
s

[in] A descriptor identifying a socket.

lpQOSName
[in] Specifies the QOS template name.

lpQOS
[out] A pointer to the QOS structure to be filled.

Remarks
Applications may use this function to initalize a QOS structure to a set of known values appropriate for a
particular service class or media type. These values are stored in a template which is referenced by a
well-known name.

Return Values
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get
extended error information, call WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpQOS argument is not a valid part of
the user address space, or the buffer
length for lpQOS is too small.

WSA_INVAL The specified QOS template name is
invalid.

See Also
getsockopt, WSAAccept, WSAConnect

WSAGetServiceClassInfo   

The Windows Sockets WSAGetServiceClassInfo function retrieves all of the class information (schema)
pertaining to a specified service class from a specified name space provider.

INT WSAGetServiceClassInfo(
 LPGUID lpProviderId,
 LPGUID lpServiceClassId,
 LPDWORD lpdwBufSize,
 LPWSASERVICECLASSINFO lpServiceClassInfo
);

Parameters
lpProviderId

[in] Pointer to a GUID which identifies a specific name space provider

lpServiceClassId
[in] Pointer to a GUID identifying the service class in question

lpdwBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by lpServiceClassInfos. On
output, if the function fails and the error is WSAEFAULT, then it contains the minimum number of
bytes to pass for the lpServiceClassInfo to retrieve the record.

lpServiceClasslnfo
[out] Returns service class information from the indicated name space provider for the specified
service class.

Remarks
The service class information retrieved from a particular name space provider may not necessarily be the
complete set of class information that was supplied when the service class was installed. Individual name
space providers are only required to retain service class information that is applicable to the name spaces
that they support. See section Service Class Data Structures for more information.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSAEFAULT The buffer referenced by

lpServiceClassInfo is too small.
Pass in a larger buffer.

WSA_INVALID_PARAMETER the specified service class ID or
name space provider ID is invalid.

WSANOTINITIALIZED The Windows Sockets 2 DLL has
not been initialized. The application
must first call WSAStartup before
calling any Windows Sockets
functions.

WSAGetServiceClassNameByServiceClassId   

The Windows Sockets WSAGetServiceClassNameByServiceClassId function returns the name of the
service associated with the given type. This name is the generic service name, like FTP or SNA, and not
the name of a specific instance of that service.

INT WSAGetServiceClassNameByServiceClassId(
 LPGUID lpServiceClassId,
 LPTSTR lpszServiceClassName,
 LPDWORD lpdwBufferLength
);

Parameters
lpServiceClassId

[in] Pointer to the GUID for the service class.

lpszServiceClassName
[out] Sevice name.

lpdwBufferLength
[in/out] On input length of buffer returned by lpszServiceClassName. On output, the length of the
service name copied into lpszServiceClassName.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSAEFAULT The specified ServiceClassName

buffer is too small. Pass in a larger
buffer

WSA_INVALID_PARAMETER the specified ServiceClassId is
invalid.

WSANOTINITIALIZED The Windows Sockets 2 DLL has
not been initialized. The application
must first call WSAStartup before
calling any Windows Sockets
functions.

WSAHtonl     

 

The Windows Sockets WSAHtonl function converts a u_long from host byte order to network byte order.

int WSAHtonl (
 SOCKET s,
 u_long hostlong,
 u_long FAR * lpnetlong
);

Parameters
s

[in] A descriptor identifying a socket.

hostlong
[in] A 32-bit number in host byte order.

lpnetlong
[out] A pointer to a 32-bit number in network byte order.

Remarks
This routine takes a 32-bit number in host byte order and returns a 32-bit number pointed to by the
lpnetlong parameter in the network byte order associated with socket s.

Return Values
If no error occurs, WSAHtonl returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code may be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpnetlong argument is not totally
contained in a valid part of the user
address space.

See Also
htonl, htons, ntohl, ntohs, WSANtohl, WSAHtons, WSANtohs

WSAHtons     

 

The Windows Sockets WSAHtons function converts a u_short from host byte order to network byte
order.

int WSAHtons (
 SOCKET s,
 u_short hostshort,
 u_short FAR * lpnetshort
);

Parameters
s

[in] A descriptor identifying a socket.

hostshort
[in] A 16-bit number in host byte order.

lpnetshort
[out] A pointer to a 16-bit number in network byte order.

Remarks
This routine takes a 16-bit number in host byte order and returns a 16-bit number pointed to by the
lpnetshort parameter in the network byte order associated with socket s.

Return Values
If no error occurs, WSAHtons returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code may be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpnetshort argument is not totally
contained in a valid part of the user
address space.

See Also
htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSANtohs

WSAInstallServiceClass   

The Windows Sockets WSAInstallServiceClass function registers a service class schema within a name
space. This schema includes the class name, class id, and any name space specific information that is
common to all instances of the service, such as the SAP ID or object ID.

INT WSAInstallServiceClass(
 LPWSASERVICECLASSINFO lpServiceClassInfo
);

Parameters
lpServiceClasslnfo

[in] Service class to name space specific type mapping information. Multiple mappings can be
handled at one time.

See section Service Class Data Structures for a description of pertinent data structures.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSAEACCESS The calling routine does not have

sufficient privileges to install the
Service.

WSAEALREADY Service class information has already
been registered for this service class
ID. To modify service class info, first
use WSARemoveServiceClass, and
then re-install with updated class info
data.

WSANOTINITIALIZED The Windows Sockets 2 DLL has not
been initialized. The application must
first call WSAStartup before calling any
Windows Sockets functions.

WSAIoctl     

 

The Windows Sockets WSAIoctl function controls the mode of a socket.

int WSAIoctl (
 SOCKET s,
 DWORD dwIoControlCode,
 LPVOID lpvInBuffer,
 DWORD cbInBuffer,
 LPVOID lpvOUTBuffer,
 DWORD cbOUTBuffer,
 LPDWORD lpcbBytesReturned,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters
s

[in] Handle to a socket

dwIoControlCode
[in] Control code of operation to perform

lpvInBuffer
[in] Address of input buffer

cbInBuffer
[in] Size of input buffer

lpvOutBuffer
[out] Address of output buffer

cbOutBuffer
[in] Size of output buffer

lpcbBytesReturned
[out] Address of actual bytes of output

lpOverlapped
[in] Address of WSAOVERLAPPED structure

lpCompletionRoutine
[in] A pointer to the completion routine called when the operation has been completed.

Remarks
This routine is used to set or retrieve operating parameters associated with the socket, the transport
protocol, or the communications subsystem. For nonoverlapped socket, lpOverlapped and
lpCompletionRoutine parameters are ignored, and this function behaves like the standard ioctlsocket
function except that it may block if socket s is in the blocking mode. Note that if socket s is in the
nonblocking mode, this function may return WSAEWOULDBLOCK if the specified operation cannot be
finished immediately. In this case, the application should change the socket to the blocking mode and
reissue the request. For overlapped sockets, operations that cannot be completed immediately will be
initiated, and completion will be indicated at a later time. The final completion status is retrieved through
WSAGetOverlappedResult. The lpcbBytesReturned parameter is ignored.

In as much as the dwIoControlCode parameter is now a 32-bit entity, it is possible to adopt an encoding
scheme that preserves the currently defined ioctlsocket opcodes while providing a convenient way to
partition the opcode identifier space. The dwIoControlCode parameter is architected to allow for protocol

and vendor independence when adding new control codes, while retaining backward compatibility with
the Windows Sockets 1.1 and Unix control codes. The dwIoControlCode parameter has the following
form:

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1
0

I O V T Vendor/Address
Family

Code

I is set if the input buffer is valid for the code, as with IOC_IN.

O is set if the output buffer is valid for the code, as with IOC_OUT. Note that for codes with both input and
output parameters, both I and O will be set.

V is set if there are no parameters for the code, as with IOC_VOID.

T is a two-bit quantity which defines the type of ioctl. The following values are defined:

0 - The ioctl is a standard Unix ioctl code, as with FIONREAD and FIONBIO.

1 - The ioctl is a generic Windows Sockets 2 ioctl code. New ioctl codes defined for Windows Sockets 2
will have T == 1.

2 - The ioctl applies only to a specific address family.

3 - The ioctl applies only to a specific vendor's provider. This type allows companies to be assigned a
vendor number which appears in the

Vendor/Address family field, and then the vendor can define new ioctls specific to that vendor without
having to register the ioctl with a clearinghouse, thereby providing vendor flexibility and privacy.

Vendor/Address family - An 11-bit quantity which defines the vendor who owns the code (if T == 3) or
which contains the address family to which the code applies (if T == 2). If this is a Unix ioctl code (T == 0)
then this field has the same value as the code on Unix. If this is a generic Windows Sockets 2 ioctl (T ==
1) then this field can be used as an extension of the "code" field to provide additional code values.

Code - The specific ioctl code for the operation.

The following Unix commands are supported:

Parameters
FIONBIO

Enable or disable nonblocking mode on socket s. lpvInBuffer points at an unsigned long, which is
nonzero if nonblocking mode is to be enabled and zero if it is to be disabled. When a socket is
created, it operates in blocking mode (that is, nonblocking mode is disabled). This is consistent with
BSD sockets.

The WSAAsyncSelect or WSAEventSelect routine automatically sets a socket to nonblocking
mode. If WSAAsyncSelect or WSAEventSelect has been issued on a socket, then any attempt to
use WSAIoctl to set the socket back to blocking mode will fail with WSAEINVAL. To set the socket
back to blocking mode, an application must first disable WSAAsyncSelect by calling
WSAAsyncSelect with the lEvent parameter equal to zero, or disable WSAEventSelect by calling
WSAEventSelect with the lNetworkEvents parameter equal to zero.

FIONREAD
Determine the amount of data which can be read atomically from socket s. lpvOutBuffer points at an
unsigned long in which WSAIoctl stores the result. If s is stream oriented (for example, type

SOCK_STREAM), FIONREAD returns the total amount of data which may be read in a single receive
operation; this is normally the same as the total amount of data queued on the socket. If s is message
oriented (for example, type SOCK_DGRAM), FIONREAD returns the size of the first datagram
(message) queued on the socket.

SIOCATMARK
Determine whether or not all out-of-band data has been read. This applies only to a socket of stream
style (for example, type SOCK_STREAM) which has been configured for in-line reception of any out-
of-band data (SO_OOBINLINE). If no out-of-band data is waiting to be read, the operation returns
TRUE. Otherwise, it returns FALSE, and the next receive operation performed on the socket will
retrieve some or all of the data preceding the "mark"; the application should use the SIOCATMARK
operation to determine whether any remains. If there is any normal data preceding the "urgent" (out of
band) data, it will be received in order. (Note that receive operations will never mix out-of-band and
normal data in the same call.) lpvOutBuffer points at a BOOL in which WSAIoctl stores the result.

The following Windows Sockets 2 commands are supported:

Parameters
SIO_ASSOCIATE_HANDLE (opcode setting: I, T==1)

Associate this socket with the specified handle of a companion interface. The input buffer contains the
integer value corresponding to the manifest constant for the companion interface (for example,
TH_NETDEV and TH_TAPI.), followed by a value which is a handle of the specified companion
interface, along with any other required information. Refer to the appropriate section in the Windows
Sockets 2 Protocol-Specific Annex for details specific to a particular companion interface. The total
size is reflected in the input buffer length. No output buffer is required. The WSAENOPROTOOPT
error code is indicated for service providers which do not support this ioctl.

SIO_ENABLE_CIRCULAR_QUEUEING (opcode setting: V, T==1)
Indicates to the underlying message-oriented service provider that a newly arrived message should
never be dropped because of a buffer queue overflow. Instead, the oldest message in the queue
should be eliminated in order to accommodate the newly arrived message. No input and output
buffers are required. Note that this ioctl is only valid for sockets associated with unreliable, message-
oriented protocols. The WSAENOPROTOOPT error code is indicated for service providers which do
not support this ioctl.

SIO_FIND_ROUTE (opcode setting: O, T==1)
When issued, this ioctl requests that the route to the remote address specified as a sockaddr in the
input buffer be discovered. If the address already exists in the local cache, its entry is invalidated. In
the case of Novell's IPX, this call initiates an IPX GetLocalTarget (GLT), which queries the network for
the given remote address.

SIO_FLUSH (opcode setting: V, T==1)
Discards current contents of the sending queue associated with this socket. No input and output
buffers are required. The WSAENOPROTOOPT error code is indicated for service providers which do
not support this ioctl.

SIO_GET_BROADCAST_ADDRESS (opcode setting: O, T==1)
This ioctl fills the output buffer with a sockaddr structure containing a suitable broadcast address for
use with sendto/WSASendTo.

SIO_GET_EXTENSION_FUNCTION_POINTER (opcode setting: O, I, T==1)
Retrieve a pointer to the specified extension function supported by the associated service provider.
The input buffer contains a globally unique identifier (GUID) whose value identifies the extension
function in question. The pointer to the desired function is returned in the output buffer. Extension
function identifiers are established by service provider vendors and should be included in vendor
documentation that describes extension function capabilities and semantics.

SIO_GET_QOS (opcode setting: O, T==1)
Retrieve the QOS structure associated with the socket. The input buffer is optional. Some protocols
(for example, RSVP) allow the input buffer to be used to qualify a QOS request. The QOS structure
will be copied into the output buffer. The output buffer must be sized large enough to be able to

contain the full QOS structure. The WSAENOPROTOOPT error code is indicated for service
providers which do not support QOS.

SIO_GET_GROUP_QOS (opcode setting: O, I, T==1)
Retrieve the QOS structure associated with the socket group to which this socket belongs. The input
buffer is optional. Some protocols (for example, RSVP) allow the input buffer to be used to qualify a
QOS request. The QOS structure will be copied into the output buffer. If this socket does not belong
to an appropriate socket group, the SendingFlowspec and ReceivingFlowspec fields of the returned
QOS structure are set to NULL. The WSAENOPROTOOPT error code is indicated for service
providers which do not support QOS.

SIO_MULTIPOINT_LOOPBACK (opcode setting: I, T==1)
Controls whether data sent in a multipoint session will also be received by the same socket on the
local host. A value of TRUE causes loopback reception to occur while a value of FALSE prohibits this.

SIO_MULTICAST_SCOPE (opcode setting: I, T==1)
Specifies the scope over which multicast transmissions will occur. Scope is defined as the number of
routed network segments to be covered. A scope of zero would indicate that the multicast
transmission would not be placed "on the wire" but could be disseminated across sockets within the
local host. A scope value of one (the default) indicates that the transmission will be placed on the
wire, but will not cross any routers. Higher scope values determine the number of routers that may be
crossed. Note that this corresponds to the time-to-live (TTL) parameter in IP multicasting.

SIO_SET_QOS (opcode setting: I, T==1)
Associate the supplied QOS structure with the socket. No output buffer is required, the QOS structure
will be obtained from the input buffer. The WSAENOPROTOOPT error code is indicated for service
providers which do not support QOS.

SIO_SET_GROUP_QOS (opcode setting: I, T==1)
Establish the supplied QOS structure with the socket group to which this socket belongs. No output
buffer is required, the QOS structure will be obtained from the input buffer. The WSAENOPROTOOPT
error code is indicated for service providers which do not support QOS, or if the socket descriptor
specified is not the creator of the associated socket group.

SIO_TRANSLATE_HANDLE (opcode setting: I, O, T==1)
To obtain a corresponding handle for socket s that is valid in the context of a companion interface (for
example, TH_NETDEV and TH_TAPI). A manifest constant identifying the companion interface along
with any other needed parameters are specified in the input buffer. The corresponding handle will be
available in the output buffer upon completion of this function. Refer to the appropriate section in the
Windows Sockets 2 Protocol-Specific Annex for details specific to a particular companion
interface. The WSAENOPROTOOPT error code is indicated for service providers which do not
support this ioctl for the specified companion interface.

If an overlapped operation completes immediately, this function returns a value of zero and the
lpcbBytesReturned parameter is updated with the number of bytes in the output buffer. If the overlapped
operation is successfully initiated and will complete later, this function returns SOCKET_ERROR and
indicates error code WSA_IO_PENDING. In this case, lpcbBytesReturned is not updated. When the
overlapped operation completes the amount of data in the output buffer is indicated either through the
cbTransferred parameter in the completion routine (if specified), or through the lpcbTransfer parameter in
WSAGetOverlappedResult.

When called with an overlapped socket, the lpOverlapped parameter must be valid for the duration of the
overlapped operation. The WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
 DWORD Internal; // reserved
 DWORD InternalHigh; // reserved
 DWORD Offset; // reserved
 DWORD OffsetHigh; // reserved
 WSAEVENT hEvent;
} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled when the
overlapped operation completes if it contains a valid event object handle. An application can use
WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to
pass context information to the completion routine.

The prototype of the completion routine is as follows:

void CALLBACK CompletionRoutine(
 IN DWORD dwError,
 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

CompletionRoutine is a placeholder for an application-defined or library-defined function. dwError
specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred
specifies the number of bytes returned. Currently there are no flag values defined and dwFlags will be
zero. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this socket. The
completion routines may be called in any order, not necessarily in the same order the overlapped
operations are completed.

Compatibility
The ioctl codes with T == 0 are a subset of the ioctl codes used in Berkeley sockets. In particular, there is
no command which is equivalent to FIOASYNC.

Return Values
Upon successful completion, the WSAIoctl returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError.

Error Codes
WSAENETDOWN The network subsystem has failed.

WSAEFAULT The lpvInBuffer, lpvOutBuffer or
lpcbBytesReturned argument is not
totally contained in a valid part of the
user address space, or the cbInBuffer
or cbOutBuffer argument is too small.

WSAEINVAL dwIoControlCode is not a valid
command, or a supplied input
parameter is not acceptable, or the
command is not applicable to the type
of socket supplied.

WSAEINPROGRESS The function is invoked when a callback
is in progress.

WSAENOTSOCK The descriptor s is not a socket.

WSAEOPNOTSUPP The specified ioctl command cannot be
realized. (For examle, the flow
specifications specified in
SIO_SET_QOS or
SIO_SET_GROUP_QOS cannot be

satisfied.)

WSA_IO_PENDING An overlapped operation was
successfully initiated and completion
will be indicated at a later time.

WSAEWOULDBLOCK The socket is marked as nonblocking
and the requested operation would
block.

See Also
getsockopt, ioctlsocket, setsockopt, socket, WSASocket

WSAIsBlocking   

This function has been removed in compliance with the Windows Sockets 2 specification, revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications should not
use this function. Windows Sockets 1.1 applications that call this function are still supported through the
WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during calls to
blocking functions. Instead of using blocking hooks, an applications should use a separate thread
(separate from the main GUI thread) for network activity.

WSAJoinLeaf     

 

The Windows Sockets connect function joins a leaf node into a multipoint session, exchanges connect
data, and specifies needed quality of service based on the supplied flow specifications.

SOCKET WSAJoinLeaf (
 SOCKET s,
 const struct sockaddr FAR * name,
 int namelen,
 LPWSABUF lpCallerData,
 LPWSABUF lpCalleeData,
 LPQOS lpSQOS,
 LPQOS lpGQOS,
 DWORD dwFlags
);

Parameters
s

[in] A descriptor identifying a multipoint socket.

name
[in] The name of the peer to which the socket is to be joined.

namelen
[in] The length of the name.

lpCallerData
[in] A pointer to the user data that is to be transferred to the peer during multipoint session
establishment.

lpCalleeData
[out] A pointer to the user data that is to be transferred back from the peer during multipoint session
establishment.

lpSQOS
[in] A pointer to the flow specifications for socket s, one for each direction.

lpGQOS
[in] A pointer to the flow specifications for the socket group (if applicable).

dwFlags
[in] Flags to indicate that the socket is acting as a sender, receiver, or both.

Remarks
This function is used to join a leaf node to a multipoint session, and to perform a number of other ancillary
operations that occur at session join time as well. If the socket, s, is unbound, unique values are assigned
to the local association by the system, and the socket is marked as bound.

WSAJoinLeaf has the same parameters and semantics as WSAConnect except that it returns a socket
descriptor (as in WSAAccept), and it has an additional dwFlags parameter. Only multipoint sockets
created using WSASocket with appropriate multipoint flags set may be used for input parameter s in this
function. If the socket is in the nonblocking mode, the returned socket descriptor will not be usable until
after a corresponding FD_CONNECT indication has been received. A root application in a multipoint
session may call WSAJoinLeaf one or more times in order to add a number of leaf nodes, however at
most one multipoint connection request may be outstanding at a time. Refer to Multipoint and Multicast
Semantics for additional information.

The socket descriptor returned by WSAJoinLeaf is different depending on whether the input socket

descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the name parameter designates a
particular leaf node to be added and the returned socket descriptor is a c_leaf socket corresponding to
the newly added leaf node. The newly created socket has the same properties as s including
asynchronous events registered with WSAAsyncSelect or with WSAEventSelect, but not including the
c_root socket's group ID, if any. It is not intended to be used for exchange of multipoint data, but rather is
used to receive network event indications (for example, FD_CLOSE) for the connection that exists to the
particular c_leaf. Some multipoint implementations may also allow this socket to be used for "side chats"
between the root and an individual leaf node. An FD_CLOSE indication will be received for this socket if
the corresponding leaf node calls closesocket to drop out of the multipoint session. Symmetrically,
invoking closesocket on the c_leaf socket returned from WSAJoinLeaf will cause the socket in the
corresponding leaf node to get FD_CLOSE notification.

When WSAJoinLeaf is invoked with a c_leaf socket, the name parameter contains the address of the
root application (for a rooted control scheme) or an existing multipoint session (nonrooted control
scheme), and the returned socket descriptor is the same as the input socket descriptor. In other words, a
new socket descriptor is not allocated. In a rooted control scheme, the root application would put its
c_root socket in the listening mode by calling listen. The standard FD_ACCEPT notification will be
delivered when the leaf node requests to join itself to the multipoint session. The root application uses the
usual accept/WSAAccept functions to admit the new leaf node. The value returned from either accept or
WSAAccept is also a c_leaf socket descriptor just like those returned from WSAJoinLeaf. To
accommodate multipoint schemes that allow both root-initiated and leaf-initiated joins, it is acceptable for
a c_root socket that is already in listening mode to be used as an input to WSAJoinLeaf.

The application is responsible for allocating any memory space pointed to directly or indirectly by any of
the parameters it specifies.

The lpCallerData is a value parameter which contains any user data that is to be sent along with the
multipoint session join request. If lpCallerData is NULL, no user data will be passed to the peer. The
lpCalleeData is a result parameter which will contain any user data passed back from the peer as part of
the multipoint session establishment. lpCalleeData->len initially contains the length of the buffer allocated
by the application and pointed to by lpCalleeData->buf. lpCalleeData->len will be set to zero if no user
data has been passed back. The lpCalleeData information will be valid when the multipoint join operation
is complete. For blocking sockets, this will be when the WSAConnect function returns. For nonblocking
sockets, this will be after the FD_CONNECT notification has occurred. If lpCalleeData is NULL, no user
data will be passed back. The exact format of the user data is specific to the address family to which the
socket belongs.

At multipoint session establishment time, an application may use the lpSQOS and/or lpGQOS parameters
to override any previous QOS specification made for the socket through WSAIoctl with either the
SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.

lpSQOS specifies the flow specifications for socket s, one for each direction, followed by any additional
provider-specific parameters. If either the associated transport provider in general or the specific type of
socket in particular cannot honor the QOS request, an error will be returned as indicated below. The
sending or receiving flow specification values will be ignored, respectively, for any unidirectional sockets.
If no provider-specific parameters are supplied, the buf and len fields of lpSQOS->ProviderSpecific should
be set to NULL and zero, respectively. A NULL value for lpSQOS indicates no application supplied QOS.

lpGQOS specifies the flow specifications for the socket group (if applicable), one for each direction,
followed by any additional provider-specific parameters. If no provider-specific parameters are supplied,
the buf and len fields of lpSQOS->ProviderSpecific should be set to NULL and zero, respectively. A NULL
value for lpGQOS indicates no application-supplied group QOS. This parameter will be ignored if s is not
the creator of the socket group.

The dwFlags parameter is used to indicate whether the socket will be acting only as a sender
(JL_SENDER_ONLY), only as a receiver (JL_RECEIVER_ONLY), or both (JL_BOTH).

Comments
When connected sockets break (that is, become closed for whatever reason), they should be discarded
and recreated. It is safest to assume that when things go awry for any reason on a connected socket, the
application must discard and recreate the needed sockets in order to return to a stable point.

Return Values
If no error occurs, WSAJoinLeaf returns a value of type SOCKET which is a descriptor for the newly
created multipoint socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific error code
may be retrieved by calling WSAGetLastError.

On a blocking socket, the return value indicates success or failure of the join operation.

With a nonblocking socket, successful initiation of a join operation is indicated by a return of a valid
socket descriptor. Subsequently, an FD_CONNECT indication will be given when the join operation
completes, either successfully or otherwise. The application must use either WSAAsyncSelect or
WSAEventSelect with interest registered for the FD_CONNECT event in order to determine when the
join operation has completed. Note that the select function cannot be used to determine when the join
operation completes.

Also, until the multipoint session join attempt completes all subsequent calls to WSAJoinLeaf on the same
socket will fail with the error code WSAEALREADY.

If the return error code indicates the multipoint session join attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application may call
WSAJoinLeaf again for the same socket.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The specified address is already in use.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEALREADY A nonblocking WSAJoinLeaf call is in
progress on the specified socket.

WSAEADDRNOTAVAIL The specified address is not available
from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family
cannot be used with this socket.

WSAECONNREFUSED The attempt to join was forcefully
rejected.

WSAEFAULT The name or the namelen argument is
not a valid part of the user address
space, the namelen argument is too
small, the buffer length for
lpCalleeData, lpSQOS, and lpGQOS
are too small, or the buffer length for
lpCallerData is too large.

WSAEISCONN The socket is already member of the
multipoint session.

WSAENETUNREACH The network cannot be reached from
this host at this time.

WSAENOBUFS No buffer space is available. The socket
cannot be joined.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The flow specifications specified in
lpSQOS and lpGQOS cannot be
satisfied.

WSAEPROTONOSUPPORT The lpCallerData augment is not
supported by the service provider.

WSAETIMEDOUT Attempt to join timed out without
establishing a multipoint session.

WSAEWOULDBLOCK The socket is marked as nonblocking
and the multipoint session join
operation cannot be completed
immediately. It is possible to select the
socket while it is connecting by
selecting it for writing.

See Also
accept, bind, select, WSAAccept, WSAAsyncSelect, WSAEventSelect, WSASocket

WSALookupServiceBegin   

The Windows Sockets WSALookupServiceBegin function initiates a client query that is constrained by
the information contained within a WSAQUERYSET structure. WSALookupServiceBegin only returns a
handle, which should be used by subsequent calls to WSALookupServiceNext to get the actual results.

INT WSALookupServiceBegin (
 LPWSAQUERYSET lpqsRestrictions,
 DWORD dwControlFlags,
 LPHANDLE lphLookup
);

Parameters
lpqsRestrictions

[in] Contains the search criteria. See below for details.

dwControlFlags
[in] Controls the depth of the search.

LUP_DEEP Query deep as opposed to just the
first level.

LUP_CONTAINERS Return containers only

LUP_NOCONTAINERS Do not return any containers

LUP_FLUSHCACHE If the provider has been caching
information, ignore the cache and
go query the name space itself.

LUP_NEAREST If possible, return results in the
order of distance. The measure of
distance is provider specific.

LUP_RES_SERVICE This indicates whether prime
response is in the remote or local
part of CSADDR_INFO structure.
The other part needs to be
"usable" in either case.

LUP_RETURN_ALIAS Any available alias information is to
be returned in successive calls to
WSALookupServiceNext, and
each alias returned will have the
RESULT_IS_ALIAS flag set.

LUP_RETURN_NAME Retrieve the name

LUP_RETURN_TYPE Retrieve the type

LUP_RETURN_VERSION Retrieve the version

LUP_RETURN_COMMENT Retrieve the comment

LUP_RETURN_ADDR Retrieve the addresses

LUP_RETURN_BLOB Retrieve the private data

LUP_RETURN_ALL Retrieve all of the information

lphLookup
[out] Handle to be used when calling WSALookupServiceNext in order to start retrieving the results
set.

Remarks
If LUP_CONTAINERS is specified in a call, all other restriction values should be avoided. If any are

supplied, it is up to the name service provider to decide if it can support this restriction over the
containers. If it cannot, it should return an error.

Some name service providers may have other means of finding containers. For example, containers
might all be of some well-known type, or of a set of well-known types, and therefore a query restriction
may be created for finding them. No matter what other means the name service provider has for locating
containers, LUP_CONTAINERS and LUP_NOCONTAINERS take precedence. Hence, if a query
restriction is given that includes containers, specifying LUP_NOCONTAINERS will prevent the container
items from being returned. Similarly, no matter the query restriction, if LUP_CONTAINERS is given, only
containers should be returned. If a name space does not support containers, and LUP_CONTAINERS is
specified, it should simply return WSANO_DATA.

The preferred method of obtaining the containers within another container, is the call:

dwStatus = WSALookupServiceBegin(
 lpqsRestrictions,
 LUP_CONTAINERS,
 lphLookup);

followed by the requisite number of WSALookupServiceNext calls. This will return all containers
contained immediately within the starting context; that is, it is not a deep query. With this, one can map
the address space structure by walking the hierarchy, perhaps enumerating the content of selected
containers. Subsequent uses of WSALookupServiceBegin use the containers returned from a previous
call.

Forming Queries
As mentioned above, a WSAQUERYSET structure is used as an input parameter to WSALookupBegin
in order to qualify the query. The following table indicates how the WSAQUERYSET is used to construct a
query. When a field is marked as (Optional) a NULL pointer may be supplied, indicating that the field will
not be used as a search criteria. See section Query-Related Data Structures for additional information.

WSAQUERYSET Field Name Query Interpretation

dwSize Must be set to sizeof(WSAQUERYSET).
This is a versioning mechanism.

dwOutputflags Ignored for queries.

lpszServiceInstanceName (Optional) Referenced string contains
service name. The semantics for
wildcarding within the string are not
defined, but may be supported by certain
name space providers.

lpServiceClassId (Required) The GUID corresponding to
the service class.

lpVersion (Optional) References desired version
number and provides version
comparison semantics (that is, version
must match exactly, or version must be
not less than the value supplied).

lpszComment Ignored for queries.

dwNameSpace1 Identifier of a single name space in which
to constrain the search, or NS_ALL to
include all name spaces.

lpNSProviderId (Optional) References the GUID of a
specific name space provider, and limits
the query to this provider only.

lpszContext (Optional) Specifies the starting point of
the query in a hierarchical name space.

dwNumberOfProtocols Size of the protocol constraint array, may
be zero.

lpafpProtocols (Optional) References an array of
AFPROTOCOLS structure. Only services
that utilize these protocols will be
returned.

lpszQueryString (Optional) Some namespaces (such as
whois++) support enriched SQL like
queries which are contained in a simple
text string. This parameter is used to
specify that string.

dwNumberOfCsAddrs Ignored for queries.

lpcsaBuffer Ignored for queries.

lpBlob (Optional) This is a pointer to a provider-
specific entity.

1 See the Important note below

Important In most instances, applications interested in only a particular transport protocol should
constrain their query by address family and protocol rather than by name space. This would allow an
application that needs to locate a TCP/IP service, for example, to have its query processed by all
available name spaces such as the local hosts file, DNS, and NIS.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSANO_DATA The name was found in the

database but no data matching the
given restrictions was located.

WSANOTINITIALIZED The Windows Sockets 2 DLL has
not been initialized. The application
must first call WSAStartup before
calling any Windows Sockets
functions.

WSASERVICE_NOT_FOUND No such service is known. The
service cannot be found in the
specified name space.

See Also
WSALookupServiceEnd and WSALookupServiceNext

WSALookupServiceEnd   

The Windows Sockets WSALookupServiceEnd function is called to free the handle after previous calls
to WSALookupServiceBegin and WSALookupServiceNext.

Note that if you call WSALookupServiceEnd from another thread while an existing
WSALookupServiceNext is blocked, the end call will have the same effect as a cancel and will cause
the WSALookupServiceNext call to return immediately.

INT WSALookupServiceEnd (
 HANDLE hLookup
);

Parameters
hLookup

[in] Handle previously obtained by calling WSALookupServiceBegin.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSA_INVALID_HANDLE The Handle is not valid

WSANOTINITIALIZED The Windows Sockets 2 DLL has
not been initialized. The application
must first call WSAStartup before
calling any Windows
Socketsfunctions.

See Also
WSALookupServiceBegin and WSALookupServiceNext

WSALookupServiceNext   

The Windows Sockets WSALookupServiceNext function is called after obtaining a handle from a
previous call to WSALookupServiceBegin in order to retrieve the requested service information.

The provider will pass back a WSAQUERYSET structure in the lpqsResults buffer. The client should
continue to call this function until it returns WSA_E_NOMORE, indicating that all of WSAQUERYSET has
been returned.

INT WSALookupServiceNext (
 HANDLE hLookup,
 DWORD dwControlFlags,
 LPDWORD lpdwBufferLength,
 LPWSAQUERYSET lpqsResults
);

Parameters
hLookup

[in] Handle returned from the previous call to WSALookupServiceBegin.

dwControlFlags
[in] Flags to control the next operation. This is currently used to indicate to the provider what to do if
the result set is too big for the buffer. If on the previous call to WSALookupServiceNext the result set
was too large for the buffer, the application can choose to do one of two things on this call. First, it can
choose to pass a bigger buffer and try again. Second, if it cannot or is unwilling to allocate a larger
buffer, it can pass LUP_FLUSHPREVIOUS to tell the provider to throw away the last result set, which
was too large, and move on to the next set for this call.

lpdwBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by lpresResults. On output, if
the function fails and the error is WSAEFAULT, then it contains the minimum number of bytes to pass
for the lpqsResults to retrieve the record.

lpqsResults
[out] A pointer to a block of memory, which will contain one result set in a WSAQUERYSET structure
on return.

Query Results
The following table describes how the query results are represented in the WSAQUERYSET structure.

WSAQUERYSET Field Name Result Interpretation

dwSize Will be set to
sizeof(WSAQUERYSET). This is
used as a versioning mechanism.

dwOuputFlags RESULT_IS_ALIAS flag indicates
this is an alias result.

lpszServiceInstanceName Referenced string contains service
name.

lpServiceClassId The GUID corresponding to the
service class.

lpVersion References version number of the
particular service instance.

lpszComment Optional comment string supplied
by service instance.

dwNameSpace Name space in which the service

instance was found.

lpNSProviderId Identifies the specific name space
provider that supplied this query
result.

lpszContext Specifies the context point in a
hierarchical name space at which
the service is located.

dwNumberOfProtocols Undefined for results.

lpafpProtocols Undefined for results, all needed
protocol information is in the
CSADDR_INFO structures.

lpszQueryString Undefined for results.

dwNumberOfCsAddrs Indicates the number of elements in
the array of CSADDR_INFO
structures.

lpcsaBuffer A pointer to an array of
CSADDR_INFO structures, with one
complete transport address
contained within each element.

lpBlob (Optional) This is a pointer to a
provider-specific entity.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSA_E_NO_MORE There is no more data available.

WSA_E_CANCELLED A call to WSALookupServiceEnd
was made while this call was still
processing. The call has been
canceled. The data in the
lpqsResults buffer is undefined.

WSAEFAULT The lpqsResults buffer was too
small to contain a
WSAQUERYSET set.

WSA_INVALID_HANDLE The specified Lookup handle is
invalid.

WSANOTINITIALIZED The Windows Sockets 2 DLL has
not been initialized. The application
must first call WSAStartup before
calling any Windows Sockets
functions.

WSANO_DATA The name was ound in the
database, but no data matching the
given restrictions was located.

WSASERVICE_NOT_FOUND No such service is known. The
service cannot be found in the
specified name space.

See Also

WSALookupServiceBegin and WSALookupServiceEnd

WSANtohl     

 

The Windows Sockets WSANtohl function converts a u_long from network byte order to host byte order.

int WSANtohl (
 SOCKET s,
 u_long netlong,
 u_long FAR * lphostlong
);

Parameters
s

[in] A descriptor identifying a socket.

netlong
[in] A 32-bit number in network byte order.

lphostlong
[out] A pointer to a 32-bit number in host byte order.

Remarks
This routine takes a 32-bit number in the network byte order associated with socket s and returns a 32-bit
number pointed to by the lphostlong parameter in host byte order.

Return Values
If no error occurs, WSANtohl returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code may be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lphostlong argument is not totally
contained in a valid part of the user
address space.

See Also
htonl, htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohs

WSANtohs     

 

The Windows Sockets WSANtohs function converts a u_short from network byte order to host byte
order.

int WSANtohs (
 SOCKET s,
 u_short netshort,
 u_short FAR * lphostshort
);

Parameters
s

[in] A descriptor identifying a socket.

netshort
[in] A 16-bit number in network byte order.

lphostshort
[out] A pointer to a 16-bit number in host byte order.

Remarks
This routine takes a 16-bit number in the network byte order associated with socket s and returns a 16-bit
number pointed to by the lphostshort parameter in host byte order.

Return Values
If no error occurs, WSANtohs returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code may be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lphostshort argument is not totally
contained in a valid part of the user
address space.

See Also
htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSAHtons

WSARecv     

 

The Windows Sockets WSARecv function receives data from a socket.

int WSARecv (
 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesRecvd,
 LPDWORD lpFlags,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters
s

[in] A descriptor identifying a connected socket.

lpBuffers
[in/out] A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a
buffer and the length of the buffer.

dwBufferCount
[in] The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd
[out] A pointer to the number of bytes received by this call if the receive operation completes
immediately.

lpFlags
[in/out] A pointer to flags.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the receive operation has been completed
(ignored for nonoverlapped sockets).

Remarks
This function provides functionality over and above the standard recv function in three important areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped receive operations.

2. It allows multiple receive buffers to be specified making it applicable to the scatter/gather type of I/O.

3. The lpFlags parameter is both an INPUT and an OUTPUT parameter, allowing applications to sense
the output state of the MSG_PARTIAL flag bit. Note however, that the MSG_PARTIAL flag bit is not
supported by all protocols.

WSARecv is used on connected sockets or bound connectionless sockets specified by the s parameter
and is used to read incoming data.

For overlapped sockets WSARecv is used to post one or more buffers into which incoming data will be
placed as it becomes available, after which the application-specified completion indication (invocation of
the completion routine or setting of an event object) occurs. If the operation does not complete
immediately, the final completion status is retrieved through the completion routine or
WSAGetOverlappedResult.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be treated as a
nonoverlapped socket.

For nonoverlapped sockets, the blocking semantics are identical to that of the standard recv function and
the lpOverlapped and lpCompletionRoutine parameters are ignored. Any data which has already been
received and buffered by the transport will be copied into the supplied user buffers. For the case of a
blocking socket with no data currently having been received and buffered by the transport, the call will
block until data is received.

The supplied buffers are filled in the order in which they appear in the array pointed to by lpBuffers, and
the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this operation
completes in an overlapped manner, it is the service provider's responsibility to capture these WSABUF
structures before returning from this call. This enables applications to build stack-based WSABUF arrays.

For byte stream style sockets (for example, type SOCK_STREAM), incoming data is placed into the
buffers until the buffers are filled, the connection is closed, or internally buffered data is exhausted.
Regardless of whether or not the incoming data fills all the buffers, the completion indication occurs for
overlapped sockets. For message-oriented sockets (for example, type SOCK_DGRAM), an incoming
message is placed into the supplied buffers, up to the total size of the buffers supplied, and the
completion indication occurs for overlapped sockets. If the message is larger than the buffers supplied,
the buffers are filled with the first part of the message. If the MSG_PARTIAL feature is supported by the
underlying service provider, the MSG_PARTIAL flag is set in lpFlags and subsequent receive operations
will retrieve the rest of the message. If MSG_PARTIAL is not supported but the protocol is reliable,
WSARecv generates the error WSAEMSGSIZE and a subsequent receive operation with a larger buffer
can be used to retrieve the entire message. Otherwise, (that is, the protocol is unreliable and does not
support MSG_PARTIAL), the excess data is lost, and WSARecv generates the error WSAEMSGSIZE.

For connection-oriented sockets, WSARecv can indicate the graceful termination of the virtual circuit in
one of two ways, depending on whether the socket is a byte stream or message oriented. For byte
streams, zero bytes having been read indicates graceful closure and that no more bytes will ever be read.
For message-oriented sockets, where a zero byte message is often allowable, a return error code of
WSAEDISCON is used to indicate graceful closure. In any case a return error code of
WSAECONNRESET indicates an abortive close has occurred.

lpFlags may be used to influence the behavior of the function invocation beyond the options specified for
the associated socket. That is, the semantics of this function are determined by the socket options and
the lpFlags parameter. The latter is constructed by or-ing any of the following values:

Value Meaning

MSG_PEEK Peek at the incoming data. The data is copied
into the buffer but is not removed from the
input queue. This flag is valid only for
nonoverlapped sockets.

MSG_OOB Process out-of-band data. (See section Out-
Of-Band data for a discussion of this topic.)

MSG_PARTIAL This flag is for message-oriented sockets only.
On output, indicates that the data supplied is a
portion of the message transmitted by the
sender. Remaining portions of the message
will be supplied in subsequent receive
operations. A subsequent receive operation
with MSG_PARTIAL flag cleared indicates end
of sender's message.

As an input parameter, this flag indicates that

the receive operation should complete even if
only part of a message has been received by
the service provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial message
is received. If a complete message is received, MSG_PARTIAL is cleared in lpFlags. In the case of
delayed completion, the value pointed to by lpFlags is not updated. When completion has been indicated
the application should call WSAGetOverlappedResult and examine the flags pointed to by the
lpdwFlags parameter.

Overlapped socket I/O:

If an overlapped operation completes immediately, WSARecv returns a value of zero and the
lpNumberOfBytesRecvd parameter is updated with the number of bytes received and the flag bits pointed
by the lpFlags parameter are also updated. If the overlapped operation is successfully initiated and will
complete later, WSARecv returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In
this case, lpNumberOfBytesRecvd and lpFlags are not updated. When the overlapped operation
completes the amount of data transferred is indicated either through the cbTransferred parameter in the
completion routine (if specified), or through the lpcbTransfer parameter in WSAGetOverlappedResult.
Flag values are obtained by examining the lpdwFlags parameter of WSAGetOverlappedResult.

This function may be called from within the completion routine of a previous WSARecv, WSARecvFrom,
WSASend or WSASendTo function. For a given socket, I/O completion routines will not be nested. This
permits time-sensitive data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If multiple I/O
operations are simultaneously outstanding, each must reference a separate overlapped structure. The
WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
 DWORD Internal; // reserved
 DWORD InternalHigh; // reserved
 DWORD Offset; // reserved
 DWORD OffsetHigh; // reserved
 WSAEVENT hEvent;
} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled when the
overlapped operation completes if it contains a valid event object handle. An application can use
WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to
pass context information to the completion routine.

The completion routine follows the same rules as stipulated for Win32 file I/O completion routines. The
completion routine will not be invoked until the thread is in an alertable wait state such as can occur when
the function WSAWaitForMultipleEvents with the fAlertable parameter set to TRUE is invoked.

The transport providers allow an application to invoke send and receive operations from within the context
of the socket I/O completion routine, and guarantee that, for a given socket, I/O completion routines will
not be nested. This permits time-sensitive data transmissions to occur entirely within a preemptive
context.

The prototype of the completion routine is as follows:

void CALLBACK CompletionROUTINE(
 IN DWORD dwError,

 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPEDlpOverlapped,
 IN DWORD dwFlags
);

CompletionRoutine is a placeholder for an application-defined or library-defined function name. dwError
specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred
specifies the number of bytes received. dwFlags contains information that would have appeared in
lpFlags if the receive operation had completed immediately. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this socket. When
using WSAWaitForMultipleEvents, all waiting completion routines are called before the alertable
thread's wait is satisfied with a return code of WSA_IO_COMPLETION. The completion routines may be
called in any order, not necessarily in the same order the overlapped operations are completed. However,
the posted buffers are guaranteed to be filled in the same order they are supplied.

Return Values
If no error occurs and the receive operation has completed immediately, WSARecv returns zero. Note
that in this case, the completion routine will have already been scheduled, and to be called once the
calling thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code may be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING indicates
that the overlapped operation has been successfully initiated and that completion will be indicated at a
later time. Any other error code indicates that the overlapped operation was not successfully initiated and
no completion indication will occur.

Error Codes
WSANOTINITIALISED A successful WSAStartup must

occur before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOTCONN The socket is not connected.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1
call is in progress, or the service
provider is still processing a
callback function.

WSAENETRESET The connection has been broken
due to the remote host resetting.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpBuffers argument is not totally
contained in a valid part of the user
address space.

WSAEOPNOTSUPP MSG_OOB was specified, but the
socket is not stream style such as
type SOCK_STREAM, out-of-band
data is not supported in the
communication domain associated
with this socket, or the socket is
unidirectional and supports only
send operations.

WSAESHUTDOWN The socket has been shut down; it
is not possible to WSARecv on a
socket after shutdown has been

invoked with how set to
SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too
many outstanding overlapped I/O
requests. Nonoverlapped sockets:
The socket is marked as
nonblocking and the receive
operation cannot be completed
immediately.

WSAEMSGSIZE The message was too large to fit
into the specified buffer and (for
unreliable protocols only) any
trailing portion of the message that
did not fit into the buffer has been
discarded.

WSAEINVAL The socket has not been bound with
bind, or the socket is not created
with the overlapped flag.

WSAECONNABORTED The virtual circuit was terminated
due to a time-out or other failure.

WSAECONNRESET The virtual circuit was reset by the
remote side.

WSAEDISCON Socket s is message oriented and
the virtual circuit was gracefully
closed by the remote side.

WSA_IO_PENDING An overlapped operation was
successfully initiated and
completion will be indicated at a
later time.

WSA_OPERATION_ABORTED The overlapped operation has been
canceled due to the closure of the
socket.

See Also
WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

WSARecvDisconnect     

 

The Windows Sockets WSARecvDisconnect function terminates reception on a socket, and retrieves the
disconnect data if the socket is connection oriented.

int WSARecvDisconnect (
 SOCKET s,
 LPWSABUF lpInboundDisconnectData
);

Parameters
s

[in] A descriptor identifying a socket.

lpInboundDisconnectData
[out] A pointer to the incoming disconnect data.

Remarks
WSARecvDisconnect is used on connection-oriented sockets to disable reception, and retrieve any
incoming disconnect data from the remote party.

After this function has been successfully issued, subsequent receives on the socket will be disallowed.
This has no effect on the lower protocol layers. For TCP, the TCP window is not changed and incoming
data will be accepted (but not acknowledged) until the window is exhausted. For UDP, incoming
datagrams are accepted and queued. In no case will an ICMP error packet be generated.

To successfully receive incoming disconnect data, an application must use other mechanisms to
determine that the circuit has been closed. For example, an application needs to receive an FD_CLOSE
notification, or get a zero return value, or a WSAEDISCON or WSAECONNRESET error code from
recv/WSARecv.

Note that WSARecvDisconnect does not close the socket, and resources attached to the socket will not
be freed until closesocket is invoked.

Comments
WSARecvDisconnect does not block regardless of the SO_LINGER setting on the socket.

An application should not rely on being able to re-use a socket after it has been
WSARecvDisconnected. In particular, a Windows Sockets provider is not required to support the use of
connect/WSAConnect on such a socket.

Return Values
If no error occurs, WSARecvDisconnect returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buffer referenced by the parameter
lpInboundDisconnectData is too small.

WSAENOPROTOOPT The disconnect data is not supported by
the indicated protocol family.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTCONN The socket is not connected
(connection-oriented sockets only).

WSAENOTSOCK The descriptor is not a socket.

See Also
connect, socket

WSARecvEx   

Notice This function is a Microsoft-specific extension to the Windows Sockets specification. For
more information, see Microsoft Extensions and Windows Sockets 2.

The Windows Sockets WSARecvEx function is identical to the recv function, except the flags parameter
is an in-out parameter. When a partial message is received while using datagram protocol, the
MSG_PARTIAL bit is set in the flags parameter on return from the function.

int PASCAL FAR WSARecvEx (
 SOCKET s,
 char FAR * buf,
 int len,
 int *flags
);

Parameters
s

[in] A descriptor identifying a connected socket.

buf
[out] A buffer for the incoming data.

len
[in] The length of buf.

flags
[in/out] Specifies whether the message is fully or partiall received for datagram sockets.

Remarks
By default, for message-oriented transport protocols the Windows Sockets recv function receives a single
message in each call to the function. This works fine for most cases, but there are two situations in which
this is insufficient: when the application's data buffer is smaller than the message, and when the message
is large and arrives in several pieces.

When the buffer is smaller than the data, as much of the message as will fit is copied into the user's buffer
and recv returns with the error code WSAEMSGSIZE. A subsequent call to recv will get the next part of
the message. Applications written for message-oriented transport protocols should be coded for this
possibility if message sizing is not guaranteed by the application's data transfer protocol. If an application
gets this error code, then the entire data buffer is filled with data.

It is more complicated when a very large message arrives a little at a time. For example, if an application
sends a 1-megabyte message, the transport protocol must break up the message in order to send it over
the physical network. It is theoretically possible for the transport protocol on the receiving side to buffer all
the data in the message, but this would be quite expensive in terms of resources.

It would be better to allow a recv call to complete with only a partial message and some indication to the
application that the data is only a partial message. However, the Windows Sockets recv function has only
one output parameter: a pointer to the buffer for the incoming data. Therefore, Windows NT supplies the
WSARecvEx function, which is identical to the recv function except that the flags parameter is an in-out
parameter:

Return Values
On return from WSARecvEx, if a partial message was received, the MSG_PARTIAL bit is set in the flags
parameter. If a complete message was received, MSG_PARTIAL is not set in flags. For a stream-oriented
transport protocol, MSG_PARTIAL is never set on return from WSARecvEx; for stream transport
protocols, this function behaves identically to the Windows Sockets recv function.

WSARecvFrom     

 

The Windows Sockets WSARecvFrom function receives a datagram and stores the source address.

int WSARecvFrom (
 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesRecvd,
 LPDWORD lpFlags,
 struct sockaddr FAR * lpFrom,
 LPINT lpFromlen,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters
s

[in] A descriptor identifying a socket

lpBuffers
[in/out] A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a
buffer and the length of the buffer.

dwBufferCount
[in] The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd
[out] A pointer to the number of bytes received by this call if the receive operation completes
immediately.

lpFlags
[in/out] A pointer to flags.

lpFrom
[out] An optional pointer to a buffer which will hold the source address upon the completion of the
overlapped operation.

lpFromlen
[in/out] A pointer to the size of the from buffer, required only if lpFrom is specified.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the receive operation has been completed
(ignored for nonoverlapped sockets).

Remarks
This function provides functionality over and above the standard recvfrom function in three important
areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped receive operations.

2. It allows multiple receive buffers to be specified making it applicable to the scatter/gather type of I/O.

3. The lpFlags parameter is both an INPUT and an OUTPUT parameter, allowing applications to sense
the output state of the MSG_PARTIAL flag bit. Note however, that the MSG_PARTIAL flag bit is not
supported by all protocols.

WSARecvFrom is used primarily on a connectionless socket specified by s.

For overlapped sockets, this function is used to post one or more buffers into which incoming data will be
placed as it becomes available on a (possibly connected) socket, after which the application-specified
completion indication (invocation of the completion routine or setting of an event object) occurs. If the
operation does not complete immediately, the final completion status is retrieved through the completion
routine or WSAGetOverlappedResult. Also note that the values pointed to by lpFrom and lpFromlen are
not updated until completion is indicated. Applications must not use or disturb these values until they have
been updated, therefore the application must not use automatic (that is, stack-based) variables for these
parameters.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will be treated as a
nonoverlapped socket.

For nonoverlapped sockets, the blocking semantics are identical to that of the standard recvfrom function
and the lpOverlapped and lpCompletionRoutine parameters are ignored. Any data which has already
been received and buffered by the transport will be copied into the supplied user buffers. For the case of
a blocking socket with no data currently having been received and buffered by the transport, the call will
block until data is received.

The supplied buffers are filled in the order in which they appear in the array pointed to by lpBuffers, and
the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this operation
completes in an overlapped manner, it is the service provider's responsibility to capture these WSABUF
structures before returning from this call. This enables applications to build stack-based WSABUF arrays.

For connectionless socket types, the address from which the data originated is copied to the buffer
pointed by lpFrom. The value pointed to by lpFromlen is initialized to the size of this buffer, and is
modified on completion to indicate the actual size of the address stored there. As noted previously for
overlapped sockets, the lpFrom and lpFromlen parameters are not updated until after the overlapped I/O
has completed. The memory pointed to by these parameters must, therefore, remain available to the
service provider and cannot be allocated on the application's stack frame. The lpFrom and lpFromlen
parameters are ignored for connection-oriented sockets.

For byte stream style sockets (for example, type SOCK_STREAM), incoming data is placed into the
buffers until the buffers are filled, the connection is closed, or internally buffered data is exhausted.
Regardless of whether or not the incoming data fills all the buffers, the completion indication occurs for
overlapped sockets. For message-oriented sockets, an incoming message is placed into the supplied
buffers, up to the total size of the buffers supplied, and the completion indication occurs for overlapped
sockets. If the message is larger than the buffers supplied, the buffers are filled with the first part of the
message. If the MSG_PARTIAL feature is supported by the underlying service provider, the
MSG_PARTIAL flag is set in lpFlags and subsequent receive operation(s) will retrieve the rest of the
message. If MSG_PARTIAL is not supported but the protocol is reliable, WSARecvFrom generates the
error WSAEMSGSIZE and a subsequent receive operation with a larger buffer can be used to retrieve the
entire message. Otherwise, (that is, the protocol is unreliable and does not support MSG_PARTIAL), the
excess data is lost, and WSARecvFrom generates the error WSAEMSGSIZE.

For connection-oriented sockets, WSARecvFrom can indicate the graceful termination of the virtual
circuit in one of two ways, depending on whether the socket is a byte stream or message oriented. For
byte streams, zero bytes read indicates graceful closure and that no more bytes will ever be read. For
message-oriented sockets, where a zero byte message is often allowable, a return error code of
WSAEDISCONN is used to indicate graceful closure. In any case, a return error code of
WSAECONNRESET indicates an abortive close has occurred.

lpFlags may be used to influence the behavior of the function invocation beyond the options specified for
the associated socket. That is, the semantics of this function are determined by the socket options and

the lpFlags parameter. The latter is constructed by or-ing any of the following values:

Value Meaning

MSG_PEEK Peek at the incoming data. The data is copied
into the buffer but is not removed from the
input queue. This flag is valid only for
nonoverlapped sockets.

MSG_OOB Process out-of-band data. (See section Out-
Of-Band data for a discussion of this topic.)

MSG_PARTIAL This flag is for message-oriented sockets only.
On output, indicates that the data supplied is a
portion of the message transmitted by the
sender. Remaining portions of the message
will be supplied in subsequent receive
operations. A subsequent receive operation
with MSG_PARTIAL flag cleared indicates end
of sender's message.

As an input parameter indicates that the
receive operation should complete even if only
part of a message has been received by the
service provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial message
is received. If a complete message is received, MSG_PARTIAL is cleared in lpFlags. In the case of
delayed completion, the value pointed to by lpFlags is not updated. When completion has been indicated
the application should call WSAGetOverlappedResult and examine the flags pointed to by the
lpdwFlags parameter.

Overlapped socket I/O:

If an overlapped operation completes immediately, WSARecv returns a value of zero and the
lpNumberOfBytesRecvd parameter is updated with the number of bytes received and the flag bits pointed
by the lpFlags parameter are also updated. If the overlapped operation is successfully initiated and will
complete later, WSARecv returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In
this case, lpNumberOfBytesRecvd and lpFlags is not updated. When the overlapped operation completes
the amount of data transferred is indicated either through the cbTransferred parameter in the completion
routine (if specified), or through the lpcbTransfer parameter in WSAGetOverlappedResult. Flag values
are obtained either through the dwFlags parameter of the completion routine, or by examining the
lpdwFlags parameter of WSAGetOverlappedResult.

This function may be called from within the completion routine of a previous WSARecv, WSARecvFrom,
WSASend or WSASendTo function. For a given socket, I/O completion routines will not be nested. This
permits time-sensitive data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If multiple I/O
operations are simultaneously outstanding, each must reference a separate overlapped structure. The
WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
 DWORD Internal; // reserved
 DWORD InternalHigh; // reserved
 DWORD Offset; // reserved
 DWORD OffsetHigh; // reserved
 WSAEVENT hEvent;
} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled when the
overlapped operation completes if it contains a valid event object handle. An application can use
WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to
pass context information to the completion routine.

The completion routine follows the same rules as stipulated for Win32 file I/O completion routines. The
completion routine will not be invoked until the thread is in an alertable wait state such as can occur when
the function WSAWaitForMultipleEvents with the fAlertable parameter set to TRUE is invoked.

The transport providers allow an application to invoke send and receive operations from within the context
of the socket I/O completion routine, and guarantee that, for a given socket, I/O completion routines will
not be nested. This permits time-sensitive data transmissions to occur entirely within a preemptive
context.

The prototype of the completion routine is as follows:

void CALLBACK CompletionROUTINE(
 IN DWORD dwError,
 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

CompletionRoutine is a placeholder for an application-defined or library-defined function name. dwError
specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred
specifies the number of bytes received. dwFlags contains information that would have appeared in
lpFlags if the receive operation had completed immediately. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this socket. When
using WSAWaitForMultipleEvents, all waiting completion routines are called before the alertable
thread's wait is satisfied with a return code of WSA_IO_COMPLETION. The completion routines may be
called in any order, not necessarily in the same order the overlapped operations are completed. However,
the posted buffers are guaranteed to be filled in the same order they are supplied.

Return Values
If no error occurs and the receive operation has completed immediately, WSARecvFrom returns zero.
Note that in this case, the completion routine will have already been scheduled, and to be called once the
calling thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code may be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING indicates
that the overlapped operation has been successfully initiated and that completion will be indicated at a
later time. Any other error code indicates that the overlapped operation was not successfully initiated and
no completion indication will occur.

Error Codes
WSANOTINITIALISED A successful WSAStartup must

occur before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The lpFromlen argument was
invalid: the lpFrom buffer was too
small to accommodate the peer
address, or the lpBuffers argument
is not totally contained in a valid part
of the user address space.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1
call is in progress, or the service
provider is still processing a
callback function.

WSAEINVAL The socket has not been bound with
bind, or the socket is not created
with the overlapped flag.

WSAENETRESET The connection has been broken
due to the remote host resetting..

WSAENOTCONN The socket is not connected
(connection-oriented sockets only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the
socket is not stream style such as
type SOCK_STREAM, out-of-band
data is not supported in the
communication domain associated
with this socket, or the socket is
unidirectional and supports only
send operations.

WSAESHUTDOWN The socket has been shut down; it
is not possible to WSARecvFrom
on a socket after shutdown has
been invoked with how set to
SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too
many outstanding overlapped I/O
requests. Nonoverlapped sockets:
The socket is marked as
nonblocking and the receive
operation cannot be completed
immediately.

WSAEMSGSIZE The message was too large to fit
into the specified buffer and (for
unreliable protocols only) any
trailing portion of the message that
did not fit into the buffer has been
discarded.

WSAECONNABORTED The virtual circuit was terminated
due to a time-out or other failure.

WSAECONNRESET The virtual circuit was reset by the
remote side.

WSAEDISCON Socket s is message oriented and
the virtual circuit was gracefully
closed by the remote side.

WSA_IO_PENDING An overlapped operation was
successfully initiated and
completion will be indicated at a
later time.

WSA_OPERATION_ABORTED The overlapped operation has been
canceled due to the closure of the

socket.

See Also
WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

WSARemoveServiceClass   

The Windows Sockets WSARemoveServiceClass function permanently unregisters service class
schema.

INT WSARemoveServiceClass(
 LPGUID lpServiceClassId
);

Parameters
lpServiceClassId

[in] Pointer to the GUID for the service class you want to remove.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSAETYPE_NOT_FOUND The specified class was not found.

WSAEACCESS The calling routine does not have
sufficient privileges to remove the
Service.

WSANOTINITIALIZED The Windows Sockets 2 DLL has not
been initialized. The application must
first call WSAStartup before calling any
Windows Sockets functions.

WSAEINVAL The specified GUID was not valid.

WSAResetEvent     

 

The Windows Sockets WSAResetEvent function resets the state of the specified event object to
nonsignaled.

BOOL WSAResetEvent(
 WSAEVENT hEvent
);

Parameters
hEvent

[in] Identifies an open event object handle.

Remarks
The state of the event object is set to be nonsignaled.

Return Values
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get
extended error information, call WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSA_INVALID_HANDLE hEvent is not a valid event object
handle.

See Also
WSACloseEvent, WSACreateEvent, WSASetEvent

WSASend     

 

The Windows Sockets WSASend function sends data on a connected socket.

int WSASend (
 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesSent,
 DWORD dwFlags,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters
s

[in] A descriptor identifying a connected socket.

lpBuffers
[in] A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a
buffer and the length of the buffer. This array must remain valid for the duration of the send operation.

dwBufferCount
[in] The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesSent
[out] A pointer to the number of bytes sent by this call if the I/O operation completes immediately.

dwFlags
[in] Specifies the way in which the call is made.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the send operation has been completed (ignored
for nonoverlapped sockets).

Remarks
This function provides functionality over and above the standard send function in two important areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped send operations.

2. It allows multiple send buffers to be specified making it applicable to the scatter/gather type of I/O.

WSASend is used to write outgoing data from one or more buffers on a connection-oriented socket
specified by s. It may also be used, however, on connectionless sockets which have a stipulated default
peer address established through the connect or WSAConnect function.

For overlapped sockets (created using WSASocket with flag WSA_FLAG_OVERLAPPED) this will occur
using overlapped I/O, unless both lpOverlapped and lpCompletionRoutine are NULL in which case the
socket is treated as a nonoverlapped socket. A completion indication will occur (invocation of the
completion routine or setting of an event object) when the supplied buffer(s) have been consumed by the
transport. If the operation does not complete immediately, the final completion status is retrieved through
the completion routine or WSAGetOverlappedResult.

For nonoverlapped sockets, the last two parameters (lpOverlapped, lpCompletionRoutine) are ignored
and WSASend adopts the same blocking semantics as send. Data is copied from the supplied buffer(s)

into the transport's buffer. If the socket is nonblocking and stream oriented, and there is not sufficient
space in the transport's buffer, WSASend will return with only part of the application's buffers having been
consumed. Given the same buffer situation and a blocking socket, WSASend will block until all of the
application's buffer contents have been consumed.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this operation is
completed in an overlapped manner, it is the service provider's responsibility to capture these WSABUF
structures before returning from this call. This enables applications to build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum message size of the
underlying provider, which can be obtained by getting the value of socket option SO_MAX_MSG_SIZE. If
the data is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE is
returned, and no data is transmitted.

Note that the successful completion of a WSASend does not indicate that the data was successfully
delivered.

dwFlags may be used to influence the behavior of the function invocation beyond the options specified for
the associated socket. That is, the semantics of this function are determined by the socket options and
the dwFlags parameter. The latter is constructed by or-ing any of the following values:

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject
to routing. A Windows Sockets service
provider can choose to ignore this flag.

MSG_OOB Send out-of-band data on a stream-style
socket such as SOCK_STREAM only. (See
section Out-Of-Band data for a discussion of
this topic.)

MSG_PARTIAL Specifies that lpBuffers only contains a
partial message. Note that the error code
WSAEOPNOTSUPP will be returned by
transports which do not support partial
message transmissions.

Overlapped socket I/O:

If an overlapped operation completes immediately, WSASend returns a value of zero and the
lpNumberOfBytesSent parameter is updated with the number of bytes sent. If the overlapped operation is
successfully initiated and will complete later, WSASend returns SOCKET_ERROR and indicates error
code WSA_IO_PENDING. In this case, lpNumberOfBytesSent is not updated. When the overlapped
operation completes the amount of data transferred is indicated either through the cbTransferred
parameter in the completion routine (if specified), or through the lpcbTransfer parameter in
WSAGetOverlappedResult.

This function may be called from within the completion routine of a previous WSARecv, WSARecvFrom,
WSASend or WSASendTo function. This permits time-sensitive data transmissions to occur entirely
within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If multiple I/O
operations are simultaneously outstanding, each must reference a separate overlapped structure. The
WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
 DWORD Internal; // reserved
 DWORD InternalHigh; // reserved
 DWORD Offset; // reserved

 DWORD OffsetHigh; // reserved
 WSAEVENT hEvent;
} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled when the
overlapped operation completes if it contains a valid event object handle. An application can use
WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to
pass context information to the completion routine.

The completion routine follows the same rules as stipulated for Win32 file I/O completion routines. The
completion routine will not be invoked until the thread is in an alertable wait state such as can occur when
the function WSAWaitForMultipleEvents with the fAlertable parameter set to TRUE is invoked.

The transport providers allow an application to invoke send and receive operations from within the context
of the socket I/O completion routine, and guarantee that, for a given socket, I/O completion routines will
not be nested. This permits time-sensitive data transmissions to occur entirely within a preemptive
context.

The prototype of the completion routine is as follows:

void CALLBACK CompletionROUTINE(
 IN DWORD dwError,
 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

CompletionRoutine is a placeholder for an application-defined or library-defined function name. dwError
specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred
specifies the number of bytes sent. Currently there are no flag values defined and dwFlags will be zero.
This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this socket. All
waiting completion routines are called before the alertable thread's wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines may be called in any order, not necessarily in the
same order the overlapped operations are completed. However, the posted buffers are guaranteed to be
sent in the same order they are supplied.

Return Values
If no error occurs and the send operation has completed immediately, WSASend returns zero. Note that
in this case, the completion routine will have already been scheduled, and to be called once the calling
thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific error
code may be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING indicates that
the overlapped operation has been successfully initiated and that completion will be indicated at a later
time. Any other error code indicates that the overlapped operation was not successfully initiated and no
completion indication will occur.

Error Codes
WSANOTINITIALISED A successful WSAStartup must

occur before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a
broadcast address, but the

appropriate flag was not set.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1
call is in progress, or the service
provider is still processing a
callback function.

WSAEFAULT The lpBuffers argument is not totally
contained in a valid part of the user
address space.

WSAENETRESET The connection has been broken
due to the remote host resetting.

WSAENOBUFS The Windows Sockets provider
reports a buffer deadlock.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the
socket is not stream style such as
type SOCK_STREAM, out-of-band
data is not supported in the
communication domain associated
with this socket, MSG_PARTIAL is
not supported, or the socket is
unidirectional and supports only
receive operations.

WSAESHUTDOWN The socket has been shut down; it
is not possible to WSASend on a
socket after shutdown has been
invoked with how set to SD_SEND
or SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too
many outstanding overlapped I/O
requests. Nonoverlapped sockets:
The socket is marked as
nonblocking and the send operation
cannot be completed immediately.

WSAEMSGSIZE The socket is message oriented,
and the message is larger than the
maximum supported by the
underlying transport.

WSAEINVAL The socket has not been bound with
bind, or the socket is not created
with the overlapped flag.

WSAECONNABORTED The virtual circuit was terminated
due to a time-out or other failure.

WSAECONNRESET The virtual circuit was reset by the
remote side.

WSA_IO_PENDING An overlapped operation was
successfully initiated and
completion will be indicated at a
later time.

WSA_OPERATION_ABORTED The overlapped operation has been

canceled due to the closure of the
socket, or the execution of the
SIO_FLUSH command in
WSAIoctl.

See Also
WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

WSASendDisconnect     

 

The Windows Sockets WSASendDisconnect function initiates termination of the connection for the
socket and sends disconnect data.

int WSASendDisconnect (
 SOCKET s,
 LPWSABUF lpOUT boundDisconnectData
);

Parameters
s

[in] A descriptor identifying a socket.

lpOutboundDisconnectData
[in] A pointer to the outgoing disconnect data.

Remarks
WSASendDisconnect is used on connection-oriented sockets to disable transmission, and to initiate
termination of the connection along with the transmission of disconnect data, if any.

After this function has been successfully issued, subsequent sends are disallowed.

lpOutboundDisconnectData, if not NULL, points to a buffer containing the outgoing disconnect data to be
sent to the remote party for retrieval by using WSARecvDisconnect.

Note that WSASendDisconnect does not close the socket, and resources attached to the socket will not
be freed until closesocket is invoked.

Comments
WSASendDisconnect does not block regardless of the SO_LINGER setting on the socket.

An application should not rely on being able to re-use a socket after it has been
WSASendDisconnected. In particular, a Windows Sockets provider is not required to support the use of
connect/WSAConnect on such a socket.

Return Values
If no error occurs, WSASendDisconnect returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAENOPROTOOPT The parameter
lpOutboundDisconnectData is not
NULL, and the disconnect data is not
supported by the service provider.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAENOTCONN The socket is not connected
(connection-oriented sockets only).

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpOutboundDisconnectData
argument is not totally contained in a
valid part of the user address space.

See Also
connect, socket

WSASendTo     

 

The Windows Sockets WSASendTo function sends data to a specific destination, using overlapped I/O
where applicable.

int WSASendTo (
 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesSent,
 DWORD dwFlags,
 const struct sockaddr FAR * lpTo,
 int iToLen,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE
);

Parameters
s

[in] A descriptor identifying a connected socket which was created using WSASocket with flag
WSA_FLAG_OVERLAPPED.

lpBuffers
[in] A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a
buffer and the length of the buffer. This array must remain valid for the duration of the send operation.

dwBufferCount
[in] The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesSent
[out] A pointer to the number of bytes sent by this call if the I/O operation completes immediately.

dwFlags
[in] Specifies the way in which the call is made.

lpTo
[in] An optional pointer to the address of the target socket.

iToLen
[in] The size of the address in lpTo.

lpOverlapped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine
[in] A pointer to the completion routine called when the send operation has been completed (ignored
for nonoverlapped sockets).

Remarks
This function provides functionality over and above the standard sendto function in two important areas:

1. It can be used in conjunction with overlapped sockets to perform overlapped send operations.

2. It allows multiple send buffers to be specified making it applicable to the scatter/gather type of I/O.

WSASendTo is normally used on a connectionless socket specified by s to send a datagram contained in
one or more buffers to a specific peer socket identified by the lpTo parameter. On a connection-oriented
socket, the lpTo and iToLen parameters are ignored; in this case, the WSASendTo is equivalent to
WSASend.

For overlapped sockets (created using WSASocket with flag WSA_FLAG_OVERLAPPED) this will occur
using overlapped I/O, unless both lpOverlapped and lpCompletionRoutine are NULL in which case the
socket is treated as a nonoverlapped socket. A completion indication will occur (invocation of the
completion routine or setting of an event object) when the supplied buffer(s) have been consumed by the
transport. If the operation does not complete immediately, the final completion status is retrieved through
the completion routine or WSAGetOverlappedResult.

For nonoverlapped sockets, the last two parameters (lpOverlapped, lpCompletionRoutine) are ignored
and WSASendTo adopts the same blocking semantics as send. Data is copied from the supplied
buffer(s) into the transport's buffer. If the socket is nonblocking and stream oriented, and there is not
sufficient space in the transport's buffer, WSASendTo will return with only part of the application's buffers
having been consumed. Given the same buffer situation and a blocking socket, WSASendTo will block
until all of the application's buffer contents have been consumed.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If this operation is
completed in an overlapped manner, it is the sercvice provider's responsibility to capture these WSABUF
structures before returning from this call. This enables applications to build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum message size of the
underlying transport, which can be obtained by getting the value of socket option SO_MAX_MSG_SIZE. If
the data is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE is
returned, and no data is transmitted.

Note that the successful completion of a WSASendTo does not indicate that the data was successfully
delivered.

dwFlags may be used to influence the behavior of the function invocation beyond the options specified for
the associated socket. That is, the semantics of this function are determined by the socket options and
the dwFlags parameter. The latter is constructed by or-ing any of the following values:

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject
to routing. A Windows Sockets service
provider can choose to ignore this flag.

MSG_OOB Send out-of-band data (stream-style socket
such as SOCK_STREAM only).

MSG_PARTIAL Specifies that lpBuffers only contains a
partial message. Note that the error code
WSAEOPNOTSUPP will be returned by
transports which do not support partial
message transmissions.

Overlapped socket I/O:

If an overlapped operation completes immediately, WSASendTo returns a value of zero and the
lpNumberOfBytesSent parameter is updated with the number of bytes sent. If the overlapped operation is
successfully initiated and will complete later, WSASendTo returns SOCKET_ERROR and indicates error
code WSA_IO_PENDING. In this case, lpNumberOfBytesSent is not updated. When the overlapped
operation completes the amount of data transferred is indicated either through the cbTransferred
parameter in the completion routine (if specified), or through the lpcbTransfer parameter in
WSAGetOverlappedResult.

This function may be called from within the completion routine of a previous WSARecv, WSARecvFrom,
WSASend or WSASendTo function. This permits time-sensitive data transmissions to occur entirely
within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation. If multiple I/O

operations are simultaneously outstanding, each must reference a separate overlapped structure. The
WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
 DWORD Internal; // reserved
 DWORD InternalHigh; // reserved
 DWORD Offset; // reserved
 DWORD OffsetHigh; // reserved
 WSAEVENT hEvent;
} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is signaled when the
overlapped operation completes if it contains a valid event object handle. An application can use
WSAWaitForMultipleEvents or WSAGetOverlappedResult to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to
pass context information to the completion routine.

The completion routine follows the same rules as stipulated for Win32 file I/O completion routines. The
completion routine will not be invoked until the thread is in an alertable wait state such as can occur when
the function WSAWaitForMultipleEvents with the fAlertable parameter set to TRUE is invoked.

Transport providers allow an application to invoke send and receive operations from within the context of
the socket I/O completion routine, and guarantee that, for a given socket, I/O completion routines will not
be nested. This permits time-sensitive data transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK CompletionROUTINE(
 IN DWORD dwError,
 IN DWORD cbTransferred,
 IN LPWSAOVERLAPPED lpOverlapped,
 IN DWORD dwFlags
);

CompletionRoutine is a placeholder for an application-defined or library-defined function name. dwError
specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred
specifies the number of bytes sent. Currently there are no flag values defined and dwFlags will be zero.
This function does not return a value.

Returning from this function allows invocation of another pending completion routine for this socket. All
waiting completion routines are called before the alertable thread's wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines may be called in any order, not necessarily in the
same order the overlapped operations are completed. However, the posted buffers are guaranteed to be
sent in the same order they are supplied.

Return Values
If no error occurs and the send operation has completed immediately, WSASendTo returns zero. Note
that in this case, the completion routine will have already been scheduled, and to be called once the
calling thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code may be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING indicates
that the overlapped operation has been successfully initiated and that completion will be indicated at a
later time. Any other error code indicates that the overlapped operation was not successfully initiated and
no completion indication will occur.

Error Codes

WSANOTINITIALISED A successful WSAStartup must
occur before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a
broadcast address, but the
appropriate flag was not set.

WSAEINTR The (blocking) call was canceled
through WSACancelBlockingCall.

WSAEINPROGRESS A blocking Windows Sockets 1.1
call is in progress, or the service
provider is still processing a
callback function.

WSAEFAULT The lpBuffers or lpTo parameters
are not part of the user address
space, or the lpTo argument is too
small.

WSAENETRESET The connection has been broken
due to the remote host resetting.

WSAENOBUFS The Windows Sockets provider
reports a buffer deadlock.

WSAENOTCONN The socket is not connected
(connection-oriented sockets only)

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the
socket is not stream style such as
type SOCK_STREAM, out-of-band
data is not supported in the
communication domain associated
with this socket, MSG_PARTIAL is
not supported, or the socket is
unidirectional and supports only
receive operations.

WSAESHUTDOWN The socket has been shut down; it
is not possible to WSASendTo on a
socket after shutdown has been
invoked with how set to SD_SEND
or SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too
many outstanding overlapped I/O
requests. Nonoverlapped sockets:
The socket is marked as
nonblocking and the send operation
cannot be completed immediately.

WSAEMSGSIZE The socket is message oriented,
and the message is larger than the
maximum supported by the
underlying transport.

WSAEINVAL The socket has not been bound with
bind, or the socket is not created
with the overlapped flag.

WSAECONNABORTED The virtual circuit was terminated
due to a time-out or other failure.

WSAECONNRESET The virtual circuit was reset by the
remote side.

WSAEADDRNOTAVAIL The specified address is not
available from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family
cannot be used with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network cannot be reached
from this host at this time.

WSA_IO_PENDING An overlapped operation was
successfully initiated and
completion will be indicated at a
later time.

WSA_OPERATION_ABORTED The overlapped operation has been
canceled due to the closure of the
socket, or the execution of the
SIO_FLUSH command in
WSAIoctl.

See Also
WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

WSASetBlockingHook   

This function has been removed in compliance with the Windows Sockets 2 specification, revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications should not
use this function. Windows Sockets 1.1 applications that call this function are still supported through the
WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during calls to
blocking functions. Instead of using blocking hooks, an applications should use a separate thread
(separate from the main GUI thread) for network activity.

WSASetEvent     

 

The Windows Sockets WSASetEvent function sets the state of the specified event object to signaled.

BOOL WSASetEvent(
 WSAEVENT hEvent
);

Paramters
hEvent

[in] Identifies an open event object handle.

Remarks
The state of the event object is set to be signaled.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSA_INVALID_HANDLE hEvent is not a valid event object
handle.

See Also
WSACloseEvent, WSACreateEvent, WSAResetEvent

WSASetLastError   

The Windows Sockets WSASetLastError function sets the error code which can be retrieved through the
WSAGetLastError function.

void WSASetLastError (
 int iError
);

Parameters
iError

[in] Specifies the error code to be returned by a subsequent WSAGetLastError call.

Remarks
This function allows an application to set the error code to be returned by a subsequent
WSAGetLastError call for the current thread. Note that any subsequent Windows Sockets routine called
by the application will override the error code as set by this routine.

The error code set by WSASetLastError is different from the error code reset by getsockopt
SO_ERROR.

Return Values
None.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

See Also
getsockopt, WSAGetLastError

WSASetService   

The Windows Sockets WSASetService function registers or deregisters a service instance within one or
more name spaces. This function can be used to affect a specific name space provider, all providers
associated with a specific name space, or all providers across all name spaces.

INT WSASetService(
 LPWSAQUERYSET lpqsRegInfo,
 EWSASETSERVICEOP essOperation,
 DWORD dwControlFlags
);

Parameters
lpqsRegInfo

[in] Specifies service information for registration, identifies service for deregistration.

essOperation
[in] An enumeration whose values include:

RNRSERVICE_REGISTER
Register the service. For SAP, this means sending out a periodic broadcast. This is a NOP for the
DNS name space. For persistent data stores this means updating the address information.

RNRSERVICE_DEREGISTER
Deregister the service. For SAP, this means stop sending out the periodic broadcast. This is a NOP
for the DNS name space. For persistent data stores this means deleting address information.

RNRSERVICE_DELETE
Delete the service from dynamic name and persistent spaces. For services represented by multiple
CSADDR_INFO structures (using the SERVICE_MULTIPLE flag), only the supplied address will be
deleted, and this much match exactly the corresponding CSADD_INFO structure that was supplied
when the service was registered.

dwControlFlags
[in] The meaning of dwControlFlags is dependent on the value of essOperation as follows:

essOperation dwControlFlags Meaning

REGISTER SERVICE_MULTIPLE The service being
registered may be
represented by multiple
CSADDR_INFO
structures

Service Properties
The following table describes how service property data is represented in a WSAQUERYSET structure.
Fields labeled as (Optional) may be supplied with a NULL pointer.

WSAQUERYSET Field Name Service Property Description

Field Name Service Property Description

dwSize Must be set to
sizeof(WSAQUERYSET). This is a
versioning mechanism.

dwOutputFlags Not applicable and ignored.

lpszServiceInstanceName Referenced string contains the
service instance name.

lpServiceClassId The GUID corresponding to this
service class.

lpVersion (Optional) Supplies service instance

version number.

lpszComment (Optional) An optional comment
string.

dwNameSpace See table below.

lpNSProviderId See table below.

lpszContext (Optional) Specifies the starting
point of the query in a hierarchical
name space.

dwNumberOfProtocols Ignored.

lpafpProtocols Ignored.

lpszQueryString Ignored.

dwNumberOfCsAddrs The number of elements in the array
of CSADDRO_INFO structures
referenced by lpcsaBuffer.

lpcsaBuffer A pointer to an array of
CSADDRO_INFO structures which
contain the address9(es) that the
service is listening on.

lpBlob (Optional) This is a pointer to a
provider-specific entity.

As illustrated below, the combination of the dwNameSpace and lpNSProviderId parameters determine
which name space providers are affected by this function.

dwNameSpace lpNSProviderId Scope of Impact

Ignored Non-NULL The specified name
space provider

a valid name space ID NULL All name space
providers that support
the indicated name
space

NS_ALL NULL All name space
providers

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSAEACCESS The calling routine does not have sufficient

privileges to install the Service.

WSANOTINITIALIZED The Windows Sockets 2 DLL has not been
initialized. The application must first call
WSAStartup before calling any Windows
Sockets functions.

WSASocket     

 

The Windows Sockets WSASocket function creates a socket which is bound to a specific transport
service provider, and optionally creates and/or joins a socket group.

SOCKET WSASocket (
 int af,
 int type,
 int protocol,
 LPWSAPROTOCOL_INFO lpProtocolInfo,
 GROUP g,
 DWORD dwFlags
);

Parameters
af

[in] An address family specification.

type
[in] A type specification for the new socket.

protocol
[in] A particular protocol to be used with the socket which is specific to the indicated address family.

lpProtocolInfo
[in] A pointer to a WSAPROTOCOL_INFO structure that defines the characteristics of the socket to be
created.

g
[in] The identifier of the socket group.

dwFlags
[in] The socket attribute specification.

Remarks
This function causes a socket descriptor and any related resources to be allocated and associated with a
transport service provider. By default, the socket will not have an overlapped attribute. If lpProtocolInfo is
NULL, the Windows Sockets 2 DLL uses the first three parameters (af, type, protocol) to determine which
service provider is used by selecting the first transport provider able to support the stipulated address
family, socket type and protocol values. If the lpProtocolInfo is not NULL, the socket will be bound to the
provider associated with the indicated WSAPROTOCOL_INFO structure. In this instance, the application
may supply the manifest constant FROM_PROTOCOL_INFO as the value for any of af, type or protocol.
This indicates that the corresponding values from the indicated WSAPROTOCOL_INFO structure
(iAddressFamily, iSocketType, iProtocol) are to be assumed. In any case, the values supplied for af, type
and protocol are supplied unmodified to the transport service provider through the corresponding
parameters to the WSPSocket function in the SPI.

Note The manifest constant AF_UNSPEC continues to be defined in the header file but its use is
strongly discouraged, as this may cause ambiguity in interpreting the value of the protocol
parameter.

Parameter g is used to indicate the appropriate actions on socket groups:

1. if g is an existing socket group ID, join the new socket to this group, provided all the requirements set
by this group are met; or

2. if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket group and have the new
socket be the first member; or

3. if g = SG_CONSTRAINED_GROUP, create a constrained socket group and have the new socket be
the first member; or

4. if g = zero, no group operation is performed

For unconstrained groups, any set of sockets may be grouped together as long as they are supported by
a single service provider. A constrained socket group may consist only of connection-oriented sockets,
and requires that connections on all grouped sockets be to the same address on the same host. For
newly created socket groups, the new group ID can be retrieved by using getsockopt with option
SO_GROUP_ID, if this operation completes successfully. A socket group and its associated ID remain
valid until the last socket belonging to this socket group is closed. Socket group IDs are unique across all
processes for a given service provider.

The dwFlags parameter may be used to specify the attributes of the socket by or-ing any of the following
Flags:

Flag Meaning

WSA_FLAG_OVERLAPPED This flag causes an overlapped socket to
be created. Overlapped sockets may
utilize WSASend, WSASendTo,
WSARecv, WSARecvFrom and
WSAIoctl for overlapped I/O operations,
which allows multiple these operations to
be initiated and in progress
simultaneously.

WSA_FLAG_MULTIPOINT_C_ROO
T

Indicates that the socket created will be a
c_root in a multipoint session. Only
allowed if a rooted control plane is
indicated in the protocol's
WSAPROTOCOL_INFO structure. Refer
to Multipoint and Multicast Semantics for
additional information.

WSA_FLAG_MULTIPOINT_C_LEAF Indicates that the socket created will be a
c_leaf in a multicast session. Only
allowed if XP1_SUPPORT_MULTIPOINT
is indicated in the protocol's
WSAPROTOCOL_INFO structure. Refer
to Multipoint and Multicast Semantics for
additional information.

WSA_FLAG_MULTIPOINT_D_ROO
T

Indicates that the socket created will be a
d_root in a multipoint session. Only
allowed if a rooted data plane is indicated
in the protocol's WSAPROTOCOL_INFO
structure. Refer to Multipoint and
Multicast Semantics for additional
information.

WSA_FLAG_MULTIPOINT_D_LEAF Indicates that the socket created will be a
d_leaf in a multipoint session. Only
allowed if XP1_SUPPORT_MULTIPOINT
is indicated in the protocol's
WSAPROTOCOL_INFO structure. Refer
to Multipoint and Multicast Semantics for
additional information.

Important For multipoint sockets, exactly one of WSA_FLAG_MULTIPOINT_C_ROOT or
WSA_FLAG_MULTIPOINT_C_LEAF must be specified, and exactly one of
WSA_FLAG_MULTIPOINT_D_ROOT or WSA_FLAG_MULTIPOINT_D_LEAF must be specified.
Refer to Multipoint and Multicast Semantics for additional information.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections, and must be in a
connected state before any data may be sent or received on them. A connection to another socket is
created with a connect/WSAConnect call. Once connected, data may be transferred using
send/WSASend and recv/WSARecv calls. When a session has been completed, a closesocket must
be performed.

The communications protocols used to implement a reliable, connection-oriented socket ensure that data
is not lost or duplicated. If data for which the peer protocol has buffer space cannot be successfully
transmitted within a reasonable length of time, the connection is considered broken and subsequent calls
will fail with the error code set to WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to and from
arbitrary peers using sendto/WSASendTo and recvfrom/WSARecvFrom. If such a socket is connected
to a specific peer, datagrams may be sent to that peer using send/WSASend and may be received from
(only) this peer using recv/WSARecv.

Support for sockets with type RAW is not required, but service providers are encourages to support raw
sockets whenever it makes sense to do so.

Shared Sockets
When a special WSAPROTOCOL_INFO structure (obtained through the WSADuplicateSocket
function and used to create additional descriptors for a shared socket) is passed as an input
parameter to WSASocket, the g and dwFlags parameters are ignored.

Return Values
If no error occurs, WSASocket returns a descriptor referencing the new socket. Otherwise, a value of
INVALID_SOCKET is returned, and a specific error code may be retrieved by calling WSAGetLastError.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEAFNOSUPPORT The specified address family is not
supported.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSAEMFILE No more socket descriptors are
available.

WSAENOBUFS No buffer space is available. The
socket cannot be created.

WSAEPROTONOSUPPORT The specified protocol is not
supported.

WSAEPROTOTYPE The specified protocol is the wrong
type for this socket.

WSAESOCKTNOSUPPORT The specified socket type is not
supported in this address family.

WSAEINVAL The parameter g specified is not valid.

See Also
accept, bind, connect, getsockname, getsockopt, ioctlsocket, listen, recv, recvfrom, select, send,
sendto, setsockopt, shutdown

WSAStartup   

The Windows Sockets WSAStartup function initiates use of the Windows Sockets DLL by a process.

int WSAStartup (
 WORD wVersionRequested,
 LPWSADATA lpWSAData
);

Parameters
wVersionRequested

[in] The highest version of Windows Sockets support that the caller can use. The high order byte
specifies the minor version (revision) number; the low-order byte specifies the major version number.

lpWSAData
[out] A pointer to the WSADATA data structure that is to receive details of the Windows Sockets
implementation.

Remarks
This function must be the first Windows Sockets function called by an application or DLL. It allows an
application or DLL to specify the version of Windows Sockets required and to retrieve details of the
specific Windows Sockets implementation. The application or DLL may only issue further Windows
Sockets functions after a successful WSAStartup invocation.

In order to support future Windows Sockets implementations and applications which may have
functionality differences from current version of Windows Sockets, a negotiation takes place in
WSAStartup. The caller of WSAStartup and the Windows Sockets DLL indicate to each other the
highest version that they can support, and each confirms that the other's highest version is acceptable.
Upon entry to WSAStartup, the Windows Sockets DLL examines the version requested by the
application. If this version is equal to or higher than the lowest version supported by the DLL, the call
succeeds and the DLL returns in wHighVersion the highest version it supports and in wVersion the
minimum of its high version and wVersionRequested. The Windows Sockets DLL then assumes that the
application will use wVersion. If the wVersion field of the WSADATA structure is unacceptable to the
caller, it should call WSACleanup and either search for another Windows Sockets DLL or fail to initialize.

This negotiation allows both a Windows Sockets DLL and a Windows Sockets application to support a
range of Windows Sockets versions. An application can successfully utilize a Windows Sockets DLL if
there is any overlap in the version ranges. The following chart gives examples of how WSAStartup works
in conjunction with different application and Windows Sockets DLL versions:

App
versions

DLL
Versions

wVersion
Requested

wVersion wHigh
Version

End Result

1.1 1.1 1.1 1.1 1.1 use 1.1

1.0 1.1 1.0 1.1 1.0 1.0 use 1.0

1.0 1.0 1.1 1.0 1.0 1.1 use 1.0

1.1 1.0 1.1 1.1 1.1 1.1 use 1.1

1.1 1.0 1.1 1.0 1.0 Application fails

1.0 1.1 1.0 --- --- WSAVERNOT
SUPPORTED

1.0 1.1 1.0 1.1 1.1 1.1 1.1 use 1.1

1.1 2.0 1.1 2.0 1.1 1.1 use 1.1

2.0 2.0 2.0 2.0 2.0 use 2.0

The following code fragment demonstrates how an application which supports only version 2 of Windows

Sockets makes a WSAStartup call:

WORD wVersionRequested;
WSADATA wsaData;
int err;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0) {
 /* Tell the user that we couldn't find a usable */
 /* WinSock DLL. */
 return;
}

/* Confirm that the WinSock DLL supports 2.0.*/
/* Note that if the DLL supports versions greater */
/* than 2.0 in addition to 2.0, it will still return */
/* 2.0 in wVersion since that is the version we */
/* requested. */

if (LOBYTE(wsaData.wVersion) != 2 ||
 HIBYTE(wsaData.wVersion) != 0) {
 /* Tell the user that we couldn't find a usable */
 /* WinSock DLL. */
 WSACleanup();
 return;
}

/* The WinSock DLL is acceptable. Proceed. */

Once an application or DLL has made a successful WSAStartup call, it may proceed to make other
Windows Sockets calls as needed. When it has finished using the services of the Windows Sockets DLL,
the application or DLL must call WSACleanup in order to allow the Windows Sockets DLL to free any
resources for the application.

Details of the actual Windows Sockets implementation are described in the WSAData structure defined
as follows:

struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 char
szDescription[WSADESCRIPTION_LEN+1];
 char szSystemStatus[WSASYSSTATUS_LEN+1];
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char FAR * lpVendorInfo;
};

The members of this structure are:

Parameters
wVersion

The version of the Windows Sockets specification that the Windows Sockets DLL expects the caller to

use.

wHighVersion
The highest version of the Windows Sockets specification that this DLL can support (also encoded as
above). Normally this will be the same as wVersion.

sz
A null-terminated ASCII string into which the Windows Sockets DLL copies a description of the
Windows Sockets implementation. The text (up to 256 characters in length) may contain any
characters except control and formatting characters: the most likely use that an application will put
this to is to display it (possibly truncated) in a status message.

szSystemStatus
A null-terminated ASCII string into which the Windows Sockets DLL copies relevant status or
configuration information. The Windows Sockets DLL should use this field only if the information might
be useful to the user or support staff: it should not be considered as an extension of the szDescription
field.

iMaxSockets
This field is retained for backward compatibility, but should be ignored for version 2 and later as no
single value can be appropriate for all underlying service providers.

iMaxUdpDg
This value should be ignored for version 2 and onward. It is retained for compatibility with Windows
Sockets specification 1.1, but should not be used when developing new applications. For the actual
maximum message size specific to a particular Windows Sockets service provider and socket type,
applications should use getsockopt to retrieve the value of option SO_MAX_MSG_SIZE after a
socket has been created.

lpVendorInfo
This value should be ignored for version 2 and onward. It is retained for compatibility with Windows
Sockets specification 1.1. Applications needing to access vendor-specific configuration information
should use getsockopt to retrieve the value of option PVD_CONFIG. The definition of this value (if
utilized) is beyond the scope of this specification.

Note that an application should ignore the iMaxsockets, iMaxUdpDg, and lpVendorInfo fields in WSAData
if the value in wVersion after a successful call to WSAStartup is at least 2. This is because the
architecture of Windows Sockets has been changed in version 2 to support multiple providers, and
WSAData no longer applies to a single vendor's stack. Two new socket options are introduced to supply
provider-specific information: SO_MAX_MSG_SIZE (replaces the iMaxUdpDg element) and
PVD_CONFIG (allows any other provider-specific configuration to occur).

An application or DLL may call WSAStartup more than once if it needs to obtain the WSAData structure
information more than once. On each such call the application may specify any version number supported
by the DLL.

There must be one WSACleanup call corresponding to every successful WSAStartup call to allow third-
party DLLs to make use of a Windows Sockets DLL on behalf of an application. This means, for example,
that if an application calls WSAStartup three times, it must call WSACleanup three times. The first two
calls to WSACleanup do nothing except decrement an internal counter; the final WSACleanup call for
the task does all necessary resource deallocation for the task.

Return Values
WSAStartup returns zero if successful. Otherwise, it returns one of the error codes listed below. Note that
the normal mechanism whereby the application calls WSAGetLastError to determine the error code
cannot be used, since the Windows Sockets DLL may not have established the client data area where the
"last error" information is stored.

Error Codes
WSASYSNOTREADY Indicates that the underlying network

subsystem is not ready for network
communication.

WSAVERNOTSUPPORTED The version of Windows Sockets
support requested is not provided by
this particular Windows Sockets
implementation.

WSAEINPROGRESS A blocking Windows Sockets 1.1
operation is in progress.

WSAEPROCLIM Limit on the number of tasks
supported by the Windows Sockets
implementation has been reached.

WSAEFAULT The lpWSAData is not a valid pointer.

See Also
send, sendto, WSACleanup

WSAStringToAddress   

The Windows Sockets WSAStringToAddress function converts a human-readable string to a socket
address structure (SOCKADDR) suitable to pass to Windows Sockets routines which take such a
structure.

Any missing components of the address will be defaulted to a reasonable value, if possible. For example,
a missing port number will default to zero. If the caller wants the translation to be done by a particular
provider, it should supply the corresponding WSAPROTOCOL_INFO structure in the lpProtocolInfo
parameter.

INT WSAStringToAddress(
 LPTSTR AddressString,
 INT AddressFamily,
 LPWSAPROTOCOL_INFO lpProtocolInfo,
 LPSOCKADDR lpAddress,
 LPINT lpAddressLength
);

Parameters
AddressString

[in] Points to the zero-terminated human-readable string to convert.

AddressFamily
[in] The address family to which the string belongs.

lpProtocolInfo
[in] (Optional) The WSAPROTOCOL_INFO structure for a particular provider.

Address
[in/out] A buffer which is filled with a single SOCKADDR structure.

lpAddressLength
[in/out] The length of the Address buffer. Returns the size of the resultant SOCKADDR structure.

Return Values
The return value is zero if the operation was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError.

Error Codes
WSAEFAULT The specified Address buffer is too small. Pass

in a larger buffer.

WSAEINVAL Unable to translate the string into a
SOCKADDR.

WSAUnhookBlockingHook   

This function has been removed in compliance with the Windows Sockets 2 specification, revision 2.2.0.

The function is not exported directly by the WS2_32.DLL, and Windows Sockets 2 applications should not
use this function. Windows Sockets 1.1 applications that call this function are still supported through the
WINSOCK.DLL and WSOCK32.DLL.

Blocking hooks are generally used to keep a single-threaded GUI application responsive during calls to
blocking functions. Instead of using blocking hooks, an applications should use a separate thread
(separate from the main GUI thread) for network activity.

WSAWaitForMultipleEvents     

 

The Windows Sockets WSAWaitForMultipleEvents function returns either when one or all of the
specified event objects are in the signaled state, or when the time-out interval expires.

DWORD WSAWaitForMultipleEvents(
 DWORD cEvents,
 const WSAEVENT FAR *lphEvents,
 BOOL fWaitAll,
 DWORD dwTimeOUT,
 BOOL fAlertable
);

Parameters
cEvents

[in] Specifies the number of event object handles in the array pointed to by lphEvents. The maximum
number of event object handles is WSA_MAXIMUM_WAIT_EVENTS. One or more events must be
specified.

lphEvents
[in] Points to an array of event object handles.

fWaitAll
[in] Specifies the wait type. If TRUE, the function returns when all event objects in the lphEvents array
are signaled at the same time. If FALSE, the function returns when any one of the event objects is
signaled. In the latter case, the return value indicates the event object whose state caused the
function to return.

dwTimeout
[in] Specifies the time-out interval, in milliseconds. The function returns if the interval expires, even if
conditions specified by the fWaitAll parameter are not satisfied. If dwTimeout is zero, the function
tests the state of the specified event objects and returns immediately. If dwTimeout is
WSA_INFINITE, the function's time-out interval never expires.

fAlertable
[in] Specifies whether the function returns when the system queues an I/O completion routine for
execution by the calling thread. If TRUE, the completion routine is executed and the function returns.
If FALSE, the completion routine is not executed when the function returns.

Remarks
The WSAWaitForMultipleEvents function returns either when any one or when all of the specified
objects are in the signaled state, or when the time-out interval elapses. This function is also used to
perform an alertable wait by setting the parameter fAltertable to be TRUE. This enables the function to
return when the system queues an I/O completion routine to be executed by the calling thread.

When fWaitAll is TRUE, the function's wait condition is satisfied only when the state of all objects is
signaled at the same time. The function does not modify the state of the specified objects until all objects
are simultaneously signaled.

Applications that simply need to enter an alertable wait state without waiting for any event objects to be
signalled should use the Win32 sleepEx function.

Return Values
If the function succeeds, the return value indicates the event object that caused the function to return.

If the function fails, the return value is WSA_WAIT_FAILED. To get extended error information, call
WSAGetLastError.

The return value upon success is one of the following values:

Value Meaning

WSA_WAIT_EVENT_0 to
(WSA_WAIT_EVENT_0 + cEvents -
1)

If fWaitAll is TRUE, the return value
indicates that the state of all specified
event objects is signaled. If fWaitAll is
FALSE, the return value minus
WSA_WAIT_EVENT_0 indicates the
lphEvents array index of the object that
satisfied the wait.

WAIT_IO_COMPLETION One or more I/O completion routines are
queued for execution.

WSA_WAIT_TIMEOUT The time-out interval elapsed and the
conditions specified by the fWaitAll
parameter are not satisfied.

Error Codes
WSANOTINITIALISED A successful WSAStartup must occur

before using this function.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Windows Sockets 1.1 call is
in progress, or the service provider is
still processing a callback function.

WSA_NOT_ENOUGH_MEMORY Not enough free memory available to
complete the operation.

WSA_INVALID_HANDLE One or more of the values in the
lphEvents array is not a valid event
object handle.

WSA_INVALID_PARAMETER The cEvents parameter does not
contain a valid handle count.

See Also
WSACloseEvent, WSACreateEvent

AFPROTOCOLS
typedef struct _AFPROTOCOLS {
 INT iAddressFamily;
 INT iProtocol;
} AFPROTOCOLS, *PAFPROTOCOLS, *LPAFPROTOCOLS;

CSADDR_INFO   

typedef struct _CSADDR_INFO {
 SOCKET_ADDRESS LocalAddr ;
 SOCKET_ADDRESS RemoteAddr ;
 INT iSocketType ;
 INT iProtocol ;
} CSADDR_INFO, *PCSADDR_INFO, FAR * LPCSADDR_INFO ;

flowspec
typedef struct _flowspec
{
 int32 TokenRate; /* In Bytes/sec */
 int32 TokenBucketSize; /* In Bytes */
 int32 PeakBandwidth; /* In Bytes/sec */
 int32 Latency; /* In microseconds */
 int32 DelayVariation; /* In microseconds */
 GUARANTEE LevelOfGuarantee; /* Guaranteed, Predictive, */
 /* Best Effort, etc. */
 int32 CostOfCall; /* Reserved for future use, */
 /* must be set to 0 now */
 int32 NetworkAvailability; /* read-only: */
 /* 1 if accessible, */
 /* 0 if not */
} FLOWSPEC, FAR * LPFLOWSPEC;

Members
TokenRate

A token bucket model is used to specify the rate at which permission to send traffic (or credits)
accrues. In the model, the token bucket has a maximum volume, TokenBucketSize, and continuously
fills at a certain rate TokenRate. If the bucket contains sufficient credit, the application can send data
and reduce the available credit by that amount. If sufficient credits are not available, the application
must wait or discard the extra traffic.

A value of -1 in the members TokenRate and TokenBucketSize indicates that no rate-limiting is in
force. The TokenRate is expressed in bytes per second.

If an application has been sending at a low rate for a period of time, it can send a large burst of data
all at once until it runs out of credit. Having done so, it must limit itself to sending at TokenRate until its
data burst is exhausted.

In video applications, the TokenRate is typically the average bit rate peak to peak. In constant rate
applications, the TokenRate is equal to the PeakBandwidth.

TokenBucketSize
The TokenBucketSize is expressed in bytes.

The TokenBucketSize is the largest typical frame size in video applications. In constant rate
applications, the TokenBucketSize is chosen to accommodate small variations.

PeakBandwidth
This member, expressed in bytes/second, limits how fast packets may be sent back to back from the
application. Some intermediate systems can take advantage of this information resulting in a more
efficient resource allocation.

Latency
Latency is the maximum acceptable delay between transmission of a bit by the sender and its receipt
by the intended receiver(s), expressed in microseconds. The precise interpretation of this number
depends on the level of guarantee specified in the QOS request.

DelayVariation
This the difference, in microseconds, between the maximum and minimum possible delay that a
packet will experience. This value is used by applications to determine the amount of buffer space
needed at the receiving side in order to restore the original data transmission pattern.

LevelOfGuarantee
This is the level of service being negotiated for. The GUARANTEE type is enumerated below. Four
levels of service are defined: Guaranteed, Guaranteed Delay, Predictive, Controlled Load and Best
Effort.

The reason for defining both predictive and guaranteed service is that predictive services may
achieve substantially better performance given the same level of network resource usage, while
guaranteed service provides the mathematical level of certainty needed by selected applications.
Specific providers may implement none, one, or both of these services.

Best effort service is just a hint to the service provider and should be always supported.

CostOfCall
This is just a place holder for now and should always be set to 0 until we can come up with a
meaningful cost metric.

NetworkAvailability
Network Availability - This is a read-only field for the transport provider to use in indicating to the
application whether or not the underlying media is currently accessible or temporarily unavailable.
The typical example for a temporarily inaccessible network would be a wireless interface that has lost
contact with the base station (due, for example to terrain interference). Any change in this value
should result in an FD_QOS indication to applications that have registered interest in same.

FD_SET
typedef struct fd_set {
 u_int fd_count; /* how many are SET? */
 SOCKET fd_array[FD_SETSIZE]; /* an array of SOCKETs */
} fd_set;

typedef struct fd_set FD_SET;

Element Usage

fd_count The number of sockets that are set.

fd_array An array of the sockets in the set.

GUARANTEE
typedef enum
{
 BestEffortService,
 ControlledLoadService,
 PredictiveService,
 GuaranteedService
} GUARANTEE;

Types
GuaranteedService

A service provider supporting guaranteed service implements a queuing algorithm which isolates the
flow from the effects of other flows as much as possible, and guarantees the flow the ability to
propagate data at the TokenRate for the duration of the connection. If the sender sends faster than
that rate, the network may delay or discard the excess traffic. If the sender does not exceed
TokenRate over time, then latency is also guaranteed. This service is designed for applications which
require a precisely known quality of service but would not benefit from better service, such as real-
time control systems.

PredictiveService
A service provider supporting predictive service guarantees the flow the ability to propagate data at
the TokenRate for the duration of the connection. If the sender sends faster than that rate, the
network may delay or discard the excess traffic. The delay limit is not guaranteed (occasional packets
may take longer than specified), but is generally highly reliable. This service is designed for
applications that can accommodate or adapt to some variation in service quality, such as video
service.

ControlledLoadService
With this service, end-to-end behavior provided to an application by a series of network elements
tightly approximates the behavior visible to applications receiving best-effort service "under unloaded
conditions" from the same series of network elements. Thus, applications using this service can
assume that:

1. A very high percentage of transmitted packets will be successfully delivered by the network to the
receiving end-nodes. (Packet loss rate will closely approximate the basic packet error rate of the
transmission medium).

2. Transit delay experienced by a very high percentage of the delivered packets will not greatly
exceed the minimum transit delay experienced by any successfully delivered packet at the speed
of light.

Note This definition comes from the Internet Engineering Task Force (IETF).

BestEffortService
A service provider supporting best effort service, at minimum, takes the flow spec as a guideline and
makes reasonable efforts to maintain the level of service requested, however without making any
guarantees whatsoever.

hostent
This structure is allocated by Windows Sockets. An application should never attempt to modify this
structure or to free any of its components. Furthermore, only one copy of this structure is allocated per
thread, and so the application should copy any information that it needs before issuing any other
Windows Sockets API calls.

struct hostent {
 char FAR * h_name;
 char FAR * FAR * h_aliases;
 short h_addrtype;
 short h_length;
 char FAR * FAR * h_addr_list;
};

Members
h_name

Official name of the host (PC).If using the DNS or similar resolution system, it is the Fully Qualified
Domain Name (FQDN) that caused the server to return a reply. If using a local "hosts" file, it is the
first entry after the IP address.

h_aliases
A NULL-terminated array of alternate names.

h_addrtype
The type of address being returned.

h_length
The length, in bytes, of each address.

h_addr_list
A NULL-terminated list of addresses for the host. Addresses are returned in network byte order.The
macro h_addr is defined to be h_addr_list[0] for compatibility with older software.

QualityOfService
The Windows Sockets 2 QOS structure is defined in WINSOCK2.H and is reproduced here.

typedef struct _QualityOfService
{
 FLOWSPEC SendingFlowspec; /* The flowspec for data */
 /* sending */
 FLOWSPEC ReceivingFlowspec; /* The flowspec for data */
 /* receiving */
 WSABUF ProviderSpecific; /* Additional provider- */
 /* specific parameters */
} QOS, FAR * LPQOS;

sockaddr
The sockaddr structure varies depending on the the protocol selected. The structure below is used with
TCP/IP. Other protocols use similar structures.

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

SOCKET_ADDRESS
typedef struct _SOCKET_ADDRESS {
 LPSOCKADDR lpSockaddr ;
 INT iSockaddrLength ;
} SOCKET_ADDRESS, *PSOCKET_ADDRESS, FAR * LPSOCKET_ADDRESS ;

WSABUF
typedef struct _WSABUF {
 u_long len;
 char FAR * buf;
} WSABUF, FAR * LPWSABUF;

Members
len

The length of the buffer.

buf
A pointer to the buffer.

WSAEcomparator
typedef enum _WSAEcomparator
{
 COMP_EQUAL = 0,
 COMP_NOTLESS
} WSAECOMPARATOR, *PWSAECOMPARATOR, *LPWSAECOMPARATOR;

WSAData
typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 char szDescription[WSADESCRIPTION_LEN+1];
 char szSystemStatus[WSASYS_STATUS_LEN+1];
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char FAR * lpVendorInfo;
} WSADATA, FAR * LPWSADATA;

WSANAMESPACE_INFO
The WSANAMESPACE_INFO structure contains all of the registration information for a name space
provider.

typedef struct _WSANAMESPACE_INFOW {
 GUID NSProviderId;
 DWORD dwNameSpace;
 BOOL fActive;
 DWORD dwVersion;
 LPWSTR lpszIdentifier;
} WSANAMESPACE_INFOW, *PWSANAMESPACE_INFOW, *LPWSANAMESPACE_INFOW;

Members
NSProviderId

The unique identifier for this name space provider.

dwNameSpace
Specifies the name space supported by this implementation of the provider.

fActive
If TRUE, indicates that this provider is active. If FALSE, the provider is inactive and is not accessible
for queries, even if the query specifically references this provider.

dwVersion
Name Space version identifier.

lpszIdentifier
Display string for the provider.

WSAOVERLAPPED
The WSAOVERLAPPED structure provides a communication medium between the initiation of an
overlapped I/O operation and its subsequent completion. The WSAOVERLAPPED structure is designed
to be compatible with the Win32 OVERLAPPED structure:

typedef struct _WSAOVERLAPPED {
 DWORD Internal;
 DWORD InternalHigh;
 DWORD Offset;
 DWORD OffsetHigh;
 WSAEVENT hEvent;
} WSAOVERLAPPED, LPWSAOVERLAPPED;

Members
Internal

This reserved field is used internally by the entity that implements overlapped I/O. For service
providers that create sockets as installable file system (IFS) handles, this field is used by the
underlying operating system. Other service providers (non-IFS providers) are free to use this field as
necessary.

InternalHigh
Reserved field is used internally by the entity that implements overlapped I/O. For service providers
that create sockets as IFS handles, this field is used by the underlying operating system. Non-IFS
providers are free to use this field as necessary.

OffsetT
This field is reserved for service providers to use.

OffsetHigh
This field is reserved for service providers to use.

Event
If an overlapped I/O operation is issued without an I/O completion routine (lpCompletionRoutine is
NULL), then this field should either contain a valid handle to a WSAEVENT object or be NULL. If
lpCompletionRoutine is non-NULL then applications are free to use this field as necessary.

WSAQuerySet
typedef struct _WSAQuerySetW
{
 DWORD dwSize;
 LPWSTR lpszServiceInstanceName;
 LPGUID lpServiceClassId;
 LPWSAVERSION lpVersion;
 LPWSTR lpszComment;
 DWORD dwNameSpace;
 LPGUID lpNSProviderId;
 LPWSTR lpszContext;
 DWORD dwNumberOfProtocols;
 LPAFPROTOCOLS lpafpProtocols;
 LPWSTR lpszQueryString;
 DWORD dwNumberOfCsAddrs;
 LPCSADDR_INFO lpcsaBuffer;
 DWORD dwOutputFlags;
 LPBLOB lpBlob;
} WSAQUERYSETW, *PWSAQUERYSETW, *LPWSAQUERYSETW;

WSAPROTOCOL_INFO
typedef struct _WSAPROTOCOL_INFOW {
 DWORD dwServiceFlags1;
 DWORD dwServiceFlags2;
 DWORD dwServiceFlags3;
 DWORD dwServiceFlags4;
 DWORD dwProviderFlags;
 GUID ProviderId;
 DWORD dwCatalogEntryId;
 WSAPROTOCOLCHAIN ProtocolChain;
 int iVersion;
 int iAddressFamily;
 int iMaxSockAddr;
 int iMinSockAddr;
 int iSocketType;
 int iProtocol;
 int iProtocolMaxOffset;
 int iNetworkByteOrder;
 int iSecurityScheme;
 DWORD dwMessageSize;
 DWORD dwProviderReserved;
 WCHAR szProtocol[WSAPROTOCOL_LEN+1];
} WSAPROTOCOL_INFOW, FAR * LPWSAPROTOCOL_INFOW;

Members
dwServiceFlags1

A bitmask describing the services provided by the protocol. The following values are possible:

XP1_CONNECTIONLESS
The protocol provides connectionless (datagram) service. If not set, the protocol supports
connection-oriented data transfer.

XP1_GUARANTEED_DELIVERY
The protocol guarantees that all data sent will reach the intended destination.

XP1_GUARANTEED_ORDER
The protocol guarantees that data will only arrive in the order in which it was sent and that it will not
be duplicated. This characteristic does not necessarily mean that the data will always be delivered,
but that any data that is delivered is delivered in the order in which it was sent.

XP1_MESSAGE_ORIENTED
The protocol honors message boundaries, as opposed to a stream-oriented protocol where there is
no concept of message boundaries.

XP1_PSEUDO_STREAM
This is a message oriented protocol, but message boundaries will be ignored for all receives. This
is convenient when an application does not desire message framing to be done by the protocol.

XP1_GRACEFUL_CLOSE
The protocol supports two-phase (graceful) close. If not set, only abortive closes are performed.

XP1_EXPEDITED_DATA
The protocol supports expedited (urgent) data.

XP1_CONNECT_DATA
The protocol supports connect data.

XP1_DISCONNECT_DATA
The protocol supports disconnect data.

XP1_SUPPORT_BROADCAST
The protocol supports a broadcast mechanism.

XP1_SUPPORT_MULTIPOINT
The protocol supports a multipoint or multicast mechanism. Control and data plane attributes are
indicated below. XP1_MULTIPOINT_CONTROL_PLANE

Indicates whether the control plane is rooted (value = 1) or non-rooted (value = 0).

XP1_MULTIPOINT_DATA_PLANE
Indicates whether the data plane is rooted (value = 1) or non-rooted (value = 0).

XP1_QOS_SUPPORTED
The protocol supports quality of service requests.

XP1_RESERVED
This bit is reserved.

XP1_UNI_SEND
The protocol is unidirectional in the send direction.

XP1_UNI_RECV
the protocol is unidirectional in the recv direction.

XP1_IFS_HANDLES
The socket descriptors returned by the provider are operating system Installable File System (IFS)
handles.

XP1_PARTIAL_MESSAGE
The MSG_PARTIAL flag is supported in WSASend and WSASendTo.

Note that only one of XP1_UNI_SEND or XP1_UNI_RECV may be set. If a protocol can be unidirectional
in either direction, two WSAPROTOCOL_INFO structs should be used. When neither bit is set, the
protocol is considered to be bi-directional.

dwServiceFlags2
Reserved for additional protocol attribute definitions.

dwServiceFlags3
Reserved for additional protocol attribute definitions.

dwServiceFlags4
Reserved for additional protocol attribute definitions.

dwProviderFlags
Provide information about how this protocol is represented in the protocol catalog. The following flag
values are possible:

PFL_MULTIPLE_PROTOCOL_ENTRIES
Indicates that this is one of two or more entries for a single protocol (from a given provider) which
is capable of implementing multiple behaviors. An example of this is SPX which, on the receiving
side, can behave either as a message oriented or a stream oriented protocol.

PFL_RECOMMENDED_PROTO_ENTRY
Indicates that this is the recommended or most frequently used entry for a protocol which is
capable of implementing multiple behaviors.

PFL_HIDDEN
Set by a provider to indicate to the WS2_32.DLL that this protocol should not be returned in the
result buffer generated by WSAEnumProtocols. Obviously, a Windows Sockets 2 application
should never see an entry with this bit set.

PFL_MATCHES_PROTOCOL_ZERO
Indicates that a value of zero in the protocol parameter of socket or WSASocket matches this
protocol entry.

ProviderId
A globally unique identifier assigned to the provider by the service provider vendor. This value is
useful for instances where more than one service provider is able to implement a particular protocol.
An application may use the dwProviderId value to distinguish between providers that might otherwise
be indistinguishable.

dwCatalogEntryId
A unique identifier assigned by the WS2_32.DLL for each WSAPROTOCOL_INFO structure.

WSAPROTOCOLCHAIN ProtocolChain;

If the length of the chain is 0, this WSAPROTOCOL_INFO entry represents a layered protocol
which has Windows Sockets 2 SPI as both its top and bottom edges. If the length of the chain
equals 1, this entry represents a base protocol whose Catalog Entry ID is in the dwCatalogEntryId
field of the WSAPROTOCOL_INFO structure. If the length of the chain is larger than 1, this entry
represents a protocol chain which consists of one or more layered protocols on top of a base
protocol. The corresponding Catalog Entry IDs are in the ProtocolChain.ChainEntries array starting
with the layered protocol at the top (the zero element in the ProtocolChain.ChainEntries array) and
ending with the base protocol. Refer to the Windows Sockets 2 Service Provider Interface
specification for more information on protocol chains.

iVersion
Protocol version identifier.

iAddressFamily
The value to pass as the address family parameter to the socket/WSASocket function in order to
open a socket for this protocol. This value also uniquely defines the structure of protocol addresses
(SOCKADDRs) used by the protocol.

iMaxSockAddr
The maximum address length.

iMinSockAddr
The minimum address length.

iSocketType
The value to pass as the socket type parameter to the socket function in order to open a socket for
this protocol.

iProtocol
The value to pass as the protocol parameter to the socket function in order to open a socket for this
protocol.

iProtocolMaxOffset
The maximum value that may be added to iProtocol when supplying a value for the protocol
parameter to socket and WSASocket. Not all protocols allow a range of values. When this is the
case iProtocolMaxOffset will be zero.

iNetworkByteOrder
Currently these values are manifest constants (BIGENDIAN and LITTLEENDIAN) that indicate either
"big-endian" or "little-endian" with the values 0 and 1 respectively.

iSecurityScheme
Indicates the type of security scheme employed (if any). A value of SECURITY_PROTOCOL_NONE
is used for protocols that do not incorporate security provisions.

dwMessageSize
The maximum message size supported by the protocol. This is the maximum size that can be sent
from any of the host's local interfaces. For protocols which do not support message framing, the
actual maximum that can be sent to a given address may be less. The following special values are
defined:

0
The protocol is stream-oriented and hence the concept of message size is not relevant.

0x1
The maximum message size is dependent on the underlying network MTU (maximum sized
transmission unit) and hence cannot be known until after a socket is bound. Applications should
use getsockopt to retrieve the value of SO_MAX_MSG_SIZE after the socket has been bound to
a local address.

0xFFFFFFFF
The protocol is message-oriented, but there is no maximum limit to the size of messages that may

be transmitted.

dwProviderReserved
Reserved for use by service providers.

szProtocol
An array of characters that contains a human-readable name identifying the protocol, for example
"SPX2". The maximum number of characters allowed is WSAPROTOCOL_LEN, which is defined to
be 255.

WSAPROTOCOLCHAIN
A structure containing a counted list of Catalog Entry IDs which comprise a protocol chain. This structure
is defined as follows:

typedef struct _WSAPROTOCOLCHAIN {
 int ChainLen; /* the length of the chain, */
 /* length = 0 means layered protocol, */
 /* length = 1 means base protocol,
 /* length > 1 means protocol chain */
 DWORD ChainEntries[MAX_PROTOCOL_CHAIN];
 /* a list of dwCatalogEntryIds */
} WSAPROTOCOLCHAIN, FAR * LPWSAPROTOCOLCHAIN;

WSAServiceClassInfo
typedef struct _WSAServiceClassInfoW
{
 LPGUID lpServiceClassId;
 LPWSTR lpszServiceClassName;
 DWORD dwCount;
 LPWSANSCLASSINFOW lpClassInfos;
}WSASERVICECLASSINFOW, *PWSASERVICECLASSINFOW, *LPWSASERVICECLASSINFOW;

