
Legal Information
Microsoft RPC Programmer's Guide and Reference
Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

Copyright Ó 1992 - 1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Win32, Win32s, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Portions of this documentation are provided under license from Digital Equipment Corporation. Copyright
Ó 1990, 1992 Digital Equipment Corporation. All rights reserved.

DEC is a registered trademark and DECnet and Pathworks are trademarks of Digital Equipment
Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

About This Guide
This guide explains the Microsoft RPC programming model, standards, and tools in detail. Part I, the
Overviews portion of the guide, consists of a sequence of topics that will help you understand distributed
application programming and Microsoft RPC as follows:

Microsoft RPC Model provides an overview of the client-server programming model, standards for
distributed application programming, and a description of how Microsoft RPC works.

Installing The RPC Programming Environment tells how to install the files and tools needed to develop
distributed applications with Microsoft RPC.

Tutorial provides an overview of the development of a small distributed application. This example
demonstrates all the steps in developing a distributed application, the tools you use, and the components
that make up the executable programs.

The following topics deal with the underlying mechanisms that pass data from the calling application to
the remote procedure.

Building RPC Applications describes the MIDL compiler and the necessary environment for building
distributed applications with Microsoft RPC.

IDL and ACF Files describes the IDL and ACF files used to specify the interface to the remote procedure
call and the MIDL compiler switches that control how these files are processed.

Data and Language Features demonstrates the use of standard data types.

Arrays and Pointers explains how to pass arrays pointers as parameters.

Binding and Handles describes the binding handle ¾ the data structure that allows the developer to bind
the calling application to the remote procedure.

Memory Management offers ideas about how to manage memory on the client and server when
performing remote procedure calls.

Encoding Services describes the methods for encoding or decoding data.

Run-time RPC Functions describe the Microsoft RPC run-time libraries and the functions in the run-time
library that applications use to manage their own client and server binding.

Security describes the methods for implementing security features in your distributed applications.

Installing and Configuring RPC Applications discusses installing your client and server applications in the
MS-DOS, Microsoft Windows 3.x, Windows 95, and Windows NT environments, describes how to
configure the name service provider and the security service. This section also contains network transport
information for RPC.

Part II, The RPC Programmers' Reference provides alphabetical listings of RPC Data Types and
Structures, and RPC Functions.

The Appendix contains a listing of RPC Error Codes and sample code that demonstrates a variety of RPC
concepts.

For detailed information on using the MIDL Compiler, and for descriptions of MIDL language attributes,
see the MIDL Programmers' Reference. For information about Microsoft Windows 3.x, see the Microsoft
Windows 3.x software development kit. For information about the Microsoft Windows NT and Windows 95
operating systems, see the Microsoft Win32 software development kit. For information about C and C++,

see your C/C++ programming documentation.

Microsoft RPC Model
Microsoft Remote Procedure Call (RPC) for the C and C++ programming languages is designed to help
meet the needs of developers working on the next generation of software for the Microsoft® MS-DOS®,
Microsoft® Windows®, Microsoft® Windows® 95, and Microsoft® Windows NT® family of operating
systems.

Microsoft RPC represents the convergence of three powerful programming models: the familiar model of
developing C applications by writing procedures and libraries; the model that uses powerful computers as
network servers to perform specific tasks for their clients; and the client-server model, in which the client
usually manages the user interface while the server handles data storage, queries, and manipulation.

This section explains the convergence of these three powerful models in distributed computing, which
delivers the ability to share computational power among the computers on a network. This section also
describes the industry standard for RPC and provides an overview of Microsoft RPC components and
their operation.

The Programming Model
In the early days of computing, each program was written as a large monolithic chunk, filled with goto
statements. Each program had to manage its own input and output to different hardware devices. As the
programming discipline matured, this monolithic code was organized into procedures, with the commonly
used procedures packed in libraries for sharing and reuse. Today's RPC is the next step in the
development of procedure libraries. Now, procedure libraries can run on other remote computers.

{ewc msdncd, EWGraphic, bsd23535 0 /a "SDK_A06.BMP"}

The C programming language supports procedure-oriented programming. In C, the main procedure
relates to all other procedures as black boxes. For example, the main procedure cannot find out how
procedures A, B, and X do their work. The main procedure only calls another procedure; it has no
information about how that procedure is implemented.

{ewc msdncd, EWGraphic, bsd23535 1 /a "SDK_A08.BMP"}

Procedure-oriented programming languages provide simple mechanisms for specifying and writing
procedures. For example, the ANSI standard C function prototype is a construct used to specify the name
of a procedure, the type of the result it returns, if any, and the number, sequence, and type of its
parameters. Using the function prototype is a formal way to specify an interface between procedures.

In this guide, the term procedure is synonymous with the terms subroutine and subprocedure and refers
to any sequence of computer instructions that accomplishes a functional purpose. In this documentation,
the term function refers to a procedure that returns a value.

Related procedures are often grouped in libraries. For example, a procedure library can include a set of
procedures that performs tasks common to a single domain such as floating-point math operations,
formatted input and output, and network functions.

The procedure library is another level of packaging that makes it easy to develop applications. Procedure
libraries can be shared among many applications. Libraries developed in C are usually accompanied by
header files. Each program that uses the library is compiled with the header files that formally define the
interface to the library's procedures.

The Microsoft RPC tools represent a general approach in which procedure libraries written in C can run
on other computers. In fact, an application can link with libraries implemented using RPC without
indicating to the user that the application is using RPC.

The Client-Server Model
Client-server architecture is an effective and popular design for distributed applications. In the client-
server model, an application is split into two parts: a front-end client that presents information to the user,
and a back-end server that stores, retrieves, and manipulates data, and generally handles the bulk of the
computing tasks for the client. In this model, the server is usually a more powerful computer than the
client and serves as a central data store for many client computers, thus making the system easy to
administer.

Typical examples of client-server applications include shared databases, remote file servers, and remote
printer servers. The following figure illustrates the client-server model.

{ewc msdncd, EWGraphic, bsd23535 2 /a "SDK_A04.BMP"}

Network systems support the development of client-server applications through an interprocess
communication (IPC) facility in which the client and server can communicate and coordinate their work.
You can use NetBIOS NCBs (network control blocks), mailslots, or named pipes to transfer information
between two or more computers.

For example, the client can use an IPC mechanism to send an opcode and data to the server requesting
that a particular procedure be called. The server receives and decodes the request and calls the
appropriate procedure. The server then performs all the computations needed to satisfy the request and
returns the result to the client. Client-server applications are usually designed to minimize the amount of
data transmitted over the network.

Using NetBIOS, mailslots, or named pipes to implement interprocess communication means learning
specific details relating to network communication. Each application must manage the network-specific
conditions. To write this network-specific level of code, you must:

· Learn details relating to network communications and how to handle error conditions.
· Translate data to different internal formats, when the network includes different kinds of computers.
· Support communications using multiple transport interfaces.

In addition to all the possible errors that can occur on a single computer, the network has its own error
conditions. For example, a connection can be lost, a server can disappear from the network, the network
security service can deny access to system resources, or users can compete for and tie up system
resources. Because the state of the network is always changing, an application can fail in new and
interesting ways that are difficult to reproduce. For these reasons, each application must rigorously
handle all possible error conditions.

When you write a client-server application, you must provide the layer of code that manages network
communication. The advantage of using Microsoft RPC is that the RPC tools provide this layer for you.
RPC virtually eliminates the need to write network-specific code, thus making it easier to develop
distributed applications.

Using the remote procedure call model, RPC tools manage many of the details relating to network
protocols and communication. This allows you to focus on the details of the application rather than the
details of the network.

The Compute-Server Model
Networking software for personal computers has been built on the model of a powerful computer ¾ the
server ¾ that provides specialized services to workstations, or client computers. In this model, servers are
designated as file servers, print servers, or communications (modem) servers, depending on whether they
are assigned to file sharing or are connected to printers or modems.

RPC represents an evolutionary step in this model. In addition to its traditional roles, a server using RPC
can be designated as a computational server or a compute server. In this role, the server shares its own
computational power with other computers on the network. A workstation can ask the compute server to
perform computations and return the results. The client not only uses files and printers, it also uses the
central processing units of other computers.

How RPC Works
The RPC tools make it appear to users as though a client directly calls a procedure located in a remote
server program. The client and server each have their own address spaces; that is, each has its own
memory resource that is allocated to data used by the procedure. The following figure illustrates the RPC
architecture.

{ewc msdncd, EWGraphic, bsd23535 3 /a "SDK_A11.BMP"}

As the illustration shows, the client application calls a local stub procedure instead of the actual code
implementing the procedure. Stubs are compiled and linked with the client application. Instead of
containing the actual code that implements the remote procedure, the client stub code:

· Retrieves the required parameters from the client address space.
· Translates the parameters as needed into a standard network data representation (NDR) format for

transmission over the network.
· Calls functions in the RPC client run-time library to send the request and its parameters to the server.

The server performs the following steps to call the remote procedure:

· The server RPC run-time library functions accept the request and call the server stub procedure.
· The server stub retrieves the parameters from the network buffer and converts them from the network

transmission format to the format the server needs.
· The server stub calls the actual procedure on the server.

The remote procedure then runs, possibly generating output parameters and a return value. When the
remote procedure is done, a similar sequence of steps returns the data to the client:

· The remote procedure returns its data to the server stub.
· The server stub converts output parameters to the format required for transmission over the network

and returns them to the RPC run-time library functions.
· The server RPC run-time library functions transmit the data on the network to the client computer.

The client completes the process by accepting the data over the network and returning it to the calling
function:

· The client RPC run-time library receives the remote-procedure return values and returns them to the
client stub.

· The client stub converts the data from its network data representation to the format used by the client
computer. The stub writes data into the client memory and returns the result to the calling program on
the client.

· The calling procedure continues as if the procedure had been called on the same computer.

For Microsoft Windows 3.x, Windows 95, and Windows NT, the run-time libraries are provided in two
parts: an import library, which is linked with the application and the RPC run-time library, which is
implemented as a dynamic-link library (DLL).

The server application contains calls to the server run-time library functions which register the server's
interface and allow the server to accept remote procedure calls. The server application also contains the
application-specific remote procedures that are called by the client applications.

OSF Standards for RPC
The design and technology behind Microsoft RPC is just one part of a complete environment for
distributed computing defined by the Open Software Foundation (OSF), a consortium of companies
formed to define that environment. The OSF requests proposals for standards, accepts comments on the
proposals, votes on whether to accept the standards, and then promulgates them. The components of the
OSF distributed computing environment (DCE) are shown in the following figure.

{ewc msdncd, EWGraphic, bsd23535 4 /a "SDK_A05.BMP"}

In selecting the RPC standard, the OSF cited the following rationale:

· The three most important properties of a remote procedure call are simplicity, transparency, and
performance.

· The selected RPC model adheres to the local procedure model as closely as possible. This
requirement minimizes the amount of time developers spend learning the new environment.

· The selected RPC model permits interoperability; its core protocol is well defined and cannot be
modified by the user.

· The selected RPC model allows applications to remain independent of the transport and protocol on
which they run, while supporting a variety of transports and protocols.

· The selected RPC model can be easily integrated with other components of the DCE.

The OSF-DCE remote procedure call standards define not only the overall approach, but the language
and the specific protocols to use for communications between computers as well, down to the format of
data as it is transmitted over the network.

Microsoft's implementation of RPC is compatible with the OSF standard with the exception of some minor
differences. Client or server applications written using Microsoft RPC will interoperate with any DCE RPC
client or server whose run-time libraries run over a supported protocol. For a list of supported protocols,
see Building RPC Applications.

Microsoft RPC Components
The Microsoft RPC product includes the following major components:

· MIDL compiler
· Run-time libraries and header files
· Transport interface modules
· Name service provider
· Endpoint supply service

In the RPC model, you can formally specify an interface to the remote procedures using a language
designed for this purpose. This language is called the Interface Definition Language, or IDL. The
Microsoft implementation of this language is called the Microsoft Interface Definition Language, or MIDL.

After you create an interface, you must pass it through the MIDL compiler. This compiler generates the
stubs that translate local procedure calls into remote procedure calls. Stubs are placeholder functions that
make the calls to the run-time library functions, which manage the remote procedure call. The advantage
of this approach is that the network becomes almost completely transparent to your distributed
application. Your client program calls what appear to be local procedures; the work of turning them into
remote calls is done for you automatically. All the code that translates data, accesses the network, and
retrieves results is generated for you by the MIDL compiler and is invisible to your application.

Summary: RPC Extends Client-Server Computing
Microsoft RPC is an evolution of the procedural programming model familiar to all developers. It also
represents a new category of specialized server and extends the model of client-server computing.

Microsoft RPC is a tool developers use to leverage the power of the single personal computer by
increasing its computational capacity far beyond its own resources. With RPC, you can harness all the
CPU horsepower available on the network.

Microsoft RPC allows a process running in one address space to make a procedure call that is executed
in another address space. The call looks like a standard local procedure call but is actually made to a stub
that interacts with the run-time library and performs all the steps necessary to execute the call in the
remote address space.

As a tool for creating distributed applications, Microsoft RPC provides the following benefits:

· The RPC programming model is already familiar. You can easily turn functions into remote
procedures, which simplify the development and test cycles.

· RPC hides many details of the network interface from the developer. You do not have to understand
specific network functions or low-level network protocols to implement powerful distributed
applications.

· RPC solves the data-translation problems that crop up in heterogeneous networks; individual
applications can ignore this problem.

· The RPC approach is scalable. As a network grows, applications can be distributed to more than one
computer on the network.

· The RPC model is an industry standard. The Microsoft implementation is compatible with both client
and server.

Installing the RPC Programming
Environment

You develop RPC distributed applications, for all supported platforms, on the 32-bit Windows NT platform.
Although the 16-bit MIDL compiler is no longer supported, you can develop 16-bit code by doing the
following:

1. Use the 32-bit MIDL compiler installed as part of Win32 SDK Setup.
2. Select the MS-DOS or Windows 3.x option of the MIDL /env command line switch.   
3. Compile your MS-DOS or Windows 3.x application and RPC stubs using your 16-bit development

environment.

When the Win32 SDK is installed, the RPC development environment and the run-time libraries are
automatically installed. For the 32-bit Windows platform, no additional installation is required.

Note    See Building RPC Applications for information about various build environments.

Developing 32-bit Windows Applications
The Microsoft Win32 SDK contains the Microsoft® Windows NT® and Microsoft® Windows® 95 APIs.
When you install the Win32® SDK, you install the following RPC tools and files:

· C/C++ language header (.H) files for the RPC run-time libraries and run-time library(.LIB and .DLL)
files for 32-bit Windows platforms

· 32-bit sample programs
· RPC reference Help files
· The uuidgen utility

When you install Windows NT or Windows 95, you install the following:

· RPC Run-time .DLLs
· RPC Locator (NT only) and RPC Endpoint-mapping services

Developing 16-bit Windows and MS-DOS Client Applications
To develop client-side distributed applications for MS-DOS and Microsoft Windows 3.x, you must install
the Microsoft Windows 3.x/MS-DOS version of the RPC SDK, which is contained in a disk image in the
Win32 SDK directory \rpc_sdk. Run SETUP.EXE from Disk 1 to install the header and library files for MS-
DOS and/or 16-bit Windows.

When you install the 16-bit SDK, you install the following:

· Header files and libraries needed to build RPC applications for MS-DOS and Windows 3.x.
· Sample RPC programs for MS-DOS and Windows 3.x.
· Run-time RPC and .DLL files for MS-DOS and Windows 3.x.
· 32-bit MIDL compiler.

Microsoft RPC development for 16-bit Windows and MS-DOS requires:

· Microsoft Visual C++ or other C/C++ compiler.
· One of the following platforms, for testing your 16-bit application:

· Microsoft Windows version 3.x with Microsoft LAN Manager version 2.2
· Microsoft Windows 3.x with a Windows Sockets-compliant TCP/IP stack
· Microsoft Windows 3.x with Workgroup Connection 3.1
· Microsoft Windows for Workgroups 3.11 with NetBEUI or the Microsoft TCP/IP-32 stack
· Microsoft Windows 3.x with NetWare 3.x or 4.x
· Microsoft Windows for Workgroups 3.11 with NetWare 3.x or 4.x software

Developing Macintosh Client Applications
To develop client-side applications for the Macintosh, you must

have the following:
· Visual C++ for the Macintosh. The RPC runtime has been compiled using Visual C++ cross-

development tools. In order to use rpc.lib, you must link against the C run-time and swapper library
(swap.lib) provided with Visual C++, version 2.0 or later.

· The Macintosh RPC SDK, which is contained in a disk image in the Win32 SDK directory \rpc_sdk.
Run SETUP.EXE from Disk 1 to install the Macintosh header and library files. Note that the current
rpc.lib is native 68K. We currently do not provide a native Power Mac library. RPC runs in emulation
on Power Macs.

· The target computer must have a microprocessor of 68020 or later, and it must be running System
7.0 or later.

To connect to the Windows NT or Windows 95 server
· Current Windows NT-supported protocols for the Macintosh are ADSP and TCP/IP. In order to use

ADSP, the Windows NT server must have both the AppleTalk protocol and Services for Macintosh.
Windows 95 supports only the TCP/IP protocol for the Macintosh.

To write an RPC client
1. If you use atexit to perform cleanup during shutdown, do not call any RPC APIs in your exit

processing function.
2. If a yielding function is not registered, an RPC will not yield on the Macintosh. Register a yielding

function by calling RpcMacSetYieldInfo.
void RPC_ENTRY MacCallbackFunc(short *pStatus)
{
 MSG msg;
 while (*pStatus == 1)
 {
 if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
}

3. Most client-side APIs that are supported by Windows 3.x are also supported by the Macintosh. The
Macintosh does not support the following APIs:
· RpcNs* APIs
· RpcMgmt* APIs
· RpcWinSetYieldInfo (replaced by RpcMacSetYieldInfo)

The only authentication service currently supported for the Macintosh is RPC_C_AUTHN_WINNT.

The following protocol sequences are supported:

· ADSP:ncacn_at_dsp
· TCP:ncacn_ip_tcp

Tutorial
This tutorial takes you through the steps required to create a simple, single-client, single-server
distributed application from an existing stand-alone application. These steps are:

· Create interface definition and application configuration files.
· Use the MIDL compiler to generate C-language client and server stubs and headers from those files.
· Write a client application that manages its connection to the server.
· Write a server application that contains the actual remote procedures.
· Compile and link these files to the RPC run-time library to produce the distributed application.

The client application passes a character string to the server in a remote procedure call and the server
prints the string ("Hello, World") to its standard output.

The complete source files for this example application, with additional code to handle command-line input
and to output various status messages to the user, are in the Win32 SDK directory \mstools\samples\rpc\
hello and in the Code Samples, RPC section of the Win32 SDK documentation.

The Stand-alone Application
This stand-alone application, which consists of a call to a single function, forms the basis of our
distributed application. The function, HelloProc, is defined in its own source file so that it can be compiled
and linked with either a stand-alone application or a distributed application.

/* file hellop.c */
#include <stdio.h>
void HelloProc(unsigned char * pszString)
{
 printf("%s\n", pszString);
}

/* file: hello.c, a stand-alone application */
#include "hellop.c"
void main(void)
{
 unsigned Char * pszString = "Hello, World";
 HelloProc(pszString);
}

Defining the Interface
The interface definition is a formal specification for how the client application and the server application
communicate with each other. The interface defines how the client and server "recognize" each other, the
remote procedures that the client application can call, the data types for those procedures' parameters
and return values, and how the data is transmitted between client and server.

You define this interface in the Microsoft Interface Definition Language (MIDL) which consists of C-
language definitions augmented with keywords, called attributes, which describe how the data is
transmitted over the network.

The interface definition (.IDL) file contains type definitions, attributes and function prototypes that describe
how data is transmitted on the network. The application configuration (.ACF) file contains attributes that
configure your application for a particular operating environment without affecting its network
characteristics.

Generating the UUID
The first step in defining the interface is to use the uuidgen utility to generate a universally unique
identifier (UUID) that lets the client and server applications recognize each other.

The uuidgen utility (UUIDGEN.EXE) is automatically installed when you install the Win32 SDK. The
following command generates a UUID and creates a template file called hello.idl:

C:\>uuidgen /i /ohello.idl

Your hello.idl template will look like this (with a different UUID, of course):

[
uuid(7a98c250-6808-11cf-b73b-00aa00b677a7),
version(1.0)
]
interface INTERFACENAME
{

}

The IDL File
The IDL file consists of one or more interface definitions, each of which has a header and a body. The
header contains information that applies to the entire interface, such as the UUID. This information is
enclosed in square brackets and is followed by the keyword interface and the interface name. The body
contains C-style data type definitions and function prototypes, augmented with attributes that describe
how the data is transmitted over the network.

In our example, the interface header contains only the UUID and the version number. The version number
ensures that, when there are multiple versions of an RPC interface, only compatible versions of the client
and server will be connected.

The interface body contains the function prototype for HelloProc. The function parameter pszString has
the attributes in and string. The in attribute tells the run-time library that the parameter is passed only
from the client to the server. The string attribute specifies that the stub should treat the parameter as a C-
style character string.

We want the client application to be able to shut down the server application, so we add a prototype for
another remote function, Shutdown, that we will implement later in this tutorial.

//file hello.idl
[
uuid(7a98c250-6808-11cf-b73b-00aa00b677a7),
version(1.0)
]
interface hello
{
void HelloProc([in, string] unsigned char * pszString);
void Shutdown(void);
}

The ACF File
The ACF file allows you to customize your client and/or server applications' RPC interface without
affecting the network characteristics of the interface. For example, if your client application contains a
complex data structure that only has meaning on the local machine, you can specify in the ACF file how
the data in that structure can be represented in a machine-independent form for remote procedure calls.

Our example demonstrates another use of the ACF file ¾ to specify the type of binding handle that
represents the connection between client and server. The implicit_handle attribute in the ACF header
allows the client application to select a server for its remote procedure call. We have defined the handle to
be of the type handle_t (a MIDL primitive data type). The binding handle name that we specified,
hello_IfHandle, will be defined in the MIDL-generated header file. This handle will be used in calls to the
client run-time library function.

Notice that this particular ACF file has an empty body.

//file: hello.acf
[implicit_handle (handle_t hello_IfHandle)
] interface hello
{
}

The MIDL compiler has an option, /app_config, that lets you include certain ACF attributes, such as
implicit_handle, in the IDL file, rather than creating a separate ACF file. Consider using this option if your
application doesn't require a lot of special configuration, and if strict OSF compatibility is not an issue.

Generating the Stub Files
After defining the client/server interface, you usually develop your client and server source files, and then
use a single makefile to generate the stub and header files and compile and link the client and server
applications. However, if this is your first exposure to the distributed computing environment, you may
want to invoke the MIDL compiler now to see what MIDL generates before you continue.

The MIDL compiler (MIDL.EXE) is automatically installed when you install the Win32 SDK. Make sure that
hello.idl and hello.acf are in the same directory. The following command will generate the header file
hello.h, and the client and server stubs, hello_c.c and hello_s.c:

C:\> midl hello.idl

Notice that hello.h contains function prototypes for HelloProc and Shutdown, as well as forward
declarations for two functions, MIDL_user_allocate and MIDL_user_free. You will provide those two
memory management functions in the server application. If data were also being transmitted from the
server to the client (via an out parameter) you would also need to provide these two memory
management functions in the client application.

Also note the definitions for our global handle variable, hello_IfHandle, and the client and server interface
handle names, hello_v1_0_c_ifspec and hello_v1_0_s_ifspec, which the client and server applications will
use in run-time calls.

You don't need to do anything with the stub files hello_c.c and hello_s.c.

/*file: hello.h */
/* this ALWAYS GENERATED file contains the definitions for the interfaces */
/* File created by MIDL compiler version 3.00.06
/* at Tue Feb 20 11:33:32 1996 */
/* Compiler settings for hello.idl:
 Os, W1, Zp8, env=Win32, ms_ext, c_ext
 error checks: none */
//@@MIDL_FILE_HEADING()
#include "rpc.h"
#include "rpcndr.h"

#ifndef __hello_h_
#define __hello_h_

#ifdef __cplusplus
extern "C"{
#endif

/* Forward Declarations */

void __RPC_FAR * __RPC_USER MIDL_user_allocate(size_t);
void __RPC_USER MIDL_user_free(void __RPC_FAR *);

#ifndef __hello_INTERFACE_DEFINED__
#define __hello_INTERFACE_DEFINED__

/**
 * Generated header for interface: hello
 * at Tue Feb 20 11:33:32 1996
 * using MIDL 3.00.06

 **/
/* [implicit_handle][version][uuid] */

 /* size is 0 */
void HelloProc(
 /* [string][in] */ unsigned char __RPC_FAR *pszString);
 /* size is 0 */
void Shutdown(void);
extern handle_t hello_IfHandle;

extern RPC_IF_HANDLE hello_v1_0_c_ifspec;
extern RPC_IF_HANDLE hello_v1_0_s_ifspec;
#endif /* __hello_INTERFACE_DEFINED__ */

/* Additional Prototypes for ALL interfaces */
/* end of Additional Prototypes */
#ifdef __cplusplus
}
#endif
#endif

The Client Application
The helloc.c source file contains a directive to include the MIDL-generated header file, hello.h. Within
hello.h are directives to include rpc.h and rpcndr.h, which contain the definitions for the RPC runtime
routines and data types that our client and server applications use.

Because the client is managing its connection to the server, the client application calls run-time functions
to establish a handle to the server and to release this handle after the remote procedure calls are
complete. The function RpcStringBindingCompose combines the components of the binding handle
into a string representation of that handle and allocates memory for the string binding. The function
RpcBindingFromStringBinding creates a server binding handle, hello_IfHandle, for the client
application from that string representation.

In the call to RpcStringBindingCompose, we have not specified the UUID because we have just one
implementation of the interface "hello". We also have not specified a network address because we want
the default, which is the local host machine. The protocol sequence is a character string that represents
the underlying network transport and the endpoint is a name that is specific to the protocol sequence. We
are using named pipes (a native Windows NT protocol) for our network transport, so the protocol
sequence is "ncacn_np" and we have named our endpoint "\pipe\hello".

The actual remote procedure calls, HelloProc and Shutdown, take place within the RPC exception
handler ¾ a set of macros that let you control exceptions that occur outside the application code. If the
RPC runtime module reports an exception, control passes to the RpcExcept block, which is where you
would insert code to do any needed cleanup and then exit gracefully. In our example, we need only inform
the user that an exception ocurred.

After the remote procedure calls are completed the client first calls RpcStringFree to free the memory
that was allocated for the string binding, and then calls RpcBindingFree to release the handle.

/* file: helloc.c */
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include "hello.h"

void main()
{
 RPC_STATUS status;
 unsigned char * pszUuid = NULL;
 unsigned char * pszProtocolSequence = "ncacn_np";
 unsigned char * pszNetworkAddress = NULL;
 unsigned char * pszEndpoint = "\\pipe\\hello";
 unsigned char * pszOptions = NULL;
 unsigned char * pszStringBinding = NULL;
 unsigned char * pszString = "hello, world";
 unsigned long ulCode;

 status = RpcStringBindingCompose(pszUuid,
 pszProtocolSequence,
 pszNetworkAddress,
 pszEndpoint,
 pszOptions,
 &pszStringBinding);
 if (status) {
 exit(status);

 }
 status = RpcBindingFromStringBinding(pszStringBinding,
 &hello_IfHandle);

 if (status) {
 exit(status);
 }

 RpcTryExcept {
 HelloProc(pszString);
 Shutdown();
 }
 RpcExcept(1) {
 ulCode = RpcExceptionCode();
 printf("Runtime reported exception 0x%lx = %ld\n", ulCode, ulCode);
 }
 RpcEndExcept

 status = RpcStringFree(&pszStringBinding);

 if (status) {
 exit(status);
 }

 status = RpcBindingFree(&hello_IfHandle);

 if (status) {
 exit(status);
 }

 exit(0);

} // end main()

The Server Application
The server side of the distributed application informs the system that its services are available and then
waits for client requests.

Depending on the size of your application and your coding preferences, you can choose to implement
remote procedures in one or more separate files. In our example, the main server routine is in the source
file hellos.c, and the remote procedure remains in the file hellop.c, which we created for the stand-alone
program.

The benefit of organizing the remote procedures in separate files is that the procedures can be linked with
a stand-alone program to debug the code before it is converted to a distributed application. After the
program works as a stand-alone program, you can compile and link the remote-procedure source files
with the server application.

As with the client-application source file, the server-application source file must include the hello.h header
file to obtain definitions for the RPC data and functions and for the interface-specific data and functions.

The server calls the RPC runtime functions RpcServerUseProtseqEp and RpcServerRegisterIf to make
binding information available to the client. Since we have only one implentation of our remote procedures,
we only pass the interface handle name to RpcServerRegisterIf. The other parameters are set to NULL.
The server then calls the RpcServerListen function to indicate that it is waiting for client requests.

The server application must also include the two memory management functions that the server stub calls
¾ midl_user_allocate and midl_user_free. These functions allocate and free memory on the server
when a remote procedure passes parameters to the server. In our example, midl_user_allocate and
midl_user_free are simply wrappers for the C-library functions malloc and free. (Note that, in the MIDL
compiler- generated forward declarations, "midl" is uppercase. The header file rpcndr.h defines
midl_user_free and midl_user_allocate to be MIDL_user_free and MIDL_user_allocate, respectively.)

/* file: hellos.c */
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include "hello.h"

void main()
{
 RPC_STATUS status;
 unsigned char * pszProtocolSequence = "ncacn_np";
 unsigned char * pszSecurity = NULL; /*Security not implemented */
 unsigned char * pszEndpoint = "\\pipe\\hello";
 unsigned int cMinCalls = 1;
 unsigned int cMaxCalls = 20;
 unsigned int fDontWait = FALSE;

 status = RpcServerUseProtseqEp(pszProtocolSequence,
 cMaxCalls,
 pszEndpoint,
 pszSecurity);

 if (status) {
 exit(status);
 }

 status = RpcServerRegisterIf(hello_v1_0_s_ifspec,
 NULL,
 NULL);

 if (status) {
 exit(status);
 }

 status = RpcServerListen(cMinCalls,
 cMaxCalls,
 fDontWait);

 if (status) {
 exit(status);
 }

 } // end main()

/**/
/* MIDL allocate and free */
/**/

void __RPC_FAR * __RPC_USER midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_USER midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

Stopping the Server Application
A robust server application should stop listening for clients, and clean up after itself before shutting down.
The two core server functions that accomplish this are RpcMgmtStopServerListening and
RpcServerUnregisterIf.

The server function RpcServerListen doesn't return to the calling program until an exception occurs, or
until a call to RpcMgmtStopServerListening occurs. By default, only another server thread is allowed to
halt the RPC server by using RpcMgmtStopServerListening. Clients who try to halt the server will
receive the error RPC_S_ACCESS_DENIED. However, it is possible to configure RPC to allow some or
all clients to stop the server. See the reference page for RpcMgmtStopServerListening for details.

You can also have the client application make a remote procedure call to a shutdown routine on the
server. The shutdown routine calls RpcMgmtStopServerListening and RpcServerUnregisterIf. Our
example application uses this approach by adding a new remote function, Shutdown, to the file hellop.c.

In the Shutdown function, the single null parameter to RpcMgmtStopServerListening indicates that the
local application should stop listening for remote procedure calls. The two null parameters to
RpcServerUnregisterIf are wildcards, indicating that all interfaces should be unregistered. The FALSE
parameter indicates that the interface should be removed from the registry immediately, rather than
waiting for pending calls to complete.

/* add this function to hellop.c */
void Shutdown(void)
{
 RPC_STATUS status;

 status = RpcMgmtStopServerListening(NULL);

 if (status) {
 exit(status);
 }

 status = RpcServerUnregisterIf(NULL, NULL, FALSE);

 if (status) {
 exit(status);
 }
} //end Shutdown

Compiling and Linking
The following makefile shows the dependencies among the files needed to compile the client and server
applications and link them to the RPC runtime library and the standard C run-time library.

This makefile was used to build client and server applications from the source code in this tutorial. The
stubs and headers were generated with MIDL version 2.0. The build environment was Microsoft Visual C+
+ 4.0, running on Windows NT 3.51. The compiler and linker commands and arguments may be different
for your computer configuration. See your compiler documentation for more information.

#makefile for helloc.exe and hellos.exe
#link refers to the linker
#conflags refers to flags for console applications
#conlibs refers to libraries for console applications

!include <ntwin32.mak>

all : helloc hellos

Make the client side application helloc
helloc : helloc.exe
helloc.exe : helloc.obj hello_c.obj
 $(link) $(linkdebug) $(conflags) -out:helloc.exe \
 helloc.obj hello_c.obj \
 rpcrt4.lib $(conlibs)

helloc main program
helloc.obj : helloc.c hello.h
 $(cc) $(cdebug) $(cflags) $(cvars) $*.c

helloc stub
hello_c.obj : hello_c.c hello.h
 $(cc) $(cdebug) $(cflags) $(cvars) $*.c

Make the server side application
hellos : hellos.exe
hellos.exe : hellos.obj hellop.obj hello_s.obj
 $(link) $(linkdebug) $(conflags) -out:hellos.exe \
 hellos.obj hello_s.obj hellop.obj \
 rpcrt4.lib $(conlibsmt)

hello server main program
hellos.obj : hellos.c hello.h
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

remote procedures
hellop.obj : hellop.c hello.h
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

hellos stub file
hello_s.obj : hello_s.c hello.h
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

Stubs and header file from the IDL file

hello.h hello_c.c hello_s.c : hello.idl hello.acf
 midl hello.idl

Running the Application
To run the application on a single Windows NT machine, open two console windows. In the first window,
type

C:\> hellos

and in the second window, type

C:\> helloc

Because our distributed application uses named pipes as the transport protocol, the server-side
application will not run on Windows 95. To experiment with different protocol sequences, endpoints, and
other options, build the sample hello application from the source files in \mstools\samples\rpc\hello on the
Win32 SDK CD.

Building RPC Applications
The procedure for building a distributed RPC application varies slightly, depending on the operating-
system platform you are developing on and the target platform, the version of the MIDL and C or C++
compiler, and the API libraries you use. However, the basic procedure is the same in all cases: develop
the MIDL and C source files, compile the MIDL source files, compile the C source files, and then link with
the RPC and other API libraries.

Environment, Compiler, and API Set Choices
You can develop RPC applications for different target environments: MS-DOS, Microsoft® Windows 3.x,
Windows® 95, and Windows NT®. You can also choose to develop the executable applications for these
target environments using different build environments. Accordingly, you can choose among several
development environments, MIDL and C compilers, and API sets.

Available tools and libraries are described in the following table:

Development tool Description
MIDL 3.0 for 32-bit
environment

Produces C source code for 16-bit or 32-bit
environment.

C and MSVC for 16-bit
environment

Produces 16-bit object files only.

C and MSVC for 32-bit
environment (Win32
SDK)

Produces 32-bit object files only.

Win32 API Provided for 32-bit environment only (RPC
functions are provided as 32-bit DLLs).

Windows 3.x API Provided for 16-bit environment only (RPC
functions are provided as 16-bit Windows
DLLs).

General Build Procedure
Use the following procedure to develop your distributed application:

1. Install the RPC SDK for your platform. For more information on how to install RPC, see Installing the
RPC Programming Environment.   

2. Develop the IDL file (and optional ACF) that specifies the interface.
3. Develop the C-language source files that implement and call the interface.
4. Generate C-language stub files by compiling the IDL file and optional ACF with the MIDL compiler.
5. Compile the C-language source and stub files with the C compiler.
6. Link the object files with the RPC import libraries for your platform.
7. Run the client and server distributed applications.

Developing IDL Files
This section includes the following topics:

· A description of the uuidgen utility.
· A discussion on importing system header files.
· A discussion on importing other IDL files.

The uuidgen Utility
The UUID is assigned to an interface to distinguish that interface from other interfaces. The UUID is
generated from a command-line utility program, uuidgen, which creates unique identifiers in the required
format using both a time identifier and a machine identifier. It guarantees that any two UUIDs produced on
the same machine are unique because they are produced at different times, and that any two UUIDs
produced at the same time are unique because they are produced on different machines. The uuidgen
utility generates the UUID in IDL file format or C-language format.

The textual representation of a UUID is a string consisting of 8 hexadecimal digits followed by a hyphen,
followed by three hyphen-separated groups of 4 hexadecimal digits, followed by a hyphen, followed by 12
hexadecimal digits. The following example is a valid UUID string:

6B29FC40-CA47-1067-B31D-00DD010662DA

When you run the uuidgen utility from the command line, you can use the following command switches:

uuidgen switch Description
/i Outputs UUID to an IDL interface template.
/s Outputs UUID as an initialized C structure.
/o<filename> Redirects output to a file; specified immediately

after the /o switch.
/n<number> Specifies the number of UUIDs to generate.
/v Displays version information about uuidgen.
/h or ? Displays command-option summary.

Importing System Header Files
While it is often possible to use the #include directive to include header files in your IDL file, it is not
recommended that you do so. The MIDL compiler will generate stubs for all functions defined in the .IDL
file being compiled. Usually a header file contains a number of prototypes that you neither need nor want
to include in your stub files, and a #include effectively puts all those definitions into your main IDL file.
Furthermore, if there are nonremotable types defined in the header file, your IDL file may not compile.
There are two ways to include typedefs from header files in your IDL file:

· Use the import directive to include data types defined in a header file. Unlike the C-language
#include directive, the import directive only picks up type and constant definitions and ignores
procedure prototypes. This approach will work as long as your main .IDL file does not reference any
nonremotable types defined in the header file.

· Create a helper .IDL file with a dummy interface that includes the header files. Then, use the import
directive to include the helper file. In this way, only the typedefs will appear in the compiled stubs. For
example:
//in helper.IDL:
interface dummy
{ #include "kitchensink.h"
 #include "system.h"
}
//in main.IDL:
import "helper.IDL";

Importing Other IDL Files
When you import IDL files using the import attribute, you reuse software. You can also port existing
applications to RPC.

Microsoft RPC offers several extensions to the MIDL compiler that affect:

· Pointer-attribute type inheritance among imported IDL files.
· How many support routines are generated.
· Where support routines are located.

Note that an interface without attributes can be imported into a base IDL file. However, the interface must
contain only datatypes with no procedures. If even one procedure is contained in the interface, a local or
UUID attribute must be specified.

The MIDL 3.0 Compiler
You use the MIDL compiler to generate C-language client and server stub files and a header file for your
distributed application. The MIDL Programmer's Guide and Reference contains the following information:

· C Compiler and C Preprocessor Requirements
· Link Libraries
· Files Generated for an RPC Interface
· MIDL Command-line Reference
· MIDL Language Reference
· MIDL Compiler Errors and Warnings

Developing C Source Files
Your C-language source files must include the header file that will be generated by the MIDL compiler. By
default, the generated header file has the same name as the IDL file. You can specify the name of the
generated header file with the MIDL compiler command-line option midl /header. Whatever filename you
choose, include the generated header file in your C source code.

The generated header file contains directives to include in the following RPC header files:

Header files Description
RPC.H RPC types and run-time function

prototypes.
RPCNDR.H byte, boolean, and small types and

data-conversion function prototypes.

The IDL and ACF Files
The MIDL design specifies two distinct files, the Interface Definition Language (IDL) file and the
application configuration file (ACF). These files contain attributes which direct the generation of the C-
language stub files that manage the remote procedure call. The purpose of distinguishing the files is to
keep the network interface separate from characteristics that affect only the operating environment.

The IDL file specifies a network contract between the client and server ¾ that is, the IDL file specifies
what is transmitted between client and server. Keeping this information distinct from the information about
the operating environment makes the IDL file portable to other environments. The IDL file consists of two
parts: an interface header and an interface body.

The ACF specifies attributes that affect only local performance rather than the network contract. Microsoft
RPC allows you to combine the ACF and IDL attributes in a single IDL file. You can also combine multiple
interfaces in a single IDL file (and its ACF).

The syntax of MIDL is based on the syntax of the C programming language. Whenever a language
concept in this description of MIDL is not fully defined, the C-language definition of that term is implied.

This section is organized by topic and summarizes the attributes that are specified in the IDL and ACF
files, and in the output files generated by the MIDL compiler. The same material is alphabetized and
presented in more detail in the reference topics. For more information, see the MIDL Language Reference
and the MIDL Command-Line Reference.

The IDL Interface Header
The interface header specifies information about the interface as a whole. It must contain the uuid or
local attribute and, whichever one you choose, must occur only once. The version attribute may occur
at-most-once. The interface header can also contain the attributes pointer_default and endpoint.

Interface attributes for imported files are optional. However, the top-level importing interface (also called
the base interface) must have at least one uuid or local attribute. MIDL explicitly checks for one of these
attributes.

The uuid Attribute
The uuid attribute designates a UUID that distinguishes one interface from other interfaces. The textual
representation of a UUID is a string consisting of 8 hexadecimal digits followed by a hyphen, followed by
three, hyphen-separated groups of 4 hexadecimal digits, followed by a hyphen, followed by 12
hexadecimal digits. For example:

12345678-1234-ABCD-1234-0123456789AB

Use the command-line utility uuidgen to generate unique identifiers.   

The version Attribute
The version attribute identifies a particular version of an interface in cases where multiple versions of the
interface exist. The version keyword is followed by either a pair of decimal integers separated by a
period, or a single decimal integer. The first of the two integers represents the major version number, and
the second represents the minor version number of an interface. If a single integer is used, it represents
the major version number. Both major and minor version numbers are unsigned short integers in the
range between zero and 65535, inclusive.

Leading zeros in a major or minor version-number specification are not significant. A version specification
of 1.0001 is the same as 0001.001 and 1.1.

The endpoint Attribute
The endpoint attribute specifies a well-known port or ports (communication end-points) on which servers
of the interface listen. Well-known port values are typically assigned by the central authority that owns the
protocol.

The local Attribute
The local attribute, when used as an interface attribute, specifies that you want to use the MIDL compiler
to generate header files only. Stubs are not generated and checks for transmissibility are omitted.   

The pointer_default Attribute
The pointer_default attribute specifies the pointer attribute that is applied to an unattributed pointer
specification in the IDL file, including unattributed pointers nested in structure and union fields and arrays.
It is not applied to unattributed top-level pointer parameters, which default to ref.

Failing to supply a pointer_default attribute on an interface that contains an unattributed pointer results
in a compile-time warning.   

The IDL Interface Body
The interface body contains data types used in remote procedure calls and the function prototypes for the
procedures to be executed remotely. The interface body can contain imports, pragmas, constant
declarations, type declarations, and function declarations. In Microsoft-extensions mode, the MIDL
compiler also allows implicit declarations in the form of variable definitions.

Base Types
Base types are the fundamental data types of MIDL. Other types in the interface must be derived from
base types or from predefined types.

For example, MIDL restricts the use of the    void * data type because the size of this type is not fixed. The
automatically generated stubs must know the exact size of every data item to be transmitted.

The boolean type is an 8-bit data item that is implemented by the MIDL compiler as an unsigned char.
In keeping with commonly followed programming practices, MIDL implements FALSE as zero and TRUE
as 1. When you use the Microsoft-extensions mode of the MIDL compiler, boolean initializations using
zero and 1 are allowed in addition to TRUE and FALSE. However, in DCE-compatibility mode, only the
values TRUE and FALSE are allowed.

The byte type consists of 8 bits. The byte type is considered opaque data and, consequently, the value is
not converted on transmission.

The char type is an unsigned 8-bit entity that maps to the unsigned char in C. MIDL translates all char
types in the IDL file to unsigned char types in the generated header file. The user can change the default
sign of char on the target system with the /char switch.

The handle_t type is used to declare a primitive handle in a type declaration or in a parameter list.
Objects of type handle_t are not transmitted on the network.

The void keyword is valid in a function declaration or in a pointer declaration. In a function declaration, it
designates a procedure with no arguments or a procedure that does not return a result. In a pointer
declaration, void can only be used with the context_handle attribute.

The keyword int designates a 32-bit integer on 32-bit platforms. On 16-bit platforms you must use one of
the following integer modifiers and the int keyword is optional.    The hyper keyword designates a 64-bit
integer, the long keyword a 32-bit integer, the short keyword a 16-bit integer, and the small keyword an
8-bit integer. For more information, see signed and unsigned.

The float keyword designates a 32-bit floating-point number and the double keyword designates a 64-bit
floating-point number. For more information, see signed and unsigned.

Predefined Types
The predefined types error_status_t and wchar_t are derived from the MIDL base types. The predefined
type wchar_t is a wide-character type and is defined as an unsigned short. The predefined type
error_status_t is the data type returned by the stubs when the stubs encounter a run-time error.

Attributes specify how data is managed on the network. For example, when the function parameter
represents a pointer, array, or union, the attributes direct the generation of stub code that packages the
data for network transmission.

The import Directive
The import directive is closely related to the #include C-preprocessor macro. It directs the compiler to
include, at the point of import, the data types defined in the imported files and to make them available for
use in the interface. In contrast to the C #include macro, the import directive ignores procedure

prototypes defined in imported files.

Pragmas
C-preprocessing directives such as #define are expanded by the C preprocessor during MIDL
compilation and are not available at C-compile time. To avoid losing these C-preprocessor macro
definitions, use the cpp_quote or pragma midl_echo directive. These directives take quoted strings as
parameters and instruct the MIDL compiler to emit the parameter string into the generated header file in
the same lexical position relative to other interface components.   

Constant Declarations
Constant declarations allow you to associate a constant value with an identifier and use the identifier as
part of an expression. Constant declarations are generated as #define statements in the header file. The
MIDL compiler does not perform any range checking on integral expressions.

Constant declarations are limited to integral char, boolean, wchar_t, wchar_t *, char *, and void *
types. The constant value is an expression whose operands are all constant integer literals, boolean
expressions that are computable at compile time, or single characters or strings, depending on the const
type. For more information, see const.

IDL Attributes
Attributes are keywords that specify characteristics of the data in the remote procedure calls and
characteristics of the interface. Most attributes appear within square brackets in the IDL and ACF files.
The following table briefly describes categories of MIDL attributes that can appear in the IDL file:

Attribute
category

Attributes Description

Array attributes max_is, size_is,
first_is, last_is,
length_is

Apply to the first dimension of
an array.

Directional
attributes

in, out Describe the direction in which
the parameter is transmitted on
the network; either or both in
and out can be applied.

Field attributes switch_is,
array attributes,
pointer attributes,
string, ignore

Apply to struct or union
members.

Function
attributes

callback, call_as,
idempotent, local,
maybe, optimize,
pointer attributes,
usage attributes

Apply to the return type and
characteristics of the function.

Interface
attributes

uuid, object,
local, version,
pointer_default,
endpoint

Apply to the interface as a
whole.

Parameter
attributes

Directional
attributes, array
attributes, pointer
attributes,
switch_is, string,
context_handle

Describe the network-
transmission characteristics of
function parameters.

Pointer attributes ref, unique, iid_is,
ptr

Describe characteristics of the
pointer and its data.

Type attributes handle,
ms_union,
v1_enum,
transmit_as,
switch_type,
represent_as
pointer attributes,
field attributes

Apply to a type definition.

Usage attributes string, ignore,
context_handle

Describe how the data object is
used.

The ACF File
The application configuration file (ACF) has two parts: an interface header similar to the interface header
in the IDL file, and a body, containing configuration attributes that apply to types and functions defined in
the interface body of the IDL file.

The ACF Header
The ACF header contains attributes that apply to the interface as a whole. Attributes applied to individual
types and functions in the ACF body override the attributes in the ACF header. No attributes are required
in the ACF header.

The ACF header can include one of the following attributes: auto_handle, implicit_handle, or
explicit_handle. These handle attributes specify the type of handle used for implicit binding when a
remote function does not have an explicit binding-handle parameter. When the ACF is not present or does
not specify an auto, implicit handle, or explicit attribute, MIDL uses auto_handle for implicit binding.

Either code or nocode can appear in the interface header, but the one you choose can appear only once.
When neither attribute is present, the compiler uses code as a default.   

The ACF Body
The ACF body contains configuration attributes that apply to types and functions defined in the interface
body of the IDL file. The ACF body can contain ACF include, typedef, function, and parameter attributes.
All of these items are optional. The body of the ACF can be empty. Attributes applied to individual types
and functions in the ACF body override attributes in the ACF header.

The ACF specifies behavior on the local computer and does not affect the data transmitted over the
network. It is used to specify details of a stub to be generated. In DCE-compatibility mode (/osf), the ACF
does not affect interaction between stubs, but between the stub and application code.

A parameter specified in the ACF must be one of the parameters specified in the IDL file. The order of
specification of the parameter in the ACF is not significant because the matching is by name, not by
position. The parameter list in the ACF can be empty, even when the parameter list in the corresponding
IDL signature is not. Abstract declarators (unnamed parameters) in the IDL file cause the MIDL compiler
to report errors while processing the ACF because the parameter is not found.

The ACF include directive specifies the header files to appear in the generated header as part of a
standard C-preprocessor #include statement. The ACF keyword include differs from a #include
directive. The ACF keyword include causes the line "#include filename" to appear in the generated
header file, while the C-language directive "#include filename" causes the contents of that file to be
placed in the ACF.

The ACF typedef statement lets you apply ACF type attributes to types previously defined in the IDL file.
The ACF typedef syntax differs from the C typedef syntax.   

The ACF function attributes let you specify attributes that apply to the function as a whole. For more
information, see code, optimize, and nocode.

The ACF parameter attributes let you specify attributes that apply to individual parameters of the function.
For more information, see byte_count.

See Also
/app_config, /osf, auto_handle, code, explicit_handle, IDL, implicit_handle, include, midl, nocode,
optimize, represent_as, typedef

ACF Attributes
The include Declaration
The include statement specifies one or more header files to be included in generated stub code via the
C-preprocessor #include statement. The user must supply the C header file when compiling the stubs.
The ACF include statement provides some flexibility in distributed application design. The include
statement is necessary for certain types, such as implicit_handle types that are not defined in the IDL or
its closure under #include and import directives.

Implicit Binding Handles
When an interface contains one or more functions whose first parameters are not an explicit handle and
do not have an in or an in, out context handle bound to a remote address space, an implicit handle is
needed. The implicit_handle and auto_handle attributes provide this capability.

The implicit_handle attribute specifies a global variable that is used as the RPC binding handle for all
calls without a binding parameter.

The auto_handle attribute indicates that any function needing implicit handles is automatically bound.
When no binding handle to a server exists just prior to calling the function for the first time, the stub
automatically establishes a binding handle for the call.

Either auto_handle or implicit_handle can appear, but not both. When a function in the interface
requires an implicit handle and no ACF is supplied, or the supplied ACF does not specify either
implicit_handle or auto_handle, the MIDL compiler uses auto_handle and issues an informational
message.

The code and nocode Attributes
If code appears in the interface attribute list, client stub code is generated for any function in the interface
that does not appear in the ACF with a nocode in its function attribute list and which does not have a
local attribute.

If nocode appears in the interface attribute list, stub code is generated only for functions in the interface
that appear in the ACF with a code in their function attribute lists and which do not have a local attribute.

The nocode attribute is ignored when server stubs are generated. Applying nocode when generating
server stubs in DCE-compatibility mode is an error. Either code or nocode can appear in an function
attribute list, but not both.

The allocate Attribute
The allocate attribute allows you to customize the allocation and deallocation patterns used by the
application and stubs. It can be applied to pointer types as a type attribute or as an interface attribute.
When it occurs as an interface attribute, it affects all pointer parameters and types in the interface.

allocate attribute Description
allocate(single_node) Storage for each node on both the caller and

callee side is allocated separately by calling
midl_user_allocate.

allocate(all_nodes) The size of the total graph (or tree) is
precomputed by the stub and
midl_user_allocate is called once to
allocate sufficient memory for all nodes in the
graph upon return from a remote call. In this
case, application code has to release this
storage by making a single call to

midl_user_free.
allocate(free) Storage allocated for nodes on the callee

side is freed by stubs upon return from the
manager code.

allocate(dont_free) Storage allocated for nodes on the server
side is not deallocated by the server stub.
This feature is useful for maintaining
persistent pointer structures as part of the
server application.

The byte_count Attribute
The byte_count ACF attribute associates a pointer parameter with another parameter that specifies the
size in bytes of the memory area indicated by the pointer. Memory referenced by the pointer parameter is
contiguous and is not allocated or freed by the client stubs. This feature of the byte_count attribute lets
the developer create a persistent buffer area in client memory that can be reused across multiple calls.

The parameter providing the buffer must be an out pointer parameter and the parameter providing the
length in bytes must be an in parameter of integral type. The byte_count attribute cannot be specified on
a parameter that has the size attributes (size_is, max_is) applied to it.

Using ACF Attributes in the IDL File
The Microsoft RPC MIDL compiler offers an operating mode that makes it possible to provide one file
containing both the IDL attributes and selected ACF attributes. You can supply the ACF attributes
auto_handle and implicit_handle in the IDL file when you use the MIDL compiler switch /app_config.   

MIDL Compiler Output
With the IDL and ACF files as input, the MIDL compiler generates up to five C-language source files. By
default, the MIDL compiler uses the base filename of the IDL file as part of the generated stub files. When
more than six characters are present in the base filename, some file systems may not accept the full stub
name. The following conventions are used:

File

Default portion
of base filename

Example
IDL file --- ABCDEFGH.IDL
Header .H ABCDEF.H
Client stub _C.C ABCDEF_C.C
Server stub _S.C ABCDEF_S.C

Data and Language Features
The Microsoft® Interface Definition Language (MIDL) provides the set of features that extend the C
programming language to support remote procedure calls. MIDL is not a variation of C; it is a strongly
typed formal language through which you can control the data transmitted over the network. MIDL is
designed to be similar to C so developers familiar with C can learn it quickly.

This topic discusses three language features: strong typing, directional attributes, and data transmission.

Strong Typing:

MIDL enforces strong typing by mandating the use of keywords that unambiguously define the size and
type of data. The most visible effect of strong typing is that MIDL does not allow variables of the type void
*.

Directional Attributes:

Directional attributes describe whether the data is transmitted from client to server, server to client, or
both.

Data Transmission:

The transmit_as attribute lets you convert one data type to another data type for transmission over the
network. The represent_as attribute lets you control the way data is presented to the application.

Strong Typing
C is a weakly typed language. In a weakly typed language, the compiler allows operations such as
assignment and comparison among variables of different types. For example, C allows the value of a
variable to be cast to another type. The ability to use variables of different types in the same expression
promotes flexibility as well as efficiency.

A strongly typed language imposes restrictions on operations among variables of different types. In those
cases, the compiler issues an error prohibiting the operation. These strict guidelines regarding data types
are designed to avoid potential errors.

The difficulty with using a weakly typed language such as C for remote procedure calls is that distributed
applications can run on several different computers with different C compilers and different architectures.

When an application runs on only one computer, you don't have to be concerned with the internal data
format because the data is handled in a consistent manner. However, in a distributed computing
environment, different computers can use different definitions for their base data types. For example,
some computers define the int type so its internal representation is 16 bits, while other computers use 32
bits. One computer architecture, known as "little endian," assigns the least significant byte of data to the
lowest memory address and the most significant byte to the highest address. Another architecture, known
as "big endian," assigns the least significant byte to the highest memory address associated with that
data.

Remote procedure calls require strict control over parameter types. To handle data transmission and
conversion over the network, MIDL strictly enforces type restrictions for data transferred over the network.
For this reason, MIDL includes a set of well-defined base types.

Base Types
To prevent the problems that implementation-dependent data types can cause on varying computer
architectures, MIDL defines its own base data types:

Base type Description
boolean Data item that can have the value TRUE or FALSE.
byte An 8-bit data item guaranteed to be transmitted

without any change.
char An 8-bit unsigned character data item.
double A 64-bit floating-point number.
float A 32-bit floating-point number.
handle_t Primitive handle that can be used for RPC binding or

data serializing.
hyper A 64-bit integer that can be declared as either

signed or unsigned. (Can also be referred to as
_int64.)

int A 32-bit integer that can be declared as either
signed or unsigned.

long A 32-bit integer that can be declared as either
signed or unsigned.

short A 16-bit integer that can be declared as either
signed or unsigned.

small An 8-bit integer that can be declared as either
signed or unsigned.

wchar_t Wide-character type that is supported as a Microsoft
extension to IDL. Therefore, this type is not available
if you compile using the /osf switch.

The header file RPCNDR.H provides definitions for most of these base data types. The keyword int is
recognized and is remoteable on 32-bit platforms. On 16-bit platforms, the int data type requires a
modifier, such as short or long, to specify its length.

Although void * is recognized as a generic pointer type by the ANSI C standard, MIDL restricts its usage.
Each pointer used in a remote or serializing operation must point to either base types or types
constructed from base types. (There is an exception: context handles are defined as void * types. For
more information see Context Handles.)

Signed and Unsigned Types
Compilers that use different defaults for signed and unsigned types can cause software errors in your
distributed application.

You can avoid these problems by explicitly declaring your character types as signed or unsigned.

MIDL defines the small type to take the same default sign as the char type in the target C compiler. If the
compiler assumes that char is unsigned, small will also be defined as unsigned. Many C compilers let
you change the default as a command-line option. For example, the Microsoft C compiler /J command-
line option changes the default sign of char from signed to unsigned.

You can also control the sign of variables of type char and small with the MIDL compiler command-line
switch /char. This switch allows you to specify the default sign used by your compiler. The MIDL compiler
explicitly declares the sign of all char types that do not match your C-compiler default type in the
generated header file.

Wide-Character Types
Microsoft RPC supports the wide-character type wchar_t. The wide-character type uses 2 bytes for each
character. The ANSI C-language definition allows you to initialize long characters and long strings as:

wchar_t wcInitial = L'a';
wchar_t * pwszString = L"Hello, world";

Structures
Normal C semantics apply to the fields of base types. Fields of more complex types, such as pointers,
arrays, and other constructed types, can be modified by type or field_attributes. For more information,
see struct.

Unions
Some features of the C language, such as unions, require special MIDL keywords to support their use in
remote procedure calls.

A union in the C language is a variable that holds objects of different types and sizes. The developer
usually creates a variable to keep track of the types stored in the union. To operate correctly in a
distributed environment, the variable that indicates the type of the union, or the "discriminant," must also
be available to the remote computer. MIDL provides the switch_type and switch_is keywords to identify
the discriminant type and name.

MIDL requires that the discriminant be transmitted with the union in one of two ways:

· The union and the discriminant must be provided as parameters.
· The union and the discriminant must be packaged in a structure.

Two fundamental types of discriminated unions are provided by MIDL: non-encapsulated_union and
encapsulated_union. The discriminant of a nonencapsulated union is another parameter if the union is a
parameter. It is another field if the union is a field of a structure. The definition of an encapsulated union is
turned into a structure definition whose first field is the discriminant and whose second and last fields are
the union.   

The following example demonstrates how to provide the union and discriminant as parameters:

typedef [switch_type(short)] union {
 [case(0)] short sVal;
 [case(1)] float fVal;
 [case(2)] char chVal;
 [default] ;
} DISCRIM_UNION_PARAM_TYPE;

short UnionParamProc(
 [in, switch_is(sUtype)] DISCRIM_UNION_PARAM_TYPE Union,
 [in] short sUtype);

The union in the preceding example can contain a single value: either short, float, or char. The type
definition for the union includes the MIDL switch_type attribute which specifies the type of the
discriminant. Here, [switch_type(short)] specifies that the discriminant is of type short. The switch must
be an integer type.

If the union is a member of a structure, then the discriminant must be a member of the same structure. If
the union is a parameter, then the discriminant must be another parameter. The prototype for the function
UnionParamProc shows the discriminant sUtype as the last parameter of the call. (The discriminant can
appear in any position in the call.) The type of the parameter specified in the switch_is attribute must
match the type specified in the switch_type attribute.

The following example demonstrates the use of a single structure that packages the discriminant with the
union:

typedef struct {
 short utype; /* discriminant can precede or follow union */
 [switch_is(utype)] union {
 [case(0)] short sVal;
 [case(1)] float fVal;
 [case(2)] char chVal;

 [default] ;
 } u;
} DISCRIM_UNION_STRUCT_TYPE;

short UnionStructProc(
 [in] DISCRIM_UNION_STRUCT_TYPE u1);

The Microsoft RPC MIDL compiler allows union declarations outside of typedef constructs. This feature is
an extension to DCE IDL. For more information, see union.

Enumerated Types
The enum declaration is not translated into #define statements as it is by some DCE compilers, but is
reproduced as a C-language enum declaration in the generated header file.   

Arrays
See arrays.

Directional (Parameter) Attributes
All parameters in the function prototype must be associated with directional attributes. The three possible
combinations of directional attributes are: 1) in, 2) out, and 3) in, out. These describe the way
parameters are passed between calling and called procedures. When you compile in the default
(Microsoft-extended mode) and you omit a directional attribute for a parameter, the MIDL compiler
assumes a default value of in.

An out parameter must be a pointer. In fact, the out attribute is not meaningful when applied to
parameters that do not act as pointers because C function parameters are passed by value. In C, the
called function receives a private copy of the parameter value; it cannot change the calling function's
value for that parameter. If the parameter acts as a pointer, however, it can be used to access and modify
memory. The out attribute indicates that the server function should return the value to the client's calling
function, and that memory associated with the pointer should be returned in accordance with the
attributes assigned to the pointer.

The following interface demonstrates the three possible combinations of directional attributes that can be
applied to a parameter. The function InOutProc is defined in the IDL file as:

void InOutProc ([in] short s1,
 [in, out] short * ps2,
 [out] float * pf3);

The first parameter, s1, is in only. Its value is transmitted to the remote computer, but is not returned to
the calling procedure. Although the server application can change its value for s1, the value of s1 on the
client is the same before and after the call.

The second parameter, ps2, is defined in the function prototype as a pointer with both in and out
attributes. The in attribute indicates that the value of the parameter is passed from the client to the server.
The out attribute indicates that the value pointed to by ps2 is returned to the client.

The third parameter is out only. Space is allocated for the parameter on the server, but the value is
undefined on entry. As mentioned above, all out parameters must be pointers.

The remote procedure changes the value of all three parameters, but only the new values of the out and
in, out parameters are available to the client.

#define MAX 257

void InOutProc(short s1,
 short * ps2,
 float * pf3)
{
 *pf3 = (float) s1 / (float) *ps2;
 *ps2 = (short) MAX - s1;
 s1++; // in only; not changed on the client side
 return;
}

On return from the call to InOutProc, the second and third parameters are modified. The first parameter,
which is in only, is unchanged.

{ewc msdncd, EWGraphic, bsd23533 0 /a "SDK_A22.BMP"}

{ewc msdncd, EWGraphic, bsd23533 1 /a "SDK_A23.BMP"}

{ewc msdncd, EWGraphic, bsd23533 2 /a "SDK_A21.BMP"}

Function Attributes
The callback and local attributes can be applied as function attributes.

Callbacks are a special kind of remote call from server to client that executes as part of a conceptual
single-execution thread. A callback is always issued in the context of a remote call (or callback) and is
executed by the thread that issued the original remote call (or callback).

It is often desirable to place a local procedure declaration in the IDL file, since this is the logical place to
describe interfaces to a package. The local attribute indicates that a procedure declaration is not actually
a remote function, but a local procedure. The MIDL compiler does not generate any stubs for that
function. For more information, see callback and local.

Field Attributes
Field attributes are the attributes that can be applied to fields of an array, structure, or union: ignore,
size_is, max_is, length_is, first_is, last_is, switch_is, and string, and pointer attributes. For example,
field attributes are used in conjunction with array declarations to specify either the size of the array or the
portion of the array that contains valid data. This is done by associating another parameter, structure field,
or a constant expression with the array.

The ignore attribute designates pointer fields to be ignored during the marshalling process. Such an
ignored field is set to NULL on the receiver side.   

Conformant Arrays (size_is, max_is Attributes)
An array is called conformant if its bounds are determined at run time. The size_is attribute designates
the upper bound on the allocation size of the array and the max_is attribute designates the upper bound
on the value of a valid array index. For more information, see arrays.

Varying and Open Arrays (length_is, first_is, last_is Attributes)
An array is called "varying" if its bounds are determined at compile time, but the range of transmitted
elements is determined at run time. An open array (also called a conformant varying array) is an array
whose upper bound and range of transmitted elements are determined at run time. To determine the
range of transmitted elements of an array, the array declaration must include a length_is, first_is, or
last_is attribute.

The length_is attribute designates the number of array elements to be transmitted and the first_is
attribute designates the index of the first array element to be transmitted. The last_is attribute designates
the index of the last array element to be transmitted.   

The switch_is Attribute
The switch_is attribute designates a union discriminator. When the union is a procedure parameter, the
union discriminator must be another parameter of the same procedure. When the union is a field of a
structure, the discriminator must be another field of the structure at the same level as the union field. The
discriminator must be a boolean, char, integral, or enum type, or a type that resolves to one of these
types. For more information, see non-encapsulated_union.

The string Attribute
The string attribute designates that a one-dimensional character or byte array, or a pointer to a zero-
terminated character or byte stream, is to be treated as a string. The string attribute applies only to one-
dimensional arrays and pointers. The element type is limited to char, byte, wchar_t, or a named type that
resolves to these types.   

Type Attributes
Type attributes are the MIDL attributes that can be applied to type declarations: transmit_as,
represent_as, user_marshal, wire_marshal, handle, context_handle, switch_type, and the pointer
type attributes.

The switch_type attribute designates the type of a union discriminator. This attribute applies only to a
nonencapsulated union.   

A context handle is a pointer with a context_handle attribute. The context_handle attribute allows you to
write procedures that maintain state information between remote procedure calls. A context handle with a
non-null value represents saved context and serves two purposes. On the client side, it contains the
information needed by the RPC run-time library to direct the call to the server. On the server side, it
serves as a handle on active context.   

The handle attribute specifies that a type can occur as a user-defined, (generic) handle. This feature
permits the design of handles that are meaningful to the application. The user must provide binding and
unbinding routines to convert between the user-defined handle type and the RPC primitive handle type,
handle_t. A primitive handle contains destination information meaningful to the RPC run-time libraries. A
user-defined handle can only be defined in a type declaration, not in a function declaration. A parameter
with the handle attribute has a double purpose. It is used to determine the binding for the call, and it is
transmitted to the called procedure as a normal data parameter.   

The transmit_as and represent_as attributes instruct the compiler to associate a transmissible type
which the stub passes between client and server, with a user type which the client and server applications
use. You must supply the routines that carry out the conversion between the user type and the
transmissible type, and the routines to release the memory that was used to hold the converted data.
Using the transmit_as IDL attribute or the represent_as ACF attribute instructs the stub to call these
conversion routines before and after transmission.

The wire_marshal and user_marshal attributes are Microsoft extensions to the OSF-DCE IDL. Their
syntax and functionality are similar to that of the DCE-specified transmit_as and represent_as attributes,
respectively. The difference is that, instead of converting the data from one type to another, you marshal
the data directly.To do this, you must supply the external routines for sizing the data buffer on the client
and server sides, marshaling and unmarshaling the data on the client and server sides, and freeing the
data on the server side. The MIDL compiler generates format codes that instruct the NDR engine to call
these external routines when needed.

The wire_marshal and user_marshal attributes make it possible to marshal data types that otherwise
could not be transmitted across process boundaries. Also, because there is less overhead associated
with the type conversion, wire_marshal and user_marshal provide improved performance at run time,
when compared to transmit_as and represent_as.

The wire_marshal and user_marshal attributes are mutually exclusive in respect to each other and with
the transmit_as and represent_as attributes for a given type.   

The transmit_as Attribute
The transmit_as attribute offers a way to control data marshalling without worrying about marshalling
data at a low level ¾ that is, without worrying about data sizes or byte swapping in a heterogeneous
environment. By lettting you reduce the amount of data transmitted over the network, the transmit_as
attribute can make your application more efficient.

You use the transmit_as attribute to specify a data type that will be used for transmission instead of
using the data type provided. You supply routines that convert the data type to and from the type that is
used for transmission. You must also supply routines to free the memory used for the data type and the
transmitted type. For example, the following defines xmit_type as the transmitted data type for an
application-presented type specified as type_spec:

typedef [transmit_as (xmit_type)] type_spec type;

The following table describes the four user-supplied routine names. Type is the data type known to the
application, and xmit_type is the data type used for transmission:

Routine Description
type _to_xmit Allocates an object of the transmitted type

and converts from presented type to
transmitted type (caller and callee).

type _from_xmit Converts from transmitted type to presented
type (caller and callee).

type _free_inst Frees resources used by the presented type
(callee only).

type _free_xmit Frees storage returned by the type_to_xmit
routine (caller and callee).

Other than by these four user-supplied functions, the transmitted type is not manipulated by the
application. The transmitted type is defined only to move data over the network. After the data is
converted to the type used by the application, the memory used by the transmitted type is freed.

These user-supplied routines are provided by either the client or the server application based on the
directional attributes.

If the parameter is in only, the client transmits to the server. The client needs the type_to_xmit and
type_free_xmit functions. The server needs the type_from_xmit and type_free_inst functions.

For an out-only parameter, the server transmits to the client. The server needs the type_to_xmit and
type_free_xmit functions, while the client needs the type_from_xmit function.

For the temporary xmit_type objects, the stub will call type_free_xmit to free any memory allocated by a
call to type_to_xmit.

Certain guidelines apply to the presented type instance. If the presented type is a pointer or contains a
pointer, then the type_from_xmit routine must allocate pointees of the pointers (the presented type object
itself is manipulated by the stub in the usual way).

For out and in, out parameters, or one of their components, of a type that contains the transmit_as
attribute, the type_free_inst routine is automatically called for the data objects that have the attribute. For
in parameters, the type_free_inst routine is called only if the transmit_as attribute has been applied to
the parameter. If the attribute has been applied to the components of the parameter, the type_free_inst
routine is not called. There are no freeing calls for the embedded data and at-most-one call (related to the
top-level attribute) for an in only parameter.

Effective with MIDL version 2.0, both client and server must supply all four functions. For example, a
linked list can be transmitted as a sized array. The type_to_xmit routine walks the linked list and copies
the ordered data into an array. The array elements are ordered so the many pointers associated with the
list data structure do not have to be transmitted. The type_from_xmit routine reads the array and puts its
elements into a linked-list data structure.

The double-linked list (DOUBLE_LINK_LIST) includes data and pointers to the previous and next list
elements:

typedef struct _DOUBLE_LINK_LIST {
 short sNumber;
 struct _DOUBLE_LINK_LIST * pNext;
 struct _DOUBLE_LINK_LIST * pPrevious;
} DOUBLE_LINK_LIST;

Rather than shipping the complex data structure, the transmit_as attribute can be used to send it over
the network as an array. The sequence of items in the array retains the ordering of the elements in the list
at a lower cost:

typedef struct _DOUBLE_XMIT_TYPE {
 short sSize;
 [size_is(sSize)] short asNumber[];
} DOUBLE_XMIT_TYPE;

The transmit_as attribute appears in the IDL file:

typedef [transmit_as(DOUBLE_XMIT_TYPE)] DOUBLE_LINK_LIST
 DOUBLE_LINK_TYPE;

In the following example, ModifyListProc defines the parameter of type DOUBLE_LINK_TYPE as an in,
out parameter:

void ModifyListProc([in, out] DOUBLE_LINK_TYPE * pHead)

The four user-defined functions use the name of the type in the function names and use the presented
and transmitted types as parameter types, as required:

void __RPC_USER DOUBLE_LINK_TYPE_to_xmit (
 DOUBLE_LINK_TYPE __RPC_FAR * pList,
 DOUBLE_XMIT_TYPE __RPC_FAR * __RPC_FAR * ppArray);

void __RPC_USER DOUBLE_LINK_TYPE_from_xmit (
 DOUBLE_XMIT_TYPE __RPC_FAR * pArray,
 DOUBLE_LINK_TYPE __RPC_FAR * pList);

void __RPC_USER DOUBLE_LINK_TYPE_free_inst (
 DOUBLE_LINK_TYPE __RPC_FAR * pList);

void __RPC_USER DOUBLE_LINK_TYPE_free_xmit (
 DOUBLE_XMIT_TYPE __RPC_FAR * pArray);

The type_to_xmit Function
The stubs call the type_to_xmit function to convert the type that is presented by the application into the
transmitted type. The function is defined as:

void __RPC_USER <type>_to_xmit (
 <type> __RPC_FAR *, <xmit_type> __RPC_FAR * __RPC_FAR *);

The first parameter is a pointer to the presented data. The second parameter is set by the function to
point to the transmitted data. The function must allocate memory for the transmitted type.

In the following example, the client calls the remote procedure that has an in, out parameter of type
DOUBLE_LINK_TYPE. The client stub calls the type_to_xmit function, here named
DOUBLE_LINK_TYPE_to_xmit, to convert double-linked list data into a sized array.

The function determines the number of elements in the list, allocates an array large enough to hold those
elements, then copies the list elements into the array. Before the function returns, the second parameter,
ppArray, is set to point to the newly allocated data structure.

void __RPC_USER DOUBLE_LINK_TYPE_to_xmit (
 DOUBLE_LINK_TYPE __RPC_FAR * pList,
 DOUBLE_XMIT_TYPE __RPC_FAR * __RPC_FAR * ppArray)
{
 short cCount = 0;
 DOUBLE_LINK_TYPE * pHead = pList; // save pointer to start
 DOUBLE_XMIT_TYPE * pArray;

 /* count the number of elements to allocate memory */
 for (; pList != NULL; pList = pList->pNext)
 cCount++;

 /* allocate the memory for the array */
 pArray = (DOUBLE_XMIT_TYPE *) MIDL_user_allocate
 (sizeof(DOUBLE_XMIT_TYPE) + (cCount * sizeof(short)));
 pArray->sSize = cCount;

 /* copy the linked list contents into the array */
 cCount = 0;
 for (i = 0, pList = pHead; pList != NULL; pList = pList->pNext)
 pArray->asNumber[cCount++] = pList->sNumber;

 /* return the address of the pointer to the array */
 *ppArray = pArray;
}

The type_from_xmit Function
The stubs call the type_from_xmit function to convert data from its transmitted type to the type that is
presented to the application. The function is defined as:

void __RPC_USER <type>_from_xmit (
 <xmit_type> __RPC_FAR *,
 <type> __RPC_FAR *);

The first parameter is a pointer to the transmitted data. The function sets the second parameter to point to
the presented data.

The type_from_xmit function must manage memory for the presented type. The function must allocate
memory for the entire data structure that starts at the address indicated by the second parameter, except
for the parameter itself (the stub allocates memory for the root node and passes it to the function). The
value of the second parameter cannot change during the call. The function can change the contents at
that address.

In this example, the function DOUBLE_LINK_TYPE_from_xmit converts the sized array to a double-
linked list. The function retains the valid pointer to the beginning of the list, frees memory associated with
the rest of the list, then creates a new list that starts at the same pointer. The function uses a utility
function, InsertNewNode, to append a list node to the end of the list and to assign the pNext and
pPrevious pointers to appropriate values.

void __RPC_USER DOUBLE_LINK_TYPE_from_xmit(
 DOUBLE_XMIT_TYPE __RPC_FAR * pArray,
 DOUBLE_LINK_TYPE __RPC_FAR * pList)
{
 DOUBLE_LINK_TYPE *pCurrent;
 int i;

 if (pArray->sSize <= 0) { // error checking
 return;
 }

 if (pList == NULL) // if invalid, create the list head
 pList = InsertNewNode(pArray->asNumber[0], NULL);
 else {
 DOUBLE_LINK_TYPE_free_inst(pList); // free all other nodes
 pList->sNumber = pArray->asNumber[0];
 pList->pNext = NULL;
 }

 pCurrent = pList;
 for (i = 1; i < pArray->sSize; i++)
 pCurrent = InsertNewNode(pArray->asNumber[i], pCurrent);

 return;
}

The type_free_xmit Function
The stubs call the type_free_xmit function to free memory associated with the transmitted data. After the
type _from_xmit function converts the transmitted data to its presented type, the memory is no longer
needed. The function is defined as:

void __RPC_USER <type>_free_xmit(<xmit_type> __RPC_FAR *);

The parameter is a pointer to the memory that contains the transmitted type.

In this example, the memory contains an array that is in a single structure. The function
DOUBLE_LINK_TYPE_free_xmit uses the user-supplied function midl_user_free to free the memory:

void __RPC_USER DOUBLE_LINK_TYPE_free_xmit(
 DOUBLE_XMIT_TYPE __RPC_FAR * pArray)
{
 midl_user_free(pArray);
}

The type_free_inst Function
The stubs call the type_free_inst function to free memory associated with the presented type. The
function is defined as:

void __RPC_USER <type>_free_inst(<type> __RPC_FAR *)

The parameter points to the presented type instance. This object should not be freed. For a discussion on
when to call the function, see the transmit_as Attribute.

In the following example, the double-linked list is freed by walking the list to its end, then backing up and
freeing each element of the list.

void __RPC_USER DOUBLE_LINK_TYPE_free_inst(
 DOUBLE_LINK_TYPE __RPC_FAR * pList)
{
 while (pList->pNext != NULL) // go to end of the list
 pList = pList->pNext;

 pList = pList->pPrevious;
 while (pList != NULL) { // back through the list
 midl_user_free(pList->pNext);
 pList = pList->pPrevious;
 }
}

The represent_as Attribute
The represent_as attribute lets you specify how a particular remotable data type is represented for the
application. This is done by specifying the name of the represented type for a known transmittable type
and supplying the routines to convert the data type to and from the other data type. You must also supply
the routines to free the memory used by the data type objects.

You use the represent_as attribute to present an application with a different and perhaps nonremotable
data type, instead of the type that is actually transmitted between the client and server. Also, the type the
application manipulates can be unknown at the time of MIDL compilation. When you choose a well-
defined transmittable type, you need not be concerned about data representation in the heterogenic
environment. The represent_as attribute can make your application more efficient by reducing the
amount of data transmitted over the network.

The represent_as attribute is similar to the transmit_as attribute. However, while transmit_as lets you
specify a data type that will be used for transmission, represent_as lets you specify how a data type is
represented for the application. The represented type need not be defined in the MIDL processed files; it
can be defined at the time the stubs are compiled with the C compiler. To do this, use the include directive
in the ACF to compile the appropriate header file. For example, the following ACF defines a local
represented repr_type for the given transmittable named_type:

typedef [represent_as(repr_type) [, type_attribute_list] named_type;

The following table describes the four user-supplied routines:

Routine Description
named_type_from_local Allocates an instance of the network type

and converts from the local type to the
network type.

named_type_to_local Converts from the network type to the local
type.

named_type_free_local Frees memory allocated by a call to the
named_type_to_local routine, but not the
type itself.

named_type_free_inst Frees storage for the network type (both
sides).

Other than by these four user-supplied routines, the named type is not manipulated by the application and
the only type visible to the application is the represented type. The represented type name is used instead
of the named type name in the prototypes and stubs generated by the compiler. You must supply the set
of routines for both sides.

For temporary named_type objects, the stub will call named_type_free_inst to free any memory allocated
by a call to named_type_from_local.

If the represented type is a pointer or contains a pointer, the named_type_to_local routine must allocate
pointees of the pointers (the represented type object itself is manipulated by the stub in the usual way).
For out and in, out parameters of a type that contain represent_as or one of its components, the
named_type_free_local routine is automatically called for the data objects that contain the attribute. For
in parameters, the named_type_free_local routine is only called if the represent_as attribute has been
applied to the parameter. If the attribute has been applied to the components of the parameter, the
*_free_local routine is not called. Freeing routines are not called for the embedded data and at-most-
once call (related to the top-level attribute) for an in only parameter.

Note    It is possible to apply both the transmit_as and represent_as attributes to the same type.
When marshalling data, the represent_as type conversion is applied first and then the transmit_as
conversion is applied. The order is reversed when unmarshalling data. Thus, when marshalling,
*_from_local allocates an instance of a named type and translates it from a local type object to the
temporary named type object. This object is the presented type object used for the *_to_xmit routine.
The *_to_xmit routine then allocates a transmitted type object and translates it from the presented
(named) object to the transmitted object.

An array of long integers can be used to represent a linked list. In this way, the application manipulates
the list and the transmission uses an array of long integers when a list of this type is transmitted. You can
begin with an array, but using a construct with an open array of long integers is more convenient. The
following example shows how to do this:

/* IDL definitions */

typedef struct_lbox {
 long data;
 struct_lbox * pNext
} LOC_BOX, * PLOC_BOX;

/* The definition of the local type visible to the application,
as shown above, can be omitted in the IDL file. See the include
in the ACF file. */

typedef struct_xmit_lbox {
 short Size;
 [size_is(Size)] long DaraArr[];
} LONGARR;

void WireTheList([in,out] LONGARR * pData);

/* ACF definitions */

/* If the IDL file does not have a definition for PLOC_BOX, you
can still ready it for C compilation with the following include
statement (notice that this is not a C include):
include "local.h";*/

typedef [represent_as(PLOC_BOX)] LONGARR;

Note that the prototypes of the routines that use the LONGARR type are actually displayed in the STUB.H
files as PLOC_BOX in place of the LONGARR type. The same is true of the appropriate stubs in the
STUB_C.C file.

You must supply the folllowing four functions:

void __RPC_USER
LONGARR_from_local(
 PLOC_BOX __RPC_FAR * pList,
 LONGARR __RPC_FAR * _RPC_FAR * ppDataArr);

void __RPC_USER
LONGARR_to_local(
 LONGARR __RPC_FAR * _RPC_FAR * ppDataArr,

 PLOC_BOX __RPC_FAR * pList);

void __RPC_USER
LONGARR_free_inst(
 LONGARR __RPC_FAR * pDataArr);

void __RPC_USER
LONGARR_free_local(
 PLOC_BOX __RPC_FAR * pList);

The routines shown above do the following:

· The LONGARR_from_local routine counts the nodes of the list, allocates a LONGARR object with
the size sizeof(LONGARR) + Count*sizeof(long), sets the Size field to Count, and copies the data to
the DataArr field.

· The LONGARR_to_local routine creates a list with Size nodes and transfers the array to the
appropriate nodes.

· The LONGARR_free_inst routine frees nothing in this case.
· The LONGARR_free_local routine frees all the nodes of the list.

The wire_marshal Attribute
The wire_marshal attribute is an IDL type attribute similar in syntax to transmit_as, but provides a more
efficient way to marshal data across a network.

You use the wire_marshal attribute to specify a data type that will be transmitted in place of the
application-specific data type. Each application-specific type has a corresponding transmissible type that
defines the wire representation (the way it is transmitted).The application-specific type need not be
remotable, but it must be a type that MIDL recognizes. To marshal a type unknown to MIDL, use the ACF
attribute user_marshal.

Your application-specific type can be a simple, composite, or pointer type. The main restriction is that the
type object must have a fixed, well-defined memory size. If the size of your type object needs to change,
use a pointer field rather than a conformant array. Alternatively, you can define a pointer to the
changeable type.

You supply the routines for the sizing, marshaling, unmarshaling and freeing passes. The following table
describes the four user-supplied routine names. The <type> is the userm-type specified in the
wire_marshal type definition.

Routine Description
< type >_UserSize Sizes the rpc data buffer before

marshaling on the client or server
side.

< type >_UserMarshal Marshals the data on the client or
server side.

< type >_UserUnmarshal Unmarshals the data on the client or
server side.

< type >_UserFree Frees the data on the server side.

These user-supplied routines are provided by either the client or the server application based on the
directional attributes.

If the parameter is in only, the client transmits to the server. The client needs the <type>_UserSize and
<type>_UserMarshal functions. The server needs the <type>_UserUnmarshal and <type>_UserFree
functions.

For an out-only parameter, the server transmits to the client. The server needs the <type>_UserSize and
<type>_UserMarshal functions, while the client needs the <type>_UserMarshal function.

See Also
The user_marshal Attribute, Marshaling Rules for user_marshal and wire_marshal, wire_marshal,
user_marshal

The user_marshal Attribute
The user_marshal attribute is an ACF type attribute similar in syntax to represent_as. As with the IDL
attribute, wire_marshal, it offers a more efficient way to marshal data across a network. As an ACF
attribute, user_marshal lets you custom marshal data types that are unknown to MIDL. Each application-
specific type has a corresponding transmissible type that defines the wire representation.

Your application-specific type can be a simple, composite, or pointer type. The main restriction is that the
type object must have a fixed, well-defined memory size. If the size of your type object needs to change,
use a pointer field rather than a conformant array. Alternatively, you can define a pointer to the
changeable type.

As with the wire_marshal attribute, you supply routines for the sizing, marshaling, unmarshaling and
freeing passes. The following table describes the four user-supplied routine names. The <type> is the
userm-type specified in the user_marshal type definition.

Routine Description
< type >_UserSize Sizes the rpc data buffer before

marshaling on the client or server
side.

< type >_UserMarshal Marshals the data on the client or
server side.

< type >_UserUnmarshal Unmarshals the data on the client or
server side.

< type >_UserFree Frees the data on the server side.

These user-supplied routines are provided by either the client or the server application, based on the
directional attributes.

If the parameter is in only, the client transmits to the server. The client needs the <type>_UserSize and
<type>_UserMarshal functions. The server needs the <type>_UserUnmarshal and <type>_UserFree
functions.

For an out-only parameter, the server transmits to the client. The server needs the <type>_UserSize and
<type>_UserMarshal functions, while the client needs the <type>_UserMarshal function.

See Also
The wire_marshal Attribute, Marshaling Rules for user marshal and wire_marshal, user_marshal,
wire_marshal

The type_UserSize Function
The <type>_UserSize function is a helper function for the wire_marshal and user_marshal
attributes.The stubs call this function to size the rpc data buffer for the user data object before data is
marshaled on the client or server side. The function is defined as:

unsigned long __RPC_USER <type>_UserSize(
 unsigned long __RPC_FAR * pFlags,
 unsigned long StartingSize,
 <type> __RPC_FAR * pMyObj);

The <type> in the function name means the userm-type, as specified in the wire_marshal or
user_marshal type definition. This type may be nonremotable or even, when used with the
user_marshal attribute, a type unknown to the MIDL compiler. The wire type name (the name of the
transmissible type) is not used in the function prototype. Note, however, that the wire type defines the wire
layout for the data as specified by OSF DCE.

The pFlags argument is a pointer to an unsigned long flag field.The upper word of the flag contains NDR
data representation flags as defined by OSF DCE for floating point, endianess, and character
representations. The lower word contains a marshaling context flag as defined by the COM channel. The
exact layout of the flags within the field is:

Bits Flag Value
31-24 Floating-point

representation
0 = IEEE
1 = VAX
2 = Cray
3 = IBM

23-20 Integer and
floating-point
byte order

0 = Big-endian
1 = Little-endian

19-16 Character
representation

0 = ASCII
1 = EBCDIC

15-0 Marshaling
context flag

0 = MSHCTX_LOCAL
1 = MSHCTX_NOSHAREDMEM
2 = MSHCTX_DIFFERENTMSCHINE
3 = MSHCTX_INPROC

The marshaling context flag makes it possible to alter the behavior of your routine depending on the
context for the RPC call. For example, if you have a handle (long) to a block of data, you could send the
handle for an in-process call, but you would send the actual data for a call to a different machine.

The marshaling context flag and its values are defined in the wtypes.h and wtypes.idl files in the Win32
SDK.

Note    When the wire type is properly defined, you do not have to use the NDR Data Representation
flags, as the NDR engine performs the necessary conversions. The flags and their values are shown
here solely for interest.

The StartingSize argument is the current buffer offset. The starting size indicates the buffer offset for the
user object and it may or may not be aligned properly. Your routine should account for whatever padding
is necessary.

The pMyObj argument is a pointer to a user type object.

The return value is the new offset or buffer position. The function should return the cumulative size, which
is the starting size plus possible padding plus the data size.

The <type>_UserSize function can return an overestimate of the size needed. The actual size of the sent
buffer is defined by the data size, not by the buffer allocation size.

The <type>_UserSize function is not called if the wire size can be computed at compile time. Note that for
most unions, even if there are no pointers, the actual size of the wire representation can be determined
only at run time.

See also
Marshaling rules for user_marshal and wire_marshal, user_marshal, wire_marshal

the type_UserMarshal Function
The <type>_UserMarshal function is a helper function for the wire_marshal and user_marshal
attributes.The stubs call this function to marshal data on the client or server side. The function is defined
as:

unsigned char __RPC_FAR * __RPC_USER <type>_UserMarshal(
 unsigned long __RPC_FAR * pFlags,
 unsigned char __RPC_FAR * pBuffer,
 <type> __RPC_FAR * pMyObj);

The <type> in the function name means the userm-type specified in the wire_marshal or user_marshal
type definition. This type may be nonremotable or even, when used with the user_marshal attribute, a
type unknown to the MIDL compiler. The wire type name (the name of transmissible type) is not used in
the function prototype. Note, however, that the wire type defines the wire layout for the data as specified
by OSF DCE.

The pFlags argument is a pointer to an unsigned long flag field.The upper word of the flag contains NDR
data representation flags as defined by OSF DCE for floating point, endianess, and character
representations. The lower word contains a marshaling context flag as defined by the COM channel. The
exact layout of the flags within the field is described in The type_UserSize Function.

The pBuffer argument is the current buffer pointer. This pointer may or may not be aligned on entry. Your
<type>_UserMarshal function should align the buffer pointer appropriately, marshal the data, and return
the new buffer position, which is the address of the first byte after the marshaled object. Keep in mind that
the wire type specification determines the actual layout of the data in the buffer.

The pMyObj argument is a pointer to a user type object.

The return value is the new buffer position, which is the address of the first byte after the unmarshaled
object.

Checking for Buffer Overflow
Buffer overflow can occur when you incorrectly calculate the size of the data and attempt to marshal more
data than intended. You should be careful to avoid this situation and to check against it where possible,
using the pointer that <type>_UserMarshal returns. Otherwise, you risk having the NDR engine raise a
buffer overflow exception later.

See Also
Marshaling Rules for user_marshal and wire_marshal, wire_marshal, user_marshal

The type_UserUnmarshal Function
The <type>_UserUnmarshal function is a helper function for the wire_marshal and user_marshal
attributes.The stubs call this function to unmarshal data on the client or server side. The function is
defined as:

unsigned char __RPC_FAR * __RPC_USER <type>_UserUnmarshal(
 unsigned long __RPC_FAR * pFlags,
 unsigned char __RPC_FAR * pBuffer,
 <type> __RPC_FAR * pMyObj);

The <type> in the function name means the userm-type specified in the wire_marshal or user_marshal
type definition. This type may be nonremotable or even, when used with the user_marshal attribute, a
type unknown to the MIDL compiler. The wire type name (the name of transmissible type) is not used in
the function prototype. Note, however, that the wire type defines the wire layout for the data as specified
by OSF DCE.

The pFlags argument is a pointer to an unsigned long flag field.The upper word of the flag contains NDR
data representation flags as defined by OSF DCE for floating point, endianess, and character
representations. The lower word contains a marshaling context flag as defined by the COM channel. The
exact layout of the flags within the field is described in The type_UserSize Function.

The pBuffer argument is the current buffer pointer. This pointer may or may not be aligned on entry. Your
<type>_UserUnmarshal function should align the buffer pointer appropriately, unmarshal the data, and
return the new buffer position, which is the address of the first byte after the unmarshaled object.

The pMyObj argument is a pointer to a user-defined type object.

Data Conversion
In a hetergeneous environment, the NDR engine performs any data conversion necessary prior to calling
the <type>_UserUnmarshal function. Note that the NDR engine carries out this data conversion according
to the wire-type definition supplied for this user data type. The flag indicates the data representation of the
sender.

See Also
Marshaling Rules for user_marshal and wire_marshal, wire_marshal, user_marshal

The type_UserFree Function
The <type>_UserFree function is a helper function for the wire_marshal and user_marshal
attributes.The stubs call this function to free the data on the server side. The function is defined as:

void __RPC_USER <type>_UserFree(
 unsigned long __RPC_FAR * pFlags,
 <type_name> __RPC_FAR * pMyObj);

The <type> in the function name means the userm-type specified in the wire_marshal or user_marshal
type definition.

The pFlags argument is a pointer to an unsigned long flag field.The upper word of the flag contains NDR
data representation flags as defined by OSF DCE for floating point, endianess, and character
representations. The lower word contains a marshaling context flag as defined by the COM channel. The
exact layout of the flags within the field is described in The type_UserSize Function.

The pMyObj argument is a pointer to a user type object.The NDR engine frees the top level object. You
are responsible for freeing any objects that the top-level object may point to.

See Also
Marshaling Rules for user_marshal and wire_marshal, wire_marshal, user_marshal

Marshaling Rules for user_marshal and wire_marshal
The OSF-DCE specification for marshaling embedded pointer types requires that you observe the
following restrictions when you implement the <type>_UserSize, <type>_UserMarshal, and
<type>_UserUnMarshal functions. (The rules and examples given here are for marshaling. However, your
sizing and unmarshaling routines must follow the same restrictions):

· If the wire-type is a flat type with no pointers, your marshaling routine for the corresponding userm-
type should simply marshal the data according to the layout of the wire-type. For example:
typedef [wire_marshal (long)] void * HANDLE_HANDLE

Note that the wire type, long, is a flat type. Your HANDLE_HANDLE_UserMarshal function marshals
a long whenever a HANDLE_HANDLE object is passed to it.

· If the wire-type is a pointer to another type, your marshaling routine for the corresponding userm-type
should marshal the data according to the layout for the type that the wire-type points to. The NDR
engine takes care of the pointer. For example:
typedef struct HDATA{
long size;
[size_is(size) long * pData;
} HDATA;
typedef HDATA * WIRE_TYPE;
typedef [wire_marshal(WIRE_TYPE)] void * HANDLE_DATA

Note that the wire type, WIRE_TYPE, is a pointer type. Your HANDLE_DATA_UserMarshal function
marshals the data related to the handle, using the HDATA layout, rather than the HDATA * layout.

· A wire-type must be either a flat data type or a pointer type. If your transmissible type must be
something else (a struct with pointers, for example), use a pointer to your desired type as the wire-
type.

The effect of these restrictions is that the types defined with the wire_marshal or user_marshal
attributes can be freely embedded in other types.

See Also
wire_marshal, user_marshal, The type_UserSize Function, The type_UserMarshal Function, The
type_UserUnMarshal Function, The type_UserFree Function

Three Pointer Types
MIDL supports three types of pointers to accommodate a wide range of applications. The three different
levels are called reference, unique, and full pointers, and are indicated by the attributes ref, unique, and
ptr, respectively. The pointer classes described by these attributes are mutually exclusive.

Pointer attributes can be applied to pointers in type definitions, function return types, function parameters,
members of structures or unions, or array elements.

Embedded pointers are pointers that are members of structures or unions or elements of arrays.
Embedded pointers can differ from top-level pointers, depending upon directional attributes. In the in
direction, embedded ref pointers are assumed to be pointing to valid storage and must not be null. This
situation is recursively applicable to any ref pointers they are pointing to. In the in direction, embedded
unique and full pointers may or may not be null.

Any pointer attribute placed on a parameter in the syntax of a function declaration affects only the
rightmost pointer declarator for that parameter. To affect other pointer declarators, intermediate named
types must be used.

Functions that return a pointer can have a pointer attribute as a function attribute. The unique and ptr
attributes must be applied to function return types. Member declarations that are pointers can specify a
pointer attribute as a field attribute. A pointer attribute can also be applied as a type attribute in typedef
constructs.

When no pointer attribute is specified as a field or type attribute, pointer attributes are applied according
to the rules for unattributed pointer declaration as follows:

In DCE-compatibility mode, pointer attributes are determined in the defining IDL file. If there is a
pointer_default attribute specified in the defining interface, that attribute is used. If no pointer_default
attribute is present, all unattributed pointers are full pointers.

In Microsoft-extensions mode, pointer attributes can be determined by importing IDL files and are applied
in the following order:

1. An explicit pointer attribute applied at the use site.
2. The ref attribute, when the unattributed pointer is a top-level pointer parameter.
3. A pointer_default attribute specified in the defining interface.
4. A pointer_default attribute specified in the base interface.
5. The unique attribute.

The pointer_default interface attribute specifies the default pointer attributes to be applied to a pointer
declarator in a type, parameter, or return type declaration when that declaration does not have an explicit
pointer attribute applied to it. The pointer_default interface attribute does not apply to an unattributed
top-level pointer of a parameter, which is assumed to be ref.   

Arrays and Pointers
Because RPC is designed to be transparent, you can expect a remote procedure call to behave just like a
local procedure call. When a pointer is a parameter, the remote procedure can access the data object the
pointer refers to in the same way a local procedure accesses it.

To achieve this transparency, the client stub transmits to the server both the pointer and the data object
that it points to. If the remote procedure changes the data, the server must transmit the new data back to
the client so the client can copy the new data over the original data.

The number of MIDL attributes relating to arrays and pointers demonstrates the flexibility that C affords.
MIDL offers several attributes that extend C arrays and pointers to the distributed environment.

Array Attributes
There is a close relationship between arrays and pointers in the C language. When passed as a
parameter to a function, an array name is treated as a pointer to the first element of the array, as shown in
the following example:

/* fragment */
extern void f1(char * p1);

void main(void)
{
 char chArray[MAXSIZE];

 fLocal1(chArray);
}

In a local call, you can use the pointer parameter to march through memory and examine the contents of
other addresses:

/* dump memory (fragment) */
void fLocal1(char * pch1)
{
 int i;

 for (i = 0; i < MAXSIZE; i++)
 printf("%c ", *pch1++);
}

When a client passes a pointer to a remote procedure in C, the client stub transmits both the pointer and
the data it points to. Unless the pointer is restricted to its corresponding data, all the client's memory must
be transmitted with every remote call. By enforcing strong typing in the interface definition, MIDL limits
client stub processing to the data that corresponds with the specified pointer.

The size of the array and the range of array elements transmitted to the remote computer can be constant
or variable. When these values are variable, and thus determined at run time, you must use attributes in
the IDL file to tell the stubs how many array elements to transmit. The following MIDL attributes support
array bounds:

Attribute Description Default
first_is Index of the first array element

transmitted.
0

last_is Index of the last array element
transmitted.

-

length_is Total number of array elements
transmitted.

-

max_is Highest valid array index value. -
min_is Lowest valid array index value. 0
size_is Total number of array elements

allocated for the array.
-

Note    The min_is attribute is not implemented in Microsoft® RPC. The minimum array index is
always treated as zero.

The size_is Attribute
The size_is attribute is associated with an integer constant, expression, or variable that specifies the
allocation size of the array. Consider a character array whose length is determined by user input:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(2.0)
]
interface arraytest
{
void fArray2([in] short sSize,
 [in, out, size_is(sSize)] char achArray[*]);
}

The asterisk (*) that marks the placeholder for the variable-array dimension is optional.

The server stub must allocate memory on the server that corresponds to the memory on the client for that
parameter. The variable that specifies the size must always be at least an in parameter. The in directional
attribute is required so that the size value is defined on entry to the server stub. This size value provides
information that the server stub requires to allocate the memory. The size parameter can also be in, out.

See Also
Multiple Levels of Pointers

The length_is Attribute
The size_is attribute lets you specify the maximum size of the array. When this is the only attribute, all
elements of the array are transmitted. Instead of sending all elements of the array, you can specify the
transmitted elements using the length_is attribute as:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(3.0)
]
interface arraytest
{
void fArray3([in, out, size_is(sSize), length_is(sLen)] char achArray[],
 [in] short sSize,
 [in] short SLength);
}

Size describes allocation while length describes transmission. The number of elements transmitted must
always be less than or equal to the number of elements allocated. The value associated with length_is is
always less than or equal to size_is.

The first_is and last_is Attributes
You can determine the number of transmitted elements by specifying the first and last elements. Use the
first_is and last_is attributes as shown:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(4.0)
]
interface arraytest
{

void fArray4([in, out,
 size_is(sSize),
 first_is(sFirst),
 last_is(sLast)] char achArray[],
 [in] short sSize,
 [in] short sLast,
 [in] short sFirst) ;
}

The max_is Attribute
You can specify the valid bounds of the array using the max_is attribute.

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(5.0)
]
interface arraytest
{
void fArray5([in] short sMax,
 [in, out, max_is(sMax)] char achArray[]);
}

Field attributes can be supplied in various combinations as long as the stub can use the information to
determine the size of the array and the number of bytes to transmit to the server. The relationships
between the attributes are defined using the following formulas:

size_is = max_is + 1;
length_is = last_is - first_is + 1;

The values associated with the attributes must obey several common-sense rules based on those
formulas. These are:

· The first_is index value cannot be smaller than zero and last_is cannot be greater than max_is.
· Do not specify a negative size for an array. Define the first and last elements so they result in a length

value of zero or greater. Define the max_is value so the size is zero or greater. If MIDL was invoked
with the /error bounds_check option, then the stub raises an exception when the size is less than
zero, or the transmitted length is less than zero.

· You cannnot use the length_is and last_is attributes at the same time, nor can you use the size_is
and max_is attributes at the same time.

Because of the close relationship in C between arrays and pointers, MIDL also lets you declare arrays in
parameter lists using pointer notation. MIDL treats a parameter that is a pointer to a type as an array of
that type if the parameter has any of the attributes commonly associated with arrays.

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53)
 version(6.0)
]
interface arraytest
{
void fArray6([in, out, size_is(sSize)] char * p1,
 [in] short sSize);
void fArray7([in, out, size_is(sSize)] char achArray[],
 [in] short sSize);
}

In the preceding example, the array and pointer parameters in the functions fArray6 and fArray7 are
equivalent.

The string Attribute in Arrays
You can use the string attribute for one-dimensional character arrays, wide-character arrays, and byte
arrays that represent text strings.

If you use the string attribute, the client stub uses the C-library functions strlen or wstrlen to count the
number of characters in the string. To avoid possible inconsistencies, MIDL does not let you use the
string attribute at the same time as the first_is, last_is, and size_is attributes.

As always with null-terminated strings in C, you must allow space for the null character at the end of the
string. For example, when declaring a string that will hold up to 80 characters, allocate 81 characters.

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(8.0)
]
interface arraytest
{
void fArray8([in, out, string] char achArray[]);
}

Multi-Dimensional Arrays
Array attributes can also be used with multidimensional arrays. However, be careful to ensure that every
dimension of the array has a corresponding attribute. For example:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(2.0)
]
void arr2d([in] short dlsize,
 [in] short d2len,
 [in,
 size_is(dlsize,),
 length_is (, d2len)] long array2d[*][30]) ;

The array shown above is a conformant array (of size dlsize) of 30 element arrays (with d2len elements
shipped for each).

The string attribute can also be used with multidimensional arrays. The attribute applies to the least-
significant dimension such as a conformant array of strings. You can also use multidimensional pointer
attributes, but if you do so, the order of the attributes will be reserved because of the right-to-left behavior
associated with pointers. For example:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(2.0)
]
void arr2d([in] short d1len,
 [in] short d2len,
 [in] size_is(d1len, d2len)] long ** ptr2d) ;

In the example above, the variable ptr2d is d1len pointers to d2len pointers to long.

Be sure that a multidimensional array is not equivalent to multiple levels of pointers. A multidimensional
array is a single, large block of memory and should not be confused with an array of pointers. Also, ANSI
C syntax allows only the most significant (leftmost) array dimension to be unspecified in a
multidimensional array. Therefore, the following is a valid statement:

long a1[] [20]

Compare this to the following invalid statement:

long a1[20] []

Pointers
It is very efficient to use pointers as C function parameters. The pointer costs only a few bytes and can be
used to access a large amount of memory. However, in a distributed application, the client and server
procedures can reside in different address spaces on different computers that may not have access to the
same memory.

When one of the remote procedure's parameters is a pointer to an object, the client must transmit a copy
of that object and its pointer to the server. If the remote procedure modifies the object through its pointer,
the server returns the pointer and its modified copy.

MIDL offers pointer attributes to minimize the amount of required overhead and the size of your
application. For example, you can specify a binary tree using the following definition:

typedef struct _treetype {
 long lValue;
 struct _treetype * left;
 struct _treetype * right;
} TREETYPE;

TREETYPE * troot;

The contents of a tree node can be accessed by more than one pointer, thus making it more complicated
for the RPC support code to manage the data and the pointers. The underlying stub code must resolve
the various pointers to the addresses and determine whose copy of the data represents the most recent
version.

The amount of processing can be reduced if you guarantee that your pointer is the only way the
application can access that area of memory. The pointer can still have many of the features of a C pointer.
For example, it can change between null and non-null values or stay the same. However, as long as the
data referenced by the pointer is unique to the pointer, you can reduce the amount of processing by the
stubs. To do this, designate such a pointer by using the unique attribute.

You can further reduce the complexity if you specify that the non-null pointer to an address of valid
memory will not change during the remote call. However, the contents of memory can change and the
data returned from the server will be written into this area on the client. To do this, designate such a
pointer, known as a reference pointer, by using the ref attribute.

Reference Pointers
Reference pointers are the simplest pointers and require the least amount of processing by the client
stub. These pointers are mainly used to implement reference semantics and allow for out parameters in
C.

In the following example, the value of the pointer does not change during the call, although the contents
of the data at the address indicated by the pointer can change.

{ewc msdncd, EWGraphic, bsd23532 0 /a "SDK_A07.BMP"}

A reference pointer has the following characteristics:

· It always points to valid storage and never has the value NULL.
· It never changes during a call and always points to the same storage before and after the call.
· Data returned from the callee is written into the existing storage.
· The storage pointed to by a reference pointer cannot be accessed by any other pointer or any other

name in the function.

Unique Pointers
Unique pointers can change in value, but as with reference pointers, they do not cause aliasing of data ¾
that is, the data that is accessible through the pointer is not accessible through any other name in the
remote operation. This constraint saves a significant amount of processing.

The pointer itself can change from a null to a non-null value or from a non-null to a null value during the
call. In the following example, the pointer is null before the call and points to a valid string after the call:

{ewc msdncd, EWGraphic, bsd23532 1 /a "SDK_A01.BMP"}

By default, the unique pointer attribute is applied to all pointers that are not parameters. In Microsoft-
extensions mode, this default setting can be changed with the pointer_default attribute.

A unique pointer has the following characteristics:

· It can have the value NULL.
· It can change from null to non-null during the call. When the value changes to non-null, new memory

is allocated on return.
· It can change from non-null to null during the call. When the value changes to NULL, the application

is responsible for freeing the memory.
· If the value changes from one non-null value to another non-null value, the change is ignored.
· The storage that a unique pointer points to cannot be accessed by any other pointer or name in the

operation.
· Return data is written into existing storage if the pointer does not have the value NULL.

Full Pointers
Full pointers have all the properties of unique pointers. In addition, full pointers support aliasing. This
means that multiple pointers can refer to the same data, as shown in the following figure:

{ewc msdncd, EWGraphic, bsd23532 2 /a "SDK_A02.BMP"}

Pointers and Memory Allocation
The ability to change memory through pointers often requires that the server and the client allocate
enough memory for the elements in the array.

Whenever a stub must allocate or free memory, it calls run-time library functions that in turn call the
functions midl_user_allocate and midl_user_free. These functions are not included as part of the run-
time library. You need to write your own versions of these functions and link them with your application. In
this way, you can decide how to manage memory. (The exception is if you are compiling your IDL file in
OSF-compatibility (/osf) mode, in which case you do not need to implement these functions)

You must write these functions to the following prototypes:

void __RPC_FAR * __RPC_API midl_user_allocate(size_t len)

void __RPC_API midl_user_free(void __RPC_FAR * ptr)

For example, the versions of these functions for an application can simply call standard library functions:

void __RPC_FAR * __RPC_API midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_API midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

Program Efficiency Using Pointer Parameters
The in, out, and in, out directional attributes significantly affect the amount of stub code when they are
applied to pointer parameters.

Default Pointer Types for Pointers
The MIDL compiler offers three different default cases for pointers that do not have pointer attributes at
definition time:

· Function parameters that are top-level pointers default to ref pointers.
· Pointers embedded in structures and pointers to other pointers (non-top-level pointers) default to the

type specified by the pointer_default attribute.
· When no pointer_default attribute is supplied, non-top-level pointers default to unique pointers in

MIDL's default (Microsoft-extensions) mode, and to ptr in DCE-compatible mode.

A pointer returned by a function must be a unique or full pointer. The MIDL compiler reports an error if a
function result is, either explicitly or by default, a reference pointer. The returned pointer always indicates
new storage because there is not enough information for the stubs to determine whether there is existing
storage in the caller address space for pointer-valued function results.

Functions that return a pointer value can specify a pointer attribute as a function attribute. If a pointer
attribute is not present, the function return pointer uses the value provided by the pointer_default attribute.

Note    To ensure unambiguous pointer-attribute behavior, always use explicit pointer attributes when
defining a pointer.

Pointer-Attribute Type Inheritance
According to the DCE specification, each IDL file must define attributes for its pointers. If an explicit
attribute is not assigned to a pointer, the pointer uses the value specified by the pointer_default keyword.
Some DCE implementations do not allow unattributed pointers. If a pointer does not have an explicit
attribute, the IDL file must have a pointer_default specification so the pointer attribute can be set.

In default (Microsoft-extensions) mode, you can specify a pointer's attribute in the IDL file that imports the
defining IDL file. Pointers defined in one IDL file can inherit attributes that are specified in other IDL files.

Also in default mode, IDL files can include unattributed pointers. If neither the base nor the imported IDL
files specify a pointer attribute or pointer_default, unattributed pointers are interpreted as unique
pointers.

The MIDL compiler assigns pointer attributes to pointers using the following priority rules (1 is highest):

1. Explicit pointer attributes explicitly applied to the pointer at the definition or use site.
2. Pointer_default attribute in the IDL file that defines the type.
3. Pointer_default attribute in the IDL file that imports the type.
4. Ptr (DCE-compatibility mode); unique (Microsoft-extensions mode).

Using Arrays, Strings, and Pointers
The Doctor program (see \samples\rpc\doctor in the Win32 SDK) is a good example of an application that
demonstrates the design trade-offs involved with array and string attributes. The Doctor program is a
small sample version of a better-known program, Eliza, developed by artificial intelligence researcher
Joseph Weizenbaum at MIT in the 1960s. The program mimics a therapist by using simple pattern-
matching to respond to natural language input.

The Eliza program recorded the following session:

User Eliza
Men are all alike. In what way?
They're always bugging us about
something or other.

Can you think of a specific
example?

Well, my boyfriend made me
come here.

Your boyfriend made you come
here.

He says I'm depressed much of
the time.

I am sorry to hear that you are
depressed.

It's true, I am unhappy. Do you think coming here will help
you not to be unhappy?

I need some help; that much
seems certain.

What would it mean to you if you
got some help?

Perhaps I could learn to get
along with my mother.

Tell me more about your family.

My mother takes care of me. Who else in your family takes care
of you?

My father. Your father.
You are like my father in some
ways.

What resemblance do you see?

The Doctor program can be split into client-side and server-side applications. The client side prompts the
patient for input and displays the doctor's response. The server side processes the patient input and
generates the doctor's response. This is a classic example of a client-server application: the client is
responsible for user interaction while the server handles the extensive computational load. Not much data
is passed to and returned by the function but, because the data can require a significant amount of
processing, it is processed by the server.

The Doctor program uses a character array for input and returns another character array as output. The
following topics demonstrate the design trade-offs between the various interfaces that can manage these
parameters.

The table below lists four ways to pass character arrays between the client and server, and the attributes
and functions needed to implement each approach.

Approach Attributes or functions
Counted character
arrays

size_is, length_is, ref

Stub-managed strings string, ref, midl_user_allocate on server
Stub-managed strings string, unique, midl_user_allocate on

client and server

Function that returns a
string

unique

Within the constraints associated with these combinations of attributes, there are alternative ways of
sending one character array from client to server and of returning another character array from server to
client.

Counted Character Arrays
The size_is attribute indicates the upper bound of the array while the length_is attribute indicates the
number of array elements to transmit. In addition to the array, the remote procedure prototype must
include any variables representing length or size that determine the transmitted array elements (they can
be separate parameters or bundled with the string in a structure). These attributes can be used with wide-
character or single-byte character arrays just as they would be with arrays of other types.

in, out, size_is Prototype
The following function prototype uses a single-counted character array that is passed both ways: from
client to server and from server to client:

#define STRSIZE 500 //maximum string length

void Analyze(
 [in, out, length_is(*pcbSize), size_is(STRSIZE)] char achInOut[],
 [in, out] long *pcbSize);

As an in parameter, achInOut must point to valid storage on the client side. The developer allocates
memory associated with the array on the client side before making the remote procedure call.

The stubs use the size_is parameter STRSIZE to allocate memory on the server and then use the
length_is parameter pcbSize to transmit the array elements into this memory. The developer must make
sure the client code sets the length_is variable before calling the remote procedure:

/* client */
char achInOut[STRSIZE];
long cbSize;
...
gets(achInOut); // get patient input
cbSize = strlen(achInOut) + 1; // transmit '\0' too
Analyze(achInOut, &cbSize);

In the previous example, the character array achInOut is also used as an out parameter. In C, the name
of the array is equivalent to the use of a pointer. By default, all pointers are reference pointers ¾ they do
not change in value and they point to the same area of memory on the client before and after the call. All
memory accessed by the remote procedure must fit the size specified on the client before the call or the
stubs will generate an exception.

Before returning, the Analyze function on the server must reset the pcbSize variable to indicate the
number of elements that the server will transmit to the client as shown:

/* server */
Analyze(char * str, long * pcbSize)
{
 ...
 *pcbSize = strlen(str) + 1; // transmit '\0' too
 return;
}

Instead of using a single string for both input and output, you may find it more efficient and flexible to use
separate parameters.

in, size_is and out, size_is Prototype
The following function prototype uses two counted strings. The developer must write code on both client
and server to keep track of the character array lengths and pass parameters that tell the stubs how many
array elements to transmit.

void Analyze(
 [in, length_is(cbIn), size_is(STRSIZE)] char achIn[],
 [in] long cbIn,
 [out, length_is(*pcbOut), size_is(STRSIZE)] char achOut[],
 [out] long *pcbOut);

Note the parameters that describe the array length are transmitted in the same direction as the arrays:
cbIn and achIn are in parameters while pcbOut and achOut are out parameters. As an out parameter, the
parameter pcbOut must follow C convention and be declared as a pointer.

The client code counts the number of characters in the string, including the trailing zero, before calling the
remote procedure as shown:

/* client */
char achIn[STRSIZE], achOut[STRSIZE];
long cbIn, cbOut;
...
gets(achIn); // get patient input
cbIn = strlen(achIn) + 1; // transmitted elements
Analyze(achIn, cbIn, achOut, &cbOut);

The remote procedure on the server supplies the length of the return buffer in cbOut as shown:

/* server */
void Analyze(char *pchIn,
 long cbIn,
 char *pchOut,
 long *pcbOut)
{
 ...
 *pcbOut = strlen(pchOut) + 1; // transmitted elements
 return;
}

Knowing that the parameter is a string allows us to use the string attribute. This attribute directs the stub
to calculate the string size, thus eliminating the overhead associated with the size_is parameters.

Strings
The string attribute indicates the parameter is a pointer to an array of type char, byte, or w_char. As with
a conformant array, the size of a string parameter is determined at run time. Unlike a conformant array,
the developer does not have to provide the length associated with the array ¾ the string attribute tells the
stub to determine the array size by calling strlen. A string attribute cannot be used at the same time as
the length_is or last_is attributes.

The in, string attribute combination directs the stub to pass the string from client to server only. The
amount of memory allocated on the server is the same as the transmitted string size plus one.

The out, string attributes direct the stub to pass the string from server to client only. The call-by-value
design of the C language insists that all out parameters must be pointers. (The key idea is that by
passing the value of the address, the function can indirectly change the value stored at that address. If
the value itself were passed, the function would only be able to modify its local copy of the value. For a
more extensive explanation of the difference between call by value and call by reference, see any C
language programming book published by Microsoft Press.)

The out parameter must be a pointer and, by default, all pointer parameters are reference pointers. The
reference pointer does not change during the call ¾ it points to the same memory as before the call. For
string pointers, the additional constraint of the reference pointer means the client must allocate sufficient
valid memory before making the remote procedure call. The stubs transmit the string indicated by the out,
string attributes into the memory already allocated on the client side.

in, out, string Prototype
The following function prototype uses a single in, out, string parameter for both the input and output
strings. The string first contains patient input and is then overwritten with the doctor response as shown:

void Analyze([in, out, string, size_is(STRSIZE)] char achInOut[]);

This example is similar to the one that employed a single-counted string for both input and output. As with
that example, the size_is attribute determines the number of elements allocated on the server. The string
attribute directs the stub to call strlen to determine the number of transmitted elements.

The client allocates all memory before the call as:

/* client */
char achInOut[STRSIZE];
...
gets(achInOut); // get patient input
Analyze(achInOut);
printf("%s\n", achInOut); // display doctor response

Note that the Analyze function no longer must calculate the length of the return string as it did in the
counted-string example where the string attribute was not used. Now the length is calculated by the
stubs as shown:

/* server */
void Analyze(char *pchInOut)
{
 ...
 Respond(response, pchInOut); // don't need to call strlen
 return; // stubs handle size
}

in, string and out, string Prototype
The following function prototype uses two parameters: an in, string parameter and an out, string
parameter.

void Analyze(
 [in, string] *pszInput,
 [out, string, size_is(STRSIZE)] *pszOutput);

The first parameter is in only. This input string is only transmitted from the client to the server and is used
as the basis for further processing by the server. The string is not modified and is not required again by
the client, so it does not have to be returned to the client.

The second parameter, representing the doctor's response, is out only. This response string is only
transmitted from the server to the client. The allocation size is provided so the server stubs can allocate
memory for it. Because pszOutput is a ref pointer, the client must have sufficient memory allocated for the
string before the call. The response string is written into this area of memory when the remote procedure
returns.

Multiple Levels of Pointers
You can use multiple pointers such as a ref pointer to another ref pointer that points to the character
array as shown:

void Analyze(
 [in, string] char *pszInput,
 [out, string, size_is(STRSIZE)] char **ppszOutput);

When there are multiple levels of pointers, the attributes are associated with the pointer closest to the
variable name. The client is still responsible for allocating any memory associated with the response.

The following example allows the stub to call the server without knowing in advance how much data will
be returned:

[uuid(...),
version(3.3),
pointer_default(unique)] //required whenever you
 // have pointers to pointers
 // pointer has to be unique so
 // that it can be NULL if
 // necessary
HRESULT GetBars([out] long * pSize,
 [out, size_is(, *pSize)]
 BAR ** ppBar);//BAR type defined elsewhere

In this example, the stub passes the server a unique pointer, which the server initializes to NULL. The
server then allocates a block of BARs, sets the pointer, sets the size argument and returns. Note that in
order for the server to have an effect on the caller you must pass a [ref] pointer to a [unique] pointer to
your data. Also note the comma in size_is(, *pSize), which says that the top level pointer is not a sized
pointer, but the lower level pointer is a sized pointer.

On the client side, the stub allocates the block, asigns the address to the ppBar argument and
unmarshals BAR objects. The size of the block (and the number of unmarshaled BARs) is indicated by
the size argument.

See Also
size_is

Pipes
The pipe type constructor is a highly efficient mechanism for passing large amounts of data, or any
quantity of data that is not all available in memory at one time, during a remote procedure call. When you
use a pipe, the RPC runtime handles the actual data transfer, thus you eliminate the overhead associated
with repeated remote procedure calls.

You define a pipe type in the interface definition and then use that type as a parameter in remote
procedure calls. You use the pipe with the in attribute parameter to pull, or transfer data from the client to
the server. You use the pipe with the out parameter to push, or transfer data from the server to the client.

In relation to the input and output parameters, this push and pull terminology may seem counter-intuitive.
It is helpful to keep in mind that the server application and the client stub are the active agents, working in
concert to pull the data from the client application for an input parameter, and to push the data back to the
client application for an output parameter. The server stub and the client application are passive parties to
this exchange. The terms push and pull, then, describe the server application's action on the data.

The following topics discuss how to use the pipe type constructor in the IDL interface, the client
application, and the server application. For more information on pipe syntax and restrictions, see pipe in
the MIDL Language Reference.

The Pipe Interface
When you define a pipe in an IDL file, the MIDL compiler generates a pipe control structure whose
members are pointers to push, pull, and alloc procedures and a state variable that coordinates these
procedures. The state variable is local to each side ¾ that is, the client and server each maintain their
own pipe state, by which their application code and stub code communicate.

The client application initializes the fields in the pipe control structure, maintains its state variable, and
manages the data transfer with its own push, pull, and alloc functions, as described in the next topic. The
client stub code calls these application functions in loops during data transfer. For an input pipe the client
stub marshals the transfer data and transmits it to the server stub. For an output pipe, the client stub
unmarshals the data into a buffer and passes a pointer to that buffer back to the client application.

The server stub code initializes the fields of the pipe control structure to a state variable and push, and
pull routines. The server stub maintains the state and manages its private storage for the transfer data.
The server application calls the pull and push routines in loops during the remote procedure call as it
receives and unmarshals data from the client stub, or marshals and transmits data to the client stub.

In the following example, we define a pipe type LONG_PIPE, whose element size is defined as long. We
also declare function prototypes for the remote procedure calls InPipe and OutPipe, to send and receive
data, respectively.

Example
//file: pipedemo.idl
typedef pipe long LONG_PIPE;
void InPipe([in] LONG_PIPE pipe_data);
void OutPipe([out] LONG_PIPE *pipe_data);
//end pipedemo.idl

//file: pipedemo.h (fragment)
typedef struct pipe_LONG_PIPE
 {
 void (__RPC_FAR * pull) (
 char __RPC_FAR * state,
 long __RPC_FAR * buf,
 unsigned long esize,
 unsigned long __RPC_FAR * ecount);
 void (__RPC_FAR * push) (
 char __RPC_FAR * state,
 long __RPC_FAR * buf,
 unsigned long ecount);
 void (__RPC_FAR * alloc) (
 char __RPC_FAR * state,
 unsigned long bsize,
 long __RPC_FAR * __RPC_FAR * buf,
 unsigned long __RPC_FAR * bcount);
 char __RPC_FAR * state;
 } LONG_PIPE;

void InPipe(
 /* [in] */ LONG_PIPE pipe_data);
void OutPipe(
 /* [out] */ LONG_PIPE __RPC_FAR *pipe_data);
//end pipedemo.h

See Also

pipe, / Oi

Client-Side Pipe Implementation
The client application must implement the following procedures, which the client stub will call during data
transfer:

· A pull procedure (for an input pipe).
· A push procedure (for an output pipe).
· An alloc procedure to allocate a buffer for the transfer data.

All of these procedures must use the arguments specified by the MIDL-generated header file.

In addition, the client application must have a state variable to keep track of where to locate or place data.

The state variable can be as simple as a file handle, if you are transferring data from one file to another,
or an integer that points to an element in an array, as shown in our example below. Or you can define a
fairly complex state structure to perform additional tasks, such as coordinating the push and pull routines
on an [in, out] parameter.

The alloc procedure can also be as simple or as complex as your application requires. For example, it can
return a pointer to the same buffer every time every time the stub calls the function, or it can allocate a
different amount of memory each time. If your data is already in the proper form (an array of pipe
elements, for example) you can coordinate the alloc procedure with the pull procedure to allocate a buffer
that already has the data in it. In that case, your pull procedure could be an empty routine.

Note that the the buffer allocation must be in bytes. The push and pull procedures, on the other hand,
manipulate elements, whose size in bytes depends on how they were defined.

The pull procedure must find the data to be transferred, read the data into the buffer, and set the number
of elements to send. When there is no more data to send, the procedure sets this argument to zero.
When all the data is sent the pull procedure should do any needed cleanup before returning. For a
parameter that is an in, out pipe, the pull procedure must reset the state variable after all the data has
been transmitted, so that the push procedure can use it to receive data.

The push procedure takes a pointer to a buffer and an element count from the client stub and, if the
element count is greater than 0, processes the data. For example, it could copy the data from the stub's
buffer to its own own memory. When the element count equals zero, the push procedure completes any
needed cleanup tasks before returning.

In the following example, the client functions SendLongs and ReceiveLongs each allocate a pipe structure
and a global memory buffer, initialize the structure, make the remote procedure call and free the memory.

Example:
//file: client.c (fragment)
#include "pipedemo.h"
long * global_pipe_data;
long global_buffer[BUF_SIZE];

ulong pipe_data_index; /* state variable */

void SendLongs()
{
 LONG_PIPE in_pipe;
 int i;
 global_pipe_data =

 (long *)malloc(sizeof(long) * PIPE_SIZE);

 for (i=0; i<PIPE_SIZE; i++)
 global_pipe_data[i] = IN_VALUE;

 pipe_data_index = 0;
 in_pipe.state = (rpc_ss_pipe_state_t)&pipe_data_index;
 in_pipe.pull = PipePull;
 in_pipe.alloc = PipeAlloc;

 InPipe(in_pipe); /* Make the rpc */

 free((void *)global_pipe_data);

 return;
}//end SendLongs

void PipeAlloc(rpc_ss_pipe_state_t state_info,
 ulong requested_size,
 long **allocated_buf,
 ulong *allocated_size)
{
 ulong *state = (ulong *)state_info;
if (requested_size > (BUF_SIZE*sizeof(long)))
 *allocated_size = BUF_SIZE * sizeof(long);
 else
 *allocated_size = requested_size;
 *allocated_buf = global_buffer;
return;
}//end PipeAlloc

void PipePull(rpc_ss_pipe_state_t state_info,
 long *input_buffer,
 ulong max_buf_size,
 ulong *size_to_send)
{
 ulong current_index;
 ulong i;
 ulong elements_to_read;
 ulong *state = (ulong *)state_info;

 current_index = *state;
 if (*state >= PIPE_SIZE)
 {
 size_to_send = 0; / end of pipe data */
 state = 0; / Reset the state = global index */
 return;
 }

 if (current_index + max_buf_size > PIPE_SIZE)
 elements_to_read = PIPE_SIZE - current_index;
 else
 elements_to_read = max_buf_size;

 for (i=0; i < elements_to_read; i++)

 /*client sends data */
 input_buffer[i] = global_pipe_data[i + current_index];

 *state += elements_to_read;
 *size_to_send = elements_to_read;

 return;
}//end PipePull

void ReceiveLongs()
{
 LONG_PIPE *out_pipe;
 idl_long_int i;

 global_pipe_data =
 (long *)malloc(sizeof(long) * PIPE_SIZE);

 pipe_data_index = 0;
 out_pipe.state = (rpc_ss_pipe_state_t)&pipe_data_index;
 out_pipe.push = PipePush;
 out_pipe.alloc = PipeAlloc;

 OutPipe(&out_pipe); /* Make the rpc */

 free((void *)global_pipe_data);

 return;
}//end ReceiveLongs()

void PipePush(rpc_ss_pipe_state_t state_info,
 long *buffer,
 ulong num_elts)
{
 ulong elts_to_copy, i;
 ulong *state = (ulong *)state_info;

 if (num_elts == 0)/* end of data */
 {
 state = 0; / Reset the state = global index */
 return;
 }
 if (*state + num_elts > PIPE_SIZE)
 elts_to_copy = PIPE_SIZE - *state;
 else
 elts_to_copy = num_elts;

 for (i=0; i <elts_to_copy; i++)
 { /*client receives data */
 global_pipe_data[*state] = buffer[i];
 (*state)++;
 }
 return;
}//end PipePush

See Also
pipe, / Oi

Server-Side Pipe Implementation
The server application performs pipe transfer by calling the server stub's pull or push routine in a loop.
Normal termination of the loop occurs when a zero-sized chunk of data is passed.

//file: server.c (fragment)
uc_server.c
#define PIPE_TRANSFER_SIZE 100 /* Transfer 100 pipe elements at one time
*/

void InPipe(LONG_PIPE long_pipe)
{
 long local_pipe_buf[PIPE_TRANSFER_SIZE];
 ulong actual_transfer_count = PIPE_TRANSFER_SIZE;

 while(actual_transfer_count > 0) /* Loop to get all
 the pipe data elements */
 {
 long_pipe.pull(long_pipe.state,
 local_pipe_buf,
 PIPE_TRANSFER_SIZE,
 &actual_transfer_count);
 /* process the elements */
 } // end while
 return;
} //end InPipe

void OutPipe(LONG_PIPE *long_pipe)
{
 long *long_pipe_data;
 ulong index = 0;
 ulong elts_to_send = PIPE_TRANSFER_SIZE;

/* Allocate memory for the data to be passed back in the pipe */
 long_pipe_data = (long *)malloc(sizeof(long) * PIPE_SIZE);

 while(elts_to_send >0) /* Loop to send pipe data elements */
 {
 if (index >= PIPE_SIZE)
 elts_to_send = 0;
 else
 {
 if ((index + PIPE_TRANSFER_SIZE) > PIPE_SIZE)
 elts_to_send = PIPE_SIZE - index;
 else
 elts_to_send = PIPE_TRANSFER_SIZE;
 }

 long_pipe->push(long_pipe->state,
 &(long_pipe_data[index]),
 elts_to_send);
 index += elts_to_send;

 } //end while

 free((void *)long_pipe_data);

 return;
}

See Also
pipe, / Oi

Rules for Multiple Pipes
You can combine in, out, and in,out pipe parameters in any combination in a single call but you must
process the pipes in a specific order, as shown in the following example:

· Get the data from every input pipe, starting with the first (leftmost) in parameter, and continuing in
order, draining each pipe before beginning to process the next.

· After every input pipe has been completely processed, send the data for the output pipes, again
starting with the first out parameter, and continuing in order, filling each pipe before beginning to
process the next.

//in .IDL file:
void InOutUCharPipe([in,out] UCHAR_PIPE *uchar_pipe_1,
 [out] UCHAR_PIPE * uchar_pipe_2,
 [in] UCHAR_PIPE uchar_pipe_3);

//remote procedure:
void InOutUCharPipe(UCHAR_PIPE *param1,
 UCHAR_PIPE *param2,
 UCHAR_PIPE param3)
{
while(!END_OF_PIPE1){
 param1->pull (. . .)
. . .
};
while(!END_OF_PIPE3){
 param3.pull (. . .)
. . .
};
while(!END_OF_PIPE1){
 param1->push (. . .)
. . .
};
while(!END_OF_PIPE2){
 param2->push(. . .)
. . .
};
return;
} //end InOutUCharPipe

Combining Pipe and Non-pipe Parameters
When you combine pipe types and other types in a remote procedure call, the data is transmitted
differently depending on the direction of the parameter:

· In the in direction, the data for all non-pipe arguments will be transmitted first, followed by pipe data.
· In the out direction, the server sends the pipe data first. After the manager routine returns, the server

transmits the non-pipe data.
· When there are in,out pipe arguments combined with in,out non-pipe arguments, first the input data

is transmitted in its entirety, as described above. Then the output data is transmitted as described
above.

The following restriction applies to this (MIDL 3.0) implementation of pipes: When you combine pipe types
and other types in a single remote procedure call, the non-pipe parameters must have a well-defined size
in order to allow the MIDL compiler to calculate the buffer size needed. For example, you cannot combine
pipe parameters with a unique pointer or a conformant structure, since their sizes cannot be determined
at compile time.

See Also
pipe, / Oi

Binding and Handles
Binding is the process of creating a logical connection between a client and a server that the client uses
to make remote procedure calls to that server. The binding between client and server is represented by a
data structure called a binding handle.

A binding handle is analogous to a file handle returned by the fopen C run-time library function or a
window handle returned by the function CreateWindow. As with these handles, the binding handle is
opaque; your application cannot use it to directly access and manipulate data about that binding. This
handle is a pointer or index into a data structure that is available only to the RPC run-time libraries. You
provide the handle and the run-time libraries access the appropriate data.

The client obtains a handle by calling RPC run-time functions that bind to the server, or by supplying a
name or UUID to a service that provides the corresponding handle.

The handles managed by an application can be classified into two broad categories: context handles and
binding handles. Context handles are used to maintain state information while binding handles contain
only information about the binding. Note that a serialization application also manages serialization
handles, but these are not binding handles. See Encoding Services for additional information on
serialization handles.

Every binding handle is either primitive or user defined, according to its data type. In addition to being
primitive or user defined, every handle is either implicit or explicit, according to the way your application
specifies the handle for each remote procedure call. These types combine to specify four kinds of binding
handles:

{ewc msdncd, EWGraphic, bsd23534 0 /a "SDK_A12.BMP"}

This section defines the characteristics of RPC binding handles and demonstrates their use in sample
applications.

Note    In addition to binding handles, Microsoft RPC also supports serialization handles used to encode
or decode data. These are used for serialization on a local computer and do not involve remote binding.
For additional information on serialization handles, see Encoding Services.

Binding
The server registers its interface and then listens for requests from clients. Clients bind to the server by
making calls to the RPC run-time functions. The most significant distinction between handle types is
whether the application or the stub makes the calls to the RPC run-time functions to manage the binding
handle.

There are two basic types of binding:

· Auto binding
· Application-managed binding

When you use auto binding and auto handles, the stubs automatically call the correct sequence of
functions and the application will not be able to access the handle at all.

When you use application-managed binding, the client application explicitly calls a sequence of run-time
functions to obtain a valid handle. Besides auto handles, the application-managed binding category
includes all the other types of handles: primitive, user-defined, and context handles.

The following figure shows this categorization of binding handles:

{ewc msdncd, EWGraphic, bsd23534 1 /a "SDK_A03.BMP"}

Application-Initiated Binding
Applications bind to the server and obtain a handle that is used by the stubs to make remote procedure
calls. When the client is finished making remote calls, the application can unbind from the server and
invalidate the handle. A client application that manages its own binding and handles can obtain a handle
in two ways:

· Call RpcBindingFromStringBinding
· Call the name-service functions RpcNsBindingImportBegin, RpcNsBindingImportNext, and

RpcNsBindingImportDone

When the client explicitly calls RpcBindingFromStringBinding, the client must supply the following
information to identify the server:

· The globally unique identifier (GUID) or UUID of the object.
· The transport type to communicate over, such as named pipes or TCP/IP.
· The network address, which is the server name for the named-pipe transport.
· The endpoint, which contains the pipe name for the named-pipe transport.

(The object UUID and the endpoint information are optional.)

The client or client stub communicates this identifying information to the RPC run-time library by means of
a data structure called the string binding, which combines these elements using a specified syntax.

In the following examples, the pszNetworkAddress parameter and other parameters that include
embedded backslashes can appear strange at first glance. Because the backslash is an escape character
in the C programming language, two backslashes are needed to represent each single literal backslash
character. The string-binding data structure must contain four backslash characters to represent the two
literal backslash characters that precede the server name. The following example shows eight
backslashes so four literal backslash characters will appear in the string-binding data structure after
processing by the sprintf function. For example:

/* client application */

char * pszUuid = "6B29FC40-CA47-1067-B31D-00DD010662DA";
char * pszProtocol = "ncacn_np";
char * pszNetworkAddress = "\\\\\\\\servername";
char * pszEndpoint = "\\\\pipe\\\\pipename";
char * pszString;

int len = 0;

len = sprintf(pszString, "%s", pszUuid);
len += sprintf(pszString + len, "@%s:", pszProtocolSequence);
if (pszNetworkAddress != NULL)
 len += sprintf(pszString + len, "%s", pszNetworkAddress);
len += sprintf(pszString + len, "[%s]", pszEndpoint);

In the following example, the string binding appears as:

6B29FC40-CA47-1067-B31D-00DD010662DA@ncacn_np:\\\\servername[\\pipe\\
pipename]

The client then obtains the binding handle by calling RpcBindingFromStringBinding:

RPC_BINDING_HANDLE hBinding;

status = RpcBindingFromStringBinding(pszString, &hBinding);
...

A convenience function, RpcStringBindingCompose, assembles the object UUID, protocol sequence,
network address, and endpoint into the correct syntax for the call to RpcBindingFromStringBinding.
You do not have to worry about putting the ampersand, colon, and the various components for each
protocol sequence in the right place; you just supply the strings as parameters to the function. The run-
time library even allocates the memory needed for the string binding. For example:

char * pszNetworkAddress = "\\\\server";
char * pszEndpoint = "\\pipe\\pipename";
status = RpcStringBindingCompose(
 pszUuid,
 pszProtocolSequence,
 pszNetworkAddress,
 pszEndpoint,
 pszOptions,
 &pszString);
...
status = RpcBindingFromStringBinding(
 pszString,
 &hBinding);
...

Another convenience function, RpcBindingToStringBinding, takes a binding handle as input and
produces the corresponding string binding.

String Bindings
The string binding is a character string that consists of several sub-strings. The strings in a string binding
represent the object UUID, the protocol sequence, the network address, the endpoint, and the endpoint
options.

The object UUID is a unique identifier. The protocol sequence is a string that represents the RPC
network-communications protocol. The protocol sequence also determines network-address and
endpoint-naming conventions. For example, the protocol sequence ncacn_ip_tcp indicates a connection-
based NCA connection over TCP/IP. For more information about protocol sequences, see Specifying the
Protocol Sequence or the reference entry for PROTSEQ.

The network address indicates the server name and the endpoint indicates a communication port at that
server.

The client application can itself combine these substrings into the correct string-binding syntax, or it can
call the function RpcStringBindingCompose. After a client calls RpcStringBindingCompose, it calls
RpcBindingFromStringBinding to obtain the binding handle. For a complete description of the required
syntax, see String Binding.

Most distributed applications should use the name-service functions instead of the string binding to obtain
the binding handle. The name-service functions allow your server application to register its interface and
object UUIDs, network address, and endpoint under a single logical name. These functions provide
location independence and ease of administration.

Binding-Handle Types
MIDL provides several types of handles. In this way, you can select the handle type that is best suited for
your application. (See Encoding Services for additional information on using a primitive handle as a
serializing handle.)

Handle characteristics:

· Handles can be parameters that are passed to the remote procedure, or they can be global data
structures that do not appear in the remote function prototype.

· You can declare handles of the primitive handle type handle_t, or you can declare a handle type
packaged in structures with other data.

· Some handles are invisible to the client application and are completely managed by the stubs while
others are declared, defined, and managed by the application.

· A special type of handle, the context handle, allows you to maintain state information on the server in
addition to acting as a binding handle.

The following table summarizes MIDL handle types:

Handle type Characteristics
Primitive A handle of the predefined type handle_t. Note

that serializing handles (which are not binding
handles) are also of the type handle_t. See
Serialization Handles for more information.

Explicit A handle used as a parameter to the remote
procedure. The explicit handle usually appears as
the first parameter for compatibility with DCE.

Implicit A handle defined in the generated header file as a
global variable that is available to the stubs. The
developer defines the handle in the ACF only and
does not include the handle as a parameter to the
remote procedure call.

User-defined A handle of the primitive type handle_t that is
created by a user-supplied function that converts
the user-defined data to the handle.

Auto A handle that is automatically generated by the
MIDL compiler and managed by the client run-
time library. The client stub manages the binding
and the handle; the client application does not
require any explicit code to manage the binding
or the handle.

Context A handle that includes information about the state
of the server. The context handle is automatically
associated with specific user-defined functions on
the server.

Handle characteristics can be combined in several ways to produce such types as explicit primitive,
explicit user-defined, implicit primitive, and implicit user-defined handles, depending upon your application
needs.

Primitive Handles
A primitive handle is a handle with the data type handle_t. Ultimately, every handle is mapped to a
primitive handle by the stubs.

As with a file handle or a window handle, a primitive handle is opaque; it contains information that is
meaningful to the RPC run-time library but not to your application.

The primitive handle is defined in the client source code as a handle of the base type handle_t using a
statement such as:

handle_t hMyHandle; // primitive handle

For encoding or decoding data, the handle_t data type is used for a serialization handle. For additional
information on serialization handles, see Encoding Services.

Explicit Handles
An explicit handle is a handle that the client application specifies explicitly as a parameter to each remote
procedure call. To conform to the OSF standard, the handle must be specified as the first parameter on
each remote procedure. You create an explicit handle by declaring the handle as a parameter to the
remote operations in the IDL file. The Hello, World example can be redefined to use an explicit handle as
shown:

/* IDL file for explicit handles */

[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(1.0)
]
interface hello
{
void HelloProc([in] handle_t h1,
 [in, string] char * pszString);
}

Implicit Handles
An implicit handle is a handle that is stored in a global variable. You usually initialize the handle and then
do not refer to it again until you destroy the binding. Each remote procedure call with an explicit binding-
handle parameter uses the implicit handle. You create an implicit handle by specifying the
implicit_handle attribute in the ACF for an interface as:

/* ACF file (complete) */

[implicit_handle(handle_t hHello)
]
interface hello
{
}

The application uses the implicit handle only as a parameter to the RPC functions. The implicit handle is
not used as a parameter to the remote procedure call. For example:

status = RpcBindingFromStringBinding(
 pszStringBinding,
 &hHello);
...
status = RpcBindingFree(hHello);
...

User-Defined Handles
A user-defined handle, also called a customized or generic handle, is a handle of a user-defined data
type. You create a user-defined handle when you specify the handle attribute on a type definition in your
IDL file.

You must also supply bind and unbind routines that the client stub calls at the beginning and end of each
remote procedure call. The bind and unbind routines use the following function prototypes:

Function prototype Description
handle_t type_bind(type) Binding routine
void type_unbind(type, handle_t) Unbinding routine

The following example shows how the user-defined handle is defined in the IDL file:

/* usrdef.idl */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
version(1.0),
pointer_default(unique)
]
interface usrdef
{
typedef struct _DATA_TYPE {
 unsigned char * pszUuid;
 unsigned char * pszProtocolSequence;
 unsigned char * pszNetworkAddress;
 unsigned char * pszEndpoint;
 unsigned char * pszOptions;
} DATA_TYPE;

typedef [handle] DATA_TYPE * DATA_HANDLE_TYPE;
void UsrdefProc(
 [in] DATA_HANDLE_TYPE hBinding,
 [in, string] unsigned char * pszString);

void Shutdown([in] DATA_HANDLE_TYPE hBinding);
}

The user-defined bind and unbind routines appear in the client application. In the following example, the
bind routine converts the string-binding information to a binding handle by calling
RpcBindingFromStringBinding. The unbind routine frees the binding handle by calling
RpcBindingFree.

The name of the user-defined binding handle, DATA_HANDLE_TYPE, appears as part of the name of the
functions and appears as the parameter type in the function parameters as:

/* This _bind routine is called by the client stub at the */
/* beginning of each remote procedure call */

RPC_BINDING_HANDLE __RPC_USER DATA_HANDLE_TYPE_bind(DATA_HANDLE_TYPE dh1)
{
 RPC_BINDING_HANDLE hBinding;
 RPC_STATUS status;

unsigned char *pszStringBinding;

 status = RpcStringBindingCompose(
 dh1.pszUuid,
 dh1.pszProtocolSequence,
 dh1.pszNetworkAddress,
 dh1.pszEndpoint,
 dh1.pszOptions,
 &pszStringBinding);
 ...

 status = RpcBindingFromStringBinding(
 pszStringBinding,
 &hBinding);
 ...

 status = RpcStringFree(&pszStringBinding);
 ...

 return(hBinding);
}

/* This _unbind routine is called by the client stub at the end */
/* after each remote procedure call. */
void __RPC_USER DATA_HANDLE_TYPE_unbind(DATA_HANDLE_TYPE dh1,
 RPC_BINDING_HANDLE h1)
{
 RPC_STATUS status;
 status = RpcBindingFree(&h1);
 ...
}

Auto Handles
Auto handles are useful when the application does not require a specific server and when it does not
need to maintain any state information between the client and server. When you use an auto handle, you
do not have to write any client application code to deal with binding and handles ¾ you simply specify the
use of the auto handle in the ACF. The stub then defines the handle and manages the binding.

For example, a time-stamp operation can be implemented using an auto handle. It makes no difference to
the client application which server provides it with the time stamp because it can accept the time from any
available server.

You specify the use of auto handles by including the auto_handle attribute in the ACF. The time-stamp
example uses the following ACF:

/* ACF file */
[auto_handle]
interface autoh
{
}

Note    Auto handles are not supported for the Macintosh platform.

The auto handle is used by default when the ACF does not include any other handle attribute and when
the remote procedures do not use explicit handles. The auto handle is also used by default when the ACF
is not present.

The remote procedures are specified in the IDL file. The auto handle must not appear as an argument to
the remote procedure. For example:

/* IDL file */
[uuid (6B29FC40-CA47-1067-B31D-00DD010662DA),
 version(1.0),
 pointer_default(unique)
]
interface autoh
{
void GetTime([out] long * time);
void Shutdown(void);
}

The benefit of the auto handle is that the developer does not have to write any code to manage the
handle; the stubs manage the binding automatically. This is significantly different from the Hello, World
example, where the client manages the implicit primitive handle defined in the ACF and must call several
run-time functions to establish the binding handle.

Here, the stubs do all the work and the client only needs to include the generated header file AUTO.H to
obtain the function prototypes for the remote procedures. The client application calls to the remote
procedures appear just as if they were calls to local procedures as shown:

/* auto handle client application (fragment) */

#include <stdio.h>
#include <time.h>
#include "auto.h" // header file generated by the MIDL compiler

void main(int argc, char **argv)
{
 time_t t1;
 time_t t2;
 char * pszTime;
 ...

 RpcTryExcept {
 GetTime(&t1); // GetTime is a remote procedure
 GetTime(&t2);

 pszTime = ctime(&t1);
 printf("time 1= %s\n", pszTime);

 pszTime = ctime(&t2);
 printf("time 2= %s\n", pszTime);

 Shutdown(); // Shutdown is a remote procedure
 }
 RPCExcept(1) {
 ...
 }
 RPCEndExcept

 exit(0);
}

The client application does not have to make any explicit calls to the client run-time functions. Those calls
are managed by the client stub.

The server side of the application that uses auto handles must call the function RpcNsBindingExport to
make binding information about the server available to clients. The auto handle requires a location service
running on a server that is accessible to the client. The Microsoft implementation of the name service, the
Microsoft Locator, manages auto handles. The server calls the following run-time functions:

/* auto handle server application (fragment) */

#include "auto.h" //header file generated by the MIDL compiler

void main(void)
{
 RpcUseProtseqEp(...);
 RpcServerRegisterIf(...);
 RpcServerInqBindings(...);
 RpcNsBindingExport(...);
 ...
}

The calls to the first two functions are similar to the Hello, World example; these functions make
information about the binding available to the client. The calls to the RpcServerInqBindings and
RpcNsBindingExport functions put the information in the name-service database. The call to
RpcServerInqBindings fills the vector with valid data before the call to the export function. After the data
has been exported to the database, the client (or client stubs) can call RpcNsBindingImportBegin and

RpcNsBindingImportNext to obtain this information.

The calls to RpcServerInqBindings and RpcNsBindingExport and their associated data structures
appear as:

RPC_BINDING_VECTOR * pBindingVector;
RPCSTATUS status;

status = RpcServerInqBindings(&pBindingVector);

status = RpcNsBindingExport(
 fNameSyntaxType, // name syntax type
 pszAutoEntryName, // nsi entry name
 autoh_ServerIfHandle, // if server handle
 pBindingVector, // set in previous call
 NULL); // UUID vector

Note that the RpcServerInqBindings parameter &pBindingVector is a pointer to a pointer to
RPC_BINDING_VECTOR.

The previous example shows the parameters to the RpcNsBindingExport function that should be used
with the Microsoft Locator. As already mentioned, this locator is the Microsoft implementation of the
name-service functions provided with Microsoft RPC. For more information about the Microsoft Locator,
see Run-time RPC Functions.

To remove the exported interface from the name-service database completely, the server calls
RpcNsBindingUnexport as shown:

status = RpcNsBindingUnexport(
 fNameSyntaxType,
 pszAutoEntryName,
 auto_ServerIfHandle,
 NULL); // unexport handles only

The unexport function should be used only when the service is being permanently removed. It should not
be used when the service is temporarily disabled, such as when the server is shut down for maintenance.
A service can be registered with the name-service database, yet be unavailable because the server is
temporarily offline. The client application should contain exception-handling code for such a condition.

The calls to the remote procedures are surrounded by the exception-handling code. For more information
about exception handling, see Run-time RPC Functions.

Microsoft RPC Binding-Handle Extensions
The Microsoft extensions to the IDL language support multiple handle parameters and handle parameters
that appear in positions other than the first, leftmost, parameter.

The following table describes the sequence of steps that the MIDL compiler goes through to resolve the
binding-handle parameter in DCE-compatibility mode (/osf) and in default (Microsoft-extended) mode:

DCE-compatibility mode default mode
1. Binding handle that appears in

first parameter position
1. Leftmost explicit binding

handle
2. Leftmost in, context_handle

parameter
2. Implicit binding handle

specified by implicit_handle
or auto_handle

3. Implicit binding handle
specified by implicit_handle
or auto_handle

3. If no ACF present, default to
use of auto_handle

4. If no ACF present, default to
use of auto_handle

DCE IDL compilers look for an explicit binding handle as the first parameter. When the first parameter is
not a binding handle and one or more context handles are specified, the leftmost context handle is used
as the binding handle. When the first parameter is not a handle and there are no context handles, the
procedure uses implicit binding using the ACF attribute implicit_handle or auto_handle.

The Microsoft extensions to the IDL allows the binding handle to be in a position other than the first
parameter. The leftmost in explicit-handle parameter, whether it is a primitive, user-defined, or context
handle, is the binding handle. When there are no handle parameters, the procedure uses implicit binding
using the ACF attribute implicit_handle or auto_handle.

The following rules apply to both DCE-compatibility (/osf) mode and default mode:

· Auto-handle binding is used when no ACF is present.
· Explicit in or in, out handles for an individual function pre-empt any implicit binding specified for the

interface.
· Multiple in or in, out primitive handles are not supported.
· Multiple in or in, out explicit context handles are allowed.
· All user-defined handle parameters except the binding-handle parameter are treated as transmissible

data.

The following table contains examples and describes how the binding handles are assigned in each
compiler mode:

Example Description
void proc1(void); No explicit handle is specified.

The implicit binding handle,
specified by implicit_handle or
auto_handle, is used. When no
ACF is present, an auto handle is
used.

void proc2([in]
handle_t H,

An explicit handle of type
handle_t is specified. The

 [in] short
s);

parameter H is the binding
handle for the procedure.

void proc3([in] short
s,
 [in] handle_t
H);

The first parameter is not a
handle.
 In default mode, the leftmost
handle parameter, H, is the
binding handle. In /osf mode,
implicit binding is used. An error
is reported because the second
parameter is expected to be
transmissible, and handle_t
cannot be transmitted.

typedef [handle] short *
 MY_HDL;

void proc1([in] short s,
 [in] MY_HDL
H);

The first parameter is not a
handle. In default mode, the
leftmost handle parameter, H, is
the binding handle. The stubs call
the user-supplied routines
MY_HDL_bind and
MY_HDL_unbind. In/osf mode,
implicit binding is used. The user-
defined handle parameter H is
treated as transmissible data.

typedef [handle] short *

 MY_HDL;

void proc1([in] MY_HDL
H,
 [in] MY_HDL
p);

The first parameter is a binding
handle. The parameter H is the
binding-handle parameter. The
second user-defined handle
parameter is treated as
transmissible data.

typedef [context_handle]

 void * CTXT_HDL;

void proc1([in] short s,
 [in] long l,
 [in] CTXT_HDL H ,
 [in] char c);

The binding handle is a context
handle. The parameter H is the
binding handle.

Binding-Handle Use by Function
The following table contains the list of RPC run-time routines that operate on binding handles and
specifies the type of binding handle allowed:

Routine Input argument Output argument
RpcBindingCopy Server Server
RpcBindingFree Server None
RpcBindingFromStringBindin
g

None Server

RpcBindingInqAuthClient Client None
RpcBindingInqAuthInfo Server None
RpcBindingInqObject Server or client None
RpcBindingReset Server None
RpcBindingSetAuthInfo Server None
RpcBindingSetObject Server None
RpcBindingToStringBinding Server or client None
RpcBindingVectorFree Server None
RpcNsBindingExport Server None
RpcNsBindingImportNext None Server
RpcNsBindingLookupNext None Server
RpcNsBindingSelect Server Server
RpcServerInqBindings None Server

Context Handles
A context handle contains context information created and returned by the server. Every application that
uses a context handle must also specify an alternate method of binding because an initial binding must be
used before the server can return a context handle.

You can create a context handle by specifying the context_handle attribute on a data-type definition in
the IDL file. A context handle can also be associated with a special function called the context rundown
routine, which is called by the server run-time library whenever an active binding to a client is broken
unexpectedly.

In an interface that uses a context handle, if you do not also specify a primary implicit handle to contain
the initial binding, the MIDL compiler generates an auto handle for you. It also generates the code in the
client stub to perform auto binding.

For example, a file handle represents state information; it keeps track of the current location in the file.
The file-handle parameter to a remote procedure call is packaged as a context handle. To begin, define a
structure that contains the file name and the file handle as shown:

/* cxhndlp.c (fragment) */
typedef struct {
 FILE * hFile;
 char achFile[256];
} FILE_CONTEXT_TYPE;

The IDL file defines the handle as a void * type and casts it to the required type on the server:

/* cxhndl.idl (fragment) */
typedef [context_handle] void * PCONTEXT_HANDLE_TYPE;
typedef [ref] PCONTEXT_HANDLE_TYPE * PPCONTEXT_HANDLE_TYPE;

The first remote procedure call initializes the handle and sets it to a non-null value. You must define the
context with an out directional attribute in the IDL file:

/* cxhndl.idl (fragment) */
short RemoteOpen([out] PPCONTEXT_HANDLE_TYPE pphContext,
 [in, string] unsigned char * pszFile);

The remote procedure RemoteOpen opens a file on the server:

/* cxhndlp.c (fragment)*/
short RemoteOpen(PPCONTEXT_HANDLE_TYPE pphContext,
 unsigned char *pszFileName)
{
 FILE *hFile;
 FILE_CONTEXT_TYPE *pFileContext;

 if ((hFile = fopen(pszFileName, "r")) == NULL) {
 *pphContext = (PCONTEXT_HANDLE_TYPE) NULL;
 return(-1);
 }
 else {
 pFileContext = (FILE_CONTEXT_TYPE *)
 midl_user_allocate(sizeof(FILE_CONTEXT_TYPE));
 pFileContext->hFile = hFile;

 strcpy(pFileContext->achFile, pszFileName);
 *pphContext = (PCONTEXT_HANDLE_TYPE) pFileContext;
 return(0);
 }
}

After the client calls RemoteOpen, the context handle contains valid data and is used as the binding
handle. The client can free the explicit handle used to launch the context handle:

/* cxhndlc.c (fragment)*/
printf("Calling the remote procedure RemoteOpen\n");
if (RemoteOpen(&phContext, pszFileName) < 0) {
 printf("Unable to open %s\n", pszFileName);
 Shutdown();
 exit(2);
}

/* Now the context handle also manages the binding. */
status = RpcBindingFree(&hStarter);
printf("RpcBindingFree returned 0x%x\n", status);
if (status)
 exit(status);

After the RemoteOpen function returns a valid, non-null context handle, subsequent calls use the context
handle as an in pointer:

/* cxhndl.idl (fragment)*/
short RemoteRead(
 [in] PCONTEXT_HANDLE_TYPE phContext,
 [out] unsigned char achBuf[BUFSIZE],
 [out] short * pcbBuf);

short RemoteClose([in, out] PPCONTEXT_HANDLE_TYPE pphContext);

The client application reads the file until it encounters the end of the file; it then closes the file. The
context handle appears as a parameter in the RemoteRead and RemoteClose functions as:

/* cxhndlc.c (fragment)*/
printf("Calling the remote procedure RemoteRead\n");
while (RemoteRead(phContext, pbBuf, &cbRead) > 0) {
 for (i = 0; i < cbRead; i++)
 putchar(*(pbBuf+i));
}

printf("Calling the remote procedure RemoteClose\n");
if (RemoteClose(&phContext) < 0) {
 printf("Close failed on %s\n", pszFileName);
 exit(2);
}

See also

context_handle

Server Context Rundown Routine
If communication breaks down while the server is maintaining context on behalf of the client, a cleanup
routine may be needed to reset the context information. This cleanup routine is called a "context rundown
routine."

The context rundown routine is optional and, when supplied, is called when the client terminates without
requesting that the server free the context. This can occur when the client does not close the context
handle, or when the client terminates abnormally.

When no context rundown routine is needed, the context_handle attribute can be applied to parameters.
When a context rundown routine is needed, the context_handle attribute must be used in a type
definition.

The type name determines the name of the context rundown routine. Given a context handle of type type-
id, the server application must supply the context rundown routine named type-id_rundown. The
signature of the routine is shown below:

void __RPC_USER type-id_rundown (type-id);

When the server terminates the context and fails to return a null context handle, the context rundown
routine is not called and memory allocated by the run-time library for the maintenance of the context is not
released.

Client Context Reset
When the server becomes unavailable and the client application wants to reset its context data, the client
calls the RPC function RpcSsDestroyClientContext.   

Multi-threaded Clients and Context Handles
When you have a multi-threaded client where multiple threads are using the same context handle, the
calls will be serialized at the server. This saves the server manager from having to guard against another
thread from the same client changing the context or from the context running down while a call is
dispatched. However, in certain cases serialization may create deadlock. For example, consider the
following sequence:

Thread 1 : Gets a context handle and makes a call. This call blocks on some synchronization event sitting
on the server.

Thread 2 : Makes a call to the same server, using the same context handle. This call is intended to trigger
the event thread 1 is blocking on. Because the calls are serialized, the event is never triggered.

If you have a situation like this you can use the RpcSsDontSerializeContext function to disable
serialization. Be aware, however, that a call to this routine affects the entire process and is unrevertable.

Summary of Binding and Handles
Binding is the process of making a logical connection from a client to a server and a handle is a data
structure that represents a binding. It is analogous to a file handle or a window handle.

There are two principal types of binding: automatic and application managed. Auto binding requires a
locator service on the server and does not maintain state information between client and server.
Application-managed binding is controlled using the string-binding data structure or the name service to
obtain a handle.

Context handles maintain state information on the server. The server can supply a context rundown
routine which is called whenever an active binding to a client is broken unexpectedly.

If you use a context handle and do not specify a primary implicit handle, the MIDL compiler generates an
auto handle to be used for the initial binding. It also generates the code in the client stub to perform auto
binding.

Serialization handles are primitive handles used for data serialization. They cannot be used for binding.

Memory Management
With RPC, a single conceptual execution thread can be processed by two or more processing threads.
These processing threads can run on the same computer or on different computers. RPC depends on the
ability to simulate the client thread's address space in the server thread's address space and to return
data, including new and changed data, from the server to the client memory.

Memory management in the context of RPC involves:

· How the memory needed to simulate a single conceptual address space is allocated and deallocated
in the different address spaces of the client and server's threads.

· Which software component is responsible for managing memory ¾ the application or the MIDL-
generated stub.

· MIDL attributes that affect memory management: directional attributes, pointer attributes, array
attributes, and the ACF attributes byte_count, allocate, and enable_allocate.

As a developer, you can choose among several methods for selecting the way that memory is allocated
and freed. Consider a complex data structure, such as a linked list or a tree, that consists of nodes
connected with pointers. You can apply attributes that select the following models:

· Node-by-node allocation and deallocation.
· A single, linear buffer for the entire tree allocated by the stub.
· A single, linear buffer for the entire tree allocated by the client application.
· Persistent storage on the server.

Each of these models is described in detail in this chapter.

This section does not describe the use of different Intel-architecture memory models. For information
about using different Intel-architecture memory models, see Building RPC Applications.

How Memory Is Allocated and Deallocated
Typically, stub code generated by the MIDL compiler calls user-supplied functions to allocate and free
memory. These functions, named midl_user_allocate and midl_user_free, must be supplied by the
developer and linked with the application.

All applications must supply implementations of midl_user_allocate and midl_user_free, even though
the names of these functions may not appear explicitly in the stubs. The only exception is if you are
compiling in OSF-compatibility (/osf) mode.

These user-supplied functions must match a specific, defined, function prototype, but otherwise can be
implemented in any way that is convenient or useful for the application.

midl_user_allocate
void __RPC_FAR * __RPC_USER midl_user_allocate (size_t cBytes);

Parameters
cBytes

Specifies the count of bytes to allocate.

Both client applications and server applications must implement the midl_user_allocate function, unless
you are compiling in OSF-compatibility (/osf) mode. Applications and generated stubs call
midl_user_allocate directly or indirectly to manage allocated objects. For example:

· The client and server applications should call midl_user_allocate to allocate memory for the
application, such as when creating a new node.

· The server stub calls midl_user_allocate when unmarshalling data into the server address space.
· The client stub calls midl_user_allocate when unmarshalling data from the server that is referenced

by an out pointer. Note that for in, out, unique pointers, the client stub calls midl_user_allocate only
if the unique pointer value was NULL on input and changes to a non-null value during the call. If the
unique pointer was non-null on input, the client stub writes the associated data into existing memory.

If midl_user_allocate fails to allocate memory, it should return a null pointer or raise a user-defined
exception.

The midl_user_allocate function should return a pointer as shown:

· For Windows NT running on Intel platforms, the pointer is 4 bytes aligned.
· For Windows NT running on MIPS and Alpha platforms, the pointer is 8 bytes aligned.
· For Windows 95, the pointer is 4 bytes aligned.
· For Windows 3.x and MS-DOS platforms, the pointer is 2 bytes aligned.

For example, the sample programs provided with the Win32 SDK implement midl_user_allocate in terms
of the C function malloc:

void __RPC_FAR * __RPC_USER midl_user_allocate(size_t cBytes)
{
 return((void __RPC_FAR *) malloc(cBytes));
}

Note    If the Rpcss package is enabled (for example, as the result of using the enable_allocate
attribute), RpcSmAllocate should be used to allocate memory on the server side. For additional
information on enable_allocate, see MIDL Reference.

midl_user_free
void __RPC_USER midl_user_free(void __RPC_FAR * pBuffer);

Parameters
pBuffer

Specifies a pointer to the memory that is to be freed.

Both client application and server application must implement the midl_user_free function, unless you
are compiling in OSF-compatibility (/osf) mode. The midl_user_free function must be able to free all
storage allocated by midl_user_allocate.

Applications and stubs call midl_user_free when dealing with allocated objects. For example:

· The server application should call midl_user_free to free memory allocated by the application, such
as when deleting a pointed-at node.

· The server stub calls midl_user_free to release memory on the server after marshalling all out
arguments, in, out arguments, and the function return value.

For example, the RPC Win32 sample program that displays "Hello, world" implements midl_user_free in
terms of the C function free:

void __RPC_USER midl_user_free(void __RPC_FAR * p)
{
 free(p);
}

Note    If the Rpcss package is enabled (for example, as the result of using the enable_allocate
attribute), RpcSmFree can be used to free memory. See Rpcss Memory Management Model for more
information.

Memory-Management Models
A developer can choose from among several methods that select how memory is allocated and freed.
Consider a complex data structure, such as a linked list or tree, that consists of nodes connected with
pointers. You can apply attributes that select the following models:

· Node-by-node allocation and deallocation.
· A single linear buffer allocated by the stub for the entire tree.
· A single linear buffer allocated by the client application for the entire tree.
· Persistent storage on the server.
· TheRpcss Memory Management Model.

Each of these models is described in detail in the following topics.

Node-by-Node Allocation and Deallocation
Node-by-node allocation and deallocation by the stubs is the default method of memory management for
all parameters on both the client and the server. On the client side, the stub allocates each node with a
separate call to midl_user_allocate. On the server side, rather than calling midl_user_allocate, private
memory is used whenever possible. If midl_user_allocate is called, the server stubs will call
midl_user_free to free the data. In most cases, using node-by-node allocation and deallocation instead
of using allocate (all_nodes) will result in increased performance of the server side stubs.

Stub-Allocated Buffers
Rather than forcing a distinct call for each node of the tree or graph, you can direct the stubs to compute
the size of the data and to allocate and free memory by making a single call to midl_user_allocate or
midl_user_free. The ACF attribute allocate(all_nodes) directs the stubs to allocate or free all nodes in a
single call to the user-supplied memory-management functions.

For example, consider the following binary tree data structure:

/* IDL file fragment */
typedef struct _TREE_TYPE {
 short sNumber;
 struct _TREE_TYPE * pLeft;
 struct _TREE_TYPE * pRight;
} TREE_TYPE;

typedef TREE_TYPE * P_TREE_TYPE;

The ACF attribute allocate(all_nodes) applied to this data type appears in the typedef declaration in the
ACF as:

/* ACF file fragment */
typedef [allocate(all_nodes)] P_TREE_TYPE;

The allocate attribute can only be applied to pointer types. The allocate ACF attribute is a Microsoft
extension to DCE IDL and, as such, is not available if you compile with the MIDL /osf switch. When
allocate(all_nodes) is applied to a pointer type, the stubs generated by the MIDL compiler traverse the
specified data structure to determine the allocation size. The stubs then make a single call to allocate the
entire amount of memory needed by the graph or tree. A client application can free memory much more
efficiently by making a single call to midl_user_free. However, server stub performance is generally
increased when using node-by-node memory allocation because the server stubs can often use private
memory that requires no allocations.

For additional information, see Node-by-Node Allocation and Deallocation.

Application-Allocated Buffer
The ACF attribute byte_count directs the stubs to use a preallocated buffer that is not allocated or freed
by the client support routines. The byte_count attribute is applied to a pointer or array parameter that
points to the buffer. It requires a parameter that specifies the buffer size in bytes.

The client-allocated memory area can contain complex data structures with multiple pointers. Because
the memory area is contiguous, the application does not have to make many calls to individually free each
pointer and structure. Like the allocate(all_nodes) attribute, the memory area can be allocated or freed
with one call to the memory-allocation routine or the free routine. However, unlike the allocate(all_nodes)
attribute, the buffer parameter is not managed by the client stub but by the client application.

The buffer must be an out-only parameter andthe buffer length in bytes must be an in-only parameter.

The byte_count attribute can only be applied to pointer types. The byte_count ACF attribute is a
Microsoft extension to DCE IDL and, as such, is not available if you compile using the MIDL /osf switch.

In the following example, the parameter pRoot uses byte count:

/* function prototype in IDL file (fragment) */
void SortNames(
 [in] short cNames,
 [in, size_is(cNames)] STRINGTYPE pszArray[],
 [in] short cBytes,
 [out, ref] P_TREE_TYPE pRoot /* tree with sorted data */
);

The byte_count attribute appears in the ACF as:

/* ACF file (fragment) */
SortNames([byte_count(cBytes)] pRoot);

The client stub generated from these IDL and ACF files does not allocate or free the memory for this
buffer. The server stub allocates and frees the buffer in a single call using the provided size parameter. If
the data is too large for the specified buffer size, an exception is raised.

Persistent Storage on the Server
You can optimize your application so the server stub does not free memory on the server at the
conclusion of a remote procedure call. For example, when a context handle will be manipulated by
several remote procedures, you can use the ACF attribute allocate(dont_free) to retain the allocated
memory on the server.

The allocate(dont_free) attribute is added to the ACF typedef declaration in the ACF. For example:

/* ACF file fragment */
typedef [allocate(all_nodes, dont_free)] P_TREE_TYPE;

When the allocate(dont_free) attribute is specified, the tree data structure is allocated, but not freed, by
the server stub. When you make the pointers to such persistent data areas available to other routines ¾
for example, by copying the pointers to global variables ¾ the retained data is accessible to other server
functions. The allocate(dont_free) attribute is particularly useful for maintaining persistent pointer
structures as part of the server state information associated with a context-handle type.

Rpcss Memory Management Model
The Rpcss package is the recommended memory management model and provides the best overall stub
performance for memory management. The default allocator/deallocator pair used by the stubs and run
time when allocating memory on behalf of the application is midl_user_allocate/midl_user_free.
However, you can choose the Rpcss package instead of the default by using the ACF attribute
enable_allocate.

In /osf mode, the Rpcss package is enabled for MIDL-generated stubs automatically whenever full
pointers are used, whenever the arguments require memory allocation, or as a result of using the
enable_allocate attribute. In default (Microsoft extended) mode, the Rpcss package is enabled only
when the enable_allocate attribute is used. The enable_allocate attribute enables the Rpcss
environment by the server side stubs. The client side becomes alerted to the possibility that the Rpcss
package may be enabled. In /osf mode, the client side is not affected.

When the Rpcss package is enabled, allocation of memory on the server side is accomplished with the
private Rpcss memory management allocator and deallocator pair. You can allocate memory using the
same mechanism by calling RpcSmAllocate (or RpcSsAllocate). Upon return from the server stub, all
the memory allocated by the Rpcss package is automatically freed. The following example shows how to
enable the Rpcss package:

/* ACF file fragment */

[implicit_handle(handle_t GlobalHandle),
 enable_allocate
]
{
}

/*Server management routine fragment. Replaces p=midl_user_allocate(size);
*/

 p=RpcSsAllocate(size); /*raises exception */
 p=RpcSmAllocate(size, &status); /*returns error code */

You can also enable the memory management environment for your application by calling the
RpcSmEnableAllocate routine (and can disable it by calling the RpcSmDisableAllocate routine). Once
enabled, application code can allocate and deallocate memory by calling functions from the RpcSs* or
RpcSm* package.

Who Manages Memory?
Generally, the stubs are responsible for packaging and unpackaging data, allocating and freeing memory,
and transferring the data to and from memory. In some cases, however, the application is responsible for
allocating and freeing memory. The following factors determine which component is responsible for
memory management:

· Whether the pointer is a top-level ref parameter or whether the pointer is embedded within another
structure.

· Directional attributes applied to the parameter.
· Pointer attributes applied to the parameter.
· Function return values.

Top-Level and Embedded Pointers
When discussing how pointers and their associated data elements are allocated in Microsoft RPC, you
have to differentiate between top-level pointers and embedded pointers. It is also useful to refer to the set
of all pointers that are not top-level pointers.

Top-level pointers are those that are specified as the names of parameters in function prototypes. Top-
level pointers and their referents are always allocated on the server. Embedded pointers are pointers that
are embedded in data structures such as arrays, structures, and unions.

When embedded pointers are out-only and null on input, the server application can change their values to
non-null. In this case, the client stubs allocate new memory for this data.

If the embedded pointer is not null on the client before the call, the stubs do not allocate memory on the
client on return. Instead, the stubs attempt to write the memory associated with the embedded pointer into
the existing memory on the client associated with that pointer, overwriting the data already there.

Out-only embedded pointers are discussed in Combining Pointer and Directional Attributes.

The term non-top-level pointers refers to all pointers that are not specified as parameter names in the
function prototype, including both embedded pointers and multiple levels of nested pointers.

Directional Attributes Applied to the Parameter
The directional attributes in and out determine how the client and server allocate and free memory. The
following table summarizes the effect of directional attributes on memory allocation:

Directional
attribute

Memory on client Memory on server
in Client application must

allocate before call.
Server stub allocates.

out Client stub allocates on
return.

Server stub allocates top-
level pointer only; server
application must allocate all
embedded pointers. Server
also allocates new data as
needed.

in, out Client application must
allocate initial data
transmitted to server;
client stub allocates
additional data.

Server stub allocates; server
application allocates new data
as needed.

The following table summarizes the effect of directional attributes on memory deallocation:

Directional
attribute

Memory on client Memory on server
(all cases) Not freed. Freed by server stubs on

return (subject to ACF
attribute allocate).

Note that for out-only parameters, MIDL allocates only the memory required for the top-level pointer
parameter. The generated stub does not chase, or dereference, subsequent pointers that are part of the
out-only data structure. The server application must allocate and initialize all such pointers.

Length, Size, and Directional Attributes
The size-related attributes max_is and size_is determine how many array elements the server stub
allocates on the server.

The length-related attributes length_is, first_is, and last_is determine how many elements are
transmitted to both the server and the client.

Different directional attribute(s) can be applied to a declarator and the parameter specified by a field
attribute. However, some combinations of different directional attributes can cause errors when they are
applied to the declarator and to the field attribute parameter.

As an example, consider a procedure with two parameters, an array, and the transmitted length of the
array. The italicized term dir_attr refers to the directional attribute applied to the parameter as:

Proc1(
 [dir_attr] short * plength;
 [dir_attr, length_is(pLength)] short array[MAX_SIZE]);

The MIDL compiler behavior for each combination of directional attributes is described below:

Array

Length
parameter

Stub actions during call
from client to server

Stub actions on return
from server to client

in in Transmit the length and the
number of elements
indicated by the parameter.

No data transmitted.

in out Not legal; MIDL compiler
error.

Not legal; MIDL compiler
error.

in in, out Transmit the length and the
number of elements
indicated by the length
parameter.

Transmit the length only.

out in Transmit the length.
If array size is fixed, allocate
the array size on the server,
but transmit no elements.
If array size is not bound, not
legal: MIDL compiler error.

Transmit the number of
elements indicated by the
length.
Note that the length can be
changed and can have a
different value from the
value on the client. Do not
transmit the length.

out out Allocate space for the length
parameter on the server but
do not transmit the
parameter.
If the array size is fixed,
allocate the array size on the
server, but transmit no
elements.
If array size is not fixed, not
legal: MIDL compiler error.

Transmit the length and the
number of elements
indicated by the length as
set by the server
application.

out in, out Transmit the length
parameter.

Transmit the length.
Transmit the number of

If the array size is bound,
allocate the array size on the
server, but transmit no
elements.
If array size is not bound, not
legal: MIDL compiler error.

array elements indicated
by the length.

in, out in Transmit the length and the
number of elements
indicated by the parameter.

Do not transmit the length.
Transmit the number of
elements indicated by the
length.
Note that the length can be
changed and can have a
different value from the
original value on the client.

in, out out Not legal; MIDL compiler
error.

Not legal; MIDL compiler
error.

in, out in, out Transmit the length and the
number of elements
indicated by the parameter.

Transmit the length and the
number of elements
indicated by the parameter.

In general, you should not modify the length or size parameters on the server side. If you change the
length parameter, you can orphan memory. For more information, see Memory Orphaning.

Pointer Attributes Applied to the Parameter
Each pointer attribute (ref, unique, and ptr) has characteristics that affect memory allocation. The
following table summarizes these characteristics:

Pointer attribute Client Server
Reference (ref) Client application must allocate. Special handling needed

for for out-only non-top-
level pointers.

Unique (unique) If a parameter, then client
application must allocate; if
embedded, can be null.
Changing from null to non-null
causes client stub to allocate;
changing from non-null to null
can cause orphaning.

Full (ptr) If a parameter, client application
must allocate; if embedded, can
be null.
Changing from null to non-null
causes client stub to allocate;
changing from non-null to null
can cause orphaning.

The ref attribute indicates that the pointer points to valid memory. By definition, the client application must
allocate all the memory the reference pointers require.

The unique pointer can change from null to non-null. If the unique pointer changes from null to non-null,
new memory is allocated on the client. If the unique pointer changes from non-null to null, orphaning can
occur. For more information, see Memory Orphaning.

Combining Pointer and Directional Attributes
A few caveats apply to certain combinations of directional attributes and pointer attributes.

Embedded out-Only Reference Pointers
When you use out-only reference pointers in Microsoft RPC, the generated server stubs allocate only the
first level of pointers accessible from the reference pointer. Pointers at deeper levels are not allocated by
the stubs, but must be allocated by the server application layer.

For example, consider an out-only array of reference pointers:

/* IDL file (fragment) */
typedef [ref] short * PREF;

Proc1([out] PREF array[10]);

In the preceding example, the server stub allocates memory for ten pointers and sets the value of each
pointer to null. The server application must allocate the memory for the ten short integers that are
referenced by the pointers and must set the ten pointers to point to the integers.

When the out-only data structure includes nested reference pointers, the server stubs allocate only the
first pointer accessible from the reference pointer. For example:

/* IDL file (fragment) */
typedef struct {
 [ref] small * psValue;
} STRUCT1_TYPE;

typedef struct {
 [ref] STRUCT1_TYPE * ps1;
} STRUCT_TOP_TYPE;

Proc2([out, ref] STRUCT_TOP_TYPE * psTop);

In the preceding example, the server stubs allocate the pointer psTop and the structure
STRUCT_TOP_TYPE. The reference pointer ps1 in STRUCT_TOP_TYPE is set to null. The server stub
does not allocate every level of the data structure, nor does it allocate the STRUCT1_TYPE or its
embedded pointer, psValue.

out-Only Unique or Full Pointer Parameters Not Accepted
Out-only unique or full pointers are not accepted by the MIDL compiler. Such specifications cause the
MIDL compiler to generate an error message.

The automatically generated server stub has to allocate memory for the pointer referent so the server
application can store data in that memory area. According to the definition of an out-only parameter, no
information about the parameter is transmitted from client to server. In the case of a unique pointer, which
can take the value NULL, the server stub does not have enough information to correctly duplicate the
unique pointer in the server's address space, nor does the stub have any information about whether the
pointer should point to a valid address or whether it should be set to NULL. Therefore, this combination is
not allowed.

Rather than out, unique or out, ptr pointers, use in, out, unique or in, out, ptr pointers, or use another
level of indirection such as a reference pointer that points to the valid unique or full pointer.

Function Return Values
Function return values are similar to out-only parameters because their data is not provided by the client
application. However they are managed differently. Unlike out-only parameters, they are not required to
be pointers. The remote procedure can return any valid data type except ref pointers and
nonencapsulated unions.

Function return values that are pointer types are allocated by the client stub with a call to
midl_user_allocate. Accordingly, only the unique or full pointer attribute can be applied to a pointer
function-return type.

Memory Orphaning
When your distributed application uses an in, out, unique or in, out, ptr pointer parameter, the server
side of the application can change the value of the pointer parameter to NULL. When the server
subsequently returns the null value to the client, memory referenced by the pointer before the remote
procedure call is still present on the client side, but is no longer accessible from that pointer (except in the
case of an aliased full pointer). This memory is said to be orphaned.

Memory can also be orphaned whenever the server changes an embedded pointer to a null value. For
example, if the parameter points to a complex data structure such as a tree, the server side of the
application can delete nodes of the tree.

Another situation that can lead to a memory leak involves conformant, varying, and open arrays
containing pointers. When the server application modifies the parameter that specifies the array size or
transmitted range so that it represents a smaller value, the stubs use the smaller value(s) to free memory.
The array elements with indices larger than the size parameter are orphaned. Your application must free
elements outside the transmitted range.

Repeated orphaning of memory on the client without freeing the unused memory can lead to a situation
where the client runs out of available memory resources.

Summary of Memory Allocation Rules
The following table summarizes key rules regarding memory allocation:

MIDL element Description
Top-level ref pointers Must be non-null pointers.
Function return value New memory is always allocated

for pointer return values.
unique, out or ptr, out pointer Not allowed by MIDL.
Non-top-level unique, in, out or
ptr, in, out pointer that changes
from null to non-null

Client stubs allocate new memory
on client on return.

Non-top-level unique, in, out
pointer that changes from non-
null to null

Memory is orphaned on client;
client application is responsible for
freeing memory and preventing
leaks.

Non-top-level ptr, in, out pointer
that changes from non-null to null

Memory will be orphaned on client
if not aliased; client application is
responsible for freeing and
preventing memory leaks in this
case.

ref pointers Client-application layer usually
allocates.

Non-null in, out pointer Stubs attempt to write into existing
storage on client. If string and size
increases beyond size allocated on
the client, it will cause a GP-fault
on return.

The following table summarizes the effects of key IDL and ACF attributes on memory management:

MIDL feature Client issues Server issues
allocate(single_nod
e),
allocate(all_nodes)

Determines whether one
or many calls are made
to the memory functions.

Same as client, except
private memory can often
be used for allocate
(single_node) [in] and
[in,out] data.

allocate(free) or
allocate(dont_free)

(None; affects server) Determines whether
memory on the server is
freed after each remote
procedure call.

array attributes
max_is and size_is

(None; affects server) Determines size of
memory to be allocated.

byte_count Client must allocate
buffer; not allocated or
freed by client stubs.

ACF parameter attribute
determines size of buffer
allocated on server.

enable_allocate Usually, none. However,
the client may be using
a different memory
management
environment.

Server uses a different
memory management
environment.
RpcSmAllocate should be
used for allocations.

in attribute Client application
responsible for
allocating memory for
data.

Allocated on server by
stubs.

out attribute Allocated on client by
stubs.

out-only pointer must be
ref pointer; allocated on
server by stubs.

ref attribute Memory referenced by
pointer must be
allocated by client
application.

Top-level and first-level
reference pointers
managed by stubs.

unique attribute Non-null to null can
result in orphaned
memory; null to non-null
causes client stub to call
midl_user_allocate.

(Affects client)

ptr attribute (See unique) (See unique)

Encoding Services
Microsoft RPC supports two methods for encoding and decoding, or "serializing," data. You can serialize
on a procedure or type basis. Serialization means that the data is marshalled to and unmarshalled from
buffers that you control. This differs from the traditional usage of RPC in which the stubs and the RPC
run-time library have full control of the marshalling buffers and the process is transparent to you. You can
use the buffer for storage on a permanent media, encryption, and so on. When encoding, the data is
marshalled to a buffer and the buffer is passed to you. When decoding, you supply a marshalling buffer
with data in it and the data is unmarshalled from the buffer to memory.

When you use procedure serialization, MIDL generates a serialization stub for the procedure decorated
with serialization attributes. When you call this routine, you execute a serialization call instead of a remote
call. The procedure arguments are marshalled to or unmarshalled from a buffer in the usual way and you
control the buffers.

In contrast, when type serialization occurs (a type is labelled with serialization attributes), MIDL generates
routines to size, encode, and decode objects of that type. To serialize data, you must call these routines in
the appropriate way. Type serialization is a Microsoft extension and, as such, is not available when you
compile in DCE-compatibility (/osf) mode. By using the encode and decode attributes as interface
attributes, RPC applies encoding to all the types and routines defined in the IDL file.

Note    You must supply adequately aligned buffers when using encoding services. The beginning of the
buffer must be aligned at 8. For procedure serialization, each procedure call must marshal into or
unmarshal from a buffer position aligned at 8. For type serialization, sizing, encoding, and decoding must
start at a position aligned at 8.

Procedure Encoding and Decoding
When you use procedure encoding and decoding, a procedure, rather than a type, is labeled with the
encode and/or decode attribute. Instead of generating the usual remote stub, the compiler generates a
serialization stub for the routine.

Just as a remote procedure must use a binding handle to make a remote call, a serialization procedure
must use an encoding handle to use encoding services. If an encoding handle is not specified, a default
implicit encoding handle is used to direct the call. On the other hand, if the encoding handle is specified,
either as an explicit handle_t argument of the routine or by using the explicit_handle attribute, the
developer must pass a valid handle as an argument of the call. For additional information on how to
create a valid serialization handle, see Serialization Handles, Examples of Fixed Buffer Encoding, and
Examples of Incremental Encoding.

Microsoft RPC allows for remote and serialization procedures to be mixed in one interface. However, use
caution when doing so. For implicit handles, the global implicit handle must be set to a valid binding
handle before a remote call, and to a valid encoding or decoding handle before a serialization call.

Type Encoding and Decoding
The MIDL compiler generates up to three functions for each type to which the encode or decode attribute
is applied. For example, for a user-defined type named MyType, the compiler generates code for the
MyType_Encode, MyType_Decode, and MyType_AlignSize functions. For these functions, the compiler
writes prototypes to STUB.H and source code to STUB_C.C. Generally, you can encode a MyType object
with MyType_Encode and decode an object from the buffer using MyType_Decode. MyType_AlignSize
is used if you need to know the size of the marshalling buffer prior to allocating it.

The following encoding function is generated by the MIDL compiler. It serializes the data for the object
pointed to by pObject and the buffer is obtained according to the method specified in the handle. After
writing the serialized data to the buffer, you control the buffer. Note that the handle inherits the status from
the previous calls and the buffers must be aligned at 8.

For an implicit handle:

void MyType_Encode (MyType __RPC_FAR * pObject);

For an explicit handle:

void MyType_Encode (handle_t Handle, MyType __RPC_FAR * pObject);

The following function deserializes the data from the application's storage into the object pointed to by
pObject. You supply a marshalled buffer according to the method specified in the handle. Note that the
handle may inherit the status from the previous calls and the buffers must be aligned at 8.

For an implicit handle:

void MyType_Decode (MyType __RPC_FAR * pObject);

For an explicit handle:

void MyType_Decode (handle_t Handle, MyType __RPC_FAR * pObject);

The following function returns the sum of the size in bytes of the type instance plus any padding bytes
needed to align the data. This enables serializing a set of instances of the same or different types into a
buffer while ensuring that the data for each object is appropriately aligned. MyType_AlignSize assumes
that the instance pointed to by pObject will be marshalled into a buffer beginning at the offset aligned at 8.

For an implicit handle:

size_t MyType_AlignSize (MyType __RPC_FAR * pObject);

For an explicit handle:

size_t MyType_AlignSize (handle_t Handle, MyType __RPC_FAR * pObject);

Serialization Handles
An application uses the serializing procedures or the serializing support routines generated by the MIDL
compiler in conjunction with a set of library functions to manipulate an encoding-services handle.
Together, these functions provide a mechanism for customizing the way an application serializes data. For
example, instead of using several I/O operations to serialize a group of objects to a stream, an application
can optimize performance by serializing several objects of different types into a buffer and then writing the
entire buffer in a single operation. The functions that manipulate serialization handles are independent of
the type of serialization you are using.

A serializing handle is required for any serializing operation and all serializing handles must be managed
explicitly by you. To do this, you firstu create a valid handle with a call to one of the Mes*HandleCreate
routines. Then, after the operation is complete, you release the handle with a call to MesHandleFree.
Once the handle has been created or re-initialized, it represents a valid serialization context and can be
used to encode or decode, depending on the type of the handle.

A serialization handle can be either an encoding or decoding handle. The encoding handles are available
in three styles: incremental, fixed buffer and dynamic buffer. The decoding handles are available in two
styles: incremental and (fixed) buffer. A serialization handle can be used for procedure or type
serialization, regardless of the handle style.

Implicit Versus Explicit Handles
You can declare a serialization handle with the primitive handle type, handle_t, and serialization handles
can be explicit or implicit. An implicit handle must be specified in the ACF by using the implicit_handle
attribute. Serializing procedures that do not have an explicit handle would then use the global variable
corresponding to that handle in order to access a valid serializing context. When using type encoding, the
generated routines supporting serialization of a particular type use the global implicit handle to access the
serialization context. Note that remote routines may need to use the implicit handle as a binding handle.
Be sure that the implicit handle is set to a valid serializing handle prior to making a serializing call.   

An explicit handle is specified as a parameter of the serialization procedure prototype in the IDL file, or it
can also be specified by using the explicit_handle attribute in the ACF. The explicit handle parameter is
used to establish the proper serialization context for the procedure. To establish the correct context in the
case of type serialization, the compiler generates the supporting routines that use explicit handle_t
parameter as the serialization handle. You must supply a valid serializing handle when calling a
serialization procedure or serialization type support routine.   

Serialization Styles
There are three styles you can use to manipulate serialization handles. These are: fixed buffer, dynamic
buffer, and incremental. Regardless of the style you use, you must create either an encoding or decoding
handle, serialize the data, and then free the handle. The style is set by creating the handle and defining
the way a buffer is manipulated. The handle maintains the appropriate context associated with each of the
three serialization styles.

Fixed Buffer Serialization
When using the fixed buffer style, specify a buffer that is large enough to accommodate the encoding
(marshalling) operations performed with the handle. When unmarshalling, you provide the buffer that
contains all of the data to decode.

The fixed buffer style of serialization uses the following routines:

· MesEncodeFixedBufferHandleCreate
· MesDecodeBufferHandleCreate   
· MesBufferHandleReset
· MesHandleFree

MidlEncodeFixBufferHandleCreate allocates the memory needed for the encoding handle and then
initializes it. It has the following prototype:

RPC_STATUS RPC_ENTRY MesEncodeFixedBufferHandleCreate (
 char * Buffer, /* user-supplied buffer */
 unsigned long BufferSize, /* size of the user-supplied
 /* buffer */
 unsigned long *pEncodedSize, /* pointer to size of
 /* encoding */
 handle_t *pHandle); /* pointer to the new
 /* handle */

The application can call the MesBufferHandleReset function to reinitialize the handle, or it can call the
MesHandleFree function to free the handle's memory. To create a decoding handle corresponding to the
fixed style encoding handle, you must use the MesDecodeBufferHandleCreate routine.

RPC_STATUS RPC_ENTRY MesDecodeBufferHandleCreate (
 char * Buffer, /* buffer with data to
 /* decode */
 unsigned long BufferSize, /* number of bytes of
 /* data to decode in buffer */
 handle_t *pHandle); /* pointer to new handle */

The application calls MesHandleFree to free the encoding or decoding buffer handle.

RPC_STATUS RPC_ENTRY MesHandleFree (
 handle_t Handle); /* handle to free */

Examples of Fixed Buffer Encoding
The following section provides an example of how to use a fixed-buffer style, serializing handle for
procedure encoding.

/*This is a fragment of the IDL file defining FooProc */

...
void __RPC_USER
FooProc([in] handle_t Handle, [in,out] FooType * pFooObject,
 [in, out] BarType * pBarObject);
...

/*This is an ACF file. FooProc is defined in the IDL file */

[explicit_handle
]
interface regress
{
[encode,decode] FooProc();
}

The following excerpt represents a part of an application.

if (MesEncodeFixedBufferHandleCreate (Buffer, BufferSize,
 pEncodedSize, &Handle) == RPC_S_OK)
{
...
/* Manufacture a FooObject and a BarObject */
...
/* The serialize works from the beginning of the buffer because the
 handle is in the initial state. The FooProc does the following
 when called with an encoding handle:
 - sizes all the parameters for marshalling,
 - marshalls into the buffer (and sets the internal state
 appropriately)
*/

FooProc (Handle, pFooObject, pBarObject);
...
MesHandleFree ();
}
if (MesDecodeBufferHandleCreate (Buffer, BufferSize, &Handle) ==
 RPC_S_OK)
{

/* The FooProc does the following for you when called with a decoding
 handle:
 - unmarshalls the objects from the buffer into *pFooObject and
 *pBarObject
*/

FooProc (Handle, pFooObject, pBarObject);
...
MesHandleFree (Handle);

}

The following section provides an example of how to use a fixed-buffer style, serializing handle for type
encoding.

/* This is an ACF file. FooType is defined in the IDL file */

[explicit_handle
]
interface regress
{
typedef [encode,decode] FooType;
}

The following excerpt represents the relevant application fragments.

if (MesEncodeFixedBufferHandleCreate (Buffer, BufferSize,
 pEncodedSize, &Handle) == RPC_S_OK)
{
...
/* Manufacture a FooObject and a pFooObject */
...
FooType_Encode (Handle, pFooObject);
...
MesHandleFree ();
}
if (MesDecodeBufferHandleCreate (Buffer, BufferSize, &Handle) ==
 RPC_S_OK)
{
FooType_Decode (Handle, pFooObject);
...
MesHandleFree (Handle);
}

Dynamic Buffer Serialization
When using the dynamic buffer style of serialization, the marshalling buffer is allocated by the stub and
the data is encoded into this buffer and passed back to you. When unmarshalling, you supply the buffer
that contains the data.

The dynamic buffer style of serialization uses the following routines:

· MesEncodeDynBufferHandleCreate
· MesDecodeBufferHandleCreate
· MesBufferHandleReset
· MesHandleFree

MesEncodeDynBufferHandleCreate allocates the memory needed for the encoding handle and then
initializes it. It has the following prototype:

RPC_STATUS RPC_ENTRY MesEncodeDynBufferHandleCreate (
 char **pBuffer, /* pointer to buffer containing
 /* encoded data */
 unsigned long *pEncodedSize, /* pointer to size of buffer
 /* containing encoded data */
 handle_t *pHandle); /* pointer to the new handle */

The application can call the MesBufferHandleReset function to reinitialize the handle, or it can call the
MesHandleFree function to free the handle's memory. To create a decoding handle corresponding to the
dynamic buffer encoding handle, use the MesDecodeBufferHandleCreate routine. For prototypes of
these routines, see Fixed Buffer Serialization.

Incremental Serialization
When using the incremental style, you supply three routines to manipulate the buffer when required by
the stub. These routines are: Alloc, Read, and Write. The Alloc routine allocates a buffer of the required
size. The Write routine writes the data into the buffer, and the Read routine retrieves a buffer that
contains marshalled data. A single serialization call can make several calls to these routines.

The incremental style of serialization uses the following routines:

· MesEncodeIncrementalHandleCreate
· MesDecodeIncrementalHandleCreate
· MesIncrementalHandleReset
· MesHandleFree

The prototypes for the Alloc, Read, and Write functions that you must provide are shown below:

void __RPC_USER Alloc (
 void *State, /* application-defined pointer */
 char **pBuffer, /* returns pointer to allocated buffer */
 unsigned int *pSize); /* inputs requested bytes; outputs
 /* pBuffer size */
void __RPC_USER Write (
 void *State, /* application-defined pointer */
 char *Buffer, /* buffer with serialized data */
 unsigned int Size); /* number of bytes to write from Buffer */
void __RPC_USER Read (
 void *State, /* application-defined pointer */
 char **pBuffer, /* returned pointer to buffer with data */
 unsigned int *pSize); /* number of bytes to read into pBuffer */

The State input argument for all three functions is the application-defined pointer that was associated with
the encoding services handle. The application can use this pointer to access the data structure containing
application-specific information such as a file handle or stream pointer. Note that the stubs do not modify
the State pointer other than to pass it to the Alloc, Read, and Write functions. During encoding, Alloc is
called to obtain a buffer into which the data is serialized. Then, Write is called to enable the application to
control when and where the serialized data is stored. When decoding, Read is called to return the
requested number of bytes of serialized data from wherever the application stored it.

An important feature of the incremental style is that the handle keeps the state pointer for you. This
pointer maintains the state and is never touched by the RPC code, except when passing the pointer to
Alloc, Write, or Read function. The handle also maintains an internal state that makes it possible to
serialize and deserialize several type instances to the same buffer by adding padding as needed for
alignment. The MesIncrementalHandleReset function resets a handle to its initial state to enable reading
or writing from the beginning of the buffer.

The Alloc and Write functions, along with an application-defined pointer, are associated with an
encoding-services handle by a call to the MesEncodeIncrementalHandleCreate function.
MesEncodeIncrementalHandleCreate allocates the memory needed for the handle and then initializes
it. It has the following prototype:

RPC_STATUS RPC_ENTRY MesEncodeIncrementalHandleCreate (
 void * UserState, /* application-defined pointer */
 MIDL_ES_ALLOC Alloc, /* pointer to Alloc function */
 MIDL_ES_WRITE Write, /* pointer to Write function */
 handle_t *pHandle); /* receives encoding services handle */

The application can call MesDecodeIncrementalHandleCreate to create a decoding handle,
MesIncrementalHandleReset to reinitialize the handle, or MesHandleFree to free the handle's memory.
The Read function, along with an application-defined parameter, is associated with a decoding handle by
a call to the MesDecodeIncrementalHandleCreate routine. The function creates the handle and
initializes it. It has the following prototype:

RPC_STATUS RPC_ENTRY MesDecodeIncrementalHandleCreate (
 void * UserState, /* application-defined pointer */
 MIDL_ES_READ Read, /* pointer to Read function */
 handle_t Handle); /* handle to create and initialize */

The UserState, Alloc, Write, and Read parameters of MesIncrementalHandleReset can be NULL to
indicate no change.

RPC_STATUS RPC_ENTRY MesIncrementalHandleReset (
 handle_t Handle, /* handle to reinitialize */
 void * UserState, /* application-defined pointer */
 MIDL_ES_ALLOC Alloc, /* pointer to Alloc function */
 MIDL_ES_WRITE Write, /* pointer to Write function */
 MIDL_ES_READ Read, /* pointer to Read function */
 MIDL_ES_CODE OpCode); /* operations allowed */

RPC_STATUS RPC_ENTRY MesHandleFree (
 handle_t Handle); // handle to free

Examples of Incremental Encoding
The following section provides an example of how to use the incremental style serializing handle for type
encoding.

/* This is an acf file. FooType is defined in the idl file */

[explicit_handle
]
interface regress
{
typedef [encode,decode] FooType;
}

The following excerpt represents the relevant application fragments.

if (MesEncodeIncrementalHandleCreate (State, AllocFn, WriteFn,
 &Handle) == RPC_S_OK)
{
...
/* The serialize works from the beginning of the buffer because
 the handle is in the initial state. The Foo_Encode does the
 following:
 - sizes *pFooObject for marshalling,
 - calls AllocFn with the size obtained,
 - marshalls into the buffer returned by Alloc, and
 - calls WriteFn with the filled buffer
*/

Foo_Encode (Handle, pFooObject);
...
}
if (MesIncrementalHandleReset (Handle, NULL, NULL, NULL, ReadFn,
 MES_DECODE) == RPC_OK)
{
/*The ReadFn is needed to reset the handle. The arguments
 that are NULL do not change. You can also call
 MesDecodeIncrementalHandleCreate (State, ReadFn, &Handle);
 The Foo_Decode does the following:
 - calls Read with the appropriate size of data to read and
 receives a buffer with the data
 - unmarshalls the object from the buffer into *pFooObject
*/

Foo_Decode (Handle, pFooObject);
...
MesHandleFree (Handle);
}

Obtaining an Encoding Identity
An application that is decoding encoded data can obtain the identity of the routine used to encode the
data, prior to calling a routine to decode it. The MesInqProcEncodingId routine provides this identity. It
has the following prototype:

RPC_STATUS RPC_ENTRY MesInqProcEncodingId (
 handle_t Handle, /* decoding handle */
 PRPC_SYNTAX_IDENTIFIER pInterfaceId, /* points to location
 the identity will be
 written to */
 unsigned long __RPC_FAR * pProcNum); /* number of the routine
 used to encode data */

Run-Time RPC Functions
The run-time RPC functions are those your distributed application calls to establish a binding handle that
represents the logical connection between a client and a server. The binding handle enables the RPC
run-time libraries to direct a client's remote procedure call to an instance of the specified interface on a
server.

Obtaining the binding handle involves several data structures or strings:

· Protocol sequence and network address strings
· Endpoints
· Interface UUIDs and interface version numbers
· Object UUIDs
· Name-service database server entries

The following topics describe these data structures and strings and the RPC functions that allow your
application to manipulate them.

The name-service functions allow a server to register its interface in a database. When a server registers
its interface, any client in the domain can query the database, supplying a logical name and an optional
object UUID, to obtain a binding handle to the server without knowing the host name of the server.

The RPC name service makes distributed applications easy to administer. When the server side of the
distributed application is moved to another computer, clients do not have to be reconfigured. As long as
the database entry name and object UUIDs remain the same, client applications can access the server
application as they did before. When a client requests an interface that several servers have registered,
the name service shuffles the binding handles before returning them to the client. This provides a
measure of load balancing by preventing all the clients from using the same server.

You can provide more than one implementation of the remote procedure calls defined in an interface.
RPC maps a remote procedure call to an implementation of the procedure through a table of function
pointers known as the manager entry-point vector (EPV). You can add implementations of the procedure
by supplying additional manager EPVs. The client's object UUID determines the appropriate
implementation to use.

You can also add security to your distributed application in two ways: by installing a security package and
calling the RPC functions related to security, or by using the security features built into Windows NT™
transport protocols. Most application writers will want to use the RPC security functions instead of
transport-level security. Read the section "Using Authenticated RPC" for more details.

The set of RPC functions supported by Microsoft® RPC overlaps the OSF-DCE RPC functions. The
Microsoft RPC functions are optimized for use with MS-DOS and Microsoft 16-bit and 32-bit Windows
operating systems. They are fully compatible with other Microsoft naming and calling conventions.

For a complete description of each function and data structure in Microsoft RPC, see the RPC Function
Reference.

Naming Conventions for RPC Functions
RPC function names generally consist of the prefix "Rpc," an object name, and a verb that describes an
operation on that object. The functions, with some exceptions, are named as shown:

RpcObjectOperation

Object

Specifies a term that identifies an RPC object; a data structure defined by the RPC function.
Operation

Specifies an operation that is performed on the object specified by Object.

Functions that operate on UUID objects omit the prefix "Rpc" and start with the object name "Uuid."

The functions provided with this version of Microsoft RPC operate on the following objects:

Object

Object in
function name

Example
Binding handle Binding RpcBindingFree
Endpoint Ep RpcEpRegister
Interface If RpcIfInqId
Management Mgmt RpcMgmtStopServerListe

ning
Name-service group
entry

NsGroup RpcNsGroupDelete

Name-service
management

NsMgmt RpcNsMgmtEntryCreate

Name-service profile
entry

NsProfile RpcNsProfileEltAdd

Name-service server
entry

NsBinding RpcNsBindingExport

Network Network RpcNetworkInqProtseqs
Object, type UUID
mapping

Object RpcObjectSetType

Protocol-sequence
vector

ProtseqVector RpcProtseqVectorFree

Server Server RpcServerListen
String String RpcStringFree
String binding StringBinding RpcStringBindingCompo

se
UUID Uuid UuidCreate

Note for OSF-DCE Programmers: Microsoft RPC function names are derived by converting the first
character of the OSF-DCE RPC function name, and every character that follows an underscore character,
to uppercase and then removing underscore characters. For example, the OSF-DCE function
rpc_server_use_all_protseqs_if is named RpcServerUseAllProtseqsIf in Microsoft RPC.

Microsoft data-structure names are derived from the OSF-DCE names by converting all characters to

uppercase and removing the trailing suffix _t. For example, the OSF-DCE data structure
rpc_binding_vector_t is named RPC_BINDING_VECTOR in Microsoft RPC.

In the header files provided in Microsoft RPC, each RPC function that takes character-string parameters
appears in two forms: followed by the suffix "A" and followed by the suffix "W." The "A" suffix represents
the ASCII-character string version of the function and the "W" suffix represents the wide-character string
version. The identifier UNICODE determines which version of the function is selected. The standard
function name is mapped to either the ASCII or the wide-character string version.

Wide-character versions of the RPC functions are selected when you define the identifier UNICODE. You
can define the identifier either with a #define preprocessor directive or with the /D option of the Microsoft
C/C++ version 7.0 compiler. For example:

#define UNICODE
main()

cl /DUNICODE filename.c

You can use the wide-character version of a function on one side of the distributed application and the
ASCII version on the other side. You do not need to use the same versions of the functions with both the
client and server applications. You can use both versions in the same application.

Macro Definitions
The RPC tools achieve model, calling, and naming-convention independence by associating data types
and function-return types in the generated stub files and header files with definitions that are specific to
each platform. These macro definitions ensure that any data types and functions that require the
designation of _ _far are specified as far objects.

The following figure shows the macro definitions that the MIDL compiler applies to function calls between
RPC components:

{ewc msdncd, EWGraphic, bsd23536 0 /a "SDK_A29.BMP"}

These are the macro definitions:

Definition Description
_ _RPC_API Applied to calls made by the stub to the user

application. Both functions are in the same
executable program.

_ _RPC_FAR Applied to the standard macro definition for
pointers. This macro definition should appear as
part of the signature of all user-supplied functions.

_ _RPC_STUB Applied to calls made from the run-time library to
the stub. These calls can be considered private.

_ _RPC_USER Applied to calls made by the run-time library to the
user application. These cross the boundary
between a DLL and an application.

_ _RPC_ENTRY Applied to calls made by the application or stub to
the run-time library. This macro definition is applied
to all RPC run-time functions.

To link correctly with the Microsoft RPC run-time libraries, stubs, and support routines, some user-
supplied functions must also include these macros in the function definition. Use the macro _ _RPC_API
when you define the functions associated with memory management, user-defined binding handles, and
the transmit_as attribute, and use the macro _ _RPC_USER when you define the context-rundown
routine associated with the context handle. Specify the functions as:

_ _RPC_USER midl_user_allocate(...)

_ _RPC_USER midl_user_free(...)

_ _RPC_USER handletype_bind(...)

_ _RPC_USER handletype_unbind(...)

_ _RPC_USER type_to_local

_ _RPC_USER type_from_local

_ _RPC_USER type_to_xmit(...)

_ _RPC_USER type_from_xmit(...)

_ _RPC_USER type_free_local

_ _RPC_USER type_free_inst(...)

_ _RPC_USER type_free_xmit(...)

_ _RPC_USER context_rundown(...)

Note    All pointer parameters in these functions must be specified using the macro _ _RPC_FAR.

These are the two approaches that can be used to select an application's memory model:

1. To use a single memory model for all files, compile all source files using the same memory-model
compiler switches. For example, to develop a small-model application, compile both the application
and the stub source code using the C-compiler switch /AS, as in the following:
cl -c /AS myfunc.c
cl -c /AS clstub_c.c

2. To use different memory models for the application source files and the support source files (stubs
files), use the RPC macros when you define function prototypes in the IDL file. Compile the
distributed-application source files using one compiler memory-model setting and compile the support
files using another compiler memory-model setting. Use the same memory model for all of the files
generated by the compiler.

Data Structures
Obtaining the handle that represents the binding between clients and servers involves several key data
structures:

· Binding handle
· Protocol sequence and network address string
· Endpoint
· Interface UUIDs and interface version number
· Object UUID
· Name-service database entries, including profile, group, and server entries.

Endpoints
The endpoint specifies the communication port clients use to make remote procedure calls to a server.

The server application specifies endpoint information at the same time it specifies the protocol sequence
by calling the RPC routine that starts with the prefix "RpcServerUseProtseq" or
"RpcServerUseAllProtseqs."

A finite number of endpoints are available for any protocol sequence. Some of these are usually assigned
by the authority responsible for the protocol. The syntax of the endpoint string depends on the protocol
sequence you use. For example, the endpoint for TCP/IP is a port number, and the endpoint syntax for
named pipes is a valid pipe name.

The major design decision you must make regarding the endpoint is whether it is well known or dynamic.
Your choice of option determines whether the distributed application or the run-time library specifies the
endpoint the application will use.

Most applications should use dynamic endpoints so the endpoint-mapping service can dynamically map a
distributed application to an endpoint available for the protocol. In this way, this limited system resource
can be assigned to a distributed service at run time as needed, instead of being dedicated to a distributed
service when the service is developed.

Well-Known Endpoints
A distributed application can specify an endpoint in a string that is used as a parameter to the function
RpcServerUseProtseqEp or in a string that appears in the IDL file interface header as part of the
endpoint interface attribute. Well-known endpoints are not recommended for most applications.

You can use two approaches to implement the well-known endpoint:

· Specify all information in a string binding.
· Store the well-known endpoint in the name-service database.

All the information needed to establish the binding can be written into a distributed application when you
develop it. The client can specify the well-known endpoint directly in a string, call
RpcStringBindingCompose to create a string that contains all the binding information, and obtain a
handle by supplying this string to the function RpcBindingFromStringBinding. The client and server can
be hard-coded to use a well-known endpoint, or written so that the endpoint information comes from the
command line, a data file, or the IDL file.

When a server uses a well-known endpoint, the endpoint data is included as part of the name-service
database server entry. When the client imports a binding handle from the server entry, the binding handle
contains a complete server address that includes the well-known endpoint.

Dynamic Endpoints
The number of communication ports for a particular server can be limited. For example, when you use the
ncacn_nb_nb protocol sequence, indicating that RPC network communication occurs using NetBIOS
over NetBEUI, less than 255 ports are available. The RPC run-time libraries allow you to assign endpoints
dynamically as needed.

The application selects a dynamic endpoint in one of two ways: on the client side it uses a null string to
indicate the endpoint when it composes a string binding, and on the server side it registers the server
application in the name-service database, or it calls RpcServerUseProtseq or
RpcServerUseAllProtseqs to explicitly select dynamic endpoints.

The dynamic endpoint is registered in an endpoint-map database. This a database that is managed by a
specific service which creates and deletes elements for applications. In Windows NT™ and Windows® 95,
the endpoint-mapping service is called RPCSS. The dynamic endpoint expires when the server instance
stops running. To remove the old endpoint from the endpoint mapper database, call RpcEpUnregister at
application termination.

Fully and Partially Bound Handles
When you use dynamic endpoints, the run-time libraries obtain endpoint information as they need it. The
run-time libraries make the distinction between a fully bound handle (one that includes endpoint
information) and a partially bound handle (one that does not include endpoint information).

The client run-time library must convert the partially bound handle to a fully bound handle before the client
can bind to the server. The client run-time library tries to convert the partially bound handle for the client
application by obtaining the endpoint information as shown:

· From the client's interface specification.
· From an endpoint-mapping service running on the server.

If the client tries to use a partially bound handle when the endpoint information is not available in the
interface specification and the server's endpoint-mapper does not know the server endpoint, the client will
not have enough information to make its remote procedure call and that call will fail. To prevent this, you
must register the endpoint in the endpoint mapper when your distributed application uses partially bound
handles. For more information about the endpoint mapper, see Registering the Endpoint.

When a remote procedure call fails, the client application can call RpcBindingReset to remove out-of-
date endpoint information. When the client tries to call the remote procedure, the client run-time library
again tries to convert the fully bound handle to a partially bound handle. This is useful, for example, when
the server has been stopped and restarted using a different dynamic endpoint.

Using Datagram Protocols
Microsoft RPC supports datagram (connectionless) protocols as well as connection-oriented protocols.
Some of the features available when using datagram protocols are shown below:

· Datagrams support the UDP and IPX connectionless transport protocols.
· Because it is not necessary to establish and maintain a connection, resource overhead is less using

the datagram RPC protocol.
· Datagrams enable faster binding.
· As with connection-oriented RPC, datagram RPC calls are by default nonidempotent. This means the

call is guaranteed not to be executed more than once. However, a function can be marked as
idempotent in the IDL file telling RPC that it is harmless to execute the function more than once in
response to a single, client request. This allows the run time to maintain less state on the server. Note
that an idempotent call would be re-executed only in rare circumstances on an unstable network.

· Datagram RPC supports the broadcast IDL attribute. Broadcast enables a client to issue messages to
multiple servers at the same time. This lets the client locate one of several available servers on the
network, or control multiple servers simultaneously. Broadcast calls are implicitly idempotent. If the
call contains [out] parameters, only the first server response is returned. Once a server responds, all
future RPCs over that binding handle will be sent to that server only, including calls with the broadcast
attribute. To send another broadcast, create a new binding handle or call RpcBindingReset on the
existing handle.

· Datagram RPC supports the maybe IDL attribute. This lets the client send a call to the server without
waiting for a response or confirmation. The call cannot contain [out] parameters. Maybe calls are
implicitly idempotent.

The RPC Name-Service Database
A name service is a service that maps names to objects, and usually maintains the (name, object) pairs in
a database. Generally, the name is a logical name that is easy for users to remember and use. For
example, a name service would allow a user to use the logical name "laserprinter." The name service
maps this name to the network-specific name used by the print server.

To use a simplified explanation, the RPC name service maps a name to a binding handle and maintains
the (name, binding handle) mappings in the RPC name-service database. The RPC name service allows
client applications to use a logical name instead of a specific protocol sequence and network address.
The use of the logical name makes it easier for network administrators to install and configure your
distributed application.

An RPC name-service database entry has one of the following attributes: server, group, or profile. In the
Microsoft implementation, entries can have only one attribute, so these entries are also known as server
entries, group entries, and profile entries.

The server entry consists of interface UUIDs, object UUIDs (needed when the server implements multiple
entry points), network address, protocol sequence, and any endpoint information associated with well-
known endpoints. When a dynamic endpoint is used, the endpoint information is kept in the endpoint-map
database rather than the name-service database, and the endpoint is resolved like any other dynamic
endpoint. Server entries are managed by functions that start with the prefix "RpcNsBinding."

The group entry can contain server entries or other group entries. Group entries are managed by
functions that start with the prefix "RpcNsGroup."

The profile entry can contain profile, group, or server entries. Profile entries are managed by the functions
that start with the prefix "RpcNsProfile."

Name-Service Application Guidelines
When you develop your distributed application, provide the application users with a method for specifying
the name under which they can register the application in the name-service database. This method can
consist of a data file, command-line input, or dialog box.

Though the RPC name-service architecture supports various methods for organizing an application's
server entries, it is optimized for look-ups. As a result, frequent updates can hinder the performance of
both the name service and the application. To avoid exporting information unnecessarily, choose a design
that lets the server determine whether its information is in the name-service database. In addition, each
server instance should export to its own entry name. Otherwise, it will be very difficult for an instance to
change its supported object UUIDs or protocol sequences without disturbing another instance's
information.

Following is a method that avoids these pitfalls and provides good performance, whether you use the
Microsoft Locator or another name service.

To begin with, design your application so the first time a given server instance starts up, it picks a unique
server-entry name and saves this name in an .INI file along with the application's other configuration
information. Then, have it export its binding handles and object UUIDs, if any, to its name-service entry.

Subsequent invocations of the server instance should check that the name-service entry is present and
contains the correct set of object UUIDs and binding handles. A missing entry may mean that an
administrator removed it, or that a power outage caused the name-service information to be lost. It is
important to verify that the binding handles in the entry are correct; if an administrator adds TCP/IP
support to a computer, for example, RPC servers will listen on that protocol sequence when they call
RpcServerUseAllProtseqs. However, if the server does not update the name-service entry, clients will
not be informed that TCP is supported.

When the client imports, it should specify NULL as the entry name. Specifying NULL causes the Microsoft
Locator to search for the interface in all name-service entries in the client machine's domain or
workgroup, thus finding the information for every instance.

If you use object UUIDs to represent well-known objects such as printers, you can use a variation of this
method. Instead of exporting bindings to one entry, design your application so each instance creates an
entry for each supported object, such as "/.:/printers/Laser1" and "/.:/printers/Laser2." Then, have the
server export its binding handles to each server entry, along with the object UUID relevant to that entry.

In this case, a client can look up a resource by name by importing from the relevant server entry; it does
not require the object UUID of the resource. If it has the resource UUID but not the name, it can import
from the null entry.

An Overview of the Name Service Entry
The name service entry consists of three distinct sections. The first section is for interfaces (UUID +
version), the second section contains the object UUIDs, and the third section is for binding handles. You
provide a name for the entry that will serve as a way to identify it.

When calling RpcNsBindingExport, the server specifies the name of the entry in which to place the
exported information. This newly exported interface is then added to the interface section of the name
service entry. Any interfaces that are already present in the name service entry remain as well. This same
process is followed for object UUIDs and binding handles.

The client calls RpcNsBindingLookupBegin (or RpcNsBindingImportBegin) to search for an
appropriate binding handle. The entry name, interface handle, and an object UUID are extracted. These
restrict the entries from which binding handles are returned. If an entry matches the search criteria, all the
binding handles in that entry are returned from RpcNsBindingImportNext.

Criteria for Name Service Entries
The following criteria are used when processing name service entries:

· If you provide a non-NULL entry name for RpcNsBindingLookupBegin, that entry will be the only
entry searched for binding handles. If you pass NULL, all entries in your logon domain will be
searched. Note that this does not include trusted domains.

· If you provide an interface handle, binding handles are returned from an entry only if the interface
section of the entry contains a compatible version of that interface UUID. That is, the major version
number must be the same as your interface UUID, while the minor version number must be equal to
or greater than yours.

· If you provide an object UUID, binding handles are returned from an entry only if the object UUID
section of the entry contains that particular object UUID.

If a name service entry survives the criteria described above, all the binding handles from those entries
are gathered. Handles with a protocol sequence that is unsupported by the client are discarded and the
remaining handles are returned to you as the output from RpcNsBindingLookupNext.

Name Service Entry Cleanup
A name service entry should contain information that does not change frequently. For this reason, do not
include dynamic endpoints in your exported binding handles because they will change at each invocation
of the server and will clutter up your name service entry. To remove these binding handles, use
RpcBindingReset. For example, a reasonable sequence of server operations would be:

For more than one transport:

RpcServerUseProtseq();
RpcServerUseProtseq();

To place bindings in the endpoint mapper:

RpcServerInqBindings(&Vector);
RpcEpRegister(Interface, Vector);

To remove endpoints from bindings:

for (i=0; i < Vector- > Count; + + i)
 {
 RpcBindingReset(Vector->BindingH[i];
 }

To add bindings to the name service:

RpcNsBindingExport(RPC_C_NS_SYNTAX_DEFAULT, EntryName, Interface
 Vector);
RpcServerListen();

Since the Microsoft Locator service does not use many resources to export information, the examples
above work well. However, Microsoft RPC also supports Digital Equipment Corporation's Cell Directory
Service (CDS), which is a more robust name service. When using CDS, RpcNsBindingExport or
RpcNsBindingUnexport will create significant network traffic for replication and distribution. Thus, the
server should determine if the information already has been exported and export only it if is has not.

What Happens During a Query
This section describes how the network handles the query when a 32-bit client searches for a name in its
own domain.

When your client application calls RpcNsBindingImportBegin, the locator residing on your client
computer will try to satisfy this request. If there is nothing in the cache, it will forward the request by RPC
to a master locator. If the master locator finds nothing in its cache, it sends the request to all the
computers in the domain using a mail-slot broadcast. If there is a match, the locator on each computer will
respond by a directed mail slot.(For example, if a process on that computer has exported the interface.)
The responses are collated and the RPC is completed from the client's process locator, which will reply to
the client process itself.

In a domain, the client locator searches for a master locator in the following places:

1. On the primary domain controller.
2. On each backup domain controller.

If a match is not found, the client locator declares itself to be the master locator. As such, it will broadcast
queries if they cannot be satisfied locally.

In a workgroup, the client locator maintains a cache of the computers whose locators have broadcasted. It
uses the one that has been running the longest as the master locator. If that computer is unavailable, the
next, longest-broadcasting computer is used, and so on. If the client needs a master locator and the
cache is empty, it replenishes the cache by sending a special mail-slot broadcast that requests master
locators to respond. If there are no responses, the client locator declares itself to be the master locator
and will broadcast queries if they cannot be satisfied locally.

This changes if your client application is a Windows 3.x or MS-DOS program. In this case, there is no
locator running on the client computer, and rpcns1.dll or rpcnslm.rpc contains the code to find a master
locator. All requests are forwarded directly to the master locator.

These guidelines are valid for names in the client's domain, such as names for "/.:/entryname". If the
client requests a name from another domain through the use of "/.../DOMAIN/entryname;" the client
locator forwards the request to the specified domain which will broadcast it if it does not have the answer.
If the domain is down or is actually a workgroup, the request will fail.

Note    Remember the following when working with entries in the name service:

· A client cannot use the "/.../DOMAIN/entryname" syntax to find an entry in its own domain. Use the
syntax "/.:/entryname". However, you can use "/.../DOMAIN/entryname" to find an entry in another
domain.

· The domain name in "/.../DOMAIN/entryname" must be uppercase. When looking for a match, the
locator is case-sensitive.

· Locator entry names are also case-sensitive.When the client uses the "/.:/entryname" syntax, the
locator will not search for entries in other domains, even if they have a trust relationship with the logon
domain.

· Broadcasts do not cross LAN segments (for example, subnets). Thus, the usefulness of the locator is
limited in an organization with multiple subnets.

Using CDS
If you have CDS, you can use it instead of the Locator. Change the registry entries as shown:

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Rpc
 Name Service
 NetworkAddress

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Rpc
 Name Service
 Endpoint

Changing these entries will point to a gateway computer that is running the NSID. This will be used as the
master locator. In the event of a crash, there will be no search for a replacement.

Name Syntax
Microsoft RPC accepts names that conform to the following syntax:

/.:/name[/name...]
/.../domainname/name[/name...]

name

Specifies an identifier that can contain any character except the delimiting slash (/) character.
domainname

Specifies the name of the Windows NT domain.

A parameter that selects the name-syntax type and the string that specifies the name are supplied to
many of the name-service interface (NSI) RPC functions.

Only one name-syntax type is supported by Microsoft RPC, as specified by the constant
RPC_C_NS_SYNTAX_DCE. This constant is defined in the header file RPCNSI.H.

The name syntax specified by RPC_C_NS_SYNTAX_DCE is an extension of the OSF_DCE Cell
Directory Service (CDS) name syntax. The ability to specify a domain name represents an extension to
that syntax. There is no absolute limit on the number of names that can be separated by slash characters
as long as the overall string is less than 256 characters.

The slashes allow you to specify a logical structure to the name, but they do not correspond to a logical
structure in the objects themselves.

Server Application RPC API Calls
For most distributed applications, you should write your server application to call the RPC functions in the
following sequence:

1. Specify the protocol sequence(s). Call one of the following RPC functions: RpcServerUseProtseq,
RpcServerUseAllProtseqs, RpcServerUseProtseqIf, RpcServerUseAllProtseqsIf, and
RpcServerUseProtseqEp
or the extended versions, which allow you to specify a policy for allocation of dynamic ports and allow
allow multi-homed machines to selectively bind to Network Interface Cards (NICS):
RpcServerUseProtseqEx, RpcServerUseAllProtseqsEx, RpcServerUseProtseqIfEx,
RpcServerUseAllProtseqsIfEx, and RpcServerUseProtseqEpEx.

2. Call RpcServerInqBindings to obtain a vector containing all of the server's binding handles. You will
use this binding vector for subsequent calls to RpcEpRegister, RpcEpRegisterNoReplace, and
RpcNsBindingExport.

3. When you use dynamic endpoints, add the endpoints associated with the server to the endpoint-map
database. Call RpcEpRegister or RpcEpRegisterNoReplaceregister the binding handles with the
endpoint-mapping service.
During implementation and debugging, you can use string bindings to communicate binding
information to clients. This allows you to establish a client-server relationship without using the
endpoint-map database or name-service database. To establish such a relationship, use
RpcBindingToStringBinding to convert one or more binding handles in the binding-handle vector to
a string binding and provide the string binding to the client.

4. Call RpcBindingReset on each of the dynamic bindings in the binding vecto to remove the dynamic
endpoints from the bindings. Then export the binding vector to the name-service database. Call Page:
1
 RpcNsBindingExportto place the binding handles in the name-service database for access by any
client.

5. Clean up data structures. Call the RPC function RpcBindingVectorFree. to free the vector of server
binding handles.

6. Register the interface with the RPC run-time library. Call RpcServerRegisterIfEx or
RpcServerRegisterIf. This is a required call.

7. Listen for clients. Call RpcServerListen or RpcMgmtWaitServerListen. RpcServerListen to begin
receiving remote procedure call requests. This is a required call.

When the server application is no longer actively serving clients, you usually instruct it to call RPC
functions in the following sequence:

1. Stop listening for clients. Call the RPC function RpcMgmtStopServerListening.
If the server application is merely pausing, this is the only call that needs to be made. If the
application is terminating:

2. Remove the interface. Call the RPC function RpcServerUnregisterIf.
3. Remove endpoint-map database entries. Call the RPC function RpcEpUnregister.
4. Remove the name-service entry. Call RpcNsBindingUnexport

See Also
Specifying the Protocol Sequence, Registering the Endpoint, Exporting to the RPC Name-Service
Database, Registering the Interface.

Specifying the Protocol Sequence
One of the first acts of the server application is to specify the protocol sequences over which it can
communicate with clients.

The protocol sequence is a character string that represents a valid combination of an RPC protocol (such
as "ncacn"), a transport protocol (such as "tcp"), and a network protocol (such as "ip"). Microsoft RPC
supports the following protocol sequences:

Protocol
sequence

Description Supporting Platforms
ncacn_nb_tcp Connection-oriented

NetBIOS over TCP
Client only: MS-DOS, Windows
3.x
Client and server: Windows NT

ncacn_nb_ipx Connection-oriented
NetBIOS over IPX

Client only: MS-DOS, Windows
3.x
Client and server: Windows NT

ncacn_nb_nb Connection-oriented
NetBEUI

Client only: MS-DOS, Windows
3.x
Client and server: Windows NT,
Windows 95

ncacn_ip_tcp Connection-oriented
TCP/IP

Client only: MS-DOS,Windows
3.x, and Apple® Macintosh®
Client and server: Windows 95
and Windows NT

ncacn_np Connection-oriented
named pipes

Client only: MS-DOS, Windows
3.x, Windows 95
Client and server: Windows NT

ncacn_spx Connection-oriented SPX Client only: MS-DOS, Windows
3.x
Client and server: Windows NT,
Windows 95

ncacn_dnet_nsp Connection-oriented
DECnet

Client only: MS-DOS, Windows
3.x

ncacn_at_dsp Connection-oriented
AppleTalk DSP

Client: Apple Macintosh

ncacn_vns_spp Connection-oriented Vines
SPP transport

Client and Server: Windows NT

ncadg_ip_udp Datagram (connectionless)
UDP/IP

Client only: MS-DOS, Windows
3.x
Client and server: Windows NT

ncadg_ipx Datagram (connectionless)
IPX

Client only: MS-DOS, Windows
3.x
Client and server: Windows NT

ncalrpc Local procedure call Client and server: Windows NT
and Windows 95

The server application specifies a single protocol sequence by calling one of the functions that starts with
the prefix "RpcServerUseProtseq." The server specifies all supported protocol sequences by calling
RpcServerUseAllProtseqs.

The function you choose to specify protocol sequences also specifies information about the endpoint. The
endpoint can be specified explicitly (RpcServerUseProtseqEp), culled from the IDL file
(RpcServerUseProtseqIf, RpcServerUseAllProtseqsIf), or selected for the application by the run-time
library (RpcServerUseProtseq, RpcServerUseAllProtseqs). These are the choices:

"Protseq" function Description
RpcServerUseAllProtseqs Registers all protocols using dynamic

endpoints.
RpcServerUseAllProtseqsI
f

Registers all protocols with endpoints
from the IDL file.

RpcServerUseProtseq Registers one protocol using a dynamic

endpoint.
RpcServerUseProtseqEp Registers one protocol with the

specified
endpoint.

RpcServerUseProtseqIf Registers one protocol with the
endpoint
in the IDL file.

The server application specifies endpoint information at the same time it specifies the protocol sequence
by calling the RPC function that starts with the prefix "RpcServerUseProtseq" or
"RpcServerUseAllProtseqs." The endpoint specifies the communication port through which clients make
remote procedure calls to the server. For more information about endpoints, see Endpoints.

Registering the Endpoint
When a server uses dynamic endpoints, the server application must also call RpcEpRegister or
RpcEpRegisterNoReplace to register the endpoints.

Both functions add the server's interfaces and binding handles to the "endpoint mapper" database. When
the client makes a remote procedure call using a partially bound handle, the client's run-time library asks
the server machine's endpoint mapper for the endpoint of a compatible server instance. The client library
supplies the interface UUID, protocol sequence, and, if present, the object UUID in the client binding
handle. The endpoint mapper looks for a database entry that matches the client's information. The
client/server interface UUID, the interface major version, and protocol sequence must all match exactly. In
addition, the server's interface minor version must be greater than or equal to the client's minor version.

If all tests are successful, the endpoint mapper returns the valid endpoint and the client run-time library
updates the endpoint in the binding handle.

Exporting to the RPC Name-Service Database
After specifying the protocol sequence and endpoint and registering any dynamic endpoints in the
endpoint-map database, the server application registers the binding handle for the interface with the RPC
name-service provider by calling RpcNsBindingExport.

In the Microsoft environment, the server application should register itself with the name-service database
every time the server application is run. In the OSF-DCE environment, the server application registers
with the name-service database only once and that is when the application is installed. The Microsoft
Locator maintains its database in transient memory on the server, while the OSF-DCE name service
resides in permanent, replicated storage which is relatively expensive to update.

Registering the Interface
After calling RpcServerUseAllProtseqs, registering dynamic endpoints in the endpoint-map database,
and registering your distributed application in the name service, register the interface by calling
RpcServerRegisterIfEx or RpcServerRegisterIf once for each implementation of the interface.

Where you provide a single implementation of each function prototype specified in the interface, supply
the interface handle data structure generated by the MIDL compiler and supply null pointers for the
manager type and the parameters of the manager entry-point vector (EPV).

RpcServerRegisterIfEx and RpcServerRegisterIf set values in the internal interface registry table. This
table is used to map the interface UUID and object UUIDs to a manager EPV. The manager EPV is an
array of function pointers that contains exactly one function pointer for each function prototype in the
interface specified in the IDL file.

The run-time library uses the interface registry table (set by calls to the function RpcServerRegisterIf*)
and the object registry table (set by calls to the function RpcObjectSetType) to map interface and object
UUIDs to the function pointer.

For information on supplying multiple EPVs to provide multiple implementations of the interface, see
Multiple Interface Implementations.

Entry-Point Vectors
The manager EPV is an array of function pointers that point to implementations of the functions specified
in the IDL file. The number of elements in the array corresponds to the number of functions specified in
the IDL file. Microsoft RPC supports multiple entry-point vectors representing multiple implementations of
the functions specified in the interface.

The MIDL compiler automatically generates a manager EPV data type for use in constructing manager
EPVs. The data type is named if-name_SERVER_EPV, where if-name specifies the interface identifier in
the IDL file.

The MIDL compiler automatically creates and initializes a default manager EPV on the assumption that a
manager routine of the same name exists for each procedure in the interface and is specified in the IDL
file.

When a server offers multiple implementations of the same interface, the server must create one
additional manager EPV for each implementation. Each EPV must contain exactly one entry point
(address of a function) for each procedure defined in the IDL file. The server application declares and
initializes one manager EPV variable of type if-name_SERVER_EPV for each additional implementation
of the interface. It registers the EPVs by calling RpcServerRegisterIfEx or RpcServerRegisterIf once for
each supported object type.

When the client makes a remote procedure call to the server, the EPV containing the function pointer is
selected based on the interface UUID and the object type. The object type is derived from the object
UUID by the object-inquiry function or the table-driven mapping controlled by RpcObjectSetType.

Specifying the Manager EPV
If the routine names used by a manager correspond to those of the interface definition, you can register
this manager using the default EPV of the interface generated by the MIDL compiler. You can also
register a manager using a server-application-supplied EPV.

The Default Manager EPV
By default, the MIDL compiler uses the procedure names from an interface's IDL file to generate a
manager EPV, which the compiler places directly into the server stub. This default EPV is statically
initialized using the procedure names declared in the interface definition.

To register a manager using the default EPV, specify NULL as the value of the MgrEpv argument (a null
EPV).

Server-Supplied Manager EPVs
A server can (and sometimes must) create and register a non-null manager EPV for an interface. To
select a server-application-supplied EPV, pass a non-null EPV whose value has been declared by the
server as the value of the MgrEpv argument. A non-null value for the MgrEpv argument always overrides
a default EPV in the server stub.

The MIDL compiler automatically generates a manager EPV data type (RPC_MGR_EPV) for a server
application to use in constructing manager EPVs. A manager EPV must contain exactly one entry point
(function address) for each procedure defined in the IDL file.

A server must supply a non-null EPV in the following cases:

· When the names of manager routines differ from the procedure names declared in the interface
definition.

· When the server uses the default EPV for registering another implementation of the interface.

A server declares a manager EPV by initializing a variable of type if-name_SERVER_EPV for each
implementation of the interface.

Registering Only One Manager of an Interface
When a server offers only one implementation of an interface, the server calls the
RpcServerRegisterIfEx or RpcServerRegisterIf routine only once. In the simplest case, the server uses
the default manager EPV. (The exception is when the manager uses routine names that differ from those
declared in the interface.)

For the simple case, you supply the following values in the RpcServerRegisterIf* call:

· Manager EPVs
To use the default EPV, you specify a null value for the MgrEpv argument.

· Manager type UUID
When using the default EPV, you can register the interface with a nil manager type UUID by supplying
either a null value or a nil UUID for the MgrTypeUuid argument. In this case, all remote procedure
calls, regardless of the object UUID in their binding handle, are dispatched to the default EPV,
assuming no RpcObjectSetType calls have been made.
You can also provide a non-nil manager type UUID. In this case, you must also call the
RpcObjectSetType routine.

Registering Multiple Implementations of an Interface
You can supply more than one implementation of the remote procedure(s) specified in the IDL file. The
server application calls RpcObjectSetType to map object UUIDs to type UUIDs and calls
RpcServerRegisterIfEx or RpcServerRegisterIf to associate manager EPVs with a type UUID. When a
remote procedure call arrives with its object UUID, the RPC server run-time library maps the object UUID
to a type UUID. The server application then uses the type UUID and the interface UUID to select the
manager EPV.

You can also specify your own function to resolve the mapping from object UUID to manager type UUID.
You specify the mapping function when you call RpcObjectSetInqFn.

To offer multiple implementations of an interface, a server must register each implementation by calling
the RpcServerRegisterIf* routine separately. For each implementation a server registers, it supplies the
same IfSpec argument, but a different pair of MgrTypeUuid and MgrEpv arguments.

In the case of multiple managers, use the RpcServerRegisterIf* routine as follows:

· Manager EPVs
To offer multiple implementations of an interface, a server must:
· Create a non-null manager EPV for each additional implementation.
· Specify a non-null value for the MgrEpv argument in the RpcServerRegisterIf* routine.
Please note that the server can also register with the default manager EPV.

· Manager type UUID
Provide a manager type UUID for each EPV of the interface. The nil type UUID (or null value) for the
MgrTypeUuid argument can be specified for one of the manager EPVs. Each type UUID must be
different.

Rules for Invoking Manager Routines
The RPC run-time library dispatches an incoming remote procedure call to a manager that offers the
requested RPC interface. When multiple managers are registered for an interface, the RPC run-time
library must select one of them. To select a manager, the RPC run-time library uses the object UUID
specified by the call's binding handle.

The run-time library applies the following rules when interpreting the object UUID of a remote procedure
call:

· Nil object UUIDs
A nil object UUID is automatically assigned the nil type UUID (it is illegal to specify a nil object UUID
in the RpcObjectSetType routine). Therefore, a remote procedure call whose binding handle
contains a nil object UUID is automatically dispatched to the manager registered with the nil type
UUID, if any.

· Non-nil object UUIDs
In principle, a remote procedure call whose binding handle contains a non-nil object UUID should be
processed by a manager whose type UUID matches the type of the object UUID. However, identifying
the correct manager requires that the server has specified the type of that object UUID by calling the
RpcObjectSetType routine.

If a server fails to call the RpcObjectSetType routine for a non-nil object UUID, a remote procedure call
for that object UUID goes to the manager EPV that services remote procedure calls with a nil object UUID
(that is, the nil type UUID).

Remote procedure calls with a non-nil object UUID in the binding handle cannot be executed if the server
assigned that non-nil object UUID a type UUID by calling the RpcObjectSetType routine, but did not also
register a manager EPV for that type UUID by calling the RpcServerRegisterIfEx or
RpcServerRegisterIf routine.

Object
UUID of
call

Server set
type for
object
UUID?

Server
registered
EPV type?

Dispatching action
Nil Not

applicable
Yes Uses the manager with the nil

type UUID.
Nil Not

applicable
No Error

(RPC_S_UNSUPPORTED_TYPE
); rejects the remote procedure
call.

Non-nil Yes Yes Uses the manager with the same
type UUID.

Non-nil No Ignored Uses the manager with the nil
type UUID. If no manager with
the nil type UUID, error
(RPC_S_UNSUPPORTEDTYPE)
; rejects the remote procedure
call.

Non-nil Yes No Error
(RPC_S_UNSUPPORTEDTYPE)
; rejects the remote procedure
call.

The object UUID of the call is the object UUID found in a binding handle for a remote procedure call.

The server sets the type of the object UUID by calling RpcObjectSetType to specify the type UUID for an
object.

The server registers the type for the manager EPV by calling RpcServerRegisterIf* using the same type
UUID.

The nil object UUID is always automatically assigned the nil type UUID. It is illegal to specify a nil object
UUID in the RpcObjectSetType routine.

Dispatching a Remote Procedure Call to a Server-Manager Routine
The following tables show the steps taken by the RPC run-time library to dispatch a remote procedure call
to a server-manager routine.

Assume a simple case where the server registers the default manager EPV, as described in the following
tables:

Interface registry table
Interface UUID Manager type

UUID
Entry-point vector

uuid1 Nil Default EPV

Object registry table
Object UUID Object type
Nil Nil
(Any other object UUID) Nil

Mapping the binding handle to an entry-point vector
Interface UUID
(from client
binding
handle)

Object UUID
(from client
binding handle)

Object type
(from object
registry table)

Manager EPV
(from interface
registry table)

uuid1 Nil Nil Default EPV
Same as above uuidA Nil Default EPV

The following steps describe the actions taken by the RPC server run-time library:

1. The server calls RpcServerRegisterIfEx or RpcServerRegisterIf to associate an interface it offers
with the nil manager type UUID and with the MIDL-generated default manager EPV. This call adds an
entry in the interface registry table. The interface UUID is contained in the IfSpec argument.

2. By default, the object registry table associates all object UUIDs with the nil type UUID. In this
example, the server does not call RpcObjectSetType.

3. The server run-time library receives a remote procedure code containing the interface UUID the call
belongs to and the object UUID from the call's binding handle.
See the following function reference entries for discussions of how an object UUID is set into a
binding handle:
· RpcNsBindingImportBegin
· RpcNsBindingLookupBegin
· RpcBindingFromStringBinding
· RpcBindingSetObject

4. Using the interface UUID from the remote procedure call, the server's run-time library locates that
interface UUID in the interface registry table.
If the server did not register the interface using RpcServerRegisterIf*, the remote procedure call
returns to the caller with an RPC_S_UNKNOWN_IF status code.

5. Using the object UUID from the binding handle, the server's run-time library locates that object UUID
in the object registry table. In this example, all object UUIDs map to the nil object type.

6. The server's run-time library locates the nil manager type in the interface registry table.
7. Combining the interface UUID and nil type in the interface registry table resolves to the default EPV,

which contains the server-manager routines to be executed for the interface UUID found in the
remote procedure call.

Assume that the server offers multiple interfaces and multiple implementations of each interface, as
described in the following tables:

Interface registry table
Interface UUID Manager type UUID Entry-point vector
uuid1 Nil epv1
uuid1 uuid3 epv4
uuid2 uuid4 epv2
uuid2 uuid7 epv3

Object registry table
Object UUID Object type
uuidA uuid3
uuidB uuid7
uuidC uuid7
uuidD uuid3
uuidE uuid3
uuidF uuid8
Nil Nil
(Any other UUID) Nil

Mapping the binding handle to an entry-point vector
Interface UUID
(from client
binding
handle)

Object UUID
(from client
binding handle)

Object type
(from object
registry table)

Manager EPV
(from interface
registry table)

uuid1 Nil Nil epv1
uuid1 uuidA uuid3 epv4
uuid1 uuidD uuid3 epv4
uuid1 uuidE uuid3 epv4
uuid2 uuidB uuid7 epv3
uuid2 uuidC uuid7 epv3

The following steps describe the actions taken by the server's run-time library as shown in the preceding
tables when called by a client with interface UUID uuid2 and object UUID uuidC:

1. The server calls RpcServerRegisterIfEx or RpcServerRegisterIf to associate the interfaces it offers
with the different manager EPVs. The entries in the interface registry table reflect four calls of
RpcServerRegisterIf* to offer two interfaces, with two implementations (EPVs) for each interface.

2. The server calls RpcObjectSetType to establish the type of each object it offers. In addition to the
default association of the nil object to a nil type, all other object UUIDs not explicitly found in the
object registry table also map to the nil type UUID.

In this example, the server calls the RpcObjectSetType routine six times.
3. The server run-time library receives a remote procedure call containing the interface UUID the call

belongs to and an object UUID from the call's binding handle.
4. Using the interface UUID from the remote procedure call, the server's run-time library locates the

interface UUID in the interface registry table.
5. Using the object UUID from the binding handle, uuidC, the server's run-time library locates the object

UUID in the object registry table and finds that it maps to type uuid7.
6. The server's run-time library locates the manager type by combining the interface UUID, uuid2, and

type uuid7 in the interface registry table. This resolves to epv3, which contains the server-manager
routine to be executed for the remote procedure call.

The routines in epv2 will never be executed because the server has not called the RpcObjectSetType
routine to add any objects with a type UUID of uuid4 to the object registry table.

A remote procedure call with interface UUID uuid2 and object UUID uuidF returns to the caller with an
RPC_S_UNKNOWN_MGR_TYPE status code because the server did not call the RpcServerRegisterIf*
routine to register the interface with a manager type of uuid8.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_TYPE_ALREADY_REGISTERE
D

Type UUID already
registered

See Also
RpcBindingFromStringBinding, RpcBindingSetObject, RpcNsBindingExport,
RpcNsBindingImportBegin, RpcNsBindingLookupBegin, RpcObjectSetType,
RpcServerRegisterIfEx, RpcServerRegisterIf, RpcServerUnregisterIf

Supplying Your Own Object-Inquiry Function
Consider a server that manages thousands of objects of many different types. Whenever the server
started, the server application would have to call the function RpcObjectSetType for every one of the
objects, even though clients might refer to only a few of the objects (or take a long time to refer to them).
The thousands of objects are likely to be on disk so that retrieving their types would be time consuming.
Also, the internal table that is mapping the object UUID to the manager type UUID would essentially
duplicate the mapping maintained with the objects themselves.

For convenience, the RPC function set includes the function RpcObjectSetInqFn. With this function, you
provide your own object-inquiry function.

As an example, you can supply your own object-inquiry function when you map objects 100 - 199 to type
number 1, 200 - 299 to type number 2, and so on. The object-inquiry function can also be extended to a
distributed file system, where the server application does not "know" all the files (object UUIDs) available,
or when files in the file system are named by object UUIDs and you do not want to preload all object-
UUID-to-type-UUID mappings.

Listening for Clients
After registering the protocol sequence, endpoint, and interface, and advertising the availability of the
server application in the name-service database, the server calls RpcServerListen to indicate to the run-
time library that it is ready to accept remote procedure calls from clients.

The OSF-DCE implementation of RpcServerListen does not return to the server application until another
server thread calls RpcMgmtStopServerListening. The call to RpcServerListen ties up the server-
manager thread.

Microsoft has extended the OSF-DCE definition of this function. You supply a flag that indicates whether
to wait or to return immediately to the server application to allow further processing. When your server
application uses this option, it can call a new function, RpcMgmtWaitServerListen, to perform the wait
operation.

The wait functionality prevents the server from terminating an active client operation. When the server has
selected the wait option by calling RpcServerListen or RpcMgmtWaitServerListen, the server waits
until all client operations are complete before shutting down the server-manager application.

Client Application RPC API Calls
To make the remote procedure call, the client must obtain a binding handle. There are two ways to obtain
a binding handle:

· Importing from the name-service database. The client specifies the name of the name-service
database entry and obtains a binding handle.

· Constructing individual strings that represent the client object UUID, server, protocol sequence,
network address, endpoint, and options. Call the function RpcStringBindingCompose to assemble
these strings into the correct syntax for a string binding, and then call
RpcBindingFromStringBinding to obtain the binding handle.

For information see String Bindings.

Use the RPC name service in both client and server applications for ease of administration and
maintenance.

Importing from the Name-Service Database
When the server application is registered with the name-service database, the client can obtain binding
handles by using one of two equivalent methods:

· Importing (call RpcNsBindingImportBegin, RpcNsBindingImportNext, and
RpcNsBindingImportDone).

· Looking up and selecting (call RpcNsBindingLookupBegin, RpcNsBindingLookupNext,
RpcNsBindingSelect, and RpcNsBindingLookupDone).

The import method returns a single binding handle while the look-up method returns a binding vector from
which the application selects one binding handle using the function RpcNsBindingSelect.

The client queries the name service by supplying the logical name the client uses to refer to the server
application. The name-service provider returns a binding handle.

The client can also choose to supply a null name (an empty string or a null pointer). In this case, the
Microsoft Locator searches for name-service database entries that match the supplied interface UUID.
The search varies slightly between the OSF-DCE CDS and the Microsoft Locator.

The OSF-DCE implementation of the name-service provider uses the DEFAULT_ENTRY environment
variable, which is usually the name of a profile, to search for an entry that matches the interface ID
specified in the import call. See NSID documentation for more details.

The Microsoft Locator implementation of the name-service provider does not use DEFAULT_ENTRY and
does not support group or profile entries. Instead, all entries in the primary locator (at the domain
controller) are combined to form a default profile. When no matches are found in that domain, the client
application can search in another domain. For more information about specifying the domain name, see
Name Syntax.

Exception Handling
Microsoft RPC uses the same approach to exception handling as the Microsoft Win32 API.

With Microsoft Windows NT and Windows 95, the RpcTryFinally / RpcFinally / RpcEndFinally structure
is equivalent to the Win32 try-finally statement. The RPC exception construct RpcTryExcept /
RpcExcept / RpcEndExcept is equivalent to the Win32 try-except statement.

The exception-handler structures in Microsoft RPC are provided so they can also be supported on
computers with MS-DOS and Windows 3.x. When you use the RPC exception handlers, your client-side
source code is portable to Windows NT, Windows 95, Windows 3.x, and MS-DOS. The different RPC
header files provided for each platform resolve the RpcTry and RpcExcept structures for each platform.
In the Win32 environment, these macros map directly to the Win32 try-finally and try-except statements.
In other environments, these macros map to other platform-specific implementations of exception
handlers.

The RPC exception-handling macros provide consistent try-except support across MS-DOS, Windows
3.x, Windows 95, and Windows NT. With Windows NT and Windows 95, RPC try-except support
expands into Win32 try-except support.

When you write distributed applications for Windows NT and Windows 95 only, use the Win32 try-except
and try-finally statements. If you are writing for MS-DOS and Windows 3.x, use the RPC versions of
these macros. Potential exceptions raised by these structures include the set of error codes returned by
the RPC functions with the prefixes "RPC_S_" and "RPC_X" and the set of exceptions returned by
Win32.

Exceptions that occur in the server application, server stub, and server run-time library (above the
transport layer) are propagated to the client. This propagation feature includes multiple layers of
callbacks. No exceptions are propagated from the server transport level. The following figure shows how
exceptions are returned from the server to the client.

{ewc msdncd, EWGraphic, bsd23536 1 /a "SDK_A20.BMP"}

The RPC exception handlers differ slightly from the OSF-DCE exception-handling macros TRY, FINALLY,
and CATCH. Various vendors provide include files that map the OSF-DCE RPC functions to the Microsoft
RPC functions, including TRY, CATCH, CATCH_ALL, and ENDTRY. These header files also map the
RPC_S_* error codes onto the OSF-DCE exception counterparts, rpc_s_*, and map RPC_X_* error
codes to rpc_x_*. For OSF-DCE portability, use these include files.

For more information about the RPC exception handlers, see RpcExcept and RpcFinally. For more
information about the Win32 exception handlers, see your Win32 API documentation.

Security
Microsoft RPC supports two different methods for adding security to your distributed application:

· A security package that can be accessed using the RPC functions.
· The security features built into Windows NT transport protocols.

The transport-level security method is not the preferred method. We recommend you use RPC security
because it works on all transports, across platforms, and provides a high levels of security, including
privacy.

Using Authenticated RPC
While previous versions of Microsoft RPC depended on the security built into the named-pipe transport,
this version also implements the transport-independent security functions from OSF-DCE RPC, using the
Windows NT Security Service as the default security provider. This higher-level security enables servers
to filter client requests based on an authenticated identity associated with each request.

An Overview of Authenticated RPC
To use authenticated RPC, a client passes its user security information to the run-time library. This
security information is called the client credentials. The client run-time library forwards the credentials to
the server run-time library which then passes it to the relevant security provider for verification. (In this
version of Microsoft RPC, the NT Security Service is the only supported security provider. Other security
providers may be added in the future.) When a call is made, the security provider ensures that the
credentials are valid. If so, the server stub is called and the call proceeds. Otherwise, the client is denied
access and the call fails.

Authenticated RPC involves a series of tasks performed by all servers every time a client tries to connect.
The server must:

1. Extract binding information about the client from the incoming call.
2. Extract the authentication information from the binding handle and check the credentials with the NT

Security Service.
3. Compare the client's authentication information with the access control list (ACL) on the security

server's database.

Writing a Secure Server
If your server registers with a security provider, client calls with invalid credentials will not be dispatched.
However, calls with no credentials will be dispatched. There are three ways to keep this from happening:

· Register the interface using RpcServerRegisterIfEx, with a security callback function; this will cause
the RPC runtime to automatically reject unauthenticated calls to that interface.

· Call RpcBindingInqAuthClient to determine the security level in use by the client; your stub can
then return an error if the client is unauthenticated.

· Only allow calls using the RPC_C_AUTHN_PACKET_PRIVACY level. Then, all server replies will be
encrypted during transmission.

Note    If you are using the NT LAN Manager Security Support Provider (by means of the
authentication-service constant RPC_C_AUTHN_WINNT), you should be aware that a client whose
credentials specify an unknown user name will be given "guest" access permission. If you do not want
this behavior, remove the "guest" account from your server.

The NTLMSSP provider also lets your server impersonate the client by calling
RpcImpersonateClient. For more information on the NT security model, read Security Model.

If you need additional information on how to write a secure server, check with the manufacturer of
your security provider.

Implementing Security for Clients
To set up a binding handle for authenticated RPC, a client application calls RpcBindingSetAuthInfo.
Without this call, all remote procedure calls on the binding handle will be unauthenticated. The chosen
level of security and authentication applies only to that binding handle. Context handles derived from the
binding handle will use the same security information, but subsequent modifications to the binding handle
will not be reflected in the context handles. The security and authentication level stays in effect until
another level of security is chosen, or until the process terminates. Most applications will not require a
change in the security level.

The levels of security and authentication available for authenticated RPC are shown in the following table:

Authentication-Level Constant Description
RPC_C_AUTHN_LEVEL_DEFAULT Uses the default

authentication level for the
specified authentication
service.

RPC_C_AUTHN_LEVEL_NONE Performs no authentication.
RPC_C_AUTHN_LEVEL_CONNECT Authenticates only when the

client establishes a
relationship with the server.
Datagram RPC does not
support this level and instead
uses the
RPC_C_AUTHN_LEVEL_PK
T level.

RPC_C_AUTHN_LEVEL_CALL Authenticates only at the
beginning of each remote
procedure call when the
server receives the request.
Although defined by OSF,
neither datagram nor
connection-oriented RPC
supports this level. RPC uses
the
RPC_C_AUTHN_LEVEL_PK
T level instead.

RPC_C_AUTHN_LEVEL_PKT Authenticates and verifies
that all data received is from
the expected client.

RPC_C_AUTHN_LEVEL_PKT_INTEG
RITY

Authenticates and verifies
that none of the data
transferred between client
and server has been
modified.

RPC_C_AUTHN_LEVEL_PKT_PRIVA
CY

Authenticates all previous
levels and encrypts the
argument value of each
remote procedure call. Note
that this level is unavailable in
France due to legal
restrictions.

Note    The RPC_C_AUTHN_LEVEL_CALL, RPC_C_AUTHN_LEVEL_PKT,
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, and RPC_C_AUTHN_LEVEL_PKT_PRIVACY are only
supported for clients communicating with a Windows NT server. A Windows® 95 server can only
accept incoming calls at the RPC_C_AUTHN_LEVEL_CONNECT level.

The level of security required depends entirely on the application. When choosing a security level for your
application, remember that the higher the protection level, the greater the overhead required to create and
maintain the levels. Additionally, there are performance trade-offs to consider. The checksum computation
and encryption required by the RPC run-time library can make data protection a time-consuming
operation. The more often credentials are checked, the more time it will take to get on with the business
of the application. Use the authentication-level constant that offers the protection your application needs.

Note that authentication-level constants cannot be combined.

Differences in Platforms
When developing applications for MS-DOS, you must feed in the password and credential information to
RpcBindingSetAuthInfo manually. This is optional for a 16-bit or 32-bit Windows platform which, by
default, uses the credentials for the currently logged-in user. If a Windows 95, Windows For Workgroups,
or Windows 3.x workstation is not part of a domain, the user will be prompted for the password.

To manually pass credentials to RpcBindingSetAuthInfo, create a pointer to the
SEC_WINNT_AUTH_IDENTITY structure and pass in the credential information under the AuthIdentity
parameter. Note that this structure must remain valid for the lifetime of the binding handle.

Windows 95 Considerations
For systems configured for NetWare clients, the server side of the application must obtain the server
principal name, and then pass this value to RpcServerRegisterAuthInfo. Use the
RpcServerInqDefaultPrincName routine to obtain the server principal name. In this situation, the client
calls RpcBindingSetAuthInfo in the usual manner, but a value of NULL is specified for PrincipalName.
Behind the scenes, the Windows 95 run-time library queries the server to obtain the value of
PrincipalName specified to RpcServerRegisterAuthInfo. This is the name that is actually used. The
binding handle will be authenticated on the NetWare server.

For Windows 95, if RpcBindingSetAuthInfo is called with a NULL server principal name (as described
above), the binding handle must be fully bound. If it is a dynamic endpoint in which the server registers
the endpoint with the endpoint mapper and, therefore, is not known by the client, you must use
RpcEpResolveBinding to bind the handle. This is because in order to obtain the principal name from the
server, the Windows 95 run-time library implicitly calls RpcMgmtInqServerPrincName; calls to
management interfaces cannot be made to unbound handles. All RPC server processes have the same
management interface. Registering the handle with the endpoint mapper is not sufficient to uniquely
identify a server.

Note    The ncacn_np and ncalrpc security descriptors are ignored by the Windows 95 run-time
library, because Windows 95 does not support the Windows NT security model.

Providing Client Credentials to the Server
Servers use the client's binding information to enforce security. Clients always pass a binding handle as
the first parameter of a remote procedure call. However, servers cannot use the handle unless it is
declared as the first parameter to remote procedures in either the IDL file or in the server's ACF. You can
choose to list the binding handle in the IDL file, but this forces all clients to declare and manipulate the
binding handle rather than using automatic or implicit binding if they choose.

Another method is to leave the binding handles out of the IDL file and to place the explicit_handle
attribute into the server's ACF. In this way, the client can use whatever type of binding is best suited to the
application, while the server uses the binding handle as though it were declared explicitly.

The processs of extracting the client credentials from the binding handle is shown below:

· RPC clients call RpcBindingSetAuthInfo and include their authentication information as part of the
binding information passed to the server.

· Usually, the server calls RpcImpersonateClient in order to behave as though it were the client. If the
binding handle is not authenticated, the call fails with RPC_S_NO_CONTEXT_AVAILABLE. To obtain
the client's user name, call GetUserName while impersonating.

· The server will normally create objects with ACLs by using the Windows NT call
CreatePrivateObjectSecurity. After this is accomplished, later security checks become automatic.

Windows NT Transport Security
Although this is not the preferred method, you can add security features to your distributed application by
using the security settings offered by the Windows NT named-pipe transport. These security settings are
used with the Microsoft RPC functions that start with the prefixes "RpcServerUseProtseq" and
"RpcServerUseAllProtseqs" and the functions RpcImpersonateClient and RpcRevertToSelf.

Note    If you are running an application that is a service and you are using NTLMSSP (Windows NT
LAN Manager Security Support Provider) for security, you must add an explicit service dependency
for your application. The NTLMSSP.DLL will call the Service Controller (SC) to begin the NTLMSSP
service. However, an RPC application that is a service and is running as a system, must also contact
the SC unless it is connecting to another service on the same computer.

Impersonation
Impersonation is useful in a distributed computing environment when servers must pass client requests to
other server processes or to the operating system. In this case, a server impersonates the client's security
context. Other server processes can then handle the request as if it had been made by the original client.

For example, a client makes a request to Server A. If Server A must query Server B to complete the
request, Server A impersonates client security context and makes the request to Server B on behalf of the
client. Server B uses the original client's security context, instead of the security identity for Server A, to
determine whether to complete the task.

The server calls RpcImpersonateClient to overwrite the security for the server thread with the client
security context. After the task is completed, the server calls RpcRevertToSelf or RpcRevertToSelfEx to
restore the security context defined for the server thread.

When binding, the client can specify quality-of-service information about security that specifies how the
server can impersonate the client. For example, one of the settings lets the client specify that the server is
not allowed to impersonate it.

Using Transport-Level Security on the Server
When you use ncacn_np or ncalrpc as the protocol sequence, the server specifies a security descriptor
for the endpoint at the time it selects the protocol sequence. The security descriptor is provided as an
additional parameter (an extension to the standard OSF-DCE parameters) on all functions that start with
the prefixes "RpcServerUseProtseq" and "RpcServerUseAllProtseqs." The security descriptor controls
whether a client can connect to the endpoint.

Each Windows NT process and thread is associated with a security token. This token includes a default
security descriptor that is used for any objects created by the process, such as the endpoint. If no security
descriptor is specified when calling a function with the prefixes "RpcServerUseProtseq" and
"RpcServerUseAllProtseqs," the default security descriptor from the process security token is applied to
the endpoint.

To guarantee that the server application is accessible to all clients, the administrator should start the
server application on a process that has a default security descriptor which can be used by all clients. In
Windows NT, generally only system processes have a default security descriptor.

For more information about these functions and the functions RpcImpersonateClient and
RpcRevertToSelf.

Using Transport-Level Security on the Client
The client specifies how the server impersonates the client when the client establishes the string binding.
This quality-of-service information is provided as an endpoint option in the string binding. The client can
specify the level of impersonation, dynamic or static tracking, and the effective-only flag.

To supply quality-of-service information for the server, the client performs the following steps:

1. Imports a handle from the name-service database.
The client specifies the name of the name-service database entry and obtains a binding handle.

2. Calls RpcBindingToStringBinding to obtain the protocol sequence, network address, and endpoint.
3. Calls RpcStringBindingParse to split the string binding into its component substrings.
4. Verifies that the protocol sequence is equal to ncacn_np or ncalrpc.

Client quality-of-service information is supported only on named pipes and LRPC in Microsoft RPC.
5. Adds the security information to the endpoint string as an option.

For more information about the syntax, see String Binding.
6. Calls RpcStringBindingCompose to reassemble the component strings, including the new endpoint

options, in the correct string-binding syntax.
7. Calls RpcBindingFromStringBinding to obtain a new binding handle and to apply the quality-of-

service information for the client.
8. Makes remote procedure calls using the handle.

Microsoft RPC supports Windows NT security features only on ncacn_np and ncalrpc. Windows NT
security options for other transports are ignored.

Note    Because it does not support the Windows NT security model, the Windows 95 run-time library
ignores the security descriptors ncalrpc and ncacn_np.

The following security parameters can be associated by the client with the binding for the named-pipe
transport ncacn_np or ncalrpc:

· Identification, Impersonation, or Anonymous. Specifies the type of security used.
· Dynamic or Static. Determines whether security information associated with a thread is a copy of the

security information created at the time the remote procedure call is made (static) or a pointer to the
security information (dynamic).
Static security information does not change. The dynamic setting reflects the current security settings,
including changes made after the remote procedure call is made.

· TRUE or FALSE. Specifies the value of the effective-only flag. A value of TRUE indicates that only
security settings set to "on" at the time of the call are effective. A value of FALSE indicates that all
security settings are available and can be modified by the application.

Any combination of these settings can be assigned to the binding, as shown in the following example:

"Security=Identification Dynamic True"
"Security=Anonymous Static True"
"Security=Impersonation Static False"

Default security-parameter settings vary according to the transport protocol.

For more information about the security features of Windows NT, see your Microsoft Windows NT
documentation. For information about the syntax of the endpoint options, see endpoint.

Installing and Configuring RPC
Applications

When Windows NT or Windows 95 is installed on a server or client, the RPC run-time files are
automatically installed as well. No further RPC installation is required. You must ensure, however, that the
version of Windows NT or Windows 95 is one that supports all the features used in your distributed
application. See Targetting Stubs for Specific 32-Bit Platforms    for more information.

To run MS-DOS or Microsoft Windows 16-bit clients on a 32-bit Windows operating system, your
application's install program must install the proper Windows/MS-DOS executable files, as described
below.

When you use an RPC application on a Windows 3.x or MS-DOS platform, the RPC run-time executable
files must be copied to the Windows 3.x or MS-DOS computers that will be using the application. The
directory \mstools\rpc_rt16 on the Win32 SDK CD contains a disk image with these files along with a
setup program to install the files. Use this disk image to create an install disk for distribution with your
RPC application.

When you build an RPC application for an Apple Macintosh client, the necessary files are linked to the
application at build time and no additional RPC installation is needed.

For more details about redistributable files and licensing agreements, see \LICENSE\REDIST.TXT and \
LICENSE\LICENSE.TXT on the Win32 SDK CD.

See Also
Configuring the Name Service Provider, Configuring the Name Service for Windows 95, Developing 16-bit
Windows and MS-DOS Client Applications, Developing Macintosh Client Applications.

Configuring the Name Service Provider
If your distributed application registers its interface with a name-service, both the client and server must
be using the same name-service. Microsoft RPC interoperates with the Microsoft Locator and any name-
service provider that adheres to the Microsoft RPC name-service interface (NSI) ¾ for example, the DCE
Cell Directory Service accessed through Digital Equipment Corporation's name-service daemon (nsid).
The Locator, which is designed for use in Windows environments, is the default name-service provider.

Windows NT
When you install the Win32 SDK on Microsoft Windows NT, the Locator is automatically selected as the
name-service provider. See Reconfiguring the Name Service for Windows NT for information on selecting
a different name-service provider.

Windows 95
Windows 95 does not use the Locator. If your Windows 95 application is to use a name service, it must be
part of a workgroup or domain that includes a Windows NT machine to serve as a proxy name-service
provider, or be connected to a host machine running the NSI daemon to serve as a gateway to DCE CDS.
For more information, see Configuring the Name Service for Windows 95.

MS-DOS and Windows 3.x
When you run SETUP.EXE to install the 16-bit RPC run-time library, you are prompted to select a name
service provider.

When you choose Install Default Name Service Provider, the default name-service provider, the Microsoft
Locator, is installed. The Microsoft Locator works in Microsoft Windows NT domains.

When you choose Install Custom Name Service Provider, complete the Define Network Address dialog
box to install the DCE Cell Directory Service as your name-service provider. The DCE Cell Directory
Service is the name-service provider used with DCE servers.

The network address is the name of the host computer that runs the NSI daemon (nsid). This machine
acts as a gateway to the DCE Cell Directory Service, passing name-service interface function calls
between computers that run Microsoft operating systems and DCE computers. The network address can
be 80 characters or less ¾ for example, 11.1.9.169 is a valid address.

Configuring the Name Service for Windows 95
Windows 95 does not use the Microsoft Locator. In order to use a name service in a Windows 95
application, the Windows 95 machine must either:

· Be part of a workgroup or domain that includes a Windows NT machine to serve as a proxy name
service provider, or

· Be connected to a host machine running the NSI daemon (nsid), which serves as a gateway to Digital
Equipment Corporation's DCE Cell Directory Service.

Edit the Windows 95 registry to configure the name service provider.

To designate a Microsoft Locator name-service provider for
Windows 95
1. Use REGEDIT to edit the Windows 95 registry.
2. Select HKEY_LOCALMACHINE\SOFTWARE\Microsoft\Rpc.
3. Create a new key called NameService.
4. With the NameService key selected, create the new String Value names and modify them to contain

the data as shown:
Name Data
4DefaultSyntax "3"
Protocol "ncacn_np"
Endpoint "\pipe\locator"
NetworkAddress "myserver" (where myserver is

the name of the NT machine)
ServerNetworkAddress "myserver"

To designate a DCE CDS name-service provider for Windows 95
· Edit the Windows 95 registry as described above, using the following data:

Name Data
DefaultSyntax "3"
Protocol "ncacn_ip_tcp"
Endpoint "" (an empty string)
NetworkAddress "myserver" (the name of the host

machine running nsid)
ServerNetworkAddress "myserver" (the name of the host

machine running nsid)

Note    You must have Digital Equipment Corporation's DCE Cell Directory Service product to
configure the DCE CDS as your name-service provider. See the documentation provided by Digital
Equipment Corporation for information about DCE CDS.

Reconfiguring the Name Service for Windows NT
When you install the Win32 SDK on Microsoft Windows NT, the Microsoft Locator is automatically
selected as the name-service provider. You can change the name-service provider through the Windows
Control Panel.

To reconfigure the name-service provider for Windows NT
1. In the Control Panel, choose the Network icon.

The Network dialog box appears.
2. In the Network dialog box, choose Configure.
3. In the Network Software list, select RPC Configuration.

The RPC Name Service Provider Configuration dialog box appears.
4. In the RPC Name Service Provider Configuration dialog box, select a name-service provider from the

list.
· When you choose the Microsoft Locator, choose OK. The configuration process is then complete.
· When you choose the DCE Cell Directory Service, in the Network Address box type the name of

the host computer that runs the NSI daemon (nsid), and then choose OK.
The host computer that runs the nsid acts as a gateway to the DCE Cell Directory Service, passing
name-service interface function calls between computers that run Microsoft operating systems and
DCE computers. A network address can be up to 80 characters ¾ for example, 11.1.9.169 is a
valid address.
Note You must have Digital Equipment Corporation's DCE CDS product to configure the DCE CDS
as your name-service provider. See the documentation provided by Digital Equipment Corporation
for information about DCE CDS.

Reconfiguring the Name Service for Windows 3.x/MS-DOS
When you install the Win32 SDK for Windows 3.x/MS-DOS, you specify a name-service provider. You can
change the name-service provider you specified by editing the RPCREG.DAT configuration file, which
contains the name-service-provider parameters and RPC protocol settings. Use a text editor to change
name-service provider entries.

To reconfigure the Microsoft Locator name-service provider
1. Open the RPCREG.DAT file using a text editor.

RPCREG.DAT is in the root directory unless you specified a different path during the Setup program.
2. Set the following values for the registry entries:

Registry entry Value
Software\Microsoft\RPC
\NameService\Protocol

The protocol sequence for the
protocol you are using. The
default is ncacn_np.

Software\Microsoft\RPC\
NameService\NetworkAddress

The name of the computer
running the Locator that is used
by clients during name-service
lookup operations. The default is
the primary domain controller.

Software\Microsoft\RPC\
NameService\Endpoint

The name of the endpoint used
by the name service. The default
is \pipe\locator.

3. Save and close the file.
To configure the DCE CDS name-service provider

· You must have Digital Equipment Corporation's DCE Cell Directory Service product to configure the
DCE CDS as your name-service provider. See the documentation provided by Digital Equipment
Corporation for information about DCE CDS.

Registry Information
When you install Microsoft Windows NT or Windows 95, or when you run the Windows 3.x/MS-DOS
Setup programs, the RPC protocol information you specify is stored in the registry file. The 32-bit
Windows registry entries are automatically configured and no further configuration is necessary. With MS-
DOS and Windows 3.x, use a text editor to change entries in the RPCREG.DAT file:

Registry entry Description
SOFTWARE\Microsoft\Rpc\
NameService\DefaultSyntax

Specifies the default syntax that
is used by the RPC functions
RpcNsBindingImportBegin
and RpcNsBindingExport. This
registry entry corresponds to the
DCE environment variable
RPC_DEFAULT_ENTRY_SYNT
AX.

SOFTWARE\Microsoft\Rpc\
NameService\NetworkAddress

Specifies the address of the
computer running the Locator
that is used by clients during
name-service lookup operations.
The default setting is the primary
domain controller.

SOFTWARE\Microsoft\Rpc\
NameService\
ServerNetworkAddress

Specifies the address of the
computer running the Locator
that is used by servers during
name-service export operations.
Default is PDC (Windows NT
only).

SOFTWARE\Microsoft\Rpc\
NameService\Endpoint

Specifies the endpoint used by
the name service.

SOFTWARE\Microsoft\Rpc\
NameService\Protocol

Specifies the protocol used by
the name service.

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_np

Specifies the name of the RPC
client transport DLL for named
pipes.

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_ip_tcp

Specifies the name of the RPC
client transport DLL for TCP/IP.

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_nb_nb

Specifies the name of the RPC
client transport DLL for NetBEUI
over NetBIOS.

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncalrpc

Specifies the name of the RPC
client transport DLL for local
RPC (Windows NT only).

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncacn_np

Specifies the name of the RPC
server transport DLL for named
pipes.

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncacn_ip_tcp

Specifies the name of the RPC
server transport DLL for TCP/IP.

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncacn_nb_nb

Specifies the name of the RPC
server transport DLL for
NetBEUI.

SOFTWARE\Microsoft\Rpc\ Specifies the name of the RPC

ServerProtocols\ncalrpc server transport DLL for local
RPC (Windows NT only).

SOFTWARE\Microsoft\Rpc\NetBios Consists of mapping strings that
map protocols to NetBIOS lana
numbers. For NetBIOS
information, see the following
section.

The Microsoft RPC Setup program automatically maps protocol strings to NetBIOS lana numbers and
writes these settings in the registry. These mappings work as long as you only have one network card and
one network protocol. If you have more than one network card and network protocol, or if you change
your network configuration after installing Microsoft RPC, you must update the registry to indicate the new
correspondences between protocol strings and NetBIOS lana numbers.

For 32-bit Windows platforms, the mapping string appears in the registry tree under \SOFTWARE\
Microsoft\Rpc\NetBios. For MS-DOS and Windows 3.x, the mapping string appears in the registry file
RPCREG.DAT.

The mapping string uses the following syntax:

ncacn_nb_protocol digit=lana_number

protocol

Specifies the protocol type. The valid protocol values are as follows:
Protocol Protocol type
nb NetBEUI
tcp TCP/IP

digit

Specifies a unique number associated with each instance of a protocol. Use the value 0 for the first
instance of a protocol and use the next consecutive number for each additional instance of that
protocol. For example, assign the value ncacn_nb_nb0 to the first NetBEUI entry; assign the value
ncacn_nb_nb1 to the second NetBEUI entry.

lana_number

Specifies the NetBIOS lana number.
A unique lana number is associated with each network adapter present in the computer. For LAN
Manager networks, the lana numbers for each network card are available in the configuration files
LANMAN.INI and PROTOCOL.INI. For more information about the lana number, see your network
documentation.
For example, the following mapping string describes a configuration that uses the NetBEUI protocol
over an adapter card that is assigned lana number 0:
ncacn_nb_nb0=0

When you install a second card that supports both XNS and NetBEUI protocols, the mapping strings
appear as follows:
ncacn_nb_tcp0=0
ncacn_nb_nb1=1

Configuring the Windows NT Registry for Port Allocations and
Selective Binding
The following registry keys specify the system defaults for dynamic port allocation and for binding to NICs
on multihomed machines. You must first create these keys, then specify the appropriate settings. If a key
is missing or if it contains an invalid value, then the entire configuration is marked as invalid and all
RpcServerUseProtseq*(ncacn_ip_tcp) calls will fail.

Note    Ports allocated to a process remain allocated until that process dies. If all available ports are
in use, then the API will return RPC_S_OUT_OF_RESOURCES.

Port Key Data Type Description
HKEY_LOCAL_MACHINE\
Software\Microsoft\Rpc\
Internet\Ports

REG_MULTI_SZ Specifies a set of IP port ranges
consisting of either all the ports
available from the Internet or all
the ports not available from the
Internet. Each string represents a
single port or an inclusive set of
ports (for example,"1000-1050"
"1984"). If any entries are outside
the range of zero to 65535, or if
any string cannot be interpreted,
the RPC run time will treat the
entire configuration as invalid.

HKEY_LOCAL_MACHINE\
Software\Microsoft\Rpc\
Internet\
PortsInternetAvailable

REG_SZ Y or N (not case-sensitive). If Y,
the ports listed in the Ports key
are all the Internet-available ports
on that machine. If N, the ports
listed in the Ports key are all those
ports that are not Internet-
available.

HKEY_LOCAL_MACHINE\
Software\Microsoft\Rpc\
Internet\UseInternetPorts

REG_SZ Y or N (not case-sensitive).
Specifies the system default
policy. If Y, the processes using
the default will be assigned ports
from the set of Internet-available
ports, as defined above. If N,
processes using the default will be
assigned ports from the set of
intranet-only ports.

HKEY_LOCAL_MACHINE\
System\CurrentControlSet\
Services\Rpc\Linkage\Bind

REG_MULTI_SZ Lists the device names of all the
NICs on which to bind by default
(for example, \Device\AMDPCN1).
If the key does not exist, the
server will bind to all NICs. If the
key does exist, the server will bind
to the NICs specified in the key,
unless the NICFlags field is set to
RPC_C_BIND_TO_ALL_NICS. If
the key has a null ("") value, the
configuration will be marked as
invalid and all calls to
RpcServerUseProseq(ncacn_ip_t
cp) will fail.

See Also
RPC_POLICY, RpcServerUseAllProtseqsEx, RpcServerUseAllProtseqsIfEx,
RpcServerUseProtseqEx, RpcServerUseProtseqEpEx, RpcServerUseProtseqIfEx, ncacn_ip_tcp

SPX/IPX Installation
When using the ncacn_spx and ncadg_ipx transports, the server name is exactly the same as the
Windows NT or Windows 95 server name. However, since the names are distributed using Novell
protocols, they must conform to the Novell naming conventions. If a server name is not a valid Novell
name, servers will not be able to create endpoints with the ncacn_spx or ncadg_ipx transports.

A valid Novell server name contains only the characters between 0x20 and 0x7f. Lowercase characters
are changed to uppercase. The following characters cannot be used:

"*,./:;<=>?[]\|]

To maintain compatibility with the first version of Windows NT, ncacn_spx and ncadg_ipx also allow you
to use a special format of the server name known as the tilde name. The tilde name consists of a tilde,
followed by the server's eight-digit network number, and then followed by its twelve-digit Ethernet
address. Tilde names have an advantage in that they do not require any name service capabilities. Thus,
if you are connected to a server, the tilde name will work.

The following tables contain two sample configurations used to illustrate the points previously described:

Component Configured As
Windows NT or Windows 95 ServerNWCS
Windows NT or Windows 95 Client NWCS
Windows 3.x/MS-DOS Client NetWare Redirector

The configuration in the previous table requires that you have NetWare file servers or routers on your
network. It will produce the best performance because the server names are stored in the NetWare
Bindery.

Component Configured As
Windows NT or Windows 95 ServerSAP Agent
Windows NT or Windows 95 Client IPX/SPX
Windows 3.x/MS-DOS Client IPX/SPX

The second configuration works in an environment that does not contain NetWare file servers or routers
(for example, a network of two computers: a Windows NT server and an MS-DOS client). Name
resolution, which is accomplished during the first call over a binding handle, will be slightly slower than the
first configuration. In addition, the second configuration results in more traffic generated over the network.

To implement name resolution, when an RPC server uses an SPX or IPX endpoint, the server name and
endpoint are registered as a SAP server of type 640 (hexadecimal). To resolve a server name, the RPC
client sends a SAP request for all services of the same type, and then scans the list of responses for the
name of the server. This process occurs during the first RPC call over each binding handle. For additional
information on the SAP protocol for Novell, see your NetWare documentation.

Note    The 16-bit Windows client applications that use the ncacn_spx or ncadg_ipx transports
require that the file NWIPXSPX.DLL be installed in order to run under the Windows NT Windows on
Windows (WOW) subsystem. Contact Novell to obtain this file.

Configuring the Security Server
Use the following to configure the security server for RPC:

1. Start Windows NT and choose the Control Panel icon.
2. In the Control Panel, choose the Networks icon.

The Network Settings dialog box appears.
3. In the Installed Network Software list, select RPC Configuration.

The RPC Configuration dialog box appears.
4. In the Security Service Provider list, select from one or more security providers.
5. Select OK.

Starting and Stopping the RPC Locator
On the Windows NT platform, the RPC run-time libraries automatically start the RPC Locator when it is
needed.

If you need to clear the database, for example, during debugging, you can manually stop and start the
Locator.

To stop and start the RPC Locator
1. From the Control Panel, select Services.

The Services dialog box appears.
1. In the Service box, select Remote Procedure Call (RPC) Locator and choose Start or Stop.

You can also start and stop the Locator from the command line by typing:

C:\> net [start/stop] rpclocator

Note    Only an administrator can start the RPC Locator once it is stopped. If stopped, it will be restarted
as necessary by the RPC run-time libraries.

RPC Data Types and Structures
This section defines the following constants, data types, and data structures used by the Microsoft RPC
run-time functions:

Data type/structure Description
RPC_C_AUTHN_LEVEL* Authentication-level constants
RPC_C_AUTHN* Authentication-service constants
RPC_C_AUTHZ* Authorization-service constants
GUID Globally unique identifier (UUID)
PROTSEQ Protocol sequence string
RPC_AUTH_IDENTITY_HANDLE Authorization-identity handle
RPC_AUTH_KEY_RETRIEVAL_F
N

Authorization-key retrieval
function

RPC_AUTHZ_HANDLE Authorization handle
RPC_BINDING_HANDLE Binding handle
RPC_BINDING_VECTOR Count and array of binding

handles
RPC_IF_HANDLE Interface handle
RPC_IF_ID Interface identifier
RPC_IF_ID_VECTOR Count and array of interface

identifiers
RPC_MGR_EPV Manager entry-point vector
RPC_NS_HANDLE Name-service handle
RPC_OBJECT_INQ_FN Object-inquiry function
RPC_POLICY Set port allocation and NIC

binding policies
RPC_PROTSEQ_VECTOR Count and array of protocol

sequences
RPC_STATS_VECTOR Statistics vector
RPC_STATUS Status
SEC_WINNT_AUTH_IDENTITY Authentication
String binding String representation of a binding
String UUID Unique identifier string
UUID Universally unique identifier
UUID_VECTOR Count and array of unique

identifiers

Authentication-Level Constants
The AuthnLevel argument represents the authentication level supplied to the RpcBindingInqAuthInfo
and RpcBindingSetAuthInfo run-time functions.

The levels are listed in order of increasing authentication. Each new level adds to the authentication
provided by the previous level. If the RPC run-time library does not support the specified level, it
automatically upgrades to the next higher supported level.

The following constants represent valid values for the AuthnLevel argument:

Constant Description
RPC_C_AUTHN_LEVEL_DEFAULT Uses the default authentication

level for the specified
authentication service.

RPC_C_AUTHN_LEVEL_NONE Performs no authentication.
RPC_C_AUTHN_LEVEL_CONNEC
T

Authenticates only when the
client establishes a relationship
with a server.

RPC_C_AUTHN_LEVEL_CALL Authenticates only at the
beginning of each remote
procedure call when the server
receives the request. Does not
apply to remote procedure calls
made using the connection-
based protocol sequences
(those that start with the prefix
"ncacn"). If the protocol
sequence in a binding handle is
a connection-based protocol
sequence and you specify this
level, this routine instead uses
the
RPC_C_AUTHN_LEVEL_PKT
constant.

RPC_C_AUTHN_LEVEL_PKT Authenticates that all data
received is from the expected
client.

RPC_C_AUTHN_LEVEL_PKT
_INTEGRITY

Authenticates and verifies that
none of the data transferred
between client and server has
been modified.

RPC_C_AUTHN_LEVEL_PKT
_PRIVACY

Authenticates all previous levels
and encrypts the argument
value of each remote procedure
call.

Note    RPC_C_AUTHN_LEVEL_CALL, RPC_C_AUTHN_LEVEL_PKT,
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, and RPC_C_AUTHN_LEVEL_PKT_PRIVACY are only
supported for clients communicating with a Windows NT server. A Windows 95 server can only accept
incoming calls at the RPC_C_AUTHN_LEVEL_CONNECT level.

See Also
RpcBindingInqAuthInfo, RpcBindingSetAuthInfo

Authentication-Service Constants
The AuthnSvc argument represents the authentication service supplied to the RpcBindingInqAuthInfo
and RpcBindingSetAuthInfo run-time functions.

The following constants represent valid values for the AuthnSvc argument:

Constant Value Service
RPC_C_AUTHN_DCE_PRIVATE 1 DCE private key

authentication
RPC_C_AUTHN_DCE_PUBLIC 2 DCE public key

authentication (reserved
for future use)

RPC_C_AUTHN_DEC_PUBLIC 4 DEC public key
authentication (reserved
for future use)

RPC_C_AUTHN_DEFAULT 0xffffffff Default authentication
service

RPC_C_AUTHN_NONE 0 No authentication
RPC_C_AUTHN_WINNT 10 NTLMSSP (NT LAN

Manager Security
Support Provider)

Specify RPC_C_AUTHN_NONE to turn off authentication for remote procedure calls made using the
binding handle.

When you specify RPC_C_AUTHN_DEFAULT, the RPC run-time library uses the
RPC_C_AUTHN_DCE_PRIVATE authentication service for remote procedure calls made using the
binding handle.

See Also
RpcBindingInqAuthInfo, RpcBindingSetAuthInfo

Authorization-Service Constants
The AuthzSvc argument represents the authorization service supplied to the RpcBindingInqAuthInfo
and RpcBindingSetAuthInfo run-time functions.

The following constants represent valid values for the AuthzSvc argument:

Constant Value Service
RPC_C_AUTHZ_NONE 0 Server performs no authorization.
RPC_C_AUTHZ_NAME 1 Server performs authorization

based on the client's principal
name.

RPC_C_AUTHZ_DCE 2 Server performs authorization
checking using the client's DCE
privilege attribute certificate (PAC)
information, which is sent to the
server with each remote procedure
call made using the binding handle.
Generally, access is checked
against DCE access control lists
(ACLs).

See Also
RpcBindingInqAuthInfo, RpcBindingSetAuthInfo

GUID   

typedef struct _GUID {
 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];
} GUID;

typedef GUID UUID;

Data1

Specifies the first eight hexadecimal digits of the UUID.
Data2

Specifies the first group of four hexadecimal digits of the UUID.
Data3

Specifies the second group of four hexadecimal digits of the UUID.
Data4

Specifies an array of eight elements that contains the third and final group of eight hexadecimal digits
of the UUID in elements 0 and 1, and the final 12 hexadecimal digits of the UUID in elements 2
through 7.

Remarks
GUIDs are globally unique identifiers and are a Microsoft implementation of the DCE UUID.

UUIDs uniquely identify objects, such as interfaces, manager entry-point vectors, and client objects. The
RPC run-time libraries use UUIDs to check for compatibility between clients and servers and to select
among multiple implementations of an interface.

See Also
UUID, UUID_VECTOR

PROTSEQ
unsigned char *    Protseq[1];

Protseq

Points to a character string identifying the network protocol used to communicate between client and
server.

Remarks
The protocol sequence is a character string that represents a valid combination of an RPC protocol (such
as "ncacn"), a transport protocol (such as "tcp"), and a network protocol (such as "ip"). Microsoft RPC
supports the following protocol sequences:

Protocol
sequence

Description Supporting Platforms

ncacn_nb_tcp Connection-oriented
NetBIOS over TCP

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncacn_nb_ipx Connection-oriented
NetBIOS over IPX

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncacn_nb_nb Connection-oriented
NetBEUI

client only: MS-DOS, Windows
3.x
client and server: Windows NT,
Windows 95

ncacn_ip_tcp Connection-oriented
TCP/IP

client only: MS-DOS,Windows
3.x, and Apple Macintosh
client and server: Windows 95
and Windows NT

ncacn_np Connection-oriented
named pipes

client only: MS-DOS, Windows
3.x, Windows 95
client and server: Windows NT

ncacn_spx Connection-oriented SPX client only: MS-DOS, Windows
3.x
client and server: Windows NT,
Windows 95

ncacn_dnet_nsp Connection-oriented
DECnet transport

client only: MS-DOS, Windows
3.x

ncacn_at_dsp Connection-oriented
AppleTalk DSP

client: Apple Macintosh
server: Windows NT

ncacn_vns_spp Connection-oriented
Vines SPP transport

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncadg_ip_udp Datagram
(connectionless) UDP/IP

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncadg_ipx Datagram
(connectionless) IPX

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncalrpc Local procedure call client and server: Windows NT

and Windows 95

A server application can use a particular protocol sequence only when the RPC run-time library and
operating-system software support that protocol. A server chooses to accept remote procedure calls over
some or all of the supported protocol sequences.

Several server routines allow server applications to register protocol sequences with the run-time library.
Microsoft RPC functions that require a protocol-sequence argument use the data type unsigned char.

A client can use the protocol-sequence strings to construct a string binding using the
RpcStringBindingCompose routine.

Note    The ncalrpc protocol sequence is supported only for 32-bit Windows applications.

The ncacn_dnet_nsp protocol sequence is supported only for MS-DOS, and 16-bit Windows client
applications. This release of Microsoft RPC does not include support for the ncacn_dnet_nsp
protocol sequence with 32-bit client or server applications.

16-bit Windows client applications that use the ncacn_spx or ncadg_ipx protocol sequences require
that the file NWIPXSPX.DLL be installed in order to run under the Windows NT Windows on Windows
(WOW) subsystem. Contact Novell to obtain this file.

The ncacn_vns_spp protocol sequence requires that Banyan's Enterprise Client For Windows NT be
installed. Contact Banyan for more information.

See Also
RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf, RpcServerUseProtseq,
RpcServerUseProtseqEp, RpcServerUseProtseqIf, RpcStringBindingCompose

RPC_AUTH_IDENTITY_HANDLE
typedef void *    RPC_AUTH_IDENTITY_HANDLE;

Remarks
An identity handle points to the data structure that contains the client's authentication and authorization
credentials specified for remote procedure calls.

See Also
RpcBindingInqAuthInfo, RpcBindingSetAuthInfo

RPC_AUTH_KEY_RETRIEVAL_FN
typedef void (* RPC_AUTH_KEY_RETRIEVAL_FN)

(      void *    Arg,
        unsigned char *    ServerPrincName,
        unsigned long    KeyVer,
        void * *    Key,
        RPC_STATUS *    Status
);

Arg

Points to a user-defined argument to the user-supplied encryption key acquisition function. The RPC
run-time library uses the Arg argument supplied to RpcServerRegisterAuthInfo.

ServerPrincName

Points to the principal name to use for the server when authenticating remote procedure calls. The
RPC run-time library uses the ServerPrincName argument supplied to RpcServerRegisterAuthInfo.

KeyVer

Specifies the value that the RPC run-time library automatically provides for the key-version argument.
When the value is 0, the acquisition function must return the most recent key available.

Key

Points to a pointer to the authentication key returned by the user-supplied function.
Status

Points to the status returned by the acquisition function when it is called by the RPC run-time library
to authenticate the client RPC request. If the status is other than RPC_S_OK, the request fails and
the run-time library returns the error status to the client application.

Remarks
An authorization key retrieval function specifies the address of a server-application-provided routine
returning encryption keys.

See Also
RpcServerRegisterAuthInfo

RPC_AUTHZ_HANDLE
typedef void *    RPC_AUTHZ_HANDLE;

Remarks
An authorization handle points to the privileges information for the client application that made the remote
procedure call.

See Also
RpcBindingInqAuthClient

RPC_BINDING_HANDLE
typedef RPC_BINDING_HANDLE handle_t;

Remarks
A binding handle is a pointer-sized opaque variable containing information that the RPC run-time library
uses to access binding information. The run-time library uses binding information to establish a client-
server relationship that allows the execution of remote procedure calls.

Based on the context in which a binding handle is created, the binding handle is considered a server
binding handle or a client binding handle.

A server binding handle contains the information necessary for a client to establish a relationship with a
specific server. Any number of RPC API run-time routines return a server binding handle that can be used
for making a remote procedure call.

A client binding handle cannot be used to make a remote procedure call. The RPC run-time library
creates and provides a client binding handle to a called server procedure (also called a server manager
routine) as the RPC_BINDING_HANDLE parameter. The client binding handle contains information about
the calling client.

The RpcBinding* and RpcNsBinding* routines return the status code
RPC_S_WRONG_KIND_OF_BINDING when an application provides the incorrect binding-handle type.

An application can share a single binding handle across multiple threads of execution. The RPC run-time
library manages concurrent remote procedure calls that use a single binding handle. However, the
application is responsible for binding-handle concurrency control for operations that modify a binding
handle. These operations include the following routines:

· RpcBindingFree
· RpcBindingReset
· RpcBindingSetAuthInfo
· RpcBindingSetObject

For example, if an application shares a binding handle across two threads of execution and resets the
binding-handle endpoint in one of the threads by calling RpcBindingReset, the binding handle in the
other thread is also reset. Similarly, freeing the binding handle in one thread by calling RpcBindingFree
frees the binding handle in the other thread.

If you don't want concurrency, you can design an application to create a copy of a binding handle by
calling RpcBindingCopy. In this case, an operation to the first binding handle has no effect on the
second binding handle.

Routines requiring a binding handle as an argument show a data type of RPC_BINDING_HANDLE.
Binding-handle arguments are passed by value.

RPC_BINDING_VECTOR
#define rpc_binding_vector_t RPC_BINDING_VECTOR
typedef struct _RPC_BINDING_VECTOR {
 unsigned long Count;
 RPC_BINDING_HANDLE BindingH[1];
} RPC_BINDING_VECTOR;

Count

Specifies the number of binding handles present in the binding-handle array BindingH.
BindingH

Specifies an array of binding handles that contains Count elements.

Remarks
The binding-vector data structure contains a list of binding handles over which a server application can
receive remote procedure calls.

The binding vector contains a count member (Count), followed by an array of binding-handle (BindingH)
elements.

The RPC run-time library creates binding handles when a server application registers protocol
sequences. To obtain a binding vector, a server application calls the RpcServerInqBindings routine.

A client application obtains a binding vector of compatible servers from the name-service database by
calling the RpcNsBindingLookupNext routine.

In both routines, the RPC run-time library allocates memory for the binding vector. An application calls the
RpcBindingVectorFree routine to free the binding vector.

To remove an individual binding handle from the vector, the application must set the value in the vector to
NULL. When setting a vector element to NULL, the application must:

· Free the individual binding
· Not change the value of Count

Calling the RpcBindingFree routine allows an application to both free the unwanted binding handle and
set the vector entry to a NULL value.

See Also
RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcEpUnregister,
RpcNsBindingExport, RpcNsBindingLookupNext, RpcNsBindingSelect, RpcServerInqBindings

RPC_CLIENT_INTERFACE
Remarks

The RPC_CLIENT_INTERFACE data structure is part of the private interface between the run-time
libraries and the stubs. Most distributed applications that use Microsoft RPC do not need this data
structure.

The data structure is defined in the header file RPCDCEP.H.

RPC_DISPATCH_TABLE
Remarks

The RPC_DISPATCH_TABLE data structure is part of the private interface between the run-time libraries
and the stubs. Most distributed applications that use Microsoft RPC do not need this data structure.

The data structure is defined in the header file RPCDCEP.H.

RPC_IF_HANDLE
typedef void *    RPC_IF_HANDLE;

Remarks
An interface handle is an opaque variable containing information the RPC run-time library uses to access
the interface-specification data structure.

The MIDL compiler automatically creates an interface-specification data structure from each IDL file and
creates a global variable of type RPC_IF_HANDLE for the interface specification.

The MIDL compiler includes an interface handle in each .H file generated for the interface.

Routines requiring the interface specification as an argument show a data type of RPC_IF_HANDLE.

The form of each interface handle name is as follows:

· if-name_ClientIfHandle (for the client)
· if-name_ServerIfHandle (for the server)

if-name

Specifies the interface identifier in the IDL file.
For example:
hello_ClientIfHandle
hello_ServerIfHandle

Note    The maximum length of the interface handle name is 31 characters.

Because the _ClientIfHandle and _ServerIfHandle parts of the names require 15 characters, the if-
name element can be no more than 16 characters long.

RPC_IF_ID
typedef struct _RPC_IF_ID {
 UUID Uuid;
 unsigned short VersMajor;
 unsigned short VersMinor;
} RPC_IF_ID;

Uuid

Specifies the interface UUID.
VersMajor

Specifies the major version number, an integer from 0 to 65535, inclusive.
VersMinor

Specifies the minor version number, an integer from 0 to 65535, inclusive.

Remarks
The interface-identification (ID) data structure contains the interface UUID and major and minor version
numbers of an interface. The interface identification is a subset of the data contained in the interface-
specification structure.

Routines that require an interface ID structure show a data type of RPC_IF_ID. In those routines, the
application is responsible for providing memory for the structure.

See Also
RpcIfInqId

RPC_IF_ID_VECTOR
typedef struct _RPC_IF_ID_VECTOR {
 unsigned long Count;
 RPC_IF_ID * IfHandl[1];
} RPC_IF_ID_VECTOR;

Count

Specifies the number of interface-identification data structures present in the array IfHandl.
IfHandl

Specifies an array of pointers to interface-identification data structures that contains Count elements.

Remarks
The interface-identification (ID) vector data structure contains a list of interfaces offered by a server. The
interface ID vector contains a count member (Count), followed by an array of pointers to interface IDs
(RPC_IF_ID).

The interface ID vector is a read-only vector. To obtain a vector of the interface IDs registered by a server
with the run-time library, an application calls the RpcMgmtInqIfIds routine. To obtain a vector of the
interface IDs exported by a server, an application calls the RpcNsMgmtEntryInqIfIds routine.

The RPC run-time library allocates memory for the interface ID vector. The application calls the
RpcIfIdVectorFree routine to free the interface ID vector.

See Also
RpcIfIdVectorFree, RpcMgmtInqIfIds, RpcNsMgmtEntryInqIfIds

RPC_MGR_EPV
typedef void RPC_MGR_EPV;

typedef _if-name_SERVER_EPV {
        return-type (* Functionname) (param-list);
        ...        // one entry for each function in IDL file
}      if-name_SERVER_EPV;

if-name

Specifies the name of the interface indicated in the IDL file.
return-type

Specifies the type returned by the function Functionname indicated in the IDL file.
Functionname

Specifies the name of the function indicated in the IDL file.
param-list

Specifies the arguments indicated for the function Functionname in the IDL file.

Remarks
The manager entry-point vector (EPV) is an array of function pointers. The array contains pointers to the
implementations of the functions specified in the IDL file. The number of elements in the array is set to the
number of functions specified in the IDL file. An application can also have multiple EPVs, representing
multiple implementations of the functions specified in the interface.

The MIDL compiler generates a default EPV data type named if-name_SERVER_EPV, where if-name
specifies the interface identifier in the IDL file. The MIDL compiler initializes this default EPV to contain
function pointers for each of the procedures specified in the IDL file.

When the server offers multiple implementations of the same interface, the server application must
declare and initialize one variable of type if-name_SERVER_EPV for each implementation of the
interface. Each EPV must contain one entry point (function pointer) for each procedure defined in the IDL
file.

See Also
RpcServerRegisterIfEx

RPC_NS_HANDLE
typedef void * RPC_NS_HANDLE;

Remarks
A name-service handle is an opaque variable containing information the RPC run-time library uses to
return the following RPC data from the name-service database:

· Server binding handles
· UUIDs of resources offered by server profile members
· Group members

The scope of a name-service handle is from a Begin routine through the corresponding Done routine.

Applications are responsible for concurrency control of name-service handles across threads.

See Also
RpcNsBindingImportBegin, RpcNsBindingImportDone, RpcNsBindingImportNext,
RpcNsBindingLookupBegin, RpcNsBindingLookupDone, RpcNsBindingLookupNext

RPC_OBJECT_INQ_FN
typedef void RPC_OBJECT_INQ_FN(

        UUID *    ObjectUuid,
        UUID *    TypeUuid,
        RPC_STATUS *    Status
);

ObjectUuid

Points to the variable that specifies the object UUID that is to be mapped to a type UUID.
TypeUuid

Points to the address of the variable that is to contain the type UUID derived from the object UUID.
The type UUID is returned by the function.

Status

Points to a return value for the function.

Remarks
The developer can replace the default mapping function that maps object UUIDs to type UUIDs by calling
RpcObjectSetInqFn and supplying a pointer to a function of type RPC_OBJECT_INQ_FN. The supplied
function must match the function prototype specified by the type definition: a function with three
parameters and the function return value of void.

See Also
RpcObjectSetInqFn

RPC_POLICY
typedef struct _RPC_POLICY {
 unsigned int Length;
 unsigned long EndpointFlags;
 unsigned long NICFlags;
} RPC_POLICY, __RPC_FAR * PRPC_POLICY;

Length

Specifies the size, in bytes, of the RPC_POLICY structure.
EndpointFlags

Specifies Internet or intranet (local network) ports for endpoint assignments.
NICFlags

Controls binding to network interface cards (NICs).

Remarks
The RPC_Policy structure contains flags that allow you to restrict port allocation for dynamic ports and
that allow multihomed machines to selectively bind to Network Interface Cards (NICs). The values in this
structure are ignored if the client and server are using a protocol other than tcp/ip (protocol sequence
ncacn_ip_tcp). See Configuring the Windows NT Registry for Port Allocations and Selective Binding for a
description of the registry settings that are affected by the RPC_POLICY flags.

The Length member allows compatibility with future versions of this structure, which may contain
additional fields. Set Length = sizeof(RPC_POLICY) when initializing the RPC_POLICY structure in your
code.

The EndpointFlags member controls endpoint assignments. Allowable values for this field are:

0 (Specifies the system default)
1 RPC_C_USE_INTERNET_PORT
2 RPC_C_USE_INTRANET_PORT

Note    If the registry does not contain any of the keys that specify the default policy for port
allocation, then the EndpointFlags member will have no effect at run time. If a key is missing or
contains an invalid value, then the entire configuration is marked as invalid and all
RpcServerUseProtseq(ncacn_ip_tcp) calls will fail.

The NICFlags member tells RPC to either bind to NICs based on the settings in the registry, or to override
the registry settings and bind to all NICs. Allowable values for this field are:

0 Bind to NICs on the basis of the registry settings
1 RPC_C_BIND_TO_ALL_NICS

Note    If the Bind key is missing from the registry, then the NICFlags member will have no effect at
run time. If the key contains an invalid value, then the entire configuration is marked as invalid and all
RpcServerUseProtseq*(ncacn_ip_tcp) calls will fail.

See Also
Configuring the Windows NT Registry for Port Allocations and Selective Binding,
RpcServerUseAllProtseqsEx, RpcServerUseAllProtseqsIfEx, RpcServerUseProtseqEx,
RpcServerUseProtseqEpEx, RpcServerUseProtseqIfEx

RPC_PROTSEQ_VECTOR
typedef struct _RPC_PROTSEQ_VECTOR {
 unsigned long Count;
 unsigned char * Protseq[1];
} RPC_PROTSEQ_VECTOR;

Count

Specifies the number of protocol-sequence strings present in the array Protseq.
Protseq

Specifies an array of pointers to protocol-sequence strings. The number of pointers present is
specified by the Count field.

Remarks
The protocol-sequence vector data structure contains a list of protocol sequences the RPC run-time
library uses to send and receive remote procedure calls. The protocol-sequence vector contains a count
member (Count), followed by an array of pointers to protocol-sequence strings (Protseq).

The protocol-sequence vector is a read-only vector. To obtain a protocol-sequence vector, a server
application calls the RpcNetworkInqProtseqs routine. The RPC run-time library allocates memory for the
protocol-sequence vector. The server application calls the RpcProtseqVectorFree routine to free the
protocol-sequence vector.

See Also
RpcNetworkInqProtseqs, RpcProtseqVectorFree

RPC_STATS_VECTOR
typedef struct {
 unsigned int Count;
 unsigned long Stats[1];
} RPC_STATS_VECTOR;

Count

Specifies the number of statistics values present in the array Stats.
Stats

Specifies an array of unsigned long integers representing server statistics that contains Count
elements.

Remarks
The statistics vector contains statistics from the RPC run-time library on a per-server basis. The statistics
vector contains a count member (Count), followed by an array of statistics. Each array element contains
an unsigned long value. The following list describes the statistics indexed by the specified constant:

Constant Statistics
RPC_C_STATS_CALLS_IN The number of remote procedure

calls received by the server
RPC_C_STATS_CALLS_OUT The number of remote procedure

calls initiated by the server
RPC_C_STATS_PKTS_IN The number of network packets

received by the server
RPC_C_STATS_PKTS_OUT The number of network packets

sent by the server

To obtain run-time statistics, an application calls the RpcMgmtInqStats routine. The RPC run-time library
allocates memory for the statistics vector. The application calls the RpcMgmtStatsVectorFree routine to
free the statistics vector.

See Also
RpcMgmtInqStats, RpcMgmtStatsVectorFree

RPC_STATUS
typedef long RPC_STATUS;    // Win32 definition

typedef unsigned short RPC_STATUS;    // MS-DOS, Win16 definition

Remarks
The type RPC_STATUS represents a platform-specific status code type. The RPC_STATUS type is
returned by most RPC functions and is part of the RPC_OBJECT_INQ_FN function type definition.

See Also
RPC_OBJECT_INQ_FN

SEC_WINNT_AUTH_IDENTITY
For Windows 3.x and MS-DOS:

typedef struct _SEC_WINNT_AUTH_IDENTITY{
 char __RPC_FAR * User;
 char __RPC_FAR * Domain;
 char __RPC_FAR * Password;
} SEC_WINNT_AUTH_IDENTITY;

For Windows NT, Windows 95, and Macintosh:

typedef struct _SEC_WINNT_AUTH_IDENTITY {
 unsigned short __RPC_FAR * User;
 unsigned long UserLength;
 unsigned short __RPC_FAR * Domain;
 unsigned long DomainLength;
 unsigned short __RPC_FAR * Password;
 unsigned long PasswordLength;
 unsigned long Flags; //value may be 0x1 or 0x2
} SEC_WINNT_AUTH_IDENTITY, * PSEC_WINNT_AUTH_IDENTITY;

User

String containing the user name.
Domain

String containing the domain name or the workgroup name.
Password

String containing the user's password in the domain or workgroup.
Flags

Long value specifying that the strings are ANSI (0x1) or Unicode (0x2).

Remarks
The SEC_WINNT_AUTH_IDENTITY structure allows you to pass a particular user name and password to
the runtime library for the purpose of authentication. Note that this structure must remain valid for the
lifetime of the binding handle.

For Windows 95, Windows 3.x and MS-DOS, the strings are ANSI; for Windows NT, the strings may be
ANSI or Unicode, depending on the value you assign to the Flags field. For Windows NT, Windows 95,
and Macintosh, the values for UserLength; DomainLength, and PasswordLength are the length of the
corresponding string without the terminating 0X0000.

String Binding
ObjectUUID@ProtocolSequence:NetworkAddress[Endpoint,Option]

ObjectUUID

Specifies the UUID of the object operated on by the remote procedure call. At the server, the RPC
run-time library maps the object type to a manager entry-point vector (an array of function pointers) to
invoke the correct manager routine. For a discussion of how to map object UUIDs to manager entry-
point vectors, see RpcServerRegisterIfEx.

Protocol Sequence

Specifies a character string that represents a valid combination of an RPC protocol (such as "ncacn"),
a transport protocol (such as "tcp"), and a network protocol (such as "ip"). Microsoft RPC supports the
following protocol sequences:

Protocol
sequence

Description Supporting Platforms

ncacn_nb_tcp Connection-oriented
NetBIOS over TCP

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncacn_nb_ipx Connection-oriented
NetBIOS over IPX

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncacn_nb_nb Connection-oriented
NetBEUI

client only: MS-DOS, Windows
3.x
client and server: Windows NT,
Windows 95

ncacn_ip_tcp Connection-oriented
TCP/IP

client only: MS-DOS,Windows
3.x, and Apple Macintosh
client and server: Windows 95
and Windows NT

ncacn_np Connection-oriented
named pipes

client only: MS-DOS, Windows
3.x, Windows 95
client and server: Windows NT

ncacn_spx Connection-oriented
SPX

client only: MS-DOS, Windows
3.x
client and server: Windows NT,
Windows 95

ncacn_dnet_nsp Connection-oriented
DECnet transport

client only: MS-DOS, Windows
3.x

ncacn_at_dsp AppleTalk DSP client: Apple Macintosh
server: Windows NT

ncacn_vns_spp Connection-oriented
Vines SPP transport

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncadg_ip_udp Datagram
(connectionless)
UDP/IP

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncadg_ipx Datagram
(connectionless) IPX

client only: MS-DOS, Windows
3.x
client and server: Windows NT

ncalrpc Local procedure call client and server: Windows NT

and Windows 95

NetworkAddress

Specifies the network address of the system to receive remote procedure calls. The format and
content of the network address depend on the specified protocol sequence as follows:

Protocol
sequence

Network address Examples

ncacn_nb_tcp Windows NT machine name myserver
ncacn_nb_ipx Windows NT machine name myserver
ncacn_nb_nb Windows NT or Windows 95

machine name
myserver

ncacn_ip_tcp four-octet internet address, or
host name

128.10.2.30
anynode.microsoft.com

ncacn_np Windows NT server name
(leading double backslashes are
optional)

myserver \\myotherserver

ncacn_spx IPX internet address, or
Windows NT server name

~0000000108002B30612
C
myserver

ncacn_dnet_nsp Area and node syntax 4.120
ncacn_at_dsp Windows NT machine name,

optionally followed by @ and the
AppleTalk zone name. Defaults
to @*, the client's zone, if no
zone provided

servername@zonename
servername

ncacn_vns_spp StreetTalk server name of the
form item@group@organization

printserver@sdkdocs@mi
crosoft

ncadg_ip_udp four-octet internet address, or
host name

128.10.2.30
anynode.microsoft.com

ncadg_ipx IPX internet address, or
Windows NT server name

~0000000108002B30612
C
myserver

ncalrpc Machine name thismachine

The network-address field is optional. When you do not specify a network address, the string binding
refers to your local host. It is possible to specify the name of the local machine when you use the
ncalrpc protocol sequence, however doing so is completely unnecessary.

Endpoint

Specifies the endpoint, or address, of the process to receive remote procedure calls. An endpoint can
be preceded by the keyword endpoint=. Specifying the endpoint is optional if the server has
registered its bindings with the endpoint mapper. See RpcEpRegister.
The format and content of an endpoint depend on the specified protocol sequence as shown in the
Endpoint/Option Table, below.

Option

Specifies protocol-specific options.. The option field is not required. Each option is specified by a
{name, value} pair that uses the syntax option name=option value. Options are defined for each
protocol sequence as shown in the Endpoint/Option Table, below.

Protocol
sequence

Endpoint Examples

Option
name

ncacn_nb_tcp Integer between 0 and
255. Many values
between 0 and 32 are
reserved by Microsoft.

100 None

ncacn_nb_ipx (as above) (as above) None
ncacn_nb_nb (as above) (as above) None
ncacn_ip_tcp Internet port number 1025 None
ncacn_np Windows NT named

pipe. Name must start
with "\\pipe".

\\pipe\\pipename Security
(NT only)

ncacn_spx Integer between 1 and
65535.

5000 None

ncacn_dnet_nsp DECnet phase IV
object number (must be
preceded by the #
character), or object
name

mailserver
#17

None

ncacn_at_dsp A character string, up to
22 bytes long

myservicesendpoint None

ncacn_vns_spp Vines SPP port number
between 250 and 511

500 None

ncadg_ip_udp Internet port number 1025 Security (32-
bit only)

ncadg_ipx Integer between 1 and
65535.

5000 Security (32-
bit only)

ncalrpc String specifying
application or service
name. The string
cannot include any
backslash characters.

my_printer Security
(NT only)

The Security option name, supported for the ncalrpc, ncacn_np, ncadg_ip_udp, and ncadg_ipx
protocol sequences, takes the following option values:

Option name Option value
Security {identification | anonymous | impersonation} {dynamic |

static} {true | false}

If the Security option name is specified, one entry from each of the sets of Security option values
must also be supplied. The option values must be separated by a single-space character. For
example, the following Option fields are valid:
Security=identification dynamic true
Security=impersonation static true

The Security option values have the following meanings:

Security option
value

Description

Anonymous The client is anonymous to the server.

Dynamic A pointer to the security token is maintained.
Security settings represent current settings
and include changes made after the endpoint
was created.

False Effective = FALSE; all Windows NT security
settings, including those set to OFF, are
included in the token.

Identification The server has information about client but
cannot impersonate.

Impersonation The server is the client on the client's behalf.
Static Security settings associated with the endpoint

represent a copy of the security information at
the time the endpoint was created. The
settings do not change.

True Effective = TRUE; only Windows NT security
settings set to ON are included in the token.

For more information about Microsoft Windows NT security options, see your Microsoft Windows NT
programming documentation.

Remarks
The string binding is an unsigned character string composed of strings that represent the binding object
UUID, the RPC protocol sequence, the network address, and the endpoint and endpoint options. White
space is not allowed in string bindings except where required by the Option syntax.

Default settings for the NetworkAddress, Endpoint, and Option fields vary according to the value of the
ProtocolSequence field.

For all string-binding fields, a single backslash character (\) is interpreted as an escape character. To
specify a single literal backslash character, you must supply two backslash characters (\\).

The following are examples of valid string bindings. In these examples, obj-uuid is used for convenience
to represent a valid UUID in string form. Instead of showing the UUID 308FB580-1EB2-11CA-923B-
08002B1075A7, the examples show obj-uuid.

obj-uuid@ncacn_ip_tcp:16.20.16.27[2001]
obj-uuid@ncacn_ip_tcp:16.20.16.27[endpoint=2001]
obj-uuid@ncacn_nb_nb:
obj-uuid@ncacn_nb_nb:[100]
obj-uuid@ncacn_np:
obj-uuid@ncacn_np:[\\pipe\\p3,Security=impersonation static true]
obj-uuid@ncacn_np:\\\\marketing[\\pipe\\p2\\p3\\p4]
obj-uuid@ncacn_np:\\\\marketing[endpoint=\\pipe\\p2\\p3\\p4]
obj-uuid@ncacn_np:\\\\sales
obj-uuid@ncacn_np:\\\\sales[\\pipe\\p1,Security=identification dynamic true]
obj-uuid@ncalrpc:
obj-uuid@ncalrpc:[object1_name_demonstrating_that_these_can_be_lengthy]
obj-uuid@ncalrpc:[object2_name,Security=anonymous static true]
obj-uuid@ncacn_vns_spp:server@group@org[500]
obj-uuid@ncacn_dnet_nsp:took[elf_server]
obj-uuid@ncacn_dnet_nsp:took[endpoint=elf_server]
obj-uuid@ncadg_ip_udp:128.10.2.30
obj-uuid@ncadg_ip_udp:maryos.microsoft.com[1025]

obj-uuid@ncadg_ipx: ~0000000108002B30612C[5000]
obj-uuid@ncadg_ipx:printserver
obj-uuid@ncacn_spx:annaw[4390]
obj-uuid@ncacn_spx:~0000000108002B30612C

A string binding contains the character representation of a binding handle and sometimes portions of a
binding handle. String bindings are convenient for representing portions of a binding handle, but they
can't be used for making remote procedure calls. They must first be converted to a binding handle by
calling the RpcBindingFromStringBinding routine.

Additionally, a string binding does not contain all of the information from a binding handle. For example,
the authentication information, if any, associated with a binding handle is not translated into the string
binding returned by calling the RpcBindingToStringBinding routine.

During the development of a distributed application, servers can communicate their binding information to
clients using string bindings to establish a client-server relationship without using the endpoint-map
database or name-service database. To establish such a relationship, use the function
RpcBindingToStringBinding to convert one or more binding handles from a binding-handle vector to a
string binding, and provide the string binding to the client.

See Also
RpcBindingFromStringBinding, RpcBindingToStringBinding, RpcEpRegister

String UUID
A string UUID contains the character-array representation of a UUID. A string UUID is composed of
multiple fields of hexadecimal characters. Each field has a fixed length, and fields are separated by the
hyphen character. For example:

989C6E5C-2CC1-11CA-A044-08002B1BB4F5

When providing a string UUID as an input argument to a RPC run-time routine, enter the alphabetic
hexadecimal characters as either uppercase or lowercase characters. However, when a run-time routine
returns a string UUID, the hexadecimal characters are always lowercase.

See Also
UUID

UUID
typedef struct _GUID {
 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];
} GUID;

typedef GUID UUID;

#define uuid_t UUID

Data1

Specifies the first eight hexadecimal digits of the UUID.
Data2

Specifies the first group of four hexadecimal digits of the UUID.
Data3

Specifies the second group of four hexadecimal digits of the UUID.
Data4

Specifies an array of eight elements that contains the third and final group of four hexadecimal digits
of the UUID in elements 0 and 1, and the final 12 hexadecimal digits of the UUID in elements 2
through 7.

Remarks
UUIDs uniquely identify objects such as interfaces, manager entry-point vectors, and client objects. The
RPC run-time libraries use UUIDs to check for compatibility between clients and servers and to select
among multiple implementations of an interface.

See Also
GUID, UUID_VECTOR

UUID_VECTOR
typedef struct _UUID_VECTOR {
 unsigned long Count;
 UUID * Uuid[1];
} UUID_VECTOR;

Count

Specifies the number of UUIDs present in the array Uuid.
Uuid

Specifies an array of pointers to UUIDs that contains Count elements.

Remarks
The UUID vector data structure contains a list of UUIDs. The UUID vector contains a count member
followed by an array of pointers to UUIDs.

An application constructs a UUID vector to contain object UUIDs to be exported or unexported from the
name service.

See Also
RpcEpRegister, RpcEpRegisterNoReplace, RpcEpUnregister, RpcNsBindingExport,
RpcNsBindingUnexport

Function Reference
This section contains an alphabetical list of the functions supported in this version of Microsoft RPC. The
documentation for each function includes a statement about the function's purpose, the syntax, a
description of the function's input parameters, a description of its values, and additional remarks that can
help you use the function in an application.

All pointers passed to RPC functions must include the _ _RPC_FAR attribute. For example, the pointer
RPC_BINDING_HANDLE * becomes RPC_BINDING_HANDLE _ _RPC_FAR * and char * * Ptr
becomes char _ _RPC_FAR * _ _RPC_FAR * Ptr.

DceErrorInqText   

The DceErrorInqText function returns the message text for a status code.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95. Note that it is
supported in ANSI only on Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY DceErrorInqText(

        unsigned long    StatusToConvert,
        unsigned char *    ErrorText
     );

Parameters
StatusToConvert

Specifies the status code to convert to a text string.
ErrorText

Returns the text corresponding to the error code.
Value Meaning
RPC_S_OK Operation completed

successfully
RPC_S_INVALID_ARG Unknown error code

Remarks
The DceErrorInqText routine returns a null-terminated character string message for a particular status
code. If the call is not successful, DceErrorInqText returns a message as well as a failure code in Status.

MesBufferHandleReset   

The MesBufferHandleReset function re-initializes the handle for buffer serialization.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesBufferHandleReset(

        handle_t    Handle,
        unsigned long    HandleStyle,
        MIDL_ES_CODE    OpCode,
        char    *    *    ppBuffer,
        unsigned long    BufferSize,
        unsigned long *    pEncodedSize
     );

Parameters
Handle

The handle to be initialized.
HandleStyle

Specifies the style of handle. Valid styles are MES_FIXED_BUFFER_HANDLE or
MES_DYNAMIC_BUFFER_HANDLE.

OpCode

Specifies the operation. Valid operations are MES_ENCODE or MES_DECODE.
ppBuffer

For MES_DECODE, points to a pointer to the buffer containing the data to be decoded.
For MES_ENCODE, points to a pointer to the buffer for fixed buffer style, and points to a pointer to
return the buffer address for dynamic buffer style.

BufferSize

Specifies the number of bytes of data to be decoded in the buffer. Note that this is used only for the
fixed buffer style of serialization.

pEncodedSize

Points to the size of the completed encoding. Note that this is used only when the operation is
MES_ENCODE.

Remarks
The MesBufferHandleReset routine is used by applications to re-initialize a buffer style handle and save
memory allocations.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument

See Also
MesEncodeFixedBufferHandleCreate, MesEncodeDynBufferHandleCreate

MesDecodeBufferHandleCreate   

The MesDecodeBufferHandleCreate function creates a decoding handle and initializes it for a (fixed)
buffer style of serialization.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesDecodeBufferHandleCreate(

        char    *    Buffer,
        unsigned long    BufferSize,
        handle_t *    pHandle
     );

Parameters
Buffer

Points to the buffer containing the data to decode.
BufferSize

Specifies the number of bytes of data to decode in the buffer.
pHandle

Points to the address to which the handle will be written.

Remarks
The MesDecodeBufferHandleCreate routine is used by applications to create a serialization handle and
initialize the handle for the (fixed) buffer style of decoding. When using the fixed buffer style of decoding,
the user supplies a single buffer containing all the encoded data. This buffer must have an address which
is aligned at 8, and must be a multiple of 8 bytes in size. Further, it must be large enough to hold all of the
data to decode.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory
RPC_X_INVALID_BUFFER Invalid buffer

See Also
MesEncodeFixedBufferHandleCreate, MesHandleFree

MesDecodeIncrementalHandleCreate   

The MesDecodeIncrementalHandleCreate function creates a decoding handle for the incremental style
of serialization.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesDecodeIncrementalHandleCreate(

        void *    UserState,
        MIDL_ES_READ    ReadFn,
        handle_t    *    pHandle
     );

Parameters
UserState

Points to the user-supplied state object that coordinates the Alloc, Write, and Read routines.
ReadFn

Points to the Read routine.
pHandle

Pointer to the newly-created handle.

Remarks
The MesDecodeIncrementalHandleCreate routine is used by applications to create the handle and
initialize it for the incremental style of decoding. When using the incremental style of decoding, the user
supplies a Read routine to provide a buffer containing the next part of the data to be decoded. The buffer
must be aligned at eight, and the size of the buffer must be a multiple of eight. For additional information
on the user-supplied Alloc, Write and Read routines, see Using Encoding Services.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also
MesIncrementalHandleReset, MesHandleFree

MesEncodeDynBufferHandleCreate   

The MesEncodeDynBufferHandleCreate function creates an encoding handle and then initializes it for a
dynamic buffer style of serialization.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesEncodeDynBufferHandleCreate(

        char    *    *    ppBuffer,
        unsigned long    *    pEncodedSize,
        handle_t *    pHandle
     );

Parameters
ppBuffer

Points to a pointer to the stub-supplied buffer containing the encoding after serialization is complete.
pEncodedSize

Specifies a pointer to the size of the completed encoding. The size will be written to the pointee by the
subsequent encoding operation(s).

pHandle

Points to the address to which the handle will be written.

Remarks
The MesEncodeDynBufferHandleCreate routine is used by applications to allocate the memory and
initialize the handle for the dynamic buffer style of encoding. When using the dynamic buffer style of
encoding, the buffer into which all the encoded data will be placed is supplied by the stub. This buffer will
be allocated by the current client memory-management mechanism.

There can be performance implications when using this style for multiple encodings with the same handle.
A single buffer is returned from an encoding and data is copied from intermediate buffers. The buffers are
released when necessary.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also
MesBufferHandleReset, MesHandleFree

MesEncodeFixedBufferHandleCreate   

The MesEncodeFixedBufferHandleCreate function creates an encoding handle and then initializes it for
a fixed buffer style of serialization.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesEncodeFixedBufferHandleCreate(

        char *    Buffer,
        unsigned long    BufferSize,
        unsigned long *    pEncodedSize,
        handle_t *    pHandle
     );

Parameters
Buffer

Points to the user-supplied buffer.
BufferSize

Specifies the size of the user-supplied buffer.
pEncodedSize

Specifies a pointer to the size of the completed encoding. The size will be written to the pointee by the
subsequent encoding operation(s).

pHandle

Points to the newly-created handle.

Remarks
The MesEncodeFixedBufferHandleCreate routine is used by applications to create and initialize the
handle for the fixed buffer style of encoding. When using the fixed buffer style of encoding, the user
supplies a single buffer into which all the encoded data is placed. This buffer must have an address which
is aligned at eight, and must be a multiple of eight bytes in size. Further, it must be large enough to hold
an encoding of all the data, along with an encoding header for each routine being encoded.

When the handle is used for multiple encoding operations, the encoded size is cumulative.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also
MesDecodeBufferHandleCreate, MesHandleFree

MesEncodeIncrementalHandleCreate   

The MesEncodeIncrementalHandleCreate function creates an encoding and then initializes it for the
incremental style of serialization.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesEncodeIncrementalHandleCreate(

        void *    UserState,
        MIDL_ES_ALLOC    AllocFn,
        MIDL_ES_WRITE    WriteFn,
        handle_t    *    pHandle
     );

Parameters
UserState

Points to the user-supplied state object that coordinates the Alloc, Write, and Read routines.
AllocFn

Points to the Alloc routine.
WriteFn

Points to the Write routine.
pHandle

Points to the newly-created handle.

Remarks
The MesEncodeIncrementalHandleCreate routine is used by applications to create and initialize the
handle for the incremental style of encoding or decoding. When using the incremental style of encoding,
the user supplies an Alloc routine to provide an empty buffer into which the encoded data is placed, and a
Write routine to call when the buffer is full or the encoding is complete. For additional information on the
user-supplied Alloc, Write and Read routines, see Using Encoding Services.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also
MesIncrementalHandleReset, MesHandleFree

MesHandleFree   

The MesHandleFree function frees the memory allocated by the serialization handle.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesHandleFree(

        handle_t Handle
     );

Parameters
Handle

The handle to be freed.

Remarks
The MesHandleFree routine is used by applications to free the resources of the handle after encoding or
decoding data.

Return Values
Value Meaning
RPC_S_OK Success

See Also
MesEncodeFixedBufferHandleCreate, MesDecodeBufferHandleCreate,
MesEncodeDynBufferHandleCreate, MesEncodeIncrementalHandleCreate

MesIncrementalHandleReset   

The MesIncrementalHandleReset function re-initializes the handle for incremental serialization.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesIncrementalHandleReset(

        handle_t    Handle,
        void    *    UserState,
        MIDL_ES_ALLOC    AllocFn,
        MIDL_ES_WRITE    WriteFn,
        MIDL_ES_READ    ReadFn,
        MIDL_ES_CODE    OpCode
     );

Parameters
Handle

The handle to be re-initialized.
UserState

Depending on the function, points to the user-supplied block that coordinates successive calls to the
Alloc, Write, and Read routines.

AllocFn

Points to the Alloc routine. This argument can be NULL if the operation does not require it, or if the
handle was previously initiated with the pointer.

WriteFn

Points to the Write routine. This argument can be NULL if the operation does not require it, or if the
handle was previously initiated with the pointer.

ReadFn

Points to the Read routine. This argument can be NULL if the operation does not require it, or if the
handle was previously initiated with the pointer.

OpCode

Specifies the operation. Valid operations are MES_ENCODE or MES_DECODE.

Remarks
The MesIncrementalHandleReset routine is used by applications to re-initialize the handle for the
incremental style of encoding or decoding. For additional information on the user-supplied Alloc, Write
and Read routines, see Using Encoding Services.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also
MesEncodeIncrementalHandleCreate, MesHandleFree

MesInqProcEncodingId   

The MesInqProcEncodingId function provides the identity of an encoding.

#include <rpc.h>

#include <midles.h>

RPC_STATUS RPC_ENTRY MesInqProcEncodingId(

        handle_t    Handle,
        PRPC_SYNTAX_IDENTIFIER    pInterfaceId,
        unsigned long    *    pProcNum
     );

Parameters
Handle

Specifies an encoding or decoding handle.
pInterfaceId

Points to the address in which the identity of the interface used to encode the data will be written.
pInterfaceId consists of the interface UUID and the version number.

pProcNum

Specifies the number of the routine used to encode the data.

Remarks
The MesInqProcEncodingId routine is used by applications to obtain the identity of the routine used to
encode the data before calling a routine to decode it. When called with an encoding handle, it returns the
identity of the last encoding operation. When called with a decoding handle, it returns the identity of the
next decoding operation by pre-reading the buffer.

This routine can only be used to check the identity of a procedure encoding; it cannot be used to check
the identity for a type encoding.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_UNKNOWN_IF Unknown interface
RPC_S_UNSUPPORTED_TRANS_SY
N

Transfer syntax not supported by
server

RPC_X_INVALID_ES_ACTION Invalid operation for a given handle
RPC_X_WRONG_ES_VERSION Incompatible version of the

serializing package
RPC_X_SS_INVALID_BUFFER Invalid buffer

RpcAbnormalTermination   

The RpcAbnormalTermination function determines whether termination statements are being executed
due to an exception or not.

#include <rpc.h>

void RpcAbnormalTermination(VOID);

Remarks
The RpcAbnormalTermination function should only be called from within the termination-statements
section of an RpcFinally termination handler.

Return Values
Value Meaning Description
Zero No exception Termination statements are not

being executed due to an exception
Nonzero Exception Termination statements are being

executed due to an exception

See Also
RpcFinally

RpcBindingCopy   

The RpcBindingCopy function copies binding information and creates a new binding handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingCopy(

        RPC_BINDING_HANDLE    SourceBinding,
        RPC_BINDING_HANDLE *    DestinationBinding
     );

Parameters
SourceBinding

Specifies the server binding handle whose referenced binding information is copied.
DestinationBinding

Returns a pointer to the server binding handle that refers to the copied binding information.

Remarks

Note    Microsoft RPC supports RpcBindingCopy only in client applications, not in server
applications.

The RpcBindingCopy routine copies the server-binding information referenced by the SourceBinding
argument. RpcBindingCopy uses the DestinationBinding argument to return a new server binding
handle for the copied binding information. RpcBindingCopy also copies the authentication information
from the SourceBinding argument to the DestinationBinding argument.

An application uses RpcBindingCopy when it wants to keep a change made to binding information by
one thread from affecting the binding information used by other threads.

Once an application calls RpcBindingCopy, operations performed on the SourceBinding binding handle
do not affect the binding information referenced by the DestinationBinding binding handle. Similarly,
operations performed on the DestinationBinding binding handle do not affect the binding information
referenced by the SourceBinding binding handle.

If an application wants one thread's changes to binding information to affect the binding information used
by other threads, the application should share a single binding handle across the threads. In this case, the
application is responsible for binding-handle concurrency control.

When an application is finished using the binding handle specified by the DestinationBinding argument,
the application should call the RpcBindingFree routine to release the memory used by the
DestinationBinding binding handle and its referenced binding information.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for operation

See Also
RpcBindingFree

RpcBindingFree   

The RpcBindingFree function releases binding-handle resources.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingFree(

        RPC_BINDING_HANDLE *    Binding
     );

Parameters
Binding

Points to the server binding to free.

Remarks

Note    Microsoft RPC supports RpcBindingFree only in client applications, not in server
applications.

The RpcBindingFree routine releases memory used by a server binding handle. Referenced binding
information that was dynamically created during program execution is released as well. An application
calls the RpcBindingFree routine when it is finished using the binding handle.

Binding handles are dynamically created by calling the following routines:

· RpcBindingCopy
· RpcBindingFromStringBinding
· RpcServerInqBindings
· RpcNsBindingImportNext
· RpcNsBindingSelect

If the operation successfully frees the binding, the Binding argument returns a value of NULL.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

See Also
RpcBindingCopy, RpcBindingFromStringBinding, RpcBindingVectorFree,
RpcNsBindingImportNext, RpcNsBindingLookupNext, RpcNsBindingSelect,
RpcServerInqBindings

RpcBindingFromStringBinding   

The RpcBindingFromStringBinding function returns a binding handle from a string representation of a
binding handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingFromStringBinding(

        unsigned char *    StringBinding,
        RPC_BINDING_HANDLE *    Binding
     );

Parameters
StringBinding

Points to a string representation of a binding handle.
Binding

Returns a pointer to the server binding handle.

Remarks
The RpcBindingFromStringBinding routine creates a server binding handle from a string representation
of a binding handle.

The StringBinding argument does not have to contain an object UUID. In this case, the returned binding
contains a nil UUID.

If the provided StringBinding argument does not contain an endpoint field, the returned Binding argument
is a partially bound binding handle.

If the provided StringBinding argument contains an endpoint field, the endpoint is considered to be a well-
known endpoint.

If the provided StringBinding argument does not contain a host address field, the returned Binding
argument references the local host.

An application creates a string binding by calling the RpcStringBindingCompose routine or by providing
a character-string constant.

When an application is finished using the Binding argument, the application should call the
RpcBindingFree routine to release the memory used by the binding handle.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_STRING_BINDING Invalid string binding
RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence not supported
on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_ENDPOINT_FORMA
T

Invalid endpoint format

RPC_S_STRING_TOO_LONG String too long
RPC_S_INVALID_NET_ADDR Invalid network address
RPC_S_INVALID_ARG Invalid argument
RPC_S_INVALID_NAF_ID Invalid network-address-family ID

See Also
RpcBindingCopy, RpcBindingFree, RpcBindingToStringBinding, RpcStringBindingCompose

RpcBindingInqAuthClient   

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingInqAuthClient(

        RPC_BINDING_HANDLE    ClientBinding,
        RPC_AUTHZ_HANDLE *    Privs,
        unsigned char * *    ServerPrincName,
        unsigned long *    AuthnLevel,
        unsigned long *    AuthnSvc,
        unsigned long *    AuthzSvc
     );

Parameters
ClientBinding

Specifies the client binding handle of the client that made the remote procedure call. This value can
be zero (see Remarks).

Privs

Returns a pointer to a handle to the privileged information for the client application that made the
remote procedure call on the ClientBinding binding handle.
The server application must cast the ClientBinding binding handle to the data type specified by the
AuthzSvc argument. The data referenced by this argument is read-only and should not be modified by
the server application. If the server wants to preserve any of the returned data, the server must copy
the data into server-allocated memory. This parameter is not used by the RPC_C_AUTHN_WINNT
authentication service. The returned pointer will always be NULL.

ServerPrincName

Returns a pointer to a pointer to the server principal name specified by the client application that
made the remote procedure call on the ClientBinding binding handle. The content of the returned
name and its syntax are defined by the authentication service in use.
Specify a null value to prevent RpcBindingInqAuthClient from returning the ServerPrincName
argument. In this case, the application does not call the RpcStringFree routine.

AuthnLevel

Returns a pointer to the level of authentication requested by the client application that made the
remote procedure call on the ClientBinding binding handle.
Specify a null value to prevent RpcBindingInqAuthClient from returning the AuthnLevel argument.

AuthnSvc

Returns a pointer to the authentication service requested by the client application that made the
remote procedure call on the ClientBinding binding handle. For a list of the RPC-supported
authentication levels, see Authentication-Level Constants.
Specify a null value to prevent RpcBindingInqAuthClient from returning the AuthnSvc argument.
This parameter is not used by the RPC_C_AUTHN_WINNT authentication service. The returned
value will always be RPC_S_AUTHZ_NONE.

AuthzSvc

Returns a pointer to the authorization service requested by the client application that made the

remote procedure call on the Binding binding handle. For a list of possible returns, see
RpcMgmtInqDefaultProtectLevel.
Specify a null value to prevent RpcBindingInqAuthClient from returning the AuthnSvc argument.

Remarks
A server application calls the RpcBindingInqAuthClient routine to obtain the principal name or privilege
attributes of the authenticated client that made the remote procedure call. In addition,
RpcBindingInqAuthClient returns the authentication service, authentication level, and server principal
name specified by the client. The server can use the returned data for authorization purposes.

The RPC run-time library allocates memory for the returned ServerPrincName argument. The application
is responsible for calling the RpcStringFree routine for the returned argument string.

For clients using the MIDL auto_handle or implicit_handle attribute, the server application should use
zero as the value for the ClientBinding parameter. Using zero retrieves the authentication and
authorization information from the currently executing remote procedure call.

Return Values
value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for operation

RPC_S_BINDING_HAS_NO_AUTH Binding has no authentication
information

See Also
RpcBindingSetAuthInfo, RpcStringFree

RpcBindingInqAuthInfo   

The RpcBindingInqAuthInfo function returns authentication and authorization information from a binding
handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingInqAuthInfo(

        RPC_BINDING_HANDLE    Binding,
        unsigned char * *    ServerPrincName,
        unsigned long *    AuthnLevel,
        unsigned long *    AuthnSvc,
        RPC_AUTH_IDENTITY_HANDLE *    AuthIdentity,
        unsigned long *    AuthzSvc
     );

Parameters
Binding

Specifies the server binding handle from which authentication and authorization information is
returned.

ServerPrincName

Returns a pointer to a pointer to the expected principal name of the server referenced in the Binding
argument. The content of the returned name and its syntax are defined by the authentication service
in use.
Specify a null value to prevent RpcBindingInqAuthInfo from returning the ServerPrincName
argument. In this case, the application does not call the RpcStringFree routine.

AuthnLevel

Returns a pointer to the level of authentication used for remote procedure calls made using the
Binding binding handle.    For a list of the RPC-supported authentication levels, see Authentication-
Level Constants. Specify a null value to prevent the routine from returning the AuthnLevel argument.
The level returned in the AuthnLevel argument may be different from the level specified when the
client called the RpcBindingSetAuthInfo routine. This discrepancy happens when the authentication
level specified by the client was not supported by the RPC run-time library and the run-time library
automatically upgraded to the next higher level.

AuthnSvc

Returns a pointer to the authentication service specified for remote procedure calls made using the
Binding binding handle.    For a list of the RPC-supported authentication services, see Authentication-
Service Constants.
Specify a null value to prevent RpcBindingInqAuthInfo from returning the AuthnSvc argument.

AuthIdentity

Returns a pointer to a handle to the data structure that contains the client's authentication and
authorization credentials specified for remote procedure calls made using the Binding binding handle.
Specify a null value to prevent RpcBindingInqAuthInfo from returning the AuthIdentity argument.

AuthzSvc

Returns a pointer to the authorization service requested by the client application that made the
remote procedure call on the Binding binding handle.    For a list of the RPC-supported authentication

services, see Authentication-Service Constants.
Specify a null value to prevent RpcBindingInqAuthInfo from returning the AuthzSvc argument.

Remarks
A client application calls the RpcBindingInqAuthInfo routine to view the authentication and authorization
information associated with a server binding handle. The client specifies the data by calling the
RpcBindingSetAuthInfo routine.

The RPC run-time library allocates memory for the returned ServerPrincName argument. The application
is responsible for calling the RpcStringFree routine for that returned argument string.

When a client application does not know a server's principal name, calling RpcBindingInqAuthInfo after
making a remote procedure call provides the server's principal name. For example, clients that import
from a group or profile may not know a server's principal name when calling the RpcBindingSetAuthInfo
routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for operation

RPC_BINDING_HAS_NO_AUTH Binding has no authentication
information

See Also
RpcBindingSetAuthInfo, RpcStringFree

RpcBindingInqObject   

The RpcBindingInqObject function returns the object UUID from a binding handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingInqObject(

        RPC_BINDING_HANDLE    Binding,
        UUID *    ObjectUuid
     );

Parameters
Binding

Specifies a client or server binding handle.
ObjectUuid

Returns a pointer to the object UUID found in the Binding argument. ObjectUuid is a unique identifier
of an object to which a remote procedure call can be made.

Remarks
An application calls the RpcBindingInqObject routine to see the object UUID associated with a client or
server binding handle.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle

See Also
RpcBindingSetObject

RpcBindingReset   

The RpcBindingReset function resets a binding handle so that the host is specified but the server on that
host is unspecified.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingReset(

        RPC_BINDING_HANDLE Binding
     );

Parameters
Binding

Specifies the server binding handle to reset.

Remarks
A client calls the RpcBindingReset routine to disassociate a particular server instance from the server
binding handle specified in the Binding argument. The RpcBindingReset routine dissociates a server
instance by removing the endpoint portion of the server address in the binding handle. The host remains
unchanged in the binding handle. The result is a partially bound server binding handle.

RpcBindingReset does not affect the Binding argument's authentication information, if there is any.

If a client is willing to be serviced by any compatible server instance on the host specified in the binding
handle, the client calls the RpcBindingReset routine before making a remote procedure call using the
Binding binding handle.

When the client makes the next remote procedure call using the reset (partially bound) binding, the
client's RPC run-time library uses a well-known endpoint from the client's interface specification, if any.
Otherwise, the client's run-time library automatically communicates with the endpoint-mapping service on
the specified remote host to obtain the endpoint of a compatible server from the endpoint-map database.
If a compatible server is located, the RPC run-time library updates the binding with a new endpoint. If a
compatible server is not found, the remote procedure call fails. For calls using a connection protocol
(ncacn), the RPC_S_NO_ENDPOINT_FOUND status code is returned to the client. For calls using a
datagram protocol (ncadg), the RPC_S_COMM_FAILURE status code is returned to the client.

Server applications should register all binding handles by calling RpcEpRegister and
RpcEpRegisterNoReplace if the server wants to be available to clients that make a remote procedure
call on a reset binding handle.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

See Also
RpcEpRegister, RpcEpRegisterNoReplace

RpcBindingServerFromClient   

The RpcBindingServerFromClient function converts a client binding handle to a server binding handle.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingServerFromClient(

        RPC_BINDING_HANDLE    ClientBinding,
        RPC_BINDING_HANDLE *    ServerBinding
     );

Parameters
ClientBinding

Specifies the client binding handle to convert to a server binding handle.
ServerBinding

Returns a server binding handle.

Remarks
An application calls the RpcBindingServerFromClient routine to convert a client binding handle into a
partially-bound server binding handle.

The RpcBindingServerFromClient routine is supported for the following protocol sequences:

· ncadg_ip_udp
· ncadg_ipx
· ncacn_ip_tcp
· ncacn_spx.

An application gets a client binding handle from the RPC runtime. When the RPC arrives at a server, the
runtime creates a client binding handle that contains information about the calling client. This handle is
passed by the runtime to the server manager routine as the first argument.

The following information pertains to the server binding handle that is returned by
RpcBindingServerFromClient:

· The returned handle is a partially bound handle. It contains a network address for the calling client,
but lacks an endpoint.

· The returned handle contains the same object UUID used by the calling client. This can be the nil
UUID. For more information on how a client specifies an object UUID for a call, see
RpcBindingsetObject, RpcNsBindingImportBegin, RpcNsBindingLookupBegin, and
RpcBindingFromStringBinding.

· The returned handle contains no authentication information.

Return Values
Value Meaning
RPC_S_OK Success

RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for operation

RPC_S_CANNOT_SUPPORT Cannot determine the client's host
(not TCP or SPX)

See Also
RpcBindingFree, RpcBindingSetObject, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingImportBegin, RpcNsBindingLookupBegin, RpcBindingFromStringBinding

RpcBindingSetAuthInfo   

The RpcBindingSetAuthInfo function sets authentication and authorization information into a binding
handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingSetAuthInfo(

        RPC_BINDING_HANDLE    Binding,
        unsigned char *    ServerPrincName,
        unsigned long    AuthnLevel,
        unsigned long    AuthnSvc,
        RPC_AUTH_IDENTITY_HANDLE    AuthIdentity,
        unsigned long    AuthzSvc
     );

Parameters
Binding

Specifies the server binding handle into which authentication and authorization information is set.
ServerPrincName

Points to the expected principal name of the server referenced by the binding handle specified in the
Binding argument. The content of the name and its syntax are defined by the authentication service in
use.

AuthnLevel

Specifies the level of authentication to be performed on remote procedure calls made using the
Binding binding handle.    For a list of the RPC-supported authentication levels, see Authentication-
Level Constants.

AuthnSvc

Specifies the authentication service to use.    For a list of the RPC-supported authentication services,
see Authentication-Service Constants.
Specify RPC_C_AUTHN_NONE to turn off authentication for remote procedure calls made using the
Binding binding handle.
If RPC_C_AUTHN_DEFAULT is specified, the RPC run-time library uses the
RPC_C_AUTHN_WINNT authentication service for remote procedure calls made using the Binding
binding handle.

AuthIdentity

Specifies a handle for the data structure that contains the client's authentication and authorization
credentials appropriate for the selected authentication and authorization service.
When using the RPC_C_AUTHN.WINNT authentication service AuthIdentity should be a pointer to a
SEC_WINNT_AUTH_IDENTITY structure (defined in rpcdce.h).
Specify a null value to use the security login context for the current address space.

AuthzSvc

Specifies the authorization service implemented by the server for the interface of interest. The validity
and trustworthiness of authorization data, like any application data, depends on the authentication
service and authentication level selected. This parameter is ignored when using the
RPC_C_AUTHN_WINNT authentication service.

 For a list of the RPC-supported authentication services, see Authentication-Service Constants.

Remarks
A client application calls the RpcBindingSetAuthInfo routine to set up a server binding handle for
making authenticated remote procedure calls.

Unless a client calls RpcBindingSetAuthInfo, all remote procedure calls on the Binding binding handle
are unathenticated. A client is not required to call this routine.

Note    As long as the binding handle exists, RPC maintains a pointer to AuthIdentity. Be sure it is
not on the stack and is not freed until the binding handle is freed. If the binding handle is copied, or if
a context handle is created from the binding handle, then the AuthIdentity pointer will also be copied.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDING Wrong kind of binding for

operation
RPC_S_UNKNOWN_AUTHN_SERVIC
E

Unknown authentication service

See Also
RpcBindingInqAuthInfo, RpcServerRegisterAuthInfo

RpcBindingSetObject   

The RpcBindingSetObject function sets the object UUID value in a binding handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingSetObject(

        RPC_BINDING_HANDLE    Binding,
        UUID *    ObjectUuid
     );

Parameters
Binding

Specifies the server binding into which the ObjectUuid is set.
ObjectUuid

Points to the UUID of the object serviced by the server specified in the Binding argument. ObjectUuid
is a unique identifier of an object to which a remote procedure call can be made.

Remarks
An application calls the RpcBindingSetObject routine to associate an object UUID with a server binding
handle. The set-object operation replaces the previously associated object UUID with the UUID in the
ObjectUuid argument.

To set the object UUID to the nil UUID, specify a null value or the nil UUID for the ObjectUuid argument.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for operation

See Also
RpcBindingFromStringBinding, RpcBindingInqObject

RpcBindingToStringBinding   

The RpcBindingToStringBinding function returns a string representation of a binding handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingToStringBinding(

        RPC_BINDING_HANDLE    Binding,
        unsigned char * *    StringBinding
     );

Parameters
Binding

Specifies a client or server binding handle to convert to a string representation of a binding handle.
StringBinding

Returns a pointer to a pointer to the string representation of the binding handle specified in the
Binding argument.
Specify a null value to prevent RpcBindingToStringBinding from returning the StringBinding
argument. In this case, the application does not call the RpcStringFree routine.

Remarks
The RpcBindingToStringBinding routine converts a client or server binding handle to its string
representation.

The RPC run-time library allocates memory for the string returned in the StringBinding argument. The
application is responsible for calling the RpcStringFree routine to deallocate that memory.

If the binding handle in the Binding argument contained a nil object UUID, the object UUID field is not
included in the returned string.

To parse the returned StringBinding argument, call the RpcStringBindingParse routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle

See Also
RpcBindingFromStringBinding, RpcStringBindingParse, RpcStringFree

RpcBindingVectorFree   

The RpcBindingVectorFree function frees the binding handles contained in the vector and the vector
itself.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcBindingVectorFree(

        RPC_BINDING_VECTOR * *    BindingVector
     );

Parameters
BindingVector

Points to a pointer to a vector of server binding handles. On return, the pointer is set to NULL.

Remarks
An application calls the RpcBindingVectorFree routine to release the memory used to store a vector of
server binding handles. The routine frees both the binding handles and the vector itself.

A server obtains a vector of binding handles by calling the RpcServerInqBindings routine. A client
obtains a vector of binding handles by calling the RpcNsBindingLookupNext routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for operation

See Also
RpcNsBindingLookupNext, RpcServerInqBindings

RpcCancelThread   

The RpcCancelThread function cancels a thread.

This function is supported only by Windows NT.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcCancelThread(

        HANDLE    ThreadHandle
     );

Parameters
ThreadHandle

Specifies the handle of the thread to cancel.

Remarks
The RpcCancelThread routine allows one client thread to cancel an RPC in progress on another client
thread. When the routine is called, the server runtime is informed of the cancel operation. The server stub
can determine if the call has been cancelled by calling RpcTestCancel. If the call has been cancelled, the
server stub should clean up and return control to the client.

By default, the client waits forever for the server to return control after a cancel. To reduce this time, call
RpcMgmtSetCancelTimeout, specifying the number of seconds to wait for a response. If the server
does not return within this interval, the call fails at the client with an RPC_S_CALL_FAILED exception.
The server stub continues to execute.

Note    This routine is only supported for Windows NT clients.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_ACCESS_DENIED Thread handle does not have privilege
RPC_S_CANNOT_SUPPOR
T

Called by an MS-DOS or Windows 3.x
client

RpcEndExcept   

See
RpcExcept

RpcEndFinally   

See
RpcFinally

RpcEpRegister   

The RpcEpRegister function adds to or replaces server address information in the local endpoint-map
database.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcEpRegister(

        RPC_IF_HANDLE    IfSpec,
        RPC_BINDING_VECTOR *    BindingVector,
        UUID_VECTOR *    UuidVector,
        unsigned char *    Annotation
     );

Parameters
IfSpec

Specifies an interface to register with the local endpoint-map database.
BindingVector

Points to a vector of binding handles over which the server can receive remote procedure calls.
UuidVector

Points to a vector of object UUIDs offered by the server. The server application constructs this vector.
A null argument value indicates there are no object UUIDs to register.

Annotation

Points to the character-string comment applied to each cross-product element added to the local
endpoint-map database. The string can be up to 64 characters long, including the null terminating
character. Specify a null value or a null-terminated string ("\0") if there is no annotation string.
The annotation string is used by applications for information only. RPC does not use this string to
determine which server instance a client communicates with or for enumerating elements in the
endpoint-map database.

Remarks
The RpcEpRegister routine adds or replaces entries in the local host's endpoint-map database. For an
existing database entry that matches the provided interface specification, binding handle, and object
UUID, this routine replaces the entry's endpoint with the endpoint in the provided binding handle.

A server uses RpcEpRegister rather than RpcEpRegisterNoReplace when only a single instance of the
server will run on the server's host. In other words, use this routine when no more than one server
instance will offer the same interface UUID, object UUID, and protocol sequence at any one time.

When entries are not replaced, stale data accumulates each time a server instance stops running without
calling RpcEpUnregister. Stale entries increase the likelihood that a client will receive endpoints to
nonexistent servers. The client will spend time trying to communicate with a nonexistent server before
obtaining another endpoint.

Using RpcEpRegister to replace existing endpoint-map database entries reduces the likelihood that a
client will be given the endpoint of a nonexistent server instance. A server application calls this routine to

register endpoints specified by calling any of the following routines:

· RpcServerUseAllProtseqs
· RpcServerUseProtseq
· RpcServerUseProtseqEp

A server that calls only RpcServerUseAllProtseqsIf or RpcServerUseProtseqIf does not need to call
RpcEpRegister. In this case, the client's run-time library uses an endpoint from the client's interface
specification to fill in a partially bound binding handle.

If the server also exports to the name-service database, the server calls RpcEpRegister with the same
IfSpec, BindingVector, and UuidVector that the server uses when calling the RpcNsBindingExport
routine.

For automatically started servers running over one of the connection-based protocol sequences
(ncacn_np, ncacn_nb, ncacn_ip_tcp, ncacn_osi_dns), the RPC run-time library automatically
generates a dynamic endpoint. In this case, the server can call RpcServerInqBindings followed by
RpcEpRegister to make itself available to multiple clients. Otherwise, the automatically started server is
known only to the client for which the server was started.

Each element added to the endpoint-map database logically contains the following:

· Interface UUID
· Interface version (major and minor)
· Binding handle
· Object UUID (optional)
· Annotation (optional)

RpcEpRegister creates a cross-product from the IfSpec, BindingVector, and UuidVector arguments and
adds each element in the cross-product as a separate registration in the endpoint-map database.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_BINDINGS No bindings
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

See Also
RpcBindingFromStringBinding, RpcEpRegisterNoReplace, RpcEpUnregister,
RpcNsBindingExport, RpcServerInqBindings, RpcServerUseAllProtseqs,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqIf

RpcEpRegisterNoReplace   

The RpcEpRegisterNoReplace function adds server-address information to the local endpoint-map
database.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcEpRegisterNoReplace(

        RPC_IF_HANDLE    IfSpec,
        RPC_BINDING_VECTOR *    BindingVector,
        UUID_VECTOR *    UuidVector,
        unsigned char *    Annotation
     );

Parameters
IfSpec

Specifies an interface to register with the local endpoint-map database.
BindingVector

Points to a vector of binding handles over which the server can receive remote procedure calls.
UuidVector

Points to a vector of object UUIDs offered by the server. The server application constructs this vector.
A null argument value indicates there are no object UUIDs to register.

Annotation

Points to the character-string comment applied to each cross-product element added to the local
endpoint-map database. The string can be up to 64 characters long, including the null terminating
character. Specify a null value or a null-terminated string ("\0") if there is no annotation string.
The annotation string is used by applications for information only. RPC does not use this string to
determine which server instance a client communicates with or to enumerate elements in the
endpoint-map database.

Remarks
The RpcEpRegisterNoReplace routine adds entries to the local host's endpoint-map database. This
routine does not replace existing database entries.

A server uses RpcEpRegisterNoReplace rather than RpcEpRegister when multiple instances of the
server will run on the same host. In other words, use this routine when more than one server instance will
offer the same interface UUID, object UUID, and protocol sequence at any one time.

Because entries are not replaced when calling RpcEpRegisterNoReplace, servers must unregister
themselves before they stop running. Otherwise, stale data accumulates each time a server instance
stops running without calling RpcEpUnregister. Stale entries increase the likelihood that a client will
receive endpoints to nonexistent servers. The client will spend time trying to communicate with a
nonexistent server before obtaining another endpoint.

A server application calls RpcEpRegisterNoReplace to register endpoints specified by calling any of the
following routines:

· RpcServerUseAllProtseqs

· RpcServerUseProtseq
· RpcServerUseProtseqEp

A server that calls only RpcServerUseAllProtseqsIf or RpcServerUseProtseqIf is not required to call
RpcEpRegisterNoReplace. In this case, the client's run-time library uses an endpoint from the client's
interface specification to fill in a partially bound binding handle.

If the server also exports to the name-service database, the server calls RpcEpRegisterNoReplace with
the same IfSpec, BindingVector, and UuidVector arguments that the server uses when calling the
RpcNsBindingExport routine.

For automatically started servers running over one of the connection-based protocol sequences
(ncacn_np, ncacn_nb, ncacn_ip_tcp, ncacn_osi_dns), the RPC run-time library automatically
generates a dynamic endpoint. In this case, the server can call RpcServerInqBindings followed by
RpcEpRegisterNoReplace to make itself available to multiple clients. Otherwise, the automatically
started server is known only to the client for which the server was started.

Each element added to the endpoint-map database logically contains the following:

· Interface UUID
· Interface version (major and minor)
· Binding handle
· Object UUID (optional)
· Annotation (optional)

RpcEpRegisterNoReplace creates a cross-product from the IfSpec, BindingVector, and UuidVector
arguments and adds each element in the cross-product as a separate registration in the endpoint-map
database.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_BINDINGS No bindings
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

See Also
RpcBindingFromStringBinding, RpcEpRegister, RpcEpUnregister, RpcNsBindingExport,
RpcServerInqBindings, RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf,
RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqIf

RpcEpResolveBinding   

The RpcEpResolveBinding function resolves a partially bound server binding handle into a fully bound
server binding handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcEpResolveBinding(

        RPC_BINDING_HANDLE    Binding,
        RPC_IF_HANDLE    IfSpec
     );

Parameters
Binding

Specifies a partially bound server binding handle to resolve to a fully bound server binding handle.
IfSpec

Specifies a stub-generated data structure specifying the interface of interest.

Remarks
An application calls the RpcEpResolveBinding routine to resolve a partially bound server binding handle
into a fully bound binding handle.

Resolving binding handles requires an interface UUID and an object UUID (which may be nil). The RPC
run-time library asks the endpoint-mapping service on the host specified by the Binding argument to look
up an endpoint for a compatible server instance. To find the endpoint, the endpoint-mapping service looks
in the endpoint-map database for the interface UUID in the IfSpec argument and the object UUID in the
Binding argument, if any.

How the resolve-binding operation functions depends on whether the specified binding handle is partially
or fully bound. When the client specifies a partially bound handle, the resolve-binding operation has the
following possible outcomes:

· If no compatible server instances are registered in the endpoint-map database, the resolve-binding
operation returns the EPT_S_NOT_REGISTERED status code.

· If a compatible server instance is registered in the endpoint-map database, the resolve-binding
operation returns a fully bound binding and the RPC_S_OK status code.

When the client specifies a fully bound binding handle, the resolve-binding operation returns the specified
binding handle and the RPC_S_OK status code. The resolve-binding operation does not contact the
endpoint-mapping service.

In neither the partially nor the fully bound binding case does the resolve-binding operation contact a
compatible server instance.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN Wrong kind of binding for

G operation

See Also
RpcBindingFromStringBinding, RpcBindingReset, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingImportBegin, RpcNsBindingImportDone, RpcNsBindingImportNext

RpcEpUnregister   

The RpcEpUnregister function removes server-address information from the local endpoint-map
database.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcEpUnregister(

        RPC_IF_HANDLE    IfSpec,
        RPC_BINDING_VECTOR *    BindingVector,
        UUID_VECTOR *    UuidVector
     );

Parameters
IfSpec

Specifies an interface to unregister from the local endpoint-map database.
BindingVector

Points to a vector of binding handles to unregister.
UuidVector

Points to an optional vector of object UUIDs to unregister. The server application constructs this
vector. RpcEpUnregister unregisters all endpoint-map database elements that match the specified
IfSpec and BindingVector arguments and the object UUID(s).
A null argument value indicates there are no object UUIDs to unregister.

Remarks
The RpcEpUnregister routine removes elements from the local host's endpoint-map database. A server
application calls this routine only when the server has previously registered endpoints and the server
wants to remove that address information from the endpoint-map database.

Specifically, RpcEpUnregister allows a server application to remove its own endpoint-map database
elements (server-address information) based on the interface specification or on both the interface
specification and the object UUID(s) of the resource(s) offered.

The server calls the RpcServerInqBindings routine to obtain the required BindingVector argument. To
unregister selected endpoints, the server can prune the binding vector prior to calling this routine.

RpcEpUnregister creates a cross-product from the IfSpec, BindingVector, and UuidVector arguments
and removes each element in the cross-product from the endpoint-map database.

Use RpcEpUnregister cautiously: removing elements from the endpoint-map database may make
servers unavailable to client applications that have not previously communicated with the server.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_BINDINGS No bindings
RPC_S_INVALID_BINDING Invalid binding handle

RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

See Also
RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingUnexport, RpcServerInqBindings

RpcExcept   

The RpcExcept function specifies exception handling.

RpcTryExcept
{
guarded statements
}

RpcExcept(expression)
{
exception statements
}

RpcEndExcept;

Parameters
guarded statements

Specifies program statements that are guarded or monitored for exceptions during execution.
expression

Specifies an expression that is evaluated when an exception occurs. If expression evaluates to a non-
zero value, the exception statements are executed. If expression evaluates to a zero value, unwinding
continues to the next RpcTryExcept or RpcTryFinally routine.

exception statements

Specifies statements that are executed when the expression evaluates to a non-zero value.

Remarks
If an exception does not occur, the expression and exception statements are skipped and execution
continues at the statement following the RpcEndExcept keyword.

RpcExceptionCode can be used in both expression and exception statements to determine which
exception occurred.

The following restrictions apply.

· Jumping (via a goto) into guarded statements is not allowed.
· Jumping (via a goto) into exception statements is not allowed.
· Returning or jumping (via a goto) from guarded statements is not allowed.
· Returning or jumping (via a goto) from exception statements is not allowed.

See Also
RpcExceptionCode, RpcFinally, RpcRaiseException

RpcExceptionCode   

The RpcExceptionCode function returns the exception code of an exception.

unsigned long RpcExceptionCode(VOID);

Remarks
The RpcExceptionCode function can only be called from within the expression and exception statements
of an RpcTryExcept exception handler.

Return Values
No value is returned.

See Also
RpcExcept, RpcFinally

RpcFinally   

The RpcFinally function specifies termination handlers.

RpcTryFinally   
{
guarded statements
}

RpcFinally
{
termination statements
}

RpcEndFinally;

Parameters
guarded statements

Specifies statements that are executed while exceptions are being monitored. If an exception occurs
during the execution of these statements, termination statements will be executed, then unwinding
continues to the next RpcTryExcept or RpcTryFinally routine.

termination statements

Specifies statements that are executed when an exception occurs. After the termination statements
are complete, the exception is raised again.

Remarks
The RpcAbnormalTermination function can be used in termination statements to determine whether
termination statements is being executed because an exception occurred. A non-zero return from
RpcAbnormalTermination indicates that an exception occurred. A value of zero indicates that no
exception occurred.

The following restrictions apply:

· Jumping (via a goto) into guarded statements is not allowed.
· Jumping (via a goto) into termination statements is not allowed.
· Returning or jumping (via a goto) from guarded statements is not allowed.
· Returning or jumping (via a goto) from termination statements is not allowed.

See Also
RpcAbnormalTermination

RpcIfIdVectorFree   

The RpcIfIdVectorFree function frees the vector and the interface-identification structures contained in
the vector.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcIfIdVectorFree(

        RPC_IF_ID_VECTOR * *    IfIdVec
     );

Parameters
IfIdVec

Specifies the address of a pointer to a vector of interface information. On return, the pointer is set to
NULL.

Remarks
An application calls the RpcIfIdVectorFree routine to release the memory used to store a vector of
interface identifications. RpcIfIdVectorFree frees memory containing the interface identifications and the
vector itself. On return, this routine sets the IfIdVec argument to NULL.

An application obtains a vector of interface identifications by calling the RpcNsMgmtEntryInqIfIds and
RpcMgmtInqIfIds routines.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument

See Also
RpcIfInqId, RpcMgmtInqIfIds, RpcNsMgmtEntryInqIfIds

RpcIfInqId   

The RpcIfInqId function returns the interface-identification part of an interface specification.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcIfInqId(

        RPC_IF_HANDLE    RpcIfHandle,
        RPC_IF_ID *    RpcIfId
     );

Parameters
RpcIfHandle

Specifies a stub-generated data structure specifying the interface to inquire.
RpcIfId

Returns a pointer to the interface identification. The application provides memory for the returned
data.

Remarks
An application calls the RpcIfInqId routine to obtain a copy of the interface identification from the
provided interface specification.

The returned interface identification consists of the interface UUID and interface version numbers (major
and minor) specified in the IfSpec argument from the IDL file.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcServerInqIf, RpcServerRegisterIf

RpcImpersonateClient   

A server thread that is processing client remote procedure calls can call the RpcImpersonateClient
function to impersonate the active client.

This function is supported only by Windows NT.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcImpersonateClient(

        RPC_BINDING_HANDLE    CallHandle
     );

Parameters
CallHandle

Specifies a binding handle on the server that represents a binding to a client. The server
impersonates the client indicated by this handle. If a value of zero is specified, the server
impersonates the client that is being served by this server thread.

Return Values
Value Meaning
RPC_S_OK Success.
RPC_S_NO_CALL_ACTIVE No client is active on this server

thread.
RPC_S_CANNOT_SUPPORT The function is not supported

for either the operating system,
the transport, or this security
subsystem.

RPC_S_INVALID_BINDING Invalid binding handle.
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for
operation.

RPC_S_NO_CONTEXT_AVAILABLEThe server does not have
permission to impersonate the
client.

Remarks
In a multithreaded application, if the call to RpcImpersonateClient is with a handle to another client
thread, you must call RpcRevertToSelfEx with the handle to that thread to end impersonation.

See Also
RpcRevertToSelf, Impersonation

RpcMacSetYieldInfo   

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMacSetYieldInfo(

        MACYIELDCALLBACK    pfnCallback
     );

Parameters
pfnCallback

Pointer to a callback function.
typedef void (RPC_ENTRY *MACYIELDCALLBACK)(short *);

Remarks
The RpcMacSetYieldInfo function configures Macintosh client applications to yield to other applications
during remote procedure calls.

If a yielding function is not registered, an RPC will not yield on the Mac. Register a yielding function by
calling RpcMacSetYieldInfo.

The yielding function must yield until *pStatus is not equal to 1. For example:

void RPC_ENTRY MacCallbackFunc (short *pStatus)
{
 MSG msg;
 while (*pStatus == 1)
 {
 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
}

Note that rpc.h must be included before winerror.h (or any files that include it, such as winbase.h,
windows.h, and so on).

Return Values
Value Meaning
RPC_S_OK The information was set

successfully.

RpcMgmtEnableIdleCleanup   

The RpcMgmtEnableIdleCleanup function closes idle resources, such as network connections, on the
client. Connection-oriented protocols set five minutes as the default waiting period to determine whether a
resource is idle.

This function is supported by the Windows NT, Windows 95 and Windows 3.x platforms. It is not
supported by MS-DOS.

Note    RpcMgmtEnableIdleCleanup is a Microsoft extension to the DCE API set.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtEnableIdleCleanup(VOID);

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_THREADS Out of threads
RPC_S_OUT_OF_RESOURCES Out of resources
RPC_S_OUT_OF_MEMORY Out of memory

See Also
RpcServerUnregisterIf

RpcMgmtEpEltInqBegin   

The RpcMgmtEpEltInqBegin function creates an inquiry context for viewing the elements in an endpoint
map.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtEpEltInqBegin(

        RPC_BINDING_HANDLE    EpBinding,
        unsigned long    InquiryType,
        RPC_IF_ID *    IfId,
        unsigned long    VersOption,
        UUID *    ObjectUuid,
        RPC_EP_INQ_HANDLE *    InquiryContext
     );

Parameters
EpBinding

Specifies the host whose endpoint map elements will be viewed. Specify NULL to view elements from
the local host.

InquiryType

Specifies an integer value that indicates the type of inquiry to perform on the endpoint map. The
following are valid inquiry types:

Value Description
RPC_C_EP_ALL_ELTS Returns every element from the

endpoint map. The IfId,
VersOption, and ObjectUuid
parameters are ignored.

RPC_C_EP_MATCH_BY_IF Searches the endpoint map for
those elements that contain the
interface identifier specified by
the IfId and VersOption values.

RPC_C_EP_MATCH_BY_OBJ Searches the endpoint map for
those elements that contain the
object UUID specified by
ObjectUuid.

     
RPC_C_EP_MATCH_BY_BOTH

Searches the endpoint map for
those elements that contain the
interface identifier and object
UUID specified by IfId,
VersOption, and ObjectUuid.

IfId

Specifies the interface identifier of the endpoint map elements to be returned by
RpcMgmtEpEltInqNext. This parameter is only used when InquiryType is either
RPC_C_EP_MATCH_BY_IF or RPC_C_EP_MATCH_BY_BOTH. Otherwise, it is ignored.

VersOption

Specifies how RpcMgmtEpEltInqNext uses the IfId parameter. This parameter is only used when
InquiryType is either RPC_C_EP_MATCH_BY_IF or RPC_C_EP_MATCH_BY_BOTH. Otherwise, it is
ignored. The following are valid values for this parameter:

Value Description
RPC_C_VERS_ALL Returns endpoint map elements

that offer the specified interface
UUID, regardless of the version
numbers.

RPC_C_VERS_COMPATIBLE Returns endpoint map elements
that offer the same major version
of the specified interface UUID
and a minor version greater than
or equal to the minor version of
the specified interface UUID.

RPC_C_VERS_EXACT Returns endpoint map elements
that offer the specified version of
the specified interface UUID.

RPC_C_VERS_MAJOR_ONLY Returns endpoint map elements
that offer the same major version
of the specified interface UUID
and ignores the minor version.

RPC_C_VERS_UPTO Returns endpoint map elements
that offer a version of the
specified interface UUID less
than or equal to the specified
major and minor version.

ObjectUuid

Specifies the object UUID that RpcMgmtEpEltInqNext looks for in endpoint map elements. This
parameter is used only when InquiryType is either RPC_C_EP_MATCH_BY_OBJ or
RPC_C_EP_MATCH_BY_BOTH.

InquiryContext

Returns an inquiry context for use with RpcMgmtEpEltInqNext and RpcMgmtEpEltInqDone.

Remarks
The RpcMgmtEpEltInqBegin routine creates an inquiry context for viewing server address information
stored in the endpoint map. Using InquiryType and VersOption, an application specifies which of the
following endpoint map elements are to be returned from calls to RpcMgmtEpEltInqNext:

· All elements.
· Those elements with the specified interface identifier.
· Those elements with the specified object UUID.
· Those elements with both the specified interface identifier and object UUID.

Before calling RpcMgmtEpEltInqNext, the application must first call this routine to create an inquiry
context. After viewing the endpoint map elements, the application calls RpcMgmtEpEltInqDone to delete
the inquiry context.

Return Values

Value Meaning
RPC_S_OK Success

See Also
RpcEpRegister

RpcMgmtEpEltInqDone   

The RpcMgmtEpEltInqDone function deletes the inquiry context for viewing the elements in an endpoint
map.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtEpEltInqDone(

        RPC_EP_INQ_HANDLE *    InquiryContext
     );

Parameters
InquiryContext

Specifies the inquiry context to delete and returns the value NULL.

Remarks
The RpcMgmtEpEltInqDone routine deletes an inquiry context created by RpcMgmtEpEltInqBegin. An
application calls this routine after viewing local endpoint map elements using RpcMgmtEpEltInqNext.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcEpRegister

RpcMgmtEpEltInqNext   

The RpcMgmtEpEltInqNext function returns one element from an endpoint map.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtEpEltInqNext(

        RPC_EP_INQ_HANDLE    InquiryContext,
        RPC_IF_ID * IfId,
        RPC_BINDING_HANDLE * Binding
        UUID *    ObjectUuid,
        unsigned char * *    Annotation
     );

Parameters
InquiryContext

Specifies an inquiry context. The inquiry context is returned from RpcMgmtEpEltInqBegin.
IfId

Returns the interface identifier of the endpoint map element.
Binding

Optional. Returns the binding handle from the endpoint map element.
ObjectUuid

Optional. Returns the object UUID from the endpoint map element.
Annotation

Optional. Returns the annotation string for the endpoint map element. When there is no annotation
string in the endpoint map element, the empty string ("") is returned.

Remarks
The RpcMgmtEpEltInqNext routine returns one element from the endpoint map. Elements selected
depend on the inquiry context. The selection criteria are determined by InquiryType of the
RpcMgmtEpEltInqBegin routine that returned InquiryContext.

An application can view all the selected endpoint map elements by repeatedly calling
RpcMgmtEpEltInqNext. When all the elements have been viewed, this routine returns an
RPC_X_NO_MORE_ENTRIES status. The returned elements are unordered.

When the respective arguments are non-NULL, the RPC run-time function library allocates memory for
Binding and Annotation on each call to this routine. The application is responsible for calling
RpcBindingFree for each returned Binding and RpcStringFree for each returned Annotation.

After viewing the endpoint map's elements, the application must call RpcMgmtEpEltInqDone to delete
the inquiry context.

Return Values
Value Meaning

RPC_S_OK Success

See Also
RpcEpRegister

RpcMgmtEpUnregister   

The RpcMgmtEpUnregister function removes server address information from an endpoint map.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtEpUnregister(

        RPC_BINDING_HANDLE    EpBinding,
        RPC_IF_ID *    IfId,
        RPC_BINDING_HANDLE Binding,
        UUID *    ObjectUuid
     );

Parameters
EpBinding

Specifies the host whose endpoint map elements are to be unregistered. To remove elements from
the same host as the calling application, the application specifies NULL. To remove elements from
another host, the application specifies a server binding handle for any server residing on that host.
Note that the application can specify the same binding handle it is using to make other remote
procedure calls.

IfId

Specifies the interface identifier to remove from the endpoint map.
Binding

Specifies the binding handle to remove.
ObjectUuid

Specifies the optional object UUID to remove. The value NULL indicates there is no object UUID to
remove.

Remarks
The RpcMgmtEpUnregister routine unregisters an element from the endpoint map. A management
program calls this routine to remove addresses of servers that are no longer available, or to remove
addresses of servers that support objects that are no longered offered.

The EpBinding parameter must be a full binding. The object UUID associated with the EpBinding
parameter must be a nil UUID. Specifying a non-nil UUID causes the routine to fail with the status code
EPT_S_CANT_PERFORM_OP. Other than the host information and object UUID, all information in this
argument is ignored.

An application calls RpcMgmtEpEltInqNext to view local endpoint map elements. The application can
then remove the elements using RpcMgmtEpUnregister.

Note    Use this routine with caution. Removing elements from the local endpoint map may make
servers unavailable to client applications that do not already have a fully bound binding handle to the
server.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_CANT_PERFORM_OP Cannot perform the requested

operation

See Also
RpcEpRegister, RpcEpUnregister

RpcMgmtInqComTimeout   

The RpcMgmtInqComTimeout function returns the binding-communications timeout value in a binding
handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtInqComTimeout(

        RPC_BINDING_HANDLE    Binding,
        unsigned int *    Timeout
     );

Parameters
Binding

Specifies a binding.
Timeout

Returns a pointer to the timeout value from the Binding argument.

Remarks
A client application calls RpcMgmtInqComTimeout to view the timeout value in a server binding handle.
The timeout value specifies the relative amount of time that should be spent to establish a binding to the
server before giving up. The table below shows the timeout values.

A client calls RpcMgmtSetComTimeout to change the timeout value.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

See Also
RpcMgmtInqStats, RpcMgmtSetComTimeout

RpcMgmtInqDefaultProtectLevel   

The RpcMgmtInqDefaultProtectLevel function returns the default authentication level for an
authentication service.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtInqDefaultProtectLevel(

        unsigned int    AuthnSvc,
        unsigned int    *    AuthnLevel
     );

Parameters
AuthnSvc

Specifies the authentication service for which to return the default authentication level. Possible
values are as follows:

Value Description
RPC_C_AUTHN_NONE No authentication
RPC_C_AUTHN_WINNT 32-bit Windows authentication

service

AuthnLevel

Returns the default authentication level for the specified authentication service. The authentication
level determines the degree to which authenticated communications between the client and server
are protected. Possible values are as follows:

Value Description
RPC_C_AUTHN_LEVEL_DEFAULT Uses the default authentication level

for the specified authentication
service.

RPC_C_AUTHN_LEVEL_NONE Performs no authentication.
RPC_C_AUTHN_LEVEL_CONNEC
T

Authenticates only when the client
establishes a relationship witha
server.

RPC_C_AUTHN_LEVEL_CALL Authenticates only at the beginning
of each remote procedure call when
the server receives the request.
Does not apply to remote procedure
calls made using the connection-
based protocol sequences that start
with the prefix "ncacn." If the
protocol sequence in a binding is a
connection-based protocol
sequence and you specify this level,
this routine instead uses the
RPC_C_AUTHN_LEVEL_PKT
constant.

RPC_C_AUTHN_LEVEL_PKT Authenticates that all data received
is from the expected client.

RPC_C_AUTHN_LEVEL_PKT Authenticates and verifies that none

_INTEGRITY of the data transferred between
client and server has been modified.

RPC_C_AUTHN_LEVEL_PKT
_PRIVACY

Authenticates all previous levels
and encrypts the argument value of
each remote procedure call.

Note    RPC_C_AUTHN_LEVEL_CALL, RPC_C_AUTHN_LEVEL_PKT,
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, and RPC_C_AUTHN_LEVEL_PKT_PRIVACY are only
supported for clients communicating with a Windows NT server. A Windows 95 server can only accept
incoming calls at the RPC_C_AUTHN_LEVEL_CONNECT level.

Remarks
An application calls the RpcMgmtInqDefaultProtectLevel routine to obtain the default authentication
level for a specified authentication service.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_UNKNOWN_AUTH_SERVIC
E

Unknown authentication
service

RpcMgmtInqIfIds   

The RpcMgmtInqIfIds function returns a vector containing the identifiers of the interfaces offered by the
server.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtInqIfIds(

        RPC_BINDING_HANDLE    Binding,
        RPC_IF_ID_VECTOR * *    IfIdVector
     );

Parameters
Binding

To receive interface identifiers about a remote application, specify a server binding handle for that
application. To receive interface information about your own application, specify a value of NULL.

IfIdVector

Returns the address of an interface identifier vector.

Remarks
An application calls the RpcMgmtInqIfIds routine to obtain a vector of interface identifiers about the
specified server from the RPC run-time library.

The RPC run-time library allocates memory for the interface identifier vector. The application is
responsible for calling the RpcIfIdVectorFree routine to release the memory used by this vector.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

RpcMgmtInqServerPrincName   

The RpcMgmtInqServerPrincName function returns a server's principal name.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95. Note that it is
supported only in ANSI on Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtInqServerPrincName(

        RPC_BINDING_HANDLE    Binding,
        unsigned int    AuthnSvc,
        unsigned char * *    ServerPrincName
     );

Parameters
Binding

To receive the principal name for a server, specify a server binding handle for that server. To receive
the principal name for your own (local) application, specify a value of NULL.

AuthnSvc

Specifies the authentication service for which a principal name is returned. Possible values are as
follows:

Value Description
RPC_C_AUTHN_NONE No authentication
RPC_C_AUTHN_WINNT Windows NT authentication

service

ServerPrincName

Returns a principal name that is registered for the authentication service in AuthnSvc by the server
referenced in Binding. If multiple names are registered, only one name is returned.

Remarks
An application calls the RpcMgmtInqServerPrincName routine to obtain the principal name of a server
that is registered for a specified authentication service.

The RPC run-time library allocates memory for string returned in ServerPrincName. The application is
responsible for calling the RpcStringFree routine to release the memory used by this routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

RpcMgmtInqStats   

The RpcMgmtInqStats function returns RPC run-time statistics.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtInqStats(

        RPC_BINDING_HANDLE    Binding,
        RPC_STATS_VECTOR * *    Statistics
     );

Parameters
Binding

To receive statistics about a remote application, specify a server binding handle for that application.
To receive statistics about your own (local) application, specify a value of NULL.

Statistics

Returns a pointer to a pointer to the statistics about the server specified by the Binding argument.
Each statistic is an unsigned long value.

Remarks
An application calls the RpcMgmtInqStats routine to obtain statistics about the specified server from the
RPC run-time library.

Each array element in the returned statistics vector contains an unsigned long value. The following list
describes the statistics indexed by the specified constant:

Statistic Description
RPC_C_STATS_CALLS_IN The number of remote

procedure calls received by the
server

RPC_C_STATS_CALLS_OUT The number of remote
procedure calls initiated by the
server

RPC_C_STATS_PKTS_IN The number of network packets
received by the server

RPC_C_STATS_PKTS_OUT The number of network packets
sent by the server

The RPC run-time library allocates memory for the statistics vector. The application is responsible for
calling the RpcMgmtStatsVectorFree routine to release the memory used by the statistics vector.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN Wrong kind of binding for

G operation

See Also
RpcEpResolveBinding, RpcMgmtStatsVectorFree

RpcMgmtIsServerListening   

The RpcMgmtIsServerListening function tells whether a server is listening for remote procedure calls.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtIsServerListening(

        RPC_BINDING_HANDLE    Binding
     );

Parameters
Binding

To determine whether a remote application is listening for remote procedure calls, specify a server
binding handle for that application. To determine whether your own (local) application is listening for
remote procedure calls, specify a value of NULL.

Remarks
An application calls the RpcMgmtIsServerListening routine to determine whether the server specified in
the Binding argument is listening for remote procedure calls.

RpcMgmtIsServerListening returns a true value if the server has called the RpcServerListen routine.

Return Values
Value Meaning
RPC_S_OK Server listening for remote

procedure calls
RPC_S_SERVER_NOT_LISTENING Server not listening for remote

procedure calls
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for operation

See Also
RpcEpResolveBinding, RpcServerListen

RpcMgmtSetAuthorizationFn   

The RpcMgmtSetAuthorizationFn function establishes an authorization function for processing remote
calls to a server's management routines.

This function is supported only by Windows NT.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtSetAuthorizationFn(

        RPC_MGMT_AUTHORIZATION_FN    AuthorizationFn
     );

Parameters
AuthorizationFn

Specifies an authorization function. The RPC server run-time library automatically calls this function
whenever the server runtime receives a client request to execute one of the remote management
routines. The server must implement this function. Applications specify NULL to unregister a
previously registered authorization function. After such a call, default authorizations are used.

Remarks
Server applications call the RpcMgmtSetAuthorizationFn routine to establish an authorization function
that controls access to the server's remote management routines. When a server has not called
RpcMgmtSetAuthorizationFn, or calls with a NULL value for AuthorizationFn, the server run-time library
uses the following default authorizations:

Remote routine Default authorization
RpcMgmtInqIfIds Enabled
RpcMgmtInqServerPrincName Enabled
RpcMgmtInqStats Enabled
RpcMgmtIsServerListening Enabled
RpcMgmtStopServerListening Disabled

In the above table, "Enabled" indicates that all clients can execute the remote routine, and "Disabled"
indicates that all clients are prevented from executing the remote routine.

The following example shows the prototype for authorization function that the server must implement:

typedef boolean32 (*RPC_MGMT_AUTHORIZATION_FN)
 (
 RPC_BINDING_HANDLE ClientBinding /* in */
 unsigned long RequestedMgmtOperation /* in */
 RPC_STATUS * Status /* out */
);

When a client requests one of the server's remote management functions, the server run-time library calls
the authorization function with ClientBinding and RequestedMgmtOperation. The authorization function
uses these parameters to determine whether the calling client can execute the requested management
routine.

The value for RequestedMgmtOperation depends on the remote routine requested, as shown in the
following:

Called remote routine RequestedMgmtOperation value
RpcMgmtInqIfIds RPC_C_MGMT_INQ_IF_IDS
RpcMgmtInqServerPrincName RPC_C_MGMT_INQ_PRINC_NAM

E
RpcMgmtInqStats RPC_C_MGMT_INQ_STATS
RpcMgmtIsServerListening RPC_C_MGMT_IS_SERVER_LIST

EN
RpcMgmtStopServerListening RPC_C_MGMT_STOP_SERVER_L

ISTEN

The authorization function must handle all of these values.

The authorization function returns a Boolean value to indicate whether the calling client is allowed access
to the requested management function. If the authorization function returns TRUE, the management
routine can execute. If the authorization function returns FALSE, the management routine cannot execute.
If this is the case, the routine returns a Status value to the client:

· If Status is either 0 (zero) or RPC_S_OK, the Status value RPC_S_ACCESS_DENIED is returned to
the client by the remote management routine.

· If the authorization function returns any other value for Status, that Status value is returned to the
client by the remote management routine.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcMgmtInqStats, RpcMgmtIsServerListening, RpcMgmtStopServerListening,
RpcMgmtWaitServerListen

RpcMgmtSetCancelTimeout   

The RpcMgmtSetCancelTimeout function sets the lower bound on the time to wait before timing out
after forwarding a cancel.

This function is supported only by Windows NT.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtSetCancelTimeout(

        signed int    Seconds
     );

Parameters
Seconds

An integer specifying the number of seconds to wait for a server to acknowledge a cancel. To specify
that a client waits an indefinite amount of time, supply the value
RPC_C_CANCEL_INFINITE_TIMEOUT.

Remarks
An application calls the RpcMgmtSetCancelTimeout routine to reset the amount of time the run-time
library waits for a server to acknowledge a cancel. The application specifies either to wait forever or to
wait a specified length of time in seconds. If the value of Seconds is 0 (zero), the call is immediately
abandoned upon a cancel and control returns to the client application. The default value is
RPC_C_CANCEL_INFINITE_TIMEOUT, which specifies waiting forever for the call to complete.

The value for the cancel time-out applies to all remote procedure calls made in the current thread. To
change the time-out value, a multithreaded client must call this routine in each thread of execution.

Note    This routine is only supported for Windows NT clients.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_CANNOT_SUPPORT Called from an MS-DOS or Windows

3.x client

RpcMgmtSetComTimeout   

The RpcMgmtSetComTimeout function sets the binding-communications timeout value in a binding
handle.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtSetComTimeout(

        RPC_BINDING_HANDLE    Binding,
        unsigned int    Timeout
     );

Parameters
Binding

Specifies the server binding handle whose timeout value is set.
Timeout

Specifies the communications timeout value.

Remarks
A client application calls RpcMgmtSetComTimeout to change the communications timeout value for a
server binding handle. The timeout value specifies the relative amount of time that should be spent to
establish a relationship to the server before giving up. Depending on the protocol sequence for the
specified binding handle, the timeout value acts only as a hint to the RPC run-time library.

After the initial relationship is established, subsequent communications for the binding handle revert to not
less than the default timeout for the protocol service. This means that after setting a short initial timeout
establishing a connection, calls in progress will not be timed out any more aggressively than the default.

The timeout value can be any integer value from 0 to 10. For convenience, constants are provided for
certain values in the timeout range. The following table contains the RPC-defined values that an
application can use for the timeout argument:

Manifest Value Description
RPC_C_BINDING_INFINITE_TIMEOU
T

10 Keep trying to establish
communications forever.

RPC_C_BINDING_MIN_TIMEOUT 0 Try the minimum amount of
time for the network
protocol being used. This
value favors response time
over correctness in
determining whether the
server is running.

RPC_C_BINDING_DEFAULT_TIMEOU
T

5 Try an average amount of
time for the network
protocol being used. This
value gives correctness in
determining whether a
server is running and gives
response time equal
weight. This is the default

value.
RPC_C_BINDING_MAX_TIMEOUT 9 Try the longest amount of

time for the network
protocol being used. This
value favors correctness in
determining whether a
server is running over
response time.

Note    The values in the preceding table are not in seconds. These values represent a relative
amount of time on a scale of zero to 10.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_INVALID_TIMEOUT Invalid timeout value
RPC_S_WRONG_KIND_OF_BINDING Wrong kind of binding for operation

See Also
RpcMgmtInqComTimeout

RpcMgmtSetServerStackSize   

The RpcMgmtSetServerStackSize function specifies the stack size for each server thread.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtSetServerStackSize(

        unsigned int    ThreadStackSize
     );

Parameters
ThreadStackSize

Specifies the stack size in bytes allocated for each thread created by RpcServerListen. This value is
applied to all threads created for the server. Select this value based on the stack requirements of the
remote procedures offered by the server.

Remarks
A server application calls the RpcMgmtSetServerStackSize routine to specify the thread stack size to
use when the RPC run-time library creates call threads for executing remote procedure calls. The
MaxCalls argument in the RpcServerListen routine specifies the number of call threads created.

Servers that know the stack requirements of all the manager routines in the interfaces it offers can call the
RpcMgmtSetServerStackSize routine to ensure that each call thread has the necessary stack size.

Calling RpcMgmtSetServerStackSize is optional. However, when used, it must be called before the
server calls RpcServerListen. If a server does not call RpcMgmtSetServerStackSize, the default per
thread stack size from the underlying threads package is used.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument

See Also
RpcServerListen

RpcMgmtStatsVectorFree   

The RpcMgmtStatsVectorFree function frees a statistics vector.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtStatsVectorFree(

        RPC_STATS_VECTOR * *    StatsVector
     );

Parameters
StatsVector

Points to a pointer to a statistics vector. On return, the pointer is set to NULL.

Remarks
An application calls the RpcMgmtStatsVectorFree routine to release the memory used to store statistics.

An application obtains a vector of statistics by calling the RpcMgmtInqStats routine.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcMgmtInqStats

RpcMgmtStopServerListening   

The RpcMgmtStopServerListening function tells a server to stop listening for remote procedure calls.
This function will not affect auto-listen interfaces. See RpcServerRegisterIfEx for more details.

This function is supported by both server platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtStopServerListening(

        RPC_BINDING_HANDLE    Binding
     );

Parameters
Binding

To direct a remote application to stop listening for remote procedure calls, specify a server binding
handle for that application. To direct your own (local) application to stop listening for remote procedure
calls, specify a value of NULL.

Remarks
An application calls the RpcMgmtStopServerListening routine to direct a server to stop listening for
remote procedure calls. If DontWait was true, the application should call RpcMgmtWaitServerListen to
wait for all calls to complete.

When it receives a stop-listening request, the RPC run-time library stops accepting new remote procedure
calls for all registered interfaces. Executing calls are allowed to complete, including callbacks.

After all calls complete, the RpcServerListen routine returns to the caller. If DontWait is true, the
application calls RpcMgmtServerListen for all calls to complete.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation

Note    From the client-side, RpcMgmtStopServerListening is disabled by default. To enable this
routine, create an authorization function in your server application that returns TRUE (to allow a
remote shutdown) whenever RpcMgmtStopServerListening is called. Use
RpcMgmtSetAuthorizationFn to give the client access to the management function.

See Also
RpcEpResolveBinding, RpcMgmtWaitServerListen, RpcServerListen, RpcServerRegisterIfEx

RpcMgmtWaitServerListen   

The RpcMgmtWaitServerListen function performs the wait operation usually associated with
RpcServerListen.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcMgmtWaitServerListen(VOID);

Remarks

Note    RpcMgmtWaitServerListen is a Microsoft extension to the DCE API set.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

When the RpcServerListen flag parameter DontWait has a nonzero value, the RpcServerListen
function returns to the server application without performing the wait operation. In this case, the wait can
be performed by RpcMgmtWaitServerListen.

Applications must call RpcServerListen with a nonzero value for the DontWait parameter before calling
RpcMgmtWaitServerListen.

RpcMgmtWaitServerListen returns after the server application calls RpcMgmtStopServerListening
and all active remote procedure calls complete, or after a fatal error occurs in the RPC run-time library.

Return Values
Value Meaning
RPC_S_OK All remote procedure calls are

complete.
RPC_S_ALREADY_LISTENING Another thread has called

RpcMgmtWaitServerListen and
has not yet returned.

RPC_S_NOT_LISTENING The server application must call
RpcServerListen before calling
RpcMgmtWaitServerListen.

See Also
RpcMgmtStopServerListening, RpcServerListen

RpcNetworkInqProtseqs   

The RpcNetworkInqProtseqs function returns all protocol sequences supported by both the RPC run-
time library and the operating system.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNetworkInqProtseqs(

        RPC_PROTSEQ_VECTOR * *    ProtSeqVector
     );

Parameters
ProtSeqVector

Returns a pointer to a pointer to a protocol sequence vector.

Remarks

Note    RpcNetworkInqProtseqs is available for server applications, not client applications, using
Microsoft RPC. Use RpcNetworkIsProtseqValid in client applications.

A server application calls the RpcNetworkInqProtseqs routine to obtain a vector containing the protocol
sequences supported by both the RPC run-time library and the operating system. If there are no
supported protocol sequences, this routine returns the RPC_S_NO_PROTSEQS status code and a
ProtSeqVector argument value of NULL.

The server is responsible for calling the RpcProtseqVectorFree routine to release the memory used by
the vector.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_PROTSEQS No supported protocol sequences

See Also
RpcProtseqVectorFree

RpcNetworkIsProtseqValid   

The RpcNetworkIsProtseqValid function tells whether the specified protocol sequence is supported by
both the RPC run-time library and the operating system.

For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNetworkIsProtseqValid(

        unsigned char *    Protseq
     );

Parameters
Protseq

Points to a string identifier of the protocol sequence to be checked.
If the Protseq argument is not a valid protocol sequence string, RpcNetworkIsProtseqValid returns
RPC_S_INVALID_RPC_PROTSEQ.

Remarks

Note    RpcNetworkIsProtseqValid is available for client applications, not for server applications.
Use RpcNetworkInqProtseqs for server applications.

An application calls the RpcNetworkIsProtseqValid routine to determine whether an individual protocol
sequence is available for making remote procedure calls.

A protocol sequence is valid if both the RPC run-time library and the operating system support the
specified protocols. For a list of Microsoft RPC's supported protocol sequences, see the reference topic
String Binding in RPC Data Types and Structures.

An application calls RpcNetworkInqProtseqs to see all of the supported protocol sequences.

Return Values
Value Meaning
RPC_S_OK Success; protocol sequence

supported
RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence not supported
on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence

See Also
RpcNetworkInqProtseqs

RpcNsBindingExport   

The RpcNsBindingExport function establishes a name-service database entry with multiple binding
handles and multiple objects for a server.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingExport(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName,
        RPC_IF_HANDLE    IfSpec,
        RPC_BINDING_VECTOR *    BindingVec,
        UUID_VECTOR *    ObjectUuidVec
     );

Parameters
EntryNameSyntax

Specifies an unsigned long value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to the entry name to which binding handles and object UUIDs are exported. You may not
provide a null or empty string.
To use the entry name specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\
Rpc\NameService\
DefaultEntry, provide a null pointer or an empty string. In this case, the EntryNameSyntax parameter
is ignored and the run-time library uses the default syntax EntryName.

IfSpec

Specifies a stub-generated data structure specifying the interface to export. A null argument value
indicates there are no binding handles to export (only object UUIDs are to be exported) and the
BindingVec argument is ignored.

BindingVec

Points to server bindings to export. A null argument value indicates there are no binding handles to
export (only object UUIDs are to be exported).

ObjectUuidVec

Points to a vector of object UUIDs offered by the server. The server application constructs this vector.
A null argument value indicates there are no object UUIDs to export (only binding handles are to be
exported).

Remarks
The RpcNsBindingExport routine allows a server application to publicly offer an interface in the name-
service database for use by any client application.

To export an interface, the server application calls the RpcNsBindingExport routine with an interface and

the server binding handles a client can use to access the server.

A server application also calls the RpcNsBindingExport routine to publicly offer the object UUID(s) of
resource(s) it offers, if any, in the name-service database.

A server can export interfaces and objects in a single call to RpcNsBindingExport, or it can export them
separately.

If the name-service database entry specified by the EntryName argument does not exist, the
RpcNsBindingExport routine tries to create it. In this case, the server application must have the privilege
to create the entry.

In addition to calling RpcNsBindingExport, a server that called the RpcServerUseAllProtseqs or
RpcServerUseProtseq routine must also register with the local endpoint-map database by calling either
the RpcEpRegister or RpcEpRegisterNoReplace routine.

A server is not required to export its interface(s) to the name-service database. When a server does not
export, only clients that privately know of that server's binding information can access its interface(s). For
example, a client that has the information needed to construct a string binding can call the
RpcBindingFromStringBinding to create a binding handle for making remote procedure calls to a
server.

Before calling the RpcNsBindingExport routine, a server must do the following:

· Register one or more protocol sequences with the local RPC run-time library by calling one of the
following routines:
· RpcServerUseAllProtseqs
· RpcServerUseProtseq
· RpcServerUseAllProtseqsIf
· RpcServerUseProtseqIf
· RpcServerUseProtseqEp

· Obtain a list of server bindings by calling the RpcServerInqBindings routine.

The vector returned from the RpcServerInqBindings routine becomes the Binding argument for
RpcNsBindingExport. To prevent a binding from being exported, set the selected vector element to a
null value.

If a server exports to the same name-service database entry multiple times, the second and subsequent
calls to RpcNsBindingExport add the binding information and object UUIDs when that data is different
from the binding information already in the server entry. Existing data is not removed from the entry.

To remove binding handles and object UUIDs from the name-service database, a server application calls
the RpcNsBindingUnexport routine.

A server entry must have at least one binding handle to exist. As a result, exporting only UUIDs to a non-
existing entry has no effect, and unexporting all binding handles deletes the entry.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NOTHING_TO_EXPORT Nothing to export
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDING Wrong kind of binding for

operation

RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_NO_NS_PRIVILEGE No privilege for name-

service operation
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcBindingFromStringBinding, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingUnexport, RpcServerInqBindings, RpcServerUseAllProtseqs,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqIf

RpcNsBindingImportBegin   

The RpcNsBindingImportBegin function creates an import context for an interface and an object.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingImportBegin(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName,
        RPC_IF_HANDLE    IfSpec,
        UUID *    ObjUuid,
        RPC_NS_HANDLE *    ImportContext
     );

Parameters
EntryNameSyntax

Specifies an unsigned long value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to an entry name at which the search for compatible binding handles begins.
To use the entry name specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\
Rpc\NameService\
DefaultEntry, provide a null pointer or an empty string. In this case, the EntryNameSyntax parameter
is ignored and the run-time library uses the default syntax EntryName.

IfSpec

Specifies a stub-generated data structure indicating the interface to import. If the interface
specification has not been exported or is of no concern to the caller, specify a null value for this
argument. In this case, the bindings returned are only guaranteed to be of a compatible and
supported protocol sequence and to contain the specified object UUID. The desired interface may not
be supported by the contacted server.

ObjUuid

Points to an optional object UUID.
For a non-nil UUID, compatible binding handles are returned from an entry only if the server has
exported the specified object UUID.
When the ObjUuid argument has a null pointer value or a nil UUID, the returned binding handles
contain one of the object UUIDs exported by the compatible server. If the server did not export any
object UUIDs, the returned compatible binding handles contain a nil object UUID.

ImportContext

Specifies a returned name-service handle for use with the RpcNsBindingImportNext and
RpcNsBindingImportDone routines.

Remarks
The RpcNsBindingImportBegin routine creates an import context for importing client-compatible binding
handles for servers that offer the specified interface and object.

Before calling the RpcNsBindingImportNext routine, the client application must first call
RpcNsBindingImportBegin to create an import context. The arguments to this routine control the
operation of the RpcNsBindingImportNext routine.

When finished importing binding handles, the client application calls the RpcNsBindingImportDone
routine to delete the import context.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable
RPC_S_INVALID_OBJECT Invalid object

See Also
RpcNsBindingImportDone, RpcNsBindingImportNext

RpcNsBindingImportDone   

The RpcNsBindingImportDone function signifies that a client has finished looking for a compatible
server and deletes the import context.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingImportDone(

        RPC_NS_HANDLE *    ImportContext
     );

Parameters
ImportContext

Points to a name-service handle to free. The name-service handle ImportContext points to is created
by calling the RpcNsBindingImportBegin routine.
An argument value of NULL is returned.

Remarks
The RpcNsBindingImportDone routine frees an import context created by calling the
RpcNsBindingImportBegin routine.

Typically, a client application calls RpcNsBindingImportDone after completing remote procedure calls to
a server using a binding handle returned from the RpcNsBindingImportNext routine. However, a client
application is responsible for calling RpcNsBindingImportDone for each created import context
regardless of the status returned from the RpcNsBindingImportNext routine or the success in making
remote procedure calls.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcNsBindingImportBegin, RpcNsBindingImportNext

RpcNsBindingImportNext   

The RpcNsBindingImportNext function looks up an interface, and optionally an object, from a name-
service database and returns a binding handle of a compatible server (if found).

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingImportNext(

        RPC_NS_HANDLE    ImportContext,
        RPC_BINDING_HANDLE *    Binding
     );

Parameters
ImportContext

Specifies a name-service handle returned from the RpcNsBindingImportBegin routine.
Binding

Returns a pointer to a client-compatible server binding handle for a server.

Remarks
The RpcNsBindingImportNext routine returns one client-compatible server binding handle for a server
offering the interface and object UUID specified by the IfSpec and ObjUuid arguments in the
RpcNsBindingImportBegin routine. The RpcNsBindingImportNext routine communicates only with the
name-service database, not directly with servers.

The returned compatible binding handle always contains an object UUID. Its value depends on the
ObjUuid argument value specified in the RpcNsBindingImportBegin routine as follows:

· If a non-nil object UUID was specified, the returned binding handle contains that object UUID.
· If a nil object UUID or null value was specified, the object UUID returned in the binding handle

depends on how the server exported object UUIDs:
· If the server did not export any object UUIDs, the returned binding handle contains a nil object

UUID.
· If the server exported one object UUID, the returned binding handle contains that object UUID.
· If the server exported multiple object UUIDs, the returned binding handle contains one of the object

UUIDs. The import-next operation selects the returned object UUID in a non-deterministic fashion.
As a result, a different object UUID can be returned for each compatible binding handle from a
single server entry.

The RpcNsBindingImportNext routine selects and returns one server binding handle from the
compatible binding handles found. The client application can use that binding handle to attempt to make a
remote procedure call to the server. If the client fails to establish a relationship with the server, it can call
the RpcNsBindingImportNext routine again.

Each time the client calls the RpcNsBindingImportNext routine, the routine returns another server
binding handle. The returned binding handles are unordered.

A client application calls the RpcNsBindingInqEntryName routine to obtain the name-service database
in the entry name from which the binding handle came.

When the search reaches the end of the name-service database, the routine returns a status of
RPC_S_NO_MORE_BINDINGS and returns a binding argument value of NULL.

The RpcNsBindingImportNext routine allocates storage for the data referenced by the returned Binding
argument. When a client application finishes with the binding handle, it must call the RpcBindingFree
routine to deallocate the storage. Each call to the RpcNsBindingImportNext routine requires a
corresponding call to the RpcBindingFree routine.

The client is responsible for calling the RpcNsBindingImportDone routine. RpcNsBindingImportDone
deletes the import context. The client also calls the RpcNsBindingImportDone routine if the application
wants to start a new search for compatible servers (by calling the RpcNsBindingImportBegin routine).
The order of binding handles returned is different for each new search. This means the order in which
binding handles are returned to an application can be different each time the application is run.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_MORE_BINDINGS No more bindings
RPC_S_NAME_SERVICE_UNAVAILABL
E

Name service unavailable

See Also
RpcBindingFree, RpcNsBindingImportBegin, RpcNsBindingImportDone,
RpcNsBindingInqEntryName, RpcNsBindingLookupBegin, RpcNsBindingLookupDone,
RpcNsBindingLookupNext, RpcNsBindingSelect

RpcNsBindingInqEntryName   

The RpcNsBindingInqEntryName function returns the entry name from which the binding handle came.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingInqEntryName(

        RPC_BINDING_HANDLE    Binding,
        unsigned long    EntryNameSyntax,
        unsigned char * *    EntryName
     );

Parameters
Binding

Specifies the binding handle whose name-service database entry name is returned.
EntryNameSyntax

Specifies an unsigned long value that indicates the syntax used in the returned argument,
EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Returns a pointer to a pointer to the name of the name-service database entry in which Binding was
found.
Specify a null value to prevent RpcNsBindingInqEntryName from returning the EntryName
argument. In this case, the application does not call the RpcStringFree routine.

Remarks
The RpcNsBindingInqEntryName routine returns the name of the name-service database entry from
which a client-compatible binding handle came.

The RPC run-time library allocates memory for the string returned in the EntryName argument. The
application is responsible for calling the RpcStringFree routine to deallocate that memory.

An entry name is associated only with binding handles returned from the RpcNsBindingImportNext,
RpcNsBindingLookupNext, and RpcNsBindingSelect routines.

If the binding handle specified in the Binding argument was not returned from a name-service database
entry (for example, if the binding handle was created by calling RpcBindingFromStringBinding),
RpcNsBindingInqEntryName returns an empty string ("\0") and an RPC_S_NO_ENTRY_NAME status
code.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_NO_ENTRY_NAME No entry name for binding
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax

RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name

See Also
RpcBindingFromStringBinding, RpcNsBindingImportNext, RpcNsBindingLookupNext,
RpcNsBindingSelect, RpcStringFree

RpcNsBindingLookupBegin   

The RpcNsBindingLookupBegin function creates a lookup context for an interface and an object.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingLookupBegin(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName,
        RPC_IF_HANDLE    IfSpec,
        UUID *    ObjUuid,
        unsigned long    BindingMaxCount,
        RPC_NS_HANDLE *    LookupContext
     );

Parameters
EntryNameSyntax

Specifies an unsigned long value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to an entry name at which the search for compatible bindings begins.
To use the entry name specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\
Rpc\NameService\
DefaultEntry, provide a null pointer or an empty string. In this case, the EntryNameSyntax parameter
is ignored and the run-time library uses the default syntax EntryName.

IfSpec

Specifies a stub-generated data structure indicating the interface to look up. If the interface
specification has not been exported or is of no concern to the caller, specify a null value for this
argument. In this case, the bindings returned are only guaranteed to be of a compatible and
supported protocol sequence and to contain the specified object UUID. The desired interface may not
be supported by the contacted server.

ObjUuid

Points to an optional object UUID.
For a non-nil UUID, compatible binding handles are returned from an entry only if the server has
exported the specified object UUID.
For a null pointer value or a nil UUID for this argument, the returned binding handles contain one of
the object UUIDs exported by the compatible server. If the server did not export any object UUIDs, the
returned compatible binding handles contain a nil object UUID.

BindingMaxCount

Specifies the maximum number of bindings to return in the BindingVec argument from the
RpcNsBindingLookupNext routine.
Specify a value of zero to use the default count of RPC_C_BINDING_MAX_COUNT_DEFAULT.

LookupContext

Returns a pointer to a name-service handle for use with the RpcNsBindingLookupNext and

RpcNsBindingLookupDone routines.

Remarks
The RpcNsBindingLookupBegin routine creates a lookup context for locating client-compatible binding
handles to servers that offer the specified interface and object.

Before calling the RpcNsBindingLookupNext routine, the client application must first call
RpcNsBindingLookupBegin to create a lookup context. The arguments to this routine control the
operation of the RpcNsBindingLookupNext routine.

When finished locating binding handles, the client application calls the RpcNsBindingLookupDone
routine to delete the lookup context.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNT
AX

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABL
E

Name service unavailable

RPC_S_INVALID_OBJECT Invalid object

See Also
RpcNsBindingLookupDone, RpcNsBindingLookupNext

RpcNsBindingLookupDone   

The RpcNsBindingLookupDone function signifies that a client has finished looking for compatible
servers and deletes the lookup context.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingLookupDone(

        RPC_NS_HANDLE *    LookupContext
     );

Parameters
LookupContext

Points to the name-service handle to free. The name-service handle LookupContext points to is
created by calling the routine RpcNsBindingLookupBegin.
An argument value of NULL is returned.

Remarks
The RpcNsBindingLookupDone routine frees a lookup context created by calling the
RpcNsBindingLookupBegin routine.

Typically, a client application calls RpcNsBindingLookupDone after completing remote procedure calls
to a server using a binding handle returned from the RpcNsBindingLookupNext routine. However, a
client application is responsible for calling RpcNsBindingLookupDone for each created lookup context,
regardless of the status returned from the RpcNsBindingLookupNext routine or the success in making
remote procedure calls.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcNsBindingLookupBegin, RpcNsBindingLookupNext

RpcNsBindingLookupNext   

The RpcNsBindingLookupNext function returns a list of compatible binding handles for a specified
interface and optionally an object.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingLookupNext(

        RPC_NS_HANDLE    LookupContext,
        RPC_BINDING_VECTOR * *    BindingVec
     );

Parameters
LookupContext

Specifies the name-service handle returned from the RpcNsBindingLookupBegin routine.
BindingVec

Returns a pointer to a pointer to a vector of client-compatible server binding handles.

Remarks
The RpcNsBindingLookupNext routine returns a vector of client-compatible server binding handles for a
server offering the interface and object UUID specified by the IfSpec and ObjUuid arguments in the
RpcNsBindingLookupBegin routine.

The RpcNsBindingLookupNext routine communicates only with the name-service database, not directly
with servers.

The RpcNsBindingLookupNext routine traverses name-service database entries collecting client-
compatible server binding handles from each entry. If the entry at which the search begins (see the
EntryName argument in RpcNsBindingLookupBegin) contains binding handles as well as an RPC
group and/or a profile, RpcNsBindingLookupNext returns the binding handles from EntryName before
searching the group or profile. This means that RpcNsBindingLookupNext can return a partially full
vector before processing the members of the group or profile. Each binding handle in the returned vector
always contains an object UUID. Its value depends on the ObjUuid argument value specified in the
RpcNsBindingLookupBegin routine as follows:

· If a non-nil object UUID was specified, each returned binding handle contains that object UUID.
· If a nil object UUID or null value was specified, the object UUID returned in each binding handle

depends on how the server exported object UUIDs:
· If the server did not export any object UUIDs, each returned binding handle contains a nil object

UUID.
· If the server exported one object UUID, each returned binding handle contains that object UUID.
· If the server exported multiple object UUIDs, each binding handle contains one of the object

UUIDs. The lookup-next operation selects the returned object UUID in a non-deterministic fashion.
For this reason, a different object UUID can be returned for each compatible binding handle from a
single server entry.

From the returned vector of server binding handles, the client application can employ its own criteria for
selecting individual binding handles, or the application can call the RpcNsBindingSelect routine to select
a binding handle. The RpcBindingToStringBinding and RpcStringBindingParse routines will be helpful

for a client creating its own selection criteria.

The client application can use the selected binding handle to attempt to make a remote procedure call to
the server. If the client fails to establish a relationship with the server, it can select another binding handle
from the vector. When all of the binding handles in the vector have been used, the client application calls
the RpcNsBindingLookupNext routine again.

Each time the client calls the RpcNsBindingLookupNext routine, the routine returns another vector of
binding handles. The binding handles returned in each vector are unordered. The vectors returned from
multiple calls to this routine are also unordered.

A client calls the RpcNsBindingInqEntryName routine to obtain the name-service database server entry
name that the binding came from.

When the search reaches the end of the name-service database, RpcNsBindingLookupNext returns a
status of RPC_S_NO_MORE_BINDINGS and returns a BindingVec argument value of NULL.

The RpcNsBindingLookupNext routine allocates storage for the data referenced by the returned
BindingVec argument. When a client application finishes with the vector, it must call the
RpcBindingVectorFree routine to deallocate the storage. Each call to the RpcNsBindingLookupNext
routine requires a corresponding call to the RpcBindingVectorFree routine.

The client is responsible for calling the RpcNsBindingLookupDone routine.
RpcNsBindingLookupDone deletes the lookup context. The client also calls the
RpcNsBindingLookupDone routine if the application wants to start a new search for compatible servers
(by calling the RpcNsBindingLookupBegin routine). The order of binding handles returned can be
different for each new search.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_MORE_BINDINGS No more bindings
RPC_S_NAME_SERVICE_UNAVAILABL
E

Name-service unavailable

See Also
RpcBindingToStringBinding, RpcBindingVectorFree, RpcNsBindingInqEntryName,
RpcNsBindingLookupBegin, RpcNsBindingLookupDone, RpcStringBindingParse

RpcNsBindingSelect   

The RpcNsBindingSelect function returns a binding handle from a list of compatible binding handles.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingSelect(

        RPC_BINDING_VECTOR *    BindingVec,
        RPC_BINDING_HANDLE *    Binding
     );

Parameters
BindingVec

Points to the vector of client-compatible server binding handles from which a binding handle is
selected. The returned binding vector no longer references the selected binding handle, which is
returned separately in the Binding argument.

Binding

Returns a pointer to a selected binding handle.

Remarks
The RpcNsBindingSelect routine chooses and returns a client-compatible server binding handle from a
vector of server binding handles.

Each time the client calls the RpcNsBindingSelect routine, the routine operation returns another binding
handle from the vector.

When all of the binding handles have been returned from the vector, the routine returns a status of
RPC_S_NO_MORE_BINDINGS and returns a Binding argument value of NULL.

The select operation allocates storage for the data referenced by the returned Binding argument. When a
client finishes with the binding handle, it should call the RpcBindingFree routine to deallocate the
storage. Each call to the RpcNsBindingSelect routine requires a corresponding call to the
RpcBindingFree routine.

Clients can create their own select routines implementing application-specific selection criteria. In this
case, the RpcStringBindingParse routine provides access to the fields of a binding.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_MORE_BINDINGS No more bindings

See Also
RpcBindingFree, RpcNsBindingLookupNext, RpcStringBindingParse

RpcNsBindingUnexport   

The RpcNsBindingUnexport function removes the binding handles for an interface and objects from an
entry in the name-service database.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsBindingUnexport(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName,
        RPC_IF_HANDLE    IfSpec,
        UUID_VECTOR *    ObjectUuidVec
     );

Parameters
EntryNameSyntax

Specifies an unsigned long value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to the entry name from which to remove binding handles and object UUIDs.
IfSpec

Specifies an interface. A null argument value indicates not to unexport any binding handles (only
object UUIDs are to be unexported).

ObjectUuidVec

Points to a vector of object UUIDs that the server no longer wants to offer. The application constructs
this vector. A null argument value indicates there are no object UUIDs to unexport (only binding
handles are to be unexported).

Remarks
The RpcNsBindingUnexport routine allows a server application to remove the following from a name-
service database entry:

· All the binding handles for a specific interface
· One or more object UUIDs of resources
· Both the binding handles and object UUIDs of resources

The RpcNsBindingUnexport routine unexports only the binding handles that match the interface UUID
and the major and minor interface version numbers found in the IfSpec argument.

A server application can unexport the specified interface and objects in a single call to
RpcNsBindingUnexport, or it can unexport them separately.

If RpcNsBindingUnexport does not find any binding handles for the specified interface, the routine

returns an RPC_S_INTERFACE_NOT_FOUND status code and does not unexport the object UUIDs, if
any were specified.

If one or more binding handles for the specified interface are found and unexported without error,
RpcNsBindingUnexport unexports the specified object UUIDs, if any.

If any of the specified object UUIDs were not found, RpcNsBindingUnexport returns the
RPC_S_NOT_ALL_OBJS_UNEXPORTED status code.

In addition to calling RpcNsBindingUnexport, a server should also call the RpcEpUnregister routine to
unregister the endpoints the server previously registered with the local endpoint-map database.

A server entry must have at least one binding handle to exist. As a result, exporting only UUIDs to a non-
existing entry has no effect, and unexporting all binding handles deletes the entry.

Use RpcNsBindingUnexport judiciously. To keep an automatically activated server available, you must
leave its binding handles in the name-service database between the times when server processes are
activated. Therefore, reserve this routine for when you expect a server to be unavailable for an extended
time ¾ for example, when it is being permanently removed from service.

Note    Name-service databases are designed to be relatively stable. In replicated name-service
databases, frequent use of the RpcNsBindingExport and RpcNsBindingUnexport routines causes
the name-service database to repeatedly remove and replace the same entry and can cause
performance problems.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_VERS_OPTION Invalid version option
RPC_S_NOTHING_TO_UNEXPORT Nothing to unexport
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable
RPC_S_INTERFACE_NOT_FOUND Interface not found
RPC_S_NOT_ALL_OBJS_UNEXPORTEDNot all objects unexported

See Also
RpcEpUnregister, RpcNsBindingExport

RpcNsEntryExpandName   

The RpcNsEntryExpandName function expands a name-service entry name.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsEntryExpandName(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName,
        unsigned char * *    ExpandedName
     );

Parameters
EntryNameSyntax

Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to the entry name to expand.
ExpandedName

Returns a pointer to a pointer to the expanded version of EntryName.

Remarks

Note    This DCE function is not supported by the Microsoft Locator version 1.0.

An application calls the RpcNsEntryExpandName routine to obtain a fully expanded entry name.

The RPC run-time library allocates memory for the returned ExpandedName argument. The application is
responsible for calling the RpcStringFree routine for that returned argument string.

The returned expanded entry name accounts for local name translations and for differences in locally
defined naming schemas.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INCOMPLETE_NAME Incomplete name

See Also
RpcStringFree

RpcNsEntryObjectInqBegin   

The RpcNsEntryObjectInqBegin function creates an inquiry context for a name-service database entry's
objects.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsEntryObjectInqBegin(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName,
        RPC_NS_HANDLE *    InquiryContext
     );

Parameters
EntryNameSyntax

Specifies an integer value that indicates the syntax to use in the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to the name-service database entry name for which object UUIDs are to be viewed.
InquiryContext

Returns a pointer to a name-service handle for use with the RpcNsEntryObjectInqNext and
RpcNsEntryObjectInqDone routines.

Remarks
The RpcNsEntryObjectInqBegin routine creates an inquiry context for viewing the object UUIDs
exported to EntryName.

Before calling the RpcNsEntryObjectInqNext routine, the application must first call
RpcNsEntryObjectInqBegin to create an inquiry context.

When finished viewing the object UUIDs, the application calls the RpcNsEntryObjectInqDone routine to
delete the inquiry context.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcNsBindingExport, RpcNsEntryObjectInqDone, RpcNsEntryObjectInqNext

RpcNsEntryObjectInqDone   

The RpcNsEntryObjectInqDone function deletes the inquiry context for a name-service database entry's
objects.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsEntryObjectInqDone(

        RPC_NS_HANDLE *    InquiryContext
           );

Parameters
InquiryContext

Points to a name-service handle specifying the object UUIDs exported to the EntryName argument
specified in the RpcNsEntryObjectInqBegin routine.
An argument value of NULL is returned.

Remarks
The RpcNsEntryObjectInqDone routine frees an inquiry context created by calling the
RpcNsEntryObjectInqBegin routine.

An application calls RpcNsEntryObjectInqDone after viewing exported object UUIDs using the
RpcNsEntryObjectInqNext routine.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcNsEntryObjectInqBegin, RpcNsEntryObjectInqNext

RpcNsEntryObjectInqNext   

The RpcNsEntryObjectInqNext function returns one object at a time from a name-service database
entry.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsEntryObjectInqNext(

        RPC_NS_HANDLE    InquiryContext,
        UUID *    ObjUuid
     );

Parameters
InquiryContext

Specifies a name-service handle that indicates the object UUIDs for a name-service database entry.
ObjUuid

Returns a pointer to an exported object UUID.

Remarks
The RpcNsEntryObjectInqNext routine returns one of the object UUIDs exported to the name-service
database entry specified by the EntryName argument in the RpcNsEntryObjectInqBegin routine.

An application can view all of the exported object UUIDs by repeatedly calling the
RpcNsEntryObjectInqNext routine. When all the object UUIDs have been viewed, this routine returns an
RPC_S_NO_MORE_MEMBERS status code. The returned object UUIDs are unordered.

The application supplies the memory for the object UUID returned in the ObjUuid argument.

After viewing the object UUIDs, the application must call the RpcNsEntryObjectInqDone routine to
release the inquiry context.

The order in which object UUIDs are returned can be different for each viewing of an entry. This means
that the order in which object UUIDs are returned to an application can be different each time the
application is run.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_MORE_MEMBERS No more members
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABL
E

Name-service unavailable

See Also
RpcNsBindingExport, RpcNsEntryObjectInqBegin, RpcNsEntryObjectInqDone

RpcNsGroupDelete   

The RpcNsGroupDelete function deletes a group attribute.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsGroupDelete(

        unsigned long    GroupNameSyntax,
        unsigned char *    GroupName
     );

Parameters
GroupNameSyntax

Specifies an integer value that indicates the syntax of the next parameter, GroupName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName

Points to the name of the RPC group to delete.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupDelete routine deletes the group attribute from the specified name-service database
entry.

Neither the specified name-service database entry nor the group members are deleted.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcNsGroupMbrAdd, RpcNsGroupMbrRemove

RpcNsGroupMbrAdd   

The RpcNsGroupMbrAdd function adds an entry name to a group. If necessary, it creates the entry.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsGroupMbrAdd(

        unsigned long    GroupNameSyntax,
        unsigned char *    GroupName,
        unsigned long    MemberNameSyntax,
        unsigned char *    MemberName
     );

Parameters
GroupNameSyntax

Specifies an integer value that indicates the syntax of the next argument, GroupName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName

Points to the name of the RPC group to receive a new member.
MemberNameSyntax

Specifies an integer value that indicates the syntax to use in the MemberName argument.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName

Points to the name of the new RPC group member.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrAdd adds a name-service database entry name as a member to the RPC group
attribute.

If the GroupName entry does not exist, RpcNsGroupMbrAdd tries to create the entry with a group
attribute and adds the group member specified by the MemberName argument. In this case, the
application must have the privilege to create the entry. Otherwise, a management application with the
necessary privilege should create the entry by calling the RpcNsMgmtEntryCreate routine before the
application is run.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax

RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcNsGroupMbrRemove, RpcNsMgmtEntryCreate

RpcNsGroupMbrInqBegin   

The RpcNsGroupMbrInqBegin function creates an inquiry context for viewing group members.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsGroupMbrInqBegin(

        unsigned long    GroupNameSyntax,
        unsigned char *    GroupName,
        unsigned long    MemberNameSyntax,
        RPC_NS_HANDLE *    InquiryContext
     );

Parameters
GroupNameSyntax

Specifies an integer value that indicates the syntax of the next argument, GroupName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName

Points to the name of the RPC group to view.
MemberNameSyntax

Specifies an integer value that indicates the syntax of the return argument, MemberName, in the
RpcNsGroupMbrInqNext routine.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

InquiryContext

Returns a pointer to a name-service handle for use with the RpcNsGroupMbrInqNext and
RpcNsGroupMbrInqDone routines.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrInqBegin routine creates an inquiry context for viewing the members of an RPC
group.

Before calling the RpcNsGroupMbrInqNext routine, the application must first call
RpcNsGroupMbrInqBegin to create an inquiry context.

When finished viewing the RPC group members, the application calls the RpcNsGroupMbrInqDone
routine to delete the inquiry context.

Return Values
Value Meaning

RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcNsGroupMbrAdd, RpcNsGroupMbrInqDone, RpcNsGroupMbrInqNext

RpcNsGroupMbrInqDone   

The RpcNsGroupMbrInqDone function deletes the inquiry context for a group.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsGroupMbrInqDone(

        RPC_NS_HANDLE *    InquiryContext
         );

Parameters
InquiryContext

Points to a name-service handle to free. An argument value of NULL is returned.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrInqDone routine frees an inquiry context created by calling the
RpcNsGroupMbrInqBegin routine.

An application calls RpcNsGroupMbrInqDone after viewing RPC group members using the
RpcNsGroupMbrInqNext routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NS_HANDLE Invalid name-service handle

See Also
RpcNsGroupMbrInqBegin, RpcNsGroupMbrInqNext

RpcNsGroupMbrInqNext   

The RpcNsGroupMbrInqNext function returns one entry name from a group at a time.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsGroupMbrInqNext(

        RPC_NS_HANDLE    InquiryContext,
        unsigned char * *    MemberName
     );

Parameters
InquiryContext

Specifies a name-service handle.
MemberName

Returns a pointer to a pointer to an RPC group member name.
The syntax of the returned name was specified by the MemberNameSyntax argument in the
RpcNsGroupMbrInqBegin routine.
Specify a null value to prevent RpcNsGroupMbrInqNext from returning the MemberName argument.
In this case, the application does not call the RpcStringFree routine.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrInqNext routine returns one member of the RPC group specified by the
GroupName argument in the RpcNsGroupMbrInqBegin routine.

An application can view all the members of an RPC group set by repeatedly calling the
RpcNsGroupMbrInqNext routine. When all the group members have been viewed, this routine returns
an RPC_S_NO_MORE_MEMBERS status code. The returned group members are unordered.

On each call to RpcNsGroupMbrInqNext that returns a member name, the RPC run-time library
allocates memory for the returned MemberName. The application is responsible for calling the
RpcStringFree routine for each returned MemberName string.

After viewing the RPC group's members, the application must call the RpcNsGroupMbrInqDone routine
to release the inquiry context.

The order in which group members are returned can be different for each viewing of a group. This means
that the order in which group members are returned to an application can be different each time the
application is run.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NS_HANDLE Invalid name-service

handle

RPC_S_NO_MORE_MEMBERS No more members
RPC_S_NAME_SERVICE_UNAVAILABL
E

Name service unavailable

See Also
RpcNsGroupMbrInqBegin, RpcNsGroupMbrInqDone, RpcStringFree

RpcNsGroupMbrRemove   

The RpcNsGroupMbrRemove function removes an entry name from a group.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsGroupMbrRemove(

        unsigned long    GroupNameSyntax,
        unsigned char *    GroupName,
        unsigned long    MemberNameSyntax,
        unsigned char *    MemberName
     );

Parameters
GroupNameSyntax

Specifies an integer value that indicates the syntax of the next argument, GroupName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName

Points to the name of the RPC group from which to remove the member name.
MemberNameSyntax

Specifies an integer value that indicates the syntax to use in the MemberName argument.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName

Points to the name of the member to remove from the RPC group attribute in the entry GroupName.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrRemove routine removes a member from the RPC group attribute in the
GroupName argument.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found

RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable
RPC_S_GROUP_MEMBER_NOT_FOUN
D

Group member not found

See Also
RpcNsGroupMbrAdd

RpcNsMgmtBindingUnexport   

The RpcNsMgmtBindingUnexport function removes multiple binding handles and objects from an entry
in the name-service database.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsMgmtBindingUnexport(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName,
        RPC_IF_ID *    IfId,
        unsigned long    VersOption,
        UUID_VECTOR *    ObjectUuidVec
     );

Parameters
EntryNameSyntax

Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to the name of the entry from which to remove binding handles and object UUIDs.
IfId

Points to an interface identification. A null argument value indicates not to unexport any binding
handles (only object UUIDs are to be unexported).

VersOption

Specifies how the RpcNsMgmtBindingUnexport routine uses the VersMajor and VersMinor fields of
the IfId argument.
The following table describes valid values for the VersOption argument:

VersOption values Description
RPC_C_VERS_ALL Unexports all bindings for the

interface UUID in IfId, regardless of
the version numbers. For this
value, specify 0 for both the major
and minor versions in IfId.

RPC_C_VERS_IF_ID Unexports the bindings for the
compatible interface UUID in IfId
with the same major version and
with a minor version greater than
or equal to the minor version in
IfId.

RPC_C_VERS_EXACT Unexports the bindings for the
interface UUID in IfId with the
same major and minor versions as
in IfId.

RPC_C_VERS_MAJOR_ONL
Y

Unexports the bindings for the
interface UUID in IfId with the

same major version as in IfId
(ignores the minor version). For
this value, specify 0 for the minor
version in IfId.

RPC_C_VERS_UPTO Unexports the bindings that offer a
version of the specified interface
UUID less than or equal to the
specified major and minor version.
(For example, if the IfId contained
V2.0 and the name-service
database entry contained binding
handles with the versions V1.3,
V2.0, and V2.1, the
RpcNsMgmtBindingUnexport
routine unexports the binding
handles with V1.3 and V2.0.)

ObjectUuidVec

Points to a vector of object UUIDs that the server no longer wants to offer. The application constructs
this vector. A null argument value indicates there are no object UUIDs to unexport (only binding
handles are to be unexported).

Remarks
The RpcNsMgmtBindingUnexport routine allows a management application to remove one of the
following from a name-service database entry:

· All the binding handles for a specified interface UUID, qualified by the interface version numbers
(major and minor)

· One or more object UUIDs of resources
· Both binding handles and object UUIDs of resources

A management application can unexport interfaces and objects in a single call to
RpcNsMgmtBindingUnexport, or it can unexport them separately.

If RpcNsMgmtBindingUnexport does not find any binding handles for the specified interface, the routine
returns an RPC_S_INTERFACE_NOT_FOUND status code and does not unexport the object UUIDs, if
any were specified.

If one or more binding handles for the specified interface are found and unexported without error,
RpcNsMgmtBindingUnexport unexports the specified object UUIDs, if any.

If any of the specified object UUIDs were not found, RpcNsMgmtBindingUnexport returns the
RPC_S_NOT_ALL_OBJS_UNEXPORTED status code.

In addition to calling RpcNsMgmtBindingUnexport, a management application should also call the
RpcMgmtEpUnregister routine to unregister the servers that have registered with the endpoint-map
database.

Note    Name-service databases are designed to be relatively stable. In replicated name services,
frequent use of the RpcNsBindingExport and RpcNsBindingUnexport routines causes the name
service to repeatedly remove and replace the same entry and can cause performance problems.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_VERS_OPTION Invalid version option
RPC_S_NOTHING_TO_UNEXPORT Nothing to unexport
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable
RPC_S_INTERFACE_NOT_FOUND Interface not found
RPC_S_NOT_ALL_OBJS_UNEXPORTEDNot all objects unexported

See Also
RpcMgmtEpUnregister, RpcNsBindingExport, RpcNsBindingUnexport

RpcNsMgmtEntryCreate   

The RpcNsMgmtEntryCreate function creates a name-service database entry.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsMgmtEntryCreate(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName
     );

Parameters
EntryNameSyntax

Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to the name of the entry to create.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsMgmtEntryCreate routine creates an entry in the name-service database.

A management application can call RpcNsMgmtEntryCreate to create a name-service database entry
for use by another application that does not itself have the necessary name-service database privileges to
create an entry.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_ALREADY_EXISTS Name-service entry

already exists
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcNsMgmtEntryDelete

RpcNsMgmtEntryDelete   

The RpcNsMgmtEntryDelete function deletes a name-service database entry.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsMgmtEntryDelete(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName
     );

Parameters
EntryNameSyntax

Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to the name of the entry to delete.

Remarks
The RpcNsMgmtEntryDelete routine removes an entry from the name-service database.

Management applications use this routine only when an entry is no longer needed ¾ for example, when a
server is being permanently removed from service.

Because name-service databases are designed to be relatively stable, the frequent use of the
RpcNsMgmtEntryDelete routine in client or server applications can result in performance problems.
Creating and deleting entries in client or server applications causes the name-service database to
repeatedly remove and replace the same entry. This can lead to performance problems in replicated
name-service databases.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable
RPC_S_NOT_RPC_ENTRY Not an RPC entry

See Also
RpcNsMgmtEntryCreate

RpcNsMgmtEntryInqIfIds   

The RpcNsMgmtEntryInqIfIds function returns the list of interfaces exported to a name-service database
entry.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsMgmtEntryInqIfIds(

        unsigned long    EntryNameSyntax,
        unsigned char *    EntryName,
        RPC_IF_ID_VECTOR * *    IfIdVec
     );

Parameters
EntryNameSyntax

Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName

Points to the name-service database entry name for which an interface identification vector is
returned.

IfIdVec

Returns a pointer to a pointer to the interface-identification vector.

Remarks
The RpcNsMgmtEntryInqIfIds routine returns an interface-identification vector containing the interfaces
of binding handles exported by a server to EntryName.

RpcNsMgmtEntryInqIfIds uses an expiration age of 0, causing an immediate update of the local copy of
name-service data.

The calling application is responsible for calling the RpcIfIdVectorFree routine to release memory used
by the vector.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcIfIdVectorFree, RpcIfInqId, RpcNsBindingExport

RpcNsMgmtHandleSetExpAge   

The RpcNsMgmtHandleSetExpAge function sets the expiration age of a name-service handle for local
copies of name-service data.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsMgmtHandleSetExpAge(

        RPC_NS_HANDLE    NsHandle,
        unsigned long    ExpirationAge
     );

Parameters
NsHandle

Specifies a name-service handle that an expiration age is set for. A name-service handle is returned
from a name-service "begin" operation.

ExpirationAge

Specifies an integer value in seconds that sets the expiration age of local name-service data read by
all "next" routines using the specified NsHandle argument.
An expiration age of 0 causes an immediate update of the local name-service data.

Remarks
The RpcNsMgmtHandleSetExpAge routine sets a handle-expiration age for a specified name-service
handle (NsHandle). The expiration age is the amount of time that a local copy of data from a name-
service attribute can exist before a request from the application for the attribute requires updating the
local copy. When an application begins running, the RPC run-time library specifies a random value of two
hours as the default expiration age. The default is global to the application. A handle-expiration age
applies only to a specific name-service handle and temporarily overrides the current global expiration age.

Normally, you should avoid using RpcNsMgmtHandleSetExpAge; instead, you should rely on the
application's global expiration age.

A handle-expiration age is used exclusively by name-service "next" operations (which read data from
name-service attributes). A "next" operation normally starts by looking for a local copy of the attribute data
being requested by an application. In the absence of a local copy, the "next" operation creates one with
fresh attribute data from the name-service database. If a local copy already exists, the operation
compares its actual age to the expiration age being used by the application (which in this case is the
expiration age set for the name-service handle). If the actual age exceeds the handle-expiration age, the
operation automatically tries to update the local copy with fresh attribute data. If updating is impossible,
the old local data remains in place and the "next" operation fails, returning the
RPC_S_NAME_SERVICE_UNAVAILABLE status code.

The scope of a handle-expiration age is a single series of "next" operations. The
RpcNsMgmtHandleSetExpAge routine operates within the following context:

· A "begin" operation creates a name-service handle.
· A call to the RpcNsMgmtHandleSetExpAge routine creates an expiration age for the handle.
· A series of "next" operations for the name-service handle uses the handle expiration age.
· A "done" operation for the name-service handle deletes both the handle and its expiration age.

Setting the handle-expiration age to a small value causes the name-service "next" operations to
frequently update local data for any name-service attribute requested by your application. For example,
setting the expiration age to 0 forces the "next" operation to update local data for the name-service
attribute requested by your application. Therefore, setting a small handle-expiration age can create
performance problems for your application. Furthermore, if your application is using a remote name-
service server, a small expiration age can adversely affect network performance for all applications.

Limit the use of RpcNsMgmtHandleSetExpAge to the following situations:

· When you must always get accurate name-service data.
For example, during management operations to update a profile, you may need to always see the
profile's current contents. In this case, before beginning to inquire about a profile, your application
should call the RpcNsMgmtHandleSetExpAge routine and specify 0 for the ExpirationAge argument.

· When a request using the default expiration age has failed, and your application needs to retry the
operation.
For example, a client application using name-service "import" operations should first try to obtain
bindings using the application's default expiration age. However, sometimes the "import-next"
operation returns either no binding handles or an insufficient number of them. In this case, the client
could retry the "import" operation and, after the RpcNsBindingImportBegin call, include a
RpcNsMgmtHandleSetExpAge call and specify 0 for the ExpirationAge argument. When the client
calls the "import-next" routine again, the small handle-expiration age causes the "import-next"
operation to update the local attribute data.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NAME_SERVICE_UNAVAILABL
E

Name service unavailable

See Also
RpcNsBindingImportBegin, RpcNsMgmtInqExpAge, RpcNsMgmtSetExpAge

RpcNsMgmtInqExpAge   

The RpcNsMgmtInqExpAge function returns the global expiration age for local copies of name-service
data.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsMgmtInqExpAge(

        unsigned long *    ExpirationAge
     );

Parameters
ExpirationAge

Returns a pointer to the default expiration age, in seconds. This value is used by all name-service
"read" operations (that is, all "next" operations).

Remarks
The RpcNsMgmtInqExpAge routine returns the expiration age that the application is using. The
expiration age is the amount of time in seconds that a local copy of data from a name-service attribute
can exist before a request from the application for the attribute requires updating the local copy. When an
application begins running, the RPC run-time library specifies a random value of two hours as the default
expiration age. The default is global to the application.

An expiration age is used by name-service "next" operations (which read data from name-service
attributes). A "next" operation normally starts by looking for a local copy of the attribute data being
requested by an application. In the absence of a local copy, the "next" operation creates one with fresh
attribute data from the name-service database. If a local copy already exists, the operation compares its
actual age to the expiration age being used by the application. If the actual age exceeds the expiration
age, the operation automatically tries to update the local copy with fresh attribute data. If updating is
impossible, the old local data remains in place and the "next" operation fails.

Applications normally should use only the default expiration age. For special cases, however, an
application can substitute a user-supplied global expiration age for the default by calling the
RpcNsMgmtSetExpAge routine. The RpcNsMgmtInqExpAge routine returns the current global
expiration age, whether a default or a user-supplied value.

An application can also override the global expiration age temporarily by calling the
RpcNsMgmtHandleSetExpAge routine.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcNsMgmtHandleSetExpAge, RpcNsMgmtSetExpAge

RpcNsMgmtSetExpAge   

The RpcNsMgmtSetExpAge function modifies the application's global expiration age for local copies of
name-service data.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsMgmtSetExpAge(

        unsigned long    ExpirationAge
     );

Parameters
ExpirationAge

Specifies an integer value in seconds that indicates the default expiration age for local name-service
data. This expiration age is applied to all name-service "read" operations (that is, all "next"
operations).
An expiration age of 0 causes an immediate update of the local name-service data.
To reset the expiration age to an RPC-assigned random value of two hours, specify a value of
RPC_C_NS_DEFAULT_EXP_AGE.

Remarks
The RpcNsMgmtSetExpAge routine modifies the global expiration age of an application. The expiration
age is the amount of time that a local copy of data from a name-service attribute can exist before a
request from the application for the attribute requires updating the local copy. When an application begins
running, the RPC run-time library specifies a random value of between 8 and 12 hours as the default
expiration age. The default is global to the application.

Normally, you should avoid using RpcNsMgmtSetExpAge; instead, you should rely on the default
expiration age.

An expiration age is used by name-service "next" operations (which read data from name-service
attributes). A "next" operation normally starts by looking for a local copy of the attribute data being
requested by an application. In the absence of a local copy, the "next" operation creates one with fresh
attribute data from the name-service database. If a local copy already exists, the operation compares its
actual age to the expiration age being used by the application. If the actual age exceeds the expiration
age, the operation automatically tries to update the local copy with fresh attribute data. If updating is
impossible, the old local data remains in place and the "next" operation fails, returning the
RPC_S_NAME_SERVICE_UNAVAILABLE status code.

Setting the expiration age to a small value causes the name-service "next" operations to frequently
update local data for any name-service attribute requested by your application. For example, setting the
expiration age to 0 forces all "next" operations to update local data for the name-service attribute
requested by your application. Therefore, setting small expiration ages can create performance problems
for your application and increase network traffic. Furthermore, if your application is using a remote name-
service server, a small expiration age can adversely affect network performance for all applications.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NAME_SERVICE_UNAVAILABL Name service unavailable

E

See Also
RpcNsMgmtHandleSetExpAge

RpcNsProfileDelete   

The RpcNsProfileDelete function deletes a profile attribute.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsProfileDelete(

        unsigned long    ProfileNameSyntax,
        unsigned char *    ProfileName
     );

Parameters
ProfileNameSyntax

Specifies an integer value that indicates the syntax of the next argument, ProfileName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName

Points to the name of the profile to delete.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileDelete routine deletes the profile attribute from the specified name-service entry
(ProfileName).

Neither ProfileName nor the entry names included as members in each profile element are deleted.

Use RpcNsProfileDelete cautiously; deleting a profile can have the unwanted effect of breaking a
hierarchy of profiles.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcNsProfileEltAdd, RpcNsProfileEltRemove

RpcNsProfileEltAdd   

The RpcNsProfileEltAdd function adds an element to a profile. If necessary, it creates the entry.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsProfileEltAdd(

        unsigned long    ProfileNameSyntax,
        unsigned char *    ProfileName,
        RPC_IF_ID *    IfId,
        unsigned long    MemberNameSyntax,
        unsigned char *    MemberName,
        unsigned long    Priority,
        unsigned char *    Annotation
     );

Parameters
ProfileNameSyntax

Specifies an integer value that indicates the syntax of the next argument, ProfileName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName

Points to the name of the profile to receive a new element.
IfId

Points to the interface identification of the new profile element. To add or replace the default profile
element, specify a null value.

MemberNameSyntax

Specifies an integer value that indicates the syntax of the next argument, MemberName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName

Points to a name-service entry name to include in the new profile element.
Priority

Specifies an integer value (0 through 7) that indicates the relative priority for using the new profile
element during the "import" and "lookup" operations. A value of 0 is the highest priority; a value of 7 is
the lowest priority.
When adding a default profile member, use a value of 0.

Annotation

Points to an annotation string stored as part of the new profile element. The string can be up to 17
characters long. Specify a null value or a null-terminated string if there is no annotation string.
The string is used by applications for informational purposes only. For example, an application can
use this string to store the interface-name string specified in the IDL file.
RPC does not use the annotation string during "lookup" or "import" operations or for enumerating

profile elements.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltAdd routine adds an element to the profile attribute of the name-service entry
specified by the ProfileName argument.

If the ProfileName entry does not exist, RpcNsProfileEltAdd tries to create the entry with a profile
attribute and adds the profile element specified by the IfId, MemberName, Priority, and Annotation
arguments. In this case, the application must have the privilege to create the entry. Otherwise, a
management application with the necessary privileges should create the entry by calling the
RpcNsMgmtEntryCreate routine before the application is run.

If an element with the specified member name and interface identification is already in the profile,
RpcNsProfileEltAdd updates the element's priority and annotation string using the values provided in the
Priority and Annotation arguments.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcIfInqId, RpcNsMgmtEntryCreate, RpcNsProfileEltRemove

RpcNsProfileEltInqBegin   

The RpcNsProfileEltInqBegin function creates an inquiry context for viewing the elements in a profile.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsProfileEltInqBegin(

        unsigned long    ProfileNameSyntax,
        unsigned char *    ProfileName,
        unsigned long    InquiryType,
        RPC_IF_ID *    IfId,
        unsigned long    VersOption,
        unsigned long    MemberNameSyntax,
        unsigned char *    MemberName,
        RPC_NS_HANDLE *    InquiryContext
     );

Parameters
ProfileNameSyntax

Specifies an integer value that indicates the syntax of the next argument, ProfileName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName

Points to the name of the profile to view.
InquiryType

Specifies an integer value indicating the type of inquiry to perform on the profile. The following table
lists valid inquiry types:

Inquiry type Description
RPC_C_PROFILE_DEFAULT_ELT Searches the profile for the default

profile element, if any. The IfId,
VersOption, and MemberName
arguments are ignored.

RPC_C_PROFILE_ALL_ELTS Returns every element from the
profile. The IfId, VersOption, and
MemberName arguments are
ignored.

RPC_C_PROFILE_MATCH_BY_IF Searches the profile for the elements
that contain the interface identification
specified by the IfId and VersOption
values. The MemberName argument
is ignored.

RPC_C_PROFILE_MATCH_BY_MBR Searches the profile for the elements
that contain the member name
specified by the MemberName
argument. The IfId and VersOption
arguments are ignored.

RPC_C_PROFILE_MATCH_BY_BOT
H

Searches the profile for the elements
that contain the interface identification

and member identified by the IfId,
VersOption, and MemberName
arguments.

IfId

Points to the interface identification of the profile elements to be returned by the
RpcNsProfileEltInqNext routine.
The IfId argument is used only when specifying a value of RPC_C_PROFILE_MATCH_BY_IF or
RPC_C_PROFILE_MATCH_BY_BOTH for the InquiryType argument. Otherwise, IfId is ignored and a
null value can be specified.

VersOption

Specifies how the RpcNsProfileEltInqNext routine uses the IfId argument.
The VersOption argument is used only when specifying a value of RPC_C_PROFILE_MATCH_BY_IF
or RPC_C_PROFILE_MATCH_BY_BOTH for the InquiryType argument. Otherwise, this argument is
ignored and a 0 value can be specified.
The following table describes valid values for the VersOption argument.

Values Description
RPC_C_VERS_ALL Returns profile elements that offer the

specified interface UUID, regardless
of the version numbers. For this
value, specify 0 for both the major
and minor versions in IfId.

RPC_C_VERS_COMPATIBLE Returns profile elements that offer the
same major version of the specified
interface UUID and a minor version
greater than or equal to the minor
version of the specified interface
UUID.

RPC_C_VERS_EXACT Returns profile elements that offer the
specified version of the specified
interface UUID.

RPC_C_VERS_MAJOR_ONLY Returns profile elements that offer the
same major version of the specified
interface UUID (ignores the minor
version). For this value, specify 0 for
the minor version in IfId.

RPC_C_VERS_UPTO Returns profile elements that offer a
version of the specified interface
UUID less than or equal to the
specified major and minor version.
(For example, if the IfId contained
V2.0 and the profile contained
elements with V1.3, V2.0, and V2.1,
the RpcNsProfileEltInqNext routine
returns the elements with V1.3 and
V2.0.)

MemberNameSyntax

Specifies an integer value that indicates the syntax of the next argument, MemberName, and of the

return argument MemberName in the RpcNsProfileEltInqNext routine.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName

Points to the member name that the RpcNsProfileEltInqNext routine looks for in profile elements.
The MemberName argument is used only when specifying a value of
RPC_C_PROFILE_MATCH_BY_MBR or RPC_C_PROFILE_MATCH_BY_BOTH for the InquiryType
argument. Otherwise, MemberName is ignored and a null value can be specified.

InquiryContext

Returns a pointer to a name-service handle for use with the RpcNsProfileEltInqNext and
RpcNsProfileEltInqDone routines.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltInqBegin routine creates an inquiry context for viewing the elements in a profile.

Using the InquiryType argument, an application specifies which of the following profile elements are to be
returned from calls to the RpcNsProfileEltInqNext routine:

· The default element
· All elements
· Elements with the specified interface identification
· Elements with the specified member name
· Elements with both the specified interface identification and member name

Before calling the RpcNsProfileEltInqNext routine, the application must first call
RpcNsProfileEltInqBegin to create an inquiry context.

When finished viewing the profile elements, the application calls the RpcNsProfileEltInqDone routine to
delete the inquiry context.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_VERS_OPTION Invalid version option
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name
syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABL
E

Name service unavailable

See Also
RpcIfInqId, RpcNsProfileEltInqDone, RpcNsProfileEltInqNext

RpcNsProfileEltInqDone   

The RpcNsProfileEltInqDone function deletes the inquiry context for viewing the elements in a profile.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsProfileEltInqDone(

        RPC_NS_HANDLE *    InquiryContext
         );

Parameters
InquiryContext

Points to a name-service handle to free. The name-service handle InquiryContext points to is created
by calling the RpcNsProfileEltInqBegin routine.
An argument value of NULL is returned.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltInqDone routine frees an inquiry context created by calling the
RpcNsProfileEltInqBegin routine.

An application calls RpcNsProfileEltInqDone after viewing profile elements using the
RpcNsProfileEltInqNext routine.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcNsProfileEltInqBegin, RpcNsProfileEltInqNext

RpcNsProfileEltInqNext   

The RpcNsProfileEltInqNext function returns one element at a time from a profile.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsProfileEltInqNext(

        RPC_NS_HANDLE    InquiryContext,
        RPC_IF_ID *    IfId,
        unsigned char * *    MemberName,
        unsigned long *    Priority,
        unsigned char * *    Annotation
     );

Parameters
InquiryContext

Specifies a name-service handle returned from the RpcNsProfileEltInqBegin routine.
IfId

Returns a pointer to the interface identification of the profile element.
MemberName

Returns a pointer to a pointer to the profile element's member name.
The syntax of the returned name was specified by the MemberNameSyntax argument in the
RpcNsProfileEltInqBegin routine.
Specify a null value to prevent RpcNsProfileEltInqNext from returning the MemberName argument.
In this case, the application does not call the RpcStringFree routine.

Priority

Returns a pointer to the profile-element priority.
Annotation

Returns a pointer to a pointer to the annotation string for the profile element. If there is no annotation
string in the profile element, the string "\0" is returned.
Specify a null value to prevent RpcNsProfileEltInqNext from returning the Annotation argument. In
this case, the application does not need to call the RpcStringFree routine.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltInqNext routine returns one element from the profile specified by the ProfileName
argument in the RpcNsProfileEltInqBegin routine. Regardless of the value specified for the InquiryType
argument in RpcNsProfileEltInqBegin, RpcNsProfileEltInqNext returns all the components (interface
identification, member name, priority, annotation string) of a profile element.

An application can view all the selected profile entries by repeatedly calling the RpcNsProfileEltInqNext
routine. When all the elements have been viewed, this routine returns a RPC_S_NO_MORE_ELEMENTS
status code. The returned elements are unordered.

On each call to RpcNsProfileEltInqNext that returns a profile element, the RPC run-time library allocates
memory for the returned member name and annotation string. The application is responsible for calling
the RpcStringFree routine for each returned member name and annotation string.

After viewing the profile's elements, the application must call the RpcNsProfileEltInqDone routine to
release the inquiry context.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_NAME_SERVICE_UNAVAILABL
E

Name service unavailable

RPC_S_NO_MORE_ELEMENTS No more elements

See Also
RpcNsProfileEltInqBegin, RpcNsProfileEltInqDone, RpcStringFree

RpcNsProfileEltRemove   

The RpcNsProfileEltRemove function removes an element from a profile.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcNsProfileEltRemove(

        unsigned long    ProfileNameSyntax,
        unsigned char *    ProfileName,
        RPC_IF_ID *    IfId,
        unsigned long    MemberNameSyntax,
        unsigned char *    MemberName
     );

Parameters
ProfileNameSyntax

Specifies an integer value that indicates the syntax of the next argument, ProfileName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName

Points to the name of the profile from which to remove an element.
IfId

Points to the interface identification of the profile element to be removed.
Specify a null value to remove the default profile member.

MemberNameSyntax

Specifies an integer value that indicates the syntax of the next argument, MemberName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName

Points to the name-service entry name in the profile element to remove.

Remarks

Note    This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltRemove routine removes a profile element from the profile attribute in the
ProfileName entry. The RpcNsProfileEltRemove routine requires an exact match of the MemberName
and IfId arguments in order to remove a profile element.

The entry (MemberName) included as a member in the profile element is not deleted.

Use RpcNsProfileEltRemove cautiously: removing elements from a profile can have the unwanted effect
of breaking a hierarchy of profiles.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTA
X

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLEName service unavailable

See Also
RpcNsProfileDelete, RpcNsProfileEltAdd

RpcObjectInqType   

The RpcObjectInqType function returns the type of an object.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcObjectInqType(

        UUID *    ObjUuid,
        UUID *    TypeUuid
     );

Parameters
ObjUuid

Points to the object UUID whose associated type UUID is returned.
TypeUuid

Returns a pointer to the type UUID of the ObjUuid argument.
Specify an argument value of NULL to prevent the return of a type UUID. In this way, an application
can determine (from the returned status) whether ObjUuid is registered without specifying an output
type UUID variable.

Remarks
A server application calls the RpcObjectInqType routine to obtain the type UUID of an object.

If the object was registered with the RPC run-time library using the RpcObjectSetType routine, the
registered type is returned.

Optionally, an application can privately maintain an object/type registration. In this case, if the application
has provided an object inquiry function (see RpcObjectSetInqFn), the RPC run-time library uses that
function to determine an object's type.

The RpcObjectInqType routine obtains the returned type UUID as described in the following table:

Object UUID
registered

Inquiry function
registered

Return
value

Yes
(RpcObjectSetType)

Ignored The object's
registered type UUID

No Yes
(RpcObjectSetInqFn)

The type UUID
returned from the
inquiry function

No No The nil UUID

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_OBJECT_NOT_FOUND Object not found

See Also
RpcObjectSetInqFn, RpcObjectSetType

RpcObjectSetInqFn   

The RpcObjectSetInqFn function registers an object-inquiry function. A null value turns off a previously
registered object-inquiry function.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcObjectSetInqFn(

        RPC_OBJECT_INQ_FN    InquiryFn
     );

Parameters
InquiryFn

Specifies an object-type inquiry function. When an application calls the RpcObjectInqType routine
and the RPC run-time library finds that the specified object is not registered, the run-time library
automatically calls RpcObjectSetInqFn to determine the object's type.

The following C-language definition for RPC_OBJECT_INQ_FN illustrates the prototype for the object-
inquiry function:

typedef void (* RPC_OBJECT_INQ_FN) (
 UUID * ObjectUuid,
 UUID * TypeUuid,
 RPC_STATUS * Status);

The TypeUuid and Status values are returned as the output from the RpcObjectInqType routine.

Remarks
A server application calls the RpcObjectSetInqFn routine to specify a function to determine an object's
type. If an application privately maintains an object/type registration, the specified inquiry function returns
the type UUID of an object.

The RPC run-time library automatically calls the inquiry function when the application calls
RpcObjectInqType and the object of interest was not previously registered with the RpcObjectSetType
routine.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcObjectInqType, RpcObjectSetType

RpcObjectSetType   

The RpcObjectSetType function assigns the type of an object.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcObjectSetType(

        UUID *    ObjUuid,
        UUID *    TypeUuid
     );

Parameters
ObjUuid

Points to an object UUID to associate with the type UUID in the TypeUuid argument.
TypeUuid

Points to the type UUID of the ObjUuid argument.
Specify an argument value of NULL or a nil UUID to reset the object type to the default association of
object UUID/nil type UUID.

Remarks
A server application calls the RpcObjectSetType routine to assign a type UUID to an object UUID.

By default, the RPC run-time library automatically assigns all object UUIDs with the nil type UUID. A
server application that contains one implementation of an interface (one manager entry-point vector
[EPV]) does not need to call RpcObjectSetType provided the server registered the interface with the nil
type UUID (see RpcServerRegisterIf).

A server application that contains multiple implementations of an interface (multiple manager EPVs ¾ that
is, multiple type UUIDs) calls RpcObjectSetType once for each different object UUID/non-nil type UUID
association the server supports. Associating each object with a type UUID tells the RPC run-time library
which manager EPV (interface implementation) to use when the server receives a remote procecure call
for a non-nil object UUID.

The RPC run-time library allows an application to set the type for an unlimited number of objects.

To remove the association between an object UUID and its type UUID (established by calling
RpcObjectSetType), a server calls RpcObjectSetType again specifying a null value or a nil UUID for the
TypeUuid argument. This resets the object UUID/type UUID association to the default association of
object UUID/nil type UUID.

A server cannot assign a type to the nil object UUID. The RPC run-time library automatically assigns the
nil object UUID a nil type UUID.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_OBJECT Invalid object
RPC_S_ALREADY_REGISTEREDObject already registered

See Also
RpcServerRegisterIf

RpcProtseqVectorFree   

The RpcProtseqVectorFree function frees the protocol sequences contained in the vector and the vector
itself.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcProtseqVectorFree(

        RPC_PROTSEQ_VECTOR * *    ProtSeqVector
     );

Parameters
ProtSeqVector

Points to a pointer to a vector of protocol sequences. On return, the pointer is set to NULL.

Note    RpcProtseqVectorFree is available for server applications, not client applications, using
Microsoft RPC.

Remarks
A server calls the RpcProtseqVectorFree routine to release the memory used to store a vector of
protocol sequences and the individual protocol sequences. RpcProtseqVectorFree sets the
ProtSeqVector argument to a null value.

A server obtains a vector of protocol sequences by calling the RpcNetworkInqProtseqs routine.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcNetworkInqProtseqs

RpcRaiseException   

Use the RpcRaiseException function to raise an exception. The RpcRaiseException function does not
return to the caller.

void RPC_ENTRY RpcRaiseException (

        RPC_STATUS    Exception
     );

Parameters
Exception

Specifies the exception code for the exception. The following exception codes are defined:
Exception code Description
RPC_S_ACCESS_DENIED Access denied
RPC_S_ADDRESS_ERROR An addressing error occurred in

the RPC server
RPC_S_ALREADY_LISTENING Server already listening
RPC_S_ALREADY_REGISTERED Object already registered
RPC_S_BINDING_HAS_NO_AUTH Binding has no authentication
RPC_S_BINDING_INCOMPLETE The binding handle is a required

parameter.
RPC_S_BUFFER_TOO_SMALL Insufficient buffer
RPC_S_CALL_CANCELLED The remote procedure call

exceeded the cancel timeout
and was canceled.

RPC_S_CALL_FAILED Call failed
RPC_S_CALL_FAILED_DNE Call failed and did not execute
RPC_S_CALL_IN_PROGRESS Call already in progress for this

thread
RPC_S_CANNOT_SUPPORT Operation is not supported
RPC_S_CANT_CREATE_ENDPOINT Cannot create endpoint
RPC_S_COMM_FAILURE Unable to communicate with the

server
RPC_S_DUPLICATE_ENDPOINT Endpoint already exists
RPC_S_ENTRY_ALREADY_EXISTS Name-service entry already

exists
RPC_S_ENTRY_NOT_FOUND Name-service entry not found
RPC_S_FP_DIV_ZERO A floating-point operation in the

server caused a division by zero
RPC_S_FP_OVERFLOW Floating-point overflow has

occurred in the RPC server
RPC_S_FP_UNDERFLOW Floating-point underflow has

occurred in the server
RPC_S_GROUP_MEMBER_NOT_FOUND Group member not found
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_INTERFACE_NOT_FOUND Interface not found
RPC_S_INTERNAL_ERROR Internal error

RPC_S_INVALID_ARG Invalid argument
RPC_S_INVALID_AUTH_IDENTITY Invalid authentication
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_INVALID_BOUND Invalid bound
RPC_S_INVALID_ENDPOINT_FORMAT Invalid endpoint format
RPC_S_INVALID_INQUIRY_CONTEXT Invalid inquiry context
RPC_S_INVALID_INQUIRY_TYPE Invalid inquiry type
RPC_S_INVALID_LEVEL Invalid parameter
RPC_S_INVALID_NAF_IF Invalid network-address family

ID
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_INVALID_NET_ADDR Invalid network address
RPC_S_INVALID_NETWORK_OPTIONS Invalid network options
RPC_S_INVALID_OBJECT Invalid object
RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_SECURIT_DESC Invalid security descriptor
RPC_S_INVALID_STRING_BINDING Invalid string binding
RPC_S_INVALID_STRING_UUID Invalid string UUID
RPC_S_INVALID_TAG Invalid tag
RPC_S_INVALID_TIMEOUT Invalid timeout value
RPC_S_INVALID_VERS_OPTION Invalid version option
RPC_S_MAX_CALLS_TOO_SMALL Maximum-calls value too small
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable
RPC_S_NO_BINDINGS No bindings
RPC_S_NO_CALL_ACTIVE No remote procedure active in

this thread
RPC_S_NO_CONTEXT_AVAILABLE No security context is available

to perform impersonation
RPC_S_NO_ENDPOINT_FOUND No endpoint found
RPC_S_NO_ENTRY_NAME No entry name for binding
RPC_S_NO_ENV_SETUP No environment variable is set

up
RPC_S_NO_INTERFACES No interfaces are registered
RPC_S_NO_INTERFACES_EXPORTED No interfaces have been

exported
RPC_S_NO_MORE_BINDINGS No more bindings
RPC_NO_MORE_ELEMENTS There are no more elements.
RPC_S_NO_MORE_MEMBERS No more members
RPC_S_NO_NS_PRIVILEGE No privilege for name-service

operation
RPC_S_NO_PRINC_NAME No principal name is registered
RPC_S_NO_PROTSEQS No supported protocol

sequences
RPC_S_NO_PROTSEQS_REGISTERED No protocol sequences

registered

RPC_S_NOT_ALL_OBJS_UNEXPORTED Not all objects unexported
RPC_S_NOT_CANCELLED The thread is not canceled
RPC_S_NOT_LISTENING Server not listening
RPC_S_NOT_RPC_ERROR The status code requested is not

valid
RPC_S_NOTHING_TO_EXPORT Nothing to export
RPC_S_NOTHING_TO_UNEXPORT Nothing to unexport
RPC_S_OBJECT_NOT_FOUND Object not found
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_OUT_OF_RESOURCES Out of resources
RPC_S_OUT_OF_THREADS Out of threads
RPC_S_PROCNUM_OUT_OF_RANGE Procedure number is out of

range
RPC_S_PROTOCOL_ERROR An RPC protocol error occurred
RPC_S_PROTSEQ_NOT_FOUND Protocol sequence not found
RPC_S_PROTSEQ_NOT_SUPPORTED Protocol sequence not

supported
RPC_S_SERVER_OUT_OF_MEMORY Server out of memory
RPC_S_SERVER_TOO_BUSY Server too busy
RPC_S_SERVER_UNAVAILABLE The server is unavailable
RPC_S_STRING_TOO_LONG String too long
RPC_S_TYPE_ALREADY_REGISTERED Type UUID already registered
RPC_S_UNKNOWN_AUTHN_LEVEL Unknown authentication level
RPC_S_UNKNOWN_AUTHN_SERVICE Unknown authentication service
RPC_S_UNKNOWN_AUTHN_TYPE Unknown authentication type
RPC_S_UNKNOWN_IF Unknown interface
RPC_S_UNKNOWN_MGR_TYPE Unknown manager type
RPC_S_UNSUPPORTED-TRANS_SYN Transfer syntax is not supported

by the server
RPC_S_UNSUPPORTED_NAME_SYNTAXUnsupported name syntax
RPC_S_UNSUPPORTED_TYPE Unsupported UUID type
RPC_S_UUID_LOCAL_ONLY The UUID that is only valid for

this computer has been
allocated

RPC_S_UUID_NO_ADDRESS No network address is available
to use to construct a UUID

RPC_S_WRONG_KIND_OF_BINDING Wrong kind of binding for
operation

RPC_S_ZERO_DIVIDE Attempt to divide an integer by
zero

RPC_X_BAD_STUB_DATA The stub received bad data
RPC_X_BYTE_COUNT_TOO_SMALL Byte count is too small
RPC_X_ENUM_VALUE_OUT_OF RANGE The enumeration value is out of

range
RPC_X_ENUM_VALUE_TOO_LARGE The enumeration value is out of

range

RPC_X_INVALID_BOUND Specified bounds of an array
inconsistent

RPC_X_INVALID_TAG Discriminant value does not
match any case values; no
default case

RPC_X_NO_MEMORY Insufficient memory available to
set up necessary data structures

RPC_X_NO_MORE_ENTRIES List of servers available for
AutoHandle binding has been
exhausted

RPC_X_NULL_REF_POINTER A null reference pointer was
passed to the stub

RPC_X_SS_BAD_ES_VERSION The operation for the serializing
handle is not valid

RPC_X_SS_CANNOT_GET_CALL_HAND
LE

The stub is unable to get the
remote procedure call handle

RPC_X_SS_CHAR_TRANS_OPEN_FAIL File designated by
DCERPCCHARTRANS cannot
be opened

RPC_X_SS_CHAR_TRANS_SHORT_FILE File containing character-
translation table has fewer than
512 bytes

RPC_X_SS_CONTEXT_DAMAGED Only raised on caller side; UUID
in in, out context handle
changed during call

RPC_X_SS_CONTEXT_MISMATCH Only raised on callee side; UUID
in in handle does not
correspond to any known
context

RPC_X_SS_HANDLES_MISMATCH The binding handles passed to a
remote procedure call don't
match

RPC_X_SS_IN_NULL_CONTEXT Null context handle passed in in
parameter position

RPC_X_SS_INVALID_BUFFER The buffer is not valid for the
operation.

RPC_X_SS_WRONG_ES_VERSION The software version is incorrect
RPC_X_SS_WRONG_STUB_VERSION The stub version is incorrect

Remarks
The RpcRaiseException routine raises an exception; this exception can then be handled by the
exception handler.

Return Values
No value is returned.

See Also
RpcAbnormalTermination, RpcExcept, RpcFinally

RpcRevertToSelf   

After calling RpcImpersonateClient and completing any tasks that require client impersonation, the
server calls RpcRevertToSelf to end impersonation and to reestablish its own security identity.

This function is supported only by Windows NT.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcRevertToSelf (VOID);

Return Values
Value Meaning
RPC_S_OK Success.
RPC_S_NO_CALL_ACTIVE Server does not have a client to

impersonate.
RPC_S_INVALID_BINDING Invalid binding handle.
RPC_S_WRONG_KIND_OF_BINDIN
G

Wrong kind of binding for
operation.

RPC_S_CANNOT_SUPPORT Not supported for this operating
system, this transport, or this
security subsystem.

Remarks
In a multithreaded application, if the call to RpcImpersonateClient is with a handle to another client
thread, you must call RpcRevertToSelfEx with the handle to that thread to end impersonation.

See Also
RpcImpersonateClient, Impersonation

RpcRevertToSelfEx   

After calling RpcImpersonateClient and completing any tasks that require client impersonation, the
server calls RpcRevertToSelfEx to end impersonation and to reestablish its own security identity.

This function is supported only by Windows NT.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcRevertToSelf Ex(

        RPC_BINDING_HANDLE    CallHandle   
     );

Parameters
CallHandle

Specifies a binding handle on the server that represents a binding to the client that the server
impersonated. A value of zero specifies the client handle of the current thread; in this case the
functionality of RpcRevertToSelfEx is identical to that of RpcRevertToSelf.

Return Values
Value Meaning
RPC_S_OK Success.
RPC_S_NO_CALL_ACTIVE Server does not have a client

to impersonate.
RPC_S_INVALID_BINDING Invalid binding handle.
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for
operation.

RPC_S_CANNOT_SUPPORT Not supported for this operating
system, this transport, or this
security subsystem.

Remarks
RpcRevertToSelfEx allows a server to impersonate a client and then revert in a multithreaded operation
where the call to impersonate a client can come from a thread other than the thread originally dispatched
from the RPC. For example, consider a primary thread, called thread1, which is dispatched from a remote
client and which wakes up a worker thread, called thread2. If thread2 requires that the server impersonate
the client, the server calls RpcImpersonateClient(THREAD1_CALL_HANDLE), performs the required
task, calls RpcRevertToSelfEx(THREAD1_CALL_HANDLE) to end the impersonation, and then wakes up
thread1.

See Also
RpcImpersonateClient, RpcRevertToSelf, Impersonation

RpcServerInqBindings   

The RpcServerInqBindings function returns the binding handles over which remote procedure calls can
be received.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerInqBindings(

        RPC_BINDING_VECTOR * *    BindingVector
     );

Parameters
BindingVector

Returns a pointer to a pointer to a vector of server binding handles.

Remarks
A server application calls the RpcServerInqBindings routine to obtain a vector of server binding handles.
Binding handles are created by the RPC run-time library when a server application calls the following
routines to register protocol sequences:

· RpcServerUseAllProtseqs
· RpcServerUseProtseq
· RpcServerUseAllProtseqsIf
· RpcServerUseProtseqIf
· RpcServerUseProtseqEp

The returned binding vector can contain binding handles with dynamic endpoints or binding handles with
well-known endpoints, depending on which of the above routines the server application called.

A server uses the vector of binding handles for exporting to the name service, for registering with the local
endpoint-map database, or for conversion to string bindings.

If there are no binding handles (no registered protocol sequences), this routine returns the
RPC_S_NO_BINDINGS status code and a BindingVector argument value of NULL.

The server is responsible for calling the RpcBindingVectorFree routine to release the memory used by
the vector.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_BINDINGS No bindings

See Also
RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingExport,
RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf, RpcServerUseProtseq,

RpcServerUseProtseqEp, RpcServerUseProtseqIf

RpcServerInqDefaultPrincName
The RpcServerInqDefaultPrincName function obtains the default principal name from the server.

This function is supported only by Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerInqDefaultPrincName(

        unsigned long    AuthnSvc,
            RPC_CHAR * *    PrincName,
     );

Parameters
AuthnSvc

Specifies an authentication service to use when the server receives a request for a remote procedure
call.

PrincName

Points to the principal name to use for the server when authenticating remote procedure calls using
the service specified by the AuthnSvc argument. The content of the name and its syntax are defined
by the authentication service in use.

Remarks
In a NetWare-only environment, server application calls the RpcServerInqDefaultPrincName routine to
obtain the name of the NetWare server when authenticated RPC is required. The value obtained from this
routine is then passed to RpcServerRegisterAuthInfo.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_MEMORYInsufficient memory to complete the

operation

See Also
RpcBindingSetAuthInfo, RpcServerRegisterAuthInfo

RpcServerInqIf   

The RpcServerInqIf function returns the manager entry-point vector (EPV) registered for an interface.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerInqIf(

        RPC_IF_HANDLE    IfSpec,
        UUID *    MgrTypeUuid,
        RPC_MGR_EPV * *    MgrEpv
     );

Parameters
IfSpec

Specifies the interface whose manager EPV is returned.
MgrTypeUuid

Points to the manager type UUID whose manager EPV is returned.
Specifying an argument value of NULL (or a nil UUID) signifies to return the manager EPV registered
with IfSpec and the nil manager type UUID.

MgrEpv

Returns a pointer to the manager EPV for the requested interface.

Remarks
A server application calls the RpcServerInqIf routine to determine the manager EPV for a registered
interface and manager type UUID.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_UNKNOWN_IF Unknown interface
RPC_S_UNKNOWN_MGR_TYPE Unknown manager type

See Also
RpcServerRegisterIf

RpcServerListen   

The RpcServerListen function tells the RPC run-time library to listen for remote procedure calls. This
function will not affect auto-listen interfaces. See RpcServerRegisterIfEx for more details.

This function is supported by both server platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerListen(

        unsigned int    MinimumCallThreads,
        unsigned int    MaxCalls,
        unsigned int    DontWait
     );

Parameters
MinimumCallThreads

Specifies the minimum number of call threads.
MaxCalls

Specifies the recommended maximum number of concurrent remote procedure calls the server can
execute. To allow efficient performance, the RPC run-time libraries interpret the MaxCalls parameter
as a suggested limit rather than as an absolute upper bound.
Use RPC_C_LISTEN_MAX_CALLS_DEFAULT to specify the default value.

DontWait

Specifies a flag controlling the return from RpcServerListen. A value of non-zero indicates that
RpcServerListen should return immediately after completing function processing. A value of zero
indicates that RpcServerListen should not return until RpcMgmtStopServerListening has been
called and all remote calls have completed.

Remarks

Note    The Microsoft RPC implementation of RpcServerListen includes two new, additional
parameters that do not appear in the DCE specification: DontWait and MinimumCallThreads.

A server calls the RpcServerListen routine when the server is ready to process remote procedure calls.
RPC allows a server to simultaneously process multiple calls. The MaxCalls argument recommends the
maximum number of concurrent remote procedure calls the server should execute.

The MaxCalls value should be equal to or greater than the largest MaxCalls value specified to the
routines RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqIf,
RpcServerUseAllProtseqs, and RpcServerUseAllProtseqsIf.

A server application is responsible for concurrency control between the server manager routines because
each routine executes in a separate thread.

When the DontWait parameter has a value of zero, the RPC run-time library continues listening for
remote procedure calls (that is, the routine does not return to the server application) until one of the
following events occurs:

· One of the server application's manager routines calls the RpcMgmtStopServerListening routine.
· A client calls a remote procedure provided by the server that directs the server to call

RpcMgmtStopServerListening.
· A client calls RpcMgmtStopServerListening with a binding handle to the server.

Once it receives a stop-listening request, the RPC run-time library stops accepting new remote procedure
calls for all registered interfaces. Executing calls are allowed to complete, including callbacks.

After all calls complete, the RpcServerListen routine returns to the caller.

When the DontWait parameter has a non-zero value, RpcServerListen returns to the server immediately
after processing all the instructions associated with the function. You can use the
RpcMgmtWaitServerListen routine to perform the "wait" operation usually associated with
RpcServerListen.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_ALREADY_LISTENING Server already listening
RPC_S_NO_PROTSEQS_REGISTERE
D

No protocol sequences
registered

RPC_S_MAX_CALLS_TOO_SMALL Maximum calls value too
small

See Also
RpcMgmtStopServerListening, RpcMgmtWaitServerListen, RpcServerRegisterIf,
RpcServerRegisterIfEx, RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf,
RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqIf

RpcServerRegisterAuthInfo   

The RpcServerRegisterAuthInfo function registers authentication information with the RPC run-time
library.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerRegisterAuthInfo(

        unsigned char *    ServerPrincName,
        unsigned long    AuthnSvc,
        RPC_AUTH_KEY_RETRIEVAL_FN    GetKeyFn,
        void *    Arg
     );

Parameters
ServerPrincName

Points to the principal name to use for the server when authenticating remote procedure calls using
the service specified by the AuthnSvc argument. The content of the name and its syntax are defined
by the authentication service in use.

AuthnSvc

Specifies an authentication service to use when the server receives a request for a remote procedure
call.

GetKeyFn

Specifies the address of a server-application-provided routine that returns encryption keys.
Specify a NULL argument value to use the default method of encryption-key acquisition. In this case,
the authentication service specifies the default behavior. Set this parameter to NULL when using the
RPC_C_AUTHN_WINNT authentication service.

Authentication service GetKeyFn Arg Run-time behavior
RPC_C_AUTHN_DCE
_PRIVATE

NULL Non-null Uses default method of
encryption-key acquisition
from specified key table;
specified argument is
passed to default acquisition
function

RPC_C_AUTHN_DCE
_PRIVATE

Non-null NULL Uses specified encryption-
key acquisition function to
obtain keys from default key
table

RPC_C_AUTHN_DCE
_PRIVATE

Non-null Non-null Uses specified encryption-
key acquisition function to
obtain keys from specified
key table; specified
argument is passed to
acquisition function

RPC_C_AUTHN_DEC
_PUBLIC

Ignored Ignored Reserved for future use

RPC_C_AUTHN_WINNT Ignored Ignored Does not support

The following C-language definition for RPC_AUTH_KEY_RETRIEVAL_FN illustrates the prototype
for RpcServerRegisterAuthInfo:
typedef void (* RPC_AUTH_KEY_RETRIEVAL_FN)(
 void * arg, /* in */
 unsigned char * ServerPrincName, /* in */
 unsigned int key_ver, /* in */
 void * * key, /* out */
 unsigned int * status /* out */);

The RPC run-time library passes the ServerPrincName argument value from
RpcServerRegisterAuthInfo as the ServerPrincName argument value to the GetKeyFn acquisition
function.
The RPC run-time library automatically provides a value for the key version (KeyVer) argument. For a
KeyVer argument value of zero, the acquisition function must return the most recent key available.
The retrieval function returns the authentication key in the Key argument.
If the acquisition function called from RpcServerRegisterAuthInfo returns a status other than
RPC_S_OK, RpcServerRegisterAuthInfo fails and returns an error code to the server application.
If the acquisition function called by the RPC run-time library while authenticating a client's remote
procedure call request returns a status other than RPC_S_OK, the request fails and the RPC run-time
library returns an error code to the client application.

Arg

Points to an argument to pass to the GetKeyFn routine, if specified.

Remarks
A server application calls the RpcServerRegisterAuthInfo routine to register an authentication service to
use for authenticating remote procedure calls. A server calls this routine once for each authentication
service and/or principal name the server wants to register.

The authentication service specified by a client application (using RpcBindingSetAuthInfo or
RpcServerRegisterAuthInfo) must be one of the authentication services specified by the server
application. Otherwise, the client's remote procedure call fails and an
RPC_S_UNKNOWN_AUTHN_SERVICE status code is returned.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_UNKNOWN_AUTHN_SERVIC
E

Unknown authentication
service

See Also
RpcBindingSetAuthInfo

RpcServerRegisterIf   

The RpcServerRegisterIf function registers an interface with the RPC run-time library.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerRegisterIf(

        RPC_IF_HANDLE    IfSpec,
        UUID *    MgrTypeUuid,
        RPC_MGR_EPV *    MgrEpv
     );

Parameters
IfSpec

Specifies a MIDL-generated data structure indicating the interface to register.
MgrTypeUuid

Points to a type UUID to associate with the MgrEpv argument. Specifying a null argument value (or a
nil UUID) registers IfSpec with a nil type UUID.

MgrEpv

Specifies the manager routines' entry-point vector (EPV). To use the MIDL-generated default EPV,
specify a null value.

Remarks
A server can register an unlimited number of interfaces with the RPC run-time library. Registration makes
an interface available to clients using a binding handle to the server.

To register an interface, the server application code calls the RpcServerRegisterIf routine. For each
implementation of an interface offered by a server, it must register a separate manager EPV.

To register an interface, the server provides the following information:

· Interface specification
The interface specification is a data structure that the MIDL compiler generates. The server specifies
the interface using the IfSpec argument.

· Manager type UUID and manager EPV
The manager type UUID and the manager EPV determine which manager routine executes when a
server receives a remote procedure call request from a client.
The server specifies the manager type UUID and EPV using the MgrTypeUuid and MgrEpv
arguments. Note that when specifying a non-nil manager type UUID, the server must also call the
RpcObjectSetType routine to register objects of this non-nil type.

If your server application needs to register an auto-listen interface or use a callback function for
authentication purposes, use RpcServerRegisterIfEx.

See Also
Registering the Interface, RpcBindingFromStringBinding, RpcBindingSetObject,

RpcNsBindingExport, RpcNsBindingImportBegin, RpcNsBindingLookupBegin,
RpcObjectSetType, RpcServerUnregisterIf

RpcServerRegisterIfEx   

The RpcServerRegisterIfEx function registers an interface with the RPC run-time library.

This function is supported by both server platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerRegisterIfEx(

        RPC_IF_HANDLE    IfSpec,
        UUID *    MgrTypeUuid,
        RPC_MGR_EPV *    MgrEpv,
        unsigned int Flags,
        unsigned int MaxCalls,
        RPC_IF_CALLBACK_FN* IfCallback
     );

Parameters
IfSpec

Specifies a MIDL-generated data structure indicating the interface to register.
MgrTypeUuid

Points to a type UUID to associate with the MgrEpv argument. Specifying a null argument value (or a
nil UUID) registers IfSpec with a nil type UUID.

MgrEpv

Specifies the manager routines' entry-point vector (EPV). To use the MIDL-generated default EPV,
specify a null value.

Flags

The following flags are defined:
Value Meaning
0 standard interface semantics
RPC_IF_AUTOLISTEN This is an auto-listen interface. See

Remarks for more details.
RPC_IF_OLE Reserved for OLE. Do not use this flag.

MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server can accept.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater and can vary for each protocol sequence. Use
RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

IfCallback

Specifies a security callback function, or NULL for no callback. Each registered interface can have a
different callback function. See Remarks for more details.

Remarks
The parameters and effects of RpcServerRegisterIfEx subsume those of RpcServerRegisterIf. The

difference is the ability to register an auto-listen interface and to specify a security callback function.

The server application code calls the RpcServerRegisterIfEx routine to register an interface. To register
an interface, the server provides the following information:

· Interface specification.
The interface specification is a data structure that the MIDL compiler generates.

· Manager type UUID and manager EPV
The manager type UUID and the manager EPV determine which manager routine executes when a
server receives a remote procedure call request from a client. For each implementation of an
interface offered by a server, it must register a separate manager EPV.
Note that when specifying a non-nil manager type UUID, the server must also call the
RpcObjectSetType routine to register objects of this non-nil type.

Specifying the RPC_IF_AUTOLISTEN flags marks the interface as an auto-listen interface. The runtime
begins listening for calls as soon as the interface is registered, and stops listening when the interface is
unregistered. A call to RpcServerUnregisterIf for this interface will wait for the completion of all pending
calls on this interface. Calls to RpcServerListen and RpcServerStopServerListening will not affect the
interface, nor will a call to RpcServerUnregisterIf with IfSpec == NULL. This allows a DLL to register and
unregister RPC interfaces without changing the main application's RPC state.

Specifying a security callback function allows the server application to restrict access to its interfaces on a
per-client basis. Remember that, by default, security is optional; the server runtime will dispatch
unsecured calls even if the server has called RpcServerRegisterAuthInfo. If the server wants to accept
only authenticated clients, each server stub must call RpcServerInqAuthClient to retrieve the security
level, or attempt to impersonate the client with RpcImpersonateClient.

When a server app specifies a security callback function for its interface(s), the RPC runtime
automatically rejects unauthenticated calls to that interface. In addition, the runtime records the interfaces
that each client has used. When a client makes an RPC to a heretofore unused interface, the RPC
runtime will call the interface's security callback function.

The signature for the callback function is as follows:

typedef RPC_STATUS
RPC_IF_CALLBACK_FN (
 IN RPC_IF_ID * Interface,
 IN void * Context
) ;

Interface contains the UUID and version of the interface in question.

Context is a server binding handle representing the client. The callback function may pass this handle to
RpcImpersonateClient or RpcBindingServerToClient to gain information about the client.

The callback function should return RPC_S_OK if the client is allowed to call methods in this interface.
Any other return code will cause the client to receive the exception RPC_S_ACCESS_DENIED.

In some cases the RPC runtime may call the security callback function more than once per client per
interface. Be sure your callback function can handle this possibility.

See Also
Registering the Interface, RpcBindingFromStringBinding, RpcBindingSetObject,
RpcNsBindingExport, RpcNsBindingImportBegin, RpcNsBindingLookupBegin,
RpcObjectSetType, RpcServerRegisterIf, RpcServerUnregisterIf

RpcServerUnregisterIf   

The RpcServerUnregisterIf function unregisters an interface from the RPC run-time library.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUnregisterIf(

        RPC_IF_HANDLE    IfSpec,
        UUID *    MgrTypeUuid,
        unsigned int    WaitForCallsToComplete
     );

Parameters
IfSpec

Specifies the interface to unregister.
Specify a null value to unregister all interfaces previously registered with the type UUID value
specified in the MgrTypeUuid argument.

MgrTypeUuid

Points to the type UUID of the manager entry-point vector (EPV) to unregister. The value of
MgrTypeUuid should be the same value as was provided in a call to the RpcServerRegisterIf or
RpcServerRegisterIfEx routine.
Specify a null value to unregister the interface specified in the IfSpec argument for all previously
registered type UUIDs.
Specify a nil UUID to unregister the MIDL-generated default manager EPV. In this case, all manager
EPVs registered with a non-nil type UUID remain registered.

WaitForCallsToComplete

Specifies a flag that indicates whether to unregister immediately or to wait until all current calls are
complete.
Specify a value of zero to disregard calls in progress and unregister immediately. Specify any non-
zero value to wait until all active calls complete.

Remarks
A server calls the RpcServerUnregisterIf routine to remove the association between an interface and a
manager EPV.

Specify the manager EPV to remove in the MgrTypeUuid argument by providing the type UUID value that
was specified in a call to the RpcServerRegisterIf routine. Once unregistered, an interface is no longer
available to client applications.

When an interface is unregistered, the RPC run-time library stops accepting new calls for that interface.
Executing calls on the interface are allowed to complete, including callbacks.

The following table summarizes the behavior of RpcServerUnregisterIf:

IfSpec MgrTypeUuid Behavior
Non-null Non-null Unregisters the manager EPV

associated with the specified

arguments.
Non-null NULL Unregisters all manager EPVs

associated with the IfSpec
argument.

NULL Non-null Unregisters all manager EPVs
associated with the MgrTypeUuid
argument.

NULL NULL Unregisters all manager EPVs.
This call has the effect of
preventing the server from
receiving any new remote
procedure calls because all the
manager EPVs for all interfaces
have been unregistered.

Note    If IfSpec is NULL, this function will leave auto-listen interfaces registered. Auto-listen
interfaces must be individually unregistered. See RpcServerRegisterIfEx for more details.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_UNKNOWN_MGR_TYP
E

Unknown manager type

RPC_S_UNKNOWN_IF Unknown interface

See Also
RpcServerRegisterIf, RpcServerRegisterIfEx

RpcServerUseAllProtseqs   

The RpcServerUseAllProtseqs function tells the RPC run-time library to use all supported protocol
sequences for receiving remote procedure calls.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseAllProtseqs(

        unsigned int    MaxCalls,
        void *    SecurityDescriptor
     );

Parameters
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server can accept.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater and can vary for each protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem.Note that
this parameter does not appear in the DCE specification for this API.

Remarks
A server application calls the RpcServerUseAllProtseqs routine to register all of the supported protocol
sequences with the RPC run-time library. To receive remote procedure calls, a server must register at
least one protocol sequence with the RPC run-time library.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests. The RPC run-time library
creates different binding handles for each protocol sequence. Each binding handle contains an endpoint
dynamically generated by the RPC run-time library or the operating system.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to be able to handle.

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

To selectively register protocol sequences, a server calls the RpcServerUseProtseq,
RpcServerUseProtseqIf, or RpcServerUseProtseqEp routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_PROTSEQS No supported protocol

sequences
RPC_S_OUT_OF_MEMORY Insufficient memory available
RPC_S_INVALID_SECURITY_DES
C

Security descriptor invalid

See Also
RpcBindingToStringBinding, RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingExport, RpcServerInqBindings, RpcServerListen, RpcServerRegisterIf,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqIf

RpcServerUseAllProtseqsEx   

The RpcServerUseAllProtseqsEx function tells the RPC run-time library to use all supported protocol
sequences for receiving remote procedure calls. For a list of Microsoft RPC's supported protocol
sequences, see the reference topic String Binding in RPC Data Types and Structures.

This function is supported only on Windows NT 4.0.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseAllProtseqsEx(

        unsigned int    MaxCalls,
        void *    SecurityDescriptor,
        PRPC_POLICY Policy
     );

Parameters
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server can accept.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater and can vary for each protocol sequence. Use
RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem.
Policy

Points to the RPC_POLICY structure, which allows you to override the default policies for dynamic
port allocation and binding to network interface cards (NICs) on multihomed machines.

Remarks
The parameters and effects of RpcServerUseAllProtseqsEx subsume those of
RpcServerUseAllProtseqs. The difference is the Policy parameter, which allows you to restrict port
allocation for dynamic ports and allows multihomed machines to selectively bind to specified NICs.

Setting the NICFlags field of the RPC_POLICY structure to zero makes this extended API functionally
equivalent to the original RpcServerUseAllProtseqs, and the server will bind to NICs based on the
settings in the system registry. For information on how the registry settings define the available Internet
and intranet ports, see Configuring the Windows NT Registry for Port Allocations and Selective Binding.

Note    The flag settings in the Policy field are effective only when the ncacn_ip_tcp protocol
sequence is in use. For all other protocol sequences, the RPC run time ignores these values.

A server application calls the RpcServerUseAllProtseqsEx routine to register all of the supported
protocol sequences with the RPC run-time library. To receive remote procedure calls, a server must
register at least one protocol sequence with the RPC run-time library.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests. The RPC run-time library
creates different binding handles for each protocol sequence. Each binding handle contains an endpoint

dynamically generated by the RPC run-time library or the operating system.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

To selectively register protocol sequences, a server calls the RpcServerUseProtseqEx,
RpcServerUseProtseqIfEx, or RpcServerUseProtseqEpEx routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_PROTSEQS No supported protocol

sequences
RPC_S_OUT_OF_MEMORY Insufficient memory available
RPC_S_INVALID_SECURITY_DES
C

Security descriptor is invalid

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

See Also
Configuring the Windows NT Registry for Port Allocations and Selective Binding,
RpcServerUseAllProtseqsIfEx, RpcServerUseProtseqEx, RpcServerUseProtseqEpEx,
RpcServerUseProtseqIfEx

RpcServerUseAllProtseqsIf   

The RpcServerUseAllProtseqsIf function tells the RPC run-time library to use all the specified protocol
sequences and endpoints in the interface specification for receiving remote procedure calls.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseAllProtseqsIf(

        unsigned int    MaxCalls,
        RPC_IF_HANDLE    IfSpec,
        void *    SecurityDescriptor
     );

Parameters
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server can accept.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater and can vary for each protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

IfSpec

Specifies the interface containing the protocol sequences and corresponding endpoint information to
use in creating binding handles.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem. Note that
this parameter does not appear in the DCE specification for this API.

Remarks
A server application calls the RpcServerUseAllProtseqsIf routine to register with the RPC run-time
library all the protocol sequences and associated endpoint-address information provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol sequence with the
RPC run-time library.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests. The RPC run-time library
creates different binding handles for each protocol sequence.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

To register selected protocol sequences specified in the IDL file, a server calls the
RpcServerUseProtseqIf routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_PROTSEQS No supported protocol

sequences
RPC_S_INVALID_ENDPOINT_FORMA
T

Invalid endpoint format

RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_DUPLICATE_ENDPOINT Endpoint is duplicate
RPC_S_INVALID_SECURITY_DESC Security descriptor invalid
RPC_S_INVALID_RPC_PROTSEQ RPC protocol sequence

invalid

See Also
RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingExport,
RpcServerInqBindings, RpcServerListen, RpcServerRegisterIfEx, RpcServerRegisterIf,
RpcServerUseAllProtseqs, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqIf

RpcServerUseAllProtseqsIfEx   

The RpcServerUseAllProtseqsIfEx function tells the RPC run-time library to use all the specified
protocol sequences and endpoints in the interface specification for receiving remote procedure calls. For
a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

This function is supported only on Windows NT 4.0.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseAllProtseqsIfEx(

        unsigned int    MaxCalls,
        RPC_IF_HANDLE    IfSpec,
        void *    SecurityDescriptor,
        PRPC_POLICY Policy
     );

Parameters
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server can accept.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater and can vary for each protocol sequence. Use
RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

IfSpec

Specifies the interface containing the protocol sequences and corresponding endpoint information to
use in creating binding handles.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem.
Policy

Points to the RPC_POLICY structure, which contains flags to restrict port allocation for dynamic ports
and which allow multihomed machines to selectively bind to network interface cards.

Remarks
The parameters and effects of RpcServerUseAllProtseqsIfEx subsume those of
RpcServerUseAllProtseqsIf. The difference is the Policy field, which allows you to restrict port allocation
for dynamic ports and allows multihomed machines to selectively bind to network interface cards.

Setting the NICFlags field of the RPC_POLICY structure to zero makes this extended function functionally
equivalent to the original RpcServerUseAllProtseqsIf, and the server will bind to NICs based on the
settings in the system registry. For information on how the registry settings define the available Internet
and intranet ports, see Configuring the Windows NT Registry for Port Allocations and Selective Binding.

Note    The flag settings in the Policy field are effective only when the ncacn_ip_tcp protocol
sequence is in use. For all other protocol sequences, the RPC run time ignores these values.

A server application calls the RpcServerUseAllProtseqsIfEx routine to register with the RPC run-time
library all the protocol sequences and associated endpoint-address information provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol sequence with the
RPC run-time library.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests. The RPC run-time library
creates different binding handles for each protocol sequence.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

To register selected protocol sequences specified in the IDL file, a server calls the
RpcServerUseProtseqIfEx routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_NO_PROTSEQS No supported protocol

sequences
RPC_S_INVALID_ENDPOINT_FORMA
T

Invalid endpoint format

RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_DUPLICATE_ENDPOINT Endpoint is a duplicate
RPC_S_INVALID_SECURITY_DESC Security descriptor is invalid
RPC_S_INVALID_RPC_PROTSEQ RPC protocol sequence is

invalid

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

See Also
Configuring the Windows NT Registry for Port Allocations and Selective Binding,
RpcServerUseAllProtseqsEx, RpcServerUseProtseqEx, RpcServerUseProtseqEpEx,
RpcServerUseProtseqIfEx

RpcServerUseProtseq   

The RpcServerUseProtseq function tells the RPC run-time library to use the specified protocol sequence
for receiving remote procedure calls.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseProtseq(

        unsigned char *    ProtSeq,
            unsigned int    MaxCalls,
        void *    SecurityDescriptor
     );

Parameters
ProtSeq

Points to a string identifier of the protocol sequence to register with the RPC run-time library.
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server wants to
handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater, depending on the selected protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem. Note that
this parameter does not appear in the DCE specification for this API.

Remarks
A server application calls the RpcServerUseProtseq routine to register one protocol sequence with the
RPC run-time library. To receive remote procedure call requests, a server must register at least one
protocol sequence with the RPC run-time library. A server application can call RpcServerUseProtseq
multiple times to register additional protocol sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests. The RPC run-time library
creates different binding handles for each protocol sequence. Each binding handle contains an endpoint
dynamically generated by the RPC run-time library.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

To register all protocol sequences, a server calls the RpcServerUseAllProtseqs routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence not
supported on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_INVALID_SECURITY_DESC Security descriptor invalid

See Also
RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNetworkIsProtseqValid,
RpcNsBindingExport, RpcServerInqBindings, RpcServerListen, RpcServerRegisterIfEx,
RpcServerRegisterIf, RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf,
RpcServerUseProtseqEp, RpcServerUseProtseqIf

RpcServerUseProtseqEx   

The RpcServerUseProtseqEx function tells the RPC run-time library to use the specified protocol
sequence for receiving remote procedure calls. For a list of Microsoft RPC's supported protocol
sequences, see the reference topic String Binding in RPC Data Types and Structures.

This function is supported only on Windows NT 4.0.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseProtseq(

        unsigned char *    ProtSeq,
            unsigned int    MaxCalls,
        void *    SecurityDescriptor,
        PRPC_POLICY Policy
   );

Parameters
ProtSeq

Points to a string identifier of the protocol sequence to register with the RPC run-time library.
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server wants to
handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater, depending on the selected protocol sequence. Use
RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem.
Policy

Points to the RPC_POLICY structure, which contains flags to restrict port allocation for dynamic ports
and which allow multihomed machines to selectively bind to network interface cards.

Remarks
The parameters and effects of RpcServerUseProtseqEx subsume those of RpcServerUseProtseq. The
difference is the Policy field, which allows you to restrict port allocation for dynamic ports and allows
multihomed machines to selectively bind to network interface cards.

Setting the NICFlags field of the RPC_POLICY structure to zero makes this extended function functionally
equivalent to the original RpcServerUseProtseq, and the server will bind to NICs based on the settings
in the system registry. For information on how the registry settings define the available Internet and
intranet ports, see Configuring the Windows NT Registry for Port Allocations and Selective Binding.

Note    The flag settings in the Policy field are effective only when the ncacn_ip_tcp protocol
sequence is in use. For all other protocol sequences, the RPC run time ignores these values.

A server application calls the RpcServerUseProtseqEx routine to register one protocol sequence with

the RPC run-time library. To receive remote procedure call requests, a server must register at least one
protocol sequence with the RPC run-time library. A server application can call RpcServerUseProtseqEx
multiple times to register additional protocol sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests. The RPC run-time library
creates different binding handles for each protocol sequence. Each binding handle contains an endpoint
dynamically generated by the RPC run-time library.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

To register all protocol sequences, a server calls the RpcServerUseAllProtseqsEx routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence is not
supported on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_INVALID_SECURITY_DESC Security descriptor is invalid

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

See Also
Configuring the Windows NT Registry for Port Allocations and Selective Binding,
RpcServerUseAllProtseqsEx, RpcServerUseAllProtseqsIfEx, RpcServerUseProtseqEpEx,
RpcServerUseProtseqIfEx

RpcServerUseProtseqEp   

The RpcServerUseProtseqEp function tells the RPC run-time library to use the specified protocol
sequence combined with the specified endpoint for receiving remote procedure calls.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseProtseqEp(

        unsigned char *    Protseq,
            unsigned int    MaxCalls,
        unsigned char *    Endpoint,
        void *    SecurityDescriptor
     );

Parameters
Protseq

Points to a string identifier of the protocol sequence to register with the RPC run-time library.
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server wants to
handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater, depending on the selected protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

Endpoint

Points to the endpoint-address information to use in creating a binding for the protocol sequence
specified in the Protseq argument.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem. Note that
this parameter does not appear in the DCE specification for this API.

Remarks
A server application calls the RpcServerUseProtseqEp routine to register one protocol sequence with
the RPC run-time library. With each protocol sequence registration, RpcServerUseProtseqEp includes
the specified endpoint-address information.

To receive remote procedure call requests, a server must register at least one protocol sequence with the
RPC run-time library. A server application can call this routine multiple times to register additional protocol
sequences and endpoints.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote

procedure call requests the server wants to be able to handle.

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence not
supported on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_ENDPOINT_FORMA
T

Invalid endpoint format

RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_DUPLICATE_ENDPOINT Endpoint is duplicate
RPC_S_INVALID_SECURITY_DESC Security descriptor invalid

See Also
RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingExport,
RpcServerInqBindings, RpcServerListen, RpcServerRegisterIf, RpcServerUseAllProtseqs,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqIf

RpcServerUseProtseqEpEx   

The RpcServerUseProtseqEpEx function tells the RPC run-time library to use the specified protocol
sequence combined with the specified endpoint for receiving remote procedure calls. For a list of
Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC Data Types
and Structures.

This function is supported only on Windows NT 4.0.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseProtseqEpEx(

        unsigned char *    Protseq,
            unsigned int    MaxCalls,
        unsigned char *    Endpoint,
        void *    SecurityDescriptor,
        PRPC_POLICY Policy
     );

Parameters
Protseq

Points to a string identifier of the protocol sequence to register with the RPC run-time library.
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server wants to
handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater, depending on the selected protocol sequence. Use
RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

Endpoint

Points to the endpoint-address information to use in creating a binding for the protocol sequence
specified in the Protseq argument.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem.
Policy

Points to the RPC_POLICY structure, which contains flags to restrict port allocation for dynamic ports
and which allow multihomed machines to selectively bind to network interface cards.

Remarks
The parameters and effects of RpcServerUseProtseqEpEx subsume those of
RpcServerUseProtseqEp. The difference is the Policy field, which allows you to restrict port allocation
for dynamic ports and allows multihomed machines to selectively bind to network interface cards.

Setting the NICFlags field of the RPC_POLICY structure to zero makes this extended function functionally
equivalent to the original RpcServerUseProtseqEp, and the server will bind to NICs based on the
settings in the system registry. For information on how the registry settings define the available Internet
and intranet ports, see Configuring the Windows NT Registry for Port Allocations and Selective Binding.

Note    The flag settings in the Policy field are effective only when the ncacn_ip_tcp protocol
sequence is in use. For all other protocol sequences, the RPC run time ignores these values.

A server application calls the RpcServerUseProtseqEpEx routine to register one protocol sequence with
the RPC run-time library. With each protocol sequence registration, RpcServerUseProtseqEpEx
includes the specified endpoint-address information.

To receive remote procedure call requests, a server must register at least one protocol sequence with the
RPC run-time library. A server application can call this routine multiple times to register additional protocol
sequences and endpoints.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence is not
supported on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_ENDPOINT_FORMA
T

Invalid endpoint format

RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_DUPLICATE_ENDPOINT Endpoint is a duplicate
RPC_S_INVALID_SECURITY_DESC Security descriptor is invalid

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

See Also
Configuring the Windows NT Registry for Port Allocations and Selective Binding,
RpcServerUseAllProtseqsEx, RpcServerUseAllProtseqsIfEx, RpcServerUseProtseqEx,
RpcServerUseProtseqIfEx

RpcServerUseProtseqIf   

The RpcServerUseProtseqIf function tells the RPC run-time library to use the specified protocol
sequence combined with the endpoints in the interface specification for receiving remote procedure calls.

This function is supported by both 32-bit platforms ¾ Windows NT and Windows 95.

For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseProtseqIf(

        unsigned char *    Protseq,
            unsigned int    MaxCalls,
        RPC_IF_HANDLE    IfSpec,
        void *    SecurityDescriptor
     );

Parameters
Protseq

Points to a string identifier of the protocol sequence to register with the RPC run-time library.
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server wants to be
able to handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater, depending on the selected protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

IfSpec

Specifies the interface containing endpoint information to use in creating a binding for the protocol
sequence specified in the Protseq argument.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem.

Remarks

Note    The Microsoft RPC implementation of RpcServerUseProtseqIf includes a new, additional
parameter, SecurityDescriptor, that does not appear in the DCE specification.

A server application calls the RpcServerUseProtseqIf routine to register one protocol sequence with the
RPC run-time library. With each protocol-sequence registration, the routine includes the endpoint-address
information provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol sequence with the
RPC run-time library. A server application can call this routine multiple times to register additional protocol
sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to be able to handle.

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

To register all protocol sequences from the IDL file, a server calls the RpcServerUseAllProtseqsIf
routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_PROTSEQ_NOT_FOUND The endpoint for this protocol

sequence not specified in the
IDL file

RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence not
supported on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_ENDPOINT_FORMA
T

Invalid endpoint format

RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_INVALID_SECURITY_DESC Security descriptor invalid

See Also
RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingExport,
RpcServerInqBindings, RpcServerListen, RpcServerRegisterIf, RpcServerUseAllProtseqs,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqEp

RpcServerUseProtseqIfEx   

The RpcServerUseProtseqIfEx function tells the RPC run-time library to use the specified protocol
sequence combined with the endpoints in the interface specification for receiving remote procedure calls.
For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in RPC
Data Types and Structures.

This function is supported only on Windows NT 4.0.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcServerUseProtseqIfEx(

        unsigned char *    Protseq,
            unsigned int    MaxCalls,
        RPC_IF_HANDLE    IfSpec,
        void *    SecurityDescriptor,
        PRPC_POLICY Policy
     );

Parameters
Protseq

Points to a string identifier of the protocol sequence to register with the RPC run-time library.
MaxCalls

Specifies the maximum number of concurrent remote procedure call requests the server wants to
handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent call
requests. The actual number can be greater, depending on the selected protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

IfSpec

Specifies the interface containing endpoint information to use in creating a binding for the protocol
sequence specified in the Protseq argument.

SecurityDescriptor

Points to an optional parameter provided for the Microsoft Windows NT security subsystem.
Policy

Points to the RPC_POLICY structure, which contains flags to restrict port allocation for dynamic ports
and that allow multi-homed machines to selectively bind to network interface cards.

Remarks
The parameters and effects of RpcServerUseProtseqsIfEx subsume those of
RpcServerUseProtseqsIf. The difference is the Policy field, which allows you to restrict port allocation for
dynamic ports and allows multi-homed machines to selectively bind to network interface cards.

Setting the NICFlags field of the RPC_POLICY structure to 0 makes this extended API functionally
equivalent to the original RpcServerUseProtseqIf, and the server will bind to NICs based on the settings
in the system registry. For information on how the registry settings define the available Internet and
intranet ports, see Configuring the Windows NT Registry for Port Allocations and Selective Binding.

Note    The flag settings in the Policy field are effective only when the ncacn_ip_tcp protocol
sequence is in use; for all other protocol sequences, the RPC runtime ignores these values.

A server application calls the RpcServerUseProtseqIfEx routine to register one protocol sequence with
the RPC run-time library. With each protocol-sequence registration, the routine includes the endpoint-
address information provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol sequence with the
RPC run-time library. A server application can call this routine multiple times to register additional protocol
sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one or more binding
handles through which the server receives remote procedure call requests.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

To register all protocol sequences from the IDL file, a server calls the RpcServerUseAllProtseqsIfEx
routine.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_PROTSEQ_NOT_FOUND The endpoint for this protocol

sequence is not specified in
the IDL file

RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence is not
supported on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_ENDPOINT_FORMA
T

Invalid endpoint format

RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_INVALID_SECURITY_DESC Security descriptor is invalid

See Server Application RPC API Calls for a description of the routines that a server will typically call after
registering protocol sequences.

See Also
Configuring the Windows NT Registry for Port Allocations and Selective Binding
RpcServerUseAllProtseqsEx, RpcServerUseAllProtseqsIfEx, RpcServerUseProtseqEx,
RpcServerUseProtseqEpEx

RpcSmAllocate   

The RpcSmAllocate function allocates memory within the RPC stub memory management function and
returns a pointer to the allocated memory or NULL.

#include <rpc.h>

void * RPC_ENTRY RpcSmAllocate(

        size_t Size,
        RPC_STATUS* pStatus
     );

Parameters
Size

Specifies the size of memory to allocate (in bytes).
pStatus

Specifies a pointer to the returned status.

Remarks
The RpcSmAllocate routine allows an application to allocate memory within the RPC stub memory
management environment. Prior to calling RpcSmAllocate, the memory management environment must
already be established. For memory management called within the stub, the server stub itself may
establish the necessary environment. See RpcSmEnableAllocate for more information. When using
RpcSmAllocate to allocate memory not called from the stub, the application must call
RpcSmEnableAllocate to establish the required memory management environment.

The RpcSmAllocate routine returns a pointer to the allocated memory if the call is successful. Otherwise,
a NULL is returned.

When the stub establishes the memory management, it frees any memory allocated by RpcSmAllocate.
The application can free such memory before returning to the calling stub by calling RpcSmFree.

By contrast, when the application establishes the memory management, it must free any memory
allocated. It does so by calling either RpcSmFree or RpcSmDisableAllocate.

To manage the same memory within the stub memory management environment, multiple threads can
call RpcSmAllocate and RpcSmFree. In this case, the threads must share the same stub memory
management thread handle. Applications pass thread handles from thread to thread by calling
RpcSmGetThreadHandle and RpcSmSetThreadHandle.

See Memory Management for a complete discussion of the various memory management conditions
supported by RPC.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of Memory

See Also

RpcSmEnableAllocate, RpcSmDisableAllocate, RpcSmFree, RpcSmGetThreadHandle,
RpcSmSetThreadHandle

RpcSmClientFree   

The RpcSmClientFree function frees memory returned from a client stub.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcSmClientFree(

        void    *    NodeToFree
     );

Parameters
NodeToFree

Specifies a pointer to memory returned from a client stub.

Remarks
The RpcSmClientFree routine releases memory allocated and returned from a client stub. The memory
management handle of the thread calling this routine must match the handle of the thread that made the
RPC call. Use RpcSmGetThreadHandle and RpcSmSetThreadHandle to pass handles from thread to
thread.

Note that using RpcSmClientFree allows a routine to free dynamically-allocated memory returned by an
RPC call without knowing the memory management environment from which it was called.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcSmFree, RpcSmGetThreadHandle, RpcSmSetClientAllocFree, RpcSmSetThreadHandle,
RpcSmSwapClientAllocFree

RpcSmDestroyClientContext   

The RpcSmDestroyClientContext function reclaims the client memory resources for a context handle
and makes the context handle NULL.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcSmDestroyClientContext(

        void* *    ContextHandle
     );

Parameters
ContextHandle

Specifies the context handle that can no longer be used.

Remarks
The RpcSmDestroyClientContext routine is used by client applications to reclaim resources used for an
inactive context handle. Applications can call RpcSmDestroyClientContext after a communications error
makes the context handle unusable.

Note that when this routine reclaims the memory resources, it also makes the context handle NULL.

Return Values
Value Meaning
RPC_S_OK Success
RPC_X_SS_CONTEXT_MISMATC
H

Invalid handle

See Also
RpcSmFree, RpcSmGetThreadHandle, RpcSmSetClientAllocFree, RpcSmSetThreadHandle,
RpcSmSwapClientAllocFree

RpcSmDisableAllocate   

The RpcSmDisableAllocate function frees resources and memory within the stub memory management
environment.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcSmDisableAllocate (VOID);

Remarks
The RpcSmDisableAllocate routine frees all the resources used by a call to RpcSmEnableAllocate. It
also releases memory that was allocated by a call to RpcSmAllocate after the call to
RpcSmEnableAllocate.

Note that RpcSmEnableAllocate and RpcSmDisableAllocate must be used together as matching pairs.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcSmAllocate, RpcSmEnableAllocate

RpcSmEnableAllocate   

The RpcSmEnableAllocate function establishes the stub memory management environment.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcSmEnableAllocate (VOID);

Remarks
In cases where the stub memory management is not enabled by the server stub itself, applications call
the RpcSmEnableAllocate routine to establish the stub memory management environment. This
environment must be established prior to making a call to RpcSmAllocate. In OSF-compatibility (/osf)
mode, for server manager code called from the stub, the memory management environment may be
established by the server stub itself by using pointer manipulation or the enable_allocate attribute. In
default (Microsoft-extended) mode, the environment is established only upon request by using the
enable_allocate attribute (see The MIDL Reference.) Otherwise, call RpcSmEnableAllocate before
calling RpcSmAllocate. See Memory Management for a complete discussion of the memory
management conditions used by RPC.   

RpcSmGetThreadHandle and RpcSmSetThreadHandle

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of memory

See Also
RpcSmAllocate, RpcSmDisableAllocate

RpcSmFree   

The RpcSmFree function releases memory allocated by RpcSmAllocate.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcSmFree(

        void    *    NodeToFree
     );

Parameters
NodeToFree

Specifies a pointer to memory allocated by RpcSmAllocate or RpcSsAllocate.

Remarks
The RpcSmFree routine is used by applications to free memory allocated by RpcSmAllocate. In cases
where the stub allocates the memory for the application, the RpcSmFree routine can also be used to
release memory. See Memory Management for a complete discussion of memory management
conditions supported by RPC.

Note that the handle of the thread calling RpcSmFree must match the handle of the thread that allocated
the memory by calling RpcSmAllocate. Use RpcSmGetThreadHandle and RpcSmSetThreadHandle to
pass handles from thread to thread.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcSmAllocate, RpcSmGetThreadHandle, RpcSmSetThreadHandle

RpcSmGetThreadHandle   

The RpcSmGetThreadHandle function returns a thread handle, or NULL, for the stub memory
management environment.

#include <rpc.h>

RPC_SS_THREAD_HANDLE RPC_ENTRY RpcSmGetThreadHandle (

        RPC_STATUS *    pStatus
     );

Parameters
pStatus

Specifies a pointer to the returned status.

Remarks
The RpcSmGetThreadHandle routine is called by applications to obtain a thread handle for the stub
memory management environment. A thread used to manage memory for the stub memory management
environment uses RpcSmGetThreadHandle to receive a handle for its memory environment. In this way,
another thread that calls RpcSmSetThreadHandle by using this handle can then use the same memory
management environment.

The same memory management thread handle must be used by multiple threads calling RpcSmAllocate
and RpcSmFree in order to manage the same memory. Before spawning new threads to manage the
same memory, the thread that established the memory management environment (parent thread) calls
RpcSmGetThreadHandle to obtain a thread handle for this environment. Then, the spawned threads call
RpcSmSetThreadHandle with the new manager handle provided by the parent thread.

Note that the RpcSmGetThreadHandle routine is usually called by a server manager procedure before
additional threads are spawned. The stub sets up the memory management environment for the manager
procedure, and the manager calls RpcSmGetThreadHandle to make this environment available to the
other threads.

A thread can also call RpcSmGetThreadHandle and RpcSmSetThreadHandle to save and restore its
memory management environment.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcSmAllocate, RpcSmFree, RpcSmSetThreadHandle

RpcSmSetClientAllocFree   

The RpcSmSetClientAllocFree function enables the memory allocation and release mechanisms used
by the client stubs.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcSmSetClientAllocFree(

        RPC_CLIENT_ALLOC    *    pfnAllocate,
        RPC_CLIENT_FREE    *    pfnFree
     );

Parameters
pfnAllocate

Specifies the routine used to allocate memory.
pfnFree

Specifies the routine used to release memory and used with the routine specified by pfnAllocate.

Remarks
By overriding the default routines used by the client stub to manage memory, the
RpcSmSetClientAllocFree routine establishes the memory allocation and memory freeing mechanisms.
Note that the default routines are free and malloc, unless the remote call occurs within manager code. In
this case, the default memory management routines are RpcSmFree and RpcSmAllocate.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of memory

See Also
RpcSmAllocate, RpcSmFree

RpcSmSetThreadHandle   

The RpcSmSetThreadHandle function sets a thread handle for the stub memory management
environment.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcSmSetThreadHandle (

        RPC_SS_THREAD_HANDLE    Handle
     );

Parameters
Handle

Specifies a thread handle returned by a call to RpcSmGetThreadHandle.

Remarks
The RpcSmSetThreadHandle routine is called by an application to set a thread handle for the stub
memory management environment. A thread used to manage memory for the stub memory management
environment calls RpcSmGetThreadHandle to obtain a handle for its memory environment. In this way,
another thread that calls RpcSmSetThreadHandle by using this handle can then use the same memory
management environment.

The same memory management thread handle must be used by multiple threads calling RpcSmAllocate
and RpcSmFree in order to manage the same memory. Before spawning new threads to manage the
same memory, the thread that established the memory management environment (parent thread) calls
RpcSmGetThreadHandle to obtain a thread handle for this environment. Then, the spawned threads call
RpcSmSetThreadHandle with the new manager handle provided by the parent thread.

Note that the RpcSmSetThreadHandle routine is usually called by a thread spawned by a server
manager procedure. The stub sets up the memory management environment for the manager procedure,
and the manager calls RpcSmGetThreadHandle to obtain a thread handle. Then, each spawned thread
calls RpcSmGetThreadHandle to get access to the manager's memory management environment.

A thread can also call RpcSmGetThreadHandle and RpcSmSetThreadHandle to save and restore its
memory management environment.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcSmAllocate, RpcSmGetThreadHandle, RpcSmFree

RpcSmSwapClientAllocFree   

The RpcSmSwapClientAllocFree function exchanges the memory allocation and release mechanisms
used by the client stubs with one supplied by the client.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcSmSwapClientAllocFree(

        RPC_CLIENT_ALLOC    *    pfnAllocate,
        RPC_CLIENT_FREE    *    pfnFree,
        RPC_CLIENT_ALLOC **    pfnOldAllocate,
        RPC_CLIENT_FREE    **    pfnOldFree
     );

Parameters
pfnAllocate

Specifies a new routine to allocate memory.
pfnFree

Specifies a new routine to release memory.
pfnOldAllocate

Returns the previous routine to allocate memory before the call to this routine.
pfnOldFree

Returns the previous routine to release memory before the call to this routine.

Remarks
The RpcSmSwapClientAllocFree routine exchanges the current memory allocation and memory freeing
mechanisms with those supplied by the client.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument(s)

See Also
RpcSmAllocate, RpcSmFree, RpcSmSetClientAllocFree

RpcSsAllocate   

The RpcSsAllocate function allocates memory within the RPC stub memory management function, and
returns a pointer to the allocated memory or NULL.

#include <rpc.h>

void __RPC_FAR * RPC_ENTRY RpcSsAllocate(

        size_t    Size
     );

Parameters
Size

Specifies the size of memory to allocate (in bytes).

Remarks
The RpcSsAllocate routine allows an application to allocate memory within the RPC stub memory
management function. Prior to calling RpcSsAllocate, the memory management environment must
already be established. For memory management called within the stub, the stub itself usually establishes
the necessary environment. See Chapter 8, "Memory Management," for a complete discussion of the
various memory management conditions supported by RPC. When using RpcSsAllocate to allocate
memory not called from the stub, the application must call RpcSsEnableAllocate to establish the
required memory management environment.

The RpcSsAllocate routine returns a pointer to the allocated memory, if the call was successful.
Otherwise, it raises an exception.

When the stub establishes the memory management, it frees any memory allocated by RpcSsAllocate.
The application can free such memory before returning to the calling stub by calling RpcSsFree.

By contrast, when the application establishes the memory management, it must free any memory
allocated. It does so by calling either RpcSsFree or RpcSsDisableAllocate.

To manage the same memory within the stub memory management environment, multiple threads can
call RpcSsAllocate and RpcSsFree. In this case, the threads must share the same stub memory
management thread handle. Applications pass thread handles from thread to thread by calling
RpcSsGetThreadHandle and RPCSsSetThreadHandle.

Note    The RpcSsAllocate routine raises exceptions, while the RpcSmAllocate routine returns the
error code.

Return Values
Value Meaning
RPC_S_OUT_OF_MEMORY Out of memory

See Also
RpcSmAllocate, RpcSsDisableAllocate, RpcSsEnableAllocate, RpcSsFree,
RpcSsGetThreadHandle, RpcSsSetThreadHandle

RpcSsDestroyClientContext   

The RpcSsDestroyClientContext function destroys a context handle no longer needed by the client
without contacting the server.

#include <rpc.h>

void RPC_ENTRY RpcSsDestroyClientContext(

        void    * * ContextHandle
     );

Parameters
ContextHandle

Specifies the context handle to be destroyed. The handle is set to NULL before
RpcSsDestroyClientContext returns.

Remarks
RpcSsDestroyClientContext is used by the client application to reclaim the memory resources used to
maintain a context handle on the client. This function is used when ContextHandle is no longer valid, such
as when a communication failure has occurred and the server is no longer available. The context handle
is set to NULL.

Do not use RpcSsDestroyClientContext to replace a server function that closes the context handle.

Return Values
Value Meaning
RPC_S_OK Success
RPC_X_SS_CONTEXT_MISMATC
H

Invalid context handle

See Also
RpcBindingReset

RpcSsDisableAllocate   

The RpcSsDisableAllocate function frees resources and memory within the stub memory management
environment.

#include <rpc.h>

void RPC_ENTRY RpcSsDisableAllocate (VOID);

Remarks
The RpcSsDisableAllocate routine frees all the resources used by a call to RpcSsEnableAllocate. It
also releases memory that was allocated by a call to RpcSsAllocate after the call to
RpcSsEnableAllocate.

RpcSsEnableAllocate and RpcSsDisableAllocate must be used together as matching pairs.

See Also
RpcSmDisableAllocate, RpcSsAllocate, RpcSsEnableAllocate

RpcSsDontSerializeContext   

The RpcSsDontSerializeContext function disables runtime serialization of multiple calls dispatched to
server manager routines on the same context handle.

#include <rpc.h>

void RPC_ENTRY RpcSsDontSerializeContext(void);

Remarks
Normally RPC runtime serializes calls on the same context handle dispatched to server manager
routines. Context handles are maintained on a per client basis and typically represent the server-side
state. This means that your server manager does not have to guard against another thread from the same
client changing the context or from the context running down while a call is dispatched.

Calling the RpcSsDontSerializeContext routine prevents RPC runtime from performing this serialization
service.

Note    A call to RpcSsDontSerializeContext affects the entire process and is unrevertable. If you
use this routine you should expect, and provide routines to handle, asynchronous context rundowns.

RpcSsEnableAllocate   

The RpcSsEnableAllocate function establishes the stub memory management environment.

#include <rpc.h>

void RPC_ENTRY RpcSsEnableAllocate (VOID);

Remarks
In cases where the stub memory management is not enabled by the stub itself, the
RpcSsEnableAllocate routine is called by applications to establish the stub memory management
environment. This environment must be established prior to making a call to RpcSsAllocate. For server
manager code called from the stub, the memory management environment is usually established by the
stub itself. Otherwise, call RpcSsEnableAllocate before calling RpcSsAllocate. See Memory
Management for a complete discussion of the memory management conditions used by RPC. To learn
how spawned threads use a stub memory management environment, see RpcSsGetThreadHandle and
RpcSsSetThreadHandle later in this section.

Note    The RpcSsEnableAllocate routine raises exceptions, while the RpcSmEnableAllocate
routine returns the error code.

Return Values
Value Meaning
RPC_S_OUT_OF_MEMORY Out of memory

See Also
RpcSmEnableAllocate, RpcSsAllocate, RpcSsDisableAllocate

RpcSsFree   

The RpcSsFree function releases memory allocated by RpcSsAllocate.

#include <rpc.h>

void RPC_ENTRY RpcSsFree(

        void *    NodeToFree
     );

Parameters
NodeToFree

Specifies a pointer to memory allocated by RpcSsAllocate or RpcSmAllocate.

Remarks
The RpcSsFree routine is used by applications to free memory allocated by RpcSsAllocate. In cases
where the stub allocates the memory for the environment, the RpcSsFree routine can also be used to
release memory. See Memory Management for a complete discussion of memory management
conditions supported by RPC.

Note that the handle of the thread calling RpcSsFree must match the handle of the thread that allocated
the memory by calling RpcSsAllocate. Use RpcSsGetThreadHandle and RpcSsSetThreadHandle to
pass handles from thread to thread.

See Also
RpcSmFree, RpcSsAllocate, RpcSsGetThreadHandle, RpcSsSetThreadHandle

RpcSsGetThreadHandle   

The RpcSsGetThreadHandle function returns a thread handle for the stub memory management
environment.

#include <rpc.h>

RPC_SS_THREAD_HANDLE RPC_ENTRY RpcSsGetThreadHandle (VOID);

Remarks
The RpcSsGetThreadHandle routine is called by applications to obtain a thread handle for the stub
memory management environment. A thread used to manage memory for the stub memory management
environment uses RpcSsGetThreadHandle to receive a handle for its memory environment. In this way,
another thread that calls RpcSsSetThreadHandle by using this handle can then use the same memory
management environment.

The same thread handle must be used by multiple threads calling RpcSsAllocate and RpcSsFree in
order to manage the same memory. Before spawning new threads to manage the same memory, the
thread that established the memory management environment (parent thread) calls
RpcSsGetThreadHandle to obtain a thread handle for this environment. Then, the spawned threads call
RpcSsSetThreadHandle with the handle provided by the parent thread.

The RpcSsGetThreadHandle routine is usually called by a server manager procedure before additional
threads are spawned. The stub sets up the memory management environment for the manager
procedure, and the manager calls RpcSsGetThreadHandle to make this environment available to the
other threads.

A thread can also call RpcSsGetThreadHandle and RpcSsSetThreadHandle to save and restore its
memory management environment.

Note    The RpcSsGetThreadHandle routine raises exceptions, while the RpcSmGetThreadHandle
routine returns the error code.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcSmGetThreadHandle, RpcSsAllocate, RpcSsFree, RpcSsSetThreadHandle

RpcSsSetClientAllocFree   

The RpcSsSetClientAllocFree function enables the memory allocation and release mechanisms used by
the client stubs.

#include <rpc.h>

void RPC_ENTRY RpcSsSetClientAllocFree(

        RPC_CLIENT_ALLOC *    pfnAllocate,
        RPC_CLIENT_FREE    *    pfnFree
     );

Parameters
pfnAllocate

Specifies the routine used to allocate memory.
pfnFree

Specifies the routine used to release memory and used with the routine specified by pfnAllocate.

Remarks
By overriding the default routines used by the client stub to manage memory, the
RpcSsSetClientAllocFree routine establishes the memory allocation and memory freeing mechanisms.
Note that the default routines are free and malloc, unless the remote call occurs within manager code. In
this case, the default memory management routines are RpcSsFree and RpcSsAllocate.

Note that when this routine reclaims the memory resources, it also makes the context handle NULL.

Note    The RpcSsSetClientAllocFree routine raises exceptions, while the
RpcSmSetClientAllocFree routine returns the error code.

Return Values
Value Meaning
RPC_S_OUT_OF_MEMORY Out of memory

See Also
RpcSmSetClientAllocFree, RpcSsAllocate, RpcSsFree

RpcSsSetThreadHandle   

The RpcSsSetThreadHandle function sets a thread handle for the stub memory management
environment.

#include <rpc.h>

void RPC_ENTRY RpcSsSetThreadHandle(

        RPC_SM_THREAD_HANDLE    Handle
     );

Parameters
Handle

Specifies a thread handle returned by a call to RpcSsGetThreadHandle.

Remarks
The RpcSsSetThreadHandle routine is called by an application to set a thread handle for the stub
memory management environment. A thread used to manage memory for the stub memory management
environment calls RpcSsGetThreadHandle to obtain a handle for its memory environment. In this way,
another thread that calls RpcSsSetThreadHandle by using this handle can then use the same memory
management environment.

The same thread handle must be used by multiple threads calling RpcSsAllocate and RpcSsFree in
order to manage the same memory. Before spawning new threads to manage the same memory, the
thread that established the memory management environment (parent thread) calls
RpcSsGetThreadHandle to obtain a thread handle for this environment. Then, the spawned threads call
RpcSsSetThreadHandle with the handle provided by the parent thread.

The RpcSsSetThreadHandle routine is usually called by a thread spawned by a server manager
procedure. The stub sets up the memory management environment for the manager procedure, and the
manager calls RpcSsGetThreadHandle to obtain a thread handle. Then, each spawned thread calls
RpcSsGetThreadHandle to get access to the manager's memory management environment.

A thread can also call RpcSsGetThreadHandle and RpcSsSetThreadHandle to save and restore its
memory management environment.

Note    The RpcSsSetThreadHandle routine raises exceptions, while the RpcSmSetThreadHandle
routine returns the error code.

See Also
RpcSmSetThreadHandle, RpcSsAllocate, RpcSsFree, RpcSsGetThreadHandle

RpcSsSwapClientAllocFree   

The RpcSsSwapClientAllocFree function exchanges the memory allocation and release mechanisms
used by the client stubs with one supplied by the client.

#include <rpc.h>

void RPC_ENTRY RpcSsSwapClientAllocFree(

        RPC_CLIENT_ALLOC*    pfnAllocate,
        RPC_CLIENT_FREE*    pfnFree,
        RPC_CLIENT_ALLOC**    pfnOldAllocate,
        RPC_CLIENT_FREE**    pfnOldFree
     );

Parameters
pfnAllocate

Specifies a new routine to allocate memory.
pfnFree

Specifies a new routine to release memory.
pfnOldAllocate

Returns the previous routine to allocate memory before the call to this routine.
pfnOldFree

Returns the previous routine to release memory before the call to this routine.

Remarks
The RpcSsSwapClientAllocFree routine exchanges the current memory allocation and memory freeing
mechanisms with those supplied by the client.

Note    The RpcSsSwapClientAllocFree routine raises exceptions, while the
RpcSmSwapClientAllocFree routine returns the error code.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of memory

See Also
RpcSmSwapClientAllocFree, RpcSsAllocate, RpcSsFree, RpcSsSetClientAllocFree

RpcStringBindingCompose   

The RpcStringBindingCompose function combines the components of a string binding into a string
binding.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcStringBindingCompose(

        unsigned char *    ObjUuid,
            unsigned char *    ProtSeq,
        unsigned char *    NetworkAddr,
        unsigned char *    EndPoint,
        unsigned char *    Options,
        unsigned char * *    StringBinding
     );

Parameters
ObjUuid

Points to a NULL-terminated string representation of an object UUID. For example, the string
"6B29FC40-CA47-1067-B31D-00DD010662DA" represents a valid UUID.

ProtSeq

Points to a NULL-terminated string representation of a protocol sequence.
For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in
RPC Data Types and Structures.

NetworkAddr

Points to a NULL-terminated string representation of a network address. The network-address format
is associated with the protocol sequence. For more information, see the RPC data types and
structures reference entry for string binding.

EndPoint

Points to a NULL-terminated string representation of an endpoint. The endpoint format and content
are associated with the protocol sequence. For example, the endpoint associated with the protocol
sequence ncacn_np is a pipe name in the format "\pipe\pipename". For more information, see the
RPC data types and structures reference entry for string binding.

Options

Points to a NULL-terminated string representation of network options. The option string is associated
with the protocol sequence. For more information, see the RPC data types and structures reference
entry for string binding.

StringBinding

Returns a pointer to a pointer to a NULL-terminated string representation of a binding handle.
Specify a null value to prevent RpcStringBindingCompose from returning the StringBinding
argument. In this case, the application does not call the RpcStringFree routine. For more information,
see the RPC data types and structures reference entry for string binding.

Remarks
An application calls the RpcStringBindingCompose routine to combine the components of a string-

binding handle into a string-binding handle.

The RPC run-time library allocates memory for the string returned in the StringBinding argument. The
application is responsible for calling the RpcStringFree routine to deallocate that memory.

Specify a null argument value or provide an empty string ("\0") for each input string that has no data.

Literal backslash characters within C-language strings must be quoted. The actual C string for the server
name appears as "\\\\servername", and the actual C string for a pipe name appears as "\\pipe\\pipename".

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_STRING_UUI
D

String representation of the UUID
not valid.

See Also
RpcBindingFromStringBinding, RpcBindingToStringBinding, RpcStringBindingParse,
RpcStringFree

RpcStringBindingParse   

The RpcStringBindingParse function returns the object UUID part and the address parts of a string
binding as separate strings.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcStringBindingParse(

        unsigned char *    StringBinding,
        unsigned char * *    ObjectUuid,
        unsigned char * *    ProtSeq,
        unsigned char * *    NetworkAddr,
        unsigned char * *    EndPoint,
        unsigned char * *    NetworkOptions
     );

Parameters
StringBinding

Points to a NULL-terminated string representation of a binding.
ObjectUuid

Returns a pointer to a pointer to a NULL-terminated string representation of an object UUID.
Specify a null value to prevent RpcStringBindingParse from returning the ObjectUuid argument. In
this case, the application does not call the RpcStringFree routine.

ProtSeq

Returns a pointer to a pointer to a NULL-terminated string representation of a protocol sequence.
For a list of Microsoft RPC's supported protocol sequences, see the reference topic String Binding in
RPC Data Types and Structures.
Specify a null value to prevent RpcStringBindingParse from returning the ProtSeq argument. In this
case, the application does not call the RpcStringFree routine.

NetworkAddr

Returns a pointer to a pointer to a NULL-terminated string representation of a network address.
Specify a null value to prevent RpcStringBindingParse from returning the NetworkAddr argument. In
this case, the application does not call the RpcStringFree routine.

EndPoint

Returns a pointer to a pointer to a NULL-terminated string representation of an endpoint.
Specify a null value to prevent RpcStringBindingParse from returning the EndPoint argument. In
this case, the application does not call the RpcStringFree routine.

NetworkOptions

Returns a pointer to a pointer to a NULL-terminated string representation of network options.
Specify a null value to prevent RpcStringBindingParse from returning the NetworkOptions
argument. In this case, the application does not call the RpcStringFree routine.

Remarks
An application calls the RpcStringBindingParse routine to parse a string representation of a binding
handle into its component fields.

The RPC run-time library allocates memory for each component string returned. The application is
responsible for calling the RpcStringFree routine once for each returned string to deallocate the memory
for that string.

If any field of the StringBinding argument is empty, the RpcStringBindingParse routine returns an empty
string ("\0") in the corresponding output argument.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_STRING_BINDIN
G

Invalid string binding

See Also
RpcBindingFromStringBinding, RpcBindingToStringBinding, RpcStringBindingCompose,
RpcStringFree

RpcStringFree   

The RpcStringFree function frees a character string allocated by the RPC run-time library.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcStringFree(

        unsigned char * *    String
     );

Parameters
String

Points to a pointer to the character string to free.

Remarks
The RpcStringFree routine deallocates the memory containing a NULL-terminated character string
returned by the RPC run-time library.

An application is responsible for calling RpcStringFree once for each character string allocated and
returned by calls to other RPC run-time library routines.

Return Values
Value Meaning
RPC_S_OK Success

See Also
RpcBindingToStringBinding, RpcNsBindingInqEntryName, RpcStringBindingParse

RpcTestCancel   

The RpcTestCancel function checks for a cancel indication.

This function is supported only by Windows NT.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcTestCancel(VOID);

Remarks
An application server stub calls the RpcTestCancel routine to determine whether the call has been
cancelled. If the call has been cancelled, RPC_S_OK is returned; otherwise, another value is returned.

This routine should be called periodically by the server stub so that it can respond to cancels in a timely
fashion. If the routine returns RPC_S_OK, the stub should clean up its data structures and return to the
client.

Return Values
Value Meaning
RPC_S_OK Call has been cancelled
Other values Call has not been cancelled

RpcTryExcept   

See
RpcExcept

RpcTryFinally   

See
RpcFinally

RpcWinSetYieldInfo   

The RpcWinSetYieldInfo function configures Microsoft Windows 3.x client applications to yield to other
applications during remote procedure calls.

Note    This function is only available for 16-bit Windows client applications. A 32-bit application
should take advantage of the preemptive multitasking and multithreading support that the 32-bit
Windows operating systems provide.

#include <rpc.h>

RPC_STATUS

RpcWinSetYieldInfo(

        HWND    hWnd,
        BOOL    fCustomYield,
        WORD    wMsg,
        DWORD    dwOtherInfo
     );

Parameters
hWnd

Identifies the application window that receives messages relating to yielding. Applications should
usually specify the parent window of the dialog box.
Standard yield applications receive messages for both the start and end of the yield period. Custom
yield applications receive messages that indicate when the RPC operation has completed.

fCustomYield

Specifies the yielding method. The following values are defined:
Value Yield method
TRUE Custom yield
FALSE Standard yield

wMsg

Specifies the message that is posted by the RPC run-time library to notify the application of RPC
events. The message value should be in the range beginning with WM_USER. If a zero value is
specified, no message is posted.
For standard-yield applications, the message indicates the beginning or end of the yield period. This
allows the application to refrain from performing operations that are illegal during an RPC operation.
Standard-yield applications use the following values of wParam and lParam with this message:

Parameter Value Description
wParam 1 Yield period

beginning
wParam 0 Yield period ending
lParam - Unused

For a custom-yield application, the wMsg message notifies the application that the RPC operation is
complete. When the application receives this message, it should immediately return control to the
RPC run-time library by having the callback function return. The values of wParam and lParam are
set to zero and are not used.

dwOtherInfo

Specifies additional information about the yielding behavior.
For standard-yield applications, dwOtherInfo contains an optional HANDLE to an application-supplied
dialog-box resource. This handle is passed as the second parameter to the DialogBoxIndirect
function. If the handle specified by dwOtherInfo is zero, the default dialog box supplied by the RPC
run-time library is used. For more informatin about DialogBoxIndirect, see your Windows API
reference documentation.
For custom-yield applications, dwOtherInfo contains the procedure-instance address of the
application-supplied callback function.

Remarks
The RpcWinSetYieldInfo function supports two yielding methods:

· Standard yield method. The RPC run-time library provides a standard modal dialog box that includes
a single push-button control with an IDCANCEL ID. The dialog box prevents direct user input, such as
mouse and keyboard events, from being sent to the application. The application continues to receive
messages while the dialog box is present. The IDCANCEL message indicates that the application
user wants to end the remote procedure.

· Custom yield method. The application provides a callback function that the RPC run-time library calls
while a remote operation is in progress. The callback function must retrieve messages from the
message queue (including mouse and keyboard messages) and must process messages (both
queued and non-queued). The RPC run-time library posts a message to the application's queue when
the RPC operation is complete. The callback function returns a boolean value to the RPC run-time
library.

When a conventional RPC client application makes a remote procedure call, the MIDL-generated stub
calls the RPC run-time library and the library calls the appropriate transport. These calls are synchronous
and block until the server side sends back a response. In the cooperatively multitasked Windows 3.x
environment, an active, blocked application prevents Windows and other Windows applications from
running. The RpcWinSetYieldInfo function allows you to direct the application to yield to Windows and
other Windows applications while waiting for an RPC operation to finish.

Windows RPC client applications can be organized into three classes that correspond to levels of yielding
support: no yielding, standard yielding, and custom yielding.

· Some applications do not yield. RPC calls block until completion.
· Standard-yield applications are RPC-aware applications that yield but do not need to perform special

handling.
· Custom-yield applications are those that are RPC aware and want to perform special handling while

an RPC operation is in progress.

You can replace the provided dialog-box resource with an application-specified dialog-box resource. The
resource must use the same style as the default and must contain a single push-button control with an
IDCANCEL ID. The dialog-box function is part of the RPC run-time library and cannot be replaced.

To yield in a well-behaved manner from within the context of a pending RPC operation, applications must
observe the following rules:

· Do not make another RPC call. If the RPC run-time library detects that a new call is being made
during the yielding period, it returns an error to the caller. This is particularly important if the
application makes RPC calls in response to common messages, such as WM_PAINT.

· Do not exit the application. Do not close the window specified by the hWnd handle parameter. Your
application can process WM_CLOSE messages in the window procedure and not call
DefWindowProc during the yielding period. For more information about DefWindowProc, see your
Windows API reference documentation.

· Return FALSE in response to WM_QUERYENDSESSION messages. Alternatively, a custom-yield
application can use this message as a signal to cause YieldFunctionName to return FALSE to the
RPC run-time library and end the yielding period.

There is no guarantee that any code that supports yielding will be invoked. Whether or not an application
yields depends on the specific call, the current state of the underlying system, and the implementation of
the underlying RPC transport. Applications should not rely on this code to do anything other than manage
yielding.

The RpcWinSetYieldInfo function can be called more than once by an application. Each call simply
replaces the information stored in the previous calls.

Return Values
Value Meaning
RPC_S_OK The information was set

successfully.
RPC_S_OUT_OF_MEMORY Memory could not be allocated to

store the information for this task.

See Also
DefWindowProc, DialogBoxIndirect, MakeProcInstance, YieldFunctionName

RpcWinSetYieldTimeout   

The RpcWinSetYieldTimeout function configures the amount of time an RPC call will wait for the server
to respond before invoking the application's RPC yielding mechanism. This function is only available for
Windows 3.x applications.

#include <rpc.h>

RPC_STATUS RPC_ENTRY RpcWinSetYieldTimeout (

        unsigned int    Timeout
     );

Parameters
Timeout

Specifies the timeout value in milliseconds. If this function is not called, the default is 500
milliseconds.

Remarks
Depending on the type of yielding specified in RpcWinSetYieldInfo, this can either produce a dialog box
or signal the application.

If the Timeout value is small, the yielding mechanism can be invoked too often. This results in loss of
performance. Conversely, if the value specified for Timeout is too large, the application and system will be
frozen for the timeout period. To avoid this, use timeouts in the range of 500 to 2000 milliseconds.

The RpcWinSetYieldTimeout function can be called more than once by an application. Each call simply
replaces the information stored in the previous calls.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_CANNOT_SUPPORT RpcWinSetYieldInfo must be

called prior to
RpcWinSetYieldTimeout.

See Also
RpcWinSetYieldInfo

UuidCompare   

The UuidCompare function compares two UUIDs.

#include <rpc.h>

signed int RPC_ENTRY UuidCompare(

        UUID *    Uuid1,
        UUID *    Uuid2,
        RPC_STATUS *    Status
     );

Parameters
Uuid1

Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the Uuid2 argument.
Uuid2

Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the Uuid1 argument.
Status

Returns any errors that may occur, and will normally be set by the function to RPC_S_OK upon
return.

Remarks
An application calls the UuidCompare routine to compare two UUIDs and determine their order. To
determine order, one of the following is returned:

Returned Value Meaning
    -1 The Uuid1 argument is less than the Uuid2

argument.
0 The Uuid1 argument is equal to the Uuid2

argument.
1 The Uuid1 argument is greater than the Uuid2

argument.

See Also
UuidCreate

UuidCreate   

The UuidCreate function creates a new UUID.

#include <rpc.h>

RPC_STATUS RPC_ENTRY UuidCreate(

        UUID *    Uuid
     );

Parameters
Uuid

Returns a pointer to the created UUID.

Remarks
An application calls the UuidCreate routine to create a new UUID.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_UUID_NO_ADDRESS Cannot get Ethernet or token-ring

hardware address for this
computer

See Also
UuidFromString, UuidToString

UuidCreateNil   

The UuidCreateNil function creates a nil-valued UUID.

#include <rpc.h>

RPC_ENTRY UuidCreateNil(

        UUID *    Nil_Uuid,
        RPC_STATUS *    Status
     );

Parameters
Nil_Uuid

Returns a nil-valued UUID.
Status

Returns any errors that may occur. The parameter is typically set by the function to RPC_S_OK upon
return.

Remarks
An application calls the UuidCreateNil routine to create a nil-valued UUID.

UuidEqual   

The UuidEqual function determines if two UUIDs are equal.

#include <rpc.h>

int RPC_ENTRY UuidEqual(

        UUID *    Uuid1,
        UUID *    Uuid2,
        RPC_STATUS *    Status
     );

Parameters
Uuid1

Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the Uuid2 argument.
Uuid2

Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the Uuid1 argument.
Status

Returns any errors that may occur, and will normally be set by the function to RPC_S_OK upon
return.

Remarks
An application calls the UuidEqual routine to compare two UUIDs and determine whether they are equal.
Upon completion, one of the following is returned:

Returned Value Meaning
    TRUE The Uuid1 argument is equal to the Uuid2

argument.
 FALSE The Uuid1 argument is not equal to the Uuid2

argument.

See Also
UuidCreate

UuidFromString   

The UuidFromString function converts a string to a UUID.

#include <rpc.h>

RPC_STATUS RPC_ENTRY UuidFromString(

        unsigned char *    StringUuid,
        UUID *    Uuid
     );

Parameters
StringUuid

Points to a string representation of a UUID.
Uuid

Returns a pointer to a UUID in binary form.

Remarks
An application calls the UuidFromString routine to convert a string UUID to a binary UUID.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_INVALID_STRING_UUID The string UUID is invalid

See Also
UuidToString

UuidHash   

The UuidHash function creates a hash value for a UUID.

#include <rpc.h>

unsigned short RPC_ENTRY UuidHash(

        UUID *    Uuid,
        RPC_STATUS *    Status
     );

Parameters
Uuid

Specifies the UUID for which a hash value is created.
Status

Returns any errors that may occur, and will normally be set by the function to RPC_S_OK upon
return.

Remarks
An application calls the UuidHash routine to generate a hash value for a specified UUID. The hash value
returned is implementation dependent and may vary from implementation to implementation.

See Also
UuidCreate

UuidIsNil   

The UuidIsNil function determines if a UUID is a nil-valued UUID.

#include <rpc.h>

int RPC_ENTRY UuidIsNil(

        UUID *    Uuid,
        RPC_STATUS *    Status
     );

Parameters
Uuid

Specifies a UUID to test for nil value.
Status

Returns any errors that may occur, and will typically be set by the function to RPC_S_OK upon return.

Remarks
An application calls the UuidIsNil routine to determine whether the specified UUID is a nil-valued UUID.
This routine acts as though the application called the UuidCreateNil routine, and then called the
UuidEqual routine to compare the returned nil-value UUID to the UUID specified in the Uuid argument.

Upon completion, one of the following is returned:

Returned Value Meaning
    TRUE The Uuid argument is a nil-valued UUID.
FALSE The Uuid argument is not a nil-valued

UUID.

See Also
UuidCreate

UuidToString   

The UuidToString function converts a UUID to a string.

#include <rpc.h>

RPC_STATUS RPC_ENTRY UuidToString(

        UUID *    Uuid,
        unsigned char * *    StringUuid
     );

Parameters
Uuid

Points to a binary UUID.
StringUuid

Returns a pointer to a pointer to the string representation of the UUID specified in the Uuid argument.
Specify a null value to prevent UuidToString from returning the StringUuid argument. In this case,
the application does not call the RpcStringFree routine.

Remarks
An application calls UuidToString to convert a binary UUID to a string UUID. The RPC run-time library
allocates memory for the string returned in the StringUuid argument. The application is responsible for
calling the RpcStringFree routine to deallocate that memory.

Return Values
Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY No memory

See Also
RpcStringFree, UuidFromString

YieldFunctionName
YieldFunctionName is a placeholder name for the application-supplied function name provided as a
parameter to the RpcWinSetYieldInfo routine.

BOOL FAR PASCAL    YieldFunctionName(VOID);

Remarks
The callback function must retrieve messages from the message queue (including mouse and keyboard
messages) and must process messages, both queued and non-queued.

YieldFunctionName should return TRUE when the application is notified that the RPC operation has
completed (by receiving the wMsg message). It is an error for YieldFunctionName to return TRUE if it has
not been notified that the RPC operation has completed.

YieldFunctionName should return FALSE if the user wants to cancel the RPC operation in progress. The
RPC run-time library then attempts to abort the current operation, which is likely to result in the RPC call
returning an error to the application. Note that due to race conditions, the operation can complete
successfully even if YieldFunctionName returns FALSE.

See Also
RpcWinSetYieldInfo

Error Codes
RPC functions can return the following Win32 error codes:

Manifest Description
EPT_S_CANT_CREATE The endpoint-map

database cannot be
created.

EPT_S_CANT_PERFORM_OP The operation cannot be
performed.

EPT_S_INVALID_ENTRY The entry is invalid.
EPT_S_NOT_REGISTERED There are no more

endpoints available from
the endpoint-map
database.

RPC_S_ACCESS_DENIED The user does not have
sufficient privilege to
complete the operation.

RPC_S_ADDRESS_ERROR An addressing error has
occurred on the server.

RPC_S_ALREADY_LISTENING The server is already
listening.

RPC_S_ALREADY_REGISTERED The object UUID has
already been registered.

RPC_S_BINDING_HAS_NO_AUTH The binding does not
contain any authentication
information.

RPC_S_BINDING_INCOMPLETE The binding handle is a
required parameter.

RPC_S_BUFFER_TOO_SMALL The buffer used to transmit
data is too small.

RPC_S_CALL_CANCELLED The remote procedure call
exceeded the cancel
timeout and was cancelled.

RPC_S_CALL_FAILED The remote procedure call
failed.

RPC_S_CALL_FAILED_DNE The remote procedure call
failed and did not execute.

RPC_S_CALL_IN_PROGRESS A remote procedure call is
already in progress for this
thread.

RPC_S_CANNOT_SUPPORT The requested operation is
not supported.

RPC_S_CANT_CREATE_ENDPOINT The endpoint cannot be
created.

RPC_S_COMM_FAILURE Unable to communicate
with the server.

RPC_S_DUPLICATE_ENDPOINT The endpoint is a duplicate.
RPC_S_ENTRY_ALREADY_EXISTS The entry already exists.
RPC_S_ENTRY_NOT_FOUND The entry is not found.

RPC_S_FP_DIV_ZERO A floating-point operation at
the server has caused a
divide by zero.

RPC_S_FP_OVERFLOW A floating-point overflow
has occurred at the server.

RPC_S_FP_UNDERFLOW A floating-point underflow
occurred at the server.

RPC_S_GROUP_MEMBER_NOT_FO
UND

The group member has not
been found.

RPC_S_INCOMPLETE_NAME The entry name is
incomplete.

RPC_S_INTERFACE_NOT_FOUND The interface has not been
found.

RPC_S_INTERNAL_ERROR An internal error has
occurred in a remote
procedure call.

RPC_S_INVALID_ARG The specified argument is
not valid.

RPC_S_INVALID_AUTH_IDENTITY The security context is
invalid.

RPC_S_INVALID_BINDING The binding handle is
invalid.

RPC_S_INVALID_BOUND The array bounds are
invalid.

RPC_S_INVALID_ENDPOINT_FORM
AT

The endpoint format is
invalid.

RPC_S_INVALID_LEVEL The level parameter is
invalid.

RPC_S_INVALID_NAF_ID The network-address
family is invalid.

RPC_S_INVALID_NAME_SYNTAX The name syntax is invalid.
RPC_S_INVALID_NET_ADDR The network address is

invalid.
RPC_S_INVALID_NETWORK_OPTIO
NS

The network options are
invalid.

RPC_S_INVALID_OBJECT The object is invalid.
RPC_S_INVALID_RPC_PROTSEQ The RPC protocol

sequence is invalid.
RPC_S_INVALID_SECURITY_DESC The security descriptor is

not in the valid format.
RPC_S_INVALID_STRING_BINDING The string binding is

invalid.
RPC_S_INVALID_STRING_UUID The string UUID is invalid.
RPC_S_INVALID_TAG The discriminant value

does not match any of the
case values. There is no
default case.

RPC_S_INVALID_TIMEOUT The timeout value is
invalid.

RPC_S_INVALID_VERS_OPTION The version option is

invalid.
RPC_S_MAX_CALLS_TOO_SMALL The maximum number of

calls is too small.
RPC_S_NAME_SERVICE_UNAVAILA
BLE

The name service is
unavailable.

RPC_S_NO_BINDINGS There are no bindings.
RPC_S_NO_CALL_ACTIVE There is no remote

procedure call active in this
thread.

RPC_S_NO_CONTEXT_AVAILABLE No security context is
available to allow
impersonation.

RPC_S_NO_ENDPOINT_FOUND No endpoint has been
found.

RPC_S_NO_ENTRY_NAME The binding does not
contain an entry name.

RPC_S_NO_ENV_SETUP No environment variable
is set up.

RPC_S_NO_INTERFACES No interfaces are
registered.

RPC_S_NO_INTERFACES_EXPORT
ED

No interfaces have been
exported.

RPC_S_NO_MORE_BINDINGS There are no more
bindings.

RPC_S_NO_MORE_ELEMENTS There are no more
elements.

RPC_S_NO_MORE_MEMBERS There are no more
members.

RPC_S_NO_NS_PRIVILEGE There is no privilege for a
name-service operation.

RPC_S_NO_PRINC_NAME No principal name is
registered.

RPC_S_NO_PROTSEQS There are no protocol
sequences.

RPC_S_NO_PROTSEQS_REGISTER
ED

No protocol sequences
have been registered.

RPC_S_NOT_ALL_OBJS_UNEXPOR
TED

Not all objects are
unexported.

RPC_S_NOT_CANCELLED The thread is not
cancelled.

RPC_S_NOT_LISTENING The server is not listening.
RPC_S_NOT_RPC_ERROR The status code requested is

not valid.

RPC_S_NOTHING_TO_EXPORT There is nothing to export.
RPC_S_OBJECT_NOT_FOUND The object UUID has not

been found.
RPC_S_OK The call has completed

successfully.
RPC_S_OUT_OF_MEMORY The needed memory is not

available.
RPC_S_OUT_OF_RESOURCES Not enough resources are

available to complete this
operation.

RPC_S_OUT_OF_THREADS The RPC run-time library
was not able to create
another thread.

RPC_S_PROCNUM_OUT_OF_RANG
E

The procedure number is
out of range.

RPC_S_PROTOCOL_ERROR An RPC protocol error has
occurred.

RPC_S_PROTSEQ_NOT_FOUND The RPC protocol
sequence has not been
found.

RPC_S_PROTSEQ_NOT_SUPPORT
ED

The RPC protocol
sequence is not supported.

RPC_S_SEC_PKG_ERROR There is an error with the
security package.

RPC_S_SERVER_NOT_LISTENING The server is not listening
for remote procedure calls.

RPC_S_SERVER_OUT_OF_MEMOR
Y

The server has insufficient
memory to complete this
operation.

RPC_S_SERVER_TOO_BUSY The server is too busy to
complete this operation.

RPC_S_SERVER_UNAVAILABLE The server is unavailable.
RPC_S_STRING_TOO_LONG The string is too long.
RPC_S_TYPE_ALREADY_REGISTE
RED

The type UUID has already
been registered.

RPC_S_UNKNOWN_AUTHN_LEVEL The authentication level is
unknown.

RPC_S_UNKNOWN_AUTHN_SERVI
CE

The authentication service
is unknown.

RPC_S_UNKNOWN_AUTHN_TYPE The authentication type is
unknown.

RPC_S_UNKNOWN_AUTHZ_SERVI
CE

The authorization service is
unknown.

RPC_S_UNKNOWN_IF The interface is unknown.
RPC_S_UNKNOWN_MGR_TYPE The manager type is

unknown.
RPC_S_UNSUPPORTED_AUTHN_LEV
EL

The authentication level is
not supported.

RPC_S_UNSUPPORTED_NAME_SY
NTAX

The name syntax is not
supported.

RPC_S_UNSUPPORTED_TRANS_S
YN

The transfer syntax is not
supported by the server.

RPC_S_UNSUPPORTED_TYPE The type UUID is not
supported.

RPC_S_UUID_LOCAL_ONLY The UUID that is only valid
for this computer has been

allocated.
RPC_S_UUID_NO_ADDRESS No network address is

available for constructing a
UUID.

RPC_S_WRONG_KIND_OF_BINDIN
G

The binding handle is not
the correct type.

RPC_S_ZERO_DIVIDE The server has attempted
an integer divide by zero.

RPC_X_BAD_STUB_DATA The stub has received bad
data.

RPC_X_BYTE_COUNT_TOO_SMAL The byte count is too small.
RPC_X_ENUM_VALUE_OUT_OF_RA
NGE

The enumeration value is
out of range.

RPC_X_ENUM_VALUE_TOO_LARGE The enumeration constant
must be less than 65535.

RPC_X_INVALID_BOUND The specified bounds of an
array are inconsistent.

RPC_X_INVALID_TAG The discriminant value
does not match any of the
case values. There is no
default case.

RPC_X_NO_MEMORY Insufficient memory is
available.

RPC_X_NO_MORE_ENTRIES The list of servers available
for the auto_handle
binding has been
exhausted.

RPC_X_NULL_REF_POINTER A null reference pointer has
been passed to the stub.

RPC_X_SS_BAD_ES_VERSION The operation for the
serializing handle is not
valid.

RPC_X_SS_CANNOT_GET_CALL_H
ANDLE

The stub is unable to get
the call handle.

RPC_X_SS_CHAR_TRANS_OPEN_F
AIL

The file designated by
DCERPCCHARTRANS
cannot be opened.

RPC_X_SS_CHAR_TRANS_SHORT_
FILE

The file containing the
character-translation table
has fewer than 512 bytes.

RPC_X_SS_CONTEXT_DAMAGED The context handle
changed during a call. Only
raised on the client side.

RPC_X_SS_CONTEXT_MISMATCH The context handle does
not match any known
context handles.

RPC_X_SS_HANDLES_MISMATCH The binding handles
passed to a remote
procedure call do not
match.

RPC_X_SS_IN_NULL_CONTEXT A null context handle is

passed in an in parameter
position.

RPC_X_SS_INVALID_BUFFER The buffer is not valid for
the operation.

RPC_X_SS_WRONG_ES_VERSION The software version is
incorrect.

RPC_X_SS_WRONG_STUB_VERSIO
N

The stub version is
incorrect.

Samples
The Win32 SDK includes sample programs that demonstrate a variety of RPC concepts, as follows:

· CALLBACK demonstrates use of the callback attribute.
· CLUUID demonstrates use of the client object UUID to enable a client to select among multiple

implementations of a remote procedure.
· DATA directory contains four programs: DUNION illustrates discriminated (nonencapsulated) unions;

INOUT demonstrates in, out parameters; REPAS demonstrates the represent_as attribute; XMIT
demonstrates the transmit_as attribute.

· DICT is a remote splay tree-based dictionary program that uses the implicit_handle,
context_handle, in, and out attributes.

· DOCTOR is an RPC psychotherapy application that demonstrates arrays, strings, and the size_is
attribute.

· DYNEPT demonstrates a client application managing its connection to the server through dynamic
endpoints.

· DYNOUT demonstrates how to allocate memory at a server for an n-byte object and pass it back to
the client as an [out]-only parameter. The client then frees the memory. This technique allows the stub
to call the server without knowing in advance how much data will be returned.

· HANDLES directory contains three programs, AUTO, CXHNDL, USRDEF, which demonstrate
auto_handle, context_handle, and generic (user-defined) handles, respectively.

· HELLO is a client/server implementation of "Hello, world."
· INTEROP demonstrates portability between OSF DCE and Microsoft® RPC.
· MANDEL is a distributed fractal drawing program. It uses ref pointers, implicit_handle attribute, and

handle_t primitive types.
· NS directory contains the NHELLO program, which demonstrates name service usage. The CDS

directory contains the files that describe the gateway protocol to the DCE Cell Directory Service
(CDS).

· OBJECT directory contains two programs that demonstrate OLE custom interfaces. CALLAS uses the
call_as attribute to transmit a nonremotable interface. OHELLO demonstrates correct reference
counting and shutdown behavior for a multiple-use local server. OHELLO also demostrates how to
use the Win32 registry functions to install a local server and a proxy DLL in the registry.

· PICKLE directory contains two programs: PICKLP demonstrates data procedure serialization; PICKLT
demonstrates data type serialization; both programs use the encode and decode attributes.

· PIPES demonstrates the use of the pipe type constructor.
· RPCSSM demonstrates the rpcss memory management model.
· RPCSVC demonstrates the implementation of a Windows NT™ service with RPC.
· STROUT demonstrates how to allocate memory at a server for a two-dimensional object (an array of

pointers) and pass it back to the client as an [out]-only parameter. The client then frees the memory.
This technique allows the stub to call the server without knowing in advance how much data will be
returned.
This program also allows the user to compile either for UNICODE or ANSI.

· WHELLO is a client/server "Hello, World" for 16-bit Windows. Client and server applications can also
run on the same Windows NT workstation.

· YIELD demonstrates use of the RpcWinSetYieldInfo API function to prevent a 16-bit Windows
distributed application from blocking during lengthy remote procedure calls.

You can browse through most of these files in the Win32 SDK on-line help book Code Samples | RPC. All
of the source files and makefiles for these programs are located in the Win32 SDK directory mstools\
samples\rpc.

A
aliasing

In RPC, having two or more pointers to the same data object.

AppleTalk Data Stream Protocol (ADSP)
A network protocol for interprocess communication between Apple Macintosh computers and other
platforms.

attribute
Any keyword of the Interface Definition Language that describes a property of a data type or remote
procedure call.

B
bind

In RPC, the process through which a logical connection is established between a client and a server
in order to direct a remote procedure call to that server.

binding
A relationship between a client and a server that is established over a specific protocol sequence to
a specific host system and endpoint. Also used as a short form of binding handle.

binding handle
A data structure that represents the logical connection between a client and a server.

binding vector
An RPC data structure that contains a list of binding handles over which a server application can
receive remote procedure calls.

C
Cell Directory Service (CDS)

The name-service provider for the Open Software Foundation's Distributed Computing Environment.

client stub
MIDL-generated C-language source code that contains all the functions necessary for the client
application to make remote procedure calls using the model of a traditional function call in a
standalone application. The client stub is responsible for marshaling the input parameters and
unmarshaling the output parameters. See also server stub, proxy stub.

conformant array
In RPC, an array whose size is determined at run time by another parameter, structure field, or
expression.

connection-oriented
Describes a communications protocol or transport that provides a virtual circuit through which data
packets are received in the same order as they were transmitted. If the connection between
machines fails, the application is notified. TCP and SPX are examples of connection-oriented
protocols. See also datagram.

connectionless
See datagram.

context rundown
A server notification that results from an unexpected termination of the binding between client and
server applications.

D
datagram

Describes a communications protocol or transport in which data packets are routed independently of
each other and may follow different routes and arrive in a different order from which they were sent.
UDP and IPX are examples of transport-layer datagram protocols. See also connection-oriented.

discriminated union
(or variant record) A union that includes a discriminator as part of the data structure so that the
currently valid data type is transmitted along with the union. See also encapsulated union, non-
encapsulated union.

Distributed Computing Environment (DCE)
The Open Software Foundation's specification for a set of integrated services, including remote
procedure calls, distributed file systems, and security services. The OSF-DCE RPC standard is the
basis for Microsoft RPC.

dynamic endpoint
An endpoint (network-specific server address) that is requested and assigned at run time. See also
well-known endpoint.

E
encoding services

MIDL-generated stub routines that provide support for data encoding and decoding (also known as
"pickling" or "serialization"). These services allow you to control the buffers containing the data to be
marshaled and unmarshaled. See also type serialization, procedure serialization.

endpoint
A network-specific address of a server process for remote procedure calls. The actual name of the
endpoint depends on the protocol sequence being used. See also dynamic endpoint and well-known
endpoint.

endpoint mapper
(or endpoint-mapping service) Part of the RPC subsystem (RPCSS) that allows the run-time library
to dynamically assign and resolve endpoints. See also endpoint.

encapsulated union
A MIDL construct that allows unions to be passed as part of a remote procedure call by embedding
the union in a structure in which the discriminant is the first field of the structure, and the union is the
second (and final) field of the structure. The IDL keyword switch specifies that a union is
encapsulated. See also non-encapsulated union.

entry point vector (EPV)
An array of pointers to functions that implement the operations specified in the interface. Each
element in the array corresponds to a function defined in the IDL file. Entry-point vectors allow
distributed applications to support more than one implementation of the functions defined in the IDL
file.

F
firewall

A control system that prevents unauthorized users from gaining access to a local network that is
connected to the Internet.

full pointer
In RPC, a pointer that has all the capabilities normally associated with pointers in C/C++.
Specifically, a full pointer can be null and can be aliased to another pointer parameter. The ptr
attribute designates a full pointer. See also unique pointer and reference pointer.

fully bound handle
A binding handle that includes endpoint information. See also partially bound handle.

I
idempotent

In RPC, describes a remote procedure call that does not change a state and returns the same
information each time it is called with the same input parameters.

input parameter
In a remote procedure call, a parameter containing data that the client application is transmitting to
the server application. The in attribute designates an input parameter.

Interface Definition Language (IDL)
The OSF-DCE standard language for specifying the interface for remote procedure calls. See also
MIDL.

Internet Protocol (IP)
A connectionless network-layer communications protocol. See also datagram.

Internetwork Packet Exchange (IPX)
A Novell NetWare communication protocol that uses datagram sockets to route information packets
over local-area and wide-area networks.

intranet
A private network that uses Internet products and technologies (for example, web servers), but is not
available to external Internet users.

L
local remote procedure call (LRPC)

In RPC, describes a remote procedure call to another process on the same machine as the calling
process.

Locator
The Microsoft® Windows NT® name-service provider. See also name service.

M
major version number

See version number.

manager
In RPC, a set of server routines that implements the interface operations.

marshaling
The process through which operation parameters are packaged into NDR format so that they may
be transmitted across process boundaries.

Microsoft Interface Definition Language (MIDL)
Microsoft's implementation and extension of OSF-DCE Interface Definition Language.

minor version number
See version number.

N
name service

A service that maps names to objects and stores the name/object pairs in a database. For example,
the RPC name service maps a logical name to a binding handle so client applications can refer to
that logical name, rather than a protocol sequence and network address. See also nsid, CDS,
Locator.

Network Computing Architecture (NCA)
A collection of guidelines for distributed computing. The RPC communication protocols follow these
guidelines.

Name Service Independent (NSI)
A standard for API functions that allows a distributed application to access RPC name-service
database elements through various name-service providers, such as OSF-DCE Cell Directory
Service or the Microsoft Locator. See also name-service interface daemon (nsid).

name-service interface daemon (nsid)
A service that provides an interface between the Microsoft Locator and the OSF-DCE Cell Directory
Service name service databases for RPC name-service functions.

named pipe
A connection-oriented protocol, based on Server Message Blocks (SMBs) and NetBIOS, used for
communication between a server process and one or more client processes.

NetBIOS Extended User Interface (NetBEUI)
LAN Manager's native transport protocol and network device driver. See also NetBIOS.

Network Basic Input/Output System (NetBIOS)
A software interface between the Microsoft® MS-DOS® operating system, the I/O bus, and a local
area network.

Network Data Representation (NDR)
A standard format used during network transmission that is independent of the data-type format on
any particular computer architecture. Transmitted data includes information that specifies its NDR
format.

network address
An address that identifies a server on a network.

non-encapsulated union
A discriminated union that is less restrictive than an encapsulated union in that the discriminant and
the union are not tightly bound. If the union is a parameter, the discriminant is another parameter; if
the union is a structure field, the discriminant is another structure field. The IDL keywords switch_is
and switch_type identify the discriminant and its type. See also encapsulated union.

non-idempotent

In RPC, indicates that a remote procedure call cannot be executed more than once because it will
return a different value or change a state.

O
open array

In RPC, an array that is both conformant and varying; that is, both its size and the range of
transmitted elements are determined at run time by other parameters, structure fields, or
expressions.

Open Software Foundation (OSF)
A consortium of companies, formed to define the distributed computing environment (DCE).

Object Description Language (ODL)
A subset of MIDL attributes, keywords, statements, and directives used to define type libraries for
OLE Automation applications.

output parameter
In a remote procedure call, a parameter containing data that the server application is transmitting to
the client application. The out attribute designates an output parameter.

P
partially bound handle

A binding handle that does not include endpoint information. See also fully bound handle.

pickling
See serialization.

pipe
An IDL type constructor that supports transmission of an open-ended stream of data between client
and server applications.

procedure serialization
Data serialization that uses a MIDL-generated serialization stub to accomplish encoding and
decoding of one or more types with a single procedure call. Procedure serialization is accomplished
by applying the encode and decode attributes to a function prototype in the ACF file. See also type
serialization.

protocol sequence
A character string that represents a valid combination of an RPC protocol, a network layer protocol,
and a transport layer protocol. For example, the protocol sequence ncacn_ip_tcp describes an NCA
connection over an Internet Protocol with a Transmission Control Protocol as transport.

proxy stub
MIDL-generated C or C++ language source code that contains all the functions necessary for a
custom OLE interface.

R
RPC object

Server instances or other resources, such a devices, database, and queues, that are operated on
and managed by RPC server applications. Each object is uniquely identified by one or more object
UUIDs.

RPC Subsystem (RPCSS)
A Windows NT subsystem that includes a variety of RPC and OLE services, including the endpoint
mapper, OLE Service Control Manager (SCM), and the DCOM Object Resolver. Do not confuse this
with the RPC-specific memory allocator package, RpcSs.

reference pointer
In RPC, the simplest pointer type. A reference pointer always points to valid storage and that storage
does not change (although the contents may change). A reference pointer cannot be aliased. The ref
attribute designates a reference pointer. See also unique pointer and full pointer.

S
Sequenced Packet Protocol (SPP)

Banyan Vines connection-oriented communication protocol for routing information packets over local
area networks.

Sequenced Packet Exchange (SPX)
A Novell NetWare connection-oriented communication protocol for routing information packets over
local area and wide area networks.

serialization
(or pickling) In RPC, the process of marshaling data to (encoding) and unmarshaling data from
(decoding) buffers that you control. This is in contrast to traditional RPC usage, where the stubs and
the RPC runtime control the marshaling buffers. See also procedure serialization, type serialization.

server stub
MIDL-generated C-language source code that contains all the functions necessary for the server
application to handle remote requests using local procedure calls. See also client stub.

session
In RPC, an established relationship between a client application and a server application. See also
bind, binding handle.

static callback function
A remote procedure that is part of the client side of a distributed application and that a server can
call to obtain information from the client. The callback attribute designates a static callback function.

string binding
A character string that consists of the object UUID, protocol sequence, network address, endpoint,
and endpoint options, all of which can be used to create a binding handle to the specified server.

T
Transmission Control Protocol (TCP)

A connection-oriented network transport layered on top of IP.

type serialization
Data serialization that uses MIDL-generated routines to size, encode, and decode objects of a
specified type. The client application calls these routines to serialize the data. Type serialization is
accomplished by applying the encode and decode attributes to a single data type, or to an
interface, in the ACF file. See also procedure serialization.

U
User Datagram Protocol (UDP)

A network transport that uses connectionless datagram sockets and is layered on top of IP.

unbind
In RPC, to terminate the logical connection between a client and server.

unique pointer
In RPC, a pointer that can be null or point to existing data and whose value can change during a
remote procedure call. A unique pointer cannot be aliased. The unique attribute designates a unique
pointer. See also full pointer, reference pointer.

Universal Unique Identifier (UUID)
(or GUID) A 128-bit value used in cross-process communication to identify entities such as client and
server interfaces, manager entry-point vectors, and RPC objects. See also uuidgen.

uuidgen
A utility program, provided with the Win32 SDK, that uses a time value and your machine's network
card ID to generate UUIDs that are guaranteed to be unique.

V
varying array

In RPC, an array whose range of transmitted elements is determined at run time by another
parameter, structure field, or expression. See also conformant array and open array.

version number
In RPC, two numbers, separated by a decimal point, that identify the version of an interface. To be
compatible, the major version number (the number to the left of the decimal point) must be the same
for both client and server, and the minor version number of the server must be greater than or equal
to the minor version number of the client.

W
well-known endpoint

An endpoint that does not change. Well-known endpoint information is stored as part of the binding
handle, or within the name-service database server entry. See also dynamic endpoint.

