
Legal Information
OLE Programmer's Reference
Information in this online help system is subject to change without notice and does not represent a
commitment on the part of Microsoft Corporation. The software and/or files described in this online help
system are furnished under a license agreement or nondisclosure agreement. The software and/or files
may be used or copied only in accordance with the terms of the agreement. The purchaser may make
one copy of the software for backup purposes. No part of this online help system may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
information and retrieval systems, for any purpose other than the purchaser's personal use, without the
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1994-1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Visual Basic, Visual C++, Win32, Win32s, ActiveX, Windows, and Windows NT
are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

Corel is a registered trademark of Corel Systems Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Ami Pro, Lotus, and 1-2-3 are registered trademarks of Lotus Development Corporation.

WordPerfect is a registered trademark of Novell, Inc.

Overview
Today's software applications are more capable and easier to use than ever before. Yet as their feature
sets have grown in complexity and size, they have become increasingly difficult and costly to engineer,
maintain, and upgrade. Adding new features always runs the risk of introducing new, sometimes
intractable bugs and endangers backward compatibility with earlier versions. In addition, most
applications are monolithic, providing rich sets of features but no easy way to add missing features or
remove unneeded ones. Applications that do support adding and removing features in the form of plug-in
components may expose their services to sibling applications from the same vendor but rarely to those
from entirely different vendors. As a result, applications from different vendors typically work together
poorly or not at all.

Operating systems have a related set of problems. Because most operating systems are not sufficiently
modular, upgrading, replacing, or overriding existing services in a clean, flexible way is difficult. Like
application developers, systems vendors face the difficult choice of foregoing or compromising needed
improvements in order to maintain backward compatibility, or disenfranchising existing users in order to
move the technology forward. These are choices that serve no one.

Software developers have recognized for some time that object-oriented programming offers promising
solutions to several of these problems. By encapsulating data and functions in a single entity, then
providing access to this rich content through a single reference, or pointer, object-oriented programming
makes it possible to break down monolithic applications into functional modules, or components, that can
be added or removed as they are needed. Moreover, object-oriented programming can potentially reduce
the expense of implementing new objects by enabling them, through mechanisms such as inheritance,
polymorphism, and aggregation, to make use of the capabilities built into already-existing objects.

Even so, object-oriented programming has yet to reach its full potential because no standard framework
has existed through which software objects created by different vendors could interact with one another
within the same address space, much less across process, machine, and network boundaries. Once you
have broken down software into manageable, interchangeable components, you need some way for
those components to communicate. That's where OLE comes in.

OLE provides a standard conceptual framework for creating, managing, and accessing object-based
components that provide services to other objects and applications. OLE components can exist as parts
of an operating system or application, or as stand-alone entities, and the services they provide can be
most anything that operating systems and applications currently supply. You can use OLE components to
expose both data and services to programs created by other vendors and write your own applications in
such a way as to take advantage of services provided by others. You can also extend or customize basic
OLE services to suit the needs of your objects and applications while guaranteeing that they continue to
work with other OLE components.

Explaining the Component Object Model
The bedrock on which OLE rests is the Component Object Model (COM), which provides both the
programming model and binary standard for OLE components. COM defines and implements
mechanisms that enable software components, such as applications, data objects, controls, and services,
to interact as objects. A software object comprises some body of data, along with one or more functions
for accessing and using that data. An OLE component is one in which access to an object's data is
achieved exclusively through one or more sets of related functions called interfaces.

An object provider, or server, makes an OLE component available by implementing one or more
interfaces. A prospective user, or client, of an OLE component gains access to the object by obtaining a
pointer to one of its interfaces. With this pointer, the client can reliably use the object without
understanding its implementation and with the assurances that the object will always behave the same
way. In this sense, an object's interface is a contract defining its behavior for prospective clients. The
object will honor that contract even if its client lives in a different process or on a different machine, runs
under a different operating system, is written by a different software developer using a different computer
language, or represents an earlier or later version than the client used before.

By defining interfaces as contracts between objects and their clients, COM effectively solves the
versioning problem. Here's how. To create a new version of an object, you simply add new interfaces
while leaving the older ones in place. You define the new interfaces in such a way that clients are
permitted to query for either the new version of the interface, or the old version, but not for both. Because
of this restriction, adding new interfaces, or new versions of older interfaces, in no way interferes with the
way existing clients work with an object.

Because OLE components conform to a binary standard, you can implement them using nearly any
programming language. Object-oriented languages such as C++ and Smalltalk are ideal for this purpose,
but any procedural language, such as C or Pascal, that supports the notion of a reference, or pointer, to
an object will do. OLE components implemented in one programming language will work, without
modification, with applications or other objects implemented in another language. In addition, because
OLE components are language-independent, they are not constrained by language-based requirements
to operate in the same address space as the objects or applications using them. As a result, OLE
components provide the basis for sharing information among separate objects in different processes on
the same machine or on different networked computers.

OLE Information Management
Built on top of COM are core facilities for storing and naming objects and for transferring data between
them. Together, these facilities form the core of system-wide information management. You can take
advantage of these facilities by using OLE's supplied implementations, or you can extend or replace them
with your own. These core facilities include structured storage, monikers, and uniform data transfer.
Together they provide the infrastructure required for objects to interrelate across process, machine, and
network boundaries.

OLE's structured storage model defines an architecture for storing and retrieving objects that reside inside
files or other containers. The basic problem addressed by the structured storage model is how to write an
object to and retrieve an object from any persistent storage when that object resides inside the flat file
space of some container. OLE solves the problem by providing interfaces that support storage and stream
objects. A storage object provides a hierarchical structure for mapping the location of storage and stream
objects just as directories provide a way of locating files on disk. A stream object contains the object's
data, or contents. Using structured storage is mandatory if you want to support compound documents or
other forms of containment. OLE also provides a default implementation of structured storage called
compound files.

OLE supports the persistent naming of objects through a mechanism called a moniker. A moniker
provides a way for clients of an object to locate that object even when it resides in a different process or
on a different computer. Objects have a file moniker, which is similar to their absolute pathnames, but
their clients normally bind to them using a relative moniker, which indicates the object's location relative to
the client. In this way, if client and object are both relocated, they can maintain their connection as long as
their locations relative to each other remain the same. In general, a moniker also enables clients to locate
and connect to some portion of an object ¾ a certain range of cells in a spreadsheet, for example ¾ by
providing an item moniker, by which that pseudo-object is always known.

OLE's uniform data transfer model provides a single, standard mechanism for transferring objects and
data between applications. Through a single interface, OLE supports standard Microsoft® Windows®
clipboard transfers, as well as drag and drop, and embedded objects. Uniform data transfer greatly
enhances the clipboard model by providing rich structures for describing the format of the data to be
transferred and the storage medium in which a transfer is to occur. For example, instead of always having
to pass data in a global memory handle, you can choose from among several storage media, including a
disk-based file and pointers to OLE storage and stream interfaces.

Built on top of COM, structured storage, monikers, and uniform data transfer are the three technologies
for which OLE is best known: compound documents, Automation, and OLE controls. For many software
vendors, the desire to incorporate one or both of these technologies in their applications, or to make sure
their applications work easily with operating systems and other applications that do, has been the prime
motivation for turning to OLE.

Describing Compound Documents
A compound document is one that contains, along with its native data, one or more objects that were
created in other applications and therefore have different data formats. Such objects are called compound
document objects. An application used to create compound document objects is called an OLE server
application. An application whose documents act as object clients is called a container application or,
simply, a container. Any given application can be one, or the other, or both.

Compound document objects are essentially OLE components that also implement interfaces that support
object linking and embedding. A linked object includes information about the location of its data and the
formats necessary to present it on screen to the user, but the data itself is stored elsewhere. An
embedded object is one whose data is stored along with that of its container. Applications that support
linking and embedding can share data without having knowledge of one another's data structures and
without having to implement separate protocols for every other application with which they communicate.
Users of OLE compound document applications can embed data created in one application in a
document created in another, and can view, edit, or otherwise manipulate that data without having to exit
the application in which they are working. Users can also create links in one document to data in another
so that changes to data in the source document are updated in the link.

Defining Automation
Automation is the ability for one application or tool to manipulate programmatically objects exposed by
another application. Using Automation, you can also create tools that access and manipulate objects.
Such tools can include embedded macro languages, programming tools, object browsers, and compilers.
Like compound documents, Automation is based on COM, but applications can implement Automation
independently of compound documents or other OLE technologies.

Where to Find Additional Information
The current release of OLE Programmer's Guide examines the architecture and capabilities of OLE as a
whole, as well as of each of its core facilities: COM, structured storage, and uniform data transfer. A
separate chapter is devoted to compound documents, the technology that inspired the original
development of OLE and laid the groundwork for its evolution into a systemwide, object-based service
architecture. A subsequent release of the OLE Programmer's Guide will include detailed instructions for
developing both OLE client and server applications for compound documents that work under both
Microsoft® Windows NT® and Microsoft® Windows® 95. For descriptions of specific interfaces, helper
functions, data structures, and enumerations, refer to the OLE Programmer's Reference. For information
on Automation and developing OLE controls, see the Automation Programmer's Guide and Reference.

The Component Object Model
The Component Object Model (COM) is the base technology of OLE, a broad set of object-oriented
technology standards. OLE includes, besides COM, object design standards at a higher level. Among
these are standards for OLE Structured Storage, OLE Compound Documents, and OLE Controls. COM is
the binary standard that defines the means for applications to interact within these technology standards.

To understand COM (and therefore all OLE technologies), it is crucial to bear in mind that it is not an
object-oriented language, but a standard. Nor does COM specify how an application should be structured.
Language, structure, and implementation details are left to the application programmer. COM does
specify an object model and programming requirements that enable COM objects (also called OLE
Components, or sometimes simply objects) to interact with other objects. These objects can be within a
single process, in other processes, even on remote machines. They can have been written in other
languages, and may be structurally quite dissimilar. That is why COM is referred to as a binary standard
¾ it is a standard that applies after a program has been translated to binary machine code.

The only language requirement for COM is that code is generated in a language that can create
structures of pointers and, either explicitly or implicitly, call functions through pointers. Object-oriented
languages such as C++ and Smalltalk provide programming mechanisms that simplify the implementation
of COM objects, but languages such as C, Pascal, Ada, Java, and even BASIC programming
environments can create and use COM objects.

COM defines the essential nature of a COM object. In general, a software object is made up of a set of
data and the functions that manipulate the data. A COM object is one in which access to an object's data
is achieved exclusively through one or more sets of related functions. These function sets are called
interfaces, and the functions of an interface are called methods. Further, COM requires that the only way
to gain access to the methods of an interface is through a pointer to the interface.

Besides specifying the basic binary object standard, COM defines certain basic interfaces that provide
functions common to all COM-based technologies. It also provides a small number of API functions that
all components require. COM has now expanded its scope to define how objects work together over a
distributed environment, and added security features to ensure system and component integrity.

This chapter describes basic COM issues relating mainly to designing COM objects:

· COM Objects and Interfaces
· Using and Implementing IUnknown
· Reusing Objects
· The COM Library
· Managing Memory Allocation
· Processes and Threads

For other COM topics, see COM Clients and Servers.

COM Objects and Interfaces
COM is a technology that allows objects to interact across process and machine boundaries as easily as
objects within a single process interact. COM enables this by specifying that the only way to manipulate
the data associated with an object is through what is called an interface on the object. When this term is
used, it refers to an implementation in code of a COM binary-compliant interface that is associated with
an object.

Talking about an object that implements an interface means that the object uses code that implements
each method of the interface and provides COM binary-compliant pointers to those functions to the COM
library. COM then makes those functions available to any client who asks for a pointer to the interface,
whether the client is inside or outside of the process that implements those functions.

For more information, see the following:

· Interfaces and Interface Implementations
· Interface Pointers and Interfaces
· IUnknown and Interface Definition Inheritance

Interfaces and Interface Implementations
COM makes a fundamental distinction between interface definitions and their implementations. An
interface is actually a contract that consists of a group of related function prototypes whose usage is
defined but whose implementation is not. These function prototypes are equivalent to pure virtual base
classes in C++ programming. An interface definition specifies the interface's member functions, called
methods, their return types, the number and types of their parameters, and what they must do. There is
no implementation associated with an interface.

An interface implementation is the code a programmer supplies to carry out the actions specified in an
interface definition. Implementations of many of the interfaces a programmer could use in an object-based
application are included in the OLE libraries. Programmers are, however, free to ignore these
implementations and write their own. An interface implementation is to be associated with an object when
an instance of that object is created, and provides the services that the object offers.

For example, a hypothetical interface named IStack (many interface names begin with the letter "I") might
define two methods, named Push and Pop, specifying that successive calls to the Pop method return, in
reverse order, values previously passed to the Push method. This interface definition, however, would not
specify how the functions are to be implemented in code. In implementing the interface, however, one
programmer might implement the stack as an array and implement the Push and Pop methods in such a
way as to access that array; while another programmer might prefer to use a linked list and would
implement the methods accordingly. Regardless of a particular implementation of the Push and Pop
methods, however, the in-memory representation of a pointer to an IStack interface, and therefore its use
by a client, is completely defined by the interface definition.

Simple objects may support only a single interface. More complicated objects, such as embeddable
objects, typically support several interfaces. Clients have access to an OLE object only through a pointer
to one of its interfaces, which, in turn, allows the client to call any of the methods that make up that
interface. These methods determine how a client can use the object's data.

Interfaces, in fact, define a contract between an object and its clients. The contract specifies the methods
that must be associated with each interface, and what the behavior of each of the methods must be in
terms of input and output. The contract generally does not define how to implement the methods in an
interface. Another important aspect of the contract is that if an object supports an interface, it must
support all of its methods in some way. Not all of the methods in an implementation need to do something
¾ if an object does not support the function implied by a method, its implementation may be a simple
return, or perhaps the return of a meaningful error message ¾ but the methods must exist.

COM uses the word "interface" in a sense different from that typically used in C++ programming. A C++
interface refers to all of the functions that a class supports and that clients of an object can call to interact
with it. A COM interface refers to a predefined group of related functions that a COM class implements,
but does not necessarily represent all the functions that the class supports.

Interface Pointers and Interfaces
An instance of an interface implementation is actually a pointer to an array of pointers to methods (a
function table that refers to an implementation of all of the methods specified in the interface). Objects
with multiple interfaces can provide pointers to more than one function table. Any code that has a pointer
through which it can access the array can call the methods in that interface.

Speaking precisely about this multiple indirection is inconvenient, so instead, the pointer to the interface
function table that another object must have to call its methods is called simply an interface pointer. You
can manually create function tables in a C application or almost automatically with C++ (or other object-
oriented languages that support COM).

With appropriate compiler support (which is inherent in C and C++), a client can call an interface method
through its name, not its position in the array. Because an interface is a type, given the names of methods
the compiler can check the types of parameters and return values of each interface method call. In
contrast, such type-checking is not available even in C or C++ if a client uses a position-based calling
scheme.

Each interface ¾ the immutable contract of a functional group of methods ¾ is referred to at runtime with
a globally-unique interface identifier, an "IID". This IID, which is a specific instance of a GUID (a Globally
Unique IDentifier supported by OLE) allows a client to ask an object precisely if it supports the semantics
of the interface without unnecessary overhead and without the confusion that could arise in a system from
having multiple versions of the same interface with the same name.

To summarize, it is important to understand what an interface is, and is not:

· An interface is not the same as a C++ class.
· An interface is not an object.
· Interfaces are strongly typed.
· Interfaces are immutable.

An interface is not a C++ class¾the pure virtual definition carries no implementation. If you are a C++
programmer, you can, however, define your implementation of an interface as a class, but this falls under
the heading of implementation details, which COM does not specify. An instance of an object that
implements an interface must be created for the interface actually to exist. Furthermore, different object
classes may implement an interface differently yet be used interchangeably in binary form, as long as the
behavior conforms to the interface definition.

An interface is not an object ¾ it is simply a related group of functions and is the binary standard
through which clients and objects communicate. The object can be implemented in any language with any
internal state representation, as long as it can provide pointers to interface methods.

Interfaces are strongly typed ¾ every interface has its own interface identifier (a GUID), which
eliminates the possibility of duplication that could occur with any other naming scheme.

Interfaces are immutable contracts ¾ you cannot define a new version of an old interface and give it
the same identifier. Adding or removing methods of an interface, or changing semantics creates a new
interface, not a new version of an old interface. Therefore a new interface cannot conflict with an old
interface. Objects can, of course, support multiple interfaces simultaneously, and can expose interfaces
that are successive revisions of an interface, with different identifiers. Thus, each interface is a separate
contract, so system-wide objects need not be concerned about whether the version of the interface they
are calling is the one they expect. The interface ID (IID) defines the interface contract explicitly and
uniquely.

IUnknown and Interface Definition Inheritance
Inheritance in COM does not mean code reuse. Because no implementations are associated with
interfaces, interface inheritance does not mean code inheritance. It means only that the contract
associated with an interface is inherited in a C++ pure-virtual base-class fashion and modified ¾ either by
adding new methods or by further qualifying the allowed usage of methods. There is no selective
inheritance in COM: If one interface inherits from another, it includes all the methods that the other
interface defines.

Inheritance is used sparingly in the predefined COM interfaces. All predefined interfaces (and any custom
interfaces you define) inherit their definitions from the important interface IUnknown, which contains three
vital methods: QueryInterface, AddRef, and Release. All COM objects must implement the IUnknown
interface, because it provides the means to move freely between the different interfaces that an object
supports with QueryInterface, and to manage its lifetime with AddRef and Release. More on these
methods is discussed later in this chapter.

Any single object usually requires only a single implementation of the IUnknown methods. This means
that by implementing any interface on an object you must completely implement the IUnknown functions.
You do not generally need to explicitly inherit from nor implement IUnknown as its own interface. When a
client of the object queries for it, it is usually necessary only to typecast another interface pointer into an
IUnknown, as this interface makes up the first three entries in the function table already.

In some specific situations, notably in creating an object that supports aggregation, you may need to
implement one set of IUnknown functions for all interfaces as well as a stand-alone IUnknown interface.
This is described in the following section. In any case, any object implementor will implement IUnknown
methods. Refer to the section Using and Implementing IUnknown for more information.

While there are a few interfaces that inherit their definitions from a second interface, in addition to
IUnknown, the majority are simply the IUnknown interface methods plus the methods defined in the
interface. This makes most interfaces relatively compact and easy to encapsulate.

Using and Implementing IUnknown
COM provides a rich set of standards for implementing and using objects, and inter-object
communication. The following sections describe basic information relating to implementing objects. For
information on how clients and servers interact, refer to COM Clients and Servers. For specific
information on threading models, their implementation and use, refer to Processes and Threads.

For details on using and implementing IUnknown, see the following:

· QueryInterface: Navigating in an Object
· Rules for Implementing QueryInterface
· Managing Object Lifetimes through Reference Counting

QueryInterface: Navigating in an Object
Once you have an initial pointer to an interface on an object, OLE has a very simple mechanism to find
out whether the object supports another specific interface, and, if so, to get a pointer to it. (For information
on getting an initial pointer to an interface on an object, refer to Getting a Pointer to an Object.) This
mechanism is the QueryInterface method of the IUnknown interface. If the object supports the
requested interface, the method must return a pointer to that interface. This permits an object to navigate
freely through the interfaces that an object supports. QueryInterface separates the request "Do you
support a given contract?" from the high-performance use of that contract once negotiations have been
successful.

When a client initially gains access to an object, that client will receive, at a minimum, an IUnknown
interface pointer (the most fundamental interface) through which it can control the lifetime of the object ¾
tell the object when it is done using the object ¾ and invoke QueryInterface. The client is programmed to
ask each object it manages to perform some operations, but the IUnknown interface has no functions for
those operations. Instead, those operations are expressed through other interfaces. The client is thus
programmed to negotiate with objects for those interfaces. Specifically, the client will ask an object ¾ by
calling QueryInterface ¾ for an interface through which the client may invoke the desired operations.

Since the object implements QueryInterface, it has the ability to accept or reject the request. If the object
accepts the client's request, QueryInterface returns a new pointer to the requested interface to the client.
Through that interface pointer, the client has access to the methods of that interface. If, on the other hand,
the object rejects the client's request, QueryInterface returns a null pointer ¾ an error ¾ and the client
has no pointer through which to call the desired functions. In this case, the client must deal gracefully with
that possibility. For example, suppose a client has a pointer to interface A on an object, and asks for
interfaces B and C. While the object supports interface B, it does not support interface C. The object
returns a pointer to B, and reports that C is not supported.

A key point is that when an object rejects a call to QueryInterface, it is impossible for the client to ask the
object to perform the operations expressed through the requested interface. A client must have an
interface pointer to invoke methods in that interface. There is no alternative. If the object refuses to
provide one, a client must be prepared to do without, simply not doing whatever it had intended to do with
that object. Had the object supported that interface, the client might have done something useful with it.
This works well in comparison with other object-oriented systems in which you cannot know whether a
function will work until you call that function, and even then, handling failure is uncertain. QueryInterface
provides a reliable and consistent way to know whether an object supports an interface before attempting
to call its methods.

The QueryInterface method also provides a robust and reliable way for an object to indicate that it does
not support a given contract. That is, if in a call to QueryInterface one asks an "old" object whether it
supports a "new" interface (one, for example, that was invented after the old object had been shipped),
the old object will reliably and, without causing a crash, answer "no." The technology that supports this is
the algorithm by which IIDs are allocated. While this may seem like a small point, it is extremely important
to the overall architecture of the system, and the ability to inquire of old things about new functionality is,
surprisingly, a feature not present in most other object architectures.

Rules for Implementing QueryInterface
There are three main rules than govern implementing the IUnknown::QueryInterface method on a COM
object:

· Objects must have identity
· The set of interfaces on an object must be static
· It must be possible to query successfully for any interface on an object from any other interface

Objects must have identity. For any given object instance, a call to QueryInterface must always return
the same physical pointer value. This allows you to call QueryInterface(IID_IUnknown, ...) on any two
interfaces and compare the results to determine whether they point to the same instance of an object.

The set of interfaces on an object must be static. The set of interfaces accessible on an object via
QueryInterface must be static, not dynamic. Specifically, if QueryInterface returns S_OK for a given IID
once, it must never return E_NOINTERFACE on subsequent calls on the same object, and if
QueryInterface returns E_NOINTERFACE for a given IID, subsequent calls for the same IID on the same
object must never return S_OK.

It must be possible to query successfully for any interface on an object from any other interface.
That is, given the following code:

IA * pA = (some function returning an IA *);
IB * pB = NULL;
HRESULT hr;
hr = pA->QueryInterface(IID_IB, &pB); // line 4

the following rules apply:

· If you have a pointer to an interface on an object, a call like the following to QueryInterface for that
same interface must succeed:
pA->QueryInterface(IID_IA, ...)

· If a call to QueryInterface for a second interface pointer succeeds, a call to QueryInterface from that
pointer for the first interface must also succeed. If in line 4 of the example, pB was successfully
obtained, the following must also succeed:
pB->QueryInterface(IID_IA, ...)

· Any interface must be able to query for any other interface on an object. So in line 4 of the example,
pB was successfully obtained, and you successfully query for a third interface (IC) using that pointer,
you must also be able to query successfully for IC using the first pointer, pA. In this case, the following
sequence must succeed:
IC * pC = NULL;
hr = pB->QueryInterface(IID_IC, &pC); //Line 7
pA->QueryInterface(IID_IC, ...)

Interface implementations must maintain a counter that is large enough to support 231-1 outstanding
pointer references to all the interfaces on a given object. Therefore, you should use a 32-bit unsigned
integer for the counter.

If a client needs to know that resources have been freed, it must use a method in some interface on the
object with higher-level semantics before calling Release.

Managing Object Lifetimes through Reference Counting
In traditional object systems, the life cycle of objects ¾ the issues surrounding the creation and deletion of
objects ¾ is handled implicitly by the language (or the language runtime) ¾ instances go explicitly out of
scope as parameters or global variables, for example ¾ or explicitly by application programmers.

In an evolving, decentrally constructed system made up of reused components, it is no longer true that
any one or client, or even programmer, always "knows" how to deal with a component's lifetime. For a
client with the right security privileges, it is still relatively easy to create objects through a simple request.
But object deletion is another matter entirely. It is not necessarily clear when an object is no longer
needed and should be deleted. Even when the original client is done with the object, it cannot simply shut
the object down, because some other client (or clients) in the system may still have a reference to it.

One way to ensure that an object is no longer needed, so it can be deleted, is to depend entirely upon an
underlying communication channel to inform the system when all connections to a cross-process or
cross-channel object have disappeared. Schemes that use this method are unacceptable for several
reasons. One problem is that it could require a major difference between the cross-process/cross-network
programming model and the single-process programming model. In the cross-process/cross-network
programming model, the communication system would provide the hooks necessary for object lifetime
management, while in the single-process programming model, objects are directly connected without any
intervening communications channel. Another problem is that this scheme could also result in a layer of
system-provided software that would interfere with component performance in the in-process case.
Furthermore, such a mechanism based on explicit monitoring would not tend to scale towards many
thousands or millions of objects.

COM offers a scalable and distributed approach to this set of problems. Clients tell an object when they
are using it and when they are done, and objects delete themselves when they are no longer needed.
This approach mandates that all objects count references to themselves.

Just as an application must free memory it has allocated once that memory is no longer in use, a client of
an object is responsible for freeing its references to the object when that object is no longer needed. In an
object-oriented system, the client can only do this by giving the object an instruction to free itself.

It is important that an object be deallocated when it is no longer being used. The difficulty lies in
determining when it is safe to deallocate an object. This is easy with automatic variables (those allocated
on the stack) ¾ they cannot be used outside the block in which they're declared, so the compiler
deallocates them when the end of the block is reached. For COM objects, which are dynamically
allocated, it is up to the clients of an object to decide when they no longer need to use the object ¾
especially local or remote objects that may be in use by multiple clients at the same time. The object must
wait until all clients are finished with it before freeing itself. Because COM objects are manipulated
through interface pointers and can be used by objects in different processes or on other machines, the
system cannot keep track of an object's clients.

COM's method of determining when it is safe to deallocate an object is manual reference counting. Each
object maintains a 32-bit reference count that tracks how many clients are connected to it, that is, how
many pointers exist to any of its interfaces in any client.

Implementing Reference Counting
Reference counting requires work on the part of both the implementor of a class and the clients who use
objects of that class. When you implement a class, you must implement the AddRef and Release
methods as part of the IUnknown interface. These two functions have simple implementations:

1. AddRef increments the object's internal reference count.
2. Release first decrements the object's internal reference count; then it checks whether the reference

count has fallen to zero. If it has, that means no one is using the object any longer, so the Release
function deallocates the object.

A common implementation approach for most objects is to have only one implementation of these
functions (along with QueryInterface), which are shared between all interfaces, and therefore a reference
count which applies to the entire object. Architecturally, however, from a client's perspective, reference
counting is strictly and clearly a per-interface-pointer notion, and objects may be implemented which take
advantage of this capability by dynamically constructing, destroying, loading, or unloading portions of their
functionality based on the currently extant interface pointers

Whenever a client calls a method (or API function) that returns a new interface pointer, such as
QueryInterface, the method being called is responsible for incrementing the reference count through the
returned pointer. For example, when a client first creates an object, it receives an interface pointer to an
object that, from the client's point of view, has a reference count of one. If the client then calls AddRef on
the interface pointer, the reference count becomes two. The client must call Release twice on the
interface pointer to drop all of its references to the object.

An illustration of how reference counts are strictly per-interface-pointer occurs when a client calls
QueryInterface on the first pointer for either a new interface or the same interface. In either of these
cases the client is required to call Release once for each pointer. COM does not require that an object
return the same pointer when asked for the same interface multiple times. (The only exception to this is a
query to IUnknown, which acts as an object's identity to COM.) This allows the object implementation to
manage resources efficiently.

Rules for Managing Reference Counts
Using a reference count to manage an object's lifetime allows multiple clients to obtain and release
access to a single object, without having to coordinate with each other in managing the object's lifetime.
As long as the client objects conform to certain rules of use, the object, in a sense, provides this
management. These rules relate to how to manage references between objects ¾ COM does not specify
internal implementations of objects, although these rules are a reasonable starting point for a policy within
an object.

Conceptually, interface pointers can be thought of as living in pointer variables that include all internal
computation state that holds an interface pointer. This would include variables in memory locations and in
internal processor registers, and both programmer- and compiler-generated variables. Assignment to or
initialization of a pointer variable involves creating a new copy of an already existing pointer. Where there
was one copy of the pointer in some variable (the value used in the assignment/initialization), there are
now two. An assignment to a pointer variable destroys the pointer copy presently in the variable, as does
the destruction of the variable itself (that is, the scope in which the variable is found, such as the stack
frame, is destroyed).

From a COM client's perspective reference counting is always done for each interface. Clients should
never assume that an object uses the same counter for all interfaces.

The default case is that AddRef must be called for every new copy of an interface pointer, and Release
called for every destruction of an interface pointer except where the following rules permit otherwise:

In-Out parameters to functions
The caller must call AddRef on the parameter, since it will be released (with a call to Release) in the
implementing code when the out-value is stored on top of it.

Fetching a global variable
When creating a local copy of an interface pointer from an existing copy of the pointer in a global
variable, you must call Addref on the local copy, because another function might destroy the copy in
the global variable while the local copy is still valid.

New pointers synthesized out of "thin air."
A function that synthesizes an interface pointer using special internal knowledge rather than obtaining
it from some other source must call AddRef initially on the newly synthesized pointer. Important
examples of such routines include instance creation routines, implementations of
IUnknown::QueryInterface, etc.

Retrieving a copy of an internally stored pointer
When a function retrieves a copy of a pointer that is stored internally by the object called, that object's
code must call AddRef on the pointer before the function returns. Once the pointer has been
retrieved, the originating object has no other way of determining how its lifetime relates to that of the
internally stored copy of the pointer.

The only exceptions to this default case require that the managing code know the relationships of the
lifetimes of two or more copies of a pointer to the same interface on an object, and simply ensure that the
object is not destroyed by allowing its reference count to go to zero. There are generally two cases:

· When one copy of a pointer already exists, and a second is created subsequently, and then is
destroyed while the first copy still exists, calls to AddRef and Release for the second copy can be
omitted.

· When one copy of a pointer exists, and a second is created, and then the first is destroyed before the
second, the calls to AddRef for the second copy and Release for the first copy can be omitted.

The following are specific examples of these situations, the first two being especially common:

In-parameters to functions
The lifetime of the copy of an interface pointer passed as a parameter to a function is nested in that of

the pointer used to initialize the value, so there is no need for a separate reference count on the
parameter,.

Out-parameters from functions, including return values
To set the out parameter, the function must have a stable copy of the interface pointer. On return, the
caller is responsible for releasing the pointer. Thus, the out-parameter does not need a separate
reference count.

Local variables
A method implementation has control of the lifetimes of each of the pointer variables allocated on the
stack frame, and can use this to determine how to omit redundant AddRef/Release pairs.

Backpointers
Some data structures contain two objects each with a pointer to the other. If the lifetime of the first is
known to contain the lifetime of the second, it is not necessary to have a reference count on the
second's pointer to the first object. Often, avoiding this cycle is important in maintaining the
appropriate deallocation behavior. However, uncounted pointers should be used with extreme caution,
because the portion of the operating system that handles remote processing has no way of knowing
about this relationship. Therefore, in almost all cases, having the backpointer refer to a second,
"friend" object of the first pointer (thus avoiding the circularity) is the prefered solution. The
Connectable Objects architecture, for example, uses this approach.

When implementing or using reference counted objects, it may be useful to use a technique called
artificial reference counts, which guarantee object stability during processing of a function. In
implementing a method of an interface, you may call functions that have a chance of decrementing your
reference count to an object, causing a premature release of the object and failure of the implementation.
A robust way to protect yourself from this is to insert a call to AddRef at the beginning of the method
implementation, and pair it with a call to release Release just before the method returns.

The return values of AddRef and Release should not be relied upon and should be used only for
debugging purposes.

Reusing Objects
An important goal of any object model is that object authors can reuse and extend objects provided by
others as pieces of their own implementations. One way to do this in C++ and other languages is
implementation inheritance, which allows an object to inherit ("subclass") some of its functions from
another object while overriding other functions.

The problem for system-wide object interaction using traditional implementation inheritance is that the
contract (the interface) between objects in an implementation hierarchy is not clearly defined. In fact, it is
implicit and ambiguous. When the parent or child object changes its implementation, the behavior of
related components may become undefined, or unstably implemented. In any single application, where
the implementation can be managed by a single engineering team, who update all of the components at
the same time, this is not always a major concern. In an environment where the components of one team
are built through black-box reuse of other components built by other teams, this type of instability
jeapordizes reuse. Additionally, implementation inheritance usually works only within process boundaries.
This makes traditional implementation inheritance impractical for large, evolving systems composed of
software components built by many engineering teams.

The key to building reusable components is to be able to treat the object as a black box. This means that
the piece of code attempting to reuse another object knows nothing, and needs to know nothing, about
the internal structure or implementation of the component being used. In other words, the code attempting
to reuse a component depends upon the behavior of the object and not the exact implementation.

To achieve black-box reusability, COM adopts other established reusability mechanisms:
containment/delegation and aggregation. For convenience in describing them, the object being reused is
called the inner object and the object making use of that inner object is the outer object.

It is important to remember in both these mechanisms how the outer object appears to its clients. As far
as the clients are concerned, both objects implement any interfaces to which the client can get a pointer.
The client treats the outer object as a black box, and thus does not care, nor does it need to care, about
the internal structure of the outer object ¾ the client cares only about behavior.

For details on both of these mechanisms, see the following:

· Containment/Delegation
· Aggregation

Containment/Delegation
The first, and most common, mechanism is called containment/delegation. This type of reuse is a familiar
concept found in most object-oriented languages and systems. The outer object acts as an object client to
the inner object. The outer object "contains" the inner object and when the outer object requires the
services of the inner object, the outer object explicitly delegates implementation to the inner object's
methods. Thus, the outer object uses the inner object's services to implement itself.

It is not necessary for the outer and inner objects to support the same interfaces, although it certainly is
reasonable to contain an object that implements an interface that the outer object does not, and
implement the methods of the outer object simply as calls to the corresponding methods in the inner
object. When the complexity of the outer and inner objects differs greatly, however, the outer object may
implement some of the methods of its interfaces by delegating calls to interface methods implemented in
the inner object.

It is simple to implement containment for an outer object. The outer object creates the inner objects it
needs to use as any other client would. This is nothing new ¾ the process is like a C++ object that itself
contains a C++ string object that it uses to perform certain string functions, even if the outer object is not
considered a "string" object in its own right. Then, using its pointer to the inner object, a call to a method
in the outer object generates a call to an inner object method.

Aggregation
Aggregation is the other, richer, reuse mechanism, in which the outer object exposes interfaces from the
inner object as if they were implemented on the outer object itself. This is useful when the outer object
would always delegate every call to one of its interfaces to the same interface in the inner object.
Aggregation is actually a specialized case of containment/delegation, and is available as a convenience
to avoid extra implementation overhead in the outer object in these cases.

Aggregation is almost as simple to implement as containment is, except for the three IUnknown
functions: QueryInterface, AddRef, and Release. The catch is that from the client's perspective, any
IUnknown function on the outer object must affect the outer object. That is, AddRef and Release affect
the outer object and QueryInterface exposes all the interfaces available on the outer object. However, if
the outer object simply exposes an inner object's interface as its own, that inner object's IUnknown
members called through that interface will behave differently than those IUnknown members on the outer
object's interfaces, an absolute violation of the rules and properties governing IUnknown.

The solution is that aggregation requires an explicit implementation of IUnknown on the inner object and
delegation of the IUnknown methods of any other interface to the outer object's IUnknown methods.

Creating Aggregable Objects
Creating objects that can be aggregated is optional; however, it is simple to do and to do so has
significant benefits. The following rules apply to creating an aggregable object:

· The aggregable (or inner) object's implementation of IUnknown::QueryInterface, AddRef, and
Release controls the inner object's reference count, and this implementation must not delegate to the
outer object's unknown (the controlling IUnknown).

· The QueryInterface, AddRef, and Release methods of all other interfaces implemented on the inner
object must delegate to the controlling IUnknown and not directly affect the inner object's reference
count.

· The inner IUnknown must implement QueryInterface only for the inner object.
· The aggregable object must not call AddRef when holding a reference to the controlling IUnknown

pointer.
· When the object is created, if any interface other than IUnknown is requested, the creation must fail

with E_UNKNOWN.

The code fragment below illustrates a correct implementation of an aggregable object using the nested
class method of implementing interfaces:

// CSomeObject is an aggregable object that implements
// IUnknown and ISomeInterface
class CSomeObject : public IUnknown
{
 private:
 DWORD m_cRef; // Object reference count
 IUnknown* m_pUnkOuter; // Controlling IUnknown, no AddRef

 // Nested class to implement the ISomeInterface interface
 class CImpSomeInterface : public ISomeInterface
 {
 friend class CSomeObject ;
 private:
 DWORD m_cRef; // Interface ref-count, for debugging
 IUnknown* m_pUnkOuter; // controlling IUnknown
 public:

 CImpSomeInterface() { m_cRef = 0; };
 ~ CImpSomeInterface(void) {};

 // IUnknown members delegate to the outer unknown
 // IUnknown members do not control lifetime of object
 STDMETHODIMP QueryInterface(REFIID riid, void** ppv)
 { return m_pUnkOuter->QueryInterface(riid,ppv); };

 STDMETHODIMP_(DWORD) AddRef(void)
 { return m_pUnkOuter->AddRef(); };

 STDMETHODIMP_(DWORD) Release(void)
 { return m_pUnkOuter->Release(); };

 // ISomeInterface members
 STDMETHODIMP SomeMethod(void)
 { return S_OK; };
 } ;
 CImpSomeInterface m_ImpSomeInterface ;
 public:
 CSomeObject(IUnknown * pUnkOuter)
 {
 m_cRef=0;
 // No AddRef necessary if non-NULL as we're aggregated.
 m_pUnkOuter=pUnkOuter;
 m_ImpSomeInterface.m_pUnkOuter=pUnkOuter;
 } ;
 ~CSomeObject(void) {} ;

 // Static member function for creating new instances (don't use
 // new directly).Protects against outer objects asking for
interfaces
 // other than IUnknown
 static HRESULT Create(IUnknown* pUnkOuter, REFIID riid, void **ppv)
 {
 CSomeObject* pObj;
 if (pUnkOuter != NULL && riid != IID_IUnknown)
 return CLASS_E_NOAGGREGATION;
 pObj = new CSomeObject(pUnkOuter);
 if (pObj == NULL)
 return E_OUTOFMEMORY;
 // Set up the right unknown for delegation (the non-aggregation
case)
 if (pUnkOuter == NULL)
 pObj->m_pUnkOuter = (IUnknown*)pObj ;
 HRESULT hr;
 if (FAILED(hr = pObj->QueryInterface(riid, (void**)ppv)))
 delete pObj ;
 return hr;
 }

 // Inner IUnknown members, non-delegating
 // Inner QueryInterface only controls inner object
 STDMETHODIMP QueryInterface(REFIID riid, void** ppv)
 {

 *ppv=NULL;
 if (riid == IID_IUnknown)
 *ppv=this;
 if (riid == IID_ISomeInterface)
 *ppv=&m_ImpSomeInterface;
 if (NULL==*ppv)
 return ResultFromScode(E_NOINTERFACE);
 ((IUnknown*)*ppv)->AddRef();
 return NOERROR;
 } ;
 STDMETHODIMP_(DWORD) AddRef(void)
 { return ++m_cRef; };
 STDMETHODIMP_(DWORD) Release(void)
 {
 if (--m_cRef != 0)
 return m_cRef;
 delete this;
 return 0;
 };
};

Aggregating Objects
When developing an aggregable object, the following rules apply:

· When creating the inner object, the outer object must explicitly ask for its IUnknown.
· The outer object must protect its implementation of Release from reentrancy with an artificial

reference count around its destruction code.
· The outer object must call its controlling IUnknown's Release if it queries for a pointer to any of the

inner object's interfaces. To free this pointer, the outer object calls its controlling IUnknown's AddRef,
followed by Release on the inner object's pointer.
// Obtaining inner object interface pointer
pUnkInner->QueryInterface(IID_ISomeInterface, &pISomeInterface);
pUnkOuter->Release();

// Releasing inner object interface pointer
pUnkOuter->AddRef();
pISomeInterface->Release();

· The outer object must not blindly delegate a query for any unrecognized interface to the inner object,
unless that behavior is specifically the intention of the outer object.

The COM Library
Any process that uses COM must both initialize and uninitialize the COM library. In addition to being a
specification, COM also implements some important services in this library. Provided as a DLL in
Microsoft® Windows®, the COM library includes:

· A small number of fundamental API functions that facilitate the creation of COM applications, both
client and server. For clients, COM supplies basic functions for creating objects. For servers, COM
supplies the means of exposing their objects.

· Implementation-locator services through which COM determines from a unique class identifier
(CLSID) which server implements that class and where that server is located. This service includes
support for a level of indirection, usually a system registry, between the identity of an object class and
the packaging of the implementation such that clients are independent of the packaging, which can
change in the future.

· Transparent remote procedure calls when an object is running in a local or remote server.
· A standard mechanism to allow an application to control how memory is allocated within its process,

particularly memory that needs to be passed between cooperating objects such that it can be freed
properly.

To use basic COM services, all COM threads of execution in clients and out-of-process servers must call
either the CoInitialize or the CoInitializeEx function before calling any other COM function except
memory allocation calls. CoInitializeEx replaces the other function, adding a parameter that allows you to
specify the threading model of the thread ¾ either apartment-threaded or free-threaded. A call to
CoInitialize simply sets the threading model to apartment-threaded. OLE Compound Document
applications call the OleInitialize function, which calls CoInitialize and also does some initialization
required for compound documents. Since this is true, threads that call OleInitialize cannot be free-
threaded. For information on threading in clients and servers, refer to Processes and Threads.

In-process servers do not call the initialization functions, because they are being loaded into a process
that has already done so. As a result, in-process servers must set their threading model in the registry
under the InprocServer32 key. For detailed information on threading issues in in-process servers, refer to
In-Process Server Threading Issues.

It is also important to uninitialize the library. For each call to CoInitialize or CoInitializeEx, there must be
a corresponding call to CoUninitialize. For each call to OleInitialize, there must be a corresponding call
to OleUninitialize.

In-process servers can assume that the process they are being loaded into has already performed these
steps.

Managing Memory Allocation
In COM, many, if not most, interface methods and APIs are called by code written by one programming
organization and implemented by code written by another. Many of the parameters and return values of
these functions are of types that can be passed around by value. Sometimes, however, it is necessary to
pass data structures for which this is not the case, so it is necessary for both caller and called to have a
compatible allocation and de-allocation policy. COM defines a universal convention for memory allocation,
both because it is more reasonable than defining case-by-case rules, and so the COM remote procedure
call implementation can correctly manage memory.

The methods of COM interface always provide memory management of pointers to the interface by
calling the AddRef and Release functions found in the IUnknown interface, from which all other COM
interfaces derive (refer to Rules for Managing Reference Counts for more information). This section
describes only how to allocate memory for parameters that are not passed by value ¾ not pointers to
interfaces, but more mundane things like strings, pointers to structures, etc.

For more information, see the following:

· The OLE Memory Allocator
· Memory Management Rules
· Debugging Memory Allocations

The OLE Memory Allocator
The COM Library provides an implementation of a memory allocator that is thread-safe (cannot cause
problems in multi-threaded situations). Whenever ownership of an allocated chunk of memory is passed
through a COM interface or between a client and the COM library, you must use this allocator to allocate
the memory. Allocation internal to an object can use any allocation scheme desired, but the COM memory
allocator is a handy, efficient, and thread-safe allocator.

A call to the API function CoGetMalloc provides a pointer to the OLE allocator, which is an
implementation of the IMalloc interface. Rather than doing this, it is usually more efficient to call the
helper functions CoTaskMemAlloc, CoTaskMemAlloc, and CoTaskMemFree, which wrap getting a
pointer to the task memory allocator, calling the corresponding IMalloc method, and then releasing the
pointer to the allocator.

Memory Management Rules
The life-time of pointers to interfaces is always managed through the AddRef and Release methods on
every COM interface. For more information, refer to Rules for Managing Reference Counts.

For all other parameters, it is important to adhere to certain rules for managing memory. The following
rules apply to all parameters of interface methods ¾ including the return value ¾ that are not passed by
value:

· in parameters must be allocated and freed by the caller.
· out parameter must be allocated by the one called; freed by the caller using the standard COM task

memory allocator. Refer to The OLE Memory Allocator for more information.
· in-out parameter is initially allocated by the caller, then freed and re-allocated by the one called, if

necessary. As is true for out parameters, the caller is responsible for freeing the final returned value.
The standard COM memory allocator must be used.

In the latter two cases, where one piece of code allocates the memory and a different piece of code frees
it, using the COM allocator ensures that the two pieces of code are using the same allocation methods.

Another area that needs special attention is the treatment of out and in-out parameters in failure
conditions. If a function returns a a failure code, the caller typically has no way to clean up the out or in-
out parameters. This leads to a few additional rules:

Parameters must always be reliably set to a value that will be cleaned up without any action by the
caller, in case of an error condition.
All out pointer parameters must explicitly be set to NULL. These are usually passed in a pointer-to-
pointer parameter, but can also be passed as a member of a structure that the caller allocates and the
called code fills. The most straightforward way to ensure this is (in part) to set these values to NULL
on function entry. This rule is important, because it promotes more robust application interoperability.
Under error conditions, all in-out parameters must either be left alone by the code called (thus
remaining at the value to which they were initialized by the caller) or be explicitly set, as in the out-
parameter error return case.

Remember that these memory management conventions for COM applications apply only across public
interfaces and APIs ¾ there is no requirement at all that memory allocation strictly internal to a COM
application need be done using these mechanisms.

Debugging Memory Allocations
OLE provides an interface for developers to use to debug their memory allocations: the IMallocSpy
interface. For each method in IMalloc, there are two methods in IMallocSpy, a "pre" method and a "post"
method. Once a developer implements it and publishes it to the system, the system calls the IMallocSpy
"pre" method just before the corresponding IMalloc method, effectively allowing the debug code to "spy"
on the allocation operation, and calling the "post" method to release the spy.

For example, when OLE detects that the next call is a call to IMalloc::Alloc, it would call
IMallocSpy::PreAlloc, executing whatever debug operations the developer wants during the Alloc
execution, and then, when the Alloc call returns, call IMallocSpy::PostAlloc to release the spy and
return control to the code.

Processes and Threads
A process is a collection of virtual memory space, code, data, and system resources, while a thread is
code that is to be serially executed within a process. A processor executes threads, not processes, so
each 32-bit application has at least one process and one thread. Prior to the introduction of multiple
threads of execution, applications were all designed to run on a single thread of execution. Processes
communicate with one another through messages, using RPC to pass information between processes.

While COM defines three mulitiple-threading models, some information applies to threads and processes
in general. A process always has at least one thread of execution, known as the primary thread, and can
have multiple threads in addition to this. Once a thread begins to execute, it continues until it exits its
routine, or until it is interrupted by a thread with higher priority, by a user action or by the kernel's thread
scheduler. Each thread can run separate sections of code, or multiple threads can execute the same
section of code. Threads executing the same block of code maintain separate stacks. Each thread in a
process shares that process's global variables and resources.

The NT Scheduler determines when and how often to execute a thread according to a combination of the
process's priority class attribute and the thread's base priority. You set a process's priority class attribute
by calling the Win32 function SetPriorityClass(), and you set a thread's base priority with a call to
SetThreadPriority().

Multi-threaded applications must avoid two threading problems: deadlocks and races. A deadlock occurs
when each thread is waiting for the other to do something. A race condition occurs when one thread
finishes before another on which it depends, causing the former to use a bogus value because the latter
has not yet supplied a valid one.

The OLE call control helps prevent deadlocks in calls between objects in different apartments. OLE
supplies some functions specifically designed to help avoid race conditions in out-of-process servers; for
information refer to Out-of-process Server Implementation Helpers.

While COM supports the single-thread-per-process model prevalent before the introduction of multiple
threads of execution, writing code to take advantage of multiple threads make it possible to create more
efficient applications than ever before by allowing a thread that is waiting for some time-consuming
operation to allow another thread to be executed.

In general, the simplest way to view OLE's threading architecture is to think of all the COM objects in the
process as divided into groups called apartments. A COM object lives in exactly one apartment, in the
sense that its methods can legally be called directly only by a thread that belongs to that apartment. Any
other thread that wants to call the object must go through a proxy.

There are two types of apartments: single-threaded apartments, and multi-threaded apartments.

Single-threaded Apartments ¾ each thread that uses OLE is in a separate "apartment", and OLE
synchronizes all incoming calls with the windows message queue. A process with a single thread of
execution is simply a special case of this model.

Multi-threaded Apartments ¾ Multiple threads in a single free-threaded apartment use OLE and calls to
OLE objects are synchronized by the objects themselves.

A description of communication between single-threaded apartments and multi-threaded apartments
within the same process is in Single-/Multi-threaded Communication.

Single-threaded apartments consist of exactly one thread, so all COM objects that live in a single-
threaded apartment can receive method calls only from the one thread that belongs to that apartment. All
method calls to a COM object in a single-threaded apartment are synchronized with the windows
message queue for the single-threaded apartment's thread.

Multi-threaded apartments consist of one or more threads, so all COM objects that live in an multi-
threaded apartment can receive method calls directly from any of the threads that belong to the multi-
threaded apartment. Threads in a multi-theaded apartment use a model called "free-threading". OLE does
not provide any synchronization of method calls to COM objects in an MTA. In particular, this means that
the COM object must provide it's own synchronization if needed.

A process can have zero or more single-threaded apartments, and zero or one multi-threaded apartment.
One way of looking at this has been the following:

· A process that consists of just one single-threaded apartment has been refered to as a single-
threaded process

· A process that has two or more single-threaded apartments and no multi-threaded apartments has
been called an apartment model process

· A process that has a multi-threaded apartment and no single-threaded apartments has been referred
to as a free-threaded process

· A process that has a multi-threaded apartment and one or more single-threaded apartments as a
mixed model process.

In reality, however, all process are apartment-model, it is just that some apartments have a single thread
and some apartments have multiple threads. The threading model really applies to an apartment, not to a
process. It can also apply to a class of objects, but it doesn't really apply to a component, such as a DLL,
but to the object classes within the DLL. Different classes in a DLL can have different threading models.

In a process, the main apartment is the first to be initialized. In a single-threaded process, this remains
the only apartment. Call parameters are marshaled between apartments, and OLE handles the
synchronization through messaging. If you designate multiple threads in a process to be free-threaded, all
free threads reside in a single apartment, parameters are passed directly to any thread in the apartment,
and you must handle all synchronization. In a process with both free-threading and apartment threading,
all free threads reside in a single apartment, and each apartment thread has an apartment to itself. A
process that does OLE work is a collection of apartments with, at most, one multi-threaded apartment but
any number of single-threaded apartments.

The threading models in OLE provide the mechanism for clients and servers that use different threading
architectures to work together. Calls among objects with different threading models in different processes
are naturally supported. From the perspective of the calling object, all calls to objects outside a process
behave identically, no matter how the object being called is threaded. Likewise, from the perspective of
the object being called, arriving calls behave identically, regardless of the threading model of the caller.

Interaction between a client and an out-of-process object is straightforward even when they use different
threading models because the client and object are in different processes and OLE is involved in remoting
calls from the client to the object. OLE, interposed between the client and the server, can provide the
code for the threading models to interoperate, with standard marshaling and RPC. For example, if a
single-threaded object is called simultaneously by multiple free-threaded clients, the calls will be
synchronized by OLE by placing corresponding window messages in the server's message queue. The
object's apartment will receive one call each time it retrieves and dispatches messages.

Some care must be taken to ensure that in-process servers interact properly with their clients. These
issues are described in In-process Server Threading Issues.

The most important issue in programming with a multithreaded model is to ensure that the code is thread-
safe, so messages intended for a particular thread go only to that thread, and access to threads is
protected.

Choosing the Threading Model
Choosing the threading model for an object depends on the object's function. An object that does
extensive I/O might support free-threading to provide maximum response to clients by allowing interface
calls during I/0 latency. On the other hand, an object that interacts with the user might support apartment
threading to synchronize incoming OLE calls with its window operations.

It is easier to support apartment threading in single-threaded apartments because OLE provides
synchronization. Supporting free-threading is more difficult because the object must implement
synchronization and thread local storage, but response to clients may be better because synchronization
can be implemented for smaller sections of code. In single-threaded apartments, OLE provides
synchronization on a per-call basis.

Single-threaded Apartments
Using single-threaded apartments (apartment model) offers a message-based paradigm for dealing with
multiple objects running concurrently. It allows you to write more efficient code by allowing a thread that is
waiting for some time-consuming operation to allow another thread to be executed.

Each thread in a process that is intialized as apartment-model, and which retrieves and dispatches
window messages, is a single-threaded apartment thread. Each of these threads live within its own
apartment. Within an apartment, interface pointers can be passed without marshaling. Thus, all objects in
one single-threaded apartment thread communicate directly. Interface pointers must be marshaled when
passed between apartments.

A logical grouping of related objects that all execute on the same thread, and so must have synchronous
execution could live on the same single-threaded apartment thread. An apartment-model object cannot,
however, reside on more than one thread. Calls to objects in other processes must be made within the
context of the owning process, so distributed COM switches threads for you automatically when you call
on a proxy.

The inter-process and inter-thread models are similar. When it is necessary to pass an interface pointer to
an object in another apartment (on another thread) within the same process, you use the same
marshaling model that objects in different processes use to pass pointers across process boundaries. By
getting a pointer to the standard marshaling object, you can marshal interface pointers across thread
boundaries (between apartments) in the same way you do between processes.

Rules for single-threaded apartments are simple, but it is important to follow them carefully:

· Every object should live on only one thread (within a single-threaded apartment).
· Initialize the COM library for each thread.
· Marshal all pointers to objects when passing them between apartments.
· Each single-threaded apartment must have a message loop to handle calls from other processes and

apartments within the same process. Single-threaded apartments without objects (client only) also
need a message loop to dispatch broadcast sendmessages that some applications use.

· DLL-based or in-process objects do not call the COM initialization functions; instead, they register
their threading model with the ThreadingModel named-value under the InprocServer32 key in the
registry. Apartment-aware objects must also write DLL entry points carefully. There are special
considerations that apply to threading in-process servers. For more information, see In-process
Server Threading Issues.

While multiple objects can live on a single thread, no apartment-model object can live on more than one
thread.

Each thread of a client process or out-of-process server must call CoInitialize or OleInitialize, which set
the threading model to apartment, or call CoInitializeEx, and specify COINIT_APARTMENTTHREADED
for the dwCoInit parameter. The main apartment is the thread that calls CoInitialize first. For information
on in-process servers, refer to In-process Server Threading Issues.

All calls to an object must be made on its thread (within its apartment). It is forbidden to call an object
directly from another thread; using objects in this free-threaded manner could cause problems for
applications. The implication of this rule is that all pointers to objects must be marshaled when passed
between apartments. OLE provides two functions for this purpose.
CoMarshalInterThreadInterfaceInStream, marshals an interface into a stream object that is returned to
the caller, and CoGetInterfaceAndReleaseStream unmarshals an interface pointer from a stream object
and releases it. These functions wrap calls to CoMarshalInterface and CoUnmarshalInterface
functions, which require the use of the MSHCTX_INPROC flag.

In general, the marshaling is accomplished automatically by COM. For example, when passing an
interface pointer as a parameter in a method call on a proxy to an object in another apartment, or when
calling CoCreateInstance, COM does the marshaling automatically. However, in some special cases,
where the application writer is passing interface pointers between apartments without using the normal
COM mechanisms, the application writer must be aware that he is passing a pointer between apartments,
and must handle the marshaling himself.

If one apartment (Apartment 1) in a process has an interface pointer and another apartment (Apartment
2) requires its use, Apartment 1 must call CoMarshalInterThreadInterfaceInStream to marshal the
interface. The stream that is created by this function is thread-safe and must be stored in a variable that is
accessible by Apartment 2. Apartment 2 must pass this stream to CoGetInterfaceAndReleaseStream to
unmarshal the interface, and will get back a pointer to a proxy through which it can access the interface.
The main apartment must remain alive until the client has completed all OLE work (because some in-
process objects are loaded in the main-apartment, as described in In-process Server Threading Issues.
After one object has been passed between threads in this manner, it is very easy to pass interface
pointers as parameters. That way distributed COM does the marshaling and thread switching for the
application.

To handle calls from other processes and apartments within the same process, each single-threaded
apartment must have a message loop. This means that the thread's work function must have a
GetMessage/DispatchMessage loop. If other synchronization primitives are being used to communicate
between threads, the Win32 function MsgWaitForMultipleObjects can be used to wait for both
messages and thread synchronization events. The Win32 SDK documentation for this function has an
example of this sort of combination loop.

OLE creates a hidden window in each single-threaded apartment. A call to an object is received as a
window message to this hidden window. When the object's apartment retrieves and dispatches the
message, the hidden window will receive it. The window procedure will then call the corresponding
interface method of the object.

When multiple clients call an object, the calls are queued in the message queue and the object will
receive a call each time its apartment retrieves and dispatches messages. Because the calls are
synchronized by OLE and the calls are always delivered by the thread that belongs to the object's
apartment, the object's interface implementations need not provide synchronization. Single-threaded
apartments can implement IMessageFilter to permit them to cancel calls or receive windows messages
when necessary.

The object can be re-entered if one of its interface method implementations retrieves and dispatches
messages or makes an ORPC call to another thread, thereby causing another call to be delivered to the
object (by the same apartment). OLE does not prevent re-entrancy on the same thread but it provides
thread safety. This is identical to the way in which a window procedure can be re-entered if it retrieves
and dispatches messages while processing a message.

Multi-threaded Apartments
In a multi-threaded apartment, all the threads in the process that have been initialized as free-threading
reside in a single apartment. Therefore, there is no need to marshal between threads. The threads need
not retrieve and dispatch messages because OLE does not use window messages in this model.

Calls to methods of objects in the multi-threaded apartment can be run on any thread in the apartment.
There is no serialization of calls - many calls may occur to the same method or to the same object
simultaneously.Objects created in the multi-threaded apartment must be able to handle calls on their
methods from other threads at any time.

Multi-threaded object concurrency offers the highest performance and takes the best advantage of multi-
processor hardware for cross-thread, cross-process, and cross-machine calling, since calls to objects are
not serialized in any way. This means, however, that the code for objects must provide synchronization in
their interface implementations, typically through the use of Win32 synchronization primitives, such as
event objects, critical sections, semaphores, or mutexes. In addition, because the object doesn't control
the lifetime of the threads that are accessing it, no thread-specific state may be stored in the object (in
Thread-Local-Storage).

OLE provides call synchronization for single-threaded apartments only. Multi-threaded apartments
(containing free-threaded threads) do not receive calls while making calls (on the same thread). Multi-
threaded apartments cannot make input synchronized calls. Asynchronous calls are converted to
synchronous calls in multi-threaded apartments. The message filter is not called for any thread in a multi-
threaded apartment.

To initialize a thread as free-threaded, call CoInitializeEx, specifying COINIT_MULTITHREADED. For
information on in-process server threading, see In-process Server Threading Issues.

Multiple clients can call an object that supports free-threading simultaneously from different threads: In
free threaded out-of-process servers, OLE creates a pool of threads in the server process and a client call
(or multiple client calls) can be delivered by any of these threads at any time. An out-of-process server
must also implement synchronization in its class factory. Free threaded, in-process objects can receive
direct calls from multiple threads of the client.

The client can do OLE work in multiple threads. All threads belong to the same multi-threaded apartment.
Interface pointers are passed directly from thread to thread within a multi-threaded apartment so interface
pointers are not marshaled between its threads. Message filters (implementations of IMessageFilter) are
not used in multi-threaded apartments. The client thread will suspend when it makes an OLE call to out-
of-apartment objects and will resume when the call returns. Calls between processes are still handled by
RPC.

Threads initialized with the free-threading model must implement their own synchronization. Win32 offers
several means to do this: events, critical sections, mutexes, and semaphores. Following are brief
descriptions of each ¾ more information is available in the Win32 SDK.

A Win32 event object provides a way of signaling one or more threads that an event has occurred,
essentially acting as a traffic cop. Any thread within a process can create an event object. A handle to the
event is returned by the event-creating function CreateEvent. Once an event object has been created,
threads with a handle to the object can wait on it before continuing execution.

A critical section is a section of code that requires exclusive access to some set of shared data before it
can be executed. It may be used only by the threads within a single process. A critical section is like a
turnstyle through which only one thread at a time may pass.

To ensure that no more than one thread at a time accesses shared data, a process's primary thread
allocates a global CRITICAL_SECTION data structure and initializes its members. A thread entering a
critical section calls the Win32 function EnterCriticalSection() and modifies the data structure's

members.

A thread attempting to enter a critical section calls EnterCriticalSection which checks to see whether the
CRITICAL_SECTION data structure has been modified. If so, another thread is currently in the critical
section, so the subsequent thread is put to sleep. A thread leaving a critical section calls
LeaveCriticalSection(), which resets the data structure. When a thread leaves a critical section,
WindowsNT wakes up one of the sleeping threads, which thereupon enters the critical section.

A mutex (short for mutual exclusion) object is a kernel object that performs the same function as a critical
section, except that the mutex is accessible to threads running in different processes. Owning a mutex
object is like having the floor in a debate. A process creates a mutex object by calling the Win32 function
CreateMutex(), which returns a handle. The first thread requesting a mutex object obtains ownership of it.
When the thread has finished with the mutex, ownership passes to other threads on a first-come, first-
served basis.

A semaphore is a kernel object used to maintain a reference count on some available resource. A thread
creates a semaphore for a resource by calling the Win32 function CreateSemaphore() and passing a
pointer to the resource, an initial resource count, and the maximum resource count. This function returns
a handle.

A thread requesting a resource passes its semaphore handle in a call to WaitForSingleObject(). The
semaphore object polls the resource to determine if it is available. If so, the semaphore decrements the
resource count and wakes the waiting thread. If the count is zero, the thread remains asleep until another
thread releases a resource, causing the semaphore to increment the count to one.

Single-/Multi-threaded Communication
A client or server that supports both single and multi-threaded apartments will have one multi-threaded
apartment, containing all threads initialized as free-threaded, and one or more single-threaded
apartments. Interface pointers must be marshaled between apartments but can be used without
marshaling within an apartment. Calls to objects in a single-threaded apartment will be synchronized by
OLE. Calls to objects in the multi-threaded apartment will not be synchronized by OLE.

All of the information on single-threaded apartments applies to the threads marked as apartment model,
and all of the information on multi-threaded apartments applies to all of the threads marked as free -
threaded. Apartment threading rules apply to inter-apartment communication, requiring that interface
pointers be marshaled between apartments with calls to CoMarshalInterThreadInterfaceInStream and
CoGetInterfaceAndReleaseStream, as described in the Single-threaded Apartments section. For
information on free-threading, see the Multi-threaded apartments section. Some special considerations
apply when dealing with in-process servers, as described in In-process Server Threading Issues.

In-process server Threading Issues
An in-process server does not call CoInitialize, CoInitializeEx, or OleInitialize to mark its threading
model. For thread-aware DLL-based or in-process objects, you need to set the threading model in the
registry. The default model when you do not specify a threading model is single-thread-per-process. To
specify a model, you add the ThreadingModel named-value to the InprocServer32 key in the registry.

DLLs that support instantiation of a class object must implement and export the functions
DllGetClassObject and DllCanUnloadNow. When a client wants an instance of the class the DLL
supports, a call to CoGetClassObject (either directly or through a call to CoCreateInstance) calls
DllGetClassObject to get a pointer to its class object when the object is implemented in a DLL.
DllGetClassObject should therefore be able to give away multiple class objects or a single thread-safe
object (essentially just using InterlockedIncrement/InterlockedDecrement on their internal reference
count).

As its name implies, DllCanUnloadNow is called to determine whether the DLL that implements it is in
use, so the caller can safely unload it if it is not. Calls to CoFreeUnusedLibraries from any thread always
route through the main apartment's thread to call DllCanUnloadNow.

Like other servers, in-process servers can be single-threaded, apartment-threaded, free-threaded, or
both. Each of these servers can be used by any OLE client, regardless of the threading model used by
that client. There are certain considerations peculiar to client/inprocess-server interoperation.

All combinations of threading model interoperability are allowed between clients and in-process objects.
Interaction between a client and an in-process object that use different threading models is exactly like
the interaction between clients and out-of-process servers. For an in-process server, when the threading
model of the client and inprocess server differ, OLE must interpose itself between the client and the
object.

When an in-process object that supports the single threading model is be called simultaneously by
multiple threads of a client, OLE cannot allow the client threads to directly access the object's interface
because the object was not designed for such access. Instead OLE must ensure that calls are
synchronized and are made only by the client thread that created the object. Therefore, OLE creates the
object in the client's main apartment and requires all the other client apartments to access the object
using proxies.

When a free-threaded apartment (multi-threaded apartment) in a client creates an apartment-threaded in-
process server, OLE spins up a single-threaded apartment model 'host' thread in the client. This host
thread will create the object and the interface pointer will be marshaled back to the client's free-threaded
apartment. Similarly, when a single-threaded apartment in an apartment-model client creates a free
threading in-process server, OLE spins up a free-threading host thread (multi-threaded apartmentP on
which the object will be created and marshaled back to the client single-threaded apartment.

In general, if you design a custom interface on an in-process server, you should also provide the
marshaling code for it so OLE can marshal the interface between client apartments.

OLE protects access to objects provided by a single-threaded DLL by requiring access from the same
client apartment in which they were created. In addition, all of the DLL's entry points (like
DllGetClassObject and DllCanUnloadNow) and global data should always be accessed by the same
apartment. OLE creates such objects in the main apartment of the client, giving the main apartment direct
access to the object's pointers. Calls from the other apartments use inter-thread marshaling to go from
the proxy to the stub in the main apartment (using inter-thread marshaling) and then to the object. This
allows OLE to synchronize calls to the object. Inter-thread calls are slow, so it is recommended that these
servers be rewritten to support multiple apartments.

Like a single-threaded in-process server, an object provided by an apartment-model DLL must be

accessed by the same client apartment from which it was created. Objects provided by this server,
however, can be created in multiple apartments of the client, so the server must implement its entry points
(like DllGetClassObject and DllCanUnloadNow) for multi-threaded use. For example, if two apartments
of a client try to create two instances of the in-process object simultaneously, DllGetClassObject can be
called simultaneously by both apartments. DllCanUnloadNow must be written so the DLL is protected
from being unloaded while code is still executing in the DLL.

If the DLL provides only one instance of the class factory to create all the objects, the class factory
implementation must also be designed for multi-threaded use because it will be accessed by multiple
client apartments. If the DLL creates a new instance of the class factory each time DllGetClassObject is
called, the class factory need not be thread-safe.

Objects created by the class factory need not be thread-safe. Once created by a thread, the object is
always accessed through that thread and all calls to the object are synchronized by OLE. The apartment-
model apartment of a client that creates this object will get a direct pointer to the object. Client apartments
which are different from the apartment in which the object was created must access the object through
proxies. These proxies are created when the client marshals the interface between its apartments.

When an in-process DLL's ThreadingModel named-value is set to Both, an object provided by this DLL
can be created and used directly (without a proxy) in single- or multi-threaded client apartments.
However, it can only be used directly within the apartment in which it was created. To give the object to
any other apartment, the object must be marshaled. The DLL's object must implement its own
synchronization and can be accessed by multiple client apartments at the same time.

To speed performance for free-threaded access to in-process DLL objects, OLE provides the
CoCreateFreeThreadedMarshaler function. This function creates a free-threaded marshaling object that
can be aggregated with an in-process server object. When a client apartment in the same process needs
access to an object in another apartment, aggregating the free threaded marshaler provides the client
with a direct pointer to the server object, rather than to a proxy, when the client marshals the object's
interface to a different apartment. The client does not need to do any synchronization. This works only
within the same process ¾ standard marshaling is used for a reference to the object that is sent to
another process.

An object provided by in-process DLL that supports only free threading is a free-threaded object. It
implements its own synchronization and can be accessed by multiple client threads at the same time.
This server does not marshal interfaces between threads so this server can be created and used directly
(without a proxy) only by multi-threaded apartments in a client. Single-threaded apartments that create it
will access it through a proxy.

COM Clients and Servers
A critical part of COM is how clients and servers interact. A COM server is any object that provides
services to clients. These services are in the form of implementations of COM interfaces that can be
called by any client who is able to get a pointer to one of the interfaces on the server object. There are
two main types of servers, in-process and out-of-process. In-process servers are implemented in a
dynamic linked library (DLL), and out-of-process servers are implemented in an EXE file. Out-of-process
servers can reside either on the local machine or on a remote machine.

A COM client is whatever code or object gets a pointer to a COM server, and uses its services by calling
the methods of its interfaces.

The COM programming model and constructs have now been extended so that COM clients and servers
can work together across the network, not just within a given machine. This has been done so existing
applications can interact with new applications and with each other across networks with proper
administration, while new applications can be written to take advantage of networking features.

In addition, client applications do not need to be aware of how server objects are packaged, whether they
are packaged as in-process objects (in dynamic-link libraries), or as local or remote objects (in
executables). Distributed COM further allows objects to be packaged as NT Services, synchronizing OLE
with the rich administrative and system-integration capabilities of NT.

Also introduced are new features that complement existing OLE features with the security required to
build distributed component software. For more information, refer to Security in
COM_com_Security_in_COM.

With the increasing importance of distributed systems, COM has been extended to allow this location
transparency to extend across a network for applications written for single machines, while adding
features that extend these capabilities and add the security necessary in a network.

COM specifies a mechanism by which the class code can be used by many different applications.

For information on how COM enables client/server interaction, see the following:

· Getting a Pointer to an Object
· Creating an Object through a Class Object
· COM Server Responsibilities
· Persistent Object State
· Security in COM
· Providing Class Information
· Inter-object Communication
· Call Synchronization

Getting a Pointer to an Object
Because OLE does not have a strict class model, there are several ways to instantiate or to get a pointer
to an interface on an object. There are, in fact, four methods through which a client obtains its first
interface pointer to a given object:

· Call a COM Library API function that creates an object of a pre-determined type ¾ that is, the function
will only return a pointer to one specific interface for a specific object class.

· Call a COM Library API function that can create an object based on a class identifier (CLSID) and that
returns any type of interface pointer requested.

· Call a method of some interface that creates another object (or connects to an existing one) and
returns an interface pointer on that separate object.

· Implement an object with an interface through which other objects pass their interface pointer to the
client directly.

For information on getting pointers to other interfaces on an object once you have the first one, see
QueryInterface: Navigating in an Object.

There are numerous OLE functions that return pointers to specific interface implementations, such as
CoGetMalloc, which retrieves a pointer to the standard OLE memory allocator. Most of these are helper
functions, which retrieve a pointer to an OLE implementation of an interface on an object, as does
CoGetMalloc. Most of these functions are described in the specific area they are related to, such as
storage or data transfer.

There are several functions that, given a CLSID, a client can call to create an object instance and get a
pointer to it. All of these functions are based on the function CoGetClassObject, which creates a class
object and supplies a pointer to an interface that allows you to create instances of that class. While there
must be information that says which system the server resides on, there is no need for that information to
be contained in the client. The client needs to know only the CLSID, and never the absolute path of the
server code. For more information, see Creating an Object through a Class Object.

Among the many interface methods that return a pointer to a separate object are several that create and
return a pointer to an enumerator object, which allows you to determine how many items of a given type
an object maintains. OLE defines interfaces for enumerating a wide variety of items, such as strings,
several structures important in various OLE technologies, monikers, and IUnknown interface pointers.
The typical way to create an enumerator instance and get a pointer to its interface is to call a method from
another interface. For example, the IDataObject interface defines two methods, EnumDAdvise and
EnumFormatEtc, that return pointers to interfaces on two different enumeration objects. There are many
other examples in OLE of methods that return pointers to objects, such as the OLE Compound Document
interface IOleObject::GetClientSite, which, when called on the embedded or linked object, returns a
pointer to the container object's implementation of IOleClientSite.

The fourth way to get a pointer to an object is used when two objects, such as an OLE Compound
Document container and server, need bi-directional communication. Each implements an object
containing an interface method to which other objects can pass interface pointers. In the case of
containers and servers, each object then passes its pointer to the other object. The implementing object,
which is also the client of the created object, can then call the method and get the pointer that was
passed.

Creating an Object through a Class Object
With the increasing importance of computer networks, it has become necessary for clients and servers to
interact easily and efficiently, whether they reside on the same machine or across a network. Crucial to
this is the ability of a client to be able to launch a server, create an instance of the server's object, and
have access to the methods of the interfaces on the object.

OLE now provides extensions to this basic COM process that make it virtually seamless across a
network. As before, if a client is able to identify the server through its CLSID, calling a few simple
functions permit OLE to do all the work of locating and launching the server, and activating the object.
New subkeys have been added to the registry that allow remote servers to register their location, so the
client does not require that information. For applications that want to take advantage of networking
features, new capabilities have been added to the object creation functions that allow more flexibility and
efficiency.

OLE Class Objects and CLSIDs
A COM server is implemented as a COM class. A COM class is an implementation of a group of
interfaces in code executed whenever you interact with a given object. There is an important distinction
between a C++ class and a COM class. In C++, a class is a type. A COM class is simply a definition of the
object, and carries no type, although a C++ programmer might implement it using a C++ class. COM is
designed to allow a class to be used by different applications, including applications written without
knowledge of that particular class's existence. Therefore, class code for a given type of object exists
either in a dynamic linked library (DLL) or in another application (EXE).

Each COM class is identified by a CLSID, a unique 128-bit GUID, which the server must register. OLE
uses this CLSID, at the request of a client, to associate specific data with the DLL or EXE containing the
code that implements the class, thus creating an instance of the object. For information on registering a
server, see Registering COM Servers, and GUID Creation and Optimizations.

For clients and servers on the same machine, the model previously supported, the CLSID of the server is
all the client ever needs. On each machine, COM maintains a database (it makes use of the system
registry on Windows platforms) of all the CLSIDs for the servers installed on the system. This is a
mapping between each CLSID and the location of the DLL or EXE that houses the code for that CLSID.
COM consults this database whenever a client wants to create an instance of a COM class and use its
services, so the client never needs to know the absolute location of the code on the machine.

For distributed systems, COM provides registry entries that allow a remote server to register itself for use
by a client. While applications need know only a server's CLSID, because they can rely on the registry to
locate the server, COM allows clients to override registry entries and to specify server locations, to take
full advantage of the network (see Locating a Remote Object).

The basic way to create an instance of a class is through a COM class object. This is simply an
intermediate object that supports functions common to creating new instances of a given class. Most
class objects used to create objects from a CLSID support the IClassFactory interface, an interface that
includes the important method CreateInstance. You implement an IClassFactory interface for each class
of object that you offer to be instantiated. For information on implementing IClassFactory, refer to
Implementing IClassFactory.

Note Servers that support some other custom class factory interface and call CoGetClassObject
to get a pointer to that interface, and use it to create instances, are not required to support
IClassFactory specifically. However, calls to activation functions other than CoGetClassObject (such
as CoCreateInstanceEx) require that the server support IClassFactory.

When a client wants to create an instance of the server's object, it uses the desired object's CLSID in a
call to CoGetClassObject. (This call can either be direct or implicit, through one of the object creation
helper functions.) This function locates the code associated with the CLSID, and creates a class object,
and supplies a pointer to the interface requested (CoGetClassObject takes a riid param that specifies the
client's desired interface pointer).

With this pointer, the caller can create an instance of the object, and retrieve a pointer to a requested
interface on the object. This is usually an initialization interface, used to activate the object (put it in the
running state), so the client can do whatever work with the object that it wants to. Using these basic
functions, the client must also take care to release all object pointers. OLE provides several helper
functions that reduce the work of creating object instances. These are described in Instance Creation
Helper Functions.

Locating a Remote Object
With the advent of COM for distributed systems, COM uses the basic model for object creation described
in OLE Class Objects and CLSIDs, and adds more than one way to locate an object that may reside on
another system in a network, without overburdening the client application.

COM has added registry keys that permit a server to register the name of the machine on which it
resides, or the machine where an existing storage is located. Thus, client applications, as before, need
know only the CLSID of the server.

However, for cases where it is desired, COM has replaced a previously reserved parameter of
CoGetClassObject with a COSERVERINFO structure, which allows a client to specify the location of a
server. Another important value in this function is the CLSCTX enumeration, which specifies whether the
expected object is to be run in-process, out-of-process local, or out-of-process remote. Taken together,
these two values and the values in the registry determine how and where the object is to be run. Instance
creation calls, when they specify a server location, can override a registry setting. The algorithm OLE
uses for doing this is described in the reference for the CLSCTX enumeration.

The client and server machines must both be members of domains with a trust relationship for all types of
remote activation.

Instance Creation Helper Functions
In previous releases of OLE, the primary mechanism used to create an object instance was the
CoCreateInstance function. This function encapsulates the process of creating a class object, using that
to create a new instance and releasing the class object. Another function of this kind is the more specific
OleCreate, the OLE Compound Document helper that creates a class object and retrieves a pointer to a
requested object.

To smooth the process of instance creation on distributed systems, COM has introduced three important
new instance creation functions:

· CoCreateInstanceEx
· CoGetInstanceFromFile
· CoGetInstanceFromIStorage

CoCreateInstanceEx extends CoCreateInstance to make it possible to create a single uninitialized
object associated with the given CLSID on a specified remote machine. In addition, rather than requesting
a single interface and obtaining a single pointer to that interface, CoCreateInstanceEx makes it possible
to query for multiple interfaces and (if available) receive pointers to them in a single round trip, thus
permitting fewer round trips between machines. This can make remote object interaction much more
efficient. To do this, the function uses an array of MULTI_QI structures.

Creating an object through CoCreateInstanceEx still requires that the object be initialized through a call
to one of the initialization interfaces (such as IPersistStorage:::Load). The two helper functions,
CoGetInstanceFromFile and CoGetInstanceFromIStorage encapsulate both the instance creation
power of CoCreateInstanceEx and initialization, the former from a file, and the latter from a storage.

COM Server Responsibilities
One of the most important ways for a client to get a pointer to an object is for the client to ask that a
server be launched, and that an instance of the object provided by the server be created and activated. It
is the responsibility of the server to ensure that this happens properly. There are several important parts
to this.

The server must implement code for a class object through an implementation of either the
IClassFactory or IClassFactory2 interface.

The server must register its CLSID in the system registry on the machine on which it resides, and further,
has the option of publishing its machine location to other systems on a network to allow clients to call it
without requiring the client to know the server's location.

The server is primarily responsible for security ¾ that is, for the most part, the server determines whether
it will provide a pointer to one of its objects to a client.

In-process servers should implement and export certain functions that allow the client process to
instantiate them.

This chapter contains the following sections:

· Implementing IClassFactory
· Licensing and IClassFactory2
· Registering COM Servers
· Out-of-process Server Implementation Helpers
· GUID Creation and Optimizations

Implementing IClassFactory
When a client uses a CLSID to request the creation of an object instance, the first step is creation of a
class object, an intermediate object that contains an implementation of the methods of the IClassFactory
interface. While OLE provides several instance creation functions, the first step in the implementation of
these functions is the creation of a class object.

As a result, all servers must implement the methods of the IClassFactory interface. This interface
contains two methods: CreateInstance and LockServer. CreateInstance must create an uninitialized
instance of the object, and return a pointer to a requested interface on the object.

The LockServer method just increments the reference count on the class object to ensure that the server
stays in memory, and does not shut down before the client is ready for it to do so.

To enable a server to be responsible for its own licensing, OLE defines IClassFactory2, which inherits its
definition from IClassFactory. Thus, a server implementing IClassFactory2 must, by definition,
implement the methods of IClassFactory. For more information on IClassFactory2, see Licensing and
IClassFactory2.

OLE also provides helper functions for implementing out-of-process servers. For more information, see
Out-of-process Server Implementation Helpers.

Licensing and IClassFactory2
The IClassFactory interface on a class object provides the basic object creation mechanism of COM.
Using IClassFactory, a server can control object creation on a machine basis. The implementation of the
IClassFactory::CreateInstance method can allow or disallow object creation based the existence of a
machine license. A machine license is a piece of information separate from the application that exists on a
machine to indicate that the software was installed from a valid source, such as the vendor's installation
disks. If the machine license does not exist, the server can disallow object creation. Machine licensing
prevents piracy in cases where a user attempts to copy the software from one machine to another;
because the license information is not copied with the software, and the machine that receives the copy is
not licensed.

However, in a component software industry, vendors need a finer level of control over licensing. In
addition to machine license control, the a vendor needs to allow some clients to create a component
object while preventing other clients from the same capability. This kind of licensing requires that the
client application obtain a license key from component while the client application is still under
development. The client application uses the license key later at run-time to create objects on an
unlicensed machine.

For example, if a vendor provides a library of controls to developers, the developer who purchases the
library will have a full machine license, allowing the objects to be created on the development machine.
The developer can then build a client application on the licensed machine incorporating one or more of
the controls. When the resulting client application is run on another machine, the controls used in the
client application must be created on the other machine even if that machine does not possess a machine
license to the controls from the original vendor.

The IClassFactory2 interface provides this level of control. To allow key-based licensing for any given
component, you implement IClassFactory2 on the class factory object for that component.
IClassFactory2 is derived from IClassFactory, so by implementing IClassFactory2 the class factory
object fulfills the basic COM requirements. IClassFactory2 is defined as follows:

interface IClassFactory2 : IClassFactory
 {
 HRESULT GetLicInfo(LPLICINFO pLicInfo);
 HRESULT RequestLicKey(DWORD dwResrved, BSTR FAR* pbstrKey);
 HRESULT CreateInstanceLic(IUnknown *pUnkOuter
 , IUnknown *pUnkReserved, REFIID riid, BSTR bstrKey
 , void **ppvObject);
 };

The GetLicInfo method fills a LICINFO structure with information describing the licensing behavior of the
class factory. For example, the class factory can provide license keys for run-time licensing if the
fRunTimeKeyAvail member is TRUE.

The RequestLicKey method provides a license key for the component. A machine license must be
available when the client calls this method.

The CreateInstanceLic method creates an instance of the licensed component if the license key
parameter (BSTR bstrKey) is valid.

In its type information, a component uses the attribute licensed to mark the coclass that supports
licensing through IClassFactory2.

To incorporate a licensed component into your client application, you use the methods in IClassFactory2.

First, you need a separate development tool that is also a client of the licensed component. The purpose

of this tool is to obtain the run-time license key and save it in your client application. This tool runs only on
a machine that possesses a machine license for the component. The tool calls the GetLicInfo and
RequestLicKey methods to obtain the run-time license key and then saves the license key in your client
application. For example, the development tool could create a .H file containing the BSTR license key.
Then, you would include that .H file in your client application.

To instantiate the component within your client application, you first try to instantiate the object directly
with IClassFactory::CreateInstance. If CreateInstance succeeds, then the second machine is itself
licensed for the component and objects can be created at will. If CreateInstance fails with the return code
CLASS_E_NOTLICENSED, the only way to create the object is to pass the run-time key to the
CreateInstanceLic method. CreateInstanceLic verifies the key and creates the object if the key is valid.

In this way an application built with components (such as controls), can run on a machine that has no
other license¾only the client application containing the run-time license is allowed to create the
component objects in question.

The IClassFactory2 interface supports flexibility in licensing schemes. For example, the server
implementor can encrypt license keys in the component for added security. Server implementers can also
enable or disable levels of functionality in their objects by providing different license keys for different
functions. For example, one key might allow a base level of functionality, while another would allow basic
and advanced functionality, and so on. See OLE Controls Inside Out published by MS Press for detailed
consideration of these issues.

Registering COM Servers
After you have defined a class in code (ensuring that it implements IClassFactory or IClassFactory2)
and assigned it a CLSID, you need to put information in the registry that will allow OLE, on request of a
client with the CLSID, to create instances of its objects. This information tells the system, for a given
CLSID, where the DLL or EXE code for that class is located, and how it is to be launched. There is more
than one way of registering a class in the registry. In addition, there are other ways of "registering" a class
with the system when it is running, so the system is aware that a running object is currently in the system.
These topics are described in the following sections:

· Registering a Class at Installation
· Registering a Running EXE Server
· Registering Objects in the ROT
· Self-registration
· Installing as a Win32 Service or User Account

Registering a Class at Installation
If a class is intended to be available to clients at any time, as most applications are, you usually register it
through an installation and setup program. This means putting information about the application into the
registry, including how and where its objects are to be instantiated. This information must be registered for
all CLSIDs. Other information is optional. Win32 tools, such as Regsvr32, make it simple to write a setup
program that registers servers at installation.

If you are not relying on system defaults, there are two important keys in the registry: CLSID and AppID.
Among the important pieces of information under these keys is how the object is to be instantiated.
Objects can be designated as in-process, out-of-process local, or out-of-process remote.

Under the new AppID key, are several named-values that define information specific to that application.
Among these are RemoteServerName, and ActivateAtStorage, both of which can be used to permit a
client with no built-in knowledge of the location of the server, to create an object. For more information on
remote instantiation, see Locating a Remote Object and Instance Creation Helper Functions.

A server can also be installed as a Win32 service, or to run under a specific user account. For more
information, see Installing as a Win32 Service or User Account.

A server or ROT object that is not a Win32 service or run under a specific user account can be referred to
as an "activate as activator" server. For these servers, the security context and the window
station/desktop of the client must match the server's. A client attempting to connect to a remote server is
considered to have a NULL window station/desktop, so only the server security context (for information on
Windows NT SID, see the security section of the Win32 SDK) is compared in this instance. COM caches
the window station/desktop of a process when the process first connects to the distributed COM service.
Thus, COM clients and servers should not change their window station or thread desktops of the process
after calling CoInitialize or CoInitializeEX.

When a class is registered as in-process, a call to CoGetClassObject to create its class object is
automatically passed by OLE to the DllGetClassObject function, which the class must implement to give
the calling object a pointer to its class object.

Classes implemented in executables can specify that COM should execute their process and wait for the
process to register their class object's IClassFactory through a call to the CoRegisterClassObject
function.

For detailed OLE registry information, see Registering Object Applications.

Registering a Running EXE Server
When an executable (EXE) server is launched, it should call CoRegisterClassObject, which registers the
CLSID for the server in what is called the class table (this is a different table than the running object
table). When a server is registered in the class table, it allows the SCM to determine that it is not
necessary to launch the class again; because the server is already running. Only if the server is not listed
in the class table will the SCM check the registry for appropriate values and launch the server associated
with the given CLSID.

You pass CoRegisterClassObject the CLSID for the class and a pointer to its IUnknown interface.
Clients who subsequently call CoGetClassObject with this CLSID will retrieve a pointer to their requested
interface, as long as security does not forbid it. There are several instance creation and activation
functions described in Instance Creation Helper Functions.

The server for a class object should call CoRevokeClassObject to revoke the class object (remove its
registration) when all of the following are true:

· There are no existing instances of the object definition
· There are no locks on the class object
· The application providing services to the class object is not under user control (not visible to the user

on the display).

Registering Objects in the ROT
Typically, when a client asks a server to create an object instance, the server typically creates moniker for
the object, and registers it in the running object table (ROT) through a call to
IRunningObjectTable::Register.

A few additional issues arise when registering ROT objects for use by remote clients. When the server
calls CreateFileMoniker to create a file moniker to be registered in the ROT, servers should pass local
file names that are drive-based, not in UNC format. This ensures that the moniker comparison data that is
generated by the ROT register call will match what is used while doing a ROT lookup on the part of a
remote client. This is because when the distribed COM service receives an activation request for a file
local to the server from a remote client, the file is converted to a local-drive-based path.

Self-Registration
As component software continues to grow as a market, there will be more and more instances where a
user obtains a new software component as a single DLL or EXE module, such as downloading a new
component from an on-line service or receiving one from a friend on a floppy disk. In these cases, it is not
practical to require the user to go through a lengthy installation procedure or setup program. Besides the
licensing issues, which are handled through IClassFactory2, an installation procedure typically creates
the necessary registry entries for a component to run properly in the COM and OLE context.

Self-Registration is the standard means through which a server module can package its own registry
operations, both registration and unregistration, into the module itself. When used with licensing handled
through IClassFactory2, a server can become an entirely self-contained module with no need for
external installation programs or .REG files.

Any self-registering module, DLL or EXE, should first include a string called OleSelfRegister in the
StringFileInfo section of its version information resource:

VS_VERSION_INFO VERSIONINFO

 ...

 BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 #ifdef UNICODE
 BLOCK "040904B0" // Lang=US English, CharSet=Unicode
 #else
 BLOCK "040904E4" // Lang=US English, CharSet=Windows Multilingual
 #endif
 BEGIN
 ...
 VALUE "OLESelfRegister", "\0"
 END

 ...

 END

 ...

 END

The existence of this data allows any interested party, such as an application that wishes to integrate this
new component, to determine if the server supports self-registration without having to attempt the self-
registration process itself.

If the server is packaged in a DLL module, the DLL must export the functions DllRegisterServer and
DllUnregisterServer. Any application that wishes to instruct the server to register itself (that is, all its
CLSIDs and type library IDs) can obtain a pointer to DllRegisterServer through the Win32 API function
GetProcAddress. Within DllRegisterServer, the DLL creates all its necessary registry entries, storing
the correct path to the DLL for all InprocServer32 or InprocHandler32 entries.

When an application wishes to remove the component from the system, it should unregister that
component by calling DllUnregisterServer. Within this call, the server removes exactly those entries it
previously created in DllRegisterServer. The server should not blindly remove all entries for its classes
because other software may have stored additional entries, such as a TreatAs key.

If the server is packaged in an EXE module, then the application wishing to register the server launches
the EXE server with the command-line argument /RegServer or -RegServer (case-insensitive). If the
application wishes to unregister the server, it launches the EXE with the command-line argument
/UnregServer or -UnregServer. The self-registering EXE detects these command-line arguments and
invokes the same operations as a DLL would within DllRegisterServer and DllUnregisterServer,
respectively, registering its module path under LocalServer32 instead of InprocServer32 or
InprocHandler32.

The server must register the full path to the installation location of the DLL or EXE module for their
respective InprocServer32, InprocHandler32, and LocalServer32 keys in the registry. The module path
is easily obtained through the Win32 API function GetModuleFileName.

Installing as a Win32 Service or User Account
In addition to running as a local server executable (EXE), an OLE object may also package itself to run as
a Win32 service when activated by a local or remote client. Win32 services support numerous useful and
UI-integrated administrative features, including local and remote starting, stopping, pausing, and
restarting, as well as the ability to establish the server to run under a specific user account and Window
Station, and optionally to be interactive with the desktop.

An object written as a Win32 service is installed for use by OLE by establishing a LocalService named-
value under its AppID key and performing a standard service installation (see the Win32 documentation
and the SECSVR distributed COM sample application for more information about installation).

Classes may also be configured to run under a specific user account when activated by a remote client
without being written as a Win32 service. To do this, the class installs a user-name and a password to be
used when the SCM launches its local server process.

When a class is configured in this fashion, calls to CoRegisterClassObject with this CLSID will fail
unless the process was launched by OLE on behalf of an actual activation request. In other words,
classes configured to RunAs a particular user may not be registered under any other identity.

The user-name is taken from the RunAs named-value under the class's APPID key. If the user-name is
"Interactive User", the class code is run in the security context of the currently logged on user and is
connected to the interactive window station.

Otherwise, the password is retrieved from a secret and safe portion of the registry available only to
administrators of the machine and to the system. The user-name and password are then used to create a
logon-session in which the class code is run. When launched in this way, the class code runs with its own
desktop and window-station, and does not share window-handles, the clipboard, or other UI elements
with the interactive user or other classes running in other user accounts.

A server registered either with LocalService or RunAs can register an object in the running object table
to allow any client to connect to it. To do so, the server's call to IRunningObjectTable::Register must set
the ROTFLAGS_ALLOWANYCLIENT flag. A server setting this bit must have its executable name in the
AppID section of the registry that refers to the AppID for the executable. An "activate as activator" server
(not registered either as LocalService or RunAs) may not register an object with this flag.

Out-of-process Server Implementation Helpers
Four helper functions that can be called by out-of-process servers are now available to simplify the job of
writing server code. OLE clients and OLE in-process servers typically would not call them. These
functions are designed to help prevent race conditions in server activation when the servers have multiple
apartments or multiple class objects. They can also, however, as easily be used for single-threaded and
single class object servers. The functions are as follows:

· CoAddRefServerProcess
· CoReleaseServerProcess
· CoSuspendClassObjects
· CoResumeClassObjects

To shut down properly, an OLE server must keep track of how many object instances it has instantiated
and how many times its IClassFactory::LockServer method has been called. Only when both of these
counts reach zero, can a server shut down. In single-threaded OLE servers, the decision to shut down
was coordinated with incoming activation requests by the fact that the requests were serialized by the
message queue. The server, upon receiving a Release on it's final object instance and deciding to shut
down, would revoke its class objects before any more activation requests were dispatched. If an
activation request did come in after this point, OLE would recognize that the class objects were revoked,
and would return an error to the SCM, which would then cause a new instance of the local server process
to be run.

However, in an apartment model server, in which different class objects are registered on different
apartments, and in all free-threaded servers, this decision to shut down must be co-ordinated with
activation requests across multiple threads, so one thread of the server does not decide to shut down
while another thread of the server is busy handing out class objects or object instances. One classical but
cumbersome approach to solving this is to have the server, after it has revoked its class objects, recheck
its instance count and stay alive until all instances have been released.

To make it easier for server writers to handle these types of race conditions, OLE provides two new
reference counting functions. CoAddRefServerProcess increments a global per-process reference
count. CoReleaseServerProcess decrements the global per-process reference count. When the global
per-process reference count reaches zero, OLE automatically does a CoSuspendClassObjects, which
prevents any new activation requests from comming in. The server can then deregister its various class
objects from its various threads at leisure without worry that another activation request may come in. All
new activation requests are henceforth handled by the SCM launching a new instance of the local server
process.

The simplest way for a local server application to make use of these APIs is to call
CoAddRefServerProcess in the constructor for each of its instance objects, and in each of its
IClassFactory::LockServer methods when the fLock parameter is TRUE. The server application should
also call CoReleaseServerProcess in the destructor of each of its instance objects, and in each of its
IClassFactory::LockServer methods when the fLock parameter is FALSE.

Finally, the server application should pay attention to the return code from CoReleaseServerProcess
and if it returns 0, the server application should initiate its cleanup, which, for a server with multiple
threads, typically means that it should signal it's various threads to exit their message loops and call
CoRevokeClassObject and CoUninitialize. Note that if these functions are used at all, they must be
used in both the object instances and the LockServer method, otherwise, the server application may be
shut down prematurely.

A slight change has been made in OLE for WindowsNT 4.0. When a CoGetClassObject request is made,
OLE contacts the server, marshals the IClassFactory interface of the class object, returns to the client

process, unmarshals the IClassFactory interface, and returns this to the client. At this point, clients
typically call IClassFactory::LockServer(TRUE) to prevent the server process from shutting down.
However, there is a window of time between when the class object is marshaled and when the client calls
LockServer, in which another client could connect to the same server, get an instance and Release that
instance causing the server to shutdown and leaving the first client high and dry with a disconnected
IClassFactory pointer. To prevent this race condition, OLE adds an implicit
IClassFactory::LockServer(TRUE) to the class object when it marshals the IClassFactory interface,
and an implicit IClassFactory::LockServer(FALSE) when the client releases the IClassFactory
interface. Because of this change, it is no longer necessary to remote LockServer calls back to the
server, so the proxy for IClassFactory::LockServer simply returns S_OK without actually remoting the
call.

There is another activation-related race condition during initialization of an out-of-process server process.
An OLE server that registers multiple classes typically calls
CoRegisterClassObject(....REGCLS_LOCAL_SERVER) for each CLSID it supports. After it has done
this for all classes, the server enters it's message loop. For a single-threaded OLE server, all activation
requests are blocked until the server enters the message loop. However, for an apartment model server
that registers different class objects in different apartments, and for all free-threaded servers, activation
requests can arrive earlier than this. In the case of apartment model servers, activation requests could
arrive as soon as any one thread has entered its message loop. In the case of free-threaded servers, an
activation request could arrive as soon as the first class object is registered. Since an activation can
happen this early, it is also possible for the final Release to occur (and hence cause the server to begin
shutting down) before the rest of the server has had a chance to finish initializing.

To eliminate these race conditions and simplify the job of the server writer, any server that wants to
register multiple class objects with OLE should call CoRegisterClassObject(....,
REGCLS_LOCAL_SERVER | REGCLS_SUSPENDED) for each different CLSID the server supports.
After all classes have been registered and the server process is ready to accept incoming activation
requests, the server should make one call to CoResumeClassObjects. This API tells OLE to inform the
SCM about all the registered classes, and it begins letting activation requests into the server process.
Using these APIs has serveral advantages. First, only one call is made to the SCM regardless of how
many CLSIDs are registered, thus reducing the overall registration time (and hence startup time of the
server application). The second advantage is that if the server has multiple apartments and different
CLSIDs are registered in different apartments, or if the server is a free-threaded server, no activation
requests will come in until the server calls CoResumeClassObjects, giving the server a chance to
register all of its CLSIDs and get properly set up before having to deal with activation requests, and
possible shut down requests.

GUID Creation and Optimizations
Because a CLSID, like an interface identifier (IID), is a GUID, no other class, no matter who writes it, has
a duplicate CLSID. Server implementers generally obtain CLSIDs through the CoCreateGUID function in
COM. This function is guaranteed to produce unique CLSIDs, so server implementors across the world
can independently develop and deploy their software without fear of accidental collision with software
written by others.

Using unique CLSIDs avoids the possibility of name collisions among classes because CLSIDs are in no
way connected to the names used in the underlying implementation. So, for example, two different
vendors can write classes called "StackClass," but each would have a unique CLSID and therefore could
not be confused.

Both COM and OLE frequently must map GUIDs (IIDs and CLSIDs) to some arbitrarily large set of other
values. As an application developer, you can help speed up such searches, and thereby enhance system
performance, by generating the GUIDs for your application as a block of consecutive values.

The most efficient way to generate a block of consecutive GUIDs is to run the uuidgen utility using the /n
switch, which generates a block of UUIDs, each of whose first DWORD value is incremented by one. (For
more information on using the uuidgen utility, see "The uuidgen Utility.")

For example, if you were to type

uuidgen -n5 -s >guids.txt

the uuidgen utility would generate a block of UUIDs similar to the following:

{12340001-4980-1920-6788-123456789012}
{12340002-4980-1920-6788-123456789012}
{12340003-4980-1920-6788-123456789012}
{12340004-4980-1920-6788-123456789012}
{12340005-4980-1920-6788-123456789012}

One method for generating and tracking GUIDs for an entire project begins with generating a block of
some arbitrarily large number of UUIDs ¾ say, 500. For example, if you were to type

uuidgen -n500 -s >guids.txt

the utility would generate 500 consecutive UUIDs and write them to the specified text file. You could then
check this file into your source tree, providing a single repository for all GUIDs to be used in a project. As
people require GUIDs for their portions of the project, they can check out the file, take however many
GUIDs they need, marking them as taken and leaving a note about where in the code or "spec" they are
using them.

In addition to improving system performance, generating blocks of consecutive GUIDs in this way has the
following benefits:

· A central file containing all GUIDs for an application makes it easy to keep track of which GUIDs are
for what and which people are using them.

· A block of consecutive GUIDs associated with a particular application helps developers and testers
recognize internal GUIDs during debugging and makes it easier to find them in the system registry
because they are stored sequentially.

Persistent Object State
Some COM objects can save their internal state when asked to do so by a client. COM defines standards
through which clients can request objects to be initialized, loaded, and saved to and from a data store (for
example, flat file, structured storage, or memory). It is the client's responsibility to manage the place
where the object's persistent data is stored, but not the format of the data. COM objects that adhere to
these standards are called persistent objects. See Persistent Object Interfaces and Initializing
Persistent Objects for more information.

Persistent Object Interfaces
A persistent object implements one or more persistent object interfaces. Clients use persistent object
interfaces to tell those objects when and where to store their state. All persistent object interfaces are
derived from IPersist, so any object that implements any persistent object interface also implements
IPersist.

The following persistent object interfaces are currently defined:

IPersistStream

IPersistStreamInit

IPersistStorage

IPersistFile

IPersistMoniker

IPersistMemory

IPersistPropertyBag

Implementers choose which persistent object interfaces an object supports depending on how the object
is to be used. By not supporting any persistent object interfaces, the implementer is effectively saying,
"This object's state cannot be persistently stored." By supporting one or more persistent object interfaces,
the implementer is effectively saying, "This object's state can be persistently stored in one or more data
store mediums."

For example, several object types allow support for different persistent object interfaces:

Category Persistent Object Interfaces Typically
Supported

Monikers IPersistStream
OLE embeddable
objects

IPersistStorage, IPersistFile

ActiveX™ controls IPersistStreamInit, IPersistStorage,
IPersistMemory, IPersistPropertyBag,
IPersistMoniker

ActiveX document
objects

IPersistStorage, IPersistFile

Client implementers can also choose which persistent object interfaces the client can use. The interfaces
a client uses is usually determined by where the client can store its own data. A client that can store its
data only in a flat file will probably use only IPersistStreamInit, IPersistMoniker, and
IPersistPropertyBag. (IPersistStreamInit can replace IPersistStream in most applications, because it
contains that definition and adds an initialization method). A client that can save its data to a structured
storage file will, in addition, use IPersistStorage.

Initializing Persistent Objects
Several of the persistent object interfaces (IPersistStreamInit, IPersistStorage, IPersistMemory, and
IPersistPropertyBag) allow clients to initialize objects to a "fresh" or "default" state. This initial state is
different from that of a newly created object, which has no state. Initializing an object's state, even to the
default state, may be a compute- or resource-intensive operation. By separating creation from
initialization, the initialization can be performed only when it is actually needed, and clients can avoid
initializing objects to the default state only to immediately load previously stored data.

Security in COM
Prior to Windows NT 4.0, there was no special support for security in OLE beyond that provided by the
operating system, so out-of-process servers had the same permissions as the interactive user, and an
object could be instantiated for any CLSID in the registry, no matter who the user was.

To make it possible to implement an object that could perform privileged operations without compromising
security, security features, which use and enhance the Windows NT security model, have been added to
OLE. There are two main areas:

· Launch Security
· Call Security

Launch Security controls which objects a client is allowed to instantiate. Call Security dictates how
security operates at the call level between an established connection from a client to a server. While
anyone can get interface pointers from the class table, they cannot use them if they do not have call
permissions.

OLE provides a default security model, but also defines call-level interfaces that external security
providers can implement to control object security.

It is also possible to have a server run as a given user account, through setting the RunAs named-value.
This can be used to restrict or enhance available operations. For more information, see Installing as a
Win32 Service or User Account.

 The remainder of this section describes the capabilities of COM security in greater detail.

Launch Security
Activation security controls which classes a client is allowed to launch and retrieve objects from. Launch
security is automatically applied by the Service Control Manager (SCM) of a particular machine. Upon
receipt of a request from a remote client to activate an object (as described in Instance Creation Helper
Functions), the SCM of the machine checks the request against activation security information stored
within its registry.

There are two machine-wide secure settings in the registry, to which only machine administrators and the
system have full access. All other users have only read-access. These are EnableDCOM and
DefaultLaunchPermission. The EnableDCOM allows or disallows remote clients to launch class code
and connect to objects for the system, and DefaultLaunchPermission, as the name implies, sets the
default Access Control List (ACL) of who has permission to classes on the system.

You can override the default for any given class by assigning the desired permissions to the
LaunchPermission key.

Call Security
COM provides two mechanisms to secure calls. The first is done automatically by the COM infrastructure.
If the application provides some setup information, COM will make all the necessary checks to secure the
application's objects. This automatic mechanism does security checking for the process, not for individual
objects or methods. The second is a set of functions and interfaces that applications may use to do their
own security checking, and provide more fine-grained security. Furthermore, the two mechanisms are not
exclusive: an application may ask COM to perform automatic security checking and also perform its own.

COM call security services are divided into three categories:

· General functions called by both clients and servers
· New interfaces on client proxies and related helper functions
· Server-side functions and call-context interfaces.

If you are using the default security values for a process for authentication and authorization, no security
initialization call is necessary. If, however, you want to set other values for that process, you would call
CoInitializeSecurity. This both initializes and registers these values. The values set in this call then
become the default values for that process. The proxy interfaces allow the client to control the security on
calls to individual interfaces.

The IClientSecurity interface is implemented locally to the client by the interface remoting layer. The
client calls its methods to control the security of individual interface proxies on the object prior to making a
call on one of the interfaces. Generally, clients using the default implementation instead call the helper
functions that access that implementation and simplify the code: CoQueryProxyBlanket,
CoSetProxyBlanket, and CoCopyProxy. Calling IClientSecurity directly is slightly more efficient then
calling the helper functions. IClientSecurity works with all authentication services (NTLMSSP, DEC,
kerberos). Some custom marshalled objects might not support IClientSecurity.

The server APIs and interfaces allow the server to retrieve security information about a call and to
impersonate the caller. The IServerSecurity interface is implemented for all providers, but may be absent
for some custom-marshaled interfaces. Helper functions are also available that rely on the
IServerSecurity interface implementation: CoQueryClientBlanket, CoImpersonateClient, and
CoRevertToSelf.

In a typical scenario, the client queries an existing object for IClientSecurity, which is implemented
locally by the interface remoting layer. The client uses IClientSecurity to control the security of individual
interface proxies on the object prior to making a call on one of the interfaces. When a call arrives at the
server, the server may call CoGetCallContext to retrieve an IServerSecurity interface. IServerSecurity
allows the server to check the client's authentication and to impersonate the client, if needed. The
IServerSecurity object is valid for the duration of the call. CoInitializeSecurity allows the client to
establish default call security for the process, avoiding the use of IClientSecurity on individual proxies.
CoInitializeSecurity allows a server to register automatic authentication services for the process.

Implementations of QueryInterace must never check ACLs. COM requires that an object which supports
a particular IID always return success when queried for that IID. Aside from the requirement, checking
ACLs on QueryInterface does not provide any real security. If client A legally has access to interface
IFoo, A can hand it directly to B without any calls back to the server. Additionally, OLE caches interface
pointers and will not call QueryInterface on the server every time a client does a query. For more
information on implementing QueryInterface, see Rules for Implementing QueryInterface.

Machine administrators and the system only have full access to the portion of the registry that contains
the default machine-wide call security settings. All other uses have read access only. These named
values are used for classes that do not call CoInitializeSecurity, and are as follows:

· DefaultAccessPermission
· LegacyAuthenticationLevel
· LegacyImpersonationLevel
· LegacyMutualAuthentication
· LegacySecureReferences

To set access to objects of a specific class, there is the single named-value, AccessPermission

Providing Class Information
It is often useful for a client of an object to examine the object's type information. Given the object's
CLSID, a client can locate the object's type library using registry entries, and then can scan the type
library for the coclass entry in the library matching the CLSID.

However, not all objects have a CLSID, although they still need to provide type information. In addition, it
is convenient for a client to have a way to simply ask an object for its type information instead of going
through all the tedium to extract the same information from registry entries.

This capability is important when dealing with outgoing interfaces on connectable objects. See Using
IProvideClassInfo in the Connectable Objects chapter for more information on how connectable objects
provide this capability.

In these cases, a client can query the object for any of the IProvideClassInfo[x] interfaces. If these
interfaces exist, the client calls IProvideClassInfo[x]::GetClassInfo to get the type information for the
interface.

By implementing IProvideClassInfo[x], an object specifies that it can provide type information for its
entire class, that is, what it would describe in its coclass section of its type library, if it has one. The
GetClassInfo method returns an ITypeInfo pointer corresponding to the object's coclass information.
Through this ITypeInfo pointer, the client can examine all the object's incoming and outgoing interface
definitions.

The object can also provide IProvideClassInfo2. The IProvideClassInfo2 interface is a simple extension
to IProvideClassInfo that makes it quick and easy to retrieve an object's outgoing interface identifiers for
its default event set. IProvideClassInfo2 is derived from IProvideClassInfo.

Inter-object Communication
COM is designed to allow clients to communicate transparently with objects, regardless of where those
objects are running ¾ the same process, the same machine, or a different machine. This provides a
single programming model for all types of objects, both object clients and object servers.

From a client's point of view, all objects are accessed through interface pointers. A pointer must be in-
process. In fact, any call to an interface function always reaches some piece of in-process code first. If the
object is in-process, the call reaches it directly, with no intervening system-infrastructure code. If the
object is out-of-process, the call first reaches what is called a "proxy" object provided either by COM itself
or by the object (if the implementor wishes). The proxy packages call parameters (including any interface
pointers) and generates the appropriate remote procedure call (or other communication mechanism in the
case of custom generated proxies) to the other process or the other machine where the object
implementation is located. This process of packaging pointers for transmission across process
boundaries is called marshaling.

From a server's point of view, all calls to an object's interface functions are made through a pointer to that
interface. Again, a pointer only has context in a single process, and so the caller must always be some
piece of in-process code. If the object is in-process, the caller is the client itself. Otherwise, the caller is a
"stub" object provided either by COM or by the object itself. The stub receives the remote procedure call
(or other communication mechanism in the case of custom generated proxies) from the "proxy" in the
client process, unmarshals the parameters, and calls the appropriate interface on the server object. From
the points of view of both clients and servers, they always communicate directly with some other in-
process code.

OLE provides an implementation of marshaling, referred to as standard marshaling. This implementation
works very well for most objects, and greatly reduces programming requirements, making the marshaling
process effectively transparent.

The clear separation of interface from implementation of OLE's process transparency can, however, get in
the way for some situations when performance is of critical concern. The design of an interface that
focuses on its function from the client's point of view can sometimes lead to design decisions that conflict
with efficient implementation of that interface across a network. In cases like this, what is needed is not
pure process transparency, but "process transparency, unless you need to care." COM provides this
capability by allowing an object implementor to support custom marshaling. Standard marshaling is, in
fact, an instance of custom marshaling ¾ it is the default implementation used when an object does not
require custom marshaling.

You can implement custom marshaling to allow an object to take different actions when used from across
a network than it takes under local access ¾ and it is completely transparent to the client. This
architecture makes it possible to design client/object interfaces without regard to network performance
issues, then, later, to address network performance issues without disrupting the established design.

COM does not specify how components are structured; it specifies how they interact. COM leaves the
concern about the internal structure of a component to programming languages and development
environments. Conversely, programming environments have no set standards for working with objects
outside of the immediate application. C++, for example, works extremely well to manipulate objects inside
an application, but has no support for working with objects outside the application. Generally, all other
programming languages are the same in this regard. Therefore COM, through language-independent
interfaces, picks up where programming languages leave off to provide the network-wide interoperability.

The double indirection of the vtbl structure means that the pointers in the table of function pointers do not
need to point directly to the real implementation in the real object. This is the heart of process
transparency.

For in-process servers, where the object is loaded directly into the client process, the function pointers in

the table point directly to the actual implementation. In this case, a function call from the client to an
interface method directly transfers execution control to the method. This cannot, however, work for local,
let alone remote, objects because pointers to memory cannot be shared between processes.
Nevertheless, the client must be able to call interface methods as if it were calling the actual
implementation. Thus, the client uniformly transfers control to a method in some object by making the call.

A client always calls interface methods in some in-process object. If the actual object is local or remote,
the call is made to a proxy object which then makes a remote procedure call to the actual object.

So what method is actually executed? The answer is that whenever there is a call to an out-of-process
interface, each interface method is implemented by a proxy object. The proxy object is always an in-
process object that acts on behalf of the object being called. This proxy object knows that the actual
object is running in a local or remote server.

The proxy object packages up the function parameters in some data packets and generates an RPC call
to the local or remote object. That packet is picked up by a stub object in the server's process on the local
or a remote machine, which unpacks the parameters and makes the call to the real implementation of the
method. When that function returns, the stub packages up any out-parameters and the return value,
sends it back to the proxy, which unpacks them and returns them to the original client.

Thus, client and server always talk to each other as if everything was in-process. All calls from the client
and all calls to the server are, at some point, in-process. But because the vtbl structure allows some
agent, like COM, to intercept all function calls and all returns from functions, that agent can redirect those
calls to an RPC call as necessary. Although in-process calls are, naturally, faster than out-of-process
calls, the process differences are completely transparent to the client and server.

Marshaling Details
Marshaling is the process of packaging and unpackaging parameters so a remote procedure call can take
place. Different parameter types are marshaled in different ways. For example, marshaling an integer
parameter involves simply copying the value into the message buffer (although even in this simple case,
there are issues such as byte ordering to deal with in cross-machine calls). Marshaling an array, however,
is a more complex process. Array members are copied in a specific order so that the other side can
reconstruct the array exactly. When a pointer is marshaled, the data that the pointer is pointing to is
copied following rules and conventions for dealing with nested pointers in structures. Unique functions
exist to handle the marshaling of each parameter type.

With standard marshaling, the proxies and stubs are system-wide resources for the interface, and they
interact with the channel through a standard protocol. Standard marshaling can be used by both standard
OLE interfaces and custom interfaces:

· In the case of most OLE interfaces, the proxies and stubs for standard marshaling are themselves in-
process component objects which are loaded from a system-wide DLL provided by OLE in
OLE32.DLL.

· In the case of custom interfaces, the proxies and stubs for standard marshaling are generated by the
interface designer, typically with MIDL. These proxies and stubs are statically configured in the
registry, so any potential client can use the custom interface across process boundaries. These
proxies and stubs are loaded from a DLL that is located via the system registry using the interface ID
(IID) for the custom interface they marshal.

As an alternative to standard marshaling, an interface (standard or custom) can use custom marshaling.
With custom marshaling, an object dynamically implements the proxies at run-time for each interface that
it supports. For any given interface, the object can select OLE-provided standard marshaling or custom
marshaling. This choice is made by the object on an interface by interface basis. Once the choice is made
for a given interface, it remains in effect during the object's lifetime. However one interface on an object
can use custom marshaling while another uses standard marshaling.

Custom marshaling is inherently unique to the object that implements it. It uses proxies implemented by
the object and provided to the system on request at run-time. Objects that custom-marshal must
implement the IMarshal interface, whereas objects that support standard marshaling do not.

If you decide to write a custom interface, you must provide marshaling support for it. Typically, you will
provide a standard marshaling DLL for the interface you design. You can use the tools contained in the
Win32 SDK CD to create the proxy/stub code and the proxy/stub DLL.

For a client to make a call to an interface method in an object in another process involves the cooperation
of several components. The standard proxy is a piece of interface-specific code that resides in the client's
process space and prepares the interface parameters for transmittal. It packages, or marshals, them in
such a way that they can be re-created and understood in the receiving process. The standard stub, also
a piece of interface-specific code, resides in the server's process space and reverses the work of the
proxy. The stub unpackages, or unmarshals, the sent parameters and forwards them to the object
application. It also packages reply information to send back to the client.

Note Readers more familiar with RPC than OLE may be used to seeing the terms client stub and
server stub. These terms are analogous to proxy and stub.

The following diagram shows the flow of communication between the components involved. On the client
side of the process boundary, the client's method call goes through the proxy and then onto the channel.
Note that the channel is part of the COM library. The channel sends the buffer containing the marshaled
parameters to the RPC run-time library, which transmits it across the process boundary. The RPC run-

time and the COM libraries exist on both sides of the process. Note also that the distinction between the
channel and the RPC run-time is a characteristic of this implementation and is not part of the
programming model or the conceptual model for OLE client/server objects. OLE servers see only the
proxy or stub and, indirectly, the channel. Future implementations may use different layers below the
channel or no layers.

{ewc msdncd, EWGraphic, bsd23513 0 /a "SDK.WMF"}

Components of interprocess communications

Proxy
A proxy resides in the address space of the calling process and acts as a surrogate for the remote object.
From the perspective of the calling object, the proxy is the object. Typically, the proxy's role is to package
the interface parameters for calls to methods in its object interfaces. The proxy packages the parameters
into a message buffer and passes the buffer onto the channel, which handles the transport between
processes. The proxy is implemented as an aggregate, or composite, object. It contains a system-
provided, manager piece called the proxy manager and one or more interface-specific components called
interface proxies. The number of interface proxies equals the number of object interfaces that have been
exposed to that particular client. To the client complying with the component object model, the proxy
appears to be the real object.

Note With custom marshaling, the proxy can be implemented similarly or it can communicate
directly with the object without using a stub.

Each interface proxy is a component object that implements the marshaling code for one of the object's
interfaces. The proxy represents the object for which it provides marshaling code. Each proxy also
implements the IRpcProxyBuffer interface. Although the object interface represented by the proxy is
public, the IRpcProxyBuffer implementation is private and is used internally within the proxy. The proxy
manager keeps track of the interface proxies and also contains the public implementation of the
controlling IUnknown interface for the aggregate. Each interface proxy can exist in a separate DLL that is
loaded when the interface it supports is materialized to the client.

The following diagram shows the structure of a proxy that supports the standard marshaling of
parameters belonging to two interfaces: IFoo1 and IFoo2. Each interface proxy implements
IRpcProxyBuffer that is used for internal communication between the aggregate pieces. When the proxy
is ready to pass its marshaled parameters across the process boundary, it calls methods in the
IRpcChannelBuffer interface, which is implemented by the channel. The channel in turn forwards the call
to the RPC run-time library so that it can reach its destination in the object.

{ewc msdncd, EWGraphic, bsd23513 1 /a "SDK.WMF"}

Structure of the Proxy

Stub
The stub, like the proxy, is made up of one or more interface pieces and a manager. Each interface stub
provides code to unmarshal the parameters and code that calls one of the object's supported interfaces.
Each stub also provides an interface for internal communication. The stub manager keeps track of the
available interface stubs.

There are, however, some differences between the stub and the proxy:

· The most important difference is that the stub represents the client in the object's address space.
· The stub is not implemented as an aggregate object since there is no requirement that the client be

viewed as a single unit; each piece in the stub is a separate component.
· The interface stubs are private, rather than public.
· The interface stubs implement IRpcStubBuffer, not IRpcProxyBuffer.
· Instead of packaging parameters to be marshaled, the stub unpackages them after they have been

marshaled and then packages the reply.

The following diagram shows the structure of the stub. Each interface stub is connected to an interface on
the object. The channel dispatches incoming messages to the appropriate interface stub. All the
components talk to the channel through IRpcChannelBuffer, the interface that provides access to the
RPC run-time library.

{ewc msdncd, EWGraphic, bsd23513 2 /a "SDK.WMF"}

Structure of the Stub

Channel
The channel has the responsibility of transmitting all messages between client and object across the
process boundary. The channel has been designed to work transparently with different channel types, is
compatible with OSF DCE standard RPC, and supports single and multi-threaded applications.

Microsoft RPC
RPC is a model for programming in a distributed computing environment. The goal of RPC is to provide
transparent communication so that the client appears to be directly communicating with the server.
Microsoft's implementation of RPC is compatible with the Open Software Foundation (OSF) Distributed
Computing Environment (DCE) RPC.

You can configure RPC to use one or more transports, one or more name services, and one or more
security servers. The interface to those providers are handled by RPC. Because Microsoft RPC is
designed to work with multiple providers, you can choose the providers that work best for your network.
The transport is responsible for transmitting the data across the network. The name service takes an
object name, such as a moniker, and finds its location on the network. The security server offers
applications the option of denying access to specific users and/or groups. Refer to the section Interface
Design for more detailed information about application security.

In addition to the RPC run-time libraries, Microsoft RPC includes the Interface Definition Language (IDL)
and its compiler. Although the IDL file is a standard part of RPC, Microsoft has enhanced it to extend its
functionality to support custom COM interfaces. The Microsoft Interface Definition Language (MIDL)
compiler uses the IDL file that describes your custom interface to generate several files discussed in the
section "Building a Proxy/Stub DLL."

Call Synchronization
OLE applications must be able to deal correctly with user input while processing one or more calls from
OLE or the operating system. OLE provides call synchronization for single-threaded apartments only.
Multi-threaded apartments (containing free-threaded threads) do not receive calls while making calls (on
the same thread). Multi-threaded apartments cannot make input synchronized calls. Asynchronous calls
are converted to synchronous calls in multi-threaded apartments. The message filter is not called for any
thread in a multi-threaded apartment. For more information on threading issues, see Processes and
Threads.

OLE calls between processes fall into three categories:

· Synchronous calls
· Asynchronous notifications
· Input-synchronized calls

Most of the communication that takes place within OLE is synchronous. When making synchronous calls,
the caller waits for the reply before continuing and can receive incoming messages while waiting. OLE
enters a modal loop to wait for the reply, receiving and dispatching other messages in a controlled
manner.

When sending asynchronous notifications, the caller does not wait for the reply. OLE uses PostMessage
or high-level events to send asynchronous notifications, depending on the platform. OLE defines five
asynchronous methods:

· IAdviseSink::OnDataChange
· IAdviseSink::OnViewChange
· IAdviseSink::OnRename
· IAdviseSink::OnSave
· IAdviseSink::OnClose

While OLE is processing an asynchronous call, synchronous calls cannot be made. For example, a
container application's implementation of IAdviseSink::OnDataChange cannot contain a call to
IPersistStorage::Save.

When making input-synchronized calls, the object called must complete the call before yielding control.
This ensures that focus management works correctly and that data entered by the user is processed
appropriately. These calls are made by OLE through the Windows SendMessage function, without
entering a modal loop. While processing an input-synchronized call, the object called must not call any
function or method (including synchronous methods) that might yield control.

The following methods are input synchronized:

· IOleWindow::GetWindow
· IOleInPlaceActiveObject::OnFrameWindowActivate
· IOleInPlaceActiveObject::OnDocWindowActivate
· IOleInPlaceActiveObject::ResizeBorder
· IOleInPlaceUIWindow::GetBorder
· IOleInPlaceUIWindow::RequestBorderSpace
· IOleInPlaceUIWindow::SetBorderSpace
· IOleInPlaceFrame::SetMenu

· IOleInPlaceFrame::SetStatusText
· IOleInPlaceObject::SetObjectRects

To minimize problems that can arise from asynchronous message processing, the majority of OLE
method calls are synchronous. With synchronous communication, there is no need for special code to
dispatch and handle incoming messages. When an application makes a synchronous method call, OLE
enters a modal wait loop that handles the required replies and dispatches incoming messages to
applications capable of processing them.

OLE manages method calls by assigning an identifier called a logical thread ID. A new one is assigned
when a user selects a menu command or when the application initiates a new OLE operation.
Subsequent calls that relate to the initial OLE call are assigned the same logical thread ID as the initial
call.

CHAPTER 4

Registering Object Applications
Most OLE registry information is stored in subkeys and named values under the following registery keys:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE

To obtain general information about registering an object application or about an OLE registry entry make
a selection from one of the topics listed below.

OLE Registry Entries

The topics in this section contain general information about registering OLE applications.

Installation and Setup
OLE Registry Functions
Registering OLE 2 Libraries
Checking Registration During Run Time
Specifying Unknown User Types
Conventions Used in Examples

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppID

The topics under the AppID key describe registry entries related to distributed COM.

RemoteServerName
ActivateAtStorage
LocalService
ServiceParameters
RunAs
LaunchPermission
AccessPermission

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID Key

The topics under the CLSID key contain information that is used by the default OLE handler to return
information about a class when it is in the running state.

AppID
AutoConvertTo
AutoTreatAs
AuxUserType
< CLSID >
Conversion
DataFormats
DefaultIcon
InprocHandler
InprocHandler32
InprocServer

InprocServer32
Insertable
Interface
LocalServer
LocalServer32
MiscStatus
ProgID
ToolBoxBitmap32
TreatAs
Verb
Version

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\<FileExtension >

The file extension key associates a file extension with a ProgID, indicating that OLE 2 can handle
requests fromthe Windows 3.1 File Manger. It is also used by File Monikers and by GetClassFile to
supply the associated CLSID.

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\FileType

The FileType key is used by GetClassFile on non-compound files to obtain a CLSID.

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Interface

The Interface key registers new interfaces with OLE by mapping an interface ID with a CLSID.

BaseInterface
NumMethods
ProxyStubClsid
ProxyStubClsid32

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\<ProgID >

The ProgID key maps a component's CLSID to a ProgID.

CLSID
Insertable
Shell

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\<VersionIndependentProgID>

The version independent ProgID key associates a ProgID with a CLSID and is used to determine the
latest version of an object application.

CLSID
CurVer

HKEY_LOCAL_MACHINE\Software|Microsoft\OLE

The values under this key control Distributed COMs call-level security features in application that do not
call CoInitializeSecurity.

EnableDCOM
DefaultLaunchPermission

DefaultAccessPermission
LegacyAuthenticationLevel
LegacyImpersonationLevel
LegacyMutualAuthentication
LegacySecureReferences

CHAPTER 5

Error Handling
At the source code level, all error values consist of three parts, separated by underscores. The first part is
the prefix that identifies the facility associated with the error, the second part is E for error, and the third
part is a string that describes the actual condition. For example, STG_E_MEDIUMFULL is returned when
there is no space left on a hard disk. The STG prefix indicates the storage facility, the E indicates that the
status code represents an error, and the MEDIUMFULL provides specific information about the error.
Many of the values that you might want to return from an interface method or function are defined in
winerror.h.

Success, warning, and error values are returned using a 32-bit number known as a result handle, or
HRESULT. HRESULTs are really not handles to anything, but merely 32-bit values with several fields
encoded in the value. A zero result indicates success and a non-zero result indicates failure.

HRESULTs work differently depending on the platform you are using. On 16-bit platforms, an HRESULT is
generated from a 32-bit value known as a status code, or SCODE. On 32-bit platforms, an HRESULT is
the same as an SCODE; they are synonymous. In fact, the SCODE is no longer used. 32-bit OLE uses
only HRESULTs.

For more information on errors, see the following sections:

· Structure of OLE Error Codes
· Codes in FACILITY_ITF
· Using Macros for Error Handling
· Error Handling Strategies
· Handling Error Information

Structure of OLE Error Codes
SCODES on 16-bit platforms are divided into four fields: a severity code, a context field, a facility field,
and an error code. The format of an SCODE on a 16-bit platform is shown below; the numbers indicate bit
positions.

{ewc msdncd, EWGraphic, bsd23517 0 /a "SDK.BMP"}

HRESULTs on 32-bit platforms have the following format.

{ewc msdncd, EWGraphic, bsd23517 1 /a "SDK.BMP"}

The severity code in the 16-bit SCODE and the high order bit in the HRESULT indicates whether the
return value represents success or failure. If set to zero, SEVERITY_SUCCESS, the value indicates
success. If set to 1, SEVERITY_ERROR, it indicates failure.

In the 16-bit version of the SCODE, the context field is reserved; this field does not exist in the 32-bit
version. The R, C, N, and r bits are reserved in both.

The facility field in both versions indicates the area of responsibility for the error. There are currently five
facilities: FACILITY_NULL, FACILITY_ITF, FACILITY_DISPATCH, FACILITY_RPC, and
FACILITY_STORAGE. If new facilities are necessary, Microsoft allocates them because they need to be
unique. Most SCODEs and HRESULTs set the facility field to FACILITY_ITF, indicating an interface
method error. The following table describes the various facility fields.

Facility Description
FACILITY_NULL For broadly applicable common status codes

such as S_OK. This facility code has a value of
zero.

FACILITY_ITF For most status codes returned from interface
methods, value is defined by the interface. That
is, two SCODEs or HRESULTs with exactly the
same 32-bit value returned from two different
interfaces might have different meanings. This
facility has a value of 4.

FACILITY_DISPATC
H

For late binding IDispatch interface errors. This
facility has a value of 2.

FACILITY_RPC For status codes returned from remote
procedure calls. This facility has a value of 1.

FACILITY_STORAGEFor status codes returned from IStorage or
IStream method calls relating to structured
storage. Status codes whose code (lower 16
bits) value is in the range of DOS error codes
(that is, less than 256) have the same meaning
as the corresponding DOS error. This facility has
a value of 3.

FACILITY_WINDOW
S

Used for additional error codes from Microsoft-
defined interfaces.

FACILITY_WIN32 Used to provide a means of handling error
codes from functions in the Win32 API as an
HRESULT. Error codes in 16-bit OLE that
duplicated Win32 error codes have also been
changed to FACILITY_WIN32.

The code field is a unique number that is assigned to represent the error or warning.

By convention, HRESULTs generally have names in the following form:

<Facility>_<Severity>_<Reason>

where <Facility> is either the facility name or some other distinguishing identifier, <Severity> is a single
letter, S or E, that indicates the severity of the error, and <Reason> is an identifier that describes the
meaning of the code. For example, the status code STG_E_FILENOTFOUND indicates a storage-related
error has occurred; specifically, a requested file does not exist. Status codes from FACILITY_NULL omit
the <Facility>_ prefix.

Error codes are defined within the context of an interface implementation. Once defined, success codes
cannot be changed or new success codes added. However, new failure codes can be written since they
generally only provide hints at what might have gone wrong. Microsoft reserves the right to define new
failure codes (but not success codes) for the interfaces described in this book in FACILITY_ITF or in new
facilities.

Codes in FACILITY_ITF
These HRESULTSs with facilities such as FACILITY_NULL and FACILITY_RPC have universal meaning
because they are defined at a single source: Microsoft. However, HRESULTs in FACILITY_ITF are
determined by the interface method (or function) from which they are returned. That is, the same 32-bit
value in FACILITY_ITF returned from two different interface methods might have different meanings.

The reason HRESULTs in FACILITY_ITF can have different meanings in different interfaces is that
HRESULTs are kept to an efficient data type size of 32 bits. Unfortunately 32 bits is not large enough for
the development of an allocation system for error codes that avoid conflict between codes allocated by
different non-communicating programmers at different times in different places (unlike the handling of
interface IDs and CLSIDs). As a result, the 32-bit HRESULT is structured in a way that Microsoft can
define some universally-defined error codes, while allowing other programmers to define new error codes
without fear of conflict. The status code convention is as follows:

1. Status codes in facilities other than FACILITY_ITF can only be defined by Microsoft.
2. Status codes in facility FACILITY_ITF are defined solely by the developer of the interface or API that

returns the status code. To avoid conflicting error codes, whoever defines the interface is responsible
for coordinating and publishing the FACILITY_ITF status codes associated with that interface.

All the OLE-defined FACILITY_ITF codes have a code value in the range of 0x0000 - 0x01FF. While it is
legal to use any codes in FACILITY_ITF, it is recommended that only code values in the range of 0x0200
¾ 0xFFFF be used. This recommendation is made as a means of reducing confusion with any OLE-
defined errors.

It is also recommended that developers define new functions and interfaces to return error codes as
defined by OLE and in facilities other than FACILITY_ITF. In particular, interfaces that have any chance of
being remoted using RPC in the future should define the FACILITY_RPC codes as legal.
E_UNEXPECTED is a specific error code that most developers will want to make universally legal.

Using Macros for Error Handling
OLE defines a number of macros that make it easier to work with SCODEs on 16-bit platforms and
HRESULTs on both platforms. Some of the macros and functions below provide conversion between the
two data types and are quite useful in code that runs only on 16-bit platforms, code that runs on both 16-
bit and 32-bit platforms, and 16-bit code that is being ported to a 32-bit platform. These same macros are
meaningless in 32-bit environments and are available in order to provide compatibility and make porting
easier. Newly written code should use the HRESULT macros and functions.

Error handling macros are listed below. Refer to The OLE Programmer's Reference for a complete
description of each.

Macro Description
GetScode (Obsolete) Returns an SCODE given an

HRESULT.
ResultFromScode (Obsolete) Returns an HRESULT given an

SCODE.
PropagateResult (Obsolete) Generates an HRESULT to

return to a function in cases where an error
is being returned from an internally called
function.

MAKE_HRESULT Returns an HRESULT given an SCODE
that represents an error.

MAKE_SCODE Returns an SCODE given an HRESULT.
HRESULT_CODE Extracts the error code part of the

HRESULT.
HRESULT_FACILITY Extracts the facility from the HRESULT.
HRESULT_SEVERITY Extracts the severity bit from the

SEVERITY.
SCODE_CODE Extracts the error code part of the SCODE.
SCODE_FACILITY Extracts the facility from the SCODE.
SCODE_SEVERITY Extracts the severity field from the SCODE.
SUCCEEDED Tests the severity of the SCODE or

HRESULT - returns TRUE if the severity is
zero and FALSE if it is one.

FAILED Tests the severity of the SCODE or
HRESULT - returns TRUE if the severity is
one and FALSE if it is zero.

IS_ERROR Provides a generic test for errors on any
status value.

FACILITY_NT_BIT Defines bits so macros are guaranteed to
work.

RESULT_FROM_WIN32 Maps a Win32 error value into an
HRESULT. This assumes that Win32 errors
fall in the range -32k to 32k.

HRESULT_FORM_NT Maps an NT status value into an HRESULT.

Note Calling MAKE_HRESULT for S_OK verification carries a performance penalty. You should
not routinely use MAKE_HRESULT for successful results.

Error Handling Strategies
Because interface methods are virtual, it is not possible to know, as a caller, the full set of values that may
be returned from any one call. One implementation of a method may return five values; another may
return eight. The OLE Programmer's Reference lists common values that may be returned for each
method; these are the values that you must check for and handle in your code because they have special
meanings. Other values may be returned, but since they are not meaningful, you do not need to write
special code to handle them. A simple check for zero or not zero is adequate.

HRESULTs
The values of some HRESULTs have been changed in 32-bit OLE to eliminate all duplication and
overlapping with Win32 error codes. Those that duplicate Win32 error codes have been changed to
FACILITY_WIN32 and those that overlap remain in FACILITY_NULL. Following is a list of their 32-bit
values:

HRESULT Value
E_UNEXPECTED 0x8000FFFF
E_NOTIMPL 0x80004001
E_OUTOFMEMORY0x8007000E
E_INVALIDARG 0x80070057
E_NOINTERFACE 0x80004002
E_POINTER 0x80004003
E_HANDLE 0x80070006
E_ABORT 0x80004004
E_FAIL 0x80004005
E_ACCESSDENIED 0x80070005

Handling Error Information
Keep in mind that it is legal to return a status code only from the implementation of an interface method
sanctioned as legally returnable. Failure to observe this rule invites the possibility of conflict between
returned error code values and those sanctioned by the application. In particular, pay attention to this
potential problem when propagating error codes from internally-called functions.

Applications that call interfaces should treat any unknown returned error code (as opposed to a success
code) as synonymous with E_UNEXPECTED. This practice of handling unknown error codes is required
by clients of the OLE-defined interfaces and APIs. Because typical programming practice is to handle a
few specific error codes in detail and treat the rest generically, this requirement of handling unexpected or
unknown error codes is easily met.

The following code sample shows the recommended way of handling unknown errors:

HRESULT hrErr;
hrErr = xxMethod();

switch (GetScode(hrErr)) {
 case NOERROR:
 //success
 break;

 case x1:
 .
 .
 break;

 case x2:
 .
 .
 break;

 case E_UNEXPECTED:
 default:
 //general failure
 break;
}

The following error check is often used with those routines that don't return anything special (other than
S_OK or some unexpected error):

if (xxMethod() == NOERROR)
 //success
else
 //general failure;

Monikers
A moniker in COM is not only, as the name implies, a way to identify an object. A moniker is also
implemented as an object. This object provides services allowing a component to obtain a pointer to the
object identified by the moniker. This process is referred to as binding.

Monikers are objects that implement the IMoniker_com_IMoniker interface, and are generally
implemented in DLLs as component objects. There are two ways of viewing the use of monikers: as a
moniker client, a component that uses a moniker to get a pointer to another object, and as a moniker
provider, a component that supplies monikers identifying its objects to moniker clients.

OLE uses monikers to connect to and activate objects, whether they are in the same machine or across a
network. A very important use is for network connections. They are also used to identify, connect to, and
run OLE Compound Document link objects. In this case, the link source acts as the moniker provider, and
the container holding the link object acts as the moniker client.

This chapter describes the following:

Moniker Clients

Moniker Providers

OLE Moniker Implementations

For basic COM information, refer to The Component Object Model.

Moniker Clients
Moniker clients must start by getting a moniker. There are several ways for a moniker client to get a
moniker. For example, in OLE Compound Documents, when the end-user creates a linked item (either
using Insert Object dialog, the clipboard, or drag-and drop), a moniker is embedded as part of the linked
item. In that case, the programmer has minimal contact with monikers. Programmatically, if you have an
interface pointer to an object that implements the IMoniker interface, you can use that to get a moniker,
and there are methods on other interfaces that are defined to return monikers.

There are different kinds of monikers, which are used to identify different kinds of objects, but to a
moniker client, all monikers look the same. A moniker client simply calls IMoniker::BindToObject on a
moniker and gets an interface pointer to the object that the moniker identifies. No matter whether the
moniker identifies an object as large as an entire spreadsheet or as small as a single cell within a
spreadsheet, calling IMoniker::BindToObject will return a pointer to that object. If the object is already
running, IMoniker::BindToObject will find it in memory. If the object is stored passively on disk,
IMoniker::BindToObject will locate a server for that object, run the server, and have the server bring the
object into the running state. All the details of the binding process are hidden from the moniker client.
Thus, for a moniker client, using the moniker is very simple.

Moniker Providers
In general, a component should be a moniker provider when it allows access to one of its objects, while
still controlling the object's storage. If a component is going to hand out monikers that identify its objects,
it must be capable of performing the following tasks:

· On request, create a moniker that identifies an object.
· Enable the moniker to be bound when a client calls IMoniker::BindToObject on it.

A moniker provider must create a moniker of an appropriate moniker class to identify an object. The
moniker class refers to a specific implementation of the IMoniker interface that defines the type of
moniker created. While you can implement IMoniker to create a new moniker class, it is frequently
unnecessary because OLE provides implementations of several different moniker classes, each with its
own CLSID. Refer to OLE Moniker Implementations for descriptions of moniker classes that OLE
provides.

OLE Moniker Implementations
OLE provides implementations of several monikers for different situations:

· File Monikers
· Composite Monikers
· Item Monikers
· Anti-monikers
· Pointer monikers
· Class Monikers

The file, composite, and item monikers are the most frequently used monikers, as they can be used to
make nearly any object in any location. Anti- and pointer monikers are primarily used inside OLE, but
have some application in implementing custom monikers.

File Monikers
File monikers are the simplest moniker class. File monikers can be used to identify any object that is
stored in its own file. A file moniker acts as a wrapper for the path name the native file system assigns to
the file. Calling IMoniker::BindToObject for this moniker would cause this object to be activated and then
would return an interface pointer to the object. The source of the object named by the moniker must
provide an implementation of the IPersistFile interface to support binding a file moniker. File monikers
can represent either a complete or a relative path.

For example, the file moniker for a spreadsheet object stored as the file C:\WORK\MYSHEET.XLS would
contain information equivalent to that path name. The moniker would not necessarily consist of the same
string, however. The string is just its display name, a representation of the moniker's contents that is
meaningful to an end user. The display name, which is available through the IMoniker::GetDisplayName
method, is used only when displaying a moniker to an end-user. This method gets the display name for
any of the moniker classes. Internally, the moniker may store the same information in a format that is
more efficient for performing moniker operations, but isn't meaningful to users. Then, when this same
object is bound through a call to the BindToObject method. the object would be activated, probably by
loading the file into the spreadsheet.

OLE offers moniker providers the helper API CreateFileMoniker that creates a file moniker object and
returns its pointer to the provider.

Composite Monikers
One of the most useful features of monikers is that you can concatenate or compose monikers together. A
composite moniker is a moniker that is a composition of other monikers, and can determine the relation
between the parts. This lets you assemble the complete path to an object given two or more monikers
that are the equivalent of partial paths. You can compose monikers of the same class (like two file
monikers) or of different classes (like a file moniker and an item moniker). If you were to write your own
moniker class, you could also compose your monikers with file or item monikers. The basic advantage of
a composite is that it gives you one piece of code to implement every possible moniker that is a
combination of simpler monikers. That reduces tremendously the need for specific custom moniker
classes.

Because monikers of different classes can be composed with one another, monikers provide the ability to
join multiple namespaces. The file system defines a common namespace for objects stored as files
because all applications understand a file-system path name. Similarly, a container object also defines a
private namespace for the objects that it contains, because no container understands the names
generated by another container. Monikers allow these name spaces to be joined because file monikers
and item monikers can be composed. A moniker client can search the namespace for all objects using a
single mechanism. The client simply calls IMoniker::BindToObject on the moniker, and the moniker code
handles the rest. A call to IMoniker::GetDisplayName on a composite creates a name using the
concatenation of all the individual monikers' display names.

Furthermore, because you can write your own moniker class, moniker composition allows you to add
customized extensions to the namespace for objects.

Sometimes two monikers of specific classes can be combined in a special way. For example, a file
moniker representing an incomplete path and another file moniker representing a relative path can be
combined to form a single file moniker representing the complete path. For example, the file monikers c:\
work\art could be composed with the relative file moniker ..\backup\myfile.doc to equal c:\work\
backup\myfile.doc. This is an example of "non-generic" composition.

"Generic" composition, on the other hand, permits the connection of any two monikers, no matter what
their classes. For example, you could compose an item moniker onto a file moniker, though not, of
course, the other way around.

Because a non-generic composition depends on the class of the monikers involved, its details are defined
by a the implementation of a particular moniker class. You can define new types of non-generic
compositions if you write a new moniker class. By contrast, generic compositions are defined by OLE.
Monikers created as a result of generic composition are called generic composite monikers.

These three classes ¾ file monikers, item monikers, and generic composite monikers ¾ all work together,
and they are the most commonly used classes of monikers.

Moniker clients should call IMoniker::ComposeWith to create a composite on moniker with another. The
moniker it is called on internally decides whether it can do a generic or non-generic composition. If the
moniker implementation determines that a generic composition is usable, OLE provides the
CreateGenericComposite API function to facilitate this.

Item Monikers
Another OLE-implemented moniker class is the item moniker, which can be used to identify an object
contained in another object. One type of contained object is an OLE object embedded in a compound
document. A compound document could identify the embedded objects it contains by assigning each one
an arbitrary name, such as "embedobj1," "embedobj2," and so forth. Another type of contained object is a
user selection in a document, such as a range of cells in a spreadsheet or a range of characters in a text
document. An object that consists of a selection is called a pseudo-object because it isn't treated as a
distinct object until a user marks the selection. A spreadsheet might identify a cell range using a name
such as "1A:7F," while a word processing document might identify a range of characters using the name
of a bookmark.

An item moniker is useful primarily when concatenated ¾ or "composed" ¾ with another moniker, one that
identifies the container. An item moniker is usually created, then composed onto (for example) a file
moniker to create the equivalent of a complete path to the object. For example, you can compose the file
moniker "C:\work\report.doc" (which identifies the container object) with the item moniker "embedobj1"
(which identifies an object within the container) to form the moniker "C:\work\report.doc\embedobj1,"
which uniquely identifies a particular object within a particular file. You can also concatenate additional
item monikers to identify deeply nested objects. For example, if "embedobj1" is the name of a
spreadsheet object, then to identify a certain range of cells in that spreadsheet object you could append
another item moniker to create a moniker that would be the equivalent of "C:\work\report.doc\
embedobj1\1A:7F."

When combined with a file moniker, an item moniker forms a complete path. Item monikers thus extend
the notion of path names beyond the file system, defining path names to identify individual objects, not
just files.

There is a significant difference between an item moniker and a file moniker. The path contained in a file
moniker is meaningful to anyone who understands the file system, while the partial path contained in an
item moniker is meaningful only to a particular container. Everyone knows what "c:\work\report.doc" refers
to, but only one particular container object knows what "1A:7F" refers to. One container cannot interpret
an item moniker created by another application; the only container that knows which object is referred to
by an item moniker is the container that assigned the item moniker to the object in the first place. For this
reason, the source of the object named by the combination of a file and item moniker must not only
implement IPersistFile to facilitate binding the file moniker, but also IOleItemContainer to facilitate
resolving the name of the item moniker into the appropriate object, in the context of a file.

The advantage of monikers is that someone using a moniker to locate an object doesn't need to
understand the name contained within the item moniker, as long as the item moniker is part of a
composite. Generally, it would not make sense for an item moniker to exist on its own. Instead, you would
compose an item moniker onto a file moniker. You would then call IMoniker::BindToObject on the
composite, which binds the individual monikers within it, interpreting the names.

To create an item moniker object and return its pointer to the moniker provider, OLE provides the helper
API CreateItemMoniker. This function creates an item moniker object and returns its pointer to the
provider.

Anti-monikers
OLE provides an implementation of a special type of moniker called an anti-moniker. You use this moniker
in the creation of new moniker classes. You use it as the inverse of the moniker that it is composed onto,
effectively canceling that moniker, in much the same way that the ".." operator moves up a directory level
in a file system command.

It is necessary to have an anti-moniker available, because once a composite moniker is created, it is not
possible to delete parts of the moniker if, for example, an object moves. Instead, you use an anti-moniker
to remove one or more entries from a composite moniker.

Anti-monikers are a moniker class explicitly intended for use as an inverse. COM defines an API function
named CreateAntiMoniker, which returns an anti-moniker. You generally use this function to implement
the IMoniker::Inverse method.

An anti-moniker is only an inverse for those types of monikers that are implemented to treat anti-monikers
as an inverse. For example, if you want to remove the last piece of a composite moniker, you should not
create an anti-moniker and compose it to the end of the composite. You cannot be sure that the last piece
of the composite considers an anti-moniker to be its inverse. Instead, you should call IMoniker::Enum on
the composite moniker, specifying FALSE as the first parameter. This creates an enumerator that returns
the component monikers in reverse order. Use the enumerator to retrieve the last piece of the composite,
and call IMoniker::Inverse on that moniker. The moniker returned by IMoniker::Inverse is what you
need to remove the last piece of the composite.

Pointer Monikers
A pointer moniker identifies an object that can exist only in the active or running state. This differs from
other classes of monikers, which identify objects that can exist either in the passive or active state.

Suppose, for example, an application has an object that has no persistent representation. Normally, if a
client of your application needs access to that object, you could simply pass the client a pointer to the
object. However, suppose your client is expecting a moniker. The object cannot be identified with a file
moniker, since it isn't stored in a file, nor with an item moniker, since it isn't contained in another object.

Instead, your application can create a pointer moniker, which is a moniker that simply contains a pointer
internally, and pass that to the client. The client can treat this moniker like any other. However, when the
client calls IMoniker::BindToObject on the pointer moniker, the moniker code does not check the
Running Object Table (ROT) or load anything from storage. Instead, the moniker code simply calls
IUnknown::QueryInterface on the pointer stored inside the moniker.

Pointer monikers allow objects that exist only in the active or running state to participate in moniker
operations and be used by moniker clients. One important difference between pointer monikers and other
classes of monikers is that pointer monikers cannot be saved to persistent storage. If you do, calling the
IMoniker::Save method returns an error. This means that pointer monikers are useful only in specialized
situations. You can use the CreatePointerMoniker API function if you need to use a pointer moniker.

Class Monikers
Although classes are typically identified directly with CLSID's to APIs such as CoCreateInstance or
CoGetClassObject, classes may also now be identified with a moniker called a class moniker. Class
monikers bind to the class object of the class for which they are created.

The ability to identify classes with a moniker supports useful operations which are otherwise unweildy. For
example, file monikers traditionally only supported rich binding to the class associated with the class of
file they referred to - a moniker to an Excel file would bind to an instance of an Excel object, and a
moniker to a GIF image would bind to an instance of the currently registered GIF handler. Class moniker
allows you to indicate the class you want to use to manipulate a file through composition with a file
moniker. A class moniker for a 3D charting class composed with a moniker to an Excel file yields a
moniker which binds to an instance of the 3D charting object and initializes the object with the contents of
the Excel file.

Class monikers are therefore most useful in composition with other types of monikers, such as file
monikers or item monikers.

Class monikers may also be composed to the right of monikers supporting binding to the IClassActivator
interface. When composed in this manner IClassActivator simply gives access to the class object and
instances of the class through IClassActivator::GetClassObject. Class monikers may be identified
through IMoniker::IsSystemMoniker which returns MKSYS_CLASSMONIKER in pdwMkSys.

Programmers typically create class monikers using the CreateClassMoniker function or through
MkParseDisplayName (see IMoniker - Class Moniker Implementation about ParseDisplayName for
details).

Asynchronous Monikers
The OLE moniker architecture provides a consistent, extensible programming model for working with
Internet objects, providing methods for parsing names, representing Universal Resource Locators (URLs)
as printable names, and locating and binding to the objects represented by URL strings. (Also see URL
Monikers.) Standard OLE monikers (notably, item, file, and pointer monikers), however, are inappropriate
for the Internet because they are synchronous, returning a pointer to an object or its storage only at such
time as all data is available. Depending on the amount of data to be downloaded, binding synchronously
can tie up the client's user interface for prolonged periods.

The Internet requires new approaches to application design. Applications should be able to perform all
expensive network operations asynchronously to avoid stalling the user interface. An application should
be able to trigger an operation and receive notification on full or partial completion. At that point, the
application should have the choice either of proceeding with the next step of the operation or providing
additional information as needed. As a download proceeds, an application should also be able to provide
users with progress information and the opportunity to cancel the operation at any time.

Asynchronous monikers provide these capabilities, as well as various levels of asynchronous binding
behavior, while providing backwards compatibility for applications that are either unaware of, or do not
require asynchronous behavior. Another OLE technology, Asynchronous Storage, works with
asynchronous monikers to provide asynchronous downloading of an Internet object's persistent state. The
asynchronous moniker triggers the bind operation and sets up the necessary components, including
storage and stream objects, byte-array objects, and notification sinks. Once the components are
connected, the moniker gets out of the way and the rest of the bind is executed mainly between the
components implementing the asynchronous storage components and the object.

Asynchronous Versus Synchronous Monikers
A client of a stadard, synchronous OLE moniker typically creates and holds a reference to the moniker, as
well as the bind-context to be used during binding. The components involved in using traditional monikers
are shown in the following diagram.

{ewc msdncd, EWGraphic, bsd23519 0 /a "SDK_MON1.WMF"}

Clients typically create standard monikers by calling APIs functions such as CreateFileMoniker,
CreateItemMoniker, or CreatePointerMoniker or, because they are can be saved to persistent storage,
through OleSaveToStream and OleLoadFromStream. Monikers may also be obtained from a container
object by calling IBindHost::CreateMoniker. Clients create bind contexts by calling the CreateBindCtx
API function, then pass the bind context to the moniker with calls to IMoniker::BindToStorage or
IMoniker::BindToObject.

As shown in the following diagram, a client of an asynchronous moniker also creates and holds a
reference to the moniker and bind-context to be used during binding.

{ewc msdncd, EWGraphic, bsd23519 1 /a "SDK_MON2.WMF"}

In order to get asynchronous behavior, the client implements the IBindStatusCallback interface on a
bind-status-callback object and calls the either the RegisterBindStatusCallback or
CreateAsyncBindCtx API functions to register this interface with the bind-context. The moniker passes a
pointer to its IBinding interface in a call to IBindStatusCallback::OnStartBinding. The client tells the
asynchronous moniker how it wants to bind on return from the moniker's call to
IBindStatusCallback::GetBindInfo.

Asynchronous Versus Synchronous Binding
The client may check to see if the moniker is asynchronous by calling the IsAsyncMoniker API function.
If the client returns the BINDF_ASYNCHRONOUS flag, rather than returning an object pointer or a
storage pointer from subsequent calls to IMoniker::BindToStorage or IMoniker::BindToObject, the
moniker returns MK_S_ASYNCHRONOUS in place of the object pointer and NULL in place of the storage
pointer. In response, the client should wait to receive the requested object or storage during
IBindStatusCallback::OnDataAvailable and IBindStatusCallBack::OnObjectAvailable.

The callback object also receives progress notification through IBindStatusCallback::OnProgress, data
availability notification through IBindStatusCallback::OnDataAvailable, and various other notifications
from the moniker about the status of the binding operation.

If the client does not return the BINDF_ASYNCHRONOUS flag from the moniker's call to GetBindInfo,
the bind operation will proceed synchronously, and the desired object or storage will be returned from
subsequent calls to IMoniker::BindToObject or IMoniker::BindToStorage. Similarly, if the client desires
synchronous operation and does not wish to receive any progress notifications or callbacks, it can request
an asynchronous moniker to behave synchronously by not implementing IBindStatusCallback. In such
cases, the asynchronous moniker will behave like a standard synchronous moniker.

Asynchronous Versus Synchronous Storage
Asynchronous monikers may also return an Asynchronous Storage object in the
IBindStatusCallback::OnDataAvailable notification. This storage object may allow access to some of
the object's persistent data while the binding is still in progress. A client can choose between two modes
for the storage: blocking and non-blocking. In blocking mode, which is compatible with current
implementations of storage objects, if data is unavailable, the call blocks until data arrives. In nonblocking
mode, rather than blocking the call, the storage object returns a new error E_PENDING when data is
unavailable. An client aware of asynchronous binding and storage notes this error and waits for further
notifications (IBindStatusCallback::OnDataAvailable) to retry the operation. A client can choose
between a synchronous (blocking) and asynchronous (non-blocking) storage by choosing whether or not
to set the BINDF_ASYNCSTORAGE flag in the pgrfBINDF value returned to
IBindStatusCallback::GetBindInfo.

Data-Pull Model Versus Data-Push Model
A client of an asynchronous moniker can choose between a data-pull and data-push model for driving an
asynchronous IMoniker::BindToStorage operation and receiving asynchronous notifications. In the data-
pull model, the client drives the bind operation, and the moniker only provides data to the client as it is
read. In other words, after the first call to IBindStatusCallback::OnDataAvailable, the moniker does not
provide any data to the client unless the client has consumed all of the data that is already available.

Because data is only downloaded as it is requested, clients that choose the data-pull model must make
sure to read this data in a timely manner. In the case of Internet-downloads with URL Monikers, the bind
operation may fail if a client waits too long before requesting more data.

In the data-push model, the moniker drives the asynchronous bind operation and continuously notifies the
client whenever new data is available. The client may choose whether or not to read the data at any point
during the bind operation, but the moniker will drive the bind operation to completion regardless.

URL Monikers
The OLE moniker architecture provides a convenient programming model for working with URLs. The
moniker architecture supports extensible and complete name parsing through the
MkParseDisplayName(Ex) function and the IParseDisplayName and IMoniker interfaces, as well as
printable names through the IMoniker::GetDisplayName method. The IMoniker interface is the way you
actually use URLs you encounter, and building components that fit into the moniker architecture is the
way to actually extend URL namespaces in practice.

A new system-provided moniker class, the URL Moniker, provides a framework for building and using
certain URLs. Since URLs frequently refer to resources across high-latency networks, the URL Moniker
supports asynchronous as well as synchronous binding. The URL Moniker does not currently support
Asynchronous Storage.

The following diagram shows the components involved in using URL Monikers. All these components
should be familiar from the discussion of asynchronous monikers in the preceding section of this chapter.

{ewc msdncd, EWGraphic, bsd23519 2 /a "SDK_MON3.WMF"}

Like all moniker clients, a user of URL Monikers typically creates and holds a reference to the moniker as
well as to the bind-context to be used during binding (IMoniker::BindToStorage or
IMoniker::BindToObject). To support asynchronous binding, the client can implement a bind-status-
callback object, which implements the IBindStatusCallback interface, and register it with the bind-
context using the RegisterBindStatusCallback API function. This object will receive the transport's
IBinding interface during calls to IBindStatusCallback::OnStartBinding.

The URL Moniker identifies the protocol being used by parsing the URL prefix, then retrieves the IBinding
interface from the transport layer. The client uses IBinding to support pausing, cancellation, and
prioritization of the binding operation. The callback object also receives progress notification through
IBindStatusCallback::OnProgress, data availability notification through
IBindStatusCallback::OnDataAvailable, and various, other, transport-layer notifications about the status
of the binding. The URL Moniker or specific transport layers may also request extended information from
the client via IBindStatusCallback::QueryInterface, allowing the client to provide protocol-specific
information that will affect the bind operation.

Callback Synchronization
The asynchronous WinInet API (used for the most common protocols) leaves the synchronization of the
callback mechanism and the calling application as an exercise for the client. This is intentional because it
allows the greatest degree of flexibility. The default protocols and the URL Moniker implementation
perform this synchronization and guarantee that single- and apartment-threaded applications never have
to deal with free-thread-style contention. That is, the client's IEnumFORMATETC and
IBindStatusCallback interfaces are called only on their proper threads. This feature is transparent to the
user of the URL Moniker as long each thread that calls IMoniker::BindToStorage and
IMoniker::BindToObject has a message queue.

The Asynchronous Moniker specification requires more precise control over the prioritization and
management of downloads than is allowed for either by WinSock or WinInet. Accordingly, a URL Moniker
manages all the downloads for any given caller's thread, using¾as part of its synchronization¾a priority
scheme based on the IBinding specification.

Media-Type Negotiation
Many application-layer Internet protocols are based on the exchange of messages in a simple, flexible
format called Multipurpose Internet Mail Extensions (MIME). Although MIME originated as a standard for
exchanging electronic mail messages, it is used today by a wide variety of applications to specify mutually
understood data formats as MIME , or media, types. The process is called media-type negotiation.

Media types are simple strings that denote a type and subtype (such as "text/plain" or "text/HTML"). They
are used to label data or qualify a request. A Web browser, for example, as part of an HTTP request-for-
data or request-for-info, specifies that it is requesting "image/gif" or "image/jpeg" Media Types, to which a
Web server responds by returning the appropriate media type and, if the call was a request-for-data, the
data itself in the requested format.

Media-type negotiation is often similar to how existing desktop applications negotiate with the system
clipboard to determine which data format to paste when a user chooses Edit/Paste or queries for formats
when receiving an IDataObject pointer during a drag-and-drop operation. The subtle difference in HTTP
media-type negotiation is that the client does not know ahead of time which formats the server has
available. Therefore, the client specifies up-front the media types it supports, in order of greatest fidelity,
and the server responds with the best available format.

URL Monikers support media-type negotiation as a way for Internet clients and servers to agree upon
formats to be used when downloading data in BindToStorage operations. To support media-type
negotiation, a client implements the IEnumFORMATETC interface and calls the
RegisterFormatEnumerator API function to register it with the bind context. The format enumerator lists
the formats the client can accept. A URL Moniker translates these formats into media types when binding
to HTTP URLs.

The possible media types requested by the client are represented to URL Monikers through
FORMATETC structures available from the IEnumFORMATETC enumerator registered by the caller on
the bind-context: Each FORMATETC specifies a clipboard format identifying the media type. For
example, the following code fragment specifies that the media type is PostScript®.

FORMATETC fmtetc;
fmtetc.cfFormat = RegisterClipboardFormat(CF_MIME_POSTSCRIPT);
. . .

(For more information on the FORMATETC structure, see the OLE Programmer's Reference in the Win32
SDK.)

A client can set the clipboard format to the special media type CF_NULL to indicate that the default media
type of the resource pointed to by the URL should be retrieved. This format is usually the last one in which
the client is interested. When no enumerator is registered with the bind context, a URL Moniker works as
if an enumerator containing a single FORMATETC with cfFormat=CF_NULL is available, automatically
downloading the default media-type.

Regardless which media type is to be used, the client is notified of the choice by means of the pformatetc
argument on its IBindStatusCallback::OnDataAvailable method. The callback occurs within the context
of the client's call to IMoniker::BindToStorage.

Note If received content is of an unrecognized media type, the client automatically calls
RegisterMediaTypes to register the new type.

URL Moniker API Functions
URL Moniker API Functions insulate developers from the complexities of creating, managing, and using
URL Monikers. These monikers, which are fully described in the OLE Programmer's Reference for the
ActiveX Development Kit, are as follows:CreateURLMoniker, IsValidURL, RegisterMediaTypes,
CreateFormatEnumerator, RegisterFormatEnumerator, RevokeFormatEnumerator,
RegisterMediaTypeClass, FindMediaTypeClass, GetClassFileOrMime, UrlMkSetSessionsOption.

Connectable Objects
COM connectable objects provide outgoing interfaces to their clients in addition to their incoming
interfaces. As a result, objects and their clients can engage in bi-directional communication. Incoming
interfaces are implemented on an object and receive calls from external clients of an object while
outgoing interfaces are implemented on the client's sink and receive calls from the object. The object
defines an interface it would like to use, and the client implements it.

An object defines its incoming interfaces and provides implementations of these interfaces. Incoming
interfaces are available to clients through the object's IUnknown::QueryInterface method. Clients call
the methods of an incoming interface on the object, and the object performs desired actions on behalf of
the client.

Outgoing interfaces are also defined by an object, but the client provides the implementations of the
outgoing interfaces on a sink object that the client creates. The object then calls methods of the outgoing
interface on the sink object to notify the client of changes in the object, to trigger events in the client, or to
request something from the client, or, in fact, for any purpose the object creator comes up with.

An example of an outgoing interface is an IButtonSink interface defined by a push button control to notify
its clients of its events. For example, the button object calls IButtonSink::OnClick on the client's sink
object when the user clicks the button on the screen. The button control defines the outgoing interface.
For a client of the button to handle the event, the client must implement that outgoing interface on a sink
object then connect that sink to the button control. Then, when events occur in the button, the button will
call the sink at which time the client can execute whatever action it wishes to assign to that button click.

Connectable objects provide a general mechanism for object-to-client communication. Any object that
wishes to expose events or notifications of any kind can use this technology. In addition to the general
connectable object technology, COM provides many special purpose sink and site interfaces used by
objects to notify clients of specific events of interest to the client. For example, IAdviseSink may be used
by objects to notify clients of data and view changes in the object.

Architecture of Connectable Objects
The connectable object itself is only one piece of the overall architecture of connectable objects. This
technology includes:

Connectable object
Implements the IConnectionPointContainer interface; creates at least one connection point object;
defines an outgoing interface for the client.

Client
Queries the object for IConnectionPointContainer to determine if the object is connectable; creates
a sink object to implement the outgoing interface defined by the connectable object.

Sink object
Implements the outgoing interface; used to establish a connection to the connectable object.

Connection point object
Implements the IConnectionPoint interface and manages connection with the client's sink.

The relationships between client, connectable object, a connection point, and a sink are illustrated in the
following diagram:

{ewc msdncd, EWGraphic, bsd23515 0 /a "SDK.WMF"}

Before the connection point object calls methods in the sink interface in step 3, it must QueryInterface for
the specific interface required, even if the pointer was already passed in the step 2 call to the Advise
method.

Two enumerator objects are also involved in this architecture though not shown in the illustration. One is
created by a method in IConnectionPointContainer to enumerate the connection points within the
connectable object. The other is created by a method in IConnectionPoint to enumerate the connections
currently established to that connection point. One connection point can support multiple connected sink
interfaces, and it should iterate through the list of connections each time it makes a method call on that
interface. This process is known as multi-casting.

When working with connectable objects it is important to understand that the connectable object, each
connection point, each sink, and all enumerators are separate objects with separate IUnknown
implementations, separate reference counts, and separate lifetimes. A client using these objects is always
responsible for releasing all reference counts it owns.

Note A connectable object can support more than one client and can support multiple sinks within
a client. Likewise, a sink can be connected to more than one connectable object.

The steps for establishing a connection between a client and a connectable object are:

1. The client queries for IConnectionPointContainer on the object to determine if the object is
connectable. If this call is successful, the client holds a pointer to the IConnectionPointContainer
interface on the connectable object, and the connectable object reference counter has been
incremented. Otherwise, the object is not connectable and does not support outgoing interfaces.

2. If the object is connectable, the client next tries to obtain a pointer to the IConnectionPoint
interface on a connection point within the connectable object. There are two methods for obtaining
this pointer, both in IConnectionPointContainer ¾ FindConnectionPoint and
EnumConnectionPoints. There are a few additional steps needed if EnumConnectionPoints is
used; see below for more information. If successful, the connectable object and the client both
support the same outgoing interface. The connectable object defines it and calls it while the client

implements it. The client can then communicate through the connection point within the connectable
object.

3. The client then calls IConnectionPoint::Advise on the connection point to establish a connection
between its sink interface and the object's connection point. After this call, the object's connection
point holds a pointer to the outgoing interface on the sink.

4. The code inside IConnectionPoint::Advise calls QueryInterface on the interface pointer that is
passed in, asking for the specific interface identifier to which it connects.

5. The object calls methods on the sink's interface as needed using the pointer held by its connection
point.

6. The client calls IConnectionPoint::Unadvise to terminate the connection. Then, the client calls
IConnectionPoint::Release to free its hold on the connection point and, thus, the main connectable
object also. The client must also call IConnectionPointContainer::Release to free its hold on the
main connectable object.

Connectable Object Interfaces
Support for connectable objects requires support for four interfaces:

· IConnectionPointContainer on the connectable object
· IConnectionPoint on the connection point object
· IEnumConnectionPoints on an enumerator object
· IEnumConnections on an enumerator object

The latter two are defined as standard enumerators for the types IConnectionPoint * and
CONNECTDATA. See IEnumXxxx for more information on enumerators.

Additionally, the connectable object can optionally support IProvideClassInfo and IProvideClassInfo2 to
provide enough information to a client so the client can provide support for the outgoing interface at run-
time.

Finally, the client must provide a sink object that implements the outgoing interface which is a custom
COM interface defined by the connectable object.

The IConnectionPointContainer, IConnectionPoint, IProvideClassInfo, and IProvideClassInfo2
interfaces are defined as follows:

interface IConnectionPointContainer : IUnknown
 {
 HRESULT EnumConnectionPoints([out] IEnumConnectionPoints
 **ppEnum);
 HRESULT FindConnectionPoint([in] REFIID riid
 , [out] IConnectionPoint **ppCP);
 }

interface IConnectionPoint : IUnknown
 {
 HRESULT GetConnectionInterface([out] IID *pIID);
 HRESULT GetConnectionPointContainer([out]
 IConnectionPointContainer **ppCPC);
 HRESULT Advise([in] IUnknown *pUnk, [out] DWORD *pdwCookie);
 HRESULT Unadvise([in] DWORD dwCookie);
 HRESULT EnumConnections([out] IEnumConnections **ppEnum);
 }

interface IProvideClassInfo : IUnknown
 {
 HRESULT GetClassInfo([out] ITypeInfo **ppTI);
 }

interface IProvideClassInfo2 : IProvideClassInfo
 {
 HRESULT GetGUID();
 }

Using IConnectionPointContainer
A connectable object implements IConnectionPointContainer (and exposes it through QueryInterface)
to indicate the existence of outgoing interfaces. For each outgoing interface, the connectable object
manages a connection point sub-object which itself implements IConnectionPoint. The connectable
object therefore contains the connection points, hence the naming of IConnectionPointContainer and
IConnectionPoint.

Through IConnectionPointContainer, a client can perform two operations. First, if the client already has
the IID for an outgoing interface that it supports, it can locate the corresponding connection point for the
IID using FindConnectionPoint. The client cannot query for the connection point directly because of the
container/contained relationship between the connectable object and its contained connection points. In
essence, FindConnectionPoint is the QueryInterface for outgoing interfaces when the IID is known to
the client.

Second, the client can enumerate all connection points within the connectable object through
IConnectionPointContainer::EnumConnectionPoints. This method returns an
IEnumConnectionPoints interface pointer for a separate enumerator object. Through
IEnumConnectionPoints::Next the client can obtain IConnectionPoint interface pointers to each
connection point.

Once the client obtains the IConnectionPoint interface, it must call
IConnectionPoint::GetConnectionInterface to determine the IID of the outgoing interface supported by
each connection point. If the client already supports that outgoing interface, it can establish a connection.
Otherwise, it may still be able to support the outgoing interface using information from the connectable
object's type library to provide support at run-time. This technique requires that the connectable object
support the IProvideClassInfo interface as described below.

Note Because the enumerator is a separate object, the client must call
IEnumConnectionPoints::Release when the enumerator is no longer needed.

In addition, each connection point is an object with a separate reference count from the containing
connectable object. Therefore, the client must also call IConnectionPoint::Release for each
connection point accessed through either the enumerator or through FindConnectionPoint.

Using IConnectionPoint
Once the client has a pointer to a connection point, it can then perform several operations as expressed
through IConnectionPoint. First, GetConnectionInterface, as noted above, retrieves the outgoing
interface IID supported by the connection point. When used in conjunction with
IEnumConnectionPoints, this method allows the client to examine the IIDs of all outgoing interfaces
supported on the connectable object.

Second, a client can navigate from the connection point back to the connectable object's
IConnectionPointContainer interface through the GetConnectionPointContainer method.

Third, the most interesting methods for the client are Advise and Unadvise. When a client wishes to
connect its own sink object to the connectable object, the client passes the sink's IUnknown pointer (or
any other interface pointer on the same object) to Advise. The connection point queries the sink for the
specific outgoing interface that is expected. If that interface is available on the sink, the connection point
then stores the interface pointer. From this point until Unadvise is called, the connectable object will
make calls to the sink through this interface when events occur. To disconnect the sink from the
connection point, the client passes a key returned from Advise to the Unadvise method. Unadvise must
call Release on the sink interface.

Finally, a client can ask a connection point to enumerate all the connections that exist to it through
EnumConnections. This method creates an enumerator object (with a separate reference count)
returning an IEnumConnections pointer to it. The client must call Release when the enumerator is no
longer needed. Additionally, the enumerator returns a series of CONNECTDATA structures, one for each
connection. Each structure describes one connection using the IUnknown pointer of the sink as well as
the connection key originally returned from Advise. When done with these sink interface pointers, the
client must call IUnknown::Release on each pointer returned in a CONNECTDATA structure.

Using IProvideClassInfo
A connectable object can offer the IProvideClassInfo[x] interfaces so its clients can easily examine its
type information. See Providing Class Information chapter for more information.

This capability is important when dealing with outgoing interfaces, which, by definition, are defined by an
object but implemented by a client on its own sink object. In some cases, an outgoing interface is known
at compile time to both the connectable object and the sink object; such is the case with
IPropertyNotifySink.

In other cases, however, only the connectable object knows its outgoing interface definitions at compile
time. In these cases, the client must obtain the type information for the outgoing interface so it can
dynamically provide a sink supporting the right entry points.

First, as described above, the client can enumerate the connection points and can then call
IConnectionPoint::GetConnectionInterface for each connection point to obtain the IIDs of outgoing
interfaces supported by the connectable object.

Second, the client queries the connectable object for one of the IProvideClassInfo[x] interfaces. Third,
the client calls methods in these interfaces to get the type information for the outgoing interface. Fourth,
the client creates a sink object supporting the outgoing interface. Finally, the process continues as
described above with the client calling IConnectionPoint::Advise to connect its sink to the connection
point.

In the type information, the attribute source marks an interface or dispinterface listed under a coclass
as an outgoing interface. Those listed without this attribute are considered incoming interfaces.

Structured Storage
Traditional file systems face challenges when they try to efficiently store multiple kinds of objects in one
document. OLE provides a solution: a file system within a file. OLE structured storage defines how to treat
a single file entity as a structured collection of two types of objects ¾ storages and streams ¾ that act like
directories and files. This scheme is called structured storage. The purpose of structured storage is to
reduce the performance penalties and overhead associated with storing separate objects in a flat file

The Evolution of File Systems
Years ago, in the days before disk operating systems, each computer was built to run a single, proprietary
application, which had complete and exclusive control of the entire machine. The application would write
its persistent data directly to a disk, or drum, by sending commands directly to the disk controller. The
application was responsible for managing the absolute locations of data on the disk, making sure that it
was not overwriting data that was already there, but since the application was the only one running on the
machine, this task was not too difficult.

The advent of computer systems that could run more than one application required some sort of
mechanism to make sure that applications did not write over each other's data. Application developers
addressed this problem by adopting a single standard for marking which disk sectors were in use and
which were free. In time, these standards coalesced to become a disk operating system, which provided
various services to the applications, including a file system for managing persistent storage. With the
advent of a file system, applications no longer had to deal directly with the physical storage medium.
Instead, they simply told the file system to write blocks of data to the disk and let the file system worry
about how to do it. In addition, the file system allowed applications to create data hierarchies through the
abstraction known as a directory. A directory could contain not only files but other directories. which in turn
could contain their own files and directories, and so on.

The file system provided a single level of indirection between applications and the disk, and the result was
that every application saw a file as a single contiguous stream of bytes on the disk even though the file
system was actually storing the file in discontiguous sectors. The indirection freed the applications from
having to care about the absolute position of data on a storage device.

Today, virtually all system APIs for file input and output provide applications with some way to write
information into a flat file that applications see as a single stream of bytes that can grow as large as
necessary until the disk is full. For a long time these APIs have been sufficient for applications to store
their persistent information. Applications have made significant innovations in how they deal with a single
stream of information to provide features like incremental "fast" saves.

In a world of component objects, however, storing data in a single flat file is no longer efficient. Just as file
systems arose out of the need for multiple applications to share the same storage medium, so now,
component objects require a system that allows them to share storage within the conceptual framework of
a single file. Even though it is possible to store the separate objects using conventional flat file storage,
should one of the objects increase in size, or should you simple add another object, it becomes necessary
to load the entire file into memory, insert the new object, and then save the whole file. Such a process can
be extremely time-consuming.

The solution provided by OLE is to implement a second level of indirection: a file system within a file.
Instead of requiring that a large contiguous sequence of bytes on the disk be manipulated through a
single file handle with a single seek pointer, OLE structured storage defines how to treat a single file
system entity as a structured collection of two types of objects ¾ storages and streams ¾ that act like
directories and files.

Storages and Streams
OLE provides a set of services collectively called structured storage. The purpose of these services is to
reduce the performance penalties and overhead associated with storing separate objects in a flat file.
Instead, OLE stores the separate objects in a single, structured file consisting of two main elements:
storage objects and stream objects. Together, they function like a file system within a file.

A storage object is analogous to a file system directory. Just as a directory can contain other directories
and files, a storage object can contain other storage objects and stream objects. Also like a directory, a
storage object tracks the locations and sizes of the storage objects and stream objects nested beneath it.

A stream object is analogous to the traditional notion of a file. Like a file, a stream contains data stored as
a consecutive sequence of bytes.

An OLE compound file consists of a root storage object containing at least one stream object representing
its native data along with one or more storage objects corresponding to its linked and embedded objects.
The root storage object maps to a filename in whatever file system it happens to reside in. Each of the
objects inside the document also is represented by a storage object containing one or more stream
objects, and perhaps also containing one or more storage objects. In this way, a document can consist of
an unlimited number of nested objects.

Structured storage solves the performance problem because whenever a new object is added to a
compound file, or an existing object increases in size, the file does not have to be totally rewritten to
storage. Instead, the new data is written to the next available location in permanent storage, and the
storage object updates the table of pointers it maintains to track the locations of its storage objects and
stream objects. At the same time, structured storage enables end users to interact and manage a
compound file as if it were a single file rather than a nested hierarchy of separate objects.

Structured storage also provides additional benefits:

· Incremental access. If a user needs access to an object within a compound file, the user can load and
save only that object, rather than the entire file.

· Multiple use. More than one end user or application can concurrently read and write information in the
same compound file.

· Transaction processing. Users can read or write to OLE compound files in transacted mode, where
changes made to the file are buffered and can subsequently either be committed to the file or
reversed.

· Low memory saves. Structured storage provides facilities for saving files in low memory situations.

Compound Files
Although you can implement your own structured storage objects and interfaces, OLE provides a
standard implementation called Compound Files. Using Compound Files saves you the work of coding
your own implementation of structured storage and confers several additional benefits derived from
adhering to a defined standard. These benefits include the following:

· File-system and platform independence. Since OLE's Compound Files implementation runs on top of
existing flat file systems, compound files stored in FAT, NTFS, or the Macintosh file systems can be
opened by applications using any one of the others.

· Browsability. Since the separate objects in a compound file are saved in a standard format and can
be accessed using standard OLE interfaces and APIs, any browser utility using these interfaces and
APIs can list the objects in the file, even though the data within a given object may be in a proprietary
format.

· Access to certain internal data. Since the Compound Files implementation provides standard ways of
writing certain types of data ¾ summary information, for example ¾ applications can read this data
using OLE interfaces and APIs.

Structured Storage Elements
Structured storage provides the equivalent of a complete file system for storing objects through the
following elements:

· The IStorage, IStream, ILockBytes, and IRootStorage interfaces, along with a set of related
interfaces ¾ IPersistStorage, IPersist, IPersistFile, and IPersistStream.

· Helper APIs that facilitate your implementation of structured storage, as well as a second set of APIs
for compound files, OLE's implementation of the structured storage interfaces. OLE also provides a
set of supporting structures and enumeration values used to organize parameters for interface
methods and APIs.

· A set of access modes for regulating access to compound files.

Interfaces
Structured storage services are organized into three categories of interfaces. Each set represents a
successive level of indirection, or abstraction, between a compound file, the objects it contains, and the
physical media on which these individual components are stored.

The first category of interfaces consists of IStorage, IStream, and IRootStorage. The first two interfaces
define how objects are stored within a compound file. These interfaces provide methods for opening
storage elements, committing and reverting changes, copying and moving elements, and reading and
writing streams. These interfaces do not understand the native data formats of the individual objects and
therefore have no methods for saving those objects to persistent storage. The IRootStorage interface
has a single method for associating a compound document with an underlying file system name. Clients
are responsible for implementing these interfaces on behalf of their compound files.

The second category of interfaces consists of the IPersist interfaces, which objects implement to manage
their persistent data. These interfaces provide methods to read the data formats of individual objects and
therefore know how to store them. Objects are responsible for implementing these interfaces because
clients do not know the native data formats of their nested objects. These interfaces, however, have no
knowledge of specific physical storage media.

A third category consists of a single interface, ILockBytes, which provides methods for writing files to
specific physical media, such as a hard disk or tape drive. OLE provides an ILockBytes interface for the
operating system's file system.

API Functions
Some of the API functions for structured storage are helper functions that perform a sequence of calls to
other API functions and interface methods. You can use these helper functions as short cuts.

Other API functions provide access to OLE's implementation of structured storage, Compound Files.

Still another set of API functions enable you to convert OLE 1 objects to structured storage. You can use
these functions to determine if an object class is from OLE 1 and to convert objects between OLE 1 and
current OLE storage formats.

Finally, there are API functions for converting and emulating other objects. These functions provide
services for one server application to work with data from another application. The data can be converted
to the native format of the server application by reading the data from its original format but writing it in the
native format of the object application. Or the data can remain in its original format while the server
application both reads and writes the data in its original format.

Access Modes
In a world where multiple processes and users can access an object simultaneously, mechanisms for
controlling that access are essential. OLE provides these mechanisms by defining access modes for both
storage and stream objects. The access mode specified for a parent storage object is inherited by its
children, though you can place additional restrictions on the child storage or stream. A nested storage or
stream object can be opened in the same mode or in a more restricted mode than that of its parent, but it
cannot be opened in a less restricted mode than that of its parent.

You specify access modes by using the values listed in the STGM enumeration. These values serve as
flags to be passed as arguments to methods in the IStorage interface and associated API functions.
Typically, several flags are combined in the parameter grfMode, using a Boolean OR operation.

The flags fall into six groups: transaction flags, storage creation flags, temporary creation flag, priority
flag, access permission flags, and shared access flags. Only one flag from each group can be specified at
a time.

Transaction Flags
An object can be opened in either direct or transacted mode. When an object is opened in direct mode,
changes are made immediately and permanently. When an object is opened in transacted mode, changes
are buffered so they can be explicitly committed or reverted once editing is complete. Committed changes
are saved to the object while reverted changes are discarded. Direct mode is the default access mode.

Transacted mode is not required on a parent storage object in order to use it on a nested element. A
transaction for a nested element, however, is nested within the transaction for its parent storage object.
Therefore, changes made to a child object cannot be committed until those made to the parent are
committed, and both are not committed until the root storage object (the top-level parent) is actually
written to disk. In other words, the changes move outward: inner objects publish changes to the
transactions of their immediate containers.

Storage Creation Flags
Storage creation flags specify what OLE should do if an existing storage, stream, or lockbytes object has
the same name as a new storage or stream object that you are creating. The default is to return an error
message and not create the new object. You can use only one of these flags in a given creation call.

Temporary Creation Flag
The temporary creation flag indicates that the underlying file is to be automatically destroyed when the
root storage object is released. This capability is most useful for creating temporary files.

Priority Flag
The priority flag opens a storage object in priority mode. When it opens an object, an application usually
works from a snapshot copy because other applications may also be using the object at the same time.
When opening a storage object in priority mode, however, the application has exclusive rights to commit
changes to the object.

Priority mode enables an application to read some streams from storage before opening the object in a
mode that would require the system to make a snapshot copy to be made. Since the application has
exclusive access, it doesn't have to make a snapshot copy of the object. When the application
subsequently opens the object in a mode where a snapshot copy is required, the application can exclude
from the snapshot the streams it has already read, thereby reducing the overhead of opening the object.

Since other applications cannot commit changes to an object while it is open in priority mode, applications
should keep it in that mode for as short a time as possible.

Access Permission Flags
Access permission flags specify the type of access a client application has to an open object: read, write,
or read/write. Read permission enables an application to read the contents of a stream but not to write
changes to the stream. Write permission enables an application to call a function that commits changes to
an object's storage but not to read the contents of the stream. Read/write permission enables an
application to either read the object's streams or write to the object's storage.

Shared Access Flags
The shared access flags specify the degree of access other applications can have to an object that your
application is opening. You can deny read access, deny write access, or deny all access. You can also
specify explicitly that no type of access be denied.

Storage Object Naming Conventions
Storage and stream objects are named according to a set of conventions.

The name of a root storage object is the actual name of the file in the underlying file system. It obeys the
conventions and restrictions the file system imposes. Filename strings passed to storage-related methods
and functions are passed on, uninterpreted and unchanged, to the file system.

The name of a nested element contained within a storage object is managed by the implementation of the
particular storage object. All implementations of storage objects must support nested element names 32
characters in length (including the NULL terminator), although some implementations might support
longer names. Whether the storage object does any case conversion is implementation-defined. As a
result, applications that define element names must choose names that are acceptable in either situation.
The OLE implementation of compound files supports names up to 32 characters in length, and does not
perform any case conversion.

Persistent Property Sets
While the kind of run-time properties that Automation and ActiveX Controls offer are important, they do not
directly address the need to store information with objects persistently stored in the file system. These
entities could include files (structured, compound, etc.), directories, and summary catalogs. OLE provides
both a standard serialized format for these persistent properties, and a set of interfaces and functions that
allow you to create and manipulate the property sets and their properties.

Persistent properties are stored as sets, and one or more sets may be associated with a file system entity.
These persistent property sets are intended to be used to store data that is suited to being represented as
a collection of fine-grained values. They are not intended to be used as a large data base. They can be
used to store summary information about an object on the system, which can then be accessed by any
other object that understands how to interpret that property set.

Previous versions of OLE specified very little with respect to properties and their usage, but did define a
serialized format that allowed developers to store properties and property sets in an IStorage instance.
The property identifiers and semantics of a single property set, used for summary information about a
document, was also defined. At that time, it was necessary to create and manipulate that structure directly
as a data stream. For information on the property set serialized data format structure, refer to OLE
Serialized Property Set Format.

Now, however, OLE defines two primary interfaces to manage property sets:

· IPropertyStorage
· IPropertySetStorage

It is no longer necessary to deal with the serialized format directly when these interfaces are implemented
on an object that supports the IStorage interface (such as compound files). Writing properties through
IPropertySetStorage and IPropertyStorage creates data that exactly conforms to the OLE property set
format, as viewed through IStorage methods. The converse is also true¾properties written to the OLE
property set format using IStorage are visible through IPropertySetStorage and IPropertyStorage
(although you cannot expect to write to IStream and have the properties through IPropertyStorage
immediately available, or vice versa).

The IPropertySetStorage interface defines methods that create and manage property sets. The
IPropertyStorage interface directly manipulates the properties within a property set. By calling the
methods of these interfaces, an application developer can manage whatever property sets are
appropriate for a given file system entity. Use of these interfaces provides one tuned reading and writing
implementation for properties, rather than having an implementation in each application, which could
suffer performance bottlenecks such as incessant seeking. You can implement the interfaces to enhance
performance, so properties can be read and written more quickly by, for example, more efficient caching.
Furthermore, IPropertyStorage and IPropertySetStorage make it possible to manipulate properties on
entities that do not support IStorage, although in general, most applications will not do so.

Managing Property Sets
A persistent property set contains related pieces of information in the form of properties. Each property
set is identified with a FMTID, a GUID that allows programs accessing the property set to identify the
property set and, through this identification, know how to interpret the properties it contains. Examples of
property sets might be the character-formatting properties in a word processor or the rendering attributes
of an element in a drawing program.

OLE defines the IPropertySetStorage interface to facilitate management of property sets. Through the
methods of this interface, you can create a new property set, or open or delete an existing property set. In
addition, it provides a method that creates an enumerator and supplies a pointer to its
IEnumSTATPROPSETSTG interface. You can call the methods of this interface to enumerate
STATPROPSETSTG structures on your object, which will provide information about all of the property
sets on the object.

When you create or open an instance of IPropertyStorage, it is similar to opening an object that supports
IStorage or IStream, because you need to specify the storage mode in which you are opening the
interface. For IStorage, these include the transaction mode, the read/write mode, and the sharing mode.

When you create a property set with a call to IPropertySetStorage::Create, you specify whether the
property set is to be simple or non-simple. A simple property set contains types that can be fully written
within the property set stream, which is intended to be limited, and can, in fact, not be larger than 256
Kbytes. However, for those cases when you need to store a larger amount of information in the property
set, you can specify that the property set be non-simple, allowing you to use one or more of the types that
specify only a pointer to a storage or stream object. Also, if you need a transacted update, the property
set must be non-simple. There is, of course, a certain performance penalty for opening these types,
because it requires opening the stream or storage object to which you have the pointer.

If your application uses compound files, you can use the OLE-provided implementation of these
interfaces, which are implemented on the OLE compound file storage object.

Each property set consists primarily of a logically connected group of properties, as described in the
following section.

Managing Properties
Every property consists of a property identifier (unique within its property set), a type tag that represents
the type of a value, and the value itself. The type tag describes the representation of the data in the value.
In addition, a property may also be assigned a string name that can be used to identify the property,
rather than using the required numerical property identifier. To create and manage properties, OLE
defines the IPropertyStorage interface.

The IPropertyStorage interface includes methods to read and write arrays of either properties
themselves or just property names. The interface includes Commit and Revert methods that are similar
to IStorage methods of the same name. There are utility methods that allow you to set the CLSID of the
property set, the times associated with the set, and get statistics about the property set. Finally, the Enum
method creates an enumerator and returns a pointer to its IEnumSTATPROPSTG interface. You can call
the methods of this interface to enumerate STATPROPSTG structures on your object, which will provide
information about all of the properties in the current property set.

To illustrate how properties are represented, if a specific property in a property set holds an animal's
scientific name, that name could be stored as a zero-terminated string. Stored along with the name would
be a type indicator to indicate that the value is a zero-terminated string. These properties might have the
following characteristics:

Property ID String Identifier Type Indicator Value Represented
02 PID_ANIMALNAME VT_LPWSTR Zero-terminated Unicode

string
03 PID_LEGCOUNT VT_I2 WORD

Any application that recognizes the property set format (identifying it through its FMTID) can look at the
property with an identifier of PID_ANIMALNAME, determine it is a zero-terminated string, and read and
write the value. While the application can call IPropertyStorage::ReadMultiple to read any or all of a
property set (having first obtained a pointer), the application must know how to interpret the property set.

A property value is passed through property interfaces as an instance of the type PROPVARIANT.

It is important to distinguish between these stored (persistent) properties, and run-time properties. Value
type constants have names beginning with VT_. The set of valid PROPVARIANTs is, however, not
completely equivalent with the set of VARIANTs used in Automation and ActiveX Controls.

The only difference between the two structures is the allowable set of VT_ tags in each. Where a certain
property type can be used in both a VARIANT and a PROPVARIANT, the type tag (the VT_ value) always
has an identical value. Further, for a given VT_ value, the in-memory representation used in both
VARIANTs and PROPVARIANTs is identical. Taken all together, this approach allows the type system to
catch disallowed type tags, while at the same time, allowing a knowledgeable client simply to do a
pointer-cast when appropriate.

Using Property Sets
While the potential for uses of persistent property sets is not fully tapped, there are currently two primary
uses:

· Storing summary information with an object such as a document
· Transferring property data between objects

OLE property sets were designed to store data that is suited to representation as a moderately sized
collection of fine-grained values. Data sets that are too large for this to be feasible should be broken into
separate streams, storages, and/or property sets. The OLE property set data format was not meant to
provide a substitute for a database of many tiny objects.

This section discusses two ways to use property sets. The first describes an example of storing property
sets within files to allow common access to the information in the property set, and describes the "OLE
summary information" property set standard. The second is an example that shows how to transfer
property sets between applications or OLE objects as an effective means of communication.

Storing Information with System Objects
One of the most common current uses of persistent properties is to use them to store information about a
system object, such as a document, with that object. There is, of course, the potential of storing properties
with any object, such as a printer, so it would only be necessary to look at its properties to determine its
location, its type, and so on. A user object could have a property set that includes information like First
Name, Last Name, Office, and Phone. Applications can be written to query a system-wide set of objects
based on their properties, for example, displaying all printers located in a certain building. Current
systems, however, most frequently use properties on documents.

The primary property set standard that OLE has defined is the Summary Information property set. This
property set is both simple and commonly used. Most documents created by applications have a common
set of attributes that are useful to users of those documents. These attributes include the name of the
document's author, the subject of the document, when it was created, and so on. Two other property sets
are defined for Office95. These are the OLE Document Summary property set and the User-Defined
Properties property set, and are described in more detail in Appendix C, OLE Serialized Property Set
Format.

In Windows 3.1, each application had a different way of storing this information within its documents. To
examine the summary information for a given document, the user had to run the application that created
the document, open it, and invoke the application's Summary Information dialog box, so only the
application could display its summary information.

OLE property sets and the property set interfaces make it possible to see a document's properties without
running the creating application. For example, Microsoft Word 6.0 and many other OLE-enabled
applications now save their documents using OLE structured storage and the property set standard
described here. Thus, applications other than Word 6.0 are able to display the summary information
property set for such a file, as long as that file is an OLE structured storage file, and the creating
application saved the information in the OLE Property Set format. The Windows 95 shell, for example,
takes advantage of this, and allows the end user to see the properties of any Word 6.0 document directly
from the shell.

To take advantage of property sets from other applications, the other applications must understand how to
interpret the properties within a property set, which implies a standard. OLE has pioneered this approach
by defining one standard property set, the OLE Summary Information Property Set. Any application that
has the definition of this property set can easily access the summary information contained in any
document created by an OLE application that uses that property set specification.

The following section describes the Summary Information property set as an example of property set
definition.

The Summary Information Property Set
OLE defines a standard common property set for storing summary information about documents. The
Summary Information property set must be stored in an IStream instance off of the root storage object; it
is not valid to store the property set in the "Contents" stream of a named IStorage instance.

For example, to create an ANSI simple property set, you would call IPropertySetStorage::Create to
create the property set, specifying PROPSETFLAG_ANSI (simple is the default mode), then write to it
with a call to IPropertyStorage::WriteMultiple. To read the property set, you would call
IPropertyStorage::ReadMultiple.

All shared property sets are identified by a stream or storage name with the prefix "\005" (or 0x05) to
show it is a property set shareable among applications, and the Summary Information property set is no
exception. The name of the stream that contains the Summary Information property set is:

"\005SummaryInformation"

The FMTID for the Summary Information property set is:

 F29F85E0-4FF9-1068-AB91-08002B27B3D9

Use the DEFINE_GUID macro to define the FMTID for the property set:

DEFINE_GUID(FormatID_SummaryInformation, 0xF29F85E0, 0x4FF9, 0x1068, 0xAB,
0x91, 0x08, 0x00, 0x2B, 0x27, 0xB3, 0xD9);

On an Intel byte-ordered machine, the FMTID has the following representation:

 E0 85 9F F2 F9 4F 68 10 AB 91 08 00 2B 27 B3 D9

The following table shows the string property names for the Summary Information property set, along with
the respective property identifiers and VT type indicators.

Property Name Property ID String Property ID VT Type
Title PID_TITLE 0x00000002 VT_LPSTR
Subject PID_SUBJECT 0x00000003 VT_LPSTR
Author PID_AUTHOR 0x00000004 VT_LPSTR
Keywords PID_KEYWORDS 0x00000005 VT_LPSTR
Comments PID_COMMENTS 0x00000006 VT_LPSTR
Template PID_TEMPLATE 0x00000007 VT_LPSTR
Last Saved By PID_LASTAUTHOR 0x00000008 VT_LPSTR
Revision Number PID_REVNUMBER 0x00000009 VT_LPSTR
Total Editing Time PID_EDITTIME 0x0000000A VT_FILETIME

(UTC)
Last Printed PID_LASTPRINTED 0x0000000B VT_FILETIME

(UTC)
Create Time/Date
(*)

PID_CREATE_DTM 0x0000000C VT_FILETIME
(UTC)

Last saved
Time/Date (*)

PID_LASTSAVE_DTM 0x0000000D VT_FILETIME
(UTC)

Number of Pages
Number of Words
Number of

PID_PAGECOUNT
PID_WORDCOUNT
PID_CHARCOUNT

0x0000000E
0x0000000F
0x00000010

VT_I4
VT_I4
VT_I4

Characters
Thumbnail PID_THUMBNAIL 0x00000011 VT_CF
Name of Creating
Application

PID_APPNAME 0x00000012 VT_LPSTR

Security PID_SECURITY 0x00000013 VT_I4
* Some methods of file transfer (such as a download from a BBS) do not maintain the file system's
version of this information correctly.

Guidelines for Implementing the Summary Information
Property Set
The following guidelines pertain to implementing the Summary Information property set described in the
preceding section:

· PID_TEMPLATE refers to an external document containing formatting and styling information. The
means by which the template is located is implementation-defined.

· PID_LASTAUTHOR is the name stored in User Information by the application. For example, suppose
Mary creates a document on her machine and gives it to John, who then modifies and saves it. Mary
is the author, John is the last saved by value.

· PID_REVNUMBER is the number of times the File/Save command has been called on this document.
· Each of the date/time values must be stored in Universal Coordinated Time (UTC).
· PID_CREATE_DTM is a read-only property; this property should be set when a document is created,

but should not be subsequently changed.
· For PID_THUMBNAIL, applications should store data in CF_DIB or CF_METAFILEPICT format.

CF_METAFILEPICT is recommended.
· PID_SECURITY is the suggested security level for the document. By noting the security level on the

document, an application other than the originator of the document can adjust its user interface to the
properties appropriately. An application should not display any information about a password-
protected document or allow modifications to enforced read-only or locked-for-annotations
documents. Applications should warn the user about read-only recommended if the user attempts to
modify properties:

Security Level Value
None 0
Password protected 1
Read-only recommended 2
Read-only enforced 4
Locked for annotations 8

OLE Compound File Property Set Implementations
OLE provides a compound file implementation of the property set interfaces, along with three helper
functions. These implementations are available through OLE compound file storage objects, to which you
can get a pointer through the OLE functions StgCreateDocfile, to create a new compound file storage
object, and StgOpenStorage, to open one that currently exists. The following section describes some
performance characteristics of these implementations. For more information on specific interfaces and
how to get a pointer to these interfaces, refer to the following in the OLE reference section:

· IPropertySetStorage -- Compound File Implementation
· IPropertyStorage -- Compound File Implementation
· IEnumSTATPROPSTG -- Compound File Implementation
· IEnumSTATPROPSETSTG -- Compound File Implementation

In addition, there are three helper functions, designed to aid in dealing with propvariants:

· PropVariantClear
· FreePropVariantArray
· PropVariantCopy

Performance Characteristics
A call to the OLE compound file implementation of IPropertySetStorage interface to create a property set
causes either a stream or storage to be created through a call to IStorage::CreateStream or
IStorage::CreateStorage. A default property set is created in memory, but not flushed to disk. When
there is a call to IPropertyStorage::WriteMultiple, it operates within the buffer.

When a property set is opened, IStorage::OpenStream or IStorage::OpenStorage is used. The entire
property set stream is read into contiguous memory. IPropertyStorage::ReadMultiple operations then
operate by reading the memory buffer. Therefore, the first access is expensive in terms of time (because
of disk reads) but subsequent accesses are very efficient. Writes may be slightly more expensive
because SetSize operations on the underlying stream may be required to guarantee that disk space is
available if data is added.

No guarantees are made as to whether IPropertyStorage::WriteMultiple will flush updates. In general,
the client should assume that IPropertyStorage::WriteMultiple only updates the in memory buffer. To
flush data, IPropertyStorage::Commit or IPropertyStorage::Release (last release) should be called.

This design means that WriteMultiple may succeed but the data is not actually persistently written.

Note This size of the property set stream may not exceed 256K bytes.

Using OLE-Implemented Property Sets
Since the property set stream is read into memory in its entirety before a single property can be read or
written, it is strongly recommended that property sets be kept small. "Small" is somewhere under 32K of
data. This should not present too much of a problem because typically, "in-line" properties will be small
items such as descriptive strings, keywords, timestamps, counts, author names, GUIDs, CLSIDs, etc.

For the storage of larger chunks of data, or where the total size of a set of related properties far exceeds
the recommended amount, the use of non-simple types such as VT_STREAM and VT_STORAGE are
strongly recommended. These are not stored inside the property set stream, so do not significantly affect
the initial overhead of the first accessing/writing of a property. There is some effect because the property
set stream contains the name of the sibling stream- or storage-valued property and this takes a small
amount of time to process.

IPropertySetStorage Implementation Considerations
Several issues arise when considering how to provide an implementation of the IPropertySetStorage
interface that reads and writes the OLE property set format. The following sections describe these
considerations.

Names in IStorage
This is the most complex interoperability issue. In the IPropertySetStorage interface, property sets are
identified with FMTIDs, but in IStorage, they are named with strings with a maximum length of 32
characters.

To accomplish this mapping, the first task is to establish a mapping between FMTIDs and strings.
Converting in the one direction, you have a FMTID, and need a corresponding string name. First, check
whether the FMTID is one of a fixed set of well-known values, and use the corresponding well-known
string name if so:

FMTID String Name Semantic
F29F85E0-4FF9-1068-AB91-08002B27B3D9 "\005SummaryInformation" OLE2 summary

information
D5CDD502-2E9C-101B-9397-
08002B2CF9AE
D5CDD505-2E9C-101B-9397-
08002B2CF9AE

"\
005DocumentSummaryInformation"

Office document
summary
information and
user-defined
properties.

Note The DocumentSummaryInformation property set is special in that it contains two sections.
Multiple sections are not permitted in any other property set. This property set is described in more
detail in Appendix B, OLE Serialized Property Set Format.

The first was defined as part of OLE; the second one was defined by Microsoft Office.

Otherwise, algorithmically form a string name in the following way. First, convert the FMTID to little-endian
byte order if necessary. Then, take the 128 bits of the FMTID and consider them as one long bit string by
concatenating each of the bytes together. The first bit of the 128 bit value is the least significant bit of the
first byte in memory of the FMTID; the last bit of the 128 bit value is the most significant bit of the last byte
in memory of the FMTID. Extend these 128 bits to 130 bits by adding two zero bits to the end. Next, chop
the 130 bits into groups of five bits; there will be 26 such groups. Consider each group as an integer with
reversed bit precedence. For example, the first of the 128 bits is the least significant bit of the first group
of five bits; the fifth of the 128 bits is the most significant bit of the first group. Map each of these integers
as an index into the array of thirty-two characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ012345

This yields a sequence of 26 Unicode characters that uses only uppercase characters and numerals.
Note that no two characters in this range compare equally in a case-insensitive manner in any locale. The
final string is the concatenation of the string "\005" onto the front of these 26 characters, for a total length
of 27 characters.

The following code illustrates one way to map from FMTID to property string:

#define CBIT_BYTE 8
#define CBIT_CHARMASK 5
#define CCH_MAP (1 << CBIT_CHARMASK) // 32
#define CHARMASK (CCH_MAP - 1) // 0x1f

CHAR awcMap[CCH_MAP + 1] = "abcdefghijklmnopqrstuvwxyz012345";

WCHAR MapChar(ULONG i) {
 return((WCHAR) awcMap[i & CHARMASK]);

 }

VOID GuidToPropertyStringName(GUID *pguid, WCHAR awcname[]) {
 BYTE *pb = (BYTE *) pguid;
 BYTE *pbEnd = pb + sizeof(*pguid);
 ULONG cbitRemain = CBIT_BYTE;
 WCHAR *pwc = awcname;

 *pwc++ = ((WCHAR) 0x0005);
 while (pb < pbEnd) {
 ULONG i = *pb >> (CBIT_BYTE - cbitRemain);
 if (cbitRemain >= CBIT_CHARMASK) {
 *pwc = MapChar(i);
 if (cbitRemain == CBIT_BYTE && *pwc >= L'a' && *pwc <= L'z') {
 *pwc += (WCHAR) (L'A' - L'a');
 }
 pwc++;
 cbitRemain -= CBIT_CHARMASK;
 if (cbitRemain == 0) {
 pb++;
 cbitRemain = CBIT_BYTE;
 }
 }
 else {
 if (++pb < pbEnd) {
 i |= *pb << cbitRemain;
 }
 *pwc++ = MapChar(i);
 cbitRemain += CBIT_BYTE - CBIT_CHARMASK;
 }
 }
 *pwc = L'\0';
 }

Converters of property string names to GUIDs should accept lowercase letters as synonymous with their
upper case counterparts. The following example shows one way to map from the property string to a
FMTID:

ULONG
PropertySetNameToGuid(
 IN ULONG cwcname,
 IN WCHAR const awcname[],
 OUT GUID *pguid)
{
 ULONG Status = ERROR_INVALID_PARAMETER;
 WCHAR const *pwc = awcname;

 if (pwc[0] == WC_PROPSET0)
 {
 //Note: cwcname includes the WC_PROPSET0, and
 //sizeof(wsz…) includes the trailing L'\0', but
 //the comparison excludes both the leading
 //WC_PROPSET0 and the trailing L'\0'.

 if (cwcname == sizeof(wszSummary)/sizeof(WCHAR) &&

 wcsnicmp(&pwc[1], wszSummary, cwcname - 1) == 0)
 {
 *pguid = guidSummary;
 return(NO_ERROR);
 }

 if (cwcname == CWC_PROPSET)
 {
 ULONG cbit;
 BYTE *pb = (BYTE *) pguid - 1;

 ZeroMemory(pguid, sizeof(*pguid));
 for (cbit = 0; cbit < CBIT_GUID; cbit +=
 CBIT_CHARMASK)
 {
 ULONG cbitUsed = cibt % CBIT_BYTE;
 ULONG cbitStored;
 WCHAR wc;

 if (cbitUsed == 0)
 {
 pb++;
 }
 wc = *++pwc - L'A'; //assume uppercase
 if (wc > CALPHACHARS)
 {
 wc += (WCHAR) (L'A' - L'a')' //try lowercase

 if (wc > CALPHACHARS)
 {
 wc += L'a' - L'0' + CALPHACHARS; //must
 be a digit
 if (wc > CHARMASK)
 {
 goto fail; //invalid character
 }
 }
 }
 *pb |= (BYTE) (wc << cbitUsed);
 cbitStored = min(CBIT_BYTE - cbitUsed,
 CBIT_CHARMASK);
 //If the translated bits wouldn't fit in the
 current byte

 if (cbitStored < CBIT_CHARMASK)
 {
 wc >>= CBIT_BYTE - cbitUsed;
 if (cbit + cbitStored == CBIT_GUID)
 {
 if (wc !+0)
 {
 goto fail; //extra bits
 }
 break;
 }

 pb++;
 *pb |= (BYTE) wc;
 }
 }
 Status = NO_ERROR
 }
 }
fail:
 return(Status);
}

When attempting to open an existing property set (in IPropertySetStorage::Open) the (root) FMTID in
hand is converted to a string as depicted above. If an element of the IStorage of that name exists, it is
used. Otherwise, the open fails.

When creating a new property set, the above mapping determines the string name used.

Storage vs Stream for a Property Set
To provide applications the control they need to fully interoperate through the IPropertySetStorage
interface with the OLE property set, the programmer must control whether a property set is stored in a
storage or a stream. This is provided through the presence or absence of the
PROPSETFLAG_NONSIMPLE flag in IPropertySetStorage::Create.

Setting the CLSID of the Property Set
IPropertyStorage::SetClass, when invoked on a property stored in a compound file, will set the CLSID of
the storage object through a call to IStorage::SetClass in addition to setting the class tag value stored in
the OLE property set. This provides a consistency and uniformity that creates better interaction with some
tools.

Synchronization Points
When property sets are supported on the same object as is IStorage, it is important to be aware of
synchronization points between the base storage and the property storage. The property set storage
holds the property set stream in an internal buffer until that buffer is commited through the
IPropertyStorage::Commit method. This is true whether IPropertyStorage was opened in transacted
mode or direct mode.

Code pages: Unicode strings, Macintosh, etc.
Another consideration is how Unicode property names are stored in the property ID 0 (the property name
dictionary), which is not specified per se to use Unicode strings.

This is straightforward. Unicode officially has a code page value of 1200. To store Unicode values in the
property name dictionary, use a code page value of 1200 for the whole property set (in property ID 1, of
course), specified by the absence of the PROPSETFLAG_ANSI flag in IPropertySetStorage::Create.
Note that this has the side effect of storing all string values in the property set in Unicode. In all code
pages, the count found at the start of a VT_LPSTR s a byte count, not a character count. This is
necessary to provide for smooth interoperability with down-level clients.

The compound file implementation of IPropertySetStorage creates all new property sets completely
either in Unicode (code page 1200) or in the current system ANSI code page. This is controlled by the
absence or presence of the PROPSETFLAG_ANSI flag in the grfFlags parameter of
IPropertySetStorage::Create.

It is recommended that property sets be created or opened as Unicode, by not setting the
PROPSETFLAG_ANSI flag in the grfFlags parameter of IPropertySetStorage::Create. It is also
recommended that you avoid using VT_LPSTR values, and use VT_LPWSTR values instead. When the
property set code page is Unicode, VT_LPSTR string values are converted to Unicode when stored, and
back to multibyte string values when retrieved. When the code page of the property set is not Unicode,
property names, VT_BSTR strings, and non-simple property values are converted to multibyte strings
when stored, and converted back to Unicode when retrieved. If the property set code page is Unicode,
VT_LPSTR string values are converted to Unicode when stored, and back to multibyte string values when
retrieved.

The setting of the PROPSETFLAG_ANSI flag as reported through a call to IPropertyStorage::Stat
simply reflects whether the underlying code page is not Unicode or is Unicode. Note, though, property ID
1 can be explicitly read to learn the code page.

Property ID 1 is accessible through IPropertyStorage::ReadMultiple. However, it is read-only, and may
not be updated with WriteMultiple. Further, it may not be deleted with DeleteMultiple.

Dictionary
IPropertyStorage::WritePropertyNames is implemented using the property ID 0 dictionary as described
above. Property ID 0 is not accessible through IPropertyStorage::ReadMultiple or ::WriteMultiple.

Extensions
Property set extensions as defined in the original OLE property set format have been removed and are
not supported, except for the User Defined Properties section in the Document Summary Information
property set, described in more detail in Appendix C, OLE Serialized Property Set Format.

CHAPTER 9

Asynchronous Storage
Asynchronous storage enhances OLE's structured storage specification to support asynchronous
downloading of storage objects on high-latency, slow-link networks such as the Internet. Asynchronous
storage enables both new and legacy applications that use compound files to efficiently render their
content when accessed by means of existing Internet protocols. A single request to a World Wide Web
server triggers the download of nested objects contained within a Web page, thereby eliminating the need
to separately request each object. An asynchronous download and access mechanism enables an
application to render the first page of data before all the data has been received. The exact order in which
elements of a page become available can be specified by the Web publisher and is not dependent on
random factors of network topology and server availability.

Asynchronous storage works together with asynchronous monikers to provide complete asynchronous
binding behavior. (For more information on asynchronous monikers, see the Microsoft's ActiveX™
Development Kit.) A protocol-specific asynchronous moniker triggers the binding operation and sets up
the required components. In the Internet case, this moniker would be one that can parse a Universal
Resource Locator (URL) to bind to an object or storage. If the target of the binding operation is a
persistent object, the call to IMoniker::BindToStorage returns an asynchronous storage object.

Note Microsoft's current version of URL monikers does not support asynchronous storage. A future
version will do so.

An asynchronous moniker client requests asynchronous binding by implementing a bind-status callback
object and registering it with the bind context. The bind-status callback object exposes the
IBindStatusCallback interface, which enables the client to specify binding preferences and to receive
progress and global data-availability notifications during the course of a binding operation. The
asynchronous compound file implementation provides a connection point for IProgressNotify, which
clients can use to receive specific availability notifications on individual streams.

Storage Modes
Asynchronous storage supports two storage modes: blocking and nonblocking, which a client (either a
browser or the object itself) can specify by returning BINDF_ASYNCSTORAGE from the moniker's call to
IBindStatusCallback::GetBindInfo. If a client specifies BINDF_ASYNCSTORAGE, it receives a pointer
to a nonblocking asynchronous storage. Otherwise, it receives a pointer to a blocking asynchronous
storage. Even if the client does not request an asynchronous binding operation (by not registering
IBindStatusCallback with the bind context), the moniker still returns a blocking asynchronous storage,
enabling progressive loading for legacy applications.

In nonblocking mode, an asynchronous storage returns E_PENDING when data is unavailable. Upon
receiving this message, the client waits for notification that additional data is available before trying again
to download it.

In blocking mode, instead of returning E_PENDING, the asynchronous storage blocks the call until new
data is available, then unblocks the call and returns the new data. The client must be ready to receive the
data. While the thread is blocked, data already passed to the client is fully available to the user.

Blocking mode is necessary because clients unaware of asynchronous storage will not recognize
E_PENDING and will assume that an unrecoverable error has occurred. Blocking asynchronous storage
enables existing clients to do progressive rendering.

Asynchronous Compound Files
Asynchronous Compound Files, the system-provided implementation of asynchronous storage enables
the efficient downloading of compound files from the Internet in general and the Web in particular. The
basic architecture of Asynchronous Compound Files is shown in the following diagram.

{ewc msdncd, EWGraphic, bsd23512 0 /a "SDK_STOR.WMF"}

The Asynchronous Compound Files implementation can work with new asynchronous moniker types that
understand Internet protocols and can bind to an object identified by a Universal Resource Locator (URL).
Such a moniker would return an asynchronous IStream or IStorage pointer from the client's call to
IMoniker::BindToStorage.

Compound Files in general are implemented on top of a byte array object, an abstraction of a file that
represents an object's data as a flat byte array. The byte array object exposes its functionality through the
ILockBytes interface. If a byte array supports nonblocking asynchronous storage, it returns E_PENDING
to the compound-file implementation, which in turn propagates the error back to the caller.

To keep track of the data available during a download, a byte array that supports asynchronous storage
exposes the IFillLockBytes interface on a wrapper object provided by the system specifically for this
purpose. The downloading code provided by an asynchronous moniker calls this interface to fill the byte
array asynchronously, as data is available. The wrapper object also exposes an ILockBytes interface,
which the Asynchronous Compound Files implementation uses to read and write data from and to the
array.

Asynchronous storage and stream objects provide a connection point for the IProgressNotify interface,
which is implemented by the asynchronous moniker's downloading code. The Asynchronous Compound
Files implementation calls IProgressNotify to provide the downloader with information about the status of
the downloading operation.

How Asynchronous Binding and Storage Work
When a user clicks a link representing a document embedded in a Web page, the following steps occur:

1. The browser calls the MkParseDisplayName function, passing the link's URL.
2. MkParseDisplayName parses the URL, creates a corresponding aynchronous moniker, and returns

a pointer to the moniker's IMoniker interface.
3. The browser calls IsAsyncMoniker to determine if the moniker is asynchronous, creates a bind

context, registers the IBindStatusCallback interface with the bind context (only if the moniker is
asynchronous), and calls IMoniker::BindToObject, passing the bind context.

4. The moniker binds to the object and queries it for the IPersistMoniker interface, which indicates
whether the object supports asynchronous binding and storage. If the object returns a pointer to
IPersistMoniker:
A. The URL moniker calls IPersistMoniker::Load, passing its own IMoniker pointer to the object.
B. The object modifies the bind context, chooses whether it wants a blocking or non-blocking storage,

registers its own IBindStatusCallback and calls IMoniker::BindToStorage on the pointer it
received through IPersistMoniker::Load.

C. The moniker creates an asynchronous storage, keeps a reference to the wrapper object's
IFillLockBytes interface, registers the IProgressNotify interface on the root storage, and calls
IPersistStorage::Load, passing the asynchronous storage's IStorage pointer. As data arrives (on
a background thread) the moniker calls IFillLockBytes to fill the ILockBytes on the temp file.

D. The object reads data from the storage and returns from IPersistMoniker::Load when it has
received sufficient data to consider itself initialized. If the object attempts to read data that has not
yet been downloaded, the downloader receives a notification on IProgressNotify. Inside the
IProgressNotify::OnProgress method, the downloading thread either blocks in a modal message
loop, or causes the asynchronous storage to return E_PENDING, depending on whether the object
has requested a blocking or nonblocking storage.

5. If the object does not implement IPersistMoniker, the moniker queries for IPersistStorage, which
indicates that the object's persistent state is stored in a storage object. If the object returns a pointer
to IPersistStorage:
A. The Moniker calls IMoniker::BindToStorage on itself, requesting a blocking IStorage (because

the object is not asynchronous-aware), creates an asynchronous storage, keeps a reference to the
wrapper object's IFillLockBytes interface, registers the IProgressNotify interface on the root
storage, and calls IPersistStorage::Load, passing the asynchronous storage's IStorage pointer.
As data arrives (on a background thread) the moniker calls IFillLockBytes to fill the ILockBytes
on the temp file.

B. The object reads data from storage and returns from IPersistStorage::Load when it has received
sufficient data to consider itself initialized. If the object attempts to read data that has not yet been
downloaded, it receives a notification on IProgressNotify. Inside the
IProgressNotify::OnProgress method, the downloading thread always blocks in a modal
message loop.

6. Regardless whether the download is synchronous or asynchronous, the moniker returns from
IMoniker::BindToObject, and the browser receives the initialized object it asked for.

7. The browser queries for IOleObject and hosts the object as a Document Object. (At this point the
object may not be initialized completely, but only enough to display something useful, in which case
downloading continues in the background.)

Compound File Optimization
Asynchronous storage enables applications to precisely lay out their compound files so that data is
available in the order in which applications will need it. If an application requires only part of its data to
display a first page of information, this data can be placed at the beginning of the file, even if it logically
resides at the end of a stream. Data from different streams can be interleaved. Audio and video data, for
example, can be interleaved so that subsequent read operations retrieve both simultaneously, a
requirement for multimedia applications.

New applications can optimize their compound files programmatically by calling the
StgOpenLayoutDocfile API function. This function calls the ILayoutStorage interface, which is
implemented by the root storage of the new compound files implementation. ILayoutStorage has
member functions for scripting the layout of data, monitoring downloads to determine the order in which
data is accessed, and rewriting the compound file to match the layout specified by scripting or determined
by monitoring. The call to rewrite a file must occur before releasing the last pointer to the root storage of
the file. Otherwise, the file will not be altered.

Legacy applications can optimize their compound files by using the Docfile Layout Tool (dflayout.exe)
included in the Win32 SDK. This capability, combined with a blocking storage enable legacy applications
to progressively download and render their data.

Data Transfer
The Component Object Model (COM) provides a standard mechanism for transferring data between
applications. This mechanism is the data object, which is simply any COM object that implements the
IDataObject interface. Some data objects, such as a piece of text copied to the clipboard, have
IDataObject as their sole interface. Others, such as compound document objects, expose several
interfaces, of which IDataObject is simply one. Data objects are fundamental to the working of compound
documents, although they also have widespread application outside that OLE technology.

By exchanging pointers to a data object, providers and consumers of data can manage data transfers in a
uniform manner, regardless of the format of the data, the type of medium used to transfer the data, or the
target device on which it is to be rendered. You can include support in your application for basic clipboard
transfers, drag and drop transfers, and OLE compound document transfers with a single implementation
of IDataObject. Having done that, the amount of code required to accommodate the special semantics of
each protocol is minimal.

Data Transfer Interfaces
The IDataObject interface provides consumers of data with methods for getting and setting an object's
data, determining which formats the object supports, and registering for and receiving notifications when
data in the object changes. When obtaining data, a caller can specify the format in which it wants to
render the data. The source of the data, however, determines the storage medium, which it returns in an
out parameter provided by the caller.

By itself, IDataObject supplies all the tools you need to implement Microsoft® Windows® clipboard
transfers or compound document transfers in your applications. If you also want to support drag and drop
transfers, you need to implement the IDropSource and IDropTarget interfacesalong with IDataObject.

The IDataObject interface combined with OLE clipboard APIs provide all the capabilities of the Microsoft®
Win32® clipboard APIs. Using both the platform's clipboard APIs and OLE's is usually redundant and
unnecessary. Suppliers of data that support either drag and drop transfers or OLE compound documents
must implement the IDataObject interface. If your application supports only clipboard transfers now, but
you intend to add drag and drop or compound documents in later releases, you may want to implement
IDataObject and the OLE clipboard APIs now in order to minimize the amount of time spent recoding and
debugging later. You may also want to implement IDataObject in order to utilize transfer media other than
global memory.

The following table summarizes which ones to use, depending on what types of data transfer you want to
support:

If You Want to Support You Must Use
Compound documents IDataObject
Drag and drop transfers IDataObject, IDropSource,

IDropTarget, DoDragDrop (or the
equivalent)

Windows clipboard transfers
using global memory exclusively

Windows clipboard APIs

Windows clipboard transfers
using exchange mediums other
than global memory.

IDataObject

Clipboard transfers now but drag
and drop or compound
documents later

IDataObject and the interfaces
and function listed above for "Drag
and drop transfers"

When a user initiates a data transfer operation, the source application creates an instance of IDataObject
and through it makes the data available in one or more formats. In a clipboard transfer, the application
calls the OleSetClipboard function to pass a data-object pointer to OLE. (OleSetClipboard also offers
standard clipboard data formats for both OLE version 1 and non-OLE applications.) In a drag and drop
transfer, the application calls the DoDragDrop function instead.

On the receiving side of the transfer, the destination receives the IDataObject pointer either as an
argument to an invocation of IDropTarget::Drop or by calling the OleGetClipboard function, depending
on whether the transfer is by means of drag and drop or the clipboard. Having obtained this pointer, the
destination calls IDataObject::EnumFormatEtc to learn what formats are available for retrieval and on
what types of media they can be obtained. Armed with this information, the receiving application requests
the data with a call to IDataObject::GetData.

Data Formats and Transfer Media
Most platforms, including Windows, define a standard protocol for transferring data between applications,
based on a set of functions called the clipboard. Applications using these functions can share data even if
their native data formats are wildly different. Generally, these clipboards have two significant
shortcomings that COM has overcome.

First, data descriptions use only a format identifier, such as the single 16-bit clipboard format identifier on
Windows, which means the clipboard can only describe the structure of its data, that is, the ordering of
the bits. It can report, "I have a bitmap" or "I have some text," but it cannot specify the target devices for
which the data is composed, which views or aspects of itself the data can provide, or which storage media
are best suited for its transfer. For example, it cannot report, "I have a string of text that is stored in global
memory and formatted for presentation either on screen or on a printer" or "I have a thumbnail sketch
bitmap rendered for a 100 dpi dot-matrix printer and stored as a disk file."

Second, all data transfers using the clipboard generally occur through global memory. Using global
memory is reasonably efficient for small amounts of data but horribly inefficient for large amounts, such as
a 20 MB multimedia object. Global memory is slow for a large data object, whose size requires
considerable swapping to virtual memory on disk. In cases where the data being exchanged is going to
reside mostly on disk anyway, forcing it through this virtual-memory bottleneck is highly inefficient. A
better way would skip global memory entirely and simply transfer the data directly to disk.

To alleviate these problems, COM introduces two new data structures: FORMATETC and STGMEDIUM.

The FORMATETC Structure
The FORMATETC structure is a generalized clipboard format, enhanced to encompass a target device,
an aspect or view of the data, and a storage medium. A data consumer, such as an OLE container
application, passes the FORMATETC structure as an argument in calls to IDataObject to indicate the
type of data it wants from a data source, such as a compound document object. The source uses the
FORMATETC structure to describe what formats it can provide. FORMATETC can describe virtually any
data, including other objects such as monikers. A container can ask one of its embedded objects to list its
data formats by calling IDataObject::EnumFormatetc, which returns an enumerator object that
implements the IEnumFormatEtc interface. Instead of replying merely that it has "text and a bitmap," the
object can provide a detailed description of the data, including the device (normally screen or printer) for
which it is rendered, the aspect to be presented to the user (full contents, thumbnail, icon, or formatted for
printing), and the storage medium containing the data (global memory, disk file, storage object, or
stream). This ability to tightly describe data will, in time, result in higher quality printer and screen output
as well as more efficiency in data browsing, where a thumbnail sketch is much faster to retrieve and
display than a fully detailed rendering.

The following table lists fields of the FORMATETC data structure and the information they specify:

Field Specifies
cfFormat The format in which the data is to be rendered,

which can be a standard clipboard format, a
proprietary format, or an OLE format. For more
information on OLE formats, see Chapter 5,
"Compound Documents."

ptd A DVTARGETDEVICE structure, which contains
enough information about a Windows target device,
such as a screen or printer, so that a handle to its
device context (hDC) can be created using the
Windows CreateDC function.

dwAspect The aspect or view of the data to be rendered; can
be the full contents, a thumbnail sketch, an icon, or
formatted for printing.

lindex The part of the aspect that is of interest; for the
present, the value must be -1, indicating that the
entire view is of interest.

tymed The data's storage medium, which can be global
memory, disk file, or an instance of one of COM's
structured-storage interfaces.

The STGMEDIUM Structure
Just as the FORMATETC structure is an enhancement of the Windows clipboard format identifier, so the
STGMEDIUM structure is an improvement of the global memory handle used to transfer the data. The
STGMEDIUM structure includes a flag, tymed, which indicates the medium to be used, and a union
comprising pointers and a handle for getting whichever medium is specified in tymed.

The STGMEDIUM structure enables both data sources and consumers to choose the most efficient
exchange medium on a per-rendering basis. If the data is so big that it should be kept on disk, the data
source can indicate a disk-based medium in its preferred format, only using global memory as a backup if
that's the only medium the consumer understands. Being able to use the best medium for exchanges as
the default improves overall performance of data exchange between applications. For example, if some of
the data to be transferred is already on disk, the source application can move or copy it to a new
destination, either in the same application or in some other, without having first to load the data into global
memory. At the receiving end, the consumer of the data does not have to write it back to disk.

Drag and Drop
"Drag and drop" refers to data transfers in which a mouse or other pointing device is used to specify both
the data source and its destination. In a typical drag and drop operation, a user selects the object to be
transferred by moving the mouse pointer to it and holding down either the left button or some other button
designated for this purpose. While continuing to hold down the button, the user initiates the transfer by
dragging the object to its destination, which can be any OLE container. Drag and drop provides exactly
the same functionality as the OLE Clipboard copy and paste but adds visual feedback and eliminates the
need for menus. In fact, if an application supports Clipboard copy and paste, little extra is needed to
support drag and drop.

During an OLE drag and drop operation, the following three separate pieces of code are used:

Drag-and-drop code
source

Implementation and use

IDropSource interface Implemented by the object containing
the dragged data, referred to as the
drag source.

IDropTarget interface Implemented by the object that is
intended to accept the drop, referred to
as the drop target.

DoDragDrop function Implemented by OLE and used to
initiate a drag and drop operation. Once
the operation is in progress, it facilitates
communication between the drag
source and the drop target.

The IDropSource and IDropTarget interfaces can be implemented in either a container or in an object
application. The role of drag source or drop target is not limited to any one type of OLE application.

The OLE function DoDragDrop implements a loop that tracks mouse and keyboard movement until such
time as the drag is canceled or a drop occurs. DoDragDrop is the key function in the drag and drop
process, facilitating communication between the drag source and drop target.

During a drag and drop operation, three types of feedback can be displayed to the user:

Type of feedback Description
Source feedback Provided by the drag source, the source

feedback indicates the data is being dragged
and does not change during the course of the
drag. Typically, the data is highlighted to signal
it has been selected.

Pointer feedback Provided by the drag source, the pointer
feedback indicates what happens if the mouse
is released at any given moment. Pointer
feedback changes continually as the user
moves the mouse and/or presses a modifier
key. For example, if the pointer is moved into a
window that cannot accept a drop, the pointer
changes to the "not allowed" symbol.

Target feedback Provided by the drop target, target feedback
indicates where the drop is to occur.

Although the Windows 3.1 File Manager does not use OLE to implement drag and drop transfers, it is

nevertheless an example of an application that acts as both a drag source and drop target and that
provides all three types of feedback. When a user selects a file to copy, File Manager supplies source
feedback by indicating the selection. As the selection is dragged and modifier keys are pressed, the
mouse pointer changes. For example, if the user presses the CTRL key, a plus sign is added, indicating
that the drop would result in a copy rather than moving the original. When the file is dragged over an area
that is not a drop target, the pointer changes appropriately. Target feedback, a line drawn around a file or
directory, is provided when the pointer is over an area that is a drop target.

Drag Source Responsibilities
The drag source is responsible for the following tasks:

· Providing a data-transfer object for the drop target that exposes the IDataObject and IDropSource
interfaces.

· Generating pointer and source feedback.
· Determining when the drag operation has been canceled or a drop operation has occurred.
· Performing any action on the original data caused by the drop operation, such as deleting the data or

creating a link to it.

The main task is creating a data-transfer object that exposes the IDataObject and IDropSource
interfaces. The drag source might or might not include a copy of the selected data. Including it is not
mandatory, but doing so safeguards against inadvertent changes and allows the Clipboard operations
code to be identical to the drag and drop code.

While a drag operation is in progress, the drag source is responsible for setting the mouse pointer and, if
appropriate, for providing additional source feedback to the user. The drag source cannot provide any
feedback that tracks the mouse position other than by actually setting the real pointer (see the Windows
SetCursor function). This rule must be enforced to avoid conflicts with the feedback provided by the drop
target. (A drag source can also be a drop target. When dropping on itself, the source/target can, of
course, provide target feedback to track the mouse position. In this case, however, it is the drop target
tracking the mouse, not the source.) Based on the feedback offered by the drop target, the source sets an
appropriate pointer.

Data Notification
Objects that consume data from an external source sometimes need to be informed when data in that
source changes. For example, a stock ticker tape viewer that relies on data in some spreadsheet needs
to be notified when that data changes so it can update its display. Similarly, a compound document needs
information about data changes in its embedded objects so that it can update its data caches. In cases
such as this, where dynamic updating of data is desirable, sources of data require some mechanism of
notifying data consumers of changes as they occur without obligating the consumers to drop everything in
order to update their data. Ideally, having been notified that a change has occurred in the data source, a
consuming object can ask for an updated copy at its leisure.

COM's mechanism for handling asynchronous notifications of this type is an object called an advise sink,
which is simply any COM object that implements an interface called IAdviseSink. Consumers of data
implement the IAdviseSink. They register to receive notifications by handing a pointer to the data object
of interest.

The IAdviseSink interfaces exposes the following methods for receiving asynchronous notifications:

Method Notifies the Advise Sink that
OnDataChange Calling object's data has changed.
OnViewChange Instructions for drawing the calling object

have changed.
OnRename Calling object's moniker has changed.
OnSave Calling object has been saved to persistent

storage.
OnClose Calling object has been closed.

As the table indicates, the IAdviseSink interface exposes methods for notifying the advise sink of events
other than changes in the calling object's data. The calling object can also notify the sink when the way in
which it draws itself changes, or it is renamed, saved, or closed. These other notifications are used mainly
or entirely in the context of compound documents, although the notification mechanism is identical. For
more information on compound-document notifications, see "Compound Documents."

In order to take advantage of the advise sink, a data source must implement IDataObject::DAdvise,
IDataObject::DUnadvise, and IDataObject::EnumDAdvise. A data consumer calls the DAdvise mothod
to notify a data object that it wishes to be notified when the object's data changes. The consuming object
calls the DUnadvise method to tear down this connection. Any interested party can call the EnumAdvise
method to learn the number of objects having an advisory connection with a data object.

When data changes at the source, the data object calls IAdviseSink::OnDataChange on all data
consumers that have registered to receive notifications. To keep track of advisory connections and
manage the dispatch of notifications, data sources rely on an object called a data advise holder. You can
create your own data advise holder by implementing the IDataAdviseHolder interface. Or, you can let
COM do it for you by calling the helper function CreateDataAdviseHolder.

Property Pages and Property
Sheets

OLE property pages enable an object to display its properties in a tabbed dialog box known as a property
sheet. An end user can then view and change the object's properties. An object can display its property
pages independent of its client, or the client can manage the display of property pages from a number of
contained objects in a single property sheet. Property pages also provide a means for notifying a client of
changes in an object's properties.

Any object that wishes to provide a user interface for its changing properties can use this technology.

Property Sheets and Property Pages
An object's properties are exposed to clients the same as methods through either COM interfaces or the
object's IDispatch implementation, allowing properties to be changed by programs calling these methods.
The OLE technology of property pages provides the means to build a user interface for an object's
properties according to Windows user interface standards. Thus, the properties are exposed to end users.
An object's property sheet is a tabbed-dialog where each tab corresponds to a specific property page.
The OLE model for working with property pages consists of these features:

· Each property page is managed by an in-process object that implements either IPropertyPage or
IPropertyPage2. Each page is identified with its own unique CLSID.

· An object specifies its support for property pages by implementing ISpecifyPropertyPages. Through
this interface the caller can obtain a list of CLSIDs identifying the specific property pages that the
object supports. If the object specifies a property page CLSID, the object must be able to receive
property changes from the property page.

· Any piece of code (client or object) that wishes to display an object's property sheet passes the
object's IUnknown pointer (or an array if multiple objects are to be affected) along with an array of
page CLSIDs to OleCreatePropertyFrame or OleCreatePropertyFrameIndirect, which creates the
tabbed-dialog box.

· The property frame dialog instantiates a single instance of each property page, using
CoCreateInstance on each CLSID. The property frame obtains at least an IPropertyPage pointer for
each page. In addition, the frame creates a property page site object in itself for each page. Each site
implements IPropertyPageSite and this pointer is passed to each page. The page then
communicates with the site through this interface pointer.

· Each page is also made aware of the object or objects for which it has been invoked; that is, the
property frame passes the IUnknown pointers of the objects to each page. When instructed to apply
changes to the objects, each page queries for the appropriate interface pointer and passes new
property values to the objects in whatever way is desired. There are no stipulations on how such
communication has to happen.

· An object can also support per property browsing through the IPerPropertyBrowsing interface
permitting the object to specify which property should receive initial focus when the property page is
displayed and to specify string's and values that can be displayed by the client in its own user
interface.

These features are illustrated in the following diagram:

{ewc msdncd, EWGraphic, bsd23520 0 /a "SDK.WMF"}

These interfaces are defined as follows:

interface ISpecifyPropertyPages : IUnknown
 {
 HRESULT GetPages([out] CAUUID *pPages);
 };

interface IPropertyPage : IUnknown
 {
 HRESULT SetPageSite([in] IPropertyPageSite *pPageSite);
 HRESULT Activate([in] HWND hWndParent, [in] LPCRECT prc
 , [in] BOOL bModal);
 HRESULT Deactivate(void);
 HRESULT GetPageInfo([out] PROPPAGEINFO *pPageInfo);
 HRESULT SetObjects([in] ULONG cObjects

 , [in, max_is(cObjects)] IUnknown **ppunk);
 HRESULT Show([in] UINT nCmdShow);
 HRESULT Move([in] LPCRECT prc);
 HRESULT IsPageDirty(void);
 HRESULT Apply(void);
 HRESULT Help([in] LPCOLESTR pszHelpDir);
 HRESULT TranslateAccelerator([in] LPMSG pMsg);
 }

interface IPropertyPageSite : IUnknown
 {
 HRESULT OnStatusChange([in] DWORD dwFlags);
 HRESULT GetLocaleID([out] LCID *pLocaleID);
 HRESULT GetPageContainer([out] IUnknown **ppUnk);
 HRESULT TranslateAccelerator([in] LPMSG pMsg);
 }

The ISpecifyPropertyPages::GetPages method returns a counted array of UUID (GUID) values each of
which describe the CLSID of a property page that the object would like displayed. Whoever invokes the
property sheet with OleCreatePropertyFrame or OleCreatePropertyFrameIndirect passes this array to
the API function. Note that if the caller wishes to display property pages for multiple objects, it must only
pass the intersection of the CLSID lists of all the objects to these API functions. In other words, the caller
must only invoke property pages that are common to all objects.

In addition, the caller passes the IUnknown pointers to the affected objects to the API functions as well.
Both API functions create a property frame dialog and instantiate a page site with IPropertyPageSite for
each page it will load. Through this interface a property page can:

· retrieve the current language used in the property sheet through GetLocaleID,
· ask the frame to process keystrokes through TranslateAccelerator,
· notify the frame of changes in the page through OnStatusChange,
· obtain an interface pointer for the frame itself through GetPageContainer, although there are no

interfaces defined for the frame at this time for this function always returns E_NOTIMPL

The property frame instantiates each property page object and obtain each page's IPropertyPage
interface. Through this interface the frame informs the page of its page site (SetPageSite), retrieves page
dimensions and strings (GetPageInfo), passes the interface pointers to the affected objects
(SetObjects), tells the page when to create and destroy its controls (Activate and Deactivate), instructs
the page to show or reposition itself (Show and Move), instructs the page to apply its current values to
the affected objects (Apply), checks on the page's dirty status (IsPageDirty), invokes help (Help), and
passes keystrokes to the page (TranslateAccelerator).

An object can also support per-property browsing which provides:

a) a way (through IPerPropertyBrowsing and IPropertyPage2) to specify which property on which
property page should be given the initial focus when a property sheet is first displayed

b) a way (through IPerPropertyBrowsing) for the object to specify predefined values and corresponding
descriptive strings that could be displayed in a client's own user interface for properties.

An object can choose to support (b) without supporting (a), such as when the object has no property
sheet.

The IPropertyPage2 and IPerPropertyBrowsing interfaces are defined as follows:

interface IPerPropertyBrowsing : IUnknown
 {

 HRESULT GetDisplayString([in] DISPID dispID
 , [out] BSTR *pbstr);
 HRESULT MapPropertyToPage([in] DISPID dispID
 , [out] CLSID *pclsid);
 HRESULT GetPredefinedStrings([in] DISPID dispID
 , [out] CALPOLESTR *pcaStringsOut
 , [out] CADWORD *pcaCookiesOut);
 HRESULT GetPredefinedValue([in] DISPID dispID
 , [in] DWORD dwCookie, [out] VARIANT *pvarOut);
 }

interface IPropertyPage2 : IPropertyPage
 {
 HRESULT EditProperty([in] DISPID dispID);
 }

To specify its support for such capabilities, the object implements IPerPropertyBrowsing. Through this
interface, the caller can request the information necessary to achieve the browsing, such as predefined
strings (GetPredefinedStrings) and values (GetPredefinedValues) as well as a display string for a given
property (GetDisplayString).

In addition, the client can obtain the CLSID of the property page that allows the user to edit a given
property identified with a DISPID (MapPropertyToPage). The client then instructs the property frame to
activate that page initially by passing the CLSID and the DISPID to OleCreatePropertyFrameIndirect.
The frame activates that page first and passes the DISPID to the page through
IPropertyPage2::EditProperty. The page then sets the focus to that property's editing field. In this way, a
client can jump from a property name in its own user interface to the property page that can manipulate
that property.

Data Binding through IPropertyNotifySink
Objects that support properties, for example, through OLE Automation and the IDispatch interface, may
wish to allow clients to be notified when certain properties change value. Such a property is called a
bindable property because the notifications allow a client to synchronize its own display of the object's
current property values. In addition, the same objects may wish to allow a client to control when certain
properties are allowed to change. Such properties are called request edit properties.

The IPropertyNotifySink is a standard notification interface that supports bindable and request-edit
properties. IPropertyNotifySink is supported from an object with properties as an outgoing interface.
That is, the interface itself is implemented by a client's sink object, and the client connects the sink to the
supporting object through the connection point mechanism described earlier. The IPropertyNotifySink is
defined as follows:

interface IPropertyNotifySink : IUnknown
 {
 HRESULT OnChanged([in] DISPID dispID);
 HRESULT OnRequestEdit([in] DISPID dispID);
 }

When an object wishes to notify its connected sinks that a bindable property identified with a given
DISPID has changed, it calls OnChanged. If an object changes multiple properties at once, it can pass
DISPID_UNKNOWN to OnChanged in which case a client refreshes its cache of all property values of
interest.

When a request edit property is about to change, an object can ask the client whether it will allow that
change to occur. The object calls OnRequestEdit passing the DISPID of the property in question (or
DISPID_UNKNOWN to identify all properties). The client's sink returns S_OK to indicate that the change
is allowed, or S_FALSE (or an error) to indicate that change is not allowed. When an object calls
OnRequestEdit, it is required to obey the client's wishes by following the exact semantics of S_OK and
S_FALSE return values.

Note that OnRequestEdit cannot be used for data validation because at the time of the call, the new
value of the property is not yet available. The notification can only be used to control a read-only state for
a property.

Objects control which properties are bindable and request edit and mark such properties in the object's
type information. In the type information, the attribute bindable marks a property as supporting
IPropertyNotifySink::OnChanged. The attribute requestedit marks a property as supporting
IPropertyNotifySink::OnRequestEdit.

One property can support both behaviors in which case OnRequestEdit is called first, and only if change
is allowed is OnChanged called.

The one exception to the behavior of such properties is that no notifications are sent as a result of an
object's initialization or loading procedures. At such times, it is assumed that all properties change and
that all must be allowed to change. Notifications to this interface are therefore only meaningful in the
context of a fully initialized/loaded object.

Two other attributes can be applied to properties in an object's type information. The defaultbind attribute
marks a bindable property as being the one that best represents the state of the object as a whole. The
displaybind attribute marks a bindable property as suitable for display in a client's own user interface.

Compound Documents
OLE compound documents enable users working within a single application to manipulate data written in
various formats and derived from multiple sources. For example, a user might insert into a word
processing document a graph created in a second application and a sound object created in a third
application. Activating the graph causes the second application to load its user interface, or at least that
part containing tools necessary to edit the object. Activating the sound object causes the third application
to play it. In both cases, a user is able to manipulate data from external sources from within the context of
a single document.

OLE compound document technology rests on a foundation consisting of COM, structured storage,
and .uniform data transfer. As summarized below, each of these core technologies plays a critical role in
OLE compound documents:

COM
A compound document object is essentially a COM object that can be embedded in, or linked to, an
existing document. As a COM object, a compound document object exposes the IUnknown interface,
through which clients can obtain pointers to its other interfaces, including several, such as
IOleObject, IOleLink, and IViewObject2, that provide special features unique to compound
document objects.

Structured Storage
A compound document object must implement the IPersistStorage or, optionally, IPersistStream
interfaces to manage its own storage. A container used to create compound documents must supply
the IStorage interface, through which objects store and retrieve data. Containers almost always
provide instances of IStorage obtained from OLE's Compound Files implementation. Containers must
also use an object's IPersistStorage and/or IPersistStream interfaces.

Uniform Data Transfer
Applications that support compound documents must implement IDataObject because embedded
objects and linked objects begin as data that has been transferred using special OLE clipboard
formats, rather than standard Microsoft® Windows® clipboard formats. In other words, formatting data
as an embedded or linked object is simply one more option provided by OLE's uniform data transfer
model.

OLE's compound document technology benefits both software developers and users alike. Instead of
feeling obligated to cram every conceivable feature into a single application, software developers are now
free, if they like, to develop smaller, more focused applications that rely on other applications to supply
additional features. In cases where a software developer decides to provide an application with
capabilities beyond its core features, the developer can implement these additional services as separate
DLLs, which are loaded into memory only when their services are required. Users benefit from smaller,
faster, more capable software that they can mix and match as needed, manipulating all required
components from within a single master document.

Containers and Servers
Compound document applications are of two basic types: container applications and server applications.
OLE container applications provide users with the ability to create, edit, save, and retrieve compound
documents. OLE server applications provide users with the means to create documents and other data
representations that can be contained as either links or embeddings in container applications. An OLE
application can be a container application, a server application, or both.

OLE server applications also differ in whether they are implemented as in-process servers or local
servers. An in-process server is a dynamic link library (DLL) that runs in the container application's
process space. You can run an in-process server only from within the container application.

Note Future releases of OLE will enable linking and embedding across machine boundaries, so
that a container application on one computer will be able to use a compound document object
provided by a remote server running on another computer. From a container application's point of
view, any OLE server application that runs in its own process space, whether on the same computer
or a remote machine, is an out-of-process server.

Linking and Embedding
Users can create two types of compound-document objects: linked or embedded. The difference between
the two types lies in how and where the object's source data is stored. Where the object resides affects, in
turn, the object's portability and methods of activation, how data updates are performed, and the size and
structure of its container.

Linked Objects
When a link to an object is inserted in a compound document, the source data, or link source, continues
to reside wherever it was initially created, usually in another document. The compound document
contains only a reference, or link, to the actual data stored at the link source, along with information about
how to present that data to the user. Currently, moving a link source breaks the link unless both source
and client maintain their relative positions in the directory tree. Eventually, link tracking by Windows will
allow a link source to be moved independently of its client without breaking the link.

Activating a link runs the link source's server application, which the user requires in order to edit or
otherwise manipulate the link data. Linking keeps the size of a compound document small. It is also
useful when the data source is maintained by someone else and must be shared among many users. If
the person maintaining the link source changes the data, the change is automatically updated in all
documents containing a link to that data. In addition to creating simple links, users can nest links and
combine linked and embedded objects to create complex documents.

Embedded Objects
An embedded object is physically stored in the compound document, along with all the information
needed to manage the object. In other words, the embedded object is actually a part of the compound
document in which it resides. This arrangement has a couple of disadvantages. First, a compound
document containing embedded objects will be larger than one containing the same objects as links.
Second, changes made to the source of an embedded object will not be automatically replicated in the
embedded copy, and changes in the source will not be reflected in the source, as they are with a link.

Still, for certain purposes, embedding offers several advantages over links. First, users can transfer
compound documents with embedded objects to other computers, or other locations on the same
computer, without breaking a link. Second, users can edit embedded objects without changing the content
of the original. Sometimes, this separation is precisely what is required. Third, embedded objects can be
activated in place, meaning that the user can edit or otherwise manipulate the object without having to
work in a separate window from that of the object's container. Instead, when the object is activated, the
container application's user interface changes to expose those tools that are necessary to manage or
modify the object.

Object Handlers
If an OLE server application is a local server, meaning that it runs in its own process space,
communication between container and server must occur across process boundaries. Since this process
is expensive, OLE relies on a surrogate object loaded into the container's process space to act on behalf
of a local server application. This surrogate object, known as an object handler services container
requests that do not require the attention of the server application, such as requests for drawing. When a
container requests something that the object handler cannot provide, the handler communicates with the
server application using COM's out-of-process communication mechanism.

An object handler is unique to an object class. When you create an instance of a handler for one class,
you cannot use it for another. When used for a compound document, the object handler implements the
container-side data structures when objects of a particular class are accessed remotely.

OLE provides a default object handler that local server applications can use. For applications that require
special behaviors, developers can implement a custom handler that either replaces the default handler or
uses it to provide certain default behaviors.

An object handler is a DLL containing several interacting components. These components include
remoting pieces to manage communication between the handler and its server application, a cache for
storing an object's data, along with information on how that data should be formatted and displayed, and
a controlling object that coordinates the activities of the DLL's other components. In addition, if an object
is a link, the DLL also includes a linking component, or linked object, which keeps track of the name and
location of the link source.

The cache contains data and presentation information sufficient for the handler to display a loaded, but
not running, object in its container. OLE provides an implementation of the cache used by OLE's default
object handler and the link object. The cache stores data in formats needed by the object handler to
satisfy container draw requests. When an object's data changes, the object sends a notification to the
cache so that an update can occur. For more information on the cache, see "View Caching" later in this
chapter.

The Default Handler and Custom Handlers
The default handler, an implementation provided by OLE, is used by most applications as the handler. An
application implements a custom handler when the default handler's capabilities are insufficient. A custom
handler can either completely replace the default handler or use parts of the functionality it provides
where appropriate. In the latter case, the application handler is implemented as an aggregate object
composed of a new control object and the default handler. Combination application/default handlers are
also known as in-process handlers. The remoting handler is used for objects that are not assigned a
CLSID in the system registry or that have no specified handler. All that is required from a handler for these
types of objects is that they pass information across the process boundary.

In-Process Servers
If you implement an OLE server application as an in-process server ¾ a DLL running in the process
space of the container application ¾ rather than as a local server ¾ an EXE running in its own process
space ¾ communication between container and server is simplified because communication between the
two can take the form of normal function calls. Remote procedure calls are not required because the two
applications run in the same process space. As you would expect, the objects that manage the
marshaling of parameters are also unnecessary, although they may be aggregated within the DLL without
interfering with the communication between container and server.

When an OLE server application is implemented as an in-process server, a separate object handler is not
required because the server itself lives in the client's process space. The main difference between an in-
process server and object handler is that the server is able to manage the object in a running state while
the handler cannot. One consequence of this difference is that a server must provide a user interface for
manipulating the running object, while a handler delegates this requirement to the object's server. In
creating an in-process server, you can aggregate on the OLE default handler, letting it handle basic
chores, such as display, storage, and notifications while you implement only those services that the
handler either does not provide or does not implement in the way you require.

Advantages
The advantages of implementing your application as an in-process server are speed and combining some
the advantages of an object handler and a local server. In-process servers are faster than local servers
for several reasons. First, because they are smaller and run in the process space of the container
application, they load more quickly. Second, they are optimized to perform certain tasks. Third,
communication between container and server does not rely on remote procedure calls.

Disadvantages
In-process servers provide the speed and size advantage of an object handler with the editing capability
of a local server. So why would you ever choose to implement your OLE application as a local server
rather than an in-process server? There are several reasons:

· Security. Only a local server has its address space isolated from that of the client. An in-process
server shares the address space and process context of the client and can therefore be less robust in
the face of faults or malicious programming.

· Granularity. A local server can host multiple instances of its object across many different clients,
sharing server state between objects in multiple clients in ways that would be difficult or impossible if
implemented as an in-process server, which is simply a DLL loaded into each client.

· Compatibility. If you choose to implement an in-process server, you relinquish compatibility with OLE
1, which does not support such servers. This will not be a consideration for many developers, but if it
is, then it is of critical concern.

· Inability to support links. An in-process server cannot serve as a link source. Since a DLL cannot run
by itself, it cannot create a file object to be linked to.

Despite these disadvantages, an in-process server can be an excellent choice for its speed and size ¾ if
it fits all your other requirements.

Linked Objects
Linked objects, like embedded objects, rely on an object handler to communicate with server
applications.The linked object itself, however, manages the naming and tracking of link sources.The
linked object acts like an in-process server. For example, when activated, a linked object locates and
launches the OLE server application that is the link source.

A linked object's handler is made up of two main components: the handler component and the linking
component. The handler component contains the controlling and remoting pieces and functions much like
a handler for an embedded object. The linking component has its own controller and cache and provides
access to the object's structured storage. The linking component's controller supports source naming
through the use of monikers, and binding, the process of locating and running the link source. (For more
information on monikers and binding, see "The Component Object Model.")

When a user initially creates a linked object or loads an existing one from storage, the container loads an
instance of the linking component into memory, along with the object handler. The linking component
supplies interfaces ¾ most notably IOleLink ¾ that identify the object as a link and enable it to manage the
naming, tracking, and updating of its link source.

By implementing the IOleLink interface, a linked object provides its container with functions that support
linking. Only linked objects implement IOleLink, and by querying for this interface a container can
determine whether a given object is embedded or linked. The most important function provided by
IOleLink enables a container to binding to the source of the linked object, that is, to activate the
connection to the document that stores the linked object's native data. IOleLink also defines functions for
managing information about the linked object, such as cached presentation data and the location of the
link source.

When a compound document containing a linked object is saved, the link's data is saved with the link
source, not with the container. Only information about its name and location is saved along with the
compound document. This behavior is in contrast to that of an embedded object, whose data is stored
along with that of its container.

Container applications can provide information about their embedded objects such that the latter, or
portions thereof, can act as link sources. By implementing support for linking to your container's
embedded objects, you make nested embeddings possible, relieving the user of having to track down the
originals of every embedding object to which a link is desired. For example, if a user wants to embed a
Microsoft® Excel worksheet in Microsoft® Word, and the worksheet contains a bitmap created in
Paintbrush™, the user can link to a copy of the bitmap contained in the worksheet rather than the original.

Notifications
Notifications are callbacks generated by an object when it detects a change in its name, state, data, or
presentation. Containers and other clients require notifications to respond appropriately to these
changes. A container registers to receive notifications by setting up an advisory connection to an object of
interest. Other interested clients can do the same. The container also creates an advisory sink to receive
the notifications. Using the connection established by the container, an object experiencing a change
notifies the advisory sink. Upon receiving a notification, the container takes whatever action has been
defined for the type of change that has occurred.

Types of Notifications
Notifications fall into three groups: compound document, data, and view. An object sends compound
document notifications in response to being renamed, saved, closed or, in the case of a link, having its
link source renamed. As you would expect, objects send data notifications in response to changes in their
data and send view notifications in response to changes in their presentation. Container applications
must register separately for each of these notification types, but all can be handled by a single advisory
sink.

All containers, the object handler, and the linked object register for compound document notifications. The
typical container also registers for view notifications. Data notifications are usually sent to both the linked
object and object handler. A special purpose container, such as one that renders the data itself, might
benefit from receiving data notifications instead of view notifications. For example, an embedded chart
container with a link to a table can register for data notifications. Because a change to the table affects
the chart, the receipt of a data notification would direct the container to get the new tabular data.

How Notifications Work
Notifications originate in the object application and flow to the container by way of the object handler. If
the object is a linked object, the linked object intercepts the notifications from the object handler and
notifies the container directly.

An object application must manage registration requests, keeping track of where to send which
notifications and sending those notifications when appropriate. OLE provides two component objects to
simplify this task: the OleAdviseHolder for compound document notifications and the DataAdviseHolder
for data notifications.

Object applications determine the conditions that prompt the sending of each specific notification and the
frequency with which each notification should be sent. When it is appropriate for multiple notifications to
be sent, it does not matter which notification is sent first; they can be sent in any order.

The timing of notifications affects the performance and coordination between an object application and its
containers. Whereas notifications sent too frequently slow processing, notifications sent too infrequently
result in an out-of-sync container. Notification frequency can be compared with the rate at which an
application repaints. Therefore, using similar logic for the timing of notifications (as is used for repainting)
is wise.

Compound Document Interfaces
The following tables list the interfaces implemented by OLE containers, OLE servers, and compound
document objects. The required interfaces must be implemented on the components for which they are
listed. For example, containers must implement the IOleClientSite and IAdviseSink interfaces. All other
features are optional. If you want to include a particular feature in your application, however, you must
implement the interfaces shown for that feature in the table below. All other interfaces are required only if
you are including a particular feature. For example, if you want your application to do message filtering
(recommended), you must implement IMessageFilter.

The following table lists required and optional behaviors for OLE containers and which interfaces you
must implement for each.

OLE Containers
Behavior Interfaces
Required Behaviors IOleClientSite

IAdviseSink
Message Filtering IMessageFilter
Linking none
Linking to Embedded Objects IOleItemContainer

IPersistFile
IClassFactory

In-Place Activation IOleInPlaceSite
IOleInPlaceActive-Frame
IOleInPlaceUIObject

Drag and Drop IDropSource
IDropTarget
IDataObject

The following table lists required and optional behaviors for OLE servers and their compound document
objects and which interfaces you must implement for each. The table distinguishes OLE servers and their
objects in order to clarify which component implements which interfaces. The table also notes the
different requirements of objects provided by out-of-process versus in-process servers.

Feature OLE Server Compound Document Object
Out-of-Process In-Process

Required
Behaviors

IClassFactory IOleObject IOleObject

IDataObject IDataObject
IPersistStorage IPersistStorage

IViewObject2
IOleCache2

Message
Filtering

IMessageFilter

Linking IOleItemContaine
r

IOleLink

IPersistFile IExternalConnection
In-Place-
Activation

IOleInPlaceObje
ct

IOleInPlaceObject

IOleInPlace-
ActiveObject

IOleInPlaceActive-
Object

Drag and Drop IDropSource
IDropTarget
IDataObject

Object States
A compound object exists in one of three states: passive, loaded, or running. A compound-document
object's state describes the relationship between the object in its container and the application
responsible for its creation. The following table summarizes these states.

Object State Description
Passive The compound-document object exists only in

storage, either on disk or in a database. In this
state, the object is unavailable for viewing or
editing.

Loaded The object's data structures created by the
object handler are in the container's memory.
The container has established communication
with the object handler and there is cached
presentation data available for rendering the
object. Calls are processed by the object
handler. This state, because of its low
overhead, is used when a user is simply
viewing or printing an object.

Running The objects that control remoting have been
created and the OLE server application is
running. The object's interfaces are accessible,
and the container can receive notification of
changes. In this state, an end user can edit or
otherwise manipulate the object.

Entering the Loaded State
When an object enters the loaded state, the in-memory structures representing the object are created so
that operations can be invoked on it. The object's handler or in-process server is loaded. This process,
referred to as instantiation, occurs when an object is loaded from persistent storage (a transition from the
passive to the loaded state) or when an object is being created for the first time.

Internally, instantiation is a two-phase process. An object of the appropriate class is created, after which a
method on that object is called to perform initialization and give access to the object's data. The
initialization method is defined in one of the object's supported interfaces. The particular initialization
method called depends on the context in which the object is being instantiated and the location of the
initialization data.

Entering the Running State
When an embedded object makes the transition to the running state, the object handler must locate and
run the server application in order to utilize the services that only the server provides. Embedded objects
are placed in the running state either explicitly through a request by the container, such as a need to draw
a format not currently cached, or implicitly by OLE in response to invoking some operation, such as when
a user of the container double-clicks the object.

When a linked object makes the transition into the running state, the process is known as binding. In the
process of binding, the object handler asks its stored moniker to locate the link's data, then runs the
server application.

At first glance, binding a linked object appears to be no more complicated than running an embedded
object. However, the following points complicate the process:

· A link can refer to an object, or a portion thereof, that is embedded in another container. This
capability implies a potential for nested embeddings. Resolving references to such a hierarchy
requires recursively traversing a composite moniker, beginning with the rightmost member.

· When the link source is running, OLE binds to the running instance of the object rather than running
another instance. In the case of nested embedded objects, one of which is the link source, OLE must
be able to bind to an already running object at any point.

· Running an object requires accessing the storage area for the object. When an embedded object is
run, OLE receives a pointer to the storage during the load process, which it passes on to the OLE
server application. For linked objects, however, there is no standard interface for accessing storage.
The OLE server application may use the file system interface or some other mechanism.

Entering the Passive State
Object closure forces an embedded or linked object into the passive state. It is typically initiated from the
OLE server application's user interface, such as when the user selects the File Close command. In this
case, the OLE server application notifies the container, which releases its reference count on the object.
When all references to the object have been released, the object can be freed. When all objects have
been freed, the OLE server application can safely terminate.

A container application can also initiate object closure. To close an object, the container releases its
reference count after completing an optional save operation. You can design containers to release objects
when they are deactivating after an in-place activation session, allowing the user to click outside the
object without losing the active editing session.

Implementing In-Place Activation
In-place activation enables a user to interact with an embedded object without leaving the container
document. When a user activates the object, a composite menu bar comprising elements from both the
container application's and server application's menu bars replaces the container's main menu bar.
Commands and features from both applications are thus available to the user, including context sensitive
help for the active object. When a user begins working with some non-object portion of the document, the
object is deactivated, causing the container document's original menu to replace the composite menu.

This capability originally went by the name of in-place editing. The name was changed because editing is
only one way for a user to interact with a running object. Sound clips, for example, can be listened to
instead of editing. Video clips can be viewed instead of editing. In-place activation is particularly apt in the
case of video clips because it allows them to run in place, without calling up a separate window. This
could be critical if the video were to be viewed, say, in conjunction with adjacent text data in the container
document.

Implementing in-place activation is strictly optional for both container and server applications. OLE still
supports the model in which activating an object causes the server application to open a separate
window. Linked objects always open in a separate window to emphasize that they reside in a separate
document.

In-place activation begins with the object in response to an IOleObject::DoVerb call from its container.
This call usually happens in response to a user double-clicking the object or selecting a command (verb)
from the container application's Edit menu.

The in-place window receives keyboard and mouse input while the embedded object is active. When a
user selects commands from the composite menu bar, the command and associated menu messages are
sent to the container or object application, depending on which owns the particular drop-down menu
selected. Input by means of an object's rulers, toolbars, or frame adornments go directly to the embedded
object, which owns these windows.

An in-place-activated embedded object remains active until either the container deactivates it in response
to user input or the object voluntarily gives up the active state, as a video clip might do, for example. A
user can deactivate an object by clicking inside the container document but outside the object's in-place-
activation window, or simply by clicking another object. An in-place-activated object remains active,
however, if the user clicks the container's title bar, scroll bar or, in particular, menu bar.

You can implement an in-place-activation-object server either as an in-process server (DLL) or a local
server (EXE). In both cases, the composite menu bar contains items (typically drop-down menus) from
both the server and container processes. In the case of a in-process server, the in-place activation
window is simply another child window in the container's window hierarchy, receiving its input through the
container application's message pump.

In the case of a local server, the in-place activation window belongs to the embedded object's server
application process, but its parent window belongs to the container. Input for the in-place-activation
window appears in the server's message queue and is dispatched by the server's message loop. The
OLE libraries are responsible for seeing to it that menu commands and messages are dispatched
correctly.

Creating Linked and Embedded Objects from Existing Data
A user typically assembles a compound document by using either the clipboard or drag and drop to copy
a data object from its server application to the user's container application. With applications that support
OLE, the user can initiate the transfer from either the server or the container. For example, the server can
copy data to the clipboard in the server application, then switch to the container application and choose
Paste Special/Embedded Object or an equivalent menu command to create a new embedded object from
the selected data. Or, the user can drag the data from one application to the other. The process is similar
for creating a linked object.

Note An application that functions as both OLE server and container can use a selection of its own
data to create an embedded or linked object at a new location within the same document.

Data transfer between OLE server and container applications is built on uniform data transfer, as
described in Chapter 4, "Data Transfer." OLE servers and object handlers implement IDataObject in
order to make their data available for transfers using either the clipboard or drag and drop. OLE objects
support all the usual clipboard formats. In addition, they support six clipboard formats that support the
creation of linked and embedded objects from a selected data object.

OLE clipboard formats describe data objects that, upon being dropped or pasted in OLE containers, are
to become embedded or linked compound-document objects. The data object presents these formats to
container applications in order of their fidelity as descriptions of the data. In other words, the object
presents first the format that best represents it, followed by the next best format, and so on. This
intentional ordering encourages a container application to use the best possible format.

View Caching
A container application must be able to obtain a presentation of an object for the purpose of displaying or
printing it for users when the document is open but the object's server application is not running or is not
installed on the user's machine. To assume, however, that the servers for all the objects that might
conceivably be found in a document are installed on every user's machine and can always run on
demand is unrealistic. The default object handler, which is available at all times, solves this dilemma by
caching object presentations in the document's storage and manipulating these presentations on any
platform regardless of the availablility of the object server on any particular installation of the container.

Containers can maintain drawing presentations for one or more specific target devices in addition to the
one required to maintain the object on screen. Moreover, if you port the object from one platform to
another, OLE automatically converts the object's data formats to ones supported on the new platform. For
example, if you move an object from Windows to the Macintosh, OLE will convert its metafile
presentations to PICT formats.

In order to present an accurate representation of an embedded object to the user, the object's container
application initiates a dialog with the object handler, requesting data and drawing instructions. To be able
to fulfill the container's requests, the handler must implement the IDataObject, IViewObject2, and
IOleCache interfaces.

IDataObject enables an OLE container application to get data from and send data to its embedded or
linked objects. When data changes in an object, this interface provides a way for the object to make its
new data available to its container and provides the container with a way to update the data in its copy of
the object. (For a discussion of data transfer in general, see Chapter 4, "Data Transfer.")

The IViewObject2 interface is very much like the IDataObject interface except that it asks an object to
draw itself on a device context, such as a screen, printer, or metafile, rather than move or copy its data to
memory or some other transfer medium. The purpose of the interface is to enable an OLE container to
obtain alternative pictorial representations of its embedded objects, whose data it already has, thereby
avoiding the overhead of having to transfer entirely new instances of the same data objects simply to
obtain new drawing instructions. Instead, the IViewObject2 interface enables the container to ask an
object to provide a pictorial representation of itself by drawing on a device context specified by the
container.

When calling the IViewObject2 interface, a container application can also specify that the object draw
itself on a target device different than the one on which it will actually be rendered. This enables the
container, as needed, to generate different renderings from a single object. For example, the caller could
ask the object to compose itself for a printer even though the resulting drawing will be rendered on
screen. The result, of course, would be a print-preview of the object.

The IViewObject2 interface also provides methods that enable containers to register for view-change
notifications. As with data and OLE advisories, a view advisory connection enables a container to update
its renderings of an object at its own convenience rather than in response to a call from the object. For
example, if a new version of an object's server application were to offer additional views of the same data,
the object's default handler would call each container's implementation of IAdviseSink::OnViewChange
to let them know that the new presentations were available. The container would retrieve this information
from the advise sink only when needed.

Because Windows device contexts have meaning only within a single process, you cannot pass
IViewObject2 pointers across process boundaries. As a result, OLE local and remote servers have no
need whatsoever to implement the interface, which wouldn't work properly even if they did. Only object
handlers and in-process servers implement the IViewObject2 interface. OLE provides a default
implementation, which you can use in your own OLE in-process servers and object handlers simply by
aggregating the OLE default handler. Or you can write your own implementation of IViewObject.

An object implements the IOleCache interface in order to let the handler know what capabilities it should
cache. The object handler also owns the cache and ensures it is kept up to date. As the embedded object
enters the running state, the handler sets up appropriate advisory connections on the server object, with
itself acting as the sink. The IDataObject and IViewObject2 interface implementations operate out of
data cached on the client side. The handler's implementation of IViewObject2 is responsible for
determining what data formats to cache in order to satisfy client draw requests. The handler's
implementation of IDataObject is responsible for getting data in various formats, etc., between memory
and the underlying IStorage instance of the embedded object. Custom handlers can use these
implementations by aggregating on the default handler.

Note The IViewObject2 interface is a simple functional extension of IViewObject and should be
implemented instead of the latter interface, which is now obsolete. In addition to providing the
IViewObject methods, the IViewObject2 interface provides a single additional member, GetExtent,
which enables a container application to get the size of an object's presentation from the cache
without first having to move the object into the running state with a call to IOleObject::GetExtent.

ActiveX Controls
ActiveX controls technology rests on a foundation consisting of COM, connectable objects, compound
documents, property pages, OLE automation, object persistence, and system-provided font and picture
objects. As summarized below, each of these core technologies plays a role in controls:

COM
A control is essentially a COM object that exposes the IUnknown interface, through which clients can
obtain pointers to its other interfaces. Controls can support licensing through IClassFactory2 and
self-registration. See The Component Object Model chapter for more information on COM, licensing,
and self-registration.

Connectable objects
Controls can support outgoing interfaces through connectable objects so that the control can
communicate with its client. For example, an outgoing interface can trigger an action in the client, can
notify the client of some change in the control, or can request permission from the client before the
control takes some action. See the Connectable Objects chapter for more information on how
connectable objects work.

Uniform data transfer
Controls can support being dragged and dropped within a container with help from their container.
See IOleInPlaceObjectWindowless::GetDropTarget for more information on drag and drop.

Compound documents
A control can be an in-place active object that can be embedded in a containing client. An end-user
activates the control to initiate an action in the container application. See the Compound Documents
chapter for more information on in-place activation and other compound document interfaces.

Property pages
Controls can provide property pages so end users can view and change the control's properties. See
the Property Pages and Property Sheets chapter for more information on how property pages work.

OLE automation
Controls can provide programmability through OLE automation so clients can take advantage of the
control's features through a programming language supplied by the client. See the OLE Automation
section for more information on OLE automation.

Persistent storage
A control can implement one or more of several persistence interfaces to support persistence of its
state. The control implementer must decide what kinds of persistence are most important and
implement the appropriate persistence interfaces. The client decides which interface it prefers to use.
See The Component Object Model chapter for more information on all the persistence interfaces.

Font and picture objects
Controls can use these system provided objects to provide a visual representation of themselves
within the client. The font object implements several interfaces, including IFont and IFontDisp. A font
object can be created with OleCreateFontIndirect. The picture object also implements several
interfaces, including IPicture and IPictureDisp. A picture object can be created using
OleCreatePictureIndirect and can loaded from a stream with OleLoadPicture. The standard font
and picture objects are described in this chapter.

It is important to understand that these features can be used in any OLE object. One does not need to
implement a control in order to use these features. Also, the only required interface on a control is
IUnknown. The control optionally supports other interfaces based on the need to support the related
features.

In addition to these features, the following interfaces and API functions are specific to controls technology:
IOleControl, IOleControlSite, ISimpleFrameSite, the API function OleTranslateColor. Also specific to
controls are a set of standards for properties and methods that a control or a control container can
support.

See the ActiveX Control and Control Container Guidelines appendix for more information on controls and
their containers.

Notes For new systems (NT 4.0 and above), the system library OLEAUT32.DLL contains
implementations of the API functions (OleCreatePropertyFrame, OleCreatePropertyFrameIndirect,
OleCreateFontIndirect, OleCreatePictureIndirect, OleIconToPicture, OleLoadPicture, and
OleTranslateColor).

In addition, OLEAUT32.DLL contains the implementations of the standard font and picture objects, as
well as a type library for all the interfaces used with controls as well as the additional data structures
and data types.

For older systems, the redistributable library, OLEPRO32.DLL, contains these implementations.
Applications or components for older systems that use these API functions can link with the import
library, OLEPRO32.LIB.

ActiveX Controls Architecture
As noted above, ActiveX controls technology builds on a foundation of many lower-level objects and
interfaces in OLE. The exact interfaces available on a control vary with its capabilities. This section takes
a closer look at the capabilities a control might provide.

Controls are used to provide the building blocks for creating user interfaces in applications. For example,
a button that initiates some action in the container application when it is clicked is a simple control. The
following aspects are involved in providing these user interface building blocks:

· A control can be embedded within its container client to support some user interface activity within the
client. Thus, a control needs to provide a visual representation of itself when it is embedded within the
container and needs to provide a way to save its state, for example, its property values and its
position within its container. The client must support being a container with objects embedded in it.

· By activating the control using a keyboard or mouse, the end user initiates some action in the client
application. Thus, a control must respond to keyboard activity and must be able to communicate with
its client so it can notify its container of its activities and trigger events in the client.

· The client also typically provides a programming language through which the end user can initiate
actions provided by the control's properties and methods. Thus, a control must support automation
and some set of design-time versus run-time features as well.

As a result of its role in providing user interface building blocks, a control typically supports features in the
following areas using OLE technologies as indicated:

Properties and methods
Like any OLE object, a control can provide much of its functionality through a set of incoming
interfaces with properties and methods. The container can supply additional ambient properties, and it
can support extending the control's properties through aggregation. These features rest on OLE
automation, property pages, connectable objects, and ActiveX control technologies.

Events
In addition to providing properties and methods, an ActiveX control can also provide outgoing
interfaces to notify its client of events. The client must support handling of these events. These
features use OLE automation and connectable objects.

Visual representation
A control can support positioning and displaying itself within its container. The container positions the
control and determines its size. These features use compound document technology, including OLE
drag and drop technology.

Keyboard handling
A control can respond to keyboard accelerators so the end-user can initiate actions performed by the
control. The container manages keyboard activity for all its embedded controls. These features use
control and compound document technologies.

Persistence
A control can save its state. The client manages the persistence of its embedded controls. These
features use structured storage and object persistence technologies.

Registration and licensing
A control typically supports self-registration and creates a set of registry entries when it is instantiated.
A control can also be licensed to prevent unauthorized use.

Most of these features involve both the control and its client container.

The following sections describe design considerations in each of these areas and describe how the OLE
technologies mentioned previously are used in controls to support these areas of features.

ActiveX Controls Interfaces
In addition to other mechanisms for communicating between the control and its client, ActiveX controls
technology specifies the IOleControl and IOleControlSite interfaces for client-control communication.
There is also the ISimpleFrameSite interface for simple control containers.

These three interfaces are, however, specific to controls are not generally useful outside the context of
controls. These interfaces are defined as follows:

interface IOleControl : IUnknown
 {
 HRESULT GetControlInfo([out] CONTROLINFO *pCI);
 HRESULT OnMnemonic([in] LPMSG pMsg);
 HRESULT OnAmbientPropertyChange([in] DISPID dispID);
 HRESULT FreezeEvents([in] BOOL bFreeze);
 }

interface IOleControlSite : IUnknown
 {
 HRESULT OnControlInfoChanged(void);
 HRESULT LockInPlaceActive([in] BOOL fLock);
 HRESULT GetExtendedControl([out] IDispatch **ppDisp);
 HRESULT TransformCoords([in-out] POINTL *pptlHimetric
 , [in-out] POINTF *pptfContainer, [in] DWORD dwFlags);
 HRESULT TranslateAccelerator([in] LPMSG pMsg
 , [in] DWORD grfModifiers);
 HRESULT OnFocus([in] BOOL fGotFocus);
 HRESULT ShowPropertyFrame(void);
 }

interface ISimpleFrameSite : IUnknown
 {
 HRESULT PreMessageFilter([in] HWND hWnd, [in] UINT msg
 , [in] WPARAM wp, [in] LPARAM lp, [out] LRESULT *plResult
 , [out] DWORD *pdwCookie);
 HRESULT PostMessageFilter([in] HWND hWnd, [in] UINT msg
 , [in] WPARAM wp, [in] LPARAM lp, [out] LRESULT *plResult
 , [in] DWORD dwCookie);
 }

Some controls, like a group box, are merely a simple container of other controls. In such cases, the
simple control, called a simple frame, doesn't have to implement all the container requirements. It can
delegate most of the interface calls from its contained controls to the container that manages the simple
frame. Besides interface calls, the simple frame also has to deal with Windows messages that potentially
come from controls within it. For this reason, a container supplies ISimpleFrameSite to allow such simple
frame controls to pass messages up to the contain. PreMessageFilter gives the container first crack at
the message; PostMessageFilter is called after the simple frame has process the message itself.

IOleControl and IOleControlSite are described throughout the following sections.

Properties and Methods
Like any OLE object, a control provides much of its functionality through a set of incoming interfaces with
properties and methods.

A control exposes properties and methods through OLE automation so that containers can access them
under the control of a container-supplied programming language.

To support access to properties through a user interface, a control provides property pages, support for
OLEIVERB_PROPERTIES, per property browsing, and data binding through property change
notfications.

· Through property pages a control can display its properties, independent of its container, if necessary.
· By supporting OLEIVERB_PROPERTIES, the Properties item is displayed on the container's menu.

Then, the end user can select the Properties item to view the control's property pages and modify the
properties.

· Per property browsing supports a container that can display the control's properties as part of a larger
property sheet that may include properties from several controls in the container.

· Through property change notification, a control can notify a client that its properties have change,
allowing the client to take any necessary actions as a result.

See the Property Pages and Property Sheets chapter for more information on these features.

Control Properties
In addition to properties defined and implemented by the control itself, ActiveX controls technology also
involves:

Ambient properties
These are exposed by the container through a control client site to provide environmental values that
apply to all controls embedded in the container. For example, a container can provide a default
background color or a default font that the control can use. Ambient properties are exposed through
IDispatch implemented on a container's site object.
The container calls the control's IOleControl::OnAmbientPropertyChange method when any of its
ambient properties change value. In response, a control may need to update its own internal or visual
state in response. The container indicates which ambient property changed with the DISPID
parameter or may pass DISPID_UNKNOWN to indicate that multiple ambient properties changed.

Extended properties
These are actually implemented by a container to wrap the controls it contains to provide container-
managed properties that appear as if they were native control properties. The container can
aggregate the control, adding the extended properties to supplement or override the control's
properties.
The aggregated object is called an extended control. To the container, the extended control appears
as the control itself and extended properties appear to be exposed by the control. The container
supports an extended control through its client site method IOleControlSite::GetExtendedControl.
The GetExtendedControl method allows controls to navigate through the site to the extended control
object provided for them by the container, if the container supports this feature.
A container can also choose to show property pages for its extended controls in addition to those
pages that a control would normally specify through ISpecifyPropertyPages. Because of this, a
control has to ask a container to show a property frame before the control attempts to do so itself. The
control calls IOleControlSite::ShowPropertyFrame to do this. If the container implements this
function then it shows the property frame itself; if the method returns an error then the control can
show the property frame.

Standard Properties
OLE defines a set of standard DISPIDs for all three kinds of properties: control, ambient, and extended.
The following tables list these standards for control properties, ambient properties, and extended
properties.

Control Property Type Description
BackColor, ForeColor,
FillColor, BorderColor

OLE_COLOR The control's color scheme

BackStyle, FillStyle,
BorderStyle,
BorderWidth,
BorderVisible,
DrawStyle,
DrawWidth

short or long Bits that define a control's visual
behavior, such as being solid or
transparent, having thick or thin
borders, line styles, and so forth.

Font IDispatch * The font used in the control, which is
an IDispatch pointer to a standard font
object. See Standard Font Object
below for more information.

Caption, Text BSTR Strings containing the control's label
(the caption) or its textual contents (the
text). Note that the caption does not
necessarily name the control in the
container. See the extended Name
property in the following table.

Enabled BOOL Determines if the control is enabled or
disabled. If disabled, the control is
probably grayed.

Window HWND The window handle of the control, if it
has one.

TabStop BOOL Determines if this control is a tab stop.

Ambient Property Type Description
BackColor, ForeColor OLE_COLOR Provides controls with the default

background and foreground colors.
Use by a control is optional.

Font IDispatch * A pointer to a standard font object that
defines the default font for the form.
Use by a control is optional. See
Standard Font Object below for more
information.

LocaleID LCID The language used in the container.
Use by a control is recommended.

UserMode BOOL Describes whether the container is in a
design mode (FALSE) or run-mode
(TRUE), which a control should use to
change its available functionality as
necessary.

UIDead BOOL Describes whether the container is in a
mode where controls should ignore
user input. This applies irrespective of
UserMode. A container might always
set UIDead to TRUE in design mode,

and may set it to true when it has hit a
breakpoint or such during run mode. A
control must pay attention to this
property.

MessageReflect BOOL Specifies whether the container would
like to receive Windows messages
such as WM_CTLCOLOR,
WM_DRAWITEM,
WM_PARENTNOTIFY, and so on as
events.

SupportsMnemonics BOOL Describes whether the container
processes mnemonics or not. A control
can do whatever it wants with this
information, such as not underline
characters it would normally use as a
mnemonic.

ShowGrabHandles,
ShowHatching

BOOL Describes whether a control should
show a hatch border or grab handles
(in the hatch border) when in-place
active. Controls must obey these
properties, giving the container
ultimate control over who actually
draws these bits of user interface. A
control container may want to draw its
own instead of relying on each control,
in which case these ambients will
always be FALSE.

DisplayAsDefault BOOL The container will expose a TRUE for
this property through whatever site
contains what is marked as the default
button when the button control should
draw itself with a thicker default frame.

Extended Property Type Description
Name BSTR The container's name for the control.
Visible BOOL The control's visibility.
Parent IDispatch * The dispinterface of the form

containing the control.
Default, Cancel BOOL Indicates if this control is the default or

cancel button.

All of these standard properties have negative DISPID values, indicating their standard status.

Note that to avoid conflicts in the programmatic symbols for these DISPIDs, all ambient properties are
given symbols in the form DISPID_AMBIENT_property as in DISPID_AMBIENT_FORECOLOR. All other
symbols use DISPID_property as usual.

Some ambient properties, as well as control properties, involve colors. Controls deal with color in a
slightly different way than normal Win32 APIs do. The OLE_COLOR type mentioned in the previous
tables can refer to a Win32 standard COLORREF type, an index to a palette, a palette-relative index, or a
system color index used with the Win32 API function GetSysColor. The OLE API function
OleTranslateColor converts an OLE_COLOR type to a COLORREF type given a palette.

Standard Font Object
The standard ambient font property supplied by the container and the standard font property supplied by
the control both provide a standard font object. That is, these standard fonts supply an IDispatch pointer
to a standard font object.

The font object is a system-provided implementation of a set of interfaces on top of the underlying GDI
font support. A font object is created through the API function OleCreateFontIndirect given a
FONTDESC structure. The font object supports a number of read-write properties as well as custom
methods through its interface IFont, and supports the same set of properties (but not the methods)
through a dispinterface IFontDisp. The dispinterface is used for the font properties mentioned previously.
The properties correspond to the GDI font attributes that are described in the LOGFONT structure.

The font object also supports the outgoing interface IPropertyNotifySink so that a client can determine
when font properties change. Since the font object supports at least one outgoing interface, it also
implements IConnectionPointContainer and one connection point for IPropertyNotifySink for this
purpose.

The font object provides an hFont property that is a Windows font handle that conforms to the other
attributes specified for the font. The font object delays realizing this GDI hFont when possible, so
consecutively setting two properties on a font won't cause an intermediate font to be realized. In addition,
as an optimization, the standard font object maintains a cache of font handles. Two font objects in the
same process that have identical properties will return the same font handle. The font object can remove
fonts from this cache at will, which introduces special considerations for clients using this hFont property.
See IFont::get_hFont for more details.

The font object also supports IPersistStream such that it can save and load itself from an instance of
IStream. Any other object that uses a font object internally would normally save and load the font as part
of the object's own persistence handling.

In addition, the font object supports IDataObject through which it provides a property set containing typed
values for each font property.

Standard Picture Object
The standard picture object provides a language-neutral abstraction for GDI images: bitmaps, icons,
metafiles, and enhanced metafiles. As with the standard font object, the system provides a standard
implementation of this object. Its primary interfaces are IPicture and IPictureDisp, the latter being
derived from IDispatch to provide access to the picture's properties through OLE automation. A picture
object is created new with OleCreatePictureIndirect.

The picture object also supports the outgoing interface IPropertyNotifySink so that a client can
determine when picture properties change. Accordingly, the picture object also supports
IConnectionPointContainer and one connection point for IPropertyNotifySink.

The picture object also supports IPersistStream such that it can save and load itself from an instance of
IStream. An object that uses a picture object internally would normally save and load the picture as part
of the object's own persistence handling. The API function OleLoadPicture simplifies the creation of a
picture object based on stream contents.

Control Methods
There are three standard methods that controls can support: Refresh, DoClick, and AboutBox. All of
these standard methods have negative DISPID values, indicating their standard status.

Control Events
In addition to providing properties and methods, a control also provides outgoing interfaces to notify its
client of events. The client must support handling of these events. See the Connectable Objects chapter
for more information on how connectable objects work.

A control can support different outgoing interfaces for different purposes. All outgoing interfaces are
marked as source interfaces in the control's type information, but only one is marked default to indicate
that it is the primary outgoing interface.

A container can support one or more of the outgoing interfaces defined by a control. The control should
be prepared to deal with containers that only provide support for some of their outgoing interfaces.

Controls support four kinds of events:

· Request events. A control requests permission from its client to do something by calling a method in
the outgoing interface, thus triggering a request event. The client signals the control through a
boolean, out-parameter in the method that the control called. The client can thus prevent the control
from performing the action.

· Before events. A control notifies its client that it is going to do something by calling a method in the
outgoing interface, thus triggering a before event. The client does not have the opportunity to prevent
the action, but it can take any necessary steps given the action that is about to occur.

· After events. A control notifies its client that it has just done something by calling a method in the
outgoing interface, thus triggering an after event. Again, the client cannot cancel this action, but it can
take necessary steps given the action that has occurred.

· Do events. A control triggers a do event to allow its client to override the control's action and provide
some alternative or supplementary actions. Usually, the method that a control calls for a do event has
a number of parameters for negotiating with the client about the actions that will occur.

The following dispids are defined for standard events that controls can support: Click, DblClick,
KeyDown, KeyPress, KeyUp, MouseMove, MouseUp, and Error. All of these standard events have
negative DISPID values, indicating their standard status.

The IOleControl::FreezeEvents method, when called with TRUE, tells a control whether the container
will bother handling events from the control until FreezeEvents is again called with FALSE. During this
time control cannot depend on the container actually handling any events. If an event must be handled,
the control should queue the event in order to fire it when FreezeEvents(FALSE) is called.

Visual Representation
A control supports positioning and displaying itself within its container through compound document
technology and OLE drag and drop technology that involves both the control and its container. The control
must be able to draw itself while the container manages the position of the control and its size.

Controls add to the basic functions provided by OLE documents. A control calls its client's
IOleClientSite::RequestNewObjectLayout method to tell its container that it wants to change its size.
The client calls the control's IOleObject::GetExtent to get the new size and calls
IOleInPlaceObject::SetObjectRects to set the control to its new size.

Controls that support only IPersistStream[Init] do not support caching through IOleCache2 because the
cache requires support for IPersistStorage. However, these controls should provide a way for the client
to render the control through IDataObject::GetData so the client can optionally create and manage its
own cache of the presentation data for the control.

Controls use the HIMETRIC type for its coordinates. However, different containers can use different
coordinate systems. The container wants to receive coordinates in its own system, but the control does
not necessarily know what coordinates its container is using. To communicate successfully, the control
needs a way to convert values to its container's coordinates. The container provides a site object with the
IOleControlSite::TransformCoords method. The control calls this method on its container's client site
first to convert its coordinates into the appropriate coordinates for the container. Then, it can pass the
converted coordinates to the container.

Controls can call IOleControlSite::LockInPlaceActive in the container's site object to prevent the
container from attempting to demote the control out of the in-place active state. Demoting the control in
this way causes the control to be deactivated and its window destroyed, so if the control must maintain its
window for a known duration it can call LockInPlaceActive to guarantee its state.

Keyboard Handling for Controls
A control responds to keyboard accelerators so the end-user can initiate actions performed by the control.
The container manages keyboard activity for all its embedded controls. With compound documents,
keyboard accelerators apply only to the currently active object. With controls, a mechanism has been
added so that a control can respond to its keyboard mnemonics even if it is not currently UI-active.

The IOleControl::GetControlInfo and IOleControl::OnMnemonic methods and the
IOleControlSite::OnControlInfoChanged method handle a control's keyboard mnemonics. A
CONTROLINFO structure describes a control's mnemonic accelerators, and the flags passed back with it
through the IOleControl::GetControlInfo method describe the control's behavior with the Enter and Esc
keys. When a control changes its mnemonics, it calls IOleControlSite::OnControlInfoChanged so the
container can reload the structure if necessary.

When a control is UI active, it is also the control with the focus. As controls are activated and deactivated
between the in-place active and the UI active states, the control calls IOleControlSite::OnFocus to tell
the container of such changes.

In addition, when a control is UI active, it will have first chance to process any keystrokes. To give a
container the opportunity to process the keystroke before the control, the control calls
IOleControlSite::TranslateAccelerator. If the container does not handle the keystroke, the control then
processes it.

Persistence
A control implements one or more of several persistence interfaces to support persistence of its state. For
example, the IPersistStreamInit interface supports stream-based persistence of the control's state.
IPersistStreamInit is a replacement for IPersistStream and adds an initialization method, InitNew. The
other methods are the same in both interfaces. IPersistStreamInit is not derived from IPersistStream;
an object supports only one of the two interfaces based on whether it requires the ability to initialize new
instances of itself.

Other persistence interfaces that a control can offer include: IPersistStorage, IPersistMemory,
IPersistPropertyBag, IPersistMoniker. The control implementer must decide what kinds of persistence
are most important and implement the appropriate persistence interfaces. The control implementer also
decides what to save. For example, a control can save the current values of its properties or its location
and size within its container. The client decides which interface it prefers to use.

Before loading a control from its persistent state, a client can check the
OLEMISC_SETCLIENTSITEFIRST flag to determine if the control supports getting its client site and
ambient properties before loading its persistent state. This optimization can save time when instantiating
a control since the control is then free to ignore its persistent values rather than loading them only to have
them overridden by ambient properties supplied by the client.

A control can also support saving and restoring its state in an OLE property set, a set of identifiers and
values in a specified format. This feature can be useful with containers such as Visual Basic which saves
its programs in a textual form. A control that wishes to support this feature implements
IDataObject::GetData and IDataObject::SetData to pass its property values to and from the container,
respectively. It is the container's job to convert this information to text and save it. The identifiers used by
the control correspond to the control's property names and the values. See the OLE CDK for the definition
of this property set.

Registration and Licensing
A control is usually provided as an in-process server (.DLL), although it can also be a local or remote
server (.EXE).

A control typically supports self-registration and creates a set of registry entries when it is instantiated. A
control can also be licensed to prevent unauthorized use. See The Component Object Model chapter for
more information on self registration and licensing.

ActiveX Controls Registry Information
For 32-bit controls, there are a number of registry entries and flags that are used. Additionally, controls
can support component categories to classify the features they provide.

Registry keys related to controls are italicized in the following list:

HKEY_CLASSES_ROOT
 CLSID
 {class id of control}
 ProgID = identifier
 InprocServer32 = <filename>.DLL
 DefaultIcon = <filename>.<ext>,resourceID
 ToolboxBitmap32 = <filename>.<ext>,resourceID
 Control
 verb
 n = &Properties...
 MiscStatus = 0
 TypeLib = {typelib ID for the object}
 Version = version number

The DefaultIcon entry is used to identify an icon to be displayed when the control is minimized to an icon.
The Windows API function ExtractIcon is used to get the icon from the .DLL or .EXE file specified.

The ToolboxBitmap32 entry identifies the module name and resource identifier for a 16*15 bitmap to use
for the face of a toolbar or toolbox button. The standard Windows icon size is too large to be used for this
purpose. This entry specifically supports control containers that have a design mode in which one selects
controls and places them on a form being designed. For example, in Visual Basic, the control's icon is
displayed in the Visual Basic toolbox during design mode.

The Control entry marks an object as a control. This entry is often used by containers to fill in dialog
boxes. The container uses this sub-key to determine whether to include an object in a dialog box that
displays controls.

The Insertable sub-key can also be used with controls, depending on whether the object can act only as
an in-place embedded object with no special control features. Objects marked with Insertable appear in
the Insert Object dialog box of their container. The Insertable entry generally means that the control has
been tested with non-control containers.

Both the Insertable and the Control sub-keys are optional. A control can omit the Insertable sub-key if it
not designed to work with older containers that do not understand controls. A control can omit the Control
key if it is only designed to work with a specific container and thus does not wish to be inserted in other
containers.

Controls should have a Properties verb, OLEIVERB_PROPERTIES, along with any other verbs they
support. The Properties verb, as well as the standard verb OLEIVERB_PRIMARY, instructs the control to
display its property sheet. The Properties verb is displayed as the Properties item on the container's menu
when the control is active. This way, the control can display its own property page allowing some useful
functionality to the end user, even if the container does not handle controls.

A control defines the MiscStatus key to describe itself to potential containers. The bits take on the values
from OLEMISC, and controls add several values to this enumeration. See the OLEMISC enumeration
values for more information. The client can obtain this information by calling IOleObject::GetMiscStatus
without having to instantiate the control first.

Finally, Version describes the version of the control which should match the version of the type library

associated with this control.

Also in the type information for a control, the attribute control marks a coclass entry as describing a
control.

Designing COM Interfaces
As an OLE developer, you implement and use objects that are based on the Component Object Model
(COM). COM interfaces specify a contract between the interface implementor and its user. The contract
applies to every COM object that supports that interface.

OLE provides a standard set of interfaces, but these OLE-provided interfaces may not be perfectly suited
to your needs. Through custom interfaces, you can create new ones tailored to fulfill the specific needs of
your application. Custom interfaces are extensions to the COM standard; they let you extend the standard
behavior and still take advantage of the services provided by the base interface. Like all COM interfaces,
custom interfaces derive from the IUnknown interface and must contain the three methods of IUnknown.
Otherwise, they can support a wide range of methods and parameters. (Note that, currently, custom
interfaces cannot include asynchronous methods. Asynchronous methods may be supported in future
versions of OLE.)

Once the interface is written, anyone can use it. Calls to methods in COM interfaces can cross process
boundaries as long as both processes are running on the same machine.

This chapter introduces custom interfaces and explains how to implement them. OLE experience is a
prerequisite, as is a basic knowledge of RPC. Refer to The Component Object Model for basic
information on COM required to design a COM interface, including threading models, and COM Clients
and Servers for information on how clients and servers interact.

Custom interfaces require custom implementations of the IMarshal interface, so refer also to the section
Inter-object Communication for a description of how this works. Refer to the RPC Programmer's Guide
and Reference for information about the RPC programming environment.

Interface Design Rules
This section is a short summary of interface design rules. For details of custom interface design, refer to
Writing a Custom Interface.

An object is not, by definition, a COM object unless it implements at least one interface. That interface
must be IUnknown or an interface that is derived from IUnknown. In addition, the following rules apply to
all interfaces implemented on a COM object:

· They must directly or indirectly inherit the methods of IUnknown.
· They must have a unique interface identifier.
· They must be immutable: once they are created and published, no part of their definition may change.
· All interface methods should have a return type of HRESULT so the portions of the system that

handle remote processing can report RPC errors.
· All string parameters in interface methods should be Unicode.

Writing a Custom Interface
To write a custom interface that will be able to interact with COM objects, as discussed in the following
section, you must obtain a Microsoft Win32 Software Development Kit (SDK). It contains a tool kit and all
of the libraries you need for building a custom interface project. It provides more detailed information
about how to write a custom interface using the MIDL compiler.

After installing the tool kit, you can design and write your custom interface using the MIDL compiler, and
build the standard-marshaling proxy/stub DLL for your interface from the files generated by the compiler.
You will then install the DLL in the system registry.

For details, see the following:

Designing Efficient Interfaces

Using a Custom Interface

Designing Efficient Interfaces
There are some special considerations to keep in mind when designing a custom interface. If you follow
these guidelines, your marshaling code can be used across the network when support for remotable
objects is provided in a future release.

First of all, because data is shipped across address spaces, using architecture-dependent types such as
int may prohibit the data from being re-created correctly in the object application's address space. The
size of an integer varies from architecture to architecture. Thus, the data type int should not be used for
structure data members or interface method parameters. Specifying data types unambiguously to the
MIDL compiler will allow your interface to be more easily transferred to remote machines with different
architectures and addressing schemes. The MIDL compiler requires all integer variables that may be
remoted to be explicitly declared as short, long, or their unsigned equivalents.

A frequently used data type for pointers, the void * construct, allows the code implementing a method to
interpret the data pointed to according to the need. While local interfaces can use this construct,
distributed applications cannot. This is because the MIDL compiler must know exactly what types of data
are being transmitted so that the data can be accurately re-created on the receiving side. The void *
construct is too vague.

Pointers to data must be used carefully. To re-create the data in the address space of the process that is
called, RPC must know the exact size of the data. If, for example, a char * parameter points to a buffer of
characters rather than to a single character (as is implied), the data cannot be correctly re-created. Use
the syntax available with MIDL to accurately describe the data structures represented by your type
definitions.

Initialization is essential for pointers that are embedded in arrays and structures and passed across
process boundaries. Uninitialized pointers may work when passed to a program in the same process
space, but proxies and stubs assume that all pointers are initialized with valid addresses or are null.

Be careful when aliasing pointers (allowing pointers to point to the same piece of memory). If the aliasing
is intentional, these pointers should be declared aliased in the IDL file. Pointers declared as non-aliased
should never alias each other.

The MIDL has directional attributes that let you specify the data flow direction. The proxies and stubs use
these attributes to determine whether to send the data from the client to the object or from the object to
the client, respectively. Data labeled as out only is uninitialized on the way to the interface stub; data
labeled as in only does not affect the data structures upon return. The in, out attribute indicates that data
is sent to the object initialized and the object will change it before sending it back.

It is also imperative to realize the importance of defining status codes. This must be coordinated by the
definer of the interface to avoid conflicting error codes.

Finally, the designer of an interface must develop an understanding of how the interface will be used by
client applications. In particular, the frequency of method calls across the interface boundary and the
amount of data to be transferred to complete a given method call together determine whether the
interface will be efficient across process and machine boundaries. Although OLE makes cross-process
and, eventually, cross-network calls transparent to programs, it cannot make high-frequency and high-
bandwidth calls efficient across address spaces. In some cases, it is more appropriate to design
interfaces that will normally be implemented only as in-process servers while other interfaces are more
appropriate for remote use.

For details, see the following:

· Creating a Custom Interface
· Building a Proxy/Stub DLL

· Registering a Proxy/Stub DLL

Creating a Custom Interface
Writing an application using a custom interface is similar to writing an OLE application using standard
interfaces, with two important differences. First, in addition to registering the class identifier (CLSID) for
your object, you also must register the unique interface identifier (IID) for your custom interface. Second,
you must provide OLE with proxy and stub components capable of remoting the interface. In most cases,
you will use the MIDL compiler to generate code to create the proxy/stub DLL for your custom interface.
(For more information, see Files Generated for an OLE Interface in the Microsoft RPC documentation for
the Win32 SDK.)

As an OLE developer, you should already be familiar with the concept of using CLSIDs and interface
identifiers (IIDs) to uniquely identify class objects and interfaces. The MIDL compiler refers to universally
unique identifiers (UUIDs) and uses UUIDs to uniquely represent its interfaces. In this case, a UUID is the
same as an IID. Every custom interface must have a IID; the UUIDGEN.EXE tool provided with the toolkit
can create one for you.

MIDL is a rich, complex language that allows you to define interface parameters carefully in terms of their
direction and type. Although the MIDL compiler offers much, you will need only a small subset of its
attributes to define your interface.

The IDL file consists of two parts: the interface header and the interface body. The interface header,
delimited by brackets, contains information about the interface as a whole, such as its IID. A prerequisite
to completing the interface header is running the RPC utility UUIDGEN.EXE to create the IID. Because
IIDs must be unique, never reuse one of them by copying it from one IDL file to another. The header also
contains the keyword object, indicating that this interface is a COM-style interface (that is, derived from
IUnknown). Whereas standard RPC interfaces have the version attribute in their interface headers,
object interfaces do not.

The following excerpt is from an IDL file:

[
 object,
 uuid(7ACC12C3-C4BB-101A-BB6E-0000C09A6549),
 pointer_default(unique)
]

The uuid attribute precedes the unique identifier for the interface. The pointer_default attribute specifies
the default IDL type for all pointers except for those included in parameter lists. Parameter list pointers
must be explicitly declared with the pointer attribute. The default pointer type may either be unique, ref,
or ptr. For more information on using IDL with pointers, see the RPC Programmer's Guide and
Reference.

The interface body contains declarations for data members, prototypes for all methods, and other
information such as directives to the preprocessor and include statements for other IDL files. The
following example is the interface body for ICustomInterface:

interface ICustomInterface : IUnknown
{
 import "unknwn.idl";

 HRESULT CustomReport(void);
}

The import attribute allows an interface to reference constructs defined in other IDL files. Because
ICustomInterface derives from IUnknown, the UNKNWN.IDL file must be included. ICustomInterface
has only one method that takes no parameters; few interfaces will be this simple.

Building a Proxy/Stub DLL
Completed IDL files must be compiled with the IDL compiler, MIDL.EXE. The IDL compiler takes each IDL
file and generates proxy/stub code (IDLNAME_P.C), an interface header file (IDLNAME.H), and an
interface identifier file (IDLNAME_I.C). The header files contain both C and C++ class definitions.

By default, MIDL.EXE generates names based on your IDL file's name. However, you can use the
following command line switches to override the default:

Command line switch Description
-header Specifies the name of the interface header

file.
-proxy Specifies the name of the proxy source file.
-iid Specifies the name of the interface identifier

file.

After a successful compile of the IDL file, the generated files are run through the standard C/C++ compile
and link steps. These source files implement helper functions for marshaling and an implementation of
DllGetClassObject for the proxy/stub libraries, among other things. Note that the RPC4RT.LIB library
includes an implementation of the DllGetClassObject function. In this provided implementation, the
CLSID of the proxy/stub has to be the same as the IID of your custom interface. If you want to use a
CLSID that differs from the IID then you must provide your own implementation of the DllGetClassObject
function.

The following diagram shows all the pieces involved in a build of a custom proxy/stub DLL. The IDL file,
ITF.IDL, is fed into the IDL compiler. Three files are generated: ITF_P.C, ITF.H, and ITF_I.C. These three
files are compiled and linked and the result is PROXSTUB.DLL.

{ewc msdncd, EWGraphic, bsd23516 0 /a "SDK.WMF"}

Build Process for Proxy/Stub DLL.

It is important to remember that an IDL file is more than just a fancy header file for interfaces ¾ it allows
you to use your interfaces cross-machine, cross-process or even cross-thread.

IDL is a programming language for remoting. This means that all attributes should be verified before
releasing IDL files for custom interfaces to customers.

Even if your interface will never be used out-of-process, it may be used cross-thread. The worst problem
for an unchecked IDL file can arise for in-process servers that do not support multiple single-threaded
apartments). A server that does not specify a threading model is implicitly single-threaded. Everything
marked single threaded is forced over to the thread that first called CoInitializeor CoInitializeEx. If some
other thread was the one that activated the object, all the interfaces on that single threaded server must
be remoted back to the activating thread, which can result in a return of REGDB_E_IID_NOTREG in
response to a call to QueryInterface). Unless you can absolutely assert that your interface is both in-
process only, and always going to be called on the same thread, you will get remoted at some time.

Even if you create a proxy DLL, it is a good idea to test it by remoting your interfaces to avoid small
errors. For example, " [in] char * pszString" means send a pointer to a single character. To send a pointer
to a character string, you need to have "[in, string] char * pszString". Both generate the same header.
Remoting your interfaces helps you avoid these problems.

Finally, with the advent of distributed OLE, it is crucial that IDL files are correct before you send them out,
because the world is bigger and faster these days. If you made a mistake in your IDL, and the interface is
not remoted correctly the first time you ship, then you are faced with the problem of trying to figure out

how to fix it, which can be very difficult. If you upgrade one machine to the correct proxy/stub, it won't
interoperate with one that has the old proxy/stub. You either have to revise your interface with a new IID
and leave the old one in for backwards compatibility, or you have to convert every client and every server
machine everywhere at the same time.

The same considerations apply to those writing ODL files. IDL and ODL files just use different compilers
to accomplish the same thing. In fact, with SUR and MIDL 3.0, the same tool does both, and the
distinction vanishes (.IDL is to .ODL as CPP is to .CXX)

Registering a Proxy/Stub DLL
Before a client can use your custom interface, the proxy/stub DLL for the interface must be installed in the
system registry. Registering the proxy/stub DLL involves creating a .REG file and running REGINI. In the
following entries, notice that the IID for ICustomInterface is the same as the CLSID for the proxy/stub
DLL.

\Registry\MACHINE\SOFTWARE\Classes\Interface\
 {7ACC12C3-C4BB-101A-BB6E-0000C09A6549}
 = ICustomInterface
\Registry\MACHINE\SOFTWARE\Classes\Interface\
 {7ACC12C3-C4BB-101A-BB6E-0000C09A6549}\ProxyStubClsid32
 = {7ACC12C3-C4BB-101A-BB6E-0000C09A6549}
\Registry\MACHINE\SOFTWARE\Classes\CLSID\
 {7ACC12C3-C4BB-101A-BB6E-0000C09A6549}
 = ICustomInterface_PSFactory
\Registry\MACHINE\SOFTWARE\Classes\CLSID\
 {7ACC12C3-C4BB-101A-BB6E-0000C09A6549}\InprocServer32
 = proxstub.dll

Using a Custom Interface
The client code is the user of the custom interface. To use any interface, custom or standard, a client
must know its IID. In the following function, CustomRpt, the driver that calls CustomRpt passes it the
name of the object that is converted to a wide-character format. The object name is fed to
CreateFileMoniker so that a file moniker can be created and the client can bind to the running object.
Once the object is running, CustomRpt can access a pointer to either an interface in the standard
proxy/stub, such as IPersistFile, or to the custom interface, ICustomInterface.

void CustomRpt(char *pszObject)
{
 HRESULT hr;
 WCHAR szObject[128];
 WCHAR wszMsg[128] = {L"Your Message Here...\n"};
 IMoniker *pmkObject = NULL;
 IUnknown *pIUnk = NULL;
 IPersistFile *pIPersistFile = NULL;
 ICustomInterface *pICustomInterface = NULL;

 // Create a wide-character version of the object's file name.
 wsprintf(wszObject, L"%hs", pszObject);

 // Get a file moniker for the object (a *.smp file).
 hr = CreateFileMoniker(wszObject, &pmkObject);

 if(FAILED(hr))
 {
 printf("Client: CreateFileMoniker for Object failed");
 return;
 }

 // BindMoniker is equivalent to calling CreateBindCtx() followed by
 // a call to BindToObject(). It has the net result of binding the
 // interface (specified by the IID) to the moniker.

 hr = BindMoniker(pmkObject, 0, IID_IUnknown, (void **)&pIUnk);
 if (FAILED(hr))
 {
 printf("Client: BindMoniker failed (%x)\n", hr);
 return;
 }

 // Try a couple QueryInterface calls into the object code, first a
 // QueryInterface to IPersistFile...

 hr = pIUnk->QueryInterface(IID_IPersistFile,
 (void **)&pIPersistFile);

 if (FAILED(hr)) {
 printf("Client: QueryInterface IPersistFile failed (%x)\n", hr);
 pIUnk->Release();
 return;
 }

 // Followed by a QueryInterface to ICustomInterface.
 hr = pIUnk->QueryInterface(IID_ICustomInterface,
 (void **)&pICustomInterface);

 if (FAILED(hr)) {
 printf("Client: QueryInterface failed (%x)\n", hr);
 pIUnk->Release();
 pIPersistFile->Release();
 return;
 }

 // CustomReport() is the object function that displays the time and
 // date information on the object.
 hr = pICustomInterface->CustomReport();

 if (FAILED(hr))
 {
 printf("Client: pICustomInterface->CustomReport failed (%x)\n",
 hr);
 pIUnk->Release();
 pIPersistFile->Release();
 return;
 }

 // Clean up resources by calling release on each of the interfaces.
 pIPersistFile->Release();
 pICustomInterface->Release();
 pIUnk->Release();
 return;
}

URL Open Stream Functions
URL Open Stream (UOS) functions are ActiveX™ extensions to the Win32 API. They combine the
familiarity of C-style programming with the power of COM. Yet using UOS functions requires knowledge of
no more than two COM interfaces, IStream and IBindStatusCallback. UOS functions work equally well
inside an ActiveX framework (for example, a component, a document or frame window, a subcomponent,
or a scriptable object) or in a generic Internet context.

Every UOS function works in the same basic way: the caller implements an IBindStatusCallback
interface (optional in some cases), then calls the function. The URLOpenStream and
URLOpenPullStream functions require the caller to be on a thread that has a message loop
(GetMessage/DispatchMessage). In the case of an ActiveX component, a message loop is a given if one
of these functions is called from the main thread. For a stand-alone application without a user interface, a
message loop is still necessary to use these functions.

With the UOS functions, you can:

· Download a URL to a file with a single function call. You can optionally get progress notifications in
the background.

· Create a blocking-type stream (see Asynchronous Storage) with a single function that will block when
you call IStream::Read. You can optionally get progress notifications in the background.

· Hook into the ActiveX client framework, if you like, simply by passing your this pointer.
· Configure callbacks using either the push or pull model (see Asynchronous Monikers).

URL open stream functions use services from URL Monikers and WinInet, providing all the caching and
thread-synchronization features of those components. In addition, if your code is in an ActiveX container,
the UOS functions handle all the host binding operations, automatically doing the right things to ensure an
efficient and successful download. That is, these functions will determine whether your code is hosted
within a container that supports the IBindHost interface and will use this interface if it is present.
Otherwise, they will work without it.

APPENDIX A

Compatibility with OLE 1 and
16:32-Bit Interoperability

Note In moving from OLE 1 to OLE 2, the following changes in terminology were made:

· The OLE 1 term "server application" has been changed to "object application."
· The OLE 1 term "client application" has been changed to "container application."

Compatibility implies that an OLE 1 client application can contain OLE 2 embedded and linked objects
and that an OLE 1 server application can create objects to be embedded in and linked to by OLE 2
containers. OLE provides these capabilities by means of a built-in compatibility layer in the core code,
which includes a set of functions for conversion.

Interoperability is not the same as OLE 1 to OLE 2 compatibility. Interoperability implies that a 16-bit OLE
application can interact with a 32-bit application running on the same system. Interoperability between 16-
and 32-bit implementations means that 16-bit and 32-bit implementations can call each other.

Compatibility with OLE 1
Compatibility between OLE 2 and OLE 1 applications is achieved through the implementation of two types
of special remoting objects, called stubs and proxies. The stub is instantiated on the object, or server,
application's side of the process; the proxy is instantiated on the container, or client, application's side.
These special stubs and proxies use DDE to communicate rather than LRPC. When an OLE 2 object
makes a call to a function in an OLE 1 client application, for example, the stub intercepts the call and
responds appropriately. For the most part, this response simulates the response that an OLE 2 object or
container would make. However, in a few cases the behavior is different or special HRESULT (SCODE)
values are returned.

This chapter discusses the issues that affect applications that must be compatible with an earlier or more
recent version of OLE and describes the functions that promote this compatibility.

Working with OLE 1 Clients
This section describes some of the idiosyncrasies of working with OLE 1 clients.

A successful call to the IOleClientSite::GetContainer method returns a pointer to the container's
IOleContainer interface. If the container does not support the IOleContainer interface,
OLE_E_NOT_SUPPORTED is returned. All OLE 1 clients fall in this category, as do OLE 2 containers
that do not support linking to their embedded objects.

The IOleClientSite::ShowObject method, a request to make the embedded or linked object visible,
always returns OLE_E_NOT_SUPPORTED when called on an OLE 1 client. The purpose of this method
is to help make the user model work smoothly; its failure does not effect OLE functionality.

When an OLE 1 client contains an OLE 2 object and the object is activated or the OleUpdate function is
called, the aspect of the data returned will always be DVASPECT_CONTENT. This is because OLE 1
clients have no concept of a FORMATETC data structure. This situation may occur when an iconic OLE 2
object is pasted from an OLE 2 container into an OLE 1 container. When the object is first pasted, its
presentation remains iconic. With the next update, however, the object's content picture is returned.

OLE 1 clients can link to OLE 2 objects only if the link source:

· is represented by a file moniker or a generic composite moniker consisting of a file moniker and one
item moniker.

· is not an embedded OLE 2 object.

An OLE 1 client can contain an incompatible link when a linked object is pasted from an OLE 2 container
into the OLE 1 client or when an OLE 2 container saves the data to an OLE 1 file, to allow the OLE 1
version of the application access to its data. When the OLE 1 client loads the incompatible link, the link is
converted to an embedded object and assigned the class name "Ole2Link." The OLE 1 client cannot
connect to the link source. However, if the newly embedded object is then pasted into an OLE 2 container
using the Clipboard, or converted to an OLE 2 object using the OleConvertOLESTREAMToIStorage
function, it will be converted back to its original state as an OLE 2 linked object.

When the link source for an OLE 1 linked object changes its name, the link can remain intact only if the
file moniker for the link source has changed. That is, if the link source is a range of cells within an OLE 2
spreadsheet application and the name of the file that contains the cell range changes, OLE will track the
link. However, if the name of the cell range changes, the link will break.

Pasting an OLE 2 linked object into an OLE 1 client document and then calling the OleCopyFromLink
function to convert it to an embedded object will fail if the data transfer object provided by the link source
does not support the IPersistStorage interface. Creating an embedded object always requires native
data, and the IPersistStorage interface provides access to native data.

Working with OLE 1 Servers
This section describes some of the known idiosyncrasies of embedding or linking OLE 1 objects.

As with OLE 2 objects, either the IPersistStorage::InitNew method or the IPersistStorage::Load
method must be called to properly initialize a newly instantiated OLE 1 object before any other OLE calls
are made. The InitNew method should be called to initialize a newly created object; the Load method
should be called for existing objects. If one of the OleCreate helper functions or the OleLoad function is
being used, these functions make the IPersistStorage call, eliminating the need to make the call directly.
When an OLE 2 container with an OLE 1 embedded or linked object calls the IDataObject::GetData
method or the IDataObject::GetDataHere method, the container can anticipate support for a smaller set
of formats and storage mediums than would be supported for an OLE 2 object. The following table lists
the combinations that can be supported.

Tymed Formats Data Formats
TYMED_MFPICT CF_METAFILEPICT
TYMED_GDI CF_BITMAP
TYMED_HGLOBAL cfNative, CF_DIB, and other OLE 1 server

formats

For the aspect value of DVASPECT_ICON, only TYMED_MFPICT with CF_METAFILEPICT is supported.
The icon returned from the IDataObject::GetData or IDataObject::GetDataHere call will always be the
first icon (index 0) in the executable object application.

Several methods typically called by containers have unique implementations for OLE 1. The
IPersistStorage::IsDirty method is defined to return S_OK if the object has changed since its last save
to persistent storage; S_FALSE if it has not changed. When an OLE 2 container with an OLE 1 embedded
object calls the IPersistStorage::IsDirty method, the compatibility code always returns S_OK when the
server is running, because there is no way to determine if the object has in fact changed until the File
Close or File Update command is selected. S_FALSE is returned when the server is not running.

An OLE 2 implementation of IOleObject::IsUpToDate can return either S_OK if the object is up-to-date,
S_FALSE if it is not up-to-date, or OLE_E_UNAVAILABLE if the object cannot determine whether it is up-
to-date. The OLE 1 implementation always returns either E_NOT_RUNNING, if the object is in the loaded
state, or S_FALSE, if the server is running.

The OLE 1 implementation of the IOleItemContainer::EnumObjects method always returns
OLE_E_NOTSUPPORTED because it is not possible for an OLE 1 server to enumerate its objects.

The IOleObject::Close method takes a save option as a parameter that indicates whether the object
should be saved before the close occurs. For OLE 2 objects, there are three possible save options:
OLECLOSE_SAVEIFDIRTY, OLECLOSE_NOSAVE, and OLECLOSE_PROMPTSAVE. The OLE 1
implementation of the IOleObject::Close method treats OLECLOSE_PROMPTSAVE as equivalent to
OLECLOSE_SAVEIFDIRTY, because it is not possible to require an OLE 1 server to prompt the user.

OLE 2 containers cannot expect an OLE 1 object to activate in-place; all OLE 1 objects support activation
in a separate, open window.

OLE 1 servers do not support linking to their embedded objects. It is up to OLE 2 containers with OLE 1
embedded objects to prevent a possible link from occurring. Containers can call the CoIsOle1Class
function to determine at Clipboard copy time if a data selection being copied is an OLE 1 object. If the
CoIsOle1Class function returns TRUE, indicating that the selection is an OLE 1 object, the container
should not offer the Link Source format. Link Source must be available for a linked object to be created.

OLE 2 containers can store multiple presentations for an OLE 1 object. However, only the first
presentation format is sent to the container when the OLE 1 server closes. After that, the server is in the

process of closing down and cannot honor requests for any more formats. Therefore, only the first
presentation cache will be updated. The rest will be out of date (perhaps blank) if the object has changed
since the last update.

Because OLE 1 servers do not update the cache for every change to an embedded object until the user
selects the File Update command, an OLE 2 container may not be obtaining the latest data from the
server. By calling the IOleObject::Update method, the container can obtain the latest object data.

An OLE 1 embedded (not linked) object does not notify its container that its data has changed until the
user chooses File Update or File Close. Therefore, if an OLE 2 container registers for a data-change
notification on an OLE 2 object in a particular format, it should be aware that it will not be notified
immediately when the data changes.

When an OLE 1 object is inserted into a container document and then closed without an update being
invoked, the container document is not saved. Neither are the correct streams for the object written into
storage. Any subsequent loading of the object by the container will fail. To protect against this, containers
can keep data available after the object closes without updating by implementing the following:

OleCreate(); \\ to insert the object
OleRun(); \\ if OLERENDER_NONE was specified
IOleObject::Update(); \\ to get snapshot of data
OleSave();
IOleObject::DoVerb();

OLE 1/Registry Compatibility Information
This section discusses the registry and how to handle compatibility issues between OLE 1 and related to
OLE 2.

OLE 1 Compatibility Subkeys
To handle two-way compatibility, the OLE 2 compatibility layer creates OLE 2-style entries for OLE 1
classes it discovers and places them under the CLSID key. When installing an OLE 2 object application
on a system that contains an OLE 1 version of the same application, it might be necessary to add
"AutoConvertTo" or "TreatAs" subkeys to the original OLE 1 application portion of the registry. For more
information, see "When the OLE 1 Version is Overwritten," later in this section.

Information for OLE 1 Applications Subkey Entries
To maintain compatibility with OLE 1, you must include specific OLE 1 information. The "server" key entry
should contain a full path to the application. The entries for verbs must start with 0 as the primary verb
and be consecutively numbered.

Hkey_Classes_Root\Ole2isvrotl\Protocol\Stdfileediting\Server =
 C:\Samp\Isvrotl.Exe
Hkey_Classes_Root\Ole2isvrotl\Protocol\Stdfileediting\Verb\0 = &Edit
Hkey_Classes_Root\Ole2isvrotl\Protocol\Stdfileediting\Verb\1 = &Open

OLE 1 Application Entries
When an OLE 1 class is inserted into an OLE 2 container for the first time, a new subkey, CLSID, is added
to the original OLE 1 registration information by the OLE 2 compatibility layer. The value given to this key
is a CLSID assigned by OLE 2 to this OLE 1 class as shown in the following portion of the registry.

<OLE1ClassName> = <OLE1UserTypeName>
 Protocol
 StdFileEditing
 Verb
 CLSID = <CLSID>

ProgID and OLE 1 Compatibility
Programmatic identifiers are not guaranteed to be unique so they can be used only where name collisions
are manageable, such as in achieving compatibility with OLE 1. Also, the ProgID is the "class name" used
for an OLE 2 class when it is placed in a server application (OLE 1 server).

Note Because OLE 2 provides a built-in OLE 1/OLE 2 compatibility layer, rarely will an OLE 2 class
that is insertable in an OLE 2 container not be insertable in an OLE 1 container.

Version-dependent Identifiers
The <VersionDependentProgID> is the string to use when OLE 1 needs to contact OLE 2 using DDE.
Version-dependent ProgID-to-CLSID conversions must be specific, well-defined, and one-to-one.

Inserting an OLE 2 Object in an OLE 1 Application
If a particular class is insertable in an OLE 1 container, the "ProgID" root key will contain a Protocol\
StdFileEditing subkey with appropriate subkeys Verb, Server, and so on, as in OLE 1. The
Server that should be registered here is the full path to the executable file of the OLE 2 object
application. An OLE 1 container uses the path and executable file names to launch the OLE 2 object
application. The initialization of this application, in turn, loads the OLE 2 compatibility layer. This layer
handles subsequent interactions with the OLE 1 container (client), turning them into OLE 2-like requests
to the OLE 2 application. An OLE 2 object application doesn't have to take any special action beyond
setting up these registry entries to make objects insertable into an OLE 1 container.

The ProgID key and its subkeys appear in the registry as shown in the following example, where
"<Progid>" is the key, and "Insertable," "Protocol," "StdFileEditing," "Verb," and so on are subkeys.

<ProgId> = <MainUserTypeName>
Insertable // class is insertable in OLE 2 containers
Protocol
 StdFileEditing // OLE 1 compatibility info; present if, and only if,
 // objects of this class are insertable in OLE 1 containers.
 Server = <full path to the OLE 2 object application>
 Verb
 0 = <verb 0> // Verb entries for the OLE 2 application must start with zero as the
 1 = <verb 1> // primary verb and run consecutively.
CLSID = <CLSID> // The corresponding CLSID. Needed by GetClassFile.
Shell // Windows 3.1 File Manager Info
 Print
 Open
 Command = <appname.exe> %1

To summarize, any root key that has either an Insertable or a Protocol\StdFileEditing subkey is
the ProgID (or OLE 1 class name) of a class that should appear in the Insert Object dialog box. The value
of that root key is the name displayed in the Insert Object dialog box.

The values of each key in the example below are used for registering the "Ole 2 In-Place Server Outline"
sample application. Set these values as required and used by your application.

Specifying Unregistered Verbs
It is possible to register OLE 1 object applications (servers) with no specified verbs. In such cases, the
application has a single implied verb that is understood to be "edit" by OLE 1 containers. When an OLE 2
application calls the IOleObject::EnumVerbs method (or the OleRegEnumVerbs function) on an object
of this class, one verb is enumerated. By default, the name of the verb is "Edit." To avoid having the string
"Edit" as the enumerated verb, a key can be included in the registry. This key is

\Software\Microsoft\OLE1\UnregisteredVerb = <verbname>

(where verbname is the value that will be returned from the enumeration) and allows for localization of the
default verb to a specified string to accommodate a specific language.

Note Do not attempt to register a verb (under ProgID\Protocol\StdFileEditing) for an application
that did not register the verb itself.

Accommodating OLE 1 Versions of the Object Application
When the OLE 1 version of an object application is superseded by an OLE 2 version and the OLE 2
version is to be installed in the user's system, such as when upgrading, two situations can arise:

· An OLE 1 version of the application is present on the user's system and the installation process
overwrites the OLE 1 executable with the OLE 2 version.

· An OLE 1 version of the application is present on the user's system and the user chooses not to
overwrite it with the OLE 2 version.

Note Even if the OLE 1 object application is not on the user's system, the install/setup program for
the OLE 2 object application should register the application as capable of servicing its OLE 1 objects.
To do this, follow the guidelines presented under "When the OLE 1 Version is Overwritten," and add
the following entry to the CLSID root key:

<OLE 1 class name>/CLSID = <CLSID of OLE 1 application>

When the OLE 1 Version is Overwritten
When the OLE 1 object application is replaced by the OLE 2 version, do the following. (For the purpose of
illustration, the OLE 1 object application is referred to as Ole 1 In-Place Server Outline while the OLE 2
version is Ole 2 In-Place Server Outline, as shown in the dialog box illustrations that follow).

1. Register Ole 2 In-Place Server Outline.
2. Modify (with your install/setup program) the original registry entries of Ole 1 In-Place Server Outline

by changing the executable path to point to the Ole 2 In-Place Server Outline executable.
For example, the Server subkey for the OLE 1 executable, named svrapp.exe in this example,
changes from
OLE1ISvrOtl\Protocol\StdFileEditing\Server = svrapp.exe
to
OLE1ISvrOtl\Protocol\StdFileEditing\Server = isvrotl.exe
where isvrotl.exe is the name of the OLE 2 object application.
Next, proceed to either step 3 or step 4, depending on whether or not you want OLE 1 objects
converted automatically to the OLE 2 format.

3. If Ole 1 In-Place Server Outline objects will be converted automatically to the Ole 2 In-Place Server
Outline format when the application is saved, create or modify the following registration database
entries:
a. Modify the original registry entry of Ole 1 In-Place Server Outline by changing the "Value of the

ProgID = Main User Type Name" key of the entry to Ole 2 In-Place Server Outline.
For example, where OLE1ISvrOtl is the ProgID of the OLE 1 application,
OLE1ISvrOtl = Ole 1 In-Place Server Outline
becomes
OLE1ISvrOtl = Ole 2 In-Place Server Outline

b. Modify the original registry entry of Ole 1 In-Place Server Outline by adding a NotInsertable
subkey under the ProgID key. For example:
HKEY_CLASSES_ROOT\OLE1SvrOtl\NotInsertable

Note Since the original registry entries for the OLE 1 server application remain (but with a
pointer to the OLE 2 object application as shown in the preceding step 3a), the OLE 1 ProgID will
appear in the Insert Object dialog box of any OLE 2 container application installed on the system.
The NotInsertable subkey mentioned in step 3b prevents the ProgID of the OLE 1 application
from appearing in the Insert Object dialog box of OLE 2 containers. The NotInsertable subkey
overrides any Insertable subkey entries for that ProgID key.

c. Set the "AutoConvertTo = CLSID" subkey entry for Ole 1 In-Place Server Outline under the CLSID
key to the CLSID of Ole 2 In-Place Server Outline. (See also "OLE 1 Compatibility Subkeys").
CLSID\{CLSID of OLE 1 app.}\AutoConvertTo = {CLSID of OLE 2 app.}

Note You can obtain the CLSID of the OLE 1 object application for inclusion in registration
entry file by calling CLSIDFromProgID.

d. Modify the original registry entry of Ole 1 In-Place Server Outline by setting the verbs to those of
Ole 2 In-Place Server Outline.
For example, change
OLE1ISvrOtl\Protocol\StdFileEditing\Verb\0 = &Edit
to

OLE1ISvrOtl\Protocol\StdFileEditing\Verb\0 = &Edit
OLE1ISvrOtl\Protocol\StdFileEditing\Verb\1 = &Open

4. If the user is allowed to open Acme Draw 1.0 objects and save them back to disk in the Acme Draw
1.0 format:
a. Set the "TreatAs = CLSID" entry to the CLSID of Ole 2 In-Place Server Outline using the following

form.
CLSID\{CLSID of OLE 1 app.}\TreatAs = {CLSID of OLE 2 app.}

b. Set the Ole 1 In-Place Server Outline verbs to those of Ole 2 In-Place Server Outline as described
in the preceding step 3.

When the OLE 1 Version is Not Overwritten
You can install your program so the OLE 1 object application (Ole 1 In-Place Server Outline) is not
replaced by the OLE 2 version (Ole 2 In-Place Server Outline). Instead, the user is allowed to open Ole 1
In-Place Server Outline objects with the Ole 2 In-Place Server Outline and save them back to disk in the
Ole 1 In-Place Server Outline format. To do this, set the "TreatAs = CLSID" entry (Ole 1 In-Place Server
Outline's portion of the registry) to the CLSID of Ole 2 In-Place Server Outline (as in step 4 above).

If the OLE 1 version of the application is not overwritten, or if the user does not want to set the "Treat As"
option, register the OLE 2 version as a separate and new application.

{ewc msdncd, EWGraphic, bsd23514 0 /a "SDK.WMF"}

Installing a new version of a server application.

Upgrading Applications
When an OLE 1 server is upgraded to an OLE 2 object application, several issues arise. A primary issue
is whether the OLE 2 application will replace the OLE 1 application or both versions will coexist. If only the
newer version will be available to the user, it is best to convert objects from the older version of the
application automatically to the new version format. Objects can be converted on a global basis, where all
objects of a specific class are converted, or on a more selective basis, where only some objects are
converted. Conversion can be either automatic, under programmatic control, or under the control of a
user.

The ability to detect whether an object is from an OLE 1 server is helpful for implementing conversion
functionality. The OLE 2 implementation of the IPersistStorage::Load method can check for a stream
named "\1Ole10Native." The "\1Ole10Native" stream contains a DWORD header whose value is the
length of the native data that follows. The existence of this stream indicates that the data is coming from
an OLE 1 server. Applications can check whether a storage object contains an object in an OLE 1 format
by calling the ReadFmtUserTypeStg method and examining the contents of pcfFormat. This is where the
OLE 1 class name would appear.

In the IPersistStorage::Save method, objects that are being permanently converted should be written
back to storage in the new format and the "\1Ole10Native" stream should be deleted. The conversion bit
in the storage should also be cleared once the conversion to the new format is complete.

To allow manual conversion of an old OLE 1 object to the new OLE 2 version, the OLE 2 object
application must put the OLE 1 server's ProgID (OLE 1 server class name) into the registry under the
CLSID\{...}\Conversion\Readable\Main entry. This entry indicates that the OLE 2 application can read its
OLE 1 data format; the 'Clipboard format' of the OLE 1 data is the ProgID (that is, the class name) of the
OLE 1 object.

To get a CLSID for an OLE 1 server, the CLSIDFromProgId function or the CLSIDFromString function
must be called. That is, an OLE 1 application cannot be assigned a CLSID from an OLE 2 application with
uuidgen.exe, CoCreateGuid, or by using a GUID from a range assigned by Microsoft. Because all OLE
1 CLSIDs are expected to fall in a specific range, OLE 1 CLSIDs are assigned with the
CLSIDFromProgId function.

Refer to the appendix called "Registering Object Applications" for detailed information on the required
registry entries for upgraded applications.

Functions to Support Compatibility
The following functions enable applications to determine whether an object class is from OLE 1, and to
support conversion between OLE 1 and OLE 2 storage formats.

OLE 1 Compatibility Functions Description
CoIsOle1Class Determines if a given CLSID

represents an OLE 1 object.
OleConvertIStorageToOLESTRAM Converts the specified storage

object from OLE 2 structured
storage to the OLE 1 storage
model.

OleConvertIStorageToOLESTREAMEx Converts the specified storage
object from OLE 2 structured
storage to the OLE 1 storage
model.

OleConvertOLESTREAMToIStorage Converts the specified object from
the OLE 1 storage model to an
OLE 2 structured storage object.

OleConvertOLESTREAMToIStorageEx Converts the specified object from
the OLE 1 storage model to an
OLE 2 structured storage object.

16:32 Bit Interoperability
The 32-bit implementation of OLE 2 is compatible with OLE 1 applications in the manner described
above. Interoperability is achieved by converting calls made on objects in one model into calls suitable in
another model. For example, if a call is made by a 16-bit application to an object that is a 32-bit
implementation, the OLE 16:32 interoperability (thunk) layer takes care of marshalling and converting
parameters between the two models.

Thunk Layer Operation
The thunk layer replaces the 16-bit implementations of OLE 2 with a new set of binaries that allow the 16-
bit implementations to call the updated 32-bit implementation of OLE 2. These new binaries, collectively
known as the thunk layer, forward all OLE 2 method and function calls to the 32-bit implementation of
OLE. The OLE thunk layer inserts itself between implementations of different models. Whenever an
interface is passed between implementation types, the system provides a thunk proxy and stub.

For example, a call to the CreateFileMoniker function returns a pointer to a moniker. When a 16-bit
implementation calls the CreateFileMoniker function, the system thunks the call to the 32-bit OLE 2
implementation and creates a file moniker using a 32-bit implementation. When the call returns through
the OLE thunk layer, the moniker pointer is translated into a 16/32 proxy.

A 16/32 proxy sets up an object in the 16-bit address space that, when called, converts each parameter
for the specific method into the appropriate values for calling the 32-bit implementation. It then performs a
model switch from 16-bit to 32-bit. The call is made on the 32-bit implementation, and then another model
switch is made from the 32-bit to 16-bit implementation. In the process of switching back, any output
parameters are converted into their 16-bit counterparts.

The system keeps track of the model of each pointer. For example, if a 16-bit application calls a 32-bit
application, it passes a 16-bit pointer to an object. The thunk layer will create a 32/16 proxy to let the 32-
bit application call the 16-bit application's object. In response, the 32-bit application calls back to the 16-
bit application, passing the pointer it received. In this direction, the pointer being held by the 32-bit
application holds is to a 32/16 proxy. The thunk layer also detects that the 32-bit pointer being passed in
is a proxy, and passes the original pointer it started with to the 16-bit application. Thus, the 16-bit
application sees the same pointer it passed in. This works when passing from 16 to 32 to 16, or from 32
to16 to 32. For more information about thunking, see the Win32 SDK.

Interoperability Using Standard Interfaces (OLE 2
Defined)
In its 32-bit implementation, OLE 2 is provided by the operating system and can translate OLE-defined
interfaces and methods. Existing OLE 2 applications will continue to work as before. The following
combinations of interoperability using the standard interfaces defined by OLE 2 are supported:

· 16 to 16 (in-process server)
· 16 to 16 (local server)
· 16 to 32 (local server)
· 32 to 32 (in-process server)
· 32 to 32 (local server)
· 32 to 16 (local server)

32- to16-bit (in-process server) interoperability using the standard interfaces is not supported.

Interoperability Using Custom Interfaces (either MIDL
or Manually Written Marshalling)
Due to major architectural changes in the OLE communication layer, 16-bit applications that require
remoting of custom interfaces are not supported at this time. However, 16-bit applications that use custom
interfaces to an inprocess server should still function correctly. The following combinations of
interoperability using custom interfaces are supported:

· 16 to 16 (inprocess server)
· 32 to 32 (inprocess server)
· 32 to 32 (local server using MIDL-generated stubs)

The following combinations of interoperability using custom interfaces are not supported:

· 16 to 16 (local server)
· 16 to 32 (all combinations)
· 32 to 16 (all combinations)

Programmers who have written applications that provide custom interfaces must rewrite the custom
interface marshalling code to conform to the RPC-based communication layer. However, information
about writing a 16-bit custom-marshalling library is not available at this time. For more information about
RPC, see the RPC Programmer's Guide and Reference.

OLE Serialized Property Set
Format

Persistent property sets provide a way to store information within file system entities. It is recommended
that to create and manage them, you use the IPropertySetStorage and IPropertyStorage interfaces as
described in the section of the Structured Storage chapter entitled Persistent Property Sets.

Property sets are made up of a tagged section of values, with the section uniquely identified by a Format
Identifier (FMTID). Every property consists of a property identifier and a type indicator that represents a
value. Each value stored in a property set has a unique property identifier that distinguishes the property.
The type indicator describes the representation of the data in the value.

When you use the IPropertySetStorage and IPropertyStorage interfaces, you do not have to deal
directly with the OLE serialized property set format structure. However, for those who are interested, this
Appendix describes this format.

All data elements within a property set are stored in Intel representation (that is, in little-endian byte
order).

OLE defines a standard, serialized data format for property sets. When you are dealing directly with the
serialized format, and not with the interfaces, property sets have the following characteristics:

· Property sets allow for different applications to create their own independent property sets to serve
the application's needs.

· Property sets can be stored in a single IStream instance or in an IStorage instance containing
multiple streams. Indeed, in the abstract, property sets are simply another data type that can be
stored in many different forms of an in-memory or on-disk storage. For recommended conventions on
creating the string name for the storage object, see the section "Naming Property Sets" later in this
appendix.

· Property sets allow for a dictionary of displayable names to be included to further describe the
contents. A set of conventions for choosing property names is recommended. For more information
on this optional dictionary, see "Property ID 0" later in this appendix.

The property set stream is divided into three major parts:

· Header
· FORMATID/offset pair
· Section containing the actual property set values

The overall length of the property set stream must be less than or equal to 256K. The following sections
of this chapter describe the individual components that make up the property set data format, as shown in
the previous figure.

Note Previous versions of this document described extensions to the property set stream with
more than one section allowed, but that has been revised now to provide for one section in the
property stream. The one exception is the DocumentSummaryInformation property set, described in
the section The DocumentSummaryInformation Property Set.

Property Set Header
At the beginning of the property set stream is a header. It consists of a byte-order indicator, a format
version, the originating operating system version, the CLSID, and a reserved field.

The following pseudo-structure illustrates the header:

typedef struct tagPROPERTYSETHEADER
{
 // Header
 WORD wByteOrder ; // Always 0xFFFE
 WORD wFormat ; // Always 0
 DWORD dwOSVer ; // System version
 CLSID clsID ; // Application CLSID
 DWORD reserved ; // Should be 1
} PROPERTYSETHEADER;

Byte-Order Indicator
The byte-order indicator is a WORD and should always hold the value 0xFFFE. This is the same as the
Unicode byte-order indicator. This value is always written in Intel byte order and, thus, appears in the file
or stream as 0xFE, 0xFF.

Format Version
The Format Version is a WORD used to indicate the format version of this stream. It should always be
zero. The format-version indicator should be checked when reading the property set. If it is not zero, then
the stream was written to a different specification and cannot be read by code developed according to the
OLE 2 specification.

Originating OS Version
This DWORD should hold the kind of operating system in the high-order word and the version number of
the operating system in the low-order word. Possible values for the operating system are:

Operating System Value
32-Bit Windows (Win32) 0x0002
Macintosh 0x0001
16-Bit Windows (Win16) 0x0000

For Windows, the operating system version is the low-order word returned by the GetVersion function.
On Windows, the following code would correctly set the version of the originating operating system:

#ifdef WIN32
dwOSVer = (DWORD)MAKELONG(LOWORD(GetVersion()), 2) ;
#else
dwOSVer = (DWORD)MAKELONG(LOWORD(GetVersion()), 0) ;
#endif

CLSID
The CLSID is that of a class that can display and/or provide programmatic access to the property values.
If there is no such class, it is recommended that you set this value the same as the Format identifier (see
below). Alternately, you can set this value to all zeroes; however, using the Format identifier allows more
flexibility in the future.

Reserved
This DWORD is reserved for future use. Writers of property sets should set this value to 1; readers of
property sets should ensure that this value is at least 1. An exception to this guideline is that, for the
DocumentSummaryInformation property set, this value may be 2.

Format Identifier/Offset Pair
The second part of the property set stream contains one Format Identifier (FMTID)/Offset Pair. The
FMTID is the name of the property set; it uniquely identifies how to interpret the contents of the following
section. The Offset is the distance of bytes from the start of the whole stream to where the section begins.

The following structure is helpful in dealing with Format Identifier/Offset Pairs:

typedef struct tagFORMATIDOFFSET
{
 FMTID fmtid ; // Name of the section
 DWORD dwOffset ; // Offset for the section
} FORMATIDOFFSET;

Format Identifiers
Property set values are stored in a section that is tagged with a unique format identifier. For example, the
FMTID for the OLE Summary Information property set is:

F29F85E0-4FF9-1068-AB91-08002B27B3D9

To define a FMTID for the Summary Information property set, you would use the DEFINE_GUID macro in
an include file for the code that manipulates the property set:

DEFINE_GUID(FMTID_SummaryInformation, 0xF29F85E0, 0x4FF9, 0x1068,
0xAB, 0x91, 0x08, 0x00, 0x2B, 0x27, 0xB3, 0xD9);

Anywhere in your code you need to use the FMTID for the Summary Information property set, you can
access it through the FMTID_SummaryInformation variable.

When storing property sets in IStorage instances, you need to convert the FMTID to a string name for the
storage object.

Allocating Format Identifiers
FMTIDs are created and represented in the same way as OLE CLSIDs and interface identifiers. To create
a unique FMTID, use the UUIDGEN.EXE program included in the Win32 SDK.

Section
This is the third part of the property set stream, as shown in Figure C.2. A section contains:

· Byte count for the section (which is inclusive of the byte count itself)
· Array of 32-bit Property ID/Offset pairs
· Array of property Type Indicators/Value pairs

Offsets are the distance from the start of the section to the start of the property (type, value) pair. This
allows a section to be copied as an array of bytes without any translation of internal structure.

The following pseudo-structures illustrate the format of a section:

typedef struct tagPROPERTYSECTIONHEADER
{
 DWORD cbSection ; // Size of Section
 DWORD cProperties ; // Count of Properties in section
} PROPERTYSECTIONHEADER;

typedef struct tagPROPERTYIDOFFSET
{
 DWORD propid; // Name of property
 DWORD dwOffset; // Offset from start of section to that property
} PROPERTYIDOFFSET;

typedef struct tag SERIALIZEDPROPERTYVALUE
{
 DWORD dwType; // Property Type
 BYTE rgb[]; // Property Value
} SERIALIZEDPROPERTYVALUE ;

Size of Section
This DWORD indicates the size (in bytes) of the section. Because the section size is the first four bytes,
you can copy sections as an array of bytes. The section size should always be a multiple of four.

For example, an empty section (one with zero properties in it) would have a byte count of eight (the
DWORD byte count and the DWORD count of properties). The section itself would contain the eight
bytes:

08 00 00 00 00 00 00 00

Count of Properties
This DWORD gives a count of the property values in the section. A property set may contain any number
of property values. Readers must be able to handle the case where there are zero properties.

Property Identifiers/Offset Pairs
Following the Count of Properties is an array of Property Identifiers/Offset Pairs. Property identifiers are
32-bit values that uniquely identify a property within a section. The Offsets indicate the distance from the
start of the section to the start of the property Type/Value Pair. Since the offsets are relative to the section,
sections can be copied as an array of bytes.

Property identifiers are not sorted in any particular order. Properties can be omitted from the stored
property set; readers must not rely on a specific order or range of property identifiers.

Type Indicators
After the table of Property Identifiers/Offset Pairs comes the actual properties. Each property is stored as
a DWORD type, followed by the data value.

Type indicators and their associated values are described in the PROPVARIANT structure reference
page.

All Type/Value pairs must begin on a 32-bit boundary. Thus, values may be followed with null bytes to
align the subsequent pair on a 32-bit boundary. Given a count of bytes, the following code will calculate
how many bytes are needed to align on a 32-bit boundary:

cbAdd = (((cbCurrent + 3) >> 2) << 2) - cbCurrent ;

Within a vector of values, each repetition of a simple scalar value smaller than 32 bits must align with its
natural alignment rather than with a 32-bit alignment. In practice, this is only significant for types VT_UI1,
VTUI2, VT_I2, and VT_BOOL (which have one- or two-byte natural alignment). All other types have four-
byte natural alignment. Some types (VT_R8, etc.) actually have 8-byte natural alignment, but are stored
as if they have 4-byte alignment. Therefore, a property value with type indicator VT_I2 | VT_VECTOR
would be:

· A DWORD element count, followed by
· A sequence of packed two-byte integers with no padding between them.

Note that any 32-bit counts or property types that are stored as a part of a vector property element must
also be 32-bit aligned.

A property value of type identifier VT_LPSTR | VT_VECTOR would be:

· A DWORD element count (DWORD cElems), followed by
· A sequence of strings (char rgch[]), each of which is preceded by a length count DWORD and may

be followed by null padding to round to a 32-bit boundary.

Reserved Property Identifiers
As a designer of property sets you can use any Property identifier for your properties except 0, 1, and all
values greater than or equal to 0x80000000. These Property identifier values are reserved for use by
applications as follows.

Property ID 0
To enable users of property sets to attach meaning to properties beyond those provided by the type
indicator, property ID 0 is reserved for an optional dictionary of displayable names for the property set.

The dictionary contains a count of entries in the list, followed by a list of dictionary entries.

typedef struct tagDICTIONARY
{
 DWORD cEntries ; // Count of entries in the list
 ENTRY rgEntry[cEntries] ; // Property ID/String pair
} DICTIONARY ;

Each dictionary entry in the list is a Property Identifier/String pair. This can be illustrated using the
following pseudo-structure definition for a dictionary entry (it's a pseudo-structure because the sz[]
member is variable in size):

typedef struct tagENTRY
{
 DWORD propid ; // Property ID
 DWORD cch ; // Count of characters in the string
 char sz[cch]; // Zero-terminated string
} ENTRY ;

Note the following about property set dictionaries:

· Property ID 0 does not have a type indicator. The DWORD that indicates the count of entries sits in
the type indicator position.

· The count of characters in the string (cch) includes the zero character that terminates the string.
When the codepage of the property set is not Unicode, this field is actually a byte count. This count
may not exceed 256.

· The dictionary is entirely optional. Not all the names of properties in the set need appear in the
dictionary. Conversely, not all names in the dictionary need to correspond to properties in the set. The
dictionary should omit entries for properties assumed to be universally known by clients that
manipulate the property set. Typically, names for the base property sets for widely accepted
standards are omitted, but special purpose property sets may include dictionaries for use by
browsers.

· Property names in the dictionary are stored in the code page indicated by Property ID 1 (see below).
For ANSI code pages, each dictionary entry is byte-aligned. Thus, there is no padding between
property names with Property ID 0. This is the only case where DWORD values (the property ID and
property name length DWORDs) are not required to be aligned on 32-bit boundaries. For Unicode
pages, each dictionary entry is 32-bit aligned.

· Property names that begin with the binary Unicode characters 0x0001 through 0x001F are reserved
for future use.

· The property name associated with property ID 0 represents the name of the entire property set.

Sample Dictionary
The stock market data transfer example (see "Transferring Data Contained in Property Sets," in the
Storage chapter of this Guide) might include a displayable name of "Stock Quote" for the entire set, and
"Ticker Symbol" for PID_SYMBOL. If a property set contained just a symbol and the dictionary, the
property set section would have a byte stream that looked like the following:

Offset Bytes
; Start of section
0000 5C 01 00 00 ; DWORD size of section
0004 04 00 00 00 ; DWORD number of properties in section

; Start of PropID/Offset pairs
0008 01 00 00 00 ; DWORD Property ID (1 == code page)
000C 28 00 00 00 ; DWORD offset to property ID
0010 00 00 00 80 ; DWORD Property ID (0x80000000 == locale
 ID)
0014 30 00 00 00 ; DWORD offset to property ID
0018 00 00 00 00 ; DWORD Property ID (0 == dictionary)
001C 38 00 00 00 ; DWORD offset to property ID
0020 07 00 00 00 ; DWORD Property ID (3 == PID_SYMBOL)
0024 5C 01 00 00 ; DWORD offset to property ID

; Start of Property 1 (code page)
0028 01 00 00 00 ; DWORD type indicator (VT_12)
002C B0 04 ; USHORT codepage (0x04b0 == 1200 ==
 unicode)
002E 00 00 ; Pad to 32-bit boundary

; Start of Property 0x80000000 (Local ID)
0030 13 00 00 00 ; DWORD type indicator (VT_U14)
0034 09 04 00 00 ; ULONG locale ID (0x0409 == American
 English)

; Start of Property 0 (the dictionary)
0038 08 00 00 00 ; DWORD number of entries in dictionary
 (Note: No type indicator)
003C 00 00 00 00 ; DWORD propid == 0 (the dictionary)
0040 0C 00 00 00 ; DWORD cch == wcslen(L"Stock Quote") +
 sizeof(L'\0') == 12
0044 L"Stock Quote" ; wchar_t wsz(12)
005C 05 00 00 00 ; DWORD propid == 5 (PID_HIGH)
0060 0B 00 00 00 ; DWORD cch == wcslen(L"High Price") +
 sizeof(L'\0') == 11
0064 L"High Price\0"; wchar_t wsz(11)
007A 00 00 ; padding for 32-bit alignment (necessary
 because the codepage is unicode)
007C 07 00 00 00 ; DWORD propid == 7 (PID_SYMBOL)
0080 0E 00 00 00 ; DWORD cch - wcslen(L"Ticker Symbol\0")
 == 14
0084 L"Ticker Symbol\0" ; wchar_t wsz(14)

//The dictionary would continue, but may not contain entries
 //for every possible property, and may contain entries for
 //properties that are not present. Also, entries need not be in

 //order.

Property ID 1
Property ID 1 is reserved as an indicator of which code page (Windows) or Script (Macintosh) to use
when interpreting the strings in the property set. All string values in the property set must be stored with
the same code page. The originating operating system value in the property set header
(PROPERTYSETHEADER::dwOSVer) determines whether the code page indicator corresponds to a
Windows code page or Macintosh script.

When an application that is not the author of a property set changes a property of type string in the set, it
should examine the code page indicator and take one of the following actions:

· Write the string in the format specified by the code page indicator.
· Replace and rewrite to change the code page.

If an application cannot understand this indicator, it should not modify the property. All creators of property
sets must write a code page indicator; however, if the code page indicator is not present, the prevailing
code page on the reader's machine must be assumed.

Note If the IPropertySetStorage interface is used to create a property set, the code page indicator
is automatically written.

Possible values for the code page are given in the Win32 API (see the GetACP function) and Inside
Macintosh Volume VI, §14-111. For example, the code page US ANSI is represented by 0x04E4 (1252 in
decimal) while the code page for Unicode is 0x04B0 (1200 in decimal).

It is recommended that the Unicode code page be used whenever possible, and use VT_LPWSTR
instead of VT_LPSTR to avoid multibyte <-> Unicode conversions during storage and retrieval. Using the
same code page for all property sets is the only way to achieve interoperable property sets on a
worldwide basis. In either the Unicode or non-Unicode code page, note that the count at the start of a
VT_LPSTR or VT_BSTR is a byte count and not a character count. This byte count includes the one or
two zero bytes at the end of the string (the string's NULL terminator).

Property ID 1 is a VT_12 type and thus starts with a DWORD containing the value VT_12 followed by a
USHORT indicating the code page.

Property ID 0x80000000
Property ID 0x80000000 (Locale Indicator) is reserved as an indication of the locale for which the property
set is written. The default locale for a property set is the system's default locale
(LOCALE_SYSTEM_DEFAULT). See the Win32 SDK for more information on
LOCALE_SYSTEM_DEFAULT. The default is used in the event that the locale indicator does not exist in
the property set.

Applications can choose to support the locale or just get the default behavior. It is recommended that
applications allow users to specify a working locale. Such applications should write the user-specified
locale identifier to the property. Applications that use the user's default locale
(LOCALE_USER_DEFAULT) should write the user's default locale identifier to the property. See the
Win32 SDK for more information on LOCALE_USER_DEFAULT.

Note If the IPropertySetStorage interface is used to create a property set, the user's default locale
is automatically written as the Locale Indicator.

Applications should also handle the case of a foreign object, which is one where the locale is not the
application's locale, the user's locale, or the system's locale.

The locale indicator property is of type VT_U14, and therefore consists of a DWORD containing VT_U14,
followed by a DWORD containing the Locale Identifier (LCID), as defined in the Win32 SDK.

Other Reserved Property Identifiers
Property identifiers with the high bit set (that is, negative values) are reserved for future use by Microsoft.

Storing Property Sets
Applications can expose some of the state of their documents so that other applications can locate and
read that information. Some examples are a property set describing the author, title, and keywords of a
document created with a word processor, or the list of fonts used in a document. This facility is not
restricted to documents; it can also be used on embedded objects. Generally, access to property sets
should be through the IPropertySetStorage and IPropertyStorage interfaces, but this section describes
the previously recommended way.

Note If you are storing a property set that is internal to your application, you might not want to
follow the guidelines described below. If you want to expose your property set to other applications,
you need to follow these guidelines.

To store a property set in a compound file:

1. Create an IStorage or IStream instance in the same level of the storage structure as its data
streams. Prepend the name of your IStorage or IStream instance with "\005." Stream and storage
names that begin with 0x05 are reserved for common property sets that can be shared among
applications. Also, streams beginning with that value are limited to 256K. The names can be selected
from either published names and formats, or by assigning the property set a FMTID and deriving the
name from the FMTID according to the conventions described in the section "Naming Property Sets".

2. A property set may be stored in a single IStream instance or in an IStorage instance containing
multiple streams and storages. In the case of an IStorage instance, the contained stream named
"Contents" is the primary stream containing property values, where some values may be names of
other streams or storage instances within the storage for this property set.

3. Specify the CLSID of the object class that can display and/or provide programmatic access to the
property values. If there is no such class, the CLSID should be set to the property set's format
identifier. For a property set that uses an IStorage instance, either set the CLSID of the IStorage
instance to be the same as that stored in the Contents stream or to CLSID_NULL (the value in a
newly created IStorage instance).

4. You have the option of specifying displayable names that form the contents of the dictionary.

Some applications can read only implementations of property sets stored as IStream instances.
Applications should be written to expect that a property set may be stored in either an IStorage or
IStream instance, unless the property set definition indicates otherwise. For example, the Summary
Information property set's definition says that it can only be stored in a named IStream instance. In cases
where you are searching for a property set and don't know whether it is a storage or stream, look for an
IStream instance with your property set name first. If that fails, look for an IStorage instance.

To better understand storing property sets in an IStorage implementation, suppose there is a class of
applications that edit information about animals. First, a CLSID (CLSID_AnimalApp) is defined for this set
of applications, so they can indicate that they understand property sets containing animal information
(FMTID_AnimalInfo), and others containing medical information (FMTID_MedicalInfo).

IStorage (File): "C:\OLE\REVO.DOC"
 IStorage: "\005AnimalInfo", CLSID = CLSID_AnimalApp
 IStream: "Contents"
 WORD wByteOrder, WORD wFmtVersion, DWORD dwOSVer,
 CLSID CLSID_AnimalApp, DWORD cSections...
 ...
 FMTID = FMTID_AnimalInfo
 Property: Type = PID_ANIMALTYPE, Type = VT_LPWSTR, Value = L"Dog"
 Property: Type = PID_ANIMALNAME, Type = VT_LPWSTR, Value = L"Revo"
 Property: Type = PID_MEDICALHISTORY, Type = VT_STREAMED_OBJECT,

 Value = "MedicalInfo"
 ...
 IStream: "MedicalInfo"
 WORD wByteOrder, WORD wFmtVersion, DWORD dwOSVer,
 CLSID CLSID_AnimalApp, DWORD cSections...
 ...
 FMTID = CLSID_MedicalInfo
 Property: Type = PID_VETNAME, Type = VT_LPWSTR, Value = L"Dr. Woof"
 Property: Type = PID_LASTEXAM, Type = VT_DATE, Value = ...

Note that the class identifiers of the IStorage interface and both property sets is CLSID_AnimalApp. This
identifies any application that can display and/or provide programmatic access to these property sets. Any
application can read the information within the property sets (the point behind property sets), but only
applications identified with the class identifier of CLSID_AnimalApp can understand the meaning of the
data in the property sets.

The DocumentSummaryInformation Property Set
The Microsoft Office Summary Information properties are stored in a separate stream from the standard
Summary Information properties. The standard Summary Information property set is described in the
section entitled "The Summary Information Property Set" under "Using Property Sets". The name of the
stream that contains the Document Summary Information is:

"\005DocumentSummaryInformation"

The FMTID for the Microsoft Office Summary Information property set is:

 D5CDD502-2E9C-101B-9397-08002B2CF9AE

Use the DEFINE_GUID macro to define the FMTID for the property set:

DEFINE_GUID(FMTID_DocumentSummaryInformation, 0xD5CDD502L, 0x2E9C,
0x101B, 0x93, 0x97, 0x08, 0x00, 0x2B, 0x2C, 0xF9, 0xAE);

This stream also has a separate section for the custom-defined properties. The format id for the section is

DEFINE_GUID(FMTID_UserDefinedProperties, 0xD5CDD505L, 0x2E9C, 0x101B,
0x93, 0x97, 0x08, 0x00, 0x2B, 0x2C, 0xF9, 0xAE);

The following table shows the added properties to the "DocumentSummaryInformation" stream for Office
95 applications.

Property Name Property ID String Property ID VT Type
Category PID_CATEGORY 0x00000002 VT_LPSTR
PresentationTarge
t

PID_PRESFORMAT 0x00000003 VT_LPSTR

Bytes PID_BYTECOUNT 0x00000004 VT_I4
Lines PID_LINECOUNT 0x00000005 VT_I4
Paragraphs PID_PARCOUNT 0x00000006 VT_I4
Slides PID_SLIDECOUNT 0x00000007 VT_I4
Notes PID_NOTECOUNT 0x00000008 VT_I4
HiddenSlides PID_HIDDENCOUNT 0x00000009 VT_I4
MMClips PID_MMCLIPCOUNT 0x0000000A VT_I4
ScaleCrop PID_SCALE 0x0000000B VT_BOOL
HeadingPairs PID_HEADINGPAIR 0x0000000C VT_VARIANT |

VT_VECTOR
TitlesofParts PID_DOCPARTS 0x0000000D VT_LPSTR |

VT_VECTOR
Manager PID_MANAGER 0x0000000E VT_LPSTR
Company PID_COMPANY 0x0000000F VT_LPSTR
LinksUpTo Date PID_LINKSDIRTY 0x00000010 VT_BOOL

These properties have the following uses:

Category
A text string typed by the user indicating what category the file belongs to (memo, proposal etc.). It is
useful for finding files of same type.

PresentationTarget

Target format for presentation (35mm, printer, video etc.), from PowerPoint.
Bytes

Number of bytes, from AFX.
Lines

Number of lines, from AFX.
Paragraphs

Number of paragraphs, from AFX.
Slides

Number of slides, from PowerPoint
Notes

Number of pages that contain notes, from PowerPoint
HiddenSlides

Number of slides that are hidden, from PowerPoint
MMClips

Number of sound or video clips, from PowerPoint
ScaleCrop

Set to True (-1) when scaling of the thumbnail is desired. If not set, cropping is desired. FindFile 2.0
needs this.

HeadingPairs
Internally used property indicating the grouping of different document parts and the number of items
in each group. The titles of the document parts are stored in the PID_DOCPARTS property. The
HeadingPairs property is stored as a vector of variants, in repeating pairs of VT_LPSTR and VT_I4
values. The VT_LPSTR value represents a heading name, and the VT_I4 value indicates the count
of document parts under that heading. This property is used for providing the indentation for different
groups on the 'sections' page.

TitlesofParts
Names of document parts, from AFX. For Excel this is sheet names, for PowerPoint this is slide titles,
for a binder this is document names, for Word it is the names of the documents in the master
document.

Manager
Manager of the project, from Project.

Company
Company name, from Project.

LinksUpToDate
Bool to indicate whether the custom links are dirty, for all applications.

Note As described in "12.3. Serialized Format for Property Sets" of the OLE 2.0 Design
Specification, vector elements in the HeadingPairs and TitlesofParts properties should be aligned on
32 bit boundaries. However, in the DocumentSummaryInformation property set, when the code page
of the property set is not Unicode, these elements must be packed.

C and C++ Design Considerations
Component objects contain data specific to the object and one or more interface implementations. The
data is private and inaccessible from outside the object, while the interface implementations are public
and you can access them through pointers.

Because interfaces are a binary standard, interface implementation is language independent. However,
C++ is the preferred language because it supports many of the object-oriented concepts inherent in OLE.
Using a procedural language such as C involves extra work, as summarized below:

· You must explicitly initialize VTBLs either at compile-time or run-time and you should not change
them later. Once initialized with function pointers, those pointers should remain unchanged until the
application shuts down. VTBLs in C++ are declared as constants to prevent them from being modified
inadvertently. However, in C there is no way to ensure that a VTBL will remain unchanged.
To overcome this difference, OLE provides a mechanism that lets C developers declare VTBLs as
constants. To do so, place the following statement before the #include statement for the "ole2.h"
header file:
#define CONST_VTABLE

· Each method requires a pointer to the object that owns the method. In C++, all members are implicitly
dereferenced off the this pointer. In C, there must be an additional first parameter passed to each
method that is a pointer to the interface in which the method is declared.

· Methods in C++ can have identical names because methods are actually known by a name that is the
result of concatenating the method name to the class name. Methods in C must have a unique name
to designate the object with which they are associated.

For example, the following C++ code sample defines an implementation of IUnknown::QueryInterface.
The method name is QueryInterface and there are two parameters: a REFIID and a pointer to where to
return the requested interface instance.

CUnknown::QueryInterface (REFIID riid, LPVOID * ppvObj);

A similar C implementation would require a more complex name and an additional first parameter to
indicate the object owning the method:

IUnknown_Doc_QueryInterface (LPUNKNOWN pUnk, REFIID riid,
 LPVOID * ppvObj);

The following sections demonstrate how to declare a component object in a few typical ways: using C
nested data structures, C++ nested classes, and C++ multiple inheritance. The demonstration object,
called CObj, derives from IUnknown and supports two interfaces that also derive from IUnknown,
InterfaceA and InterfaceB. CObj's private data includes a pointer to another component object in the
application (m_pCDoc), a count of all the external references to the object (m_ObjRefCount), and
pointers to two interfaces implemented by other component objects and used by CObj (m_pOleObj and
m_pStg). All object members use the m_ prefix to make it easy to distinguish between member variables
and other variables.

Component Objects: C Nested Structures
C interface implementations comprise data structures nested within the object's data structure. Each
interface structure contains a VTBL pointer as its first member (pVtbl), a pointer to the object (pCObj),
and a count of the external references to the interface (m_RefCount). The order of the members in the
interface structures is identical, to facilitate code sharing.

typedef struct CObj {
 ULONG m_ObjRefCount;
 LPSTORAGE m_pStg;
 LPOLEOBJECT m_pOleObj;
 struct CDOC * m_pCDoc;

 struct InterfaceA {
 LPVTBL pVtbl;
 struct CObj * pCObj;
 ULONG m_RefCount;
 } m_InterfaceA;

 struct InterfaceB {
 LPVTBL pVtbl;
 struct Obj * pCObj;
 ULONG m_RefCount;
 } m_InterfaceB;

} COBJ;

Component Objects: C++ Nested Classes
The next example shows how the same object is declared and initialized using the C++ nested class
approach. As in the C example, the nested class declaration includes one data structure for each
interface and four private data members: an object-level reference count, two interface pointers, and a
pointer to the enclosing object. The private implementations of the IUnknown methods are called by the
implementations declared for the derived interfaces. For each interface implementation, there is a
structure containing a public constructor and destructor, private declarations of the interface methods, a
private pointer to CObj, and an interface-level reference counter for debugging purposes. To allow the
nested interface classes to access the private members of the outer class, each interface class is made a
friend of the outer class.

The benefits of implementing with C++ nested classes lie in the ability to include initialization code and
method implementation inline. However, inline declaration is for the convenience of illustration and is not
required.

class CObj {

private:
 ULONG m_ObjRefCount;
 LPSTORAGE m_pStg;
 LPOLEOBJECT m_pOleObj;
 CDOC * m_pCDoc;

public:
 CObj();
 ~CObj();

 struct CUnknown : IUnknown
{
 private:
 ULONG m_RefCount;
 CObj * m_pCObj;

 public:
 CUnknown(CObj (pCObj)
 { m_pCObj = pCObj; m_RefCount = 0; }
 HRESULT QueryInterface(REFIID riid, LPVOID * ppvObj)
 ULONG AddRef(void) { return ++m_ObjRefCount; }
 ULONG Release(void);
}
friend CUnknown;
CUnknown m_Unknown;

struct InterfaceA : InterfaceA
{
 private:
 ULONG m_RefCount;
 CObj * m_pCObj;

 public:
 CInterfaceA(CObj *pCObj)
 { m_pCObj = pCObj; m_RefCount = 0; }
 HRESULT QueryInterface(REFIID riid, LPVOID * ppvObj)

 ULONG AddRef(void) { return ++m_ObjRefCount; }
 ULONG Release(void);
 HRESULT MethodA1(LPVOID * ppvObj);
 HRESULT MethodA2(DWORD dwArg);
}
friend CInterfaceA;
CInterfaceA m_InterfaceA;

struct InterfaceB : InterfaceB
{
 private:
 ULONG m_RefCount;
 CObj * m_pCObj;

 public:
 CInterfaceB(CObj *pCObj)
 { m_pCObj = pCObj; m_RefCount = 0; }
 HRESULT QueryInterface(REFIID riid, LPVOID * ppvObj)
 ULONG AddRef(void) { return ++m_ObjRefCount; }
 ULONG Release(void);
 HRESULT MethodB1(void);
 HRESULT MethodB2(DWORD dwArg1, DWORD dwArg2);
}
friend CInterfaceB;
CInterfaceB m_InterfaceB;

Multiple Inheritance
The next example illustrates the use of C++ multiple inheritance. There are two disadvantages to using
multiple inheritance with OLE. First, it is not possible to have an interface-level reference count. For more
information about reference counting, see Chapter 2, "The Component Object Model." Second, there is
the potential for confusion over the interpretation of the class statement. A standard C++ multiple
inheritance declaration implies the "is a" relationship where an object inherits implementations. In OLE,
however, interfaces are attributes of the object and implementations are not inherited.

The main advantage to using multiple inheritance lies in its simplicity. Only the prototypes for each of the
interface methods are listed; no interface data structures or class definitions are necessary.

Because both InterfaceA and InterfaceB inherit from IUnknown, it is not necessary to list IUnknown
explicitly in the class statement. A single implementation of the IUnknown methods (QueryInterface,
AddRef, and Release) is sufficient.

class CObj : public InterfaceA, public InterfaceB
{
private:
 ULONG m_ObjRefCount;
 LPSTORAGE m_pStg;
 LPOLEOBJECT m_pOleObj;
 CDOC * m_pCDoc;

public:
 CObj();
 ~CObj();

 HRESULT QueryInterface(REFIID riid, LPVOID * ppvObj)
 ULONG AddRef(void) { return ++m_ObjRefCount; }
 ULONG Release(void);

 HRESULT MethodA1(LPVOID * ppvObj);
 HRESULT MethodA2(DWORD dwArg);

 HRESULT MethodB1(void);
 HRESULT MethodB2(DWORD dwArg1, DWORD dwArg2);
};

Converting Mapping Modes
In Windows, mapping modes define how numbers relating to object sizes are to be passed and
interpreted. The 32-bit version of OLE uses only one mapping mode, MM_HIMETRIC. The other Win32
mapping modes include MM_HIENGLISH, MM_LOENGLISH, MM_LOMETRIC, TWIPS, and PIXEL
Modes (MM_ISOTROPIC and MM_ANISOTROPIC being PIXEL modes). When working with the visual
presentation of OLE data, it is important to be aware of the mapping mode that OLE uses and how this
mapping mode affects an application.

The mapping modes communicate physical sizes. For example, if an application using MM_HIMETRIC is
to display a line ten centimeters long, the number of units would be 10,000. However, the line drawn on
the screen would be ten centimeters long, regardless of the size of the video display area. The printed
output would also be a line ten centimeters long.

Note For those applications that use a mapping mode other than MM_HIMETRIC, the sample user
interface library provides some functions that can be used to convert objects to and from
MM_HIMETRIC units.

Because people read display screens from a greater distance than they do printed copy, most
applications written for Windows display text in a larger size than they print it, using what is commonly
referred to as logical resolution. For example, a ten-point font is easy enough to read on the printed page,
but generally appears too small on a screen for comfortable reading. To afford more comfortable viewing,
applications typically expand the size of the displayed text to some logical size. Using this approach, a
column of text that is physically six inches wide might be eight inches wide on the screen, yet still print as
a six-inch column.

While this display-enlargement scheme works well from the user's point of view, a problem can occur
when pasting objects into container documents. It is possible to lose the correct size ratio between the
pasted object and the text owned and displayed by the container. The result is that the container's text is
scaled up for readability but the pasted object might not be. Consequently, applications must preserve the
relative size and position of text and objects, meaning that if text uses logical resolution, it should scale
objects accordingly.

In the examples shown in the figure below, a chart object has been pasted from a source application that
uses physical size into documents of two different containers that use logical resolution for display of the
text. The container displaying the object on the left has scaled up the chart object to the logical size of the
adjacent text to maintain the object/text size ratio. That is, it has been enlarged from its physical size by
an amount that maintains its proportion to the text of the container document. In the document on the
right, the application displays the chart object at its physical size, with no scaling to logical resolution for
display. Both documents print with the correct object-to-text-size ratio.

{ewc msdncd, EWGraphic, bsd23518 0 /a "SDK.WMF"}

In OLE, the units for specifying the size of drawn objects is MM_HIMETRIC, which means object sizes
are in physical units. However, containers need not use the MM_HIMETRIC mapping mode to draw
pasted objects to the display. Rather, they should should map objects to the screen in the same manner
as text. That is, if the container application displays text to the screen using a mapping mode that
enlarges it, objects should be mapped to the display in the same manner. Using the same mapping mode
for both the text and objects is required to establish the correct object-to-text ratio as shown in the
document on the left side of the preceding figure. Because most Windows applications use logical
resolution for this type of display mapping, we suggest that OLE containers also use logical resolution
and set up their mapping modes and coordinate transforms accordingly. This allows objects to be moved
from one application to another without changing their displayed size.

ActiveX Control and Control
Container Guidelines

The purpose of this appendix is to provide guidelines for implementing ActiveX controls and containers
that will interoperate well with other controls and containers. This appendix defines the minimum set of
interfaces, methods, and features that are required of ActiveX Controls and Containers to accomplish
seamless and useful interoperability.

Overview of Control and Control Container Guidelines
An ActiveX Control is essentially a simple OLE object that supports the IUnknown interface. It will usually
support a lot more interfaces in order to offer functionality, but all additional interfaces may be viewed as
optional and as such, a control container should not rely on any additional interfaces being supported. By
not specifying additional interfaces that a control must support, a control may efficiently target a particular
area of functionality without having to support particular interfaces to qualify as a control. As always with
OLE, whether in a control or a control container, it should never be assumed that an interface is available
and standard return-checking conventions should always be followed. It is important for a control or
control container to degrade gracefully and offer alternative functionality if an interface required is not
available.

An ActiveX control container must be able to host a minimal ActiveX Control as specified in this appendix,
it will also support a number of additional interfaces as specified in the Containers section of this
appendix. There are a number of interfaces and methods that a container may optionally support, which
are grouped into functional areas known as Component Categories. A container may support any
combination of component categories, for example, a component category exists for Databinding and a
container may or may not support the databinding functionality, depending on the market needs of the
container. If a control needs databinding support from a container to function, then it will enter this
requirement in the registry. This allows a control container to only offer for insertion those controls that it
knows it can successfully host. It is important to note that Component Categories are specified as part of
OLE and are not specific to ActiveX Controls, the controls architecture uses Component Categories to
identify areas of functionality that an OLE component may support. Component categories are not
cumulative or exclusive, so a control container can support one category without necessarily supporting
another.

It is important for controls that require optional features, or features specific to a certain container to be
clearly packaged and marketed with those requirements. Similarly containers that offer certain features or
component categories must be marketed and packaged as offering those levels of support when hosting
ActiveX controls. It is recommended that controls target and test with as many containers as possible and
degrade gracefully to offer less or alternative functionality if interfaces or methods are not available. In a
situation where a control cannot perform its designated job function without the support of a component
category, then that category should be entered as a requirement in the registry in order to prevent the
control being inserted in an inappropriate container.

These guidelines define those interfaces and methods that a control may expect a control container to
support, although as always a control should check the return values when using QueryInterface or other
methods to obtain pointers to these interfaces. A container should not expect a control to support anything
more than the IUnknown interface, and these guidelines identify what interfaces a control may support
and what the presence of a particular interface means.

Why are the ActiveX Control and Control Container Guidelines Important?
ActiveX Controls have become the primary architecture for developing programmable software
components for use in a variety of different containers ranging from software development tools to end-
user productivity tools. In order for a control to operate well in a variety of containers, the control must be
able to assume some minimum level of functionality that it can rely on in all containers.

By following these guidelines, control and container developers make their controls and containers more
reliable and interoperable, and ultimately, better and more usable components for building component-
based solutions.

This appendix provides guidelines towards good interoperability. It is expected that new interfaces and
component categories will develop over time, future versions of this appendix reflecting these changes
will be made readily available through Microsoft. It is important to note that this appendix does not cover
detailed semantics of the OLE interfaces; this is covered by the Win32 SDK documentation.

What to do When an Interface You Need is Not Available
This section states some fundamental rules that apply to all OLE programming. OLE programs should
use QueryInterface to acquire interface pointers, and must check the return value. OLE applications
cannot safely assume that QueryInterface will succeed, this requirement applies to all OLE applications.
If the requested interface is not available (i.e., QueryInterface returns E_NOINTERFACE), the control or
container must degrade gracefully, even if that means that it cannot perform its designated job function.

What's New in the Control and Control Container Guidelines?
This release of the guidelines embraces the concept of Component Categories which are a part of the
OLE specification. In previous versions of this document component categories were loosely referred to
as function groups and were used to identify areas of functionality that a container may optionally support,
for this version there has been a definition of how component categories work for ActiveX Controls and
some fundamental categories are identified. The use of component categories allows the relaxing of
some of the previous rules that identified interfaces as being mandatory, and allows greater flexibility for
controls to efficiently target certain areas of functionality without having to provide superfluous additional
support in order to qualify as a control. This edition of the guidelines also discusses what the presence or
absence of an interface means and what to do in that situation.

The remainder of this appendix is divided into four sections. The first discusses guidelines for
implementing controls, the second discusses guidelines for implementing control containers, the third
discusses component categories, and the fourth discusses general guidelines, relevant to both control
and control container developers.

Controls
An ActiveX control is really just another term for OLE object or more specifically, COM object. In other
words, a control, at the very least, is some COM object that supports the IUnknown interface and is also
self-registering. Through IUnknown::QueryInterface a container can manage the lifetime of the control
as well as dynamically discover the full extent of a control's functionality based on the available interfaces.
This allows a control to implement as little functionality as it needs to, instead of supporting a large
number of interfaces that actually don't do anything. In short, this minimal requirement for nothing more
than IUnknown allows any control to be as lightweight as it can.

In short, other than IUnknown and self-registration, there are no other requirements for a control. There
are however conventions that should be followed about what the support of an interface means in terms
of functionality provided to the container by the control. This section then describes what it means for a
control to actually support an interface, as well as methods, properties, and events that a control should
provide as a baseline if it has occasion to support methods, properties, and events.

Self Registration for Controls
ActiveX controls must support self-registration by implementing the DllRegisterServer and
DllUnregisterServer functions. ActiveX controls must register all of the standard registry entries for
embeddable objects and automation servers.

ActiveX Controls must use the component categories API to register themselves as a control and register
the component categories that they require a host to support and any categories that the control
implements, see the Component Categories section of this appendix. In addition an ActiveX Control may
wish to register the control keyword in order to allow older control containers such as VB4 to host them.

ActiveX Controls should also register the ToolBoxBitmap32 registry key, although this is not mandatory.

The Insertable component category should only be registered if the control is suitable for use as a
compound document object. It is important to note that a compound document object must support
certain interfaces beyond the minimum IUnknown required for an ActiveX Control. Although an ActiveX
Control may qualify as a compound document object, the control's documentation should clearly state
what behavior to expect under these circumstances.

What Support for an Interface Means
Besides the IUnknown interface, an ActiveX Control¾or COM Object for that matter¾expresses
whatever optional functionality it supports through additional interfaces. This is to say that no other
interfaces are required above IUnknown. To that end, the following table lists the interfaces that an
ActiveX Control might support, and what it means to support that interface. Further details about the
methods of these interfaces are given in a later section.

Interface Comments/What it Means to Support the
Interface

IOleObject If the control requires communication with its client
site for anything other than events (see
IConnectionPointContainer), then IOleObject is
a necessity. When implementing this interface, the
control must also support the semantics of the
following methods: SetHostNames, Close,
EnumVerbs, Update, IsUpToDate,
GetUserClassID, GetUserType, GetMiscStatus,
and the Advise, Unadvise, and EnumAdvise
methods that work in conjunction with a container's
IAdviseSink implementation. A control
implementing IOleObject must be able to handle
IAdviseSink if the container provides one; a
container may not, in which case a control
ensures, of course, that it does not attempt to call
a non-existent sink.

IOleInPlaceObject Expresses the control's ability to be in-place
activated and possibly UI activated. This interface
means that the control has a user interface of
some kind that can be activated, and
IOleInPlaceActiveObject is supported as well.
Required methods are GetWindow,
InPlaceActivate, UIDeactivate, SetObjectRects,
and ReactivateAndUndo. Support for this
interface requires support for IOleObject.

IOleInPlaceActiveObject An in-place capable object that supports
IOleInPlaceObject must also provide this interface
as well, though the control itself doesn't
necessarily implement the interface directly.

IOleControl Expresses the control's ability and desire to deal
with (a) mnemonics (GetControlInfo,
OnMnemonic methods), (b) ambient properties
(OnAmbientPropertyChange), and/or (c) events
that the control requires the container to handle
(FreezeEvents). Note that mnemonics are
different than accelerators that are handled
through IOleInPlaceActiveObject: mnemonics
have associated UI and are active even when the
control is not UI active. A control's support for
mnemonics means that the control also knows
how to use the container's
IOleControlSite::OnControlInfoChanged
method. Because this requires the control to know
the container's site, support for mnemonics also

means support for IOleObject. In addition,
knowledge of mnemonics requires in-place support
and thus IOleInPlaceObject.
If a control uses any container-ambient properties,
then it must also implement this interface to
receive change notifications, as following the
semantics of changes is required. Because
ambient properties are only available through the
container site's IDispatch, ambient property
support means that the control supports
IOleObject (to get the site) as well as being able
to generate IDispatch::Invoke calls.
The FreezeEvents method is necessary for
controls that must know when a container is not
going to handle an event¾this is the only way for
control to know this condition. If FreezeEvents is
only necessary in isolation, such that other
IOleControl methods are not implemented, then
IOleControl can stand alone without IOleObject
or IOleInPlaceObject.

IDataObject Indicates that the control can supply at least (a)
graphical renderings of the control
(CF_METAFILEPICT is the minimum if the control
has any visuals at all) and/or (b) property sets, if
the control has any properties to provide. The
methods GetData, QueryGetData,
EnumFormatEtc, DAdvise, DUnadvise, and
EnumDAdvise are required. Support for graphical
formats other than CF_METAFILEPICT is optional.

IViewObject2 Indicates that the control has some interesting
visuals when it is not in-place active. If
implemented, a control must support the methods
Draw, GetAdvise, SetAdvise, and GetExtent.

IDispatch Indicates that the control has either (a) custom
methods, or (b) custom properties that are both
available via late-binding through
IDispatch::Invoke. This also requires that the
control provides type information through other
IDispatch methods. A control may support multiple
IDispatch implementations where only one is
associated with IID_IDispatch¾the others must
have their own unique dispinterface identifiers.
A control is encouraged to supply dual interfaces
for custom method and property access, but this is
optional if methods and properties exist.

IConnectionPointContainer Indicates that a control supports at least one
outgoing interface, such as events or property
change notifications. All methods of this interface
must be implemented if this interface is available
at all, including EnumConnectionPoints which
requires a separate object with
IEnumConnectionPoints.
Support for IConnectionPointContainer means
that the object also supports one or more related

objects with IConnectionPoint that are available
through IConnectionPointContainer methods.
Each connection point object itself must implement
the full IConnectionPoint interface, including
EnumConnections, which requires another
enumerator object with the IEnumConnections
interface.

IProvideClassInfo[2] Indicates that the object can provide its own
coclass type information directly through
IProvideClassInfo::GetClassInfo. If the control
supports the later variation IProvideClassInfo2,
then it also indicates its ability to provide its
primary source IID through
IProvideClassInfo2::GetGUID. All methods of this
interface must be implemented.

ISpecifyPropertyPages Indicates that the control has property pages that it
can display such that a container can coordinate
this control's property pages with other control's
pages when property pages are to be shown for a
multi-control selection. All methods of this interface
must be implemented when support exists.

IPerPropertyBrowsing Indicates the control's ability to (a) provide a
display string for a property, (b) provide pre-
defined strings and values for its properties and/or
(c) map a property dispID to a specific property
page. Support for this interface means that support
for properties through IDispatch as above is
provided. If (c) is supported, then it also means
that the object's property pages mapped through
IPerPropertyBrowsing::MapPropertyToPage
themselves implement IPropertyPage2 as
opposed to the basic IPropertyPage interface.

IPersistStream See Persistence Interfaces section.
IPersistStreamInit See Persistence Interfaces section.
IPersistMemory See Persistence Interfaces section.
IPersistStorage See Persistence Interfaces section.
IPersistMoniker See Persistence Interfaces section.
IPersistPropertyBag See Persistence Interfaces section.
IOleCache[2] Indicates support for container caching of control

visuals. A control generally obtains caching
support itself through the OLE function
CreateDataCache. Only controls with meaningful
static content should choose to do this (although it
is not required). If a control supports caching at all,
it should simply aggregate the data cache and
expose both IOleCache and IOleCache2
interfaces from the data cache. A control
implementing IOleObject must be able to handle
IAdviseSink if the container provides one; a
container may not, in which case a control
ensures, of course, that it does not attempt to call
a non-existent sink.

IExternalConnection Indicates that the control supports external links to

itself; that is, the control is not marked with
OLEMISC_CANTLINKINSIDE and supports
IOleObject::SetMoniker and
IOleObject::GetMoniker. A container will never
query for this interface itself nor call it directly as
calls are generated from inside OLE's remoting
layer.

IRunnableObject Indicates that the control differentiates being
loaded from being running, as some in-process
objects do.

Persistence Interfaces
Objects that have a persistent state of any kind must implement at least one IPersist* interface, and
preferably multiple interfaces, in order to provide the container with the most flexible choice of how it
wishes to save a control's state.

If a control has any persistent state whatsoever, it must, as a minimum, implement either IPersistStream
or IPersistStreamInit (the two are mutually exclusive and shouldn't be implemented together for the most
part). The latter is used when a control wishes to know when it is created new as opposed to reloaded
from an existing persistent state (IPersistStream does not have the created new capability). The
existence of either interface indicates that the control can save and load its persistent state into a stream,
that is, an instance of IStream.

Beyond these two stream-based interfaces, the IPersist* interfaces listed in the following table can be
optionally provided in order to support persistence to locations other than an expandable IStream.

A set of component categories is identified to cover the support for persistency interfaces see the
Component Categories section of this appendix.

Interface Usage
IPersistMemory The object can save and load its state into a

fixed-length sequential byte array (in memory).
IPersistStorage The object can save and load its state into an

IStorage instance. Controls that wish to be
marked Insertable as other compound
document objects (for insertion into non-
control aware containers) must support this
interface.

IPersistPropertyBag The object can save and load its state as
individual properties written to IPropertyBag
which the container implements. This is used
for Save As Text functionality in some
containers.

IPersistMoniker The object can save and load its state to a
location named by a moniker. The control calls
IMoniker::BindToStorage to retrieve the
storage interface it requires, such as IStorage,
IStream, ILockBytes, IDataObject, etc.

While support for IPersistPropertyBag is optional, it is strongly recommended as an optimization for
containers with Save As Text features, such as Visual Basic.

With the exception of IPersistStream[Init]::GetSizeMax and IPersistMemory::GetSizeMax, all methods
of each interface must be fully implemented.

Optional Methods in Control Interfaces
Implementing an interface doesn't necessarily mean implementing all methods of that interface to do
anything more than return E_NOTIMPL or S_OK as appropriate. The following table identifies the
methods of the interfaces listed in the What Support for an Interface Means section that a control may
implement in this manner. Check with the SDK OLE Reference documentation for full syntax and valid
return values from these methods. Any method not listed here must be fully implemented if the interface is
supported.

Method Comments
IOleControl
GetControlInfo, OnMnemonic Mandatory for controls with

mnemonics.
OnAmbientPropertyChange Mandatory for controls that use

ambient properties.
FreezeEvents See Event Freezing in the General

Guidelines section.

IOleObject
SetMoniker Mandatory if the control is not marked

with OLEMISC_CANTLINKINSIDE
GetMoniker Mandatory if the control is not marked

with OLEMISC_CANTLINKINSIDE
InitFromData Optional
GetClipboardData Optional
SetExtent Mandatory only for

DVASPECT_CONTENT
GetExtent Mandatory only for

DVASPECT_CONTENT
SetColorScheme Optional
DoVerb See Note 1.

IOleInPlaceObject
ContextSensitiveHelp Optional
ReactivateAndUndo Optional

IOleInPlaceActiveObject
ContextSensitiveHelp Optional

IViewObject2
Freeze Optional
Unfreeze Optional
GetColorSet Optional

IPersistStream[Init],
IPersistMemory
GetSizeMax See Note 2.

1. A control with property pages must support IOleObject::DoVerbs for the

OLEIVERB_PROPERTIES and OLEIVERB_PRIMARY verbs. A control that can be active
must support IOleObject::DoVerbs for the OLEIVERB_INPLACEACTIVATE verb. A control
that can be UI active must also support IOleObject::DoVerbs for the
OLEIVERB_UIACTIVATE verb.
2. If a control supports IPersistStream[Init] and can return an accurate value, then it
should do so.

Class Factory Options
An ActiveX Control, by virtue of being a COM object, must have associated server code that supports
control creation through IClassFactory as a minimum.

It is optional, not required, that this class object also supports IClassFactory2 for licensing management.
Only those vendors that are concerned about licensing need to support COM's licensing mechanism. In
other words, because IClassFactory2 is the only way to achieve COM-level licensing, this interface is
required on the class object for those controls that wish to be licensed.

Properties
Although most controls do have properties, controls are not required to expose any properties and thus
the control does not require IDispatch. If the control does have properties, there are no requirements for
which properties a control must expose.

Methods (via IDispatch and Other dispinterfaces)
Although most controls do expose and support several methods, controls are not required to expose or
support any methods and thus the control does not require IDispatch. If the control does have any
methods, there are no requirements for which methods a control must expose.

Events in Controls
Although most controls do expose and fire several events, controls are not required to expose or fire any
events and thus the control does not require IConnectionPointContainer. If the control does have any
events, there are no requirements for which events a control must expose.

Property Pages
Support for property pages and per-property browsing is strongly recommended, but not required. If a
control does implement property pages, then those pages should conform to one of the standard sizes:
250x62 or 250x110 dialog units (DLUs).

Ambient Properties for Controls
If a control supports any ambient properties at all, it must at least respect the values of the following
ambient properties under the conditions stated in the following table using the standard dispids.

Ambient Property Dispid Comment/Conditions for Use
LocaleID -705 If Locale is significant to the control,

e.g. for text output
UserMode -709 If the control behaves differently in

user (design) mode and run mode
UIDead -710 If the control reacts to UI events, then

it should honor this ambient property
ShowGrabHandles -711 If the control support in-place resizing

of itself
ShowHatching -712 If the control support in-place

activation and UI activation
DisplayAsDefault -713 Only if the control is marked

OLEMISC_ACTSLIKEBUTTON
(which means that support for
keyboard mnemonics is provided,
thus IOleControl::GetControlInfo
and IOleControl::OnMnemonic
must be implemented).

As described previously, use of ambients requires both IOleControl (for OnAmbientPropertyChange as
a minimum) as well as IOleObject (for SetClientSite and GetClientSite).

The OLEMISC_SETCLIENTSITEFIRST bit may not necessarily be supported by a container. In these
circumstances, a control must resort to default values for the ambient properties that it requires.

Using the Container's Functionality
The previous sections have described some of the necessary caller-side support that an ActiveX Control
must have in order to access certain features of its container. The following table describes a control's
usage of container-side interfaces and when such usage would occur.

Interface Container
Object

Usage

IOleClientSite Site Controls that implement
IOleObject call IOleClientSite
methods as part of the
standard OLE embedding
protocol, specifically the
methods SaveObject,
ShowObject,
OnShowWindow (only if a
separate-window activation
state is supported),
RequestNewObjectLayout,
and GetContainer (if
communication with other
controls is desired). The
GetMoniker method is only
used when the control can be
linked to externally, that is, the
control is not marked with
OLEMISC_CANTLINKINSIDE.

IOleInPlaceSite Site Controls that have an in-place
activate and possibly a UI
active state will call
IOleInPlaceSite methods
(generally all of them with the
exception of
ContextSensitiveHelp) as
part of the standard OLE in-
place activation protocol.

IAdviseSink Site Control calls OnDataChange if
the control supports
IDataObject, OnViewChange
if the control supports
IViewObject2, and OnClose,
OnSave, and OnRename if
the control supports
IOleObject.

IOleControlSite Site If supported, control calls
OnControlInfoChanged when
mnemonics change,
LockInPlaceActive and
TransformCoords if events
are fired (the latter method is
only used if coordinates are
passed as event arguments),
OnFocus and
TranslateAccelerator if the

control has a UI active state,
and GetExtendedControl if
the control wants to look at
extended-control (container-
owned) properties.

IDispatch (ambient
properties)

Site Used to access ambient
properties.

IPropertyNotifySink Varies A control must generate
OnChanged and
OnRequestEdit for any control
properties that are marked as
[bindable] and [request],
respectively.

Other event sink
interfaces

Varies A control that has outgoing
interfaces other than
IPropertyNotifySink will be
handed other interface pointers
of the correct IID to the
control's
IConnectionPoint::Advise
implementations (which are
usually found in sub-objects of
the control). A control always
knows how to call its own
event interfaces since the
control defines those
interfaces.

IOleInPlaceFrame Frame Used when a control has an in-
place UI active state that
requires frame-level tools or
menu items.

IOleInPlaceUIWindow Document Used only when a control has
an in-place UI active state that
requires document-level or
pane-level UI tools. This is
rare.

Containers
An ActiveX Control container is an OLE container that supports the following additional features:

1. Embedded objects from in-process servers
2. In Place activation
3. OLEMISC_ACTIVATEWHENVISIBLE
4. Event Handling

ActiveX Control Containers must provide support for all of these features.

The following sections describe the specific interfaces, methods, and other features that are required of
ActiveX Control Containers. Required Interfaces, Optional Methods, Misc. Status Bits Support, Keyboard
Handling, Storage Interfaces, Ambient Properties, Extended Properties, Events, Methods, Message
Reflection, and Automatic Clipping. The last section describes how to gracefully degrade when a
particular control interface is not supported.

Required Interfaces
The table below lists the ActiveX Control Container interfaces, and denotes which interfaces are optional,
and which are mandatory and must be implemented by control containers.

Interface Required? Comments
IOleClientSite Yes
IAdviseSink No Only when the container desires

(a) data change notifications
(controls with IDataObject), (b)
view change notification (controls
that are not active and have
IViewObject[2]), and (c) other
notifications from controls acting
as standard embedded objects.

IOleInPlaceSite Yes
IOleControlSite Yes
IOleInPlaceFrame Yes
IOleContainer Yes See Note 1.
IDispatch for ambient
properties

Yes See Note 2 and Ambient
Properties for Controls section

Control Event Sets Yes See Note 2.
ISimpleFrameSite No ISimpleFrameSite and support

for nested simple frames is
optional.

IPropertyNotifySink No Only needed for containers that
(a) have their own property editing
UI which would require updating
whenever a control changed a
property itself or (b) want to
control [requestedit] property
changes and other such data-
binding features.

IErrorInfo Yes Mandatory if container supports
dual interfaces. See Note 2.

IClassFactory2 No Support is strongly recommended.
1. IOleContainer is implemented on the document or form object (or appropriate analog)
that holds the container sites. Controls use IOleContainer to navigate to other controls in
the same document or form.
2. Support for dual interfaces is not mandatory, but is strongly recommended. Writing
ActiveX Control Containers to take advantage of dual interfaces will afford better
performance with controls that offer dual interface support.

ActiveX Control containers must support OLE Automation exceptions. If a control container supports dual
interfaces, then it must capture automation exceptions through IErrorInfo.

Optional Methods
An OLE component can implement an interface without implementing all the semantics of every method
in the interface, instead returning E_NOTIMPL or S_OK as appropriate. The following table describes
those methods that an ActiveX Control container is not required to implement (i.e. the control container
can return E_NOTIMPL).

The table below describes optional methods; note that the method must still exist, but can simply return
E_NOTIMPL instead of implementing real semantics. Note that any method from a mandatory interface
that is not listed below must be considered mandatory and may not return E_NOTIMPL.

Method Comments
IOleClientSite
SaveObject Necessary for persistence to be

successfully supported.
GetMoniker Necessary only if the container supports

linking to controls within its own form or
document.

IOleInPlaceSite
ContextSensitiveHelp Optional
Scroll May return S_FALSE with no action.
DiscardUndoState Can return S_OK with no action.
DeactivateAndUndo Deactivation is mandatory; Undo is

optional.

IOleControlSite
GetExtendedControl Necessary for containers that support

extended controls.
ShowPropertyFrame Necessary for containers that wish to

include their own property pages to
handle extended control properties in
addition to those provided by a control.

TranslateAccelerator May return S_FALSE with no action.
LockInPlaceActive Optional

IDispatch (Ambient
properties)
GetTypeInfoCount Necessary for containers that support

non-standard ambient properties.
GetTypeInfo Necessary for containers that support

non-standard ambient properties.
GetIDsOfNames Necessary for containers that support

non-standard ambient properties.

IDispatch (Event sink)
GetTypeInfoCount The control knows its own type

information, so it has no need to call this.
GetTypeInfo The control knows its own type

information, so it has no need to call this.
GetIDsOfNames The control knows its own type

information, so it has no need to call this.

IOleInPlaceFrame
ContextSensitiveHelp
GetBorder Necessary for containers with toolbar UI

(which is optional)
RequestBorderSpace Necessary for containers with toolbar UI

(which is optional)
SetBorderSpace Necessary for containers with toolbar UI

(which is optional)
InsertMenus Necessary for containers with menu UI

(which is optional)
SetMenu Necessary for containers with menu UI

(which is optional)
RemoveMenus Necessary for containers with menu UI

(which is optional)
SetStatusText Necessary only for containers that have

a status line
EnableModeless Optional
TranslateAccelerator Optional

IOleContainer
ParseDisplayName Only if linking to controls or other

embeddings in the container is
supported, as this is necessary for
moniker binding.

LockContainer As for ParseDisplayName
EnumObjects Returns all ActiveX Controls through an

enumerator with IEnumUnknown, but
not necessarily all objects (since there's
no guarantee that all objects are ActiveX
Controls; some may be regular Windows
controls).

Miscellaneous Status Bits Support
ActiveX Control Containers must recognize and support the following OLEMISC_ status bits:

Status Bit Required? Comments
ACTIVATEWHENVISIBLE Yes
IGNOREACTIVATEWHENVI
SIBLE

No Needed for inactive and
windowless control support.
See Note 1.

INSIDEOUT No Not generally used with
ActiveX Controls but rather
with compound document
embeddings. Note this is
contrary to some SDK
documentation that says
this bit must be set for the
ACTIVATEWHENVISIBLE
bit to be set.

INVISIBLEATRUNTIME Yes Designates a control that
should be visible at design
time, but invisible at run
time.

ALWAYSRUN Yes
ACTSLIKEBUTTON No Support is normally

mandatory although it is not
necessary for document
style containers.

ACTSLIKELABEL No Support is normally
mandatory although it is not
necessary for document
style containers.

NOUIACTIVATE Yes
ALIGNABLE No
SIMPLEFRAME No See Simple Frame Site

Containment section.
SETCLIENTSITEFIRST No Support for this bit is

recommended but not
mandatory.

IMEMODE No
1. The IGNOREACTIVATEWHENVISIBLE bit is for containers hosting inactive and
windowless controls. The IGNOREACTIVATEWHENVISIBLE bit is introduced as part
of the ActiveX Controls 96 specification, see this documentation for more details.

Keyboard Handling in Controls
Keyboard handling support for the following functionality is strongly recommended, although it is
recognized that it is not applicable to all containers.

· Support for OLEMISC_ACTSLIKELABEL and OLEMISC_ACTSLIKEBUTTON status bits.
· Implementing the DisplayAsDefault ambient property (if it exists, it can return FALSE).
· Implementing tab handling, including tab order.

Some containers will use ActiveX Controls in traditional compound document scenarios. For example, a
spreadsheet may allow a user to embed an ActiveX Control into a worksheet. In such scenarios, the
container would do keyboard handling differently, because the keyboard interface should remain
consistent with the user's expectations of a spreadsheet. Documentation for such products should inform
users of differences in control handling in these different scenarios. Other containers should endeavor to
honor the above functionality correctly, including Mnemonic handling.

Storage Interfaces
Control containers must be able to support controls that implement IPersistStorage, IPersistStream, or
IPersistStreamInit. Optionally, a container can support any other persistence interfaces such as
IPersistMemory, IPersistPropertyBag, and IPersistMoniker for those controls that provide support.

Once an ActiveX Control Container has chosen and initialized a storage interface to use
(IPersistStorage, IPersistStream, IPersistStreamInit, etc), that storage interface will remain the primary
storage interface for the lifetime of the control, i.e. the control will remain in possession of the storage.
This does not preclude the container from saving to other storage interfaces.

ActiveX Control Containers do not need to support a save as text mechanism, thus using
IPersistPropertyBag and the associated container-side interface IPropertyBag are optional.

Ambient Properties
At a minimum, ActiveX Control containers must support the following ambient properties using the
standard dispids.

Ambient Property Dispid Comments/Conditions
LocaleID -705
UserMode -709 For containers that have different

user and run environments.
DisplayAsDefault -713 For those containers where a

default button is relevant.

Extended Properties, Events and Methods
ActiveX Control Containers are not required to support extended controls. However, if the control
container does support extended properties, then it must support the following minimal set:

Visible
Parent
Default
Cancel

Currently, extended properties, events, and methods do not have standard dispids.

Message Reflection
It is strongly recommended that an ActiveX Control container supports message reflection. This will result
in more efficient operation for subclassed controls. If message reflection is supported, the
MessageReflect ambient property must be supported and have a value of TRUE. If a container does not
implement message reflection, then the OLE CDK creates two windows for every sub-classed control, to
provide message reflection on behalf on the control container.

Automatic Clipping
It is strongly recommended that an ActiveX Control container supports automatic clipping of its controls.
This will result in more efficient operation for most controls. If automatic clipping is supported, the
AutoClip ambient property must be supported and have a value of TRUE.

Automatic clipping is the ability of a container to ensure that a control's drawn output goes only to the
container's current clipping region. In a container that supports automatic clipping, a control can paint
without regard to its clipping region, because the container will automatically clip any painting that occurs
outside the control's area. If a container does not support automatic clipping, then CDK-generated
controls will create an extra parent window if a non-null clipping region is passed.

Degrading Gracefully in the Absence of an Interface
Because a control may not support any interface other than IUnknown, a container has to degrade
gracefully when it encounters the absence of any particular interface.

One might question the usefulness of a control with nothing more than IUnknown. But consider the
advantages that a control receives from a container's visual programming environment (such as VB)
when the container recognizes the object as a control:

1. A button for the object appears in a toolbox.
2. One can create an object by dragging it from the toolbox onto a form.
3. One can give the object a name that is recognized in the visual programming environment.
4. The same name in (3) above can be used immediately in writing any other code for controls on the

same form (or even a different form).
5. The container can automatically provide code entry points for any events available from that object.
6. The container provides its own property browsing UI for any available properties.

When an object isn't recognized as a control, then it potentially loses all of these very powerful and
beneficial integration features. For example, in Visual Basic 4.0 it is very difficult to really integrate some
random object that is not a control in the complete sense, but may still have properties and events.
Because VB 4's idea of a control is very restrictive the object does not gain any of the integration features
above. But even a control with IUnknown, where the mere lifetime of the control determines the
existence of some resource, should be able to gain the integration capabilities described above.

As current tools require a large set of control interfaces to gain any advantage, controls are generally led
to over-implementation, such that they contain more code than they really need. Controls that could be 7K
might end up being 25K, which is a big performance problem in areas such as the Internet. This has also
led to the perception that one can only implement a control with one tool like the CDK because of the
complexity of implementing all the interfaces¾and this has implications when a large DLL like OC30.DLL
is required for such a control, increasing the working set. If not all interfaces are required, then this opens
up many developers to writing very small and light controls with straight OLE or with other tools as well,
minimizing the overhead for each control.

This is why this appendix recognizes a control as any object with a CLSID and an IUnknown interface.
Even with nothing more than IUnknown, a container with a programming environment should be able to
provide at least features #3 and #4 from the list above. If the object provides a ToolBoxBitmap32 registry
entry, it gains #1 and #2. If the object supplies IConnectionPointContainer (and IProvideClassInfo
generally) for some event set, it gains #5, and if it supports IDispatch for properties and methods, it gains
#6, as well as better code integration in the container.

In short, an object should be able to implement as little as IDispatch and one event set exposed through
IConnectionPointContainer to gain all of those visual features above.

With this in mind, the following table describes what a container might do in the absence of any possible
interface. Note that only those interfaces are listed that the container will directly obtain through
QueryInterface. Other interfaces, like IOleInPlaceActiveObject, are obtained through other means.

Interface Meaning of Interface Absence
IViewObject2 The control has no visuals that it will

draw itself, so has no definite extents
to provide. In run-time, the container
simply doesn't attempt to draw
anything when this interface is absent.
In design time, the container must at
least draw some kind of default

rectangle with a name in it for such a
control, so a user in a visual
programming environment can select
the object and check out its properties,
methods, and events that exist.
Handling the absence of
IViewObject2 is critical for good visual
programming support.

IOleObject The control doesn't need the site
whatsoever, nor does it take part in
any embedded object layout
negotiation. Any information (like
control extents) that a container might
expect from this interface should be
filled in with container-provided
defaults.

IOleInPlaceObject The control doesn't go in-place active
(like a label) and thus never attempts
to activate in this manner. Its only
activation may be its property pages.

IOleControl Control has no mnemonics and no use
of ambient properties, and doesn't
care if the container ignores events. In
the absence of this interface, the
container just doesn't call its methods.

IDataObject The control provides no property sets
nor any visual renderings that could be
cached, so the container would
choose to cache some default
presentation in the absence of this
interface (support for
CF_METAFILEPICT, specifically) and
disable any property-set related
functionality.

IDispatch The control has no custom properties
or methods. The container does not
need to try to show any control
properties in this case, and should
disallow any custom method calls that
the container doesn't recognize as
belonging to its own extended controls
(that may support methods and
properties). As extended controls
generally delegate certain IDispatch
calls to the control, an extended
control should not expect the control to
have IDispatch at all.

IConnectionPointContainer The control has no events, so the
container doesn't have to think about
handling any.

IProvideClassInfo[2] The control either doesn't have type
information or events, or the container
needs to go into the control's type
information through the control's

registry entries. The existence of this
interface is an optimization.

ISpecifyPropertyPages The control has no property pages, so
if the container has any UI that would
invoke them, the container should
disable that UI.

IPerPropertyBrowsing The control has no display name itself,
no predetermined strings and values,
and no property to page mapping. This
interface is nearly always used for
generating container user interface, so
such UI elements would be disabled in
the absence of this interface.

IPersist* The control has no persistent state to
speak of, so the container doesn't
have to worry about saving any
control-specific data. The container
will, of course, save its own
information about the control in its own
form or document, but the control itself
has nothing to contribute to that
information.

IOleCache[2] The object doesn't support caching. A
container can still support caching by
just creating a data cache itself using
CreateDataCache.

Component Categories
OLE's component categories allow a software component's abilities and requirements to be identified by
entries in the registry. In a scenario where a container may not wish to or not be able to support an area
of functionality, such as databinding for example, the container will not wish to host controls that require
databinding in order to perform their job function. Component Categories allow areas of functionality such
as databinding to be identified, so that the control container can avoid those controls that state it to be a
requirement. Component Categories are specified separately as part of OLE and are not specific to the
ActiveX Control architecture, the specification for component categories includes a set of APIs for
manipulation of the component category registry keys.

What are Component Categories and how do they work?
Component Categories identify those areas of functionality that a software component supports and
requires, a registry entry is used for each category or identified area of functionality. Each component
category is identified by a globally unique identifier (GUID), when a control is installed it registers itself as
a control in the system registry using the component category ID for control, see the Self Registration for
Controls section. Within the control's self registration it will also register those component categories that
it implements and those component categories that it requires a container to support in order to
successfully host the control.

When a control container is offering controls to the user to insert, it only allows the user to select and
instantiate those controls that will be able to function adequately in that environment. For example, if the
control container does not support databinding, then the container will not allow the user to select and
instantiate those controls that have an entry in the registry signifying that they require the databinding
component category. A common dialog for control insertion and APIs to handle the registry entries are
available.

Component categories are not cumulative or exclusive, a control can require any mix of component
categories to function. A control that has no required entries for component categories may be expected
to be capable of functioning in any control container and not require any specific functionality of a control
container to function.

The following component categories are identified here, where necessary more detailed specifications of
the categories may be available.

· ISimpleFrameSite control containment.
· Simple Databinding through the IPropertyNotifySink interface.
· Advanced Databinding (as supported by the additional databinding interfaces of VB4.0).
· Visual Basic private interfaces - IVBFormat, IVBGetControl
· Internet aware controls.
· Windowless controls.

This is not a definitive list of categories; further categories are likely to be defined in the future as new
requirements are identified. An up-to-date list of component categories is available from Microsoft on their
world wide web site, this list reflects those component categories that have been identified by Microsoft
and any others that about which vendors have informed Microsoft.

It is important to remember that controls should attempt to work in as many environments as possible. If it
is possible, the control should degrade its functionality when placed in a container that does not support
certain interfaces. The purpose of component categories is to prevent a situation where the control is
placed in an environment that is unsuitable and the control can not achieve its desired task. Generally, a
control should degrade gracefully when interfaces are not present, a control may choose to advise the
user with a message box that some functionality is not available or clearly document the functionality
required of a control container for optimal performance.

Note older controls and containers do not make use of Component Categories and instead rely on the
control keyword being present against the control in the registry. In order to be recognized by older
containers controls may wish to register the control keyword in the registry, control developers should
check that the control can successfully be hosted in such containers before doing this. Containers that
use component categories may successfully use them to host older controls as the components category
DLL handles the mapping, a separate category exists for older controls CATID_ControlV1 so that a
container may optionally exclude them if necessary.

As Component Categories are identified by GUIDs it is possible for containers that offer particular specific
functionality to have their own category IDs, generated using a GUID generation tool. However this can

possibly undermine the advantage of interoperability of controls and containers so it is preferred that
wherever possible existing component categories be used. Vendors are encouraged to consult together
when defining new component categories to ensure that they meet the common requirements of the
marketplace, and follow the spirit of interoperability of ActiveX Controls.

Simple Frame Site Containment
A container control is an ActiveX Control that is capable of containing other controls. A group box that
contains a collection of radio buttons is an example of a container control. Container controls should set
the OLEMISC_SIMPLEFRAME status bit, and should call its container's ISimpleFrameSite
implementation. An ActiveX Control container that supports Container Controls must implement
ISimpleFrameSite.

CATID - {157083E0-2368-11cf-87B9-00AA006C8166} CATID_SimpleFrameControl

Simple Data Binding
The ActiveX Controls Architecture defines a data-binding mechanism, whereby an ActiveX Control can
specify that one or more of its properties are bindable. In most cases, a data-bound control should not
absolutely require data binding, so that it could be inserted into a container that does not support data
binding. Obviously, in such a situation, the functionality of the control may be reduced.

CATID - {157083E1-2368-11cf-87B9-00AA006C8166} CATID_PropertyNotifyControl

Advanced Data Binding
There is a set of advanced data binding interfaces that allow a more complex databinding scenario to be
supported. This component category covers that area of functionality.

CATID - {157083E2-2368-11cf-87B9-00AA006C8166} CATID_VBDataBound

Visual Basic private interfaces
Two interfaces that are implemented by Visual Basic are identified here for component categories. It is not
expected that controls should require these categories as it is possible for controls to offer alternative
functionality when these are not available.

The IVBFormat interface allows controls to better integrate into the Visual Basic environment when
formatting data.

CATID - {02496840-3AC4-11cf-87B9-00AA006C8166} CATID_VBFormat

The IVBGetControl interface allows a control to enumerate other controls on the VB form.

CATID - {02496841-3AC4-11cf-87B9-00AA006C8166} CATID_VBGetControl

Internet-Aware Objects
There are certain categories identified to cover the persistency interfaces, these have been identified as a
result of defining how controls function across the internet. A container that does not support the full range
of persistency interfaces should ensure that it does not host a control that requires a combination of
interfaces that it does not support. Details of the features required for internet aware controls are available
in the ActiveX SDK.

The following tables describe the meaning for various categories as both implemented and required
categories.

Required Categories Description
CATID_PersistsToMoniker,
CATID_PersistsToStreamInit,
CATID_PersisitsToStream,
CATID_PersistsToStorage,
CATID_PersistsToMemory,
CATID_PersistsToFile,
CATID_PersistsToPropertyBag

Each of these categories are
mutually exclusive and are only
used when an object supports only
one persistence mechanism at all
(hence the mutual exclusion).
Containers that do not support the
persistence mechanism described
by one of these categories should
prevent themselves from creating
any objects of classes so marked.

CATID_RequiresDataPathHost The object requires the ability to
save data to one or more paths
and requires container
involvement, therefore requiring
container support for IBindHost.

Implemented Categories Description
CATID_PersistsToMoniker,
CATID_PersistsToStreamInit,
CATID_PersistsToStream,
CATID_PersistsToStorage,
CATID_PersistsToMemory,
CATID_PersistsToFile,
CATID_PersistsToPropertyBag

Object supports the corresponding
IPersist* mechanism for the
category.

The following table provides the exact CATIDs assigned to each category:

Category CATID
CATID_RequiresDataPathHost 0de86a50-2baa-11cf-a229-

00aa003d7352

CATID_PersistsToMoniker 0de86a51-2baa-11cf-a229-
00aa003d7352

CATID_PersistsToStorage 0de86a52-2baa-11cf-a229-
00aa003d7352

CATID_PersistsToStreamInit 0de86a53-2baa-11cf-a229-
00aa003d7352

CATID_PersistsToStream 0de86a54-2baa-11cf-a229-
00aa003d7352

CATID_PersistsToMemory 0de86a55-2baa-11cf-a229-
00aa003d7352

CATID_PersistsToFile 0de86a56-2baa-11cf-a229-
00aa003d7352

CATID_PersistsToPropertyBag 0de86a57-2baa-11cf-a229-
00aa003d7352

Windowless Controls
The ActiveX Controls 96 specification includes a definition for windowless controls. Such controls do not
operate in their own window and require a container to offer a shared window into which the control may
draw, see the ActiveX SDK. Windowless controls are designed to be compatible with older control
containers by creating their own window in that situation, windowless control containers should host
windowed controls in the traditional way with no problem. It may however be useful for a container to
distinguish those controls that can operate in a windowless mode, so an appropriate component category
is defined.

CATID - {1D06B600-3AE3-11cf-87B9-00AA006C8166} CATID_WindowlessObject

General Guidelines
This section describes various features, hints and tips for ActiveX Control and ActiveX Control container
developers to help ensure good interoperability between controls and control containers.

Overloading IPropertyNotifySink
Many ActiveX Control Containers implement a modeless property browsing window. If a control's
properties are altered through the control's property pages, then the control's properties can get out of
sync with the container's view of those properties (the control is always right, of course). To ensure that it
always has the current values for a control's properties, an ActiveX Control Container can overload the
IPropertyNotifySink interface (data binding) and also use it to be notified that a control property has
changed. This technique is optional, and is not required of ActiveX Control Containers or ActiveX
Controls.

Note that a control should use IPropertyNotifySink::OnRequestEdit only for data binding; it is free to
use OnChanged for either or both purposes.

Container-Specific Private Interfaces
Some containers provide container-specific private interfaces for additional functionality or improved
performance. Controls that rely on those container-specific interfaces should, if possible, work without
those container-specific interfaces present so that the control functions in different containers. For
example, Visual Basic® implements private interfaces that provide string formatting functionality to
controls. If a control makes use of VB's private formatting interfaces, it should be able to run with default
formatting support if these interfaces are not available. If the control can function without the private
interfaces, it should take appropriate action (such as warn the user of reduced functionality) but continue
to work. If this is not an option, then a component category should be registered as required to ensure
that only containers supporting this functionality can host these controls.

Multi-Threaded Issues
Starting with Microsoft® Windows® 95 and Microsoft Windows NT® 3.51, OLE provides support for multi-
threaded applications, allowing applications to make OLE calls from multiple threads. This multi-threaded
support is called the apartment model, it is important that all OLE components using multiple threads
follow this model. The apartment model requires that interface pointers are marshaled (using
CoMarshallInterface, and CoUnmarshalInterface) when passed between threads. For more information
about apartment model threading, refer to the Win32 SDK documentation, and the OLEAPT sample (in
Win32® SDK).

Event Freezing
A container can notify a control that it is not ready to respond to events by calling
IOleControl::FreezeEvents(TRUE). It can un-freeze the events by calling
IOleControl::FreezeEvents(FALSE). When a container freezes events, it is freezing event processing,
not event receiving; that is, a container can still receive events while events are frozen. If a container
receives an event notification while its events are frozen, the container should ignore the event. No other
action is appropriate.

A control should take note of a container's call to IOleControl::FreezeEvents(TRUE) if it is important to
the control that an event is not missed. While a container's event processing is frozen, a control should
implement one of the following techniques:

1. Fire the events in the full knowledge that the container will take no action.
2. Discard all events that the control would have fired.
3. Queue up all pending events and fire them after the container has called

IOleControl::FreezeEvents(FALSE).
4. Queue up only relevant or important events and fire them after the container has called

IOleControl::FreezeEvents(FALSE).

Each technique is acceptable and appropriate in different circumstances. The control developer is
responsible for determining and implementing the appropriate technique for the control's functionality.

Container Controls
As described above, container controls are ActiveX Controls that visually contain other controls. The
ActiveX Controls Architecture specifies the ISimpleFrameSite interface to enable container controls.
Containers may also support container controls without supporting ISimpleFrameSite, although the
behavior cannot be guaranteed. For this reason, a component category exists for SimpleFrameSite
controls where the full functionality of this interface is required.

In order to support container controls without implementing ISimpleFrameSite, an ActiveX Control
Container must:

· Activate all controls at all times.
· Reparent the contained controls to the hWnd of the containing control.
· Remain the parent of the container control.

WS_GROUP and WS_TABSTOP Flags in Controls
A control should not use the WS_GROUP and WS_TABSTOP flags internally; some containers rely on
these flags to manage keyboard handling.

Multiple Controls in One DLL
A single .OCX DLL can container any number of ActiveX Controls, thus simplifying the distribution and
use of a set of related controls.

If you ship multiple controls in a single DLL, be sure to include the vendor name in each control name in
the package. Including the vendors' names in each control name will enable users to easily identify
controls within a package. For example, if you ship a DLL that implements three controls, Con1, Con2
and Con3, then the control names should be:

<Your company name> Con1 Control

<Your company name> Con2 Control

<Your company name> Con3 Control

The IOleContainer::EnumObjects Method
This method is used to enumerate over all the OLE objects contained in a document or form, returning an
interface pointer for each OLE object. The container must return pointers to each OLE object that shares
the same container. Nested forms or nested controls must also be enumerated.

Some containers implement extender controls, which wrap non-ActiveX Controls, and then return pointers
to these extender controls as a form is enumerated. This behavior enables ActiveX Controls and ActiveX
Control containers to integrate well with non-ActiveX Controls, and is thus recommended, but not
required.

Enhanced Metafiles
Not surprisingly, enhanced metafiles provide more functionality than standard metafiles; using enhanced
metafiles generally simplifies rendering code. An enhanced metafile DC is used in exactly the same way
as a standard metafile DC. Enhanced metafiles are not available in 16-bit OLE. OLE supports enhanced
metafiles, and includes backwards compatibility with standard metafiles and 16-bit applications.

32-bit ActiveX Control containers should use enhanced metafiles instead of standard metafiles.

Licensing
In order to embed licensed controls successfully, ActiveX Control containers must use IClassFactory2
instead of IClassFactory. Several OLE creation and loading helper functions (i.e., OleLoad and
CoCreateInstance) explicitly call IClassFactory and not IClassFactory2, and therefore cannot be used
to create or load licensed ActiveX Controls. ActiveX Control Containers should explicitly create and load
ActiveX Controls using IClassFactory2. In the future, Microsoft will update these standard APIs to use
both IClassFactory and IClassFactory2, as appropriate.

Dual Interfaces
OLE Automation enables an object to expose a set of methods in two ways: via the IDispatch interface,
and through direct OLE VTable binding. IDispatch is used by most tools available today, and offers
support for late binding to properties and methods. VTable binding offers much higher performance
because this method is called directly instead of through IDispatch::Invoke. IDispatch offers late bound
support, where direct VTable binding offers a significant performance gain; both techniques are valuable
and important in different scenarios. By labeling an interface as dual in the type library, an OLE
Automation interface can be used either via IDispatch, or it can be bound to directly. Containers can thus
choose the most appropriate technique. Support for dual interfaces is strongly recommended for both
controls and containers.

IPropertyBag and IPersistPropertyBag
IPropertyBag and IPersistPropertyBag optimize save as text mechanisms, and therefore are
recommended for ActiveX Control containers that implement a save as text mechanism. IPropertyBag is
implemented by a container, and is roughly analogous to IStream. IPersistPropertyBag is implemented
by controls, and is roughly analogous to IPersistStream.

Event Coordinate Translation
The 96 specification for controls requires that coordinates passed for events fired by the control change
from being HIMETRIC to being Points based. This change brings the event passing of coordinates in
line with properties and methods and thus coordinate translation is no longer the responsibility of the
container. This raises certain compatibility issues where a control fires events using a coordinate base
that it is not expecting, this should only be an issue where a 96 control container is hosting an older
pre-96 control as follows:

· When an older pre-96 container hosts a 96 control the control will present the event coordinates as
points, this should not cause the container any problems as the container should recognize the
parameter type.

· When a 96 container hosts a pre-96 control the control will present the container with coordinates and
expect the container to any translation necessary. However the 96 container will be expecting a
control to conform to the 96 controls specification and present its coordinates as points. The control
uses the TranslateCoordinates method on the IOleControlSite interface provided by the container
in the same way as it does for properties and methods to achieve this.

As a result the user of a 96 container hosting pre-96 controls will need to be aware that further
translation of coordinates may be necessary when events are fired.

Standard DISPIDS
A number of standard dispids have been defined for the 96 controls specification.

DISPID_MOUSEPOINTER
#define DISPID_MOUSEPOINTER -521

Property of type integer.

The Mousepointer property identifies standard mouse icons:

Value Description
0 (Default) Shape determined by the object.
1 Arrow
2 Cross (cross-hair pointer)
3 I Beam
4 Icon (small square within a square)
5 Size (four-pointed arrow pointing north, south, east,

and west)
6 Size NE SW (double arrow pointing northeast and

southwest)
7 Size N S (double arrow pointing north and south)
8 Size NW, SE
9 Size E W (double arrow pointing east and west)
10 Up Arrow
11 Hourglass (wait)
12 No Drop
13 Arrow and hourglass
14 Arrow and question mark
15 Size all
99 Custom icon specified by the MouseIcon property

DISPID_MOUSEICON
#define DISPID_MOUSEICON -522

Property of type Picture.

DISPID_PICTURE
#define DISPID_PICTURE -523

Property of type picture.

DISPID_VALID
#define DISPID_VALID -524 // Is data in control valid?

Property of type BOOL.

Used to determine if the control has valid data or not.

DISPID_ AMBIENT_PALETTE

#define DISPID_AMBIENT_PALETTE -726 // Container's HPAL

Used to allow the control to get the container's HPAL. If the container supplies an ambient palette then
that is the only palette that may be realized into the foreground. Controls that wish to realize their own
palettes must do so in the background. If their is no ambient palette provided by the container then the
active control may realize its palette in the foreground. Palette handling is further discussed in Palette
Behaviour for OLE Controls which is in the ActiveX SDK.

Databinding
A new databinding attribute has been added to allow properties distinguish between communicating
changes only when focus leaves the control or during all property change notifications.

The new attribute known as ImmediateBind is to allow controls to differentiate two different types of
bindable properties. One type of bindable property needs to notify every change to the database, for
example with a checkbox control where every change needs to be sent through to the underlying
database even though the control has not lost the focus. However controls such as a listbox only wish to
have the change of a property notified to the database when the control loses focus, as the user may
have changed the highlighted selection with the arrow keys before finding the desired setting, to have the
change notification sent to the database every time that the user hit the arrow key would be give
unacceptable performance. The new immediate bind property allows individual bindable properties on a
form to have this behavior specified, when this bit is set all changes will be notified.

The new ImmediateBind bit maps through to the new VARFLAG_FIMMEDIATEBIND (0x80) and the
FUNCFLAG_FIMMEDIATEBIND (0x80) bits in the VARFLAGS and FUNCFLAGS enumerations for the
ITypeInfo interface allowing for the properties attributes to be inspected.

IAdviseSink

The IAdviseSink interface enables containers and other objects to receive notifications of data changes,
view changes, and compound-document changes occurring in objects of interest. Container applications,
for example, require such notifications to keep cached presentations of their linked and embedded objects
up-to-date. Calls to IAdviseSink methods are asynchronous, so the call is sent and then the next
instruction is executed without waiting for the call's return.

For an advisory connection to exist, the object that is to receive notifications must implement
IAdviseSink, and the objects in which it is interested must implement IOleObject::Advise and
IDataObject::DAdvise. In-process objects and handlers may also implement IViewObject::SetAdvise.
Objects implementing IOleObject must support all reasonable advisory methods. To simplify advisory
notifications, OLE supplies implementations of the IDataAdviseHolder and IOleAdviseHolder, which
keep track of advisory connections and send notifications to the proper sinks through pointers to their
IAdviseSink interfaces. IViewObject (and its advisory methods) is implemented in the default handler.

As shown in the following table, an object that has implemented an advise sink registers its interest in
receiving certain types of notifications by calling the appropriate method:

Call This Method To Register for These Notifications
IOleObject::Advise When a document is saved, closed, or

renamed.
IDataObject::DAdvise When a document's data changes.
IViewObject::SetAdvise When a document's presentation

changes.

When an event occurs that applies to a registered notification type, the object application calls the
appropriate IAdviseSink method. For example, when an embedded object closes, it calls the
IAdviseSink::OnClose method to notify its container. These notifications are asynchronous, occurring
after the events that trigger them.

When to Implement
Objects, such as container applications and compound documents, implement IAdviseSink to receive
notification of changes in data, presentation, name, or state of their linked and embedded objects.
Implementers register for one or more types of notification, depending on their needs.

Notifications of changes to an embedded object originate in the server and flow to the container by way of
the object handler. If the object is a linked object, the OLE link object intercepts the notifications from the
object handler and notifies the container directly. All containers, the object handler, and the OLE link
object register for OLE notifications. The typical container also registers for view notifications. Data
notifications are usually sent to the OLE link object and object handler.

When to Use
Servers call the methods of IAdviseSink to notify objects with which they have an advisory connection of
changes in an object's data, view, name, or state.

Note OLE does not permit synchronous calls in the implementation of asynchronous methods, so
you cannot make synchronous calls within any of the the IAdviseSink interface's methods. For
example, an implementation of IAdviseSink::OnDataChange cannot contain a call to
IDataObject::GetData.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IAdviseSink Methods Description
OnDataChange Advises that data has changed.
OnViewChange Advises that view of object has

changed.
OnRename Advises that name of object has

changed.
OnSave Advises that object has been saved

to disk.
OnClose Advises that object has been closed.

See Also
IAdviseSink2, IDataAdviseHolder, IOleAdviseHolder, IOleObject::Advise, IOleObject::Unadvise,
IOleObject::EnumAdvise

IAdviseSink::OnClose

Called by the server to notify all registered advisory sinks that the object has changed from the running to
the loaded state.

Void OnClose();

Remarks
OnClose notification indicates that an object is making the transition from the running to the loaded state,
so its container can take appropriate measures to ensure orderly shutdown. For example, an object
handler must release its pointer to the object.

If the object that is closing is the last open object supported by its OLE server application, the application
can also shut down.

In the case of a link object, the notification that the object is closing should always be interpreted to mean
that the connection to the link source has broken.

IAdviseSink::OnDataChange

Called by the server to notify a data object's currently registered advise sinks that data in the object has
changed.

void OnDataChange(

 FORMATETC * pFormatetc, //Pointer to format information
 STGMEDIUM * pStgmed //Pointer to storage medium
);

Parameters
pFormatetc

[in] Pointer to the FORMATETC structure, which describes the format, target device, rendering, and
storage information of the calling data object.

pStgmed

[in] Pointer to the STGMEDIUM structure, which defines the storage medium (global memory, disk
file, storage object, stream object, GDI object, or undefined) and ownership of that medium for the
calling data object.

Remarks
Object handlers and containers of link objects implement IAdviseSink::OnDataChange to take
appropriate steps when notified that data in the object has changed. They also must call
IDataObject::DAdvise to set up advisory connections with the objects in whose data they are interested.
(See IDataObject::DAdvise for more information on how to specify an advisory connection for data
objects.)

Containers that take advantage of OLE's caching support do not need to register for data-change
notifications, because the information necessary to update the container's presentation of the object,
including any changes in its data, are maintained in the object's cache.

Notes to Implementers
If you implement IAdviseSink::OnDataChange for a container, remember that this method is
asynchronous and that making synchronous calls within asynchronous methods is not valid. Therefore,
you cannot call IDataObject::GetData to obtain the data you need to update your object. Instead, you
either post an internal message, or invalidate the rectangle for the changed data by calling
InvalidateRect and waiting for a WM_PAINT message, at which point you are free to get the data and
update the object.

The data itself, which is valid only for the duration of the call, is passed using the storage medium pointed
to by pmedium. Since the caller owns the medium, the advise sink should not free it. Also, if pmedium
points to an IStorage or IStream interface, the sink must not increment the reference count.

See Also
IDataObject::DAdvise

IAdviseSink::OnRename

Called by the server to notify all registered advisory sinks that the object has been renamed.

Void OnRename(

 IMoniker * pmk //Pointer to the new moniker of the object
);

Parameter
pmk

[in] Pointer to the IMoniker interface on the new full moniker of the object.

Remarks
OLE link objects normally implement IAdviseSink::OnRename to receive notification of a change in the
name of a link source or its container. The object serving as the link source calls OnRename and passes
its new full moniker to the object handler, which forwards the notification to the link object. In response,
the link object must update its moniker. The link object, in turn, forwards the notification to its own
container.

IAdviseSink::OnSave

Called by the server to notify all registered advisory sinks that the object has been saved.

Void OnSave();

Remarks
Object handlers and link objects normally implement IAdviseSink::OnSave to receive notifications of
when an object is saved to disk, either to its original storage (through a Save operation) or to new storage
(through a Save As operation). Object Handlers and link objects register to be notified when an object is
saved for the purpose of updating their caches, but then only if the advise flag passed during registration
specifies ADVFCACHE_ONSAVE. Object handlers and link objects forward these notifications to their
containers.

IAdviseSink::OnViewChange

Notifies an object's registered advise sinks that its view has changed.

Void OnViewChange(

 DWORD dwAspect, //Value specifying aspect of object
 LONG lindex //Currently must be -1
);

Parameters
dwAspect

[in] The aspect, or view, of the object. Contains a value taken from the enumeration, DVASPECT.
lindex

[in] The portion of the view that has changed. Currently only -1 is valid.

Remarks
Containers register to be notified when an object's view changes by calling IViewObject::SetAdvise.
Once registered, the object will call the sink's IAdviseSink::OnViewChange method when appropriate.
OnViewChange can be called when the object is in either the loaded or running state.

Even though DVASPECT values are individual flag bits, dwAspect may represent only one value. That is,
dwAspect cannot contain the result of an OR operation combining two or more DVASPECT values.

The lindex member represents the part of the aspect that is of interest. The value of lindex depends on
the value of dwAspect. If dwAspect is either DVASPECT_THUMBNAIL or DVASPECT_ICON, lindex is
ignored. If dwAspect is DVASPECT_CONTENT, lindex must be -1, which indicates that the entire view is
of interest and is the only value that is currently valid.

See Also
IViewObject::SetAdvise

IAdviseSink2

The IAdviseSink2 interface is an extension of IAdviseSink, adding the method OnLinkSrcChange to
the contract to handle a change in the moniker of a linked object. This avoids overloading the
implementation IAdviseSink::OnRename to handle the renaming of both embedded objects and linked
objects. In applications where different blocks of code might execute depending on which of these two
similar events has occurred, using the same method for both events complicates testing and debugging.

When to Implement
If your application supports links, you should definitely implement IAdviseSink2. Even if your application
does not support links, it may do so in future releases. In general, your code would implement just
IAdviseSink2, which, because of contract inheritance, must include implementations of all of the
IAdviseSink methods, along with the single additional method of IAdviseSink2.

When to Use
When a link source is renamed, the link object should notify its container by calling
IAdviseSink::OnLinkSrcChange. If you are using the default handler, containing the OLE link object,
you can still have both embedded and linked objects call IAdviseSink::OnRename, but for linked
objects, the OLE link object maps the notification to IAdviseSink2::OnLinkSrcChange.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IAdviseSink Methods Description
OnDataChange Advises that data has changed.
OnViewChange Advises that view of object has

changed.
OnRename Advises that name of object has

changed.
OnSave Advises that object has been saved

to disk.
OnClose Advises that object has been

closed.

IAdviseSink2 Method Description
OnLinkSrcChange Advises that link source has

changed.

IAdviseSink2::OnLinkSrcChange

Notifies the container that registered the advise sink that a link source has changed (either name or
location), enabling the container to update the link's moniker.

void OnLinkSrcChange(

 IMoniker *pmk //Pointer to the moniker of the new link source
);

Parameter
pmk

[in] Pointer to the IMoniker interface identifying the source of a linked object.

Remarks
A container of linked objects implements this method to receive notification in the event of a change in the
moniker of its link source.

IAdviseSink2::OnLinkSrcChange is called by the OLE link object when it receives the OnRename
notification from the link-source (object) application. The link object updates its moniker and sends the
OnLinkSrcChange notification to containers that have implemented IAdviseSink2.

Notes to Implementers
Nothing prevents a link object from notifying its container of the moniker change by calling
IAdviseSink::OnRename instead of OnLinkSrcChange. In practice, however, overloading OnRename
to mean either that a link object's moniker has changed or that an embedded object's server name has
changed makes it difficult for applications to determine which of these events has occurred. If the two
events trigger different processing, as will often be the case, calling a different method for each makes the
job of determining which event occurred much easier.

See Also
IAdviseSink::OnRename

IAdviseSinkEx

The IAdviseSinkEx interface is derived from IAdviseSink to provide extensions for notifying the sink of
changes in an object's view status.

When to Implement
Container applications and compound documents implement a site object with the IAdviseSinkEx
interface to receive notification of changes in the view status of a contained object.

When to Use
A contained object, such as a control, calls the method of IAdviseSinkEx to notify its container of
changes in its view status.

To determine which interface the sink supports, an object must call QueryInterface using the pointer that
was passed to IViewObject::SetAdvise.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IAdviseSink Methods Description
OnDataChange Advises that data has changed.
OnViewChange Advises that view of object has

changed.
OnRename Advises that name of object has

changed.
OnSave Advises that object has been saved

to disk.
OnClose Advises that object has been

closed.

IAdviseSinkEx Methods Description
OnViewStatusChange Notifies the sink that a view status

of an object has changed.

See Also
IAdviseSink, IViewObject::SetAdvise

IAdviseSinkEx::OnViewStatusChange

Notifies the sink that a view status of an object has changed.

HRESULT OnViewStatusChange(

 DWORD dwViewStatus //New view status
);

Parameters
dwViewStatus

[in] New view status specified in VIEWSTATUS enumeration values.

Return Values
S_OK

The sink was successfully notified of the new view status

Remarks
It is important that objects call the IAdviseSink:OnViewChange method whenever the object's view
changes even when the object is in place active. Containers rely on this notification to keep an object's
view up-to-date.

See Also
IAdviseSink:OnViewChange, VIEWSTATUS

IBindCtx

The IBindCtx interface provides access to a bind context, which is an object that stores information about
a particular moniker binding operation. You pass a bind context as a parameter when calling many
methods of IMoniker and in certain functions related to monikers.

A bind context includes the following information:

· A BIND_OPTS structure containing a set of parameters that do not change during the binding
operation. When a composite moniker is bound, each component uses the same bind context, so it
acts as a mechanism for passing the same parameters to each component of a composite moniker.

· A set of pointers to objects that the binding operation has activated. The bind context holds pointers to
these bound objects, keeping them loaded and thus eliminating redundant activations if the objects
are needed again during subsequent binding operations.

· A pointer to the Running Object Table on the machine of the process that started the bind operation.
Moniker implementations that need to access the Running Object Table should use the
IBindCtx::GetRunningObjectTable method rather than using the GetRunningObjectTable function.
This allows future enhancements to the system's IBindCtx implementation to modify binding
behavior.

· A table of interface pointers, each associated with a string key. This capability enables moniker
implementations to store interface pointers under a well-known string so that they can later be
retrieved from the bind context. For example, OLE defines several string keys (e.g.,
"ExceededDeadline", "ConnectManually") that can be used to store a pointer to the object that
caused an error during a binding operation.

When to Implement
You do not need to implement this interface. The system provides an IBindCtx implementation,
accessible though a call to the CreateBindCtx function, that is suitable for all situations.

When to Use
Anyone writing a new moniker class by implementing the IMoniker interface must call IBindCtx methods
in the implementation of several IMoniker methods. Moniker providers (servers that hand out monikers to
identify their objects) may also need to call IBindCtx methods from their implementations of the
IOleItemContainer or IParseDisplayName interfaces.

Moniker clients (objects that use monikers to acquire interface pointers to other objects) typically don't call
many IBindCtx methods. Instead, they simply pass a bind context as a parameter in a call to an IMoniker
method. To acquire an interface pointer and activate the indicated object (called binding to an object),
moniker clients typically do the following:

1. Call the CreateBindCtx function to create a bind context and get a pointer to the IBindCtx interface
on the bind context object..

2. If desired (although this is rarely necessary), the moniker client can call IBindCtx::SetBindOptions
to specify the bind options.

3. Pass the bind context as a parameter to the desired IMoniker method (usually
IMoniker::BindToObject).

4. Call IUnknown::Release on the bind context to release it.

Although applications that act as link containers (container applications that allow their documents to
contain linked objects) are moniker clients, they rarely call IMoniker methods directly. Generally, they
manipulate linked objects through the system implementation (in the default handler) of the IOleLink
interface. This implementation calls the appropriate IMoniker methods as needed, and, in doing so,

passes pointers to IBindCtx interfaces on the proper bind context objects.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IBindCtx Methods Description
RegisterObjectBound Registers an object with the bind

context.
RevokeObjectBound Revokes an object's registration.
ReleaseBoundObjects Releases all registered objects.
SetBindOptions Sets the binding options.
GetBindOptions Retrieves the binding options.
GetRunningObjectTable Retrieves a pointer to the Running

Object Table.
RegisterObjectParam Associates an object with a string

key.
GetObjectParam Returns the object associated with

a given string key.
EnumObjectParam Enumerates all the string keys in

the table.
RevokeObjectParam Revokes association between an

object and a string key.

See Also
CreateBindCtx, IMoniker, IOleItemContainer, IParseDisplayName

IBindCtx::EnumObjectParam

Supplies a pointer to an IEnumString interface on an enumerator that can return the keys of the bind
context's string-keyed table of pointers.

HRESULT EnumObjectParam(

 IEnumString **ppenum //Indirect pointer to the enumerator object
);

Parameter
ppenum

[out] Indirect pointer to the IEnumString interface on the enumerator. If an error occurs, *ppenum is
set to NULL. If *ppenum is non-NULL, the implementation calls IUnknown::AddRef on the
parameter; it is the caller's responsibility to call IUnknown::Release.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

An enumerator was successfully created and the pointer supplied.

Remarks
This method provides an IEnumString pointer to an enumerator that can return the keys of the bind
context's string-keyed table of pointers. The keys returned are the ones previously specified in calls to
IBindCtx::RegisterObjectParam.

Notes to Callers
A bind context maintains a table of interface pointers, each associated with a string key. This enables
communication between a moniker implementation and the caller that initiated the binding operation. One
party can store an interface pointer under a string known to both parties so that the other party can later
retrieve it from the bind context.

See Also
IBindCtx::RegisterObjectParam, IEnumString

IBindCtx::GetBindOptions

Returns the binding options stored in this bind context.

HRESULT GetBindOptions(

 BIND_OPTS *pbindopts //Pointer to a structure
);

Parameter
pbindopts

[in, out] Pointer to an initialized BIND_OPTS structure on entry that receives the current binding
parameters on return.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The stored binding options were successfully returned.

Remarks
A bind context contains a block of parameters, stored in a BIND_OPTS structure, that are common to
most IMoniker operations and that do not change as the operation moves from piece to piece of a
composite moniker.

Notes to Callers
You typically call this method if you are writing your own moniker class (this requires that you implement
the IMoniker interface). You call this method to retrieve the parameters specified by the moniker client.

You must initialize the BIND_OPTS structure that is filled in by this method. Before calling this method,
you must initialize the cbStruct field of the structure to the size of the BIND_OPTS structure.

See Also
IBindCtx::SetBindOptions

IBindCtx::GetObjectParam

Retrieves the pointer associated with the specified key in the bind context's string-keyed table of pointers.

HRESULT GetObjectParam(

 LPOLESTR pszKey, //Pointer to the key to be used
 IUnknown **ppunk //Indirect pointer to the object associated with the key
);

Parameters
pszKey

[in] Pointer to a zero-terminated wide character string (two bytes per character) containing the key to
search for. Key string comparison is case-sensitive.

ppunk

[out] When successful, indirect pointer to the IUnknown interface on the object associated with
pszKey. In this case, the implementation calls IUnknown::AddRef on the parameter. It is the caller's
responsibility to call IUnknown::Release. If an error occurs, ppunk is set to NULL.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The pointer associated with the specified key was successfully returned.

Remarks
A bind context maintains a table of interface pointers, each associated with a string key. This enables
communication between a moniker implementation and the caller that initiated the binding operation. One
party can store an interface pointer under a string known to both parties so that the other party can later
retrieve it from the bind context.

The pointer this method retrieves must have previously been inserted into the table using the
IBindCtx::RegisterObjectParam method.

Notes to Callers
Those writing a new moniker class (through an implementation of IMoniker) and some moniker clients
(objects using a moniker to bind to an object) can call IBindCtx::GetObjectParam.

Objects using monikers to locate other objects can call this method when a binding operation fails to get
specific information about the error that occurred. Depending on the error, it may be possible to correct
the situation and retry the binding operation. See IBindCtx::RegisterObjectParam for more information.

Moniker implementations can call this method to deal with situations where a caller initates a binding
operation and requests specific information. By convention, the implementer should use key names that
begin with the string form of the CLSID of a moniker class (see the StringFromCLSID function).

See Also
IBindCtx::RegisterObjectParam, IBindCtx::EnumObjectParam

IBindCtx::GetRunningObjectTable

Provides an interface pointer to the Running Object Table (ROT) for the machine on which this bind
context is running.

HRESULT GetRunningObjectTable(

 IRunningObjectTable **pprot //Indirect pointer to the Running Object Table
);

Parameter
pprot

[out] When successful, indirect pointer to the IRunningObjectTable interface on the Running Object
Table. If an error occurs, *pprot is set to NULL. If *pprot is non-NULL, the implementation calls
IUnknown::AddRef on the parameter; it is the caller's responsibility to call IUnknown::Release.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

A pointer to the ROT was returned successfully.

Remarks
The Running Object Table is a globally accessible table on each machine. It keeps track of all the objects
that are currently running on the machine.

Notes to Callers
Typically, those implementing a new moniker class (through an implementation of IMoniker interface) call
IBindCtx::GetRunningObjectTable. It is useful to call this method in an implementation of
IMoniker::BindToObject or IMoniker::IsRunning to check whether a given object is currently running.
You can also call this method in the implementation of IMoniker::GetTimeOfLastChange to learn when a
running object was last modified.

Moniker implementations should call this method instead of using the GetRunningObjectTable function.
This makes it possible for future implementations of IBindCtx to modify binding behavior.

See Also
IMoniker, IRunningObjectTable

IBindCtx::RegisterObjectBound

Calls IUnknown::AddRef on the specified object to ensure that the object remains active until the bind
context is released. The method stores a pointer to the object in the bind context's internal list of pointers.

HRESULT RegisterObjectBound(

 IUnknown *punk //Pointer to the object being registered
);

Parameter
punk

[in] Pointer to the IUnknown interface on the object that is being registered as bound.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The object was successfully registered.

Remarks
Notes to Callers
Those writing a new moniker class (through an implementation of the IMoniker interface), should call this
method whenever the implementation activates an object. This happens most often in the course of
binding a moniker, but it can also happen while retrieving a moniker's display name, parsing a display
name into a moniker, or retrieving the time that an object was last modified.

IBindCtx::RegisterObjectBound calls IUnknown::AddRef to create an additional reference to the
object. You must, however, still release your own copy of the pointer. Note that calling this method twice
for the same object creates two references to that object. You can release a reference obtained through a
call to this method by calling IBindCtx::RevokeObjectBound. All references held by the bind context are
released when the bind context itself is released.

Calling IBindCtx::RegisterObjectBound to register an object with a bind context keeps the object active
until the bind context is released. Reusing a bind context in a subsequent binding operation (either for
another piece of the same composite moniker, or for a different moniker) can make the subsequent
binding operation more efficient because it doesn't have to reload that object. This, however, improves
performance only if the subsequent binding operation requires some of the same objects as the original
one, so you need to balance the possible performance improvement of reusing a bind context against the
costs of keeping objects activated unnecessarily.

IBindCtx does not provide a method to retrieve a pointer to an object registered using
IBindCtx::RegisterObjectBound. Assuming the object has registered itself with the Running Object
Table, moniker implementations can call IRunningObjectTable::GetObject to retrieve a pointer to the
object.

See Also
IBindCtx::ReleaseBoundObjects, IBindCtx::RevokeObjectBound, IRunningObjectTable::GetObject

IBindCtx::RegisterObjectParam

Stores an IUnknown pointer on the specified object under the specified key in the bind context's string-
keyed table of pointers. The method must call IUnknown::AddRef on the stored pointer.

HRESULT RegisterObjectParam(

 LPOLESTR pszKey, //Pointer to the key to be used
 IUnknown *punk //Pointer to the object to be associated with the key
);

Parameters
pszKey

[in] Pointer to a zero-terminated wide character string (two bytes per character) containing the key
under which the object is being registered. Key string comparison is case-sensitive.

punk

[in] Pointer to the IUnknown interface on the object that is to be registered.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The pointer was successfully registered under the specified string.

Remarks
A bind context maintains a table of interface pointers, each associated with a string key. This enables
communication between a moniker implementation and the caller that initiated the binding operation. One
party can store an interface pointer under a string known to both parties so that the other party can later
retrieve it from the bind context.

Binding operations subsequent to the use of this method can use IBindCtx::GetObjectParam to retrieve
the stored pointer.

Notes to Callers
IBindCtx::RegisterObjectParam is useful to those implementing a new moniker class (through an
implementation of IMoniker) and to moniker clients (those who use monikers to bind to objects).

In implementing a new moniker class, you call this method when an error occurs during moniker binding
to inform the caller of the cause of the error. The key that you would obtain with a call to this method
would depend on the error condition. The following lists common moniker binding errors, describing for
each the keys that would be appropriate:

MK_E_EXCEEDEDDEADLINE

If a binding operation exceeds its deadline because a given object is not running, you should register
the object's moniker using the first unused key from the list: "ExceededDeadline",
"ExceededDeadline1", "ExceededDeadline2", etc. If the caller later finds the moniker in the Running
Object Table, the caller can retry the binding operation.

MK_E_CONNECTMANUALLY

The "ConnectManually" key indicates a moniker whose binding requires assistance from the end
user. The caller can retry the binding operation after showing the moniker's display name to request
that the end user manually connect to the object. Common reasons for this error are that a password
is needed or that a floppy needs to be mounted.

E_CLASSNOTFOUND

The "ClassNotFound" key indicates a moniker whose class could not be found (the server for the
object identified by this moniker could not be located). If this key is used for an OLE compound-
document object, the caller can use IMoniker::BindToStorage to bind to the object, and then try to
carry out a Treat As... or Convert To... operation to associate the object with a different server. If this is
successful, the caller can retry the binding operation.

If you're a moniker client with detailed knowledge of the implementation of the moniker you're using, you
can also call this method to pass private information to that implementation.

You can define new strings as keys for storing pointers. By convention, you should use key names that
begin with the string form of the CLSID of the moniker class (see the StringFromCLSID function).

If the pszKey parameter matches the name of an existing key in the bind context's table, the new object
replaces the existing object in the table.

When you register an object using this method, the object is not released until one of the following occurs:

· It is replaced in the table by another object with the same key.
· It is removed from the table by a call to IBindCtx::RevokeObjectParam.
· The bind context is released. All registered objects are released when the bind context is released.

See Also
IBindCtx::GetObjectParam, IBindCtx::RevokeObjectParam, IBindCtx::EnumObjectParam

IBindCtx::ReleaseBoundObjects

Releases all pointers to all objects that were previously registered by calls to
IBindCtx::RegisterObjectBound.

HRESULT ReleaseBoundObjects(void);

Return Value
S_OK

The objects were released successfully.

Remarks
You rarely call this method directly. The system's IBindCtx implementation calls this method when the
pointer to the IBindCtx interface on the bind context is released (the bind context is released). If a bind
context is not released, all of the registered objects remain active.

If the same object has been registered more than once, this method calls the IUnknown::Release
method on the object the number of times it was registered.

See Also
IBindCtx::RegisterObjectBound

IBindCtx::RevokeObjectBound

Releases the IUnknown pointer to the specified object and removes that pointer from the bind context's
internal list of pointers. This undoes a previous call to IBindCtx::RegisterObjectBound for the same
object.

HRESULT RevokeObjectBound(

 IUnknown *punk //Pointer to the object whose registration is being revoked
);

Parameter
punk

[in] Pointer to the IUnknown interface on the object to be released.

Return Values
S_OK

The object was released successfully.
MK_E_NOTBOUND

Indicates that punk was not previously registered with a call to IBindCtx::RegisterObjectBound.

Remarks
You rarely call this method. This method is included for completeness.

See Also
IBindCtx::RegisterObjectBound

IBindCtx::RevokeObjectParam

Removes the specified key and its associated pointer from the bind context's string-keyed table of
objects. The key must have previously been inserted into the table with a call to
IBindCtx::RegisterObjectParam.

HRESULT RevokeObjectParam(

 LPOLESTR pszKey //Pointer to the key to be revoked
);

Parameter
pszKey

[in] Pointer to a zero-terminated wide character string (two bytes per character) containing the key to
remove. Key string comparison is case-sensitive.

Return Values
S_OK

The specified key was successfully removed from the table.
S_FALSE

No object has been registered with the specified key.

Remarks
A bind context maintains a table of interface pointers, each associated with a string key. This enables
communication between a moniker implementation and the caller that initiated the binding operation. One
party can store an interface pointer under a string known to both parties so that the other party can later
retrieve it from the bind context.

This method is used to remove an entry from the table. If the specified key is found, the bind context also
releases its reference to the object.

See Also
IBindCtx::RegisterObjectParam

IBindCtx::SetBindOptions

Specifies new values for the binding parameters stored in the bind context. Subsequent binding
operations can call IBindCtx::GetBindOptions to retrieve the parameters.

HRESULT SetBindOptions(

 BIND_OPTS *pbindopts //Pointer to a structure
);

Parameter
pbindopts

[in] Pointer to a BIND_OPTS2 or a BIND_OPTS structure containing the binding parameters.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The parameters were stored successfully.

Remarks
A bind context contains a block of parameters, stored in a BIND_OPTS2 or a BIND_OPTS structure, that
are common to most IMoniker operations. These parameters do not change as the operation moves from
piece to piece of a composite moniker.

Notes to Callers
This method can be called by moniker clients (those who use monikers to acquire interface pointers to
objects).

When you first create a bind context using the CreateBindCtx function, the fields of the BIND_OPTS
structure are initialized to the following values:

cbStruct = sizeof(BINDOPTS);
grfFlags = 0;
grfMode = STGM_READWRITE;
dwTickCountDeadline = 0;

You can use the IBindCtx::SetBindOptions method to modify these values before using the bind
context, if you want values other than the defaults. See BIND_OPTS for more information.

SetBindOptions only copies the struct members of BIND_OPTS2, but not the
COSERVERINFO structure and the pointers it contains. Callers may not free any of these
pointers until the bind context is released.

See Also
Bind_OPTS2, IBindCtx::GetBindOptions

IClassActivator
Specifies a method that retrieves a class object.

When to Implement
No implementation of a moniker or an object supporting IClassActivator currently exists within the
system, however future versions of the operating system may contain such implementations. Implement
the IClassActivator interface if you are writing a custom moniker type which you want to be able to
compose to the left of a class moniker or any other moniker that supports binding to IClassActivator.

When to Use
Use IClassActivator if you write a custom moniker class that should behave similarly to class monikers
when composed to the right of other monikers. File monikers also use this interface.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IClassActivator Method Description
GetClassObject Retrieves a class object.

IClassActivator::GetClassObject
Retrieves a class object. Similar to CoGetClassObject.

HRESULT GetClassObject(

 REFCLSID *pClassID //CLSID of class object desired
 DWORD dwClsContext //Values from CLSCTX
 LCID locale //LCID constant
 REFIID riid //IID of requested interface
 void ** ppv //Indirect pointer to requested interface
);

Parameter
pClassID

[in] Points to the CLSID that Identifies the class whose class object is to be retrieved.
dwClsContext

[in] The context in which the class is expected to run; values are taken from the CLSCTX
enumeration.

locale

[in] Any LCID constant as defined in WINNLS.H.
riid

[in] IID of the interface on the object to which a pointer is desired.
ppv

[out] On successful return, an indirect pointer to the requested interface.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The CLSID was successfully returned.

Remarks
This method returns the class identifier (CLSID) for an object, used in later operations to load object-
specific code into the caller's context.

See Also
CoGetClassObject

IClassFactory

The IClassFactory interface contains two methods intended to deal with an entire class of objects, and
so is implemented on the class object for a specific class of objects (identified by a CLSID). The first
method, CreateInstance, creates an uninitialized object of a specified CLSID, and the second,
LockServer, locks the object's server in memory, allowing new objects to be created more quickly.

When to Implement
You must implement this interface for every class that you register in the system registry and to which you
assign a CLSID, so objects of that class can be created.

When to Use
After calling the CoGetClassObject function to get an IClassFactory interface pointer to the class object,
call the CreateInstance method of this interface to create a new uninitialized object.

It is not, however, always necessary to go through this process to create an object. To create a single
uninitialized object, you can, instead, just call CoCreateInstance. OLE also provides numerous helper
functions (with names of the form OleCreateXxx) to create compound document objects.

Call the LockServer method to keep the object server in memory and enhance performance only if you
intend to create more than one object of the specified class.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IClassFactory Methods Description
CreateInstance Creates an uninitialized object.
LockServer Locks object application open in

memory.

See Also
CoGetClassObject, CoCreateInstance, OleCreate

IClassFactory::CreateInstance

Creates an uninitialized object.

HRESULT CreateInstance(

 IUnknown * pUnkOuter, //Pointer to whether object is or isn't part of an aggregate
 REFIID riid, //Reference to the identifier of the interface
 void ** ppvObject //Indirect pointer to the interface
);

Parameters
pUnkOuter

[in] If the object is being created as part of an aggregate, pointer to the controlling IUnknown
interface of the aggregate. Otherwise, pUnkOuter must be NULL.

riid

[in] Reference to the identifier of the interface to be used to communicate with the newly created
object. If pUnkOuter is NULL, this parameter is frequently the IID of the initializing interface; if
pUnkOuter is non-NULL, riid must be IID_IUnknown (defined in the header as the IID for IUnknown).

ppvObject

[out] Indirect pointer to the requested interface. If the object does not support the interface specified in
riid, ppvObject must be set to NULL.

Return Values
This method supports the standard return values E_UNEXPECTED, E_OUTOFMEMORY, and
E_INVALIDARG, as well as the following:

S_OK

The specified object was created.
CLASS_E_NOAGGREGATION

The pUnkOuter parameter was non-NULL and the object does not support aggregation.
E_NOINTERFACE

The object that ppvObject points to does not support the interface identified by riid.

Remarks
The IClassFactory interface is always on a class object. The CreateInstance method creates an
uninitialized object of the class identified with the specified CLSID. When an object is created in this way,
the CLSID must be registered in the system registry with CoRegisterClassObject.

The pUnkOuter parameter indicates whether the object is being created as part of an aggregate. Object
definitions are not required to support aggregation ¾ they must be specifically designed and implemented
to support it.

The riid parameter specifies the IID (interface identifier) of the interface through which you will
communicate with the new object. If pUnkOuter is non-NULL (indicating aggregation), the value of the riid

parameter must be IID_IUnknown. If the object is not part of an aggregate, riid often specifies the
interface though which the object will be initialized.

For OLE embeddings, the initialization interface is IPersistStorage, but in other situations, other
interfaces are used. To initialize the object, there must be a subsequent call to an appropriate method in
the initializing interface. Common initialization functions include IPersistStorage::InitNew (for new, blank
embeddable components), IPersistStorage::Load (for reloaded embeddable components),
IPersistStream::Load, (for objects stored in a stream object) or IPersistFile::Load (for objects stored in
a file).

In general, if an application supports only one class of objects, and the class object is registered for single
use, only one object can be created. The application must not create other objects, and a request to do so
should return an error from IClassFactory::CreateInstance. The same is true for applications that
support multiple classes, each with a class object registered for single use; a CreateInstance for one
class followed by a CreateInstance for any of the classes should return an error.

To avoid returning an error, applications that support multiple classes with single-use class objects can
revoke the registered class object of the first class by calling CoRevokeClassObject when a request for
instantiating a second is received. For example, suppose there are two classes, A and B. When
IClassFactory::CreateInstance is called for class A, revoke the class object for B. When B is created,
revoke the class object for A. This solution complicates shutdown because one of the class objects might
have already been revoked (and cannot be revoked twice).

See Also
CoRegisterClassObject, CoRevokeClassObject, CoCreateInstance, CoGetClassObject

IClassFactory::LockServer

Called by the client of a class object to keep a server open in memory, allowing instances to be created
more quickly.

HRESULT LockServer(

 BOOL fLock //Increments or decrements the lock count
);

Parameter
fLock

[in] If TRUE, increments the lock count; if FALSE, decrements the lock count.

Return Values
This method supports the standard return values E_FAIL, E_OUTOFMEMORY, and E_UNEXPECTED,
as well as the following:

S_OK

The specified object was either locked (fLock = TRUE) or unlocked from memory (fLock = FALSE).

Remarks
IClassFactory::LockServer controls whether an object's server is kept in memory. Keeping the
application alive in memory allows instances to be created more quickly.

Notes to Callers
Most clients do not need to call this function. It is provided only for those clients that require special
performance in creating multiple instances of their objects.

Notes to Implementers
If the lock count is zero, there are no more objects in use, and the application is not under user control,
the server can be closed. One way to implement IClassFactory::LockServer is to call
CoLockObjectExternal.

The process that locks the object application is responsible for unlocking it. Once the class object is
released, there is no mechanism that guarantees the caller connection to the same class later (as in the
case where a class object is registered as single-use). It is important to count all calls, not just the last
one, to IClassFactory::LockServer, because calls must be balanced before attempting to release the
pointer to the IClassFactory interface on the class object or an error results. For every call to
LockServer with fLock set to TRUE, there must be a call to LockServer with fLock set to FALSE. When
the lock count and the class object reference count are both zero, the class object can be freed.

See Also
CoLockObjectExternal

IClassFactory2

The IClassFactory2 interface enables a class factory object, in any sort of object server, to control object
creation through licensing. This interface is an extension to IClassFactory. This extension enables a
class factory executing on a licensed machine to provide a license key that can be used later to create an
object instance on an unlicensed machine. Such considerations are important for objects like controls that
are used to build applications on a licensed machine. Subsequently, the application built must be able to
run on an unlicensed machine. The license key gives only that one client application the right to
instantiate objects through IClassFactory2 when a full machine license does not exist.

When to Implement
Implement this interface on a class factory object if you need to control object creation through a license.
A class that supports licensing should be marked in an object's type information with the [licensed]
attribute on the object's coclass entry.

The CreateInstance method inherited from IClassFactory is allowed to return
CLASS_E_NOTLICENSED to indicate that object creation is controlled through licensing. The caller can
create an instance of this object only through IClassFactory2::CreateInstanceLic if the caller has a
license key obtained from IClassFactory2::RequestLicKey. Otherwise, no object creation is allowed.

When to Use
Use this interface to create licensed objects or to obtain a license key that can be used in later creations.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IClassFactory Methods Description
CreateInstance Creates an uninitialized object.
LockServer Locks object application open in

memory.

IClassFactory2 Methods Description
GetLicInfo Fills a LICINFO structure with

information on the licensing
capabilities of this class factory.

RequestLicKey Creates and returns a license key
that the caller can save and use later
in calls to
IClassFactory2::CreateInstanceLic
.

CreateInstanceLic Creates an instance of the licensed
object given a license key from
IClassFactory2::RequestLicKey.

See Also

IClassFactory

IClassFactory2::CreateInstanceLic

Creates an instance of the object class supported by this class factory, given a license key previously
obtained from IClassFactory2::RequestLicKey. This method is the only possible means to create an
object on an otherwise unlicensed machine.

HRESULT CreateInstanceLic(

 IUnknown* pUnkOuter , //Pointer to controlling unknown of aggregated object
 IUnknown* pUnkReserved , //Unused. Must be NULL.
 REFIID riid , //Reference to the identifier of the interface
 BSTR bstrKey , //License key provided by IClassFactory2::RequestLicKey
 void** ppvObject //Indirect pointer to the interface of the type specified in riid
);

Parameters
pUnkOuter

[in] Pointer to the controlling IUnknown interface on the outer unknown if this object is being created
as part of an aggregate. If the object is not part of an aggregate, this parameter must be NULL.

pUnkReserved

[in] Unused. Must be NULL.
riid

[in] Reference to the identifier of the interface to be used to communicate with the newly created
object.

bstrKey

[in] Run-time license key previously obtained from IClassFactory2::RequestLicKey that is required
to create an object.

ppvObject

[out] Indirect pointer to the interface of the type specified in riid. This parameter is set to NULL on
failure.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The license was successfully created.
E_NOTIMPL

This method is not implemented because objects can only be created on fully licensed machines
through IClassFactory::CreateInstance.

E_POINTER

The pointers passed in bstrKey or ppvObject are not valid. For example, it may be NULL.
E_NOINTERFACE

The object can be created (and the license key is valid) except the object does not support the
interface specified by riid.

CLASS_E_NOAGGREGATION

The pUnkOuter parameter is non-NULL, but this object class does not support aggregation.
CLASS_E_NOTLICENSED

The key provided in bstrKey is not a valid license key.

Remarks
Notes to Implementers
If the class factory does not provide a license key (that is, IClassFactory2::RequestLicKey returns
E_NOTIMPL and the fRuntimeKeyAvail field in LICINFO is set to FALSE in IClassFactory2::GetLicInfo),
then this method can also return E_NOTIMPL. In such cases, the class factory is implementing
IClassFactory2 simply to specify whether or not the machine is licensed at all through the fLicVerified
field of LICINFO.

See Also
IClassFactory2::GetLicInfo, IClassFactory2::RequestLicKey, LICINFO

IClassFactory2::GetLicInfo

Fills a caller-allocated LICINFO structure with information describing the licensing capabilities of this class
factory.

HRESULT GetLicInfo(

 LICINFO* pLicInfo //Pointer to the structure
);

Parameters
pLicInfo

[out] Pointer to the caller-allocated LICINFO structure to be filled on output.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The LICINFO structure was successfully filled in.
E_POINTER

The address in pLicInfo is not valid. For example, it may be NULL.

Remarks
Notes to Implementers
E_NOTIMPL is not allowed as a return value since this method provides critical information for the client
of a licensed class factory.

See Also
IClassFactory2::CreateInstanceLic, IClassFactory2::RequestLicKey, LICINFO

IClassFactory2::RequestLicKey

If the fRuntimeKeyAvail field in LICINFO has been returned as TRUE from IClassFactory2::GetLicInfo,
then this method creates and returns a license key. The caller can save the license key persistently and
use it later in calls to IClassFactory2::RequestLicKey.

HRESULT RequestLicKey(

 DWORD dwReserved , //Unused. Must be zero.
 BSTR* pbstrKey //Pointer to the license key
);

Parameters
dwReserved

[in] Unused. Must be zero.
pbstrKey

[out] Pointer to the caller-allocated BSTR variable that receives the callee-allocated license key on
successful return from this method. This parameter is set to NULL on any failure.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The license key was successfully created.
E_NOTIMPL

This class factory does not support run-time license keys.
E_POINTER

The address in pbstrKey is not valid. For example, it may be NULL.
CLASS_E_NOTLICENSED

This class factory supports run-time licensing, but the current machine itself is not licensed. Thus, a
run-time key is not available on this machine.

Remarks
The caller can save the license key for subsequent calls to IClassFactory2::CreateInstanceLic to create
objects on an otherwise unlicensed machine.

Notes to Callers
The caller must free the BSTR with SysFreeString when the key is no longer needed. The value of
fRuntimeKeyAvail is returned through a previous call to IClassFactory2::GetLicInfo.

Notes to Implementers
This method allocates the BSTR key with SysAllocString or SysAllocString[Len], and the caller becomes
responsible for this BSTR once this method returns successfully.

This method need not be implemented when a class factory does not support run-time license keys.

See Also
IClassFactory2::CreateInstanceLic, IClassFactory2::GetLicInfo, LICINFO

IClientSecurity

Gives the client control over the call-security of individual interfaces on a remote object.

All proxies generated by the COM MIDL compiler support the IClientSecurity interface automatically. If a
call to QueryInterface for IClientSecurity fails, either the object is implemented in-process or it is
remoted by a custom marshaler which does not support security (a custom marshaler may support
security by offering the IClientSecurity interface to the client). The proxies passed as parameters to an
IClientSecurity method must be from the same object as the IClientSecurity interface. That is, each
object has a distinct IClientSecurity interface: calling IClientSecurity on one object and passing a proxy
to another object will not work.

When to Implement
The system proxy manager provides an implementation to objects, so you would typically not implement
this interface.

If, however, you are defining objects that support custom marshaling, you may choose to implement
IClientSecurity on the objects' custom proxy to maintain a consistent programming model for the objects'
client applications. You may also choose to support this interface on in-process objects.

When to Use
Call the methods of this interface to examine or modify the security settings of a particular connection to
an out-of-process object. For example, you might temporarily establish a higher security level ¾ one with
complex encryption ¾ only for the period when sensitive information or data is being sent to the object.
Alternately, you might establish different proxies to the same object with different security levels and use
them to support different clients that are calling your object, or to support different operations within your
application.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IClientSecurity Methods Description
IClientSecurity::QueryBlanket Retrieves authentication

information.
IClientSecurity::SetBlanket Sets the authentication information

that will be used to make calls on
the specified proxy.

IClientSecurity::CopyProxy Makes a copy of the specified
proxy.

See Also
Security in COM

IClientSecurity::CopyProxy

Makes a private copy of the specified proxy.

HRESULT CopyProxy(

 IUnknown * punkProxy , //IUnknown pointer to the proxy to copy
 IUnknown ** ppunkCopy //Indirect IUnknown pointer to the copy
);

Parameter
punkProxy

[in] Points to the IUnknown interface on the proxy to be copied. May not be NULL.
ppunkCopy

[out] On successful return, points to the location of the IUnknown pointer to the copy of the proxy. It
may not be NULL.

Return Values
S_OK

Success.
E_INVALIDARG

One or more arguments are invalid.

Remarks
IClientSecurity::CopyProxy makes a private copy of the specified proxy for the calling client. Its
authentication information may be changed through a call to IClientSecurity::SetBlanket without
affecting any other clients of the original proxy. The copy has the default values for the authentication
information. The copy has one reference and must be released.

The helper function CoCopyProxy encapsulates a QueryInterface call on the proxy for a pointer to
IClientSecurity, and with that pointer calls IClientSecurity::CopyProxy, and then releases the
IClientSecurity pointer.

Local interfaces may not be copied. IUnknown and IClientSecurity are examples of existing local
interfaces.

Copies of the same proxy have a special relationship with respect to QueryInterface. Given a proxy, a, of
the IA interface of a remote object, suppose a copy of a is created, called b. In this case, calling
QueryInterface from the b proxy for IID_IA will not retrieve the IA interface on b, but the one on a, the
original proxy with the "default" security settings for the IA interface.

See Also
CoCopyProxy

IClientSecurity::QueryBlanket
Retrieves authentication information.

HRESULT QueryBlanket(

 void* pProxy , //Location for the proxy to query
 DWORD* pAuthnSvc , //Location for the current authentication service
 DWORD* pAuthzSvc , //Location for the current authorization service
 OLECHAR ** pServerPrincName , //Location for the current principal name
 DWORD * pAuthnLevel , //Location for the current authentication level
 DWORD * pImpLevel , //Location for the current impersonation level
 RPC_AUTH_IDENTITY_HANDLE ** ppAuthInfo , //Location for the value passed to IClientSecurity::SetBlanket
 DWORD ** pCapabilities //Location for flags indicating further capabilities of the proxy
);

Parameter
pProxy

[in] Pointer to the proxy to query.pAuthnSvc
[out] Pointer to a DWORD value defining the current authentication service. This will be a single value
taken from the list of RPC_C_AUTHN_ xxx constants. May be NULL, in which case the current
authentication service is not retrieved.

pAuthzSvc

[out] Pointer to a DWORD value defining the current authorization service. This will be a single value
taken from the list of RPC_C_AUTHZ_ xxx constants. May be NULL, in which case the current
authorization service is not retrieved.

pServerPrincName

[out] Pointer to the current principal name. The string will be allocated by the one called using
CoTaskMemAlloc and must be freed by the caller using CoTaskMemFree when they are done with
it. May be NULL, in which case the principal name is not retrieved.

pAuthnLevel

[out] Pointer to a DWORD value defining the current authentication level. This will be a single value
taken from the list of RPC_C_AUTHN_LEVEL_ xxx constants. May be NULL, in which case the
current authentication level is not retrieved.

pImpLevel

[out] Pointer to a DWORD value defining the current impersonation level. This will be a single value
taken from the list of RPC_C_IMP_LEVEL_ xxx constants. May be NULL, in which case the current
authentication level is not retrieved.

ppAuthInfo

[out] Pointer to the pointer value passed to IClientSecurity::SetBlanket indicating the identity of the
client. Because this points to the value itself and is not a copy, it should not be manipulated. May be
NULL, in which case the information is not retrieved.

pCapabilities

[out] Pointer to a DWORD of flags indicating further capabilities of the proxy. Currently, no flags are
defined for this parameter and it will only return zero. May be NULL, in which case the flags indicating

further capabilities are not retrieved.

Return Values
S_OK

Success.
E_INVALIDARG

One or more arguments are invalid.
E_OUTOFMEMORY

Insufficient memory to create the pServerPrincName out-parameter.

Remarks
IClientSecurity::QueryBlanket is called by the client to retrieve the authentication information COM will
use on calls made from the specified proxy. With a pointer to an interface on the proxy, the client would
first call QueryInterface for a pointer to IClientSecurity, then, with this pointer, would call
IClientSecurity::QueryBlanket, followed by releasing the pointer. This sequence of calls is
encapsulated in the helper function CoQueryProxyBlanket.

In pProxy, you can pass any proxy, such as a proxy you get through a call to CoCreateInstance,
CoUnmarshalInterface, or just passing an interface pointer as a parameter. It can be any interface.
You cannot pass a pointer to something that is not a proxy. Thus you can't pass a pointer to an interface
that has the local keyword in its interface definition since no proxy is created for such an interface.
IUnknown is the exception.

See Also
CoQueryProxyBlanket

IClientSecurity::SetBlanket
Sets the authentication information that will be used to make calls on the specified proxy.

HRESULT SetBlanket(

 void * pProxy , //Indicates the proxy to set
 DWORD dwAuthnSvc , //Authentication service to use
 DWORD dwAuthzSvc , //Authorization service to use
 WCHAR * pServerPrincName , //The server principal name to use with the authentication service
 DWORD dwAuthnLevel , //The authentication level to use
 DWORD dwImpLevel , //The impersonation level to use
 RPC_AUTH_IDENTITY_HANDLE * pAuthInfo , //The identity of the client
 DWORD dwCapabilities //Undefined ¾ capability flags
);

Parameter
pProxy

[in] Indicates the proxy to set.
dwAuthnSvc

[in] A single DWORD value from the list of RPC_C_AUTHN_ xxx constants indicating the
authentication service to use. It may be RPC_C_AUTHN_NONE if no authentication is required.
RPC_C_AUTHN_WINNT is the only value available on NT by default.

dwAuthzSvc

[in] A single DWORD value from the list of RPC_C_AUTHZ_ xxx constants indicating the authorization
service to use. If you are using the NT authentication service, use RPC_C_AUTHZ_NONE.

pServerPrincName

[in] Pointer to a WCHAR string that indicates the server principal name to use with the authentication
service. If you are using RPC_C_AUTHN_WINNT, the principal name must be NULL.

dwAuthnLevel

[in] A single DWORD value from the list of RPC_C_AUTHN_LEVEL_ xxx constants indicating the
authentication level to use.

dwImpLevel

[in] A single DWORD value from the list of RPC_C_IMP_LEVEL_ xxx constants indicating the
impersonation level to use. Currently, only RPC_C_IMP_LEVEL_IMPERSONATE and
RPC_C_IMP_LEVEL_IDENTIFY are supported by NTLMSSP.

pAuthInfo

[in] Pointer to an RPC_AUTH_IDENTITY_HANDLE value that establishes the identity of the client. It
is authentication-service specific. Some authentication services allow the application to pass in a
different user name and password. COM keeps a pointer to the memory passed in until COM is
uninitialized or a new value is set. If NULL is specified COM uses the current identity (the process
token). For NTLMSSP the structure is SEC_WINNT_AUTH_IDENTITY_W. The format of this
structure depends on the provider of the authentication service.

dwCapabilities

[in] A DWORD defining flags to establish indicating the further capabilities of this proxy. Currently, no
capability flags are defined.
The caller should specify EOAC_NONE. EOAC_MUTUAL_AUTH is defined and may be used by
other security providers, but is not supported by NTLMSSP. Thus, NTLMSSP will accept this flag
without generating an error but without providing mutual authentication.

Return Values
S_OK

Success, append the headers.
E_INVALIDARG

One or more arguments is invalid.

Remarks
IClientSecurity::SetBlanket sets the authentication information that will be used to make calls on the
specified proxy. The values specified here override the values chosen by automatic security. Calling this
method changes the security values for all other users of the specified proxy. Call
IClientSecurity::CopyProxy to make a private copy of the proxy.

By default, COM will choose the first available authentication service and authorization service available
on both the client and server machines and the principal name which the server registered for that
authentication service. Currently, COM will not try another authentication service if the first fails.

If pAuthInfo is NULL, it defaults to the current process token. dwAuthnLevel and dwImpLevel default to
the values specified to CoInitializeSecurity. If CoInitializeSecurity is not called, the defaults are taken
from the registry. The initial value for dwAuthnLevel on a proxy will be the higher of the value set on the
client's call to CoInitializeSecurity and the server's call to CoInitializeSecurity .

Security information cannot be set on local interfaces. For example, it is illegal to set security on the
IClientSecurity interface. However, since that interface is supported locally, there is no need for security.
IUnknown is a special case. There are several cases. First, IUnknown cannot be copied. Thus all
users of an object get the same security. Second, SetBlanket can be used to set the security used for
calls to QueryInterface. However, since QueryInterface is heavily cached, the server might not see the
call. Third, AddRef and Release always use the security set with CoInitializeSecurity, never the values
set with SetBlanket.

See Also
CoSetProxyBlanket, CoQueryProxyBlanket, RPC_C_AUTHN_xxx, RPC_C_AUTHZ_ xxx ,
RPC_C_AUTHN_LEVEL_ xxx , RPC_C_IMP_LEVEL_ xxx

IConnectionPoint

The IConnectionPoint interface supports connection points for connectable objects.

Connectable objects support the following features:

· Outgoing interfaces, such as event sets
· The ability to enumerate the IIDs of the outgoing interfaces
· The ability to connect and disconnect sinks to the object for those outgoing IIDs
· The ability to enumerate the connections that exist to a particular outgoing interface

When to Implement
Implement this interface as part of support for connectable objects. To create a connectable object, you
need to implement objects that provide four related interfaces:

· IConnectionPointContainer
· IEnumConnectionPoints
· IConnectionPoint
· IEnumConnections

The IConnectionPointContainer interface is implemented on the connectable object to indicate the
existence of the outgoing interfaces. It provides access to an enumerator sub-object with the
IEnumConnectionPoints interface. It also provides access to all the connection point sub-objects, each
of which implements the IConnectionPoint interface. The IConnectionPoint interface provides access
to an enumerator sub-object with the IEnumConnections interface.

Each connection point is a separate sub-object to avoid circular reference counting problems.

A connection point controls how many connections (one or more) it will allow in its implementation of
IConnectionPoint::Advise. A connection point that allows only one interface can return E_NOTIMPL
from the IConnectionPoint::EnumConnections method.

When to Use
A client can use the IConnectionPointContainer interface:

· To obtain access to an enumerator sub-object with the IEnumConnectionPoints interface. The
IEnumConnectionPoints interface can then be used to enumerate connection points for each
outgoing IID.

· To obtain access to connection point sub-objects with the IConnectionPoint interface for each
outgoing IID. Through the IConnectionPoint interface, a client starts or terminates an advisory loop
with the connectable object and the client's own sink. The client can also use the IConnectionPoint
interface to obtain an enumerator object with the IEnumConnections interface to enumerate the
connections that it knows about.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IConnectionPoint Methods Description
GetConnectionInterface Returns the IID of the outgoing

interface managed by this
connection point.

GetConnectionPointContaine
r

Returns the parent (connectable)
object's
IConnectionPointContainer
interface pointer.

Advise Creates a connection between a
connection point and a client's sink,
where the sink implements the
outgoing interface supported by this
connection point.

Unadvise Terminates a notification previously
set up with Advise.

EnumConnections Returns an object to enumerate the
current advisory connections for this
connection point.

See Also
IConnectionPoint, IConnectionPointContainer, IEnumConnectionPoints, IEnumConnections

IConnectionPoint::Advise

Establishes a connection between the connection point object and the client's sink.

HRESULT Advise(

 IUnknown *pUnk , //Pointer to the client's advise sink
 DWORD *pdwCookie //Pointer to the connection point identifier used by Unadvise
);

Parameter
pUnk

[in] Pointer to the IUnknown interface on the client's advise sink. The client's sink receives outgoing
calls from the connection point.

pdwCookie

[out] Pointer to a returned token that uniquely identifies this connection. The caller uses this token
later to delete the connection by passing it to the IConnectionPoint::Unadvise method. If the
connection was not successfully established, this value is zero.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The connection has been established and *pdwCookie has the connection token.
E_POINTER

The value in pUnk or pdwCookie is not valid. For example, either pointer may be NULL.
CONNECT_E_ADVISELIMIT

The connection point has already reached its limit of connections and cannot accept any more.
CONNECT_E_CANNOTCONNECT

The sink does not support the interface required by this connection point.

Remarks
Advise establishes a connection between the connection point and the caller's sink identified with pUnk.

The connection point must call pUnk->QueryInterface(iid, ...) to obtain the correct outgoing interface pointer
to call when events occur, where iid is the IID for the outgoing interface managed by the connection point.
When iid is passed to the IConnectionPointContainer::FindConnectionPoint method, an interface
pointer to this same connection point is returned.

Notes to Implementers
The connection point must query the pUnk pointer for the correct outgoing interface. If this query fails, this
method must return CONNECT_E_CANNOTCONNECT.

The pdwCookie value must be unique for each connection to any given instance of a connection point.

See Also
IConnectionPoint::Unadvise

IConnectionPoint::EnumConnections

Creates an enumerator object to iterate through the current connections for this connection point.

HRESULT EnumConnections(

 IEnumConnections **ppEnum //Indirect pointer to the newly created enumerator
);

Parameters
ppEnum

[out] Indirect pointer to the IEnumConnections interface on the newly created enumerator.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The enumerator object was successfully created.
E_POINTER

The address in ppEnum is not valid. For example, it may be NULL.
E_NOTIMPL

The connection point does not support enumeration.

Remarks
Notes to Callers
The caller is responsible for calling (*ppEnum)->Release when the enumerator is no longer needed.

See Also
IEnumConnections

IConnectionPoint::GetConnectionInterface

Returns the IID of the outgoing interface managed by this connection point.

HRESULT GetConnectionInterface(

 IID *pIID //Pointer to an IID variable
);

Parameters
pIID

[out] Pointer to the identifier of the outgoing interface managed by this connection point.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The caller's variable pIID contains the identifier of the outgoing interface managed by this connection
point.

E_POINTER

The address in pIID is not valid. For example, it may be NULL.

Remarks
Using the IEnumConnectionPoints interface, a client can obtain a pointer to the IConnectionPoint
interface. Using that pointer and the GetConnectionInterface method, the client can determine the IID of
each connection point enumerated. The IID returned from this method must enable the caller to access
this same connection point through IConnectionPointContainer::FindConnectionPoint.

Notes to Implementers
This method must be implemented in any connection point; E_NOTIMPL is not an acceptable return
value.

See Also
IConnectionPoint, IConnectionPointContainer::FindConnectionPoint, IEnumConnectionPoints

IConnectionPoint::GetConnectionPointContainer

Retrieves the IConnectionPointContainer interface pointer for the parent connectable object.

HRESULT GetConnectionPointContainer(

 IConnectionPointContainer **ppCPC //Indirect pointer
);

Parameters
ppCPC

[out] Indirect pointer to the IConnectionPointContainer interface on the parent connectable object.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The IConnectionPointContainer pointer was successfully returned.
E_POINTER

The value in ppCPC is not a valid interface pointer. For example, it may be NULL.

Remarks
Notes to Callers
This method calls IConnectionPointContainer::AddRef. The caller is responsible for calling
IConnectionPointContainer::Release to release this pointer when done.

Notes to Implementers
This method must call IConnectionPointContainer::AddRef before returning.

This method must be implemented in any connection point; E_NOTIMPL is not an acceptable return
value.

See Also
IConnectionPoint, IConnectionPointContainer

IConnectionPoint::Unadvise

Terminates an advisory connection previously established through IConnectionPoint::Advise. The
dwCookie parameter identifies the connection to terminate.

HRESULT Unadvise(

 DWORD dwCookie //Connection token
);

Parameters
dwCookie

[in] Connection token previously returned from IConnectionPoint::Advise.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The connection was successfully terminated.
CONNECT_E_NOCONNECTION

The value in dwCookie does not represent a valid connection.

Remarks
When an advisory connection is terminated, the connection point calls the Release method on the pointer
that was saved for the connection during the IConnectionPoint::Advise method. This Release reverses
the AddRef that was performed during the IConnectionPoint::Advise when the connection point calls
the advisory sink's QueryInterface.

See Also
IConnectionPoint::Advise

IConnectionPointContainer

The IConnectionPointContainer interface supports connection points for connectable objects.

Connectable objects support the following features:

· Outgoing interfaces, such as event sets
· The ability to enumerate the IIDs of the outgoing interfaces
· The ability to connect and disconnect sinks to the object for those outgoing IIDs
· The ability to enumerate the connections that exist to a particular outgoing interface

When to Implement
Implement this interface as part of support for connectable objects. To support connectable objects, you
need to provide four related interfaces:

· IConnectionPointContainer
· IEnumConnectionPoints
· IConnectionPoint
· IEnumConnections

The IConnectionPointContainer interface indicates the existence of the outgoing interfaces. It provides
access to an enumerator sub-object with the IEnumConnectionPoints interface. It also provides a
connection point sub-object with the IConnectionPoint interface. The IConnectionPoint interface
provides access to an enumerator sub-object with the IEnumConnections interface.

The connection point is a separate sub-object to avoid circular reference counting problems.

Implement the IConnectionPointContainer interface to make a connectable object, that is, an object
with outgoing interfaces.

When to Use
Through IConnectionPointContainer, you can locate a specific connection point for one IID or obtain an
enumerator to enumerate the connections points.

Use the IConnectionPointContainer interface to obtain access to:

· Enumerator sub-objects with the IEnumConnectionPoints interface. The IEnumConnectionPoints
interface can then be used to enumerate connection points for each outgoing IID.

· Connection point sub-objects with the IConnectionPoint interface for each IID. Through the
IConnectionPoint interface, a client starts or terminates an advisory loop with the connectable object
and the client's own sink. The client can also use the IConnectionPoint interface to obtain an
enumerator object with the IEnumConnections interface to enumerate the connections it knows
about.

When to Use
Methods in Vtable Order

IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.

Release Decrements reference count.

IConnectionPointContainer
Methods

Description

EnumConnectionPoints Returns an object to enumerate all
the connection points supported in
the connectable object.

FindConnectionPoint Returns a pointer to the
IConnectionPoint interface for a
specified connection point.

See Also
IConnectionPoint, IEnumConnectionPoints, IEnumConnections

IConnectionPointContainer::EnumConnectionPoints

Creates an enumerator object to iterate through all the connection points supported in the connectable
object, one connection point per outgoing IID.

HRESULT EnumConnectionPoints(

 IEnumConnectionPoints **ppEnum //Indirect pointer to the newly created enumerator
);

Parameters
ppEnum

[out] Indirect pointer to the IEnumConnectionPoints interface on the newly created enumerator.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The enumerator was successfully created.
E_POINTER

The value in ppEnum is not valid. For example, it may be NULL.

Remarks
Since IEnumConnectionPoints enumerates pointers to IConnectionPoint, the caller must use
IConnectionPoint::GetConnectionInterface to determine the interface identifer of the outgoing interface
that the connection point supports.

Notes to Callers
The caller is responsible for releasing the enumerator by calling (*ppEnum)->Release when it is no longer
needed.

Notes to Implementers
Returning E_NOTIMPL is specifically disallowed because, with the exception of type information, there
would be no other means through which a caller could find the IIDs of the outgoing interfaces. Since a
connectable object typically has a fixed set of known outgoing interfaces, it is straightforward to
implement the enumerator on top of a fixed length array of IIDs known at compile time.

See Also
IEnumConnectionPoints

IConnectionPointContainer::FindConnectionPoint

Returns a pointer to the IConnectionPoint interface of a connection point for a specified IID, if that IID
describes a supported outgoing interface.

HRESULT FindConnectionPoint(

 REFIID riid , //Requested connection point's interface identifier
 IConnectionPoint **ppCP //Indirect pointer to the variable of the requested IID
);

Parameters
riid

[in] Interface identifier of the outgoing interface whose connection point object is being requested.
ppCP

[out] Indirect pointer to the IConnectionPoint interface on the connection point that supports riid. This
parameter is set to NULL on failure of the call.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The ppCP pointer has a valid interface pointer.
E_POINTER

The address in ppCP is not valid. For example, it may be NULL.
CONNECT_E_NOCONNECTION

This connectable object does not support the outgoing interface specified by riid.

Remarks
This method is the QueryInterface equivalent for an object's outgoing interfaces, where the outgoing
interface is specified with riid and where the interface pointer returned is always that of a connection
point.

Notes to Callers
If the call is successful, the caller is responsible for releasing the connection point by calling (*ppCP)-
>Release when the connection point is no longer needed.

Notes to Implementers
E_NOTIMPL is not allowed as a return value for this method. Any implementation of
IConnectionPointContainer must implement this method for the connectable object's outgoing
interfaces.

See Also
IConnectionPoint

IDataAdviseHolder

The IDataAdviseHolder interface contains methods that create and manage advisory connections
between a data object and one or more advise sinks. Its methods are intended to be used to implement
the advisory methods of IDataObject. IDataAdviseHolder is implemented on an advise holder object. Its
methods establish and delete data advisory connections and send notification of change in data from a
data object to an object that requires this notification, such as an OLE container, which must contain an
advise sink.

Advise sinks are objects that require notification of change in the data the object contains and implement
the IAdviseSink interface. Advise sinks are also usually associated with OLE compound document
containers.

When to implement
Typically, you use the OLE-provided implementation of IDataAdviseHolder to simplify your
implementation of the DAdvise, DUnadvise, and EnumDAdvise methods in the IDataObject interface,
and to send notification of data change as appropriate. It would be necessary to implement
IDataAdviseHolder only in the case where there may be a need for a custom data advise holder object,
whose methods are to be used to implement the IDataObject methods in a set of servers.

When to use
Your implementation of the advisory methods of IDataObject can call the methods in
IDataAdviseHolder. The first time you receive a call to IDataObject::DAdvise, call the function
CreateDataAdviseHolder to create an instance of the OLE-provided advise holder and get a pointer to
its IDataAdviseHolder interface. Then, in implementing the IDataObject interface on the data object, you
delegate implementations of the DAdvise, DUnadvise, and EnumDAdvise methods to the
corresponding methods in IDataAdviseHolder.

When the data of interest to an advise sink actually changes, you call
IDataAdviseHolder::SendOnDataChange from the data object to carry out the necessary notifications.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IDataAdviseHolder Methods Description
Advise Creates a connection between an

advise sink and a data object so
the advise sink can receive
notification of change in the data
object.

Unadvise Destroys a notification connection
previously set up with the Advise
method.

EnumAdvise Returns an object that can be used
to enumerate the current advisory
connections.

SendOnDataChange Sends a change notification back

to each advise sink that is currently
being managed.

See Also
IDataObject, IAdviseSink

IDataAdviseHolder::Advise

Creates a connection between an advise sink and a data object for receiving notifications.

HRESULT Advise(

 IDataObject * pDataObject, //Pointer to the data object for which notifications are requested
 FORMATETC * pFormatetc, //Pointer to the description of data to the advise sink
 DWORD advf, //Flags that specify how the notification takes place
 IAdviseSink * pAdvSink, //Pointer to the advise sink requesting notification
 DWORD * pdwConnection //Pointer to the connection token
);

Parameters
pDataObject

[in] Pointer to the IDataObject interface on the data object for which notifications are requested. If
data in this object changes, a notification is sent to the advise sinks that have requested notification.

pFormatetc

[in] Pointer to the specified format, medium, and target device that is of interest to the advise sink
requesting notification. For example, one sink may want to know only when the bitmap representation
of the data in the data object changes. Another sink may be interested in only the metafile format of
the same object. Each advise sink is notified when the data of interest changes. This data is passed
back to the advise sink when notification occurs.

advf

[in] Contains a group of flags for controlling the advisory connection. Valid values are from the
enumeration ADVF. However, only some of the possible ADVF values are relevant for this method.
The following table briefly describes the relevant values; a more detailed description can be found in
the description of the ADVF enumeration.

ADVF Value Description
ADVF_NODATA Asks that no data be sent along

with the notification.
ADVF_ONLYONCE Causes the advisory connection

to be destroyed after the first
notification is sent. An implicit call
to
IDataAdviseHolder::Unadvise is
made on behalf of the caller to
remove the connection.

ADVF_PRIMEFIRST Causes an initial notification to be
sent regardless of whether or not
data has changed from its current
state.

ADVF_DATAONSTOP When specified with
ADVF_NODATA, this flag causes
a last notification with the data
included to be sent before the
data object is destroyed. When
ADVF_NODATA is not specified,
this flag has no effect.

pAdvSink

[in] Pointer to the IAdviseSink interface on the advisory sink that receives the change notification.
pdwConnection

[out] Pointer to a DWORD token that identifies this connection. The calling object can later delete the
advisory connection by passing this token to IDataAdviseHolder::Unadvise. If this value is zero, the
connection was not established.

Return Values
This method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The advisory connection was created.

Remarks
Through the connection established through this method, the advisory sink can receive future notifications
in a call to IAdviseSink::OnDataChange.

An object issues a call to IDataObject::DAdvise to request notification on changes to the format,
medium, or target device of interest. This data is specified in the pFormatetc parameter. The DAdvise
method is usually implemented to call IDataAdviseHolder::Advise to delegate the task of setting up and
tracking a connection to the advise holder. When the format, medium, or target device in question
changes, the data object calls IDataAdviseHolder::SendOnDataChange to send the necessary
notifications.

The established connection can be deleted by passing the value in pdwConnection in a call to
IDataAdviseHolder::Unadvise.

See also
ADVF, CreateDataAdviseHolder, FORMATETC, IDataAdviseHolder::Unadvise,
IDataObject::DAdvise

IDataAdviseHolder::EnumAdvise

Returns a pointer to an IEnumStatdata interface on an enumeration object that can be used to
enumerate the current advisory connections.

HRESULT EnumAdvise(

 IEnumSTATDATA ** ppenumAdvise //Indirect pointer on the new enumerator object
);

Parameter
ppenumAdvise

[out] Indirect pointer to the IEnumStatdata interface on the new enumerator object. If this value is
NULL, there are no connections to advise sinks at this time.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The enumerator object is successfully instantiated or there are no connections.

Remarks
This method must supply a pointer to an implementation of the IEnumSTATDATA interface, one of the
standard enumerator interfaces that contain the Next, Reset, Clone, and Skip methods, on an
enumerator object. Its methods allow you to enumerate the data stored in an array of STATDATA
structures. You get a pointer to the OLE implementation of IDataAdviseHolder through a call to
CreateDataAdviseHolder, and then call IDataAdviseHolder::EnumAdvise to implement
IDataObject::EnumDAdvise.

Adding more advisory connections while the enumerator object is active has an undefined effect on the
enumeration that results from this method.

See Also
IEnum XXXX , IEnumSTATDATA, IDataObject::EnumDAdvise

IDataAdviseHolder::SendOnDataChange

Sends notifications to each advise sink for which there is a connection established by calling the
IAdviseSink::OnDataChange method for each advise sink currently being handled by this instance of
the advise holder object.

HRESULT SendOnDataChange(

 IDataObject * pDataObject, //Pointer to the data object that has changed
 DWORD dwReserved, //Reserved
 DWORD advf //Advise flags
);

Parameters
pDataObject

[in] Pointer to the IDataObject interface on the data object in which the data has just changed. This
pointer is used in subsequent calls to IAdviseSink::OnDataChange.

dwReserved

[in] Reserved for future use; must be zero.
advf

[in] Container for advise flags that specify how the call to IAdviseSink::OnDataChange is made.
These flag values are from the enumeration ADVF. Typically, the value for advf is NULL. The only
exception occurs when the data object is shutting down and must send a final notification that
includes the actual data to sinks that have specified ADVF_DATAONSTOP and ADVF_NODATA in
their call to IDataObject::DAdvise. In this case, advf contains ADVF_DATAONSTOP.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The call to IAdviseSink::OnDataChange was made.

Remarks
The data object must call this method when it detects a change that would be of interest to an advise sink
that has previously requested notification.

Most notifications include the actual data with them. The only exception is if the ADVF_NODATA flag was
previously specified when the connection was initially set up in the IDataAdviseHolder::Advise method.

Before calling the IAdviseSink::OnDataChange method for each advise sink, this method obtains the
actual data by calling the IDataObject::GetData method through the pointer specified in the pDataObject
parameter.

See Also
ADVF, IAdviseSink::OnDataChange

IDataAdviseHolder::Unadvise

Removes a connection between a data object and an advisory sink that was set up through a previous
call to IDataAdviseHolder::Advise. IDataAdviseHolder::Unadvise is typically called in the
implementation of IDataObject::DUnadvise.

HRESULT Unadvise(

 DWORD dwConnection //Connection to remove
);

Parameter
dwConnection

[in] DWORD token that specifies the connection to remove. This value was returned by
IDataAdviseHolder::Advise when the connection was originally established.

Return Values
S_OK

The specified connection was successfully deleted.
OLE_E_NOCONNECTION

The specified dwConnection is not a valid connection.

See Also
IDataAdviseHolder::Advise, IDataObject::DUnadvise

IDataObject

The IDataObject interface specifies methods that enable data transfer and notification of changes in data.
Data transfer methods specify the format of the transferred data along with the medium through which the
data is to be transferred. Optionally, the data can be rendered for a specific target device. In addition to
methods for retrieving and storing data, the IDataObject interface specifies methods for enumerating
available formats and managing connections to advisory sinks for handling change notifications.

The term "data object" is used to mean any object that supports an implementation of the IDataObject
interface. Implementations vary, depending on what the data object is required to do; in some data
objects, the implementation of certain methods not supported by the object could simply be the return of
E_NOTIMPL. For example, some data objects do not allow callers to send them data. Other data objects
do not support advisory connections and change notifications. However, for those data objects that do
support change notifications, OLE provides an object called a data advise holder. An interface pointer to
this holder is available through a call to the helper function CreateDataAdviseHolder. A data object can
have multiple connections, each with its own set of attributes. The OLE data advise holder simplifies the
task of managing these connections and sending the appropriate notifications.

When to Implement
Implement the IDataObject interface if you are developing a container or server application that is
capable of transferring data. For example, if your application allows its data to be pasted or dropped into
another application, you must implement the IDataObject interface. OLE compound document object
servers that support objects that can be embedded or linked must implement IDataObject.

OLE provides implementations in its default object handler and its cache.

When to Use
Any object that can receive data calls the methods in the IDataObject interface.

When you call the data transfer methods in the IDataObject interface, you specify a format, a medium,
and, optionally, a target device for which the data should be rendered. Objects, such as containers, that
want to be notified through their advise sinks when the data in the data object changes call the
IDataObject advisory methods to set up an advisory connection through which notifications can be sent.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IDataObject Methods Description
GetData Renders the data described in a

FORMATETC structure and
transfers it through the
STGMEDIUM structure.

GetDataHere Renders the data described in a
FORMATETC structure and
transfers it through the
STGMEDIUM structure allocated
by the caller.

QueryGetData Determines whether the data

object is capable of rendering the
data described in the
FORMATETC structure.

GetCanonicalFormatEtc Provides a potentially different but
logically equivalent FORMATETC
structure.

SetData Provides the source data object
with data described by a
FORMATETC structure and an
STGMEDIUM structure.

EnumFormatEtc Creates and returns a pointer to an
object to enumerate the
FORMATETC supported by the
data object.

DAdvise Creates a connection between a
data object and an advise sink so
the advise sink can receive
notifications of changes in the data
object.

DUnadvise Destroys a notification previously
set up with the DAdvise method.

EnumDAdvise Creates and returns a pointer to an
object to enumerate the current
advisory connections.

IDataObject::DAdvise

Called by an object supporting an advise sink to create a connection between a data object and the
advise sink. This enables the advise sink to be notified of changes in the data of the object.

HRESULT DAdvise(

 FORMATETC * pFormatetc, //Pointer to data of interest to the advise sink
 DWORD advf, //Flags that specify how the notification takes place
 IAdviseSink * pAdvSink, //Pointer to the advise sink
 DWORD * pdwConnection //Pointer to a token that identifies this connection
);

Parameters
pFormatetc

[in] Pointer to a FORMATETC structure that defines the format, target device, aspect, and medium
that will be used for future notifications. For example, one sink may want to know only when the
bitmap representation of the data in the the data object changes. Another sink may be interested in
only the metafile format of the same object. Each advise sink is notified when the data of interest
changes. This data is passed back to the advise sink when notification occurs.

advf

[in] DWORD that specifies a group of flags for controlling the advisory connection. Valid values are
from the enumeration ADVF. However, only some of the possible ADVF values are relevant for this
method. The following table briefly describes the relevant values. Refer to ADVF for a more detailed
description.

ADVF Value Description
ADVF_NODATA Asks the data object to avoid sending

data with the notifications. Typically data
is sent. This flag is a way to override the
default behavior. When ADVF_NODATA
is used, the TYMED member of the
STGMEDIUM structure that is passed to
OnDataChange will usually contain
TYMED_NULL. The caller can then
retrieve the data with a subsequent
IDataObject::GetData call.

ADVF_ONLYONCE Causes the advisory connection to be
destroyed after the first change
notification is sent. An implicit call to
IDataObject::DUnadvise is made on
behalf of the caller to remove the
connection.

ADVF_PRIMEFIRST Asks for an additional initial notification.
The combination of ADVF_ONLYONCE
and ADVF_PRIMEFIRST provides, in
effect, an asynchronous
IDataObject::GetData call.

ADVF_DATAONSTOP When specified with ADVF_NODATA,
this flag causes a last notification with
the data included to to be sent before the

data object is destroyed.
If used without ADVF_NODATA,
IDataObject::DAdvise can be
implemented in one of the following
ways:

· the ADVF_DATAONSTOP can be
ignored.

· the object can behave as if
ADVF_NODATA was specified.

· a change notification is sent only
in the shutdown case. Data
changes prior to shutdown do not
cause a notification to be sent.

pAdvSink

[in] Pointer to the IAdviseSink interface on the advisory sink that will receive the change notification.
pdwConnection

[out] Pointer to a DWORD token that identifies this connection. You can use this token later to delete
the advisory connection (by passing it to IDataObject::DUnadvise). If this value is zero, the
connection was not established.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED, and
E_OUTOFMEMORY, as well as the following:

S_OK

The advisory connection was created.
E_NOTIMPL

This method is not implemented on the data object.
DV_E_LINDEX

Invalid value for lindex; currently, only -1 is supported.
DV_E_FORMATETC

Invalid value for pFormatetc.
OLE_E_ADVISENOTSUPPORTED

The data object does not support change notification.

Remarks
IDataObject::DAdvise creates a change notification connection between a data object and the caller.
The caller provides an advisory sink to which the notifications can be sent when the object's data
changes.

Objects used simply for data transfer typically do not support advisory notifications and return
OLE_E_ADVISENOTSUPPORTED from IDataObject::DAdvise.

Notes to Callers
The object supporting the advise sink calls IDataObject::DAdvise to set up the connection, specifying
the format, aspect, medium, and/or target device of interest in the FORMATETC structure passed in. If
the data object does not support one or more of the requested attributes or the sending of notifications at
all, it can refuse the connection by returning OLE_E_ADVISENOTSUPPORTED.

Containers of linked objects can set up advisory connections directly with the bound link source or
indirectly through the standard OLE link object that manages the connection. Connections set up with the
bound link source are not automatically deleted. The container must explicitly call
IDataObject::DUnAdvise on the bound link source to delete an advisory connection. The OLE link
object, manipulated through the IOleLink interface, is implemented in the default handler. Connections
set up through the OLE link object are destroyed when the link object is deleted.

The OLE default link object creates a "wildcard advise" with the link source so OLE can maintain the time
of last change. This advise is specifically used to note the time that anything changed. OLE ignores all
data formats that may have changed, noting only the time of last change. To allow wildcard advises, set
the FORMATETC members as follows before calling IDataObject::DAdvise:

cf == 0;
ptd == NULL;
dwAspect ==-1;
lindex == -1
tymed == -1;

The advise flags should also include ADVF_NODATA. Wildcard advises from OLE should always be
accepted by applications.

Notes to Implementers
To simplify the implementation of DAdvise and the other notification methods in IDataObject (DUnadvise
and EnumAdvise) that supports notification, OLE provides an advise holder object that manages the
registration and sending of notifications. To get a pointer to this object, call the helper function
CreateDataAdviseHolder on the first invocation of DAdvise. This supplies a pointer to the object's
IDataAdviseHolder interface. Then, delegate the call to the IDataAdviseHolder::Advise method in the
data advise holder, which creates, and subsequently manages, the requested connection.

See Also
ADVF, FORMATETC, CreateDataAdviseHolder, IAdviseSink::OnDataChange,
IDataObject::DUnAdvise

IDataObject::DUnadvise

Destroys a notification connection that had been previously set up.

HRESULT DUnadvise(

 DWORD dwConnection //Connection to remove
);

Parameter
dwConnection

[in] DWORD token that specifies the connection to remove. Use the value returned by
IDataObject::DAdvise when the connection was originally established.

Return Values
S_OK

The specified connection was successfully deleted.
OLE_E_NOCONNECTION

The specified dwConnection is not a valid connection.
OLE_E_ADVISENOTSUPPORTED

This IDataObject implementation does not support notification.

Remarks
This methods destroys a notification created with a call to the IDataObject::DAdvise method.

If the advisory connection being deleted was initially set up by delegating the IDataObject::DAdvise call
to IDataAdviseHolder::Advise, you must delegate this call to IDataAdviseHolder::Unadvise to delete
it.

See Also
IDataObject::DAdvise, IDataAdviseHolder::Unadvise

IDataObject::EnumDAdvise

Creates an object that can be used to enumerate the current advisory connections.

HRESULT EnumDAdvise(

 IEnumSTATDATA ** ppenumAdvise //Indirect pointer
);

Parameter
ppenumAdvise

[out] Indirect pointer to the IEnumSTATDATA interface on the new enumerator object. If the supplied
value is NULL, there are no connections to advise sinks at this time.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The enumerator object is successfully instantiated or there are no connections.
OLE_E_ADVISENOTSUPPORTED

Advisory notifications are not supported by this object.

Remarks
The enumerator object created by this method implements the IEnumSTATDATA interface, one of the
standard enumerator interfaces that contain the Next, Reset, Clone, and Skip methods.
IEnumSTATDATA permits the enumeration of the data stored in an array of STATDATA structures. Each
of these structures provides information on a single advisory connection, and includes FORMATETC and
ADVF information, as well as the pointer to the advise sink and the token representing the connection.

Notes to Callers
After getting a pointer through this method, the data object can call the appropriate enumeration methods.
While the enumeration is in progress, the effect of adding more advisory connections on the subsequent
enumeration is undefined.

Notes to Implementers
It is recommended that you use the OLE data advise holder object to handle advisory connections. With
the pointer obtained through a call to CreateDataAdviseHolder, implementing
IDataObject::EnumDAdvise becomes a simple matter of delegating the call to
IDataAdviseHolder::EnumAdvise. This creates the enumerator and supplies the pointer to the OLE
implementation of IEnumSTATDATA. At that point, you can call its methods to enumerate the current
advisory connections.

See Also
IEnumSTATDATA, IDataAdviseHolder::EnumAdvise

IDataObject::EnumFormatEtc

Creates an object for enumerating the FORMATETC structures for a data object. These structures are
used in calls to IDataObject::GetData or IDataObject::SetData.

HRESULT EnumFormatEtc(

 DWORD dwDirection, //Specifies a value from the enumeration DATADIR
 IEnumFORMATETC ** ppenumFormatetc //Indirect pointer to the new enumerator object
);

Parameters
dwDirection

[in] Direction of the data through a value from the enumeration DATADIR.
typedef enum tagDATADIR
{
 DATADIR_GET = 1,
 DATADIR_SET = 2,
} DATADIR;

The value DATADIR_GET enumerates the formats that can be passed in to a call to
IDataObject::GetData. The value DATADIR_SET enumerates those formats that can be passed in to
a call to IDataObject::SetData.

ppenumFormatetc

[out] Indirect pointer to the IEnumFORMATETC interface on the new enumerator object.

Return Values
This method supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

Enumerator object was successfully created.
E_NOTIMPL

The direction specified by dwDirection is not supported.
OLE_S_USEREG

Requests that OLE enumerate the formats from the registry.

Remarks
IDataObject::EnumFormatEtc creates an enumerator object that can be used to determine all of the
ways the data object can describe data in a FORMATETC structure, and supplies a pointer to its
IEnumFORMATETC interface. This is one of the standard enumerator interfaces.

Notes to Callers
Having obtained the pointer, the caller can enumerate the FORMATETC structures by calling the
enumeration methods of IEnumFORMATETC. Because the formats can change over time, there is no

guarantee that an enumerated format is currently supported because the formats can change over time.
Accordingly, applications should treat the enumeration as a hint of the format types that can be passed.
The caller is responsible for calling IEnumFormatEtc::Release when it is finished with the enumeration.

IDataObject::EnumFormatEtc is called when one of the following actions occurs:

· An application calls OleSetClipboard. OLE must determine what data to place on the Clipboard and
whether it is necessary to put OLE 1 compatibility formats on the Clipboard.

· Data is being pasted from the Clipboard or dropped. An application uses the first acceptable format.
· The Paste Special dialog box is displayed. The target application builds the list of formats from the

FORMATETC entries.

Notes to Implementers
Formats can be registered statically in the registry or dynamically during object initialization. If an object
has an unchanging list of formats and these formats are registered in the registry, OLE provides an
implementation of a FORMATETC enumeration object that can enumerate formats registered under a
specific CLSID in the registry. A pointer to its IEnumFORMATETC interface is available through a call to
the helper function OleRegEnumFormatEtc. In this situation, therefore, you can implement the
EnumFormatEtc method simply with a call to this function.

EXE applications can effectively do the same thing by implementing the method to return the value
OLE_S_USEREG. This return value instructs the default object handler to call OleRegEnumFormatEtc.
Object applications that are implemented as DLL object applications cannot return OLE_S_USEREG, so
must call OleRegEnumFormatEtc directly.

Private formats can be enumerated for OLE 1 objects, if they are registered with the RequestDataFormats
or SetDataFormats keys in the registry. Also, private formats can be enumerated for OLE objects (all
versions after OLE 1), if they are registered with the GetDataFormats or SetDataFormats keys.

For OLE 1 objects whose servers do not have RequestDataFormats or SetDataFormats information
registered in the registry, a call to IDataObject::EnumFormatEtc passing DATADIR_GET only
enumerates the Native and Metafile formats, regardless of whether they support these formats or others.
Calling EnumFormatEtc passing DATADIR_SET on such objects only enumerates Native, regardless of
whether the object supports being set with other formats.

The FORMATETC structure returned by the enumeration usually indicates a NULL target device (ptd).
This is appropriate because, unlike the other members of FORMATETC, the target device does not
participate in the object's decision as to whether it can accept or provide the data in either a SetData or
GetData call.

The TYMED member of FORMATETC often indicates that more than one kind of storage medium is
acceptable. You should always mask and test for this by using a Boolean OR operator.

See Also
FORMATETC, OleRegEnumFormatEtc, IEnumFormatEtc, IDataObject::SetData,
IDataObject::GetData

IDataObject::GetCanonicalFormatEtc

Provides a standard FORMATETC structure that is logically equivalent to one that is more complex. You
use this method to determine whether two different FORMATETC structures would return the same data,
removing the need for duplicate rendering.

HRESULT GetCanonicalFormatEtc(

 FORMATETC * pFormatetcIn, //Pointer to the FORMATETC structure
 FORMATETC * pFormatetcOut //Pointer to the canonical equivalent FORMATETC structure
);

Parameters
pFormatetcIn

[in] Pointer to the FORMATETC structure that defines the format, medium, and target device that the
caller would like to use to retrieve data in a subsequent call such as IDataObject::GetData. The
TYMED member is not significant in this case and should be ignored.

pFormatetcOut

[out] Pointer to a FORMATETC structure that contains the most general information possible for a
specific rendering, making it canonically equivalent to pFormatetcIn. The caller must allocate this
structure and the GetCanonicalFormatEtc method must fill in the data. To retrieve data in a
subsequent call like IDataObject::GetData, the caller uses the supplied value of pFormatetcOut,
unless the value supplied is NULL. This value is NULL if the method returns
DATA_S_SAMEFORMATETC. The TYMED member is not significant in this case and should be
ignored.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED, and
E_OUTOFMEMORY, as well as the following:

S_OK

The returned FORMATETC structure is different from the one that was passed.
DATA_S_SAMEFORMATETC

The FORMATETC structures are the same and NULL is returned in pFormatetcOut.
DV_E_LINDEX

Invalid value for lindex; currently, only -1 is supported.
DV_E_FORMATETC

Invalid value for pFormatetc.
OLE_E_NOTRUNNING

Object application is not running.

Remarks
If a data object can supply exactly the same data for more than one requested FORMATETC structure,
IDataObject::GetCanonicalFormatEtc can supply a "canonical", or standard FORMATETC that gives

the same rendering as a set of more complicated FORMATETC structures. For example, it is common for
the data returned to be insensitive to the target device specified in any one of a set of otherwise similar
FORMATETC structures.

Notes to Callers
A call to this method can determine whether two calls to IDataObject::GetData on a data object,
specifying two different FORMATETC structures, would actually produce the same renderings, thus
eliminating the need for the second call and improving performance. If the call to
GetCanonicalFormatEtc results in a canonical format being written to the pFormatetcOut parameter, the
caller then uses that structure in a subsequent call to IDataObject::GetData.

Notes to Implementers
Conceptually, it is possible to think of FORMATETC structures in groups defined by a canonical
FORMATETC that provides the same results as each of the group members. In constructing the
canonical FORMATETC, you should make sure it contains the most general information possible that still
produces a specific rendering.

For data objects that never provide device-specific renderings, the simplest implementation of this method
is to copy the input FORMATETC to the output FORMATETC, store a NULL in the ptd field of the output
FORMATETC, and return DATA_S_SAMEFORMATETC.

See Also
IDataObject::GetData, FORMATETC

IDataObject::GetData

Called by a data consumer to obtain data from a source data object. The GetData method renders the
data described in the specified FORMATETC structure and transfers it through the specified
STGMEDIUM structure. The caller then assumes responsibility for releasing the STGMEDIUM structure.

HRESULT GetData(

 FORMATETC * pFormatetc, //Pointer to the FORMATETC structure
 STGMEDIUM * pmedium //Pointer to the STGMEDIUM structure
);

Parameters
pFormatetc

[in] Pointer to the FORMATETC structure that defines the format, medium, and target device to use
when passing the data. It is possible to specify more than one medium by using the Boolean OR
operator, allowing the method to choose the best medium among those specified.

pmedium

[out] Pointer to the STGMEDIUMstructure that indicates the storage medium containing the returned
data through its tymed member, and the responsibility for releasing the medium through the value of
its punkOuter member. If punkForRelease is NULL, the receiver of the medium is responsible for
releasing it; otherwise, punkForRelease points to the IUnknown on the appropriate object so its
Release method can be called. The medium must be allocated and filled in by
IDataObject::GetData.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED, and
E_OUTOFMEMORY, as well as the following:

S_OK

Data was successfully retrieved and placed in the storage medium provided.
DV_E_LINDEX

Invalid value for lindex; currently, only -1 is supported.
DV_E_FORMATETC

Invalid value for pFormatetc.
DV_E_TYMED

Invalid tymed value.
DV_E_DVASPECT

Invalid dwAspect value.
OLE_E_NOTRUNNING

Object application is not running.
STG_E_MEDIUMFULL

An error occurred when allocating the medium.

Remarks
A data consumer calls IDataObject::GetData to retrieve data from a data object, conveyed through a
storage medium (defined through the STGMEDIUM structure).

Notes to Callers
You can specify more than one acceptable TYMED medium with the Boolean OR operator.
IDataObject::GetData must choose from the OR'd values the medium that best represents the data, do
the allocation, and indicate responsibility for releasing the medium.

Data transferred across a stream extends from position zero of the stream pointer through to the position
immediately before the current stream pointer (that is, the stream pointer position upon exit).

Notes to Implementers
IDataObject::GetData must check all fields in the FORMATETC structure. It is important that
IDataObject::GetData render the requested aspect and, if possible, use the requested medium. If the
data object cannot comply with the information specified in the FORMATETC, the method should return
DV_E_FORMATETC. If an attempt to allocate the medium fails, the method should return
STG_E_MEDIUMFULL. It is important to fill in all of the fields in the STGMEDIUM structure.

Although the caller can specify more than one medium for returning the data, IDataObject::GetData can
supply only one medium. If the initial transfer fails with the selected medium, this method can be
implemented to try one of the other media specified before returning an error.

See Also
IDataObject::GetDataHere, IDataObject::SetData, FORMATETC, STGMEDIUM

IDataObject::GetDataHere

Called by a data consumer to obtain data from a source data object. This method differs from the
GetData method in that the caller must allocate and free the specified storage medium.

HRESULT GetDataHere(

 FORMATETC * pFormatetc, //Pointer to the FORMATETC structure
 STGMEDIUM * pmedium //Pointer to the STGMEDIUM structure
);

Parameters
pFormatetc

[in] Pointer to the FORMATETC structure that defines the format, medium, and target device to use
when passing the data. Only one medium can be specified in TYMED, and only the following TYMED
values are valid: TYMED_STORAGE, TYMED_STREAM, TYMED_HGLOBAL, or TYMED_FILE.

pmedium

[out] Pointer to the STGMEDIUM structure that defines the storage medium containing the data being
transferred. The medium must be allocated by the caller and filled in by IDataObject::GetDataHere.
The caller must also free the medium. The implementation of this method must always supply a value
of NULL for the punkForRelease member of the STGMEDIUM structure to which this parameter
points.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED, and
E_OUTOFMEMORY, as well as the following:

S_OK

Data was successfully retrieved and placed in the storage medium provided.
DV_E_LINDEX

Invalid value for lindex; currently, only -1 is supported.
DV_E_FORMATETC

Invalid value for pFormatetc.
DV_E_TYMED

Invalid tymed value.
DV_E_DVASPECT

Invalid dwAspect value.
OLE_E_NOTRUNNING

Object application is not running.
STG_E_MEDIUMFULL

The medium provided by the caller is not large enough to contain the data.

Remarks
The IDataObject::GetDataHere method is similar to IDataObject::GetData, except that the caller must
both allocate and free the medium specified in pmedium. GetDataHere renders the data described in a
FORMATETC structure and copies the data into that caller-provided STGMEDIUM structure. For
example, if the medium is TYMED_HGLOBAL, this method cannot resize the medium or allocate a new
hGlobal.

Some media are not appropriate in a call to GetDataHere, including GDI types such as metafiles. The
GetDataHere method cannot put data into a caller-provided metafile. In general, the only storage media it
is necessary to support in this method are TYMED_ISTORAGE, TYMED_ISTREAM, and TYMED_FILE.

When the transfer medium is a stream, OLE makes assumptions about where the data is being returned
and the position of the stream's seek pointer. In a GetData call, the data returned is from stream position
zero through just before the current seek pointer of the stream (that is, the position on exit). For
GetDataHere, the data returned is from the stream position on entry through just before the position on
exit.

See Also
IDataObject::GetData, FORMATETC, STGMEDIUM

IDataObject::QueryGetData

Determines whether the data object is capable of rendering the data described in the FORMATETC
structure. Objects attempting a paste or drop operation can call this method before calling
IDataObject::GetData to get an indication of whether the operation may be successful.

HRESULT QueryGetData(

 FORMATETC * pFormatetc //Pointer to the FORMATETC structure
);

Parameter
pFormatetc

[in] Pointer to the FORMATETC structure defining the format, medium, and target device to use for
the query.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED, and
E_OUTOFMEMORY, as well as the following:

S_OK

Subsequent call to IDataObject::GetData would probably be successful.
DV_E_LINDEX

Invalid value for lindex; currently, only -1 is supported.
DV_E_FORMATETC

Invalid value for pFormatetc.
DV_E_TYMED

Invalid tymed value.
DV_E_DVASPECT

Invalid dwAspect value.
OLE_E_NOTRUNNING

Object application is not running.

Remarks
The client of a data object calls IDataObject::QueryGetData to determine whether passing the specified
FORMATETC structure to a subsequent call to IDataObject::GetData is likely to be successful. A
successful return from this method does not necessarily ensure the success of the subsequent paste or
drop operation.

See Also
IDataObject::GetData, FORMATETC

IDataObject::SetData

Called by an object containing a data source to transfer data to the object that implements this method.

HRESULT SetData(

 FORMATETC * pFormatetc, //Pointer to the FORMATETC structure
 STGMEDIUM * pmedium, //Pointer to STGMEDIUM structure
 BOOL fRelease //Indicates which object owns the storage medium after the call is completed
);

Parameters
pFormatetc

[in] Pointer to the FORMATETC structure defining the format used by the data object when
interpreting the data contained in the storage medium.

pmedium

[in] Pointer to the STGMEDIUM structure defining the storage medium in which the data is being
passed.

fRelease

[in] If TRUE, the data object called, which implements IDataObject::SetData, owns the storage
medium after the call returns. This means it must free the medium after it has been used by calling
the ReleaseStgMedium function. If FALSE, the caller retains ownership of the storage medium and
the data object called uses the storage medium for the duration of the call only.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, E_UNEXPECTED, and
E_OUTOFMEMORY, as well as the following:

S_OK

Data was successfully transferred.
E_NOTIMPL

This method is not implemented for the data object.
DV_E_LINDEX

Invalid value for lindex; currently, only -1 is supported.
DV_E_FORMATETC

Invalid value for pFormatetc.
DV_E_TYMED

Invalid tymed value.
DV_E_DVASPECT

Invalid dwAspect value.
OLE_E_NOTRUNNING

Object application is not running.

Remarks
IDataObject::SetData allows another object to attempt to send data to the implementing data object. A
data object implements this method if it supports receiving data from another object. If it does not support
this, it should be implemented to return E_NOTIMPL.

The caller allocates the storage medium indicated by the pmedium, in which the data is passed. The data
object called does not take ownership of the data until it has successfully received it and no error code is
returned. The value of the fRelease parameter indicates the ownership of the medium after the call
returns. FALSE indicates the caller still owns the medium, and the data object only has the use of it during
the call; TRUE indicates that the data object now owns it and must release it when it is no longer needed.

The type of medium (TYMED) specified in the pformatetc and pmedium parameters must be the same.
For example, one cannot be an hGlobal (global handle) and the other a stream.

See Also
IDataObject::GetData, FORMATETC, STGMEDIUM

IDropSource

The IDropSource interface is one of the interfaces you implement to provide drag-and-drop operations in
your application. It contains methods used in any application used as a data source in a drag-and-drop
operation. The data source application in a drag-and-drop operation is responsible for:

· Determining the data being dragged based on the user's selection.
· Initiating the drag-and-drop operation based on the user's mouse actions.
· Generating some of the visual feedback during the drag-and-drop operation, such as setting the

cursor and highlighting the data selected for the drag-and-drop operation.
· Canceling or completing the drag-and-drop operation based on the user's mouse actions.
· Performing any action on the original data caused by the drop operation, such as deleting the data on

a drag move.

IDropSource contains the methods for generating visual feedback to the end user and for canceling or
completing the drag-and-drop operation. You also need to call the DoDragDrop, RegisterDragDrop, and
RevokeDragDrop functions in drag-and-drop operations.

When to Implement
Implement IDropSource if you are developing a container or server application that can act as a data
source for a drag-and-drop operation. The IDropSource interface is only required during the drag-and-
drop operation.

If you implement the IDropSource interface, you must also implement the IDataObject interface on the
same object to represent the data being transferred.

You can use the same implementation of IDataObject for drag-and-drop data as for the data object
offered to the clipboard. Once you have implemented clipboard operations in your application, you can
add drag-and-drop operations with only a little extra work.

When to Use
You don't usually call IDropSource methods directly. Instead, your data source calls the DoDragDrop
function when it detects that the user has initiated a drag-and-drop operation. Then, DoDragDrop calls
the IDropSource methods during the drag-and-drop operation.

For example, DoDragDrop calls IDropSource::GiveFeedback when you need to change the cursor
shape or when you need to provide some other visual feedback. DoDragDrop calls
IDropSource::QueryContinueDrag when there is a change in the mouse button state to determine if the
drag-and-drop operation was canceled or completed.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IDropSource Methods Description
QueryContinueDrag Determines whether a drag-and-

drop operation should continue.

GiveFeedback Gives visual feedback to an end
user during a drag-and-drop
operation.

See Also
DoDragDrop, IDataObject, IDropTarget

IDropSource::GiveFeedback

Enables a source application to give visual feedback to the end user during a drag-and-drop operation by
providing the DoDragDrop function with an enumeration value specifying the visual effect.

HRESULT GiveFeedback(

 DWORD dwEffect //Effect of a drop operation
);

Parameter
dwEffect

[in] The DROPEFFECT value returned by the most recent call to IDropTarget::DragEnter,
IDropTarget::DragOver, or IDropTarget::DragLeave. For a list of values, see the DROPEFFECT
enumeration.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED, and
E_OUTOFMEMORY, as well as the following:

S_OK

The method completed its task successfully, using the cursor set by the source application.
DRAGDROP_S_USEDEFAULTCURSORS

Indicates successful completion of the method, and requests OLE to update the cursor using the
OLE-provided default cursors.

Remarks
When your application detects that the user has started a drag-and-drop operation, it should call the
DoDragDrop function. DoDragDrop enters a loop, calling IDropTarget::DragEnter when the mouse first
enters a drop target window, IDropTarget::DragOver when the mouse changes its position within the
target window, and IDropTarget::DragLeave when the mouse leaves the target window.

For every call to either IDropTarget::DragEnter or IDropTarget::DragOver, DoDragDrop calls
IDropSource::GiveFeedback, passing it the DROPEFFECT value returned from the drop target call.

DoDragDrop calls IDropTarget::DragLeave when the mouse has left the target window. Then,
DoDragDrop calls IDropSource::GiveFeedback and passes the DROPEFFECT_NONE value in the
dwEffect parameter.

The dwEffect parameter can include DROPEFFECT_SCROLL, indicating that the source should put up
the drag-scrolling variation of the appropriate pointer.

OLE defines a recommended set of cursor shapes that your application should use. See the User
Interface Guidelines for more information.

Notes to Implementers
This function is called frequently during the DoDragDrop loop, so you can gain performance advantages
if you optimize your implementation as much as possible.

IDropSource::GiveFeedback is responsible for changing the cursor shape or for changing the
highlighted source based on the value of the dwEffect parameter. If you are using default cursors, you can
return DRAGDROP_S_USEDEFAULTCURSORS, which causes OLE to update the cursor for you, using
its defaults.

See Also
DoDragDrop, IDropTarget

IDropSource::QueryContinueDrag

Determines whether a drag-and-drop operation should be continued, canceled, or completed. You do not
call this method directly. The OLE DoDragDrop function calls this method during a drag-and-drop
operation.

HRESULT QueryContinueDrag(

 BOOL fEscapePressed, //Status of escape key since previous call
 DWORD grfKeyState //Current state of keyboard modifier keys
);

Parameters
fEscapePressed

[in] Specifies whether the Esc key has been pressed since the previous call to
IDropSource::QueryContinueDrag or to DoDragDrop if this is the first call to QueryContinueDrag.
A TRUE value indicates the end user has pressed the escape key; a FALSE value indicates it has not
been pressed.

grfKeyState

[in] Current state of the keyboard modifier keys on the keyboard. Valid values can be a combination of
any of the flags MK_CONTROL, MK_SHIFT, MK_ALT, MK_BUTTON, MK_LBUTTON,
MK_MBUTTON, and MK_RBUTTON.

Return Values
This method supports the standard return values E_UNEXPECTED and E_OUTOFMEMORY, as well as
the following:

S_OK

The drag operation should continue. This result occurs if no errors are detected, the mouse button
starting the drag-and-drop operation has not been released, and the Esc key has not been detected.

DRAGDROP_S_DROP

The drop operation should occur completing the drag operation. This result occurs if grfKeyState
indicates that the key that started the drag-and-drop operation has been released.

DRAGDROP_S_CANCEL

The drag operation should be canceled with no drop operation occurring. This result occurs if
fEscapePressed is TRUE, indicating the Esc key has been pressed.

Remarks
The DoDragDrop function calls IDropSource::QueryContinueDrag whenever it detects a change in the
keyboard or mouse button state during a drag-and-drop operation. IDropSource::QueryContinueDrag
must determine whether the drag-and-drop operation should be continued, canceled, or completed based
on the contents of the parameters grfKeyState and fEscapePressed.

See Also
DoDragDrop

IDropTarget

The IDropTarget interface is one of the interfaces you implement to provide drag-and-drop operations in
your application. It contains methods used in any application that can be a target for data during a drag-
and-drop operation. A drop-target application is responsible for:

· Determining the effect of the drop on the target application.
· Incorporating any valid dropped data when the drop occurs.
· Communicating target feedback to the source so the source application can provide appropriate

visual feedback such as setting the cursor.
· Implementing drag scrolling.
· Registering and revoking its application windows as drop targets.

The IDropTarget interface contains methods that handle all these responsibilities except registering and
revoking the application window as a drop target, for which you must call the RegisterDragDrop and the
RevokeDragDrop functions.

When to Implement
Implement the IDropTarget interface if you are developing an application that can act as a target for a
drag-and-drop operation. The IDropTarget interface is associated with your application windows and is
implemented on your window objects. Call the RegisterDragDrop function to register your window
objects as drop targets.

When to Use
You do not call the methods of IDropTarget directly. The DoDragDrop function calls the IDropTarget
methods during the drag-and-drop operation.

For example, DoDragDrop calls IDropTarget::DragEnter when it detects the mouse has moved over a
window that is registered as a drag target. Once the mouse has entered a drag-target window,
DoDragDrop calls IDropTarget::DragOver as the mouse moves through the window and calls
IDropTarget::DragLeave if the mouse leaves the target window or if the user cancels or completes the
drag-and-drop operation. DoDragDrop calls IDropTarget::Drop if the drop finally occurs.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IDropTarget Methods Description
DragEnter Determines whether a drop can be accepted

and its effect if it is accepted.
DragOver Provides target feedback to the user through

the DoDragDrop function.
DragLeave Causes the drop target to suspend its

feedback actions.
Drop Drops the data into the target window.

See Also
DoDragDrop, IDropSource, RegisterDragDrop, RevokeDragDrop

IDropTarget::DragEnter

Indicates whether a drop can be accepted, and, if so, the effect of the drop.

HRESULT DragEnter(

 IDataObject * pDataObject, //Pointer to the interface of the source data object'
 DWORD grfKeyState, //Current state of keyboard modifier keys
 POINTL pt, //Pointer to the current cursor coordinates
 DWORD * pdwEffect //Pointer to the effect of the drag-and-drop operation
);

Parameters
pDataObject

[in] Pointer to the IDataObject interface on the data object. This data object contains the data being
being transferred in the drag-and-drop operation. If the drop occurs, this data object will be
incorporated into the target.

grfKeyState

[in] Current state of the keyboard modifier keys on the keyboard. Valid values can be a combination of
any of the flags MK_CONTROL, MK_SHIFT, MK_ALT, MK_BUTTON, MK_LBUTTON, MK_MBUTTON,
and MK_RBUTTON.

pt

[in] Pointer to the current cursor coordinates in the coordinate space of the drop-target window.
pdwEffect

[in, out] On entry, pointer to the value of the pdwEffect parameter of the DoDragDrop function. On
return, must contain one of the effect flags from the DROPEFFECT enumeration, which indicates
what the result of the drop operation would be.

Return Values
This method supports the standard return values E_OUTOFMEMORY, E_INVALIDARG, and
E_UNEXPECTED, as well as the following:

S_OK

The method completed its task successfully.

Remarks
You do not call IDropTarget::DragEnter directly; instead the DoDragDrop function calls it to determine
the effect of a drop the first time the user drags the mouse into the registered window of a drop target.

To implement IDropTarget::DragEnter, you must determine whether the target can use the data in the
source data object by checking three things:

· The format and medium specified by the data object
· The input value of pdwEffect
· The state of the modifier keys

To check the format and medium, use the IDataObject pointer passed in the pDataObject parameter to
call IDataObject::EnumFormatEtc so you can enumerate the FORMATETC structures the source data
object supports. Then call IDataObject::QueryGetData to determine whether the data object can render
the data on the target by examining the formats and medium specified for the data object.

On entry to IDropTarget::DragEnter, the pdwEffect parameter is set to the effects given to the
pdwOkEffect parameter of the DoDragDrop function. The IDropTarget::DragEnter method must choose
one of these effects or disable the drop.

The following modifier keys affect the result of the drop:

Key Combination User-Visible
Feedback

Drop Effect

CTRL + SHIFT = DROPEFFECT_LINK
CTRL + DROPEFFECT_COPY
No keys or SHIFT None DROPEFFECT_MOVE

On return, the method must write the effect, one of the members of the DROPEFFECT enumeration, to
the pdwEffect parameter. DoDragDrop then takes this parameter and writes it to its pdwEffect parameter.
You communicate the effect of the drop back to the source through DoDragDrop in the pdwEffect
parameter. The DoDragDrop function then calls IDropSource::GiveFeedback so that the source
application can display the appropriate visual feedback to the user through the target window.

See Also
DoDragDrop, IDropSource, IDropTarget, RegisterDragDrop, RevokeDragDrop

IDropTarget::DragLeave

Removes target feedback and releases the data object.

HRESULT DragLeave(void);

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The method completed its task successfully.

Remarks
You do not call this method directly. The DoDragDrop function calls this method in either of the following
cases:

· When the user drags the cursor out of a given target window.
· When the user cancels the current drag-and-drop operation.

To implement IDropTarget::DragLeave, you must remove any target feedback that is currently displayed.
You must also release any references you hold to the data transfer object.

See Also
DoDragDrop, IDropSource, IDropTarget, RegisterDragDrop, RevokeDragDrop

IDropTarget::DragOver

Provides target feedback to the user and communicates the drop's effect to the DoDragDrop function so
it can communicate the effect of the drop back to the source.

HRESULT DragOver(

 DWORD grfKeyState, //Current state of keyboard modifier keys
 POINTL pt, //Pointer to the current cursor coordinates
 DWORD * pdwEffect //Pointer to the effect of the drag-and-drop operation
);

Parameters
grfKeyState

[in] Current state of the keyboard modifier keys on the keyboard. Valid values can be a combination of
any of the flags MK_CONTROL, MK_SHIFT, MK_ALT, MK_BUTTON, MK_LBUTTON,
MK_MBUTTON, and MK_RBUTTON.

pt

[in] Pointer to the current cursor coordinates in the coordinate space of the drop-target window.
pdwEffect

[in, out] Pointer to the current effect flag. Valid values are from the enumeration DROPEFFECT.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The method completed its task successfully.

Remarks
You do not call IDropTarget::DragOver directly. The DoDragDrop function calls this method each time
the user moves the mouse across a given target window. DoDragDrop exits the loop if the drag-and-drop
operation is canceled, if the user drags the mouse out of the target window, or if the drop is completed.

In implementing IDropTarget::DragOver, you must provide features similar to those in
IDropTarget::DragEnter. You must determine the effect of dropping the data on the target by examining
the FORMATETC defining the data object's formats and medium, along with the state of the modifier
keys. The mouse position may also play a role in determining the effect of a drop. The following modifier
keys affect the result of the drop:

Key Combination User-Visible
Feedback

Drop Effect

CTRL + SHIFT = DROPEFFECT_LINK
CTRL + DROPEFFECT_COPY
No keys or SHIFT None DROPEFFECT_MOVE

You communicate the effect of the drop back to the source through DoDragDrop in pdwEffect. The
DoDragDrop function then calls IDropSource::GiveFeedback so the source application can display the
appropriate visual feedback to the user.

On entry to IDropTarget::DragOver, the pdwEffect parameter must be set to the allowed effects passed
to the pdwOkEffect parameter of the DoDragDrop function. The IDropTarget::DragOver method must
be able to choose one of these effects or disable the drop.

Upon return, pdwEffect is set to one of the members of the DROPEFFECT enumeration. This value is
then passed to the pdwEffect parameter of DoDragDrop. Reasonable values are DROPEFFECT_COPY
to copy the dragged data to the target, DROPEFFECT_LINK to create a link to the source data, or
DROPEFFECT_MOVE to allow the dragged data to be permanently moved from the source application to
the target.

You may also wish to provide appropriate visual feedback in the target window. There may be some target
feedback already displayed from a previous call to IDropTarget::DragOver or from the initial
IDropTarget::DragEnter. If this feedback is no longer appropriate, you should remove it.

For efficiency reasons, a data object is not passed in IDropTarget::DragOver. The data object passed in
the most recent call to IDropTarget::DragEnter is available and can be used.

When IDropTarget::DragOver has completed its operation, the DoDragDrop function calls
IDropSource::GiveFeedback so the source application can display the appropriate visual feedback to
the user.

Notes to Implementers
This function is called frequently during the DoDragDrop loop so it makes sense to optimize your
implementation of the DragOver method as much as possible.

See Also
DoDragDrop, IDropSource, IDropTarget, RegisterDragDrop, RevokeDragDrop

IDropTarget::Drop

Incorporates the source data into the target window, removes target feedback, and releases the data
object.

HRESULT Drop(

 IDataObject * pDataObject, //Pointer to the interface for the source data
 DWORD grfKeyState, //Current state of keyboard modifier keys
 POINTL pt, //Pointer to the current cursor coordinates
 DWORD * pdwEffect //Pointer to the effect of the drag-and-drop operation
);

Parameters
pDataObject

[in] Pointer to the IDataObject interface on the data object being transferred in the drag-and-drop
operation.

grfKeyState

[in] Current state of the keyboard modifier keys on the keyboard. Valid values can be a combination of
any of the flags MK_CONTROL, MK_SHIFT, MK_ALT, MK_BUTTON, MK_LBUTTON,
MK_MBUTTON, and MK_RBUTTON.

pt

[in] Pointer to the current cursor coordinates in the coordinate space of the drop target window.
pdwEffect

[in, out] Pointer to the current effect flag. Valid values are from the enumeration DROPEFFECT.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The method completed its tasks successfully.

Remarks
You do not call this method directly. The DoDragDrop function calls this method when the user completes
the drag-and-drop operation.

In implementing IDropTarget::Drop, you must incorporate the data object into the target. Use the formats
available in IDataObject, available through pDataObject, along with the current state of the modifier keys
to determine how the data is to be incorporated, such as linking or embedding.

In addition to incorporating the data, you must also clean up as you do in the IDropTarget::DragLeave
method:

· Remove any target feedback that is currently displayed.
· Release any references to the data object.

You also pass the effect of this operation back to the source application through DoDragDrop, so the
source application can clean up after the drag-and-drop operation is complete:

· Remove any source feedback that is being displayed.
· Make any necessary changes to the data, such as removing the data if the operation was a move.

See Also
DoDragDrop, IDropSource, IDropTarget, RegisterDragDrop, RevokeDragDrop

IEnumXXXX
To allow you to enumerate the number of items of a given type that an object maintains, OLE provides a
set of enumeration interfaces, one for each type of item.

To use these interfaces, the client asks an object that maintains a collection of items to create an
enumerator object. The interface on the enumeration object is one of the enumeration interfaces, all of
which have a name of the form IEnumItem_name. The only difference between enumeration interfaces is
what they enumerate ¾ there must be a separate enumeration interface for each type of item
enumerated. All have the same set of methods, and are used in the same way. For example, by
repeatedly calling the Next method, the client gets successive pointers to each item in the collection.

The following table lists the set of enumeration interfaces that OLE defines, and the items enumerated.

Enumeration Interface Name Item Enumerated
IEnumFORMATETC An array of FORMATETC

structures.
IEnumMoniker The components of a moniker, or

the monikers in a table.
IEnumOLEVERB The different verbs available for an

object, in order of ascending verb
number.

IEnumSTATDATA An array of STATDATA structures
which contain advisory connection
information for a data object.

IEnumSTATSTG An array of STATSTG structures,
which contain statistical information
about a storage, stream, or
LockBytes object

IEnumString Strings
IEnumUnknown Enumerates IUnknown interface

pointers.
IEnumVARIANT A collection of variants. It allows

clients to enumerate
heterogeneous collections of
objects and intrinsic types when
the clients cannot or do not know
the specific type(s) of elements in
the collection.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IEnumXXXX Methods Description
Next Retrieves a specified number of

items in the enumeration

sequence.
Skip Skips over a specified number of

items in the enumeration
sequence.

Reset Resets the enumeration sequence
to the beginning.

Clone Creates another enumerator that
contains the same enumeration
state as the current one.

IEnumXXXX::Clone
Creates another enumerator that contains the same enumeration state as the current one. Using this
function, a client can record a particular point in the enumeration sequence, and then return to that point
at a later time. The new enumerator supports the same interface as the original one.

HRESULT Clone(

 IEnum<ELT_T> ** ppenum //Indirect pointer to the enumeration interface on the object
);

Parameter
ppenum

[out] Indirect pointer to the enumeration interface on the enumeration object. If the method is
unsuccessful, this parameter's value is undefined.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED.

IEnumXXXX::Next
Retrieves the next celt items in the enumeration sequence. If there are fewer than the requested number
of elements left in the sequence, it retrieves the remaining elements. The number of elements actually
retrieved is returned through pceltFetched (unless the caller passed in NULL for that parameter).

HRESULT Next(

 ULONG celt, //Number of elements requested
 ELT_T[] rgelt, //Array of the elements
 ULONG * pceltFetched //Pointer to the number of elements actually supplied
);

Parameters
celt

[in] Number of elements being requested.
rgelt

[out] Array of size celt (or larger) of the elements of interest. The type of this parameter depends on
the item being enumerated.

pceltFetched

[in, out] Pointer to the number of elements actually supplied in rgelt. Caller can pass in NULL if celt is
one.

Return Value
S_OK if the number of elements supplied is celt; S_FALSE otherwise.

IEnumXXXX::Reset
Resets the enumeration sequence to the beginning.

HRESULT Reset(void);

Return Value
S_OK

Remarks
A call to this method, resetting the sequence, does not guarantee that the same set of objects will be
enumerated after the reset, because it depends on the collection being enumerated. A static collection is
reset to the beginning, but it can be too expensive for some collections, such as files in a directory, to
guarantee this condition.

IEnumXXXX::Skip
Skips over the next specified number of elements in the enumeration sequence.

HRESULT Skip(

 ULONG celt //Number of elements to be skipped
);

Parameter
celt

[in] Number of elements to be skipped.

Return Value
S_OK if the number of elements skipped is celt; otherwise S_FALSE.

IEnumConnectionPoints

This interface enumerates connection points. Connectable objects support the following features:

· Outgoing interfaces, such as event sets
· The ability to enumerate the IIDs of the outgoing interfaces
· The ability to connect and disconnect sinks to the object for those outgoing IIDs
· The ability to enumerate the connections that exist to a particular outgoing interface

When to Implement
To support connectable objects, you need to provide four related interfaces:

· IConnectionPointContainer
· IEnumConnectionPoints
· IConnectionPoint
· IEnumConnections

The IConnectionPointContainer interface indicates the existence of the outgoing interfaces. It provides
access to an enumerator sub-object with the IEnumConnectionPoints interface. It also provides a
connection point sub-object with the IConnectionPoint interface. The IConnectionPoint interface
provides access to an enumerator sub-object with the IEnumConnections interface.

The connection point is a separate sub-object to avoid circular reference counting problems.

A connectable object can be asked to enumerate its supported connection points through
IConnectionPointContainer::EnumConnectionPoints. The resulting enumerator returned from this
method implements the interface IEnumConnectionPoints, through which a client can access all the
individual connection point sub-objects supported within the connectable object itself, where each
connection point implements IConnectionPoint.

When enumerating connections through IEnumConnectionPoints, the enumerator is responsible for
calling IUnknown::AddRef, and the caller is responsible for later calling IUnknown::Release when those
pointers are no longer needed.

When to Use
Use the IEnumConnectionPoints interface to enumerate all the supported connection points for each
outgoing IID.

The prototypes of the methods are as follows:

HRESULT Next(

 ULONG cConnections , //[in]Number of IConnectionPoint values returned in rgpcn array
 IConnectionPoint **rgpcn , //[out]Array to receive enumerated connection points
 ULONG *pcFetched //[out]Pointer to the actual number of connection points returned in rgpcn

array
);

HRESULT Skip(

 ULONG cConnections //[in]Number of elements to skip

);

HRESULT Reset(void);

HRESULT Clone(

 IEnumConnectionPoints **ppEnum //[out]Indirect pointer to newly created enumerator
);

Remarks
IEnumConnectionPoints::Next

Enumerates the next cConnections elements (IConnectionPoint pointers) in the enumerator's list,
returning them in rgpcn along with the actual number of enumerated elements in pcFetched. The
enumerator calls IConnectionPoint::AddRef for each returned pointer in rgpcn, and the caller is
responsible for calling IConnectionPoint::Release through each pointer when those pointers are no
longer needed.
E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in the rgpcn
array are valid on exit and require no release.

IEnumConnectionPoints::Skip

Instructs the enumerator to skip the next cConnections elements in the enumeration so that the next
call to IEnumConnectionPoints::Next will not return those elements.

IEnumConnectionPoints::Reset

Instructs the enumerator to position itself at the beginning of the list of elements.
There is no guarantee that the same set of elements will be enumerated on each pass through the
list, nor will the elements necessarily be enumerated in the same order. The exact behavior depends
on the collection being enumerated. It is too expensive for some collections, such as files in a
directory, to maintain a specific state.

IEnumConnectionPoints::Clone

Creates another connection point enumerator with the same state as the current enumerator to iterate
over the same list. This method makes it possible to record a point in the enumeration sequence in
order to return to that point at a later time.
The caller must release this new enumerator separately from the first enumerator.

See Also
IConnectionPoint, IConnectionPointContainer, IEnumConnections, IEnum Xxxx

IEnumConnections

This interface enumerates the current connections for a connectable object. Connectable objects support
the following features:

· Outgoing interfaces, such as event sets
· The ability to enumerate the IIDs of the outgoing interfaces
· The ability to connect and disconnect sinks to the object for those outgoing IIDs
· The ability to enumerate the connections that exist to a particular outgoing interface

When to Implement
To support connectable objects, you need to provide four related interfaces:

· IConnectionPointContainer
· IEnumConnectionPoints
· IConnectionPoint
· IEnumConnections

The IConnectionPointContainer interface indicates the existence of the outgoing interfaces. It provides
access to an enumerator sub-object with the IEnumConnectionPoints interface. It also provides a
connection point sub-object with the IConnectionPoint interface. The IConnectionPoint interface
provides access to an enumerator sub-object with the IEnumConnections interface.

The connection point is a separate sub-object to avoid circular reference counting problems.

Any individual connection point can support enumeration of its currently known connections through
IConnectionPoint::EnumConnections. The enumerator created by this method implements the
interface IEnumConnections which deals with the type CONNECTDATA. Each CONNECTDATA
structure contains the IUnknown of a connected sink and the dwConnection that was returned by
IConnectionPoint::Advise when that sink was connected. When enumerating connections through
IEnumConnections, the enumerator is responsible for calling IUnknown::AddRef through the pointer in
each enumerated structure, and the caller is responsible to later call IUnknown::Release when those
pointers are no longer needed.

When to Use
Use the IEnumConnectionPoints interface to enumerate all the supported connection points for each
outgoing IID.

The prototypes of the methods are as follows:

HRESULT Next(

 ULONG cConnections , //[in]Number of CONNECTDATA structures returned in rgpcd
 CONNECTDATA **rgpcd , //[out]Array to receive enumerated CONNECTDATA structures
 ULONG *pcFetched //[out]Pointer to actual number of CONNECTDATA structures
);

HRESULT Skip(

 ULONG cConnections //[in]Number of elements to skip
);

HRESULT Reset(void);

HRESULT Clone(

 IEnumConnections **ppEnum //[out]Indirect pointer to newly created enumerator
);

Remarks
IEnumConnections::Next

Enumerates the next cConnections elements (i.e., CONNECTDATA structures) in the enumerator's
list, returning them in rgpcd along with the actual number of enumerated elements in pcFetched.
The caller is responsible for calling CONNECTDATA.pUnk->Release for each element in the array once
this method returns successfully. If cConnections is greater than one, the caller must also pass a non-
NULL pointer to pcFetched to get the number of pointers it has to release.
E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in the rgpcd
array are valid on exit and require no release.

IEnumConnections::Skip

Instructs the enumerator to skip the next cConnections elements in the enumeration so that the next
call to IEnumConnections::Next will not return those elements.

IEnumConnections::Reset

Instructs the enumerator to position itself at the beginning of the list of elements.
There is no guarantee that the same set of elements will be enumerated on each pass through the
list. It depends on the collection being enumerated. It is too expensive for some collections, such as
files in a directory, to maintain a specific state.

IEnumConnections::Clone

Creates another connection point enumerator with the same state as the current enumerator to iterate
over the same list. This method makes it possible to record a point in the enumeration sequence in
order to return to that point at a later time.
The caller must release this new enumerator separately from the first enumerator.

See Also
CONNECTDATA, IConnectionPoint, IConnectionPointContainer, IEnumConnectionPoints,
IEnum Xxxx

IEnumFORMATETC

The IEnumFORMATETC interface is used to enumerate an array of FORMATETC structures.
IEnumFORMATETC has the same methods as all enumerator interfaces: Next, Skip, Reset, and Clone.
For general information on these methods, refer to IEnum XXXX .

When to Implement
IEnumFORMATETC must be implemented by all data objects to support calls to
IDataObject::EnumFormatEtc, which supplies a pointer to the enumerator's IEnumFORMATETC
interface. If the data object supports a different set of FORMATETC information depending on the
direction of the data (whether a call is intended for the SetData or GetData method of IDataObject), the
implementation of IEnumFORMATETC must be able to operate on both.

The order of formats enumerated through the IEnumFORMATETC object should be the same as the
order that the formats would be in when placed on the clipboard. Typically, this order starts with private
data formats and ends with presentation formats such as CF_METAFILEPICT.

When to Use
Call the methods of IEnumFORMATETC when you need to enumerate the FORMATETC structures
defining the formats and media supported by a given data object. This is necessary in most data transfer
operations, such as clipboard and drag-and-drop, so the object on the other end of the data transfer can
determine whether the appropriate format and media for the data is supported.

The prototypes of the methods are as follows:

HRESULT Next(ULONG celt, FORMATETC * rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumFORMATETC ** ppenum)

See Also
OleRegEnumFormatEtc, FORMATETC, IEnum XXXX

IEnumMoniker

The IEnumMoniker interface is used to enumerate the components of a moniker or to enumerate the
monikers in a table of monikers. IEnumMoniker has the same methods as all enumerator interfaces:
Next, Skip, Reset, and Clone. For general information on these methods, refer to IEnum XXXX .

When to Implement
You need to implement IEnumMoniker if you are writing a new type of moniker and your monikers have
an internal structure that can be enumerated. Your implementation of IMoniker::Enum must return an
enumerator that implements IEnumMoniker and can enumerate your moniker's components. If your
moniker has no structure that can be enumerated, your IMoniker::Enum method can simply return a
NULL pointer.

When to Use
Call the methods of the IEnumMoniker interface if you need to enumerate the components of a
composite moniker, or to enumerate the monikers in a table.

OLE defines two interfaces that supply an IEnumMoniker interface pointer:

· The IMoniker::Enum method gets a pointer to an IEnumMoniker implementation that can
enumerate forwards or backwards through the components of the moniker. For a description of how
two of the system-supplied types of monikers enumerate their components, see IMoniker - File
Moniker Implementation and IMoniker - Generic Composite Moniker Implementation .

· The IRunningObjectTable::EnumRunning method returns a pointer to an IEnumMoniker
implementation that can enumerate the monikers registered in a Running Object Table.

The prototypes of the methods are as follows:

HRESULT Next(ULONG celt, IMoniker * rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumMoniker ** ppenum)

See Also
IEnum XXXX , IMoniker::Enum, IRunningObjectTable::EnumRunning

IEnumOleUndoUnits

The IEnumOleUndoUnits interface enumerates the undo units on the undo or redo stack.

When to Implement
The undo manager implements this method to enumerate a list of undo units on the undo or redo stack.

When to Use
Use the IEnumOleUndoUnits interface to enumerate all the top level undo units on the undo or redo
stack.

The prototypes of the methods are as follows:

HRESULT Next(

 ULONG cUndoUnits , //[in]Number of undo units returned in rgpcd
 CONNECTDATA **rgpcd , //[out]Array to receive enumerated undo units
 ULONG *pcFetched //[out]Pointer to actual number of undo units
);

HRESULT Skip(

 ULONG cUndoUnits //[in]Number of undo units to skip
);

HRESULT Reset(void);

HRESULT Clone(

 IEnumOleUndoUnits**
ppEnum

//[out]Indirect pointer to newly created enumerator

);

Remarks
IEnumOleUndoUnits::Next

Enumerates the next specified number of undo units in the enumerator's list, returning them in rgpcd
along with the actual number of enumerated elements in pcFetched.
The caller is responsible for calling the Release method for each element in the array once this
method returns successfully. If cUndoUnits is greater than one, the caller must also pass a non-NULL
pointer to pcFetched to get the number of pointers it has to release.
E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in the rgpcd
array are valid on exit and require no release.

IEnumOleUndoUnits::Skip

Instructs the enumerator to skip the next specified number of elements in the enumerator so that the
next call to IEnumOleUndoUnits::Next will not return those elements.

IEnumOleUndoUnits::Reset

Instructs the enumerator to position itself at the beginning of the list of elements.
There is no guarantee that the same set of elements will be enumerated on each pass through the
list. It depends on the collection being enumerated. It is too expensive for some collections, such as
files in a directory, to maintain a specific state.

IEnumOleUndoUnits::Clone

Creates another undo unit enumerator with the same state as the current enumerator to iterate over
the same list. This method makes it possible to record a point in the enumeration sequence in order
to return to that point at a later time.
The caller must release this new enumerator separately from the first enumerator.

See Also
IOleUndoManager, IOleUndoUnit

IEnumOLEVERB

The IEnumOLEVERB interface enumerates the different verbs available for an object in order of
ascending verb number. An enumerator that implements the IEnumOLEVERB interface is returned by
IOleObject::EnumVerbs. IEnumOLEVERB has the same methods as all enumerator interfaces: Next,
Skip, Reset, and Clone. For general information on these methods, refer to IEnum XXXX .

When to Implement
You typically do not have to implement this interface. The OLE default handler provides an
implementation that supplies the entries in the registry. Because calls to IOleObject::EnumVerb are
always routed through the default handler, an OLE application can let the default handler do the work by
implementing IOleObject::EnumVerb as a stub that simply returns OLE_S_USEREG. This informs the
default handler that it should create the enumerator for you.

When to Use
Call this interface if you need to list the verbs than an OLE object supports.

The prototypes of the methods are as follows:

HRESULT Next(ULONG celt, LPOLEVERB rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumOLEVERB ** ppenum)

See Also
OLEVERB, IEnum XXXX

IEnumSTATDATA

The IEnumSTATDATA interface is used to enumerate through an array of STATDATA structures, which
contain advisory connection information for a data object. IEnumSTATDATA has the same methods as all
enumerator interfaces: Next, Skip, Reset, and Clone. For general information on these methods, refer to
IEnum XXXX .

When to Implement
IEnumSTATDATA is implemented to enumerate advisory connections. Most applications will not
implement this directly, but will use the OLE-provided implementation. Pointers to this implementation are
available in two ways:

· In a data object, call CreateDataAdviseHolder to get a pointer to the OLE data advise holder object,
and then, to implement IDataObject::EnumDAdvise, call IDataAdviseHolder::EnumAdvise, which
creates the enumeration object and supplies a pointer to the implementation of IEnumSTATDATA.

· In a compound document object, call CreateOLEAdviseHolder to get a pointer to the OLE advise
holder object, and then, to implement IOleObject::EnumAdvise, call
IOleAdviseHolder::EnumAdvise, which creates the enumeration object and supplies a pointer to the
implementation of IEnumSTATDATA.

When to Use
Containers usually call methods that return a pointer to IEnumSTATDATA so the container can use its
methods to enumerate the existing advisory connections, and use this information to instruct an object to
release each of its advisory connections prior to closing down. IDataObject::EnumDAdvise,
IDataAdviseHolder::EnumAdvise, IOleAdviseHolder::EnumAdvise, and IOleCache::EnumCache
methods all supply a pointer to IEnumSTATDATA.

The prototypes of the methods are as follows:

HRESULT Next(ULONG celt, STATDATA * rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumSTATDATA ** ppenum)

See Also
STATDATA, IEnum XXXX , IOleCache::EnumCache, IDataObject::EnumDAdvise,
IDataAdviseHolder::EnumAdvise, IOleObject::EnumAdvise

IEnumSTATPROPSETSTG

The IEnumSTATPROPSETSTG interface is used to iterate through an array of STATPROPSETSTG
structures, which contain statistical information about the property sets managed by the current instance
of IPropertySetStorage. IEnumSTATPROPSETSTG has the same methods as all enumerator
interfaces: Next, Skip, Reset, and Clone. For general information on these methods, refer to
IEnum XXXX .

The implementation defines the order in which the property sets are enumerated. Property sets that are
present when the enumerator is created, and are not removed during the enumeration, will be
enumerated only once. Property sets added or deleted while the enumeration is in progress may or may
not be enumerated, but, if enumerated, will not be enumerated more than once.

For information on how the OLE compound document implementation of
IEnumSTATPROPSETSTG:Next supplies members of the STATPROPSETSTG structure, refer to
IEnumSTATPROPSETSTG--Compound File Implementation.

When to Implement
IEnumSTATPROPSETSTG is implemented to enumerate the property sets supported by the current
property set storage object. If you are using the compound file implementation of the storage object, a
pointer to which is available through a call to StgCreateDocfile, IEnumSTATPROPSETSTG is
implemented on that object, and a pointer is returned through a call to IPropertySetStorage::Enum. If
you are doing a custom implementation of IPropertySetStorage, you need to implement
IEnumSTATPROPSETSTG to fill in a caller-allocated array of STATPROPSETSTG structures, each of
which contains information about the nested elements in the storage object.

When to Use
Call IPropertySetStorage::Enum to return a pointer to IEnumSTATPROPSETSTG, the methods of
which can then be called to enumerate STATPROSETSTG structures so the application can manage its
property sets.

The prototypes of the methods are as follows:

HRESULT Next(ULONG celt, STATPROPSETSTG * rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumSTATPROPSETSTG ** ppenum)

See Also
IPropertyStorage::Enum

IEnumSTATPROPSETSTG-Compound File Implementation
The compound file implementation of IEnumSTATPROPSETSTG interface is used to enumerate through
an array of STATPROPSETSTG structures, which contain statistical information about the properties
managed by the compound file implementation of IPropertySetStorage, which is associated with a
current compound file storage object.

When to Use
Call the methods of IEnumSTATPROPSETSTG to enumerate STATPROPSETSTG structures, each of
which provides information about one of the property sets associated with the compound file storage
object.

Remarks
IEnumSTATPROPSETSTG::Next

Gets the next one or more STATPROPSETSTG structures (the number is specified by the celt
parameter). The STATPROPSETSTG elements provided through a call to the compound file
implementation of IEnumSTATPROPSETSTG::Next follow these rules:

· If IEnumSTATPROPSETSTG::Next cannot provide STATPROPSETSTG.fmtid, zeros are written to
that member. This occurs when the property set does not have a predefined name (such as \
005SummaryInformation) and is not a legal value.

· The DocumentSummaryInformation property set is special, in that it may have two property set
sections. This property set is described in the section titled The DocumentSummaryInformation
Property Set. The second section is referred to as the User-Defined Properties. Each section is
identified with a unique Format ID. When IPropertySetStorage::Enum is used to enumerate
property sets, the User-Defined Property Set will not be enumerated.

Note If you always create a property set using IPropertySetStorage::Create, then, since a
"Character GUID" is created for the storage name, IEnumSTATPROPSETSTG::Next will return a
nonzero, valid format identifier for the property set[STATPROPSETSTG.fmtid].

· The STATPROPSETSTG.grfFlags member does not necessarily reflect whether the property set is
ANSI or not. If PROPSETFLAG_ANSI is set, the property set is definitely ANSI. If
PROPSETFLAG_ANSI is clear, the property set could be either Unicode or non-Unicode, because it
is not possible to tell whether it is ANSI without opening it.

· The STATPROPSETSTG.grfFlags member does reflect whether the property set is simple or not, so
the setting of the PROPSETFLAG_NONSIMPLE flag is always valid.

· If IEnumSTATPROPSETSTG::Next cannot provide STATPROPSETSTG.clsid, it is set to all zeroes
(CLSID_NULL). In the OLE compound file implementation, this occurs when the property set is simple
(the PROPSETFLAG_NONSIMPLE flag is not set), or is non-simple but the CLSID was not explicitly
set. For non-simple property sets, the CLSID that is received is the one that is maintained by the
underlying IStorage.

· If IEnumSTATPROPSETSTG::Next cannot provide the time fields [ctime, mtime, atime], each non-
supported time will be set to zeroes. In the OLE compound file implementation, getting these values
depends on retrieving them from the underlying IStorage implementation.

IEnumSTATPROPSETSTG::Skip

Skips the number of elements specified in celt. Returns S_OK if the specified number of elements are
skipped, returns S_FALSE if fewer elements than requested are skipped. In any other case, returns
the appropriate error.

IEnumSTATPROPSETSTG::Reset

Sets the cursor to the beginning of the enumeration. If successful, returns S_OK, otherwise, returns
STG_E_INVALIDHANDLE.

IEnumSTATPROPSETSTG::Clone

Copies the current enumeration state of this enumerator.

IEnumSTATPROPSTG

The IEnumSTATPROPSTG interface is used to iterate through an array of STATPROPSTG structures,
which contain statistical information about an open property storage containing a property set.
IEnumSTATPROPSTG has the same methods as all enumerator interfaces: Next, Skip, Reset, and
Clone. For general information on these methods, refer to IEnum XXXX .

The implementation defines the order in which the properties in the set are enumerated. Properties that
are present when the enumerator is created, and are not removed during the enumeration, will be
enumerated only once. Properties added or deleted while the enumeration is in progress may or may not
be enumerated, but they will never be enumerated more than once.

Properties with property ID 0 (dictionary), property ID 1 (codepage indicator), or property ID greater than
or equal to 0x80000000 are not enumerated.

Enumeration of a non-simple property does not necessarily indicate that the property can be read
successfully through a call to IPropertyStorage::ReadMultiple. This is because the performance
overhead of checking existence of the indirect stream or storage is prohibitive during property
enumeration. A client of this interface should code accordingly.

When to Implement
Implement IEnumSTATPROPSTG to enumerate the properties within a property set. If you are using the
compound file implementation of the storage object, a pointer to which is available through a call to
StgCreateDocfile, you can then query for a pointer to IPropertySetStorage. After calling one of its
methods either to open or create a property set, you can get a pointer to IEnumSTATPROPSTG through
a call to IPropertyStorage::Enum. If you are doing a custom implementation of IPropertyStorage, you
also need to implement IEnumSTATPROPSTG to fill in a caller-allocated array of STATPROPSTG
structures. Each STATPROPSTG structure contains information about a simple property.

When to Use
Applications that support storage objects and persistent properties within those objects call
IPropertyStorage::Enum to return a pointer to IEnumSTATPROPSTG to enumerate the properties in the
current property set.

The prototypes of the methods are as follows:

HRESULT Next(ULONG celt, STATPROPSTG * rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumSTATPROPSTG ** ppenum)

See Also
IPropertyStorage::Enum

IEnumSTATPROPSTG-Compound File Implementation
The compound file implementation of the IEnumSTATPROPSTG interface is used to enumerate through
properties, resulting in STATPROPSTG structures, which contain statistical information about the
properties managed by the compound file implementation of IPropertyStorage, which is associated with
a current compound file storage object.

The constructor in the OLE implementation of IEnumSTATPROPSTG creates a class that reads the
entire property set, and creates a static array which can be shared when IEnumSTATPROPSTG::Clone
is called.

When to Use
Call the compound file implementation of IEnumSTATPROPSTG to enumerate the STATPROPSTG
structures that contain information about the properties within the current property set. When you are
using the compound file implementation of the property storage interfaces, call IPropertyStorage::Enum
to return a pointer to IEnumSTATPROPSTG to manage the property storage object and the elements
within it.

Remarks
IEnumSTATPROPSTG::Next

Gets the next one or more STATPROPSTG structures (the number is specified by the celt parameter).
Returns S_OK if successful.

IEnumSTATPROPSTG::Skip

Skips the number of elements specified in celt. The next element to be enumerated through a call to
Next then becomes the element after the ones skipped. Returns S_OK if celt elements were skipped;
returns S_FALSE if fewer than celt elements were skipped.

IEnumSTATPROPSTG::Reset

Sets the cursor to the beginning of the enumeration. If successful, returns S_OK, otherwise, returns
STG_E_INVALIDHANDLE.

IEnumSTATPROPSTG::Clone

Uses the constructor for the IEnumSTATPROPSTG to create a copy of the array. Because the class
that constructs the static array actually contains the object, this function mainly adds to the reference
count.

See Also
STATPROPSTG, IPropertyStorage::Enum

IEnumSTATSTG

The IEnumSTATSTG interface is used to enumerate through an array of STATSTG structures, which
contain statistical information about an open storage, stream, or byte array object. IEnumSTATSTG has
the same methods as all enumerator interfaces: Next, Skip, Reset, and Clone. For general information
on these methods, refer to IEnum XXXX .

When to Implement
IEnumSTATSTG is implemented to enumerate the elements of a storage object. If you are using the
compound file implementation of the storage object, a pointer to which is available through a call to
StgCreateDocfile, IEnumSTATSTG is implemented on that object, and a pointer is returned through a
call to IStorage::EnumElements. If you are doing a custom implementation of a storage object, you need
to implement IEnumSTATSTG to fill in a caller-allocated array of STATSTG structures, each of which
contains information about the nested elements in the storage object.

When to Use
Containers call methods that return a pointer to IEnumSTATSTG so the container can manage its storage
object and the elements within it. Calls to the IStorage::EnumElements method supplies a pointer to
IEnumSTATDATA. The caller allocates an array of STATSTG structures and the IEnumSTATSTG
methods fill in each structure with the statistics about one of the nested elements in the storage object. If
present, the lpszName member of the STATSTG structure requires additional memory allocations through
the IMalloc interface, and the caller is responsible for freeing this memory, if it is allocated, by calling the
IMalloc::Free method. If the lpszName member is NULL, no memory is allocated, and, therefore, no
memory needs to be freed.

The prototypes of the methods are as follows:

HRESULT Next(ULONG celt, STATSTG * rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumSTATSTG ** ppenum)

See Also
CoGetMalloc, IEnum XXXX , IStorage::EnumElements, STATSTG

IEnumString

IEnumString is defined to enumerate strings. LPWSTR is the type that indicates a pointer to a zero-
terminated string of wide, i.e., Unicode, characters. IEnumString has the same methods as all
enumerator interfaces: Next, Skip, Reset, and Clone. For general information on these methods, refer to
IEnum XXXX .

When to Implement
It is usually not necessary to implement this interface unless you have use for a custom string
enumerator. A system implementation in the bind context object on which is the IBindCtx interface also
contains an implementation of IEnumString. IBindCtx::EnumObjectParam returns a pointer to this
IEnumString interface on an enumerator that can return the keys of the bind context's string-keyed table
of pointers.

When to Use
Call the methods of IEnumString to enumerate through a set of strings.

The prototypes of the member functions are as follows:

HRESULT Next(ULONG celt, LPOLESTR * rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumString ** ppenum)

IEnumUnknown

This enumerator enumerates objects with the IUnknown interface. It can be used to enumerate through
the objects in a component containing multiple objects. IEnumUnknown has the same methods as all
enumerator interfaces: Next, Skip, Reset, and Clone. For general information on these methods, refer to
IEnum XXXX .

When to Implement
You can implement this whenever you want a caller to be able to enumerate the objects contained in
another object. You get a pointer to IEnumUnknown through a call to IOleContainer::EnumObjects.

When to Implement
Call the methods of IEnumUnknown to enumerate the objects in a compound document, when you get a
pointer to the interface on the enumerator through a call to IOleContainer::EnumObjects.

The prototypes of the methods are as follows:

HRESULT Next(ULONG celt, IUnknown ** rgelt, ULONG * pceltFetched)

HRESULT Skip(ULONG celt)

HRESULT Reset(void)

HRESULT Clone(IEnumUnknown ** ppenum)

See Also
IOleContainer

IErrorLog

The IErrorLog interface is an abstraction for an error log that is used to communicate detailed error
information between a client and an object. The caller of the single interface method, AddError, simply
logs an error where the error is an EXCEPINFO structure related to a specific property. The implementer
of the interface is responsible for handling the error in whatever way it desires.

IErrorLog is used in the protocol between a client that implements IPropertyBag and an object that
implements IPersistPropertyBag.

When to Implement
A container implements IErrorLog to provide a control with a means of logging errors when the control is
loading its properties from the container-provided property bag.

When to Use
A control logs calls the single method in this interface to log any errors that occur when it is loading its
properties.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IErrorLog Method Description
AddError Logs an error, an EXCEPINFO

structure, in the error log during the
property load process for a named
property.

See Also
IPersistPropertyBag, IPropertyBag

IErrorLog::AddError

Logs an error, an EXCEPINFO structure, in the error log during the property load process for a named
property.

HRESULT AddError(

 LPCOLESTR pszPropName, //Pointer to the name of the property involved with the error
 LPEXCEPINFO pException //Pointer to the caller-initialized EXCEPINFO structure describing the error
);

Parameters
pszPropName

[in] Pointer to the name of the property involved with the error. Cannot be NULL.
pExcepInfo

[in] Pointer to the caller-initialized EXCEPINFO structure that describes the error to log. Cannot be
NULL.

Return Values
S_OK

The error was logged successfully.
E_FAIL

There was a problem logging the error.
E_OUTOFMEMORY

There was not enough memory to log the error.
E_POINTER

The address in pszPropName or pExceptInfo is not valid (such as NULL). The caller must supply
both.

Remarks
E_NOTIMPL is not a valid return code as the method is the only one in the entire interface.

IExternalConnection

The IExternalConnection interface enables an embedded object to keep track of external locks on it,
thereby enabling the safe and orderly shutdown of the object following silent updates. An object that
supports links either to itself or to some portion of itself (a range of cells in a spreadsheet, for example)
should implement this interface to prevent possible loss of data during shutdown.

Such data loss can occur when an object happens to have unsaved changes at a time when its stub
manager's count of strong external references has reached zero. This situation would arise, for example,
at the end of a silent update, when the final link client breaks its connection to the object. With the
severing of this connection, the stub manager's count of strong external references would reach zero,
causing it to release its pointers to an interface on the object and initiate shutdown of the object. When
the object calls IOleClientSite::SaveObject, its container's return call to IPersistStorage::Save would
fail because the stub manager would no longer have a pointer to any interface on the object. Any unsaved
changes to the object would be lost.

If the object manages its own count of external locks, rather than relying on the stub manager to do so, it
can save its data before the stub manager has a chance to release its pointers. An object can obtain a
count of external connections by implementing the IExternalConnection interface. The stub manager
calls this interface whenever a new strong external reference is added or deleted. The object combines
this count with its own tally of strong internal references to maintain an accurate total of all locks.

When to Implement
All embeddable compound-document objects that support links to themselves or portions of themselves
should implement IExternalConnection to prevent possible data loss during shutdown. In addition, an in-
place container should call OleLockRunning to hold a strong lock on its embedded objects.

When to Use
An object's stub manager should call IExternalConnection whenever an external connection is added or
released.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IExternalConnection Methods Description
AddConnection Increments count of external locks.
ReleaseConnection Decrements count of external

locks.

IExternalConnection::AddConnection

Increments an object's count of its strong external connections (links).

HRESULT AddConnection(

 DWORD exconn, //Type of external connection
 DWORD dwreserved //Used by OLE to pass connection information
);

Parameters
exconn

[in] Type of external connection to the object. The only type of external connection currently supported
by this interface is strong, which means that the object must remain alive as long as this external
connection exists. Strong external connections are represented by the value EXTCONN_STRONG =
0x0001, which is defined in the enumeration EXTCONN.

dwreserved

[in] Passes information about the connection. This parameter is reserved for use by OLE. Its value
can be zero, but not necessarily. Therefore, implementations of AddConnection should not contain
blocks of code whose execution depends on whether a zero value is returned.

Return Value
DWORD value

The number of reference counts on the object; used for debugging purposes only.

Remarks
An object created by a EXE object server relies on its stub manager to call
IExternalConnection::AddConnection whenever a link client activates and therefore creates an
external lock on the object. When the link client breaks the connection, the stub manager calls
IExternalConnection::ReleaseConnection to release the lock.

Since DLL object applications exist in the same process space as their objects, they do not use RPC
(remote procedure calls) and therefore do not have stub managers to keep track of external connections.
Therefore, DLL servers that support external links to their objects must implement IExternalConnection
so link clients can directly call the interface to inform them when connections are added or released.

The following is a typical implementation for the AddConnection method:

DWORD XX::AddConnection(DWORD extconn, DWORD dwReserved)
{

return extconn&EXTCONN_STRONG ? ++m_cStrong : 0;
}

See Also
IExternalConnection::ReleaseConnection, IRunnableObject::LockRunning, OleLockRunning

IExternalConnection::ReleaseConnection

Decrements an object's count of its strong external connections (references).

HRESULT ReleaseConnection(

 DWORD extconn, //Type of external connection
 DWORD dwreserved, //Used by OLE to pass connection information
 BOOL fLastReleaseCloses //Indicates whether connection is last one or not
);

Parameters
extconn

[in] Type of external connection to the object. The only type of external connection currently supported
by this interface is strong, which means that the object must remain alive as long as this external
connection exists. Strong external connections are represented by the value EXTCONN_STRONG =
0x0001, which is defined in the enumeration EXTCONN.

dwreserved

[in] Passes information about the connection. This parameter is reserved for use by OLE. Its value
can be zero, but not necessarily. Therefore, implementations of ReleaseConnection should not
contain blocks of code whose execution depends on whether a zero value is returned.

fLastReleaseCloses

[in] TRUE specifies that if the connection being released is the last external lock on the object, the
object should close. FALSE specifies that the object should remain open until closed by the user or
another process.

Return Value
DWORD value

The number of connections to the object; used for debugging purposes only.

Remarks
If fLastReleaseCloses equals TRUE, calling ReleaseConnection causes the object to shut itself down.
Calling this method is the only way in which a DLL object, running in the same process space as the
container application, will know when to close following a silent update.

See Also
IExternalConnection::AddConnection

IFillLockBytes
The IFillLockBytes interface enables downloading code to write data asynchronously to a structured
storage byte array. When the downloading code has new data available, it calls
IFillLockBytes::FillAppend or IFillLockBytes::FillAt to write the data to the byte array. An application
attempting to access this data, through calls to the ILockBytes interface, can do so even as the
downloader continues to make calls to IFillLockBytes. If the application attempts to access data that has
not already been downloaded through a call to IFillLockBytes, then ILockBytes returns a new error,
E_PENDING.

When to Implement
You normally would not implement this interface. A system developer that wants to provide asynchronous
storage for a protocol other than http might implement IFillLockBytes as part of the transport layer.

When to Use
You normally would not call this interface. Monikers or other downloading code that provide asynchronous
storage use this interface to fill the byte array as data becomes available.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IFillLockBytes Methods Description
FillAppend Writes a new block of bytes to end

of byte array.
FillAt Writes a new block of bytes to

specified location in byte array.
SetFillSize Sets expected size of byte array.
Terminate Notifies byte array wrapper of

successful or unsuccessful
termination of download.

See Also
IConnectionPoint, IConnectionPointContainer, ILockBytes, IProgressNotify, IStorage, IStream

Also see IBinding and IBindStatusCallback in the ActiveX™ SDK.

IFillLockBytes::FillAppend
Writes a new block of bytes to the end of a byte array.

HRESULT FillAppend(

 void const *pv // Data to be appended to byte array
 ULONG cb // Number of bytes to be appended
 ULONG *pcbWritten // Number of bytes that were successfully appended
);

Parameters
pv

[in] Points to the data to be appended to the end of an existing byte array.
cb

[in] Size of pv in bytes.
pcbWritten

[out] Number of bytes that were successfully written.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL.

Remarks
The FillAppend method is used for sequential downloading, where bytes are written to the end of the
byte array in the order in which they are received. This method obtains the current size of the byte array
(i.e., lockbytes object) and writes a new block of data to the end of the array. As each block of data
becomes available, the downloader calls this method to write it to the byte array. Subsequent calls by the
compound file implementation to ILockBytes::ReadAt return any available data or return E_PENDING if
data is currently unavailable.

See Also
ILockBytes

IFillLockBytes::FillAt
Writes a new block of data to a specified location in the byte array.

HRESULT FillAt(

 ULARGE_INTEGER uIOffset // Offset from beginning of the byte array
 void const *pv // Data to be written
 ULONG cb // Number of bytes to be written
 ULONG *pcbWritten // Number of bytes that were successfully written
);

Parameters
uIOffset

[in] The offset, expressed in number of bytes, from the first element of the byte array.
pv

[in] Points to the data to be written at the location specified by uIOffset.
cb

[in] Size of pv in bytes.
pcbWritten

[out] Number of bytes that were successfully written.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL in addition to the following:

E_NOTIMPL

The byte array does not support FillAt.

Remarks
The FillAt method is used for nonsequential downloading (for example, http byte range requests). In
nonsequential downloading the caller specifies ranges in the byte array where various blocks of data are
to be written. Subsequent calls by the compound file implementation to ILockBytes::ReadAt are passed
by the byte array wrapper object's own implementation of ILockBytes to the underlying byte array. This
method is not currently implemented and will return E_NOTIMPL.

Note The system-supplied IFillLockBytes implementation does not support FillAt and returns
E_NOTIMPL.

See Also
IFillLockBytes::FillAppend, IFillLockBytes - Implementation, ILockBytes::ReadAt

IFillLockBytes::SetFillSize
Sets the expected size of the byte array.

HRESULT SetFillSize(

 ULARGE_INTEGER uISize // Size in bytes of a byte array object
);

Parameters
uISize

[in] Size in bytes of the byte array object that is to be filled in subsequent calls to
IFillLockBytes::FillAppend.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL.

Remarks
If SetFillSize has not been called, any call to ILockBytes::ReadAt that attempts to access data that has
not yet been written using IFillLockBytes::FillAppend or IFillLockBytes::FillAt will return a new error
message, E_PENDING. After SetFillSize has been called, any call to ReadAt that attempts to access
data beyond the current size, as set by SetFillSize, returns E_FAIL instead of E_PENDING.

See Also
IFillLockBytes::FillAppend, IFillLockBytes::FillAt, ILockBytes::ReadAt

IFillLockBytes::Terminate
Informs the byte array that the download has been terminated, either successfully or unsuccessfully.

HRESULT Terminate(

 BOOL bCanceled // Indicates if download was successful
);

Parameters
bCanceled

[in] Download is complete. If TRUE, the download was terminated unsuccessfully. If FALSE, the
download terminated successfully.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL.

Remarks
After this method has been called, the byte array will no longer return E_PENDING.

IFillLockBytes - Implementation
The system provides an IFillLockBytes implementation as part of its existing implementation of
Compound Files. Downloading code can instantiate an asynchronous Compound File object by calling
StgOpenAsyncDocFileOnIFillLockBytes and can instantiate an asynchronous byte array wrapper
object on an existing file or byte array by calling either the StgGetIFillLockBytesOnFile function or the
StgGetIFillLockBytesOnILockBytes function.

When to Use
Currently, URL monikers are the only users of OLE's asynchronous storage implementation.

Remarks
FillAppend

Writes a new block of bytes to the end of a byte array.
FillAt

The system implementation does not support this method. Returns E_NOTIMPL.
SetFillSize

Sets size of byte array. Returns E_FAIL from calls to ILockBytes::ReadAt that attempts to access
data beyond the upper bound specified

Terminate

Informs byte array that a download has been terminated, either successfully or unsuccessfully.

IFont

An OLE font object is an object wrapper around a Windows font object. The OLE font object supports a
number of read-write properties as well as a set of methods through its IFont interface. It supports the
same set of properties (but not the methods) through the dispatch interface IFontDisp, which is derived
from IDispatch to provide access to the font's properties through Automation. The system provides a
standard implementation of the font object with both interfaces.

The font object also supports the outgoing interface IPropertyNotifySink so a client can determine when
font properties change. Because the font object supports at least one outgoing interface, it also
implements IConnectionPointContainer and related interfaces for this purpose.

The font object provides an hFont property, which is a Windows font handle that conforms to the other
attributes specified for the font. The font object delays realizing this hFont object when possible, so
consecutively setting two properties on a font won't cause an intermediate font to be realized. In addition,
as an optimization, the system-implemented font object maintains a cache of font handles. Two font
objects in the same process that have identical properties will return the same font handle. The font object
can remove font handles from this cache at will, which introduces special considerations for clients using
the hFont property. See the description for IFont::get_hFont for more details.

The font object also supports IPersistStream so it can save and load itself from an instance of IStream.
An object that uses a font object internally would normally save and load the font as part of the object's
own persistence handling.

In addition, the font object supports IDataObject, which can render a property set containing the font's
attributes, allowing a client to save these properties as text.

When to Implement
Typically, you use the OLE-provided font object, which implements the IFont interface as its primary
interface. It allows the caller to manage font properties and to use that font in graphical rendering. Each
property in the IFont interface includes a get_PropertyName method if the property supports read access
and a put_PropertyName method if the property supports write access. Most of the properties support
both read and write access, and thus expose both "get" and "put" methods for these properties.

Property Type

Access
Allowed

Description
Name BSTR RW The name of the font family, e.g.

Arial.
Size CY RW The point size of the font,

expressed in a CY type to allow for
fractional point sizes.

Bold BOOL RW Indicates whether the font is
boldfaced.

Italic BOOL RW Indicates whether the font is
italicized.

Underline BOOL RW Indicates whether the font is
underlined.

Strikethrough BOOL RW Indicates whether the font is
strikethrough.

Weight short RW The boldness or weight of the font.
Charset short RW The character set used in the font,

such as ANSI_CHARSET,

DEFAULT_CHARSET, or
SYMBOL_CHARSET.

hFont HFONT R The Windows font handle that can
be selected into a device context for
rendering.

When to Use
Use this interface to change or retrieve the properties of a font object.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IFont Methods Description
get_Name Gets the name of the font family.
put_Name Sets a new name for the font family.
get_Size Gets the point size for the font.
put_Size Sets the point size for the font.
get_Bold Indicates whether the font is bold or not.
put_Bold Sets the boldness property for the font.
get_Italic Indicates whether the font is italic or not.
put_Italic Sets the italic property for the font.
get_Underline Indicates whether the font is underlined or

not.
put_Underline Sets the underline property for the font.
get_Strikethrough Indicates whether the font is strikethrough

or not.
put_Strikethrough Sets the strikethrough property for the font.
get_Weight Gets the weight (boldness) for the font.
put_Weight Sets the weight (boldness) for the font.
get_Charset Gets the font's character set.
put_Charset Sets the font's character set.
get_hFont Returns a Windows HFONT handle for the

font described by this font object.
Clone Creates a duplicate font object with a state

identical to the current font.
IsEqual Compares this font object to another for

equality.
SetRatio Converts the scaling factor for this font

between logical units and HIMETRIC units
(in which is expressed the point size in the
Size property).

QueryTextMetrics Fills a TEXTMETRIC structure describing
the font.

AddRefHfont Notifies the font object that the previously

realized font identified with hFont (from
IFont::GetHfont) should remain valid until
IFont::ReleaseHfont is called or the font
object itself is released.

ReleaseHfont Notifies the font object that the caller that
previously locked this font in the cache with
IFont::AddRefHfont no longer requires
the lock.

SetHdc Provides a device context handle to the
font that describes the logical mapping
mode.

See Also
IFont - Ole Implementation, IFontDisp

IFont::AddRefHfont
Notifies the font object that the previously realized font identified with hFont (obtained from
IFont::get_hFont) should remain valid until IFont::ReleaseHfont is called or the font object itself is
released completely.

HRESULT AddRefHfont(

 HFONT hfont //Font handle returned from IFont::GetHfont
);

Parameters
hfont

[in] Font handle previously realized through IFont::GetHfont to be locked in the font object's cache.

Return Values
The method supports the standard return values E_UNEXPECTED and E_INVALIDARG, as well as the
following:

S_OK

The font was successfully locked in the cache.

See Also
IFont::get hFont, IFont:ReleaseHfont

IFont::Clone

Creates a duplicate font object with a state identical to the current font.

HRESULT Clone(

 IFont** ppfont //Indirect pointer to the new font object
);

Parameters
ppfont

[out] Indirect pointer to the IFont interface on the new font object. The caller must call IFont::Release
when this new font object is no longer needed.

Return Values
The method supports the standard return values E_UNEXPECTED and E_OUTOFMEMORY, as well as
the following:

S_OK

The new font object was successfully created.
E_NOTIMPL

This font object does not support cloning.
E_POINTER

The address in ppfont is not valid. For example, it may be NULL.

Remarks
Notes to Callers
The new font object is entirely independent of the first. The caller is responsible for releasing this new
object when it is no longer needed. This method does not affect the reference count of the font being
cloned.

IFont::get_Bold

Indicates whether the font is bold or not.

HRESULT get_Bold(

 BOOL* pbold //Pointer to the font's bold format
);

Parameters
pbold

[out] Pointer to a caller-allocated BOOL variable that indicates whether the font is bold or not.

Return Values
S_OK

The state was retrieved successfully. If the state is indeterminate, a font object should set *pbold to
FALSE and return S_OK.

E_POINTER

The address in pbold is not valid. For example, it may be NULL.

See Also
IFont::put_Bold

IFont::get_Charset
Returns the character set used in the font. The character set can be any of those defined for Windows
fonts.

HRESULT get_Charset(

 short* pcharset //Pointer to the character set
);

Parameters
pcharset

[out] Pointer to the caller-allocated short variable that receives the character set value.

Return Values
S_OK

The character set was retrieved successfully.
E_POINTER

The address in pcharset is not valid. For example, it may be NULL.

See Also
IFont::put_Charset

IFont::get_hFont
Returns a Windows HFONT handle for the font described by this font object.

HRESULT get_hFont(

 HFONT* phfont //Pointer to the font handle
);

Parameters
phfont

[out] Pointer to the caller-allocated HFONT variable that receives the font handle. The caller does not
own this resource and must not attempt to destroy the font.

Return Values
The method supports the standard return values E_UNEXPECTED and E_OUTOFMEMORY, as well as
the following:

S_OK

The font handle was retrieved successfully.
E_POINTER

The address in phfont is not valid. For example, it may be NULL.

Remarks
Notes to Callers
The font object maintains ownership of the HFONT and can destroy it at any time without prior
notification. If the caller needs to secure this font for a limited period of time, it can call
IFont::AddRefHfont and IFont::ReleaseHfont.

See Also
IFont::AddRefHfont, IFont::ReleaseHfont

IFont::get_Italic

Indicates whether the font is italic or not.

HRESULT get_Italic(

 BOOL* pitalic //Pointer to the font's italic format
);

Parameters
pitalic

[out] Pointer to the caller-allocated BOOL variable that indicates whether the font is italic.

Return Values
S_OK

The state was retrieved successfully. If the state is indeterminate, a font object should set *pitalic to
FALSE and return S_OK.

E_POINTER

The address in pitalic is not valid. For example, it may be NULL.

See Also
IFont::put_Italic

IFont::get_Name

Returns a copy of the name of the font family.

HRESULT get_Name(

 BSTR* pname //Pointer to the name of the font family
);

Parameters
pname

[out] Pointer to the caller-allocated variable that receives the copy of the name. This name must be
freed with SysFreeString when it is no longer needed.

Return Values
The method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The name was returned successfully.
E_POINTER

The address in pname is not valid. For example, it may be NULL.

Remarks
Notes to Callers
The caller is responsible for freeing the memory allocated for the name with SysFreeString.

See Also
IFont::put_Name

IFont::get_Size

Retrieves the point size of the font expressed in a 64-bit CY variable. The upper 32-bits of this value
contains the integer point size and the lower 32-bits contains the fractional point size.

HRESULT get_Size(

 CY* psize //Pointer to the font size.
);

Parameters
psize

[out] Pointer to the caller-allocated variable that receives the size.

Return Values
The method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The size was retrieved successfully.
E_POINTER

The address in psize is not valid. For example, it may be NULL.

See Also
IFont::put_Size

IFont::get_Strikethrough

Indicates whether the font has the strikethrough property or not.

HRESULT get_Strikethrough(

 BOOL* pstrikethrough //Pointer to the current strikethrough property for the font
);

Parameters
pstrikethrough

[out] Pointer to the caller-allocated BOOL variable that indicates the current strikethrough property for
the font.

Return Values
S_OK

The state was retrieved successfully. If the state is indeterminate, a font object should set
*pstrikethrough to FALSE and return S_OK.

E_POINTER

The address in pstrikethrough is not valid. For example, it may be NULL.

See Also
IFont::put_Strikethrough

IFont::get_Underline

Indicates whether the font is underlined or not.

HRESULT get_Underline(

 BOOL* punderline //Pointer to the font's underlined property
);

Parameters
punderline

[out] Pointer to the caller-allocated BOOL variable that indicates whether the font is underlined.

Return Values
S_OK

The state was retrieved successfully. If the state is indeterminate, a font object should set *punderline
to FALSE and return S_OK.

E_POINTER

The address in punderline is not valid. For example, it may be NULL.

See Also
IFont::put_Underline

IFont::get_Weight
Returns the font weight, where a weight is defined as any of the FW_* values that are valid for Windows
fonts.

HRESULT get_Weight(

 short* pweight //Pointer to the font weight
);

Parameters
pweight

[out] Pointer to the caller-allocated short variable that receives the current font weight.

Return Values
S_OK

The weight was retrieved successfully. If the weight is indeterminate, a font object should store
FW_NORMAL in *pweight and return S_OK.

E_POINTER

The address in pweight is not valid. For example, it may be NULL.

See Also
IFont::put_Weight

IFont::IsEqual
Compares this font object to another for equivalence.

HRESULT IsEqual(

 IFont* pFontOther //Pointer to the font to compare to this font
);

Parameters
pFontOther

[in] Pointer to the IFont interface on the font object to be compared to this font. The reference count
of the object referred to by this pointer is not affected by the comparison operation.

Return Values
The method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The two fonts are equivalent.
S_FALSE

The two fonts are not equivalent.
E_POINTER

The address in pFontOther is not valid. For example, it may be NULL.

IFont::put_Bold

Sets the font's current bold property. Changing the Bold property may also change the Weight property.
Setting Bold to TRUE sets the Weight to FW_BOLD (700); setting Bold to FALSE sets Weight to
FW_NORMAL (400).

HRESULT put_Bold(

 BOOL bold //Bold property for the font
);

Parameters
bold

[in] New bold property for the font.

Return Values
S_OK

The bold state was changed successfully.
S_FALSE

The font does not support a bold state. Note that this is not an error condition.

See Also
IFont::get_Bold

IFont::put_Charset
Sets the font's character set.

HRESULT put_Charset(

 short charset //Character set
);

Parameters
charset

[in] New character set for the font.

Return Values
The method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The character set was changed successfully.

See Also
IFont::get_Charset

IFont::put_Italic

Sets the font's current italic property.

HRESULT put_Italic(

 BOOL italic //Italic property for the font
);

Parameters
italic

[in] New italic property for the font.

Return Values
S_OK

The italic state was changed successfully.
S_FALSE

The font does not support an italic state. This value is not an error condition.

See Also
IFont::get_Italic

IFont::put_Name

Specifies a new name for the font family.

HRESULT put_Name(

 BSTR name //Name of the font family
);

Parameters
name

[in] New name of the font family. This BSTR value is both allocated and freed by the caller.

Return Values
The method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The name was changed successfully.
E_POINTER

The address in name is not valid. For example, it may be NULL.

Remarks
Notes to Callers
The string value is caller allocated and the caller is responsible for freeing it after this call returns.

See Also
IFont::get_Name

IFont::put_Size

Sets the current point size of the font given a CY structure.

HRESULT put_Size(

 CY size //Size of the font
);

Parameters
size

[in] New size of the font.

Return Values
The method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The font was resized successfully.
E_POINTER

The value of the size parameter is not valid. For example, it does not contain a usable font size.

See Also
IFont::get_Size

IFont::put_Strikethrough

Sets the font's current strikethrough property.

HRESULT put_Strikethrough(

 BOOL strikethrough //Strikethrough property for the font
);

Parameters
strikethrough

[in] New strikethrough property for the font.

Return Values
S_OK

The strikethrough state was changed successfully.
S_FALSE

The font does not support a strikethrough state. This value is not an error condition.

See Also
IFont::get_Strikethrough

IFont::put_Underline

Sets the font's current underline property.

HRESULT put_Underline(

 BOOL underline //Underline property for the font
);

Parameters
underline

[in] New underline property for the font.

Return Values
S_OK

The underline state was changed successfully.
S_FALSE

The font does not support an underline state. This value is not an error condition.

See Also
IFont::get_Underline

IFont::put_Weight
Sets the font's weight. This property may affect the bold property as well. Bold is set to TRUE if the weight
is greater than the average of FW_NORMAL (400) and FW_BOLD (700), that is 550.

HRESULT put_Weight(

 short weight //Weight for the font
);

Parameters
weight

[in] New weight for the font.

Return Values
S_OK

The weight was changed successfully.
S_FALSE

This font does not support different weights. This value is not an error condition.

See Also
IFont::get_Weight

IFont::QueryTextMetrics

Fills a caller-allocated TEXTMETRIC structure for the font. The TEXTMETRICOLE structure is defined as
a TEXTMETRICW structure on Win32 platforms. For more information on this structure, consult the
Win32 Programmer's Reference.

HRESULT QueryTextMetrics(

 TEXTMETRICOLE* ptm //Pointer to font information structure to be filled
);

Parameters
ptm

[out] Pointer to the caller-allocated structure that receives the font information.

Return Values
The method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The text metrics were returned successfully.
E_POINTER

The address in ptm is not valid. For example, it may be NULL.

Remarks
Notes to Implementers
E_NOTIMPL is not a valid return value. Font objects must always provide their font information through
this call unless other errors occur.

IFont::ReleaseHfont
Notifies the font object that the caller that previously locked this font in the cache with
IFont::AddRefHfont no longer requires the lock.

HRESULT ReleaseHfont(

 HFONT hfont //Font handle returned from IFont::GetHfont
);

Parameters
hfont

[in] Font handle previously realized through IFont::GetHfont. This value was passed to a previous
call to IFont::AddRefHfont to lock the font, and the caller would now like to unlock the font in the
cache.

Return Values
The method supports the standard return values E_UNEXPECTED and E_INVALIDARG, as well as the
following:

S_OK

The font was unlocked successfully.
S_FALSE

The font was not locked in the cache. This return value is a benign notification to the caller that it may
have a font reference counting problem.

See Also
IFont::AddRefHfont

IFont::SetHdc

Provides a device context to the font that describes the logical mapping mode.

HRESULT SetHdc(

 HDC hdc //Device context handle
);

Parameters
hdc

[in] Handle to the device context in which to select the font.

Return Values
The method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The font was selected successfully.
E_NOTIMPL

The font selection is not supported through this font object.

Remarks
The logical mapping mode affects the font's internal computation of its point size so that when the caller
asks for a font handle by calling IFont::GetHfont, the font is already properly scaled to the device
context.

Notes to Callers
The caller retains ownership of this device context which must remain valid for the lifetime of the font
object. Thus, the device context passed should be a memory device context (from the Win32 function
CreateCompatibleDC) and not a screen device context (from CreateDC, GetDC, or BeginPaint)
because screen device contexts are a limited system resource.

IFont::SetRatio

Converts the scaling factor for this font between logical units and HIMETRIC units. HIMETRIC units are
used to express the point size in the IFont::get_Size and IFont::put_Size methods. The values passed
to IFont::SetRatio are used to compute the display size of the font in logical units from the value in the
Size property:

 Display Size= (cyLogical/cyHimetric) * Size

HRESULT SetRatio(

 long cyLogical , //Font size in logical units
 long cyHimetric //Font size in HIMETRIC units
);

Parameters
cyLogical

[in] Font size in logical units.
cyHimetric

[in] Font size in HIMETRIC units.

Return Values
The method supports the standard return values E_UNEXPECTED and E_INVALIDARG, as well as the
following:

S_OK

The ratio was set successfully.

See Also
IFont::get_Size, IFont::put_Size

IFont - Ole Implementation
The system provides a standard implementation of a font object with the IFont interface on top of the
underlying system font support. A font object is created through the OleCreateFontIndirect function. A
font object supports a number of read-write properties, as well as a set of methods, through its IFont
interface and supports the same set of properties (but not the methods) through a dispatch interface
IFontDisp which is derived from IDispatch to provide access to the font's properties through Automation.
The system implementation of the font object supplies both interfaces.

Remarks
The OLE-provided font object implements the complete semantics of the IFont and IFontDisp interfaces.

See Also
IFont

IFontDisp

This interface exposes a font object's properties through Automation. It provides a subset of the IFont
methods.

When to Implement
A font object implements this interface along with IFont to provide access to the font's properties through
Automation. Typically, it is not necessary to implement this interface on your own object, since there is an
OLE-provided implementation of the font object.

The following table describes the dispIDs for the various font properties.

Symbol Value
DISPID_FONT_NAME 0
DISPID_FONT_SIZE 2
DISPID_FONT_BOLD 3
DISPID_FONT_ITALIC 4
DISPID_FONT_UNDER 5
DISPID_FONT_STRIKE 6
DISPID_FONT_WEIGHT 7
DISPID_FONT_CHARSET 8

Each property in the IFontDisp interface includes a get_PropertyName method if the property supports
read access and a put_PropertyName method if the property supports write access. Most of the
properties support both read and write access and thus expose both "get" and "put" methods for these
properties.

Property Type

Access
Allowed

Description
Name BSTR RW The facename of the font, e.g. Arial.
Size CY RW The point size of the font, expressed

in a CY type to allow for fractional
point sizes.

Bold BOOL RW Indicates whether the font is
boldfaced.

Italic BOOL RW Indicates whether the font is
italicized.

Underline BOOL RW Indicates whether the font is
underlined.

Strikethroug
h

BOOL RW Indicates whether the font is
strikethrough.

Weight short RW The boldness of the font.
Charset short RW The character set used in the font,

such as ANSI_CHARSET,
DEFAULT_CHARSET, or
SYMBOL_CHARSET.

When to Use

Use this interface to change or retrieve the properties of a font object through the IDispatch::Invoke
method in Automation.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

See Also
IFont

IFontDisp - Ole Implementation
The system provides a standard implementation of a font object with the IFontDisp interface on top of the
underlying system font support. A font object is created through the function OleCreateFontIndirect. A
font object supports a number of read-write properties as well as a set of methods through its interface
IFont and supports the same set of properties (but not the methods) through a dispatch interface
IFontDisp which is derived from IDispatch to provide access to the font's properties through Automation.
The system implementation of the font object supplies both interfaces.

See Also
IFont, IFontDisp

ILayoutStorage
The ILayoutStorage interface enables an application to optimize the layout of its compound files for
efficient downloading across a slow link. The goal is to enable a browser or other application to download
data in the order in which it will actually be needed.

To optimize a compound file an application first saves it, then calls StgOpenLayoutDocfile to reopen the
file using a special Compound Files implementation that exposes ILayoutStorage on its root storage.
Once the storage is open, the application queries for a pointer to ILayoutStorage.

Using this pointer, the application can either provide explicit layout instructions or obtain them by
monitoring the pattern of access to the compound file as it is loaded into memory.

· To monitor the order in which a compound file's data is actually accessed, the application calls
ILayoutStorage::BeginMonitor, after which the Compound Files implementation assumes that any
operation performed on the storage or stream object is part of the desired access pattern. When the
specified compound file is completely loaded, the application halts monitoring by calling
ILayoutStorage::EndMonitor.

However the desired layout information is obtained, the application calls
ILayoutStorage::ReLayoutDocfile to rewrite the compound file using either the explicit layout
instructions or the monitored layout access patterns.

When to Implement
You do not need to implement this interface. A special implementation of Compound Files exposes
ILayoutStorage on the root storage object.

When to Use
Use ILayoutStorage to optimize your application's compound files. The interface is exposed in
dflayout.dll, which is included with the Win32 SDK. If you are a web master, you can optimize compound
files exposed in your web site by using the Docfile Layout Tool (dflayout.exe), which is also included
with the Win32 SDK.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

ILayout Storage Method Description
LayoutScript Provides explicit layout

instructions.
BeginMonitor Monitors data access to a file.
EndMonitor Ends monitoring of data access.
ReLayoutDocfile Rewrites file using layout

information.

See Also
ILayoutStorage

ILayoutStorage::LayoutScript
Provides explicit directions for reordering the storages, streams, and controls in a compound file to match
the order in which they are accessed during the download.

HRESULT LayoutScript(

StorageLayout *pStorageLayout // Pointer to first element in an array of structures.
DWORD nEntries // Number of elements in the array
DWORD glfInterleavedFlag // Reserved for future use
);

Parameters
pStorageLayout

[in] Pointer to an array of StorageLayout structures.
nEntries

[in] Number of entries in the array of StorageLayout structures.
glfInterleavedFlag

[in] Reserved for future use.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL, as well as the following:

STG_E_INVALIDPOINTER

The storage layout pointer is invalid.
STG_E_INVALIDFLAG

The value of glfInterleavedFlag is invalid.
STG_E_PATHNOTFOUND

The new docfile name specified is invalid.
STG_E_INSUFFICIENTMEMORY

There is insufficient memory to complete the operation.
STG_E_INVALIDPARAMETER

One of the parameters is invalid.
STG_E_INUSE

BeginMonitor was called while ILayoutStorage was already monitoring.

Remarks
To provide explicit layout instructions, the application calls ILayoutStorage::LayoutScript, passing an
array of StorageLayout structures. Each structure defines a single storage or stream data block and
specifies where the block is to be written in the ILockBytes byte array.

An application can combine scripted layout with monitoring, as the structure of a particular compound file
may dictate.

When the optimal data-layout pattern of an entire compound file has been determined, the application
calls ILayoutStorage::ReLayoutDocfile to restructure the compound file to match the order in which its
data sectors were accessed.

See Also
ILayoutStorage::ReLayoutDocfile, ILockBytes, StorageLayout

ILayoutStorage::BeginMonitor
Allows monitoring of a loading operation to begin. When the operation is complete, the application must
call ILayoutStorage::EndMonitor.

HRESULT BeginMonitor(void);

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL, as well as the following:

STG_E_INUSE

BeginMonitor was called while ILayoutStorage was already monitoring.

Remarks
Normally an application calls BeginMonitor before the actual loading begins. Once this method has been
called, the compound file implementation regards any operation performed on the files storages and
streams as part of the desired access pattern. The result is a layout script like that created explicitly by
calling ILayoutStorage::LayoutScript.

Applications will usually use monitoring to obtain the access pattern of embedded objects. Monitoring also
makes possible generic layout tools, such as the Docfile Layout Tool (dflayout.exe) included in the Win32
SDK, that launch existing applications and monitor their access patterns.

A call to ILayoutStorage::EndMonitor ends monitoring. Multiple calls to BeginMonitor/EndMonitor are
permitted. Monitoring can also be mixed with calls to ILayoutStorage::LayoutScript.

See Also
ILayoutStorage::EndMonitor, ILayoutStorage::LayoutScript

ILayoutStorage::EndMonitor
Ends monitoring of a compound file. Must be preceded by a call to ILayoutStorage::BeginMonitor.

HRESULT EndMonitor(void);

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL, as well as all return values for CloseHandle.

Remarks
A call to EndMonitor is generally followed by a call to ILayoutStorage::RelayoutDocfile, which uses the
access pattern detected by the monitoring to restructure the compound file.

See Also
ILayoutStorage::BeginMonitor, ILayoutStorage::ReLayoutDocfile

ILayoutStorage::ReLayoutDocfile
Rewrites the compound file, using the layout script obtained through monitoring, or provided through
explicit layout scripting, to create a new compound file.

HRESULT ReLayoutDocfile(

OLECHAR *pwcsNewDfName // Pointer to name of compound file to be rewritten.
);

Parameters
pwcsNewDfName

[in] Pointer to the name of the compound file to be rewritten. This name must be a valid filename,
distinct from the name of the original compound file. The original compound file will be optimized and
written to the new pwcsNewDfName.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL, as well as the following:

STG_E_INVALIDNAME

The name passed to this function is not a valid filename.
STG_E_UNKNOWN

The layout information has been corrupted and cannot be processed.

ILockBytes

The ILockBytes interface is implemented on a byte array object that is backed by some physical storage,
such as a disk file, global memory, or a database. It is used by an OLE compound file storage object to
give its root storage access to the physical device, while isolating the root storage from the details of
accessing the physical storage.

When to Implement
Most applications will not implement the ILockBytes interface because OLE provides implementations for
the two most common situations:

File-based implementation ¾ If you call StgCreateDocfile function to create a compound file storage
object, it contains an implementation of ILockBytes that is associated with a byte array stored in a
physical disk file. The compound file storage object calls the ILockBytes methods¾you do not call them
directly in this implementation.

Memory-based implementation ¾ OLE also provides a byte array object based on global memory that
supports an implementation of ILockBytes. You can get a pointer through a call to the
CreateILockBytesOnHGlobal function). Then, to create a compound file storage object on top of that
byte array object, call the StgCreateDocfileOnILockBytes function. The compound file storage object
calls the ILockBytes methods ¾ you do not call them directly in this implementation.

There are situations in which it would be useful for an application to provide its own ILockBytes
implementation. For example, a database application could implement ILockBytes to create a byte array
object backed by the storage of its relational tables. However, it is strongly recommended that you use the
OLE-provided implementations. For a discussion of the advantages of using the OLE implementations
rather than creating your own, see the StgCreateDocfileOnILockBytes API function, which creates a
compound file storage object on top of a caller-provided byte array object.

If you choose to implement your own ILockBytes interface, you should consider providing custom
marshaling by implementing the IMarshal interface as part of your byte array object. The reason for this is
that when the OLE-provided implementations of IStorage and IStream are marshaled to another process,
their ILockBytes interface pointers are also marshaled to the other process. The default marshaling
mechanism creates a proxy byte array object (on which is the ILockBytes interface) that transmits
method calls back to the original byte array object. Custom marshaling can improve efficiency by creating
a remote byte array object that can access the byte array directly.

When to Use
The ILockBytes methods are called by the OLE implementations of IStorage and IStream on the
compound file object. Unless you are implementing IStorage and IStream, you would not need to call
ILockBytes methods directly. If you write your own ILockBytes implementation, you can use the
StgCreateDocfileOnILockBytes function to create a compound file storage object backed by your
implementation of ILockBytes.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

ILockBytes Methods Description
ReadAt Reads a specified number of bytes starting

at a specified offset from the beginning of
the byte array.

WriteAt Writes a specified number of bytes to a
specified location in the byte array.

Flush Ensures that any internal buffers
maintained by the byte array object are
written out to the backing storage.

SetSize Changes the size of the byte array.
LockRegion Restricts access to a specified range of

bytes in the byte array.
UnlockRegion Removes the access restriction on a range

of bytes previously restricted with
ILockBytes::LockRegion.

Stat Retrieves a STATSTG structure for this
byte array object.

ILockBytes::Flush

Ensures that any internal buffers maintained by the ILockBytes implementation are written out to the
underlying physical storage.

HRESULT Flush(void);

Return Values
S_OK

The flush operation was successful.
STG_E_ACCESSDENIED

The caller does not have permission to access the byte array.
STG_E_MEDIUMFULL

The flush operation is not completed because there is no space left on the storage device.
E_FAIL

General failure writing data.
STG_E_TOOMANYFILESOPEN

Under certain circumstances, Flush does a dump-and-close to flush, which can lead to a return value
of STG_E_TOOMANYFILESOPEN if no file handles are available.

STG_E_INVALIDHANDLE

An underlying file has been prematurely closed, or the correct floppy disk has been replaced by an
invalid one.

Remarks
ILockBytes::Flush flushes internal buffers to the underlying storage device.

The OLE-provided implementation of compound files calls this method during a transacted commit
operation to provide a two-phase commit process that protects against loss of data.

See Also
IStorage::Commit, ILockBytes ¾ File-Based Implementation , ILockBytes ¾ Global Memory
Implementation

ILockBytes::LockRegion

Restricts access to a specified range of bytes in the byte array.

HRESULT LockRegion(

ULARGE_INT
EGER
libOffset,

//Specifies the byte offset for the beginning of the range

ULARGE_INT
EGER cb,

//Specifies the length of the range in bytes

 DWORD
dwLockType

//Specifies the type of restriction on accessing the specified range

);

Parameters
libOffset

[in]Specifies the byte offset for the beginning of the range.
cb

[in]Specifies, in bytes, the length of the range to be restricted.
dwLockType

[in]Specifies the type of restrictions being requested on accessing the range. This parameter uses
one of the values from the LOCKTYPE enumeration.

Return Values
S_OK

The specified range of bytes was locked.
STG_E_INVALIDFUNCTION

Locking is not supported at all or the specific type of lock requested is not supported.
STG_E_ACCESSDENIED

Access denied because the caller has insufficient permission, or another caller has the file open and
locked.

STG_E_LOCKVIOLATION

Access denied because another caller has the file open and locked.
STG_E_INVALIDHANDLE

An underlying file has been prematurely closed, or the correct floppy disk has been replaced by an
invalid one.

Remarks
ILockBytes::LockRegion restricts access to the specified range of bytes. Once a region is locked,
attempts by others to gain access to the restricted range must fail with the STG_E_ACCESSDENIED

error.

The byte range can extend past the current end of the byte array. Locking beyond the end of an array is
useful as a method of communication between different instances of the byte array object without
changing data that is actually part of the byte array. For example, an implementation of ILockBytes for
compound files could rely on locking past the current end of the array as a means of access control, using
specific locked regions to indicate permissions currently granted.

The dwLockType parameter specifies one of three types of locking, using values from the LOCKTYPE
enumeration. The types are as follows: locking to exclude other writers, locking to exclude other readers
or writers, and locking that allows only one requestor to obtain a lock on the given range. This third type of
locking is usually an alias for one of the other two lock types, and permits an Implementer to add other
behavior as well. A given byte array might support either of the first two types, or both.

To determine the lock types supported by a particular ILockBytes implementation, you can examine the
grfLocksSupported member of the STATSTG structure returned by a call to ILockBytes::Stat.

Any region locked with ILockBytes::LockRegion must later be explicitly unlocked by calling
ILockBytes::UnlockRegion with exactly the same values for the libOffset, cb, and dwLockType
parameters. The region must be unlocked before the stream is released. Two adjacent regions cannot be
locked separately and then unlocked with a single unlock call.

Notes to Callers
Since the type of locking supported is optional and can vary in different implementations of ILockBytes,
you must provide code to deal with the STG_E_INVALIDFUNCTION error.

Notes to Implementers
Support for this method depends on how the storage object built on top of the ILockBytes
implementation is used. If you know that only one storage object at any given time can be opened on the
storage device that underlies the byte array, then your ILockBytes implementation does not need to
support locking. However, if multiple simultaneous openings of a storage object are possible, then region
locking is needed to coordinate them.

A LockRegion implementation can choose to support all, some, or none of the lock types. For
unsupported lock types, the implementation should return STG_E_INVALIDFUNCTION.

See Also
ILockBytes::Stat, ILockBytes::UnlockRegion, IStream::LockRegion, LOCKTYPE, ILockBytes ¾ File-
Based Implementation, ILockBytes ¾ Global Memory Implementation

ILockBytes::ReadAt
Reads a specified number of bytes starting at a specified offset from the beginning of the byte array
object.

HRESULT ReadAt(

 ULARGE_INTEGER ulOffset, //Specifies the starting point for reading data
 void *pv, //Points to the buffer into which the data is read
 ULONG cb, //Specifies the number of bytes to read
 ULONG *pcbRead //Pointer to location that contains actual number of bytes read
);

Parameters
ulOffset

[in]Specifies the starting point from the beginning of the byte array for reading data.
pv

[in]Points to the buffer into which the byte array is read.
cb

[in]Specifies the number of bytes of data to attempt to read from the byte array.
pcbRead

[out]Pointer to a location where this method writes the actual number of bytes read from the byte
array. You can set this pointer to NULL to indicate that you are not interested in this value. In this
case, this method does not provide the actual number of bytes read.

Return Values
S_OK

Indicates that the specified number of bytes were read, or the maximum number of bytes were read
up to the end of the byte array.

E_FAIL

Data could not be read from the byte array.
E_PENDING

Asynchronous Storage only: Part or all of the data to be read is currently unavailable. For more
information see IFillLockBytes and [insert jump to asynchronous storage overview, which is to
come].

STG_E_ACCESSDENIED

The caller does not have permission to access the byte array.
STG_E_READFAULT

The number of bytes to be read does not equal the number of bytes that were acutally read.

Remarks
ILockBytes::ReadAt reads bytes from the byte array object. It reports the number of bytes that were

actually read. This value may be less than the number of bytes requested if an error occurs or if the end
of the byte array is reached during the read.

It is not an error to read less than the specified number of bytes if the operation encounters the end of the
byte array. Note that this is the same end-of-file behavior as found in MS-DOS FAT file system files.

See Also
ILockBytes::WriteAt, ILockBytes ¾ File-Based Implementation , ILockBytes ¾ Global Memory
Implementation

ILockBytes::SetSize

Changes the size of the byte array.

HRESULT SetSize(

ULARGE
_INTEGE
R cb

//Specifies the new size of the byte array in bytes

);

Parameter
cb

[in]Specifies the new size of the byte array as a number of bytes.

Return Values
S_OK

The size of the byte array was successfully changed.
STG_E_ACCESSDENIED

The caller does not have permission to access the byte array.
STG_E_MEDIUMFULL

The byte array size is not changed because there is no space left on the storage device.

Remarks
ILockBytes::SetSize changes the size of the byte array. If the cb parameter is larger than the current
byte array, the byte array is extended to the indicated size by filling the intervening space with bytes of
undefined value, as does ILockBytes::WriteAt, if the seek pointer is past the current end-of-stream.

If the cb parameter is smaller than the current byte array, the byte array is truncated to the indicated size.

Notes to Callers
Callers cannot rely on STG_E_MEDIUMFULL being returned at the appropriate time because of cache
buffering in the operating system or network. However, callers must be able to deal with this return code
because some ILockBytes implementations might support it.

See Also
ILockBytes::ReadAt, ILockBytes::WriteAt, ILockBytes ¾ File-Based Implementation ,
ILockBytes ¾ Global Memory Implementation

ILockBytes::Stat
Retrieves a STATSTG structure containing information for this byte array object.

HRESULT Stat(

 STATSTG *pstatstg, //Location for STATSTG structure
 DWORD grfStatFlag //Values taken from the STATFLAG enumeration
);

Parameters
pstatstg

[out]Points to a STATSTG structure in which this method places information about this byte array
object. The pointer is NULL if an error occurs.

grfStatFlag

[in]Specifies whether this method should supply the pwcsName member of the STATSTG structure
through values taken from the STATFLAG enumeration. If the STATFLAG_NONAME is specified, the
pwcsName member of STATSTG is not supplied, thus saving a memory allocation operation. The
other possible value, STATFLAG_DEFAULT, indicates that all STATSTG members be supplied.

Return Values
S_OK

The STATSTG structure was successfully returned at the specified location.
E_OUTOFMEMORY

The STATSTG structure was not returned due to a lack of memory for the name field in the structure.
STG_E_ACCESSDENIED

The STATSTG structure was not returned because the caller did not have access to the byte array.
STG_E_INSUFFICIENTMEMORY

The STATSTG structure was not returned, due to a lack of memory.
STG_E_INVALIDFLAG

The value for the grfStateFlag parameter is not valid.
STG_E_INVALIDPOINTER

The value for the pStatStg parameter is not valid.

Remarks
ILockBytes::Stat should supply information about the byte array object in a STATSTG structure.

See Also
STATFLAG, STATSTG, ILockBytes ¾ File-Based Implementation , ILockBytes ¾ Global Memory
Implementation

ILockBytes::UnlockRegion

Removes the access restriction on a previously locked range of bytes.

HRESULT UnlockRegion(

ULARGE_INT
EGER
libOffset,

//Specifies the byte offset for the beginning of the range

ULARGE_INT
EGER cb,

//Specifies the length of the range in bytes

 DWORD
dwLockType

//Specifies the access restriction previously placed on the
range

);

Parameters
libOffset

[in]Specifies the byte offset for the beginning of the range.
cb

[in]Specifies, in bytes, the length of the range that is restricted.
dwLockType

[in]Specifies the type of access restrictions previously placed on the range. This parameter uses a
value from the LOCKTYPE enumeration.

Return Values
S_OK

The byte range was unlocked.
STG_E_INVALIDFUNCTION

Locking is not supported at all or the specific type of lock requested is not supported.
STG_E_LOCKVIOLATION

The requested unlock cannot be granted.

Remarks
ILockBytes::UnlockRegion unlocks a region previously locked with a call to ILockBytes::LockRegion.
Each region locked must be explicitly unlocked, using the same values for the libOffset, cb, and
dwLockType parameters as in the matching calls to ILockBytes::LockRegion. Two adjacent regions
cannot be locked separately and then unlocked with a single unlock call.

See Also
ILockBytes::LockRegion, LOCKTYPE, ILockBytes ¾ File-Based Implementation ,
ILockBytes ¾ Global Memory Implementation

ILockBytes::WriteAt
Writes the specified number of bytes starting at a specified offset from the beginning of the byte array.

HRESULT WriteAt(

 ULARGE_INTEGER ulOffset, //Specifies the starting point for writing data
 void const *pv, //Points to the buffer containing the data to be written
 ULONG cb, //Specifies the number of bytes to write
 ULONG *pcbWritten //Pointer to location that contains actual number of bytes written
);

Parameters
ulOffset

[in]Specifies the starting point from the beginning of the byte array for the data to be written.
pv

[in]Points to the buffer containing the data to be written.
cb

[in]Specifies the number of bytes of data to attempt to write into the byte array.
pcbRead

[out]Pointer to a location where this method specifies the actual number of bytes written to the byte
array. You can set this pointer to NULL to indicate that you are not interested in this value. In this
case, this method does not provide the actual number of bytes written.

Return Values
S_OK

Indicates that the specified number of bytes were written.
E_FAIL

A general failure occurred during the write.
E_PENDING

Asynchronous Storage only: Part or all of the data to be written is currently unavailable. For more
information see IFillLockBytes and [insert jump to asynchronous storage overview, which is to
come].

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for writing this byte array.
STG_E_WRITEFAULT

The number of bytes to be written does not equal the number of bytes that were acutally written.
STG_E_MEDIUMFULL

The write operation was not completed because there is no space left on the storage device. The
actual number of bytes written is still returned in pcbWritten.

Remarks
ILockBytes::WriteAt writes the specified data at the specified location in the byte array. The number of
bytes actually written must always be returned in pcbWritten, even if an error is returned. If the byte count
is zero bytes, the write operation has no effect.

If ulOffset is past the end of the byte array and cb is greater than zero, ILockBytes::WriteAt increases
the size of the byte array. The fill bytes written to the byte array are not initialized to any particular value.

See Also
ILockBytes::ReadAt, ILockBytes::SetSize, ILockBytes ¾ File-Based Implementation ,
ILockBytes ¾ Global Memory Implementation

ILockBytes - File-Based Implementation
Implemented on a byte array object underlying an OLE compound file storage object, and designed to
read and write directly to a disk file.

When to Use
Methods of ILockBytes are called from the compound file implementations of IStorage and IStream on
the compound file storage object created through a call to StgCreateDocfile, so you do not need to call
them directly.

Remarks
ILockBytes::ReadAt

This method queries the wrapped pointer for the requested interface.
ILockBytes::WriteAt

This method queries the wrapped pointer for the requested interface.
ILockBytes::Flush

This method queries the wrapped pointer for the requested interface.
ILockBytes::SetSize

This method queries the wrapped pointer for the requested interface.
ILockBytes::LockRegion

The dwLockTypes parameter is set to LOCK_ONLYONCE OR LOCK_EXCLUSIVE, which will allow
or restrict access to locked regions.

ILockBytes::UnlockRegion

This method unlocks the region locked by ILockBytes::LockRegion.
ILockBytes::Stat

The OLE-provided IStorage::Stat implementation calls the ILockBytes::Stat method to retrieve
information about the byte array object. If there is no reasonable name for the byte array, the OLE-
provided ILockBytes::Stat method returns NULL in the pwcsName field of the STATSTG structure.

See Also
ILockBytes, IStorage, IStream

ILockBytes - Global Memory Implementation
Implemented on a byte array object underlying an OLE compound file storage object, and designed to
read and write directly to global memory.

When to Use
Methods of ILockBytes are called from the compound file implementations of IStorage and IStream on
the compound file storage object created through a call to StgCreateDocfile.

Remarks
ILockBytes::ReadAt

This method queries the wrapped pointer for the requested interface.
ILockBytes::WriteAt

This method queries the wrapped pointer for the requested interface.
ILockBytes::Flush

This method queries the wrapped pointer for the requested interface.
ILockBytes::SetSize

This method queries the wrapped pointer for the requested interface.
ILockBytes::LockRegion

This implementation does not support locking, so dwLocksType is set to zero. It is the caller's
responsibility to ensure accesses are valid and mutually exclusive.

ILockBytes::UnlockRegion

This implementation does not support locking.
ILockBytes::Stat

The OLE-provided IStorage::Stat implementation calls the ILockBytes::Stat method to retrieve
information about the byte array object. If there is no reasonable name for the byte array, the OLE-
provided ILockBytes::Stat method returns NULL in the pwcsName field of the STATSTG structure.

See Also
ILockBytes, IStorage, IStream

IMalloc

Allocates, frees, and manages memory.

When to Implement
In general, you should not implement IMalloc, instead using the OLE implementation, which is
guaranteed to be thread-safe in managing task memory. You get a pointer to the OLE task allocator
object's IMalloc through a call to the CoGetMalloc function.

When to Use
Call the methods of IMalloc to allocate and manage memory. The OLE libraries and object handlers also
call the IMalloc methods to manage memory. Object handlers should call CoGetMalloc to get a pointer to
the IMalloc implementation on the task allocator object, and use the implementation of those methods to
manage task memory.

The IMalloc methods Alloc, Free, and Realloc are similar to the C library functions malloc, free, and
realloc. For debugging, refer to the functions CoRegisterMallocSpy and CoRevokeMallocSpy.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IMalloc Methods Description
Alloc Allocates a block of memory.
Realloc Changes the size of a previously allocated

block of memory.
Free Frees a previously allocated block of memory.
GetSize Returns the size in bytes of a previously

allocated block of memory.
DidAlloc Determines if this instance of IMalloc was

used to allocate the specified block of
memory.

HeapMinimize Minimizes the heap by releasing unused
memory to the operating system.

See Also
CoGetMalloc, IMallocSpy, CoRegisterMallocSpy, CoRevokeMallocSpy

IMalloc::Alloc

Allocates a block of memory.

void * Alloc(

 ULONG cb //Size of the requested memory block in bytes
);

Parameter
cb

[in] Size , in bytes, of the memory block to be allocated.

Return Values
If successful, Alloc returns a pointer to the allocated memory block.

NULL

If insufficient memory is available, Alloc returns NULL.

Remarks
The IMalloc::Alloc method allocates a memory block in essentially the same way that the C Library
malloc function does.

The initial contents of the returned memory block are undefined - there is no guarantee that the block has
been initialized, so you should initialize it in your code. The allocated block may be larger than cb bytes
because of the space required for alignment and for maintenance information.

If cb is zero, IMalloc::Alloc allocates a zero-length item and returns a valid pointer to that item. If there is
insufficient memory available, IMalloc::Alloc returns NULL.

Note Applications should always check the return value from this method, even when requesting
small amounts of memory, because there is no guarantee the memory will be allocated.

See Also
IMalloc::Free, IMalloc::Realloc, CoTaskMemAlloc

IMalloc::DidAlloc

Determines if this allocator was used to allocate the specified block of memory.

int DidAlloc(

 void *pv //Pointer to the memory block
);

Parameter
pv

[in] Pointer to the memory block; can be a NULL pointer, in which case, -1 is returned.

Return Values
1

The memory block was allocated by this IMalloc instance.
0

The memory block was not allocated by this IMalloc instance.
-1

DidAlloc is unable to determine whether or not it allocated the memory block.

Remarks
Calling IMalloc::DidAlloc is useful if a application is using multiple allocations, and needs to know
whether a previously allocated block of memory was allocated by a particular allocation.

See Also
IMalloc::Alloc, IMalloc::HeapMinimize, IMalloc::Realloc

IMalloc::Free

Frees a previously allocated block of memory.

void Free(

 void * pv //Pointer to the memory block to be freed
);

Parameter
pv

[in] Pointer to the memory block to be freed.

Remarks
IMalloc:Free frees a block of memory previously allocated through a call to IMalloc::Alloc or
IMalloc::Realloc. The number of bytes freed equals the number of bytes that were allocated. After the
call, the memory block pointed to by pv is invalid and can no longer be used.

Note The pv parameter can be NULL. If so, this method has no effect.

See Also
IMalloc::Alloc, IMalloc::Realloc, CoTaskMemFree

IMalloc::GetSize

Returns the size (in bytes) of a memory block previously allocated with IMalloc::Alloc or
IMalloc::Realloc.

ULONG GetSize(

 void *pv //Pointer to the memory block for which the size is requested
);

Parameter
pv

[in] Pointer to the memory block for which the size is requested.

Return Value
The size of the allocated memory block in bytes or, if pv is a NULL pointer, -1.

Remarks
To get the size in bytes of a memory block, the block must have been previously allocated with
IMalloc::Alloc or IMalloc::Realloc. The size returned is the actual size of the allocation, which may be
greater than the size requested when the allocation was made.

See Also
IMalloc::Alloc, IMalloc::Realloc

IMalloc::HeapMinimize

Minimizes the heap as much as possible by releasing unused memory to the operating system,
coalescing adjacent free blocks and committing free pages.

void HeapMinimize();

Remarks
Calling IMalloc::HeapMinimize is useful when an application has been running for some time and the
heap may be fragmented.

See Also
IMalloc::Alloc, IMalloc::Free, IMalloc::Realloc

IMalloc::Realloc

Changes the size of a previously allocated memory block.

void *Realloc(

 void *pv, //Pointer to memory block to be reallocated
 ULONG cb //Size of the memory block in bytes
);

Parameters
pv

[in] Pointer to the memory block to be reallocated. The pointer can have a NULL value, as discussed
in the following Remarks section.

cb

[in] Size of the memory block (in bytes) to be reallocated. It can be zero, as discussed in the following
remarks.

Return Values
Reallocated memory block

Memory block successfully reallocated.
NULL

Insufficient memory or cb is zero and pv is not NULL.

Remarks
IMalloc::Realloc reallocates a block of memory, but does guarantee that the contents of the returned
memory block are initialized. Therefore, the caller is responsible for intializing it in code, subsequent to
the reallocation. The allocated block may be larger than cb bytes because of the space required for
alignment and for maintenance information.

The pv argument points to the beginning of the memory block. If pv is NULL, IMalloc::Realloc allocates a
new memory block in the same way that IMalloc::Alloc does. If pv is not NULL, it should be a pointer
returned by a prior call to IMalloc::Alloc.

The cb argument specifies the size (in bytes) of the new block. The contents of the block are unchanged
up to the shorter of the new and old sizes, although the new block can be in a different location. Because
the new block can be in a different memory location, the pointer returned by IMalloc::Realloc is not
guaranteed to be the pointer passed through the pv argument. If pv is not NULL and cb is zero, then the
memory pointed to by pv is freed.

IMalloc::Realloc returns a void pointer to the reallocated (and possibly moved) memory block. The return
value is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough memory
available to expand the block to the given size. In the first case, the original block is freed; in the second,
the original block is unchanged.

The storage space pointed to by the return value is guaranteed to be suitably aligned for storage of any
type of object. To get a pointer to a type other than void, use a type cast on the return value.

See Also
IMalloc::Alloc, IMalloc::Free

IMallocSpy

The IMallocSpy interface is a debugging interface that allows application developers to monitor (spy on)
memory allocation, detect memory leaks and simulate memory failure in calls to IMalloc methods.

Caution The IMallocSpy interface is intended to be used only to debug application code under
development. Do not ship this interface to retail customers of your application, because it causes
severe performance degradation and could conflict with user-installed software to produce
unpredictable results.

When to Implement
Implement this interface to debug memory allocation during application development.

When to Use
When an implementation of IMallocSpy is registered with CoRegisterMallocSpy, OLE calls the pair of
IMallocSpy methods around the corresponding IMalloc method. You would not make direct calls to
IMallocSpy methods. The OLE SDK contains a sample implementation of IMallocSpy. The call to the
pre-method through the return from the corresponding post-method is guaranteed to be thread-safe in
multi-threaded operations.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IMallocSpy Methods Description
PreAlloc Called before invoking IMalloc::Alloc, and

may extend or modify the allocation to store
debug information.

PostAlloc Called after invoking IMalloc::Alloc.
PreFree Called before invoking IMalloc::Free.
PostFree Called after invoking IMalloc::Free.
PreRealloc Called before invoking IMalloc::Realloc.
PostRealloc Called after invoking IMalloc::Realloc.
PreGetSize Called before invoking IMalloc::GetSize.
PostGetSize Called after invoking IMalloc::GetSize.
PreDidAlloc Called before invoking IMalloc::DidAlloc.
PostDidAlloc Called after invoking IMalloc::DidAlloc.
PreHeapMinimize Called before invoking IMalloc::DidAlloc.
PostHeapMinimize Called after invoking

IMalloc::HeapMinimize.

See Also
IMalloc, CoGetMalloc, CoRegisterMallocSpy

IMallocSpy::PreAlloc

Called just prior to invoking IMalloc::Alloc.

ULONG PreAlloc(

 ULONG cbRequest //Byte count passed to IMalloc::Alloc
);

Parameter
cbRequest

[in] Number of bytes specified in the allocation request the caller is passing to IMalloc::Alloc.

Return Value
The byte count actually passed to IMalloc::Alloc, which should be greater than or equal to the value of
cbRequest.

Remarks
The IMallocSpy::PreAlloc implementation may extend and/or modify the allocation to store debug-
specific information with the allocation.

PreAlloc can force memory allocation failure by returning 0, allowing testing to ensure that the application
handles allocation failure gracefully in all cases. In this case, PostAlloc is not called and Alloc returns
NULL. Forcing allocation failure is effective only if cbRequest is not equal to 0. If PreAlloc is forcing
failure by returning NULL, PostAlloc is not called. However, if IMalloc::Alloc encounters a real memory
failure and returns NULL, PostAlloc is called.

The call to PreAlloc through the return from PostAlloc is guaranteed to be thread safe.

See Also
IMalloc::Alloc, IMallocSpy::PostAlloc, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PostAlloc

Called just after invoking IMalloc::Alloc, taking as input a pointer to the IMalloc::Alloc caller's allocation,
and returning a pointer to the actual allocation.

void * PostAlloc(

 void * pActual //Pointer to the allocation actually done by IMalloc::Alloc
);

Parameter
pActual

[in] Pointer to the allocation done by IMalloc::Alloc.

Return Value
A pointer to the beginning of the memory block actually allocated. This pointer is also returned to the
caller of IMalloc::Alloc. If debug information is written at the front of the caller's allocation, this should be
a forward offset from pActual. The value is the same as pActual if debug information is appended or if no
debug information is attached.

Remarks
When a spy object implementing IMallocSpy is registered with CoRegisterMallocSpy, OLE calls
IMallocSpy::PostAlloc after any call to IMalloc::Alloc. It takes as input a pointer to the allocation done
by the call to IMalloc::Alloc, and returns a pointer to the beginning of the total allocation, which could
include a forward offset from the other value if IMallocSpy::Prealloc was implemented to attach debug
information to the allocation in this way. If not, the same pointer is returned, and also becomes the return
value to the caller of IMalloc::Alloc.

See Also
IMalloc::Alloc, IMallocSpy::PreAlloc, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PreDidAlloc

Called by OLE just prior to invoking IMalloc::DidAlloc.

void * PreDidAlloc(

 void * pRequest, //Pointer the caller is passing to IMalloc::DidAlloc
 BOOL fSpyed //Whether pRequest was allocated while this spy was active
);

Parameters
pRequest

[in] Pointer the caller is passing to IMalloc::DidAlloc.
fSpyed

[in] TRUE if the allocation was done while this spy was active.

Return Value
The pointer for which allocation status is determined. This pointer is passed to PostDidAlloc as the
fActual parameter.

Remarks
When a spy object implementing IMallocSpy is registered with CoRegisterMallocSpy, OLE calls this
method immediately before any call to IMalloc::DidAlloc. This method is included for completeness and
consistency ¾ it is not anticipated that developers will implement significant functionality in this method.

See Also
IMalloc::DidAlloc, IMallocSpy::PostDidAlloc, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PostDidAlloc

Called just after invoking IMalloc::DidAlloc.

int PostDidAlloc(

 void * pRequest, //Original pointer passed to IMalloc::DidAlloc
 BOOL fSpyed, //Whether the allocation was done while this spy was active
 int fActual //Whether pRequest was actual value used in IMalloc call
);

Parameters
pRequest

[in] Pointer specified in the original call to IMalloc::DidAlloc.
fSpyed

[in] TRUE if the allocation was done while this spy was active.
fActual

[in] Actual value returned by IMalloc::DidAlloc.

Return Value
The value returned to the caller of IMalloc::DidAlloc.

Remarks
When a spy object implementing IMallocSpy is registered with CoRegisterMallocSpy, OLE calls this
method immediately after any call to IMalloc::DidAlloc. This method is included for completeness and
consistency ¾ it is not anticipated that developers will implement significant functionality in this method.

For convenience, pRequest, the original pointer passed in the call to IMalloc::DidAlloc, is passed to
PostDidAlloc. In addition, the parameter fActual is a boolean that indicates whether this value was
actually passed to IMalloc::DidAlloc. If not, it would indicate that IMallocSpy::PreDidAlloc was
implemented to alter this pointer for some debugging purpose.

The fSpyed parameter is a boolean that indicates whether the allocation was done while the current spy
object was active.

See Also
IMalloc::DidAlloc, IMallocSpy::PreDidAlloc, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PreFree

Called just before invoking IMalloc::Free to ensure that the pointer passed to IMalloc::Free points to the
beginning of the actual allocation.

void * PreFree(

 void * pRequest, //Pointer is passing to IMalloc::Free
 BOOL fSpyed //TRUE if this memory was allocated while the spy was active
);

Parameters
pRequest

[in] Pointer to the block of memory that the caller is passing to IMalloc::Free.
fSpyed

[in] TRUE if the pRequest parameter of IMallocSpy::PreFree was allocated while the spy was
installed. This value is also passed to IMallocSpy::PostFree.

Return Value
The actual pointer to pass to IMalloc::Free.

Remarks
If IMallocSpy::PreAlloc modified the original allocation request passed to IMalloc::Alloc (or
IMalloc::Realloc), IMallocSpy::PreFree must supply a pointer to the actual allocation, which OLE will
pass to IMalloc::Free. For example, if the PreAlloc/PostAlloc pair attached a header used to store
debug information to the beginning of the caller's allocation, PreFree must return a pointer to the
beginning of this header, so all of the block that was allocated can be freed.

See Also
IMalloc::Free, IMallocSpy::PostFree, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PostFree

Called just after invoking IMalloc::Free.

void PostFree(

 BOOL fSpyed //Whether the memory block to be freed was allocated while the spy is active
);

Parameter
fSpyed

[in] TRUE if the memory block to be freed was allocated while the current spy was active, otherwise
FALSE.

Remarks
When a spy object implementing IMallocSpy is registered with CoRegisterMallocSpy, OLE calls this
method immediately after any call to IMalloc::Free. This method is included for completeness and
consistency ¾ it is not anticipated that developers will implement significant functionality in this method.
On return, the fSpyed parameter simply indicates whether the memory was freed while the current spy
was active.

See Also
IMalloc::Free, IMallocSpy::PreFree, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PreGetSize

Called by OLE just prior to any call to IMalloc::GetSize.

void * PreGetSize(

 void * pRequest, //Pointer the caller is passing to IMalloc::GetSize
 BOOL fSpyed //TRUE if allocation was done while this spy was active
);

Parameters
pRequest

[in] Pointer the caller is passing to IMalloc::GetSize.
fSpyed

[in] TRUE if the allocation was done while the spy was active.

Return Value
Pointer to the actual allocation for which the size is to be determined.

Remarks
The PreGetSize method receives as its pRequest parameter the pointer the caller is passing to
IMalloc::GetSize. It must then return a pointer to the actual allocation, which may have altered pRequest
in the implementation of either the PreAlloc or PreRealloc methods of IMallocSpy. The pointer to the
true allocation is then passed to IMalloc::GetSize as its pv parameter.

IMalloc::GetSize then returns the size determined, and OLE passes this value to
IMallocSpy::PostGetSize in cbActual.

Note The size determined by IMalloc::GetSize is the value returned by the Win32 function
HeapSize. On Windows NT, this is the size originally requested. On Windows 95, memory allocations
are done on eight-byte boundaries. For example, a memory allocation request of 27 bytes on
Windows NT would return an allocation of 32 bytes and GetSize would return 27. On Windows 95,
the same request would return an allocation of 28 bytes and GetSize would return 28. Implementers
of IMallocSpy::PostGetSize cannot assume, for example, that if cbActual is sizeof(debug_header),
that the value is the actual size of the user's allocation.

See Also
IMalloc::GetSize, IMallocSpy::PostGetSize, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PostGetSize

Called just after invoking IMalloc::GetSize.

ULONG PostGetSize(

 ULONG cbActual, //Actual size of the allocation
 BOOL fSpyed //Whether the allocation was done while a spy was active
);

Parameters
cbActual

[in] Actual number of bytes in the allocation, as returned by IMalloc::GetSize.
fSpyed

[in] TRUE if the allocation was done while a spy was active.

Return Values
The same value returned by IMalloc::GetSize, which is the size of the allocated memory block in bytes.

Remarks
The size determined by IMalloc::GetSize is the value returned by the Win32 function HeapSize. On
Windows NT, this is the size originally requested. On Windows 95, memory allocations are done on eight-
byte boundaries. For example, a memory allocation request of 27 bytes on Windows NT would return an
allocation of 32 bytes and GetSize would return 27. On Windows 95, the same request would return an
allocation of 28 bytes and GetSize would return 28. Implementers of IMallocSpy::PostGetSize cannot
assume, for example, that if cbActual is sizeof(debug_header), that the value is the actual size of the
user's allocation.

See Also
IMalloc::GetSize, IMallocSpy::PreGetSize, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PreHeapMinimize

Called just prior to invoking IMalloc::HeapMinimize.

void PreHeapMinimize(void);

Remarks
This method is included for completeness; it is not anticipated that developers will implement significant
functionality in this method.

See Also
IMalloc::HeapMinimize, IMallocSpy::PostHeapMinimize, CoRegisterMallocSpy,
CoRevokeMallocSpy

IMallocSpy::PostHeapMinimize

Called just after invoking IMalloc::HeapMinimize.

void PostHeapMinimize(void);

Remarks
When a spy object implementing IMallocSpy is registered with CoRegisterMallocSpy, OLE calls this
method immediately after any call to IMalloc::Free. This method is included for completeness and
consistency ¾ it is not anticipated that developers will implement significant functionality in this method.

See Also
IMalloc::HeapMinimize, IMallocSpy::PreHeapMinimize, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PreRealloc

Called just before invoking IMalloc::Alloc.

ULONG PreRealloc(

 void * pRequest, //Pointer the caller is passing to IMalloc::Realloc
 ULONG cbRequest, //Byte count the caller is passing to IMalloc::Realloc
 void ** ppNewRequest, //Indirect pointer to be reallocated
 BOOL fSpyed //Whether the original allocation was "spyed"
);

Parameters
pRequest

[in] Pointer specified in the original call to IMalloc::Realloc, indicating the the memory block to be
reallocated.

cbRequest

[in] Memory block's byte count as specified in the original call to IMalloc::Realloc.
ppNewRequest

[out] Indirect pointer to the actual memory block to be reallocated. This may be different from the
pointer in pRequest if the implementation of IMallocSpy::PreRealloc extends or modifies the
reallocation. This is an out pointer and should always be stored by PreRealloc.

fSpyed

[in] TRUE if the original allocation was done while the spy was active.

Return Value
The actual byte count to be passed to IMalloc::Realloc.

Remarks
The IMallocSpy::PreRealloc implementation may extend and/or modify the allocation to store debug-
specific information with the allocation. Thus, the ppNewRequest parameter may differ from pRequest, a
pointer to the request specified in the original call to IMalloc::Realloc.

PreRealloc can force memory allocation failure by returning 0, allowing testing to ensure that the
application handles allocation failure gracefully in all cases. In this case, PostRealloc is not called and
Realloc returns NULL. However, if IMalloc::Realloc encounters a real memory failure and returns NULL,
PostRealloc is called. Forcing allocation failure is effective only if cbRequest is not equal to 0.

See Also
IMalloc::Realloc, IMallocSpy::PostRealloc, CoRegisterMallocSpy, CoRevokeMallocSpy

IMallocSpy::PostRealloc

Called after invoking IMalloc::Realloc.

void * PostRealloc(

 void * pActual, //Pointer returned by IMalloc::Realloc
 BOOL fSpyed //Whether the original allocation was "spyed"
);

Parameters
pActual

[in] Pointer to the memory block reallocated by IMalloc::Realloc.
fSpyed

[in] If TRUE, the original memory allocation was done while the spy was active.

Return Values
A pointer to the beginning of the memory block actually allocated. This pointer is also returned to the
caller of IMalloc::Realloc. If debug information is written at the front of the caller's allocation, it should be
a forward offset from pActual. The value should be the same as pActual if debug information is appended
or if no debug information is attached.

See Also
IMalloc::Realloc, IMallocSpy::PreRealloc, CoRegisterMallocSpy, CoRevokeMallocSpy

IMarshal
The IMarshal interface enables an COM object to define and manage the marshaling of its interface
pointers. The alternative is to use COM's default implementation, the preferred choice in all but a few
special cases (see "When to Implement").

"Marshaling" is the process of packaging data into packets for transmission to a different process or
machine. "Unmarshaling" is the process of recovering that data at the receiving end. In any given call,
method arguments are marshaled and unmarshaled in one direction, while return values are marshaled
and unmarshaled in the other.

Although marshaling applies to all data types, interface pointers require special handling. The
fundamental problem is how client code running in one address space can correctly dereference a pointer
to an interface on an object residing in a different address space. COM's solution is for a client application
to communicate with the original object through a surrogate object, or proxy, which lives in the client's
process. The proxy holds a reference to an interface on the original object and hands the client a pointer
to an interface on itself. When the client calls an interface method on the original object, its call is actually
going to the proxy. Therefore, from the client's point of view, all calls are in-process.

On receiving a call, the proxy marshals the method arguments and, through some means of interprocess
communication, such as RPC, passes them along to code in the server process, which unmarshals the
arguments and passes them to the original object. This same code marshals return values for
transmission back to the proxy, which unmarshals the values and passes them to the client application.

IMarshal provides methods for creating, initializing, and managing a proxy in a client process; it does not
dictate how the proxy should communicate with the original object. COM's default implementation of
IMarshal uses RPC. When you implement this interface yourself, you are free to choose any method of
interprocess communication you deem to be appropriate for your application ¾ shared memory, named
pipe, window handle, RPC ¾ in short, whatever works.

When to Implement
Implement IMarshal only when you believe that you can realize significant optimizations to COM's default
implementation. In practice, this will rarely be the case. However, there are occasions where
implementing IMarshal may be preferred:

· The objects you are writing keep their state in shared memory. In this case, both the original process
and the client process uses proxies that refer to the shared memory. This type of custom marshaling
is possible only if the client process is on the same machine as the original process. OLE-provided
implementations of IStorage and IStream are examples of this type of custom marshaling.

· The objects you are writing are immutable, that is, their state does not change after creation. Instead
of forwarding method calls to the original objects, you simply create copies of those objects in the
client process. This technique avoids the cost of switching from one process to another. Some
monikers are examples of immutable objects; if you are implementing your own moniker class, you
should evaluate the costs and benefits of implementing IMarshal on your moniker objects.

· Objects that themselves are proxy objects can use custom marshaling to avoid creating proxies to
proxies. Instead, the existing proxy can refer new proxies back to the original object. This capability is
important for the sake of both efficiency and robustness.

· Your server application wants to manage how calls are made across the network without affecting the
interface exposed to clients. For example, if an end user were making changes to a database record,
the server might want to cache the changes until the user has committed them all, at which time the
entire transaction would be forwarded in a single packet. Using a custom proxy would enable the
caching and batching of changes in this way.

When you choose to implement IMarshal, you must do so for both your original object and the proxy you

create for it. When implementing the interface on either object or proxy, you simply return E_NOTIMPL for
the methods that are not implemented.

COM uses your implementation of IMarshal in the following manner: When it's necessary to create a
remote interface pointer to your object (that is, when a pointer to your object is passed as an argument in
a remote function call), COM queries your object for the IMarshal interface. If your object implements it,
COM uses your IMarshal implementation to create the proxy object. If your object does not implement
IMarshal, COM uses its default implementation.

How you choose to structure the proxy is entirely up to you. You can write the proxy to use whatever
mechanisms you deem appropriate for communicating with the original object. You can also create the
proxy as either a stand-alone object or as part of a larger aggregation such as a handler. However you
choose to structure the proxy, it must implement IMarshal to work at all. You must also generate a CLSID
for the proxy to be returned by your implementation of IMarshal::GetUnmarshalClass on the original
object.

When to Use
COM calls this interface as part of system-provided marshaling support. COM's calls are wrapped in calls
to CoMarshalInterface and CoUnmarshalInterface. Your code typically will not need to call this
interface. Special circumstances where you might choose to do so are discussed in the "Notes to Callers"
section for each method.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IMarshal Methods Description
GetUnmarshalClass Returns CLSID of unmarshaling code.
GetMarshalSizeMax Returns size of buffer needed during

marshaling.
MarshalInterface Marshals an interface pointer.
UnmarshalInterface Unmarshals an interface pointer.
ReleaseMarshalData Destroys a marshaled data packet.
DisconnectObject Severs all connections.

See Also
IStdMarshalInfo

IMarshal::DisconnectObject

Forcibly releases all external connections to an object. The object's server calls the object's
implementation of this method prior to shutting down.

HRESULT DisconnectObject(

 DWORD dwReserved //Reserved for future use
);

Parameter
dwReserved

[in] Reserved for future use; must be zero. To ensure compatibility with future use,
DisConnectObject must not check for zero.

Return Values
The method supports the standard return value E_FAIL, as well as the following:

S_OK

The object was disconnected successfully.

Remarks
This method is implemented on the object, not the proxy.

Notes to Callers
The usual case in which this method is called occurs when an end user forcibly closes an OLE server that
has one or more running objects that implement IMarshal. Prior to shutting down, the server calls the
CoDisconnectObject helper function to sever external connections to all its running objects. For each
object that implements IMarshal, however, this function calls IMarshal::DisconnectObject, so that each
object that manages its own marshaling can take steps to notify its proxy that it is about to shut down.

Notes to Implementers
As part of its normal shutdown code, a server should call the CoDisconnectObject function, which in turn
calls IMarshal::DisconnectObject, on each of its running objects that implements IMarshal.

The outcome of any implementation of this method should be to enable a proxy to respond to all
subsequent calls from its client by returning RPC_E_DISCONNECTED or
CO_E_OBJECTNOTCONNECTED rather than attempting to forward the calls on to the original object. It
is up to the client, of course, to destroy the proxy.

If you are implementing this method for an immutable object, such as a moniker, your implementation
doesn't need to do anything because such objects are typically copied whole into the client's address
space. Therefore, they have neither a proxy nor a connection to the original object. For more information
on marshaling immutable objects, see IMarshal, "When to Implement."

See Also
CoDisconnectObject

IMarshal::GetMarshalSizeMax

Returns an upper bound on the number of bytes needed to marshal the specified interface pointer on the
specified object.

HRESULT GetMarshalSizeMax(

 REFIID riid, //Reference to the identifier of the interface to be
marshaled

 void *pv, //Interface pointer to be marshaled
 DWORD dwDestContext, //Destination process
 void * pvDestContext, //Reserved for future use
 DWORD mshlflags, //Reason for marshaling
 ULONG * pSize //Pointer to upper-bound value
);

Parameters
riid

[in] Reference to the identifier of the interface to be marshaled.
pv

[in] Interface pointer to be marshaled; can be NULL.
dwDestContext

[in] Destination context where the specified interface is to be unmarshaled. Values for dwDestContext
come from the enumeration MSHCTX. Currently, unmarshaling can occur either in another apartment
of the current process (MSHCTX_INPROC) or in another process on the same computer as the
current process (MSHCTX_LOCAL).

pvDestContext

[in] Reserved for future use; must be NULL.
mshlflags

[in] Flag indicating whether the data to be marshaled is to be transmitted back to the client process ¾
the normal case ¾ or written to a global table, where it can be retrieved by multiple clients. Valid
values come from the MSHLFLAGS enumeration.

pSize

[out] Pointer to the upper bound on the amount of data to be written to the marshaling stream.

Return Values
The method supports the standard return value E_FAIL, as well as the following:

S_OK

The maximum size was returned successfully.
E_NOINTERFACE

The specified interface was not supported.

Remarks
This method is called indirectly, in a call to CoGetMarshalSizeMax, by whatever code in the server
process is responsible for marshaling a pointer to an interface on an object. This marshaling code is
usually a stub generated by COM for one of several interfaces that can marshal a pointer to an interface
implemented on an entirely different object. Examples include the IClassFactory and IOleItemContainer
interfaces. For purposes of discussion, the code responsible for marshaling a pointer is here called the
"marshaling stub."

To create a proxy for an object, COM requires two pieces of information from the original object: the
amount of data to be written to the marshaling stream and the proxy's CLSID.

The marshaling stub obtains these two pieces of information with successive calls to
CoGetMarshalSizeMax and CoMarshalInterface.

Note to Callers
The marshaling stub, through a call to CoGetMarshalSizeMax, calls the object's implementation of this
method to preallocate the stream buffer that will be passed to IMarshal::MarshalInterface.

You do not explicitly call this method if you are:

· Implementing existing COM interfaces, or
· Defining your own custom interfaces, using the Microsoft Interface Definition Language (MIDL).

In both cases, the MIDL-generated stub automatically makes the call.

If you are not using MIDL to define your own interface (see "Writing a Custom Interface"), your marshaling
stub does not have to call GetMarshalSizeMax, though doing so is highly recommended. An object
knows better than an interface stub what the maximum size of a marshaling data packet is likely to be.
Therefore, unless you are providing an automatically growing stream that is so efficient that the overhead
of expanding it is insignificant, you should call this method even when implementing your own interfaces.

The value returned by this method is only guaranteed to be valid as long as the internal state of the object
being marshaled does not change. Therefore, the actual marshaling should be done immediately after
this function returns, or the stub runs the risk that the object, because of some change in state, might
require more memory to marshal than it originally indicated.

Notes to Implementers
Your implementation of MarshalInterface will use this buffer to write marshaling data into the stream. If
the buffer is too small, the marshaling operation will fail. Therefore, the value returned by this method
must be a conservative estimate of the amount of data that will, in fact, be needed to marshal the
interface. Violation of this requirement should be treated as a catastrophic error.

In a subsequent call to IMarshal::MarshalInterface, your IMarshal implementation cannot rely on the
caller actually having called GetMarshalSizeMax beforehand. It must still be wary of
STG_E_MEDIUMFULL errors returned by the stream and be prepared to handle them gracefully.

To ensure that your implementation of GetMarshalSizeMax will continue to work properly as new
destination contexts are supported in the future, delegate marshaling to COM's default implementation for
all dwDestContext values that your implementation does not understand. To delegate marshaling to
COM's default implementation, call the CoGetStandardMarshal function.

See Also
CoGetMarshalSizeMax, IMarshal::MarshalInterface

IMarshal::GetUnmarshalClass

Returns the CLSID that COM uses to locate the DLL containing the code for the corresponding proxy.
COM loads this DLL to create an uninitialized instance of the proxy.

HRESULT GetUnmarshalClass(

 REFIID riid, //Reference to the identifier of the interface to be
marshaled

 void * pv, //Interface pointer being marshaled
 DWORD dwDestContext, //Destination process
 void * pvDestContext, //Reserved for future use
 DWORD mshlflags, //Reason for marshaling
 CLSID * pCid //Pointer to CLSID of proxy
);

Parameters
riid

[in] Reference to the identifier of the interface to be marshaled.
pv

[in] Pointer to the interface to be marshaled; can be NULL if the caller does not have a pointer to the
desired interface.

dwDestContext

[in] "Destination context" where the specified interface is to be unmarshaled. Values for
dwDestContext come from the enumeration MSHCTX. Currently, unmarshaling can occur either in
another apartment of the current process (MSHCTX_INPROC) or in another process on the same
computer as the current process (MSHCTX_LOCAL).

pvDestContext

[in] Reserved for future use; must be NULL.
mshlflags

[in] Whether the data to be marshaled is to be transmitted back to the client process ¾ the normal
case ¾ or written to a global table, where it can be retrieved by multiple clients. Valid values come
from the MSHLFLAGS enumeration.

pCid

[out] Pointer to the CLSID to be used to create a proxy in the client process.

Return Value
Returns S_OK if successful; otherwise, S_FALSE.

Remarks
This method is called by whatever code in the server process may be responsible for marshaling a pointer
to an interface on an object. This marshaling code is usually a stub generated by COM for one of several
interfaces that can marshal a pointer to an interface implemented on an entirely different object.
Examples include the IClassFactory and IOleItemContainer interfaces. For purposes of this discussion,
the code responsible for marshaling a pointer is called the "marshaling stub."

To create a proxy for an object, COM requires two pieces of information from the original object: the
amount of data to be written to the marshaling stream and the proxy's CLSID.

The marshaling stub obtains these two pieces of information with successive calls to
CoGetMarshalSizeMax and CoMarshalInterface.

Note to Callers
The marshaling stub calls the object's implementation of this method to obtain the CLSID to be used in
creating an instance of the proxy. The client, upon receiving the CLSID, loads the DLL listed for it in the
system registry.

You do not explicitly call this method if you are:

· Implementing existing COM interfaces, or
· Defining your own interfaces using the Microsoft Interface Definition Language (MIDL).

In both cases, the stub automatically makes the call. See "Writing a Custom Interface."

If you are not using MIDL to define your own interface, your stub must call this method, either directly or
indirectly, to get the CLSID that the client-side COM Library needs to create a proxy for the object
implementing the interface.

If the caller has a pointer to the interface to be marshaled, it should, as a matter of efficiency, use the pv
parameter to pass that pointer. In this way, an implementation that may use such a pointer to determine
the appropriate CLSID for the proxy does not have to call IUnknown::QueryInterface on itself. If a caller
does not have a pointer to the interface to be marshaled, it can pass NULL.

Notes to Implementers
COM calls GetUnmarshalClass to obtain the CLSID to be used for creating a proxy in the client process.
The CLSID to be used for a proxy is normally not that of the original object (see "Notes to Implementers"
for the exception), but one you will have generated (using the GUIDGEN.EXE tool supplied with the
Win32 SDK) specifically for your proxy object.

Implement this method for each object that provides marshaling for one or more of its interfaces. The
code responsible for marshaling the object writes the CLSID, along with the marshaling data, to a stream;
COM extracts the CLSID and data from the stream on the receiving side.

If your proxy implementation consists simply of copying the entire original object into the client process,
thereby eliminating the need to forward calls to the original object, the CLSID returned would be the same
as that of the original object. This strategy, of course, is advisable only for objects that are not expected to
change.

If the pv parameter is NULL and your implementation needs an interface pointer, it can call
IUnknown::QueryInterface on the current object to get it. The pv parameter exists merely to improve
efficiency.

To ensure that your implementation of GetUnmarshalClass continues to work properly as new
destination contexts are supported in the future, delegate marshaling to COM's default implementation for
all dwDestContext values that your implementation does not handle. To delegate marshaling to COM's
default implementation, call the CoGetStandardMarshal function.

IMarshal::MarshalInterface

Writes into a stream the data required to initialize a proxy object in some client process.

HRESULT MarshalInterface(

 IStream *pStm, //Pointer to stream used for marshaling
 REFIID riid, //Reference to the identifier of the interface to be

marshaled
 void *pv, //Interface pointer to be marshaled
 DWORD dwDestContext, //Destination context
 void *pvDestContext, //Reserved for future use
 DWORD mshlflags //Reason for marshaling
);

Parameters
pStm

[in] Pointer to the stream to be used during marshaling.
riid

[in] Reference to the identifier of the interface to be marshaled. This interface must be derived from
the IUnknown interface.

pv

[in] Pointer to the interface pointer to be marshaled; can be NULL if the caller does not have a pointer
to the desired interface.

dwDestContext

[in] Destination context where the specified interface is to be unmarshaled. Values for dwDestContext
come from the enumeration MSHCTX. Currently, unmarshaling can occur either in another apartment
of the current process (MSHCTX_INPROC) or in another process on the same computer as the
current process (MSHCTX_LOCAL).

pvDestContext

[in] Reserved for future use; must be zero.
mshlflags

[in] Whether the data to be marshaled is to be transmitted back to the client process ¾ the normal
case ¾ or written to a global table, where it can be retrieved by multiple clients. Valid values come
from the MSHLFLAGS enumeration.

Return Values
The method supports the standard return value E_FAIL, as well as the following:

S_OK

The interface pointer was marshaled successfully.
E_NOINTERFACE

The specified interface is not supported.

STG_E_MEDIUMFULL

The stream is full.

Remarks
This method is called indirectly, in a call to CoMarshalInterface, by whatever code in the server process
may be responsible for marshaling a pointer to an interface on an object. This marshaling code is usually
a stub generated by COM for one of several interfaces that can marshal a pointer to an interface
implemented on an entirely different object. Examples include the IClassFactory and IOleItemContainer
interfaces. For purposes of this discussion, the code responsible for marshaling a pointer is called the
"marshaling stub."

Notes to Callers
Normally, rather than calling IMarshal::MarshalInterface directly, your marshaling stub instead should
call the CoMarshalInterface function, which contains a call to this method. The stub makes this call to
command an object to write its marshaling data into a stream. The stub then either passes the marshaling
data back to the client process or writes it to a global table, where it can be unmarshaled by multiple
clients. The stub's call to CoMarshalInterface is normally preceded by a call to CoGetMarshalSizeMax,
to get the maximum size of the stream buffer into which the marshaling data will be written.

You do not explicitly call this method if you are:

· Implementing existing COM interfaces, or
· Defining your own interfaces using the Microsoft Interface Definition Language (MIDL).

In both cases, the MIDL-generated stub automatically makes the call.

If you are not using MIDL to define your own interface, your marshaling stub must call this method, either
directly or indirectly.Your stub implementation should call MarshalInterface immediately after its previous
call to IMarshal::GetMarshalSizeMax returns. Because the value returned by GetMarshalSizeMax is
guaranteed to be valid only so long as the internal state of the object being marshaled does not change, a
delay in calling MarshalInterface runs the risk that the object will require a larger stream buffer than
originally indicated.

If the caller has a pointer to the interface to be marshaled, it should, as a matter of efficiency, use the pv
parameter to pass that pointer. In this way, an implementation that may use such a pointer to determine
the appropriate CLSID for the proxy does not have to call IUnknown::QueryInterface on itself. If a caller
does not have a pointer to the interface to be marshaled, it can pass NULL.

Notes to Implementers
Your implementation of IMarshal::MarshalInterface must write to the stream whatever data is needed to
initialize the proxy on the receiving side. Such data would include a reference to the interface to be
marshaled, a MSHLFLAGS value specifying whether the data should be returned to the client process or
written to a global table, and whatever is needed to connect to the object, such as a named pipe, handle
to a window, or pointer to an RPC channel.

Your implementation should not assume that the stream is large enough to hold all the data. Rather, it
should gracefully handle a STG_E_MEDIUMFULL error. Just before exiting, your implementation should
position the seek pointer in the stream immediately after the last byte of data written.

If the pv parameter is NULL and your implementation needs an interface pointer, it can call
IUnknown::QueryInterface on the current object to get it. The pv parameter exists merely to improve
efficiency.

To ensure that your implementation of MarshalInterface continues to work properly as new destination
contexts are supported in the future, delegate marshaling to COM's default implementation for all
dwDestContext values that your implementation does not handle. To delegate marshaling to COM's
default implementation, call the CoGetStandardMarshal helper function.

Using the MSHLFLAGS enumeration, callers can specify whether an interface pointer is to be marshaled
back to a single client or written to a global table, where it can be unmarshaled by multiple clients. You
must make sure that your object can handle calls from the multiple proxies that might be created from the
same initialization data.

See Also
CoGetStandardMarshal, IMarshal::GetMarshalSizeMax, IMarshal::GetUnmarshalClass,
IMarshal::UnmarshalInterface, Writing a Custom Interface

IMarshal::ReleaseMarshalData

Destroys a marshaled data packet.

HRESULT ReleaseMarshalData(

 IStream * pStm //Pointer to stream used for unmarshaling
);

Parameter
pStm

[in] Pointer to a stream that contains the data packet to be destroyed.

Return Values
The method supports the standard return value E_FAIL, as well as the following:

S_OK

The data packet was released successfully.
IStream errors

This function can also return any of the stream-access error values for the IStream interface.

Remarks
If an object's marshaled data packet does not get unmarshaled in the client process space, and the
packet is no longer needed. The client calls ReleaseMarshalData on the proxy's IMarshal
implementation to instruct the object to destroy the data packet. The call occurs within the
CoReleaseMarshalData function. The data packet serves as an additional reference on the object, and
releasing the data is like releasing an interface pointer by calling IUnknown::Release.

If the marshaled data packet somehow does not arrive in the client process, or ReleaseMarshalData is
not successfully re-created in the proxy, COM can call this method on the object itself.

Notes to Callers
You will rarely if ever have occasion to call this method yourself. A possible exception would be if you
were to implement IMarshal on a class factory for a class object on which you are also implementing
IMarshal. In this case, if you are marshaling the object to a table, where it can be retrieved by multiple
clients, you might, as part of your unmarshaling routine, call ReleaseMarshalData to release the data
packet for each proxy.

Notes to Implementers
If your implementation stores state information about marshaled data packets, you can use this method to
release the state information associated with the data packet represented by pStm. Your implementation
should also position the seek pointer in the stream past the last byte of data.

See Also
CoUnMarshalInterface, CoReleaseMarshalData

IMarshal::UnmarshalInterface

Initializes a newly created proxy and returns an interface pointer to that proxy.

HRESULT UnmarshalInterface(

 IStream * pStm, //Pointer to the stream to be unmarshaled
 REFIID riid, //Reference to the identifier of the interface to be

unmarshaled
 void ** ppv //Indirect pointer to interface
);

Parameters
pStm

[in] Pointer to the stream from which the interface pointer is to be unmarshaled.
riid

[in] Reference to the identifier of the interface to be unmarshaled.
ppv

[out] Indirect pointer to the interface.

Return Values
The method supports the standard return value E_FAIL, as well as the following:

S_OK

The interface pointer was unmarshaled successfully.
E_NOINTERFACE

The specified interface was not supported.

Remarks
The COM library in the process where unmarshaling is to occur calls the proxy's implementation of this
method.

Notes to Callers
You do not call this method directly. There are, however, some situations in which you might call it
indirectly through a call to CoUnmarshalInterface. For example, if you are implementing a stub, your
implementation would call CoUnmarshalInterface when the stub receives an interface pointer as a
parameter in a method call.

Notes to Implementers
The proxy's implementation should read the data written to the stream by the original object's
implementation of IMarshal::MarshalInterface and use that data to initialize the proxy object whose
CLSID was returned by the marshaling stub's call to the original object's implementation of
IMarshal::GetUnmarshalClass.

To return the appropriate interface pointer, the proxy implementation can simply call

IUnknown::QueryInterface on itself, passing the riid and ppv parameters. However, your implementation
of UnmarshalInterface is free to create a different object and, if necessary, return a pointer to it.

Just before exiting, even if exiting with an error, your implementation should reposition the seek pointer in
the stream immediately after the last byte of data read.

See Also
IMarshal::GetUnmarshalClass, IMarshal::MarshalInterface

IMarshal - Default Implementation
COM uses its own internal implementation of the IMarshal interface to marshal any object that does
not provide its own implementation. COM makes this determination by querying the object for
IMarshal. If the interface is missing, COM defaults to its internal implementation.

COM's default implementation of IMarshal uses a generic proxy for each object, and creates
individual stubs and proxies, as they are needed, for each interface implemented on the object. This
mechanism is necessary because COM cannot know in advance what particular interfaces a given
object may implement. Developers who do not use COM's default marshaling, electing instead to
write their own proxy and marshaling routines, know at compile time all the interfaces to be found on
their objects and therefore understand exactly what marshaling code is required. COM, in providing
marshaling support for all objects, must do so at run time.

The interface proxy resides in the client process; the interface stub, in the server. Together, each pair
handles all marshaling for its interface. The job of each interface proxy is to marshal arguments and
unmarshal return values and out parameters that are passed back and forth in subsequent calls to its
interface. The job of each interface stub is to unmarshal function arguments and pass them along to
the original object, then marshal the return values and out parameters that the object returns.

Proxy and stub communicate by means of an RPC (remote procedure call) channel, which utilizes
the system's RPC infrastructure for interprocess communication. The RPC channel implements a
single interface IRpcChannelBuffer, an internal interface to which both interface proxies and stubs
hold a pointer. The proxy and stub call the interface to obtain a marshaling packet, send the data to
their counterpart, and destroy the packet when they are done. The interface stub also holds a pointer
to the original object.

For any given interface, the proxy and stub are both implemented as instances of the same class,
which is listed for each interface in the system registry under the label ProxyStubClsid32 (or
ProxyStubClsid on 16-bit systems). This entry maps the interface's IID to the CLSID of its proxy and
stub objects. When COM needs to marshal an interface, it looks in the system registry to obtain the
appropriate CLSID. The server identified by this CLSID implements both the interface proxy and
interface stub.

Most often, the class to which this CLSID refers is automatically generated by a tool whose input is a
description of the function signatures and semantics of a given interface, written in some interface
description language. While using such a language is highly recommended and encouraged for
accuracy's sake, doing so is by no means required. Proxies and stubs are merely Component Object
Model components used by the RPC infrastructure and, as such, can be written in any manner
desired so long as the correct external contracts are upheld. The programmer who designs a new
interface is responsible for ensuring that all interface proxies and stubs that ever exist agree on the
representation of their marshaled data.

When created, interface proxies are always aggregated into a larger proxy, which represents the
object as a whole. This object proxy also aggregates COM's generic proxy object, which is known as
the proxy manager. The proxy manager implements two interfaces: IUnknown and IMarshal. All of
the other interfaces that may be implemented on an object are exposed in its object proxy through
the aggregation of individual interface proxies. A client holding a pointer to the object proxy "believes"
it holds a pointer to the actual object.

A proxy representing the object as a whole is required in the client process so that a client can
distinguish calls to the same interfaces implemented on entirely different objects. Such a requirement
does not exist in the server process, however, where the object itself resides, because all interface
stubs communicate only with the objects for which they were created. No other connection is
possible.

Interface stubs, by contrast with interface proxies, are not aggregated, because there is no need that
they appear to some external client to be part of a larger whole. When connected, an interface stub is
given a pointer to the server object to which it should forward method invocations that it receives.
Although it is useful to refer conceptually to a "stub manager," meaning whatever pieces of code and
state in the server-side RPC infrastructure that service the remoting of a given object, there is no
direct requirement that the code and state take any particular, well-specified form.

The first time a client requests a pointer to an interface on a particular object, COM loads an
IClassFactory stub in the server process and uses it to marshal the first pointer back to the client. In
the client process, COM loads the generic proxy for the class factory object and calls its
implementation of IMarshal to unmarshal that first pointer. COM then creates the first interface proxy
and hands it a pointer to the RPC channel. Finally, COM returns the IClassFactory pointer to the
client, which uses it to call IClassFactory::CreateInstance, passing it a reference to the interface.

Back in the server process, COM now creates a new instance of the object, along with a stub for the
requested interface. This stub marshals the interface pointer back to the client process, where
another object proxy is created, this time for the object itself. Also created is a proxy for the
requested interface, a pointer to which is returned to the client. With subsequent calls to other
interfaces on the object, COM will load the appropriate interface stubs and proxies as needed.

When a new interface proxy is created, COM hands it a pointer to the proxy manager's
implementation of IUnknown, to which it delegates all QueryInterface calls. Each interface proxy
implements two interfaces of its own: the interface it represents and IRpcProxyBuffer. The interface
proxy exposes its own interface directly to clients, which can obtain its pointer by calling
QueryInterface on the proxy manager. Only COM, however, can call IRpcProxyBuffer, which it
uses to connect and disconnect the proxy to the RPC channel. A client cannot query an interface
proxy to obtain a pointer to the IRpcProxyBuffer interface.

On the server side, each interface stub implements IRpcStubBuffer, an internal interface. The
server code acting as a stub manager calls IRpcStubBuffer::Connect and passes the interface stub
the IUnknown pointer of its object.

When an interface proxy receives a method invocation, it obtains a marshaling packet from its RPC
channel through a call to IRpcChannelBuffer::GetBuffer. The process of marshaling the arguments
will copy data into the buffer. When marshaling is complete, the interface proxy invokes
IRpcChannelBuffer::SendReceive to send the marshaled packet to the corresponding interface
stub. When IRpcChannelBuffer::SendReceive returns, the buffer into which the arguments were
marshaled will have been replaced by a new buffer containing the return values marshaled from the
interface stub. The interface proxy unmarshals the return values, invokes
IRpcChannelBuffer::FreeBuffer to free the buffer, then returns the return values to the original
caller of the method.

It is the implementation of IRpcChannelBuffer::SendReceive that actually sends the request to the
server process and that knows how to identify the server process and, within that process, the object
to which the request should be sent. The channel implementation also knows how to forward the
request on to the appropriate stub manager in that process. The interface stub unmarshals the
arguments from the provided buffer, invokes the indicated method on the server object, and marshals
the return values back into a new buffer, allocated by a call to IRpcchannelBuffer::GetBuffer. The
channel then transmits the return data packet back to the interface proxy, which is still in the middle
of IRpcchannelBuffer::SendReceive, which returns to the interface proxy.

A particular instance of an interface proxy can be used to service more than one interface, so long as
two conditions are met. First, the IIDs of the affected interfaces must be mapped to the the
appropriate ProxyStubClsid in the system registry. Second, the interface proxy must support calls to
QueryInterface from one supported interface to the other interfaces, as usual, as well as from
IUnknown and IRpcProxyBuffer.

A single instance of an interface stub can also service more than one interface, but only if that set of
interfaces has a strict single-inheritance relationship. This restriction exists because the stub can
direct method invocations to multiple interfaces only where it knows in advance which methods are
implemented on which interfaces.

Both proxies and stubs will at various times have need to allocate or free memory. Interface proxies,
for example, will need to allocate memory in which to return out parameters to their caller. In this
respect, interface proxies and interface stubs are just normal COM components, in that they should
use the standard task allocator (see CoGetMalloc).

When to Use
You should use COM's default implementation of IMarshal except in those very few cases where
your application has special requirements that COM's default implementation does not address, or
where you can achieve optimizations over the marshaling code COM has provided. For examples of
such special cases, see IMarshal, "When to Implement."

See Also
IMarshal

IMessageFilter

The IMessageFilter interface provides OLE servers and applications with the ability to selectively handle
incoming and outgoing OLE messages while waiting for responses from synchronous calls. Filtering
messages helps to ensure that calls are handled in a manner that improves performance and avoids
deadlocks. OLE messages can be synchronous, asynchronous, or input-synchronized; the majority of
interface calls are synchronous.

Synchronous calls require the caller to wait for a reply before continuing. OLE enters a modal loop while
waiting for the reply. During this time, the caller is still able to receive and dispatch incoming messages.

Asynchronous calls allow the caller to proceed without waiting for a response from the called object.
Today, in OLE, the only asynchronous calls are to an object's IAdviseSink interface. While the object is
processing an asynchronous call, it is prohibited from making any synchronous calls back to the calling
object.

Input-synchronized calls require the called object to complete the call before relinquishing control,
ensuring that behaviors such as focus management and type-ahead function correctly.

When to Implement
You will probably want to implement your own message filter. The default implementation provided by
COM offers only minimal message filtering capability. Although message filtering is no longer as
significant as it was with 16-bit applications, since the size of the message queue is now virtually
unlimited, you still should implement IMessageFilter as a way of resolving deadlocks.

COM will call your implementation of IMessageFilter to find out if an application is blocking, so that you
can task-switch to that application and give the user an opportunity to deal with the situation. For
example, if you have Microsoft Word talking to Microsoft Excel, with Excel running in the background in
formula mode, in which formulas are being applied to data on the worksheet to compute different or "what
if" results, Excel won't check all calls, thereby blocking further action. IMessageFilter would put up a
dialog box indicating which task was blocking and provide the user with an opportunity to deal with the
deadlock.

Although it is probably obvious from the method descriptions, it may still be useful to point out that
HandleIncomingCall is an object-based method and RetryRejectedCall and MessagePending are
client-based methods. Clearly, the object must have some way of handling incoming calls from external
clients. HandleIncomingCall provides that functionality by allowing the object to handle or defer some
incoming calls and reject others. The client also needs to know how an object is going to handle its call.
so that it can respond appropriately. The client needs to know if a call has been rejected, or just deferred
temporarily, so that it can retry rejected calls after some specified time. The client also needs to be able to
respond to Windows messages, while at the same time waiting for replies to pending messages.

You will use CoRegisterMessageFilter to register your message filter. Once registered, COM then calls
your message filter instead of the default implementation.

When to Use
You don't call this interface directly. It's provided by the OLE server or application and called by the COM.

Application Shutdown with WM_QUERYENDSESSION and WM_ENDSESSION
When a user exits Windows, each open application receives a WM_QUERYENDSESSION message
followed by a WM_ENDSESSION message, provided the exit is not canceled. These messages are
invoked with SendMessage, which unfortunately restricts the initiation of all outgoing LRPC calls. This is
a problem for container applications that have open embedded objects when they receive the shutdown
request because LRPC is needed to close those objects.

Container and container/server applications with open documents typically display a message box on
receipt of the WM_QUERYENDSESSION message that asks if the user wants to save changes before
exiting. A positive response is usually the default. The recommendation for dealing with the situation
described above is for the application to display an alternate message box asking if the user wants to
discard changes; a negative response should be the default. If the user chooses to discard the changes,
TRUE should be returned for WM_QUERYENDSESSION, which .signals to Windows that it can
terminate. If the user does not want to discard the changes, FALSE should be returned. No attempt
should be made to close or release running embeddings.

Server applications should return TRUE for WM_QUERYENDSESSION without prompting the user.On
receipt of a WM_ENDSESSION message, all OLE applications should execute the normal close
sequence for each application's documents and/or objects. At the same time, you should ignore any
errors resulting from any cross-process calls or calls to IUnknown::Release. All storage pointers
(IStorage and IStream interface pointers) must be released to properly flush any temporary files
maintained by the compound file implementation of structured storage.

See Also
CoRegisterMessageFilter

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IMessageFilter Methods Description
HandleIncomingCall Provides a single entry point for incoming

calls.
RetryRejectedCall Provides application with opportunity to

display a dialog box offering retry or
cancel or task switching options.

MessagePending Indicates a Windows message has
arrived while OLE is waiting to respond
to a remote call.

See Also
OleUIBusy, OLEUIBUSY, In the WIN32 SDK: "Messages and Message Queues"

IMessageFilter::HandleInComingCall
An object-based method that provides the ability to filter or reject incoming calls (or call backs) to an
object or a process. This method is called prior to each method invocation originating outside the current
process.

DWORD HandleInComingCall(

 DWORD dwCallType, //Type of incoming call
 HTASK threadIDCaller, //Task handle calling this task
 DWORD dwTickCount, //Elapsed tick count
 LPINTERFACEINFO lpInterfaceInfo //Pointer to INTERFACEINFO structure
);

Parameters
dwCallType

[in] Kind of incoming call that has been received. Valid values are from the enumeration CALLTYPE.
See the chapter on enumerations for details.

threadIDCaller

[in] Handle of the task calling this task.
dwTickCount

[in] Elapsed tick count since the outgoing call was made if dwCallType is not CALLTYPE_TOPLEVEL.
If dwCallType is CALLTYPE_TOPLEVEL, dwTickCount should be ignored.

lpInterfaceInfo

[in] Pointer to an INTERFACEINFO structure, which identifies the object, the interface, and the
method making the call. In the case of DDE calls, lpInterfaceInfo can be NULL because the DDE
layer does not return interface information.

Return Values
SERVERCALL_ISHANDLED

The application might be able to process the call.
SERVERCALL_REJECTED

The application cannot handle the call due to an unforeseen problem, such as network unavailability,
or if it is in the process of terminating.

SERVERCALL_RETRYLATER

The application cannot handle the call at this time. For example, an application might return this value
when it is in a user-controlled modal state.

Remarks
If implemented, IMessageFilter::HandleInComingCall is called by OLE when an incoming OLE
message is received.

Depending on an application's current state, a call is either accepted and processed or rejected

(permanently or temporarily). If SERVERCALL_ISHANDLED is returned, the application may be able to
process the call, though success depends on the interface for which the call is destined. If the call cannot
be processed, OLE returns RPC_E_CALL_REJECTED.

Input-synchronized and asynchronous calls are dispatched even if the application returns
SERVERCALL_REJECTED or SERVERCALL_RETRYLATER.

IMessageFilter::HandleInComingCall should not be used to hold off updates to objects during
operations such as band printing. For that purpose, use IViewObject::Freeze.

You can also use IMessageFilter::HandleInComingCall to set up the application's state so the call can
be processed in the future.

See Also
IViewObject::Freeze, CALLTYPE, INTERFACEINFO

IMessageFilter::MessagePending

A client-based method called by COM when a Windows message appears in an OLE application's
message queue while the application is waiting for a reply to a remote call. Handling input while waiting
for an outgoing call to finish can introduce complications. The application should determine whether to
process the message without interrupting the call, continue waiting, or cancel the operation.

DWORD MessagePending(

 HTASK threadIDCallee, //Called applications task handle
 DWORD dwTickCount, //Elapsed tick count
 DWORD dwPendingType //Call type
);

Parameters
threadIDCallee

[in] Task handle of the called application that has not yet responded.
dwTickCount

[in] Number of ticks since the call was made. It is calculated from the Windows GetTickCount
function.

dwPendingType

[in] Type of call made during which a message or event was received. Valid values are from the
enumeration PENDINGTYPE (where PENDINGTYPE_TOPLEVEL means the outgoing call was not
nested within a call from another application and PENDINTGYPE_NESTED means the outgoing call
was nested within a call from another application).

Return Values
PENDINGMSG_CANCELCALL

Cancel the outgoing call. This should be returned only under extreme conditions. Canceling a call that
has not replied or been rejected can create orphan transactions and lose resources. OLE fails the
original call and returns RPC_E_CALL_CANCELLED.

PENDINGMSG_WAITNOPROCESS

Continue waiting for the reply and do not dispatch the message unless it is a task-switching or
window-activation message. A subsequent message will trigger another call to
IMessageFilter::MessagePending. Leaving messages or events in the queue enables them to be
processed normally, if the outgoing call is completed. Note that returning
PENDINGMSG_WAITNOPROCESS can cause the message queue to fill.

PENDINGMSG_WAITDEFPROCESS

Because of the increased resources available in 32-bit systems, you are unlikely to get this return
value. It now indicates the same state as PENDINGMSG_WAITNOPROCESS.
Keyboard and mouse messages are no longer dispatched, as was done with
PENDINGMSG_WAITDEFPROCESS. However there are some cases where mouse and keyboard
messages could cause the system to deadlock, and in these cases, mouse and keyboard messages
are discarded. WM_PAINT messages are dispatched. Task-switching and activation messages are
handled as before.

Remarks
OLE calls IMessageFilter::MessagePending after an application has made an OLE method call and a
Windows message occurs before the call has returned. A Windows message is sent, for example, when
the user selects a menu command or double-clicks an object. Before OLE makes the
IMessageFilter::MessagePending call, it calculates the elapsed time since the original OLE method call
was made. OLE delivers the elapsed time in the dwTickCount parameter. In the meantime, OLE does not
remove the message from the queue.

Windows messages that appear in the caller's queue should remain in the queue until sufficient time has
passed to ensure that the messages are probably not the result of typing ahead, but are, instead, an
attempt to get attention. Set the delay with the dwTickCount parameter ¾ a two- or three-second delay is
recommended. If that amount of time passes and the call has not been completed, the caller should flush
the messages from the queue, and the OLE UI busy dialog box should be displayed offering the user the
choice of retrying the call (continue waiting) or switching to the task identified by the threadIDCallee
parameter. This ensures that:

· If calls are completed in a reasonable amount of time, type ahead will be treated correctly.
· If the callee does not respond, type ahead is not misinterpreted and the user is able to act to solve the

problem. For example, OLE 1 servers can queue up requests without responding when they are in
modal dialog boxes.

Handling input while waiting for an outgoing call to finish can introduce complications. The application
should determine whether to process the message without interrupting the call, continue waiting, or
cancel the operation.

When there is no response to the original OLE call, the application can cancel the call and restore the
OLE object to a consistent state by calling IStorage::Revert on its storage. The object can be released
when the container can shut down. However, canceling a call can create orphaned operations and
resource leaks. Canceling should be used only as a last resort. It is strongly recommended that
applications not allow such calls to be canceled.

See Also
IStorage::Revert, IStorage::Revert, OleUIBusy, OLEUIBUSY, In the WIN32 SDK: GetTickCount

IMessageFilter::RetryRejectedCall
A client-based method that gives the application an opportunity to display a dialog box so the user can
retry or cancel the call, or switch to the task identified by threadIDCallee.

DWORD RetryRejectedCall(

 HTASK threadIDCallee, //Server task handle
 DWORD dwTickCount, //Elapsed tick count
 DWORD dwRejectType //Returned rejection message
);

Parameters
threadIDCallee

[in] Handle of the server task that rejected the call.
dwTickCount

[in] Number of elapsed ticks since the call was made.
dwRejectType

[in] Specifies either SERVERCALL_REJECTED or SERVERCALL_RETRYLATER, as returned by the
object application.

Return Values
-1

The call should be canceled. OLE then returns RPC_E_CALL_REJECTED from the original method
call.

Value >= 0 and <100

The call is to be retried immediately.
Value >= 100

OLE will wait for this many milliseconds and then retry the call.

Remarks
OLE calls RetryRejectedCall on the caller's IMessageFilter immediately after receiving
SERVERCALL_RETRYLATER or SERVERCALL_REJECTED from the
IMessageFilter::HandleInComingCall method on the callee's IMessageFilter.

If a called task rejects a call, the application is probably in a state where it cannot handle such calls,
possibly only temporarily. When this occurs, OLE returns to the caller and issues
IMessageFilter::RetryRejectedCall to determine if it should retry the rejected call.

Applications should silently retry calls that have returned with SERVERCALL_RETRYLATER. If, after a
reasonable amount of time has passed, say about 30 seconds, the application should display the busy
dialog box; a standard implementation of this dialog box is available in the OLEDLG library. The callee
may momentarily be in a state where calls can be handled. The option to wait and retry is provided for
special kinds of calling applications, such as background tasks executing macros or scripts, so that they
can retry the calls in a nonintrusive way.

If, after a dialog box is displayed, the user chooses to cancel, RetryRejectedCall returns -1 and the call
will appear to fail with RPC_E_CALL_REJECTED.

IMoniker

The IMoniker interface contains methods that allow you to use a moniker object, which contains
information that uniquely identifies a COM object. An object that has a pointer to the moniker object's
IMoniker interface can locate, activate, and get access to the identified object without having any other
specific information on where the object is actually located in a distributed system.

Like a path to a file in a file system, a moniker contains information that allows a COM object to be
located and activated. Monikers can identify any type of COM object, from a document object stored in a
file to a selection within an embedded object. OLE provides a set of moniker classes that allow you to
create moniker objects identifying the objects most commonly found in the system. For example, there
might be an object representing a range of cells in a spreadsheet which is itself embedded in a text
document stored in a file. In a distributed system, this object's moniker would identify the location of the
object's system, the file's physical location on that system, the storage of the embedded object within that
file, and, finally, the location of the range of cells within the embedded object.

A moniker object supports the IMoniker interface, which is derived from the IPersistStream interface,
and uniquely identifies a single object in the system. Once an object providing a moniker has created the
moniker object, this information cannot be changed within that object. If the moniker provider changes the
information, it can only do so by creating a new moniker object, which would then uniquely identify the
object in question.

Monikers have two important capabilites:

· Monikers can be saved to a persistent storage. When a moniker is loaded back into memory, it still
identifies the same object.

· Monikers support an operation called "binding," which is the process of locating the object named by
the moniker, activating it (loading it into memory) if it is not already active, and returning a pointer to a
requested interface on that object.

Monikers are used as the basis for linking in OLE. A linked object contains a moniker that identifies its
source. When the user activates the linked object to edit it, the moniker is bound; this loads the link
source into memory.

When to Implement
Implement IMoniker only if you are writing a new moniker class. This is necessary only if you need to
identify objects that cannot be identified using one of the OLE-supplied moniker classes described below.

The OLE-supplied moniker classes are sufficient for most situations. Before considering writing your own
moniker class, you should make sure that your requirements cannot be satisified by these classes.

If you decide you need to write your own implementation of IMoniker, you must also implement the
IROTData interface on your moniker class. This interface allows your monikers to be registered with the
Running Object Table (ROT).

When to Use
Two kinds of objects call the methods of IMoniker:

· A component that contains one or more objects to be identified with a moniker and must provide the
moniker to other objects

· A client object that must bind to the object identified by the moniker

The component providing a moniker makes it accessible to other objects. It is important to understand the
differences between the various system-supplied moniker classes to know which are appropriate for a
given object. OLE also provides functions for creating monikers using the OLE-supplied moniker classes.

· File monikers ¾ based on a path in the file system. File monikers can be used to identify objects that
are saved as files. The associated creation function is CreateFileMoniker.

· Item monikers ¾ based on a string that identifies an object in a container. Item monikers can be used
to identify objects smaller than a file, such as embedded objects in a compound document and
pseudo-objects (like a range of cells in a spreadsheet). The associated creation function is
CreateItemMoniker.

· Generic composite monikers ¾ consists of two or more monikers of arbitrary type that have been
composed together. Generic composite monikers allow monikers of different classes to be used in
combination. The associated creation function is CreateGenericComposite.

· Anti-monikers¾ the inverse of file, item, or pointer monikers. Anti-monikers are used primarily for
constructing relative monikers, which are analogous to relative path (such as "..\backup\report.old"),
and which specify a location of an object relative to the location of another object). The associated
creation function is CreateAntiMoniker.

· Pointer monikers ¾ a non-persistent moniker that wraps an interface pointer to an object loaded in
memory. Whereas most monikers identify objects that can be saved to persistent storage, pointer
monikers identify objects that cannot. The associated creation function is CreatePointerMoniker.

A moniker provider must also implement other interfaces to allow the monikers it hands out to be bound.
OLE objects that commonly provide monikers are link sources. These include server applications that
support linking and container applications that support linking to their embedded objects.

Binding to an object means that a client uses a moniker to locate the object, activate it when necessary,
and get a pointer to one of the active object's interfaces. The client of the moniker does not need to be
aware of the class of the moniker ¾ it must just get a pointer to the correct moniker's IMoniker interface.
Monikers are used most often in this way by container applications that allow their documents to contain
linked objects. However, link containers rarely call IMoniker methods directly. Instead, they generally
manipulate linked objects through the default handler's implementation of the IOleLink interface, which
calls the appropriate IMoniker methods as needed.

· Class monikers ¾ these represent an object class. Class monikers bind to the class object of the
class for which they are created. The associated creation function is CreateClassComposite.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPersist Methods Description
GetClassID Returns the object's CLSID.

IPersistStream Methods Description
IsDirty Checks whether object has been

modified.
Load Loads the object from a stream.
Save Saves the object to a stream.
GetSizeMax Returns the buffer size needed to save

the object.

IMoniker Methods Description
BindToObject Binds to the object named by the

moniker.
BindToStorage Binds to the object's storage.
Reduce Reduces the moniker to simplest form.
ComposeWith Composes with another moniker.
Enum Enumerates component monikers.
IsEqual Compares with another moniker.
Hash Returns a hash value.
IsRunning Checks whether object is running.
GetTimeOfLastChange Returns time the object was last

changed.
Inverse Returns the inverse of the moniker.
CommonPrefixWith Finds the prefix that the moniker has in

common with another moniker.
RelativePathTo Constructs a relative moniker between

the moniker and another.
GetDisplayName Returns the display name.
ParseDisplayName Converts a display name into a moniker.
IsSystemMoniker Checks whether moniker is one of the

system-supplied types.

See Also
BindMoniker, CreateBindCtx, CreateGenericComposite, CreateFileMoniker, CreateItemMoniker,
CreateAntiMoniker, CreatePointerMoniker, IOleLink, IPersistStream, IROTData,
IMoniker ¾ AntiMoniker Implementation , IMoniker ¾ File Moniker Implementation , IMoniker ¾ Item
Moniker Implementation, IMoniker ¾ Generic Composite Moniker Implementation ,
IMoniker ¾ Pointer Moniker Implementation

IMoniker::BindToObject
Uses the moniker to bind to the object it identifies. The binding process involves finding the object, putting
it into the running state if necessary, and supplying the caller with a pointer to a specified interface on the
identified object.

HRESULT BindToObject(

 IBindCtx *pbc, //Pointer to bind context object to be used
 IMoniker *pmkToLeft, //Pointer to moniker that precedes this one in the composite
 REFIID riidResult, //IID of interface pointer requested
 void **ppvResult //Indirect pointer to the specified interface on the object
);

Parameters
pbc

[in] Pointer to the IBindCtx interface on the bind context object, which is used in this binding
operation. The bind context caches objects bound during the binding process, contains parameters
that apply to all operations using the bind context, and provides the means by which the moniker
implementation should retrieve information about its environment.

pmkToLeft

[in] If the moniker is part of a composite moniker, pointer to the moniker to the left of this moniker. This
parameter is primarily used by moniker implementers to enable cooperation between the various
components of a composite moniker. Moniker clients should pass NULL.

riidResult

[in] IID of the interface the client wishes to use to communicate with the object that the moniker
identifies.

ppvResult

[out] When successful, indirect pointer to the interface specified in riidResult on the object the moniker
identifies. In this case, the implementation must call IUnknown::AddRef on this pointer. It is the
caller's responsibility to release the object with a call to IUnknown::Release. If an error occurs,
ppvResult should return NULL.

Return Values
The method supports the standard return values E_UNEXPECTED and E_OUTOFMEMORY, as well as
the following:

S_OK

The binding operation was successful.
MK_E_NOOBJECT

The object identified by this moniker, or some object identified by the composite moniker of which this
moniker is a part, could not be found.

MK_E_EXCEEDEDDEADLINE

The binding operation could not be completed within the time limit specified by the bind context's
BIND_OPTS structure.

MK_E_CONNECTMANUALLY

The binding operation requires assistance from the end user. The most common reasons for returning
this value are that a password is needed or that a floppy needs to be mounted. When this value is
returned, retrieve the moniker that caused the error with a call to IBindCtx::GetObjectParam with the
key "ConnectManually". You can then call IMoniker::GetDisplayName to get the display name,
display a dialog box that communicates the desired information, such as instructions to mount a
floppy or a request for a password, and then retry the binding operation.

MK_E_INTERMEDIATEINTERFACENOTSUPPORTED

An intermediate object was found but it did not support an interface required to complete the binding
operation. For example, an item moniker returns this value if its container does not support the
IOleItemContainer interface.

STG_E_ACCESSDENIED

Unable to access the storage object.
IOleItemContainer::GetObject errors

If the moniker used to bind to an object contains an item moniker, errors associated with this method
can be returned.

Remarks
IMoniker::BindToObject implements the primary function of a moniker, which is to locate the object
identified by the moniker and return a pointer to one of its interfaces.

Notes to Callers
If you are using a moniker as a persistent connection between two objects, you activate the connection by
calling IMoniker::BindToObject.

You typically call IMoniker::BindToObject during the following process:

1. Create a bind context object with a call to the CreateBindCtx function.
2. Call IMoniker::BindToObject using the moniker, retrieving a pointer to a desired interface on the

identified object.
3. Release the bind context.
4. Through the acquired interface pointer, perform the desired operations on the object.
5. When finished with the object, release the object's interface pointer.

The following code fragment illustrates these steps:

// pMnk is an IMoniker * that points to a previously acquired moniker
// ICellRange is a custom interface designed for an object that is a
// range of spreadsheet cells
ICellRange *pCellRange;
IBindCtx *pbc;

CreateBindCtx(0, &pbc);
pMnk->BindToObject(pbc, NULL, IID_ICellRange, &pCellRange);
pbc->Release();
// pCellRange now points to the object; safe to use pCellRange
pCellRange->Release();

You can also use the BindMoniker function when you only intend one binding operation and don't need

to retain the bind context object. This helper function encapsulates the creation of the bind context, calling
IMoniker::BindToObject, and releasing the bind context.

OLE containers that support links to objects use monikers to locate and get access to the linked object,
but typically do not call IMoniker::BindToObject directly. Instead, when a user activates a link in a
container, the link container usually calls IOleObject::DoVerb, using the link handler's implementation,
which calls IMoniker::BindToObject on the moniker stored in the linked object (if it cannot handle the
verb).

Notes to Implementers
What your implementation does depends on whether you expect your moniker to have a prefix, that is,
whether you expect the pmkToLeft parameter to be NULL or not. For example, an item moniker, which
identifies an object within a container, expects that pmkToLeft identifies the container. An item moniker
consequently uses pmkToLeft to request services from that container. If you expect your moniker to have
a prefix, you should use the pmkToLeft parameter (for instance, calling IMoniker::BindToObject on it) to
request services from the object it identifies.

If you expect your moniker to have no prefix, your IMoniker::BindToObject implementation should first
check the Running Object Table (ROT) to see if the object is already running. To acquire a pointer to the
ROT, your implementation should call IBindCtx::GetRunningObjectTable on the pbc parameter. You
can then call the IRunningObjectTable::GetObject method to see if the current moniker has been
registered in the ROT. If so, you can immediately call IUnknown::QueryInterface to get a pointer to the
interface requested by the caller.

When your IMoniker::BindToObject implementation binds to some object, it should use the pbc
parameter to call IBindCtx::RegisterObjectBound to store a reference to the bound object in the bind
context. This ensures that the bound object remains running until the bind context is released, which can
avoid the expense of having a subsequent binding operation load it again later.

If the bind context's BIND_OPTS structure specifies the BINDFLAGS_JUSTTESTEXISTENCE flag, your
implementation has the option of returning NULL in ppvResult (although you can also ignore the flag and
perform the complete binding operation).

See Also
BindMoniker, IMoniker::BindToStorage

IMoniker::BindToStorage

Retrieves an interface pointer to the storage that contains the object identified by the moniker. Unlike the
IMoniker::BindToObject method, this method does not activate the object identified by the moniker.

HRESULT BindToStorage(

 IBindCtx *pbc, //Pointer to bind context to be used
 IMoniker *pmkToLeft, //Pointer to moniker to the left of this one in the composite
 REFIID riid, //Reference to the identifier of the storage interface requested
 void **ppvObj //Indirect pointer to interface on storage object containing the identified

object
);

Parameters
pbc

[in] Pointer to the IBindCtx interface on the bind context object to be used during this binding
operation. The bind context caches objects bound during the binding process, contains parameters
that apply to all operations using the bind context, and provides the means by which the moniker
implementation should retrieve information about its environment. For more information, see
IBindCtx.

pmkToLeft

[in] If the moniker is part of a composite moniker, pointer to the moniker to the left of this moniker. This
parameter is primarily used by moniker implementers to enable cooperation between the various
components of a composite moniker. Moniker clients should pass NULL.

riid

[in] Reference to the identifier of the storage interface requested, whose pointer will be returned in
ppvObj. Storage interfaces commonly requested include IStorage, IStream, and ILockBytes.

ppvObj

[out] Pointer to the interface identified by riid on the storage of the object identified by the moniker. If
ppvObj is non-NULL, the implementation must call IUnknown::AddRef on the parameter; it is the
caller's responsibility to call IUnknown::Release. If an error occurs, ppvObj is set to NULL.

Return Values
The method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The binding operation was successful.
MK_E_NOSTORAGE

The object identified by this moniker does not have its own storage.
MK_E_EXCEEDEDDEADLINE

The operation could not be completed within the time limit specified by the bind context's
BIND_OPTS structure.

MK_E_CONNECTMANUALLY

The operation was unable to connect to the storage, possibly because a network device could not be
connected to. For more information, see IMoniker::BindToObject.

MK_E_INTERMEDIATEINTERFACENOTSUPPORTED

An intermediate object was found but it did not support an interface required for an operation. For
example, an item moniker returns this value if its container does not support the IOleItemContainer
interface.

STG_E_ACCESSDENIED

Unable to access the storage object.
IOleItemContainer::GetObject errors

Binding to a moniker containing an item moniker can return any of the errors associated with this
function.

Remarks
There is an important difference between the IMoniker::BindToObject and IMoniker::BindToStorage
methods. If, for example, you have a moniker that identifies a spreadsheet object, calling
IMoniker::BindToObject provides access to the spreadsheet object itself, while calling
IMoniker::BindToStorage provides access to the storage object in which the spreadsheet resides.

Notes to Callers
Although none of the OLE moniker classes call this method in their binding operations, it might be
appropriate to call it in the implementation of a new moniker class. You could call this method in an
implementation of IMoniker::BindToObject that requires information from the object identified by the
pmkToLeft parameter and can get it from the persistent storage of the object without activation. For
example, if your monikers are used to identify objects that can be activated without activating their
containers, you may find this method useful.

A client that can read the storage of the object its moniker identifies could also call this method.

Notes to Implementers
Your implementation should locate the persistent storage for the object identified by the current moniker
and return the desired interface pointer. Some types of monikers represent pseudo-objects, which are
objects that do not have their own persistent storage. Such objects comprise some portion of the internal
state of its container; as, for example, a range of cells in a spreadsheet. If your moniker class identifies
this type of object, your implementation of IMoniker::BindToStorage should return the error
MK_E_NOSTORAGE.

If the bind context's BIND_OPTS structure specifies the BINDFLAGS_JUSTTESTEXISTENCE flag, your
implementation has the option of returning NULL in ppvObj (although it can also ignore the flag and
perform the complete binding operation).

See Also
IMoniker::BindToObject

IMoniker::CommonPrefixWith

Creates a new moniker based on the common prefix that this moniker (the one comprising the data of this
moniker object) shares with another moniker.

HRESULT CommonPrefixWith(

 IMoniker *pmkOther, //Pointer to moniker to be used for comparison
 IMoniker **ppmkPrefix //Indirect pointer to the prefix
);

Parameters
pmkOther

[in] Pointer to the IMoniker interface on another moniker to be compared with this one to determine
whether there is a common prefix.

ppmkPrefix

[out] When successful, points to the IMoniker pointer to the moniker that is the common prefix of this
moniker and pmkOther. In this case, the implementation must call IUnknown::AddRef on the
parameter; it is the caller's responsibility to call IUnknown::Release. If an error occurs or if there is
no common prefix, the implementation should set ppmkPrefix to NULL.

Return Values
The method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

A common prefix exists that is neither this moniker nor pmkOther.
MK_S_NOPREFIX

No common prefix exists.
MK_S_HIM

The entire pmkOther moniker is a prefix of this moniker.
MK_S_US

The two monikers are identical.
MK_S_ME

This moniker is a prefix of the pmkOther moniker.
MK_E_NOTBINDABLE

This method was called on a relative moniker. It is not meaningful to take the common prefix on a
relative moniker.

Remarks
IMoniker::CommonPrefixWith creates a new moniker that consists of the common prefixes of the
moniker on this moniker object and another moniker. If, for example, one moniker represents the path "c:\
projects\secret\art\pict1.bmp" and another moniker represents the path "c:\projects\secret\docs\chap1.txt,"
the common prefix of these two monikers would be a moniker representing the path "c:\projects\secret."

Notes to Callers
The IMoniker::CommonPrefixWith method is primarily called in the implementation of the
IMoniker::RelativePathTo method. Clients using a moniker to locate an object rarely need to call this
method.

Call this method only if pmkOther and this moniker are both absolute monikers. An absolute moniker is
either a file moniker or a generic composite whose leftmost component is a file moniker that represents
an absolute path. Do not call this method on relative monikers, because it would not produce meaningful
results.

Notes to Implementers
Your implementation should first determine whether pmkOther is a moniker of a class that you recognize
and for which you can provide special handling (for example, if it is of the same class as this moniker). If
so, your implementation should determine the common prefix of the two monikers. Otherwise, it should
pass both monikers in a call to the MonikerCommonPrefixWith function, which correctly handles the
generic case.

See Also
IMoniker::RelativePathTo, MonikerCommonPrefixWith

IMoniker::ComposeWith

Combines the current moniker with another moniker, creating a new composite moniker.

HRESULT ComposeWith(

 IMoniker *pmkRight, //Pointer to moniker to be composed onto this one
 BOOL fOnlyIfNotGeneric, //Indicates if generic composition permissible
 IMoniker **ppmkComposite //Indirect pointer to the composite
);

Parameters
pmkRight

[in] Pointer to the IMoniker interface on the moniker to compose onto the end of this moniker.
fOnlyIfNotGeneric

[in] If TRUE, the caller requires a non-generic composition, so the operation should proceed only if
pmkRight is a moniker class that this moniker can compose with in some way other than forming a
generic composite. If FALSE, the method can create a generic composite if necessary.

ppmkComposite

[out] When the call is successful, indirect pointer to the location of the resulting composite moniker
pointer. In this case, the implementation must call IUnknown::AddRef on the parameter; it is the
caller's responsibility to call IUnknown::Release. If an error occurs or if the monikers compose to
nothing (e.g., composing an anti-moniker with an item moniker or a file moniker), ppmkComposite
should be set to NULL.

Return Values
The method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The monikers were successfully combined.
MK_E_NEEDGENERIC

Indicates that fOnlyIfNotGeneric was TRUE, but the monikers could not be composed together
without creating a generic composite moniker.

Remarks
Joining two monikers together is called composition. Sometimes two monikers of the same class can be
combined in what is called non-generic composition. For example, a file moniker representing an
incomplete path and another file moniker representing a relative path can be combined to form a single
file moniker representing the complete path. Non-generic composition for a given moniker class can be
handled only in the implementation of IMoniker::ComposeWith for that moniker class.

Combining two monikers of any class is called generic composition, which can be accomplished through
a call to the CreateGenericComposite function.

Composition of monikers is an associative operation. That is, if A, B, and C are monikers, then, where

Comp() represents the composition operation:

Comp(Comp(A, B), C)

is always equal to

Comp(A, Comp(B, C))

Notes to Callers
To combine two monikers, you should call IMoniker::ComposeWith rather than calling the
CreateGenericComposite function to give the first moniker a chance to perform a non-generic
composition.

An object that provides item monkers to identify its objects would call IMoniker::ComposeWith to
provide a moniker that completely identifies the location of the object. This would apply, for example, to a
server that supports linking to portions of a document, or a container that supports linking to embedded
objects within its documents. In such a situation, you would do the following:

1. Create an item moniker identifying an object.
2. Get a moniker that identifies the object's container.
3. Call IMoniker::ComposeWith on the moniker identifying the container, passing the item moniker as

the pmkRight parameter.

Most callers of IMoniker::ComposeWith should set the fOnlyIfNotGeneric parameter to FALSE.

Notes to Implementers
You can use either non-generic or generic composition to compose the current moniker with the moniker
that pmkRight points to. If the class of the moniker indicated by pmkRight is the same as that of the
current moniker, it is possible to use the contents of pmkRight to perform a more intelligent non-generic
composition.

In writing a new moniker class, you must decide if there are any kinds of monikers, whether of your own
class or another class, to which you want to give special treatment. If so, implement
IMoniker::ComposeWith to check whether pmkRight is a moniker of the type that should have this
treatment. To do this, you can call the moniker's GetClassID method (derived from the IPersist Interface),
or, if you have defined a moniker object that supports a custom interface, you can call
IUnknown::QueryInterface on the moniker for that interface. An example of special treatment would be
the non-generic composition of an absolute file moniker with a relative file moniker. The most common
case of a special moniker is the inverse for your moniker class (whatever you return from your
implementation of IMoniker::Inverse).

If pmkRight completely negates the receiver so the resulting composite is empty, you should pass back
NULL in ppmkComposite and return the status code S_OK.

If the pmkRight parameter is not of a class to which you give special treatment, examine
fOnlyIfNotGeneric to determine what to do next. If fOnlyIfNotGeneric is TRUE, pass back NULL through
ppmkComposite and return the status code MK_E_NEEDGENERIC. If fOnlyIfNotGeneric is FALSE, call
the CreateGenericComposite function to perform the composition generically.

See Also
CreateGenericComposite, IMoniker::Inverse

IMoniker::Enum

Supplies a pointer to an enumerator that can enumerate the components of a composite moniker.

HRESULT Enum(

 BOOL fForward, //Specifies direction of enumeration
 IEnumMoniker **ppenumMoniker //Indirect pointer to the IEnumMoniker pointer
);

Parameters
fForward

[in] If TRUE, enumerates the monikers from left to right. If FALSE, enumerates from right to left.
ppenumMoniker

[out] When successful, indirect pointer to an IEnumMoniker enumerator on this moniker. In this case,
the implementation must call IUnknown::AddRef on the parameter. It is the caller's responsibility to
call IUnknown::Release. If an error occurs or if the moniker has no enumerable components, the
implementation sets ppenumMoniker to NULL.

Return Values
The method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

Indicates success. This value is returned even if the moniker does not provide an enumerator (if
ppenumMoniker equals NULL).

Remarks
IMoniker::Enum must supply an IEnumMoniker pointer to an enumerator that can enumerate the
components of a moniker. For example, the implementation of the IMoniker::Enum method for a generic
composite moniker creates an enumerator that can determine the individual monikers that make up the
composite, while the IMoniker::Enum method for a file moniker creates an enumerator that returns
monikers representing each of the components in the path.

Notes to Callers
Call this method to examine the components that make up a composite moniker.

Notes to Implementers
If the new moniker class has no discernible internal structure, your implementation of this method can
simply return S_OK and set ppenumMoniker to NULL.

See Also
IEnum XXXX

IMoniker::GetDisplayName

Gets the display name , which is a user-readable representation of this moniker.

HRESULT GetDisplayName(

 IBindCtx *pbc, //Pointer to bind context to be used
 IMoniker *pmkToLeft, //Pointer to moniker to the left in the composite
 LPOLESTR *ppszDisplayName //Indirect pointer to the display name
);

Parameters
pbc

[in] Pointer to the IBindCtx interface on the bind context to be used in this operation. The bind context
caches objects bound during the binding process, contains parameters that apply to all operations
using the bind context, and provides the means by which the moniker implementation should retrieve
information about its environment. For more information, see IBindCtx.

pmkToLeft

[in] If the moniker is part of a composite moniker, pointer to the moniker to the left of this moniker. This
parameter is primarily used by moniker implementers to enable cooperation between the various
components of a composite moniker. Moniker clients should pass NULL.

ppszDisplayName

[out] When successful, indirect pointer to a zero-terminated wide character string (two bytes per
character) containing the display name of this moniker. The implementation must use IMalloc::Alloc
to allocate the string returned in ppszDisplayName, and the caller is responsible for calling
IMalloc::Free to free it. Both the caller and and the one called use the OLE task allocator returned by
CoGetMalloc. If an error occurs, ppszDisplayName should be set to NULL.

Return Values
The method supports the standard return value E_OUTOFMEMORY

, as well as the following:

S_OK

The display name was successfully supplied.
MK_E_EXCEEDEDDEADLINE

The binding operation could not be completed within the time limit specified by the bind context's
BIND_OPTS structure.

E_NOTIMPL

There is no display name.

Remarks
IMoniker::GetDisplayName provides a string that is a displayable representation of the moniker. A
display name is not a complete representation of a moniker's internal state; it is simply a form that can be
read by users. As a result, it is possible (though rare) for two different monikers to have the same display

name. While there is no guarantee that the display name of a moniker can be parsed back into that
moniker when calling the MkParseDisplayName function with it, failure to do so is rare.

As examples, the file moniker implementation of this method supplies the path the moniker represents,
and an item moniker's display name is the string identifying the item that is contained in the moniker.

Notes to Callers
It is possible that retrieving a moniker's display name may be an expensive operation. For efficiency, you
may want to cache the results of the first successful call to IMoniker::GetDisplayName, rather than
making repeated calls.

Notes to Implementers
If you are writing a moniker class in which the display name does not change, simply cache the display
name and supply the cached name when requested. If the display name can change over time, getting
the current display name might mean that the moniker has to access the object's storage or bind to the
object, either of which can be expensive operations. If this is the case, your implementation of
IMoniker::GetDisplayName should return MK_E_EXCEEDEDDEADLINE if the name cannot be
retrieved by the time specified in the bind context's BIND_OPTS structure.

A moniker that is intended to be part of a generic composite moniker should include any preceding
delimiter (such as '\') as part of its display name. For example, the display name returned by an item
moniker includes the delimiter specified when it was created with the CreateItemMoniker function. The
display name for a file moniker does not include a delimiter because file monikers are always expected to
be the leftmost component of a composite.

See Also
IMoniker::ParseDisplayName, MkParseDisplayName

IMoniker::GetTimeOfLastChange

Provides a number representing the time the object identified by this moniker was last changed. To be
precise, the time returned is the earliest time OLE can identify after which no change has occurred, so
this time may be later than the time of the last change to the object.

HRESULT GetTimeOfLastChange(

 IBindCtx *pbc, //Bind context to be used
 IMoniker *pmkToLeft, //Moniker to the left in the composite
 FILETIME *pFileTime //Receives the time of last change
);

Parameters
pbc

[in] Pointer to the bind context to be used in this binding operation. The bind context caches objects
bound during the binding process, contains parameters that apply to all operations using the bind
context, and provides the means by which the moniker implementation should retrieve information
about its environment. For more information, see IBindCtx.

pmkToLeft

[in] If the moniker is part of a composite moniker, pointer to the moniker to the left of this moniker. This
parameter is primarily used by moniker Implementers to enable cooperation between the various
components of a composite moniker. Moniker clients should pass NULL.

pFileTime

[out] Pointer to the FILETIME structure receiving the time of last change. A value of
{0xFFFFFFFF,0x7FFFFFFF} indicates an error (for example, exceeded time limit, information not
available).

Return Values
The method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The method successfully returned a time.
MK_E_EXCEEDEDDEADLINE

The binding operation could not be completed within the time limit specified by the bind context's
BIND_OPTS structure.

MK_E_CONNECTMANUALLY

The operation was unable to connect to the storage for this object, possibly because a network device
could not be connected to. For more information, see IMoniker::BindToObject.

MK_E_UNAVAILABLE

The time of the change is unavailable, and will not be available no matter what deadline is used.

Remarks

Notes to Callers
If you're caching information returned by the object identified by the moniker, you may want to ensure that
your information is up-to-date. To do so, you would call IMoniker::GetTimeOfLastChange and compare
the time returned with the time you last retrieved information from the object.

For the monikers stored within linked objects, IMoniker::GetTimeOfLastChange is primarily called by
the default handler's implementation of IOleObject::IsUpToDate. Container applications call
IOleObject::IsUpToDate to determine if a linked object (or an embedded object containing linked objects)
is up-to-date without actually binding to the object. This enables an application to determine quickly which
linked objects require updating when the end user opens a document. The application can then bind only
those linked objects that need updating (after prompting the end user to determine whether they should
be updated), instead of binding every linked object in the document.

Notes to Implementers
It is important to perform this operation quickly because, for linked objects, this method is called when a
user first opens a compound document. Consequently, your IMoniker::GetTimeOfLastChange
implementation should not bind to any objects. In addition, your implementation should check the
deadline parameter in the bind context and return MK_E_EXCEEDEDDEADLINE if the operation cannot
be completed by the specified time.

There are a number of strategies you can use in your implementations:

· For many types of monikers, the pmkToLeft parameter identifies the container of the object identified
by this moniker. If this is true of your moniker class, you can simply call
IMoniker::GetTimeOfLastChange on the pmkToLeft parameter, since an object cannot have
changed at a date later than its container.

· You can get a pointer to the Running Object Table (ROT) by calling
IBindCtx::GetRunningObjectTable on the pbc parameter, and then calling
IRunningObjectTable::GetTimeOfLastChange, since the ROT generally records the time of last
change.

· You can get the storage associated with this moniker (or the pmkToLeft moniker) and return the
storage's last modification time with a call to IStorage::Stat.

See Also
IBindCtx::GetRunningObjectTable, IRunningObjectTable::GetTimeOfLastChange

IMoniker::Hash

Calculates a 32-bit integer using the internal state of the moniker.

HRESULT Hash(

 DWORD *pdwHash //Pointer to hash value
);

Parameter
pdwHash

[out] Pointer to the hash value.

Return Value
S_OK

Successfully received a 32-bit integer hash value.

Remarks
Notes to Callers
You can use the value returned by this method to maintain a hash table of monikers. The hash value
determines a hash bucket in the table. To search such a table for a specified moniker, calculate its hash
value and then compare it to the monikers in that hash bucket using IMoniker::IsEqual.

Notes to Implementers
The hash value must be constant for the lifetime of the moniker. Two monikers that compare as equal
using IMoniker::IsEqual must hash to the same value.

Marshaling and then unmarshaling a moniker should have no effect on its hash value. Consequently, your
implementation of IMoniker::Hash should rely only on the internal state of the moniker, not on its memory
address.

See Also
IMoniker::IsEqual

IMoniker::Inverse

Provides a moniker that, when composed to the right of this moniker or one of similar structure, will
destroy it (the moniker will compose to nothing).

HRESULT Inverse(

 IMoniker **ppmk //Indirect pointer to the inverse of the moniker
);

Parameter
ppmk

[out] When successful, indirect pointer to the IMoniker interface on a moniker that is the inverse of
this moniker. In this case, the implementation must call IUnknown::AddRef on the parameter. It is
the caller's responsibility to call IUnknown::Release. If an error occurs, the implementation should
set ppmk to NULL.

Return Values
The method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The inverse moniker has been returned successfully.
MK_E_NOINVERSE

The moniker class does not have an inverse.

Remarks
The inverse of a moniker is analogous to the ".." directory in MS-DOS file systems; the ".." directory acts
as the inverse to any other directory name, because appending ".." to a directory name results in an
empty path. In the same way, the inverse of a moniker typically is also the inverse of all monikers in the
same class. However, it is not necessarily the inverse of a moniker of a different class.

The inverse of a composite moniker is a composite consisting of the inverses of the components of the
original moniker, arranged in reverse order. For example, if the inverse of A is Inv(A) and the composite
of A, B, and C is Comp(A, B, C), then

Inv(Comp(A, B, C))

is equal to

Comp(Inv(C), Inv(B), Inv(A)).

Not all monikers have inverses. Most monikers that are themselves inverses, such as anti-monikers, do
not have inverses. Monikers that have no inverse cannot have relative monikers formed from inside the
objects they identify to other objects outside.

Notes to Callers
An object that is using a moniker to locate another object usually does not know the class of the moniker
it is using. To get the inverse of a moniker, you should always call IMoniker::Inverse rather than the
CreateAntiMoniker function, because you cannot be certain that the moniker you're using considers an

anti-moniker to be its inverse.

The IMoniker::Inverse method is also called by the implementation of the IMoniker::RelativePathTo
method, to assist in constructing a relative moniker.

Notes to Implementers
If your monikers have no internal structure, you can call the CreateAntiMoniker function in to get an anti-
moniker in your implementation of IMoniker::Inverse. In your implementation of
IMoniker::ComposeWith, you need to check for the inverse you supply in the implementation of
IMoniker::Inverse.

See Also
CreateAntiMoniker, IMoniker::ComposeWith, IMoniker::RelativePathTo

IMoniker::IsEqual
Compares this moniker with a specified moniker and indicates whether they are identical.

HRESULT IsEqual(

 IMoniker *pmkOtherMoniker //Pointer to moniker to be used for comparison
);

Parameter
pmkOtherMoniker

[in] Pointer to the IMoniker interface on the moniker to be used for comparison with this one (the one
from which this method is called).

Return Values
S_OK

The two monikers are identical.
S_FALSE

The two monikers are not identical.

Remarks
Previous implementations of the Running Object Table (ROT) called this method. The current
implementation of the ROT uses the IROTData interface instead.

Notes to Callers
Call this method to determine if two monikers are identical or not. Note that the reduced form of a moniker
is considered different from the unreduced form. You should call the IMoniker::Reduce method before
calling IMoniker::IsEqual, because a reduced moniker is in its most specific form. IMoniker::IsEqual
may return S_FALSE on two monikers before they are reduced, and S_OK after they are reduced.

Notes to Implementers
Your implementation should not reduce the current moniker before performing the comparison. It is the
caller's responsibility to call IMoniker::Reduce in order to compare reduced monikers.

Note that two monikers that compare as equal must hash to the same value using IMoniker::Hash.

See Also
IMoniker::Reduce, IMoniker::Hash, IROTData

IMoniker::IsRunning

Determines whether the object identified by this moniker is currently loaded and running.

HRESULT IsRunning(

 IBindCtx *pbc, //Pointer to bind context to be used
 IMoniker *pmkToLeft, //Pointer to moniker to the left in the composite
 IMoniker *pmkNewlyRunning //Pointer to moniker of a newly running object
);

Parameters
pbc

[in] Pointer to theIBindCtx interface on the bind context to be used in this binding operation. The bind
context caches objects bound during the binding process, contains parameters that apply to all
operations using the bind context, and provides the means by which the moniker implementation
should retrieve information about its environment. For more information, see IBindCtx.

pmkToLeft

[in] Pointer to theIMoniker interface on the moniker to the left of this moniker if this moniker is part of
a composite. This parameter is primarily used by moniker Implementers to enable cooperation
between the various components of a composite moniker; moniker clients can usually pass NULL.

pmkNewlyRunning

[in] Pointer to theIMoniker interface on the moniker most recently added to the Running Object Table
(ROT). This can be NULL. If non-NULL, the implementation can return the results of calling
IMoniker::IsEqual on the pmkNewlyRunning parameter, passing the current moniker. This parameter
is intended to enable IMoniker::IsRunning implementations that are more efficient than just
searching the ROT, but the implementation can choose to ignore pmkNewlyRunning without causing
any harm.

Return Values
The method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The moniker is running.
S_FALSE

The moniker is not running.

Remarks
Notes to Callers
If speed is important when you're requesting services from the object identified by the moniker, you may
want those services only if the object is already running (because loading an object into the running state
may be time-consuming). In such a situation, you'd call IMoniker::IsRunning to determine if the object is
running.

For the monikers stored within linked objects, IMoniker::IsRunning is primarily called by the default

handler's implementation of IOleLink::BindIfRunning.

Notes to Implementers
To get a pointer to the Running Object Table (ROT), your implementation should call
IBindCtx::GetRunningObjectTable on the pbc parameter. Your implementation can then call
IRunningObjectTable::IsRunning to determine whether the object identified by the moniker is running.
Note that the object identified by the moniker must have registered itself with the ROT when it first began
running.

See Also
IOleLink::BindIfRunning, IBindCtx::GetRunningObjectTable, IRunningObjectTable::IsRunning

IMoniker::IsSystemMoniker

Indicates whether this moniker is of one of the system-supplied moniker classes.

HRESULT IsSystemMoniker(

 DWORD *pdwMksys //Pointer to value from MKSYS enumeration
);

Parameter
pdwMksys

[out] Pointer to an integer that is one of the values from the MKSYS enumeration, and refers to one of
the OLE moniker classes. This parameter cannot be NULL.

Return Values
S_OK

The moniker is a system moniker.
S_FALSE

The moniker is not a system moniker.

Remarks
Notes to Callers
New values of the MKSYS enumeration may be defined in the future; therefore you should explicitly test
for each value you are interested in.

Notes to Implementers
Your implementation of this method must return MKSYS_NONE. You cannot use this function to identify
your own monikers (for example, in your implementation of IMoniker::ComposeWith). Instead, you
should use your moniker's implementation of IPersist::GetClassID or use IUnknown::QueryInterface to
test for your own private interface.

See Also
IPersist::GetClassID, MKSYS

IMoniker::ParseDisplayName

Reads as many characters of the specified display name as it understands and builds a moniker
corresponding to the portion read; this procedure is known as "parsing" the display name.

HRESULT ParseDisplayName(

 IBindCtx *pbc, //Pointer to bind context to be used
 IMoniker *pmkToLeft, //Pointer to moniker to the left in the composite
 LPOLESTR pszDisplayName, //Pointer to display name
 ULONG *pchEaten, //Pointer to number of characters consumed
 IMoniker **ppmkOut //Indirect pointer to moniker built from display name
);

Parameters
pbc

[in] Pointer to the IBindCtx interface on the bind context to be used in this binding operation. The bind
context caches objects bound during the binding process, contains parameters that apply to all
operations using the bind context, and provides the means by which the moniker implementation
should retrieve information about its environment. For more information, see IBindCtx.

pmkToLeft

[in] Pointer to the IMoniker interface on the moniker that has been built out of the display name up to
this point.

pszDisplayName

[in] Pointer to a zero-terminated string containing the remaining display name to be parsed. For
Win32 applications, the LPOLESTR type indicates a wide character string (two bytes per character);
otherwise, the string has one byte per character.

pchEaten

[out] Pointer to the number of characters in pszDisplayName that were consumed in this step.
ppmkOut

[out] When successful, indirect pointer to the IMoniker interface on the moniker that was built from
pszDisplayName. In this case, the implementation must call IUnknown::AddRef on the parameter; it
is the caller's responsibility to call IUnknown::Release. If an error occurs, the implementation sets
ppmkOut to NULL.

Return Values
The method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The parsing operation was completed successfully.
MK_E_SYNTAX

An error in the syntax of the input components (pmkToLeft, this moniker, and pszDisplayName). For
example, a file moniker returns this error if pmkToLeft is non-NULL, and an item moniker returns it if
pmkToLeft is NULL.

IMoniker::BindToObject errors

Parsing display names may cause binding. Thus, any error associated with this function may be
returned.

Remarks
Notes to Callers
Moniker clients do not typically call IMoniker::ParseDisplayName directly. Instead, they call the
MkParseDisplayName function when they want to convert a display name into a moniker (for example, in
implementing the Links dialog box for a container application, or for implementing a macro language that
supports references to objects outside the document). That function first parses the initial portion of the
display name itself.

It then calls IMoniker::ParseDisplayName on the moniker it has just created, passing the remainder of
the display name and getting a new moniker in return; this step is repeated until the entire display name
has been parsed.

Notes to Implementers
Your implementation may be able to perform this parsing by itself if your moniker class is designed to
designate only certain kinds of objects. Otherwise, you must get an IParseDisplayName interface pointer
for the object identified by the moniker-so-far (i.e., the composition of pmkToLeft and this moniker) and
then return the results of calling IParseDisplayName::ParseDisplayName.

There are different strategies for getting an IParseDisplayName pointer:

· You can try to get the object's CLSID (by calling IPersist::GetClassID on the object), and then call
the CoGetClassObject function, requesting the IParseDisplayName interface on the class factory
associated with that CLSID.

· You can try to bind to the object itself to get an IParseDisplayName pointer.
· You can try binding to the object identified by pmkToLeft to get an IOleItemContainer pointer, and

then call IOleItemContainer::GetObject to get an IParseDisplayName pointer for the item.

Any objects that are bound should be registered with the bind context (see
IBindCtx::RegisterObjectBound) to ensure that they remain running for the duration of the parsing
operation.

See Also
IParseDisplayName, MkParseDisplayName

IMoniker::Reduce

Returns a reduced moniker; that is, another moniker that refers to the same object as this moniker but
can be bound with equal or greater efficiency.

HRESULT Reduce(

 IBindCtx *pbc, //Pointer to bind context to be used
 DWORD dwReduceHowFar, //How much reduction should be done
 IMoniker **ppmkToLeft, //Indirect pointer to moniker to the left in the composite
 IMoniker **ppmkReduced //Indirect pointer to the reduced moniker
);

Parameters
pbc

[in] Pointer to the IBindCtx interface on the bind context to be used in this binding operation. The bind
context caches objects bound during the binding process, contains parameters that apply to all
operations using the bind context, and provides the means by which the moniker implementation
should retrieve information about its environment. For more information, see IBindCtx.

dwReduceHowFar

[in] DWORD that specifies how far this moniker should be reduced. This parameter must be one of
the values from the MKRREDUCE enumeration.

ppmkToLeft

[in, out] On entry, indirect pointer to the moniker to the left of this moniker, if this moniker is part of a
composite. This parameter is primarily used by moniker Implementers to enable cooperation between
the various components of a composite moniker; moniker clients can usually pass NULL.
On return, ppmkToLeft is usually set to NULL, indicating no change in the original moniker to the left.
In rare situations ppmkToLeft indicates a moniker, indicating that the previous moniker to the left
should be disregarded and the moniker returned through ppmkToLeft is the replacement. In such a
situation, the implementation must call IUnknown::Release on the passed-in pointer and call
IUnknown::AddRef on the returned moniker; the caller must release it later. If an error occurs, the
implementation can either leave the parameter unchanged or set it to NULL.

ppmkReduced

[out] Indirect pointer to the IMoniker interface on the reduced form of this moniker, which can be
NULL if an error occurs or if this moniker is reduced to nothing. If this moniker cannot be reduced,
ppmkReduced is simply set to this moniker and the return value is MK_S_REDUCED_TO_SELF. If
ppmkReduced is non-NULL, the implementation must call IUnknown::AddRef on the parameter; it is
the caller's responsibility to call IUnknown::Release. (This is true even if ppmkReduced is set to this
moniker.)

Return Values
The method supports the standard return values E_UNEXPECTED and E_OUTOFMEMORY, as well as
the following:

S_OK

This moniker was reduced.
MK_S_REDUCED_TO_SELF

This moniker could not be reduced any further, so ppmkReduced indicates this moniker.
MK_E_EXCEEDEDDEADLINE

The operation could not be completed within the time limit specified by the bind context's
BIND_OPTS structure.

Remarks
IMoniker::Reduce is intended for the following uses:

· It enables the construction of user-defined macros or aliases as new kinds of moniker classes. When
reduced, the moniker to which the macro evaluates is returned.

· It enables the construction of a kind of moniker that tracks data as it moves about. When reduced, the
moniker of the data in its current location is returned.

· On file systems that support an identifier-based method of accessing files which is independent of file
names; a file moniker could be reduced to a moniker which contains one of these identifiers.

The intent of the MKRREDUCE flags passed in the dwReduceHowFar parameter is to provide the ability
to programmatically reduce a moniker to a form whose display name is recognizable to the user. For
example, paths in the file system, bookmarks in word-processing documents, and range names in
spreadsheets are all recognizable to users. In contrast, a macro or an alias encapsulated in a moniker are
not recognizable to users.

Notes to Callers
The scenarios described above are not currently implemented by the system-supplied moniker classes.

You should call IMoniker::Reduce before comparing two monikers using the IMoniker::IsEqual method,
because a reduced moniker is in its most specific form. IMoniker::IsEqual may return S_FALSE on two
monikers before they are reduced and return S_OK after they are reduced.

Notes to Implementers
If the current moniker can be reduced, your implementation must not reduce the moniker in-place.
Instead, it must return a new moniker that represents the reduced state of the current one. This way, the
caller still has the option of using the non-reduced moniker (for example, enumerating its components).
Your implementation should reduce the moniker at least as far as is requested.

See Also
IMoniker::IsEqual, MKRREDUCE

IMoniker::RelativePathTo

Supplies a moniker that, when composed onto the end of this moniker (or one with a similar structure),
yields the specified moniker.

HRESULT RelativePathTo(

 IMoniker *pmkOther, //Pointer to moniker to which a relative path should be taken
 IMoniker **ppmkRelPath //Indirect pointer to the relative moniker
);

Parameters
pmkOther

[in] Pointer to the IMoniker interface on the moniker to which a relative path should be taken.
ppmkRelPath

[out] Iindirect pointer to the IMoniker interface on the relative moniker. When successful, the
implementation must call IUnknown::AddRef on the parameter; it is the caller's responsibility to call
IUnknown::Release. If an error occurs, the implementation sets ppmkRelPath to NULL.

Return Values
The method supports the standard return values E_OUTOFMEMORY and

E_UNEXPECTED, as well as the following:

S_OK

A meaningful relative path has been returned.
MK_S_HIM

No common prefix is shared by the two monikers and the moniker returned in ppmkRelPath is
pmkOther.

MK_E_NOTBINDABLE

This moniker is a relative moniker, such as an item moniker. This moniker must be composed with the
moniker of its container before a relative path can be determined.

Remarks
A relative moniker is analogous to a relative path (such as "..\backup"). For example, suppose you have
one moniker that represents the path "c:\projects\secret\art\pict1.bmp" and another moniker that
represents the path "c:\projects\secret\docs\chap1.txt." Calling IMoniker::RelativePathTo on the first
moniker, passing the second one as the pmkOther parameter, would create a relative moniker
representing the path "..\docs\chap1.txt."

Notes to Callers
Moniker clients typically do not need to call IMoniker::RelativePathTo. This method is primarily called by
the default handler for linked objects. Linked objects contain both an absolute and a relative moniker to
identify the link source (this enables link tracking if the user moves a directory tree containing both the
container and source files). The default handler calls this method to create a relative moniker from the
container document to the link source (that is, it calls IMoniker::RelativePathTo on the moniker

identifying the container document, passing the moniker identifying the link source as the pmkOther
parameter).

If you do call IMoniker::RelativePathTo, call it only on absolute monikers; for example, a file moniker or
a composite moniker whose leftmost component is a file moniker, where the file moniker represents an
absolute path. Do not call this method on relative monikers.

Notes to Implementers
Your implementation of IMoniker::RelativePathTo should first determine whether pmkOther is a moniker
of a class that you recognize and for which you can provide special handling (for example, if it is of the
same class as this moniker). If so, your implementation should determine the relative path. Otherwise, it
should pass both monikers in a call to the MonikerRelativePathTo function, which correctly handles the
generic case.

The first step in determining a relative path is determining the common prefix of this moniker and
pmkOther. The next step is to break this moniker and pmkOther into two parts each, say (P, myTail) and
(P, otherTail) respectively, where P is the common prefix. The correct relative path is then the inverse of
myTail composed with otherTail:

Comp(Inv(myTail), otherTail)

Where Comp() represents the composition operation and Inv() represents the inverse operation.

Note that for certain types of monikers, you cannot use your IMoniker::Inverse method to construct the
inverse of myTail. For example, a file moniker returns an anti-moniker as an inverse, while its
IMoniker::RelativePathTo method must use one or more file monikers that each represent the path ".."
to construct the inverse of myTail.

See Also
IMoniker::Inverse, IMoniker::CommonPrefixWith, MonikerRelativePathTo

IMoniker - Anti-Moniker Implementation
Anti-monikers are the inverse of the OLE implementations of file, item, and pointer monikers. That is, an
anti-moniker composed to the right of a file moniker, item moniker, or pointer moniker composes to
nothing.

When To Use
If you're a moniker client, you typically do not need to use anti-monikers. When you need the inverse of a
moniker, you should call IMoniker::Inverse. For example, if you need an inverse to remove the last piece
of a composite moniker, use IMoniker::Enum to enumerate the pieces of the moniker and call
IMoniker::Inverse on the rightmost piece. You shouldn't use an anti-moniker for this purpose because
you can't be sure that the rightmost piece of a composite considers an anti-moniker to be its inverse.

The only situation in which you should explicitly use an anti-moniker is if you are writing a new moniker
class and if you have no special requirements for constructing inverses to your monikers. In that situation,
you can return anti-monikers from your implementation of IMoniker::Inverse. In your implementation of
IMoniker::ComposeWith, you should then annihilate one of your monikers for every anti-moniker you
encounter.

Remarks
IMoniker::BindToObject

This method is not implemented. It returns E_NOTIMPL.
IMoniker::BindToStorage

This method is not implemented. It returns E_NOTIMPL.
IMoniker::Reduce

This method returns MK_S_REDUCED_TO_SELF and passes back the same moniker.
IMoniker::ComposeWith

If fOnlyIfNotGeneric is TRUE, this method sets ppmkComposite to NULL moniker and returns
MK_E_NEEDGENERIC; otherwise, the method returns the result of combining the two monikers into
a generic composite. Note that composing a file, item, or pointer moniker to the right of an anti-
moniker produces a generic composite rather than composing to nothing, as would be the case if the
order of composition were reversed.

IMoniker::Enum

This method returns S_OK and sets *ppenumMoniker to NULL.
IMoniker::IsEqual

This method returns S_OK if both are anti-monikers; otherwise, it returns S_FALSE.
IMoniker::Hash

This method calculates a hash value for the moniker.
IMoniker::IsRunning

This method checks the ROT to see if the object is running.
IMoniker::GetTimeOfLastChange

This method is not implemented (that is, it returns E_NOTIMPL).
IMoniker::Inverse

This method returns MK_E_NOINVERSE and sets *ppmk to NULL.

IMoniker::CommonPrefixWith

If the other moniker is also an anti-moniker, the method returns MK_S_US and sets ppmkPrefix to this
moniker. Otherwise, the method calls the MonikerCommonPrefixWith function. This function
correctly handles the case where the other moniker is a generic composite.

IMoniker::RelativePathTo

This method returns MK_S_HIM and sets *ppmkRelPath to the other moniker.
IMoniker::GetDisplayName

For each anti-moniker contained in this moniker, this method return one instance of "\.."
IMoniker::ParseDisplayName

This method is not implemented (that is, it returns E_NOTIMPL).
IMoniker::IsSystemMoniker

This method returns S_OK and indicates MKSYS_ANTIMONIKER.

See Also
CreateAntiMoniker, IMoniker

IMoniker - Class Moniker Implementation
Class monikers are monikers that represent an object class. Class monikers bind to the class object of
the class for which they are created.

Class monikers are most useful in composition with other types of monikers, such as file monikers or item
monikers. Class monikers may also be composed to the right of monikers supporting binding to the
IClassActivator interface. This allows IClassActivator to provide access to the class object and
instances of the class.

When to Use
To use class monikers, you must use the CreateClassMoniker function to create the monikers.

Remarks
IMoniker::BindToObject

If pmkLeft is NULL, calls CoGetClassObject using the CLSID the class moniker was initialized with
(in CreateClassMoniker or through MkParseDisplayName) and the CLSCTX of the current pbc
(IBindContext).
If pmkLeft is non-NULL, calls pmkLeft->BindToObject for IClassActivator and calls
IClassActivator :: GetClassObject with the CLSID it was initialized with and the CLSCTX and
LOCALE parameters from of the current pbc (IBindContext).
This process is very roughly sketched out in the following code:
 BIND_OPTS2 bindOpts;
 IClassActivator *pActivate;

 bindOpts.cbStruct = sizeof(bindOpts);
 pbc->GetBindOptions(&bindOpts);

 if (NULL == pmkToLeft)
 return CoGetClassObject(<clsid>, bindOpts.dwClassContext, NULL,
riid, ppvResult);

 pmkToLeft->BindToObject(pbc, NULL, IID_IClassActivator, (void **)
&pActivate);
 hr = pActivate->GetClassObject(<clsid>, bindOpts.dwClassContext,
bindOpts.locale, iid, ppvResult);
 pActivate->Release();
 return hr;

IMoniker::BindToStorage

This method forwards to the class moniker's BindToObject.
IMoniker::Reduce

This method returns MK_S_REDUCED_TO_SELF and passes back the same moniker.
IMoniker::ComposeWith

Follows the contract, and behaves like an Item Moniker in that it can return E_INVALIDARG and
MK_E_NEEDGENERIC, etc.

IMoniker::Enum

This method returns S_OK and sets ppenumMoniker to NULL. May return E_INVALIDARG if

ppenumMoniker is an invalid pointer.
IMoniker::IsEqual

This method returns S_OK if pmkOther is a class moniker constructed with the same CLSID
information as itself. Otherwise, the method returns S_FALSE. May return E_INVALIDARG if
pmkOther is an invalid pointer.

IMoniker::Hash

This method calculates a hash value for the moniker and returns S_OK. may return E_INVALIDARG if
pdwHash is an invalid pointer.

IMoniker::IsRunning

Returns E_NOTIMPL.
IMoniker::GetTimeOfLastChange

Returns MK_E_UNAVAILABLE.
IMoniker::Inverse

This method returns an anti-moniker (i.e., the results of calling CreateAntiMoniker).
IMoniker::CommonPrefixWith

If pmkOther IsEqual to this moniker, retrives a pointer to this moniker and returns MK_S_US. If
pmkOther is a class moniker but is not equal to this moniker, returns MK_E_NOPREFIX. Otherwise
returns the result of calling MonikerCommonPrefixWith with itself as pmkThis, pmkOther and
ppmkPrefix, which handles the case whre pmkOther is a generic composite moniker.

IMoniker::RelativePathTo

This method returns the result of calling This method returns the result of calling
MonikerRelativePathTo with pmkSrc equal to this moniker, pmkOther, ppmkRelPath, and TRUE as
dwReserved.

IMoniker::GetDisplayName

The display name for class monikers is of the form:
display-name = "CLSID:" string-clsid-no-curly-braces *[";" clsid-options] ":"
clsid-options = clsid-param "=" value
clsid-param = none currently defined

Example:
clsid:a7b90590-36fd-11cf-857d-00aa006d2ea4:

IMoniker::ParseDisplayName

This method parses the display name by binding to itself for IParseDisplayName and asking the
bound object to parse the display name into a moniker, as follows:
 hr = BindToObject(pbc, pmkToLeft, IID_IParseDisplayName,
(void**)&ppdn);
 if (SUCCEEDED(hr)) {
 hr = ppdn->ParseDisplayName(pbc, lpszDisplayName, pchEaten,
ppmkOut);
 ppdn->Release();
 }
 return hr;

This method tries to acquire an IParseDisplayName pointer, first by binding to the class factory for
the object identified by the moniker, and then by binding to the object itself. If either of these binding
operations is successful, the file moniker passes the unparsed portion of the display name to the

IParseDisplayName::ParseDisplayName method.
This method returns MK_E_SYNTAX if pmkToLeft is non-NULL.

IMoniker::IsSystemMoniker

This method returns S_OK, and passes back MKSYS_CLASSMONIKER.

See Also
CreateClassMoniker, IMoniker

IMoniker - File Moniker Implementation
File monikers are monikers that represent a path in the file system; a file moniker can identify any object
that is saved in its own file. To identify objects contained within a file, you can compose monikers of other
classes (for example, item monikers) to the right of a file moniker. However, the moniker to the left of a file
moniker within a composite must be another file moniker, an anti-moniker, or a class moniker. It is illegal,
for example, for an item moniker to appear to the left of a file moniker in a composite.

Note that an anti-moniker is the inverse of an entire file moniker, not the inverse of a component of the
path that the moniker represents; that is, when you compose an anti-moniker to the right of a file moniker,
the entire file moniker is removed. If you want to remove just the rightmost component of the path
represented by a file moniker, you must create a separate file moniker based on the ".." path and then
compose that to the end of the file moniker.

When to Use
If you're a moniker client (that is, you're using a moniker to get an interface pointer to an object), you
typically don't need to know the class of the moniker you're using; you simply call methods using an
IMoniker interface pointer.

If you're a moniker provider (that is, you're handing out monikers that identify your objects to make them
accessible to moniker clients), you must use file monikers if the objects you're identifying are stored in
files. If each object resides in its own file, file monikers are the only type you need. If the objects you're
identifying are smaller than a file, you need to use another type of moniker (for example, item monikers) in
addition to file monikers.

To use file monikers, you must use the CreateFileMoniker function to create the monikers. In order to
allow your objects to be loaded when a file moniker is bound, your objects must implement the
IPersistFile interface.

The most common example of moniker providers are OLE server applications that support linking. If your
OLE server application supports linking only to file-based documents in their entirety, file monikers are the
only type of moniker you need. If your OLE server application supports linking to objects smaller than a
document (such as sections of a document or embedded objects), you must use item monikers as well as
file monikers.

Remarks
IMoniker::BindToObject

When pmkToLeft is NULL, the method looks for the moniker in the ROT, and if found, queries the
retrieved object for the requested interface pointer. If the moniker is not found in the ROT, the method
loads the object from the file system and retrieves the requested interface pointer.
If pmkLeft is not NULL, then instead of determining the class to instantiate and initialize with the
contents of the file referred to by the file moniker using GetClassFile (or other means), call pmkLeft-
>BindToObject for IClassFactory and IClassActivator, retrieve this pointer in pcf.
If this fails with E_NOINTERFACE, return MK_E_INTERMEDIATEINTERFACENOTSUPPORTED.
If the IClassFactory pointer is successfully retrieved, call pcf->CreateInstance(IID_IPersistFile,
(void**)&ppf) to get a fresh instance of the class to be initialized and initialize it using IPersistFile or
other appropriate means per the existing initialization paths of File moniker.

IMoniker::BindToStorage

This method opens the file specified by the path represented by the moniker and returns an IStorage
pointer to that file. The method supports binding to IStorage interface only; if IStream or ILockBytes
is requested in riid, the method returns E_UNSPEC, and if other interfaces are requested, this
method returns E_NOINTERFACE. IStream and ILockBytes will be supported in future releases.

Unless pmkToLeft is a class moniker, pmkToLeft should be NULL, as in the implementation of
IMoniker::BindToObject. For situations where pmkToLeft is non-NULL, see the above description.

IMoniker::Reduce

This method returns MK_S_REDUCED_TO_SELF and passes back the same moniker.
IMoniker::ComposeWith

If pmkRight is an anti-moniker, the returned moniker is NULL. If pmkRight is a composite whose
leftmost component is an anti-moniker, the returned moniker is the composite with the leftmost anti-
moniker removed. If pmkRight is a file moniker, this method collapses the two monikers into a single
file moniker, if possible. If not possible (e.g., if both file monikers represent absolute paths, as in d:\
work and e:\reports), then the returned moniker is NULL and the return value is MK_E_SYNTAX. If
pmkRight is neither an anti-moniker nor a file moniker, then the method checks the fOnlyIfNotGeneric
parameter; if it is FALSE, the method combines the two monikers into a generic composite; if it is
TRUE, the method sets *ppmkComposite to NULL and returns MK_E_NEEDGENERIC.

IMoniker::Enum

This method returns S_OK and sets ppenumMoniker to NULL.
IMoniker::IsEqual

This method returns S_OK if *pmkOther is a file moniker and the paths for both monikers are identical
(using a case-insensitive comparison). Otherwise, the method returns S_FALSE.

IMoniker::Hash

This method calculates a hash value for the moniker.
IMoniker::IsRunning

If pmkNewlyRunning is non-NULL, this method returns TRUE if that moniker is equal to this moniker.
Otherwise, the method asks the ROT whether this moniker is running. The method ignores
pmkToLeft.

IMoniker::GetTimeOfLastChange

If this moniker is in the ROT, this method returns the last change time registered there; otherwise, it
returns the last write time for the file. If the file cannot be found, this method returns
MK_E_NOOBJECT.

IMoniker::Inverse

This method returns an anti-moniker (i.e., the results of calling CreateAntiMoniker).
IMoniker::CommonPrefixWith

If both monikers are file monikers, this method returns a file moniker that is based on the common
components at the beginning of two file monikers. Components of a file moniker can be:
· A machine name of the form \\server\share. A machine name is treated as a single component, so

two monikers representing the paths "\\myserver\public\work" and "\\myserver\private\games" do
not have "\\myserver" as a common prefix.

· A drive designation (for example, "C:").
· A directory or file name.

If the other moniker is not a file moniker, this method passes both monikers in a call to the
MonikerCommonPrefixWith function. This function correctly handles the case where the other
moniker is a generic composite.
This method returns MK_E_NOPREFIX if there is no common prefix.

IMoniker::RelativePathTo

This method computes a moniker which when composed to the right of this moniker yields the other
moniker. For example, if the path of this moniker is "C:\work\docs\report.doc" and if the other moniker
is "C:\work\art\picture.bmp," then the path of the computed moniker would be "..\..\art\picture.bmp."

IMoniker::GetDisplayName

This method returns the path that the moniker represents. If this method is called by a 16-bit
application, the method checks to see whether the specified file exists and, if so, returns a short name
for that file because 16-bit applications are not equipped to handle long file names.

IMoniker::ParseDisplayName

This method tries to acquire an IParseDisplayName pointer, first by binding to the class factory for
the object identified by the moniker, and then by binding to the object itself. If either of these binding
operations is successful, the file moniker passes the unparsed portion of the display name to the
IParseDisplayName::ParseDisplayName method.
This method returns MK_E_SYNTAX if pmkToLeft is non-NULL.

IMoniker::IsSystemMoniker

This method returns S_OK, and passes back MKSYS_FILEMONIKER.

See Also
CreateFileMoniker, IMoniker, IPersistFile

IMoniker - Generic Composite Moniker Implementation
A generic composite moniker is a composite moniker whose components have no special knowledge of
each other.

Composition is the process of joining two monikers together. Sometimes two monikers of specific classes
can be combined in a special manner; for example, a file moniker representing an incomplete path and
another file moniker representing a relative path can be combined to form a single file moniker
representing the complete path. This is an example of "non-generic" composition. "Generic" composition,
on the other hand, can connect any two monikers, no matter what their classes. Because a non-generic
composition depends on the class of the monikers involved, it can be performed only by a particular
class's implementation of the IMoniker::ComposeWith method. You can define new types of non-generic
compositions if you write a new moniker class. By contrast, generic compositions are performed by the
CreateGenericComposite function.

When to Use
If you're a moniker client (that is, you're using a moniker to get an interface pointer to an object), you
typically don't need to know the class of the moniker you're using, or whether it is a generic composite or
a non-generic composite; you simply call methods using an IMoniker interface pointer.

If you're a moniker provider (that is, you're handing out monikers that identify your objects to make them
accessible to moniker clients), you may have to compose two monikers together. (For example, if you are
using an item moniker to identify an object, you must compose it with the moniker identifying the object's
container before you hand it out.) You use the IMoniker::ComposeWith method to do this, calling the
method on the first moniker and passing the second moniker as a parameter; this method may produce
either a generic or a non-generic composite.

The only time you should explicitly create a generic composite moniker is if you are writing your own
moniker class. In your implementation of IMoniker::ComposeWith, you should attempt to perform a non-
generic composition whenever possible; if you cannot perform a non-generic composition and generic
composition is acceptable, you can call the CreateGenericComposite function to create a generic
composite moniker.

Remarks
IMoniker::BindToObject

If pmkToLeft is NULL, this method looks for the moniker in the ROT, and if found, queries the retrieved
object for the requested interface pointer. If pmkToLeft is not NULL, the method recursively calls
IMoniker::BindToObject on the rightmost component of the composite, passing the rest of the
composite as the pmkToLeft parameter for that call.

IMoniker::BindToStorage

This method recursively calls BindToStorage on the rightmost component of the composite, passing
the rest of the composite as the pmkToLeft parameter for that call.

IMoniker::Reduce

This method recursively calls Reduce for each of its component monikers. If any of the components
reduces itself, the method returns S_OK and passes back a composite of the reduced components. If
no reduction occurred, the method passes back the same moniker and returns
MK_S_REDUCED_TO_SELF.

IMoniker::ComposeWith

If fOnlyIfNotGeneric is TRUE, this method sets *pmkComposite to NULL and returns
MK_E_NEEDGENERIC; otherwise, the method returns the result of combining the two monikers by

calling the CreateGenericComposite function.
IMoniker::Enum

If successful, this method returns S_OK and passes back an enumerator that enumerates the
component monikers that make up the composite; otherwise, the method returns
E_OUTOFMEMORY.

IMoniker::IsEqual

This method returns S_OK if the components of both monikers are equal when compared in the left-
to-right order.

IMoniker::Hash

This method calculates a hash value for the moniker.
IMoniker::IsRunning

If pmkToLeft is non-NULL, this method composes pmkToLeft with this moniker and calls IsRunning
on the result.
If pmkToLeft is NULL, this method returns TRUE if pmkNewlyRunning is non-NULL and is equal to
this moniker.
If pmkToLeft and pmkNewlyRunning are both NULL, this method checks the ROT to see whether the
moniker is running. If so, the method returns S_OK; otherwise, it recursively calls
IMoniker::IsRunning on the rightmost component of the composite, passing the remainder of the
composite as the pmkToLeft parameter for that call. This handles the case where the moniker
identifies a pseudo-object that is not registered as running; see the Item Moniker implementation of
IMoniker::IsRunning.

IMoniker::GetTimeOfLastChange

This method creates a composite of pmkToLeft (if non-NULL) and this moniker and uses the ROT to
retrieve the time of last change. If the object is not in the ROT, the method recursively calls
IMoniker::GetTimeOfLastChange on the rightmost component of the composite, passing the
remainder of the composite as the pmkToLeft parameter for that call.

IMoniker::Inverse

This method returns a composite moniker that consists of the inverses of each of the components of
the original composite, stored in reverse order. For example, if the inverse of A is A (-1) , then the
inverse of the composite A (°) B (°) C is C (-1) (°) B (-1) (°) A (-1) .

IMoniker::CommonPrefixWith

If the other moniker is a composite, this method compares the components of each composite from
left to right. The returned common prefix moniker might also be a composite moniker, depending on
how many of the leftmost components were common to both monikers. If the other moniker is not a
composite, the method simply compares it to the leftmost component of this moniker.
If the monikers are equal, the method returns MK_S_US and sets ppmkPrefix to this moniker. If the
other moniker is a prefix of this moniker, the method returns MK_S_HIM and sets ppmkPrefix to the
other moniker. If this moniker is a prefix of the other, this method returns MK_S_ME and sets
ppmkPrefix to this moniker.
If there is no common prefix, this method returns MK_E_NOPREFIX and sets ppmkPrefix to NULL.

IMoniker::RelativePathTo

This method finds the common prefix of the two monikers and creates two monikers that consist of
the remainder when the common prefix is removed. Then it creates the inverse for the remainder of
this moniker and composes the remainder of the other moniker on the right of it.

IMoniker::GetDisplayName

This method returns the concatenation of the display names returned by each component moniker of
the composite.

IMoniker::ParseDisplayName

This method recursively calls IMoniker::ParseDisplayName on the rightmost component of the
composite, passing everything else as the pmkToLeft parameter for that call.

IMoniker::IsSystemMoniker

This method returns S_OK and indicates MKSYS_GENERICCOMPOSITE.

See Also
CreateGenericComposite, IMoniker

IMoniker - Item Moniker Implementation
Item monikers are used to identify objects within containers, such as a portion of a document, an
embedded object within a compound document, or a range of cells within a spreadsheet. Item monikers
are often used in combination with file monikers; a file moniker is used to identify the container while an
item moniker is used to identify the item within the container.

An item moniker contains a text string; this string is used by the container object to distinguish the
contained item from the others. The container object must implement the IOleItemContainer interface;
this interface enables the item moniker code to acquire a pointer to an object, given only the string that
identifies the object.

When to Use
If you're a moniker client (that is, you're using a moniker to get an interface pointer to an object), you
typically don't need to know the class of the moniker you're using; you simply call methods using an
IMoniker interface pointer.

If you're a moniker provider (that is, you're handing out monikers that identify your objects to make them
accessible to moniker clients), you must use item monikers if the objects you're identifying are contained
within another object and can be individually identified using a string. You'll also need to use another type
of moniker (for example, file monikers) in order to identify the container object.

To use item monikers, you must use the CreateItemMoniker function to create the monikers. In order to
allow your objects to be loaded when an item moniker is bound, the container of your objects must
implement the IOleItemContainer interface.

The most common example of moniker providers are OLE applications that support linking. If your OLE
application supports linking to objects smaller than a file-based document, you need to use item
monikers. For a server application that allows linking to a selection within a document, you use the item
monikers to identify those objects. For a container application that allows linking to embedded objects,
you use the item monikers to identify the embedded objects.

Remarks
IMoniker::BindToObject

If pmkToLeft is NULL, this method returns E_INVALIDARG. Otherwise, the method calls
IMoniker::BindToObject on the pmkToLeft parameter, requesting an IOleItemContainer interface
pointer. The method then calls IOleItemContainer::GetObject, passing the string contained within
the moniker, and returns the requested interface pointer.

IMoniker::BindToStorage

If pmkToLeft is NULL, this method returns E_INVALIDARG. Otherwise, the method calls
IMoniker::BindToObject on the pmkToLeft parameter, requesting an IOleItemContainer interface
pointer. The method then calls IOleItemContainer::GetObjectStorage for the requested interface.

IMoniker::Reduce

This method returns MK_S_REDUCED_TO_SELF and passes back the same moniker.
IMoniker::ComposeWith

If pmkRight is an anti-moniker, the returned moniker is NULL; if pmkRight is a composite whose
leftmost component is an anti-moniker, the returned moniker is the composite after the leftmost anti-
moniker is removed. If pmkRight is not an anti-moniker, the method combines the two monikers into a
generic composite if fOnlyIfNotGeneric is FALSE; if fOnlyIfNotGeneric is TRUE, the method returns a
NULL moniker and a return value of MK_E_NEEDGENERIC.

IMoniker::Enum

This method returns S_OK and sets *ppenumMoniker to NULL.
IMoniker::IsEqual

This method returns S_OK if both monikers are item monikers and their display names are identical
(using a case-insensitive comparison); otherwise, the method returns S_FALSE.

IMoniker::Hash

This method calculates a hash value for the moniker.
IMoniker::IsRunning

If pmkToLeft is NULL, this method returns TRUE if pmkNewlyRunning is non-NULL and is equal to
this moniker. Otherwise, the method checks the ROT to see whether this moniker is running.
If pmkToLeft is non-NULL, the method calls IMoniker::BindToObject on the pmkToLeft parameter,
requesting an IOleItemContainer interface pointer. The method then calls
IOleItemContainer::IsRunning, passing the string contained within this moniker.

IMoniker::GetTimeOfLastChange

If pmkToLeft is NULL, this method returns MK_E_NOTBINDABLE. Otherwise, the method creates a
composite of pmkToLeft and this moniker and uses the ROT to access the time of last change. If the
object is not in the ROT, the method calls IMoniker::GetTimeOfLastChange on the pmkToLeft
parameter.

IMoniker::Inverse

This method returns an anti-moniker (i.e., the results of calling CreateAntiMoniker).
IMoniker::CommonPrefixWith

If the other moniker is an item moniker that is equal to this moniker, this method sets *ppmkPrefix to
this moniker and returns MK_S_US; otherwise, the method calls the MonikerCommonPrefixWith
function. This function correctly handles the case where the other moniker is a generic composite.

IMoniker::RelativePathTo

This method returns MK_E_NOTBINDABLE and sets *ppmkRelPath to NULL.
IMoniker::GetDisplayName

This method returns the concatenation of the delimiter and the item name that were specified when
the item moniker was created.

IMoniker::ParseDisplayName

If pmkToLeft is NULL, this method returns MK_E_SYNTAX. Otherwise, the method calls
IMoniker::BindToObject on the pmkToLeft parameter, requesting an IOleItemContainer interface
pointer. The method then calls IOleItemContainer::GetObject, requesting an IParseDisplayName
interface pointer to the object identified by the moniker, and passes the display name to
IParseDisplayName::ParseDisplayName.

IMoniker::IsSystemMoniker

This method returns S_OK and indicates MKSYS_ITEMMONIKER.

See Also
CreateItemMoniker, IMoniker, IOleItemContainer

IMoniker - Pointer Moniker Implementation
A pointer moniker essentially wraps an interface pointer so that it looks like a moniker and can be passed
to those interfaces that require monikers. Binding a pointer moniker is done by calling the pointer's
QueryInterface method.

Instances of pointer monikers refuse to be serialized, that is, IPersistStream::Save will return an error.
These monikers can, however, be marshaled to a different process in an RPC call; internally, the system
marshals and unmarshals the pointer using the standard paradigm for marshaling interface pointers.

When to Use
Pointer monikers are rarely needed. Use pointer monikers only if you need monikers to identify objects
that have no persistent representation. Pointer monikers allow such objects to participate in a moniker-
binding operation.

Remarks
IMoniker::BindToObject

This method queries the wrapped pointer for the requested interface.
IMoniker::BindToStorage

This method queries the wrapped pointer for the requested interface.
IMoniker::Reduce

This method returns MK_S_REDUCED_TO_SELF and passes back the same moniker.
IMoniker::ComposeWith

If pmkRight is an anti-moniker, the returned moniker is NULL; if pmkRight is a composite whose
leftmost component is an anti-moniker, the returned moniker is the composite after the leftmost anti-
moniker is removed. If fOnlyIfNotGeneric is FALSE, the returned moniker is a generic composite of
the two monikers; otherwise, the method sets *ppmkComposite to NULL and returns
MK_E_NEEDGENERIC.

IMoniker::Enum

This method is not implemented (that is, it returns E_NOTIMPL).
IMoniker::IsEqual

This method returns S_OK only if both are pointer monikers and the interface pointers that they wrap
are identical.

IMoniker::Hash

This method calculates a hash value for the moniker.
IMoniker::IsRunning

This method always returns S_OK, because the object identified by a pointer moniker must always be
running.

IMoniker::GetTimeOfLastChange

This method is not implemented (that is, it returns E_NOTIMPL).
IMoniker::Inverse

This method returns an anti-moniker (i.e., the results of calling CreateAntiMoniker).
IMoniker::CommonPrefixWith

If the two monikers are equal, this method returns MK_S_US and sets *ppmkPrefix to this moniker.
Otherwise, the method returns MK_E_NOPREFIX and sets *ppmkPrefix to NULL.

IMoniker::RelativePathTo

This method is not implemented (that is, it returns E_NOTIMPL).
IMoniker::GetDisplayName

This method is not implemented (that is, it returns E_NOTIMPL).
IMoniker::ParseDisplayName

This method queries the wrapped pointer for the IParseDisplayName interface and passes the
display name to IParseDisplayName::ParseDisplayName.

IMoniker::IsSystemMoniker

This method returns S_OK and indicates MKSYS_POINTERMONIKER.

See Also
IMoniker, CreatePointerMoniker

IMultiQI
The IMultiQI interface enables a client to query an object proxy, or handler, for multiple interfaces, using a
single RPC call. By using this interface, instead of relying on separate calls to
IUnknown::QueryInterface, clients can reduce the number of RPC calls that have to cross thread,
process, or machine boundaries and, therefore, the amount of time required to obtain the requeseted
interface pointers.

When to Implement
You never have to implement this interface because there is no situation in which it is required. OLE
server applications that rely on COM's standard remoting support get the interface for free because COM
implements it on every object proxy. The only situation in which you might want to implement this
interface yourself is if you are writing a custom marshaler that handles interface remoting. Even here,
implementing IMultiQI yourself is not recommended, particularly if your object is aggregatable.

When to Use
When more than one interface pointer is sought, client applications should QueryInterface for IMultiQI
and use it if available.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IMultiQI Methods Description
QueryMultipleInterfaces Queries for multiple interfaces.

See Also
IUnknown::QueryInterface

IMultiQI::QueryMultipleInterfaces

Fills a caller-provided array of structures with pointers to multiple interfaces.Calling this method is
equivalent to issuing a series of separate QueryInterface calls except that you do not incur the overhead
of a corresponding number of RPC calls. In multithreaded applications and distributed environments,
keeping RPC calls to a minimum is essential for optimal performance.

HRESULT QueryMultipleInterfaces(

 ULONG cMQIs // Number of structures in array
 MULTI_QI *pMQIs // Pointer to first structure in array
);

Parameters
cMQIs

[in] Pointer to the number of elements in an array of MULTI_QI structures, each of which contains the
IID of a single interface.

pMQIs

[in, out] Pointer to the first MULTI_QI strucutre in the array.

Return Value
S_OK

Pointers were returned to all requested interfaces.
S_FALSE

Pointers were returned to some, but not all, of the requested interfaces.
E_NOINTERFACE

Pointers were returned to none of the requested interfaces.

Remarks
The QueryMultipleInterfaces method takes as input an array of MULTI_QI structures. Each structure
specifies an interface IID and contains two additional blank fields for receiving an interface pointer and
return value.

This method obtains as many requested interface pointers as possible directly from the object proxy. For
each interface not implemented on the proxy, the method calls the server to obtain a pointer. Upon
receiving an interface pointer from the server, the method builds a corresponding interface proxy and
returns its pointer along with pointers to the interfaces it already implements.

Notes to Callers
A caller should begin by querying the object proxy for the IMultiQI interface. If the object proxy returns a
pointer to this interface, the caller should then create a MULTI_QI structure for each interface it wants to
obtain. Each structure should specify an interface IID and set its pItf member to NULL. Failure to set the
pItf member to NULL will cause the object proxy to ignore the structure.

On return, QueryMultipleInterfaces writes the requested interface pointer and a return value into each
MULTI_QI structure in the client's array. The pItf field receives the pointer; the hr field receives the return

value.

If the value returned from a call to QueryMultipleInterfaces is S_OK, then pointers were returned for all
requested interfaces. If the return value is E_NOINTERFACE, then pointers were returned for none of the
requested interfaces. If the return value is S_FALSE, then pointers to one or more requested interfaces
were not returned.In this event, the client should check the hr field of each MULTI_QI structure to
determine which interfaces were acquired and which were not.

If a client knows ahead of time that it will be using several of an object's interfaces, it can call
QueryMultipleInterfaces up front and then, later, if a QueryInterface is done for one of the interfaces
already acquired through QueryMultipleInterfaces, no RPC call will be necessary.

On return, the caller should check the hr field of each MULTI_QI structure to determine which interface
pointers were and were not returned.

The client is responsible for releasing each of the acquired interfaces by calling IUnknown::Release.

See Also
IUnknown

IObjectWithSite

The IObjectWithSite interface provides a simple way to support communication between an object and
its site in the container.

Often an object needs to communicate directly with a container site object and, in effect, manage the site
object itself. Outside of IOleObject::SetClientSite, there is no generic means through which an object
becomes aware of its site. IObjectWithSite provides simple objects with a simple siting mechanism
(lighter than IOleObject) This interface should only be used when IOleObject is not already in use.

Through IObjectWithSite, a container can pass the IUnknown pointer of its site to the object through
IObjectWithSite::SetSite. Callers can also retrieve the latest site passed to IObjectWithSite::SetSite
through IObjectWithSite::GetSite. This latter method is included as a hooking mechanism, allowing a
third party to intercept calls from the object to the site.

When to Implement
An object implements this interface so it's container can supply it with an interface pointer for its site
object. Then, the object can communicate directly with its site.

When to Use
A container calls the SetSite method on this interface to provide an object with an interface pointer for its
site.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IObjectWithSite Methods Description
SetSite Provides the site's IUnknown pointer

to the object being managed.
GetSite Retrieves the last site set with

IObjectWithSite::SetSite.

IObjectWithSite::GetSite

Retrieves the last site set with IObjectWithSite::SetSite. If there's no known site, the object return a
failure code.

HRESULT GetSite(

 REFIID riid, //IID of interface pointer being requested
 void** ppvSite //Indirect pointer to caller's void
);

Parameters
riid

[in] The IID of the interface pointer that should be returned in ppvSite.
ppvSite

[out] Indirect pointer to the caller's void * variable in which the object stores the interface pointer of
the site last seen in IObjectWithSite::SetSite. The specific interface returned depends on the riid
argument¾in essence, the two arguments act identically to those in IUnknown::QueryInterface. If
the appropriate interface pointer is available, the object must call IUnknown::AddRef on that pointer
before returning successfully. If no site is available, or the requested interface is not supported, the
object sets this argument to NULL and returns a failure code.

Return Values
S_OK

The site was returned successfully and the caller is responsible for calling IUnknown::Release when
the site is no longer needed.

E_FAIL

There is no site in which case *ppvSite contains NULL on return.
E_NOINTERFACE

There is a site but it does not support the interface requested by riid.

Remarks
E_NOTIMPL is not allowed¾any object implementing this interface must be able to return the last site
seen in IObjectWithSite::SetSite.

IObjectWithSite::SetSite

Provides the site's IUnknown pointer to the object. The object should hold onto this pointer, calling
IUnknown::AddRef in doing so. If the object already has a site, it should call that existing site's
IUnknown::Release, save the new site pointer, and call the new site's IUnknown::AddRef.

HRESULT SetSite(

 IUnknown* pUnkSite //Pointer to IUnknown of the site managing this object
);

Parameter
pUnkSite

[in] Pointer to the IUnknown interface pointer of the site managing this object. If NULL, the object
should call IUnknown::Release on any existing site at which point the object no longer knows its site.

Return Value
S_OK

Returned in all circumstances.

Remarks
E_NOTIMPL is not allowed¾without implementation of the SetSite method, the IObjectWithSite interface
is unnecessary.

See Also
IObjectWithSite::GetSite

IOleAdviseHolder

The IOleAdviseHolder interface contains methods that manage advisory connections and compound
document notifications in an object server. Its methods are intended to be used to implement the advisory
methods of IOleObject. IOleAdviseHolder is implemented on an advise holder object. Its methods
establish and delete advisory connections from the object managed by the server to the object's
container, which must contain an advise sink (support the IAdviseSink interface). The advise holder
object must also keep track of which advise sinks are interested in which notifications and pass along the
notifications as appropriate.

When to Implement
It is unlikely that you would choose to implement this interface. OLE provides an implementation of the
OLE advise holder as a convenience to programmers.Few applications will require notification capabilities
beyond those which the default advise holder provides. In general, a single server application that
requires different notification capabilities would simply implement the advisory functionality in its
IOleObject advisory methods. It would be necessary to implement IOleAdviseHolder only in the case
where there may be a need for a custom advise holder object, whose methods are to be used to
implement the IOleObject methods in a set of servers.

When to Use
Call the methods of IOleAdviseHolder to implement the advisory methods of IOleObject. Applications
instantiate an OLE advise holder by calling the OLE function CreateOleAdviseHolder. (OLE also
provides a data advise holder to manage data notifications. Applications create a data advise holder by
calling the OLE function CreateDataAdviseHolder.)

Containers and other objects that need to receive compound document notifications must implement the
IAdviseSink interface to receive those notifications, and call the IOleAdviseHolder interface methods to
establish an advisory connection and inform the object of what specific notifications it wishes to receive.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IOleAdviseHolder Methods Description
Advise Establishes advisory connection

with sink.
Unadvise Deletes advisory connection with

sink.
EnumAdvise Supplies an IEnumSTATDATA

pointer to an enumeration object
that can be used to determine
current advisory connections.

SendOnRename Advises sink that name of object
has changed.

SendOnSave Advises sink that object has been
saved.

SendOnClose Advises sink that object has been
closed.

See Also
CreateOleAdviseHolder, IDataAdviseHolder, CreateDataAdviseHolder, IAdviseSink, IOleObject

IOleAdviseHolder::Advise

Establishes an advisory connection between an OLE object and the calling object's advise sink. Through
that sink, the calling object can receive notification when the OLE object is renamed, saved, or closed.

HRESULT Advise(

 IAdviseSink * pAdvise, //Pointer to the advise sink on the calling object
 DWORD * pdwConnection //Pointer to a token
);

Parameters
pAdvise

[in] Pointer to the IAdviseSink interface on the advisory sink that should be informed of changes.
pdwConnection

[out] Pointer to a token that can be passed to the IOleAdviseHolder::Unadvise method to delete the
advisory connection. The calling object is responsible for calling both IUnknown::AddRef and
IUnknown::Release on this pointer.

Return Values
This method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Advisory connections set up successfully.

Remarks
Containers, object handlers, and link objects all create advise sinks to receive notification of changes in
compound-document objects of interest, such as embedded or linked objects. OLE objects of interest to
these objects must implement the IOleObject interface, which includes several advisory methods,
including IOleObject::Advise. A call to this method must set up an advisory connection with any advise
sink that calls it, and maintain each connection until it is closed. It must be able to handle more than one
advisory connection at a time.

IOleAdviseHolder::Advise is intended to be used to simplify the implementation of IOleObject::Advise.
You can get a pointer to the OLE implementation of IOleAdviseHolder by calling
CreateOleAdviseHolder, and then, to implement IOleObject::Advise, just delegate the call to
IOleAdviseHolder::Advise. Other IOleAdviseHolder methods are intended to implement other
IOleObject advisory methods.

If the attempt to establish an advisory connection is successful, the object receiving the call returns a
nonzero value through pdwConnection. If the attempt fails, the object returns a zero. To delete an
advisory connection, the object with the advise sink passes this nonzero token back to the object by
calling IOleAdviseHolder::Unadvise.

See Also
IOleAdviseHolder::UnAdvise, IOleAdviseHolder::EnumAdvise, IOleObject::Advise

IOleAdviseHolder::EnumAdvise

Creates an enumerator that can be used to enumerate the advisory connections currently established for
an object, and supplies a pointer to its IEnumSTATDATA interface.

HRESULT EnumAdvise(

 IEnumSTATDATA ** ppenumAdvise //Indirect pointer to the new enumerator
);

Parameter
ppenumAdvise

[out] Indirect pointer to the IEnumSTATDATA interface on the new enumerator. A NULL value
indicates that there are presently no advisory connections on the object, or that an error occured. The
advise holder is responsible for incrementing the reference count on the IEnumSTATDATA pointer
this method supplies. It is the caller's responsibility to call IUnknown::Release when it is done with
the pointer.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

Enumerator created successfully.
E_NOTIMPL

EnumAdvise is not implemented.

Remarks
IOleAdviseHolder::EnumAdvise creates an enumerator that can be used to enumerate an object's
established advisory connections. The method supplies a pointer to the IEnumSTATDATA interface on
this enumerator. Advisory connection information for each connection is stored in the STATDATA
structure, and the enumerator must be able to enumerate these structures, defined as follows:

typedef struct tagSTATDATA {
 FORMATETC Formatetc;
 DWORD grfAdvf;
 IAdviseSink * pAdvise;
 DWORD dwConnection;
 }STATDATA;

For this method, the only relevant structure members are pAdvise and dwConnection. Other members
contain data advisory information. When you call the enumeration methods, and while an enumeration is
in progress, the effect of registering or revoking advisory connections on what is to be enumerated is
undefined.

See Also
IOleAdviseHolder::Advise, IOleAdviseHolder::UnAdvise, IOleObject::EnumAdvise,
IDataAdviseHolder::EnumAdvise, STATDATA structure

IOleAdviseHolder::SendOnClose

Sends notification that the object has closed to all advisory sinks currently registered with the advise
holder.

HRESULT SendOnClose();

Return Value
S_OK

Advise sinks were notified of the close operation through a call to the IAdviseSink::OnClose method.

Remarks

IOleAdviseHolder::SendOnClose must call IAdviseSink::OnClose on all advise sinks that have a valid
advisory connection with the object, whenever the object goes from the running state to the loaded state.
This occurs through a call to IOleObject::Close, so you can call IOleAdviseHolder::SendOnClose
when you determine that a Close operation has been successful.

See Also
IAdviseSink::OnClose

IOleAdviseHolder::SendOnRename

Sends IAdviseSink::OnRename notifications to all advisory sinks currently registered with the advise
holder.

HRESULT SendOnRename(

 IMoniker *pmk //Pointer to an interface on the new moniker
);

Parameter
pmk

[in] Pointer to the new full moniker of the object.

Return Value
S_OK

Advise sinks were sent IAdviseSink::OnRename notifications.

Remarks
IOleAdviseHolder::SendOnRename calls IAdviseSink::OnRename to advise the calling object, which
must have already established an advisory connection, that the object has a new moniker. If you are
using the OLE advise holder (having obtained a pointer through a call to CreateOleAdviseHolder), you
can call IOleAdviseHolder::SendOnRename in the implementation of IOleObject::SetMoniker, when
you have determined that the operation is successful.

See Also
IAdviseSink::OnRename

IOleAdviseHolder::SendOnSave

Sends IAdviseSink::OnSave notifications to all advisory sinks currently registered with the advise holder.

HRESULT SendOnSave();

Return Value
S_OK

Advise sinks were sent IAdviseSink::OnSave notifications.

Remarks
IOleAdviseHolder::SendOnSave calls IAdviseSink::OnSave to advise the calling object (client), which
must have already established an advisory connection, that the object has been saved. If you are using
the OLE advise holder (having obtained a pointer through a call to CreateOleAdviseHolder), you can call
IOleAdviseHolder::SendOnSave whenever you save the object the advise holder is associated with.

To take the object from the running state to the loaded state, the client calls IOleObject::Close. Within
that implementation, if the user wants to save the object to persistent storage, the object calls
IOleClientSite::SaveObject, followed by the call to IOleAdviseHolder::SendOnSave.

See Also
IAdviseSink::OnSave

IOleAdviseHolder::Unadvise

Deletes a previously established advisory connection.

HRESULT Unadvise(

 DWORD dwConnection //Value identifying an established advisory connection
);

Parameter
dwConnection

[in] Contains a nonzero DWORD previously returned by IOleAdviseHolder::Advise in
pdwConnection.

Return Values
S_OK

Advisory connection deleted successfully.
OLE_E_NOCONNECTION

The dwConnection parameter does not represent a valid advisory connection.

Remarks
IOleAdviseHolder::Unadvise is intended to be used to implement IOleObject::Unadvise to delete an
advisory connection. In general, you would use the OLE advise holder having obtained a pointer through
a call to CreateOleAdviseHolder.

Normally, containers call this method at shutdown or when an object is deleted. In certain cases,
containers could call this method on objects that are running but not currently visible, as a way of
reducing the overhead of maintaining multiple advisory connections.

See Also
IOleAdviseHolder::Advise, IOleAdviseHolder::EnumAdvise, IOleObject::Unadvise

IOleCache

The IOleCache interface provides control of the presentation data that gets cached inside of an object.
Cached presentation data is available to the container of the object even whenthe server application is
not running or is unavailable.

When to Implement
The IOleCache interface can be implemented by an object handler and an in-process server. In general,
however, the methods of IOleCache are implemented as part of the IOleCache2 interface, which inherits
the IOleCache definition, and adds methods for selectively updating the cache. Rather than
implementing, however, it is typical to use or aggregate the OLE implementation, a pointer to which is
available through a call to CreateDataCache.

When to Use
A client calls the methods of IOleCache to control what the data cache holds. A typical client would be an
OLE Documents container that would cache an object's presentation so it is available without the object
actually being active.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleCache Methods Description
Cache Adds a presentation to the data or

view cache.
Uncache Removes a presentation previously

added with IOleCache::Cache.
EnumCache Returns an object to enumerate

the current cache connections.
InitCache Fills the cache with all the

presentation data from the data
object.

SetData Fills the cache with specified
format of presentation data.

IOleCache::Cache

Specifies the format and other data to be cached inside an embedded object.

HRESULT Cache(

 FORMATETC * pFormatetc, //Pointer to the format and data to be cached
 DWORD advf, //Flags that control the caching
 DWORD * pdwConnection //Pointer to the connection for future calls to uncache
);

Parameters
pFormatetc

[in] Pointer to the format and other data to be cached. View caching is specified by passing a zero
clipboard format in pFormatetc.

advf

[in] Contains a group of flags that control the caching. Valid values can be derived by using an OR
operation on the values in the ADVF enumeration. When used in this context, for a cache, these
values have specific meanings, which are outlined in the Remarks. Refer to the ADVF enumeration
for a more detailed description.

pdwConnection

[out] Pointer to a returned DWORD token that identifies this connection and can later be used to turn
caching off (by passing it to IOleCache::Uncache). If this value is zero, the connection was not
established. The OLE-provided implementation uses nonzero numbers for connection identifiers.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

Requested data or view successfully cached.
CACHE_S_FORMATETC_NOTSUPPORTED

The cache was created, but the object application does not support the specified format. Cache
creation succeeds even if the format is not supported, allowing the caller to fill the cache. If, however,
the caller does not need to keep the cache, call IOleCache::UnCache.

CACHE_S_SAMECACHE

A cache already exists for the FORMATETC passed to IOleCache::Uncache. In this case, the new
advise flags are assigned to the cache, and the previously assigned connection identifier is returned.

DV_E_LINDEX

Invalid value for lindex; currently only -1 is supported.
DV_E_TYMED

The value is not valid for pFormatetc->tymed.
DV_E_DVASPECT

The value is not valid for pFormatetc->dwAspect.
DV_E_CLIPFORMAT

The value is not valid for pFormatetc->cfFormat.
CO_E_NOTINITIALIZED

The cache's storage is not initialized.
DV_E_DVTARGETDEVICE

The value is not valid for pFormatetc->ptd.
OLE_E_STATIC

The cache is for a static object and it already has a cache node.

Remarks
IOleCache::Cache can specify either data caching or view (presentation) caching. To specify data
caching, a valid data format must be passed in pFormatetc. For view caching, the cache object itself
decides on the format to cache, so a caller would pass a zero data format in pFormatetc as follows:

pFormatetc->cfFormat == 0

A custom object handler can choose not to store data in a given format. Instead, it can synthesize it on
demand when requested.

The advf value specifies a member of the ADVF enumeration. When one of these values (or an OR'd
combination of more than one value) is used in this context, these values mean the following:

ADVF Value Description
ADVF_NODATA The cache is not to be updated

by changes made to the running
object. Instead, the container will
update the cache by explicitly
calling IOleCache::SetData,
IDataObject::SetData, or
IOleCache2::UpdateCache. This
flag is usually used when the
iconic aspect of an object is being
cached.

ADVF_ONLYONCE Update the cache one time only.
After the update is complete, the
advisory connection between the
object and the cache is
disconnected. The source object
for the advisory connection calls
the IAdviseSink::Release
method.

ADVF_PRIMEFIRST The object is not to wait for the
data or view to change before
updating the cache. OR'd with
ADVF_ONLYONCE, this
parameter provides an
asynchronous GetData call.

ADVFCACHE_NOHANDLER Synonym for

ADVFCACHE_FORCEBUILTIN.
ADVFCACHE_FORCEBUILTIN Used by DLL object applications

and object handlers that draw
their objects to cache
presentation data to ensure that
there is a presentation in the
cache. This ensures that the data
can be retrieved even when the
object or handler code is not
available.

ADVFCACHE_ONSAVE Updates the cached
representation only when the
object containing the cache is
saved. The cache is also updated
when the OLE object changes
from the running state back to the
loaded state (because a
subsequent save operation would
require running the object again).

See Also
ADVF, IOleCache::Uncache

IOleCache::EnumCache

Returns a pointer to an enumeration object that can be used to enumerate the current cache connections.

HRESULT EnumCache(

 IEnumSTATDATA ** ppenumSTATDATA //Indirect pointer to enumerator object
);

Parameter
ppenumSTATDATA

[out] Indirect pointer to the IEnumSTATDATA interface on the new enumerator object. If this value is
NULL, there are currently no cache connections at this time.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The enumerator object is successfully instantiated or there are no cache connections. Check the
ppenumSTATDATA parameter to determine which result occurred. If the ppenumSTATDATA
parameter is NULL, then there are no cache connections at this time.

Remarks

The enumerator object returned by this method implements the IEnumSTATDATA interface, one of the
standard enumerator interfaces that contain the Next, Reset, Clone, and Skip methods.
IEnumSTATDATA enumerates the data stored in an array of STATDATA structures containing
information about current cache connections.

See Also
IEnum XXXX , IEnumSTATDATA, IOleCache::Cache

IOleCache::InitCache

Fills the cache as needed using the data provided by the specified data object.

HRESULT InitCache(

 IDataObject * pDataObject //Pointer to the data object from which the cache is initialized
);

Parameter
pDataObject

[in] Pointer to the IDataObject interface on the data object from which the cache is to be initialized.

Return Values
This method supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

The cache was filled using the data provided.
OLE_E_NOTRUNNING

The cache is not running.
CACHE_E_NOCACHE_UPDATED

None of the caches were updated.
CACHE_S_SOMECACHES_NOTUPDATED

Only some of the existing caches were updated.

Remarks
IOleCache::InitCache is usually used when creating an object from a drag-and-drop operation or from a
clipboard paste operation. It fills the cache as needed with presentation data from all the data formats
provided by the data object provided on the clipboard or in the drag-and-drop operation. Helper functions
like OleCreateFromData or OleCreateLinkFromData call this method when needed. If a container does
not use these helper functions to create compound document objects, it can use IOleCache::Cache to
set up the cache entries which are then filled by IOleCache::InitCache.

See Also
IOleCache::Cache

IOleCache::SetData

Initializes the cache with data in a specified format and on a specified medium.

HRESULT SetData(

 FORMATETC * pFormatetc, //Pointer to the format of the presentation data to be placed in the cache
 STGMEDIUM * pmedium, //Pointer to the storage medium containing the data to be placed in the cache
 BOOL fRelease //Ownership of the storage medium after this method is completed
);

Parameters
pFormatetc

[in] Pointer to the format of the presentation data being placed in the cache.
pmedium

[in] Pointer to the storage medium that contains the presentation data.
fRelease

[in] Ownership of the storage medium after completion of the method. If fRelease is TRUE, the cache
takes ownership, freeing the medium when it is finished using it. When fRelease is FALSE, the caller
retains ownership and is responsible for freeing the medium. The cache can only use the storage
medium for the duration of the call.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The cache was filled.
DV_E_LINDEX

The value is not valid for pFormatetc->lindex. Currently, only -1 is supported.
DV_E_FORMATETC

The FORMATETC structure is invalid.
DV_E_TYMED

The value is not valid for pFormatetc->tymed.
DV_E_DVASPECT

The value is not valid for pFormatetc->dwAspect.
OLE_E_BLANK

Uninitialized object.
DV_E_TARGETDEVICE

The object is static and pFormatetc->ptd is non-NULL.
STG_E_MEDIUMFULL

The storage medium is full.

Remarks
IOleCache::SetData is usually called when an object is created from the Clipboard or through a drag-
and-drop operation, and Embed Source data is used to create the object.

IOleCache::SetData and IOleCache::InitCache are very similar. There are two main differences. The
first difference is that while IOleCache::InitCache initializes the cache with the presentation format
provided by the data object, IOleCache::SetData initializes it with a single format. Second, the
IOleCache::SetData method ignores the ADVF_NODATA flag while IOleCache::InitCache obeys this
flag.

A container can use this method to maintain a single aspect of an object, such as the icon aspect of the
object.

See Also
IDataObject::SetData, IOleCache::Cache, ADVF enumeration

IOleCache::Uncache

Removes a cache connection created in a prior call to IOleCache::Cache.

HRESULT Uncache(

 DWORD dwConnection //Cache connection to remove
);

Parameter
dwConnection

[in] Cache connection to remove. This nonzero value was returned by IOleCache::Cache when the
cache was originally established.

Return Values
S_OK

The cache connection was deleted.
OLE_E_NOCONNECTION

No cache connection exists for dwConnection.

Remarks
The IOleCache::Uncache method removes a cache connection that was created in a prior call to
IOleCache::Cache. It uses the dwConnection parameter that was returned by the prior call to
IOleCache::Cache.

See Also
IOleCache::Cache

IOleCache2

The IOleCache2 interface allows object clients to selectively update each cache that was created with
IOleCache::Cache.

When to Implement
The IOleCache2 interface can be implemented by an object handler and an in-process server. Rather
than implementing, however, it is typical to use or aggregate the OLE implementation in the default
handler, a pointer to which is available through a call to CreateDataCache.

When to Use
The OLE-provided implementation includes implementations of the IOleCache interface methods, from
which IOleCache2 inherits its contract definition. The IOleCache2 interface is called by container
applications, object handlers, or in process servers to update one or more of the caches that were created
with the IOleCache::Cache method. This extended interface was added so client applications can
exercise precise control over updates to the caches being maintained.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleCache Methods Description
Cache Adds a presentation to the data or

view cache.
Uncache Removes a presentation previously

added with IOleCache::Cache.
EnumCache Returns an object to enumerate

the current cache connections.
InitCache Fills the cache with all the

presentation data from the data
object.

SetData Fills the cache with specified
format of presentation data.

IOleCache2 Methods Description
UpdateCache Updates the specified cache(s).
DiscardCache Discards cache(s) found in memory.

IOleCache2::DiscardCache

Discards the caches in memory.

HRESULT DiscardCache(

 DWORD dwDiscardOptions //Save options
);

Parameter
dwDiscardOptions

[in] DWORD value from the DISCARDCACHE enumeration that indicates whether data is to be saved
prior to being discarded. Containers that have drawn a large object and need to free up memory can
specify DISCARDCACHE_SAVEIFDIRTY so that the newest presentation is saved for the next time
the object must be drawn.
Containers that have activated an embedded object, made some changes, and then called
IOleObject::Close(OLECLOSE_NOSAVE) to roll back the changes can specify
DISCARDCACHE_NOSAVE to ensure that the native and presentation data are not out of
synchronization.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The cache(s) were discarded according to the value specified in dwDiscardOptions.
OLE_E_NOSTORAGE

There is no storage available for saving the data in the cache.
STG_E_MEDIUMFULL

The storage medium is full.

Remarks
The IOleCache2::DiscardCache method is commonly used to handle low memory conditions by freeing
memory currently being used by presentation caches.

Once discarded, the cache will satisfy subsequent IDataObject::GetData calls by reverting to disk-based
data.

See Also
DISCARDCACHE, IOleCache, IOleCacheControl

IOleCache2::UpdateCache

Updates specified cache(s). It updates the cache according to the value of a parameter. This method is
used when the application needs precise control over caching.

HRESULT UpdateCache(

 IDataObject * pDataObject, //Pointer to the data object from which the cache is updated
 DWORD grfUpdt, //Type of cache to update
 LPVOID pReserved //Reserved
);

Parameters
pDataObject

[in] Pointer to the IDataObject interface on the data object from which the cache is updated. Object
handlers and in-process servers typically pass a non-NULL value. A container application usually
passes NULL, and the source is obtained from the currently running object.

grfUpdt

[in] Type of cache to update. The value is obtained by combining values from the following table:
Cache Control Values Description
UPDFCACHE_NODATACACHEUpdates caches created by using

ADVF_NODATA in the call to
IOleCache::Cache.

UPDFCACHE_ONSAVECACH
E

Updates caches created by using
ADVFCACHE_ONSAVE in the
call to IOleCache::Cache.

UPDFCACHE_ONSTOPCACH
E

Updates caches created by using
ADVFCACHE_ONSTOP in the
call to IOleCache::Cache.

UPDFCACHE_NORMALCACH
E

Dynamically updates the caches
(as is normally done when the
object sends out OnDataChange
notices).

UPDFCACHE_IFBLANK Updates the cache if blank,
regardless of any other flag
specified.

UPDFCACHE_ONLYIFBLANK Updates only caches that are
blank.

UPDFCACHE_
IFBLANKORONSAVECACHE

The equivalent of using an OR
operation to combine
UPDFCACHE_IFBLANK and
UPDFCACHE_ONSAVECACHE.

UPDFCACHE_ALL Updates all caches.
UPDFCACHE_
ALLBUTNODATACACHE

Updates all caches except those
created with ADVF_NODATA in
the call to IOleCache::Cache.
Thus, you can control updates to
the caches created with the
ADVF_NODATA flag and only

update these caches explicitly.

pReserved

[in] Reserved for future use; must be NULL.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The cache(s) were updated according to the value specified in grfUpdt.
OLE_E_NOTRUNNING

The specified pDataObject is not running.
CACHE_E_NOCACHE_UPDATED

None of the caches were updated.
CACHE_S_SOMECACHES_NOTUPDATED

Some of the caches were updated.

See Also
IOleCache, IOleCacheControl, IDataObject

IOleCacheControl
The IOleCacheControl interface provides proper maintenance of caches. It maintains the caches by
connecting the running object's IDataObject implementation to the cache, allowing the cache to receive
notifications from the running object.

When to Implement
The OLE-provided implementation is used by most handlers and in-process servers. You can get a
pointer to the OLE data cache object through a call to CreateDataCache.

When to Use
Object handlers and in-process servers use this interface internally to connect the cache part of the
handler to the IDataObject implementation on the running object. Container applications have no need
for this interface; they use IRunnableObject or OleRun instead.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleCacheControl Methods Description
OnRun Notifies the cache when the data

object is running so the cache
object can establish advise sinks as
needed.

OnStop Notifies the cache to terminate any
existing advise sinks.

IOleCacheControl::OnRun

Notifies the cache that the data source object has now entered its running state.

HRESULT OnRun(

 DATAOBJECT * pDataObject //Pointer to the object that is now running
);

Parameter
pDataObject

[in] Pointer to the IDataObject interface on the object that is entering the running state.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The cache was notified and pDataObject is valid.

Remarks
When IOleCacheControl::OnRun is called, the cache sets up advisory connections as necessary with
the source data object so it can receive notifications. The advisory connection created between the
running object and the cache is destroyed when IOleCacheControl::OnStop is called.

Some object handlers or in-process servers might use the cache passively, and not call
IOleCacheControl::OnRun. These applications must call IOleCache2::UpdateCache,
IOleCache::InitCache, or IOleCache::SetData to fill the cache when necessary to ensure that the cache
gets updated.

IOleCacheControl::OnRun does not add a reference count on the pointer to IDataObject passed in
pDataObject. Because it is the responsibility of the caller of OleRun to ensure that the lifetime of the
pDataObject pointer lasts until OnStop is called, the caller must be holding a pointer to IDataObject on
the data object of interest.

See Also
IOleCache2::UpdateCache, IOleCacheControl::OnStop

IOleCacheControl::OnStop

Notifies the cache it should terminate any existing connection previously given to it by using
IOleCacheControl::OnRun. No indication is given as to whether a connection existed or not.

HRESULT OnStop();

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The cache was notified and the advisory connection was successfully removed.

Remarks
The data advisory connection between the running object and the cache is destroyed as part of calling
IOleCacheControl::OnStop.

See Also
IOleCacheControl::OnRun

IOleClientSite

The IOleClientSite interface is the primary means by which an embedded object obtains information
about the location and extent of its display site, its moniker, its user interface, and other resources
provided by its container. An object server calls IOleClientSite to request services from the container. A
container must provide one instance of IOleClientSite for every compound-document object it contains.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IOleClientSite Methods Description
SaveObject Saves embedded object.
GetMoniker Requests object's moniker.
GetContainer Requests pointer to object's

container.
ShowObject Asks container to display object.
OnShowWindow Notifies container when object

becomes visible or invisible
RequestNewObjectLayout Asks container to resize display

site.

IOleClientSite::GetContainer

Returns a pointer to the container's IOleContainer interface.

HRESULT GetContainer(

 LPOLECONTAINER FAR* ppContainer //Indirect pointer to the interface on the object
);

Parameter
ppContainer

[out] Indirect pointer to where the IOleContainer interface on the object should be returned. If an
error is returned, this parameter must be set to NULL.

Return Values
S_OK

The pointer to the container's IOleContainer interface was successfully returned.
OLE_E_NOT_SUPPORTED

Client site is in OLE 1 container.
E_NOINTERFACE

The container does not implement the IOleContainer interface.

Remarks
If a container supports links to its embedded objects, implementing IOleClientSite::GetContainer
enables link clients to enumerate the container's objects and recursively traverse a containment hierarchy.
This method is optional but recommended for all containers that expect to support links to their embedded
objects.

Link clients can traverse a hierarchy of compound-document objects by recursively calling
IOleClientSite::GetContainer to get a pointer to the link source's container; followed by
IOleContainer::QueryInterface to get a pointer to the container's IOleObject interface and, finally,
IOleObject::GetClientSite to get the container's client site in its container.

Simple containers that do not support links to their embedded objects probably do not need to implement
this method. Instead, they can return E_NOINTERFACE and set ppContainer to NULL.

IOleClientSite::GetMoniker

Returns a moniker to an object's client site. An object can force the assignment of its own or its
container's moniker by specifying a value for dwAssign.

HRESULT GetMoniker(

 DWORD dwAssign, //Value specifying how moniker is assigned
 DWORD dwWhichMoniker, //Value specifying which moniker is assigned
 IMoniker ** ppmk //Indirect pointer to moniker
);

Parameters
dwAssign

[in] Specifies whether to get a moniker only if one already exists, force assignment of a moniker,
create a temporary moniker, or remove a moniker that has been assigned. In practice, you will usually
request that the container force assignment of the moniker. Values defining these choices are
contained in the enumeration OLEGETMONIKER.

dwWhichMoniker

[in] DWORD that specifies whether to return the container's moniker, the object's moniker relative to
the container, or the object's full moniker. In practice, you will usually request the object's full moniker.
Values defining these choices are contained in the enumeration OLEWHICHMK.

ppmk

[out] Indirect pointer to the IMoniker interface on the moniker for the object's client site. If an error is
returned, this parameter must be set to NULL. Each time a container receives a call to
IOleClientSite::GetMoniker, it must increase the reference count on the pointer it returns. It is the
caller's responsibility to call Release when it is done with the pointer.

Return Values
This method supports the standard return values E_FAIL and E_UNEXPECTED, as well as the following:

S_OK

Requested moniker returned successfully.
E_NOTIMPL

This container cannot assign monikers to objects. This is the case with OLE 1 containers.

Remarks
Containers implement IOleClientSite::GetMoniker as a way of passing out monikers for their embedded
objects to clients wishing to link to those objects.

When a link is made to an embedded object or to a pseudo-object within it (a range of cells in a
spreadsheet, for example), the object needs a moniker to construct the composite moniker indicating the
source of the link. If the embedded object does not already have a moniker, it can call
IOleClientSite::GetMoniker to request one.

Every container that expects to contain links to embeddings should support IOleClientSite::GetMoniker

to give out OLEWHICHMK_CONTAINER, thus enabling link tracking when the link client and link source
files move, but maintain the same relative position.

An object must not persistently store its full moniker or its container's moniker, because these can change
while the object is not loaded. For example, either the container or the object could be renamed, in which
event, storing the container's moniker or the object's full moniker would make it impossible for a client to
track a link to the object.

In some very specialized cases, an object may no longer need a moniker previously assigned to it and
may wish to have it removed as an optimization. In such cases, the object can call
IOleClientSite::GetMoniker with OLEGETMONIKER_UNASSIGN to have the moniker removed.

See Also
IOleObject::GetMoniker, IOleObject::SetMoniker

IOleClientSite::OnShowWindow

Notifies a container when an embedded object's window is about to become visible or invisible. This
method does not apply to an object that is activated in place and therefore has no window separate from
that of its container.

HRESULT OnShowWindow(

 BOOL fShow //Value indicating if window is becoming visible
);

Parameter
fShow

[in] Value that indicates whether an object's window is open (TRUE) or closed (FALSE).

Return Value
S_OK

Shading or hatching has been successfully added or removed.

Remarks
An embedded object calls IOleClientSite::OnShowWindow to keep its container informed when the
object is open in a window. This window may or may not be currently visible to the end user. The
container uses this information to shade the object's client site when the object is displayed in a window,
and to remove the shading when the object is not. A shaded object, having received this notification,
knows that it already has an open window and therefore can respond to being double-clicked by bringing
this window quickly to the top, instead of launching its application in order to obtain a new one.

IOleClientSite::RequestNewObjectLayout

Asks container to allocate more or less space for displaying an embedded object.

HRESULT RequestNewObjectLayout();

Return Values
S_OK

Request for new layout succeeded.
E_NOTIMPL

Client site does not support requests for new layout.

Remarks
Currently, there is no standard mechanism by which a container can negotiate how much room an object
would like. When such a negotiation is defined, responding to this method will be optional for containers.

IOleClientSite::SaveObject
Saves the object associated with the client site. This function is synchronous; by the time it returns, the
save will be completed.

HRESULT SaveObject();

Parameter
HRESULT SaveObject(void)

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The object was saved.

Remarks
An embedded object calls IOleClientSite::SaveObject to ask its container to save it to persistent storage
when an end user chooses the File Update or Exit commands. The call is synchronous, meaning that by
the time it returns, the save operation will be completed.

Calls to IOleClientSite::SaveObject occur in most implementations of IOleObject::Close. Normally,
when a container tells an object to close, the container passes a flag specifying whether the object should
save itself before closing, prompt the user for instructions, or close without saving itself. If an object is
instructed to save itself, either by its container or an end user, it calls IOleClientSite::SaveObject to ask
the container application to save the object's contents before the object closes itself. If a container
instructs an object not to save itself, the object should not call SaveObject.

See Also
IOleObject::Close

IOleClientSite::ShowObject
Tells the container to position the object so it is visible to the user. This method ensures that the container
itself is visible and not minimized.

HRESULT ShowObject();

Return Values
S_OK

Container has tried to make the object visible.
OLE_E_NOT_SUPPORTED

Client site is in an OLE 1 container.

Remarks
After a link client binds to a link source, it commonly calls IOleObject::DoVerb on the link source, usually
requesting the source to perform some action requiring that it display itself to the user. As part of its
implementation of DoVerb, the link source can call IOleClientSite::ShowObject, which forces the client
to show the link source as best it can. If the link source's container is itself an embedded object, it will
recursively invoke IOleClientSite::ShowObject on its own container.

Having called the ShowObject method, a link source has no guarantee of being appropriately displayed
because its container may not be able to do so at the time of the call. The ShowObject method does not
guarantee visibility, only that the container will do the best it can.

See Also
IOleObject::DoVerb

IOleContainer

The IOleContainer interface is used to enumerate objects in a compound document or lock a container in
the running state. Container and object applications both implement this interface.

When to Implement
Applications that support links and links to embedded objects implement this interface to provide object
enumeration, name parsing, and silent updates of link sources. Simple, nonlinking containers do not need
to implement IOleContainer if it is useful mainly to support links to embedded objects.

When to Use
Call IOleContainer to enumerate the objects in a compound document or to lock a container so that silent
updates of link sources can be carried out safely.

Many applications inherit the functions of IOleContainer by implementing IOleItemContainer, which is
used to bind item monikers.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IParseDisplayName Method Description
ParseDisplayName Parses object's display name to

form moniker.

IOleContainer Methods Description
EnumObjects Enumerates objects in a container.
LockContainer Keeps container running until

explicitly released.

See Also
IOleItemContainer, IParseDisplayName

IOleContainer::EnumObjects

Enumerates objects in the current container.

HRESULT EnumObjects(

 DWORD grfFlags, //Value specifying what is to be enumerated
 IEnumUnknown **ppenum //Indirect pointer to enumerator object
);

Parameters
grfFlags

[in] Value that specifies which objects in a container are to be enumerated, as defined in the
enumeration OLECONTF.

ppenum

[out] When successful, indirect pointer to the IEnumUnknown interface on the enumerator object.
Each time a container receives a successful call to EnumObjects, it must increase the reference
count on the pointer the method returns. It is the caller's responsibility to call IUnknown::Release
when it is done with the pointer. If an error is returned, this parameter must be set to NULL.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

Enumerator successfully returned.
E_NOTIMPL

Object enumeration not supported.

Remarks
A container should implement EnumObjects to enable programmatic clients to find out what objects it
holds. This method, however, is not called in standard linking scenarios.

See Also
IEnumUnknown, IOleItemContainer, OLECONTF

IOleContainer::LockContainer

Keeps an embedded object's container running.

HRESULT LockContainer(

 BOOL fLock //Value indicating lock or unlock
);

Parameter
fLock

[in] Value that specifies whether to lock (TRUE) or unlock (FALSE) a container.

Return Values
This method supports the standard return values E_FAIL and E_OUTOFMEMORY, as well as the
following:

S_OK

Container was locked successfully.

Remarks
An embedded object calls IOleContainer::LockContainer to keep its container running when the object
has link clients that require an update. If an end user selects File Close from the container's menu,
however, the container ignores all outstanding LockContainer locks and closes the document anyway.

Notes to Callers
When an embedded object changes from the loaded to the running state, it should call
IOleContainer::LockContainer with the fLock parameter set to TRUE. When the embedded object shuts
down (transitions from running to loaded), it should call IOleContainer::LockContainer with the fLock
parameter set to FALSE.

Each call to LockContainer with fLock set to TRUE must be balanced by a call to LockContainer with
fLock set to FALSE. Object applications typically need not call LockContainer; the default handler makes
these calls automatically for object applications implemented as .EXEs as the object makes the transition
to and from the running state. Object applications not using the default handler, such as DLL object
applications, must make the calls directly.

An object should have no strong locks on it when it registers in the Running Object Table, but it should be
locked as soon as the first external client connects to it. Therefore, following registration of the object in
the Running Object Table, object handlers and DLL object applications, as part of their implementation of
IRunnableObject::Run, should call IOleContainer::LockContainer(TRUE) to lock the object.

Notes to Implementers
The container must keep track of whether and how many calls to LockContainer(TRUE) have been
made. To increment or decrement the reference count, IOleContainer::LockContainer calls
CoLockObjectExternal with a flag set to match fLock.

See Also
CoLockObjectExternal, IRunnableObject::Run

IOleControl
The IOleControl interface provides the features for supporting keyboard mnemonics (GetControlInfo,
OnMnemonic), ambient properties (OnAmbientPropertyChange), and events (FreezeEvents) in control
objects.

When to Implement
Implement this interface for a control object to communicate with the control's container, for example,
when managing keyboard activity or obtaining the container's ambient properties.

When to Use
A control container uses this interface to work with keyboard mnemonics, ambient properties, and events
of a contained control object.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IOleControl Methods Description
GetControlInfo Fills in a CONTROLINFO structure

with information about the control's
keyboard behavior.

OnMnemonic Informs the control that the user has
pressed a keystroke that the control
specified through GetControlInfo.
The control takes whatever action is
appropriate for the keystroke.

OnAmbientPropertyChange Informs an control that one or more
of the container's ambient properties
has changed.

FreezeEvents Indicates whether or not the
container ignores or accepts events
from the control.

See Also
IOleControlSite, ISimpleFrameSite

IOleControl::FreezeEvents

Indicates whether the container is ignoring or accepting events from the control.

HRESULT FreezeEvents(

 BOOL bFreeze //Indicates whether to ignore or process events
);

Parameters
bFreeze

[out] Indicates whether the container will ignore (TRUE) or now process (FALSE) events from the
control.

Return Values
S_OK

Returned in all cases.

Remarks
The control is not required to stop sending events when bFreeze is TRUE. However, the container is not
going to process them in this case. If a control depends on the container's processing -- as with request
events that return information from the container -- the control must either discard the event or queue the
event to send later when IOleControl::FreezeEvents returns FALSE.

Notes to Implementers
As with IOleControl::OnAmbientPropertyChange, S_OK is returned in all cases in order to prevent a
container from making assumptions about a control's behavior based on return values.

IOleControl::GetControlINfo
Fills in a CONTROLINFO structure with information about a control's keyboard mnemonics and keyboard
behavior.

HRESULT GetControlInfo(

 CONTROLINFO* pCI //Pointer to structure
);

Parameters
pCI

[in, out] Pointer to the caller-allocated CONTROLINFO structure to be filled in.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The structure was filled successfully.
E_NOTIMPL

The control has no mnemonics.
E_POINTER

The address in pCI is not valid. For example, it may be NULL.

See Also
CONTROLINFO

IOleControl::OnAmbientPropertyChange

Informs a control that one or more of the container's ambient properties (available through the control
site's IDispatch) has changed.

HRESULT OnAmbientPropertyChange(

 DISPID dispID //Dispatch identifier of the ambient property
);

Parameters
dispID

[in] Dispatch identifier of the ambient property that changed. If the dispID parameter is
DISPID_UNKNOWN, it indicates that multiple properties changed. In this case, the control should
check all the ambient properties of interest to obtain their current values.

Return Values
S_OK

Returned in all cases.

Remarks
Notes to Implementers
S_OK is returned in all cases even when the control does not support ambient properties or some other
failure has occurred. The caller sending the notification cannot attempt to use an error code (such as
E_NOTIMPL) to determine whether to send the notification in the future. Such semantics are not part of
this interface.

IOleControl::OnMnemonic

Informs a control that the user has pressed a keystroke that matches one of the ACCEL entries in the
mnemonic table returned through IOleControl::GetControlInfo. The control takes whatever action is
appropriate for the keystroke.

HRESULT OnMnemonic(

 LPMSG pMsg //Pointer to structure
);

Parameters
pMsg

[in] Pointer to the MSG structure describing the keystroke to be processed.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The control accepted the mnemonic.
E_NOTIMPL

The control doesn't handle any mnemonics. This indicates an unexpected condition and a caller error.
For example, the caller has mismatched which control has which mnemonic.

Remarks
Notes to Implementers
If a control changes the contents of its CONTROLINFO structure, it must notify its container by calling
IOleControlSite::OnControlInfoChanged.

Notes to Callers
A container of a control is allowed to cache the control's CONTROLINFO structure, provided that the
container implements IOleControlSite::OnControlInfoChanged to know when it must update its cached
information.

See Also
IOleControl::GetControlInfo, IOleControlSite::OnControlInfoChanged

IOleControlSite

The IOleControlSite interface provides the methods that enable a site object to manage each embedded
control within a container. A site object provides IOleControlSite as well as other site interfaces such as
IOleClientSite and IOleInPlaceSite. When a control requires the services expressed through this
interface, it will query one of the other client site interfaces for IOleControlSite.

When to Implement
Implement this interface on an in-place capable site object to support the embedding of controls in the
site.

When to Use
A control uses this interface to work with a control-aware container.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IOleControlSite Methods Description
OnControlInfoChanged Informs the container that the

control's CONTROLINFO structure
has changed and that the container
should call the control's
IOleControl::GetControlInfo for an
update.

LockInPlaceActive Indicates whether or not this control
should remain in-place active,
regardless of possible deactivation
events.

GetExtendedControl Requests an IDispatch pointer to the
extended control that the container
uses to wrap the real control.

TransformCoords Converts between a POINTL
structure expressed in HIMETRIC
units (as is standard in OLE) and a
POINTF structure expressed in units
the container specifies.

TranslateAccelerator Instructs the container to process a
specified keystroke.

OnFocus Indicates whether the embedded
control in this control site has gained
or lost the focus.

ShowPropertyFrame Instructs the container to show a
property page frame for the control
object if the container so desires.

See Also
IOleControl, ISimpleFrameSite

IOleControlSite::GetExtendedControl
Requests an IDispatch pointer to the extended control that the container uses to wrap the real control.

HRESULT GetExtendedControl(

 IDispatch** ppDisp //Indirect pointer to the interface of the extended control
);

Parameters
ppDisp

[out] Indirectly pointer to the extended control's IDispatch interface. This parameter is set to NULL on
failure. On success, the caller is responsible for calling IDispatch::Release when this pointer is no
longer needed.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The extended control's IDispatch is returned in ppDisp.
E_NOTIMPL

The container does not implement extended controls.
E_POINTER

The address in ppDisp or *ppDisp is not valid. For example, it may be NULL.

Remarks
This method gives the real control access to whatever properties and methods the container maintains in
the extended control. These properties and methods would otherwise be inaccessible to the control.

Notes to Callers
The returned pointer is the responsibility of the caller, which must release it when it is no longer needed.

IOleControlSite::LockInPlaceActive

Indicates whether or not a control should remain in-place active. Calls to this method typically nest an
event to ensure that the object's activation state remains stable throughout the processing of the event.

HRESULT LockInPlaceActive(

 BOOL fLock //Indicates whether to ensure the active state
);

Parameters
fLock

[in] Indicates whether to ensure the in-place active state (TRUE) or to allow activation to change
(FALSE). When TRUE, a supporting container must not deactivate the in-place object until this
method is called again with FALSE.

Return Values
S_OK

The lock or unlock was made successfully.
E_NOTIMPL

The container does not support in-place locking.

Remarks
This method affects the control's in-place active state but not its UI-active state.

IOleControlSite::OnControlInfoChanged

Informs the container that the control's CONTROLINFO structure has changed and that the container
should call the control's IOleControl::GetControlInfo for an update.

HRESULT OnControlInfoChanged(void);

Return Values
S_OK

Returned in all cases.

See Also
IOleControl::GetControlInfo

IOleControlSite::OnFocus

Indicates whether the control managed by this control site has gained or lost the focus, according to the
fGotFocus parameter. The container uses this information to update the state of Default and Cancel
buttons according to how the control with the focus processes Return or Esc keys. A control's behavior
regarding the Return and Esc keys is specified in the control's CONTROLINFO structure. See
IOleControl::GetControlInfo.

HRESULT OnFocus(

 BOOL fGotFocus //Indicates whether the control gained focus
);

Parameters
fGotFocus

[in] Indicates whether the control gained (TRUE) or lost the focus (FALSE).

Return Values
S_OK

Returned in all cases.

See Also
IOleControl::GetControlInfo

IOleControlSite::ShowPropertyFrame

Instructs a container to display a property sheet for the control embedded in this site.

HRESULT ShowPropertyFrame(void);

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The container successfully displayed property pages for this control and the control must not show its
own.

E_NOTIMPL

The container does not need to show property pages itself.

Remarks
A control must always call this method in the container first when it intends to show its own property
pages. Calling this method gives the container a chance to have those property pages work with the
container's extended controls. The container may include its own property pages as well in such cases,
which doesn't affect the control at all. If the container does not implement this method or if it returns a
failure of any kind, the control can show its property pages directly. Otherwise, the container has shown
the pages.

IOleControlSite::TransformCoords

Converts between a POINTL structure expressed in HIMETRIC units (as is standard in OLE) and a
POINTF structure expressed in units specified by the container. By converting the methods, the control
can ensure that it sends coordinate information to the container in units that are directly usable in the
container without additional conversion.

HRESULT TransformCoords(

 POINTL* pptlHimetric , //Indirect pointer to structure
 POINTF* pptfContainer , //Indirect pointer to structure
 DWORD dwFlags //Flags indicating the exact conversion
);

Parameters
pptlHimetric

[in, out] Indirect pointer to a POINTL structure containing coordinates expressed in HIMETRIC units.
This is an [in] parameter when dwFlags contains XFORMCOORDS_HIMETRICTOCONTAINER; it is
[out] with XFORMCOORDS_CONTAINERTOHIMETRIC. In the latter case, the contents are
undefined on error.

pptfContainer

[in, out] Indirect pointer to a caller-allocated POINTF structure that receives the converted
coordinates. This is an [in] parameter when dwFlags contains
XFORMCOORDS_CONTAINERTOHIMETRIC; it is [out] with
XFORMCOORDS_HIMETRICTOCONTAINER. In the latter case, the contents are undefined on error.

dwFlags

[in] Flags indicating the exact conversion to perform. The dwFlags parameter can be any combination
of the following values except where indicated:

Flag Value Description
XFORMCOORDS_POSITION The coordinates to convert represent a

position point. Cannot be used with
XFORMCOORDS_SIZE.

XFORMCOORDS_SIZE The coordinates to convert represent a set
of dimensions. Cannot be used with
XFORMCOORDS_POSITION.

XFORMCOORDS_HIMETRICTOCONTAIN
ER

The operation converts pptlHimetric into
pptfContainer. Cannot be used with
XFORMCOORDS_CONTAINERTOHIMET
RIC.

XFORMCOORDS_CONTAINERTOHIMET
RIC

The operation converts pptfContainer into
pptlHimetric. Cannot be used with
XFORMCOORDS_HIMETRICTOCONTAI
NER.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The conversion was performed successfully.
E_NOTIMPL

The container does not require any special coordinate conversions. The container deals completely in
HIMETRIC.

E_POINTER

The address in pptlHimetric or pptfContainer is not valid. For example, it may be NULL.

Remarks
A control uses this method when it has to send coordinates to a container within an event or some other
custom call or when the control has container coordinates that it needs to convert into HIMETRIC units.

See Also
POINTF

IOleControlSite::TranslateAccelerator

Instructs the control site to process the keystroke described in pMsg and modified by the flags in
grfModifiers.

HRESULT TranslateAccelerator(

 LPMSG pMsg , //Pointer to the structure
 DWORD grfModifiers //Flags describing the state of the keys
);

Parameters
pMsg

[in] Pointer to the MSG structure describing the keystroke to be processed.
grfModifiers

[in] Flags describing the state of the Control, Alt, and Shift keys. The value of the flag can be any valid
KEYMODIFIERS enumeration values.

Return Values
S_OK

The container processed the message.
S_FALSE

The container did not process the message. This value must also be returned in all other error cases
besides E_NOTIMPL.

E_NOTIMPL

The container does not implement accelerator support.

Remarks
This method is called by a control that can be UI-active. In such cases, a control can process all
keystrokes first through IOleInPlaceActiveObject::TranslateAccelerator, according to normal OLE
Compound Document rules. Inside that method, the control can give the container certain messages to
process first by calling IOleControlSite::TranslateAccelerator and using the return value to determine if
any processing took place. Otherwise, the control always processes the message first. If the control does
not use the keystroke as an accelerator, it passes the keystroke to the container through this method.

See Also
IOleInPlaceActiveObject::TranslateAccelerator, KEYMODIFIERS

IOleInPlaceActiveObject

The IOleInPlaceActiveObject interface provides a direct channel of communication between an in-place
object and the associated application's outer-most frame window and the document window within the
application that contains the embedded object. The communication involves the translation of messages,
the state of the frame window (activated or deactivated), and the state of the document window (activated
or deactivated). Also, it informs the object when it needs to resize its borders, and manages modeless
dialog boxes.

When to Implement
This interface is implemented by object applications in order to provide support for their objects while they
are active in-place.

When to Use
These methods are used by the in-place object's top-level container to manipulate objects while they are
active.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context-

sensitive help.

IOleInPlaceActiveObject Methods Description
TranslateAccelerator Translates messages.
OnFrameWindowActivate State of container's top-level frame.
OnDocWindowActivate State of container document

window.
ResizeBorder Alert object of need to resize

border space.
EnableModeless Enable or disable modeless dialog

boxes.

See Also
IOleWindow

IOleInPlaceActiveObject::EnableModeless

Enables or disables modeless dialog boxes when the container creates or destroys a modal dialog box.

HRESULT EnableModeless(

 BOOL fEnable //Enable or disable modeless dialog box windows
);

Parameter
fEnable

[in] TRUE to enable modeless dialog box windows; FALSE to disable them.

Return Value
S_OK

The method completed successfully.

Remarks
Notes to Callers
IOleInPlaceActiveObject::EnableModeless is called by the top-level container to enable and disable
modeless dialog boxes that the object displays. For the container to display a modal dialog box, it must
first call IOleInPlaceActiveObject::EnableModeless, specifying FALSE to disable the object's modeless
dialog box windows. When the container is through displaying its modal dialog box, it calls
IOleInPlaceActiveObject::EnableModeless, specifying TRUE to reenable the object's modeless dialog
boxes.

See Also
IOleInPlaceFrame::EnableModeless

IOleInPlaceActiveObject::OnDocWindowActivate

Notifies the active in-place object when the container's document window is activated or deactivated.

HRESULT OnDocWindowActivate(

 BOOL fActivate //State of MDI child document window
);

Parameter
fActivate

[in] State of the MDI child document window. It is TRUE if the window is in the act of activating;
FALSE if it is in the act of deactivating.

Return Value
S_OK

The method completed successfully.

Remarks
Notes to Callers
Call IOleInPlaceActiveObject::OnDocWindowActivate when the MDI child document window is
activated or deactivated and the object is currently the active object for the document.

Notes to Implementers
You should include code in this method that installs frame-level tools during object activation. These tools
include the shared composite menu and/or optional toolbars and frame adornments. You should then take
focus. When deactivating, the object should remove the frame-level tools. Note that if you do not call
IOleInPlaceUIWindow::SetBorderSpace with pborderwidths set to NULL, you can avoid having to
renegotiate border space.

Note While executing IOleInPlaceActiveObject::OnDocWindowActivate, do not make calls to
the Windows PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the
system to deadlock. There are further restrictions on which OLE interface methods and functions can
be called from within OnDocWindowActivate.

See Also
PeekMessage, GetMessage in Win32

IOleInPlaceActiveObject::OnFrameWindowActivate

Notifies the object when the container's top-level frame window is activated or deactivated.

HRESULT OnFrameWindowActivate(

 BOOL fActivate //State of container's top-level window
);

Parameter
fActivate

[in] State of the container's top-level frame window. TRUE if the window is activating; FALSE if it is
deactivating.

Return Value
S_OK

The method notified the object successfully.

Remarks
Notes to Callers
The container must call IOleInPlaceActiveObject::OnFrameWindowActivate when the container's top-
level frame window is either being activated or deactivated and the object is the current, active object for
the frame.

Note While executing IOleInPlaceActiveObject::OnFrameWindowActivate, do not make calls to
the Windows PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the
system to deadlock. There are further restrictions on which OLE interface methods and functions can
be called from within OnFrameWindowActivate.

See Also
PeekMessage, GetMessage in Win32

IOleInPlaceActiveObject::ResizeBorder

Alerts the object that it needs to resize its border space.

HRESULT ResizeBorder(

 LPCRECT prcBorder, //Pointer to new outer rectangle for border space
 IOleInPlaceUIWindow pUIWindow, //Pointer to frame or document window border change
 BOOL fFrameWindow //Indicates whether frame window object calls ResizeBorder
);

Parameters
prcBorder

[in] Pointer to a RECT structure containing the new outer rectangle within which the object can
request border space for its tools.

pUIWindow

[in] Pointer to the frame or document window object whose border has changed.
fFrameWindow

[in] TRUE if the frame window object is calling ResizeBorder; otherwise, FALSE.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The method alerted the object successfully.

Remarks
Notes to Callers
IOleInPlaceActiveObject::ResizeBorder is called by the top-level container's document or frame
window object when the border space allocated to the object should change. Because the active in-place
object is not informed about which window has changed (the frame- or document-level window),
IOleInPlaceActiveObject::ResizeBorder must be passed the pointer to the window's
IOleInPlaceUIWindow interface.

Notes to Implementers
In most cases, resizing only requires that you grow, shrink, or scale your object's frame adornments.
However, for more complicated adornments, you may be required to renegotiate for border space with
calls to IOleInPlaceUIWindow::RequestBorderSpace and IOleInPlaceUIWindow::SetBorderSpace.

Note While executing IOleInPlaceActiveObject::ResizeBorder, do not make calls to the
Windows PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the system
to deadlock. There are further restrictions on which OLE interface methods and functions can be
called from within ResizeBorder.

See Also
IOleInPlaceUIWindow::GetBorder

PeekMessage, GetMessage in Win32

IOleInPlaceActiveObject::TranslateAccelerator

Processes menu accelerator-key messages from the container's message queue. This method should
only be used for objects created by a DLL object application.

HRESULT TranslateAccelerator(

 LPMSG lpmsg //Pointer to message that may need translating
);

Parameter
lpmsg

[in] Pointer to the message that might need to be translated.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The message was translated successfully.
S_FALSE

The message was not translated.

Remarks
Notes to Callers
Active in-place objects must always be given the first chance at translating accelerator keystrokes. You
can provide this opportunity by calling IOleInPlaceActiveObject::TranslateAccelerator from your
container's message loop before doing any other translation. You should apply your own translation only
when this method returns S_FALSE.

If you call IOleInPlaceActiveObject::TranslateAccelerator for an object that is not created by a DLL
object application, the default object handler returns S_FALSE.

Notes to Implementers
An object created by an EXE object application gets keystrokes from its own message pump, so the
container does not get those messages.

If you need to implement this method, you can do so by simply wrapping the call to the Window's
TranslateAccelerator function.

See Also
OleTranslateAccelerator

TranslateAccelerator in Win32

IOleInPlaceFrame

The IOleInPlaceFrame interface controls the container's top-level frame window. This control involves
allowing the container to insert its menu group into the composite menu, install the composite menu into
the appropriate window frame, and remove the container's menu elements from the composite menu. It
sets and displays status text relevant to the in-place object. It also enables or disables the frame's
modeless dialog boxes, and translates accelerator keystrokes intended for the container's frame.

When to Implement
You will need to implement this interface if you are writing a container application that will be participating
in in-place activation.

When to Use
This interface is used by object applications to control the display and placement of composite menus,
keystroke accelerator translation, context-sensitive help mode, and modeless dialog boxes.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context-

sensitive help.

IOleInPlaceUIWindow Methods Description
GetBorder Translates messages.
RequestBorderSpace State of container's top-level

frame.
SetBorderSpace State of container document

window.
SetActiveObject Alert object of need to resize

border space.

IOleInPlaceFrame Methods Description
InsertMenus Allows container to insert menus.
SetMenu Adds a composite menu to window

frame.
RemoveMenus Removes a container's menu

elements.
SetStatusText Sets and displays status text

about.
EnableModeless Enables or disables modeless

dialog boxes.
TranslateAccelerator Translates keystrokes.

See Also
IOleWindow, IOleInPlaceUIWindow

IOleInPlaceFrame::EnableModeless

Enables or disables a frame's modeless dialog boxes.

HRESULT EnableModeless(

 BOOL fEnable //Enable or disable modeless dialog box windows
);

Parameter
fEnable

[in] Specifies whether the modeless dialog box windows are to be enabled by specifying TRUE or
disabled by specifying FALSE.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The dialog box was either enabled or disabled successfully, depending on the value for fEnable.

Remarks
Notes to Callers
The active in-place object calls IOleInPlaceFrame::EnableModeless to enable or disable modeless
dialog boxes that the container might be displaying. To display a modal dialog box, the object first calls
IOleInPlaceFrame::EnableModeless, specifying FALSE to disable the container's modeless dialog box
windows. After completion, the object calls IOleInPlaceFrame::EnableModeless, specifying TRUE to
reenable them.

Notes to Implementers
You should track the value of EnableModeless and check it before displaying a dialog box.

See Also
IOleInPlaceActiveObject::EnableModeless

IOleInPlaceFrame::InsertMenus

Allows the container to insert its menu groups into the composite menu to be used during the in-place
session.

HRESULT InsertMenus(

 HMENU hmenuShared, //Handle to empty menu
 LPOLEMENUGROUPWIDTHS lpMenuWidths //Pointer to array
);

Parameters
hmenuShared

[in] Handle to an empty menu.
lpMenuWidths

[in, out] Pointer to an OLEMENUGROUPWIDTHS array of six LONG values. The container fills in
elements 0, 2, and 4 to reflect the number of menu elements it provided in the File, View, and Window
menu groups.

Return Values
S_OK

This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The menu groups were inserted successfully.

Remarks
Notes to Callers
This method is called by object applications when they are first being activated. They call it in order to
insert their menus into the frame-level user interface.

The object application asks the container to add its menus to the menu specified in hmenuShared and to
set the group counts in the OLEMENUGROUPWIDTHS array pointed to by lpMenuWidths. The object
application then adds its own menus and counts. Objects can call IOleInPlaceFrame::InsertMenus as
many times as necessary to build up the composite menus. The container should use the initial menu
handle associated with the composite menu for all menu items in the drop-down menus.

IOleInPlaceFrame::RemoveMenus

Gives the container a chance to remove its menu elements from the in-place composite menu.

HRESULT RemoveMenus(

 HMENU hmenuShared //Handle to in-place composite menu
);

Parameter
hmenuShared

[in] Handle to the in-place composite menu that was constructed by calls to
IOleInPlaceFrame::InsertMenus and the Windows InsertMenu function.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTEDs, as well as the
following:

S_OK

The method completed successfully.

Remarks
The object should always give the container a chance to remove its menu elements from the composite
menu before deactivating the shared user interface.

Notes to Callers
Called by the object application while it is being UI-deactivated in order to remove its menus.

See Also
IOleInPlaceFrame::SetMenu

InsertMenu in Win32

IOleInPlaceFrame::SetMenu

Installs the composite menu in the window frame containing the object being activated in place.

HRESULT SetMenu(

 HMENU hmenuShared, //Handle to composite menu
 HOLEMENU holemenu, //Handle to menu descriptor
 HWND hwndActiveObject //Handle to object's window
);

Parameters
hmenuShared

[in] Handle to the composite menu constructed by calls to IOleInPlaceFrame::InsertMenus and the
Windows InsertMenu function.

holemenu

[in] Handle to the menu descriptor returned by the OleCreateMenuDescriptor function.
hwndActiveObject

[in] Handle to a window owned by the object and to which menu messages, commands, and
accelerators are to be sent.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The method completed successfully.

Remarks
Notes to Callers
The object calls IOleInPlaceFrame::SetMenu to ask the container to install the composite menu
structure set up by calls to IOleInPlaceFrame::InsertMenus.

Notes to Implementers
An SDI container's implementation of this method should call the Windows SetMenu function. An MDI
container should send a WM_MDISETMENU message, using hmenuShared as the menu to install. The
container should call OleSetMenuDescriptor to install the OLE dispatching code.

When deactivating, the container must call IOleInPlaceFrame::SetMenu, specifying NULL to remove the
shared menu. This is done to help minimize window repaints. The container should also call
OleSetMenuDescriptor, specifying NULL to unhook the dispatching code. Finally, the object application
calls OleDestroyMenuDescriptor to free the data structure.

Note While executing IOleInPlaceFrame::SetMenu, do not make calls to the Windows
PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the system to
deadlock. There are further restrictions on which OLE interface methods and functions can be called

from within SetMenu.

See Also
IOleInPlaceFrame::InsertMenus, OleSetMenuDescriptor, OleDestroyMenuDescriptor

PeekMessage, GetMessage in Win32

IOleInPlaceFrame::SetStatusText

Sets and displays status text about the in-place object in the container's frame window status line.

HRESULT SetStatusText(

 LPCOLESTR pszStatusText //Pointer to message to display
);

Parameter
pszStatusText

[in] Pointer to a null-terminated character string containing the message to display.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_UNEXPECTED, as
well as the following:

S_OK

The text was displayed.
S_TRUNCATED

Some text was displayed but the message was too long and was truncated.

Remarks
Notes to Callers
You should call SetStatusText when you need to ask the container to display object text in its frame's
status line, if it has one. Because the container's frame window owns the status line, calling
IOleInPlaceFrame::SetStatusText is the only way an object can display status information in the
container's frame window. If the container refuses the object's request, the object application can,
however, negotiate for border space to display its own status window.

Note When switching between menus owned by the container and the in-place active object, the
status bar text is not reflected properly if the object does not call the container's
IOleInPlaceFrame::SetStatusText method. For example, if, during an in-place session, the user
were to select the File menu, the status bar would reflect the action that would occur if the user
selected this menu. If the user then selects the Edit menu (which is owned by the in-place object), the
status bar text would not change unless the IOleInPlaceFrame::SetStatusText happened to be
called. This is because there is no way for the container to recognize that one of the object's menus
has been made active because all the messages that the container would trap are now going to the
object.

Notes to Implementers
To avoid potential problems, all objects being activated in place should process the WM_MENUSELECT
message and call IOleInPlaceFrame::SetStatusText ¾ even if the object does not usually provide status
information (in which case the object can just pass a NULL string for the requested status text).

Note While executing IOleInPlaceFrame::SetStatusText, do not make calls to the Windows
PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the system to
deadlock. There are further restrictions on which OLE interface methods and functions can be called
from within GetBorder.

See Also
PeekMessage, GetMessage in Win32

IOleInPlaceFrame::TranslateAccelerator

Translates accelerator keystrokes intended for the container's frame while an object is active in place.

HRESULT TranslateAccelerator(

 LPMSG lpmsg, //Pointer to structure
 WORD wID //Command identifier value
);

Parameters
lpmsg

[in] Pointer to the MSG structure containing the keystroke message.
wID

[in] Command identifier value corresponding to the keystroke in the container-provided accelerator
table. Containers should use this value instead of translating again.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The keystroke was used.
S_FALSE

The keystroke was not used.

Remarks
Notes to Callers
The IOleInPlaceFrame::TranslateAccelerator method is called indirectly by OleTranslateAccelerator
when a keystroke accelerator intended for the container (frame) is received.

Notes to Implementers
The container application should perform its usual accelerator processing, or use wID directly, and then
return, indicating whether the keystroke accelerator was processed. If the container is an MDI application
and the Windows TranslateAccelerator call fails, the container can call the Windows
TranslateMDISysAccel function, just as it does for its usual message processing.

In-place objects should be given first chance at translating accelerator messages. However, because
objects implemented by DLL object applications do not have their own message pump, they receive their
messages from the container's message queue. To ensure that the object has first chance at translating
messages, a container should always call IOleInPlaceActiveObject::TranslateAccelerator before doing
its own accelerator translation. Conversely, an executable object application should call
OleTranslateAccelerator after calling TranslateAccelerator, calling TranslateMessage and
DispatchMessage only if both translation functions fail.

Note You should define accelerator tables for containers so they will work properly with object

applications that do their own accelerator keystroke translations. Tables should be defined as follows:

"char", wID, VIRTKEY, CONTROL

This is the most common way to describe keyboard accelerators. Failure to do so can result in
keystrokes being lost or sent to the wrong object during an in-place session.

See Also
OleTranslateAccelerator, IOleInPlaceActiveObject::TranslateAccelerator

TranslateAccelerator, TranslateMessage, DispatchMessage, TranslateMDISysAccel in Win32

IOleInPlaceObject

The IOleInPlaceObject interface manages the activation and deactivation of in-place objects, and
determines how much of the in-place object should be visible.

You can obtain a pointer to IOleInPlaceObject by calling QueryInterface on IOleObject.

When to Implement
You must implement this interface if you are writing an object application that will participate in in-place
activation.

When to Use
Used by an object's immediate container to activate or deactivate the object.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context

sensitive help.

IOleInPlaceObject Methods Description
InPlaceDeactivate Deactivate active in-place object.
UIDeactivate Deactivate and remove UI of active

object.
SetObjectRects Portion of in-place object to be

visible.
ReactivateAndUndo Reactivate previously deactivated

object.

See Also
IOleObject, IOleWindow

IOleInPlaceObject::InPlaceDeactivate

Deactivates an active in-place object and discards the object's undo state.

HRESULT InPlaceDeactivate();

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The object was successfully deactivated.

Remarks
Notes to Callers
This method is called by an active object's immediate container to deactivate the active object and
discard its undo state.

Notes to Implementers
On return from IOleInPlaceObject::InPlaceDeactivate, the object discards its undo state. The object
application should not shut down immediately after this call. Instead, it should wait for an explicit call to
IOleObject::Close or for the object's reference count to reach zero.

Before deactivating, the object application should give the container a chance to put its user interface
back on the frame window by calling IOleInPlaceSite::OnUIDeactivate.

If the in-place user interface is still visible during the call to InPlaceDeactivate, the object application
should call its own IOleInPlaceObject::UIDeactivate method to hide the user interface. The in-place user
interface can be optionally destroyed during calls to IOleInPlaceObject::UIDeactivate and
IOleInPlaceObject::InPlaceDeactivate. But if the user interface has not already been destroyed when
the container calls IOleObject::Close, then it must be destroyed during the call to IOleObject::Close.

During the call to IOleObject::Close, the object should check to see whether it is still active in place. If
so, it should call InPlaceDeactivate.

See Also
IOleInPlaceSite::OnInPlaceDeactivate, IOleInPlaceSite::OnUIDeactivate, IOleObject::Close

IOleInPlaceObject::ReactivateAndUndo

Reactivates a previously deactivated object, undoing the last state of the object.

HRESULT ReactivateAndUndo();

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The object was successfully reactivated.
E_NOTUNDOABLE

Called when the Undo state is not available.

Remarks
If the user chooses the Undo command before the Undo state of the object is lost, the object's immediate
container calls IOleInPlaceObject::ReactivateAndUndo to activate the user interface, carry out the
Undo operation, and return the object to the active state.

IOleInPlaceObject::SetObjectRects

Indicates how much of the in-place object is visible.

HRESULT SetObjectRects(

 LPCRECT lprcPosRect, //Pointer to the position of the in-place object
 LPCRECT lprcClipRect //Pointer to the outer rectangle containing the in-place object's position

rectangle
);

Parameters
lprcPosRect

[in] Pointer to the rectangle containing the position of the in-place object using the client coordinates
of its parent window.

lprcClipRect

[in] Pointer to the outer rectangle containing the in-place object's position rectangle (PosRect). This
rectangle is relative to the client area of the object's parent window.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The operation successfully indicated the rectangle.

Remarks
It is possible for lprcClipRect to change without lprcPosRect changing.

The size of an in-place object's rectangle is always calculated in pixels. This is different from other OLE
object's visualizations, which are in HIMETRIC.

Note While executing IOleInPlaceObject::SetObjectRects, do not make calls to the Windows
PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the system to
deadlock. There are further restrictions on which OLE interface methods and functions can be called
from within SetObjectRects.

Notes to Callers
The container should call IOleInPlaceObject::SetObjectRects whenever the window position of the in-
place object and/or the visible part of the in-place object changes.

Notes to Implementers
The object must size its in-place window to match the intersection of lprcPosRect and lprcClipRect. The
object must also draw its contents into the object's in-place window so that proper clipping takes place.

The object should compare its width and height with those provided by its container (conveyed through

lprcPosRect). If the comparison does not result in a match, the container is applying scaling to the object.
The object must then decide whether it should continue the in-place editing in the scale/zoom mode or
deactivate.

See Also
IOleInPlaceSite::OnPosRectChange

PeekMessage, GetMessage in Win32

IOleInPlaceObject::UIDeactivate

Deactivates and removes the user interface that supports in-place activation.

HRESULT UIDeactivate();

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The in-place UI was deactivated and removed.

Notes to Callers
This method is called by the object's immediate container when, for example, the user has clicked in the
client area outside the object.

If the container has called IOleInPlaceObject::UIDeactivate, it should later call
IOleInPlaceObject::InPlaceDeactivate to properly clean up resources. The container can assume that
stopping or releasing the object cleans up resources if necessary. The object must be prepared to do so if
IOleInPlaceObject::InPlaceDeactivate has not been called. but either IOleInPlaceObject::UIDeactivate
or IOleObject::Close has been called.

Notes to Implementers
Resources such as menus and windows can be either cleaned up or kept in a hidden state until your
object is completely deactivated by calls to either IOleInPlaceObject::InPlaceDeactivate or
IOleObject::Close. The object application must call IOleInPlaceSite::OnUIDeactivate before doing
anything with the composite menus so that the container can first be detached from the frame window. On
deactivating the in-place object's user interface, the object is left in a ready state so it can be quickly
reactivated. The object stays in this state until the undo state of the document changes. The container
should then call IOleInPlaceObject::InPlaceDeactivate to tell the object to discard its undo state.

See Also
IOleInPlaceObject::InPlaceDeactivate, IOleInPlaceSite::OnUIDeactivate,
IOleInPlaceObject::ReactivateAndUndo, IOleObject::Close

IOleInPlaceObjectWindowless

The IOleInPlaceObjectWindowless interface enables a windowless object to process window messages
and participate in drag and drop operations. It is derived from and extends the IOleInPlaceObject
interface.

A small object, such as a control, does not need a window of its own. Instead, it can rely on its container
to dispatch window messages and help the object to participate in drag and drop operations. The
container must implement the IOleInPlaceSiteWindowless interface. Otherwise, the object must act as a
normal compound document object and create a window when it is activated.

When to Implement
Implement this interface on an object that can be in place activated without a window. This interface is
derived from IOleInPlaceObject which, in turn, is derived from IOleWindow.

When to Use
A container calls the methods in this interface to dispatch window messages to an in-place-active
windowless object and to assist the object in participating in drag and drop operations. The container
must implement a site object with the IOleInPlaceSiteWindowless interface to support these activities.
See the IOleInPlaceSiteWindowless interface for more information on operations involving windowless
objects, such as drawing, drag and drop, and processing window messages.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context

sensitive help.

IOleInPlaceObject Methods Description
InPlaceDeactivate Deactivate active in-place object.
UIDeactivate Deactivate and remove UI of active

object.
SetObjectRects Portion of in-place object to be

visible.
ReactivateAndUndo Reactivate previously deactivated

object.

IOleInPlaceObjectWindowless
Methods

Description

OnWindowMessage Dispatches a message from the
container to a windowless object.

GetDropTarget Supplies the IDropTarget interface
for a windowless object that

supports drag and drop.

See Also
IOleInPlaceSiteWindowless

IOleInPlaceObjectWindowless::GetDropTarget

Supplies the IDropTarget interface for an in-place active, windowless object that supports drag and drop.

HRESULT GetDropTarget(

 IDropTarget** ppDropTarget //Indirect pointer to the IDropTarget interface
);

Parameters
ppDropTarget

[out] Indirect pointer to the windowless object's IDropTarget interface.

Return Values
S_OK

The IDropTarget interface was successfully returned.
E_NOTIMPL

The windowless object does not support drag and drop.

Remarks
A windowed object registers its IDropTarget interface by calling the RegisterDragDrop function and
supplying its window handle as a parameter. Registering its IDropTarget interface enables the object to
participate in drag and drop operations. Because it does not have a window when active, a windowless
object cannot register its IDropTarget interface. Therefore, it cannot directly participate in drag and drop
operations without support from its container.

The following events occur during a drag and drop operation involving windowless objects:

· The container registers its own IDropTarget interface through the RegisterDragDrop function.
· In the container's implementation of its own IDropTarget::DragEnter or IDropTarget::DragOver

methods, the container detects whether the mouse pointer just entered an embedded object.
· If the object is inactive, the container calls the object's IPointerInactive::GetActivationPolicy

method. The object returns the POINTERINACTIVE_ACTIVATEONDRAG flag. The container then
activates the object in place. If the object was already active, the container does not have to do this
step.

· Once the object is active, the container must then obtain the object's IDropTarget interface.
· A windowless object that wishes to be a drop target still implements the IDropTarget interface, but

does not register it and does not return it through calls to QueryInterface. Instead, the container can
obtain this interface by calling the object's IOleInPlaceObjectWindowless::GetDropTarget method.
The object returns a pointer to its own IDropTarget interface if it wants to participate in drag and drop
operations. The container can cache this interface pointer for later use. For example, on subsequent
calls to the container's IDropTarget::DragEnter or IDropTarget::DragLeave methods, the container
can use the cached pointer instead of calling the object's GetDropTarget method again.

· The container then calls the object's IDropTarget::DragEnter and passes the returned value for
*pdwEffect from its own DragOver or DragEnter methods. From this point on, the container forwards
all subsequent DragOver calls to the windowless object until the mouse leaves the object or a drop
occurs on the object. If the mouse leaves the object, the container calls the object's

IDropTarget::DragLeave and then releases the object's IDropTarget interface. If the drop occurs,
the container forwards the IDropTarget::DragDrop call to the object.

· Finally, the container in-place deactivates the object.

An object can return S_FALSE from its own IDropTarget::DragEnter to indicate that it does not accept
any of the data formats in the data object. In that case, the container can decide to accept the data for
itself and return an appropriate dwEffect from its own DragEnter or DragOver methods. Note that an
object that returns S_FALSE from DragEnter should be prepared to receive subsequent calls to
DragEnter without any DragLeave in between. Indeed, if the mouse is still over the same object during
the next call to the container's DragOver, the container may decide to try and call DragEnter again on
the object.

Note to Callers
A container can cache the pointer to the object's IDropTarget interface for later use.

See Also
IDropTarget, IPointerInactive::GetActivationPolicy, RegisterDragDrop

IOleInPlaceObjectWindowless::OnWindowMessage
Dispatches a message from a container to a windowless object that is in-place active.

HRESULT OnWindowMessage(

 UINT msg, //Message Identifier as provided by Windows
 WPARAM wParam, //Message parameter as provided by Windows
 LPARAM lParam, //Message parameter as provided by Windows
 LRESULT* plResult //Pointer to message result code
);

Parameters
msg

[in] Identifier for the window message provided to the container by Windows.
wParam

[in] Parameter for the window message provided to the container by Windows.
lParam

[in] Parameter for the window message provided to the container by Windows.
plResult

[out] Pointer to result code for the window message as defined in the Windows API.

Return Values
S_OK

The window message was successfully dispatched to the windowless object.
S_FALSE

The windowless object did not process the window message. The container should call the
DefWindowProc for the message or process the message itself as described below.

Remarks
A container calls this method to send window messages to a windowless object that is in-place active.
The container should dispatch messages according to the following guidelines:

· For the following messages, the container should first dispatch the message to the windowless object
that has captured the mouse, if any. Otherwise, the container should dispatch the message to the
windowless object under the mouse cursor. If there is no such object, the container is free to process
the message for itself.

WM_MOUSEMOVE
WM_SETCURSOR
WM_XBUTTONDOWN
WM_XBUTTONUP
WM_XBUTTONDBLCLK

· For the following messages, the container should dispatch the message to the windowless object with
the keyboard focus.

WM_KEYDOWN WM_SYSKEYUP
WM_KEYUP WM_SYSDEADCHA

R
WM_CHAR WM_IMExxx
WM_DEADCHAR WM_HELP
WM_SYSKEYDOWN WM_CANCELMODE

· For all other messages, the container should process the message on its own.

The windowless object can return S_FALSE to this method to indicate that it did not process the
message. Then, the container either performs the default behavior for the message by calling the
Windows API function DefWindowProc, or processes the message itself.

The container must pass the following window messages to the default window procedure:

WM_MOUSEMOVE WM_DEADCHAR
WM_XBUTTONxxx WM_SYSKEYUP
WM_KEYDOWN WM_SYSCHAR
WM_KEYUP WM_SYSDEADCHAR
WM_CHAR WM_IMExxx

The container must process the following window messages as its own:

WM_SETCURSOR
WM_CONTEXTMENU
WM_HELP

Note For WM_SETCURSOR, the container can either set the cursor itself or do nothing.

Objects can also use IOleInPlaceSiteWindowless::OnDefWindowMessage to explicitly invoke the
default message processing from the container. In the case of the WM_SETCURSOR message, this
allows an object to take action if the container does not set the cursor.

All coordinates passed to the object in wParam and lParam are specified as client coordinates of the
containing window.

See Also
IOleInPlaceSiteWindowless::SetCapture, IOleInPlaceSiteWindowless::OnDefWindowMessage

IOleInPlaceSite

The IOleInPlaceSite interface manages interaction between the container and the object's in-place client
site. Recall that the client site is the display site for embedded objects, and provides position and
conceptual information about the object.

This interface provides methods that manage in-place objects. With IOleInPlaceSite, you can determine
if an object can be activated and manage its activation and deactivation. You can notify the container
when one of its objects is being activated and inform the container that a composite menu will replace the
container's regular menu. It provides methods that make it possible for the in-place object to retrieve the
window object hierarchy, and the position in the parent window where the object should place its in-place
activation window. Finally, it determines how the container scrolls the object, manages the object undo
state, and notifies the object when its borders have changed.

When to Implement
You must implement this interface if you are writing a container application that will participate in in-place
activation.

When to Use
Use this interface to allow your object to control in-place activation from within the container.

The IOleInPlaceSite interface pointer is obtained by calling QueryInterface on the object's
IOleClientSite interface.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context-

sensitive help.

IOleInPlaceSite Methods Description
CanInPlaceActivate Determines if the container can

activate the object in place.
OnInPlaceActivate Notifies the container that one of

its objects is being activated in
place.

OnUIActivate Notifies the container that the
object is about to be activated in
place, and that the main menu will
be replaced by a composite menu.

GetWindowContext Enables an in-place object to
retrieve window interfaces that
form at the window object
hierarchy, and the position in the

parent window to locate the
object's in-place activation window.

Scroll Specifies the number of pixels by
which the container is to scroll the
object.

OnUIDeactivate Notifies the container to reinstall its
user interface and take focus.

OnInPlaceDeactivate Notifies the container that the
object is no longer active in place.

DiscardUndoState Instructs the container to discard
its undo state.

DeactivateAndUndo Deactivate the object and revert to
undo state.

OnPosRectChange Object's extents have changed.

See Also
IOleWindow, IOleClientSite

IOleInPlaceSite::CanInPlaceActivate

Determines whether or not the container can activate the object in place.

HRESULT CanInPlaceActivate();

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The container allows in-place activation for this object.
S_FALSE

The container does not allow in-place activation for this object.

Remarks
Only objects being displayed as DVASPECT_CONTENT can be activated in place.

Notes to Callers
IOleInPlaceSite::CanInPlaceActivate is called by the client site's immediate child object when this
object must activate in place. This function allows the container application to accept or refuse the
activation request.

IOleInPlaceSite::DeactivateAndUndo

Causes the container to end the in-place session, deactivate the object, and revert to its own saved undo
state.

HRESULT IOleInPlaceSite::DeactivateAndUndo();

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The method completed successfully.

Remarks
Notes to Callers
Called by the active object when the user invokes undo just after activating the object.

Notes to Implementers
Upon completion of this call, the container should call IOleInPlaceObject::UIDeactivate to remove the
user interface for the object, activate itself, and undo.

IOleInPlaceSite::DiscardUndoState

Tells the container that the object no longer has any undo state and that the container should not call
IOleInPlaceObject::ReActivateAndUndo.

HRESULT IOleInPlaceSite::DiscardUndoState();

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The method completed successfully.

Remarks
If an object is activated in place and the object's associated object application maintains only one level of
undo, there is no need to have more than one entry on the undo stack. That is, once a change has been
made to the active object that invalidates its undo state saved by the container, there is no need to
maintain this undo state in the container.

Notes to Callers
IOleInPlaceSite::DiscardUndoState is called by the active object while performing some action that
would discard the undo state of the object. The in-place object calls this method to notify the container to
discard the object's last saved undo state.

See Also
IOleInPlaceSite::DeactivateAndUndo

IOleInPlaceSite::GetWindowContext
Enables the in-place object to retrieve the window interfaces that form the window object hierarchy, and
the position in the parent window where the object's in-place activation window should be placed.

HRESULT GetWindowContext(

 IOleInPlaceFrame **ppFrame, //Indirect pointer to location of frame interface
 IOleInPlaceUIWindow **ppDoc, //Indirect pointer to location of document window interface
 LPRECT lprcPosRect, //Points to position of in-place object
 LPRECT lprcClipRect, //Points to in-place object's position rectangle
 LPOLEINPLACEFRAMEINFO lpFrameInfo //Points to structure
);

Parameters
ppFrame

[out] Indirect pointer to where the IOleInPlaceFrame interface on the frame is to be returned. If an
error is returned, this parameter must be set to NULL.

ppDoc

[out] Indirect pointer to where the IOleInPlaceUIWindow interface on the document window is to be
returned. NULL is returned through the ppDoc pointer if the document window is the same as the
frame window. In this case, the object can only use ppFrame or border negotiation. If an error is
returned, this parameter must be set to NULL.

lprcPosRect

[out] Pointer to the rectangle containing the position of the in-place object in the client coordinates of
its parent window. If an error is returned, this parameter must be set to NULL.

lprcClipRect

[out] Pointer to the outer rectangle containing the in-place object's position rectangle (PosRect). This
rectangle is relative to the client area of the object's parent window. If an error is returned, this
parameter must be set to NULL.

lpFrameInfo

[out] Pointer to an OLEINPLACEFRAMEINFO structure the container is to fill in with appropriate
data. If an error is returned, this parameter must be set to NULL.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The method completed successfully.

Remarks
The OLEINPLACEFRAMEINFO structure provides data needed by OLE to dispatch keystroke
accelerators to a container frame while an object is active in place.

When an object is activated, it calls GetWindowContext from its container. The container returns the
handle to its in-place accelerator table through the OLEINPLACEFRAMEINFO structure. Before calling
GetWindowContext, the object must provide the size of the OLEINPLACEFRAMEINFO structure by
filling in the cb member, pointed to by lpFrameInfo.

IOleInPlaceSite::OnInPlaceActivate

Notifies the container that one of its objects is being activated in place.

HRESULT OnInPlaceActivate();

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The container allows the in-place activation.

Remarks
Notes to Callers
IOleInPlaceSite::OnInPlaceActivate is called by the active embedded object when it is activated in-
place for the first time. The container should note that the object is becoming active.

Notes to Implementers
A container that supports linking to embedded objects must properly manage the running of its in-place
objects when they are UI-inactive and running in the hidden state. To reactivate the in-place object
quickly, a container should not call IOleObject::Close until the container's
IOleInPlaceSite::DeactivateAndUndo method is called. To safeguard against the object being left in an
unstable state if a linking client updates silently, the container should call OleLockRunning to lock the
object in the running state. This prevents the hidden in-place object from shutting down before it can be
saved in its container.

IOleInPlaceSite::OnInPlaceDeactivate

Notifies the container that the object is no longer active in place.

HRESULT OnInPlaceDeactivate();

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The method successfully notified the container.

Remarks
Notes to Callers
IOleInPlaceSite::OnInPlaceDeactivate is called by an in-place object when it is fully deactivated. This
function notifies the container that the object has been deactivated, and it gives the container a chance to
run code pertinent to the object's deactivation. In particular, IOleInPlaceSite::OnInPlaceDeactivate is
called as a result of IOleInPlaceObject::InPlaceDeactivate being called. Calling
IOleInPlaceSite::OnInPlaceDeactivate indicates that the object can no longer support Undo.

Notes to Implementers
If the container is holding pointers to the IOleInPlaceObject and IOleInPlaceActiveObject interface
implementations, it should release them after the IOleInPlaceSite::OnInPlaceDeactivate call.

See Also
IOleInPlaceObject::InPlaceDeactivate

IOleInPlaceSite::OnPosRectChange

Indicates the object's extents have changed.

HRESULT OnPosRectChange(

 LPCRECT lprcPosRect //Pointer to rectangle containing the position of in-place object
);

Parameter
lprcPosRect

[in] Pointer to the rectangle containing the position of the in-place object in the client coordinates of its
parent window.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The method completed successfully.

Remarks
Notes to Callers
The IOleInPlaceSite::OnPosRectChange method is called by the in-place object.

Notes to Implementers
When the in-place object calls IOleInPlaceSite::OnPosRectChange, the container must call
IOleInPlaceObject::SetObjectRects to specify the new position of the in-place window and the ClipRect.
Only then does the object resize its window.

In most cases, the object grows to the right and/or down. There could be cases where the object grows to
the left and/or up, as conveyed through lprcPosRect. It is also possible to change the object's position
without changing its size.

See Also
IOleInPlaceObject::SetObjectRects

IOleInPlaceSite::OnUIActivate

Notifies the container that the object is about to be activated in place and that the object is going to
replace the container's main menu with an in-place composite menu.

HRESULT IOleInPlaceSite::OnUIActivate();

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The container allows the in-place activation.

Remarks
Notes to Callers
The in-place object calls IOleInPlaceSite::OnUIActivate just before activating its user interface.

Notes to Implementers
The container should remove any user interface associated with its own activation. If the container is itself
an embedded object, it should remove its document-level user interface.

If there is already an object active in place in the same document, the container should call
IOleInPlaceObject::UIDeactivate before calling OnUIDeactivate.

See Also
IOleInPlaceObject::UIDeactivate

IOleInPlaceSite::OnUIDeactivate

Notifies the container on deactivation that it should reinstall its user interface and take focus, and whether
or not the object has an undoable state.

HRESULT OnUIDeactivate(

 BOOL fUndoable //Specifies if object can undo changes
);

Parameter
fUndoable

[in] Specifies whether the object can undo changes. TRUE if the object can undo, FALSE if it cannot.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The method completed successfully.

Remarks
The object indicates whether it can undo changes through the fUndoable flag. If the object can undo
changes, the container can (by the user invoking the Edit Undo command) call the
IOleInPlaceObject::ReactivateAndUndo method to undo the changes.

Notes to Callers
IOleInPlaceSite::OnUIDeactivate is called by the site's immediate child object when it is deactivating to
notify the container that it should reinstall its own user interface components and take focus. The
container should wait for the call to IOleInPlaceSite::OnUIDeactivate to complete before fully cleaning
up and destroying any composite submenus.

See Also
IOleInPlaceObject::ReactivateAndUndo

IOleInPlaceSite::Scroll
Tells the container to scroll the view of the object by a specified number of pixels.

HRESULT Scroll(

 SIZE scrollExtent //Number of pixels
);

Parameter
scrollExtent

[in] Number of pixels by which to scroll in the X and Y directions.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The method successfully executed the view scroll instruction.

Remarks
As a result of scrolling, the object's visible rectangle can change. If that happens, the container should
give the new ClipRect to the object by calling IOleInPlaceObject::SetObjectRects. The intersection of
the ClipRect and PosRect rectangles gives the new visible rectangle. See
IOleInPlaceSite::GetWindowContext for a discussion of ClipRect and PosRect.

Notes to Callers
Called by an active, in-place object when it is asking the container to scroll.

See Also
IOleInPlaceObject::SetObjectRects

IOleInPlaceSiteEx

The IOleInPlaceSiteEx interface provides an additional set of activation and deactivation notification
methods that enable an object to avoid unnecessary flashing on the screen when the object is activated
and deactivated.

When an object is activated, it does not know if its visual display is already correct. When the object is
deactivated, the container does not know if the visual display is correct. To avoid a redraw and the
associated screen flicker in both cases, the container can provide this extension to IOleInPlaceSite.

When to Implement
Implement this interface on the client site in a container application that supports flicker-free activation
and deactivation of embedded, in-place active objects.

When to Use
An embedded object, such as a control, calls the methods in this interface to determine if it needs to
redraw itself on activation and to notify the container if the object needs to be redrawn on deactivation. By
avoiding the redraw when it is not needed, you can reduce the amount of flashing on the screen.

If the site object does not support IOleInPlaceSiteEx, the object must call methods in the
IOleInPlaceSite interface instead. In this case, the object must redraw itself on activation and
deactivation.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context-

sensitive help.

IOleInPlaceSite Methods Description
CanInPlaceActivate Determines if the container can

activate the object in place.
OnInPlaceActivate Notifies the container that one of

its objects is being activated in
place.

OnUIActivate Notifies the container that the
object is about to be activated in
place, and that the main menu will
be replaced by a composite menu.

GetWindowContext Enables an in-place object to
retrieve window interfaces that
form at the window object
hierarchy, and the position in the
parent window to locate the

object's in-place activation window.
Scroll Specifies the number of pixels by

which the container is to scroll the
object.

OnUIDeactivate Notifies the container to reinstall its
user interface and take focus.

OnInPlaceDeactivate Notifies the container that the
object is no longer active in place.

DiscardUndoState Instructs the container to discard
its undo state.

DeactivateAndUndo Deactivate the object and revert to
undo state.

OnPosRectChange Object's extents have changed.

IOleInPlaceSiteEx Methods Description
OnInPlaceActivateEx Called by the embedded object to

determine if it needs to redraw
itself upon activation.

OnInPlaceDeactivateEx Notifies the container of whether
the object needs to be redrawn
upon deactivation.

RequestUIActivate Notifies the container that the
object is about to enter the UI-
active state.

See Also
IOleInPlaceSite

IOleInPlaceSiteEx::OnInPlaceActivateEx

Called by the embedded object to determine if it needs to redraw itself upon activation.

HRESULT OnInPlaceActivateEx(

 BOOL* pfNoRedraw, //Pointer to current redraw status
 DWORD dwFlags //Indicates whether the object is windowless
);

Parameters
pfNoRedraw

[out] Pointer to current redraw status. The status is TRUE if the object need not redraw itself upon
activation; FALSE if the object needs to redraw upon activation. Windowless objects usually do not
need the value returned by this parameter and may pass a NULL pointer to save the container the
burden of computing this value.

dwFlags

[in] Indicates whether the object is activated as a windowless object. This parameter takes values
from the ACTIVATEFLAGS enumeration. See IOleInPlaceSiteWindowless for more information on
windowless objects.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The container allows the in-place activation.

Remarks
This method replaces IOleInPlaceSite::OnInPlaceActivate. If the older method is used, the object must
always redraw itself on activation.

Windowless objects are required to use this method instead of IOleInPlaceSite::OnInPlaceActivate to
notify the container of whether they are activating windowless or not.

Notes to Implementers
The container should carefully check the invalidation status of the object, its z-order, clipping and any
other relevant parameters to determine the appropriate value to return in pfNoRedraw.

A container can cache the value of the ACTIVATEFLAGS enumeration instead of calling the GetWindow
method in the IOleInPlaceObjectWindowless interface repeatedly.

See Also
ACTIVATEFLAGS, IOleInPlaceSite::OnInPlaceActivate, IOleInPlaceObjectWindowless
IOleInPlaceSiteWindowless

IOleInPlaceSiteEx::OnInPlaceDeactivateEx

Notifies the container if the object needs to be redrawn upon deactivation.

HRESULT OnInPlaceDeactivateEx(

 BOOL fNoRedraw //Indicates whether the object needs to be redrawn
);

Parameter
fNoRedraw

[in] If TRUE, the container need not redraw the object after completing the deactivation; if FALSE the
object must be redrawn after deactivation.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The method successfully notified the container.

Remarks
This method replaces IOleInPlaceSite::OnInPlaceDeactivate. If the older method is used, the object
must always be redrawn on deactivation.

See Also
IOleInPlaceSite::OnInPlaceDeactivate

IOleInPlaceSiteEx::RequestUIActivate

Notifies the container that the object is about to enter the UI-active state.

HRESULT RequestUIActivate(void);

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The object can continue the activation process and call IOleInPlaceSite::OnUIActivate.
S_FALSE

The object cannot enter the UI-active state. The object must call IOleInPlaceSite::OnUIDeactivate
so the container can perform its the necessary processing to restore the focus.

Remarks
An object calls this method to determine if it can enter the UI-active state and to notify the container that it
is about to make this transition. The container can return S_FALSE to deny this request, for example, if
the end user has canceled the operation or if the currently active object will not relinquish its active state.

If the object does not call RequestUIActivate, the container handles data validation and fires Enter and
Exit events from IOleInPlaceSite::OnUIActivate.

See Also
IOleInPlaceSite::OnUIActivate, IOleInPlaceSite::OnUIDeactivate

IOleInPlaceSiteWindowless

The IOleInPlaceSiteWindowless interface is derived from and extends the IOleInPlaceSiteEx interface.
IOleInPlaceSiteWindowless works with IOleInPlaceObjectWindowless which is implemented on the
windowless object. Together, these two interfaces provide services to a windowless object from its
container allowing the windowless object to:

· process window messages
· participate in drag and drop operations
· perform drawing operations

Having a window can place unnecessary burdens on small objects, such as controls. It prevents an object
from being non-rectangular. It prevents windows from being transparent. It prevents the small instance
size needed by many small controls.

A windowless object can enter the in-place active state without requiring a window or the resources
associated with a window. Instead, the object's container provides the object with many of the services
associated with having a window.

Windowless object model
Windowless objects are an extension of normal compound document objects. They follow the same in-
place activation model and share the same definitions for the various OLE states, with the difference that
they do not consume a window when they enter the in-place and UI active states. They are required to
comply with the OLE compound document specification, including in-place and UI activation.

Windowless objects require special support from their container. In other words, the container has to be
specifically written to support this new kind of object. However, windowless objects are backward
compatible with down level containers. In such containers, they simply create a window when active and
behave as a normal compound document object.

As with other compound document objects, windowless objects need to be in-place active to get mouse
and keyboard messages. In fact, since an object needs to have the keyboard focus to receive keyboard
messages, and having the keyboard focus implies being UI active for an object, only UI active objects will
actually get keyboard messages. Non-active objects can still process keyboard mnemonics.

Since windowless objects do not have a window, they rely on their container to receive window messages
for them. The container dispatches its own window messages to the appropriate embedded, windowless
object through calls to IOleInPlaceObjectWindowless methods. Similarly, windowless objects can obtain
services from their container such as capturing the mouse, setting the focus, getting a device context in
which to paint, and so on. The control calls IOleInPlaceSiteWindowless methods. In addition, the
container is responsible for drawing any border hatching as well as the grab handles for the control.

These two interfaces are derived from existing interfaces. By extending existing interfaces rather than
creating new ones, no new VTable pointer is added to the object instance, helping to keep the instance
size small.

Client and server negotiations with windowless objects
When a windowless object gets in-place activated, it should query its site for the
IOleInPlaceSiteWindowless interface. If this interface is supported, the object calls
IOleInPlaceSiteWindowless::CanWindowlessActivate to determine if it can proceed and in-place
activate without a window.

If the container does not support IOleInPlaceSiteWindowless or if the
IOleInPlaceSiteWindowless::CanWindowlessActivate method returns S_FALSE, the windowless

object should behave like a normal compound document object and create a window.

The container can get the window handle for an embedded object by calling IOleWindow::GetWindow.
This method should fail (return E_FAIL) for a windowless object. However, a container cannot be sure that
the object is windowless by calling this method. The object may have a window but may not have created
it yet. Many existing objects only create their window after calling the OnInPlaceActivate method on their
site object.

Consequently, a windowless object must call the new IOleInPlaceSiteEx::OnInPlaceActivateEx method
on its site object, instead of OnInPlaceActivate. The dwFlags parameter for this new method contains
additional information in the ACTIVATEFLAGS enumeration. The ACTIVATE_WINDOWLESS
enumeration value indicates that the object is activated without a window. Containers can cache this
value instead of calling the GetWindow method on the IOleWindow interface repeatedly.

Message dispatching
Windowless objects rely on their containers to dispatch window messages to them, capture the mouse,
and get the keyboard focus. The container calls IOleInPlaceObject::OnWindowMessage to dispatch a
window message to a windowless object. This method is similar to the SendMessage Windows API
function except that it does not require an HWND parameter and it returns both an HRESULT and a
LRESULT.

A windowless object must not call the DefWindowProc Windows API function directly. Instead, it calls
IOleInPlaceSiteWindowless::OnDefWindowMessage to invoke the default action, for example with
WM_SETCURSOR or WM_HELP that should be propagated back up to the container. Thus, the
container has a chance to handle the message before the object processes it.

For mouse messages, the object calls IOleInPlaceSiteWindowless::Set Capture to obtain the mouse
capture and IOleInPlaceSiteWindowless::SetFocus to get the keyboard focus.

A windowless object handles accelerators and mnemonics as follows:

Accelerators

The UI active object checks for its own accelerators in
IOleInPlaceActiveObject::TranslateAccelerator. A windowless object does the same. However, a
windowless object cannot send a WM_COMMAND message to itself, as a windowed object would do.
Therefore, instead of translating the key to a command, a windowless object should simply process
the key right away.
Except for that one difference, windowless objects should implement the
IOleInPlaceActiveObject::TranslateAccelerator method as defined in the OLE specifications. In
particular, a windowless object should pass the accelerator message up to its site object if it does not
wish to handle it. The windowless object and returns S_OK if the message got translated and
S_FALSE if not. In the case of a windowless object, the message is processed instead of translated.
Non translated messages will come back to the object through the
IOleInPlaceObjectWindowless::OnWindowMessage method.
Note that because the container's window gets all keyboard input, a UI active object should look for
messages sent to that window to find those it needs to process in its
IOleInPlaceActiveObject::TranslateAccelerator method. An object can get its container's window
by calling IOleWindow::GetWindow.

Mnemonics

Control mnemonics are handled the same way whether the control is windowless or not. The
container gets the control mnemonic table by calling IOleControl::GetControlInfo and then calls
IOleControl::OnMnemonic when it receives a key combination that matches a control mnemonic.

Drag & drop onto windowless objects

Since a windowless object does not have a window when it is active, it cannot register its own
IDropTarget interface with the RegisterDragDrop function. However, to participate in drag and drop
operations, a windowless object still must implement this interface. The object supplies its container with
a pointer to its IDropTarget interface through IOleInPlaceObjectWindowless::GetDropTarget instead of
having the container call QueryInterface for it. See IOleInPlaceObjectWindowless::GetDropTarget for
more information on drag and drop operations involving windowless objects.

In-place drawing for windowless objects
With windowed objects, the container is only responsible for drawing the object when it is inactive.
Windowed objects have their own window when they are active and can draw themselves independently
of their container.

A windowless object, however, needs services from its container to redraw itself even when it is active.
The container must provide the object with information about its surrounding environment, such as the
clipping region, the background, overlapping objects in front of the object being redrawn, and a device
context in which to draw.

The IOleInPlaceSiteWindowless interface on the container's site object provides these services: drawing
the object, obtaining and releasing the device context, invalidating the object's on-screen display, scrolling
the object, or showing a caret when the object is active.

Note All methods of IOleInPlaceSiteWindowless take position information in client coordinates of
the containing window, that is, the window in which the object is being drawn.

Drawing windowless objects

To maintain compatibility with windowed objects, the container still uses IViewObject::Draw to
redraw the in-place active, windowless object. See IViewObject::Draw for information on how the
method is used with windowless objects.

Obtaining and releasing a device context

To draw on its own when in-place active, a windowless object must call its site's
IOleInPlaceSiteWindowless::GetDC method to get a device context in which to draw. Then, it draws
into the device context and releases it by calling IOleInPlaceSiteWindowless::ReleaseDC.

Display Invalidation

In-place windowless objects may need to invalidate regions of their on-screen image. Even though
the notification methods in IAdviseSinkEx can be used for that purpose, they are not ideal for in-
place active objects because they take HIMETRIC coordinates. In order to simplify and speed up in-
place drawing, the InvalidateRect and InvalidateRgn methods in the IOleInPlaceSiteWindowless
interface provide the same functionality.
An object cannot call the Windows API functions InvalidateRect and InvalidateRgn directly on the
window handle it gets from calling IOleInPlaceSiteWindowless::GetWindow on its site.

Scrolling

In-place active windowless objects may need to scroll a given rectangle of their on-screen image, for
example, with a multi-line text control. Because of transparent and overlapping objects, the Windows
API functions ScrollWindow and ScrollDC cannot be used. Instead, the
IOleInPlaceSiteWindowless::ScrollRect method enables objects to perform scrolling.

Caret support

A windowless object cannot safely show a caret without first checking whether the caret is partially or
totally hidden by overlapping objects. In order to make that possible, an object can submit a rectangle
to its site object when it calls the site's IOleInPlaceSiteWindowless::AdjustRect method to get a

specified rectangle adjusted (usually, reduced) to ensure the rectangle fits in the clipping region.

When to Implement
Implement this interface on the container's site object to support windowless objects.

When to Use
The windowless object calls the methods in this interface to process window messages, to participate in
drag and drop operations, and to perform drawing operations.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context-

sensitive help.

IOleInPlaceSite Methods Description
CanInPlaceActivate Determines if the container can

activate the object in place.
OnInPlaceActivate Notifies the container that one of

its objects is being activated in
place.

OnUIActivate Notifies the container that the
object is about to be activated in
place, and that the main menu will
be replaced by a composite menu.

GetWindowContext Enables an in-place object to
retrieve window interfaces that
form at the window object
hierarchy, and the position in the
parent window to locate the
object's in-place activation window.

Scroll Specifies the number of pixels by
which the container is to scroll the
object.

OnUIDeactivate Notifies the container to reinstall its
user interface and take focus.

OnInPlaceDeactivate Notifies the container that the
object is no longer active in place.

DiscardUndoState Instructs the container to discard
its undo state.

DeactivateAndUndo Deactivate the object and revert to
undo state.

OnPosRectChange Object's extents have changed.

IOleInPlaceSiteEx Methods Description
OnInPlaceActivateEx Called by the embedded object to

determine if it needs to redraw
itself upon activation.

OnInPlaceDeactivateEx Notifies the container of whether
the object needs to be redrawn
upon deactivation.

RequestUIActivate Notifies the container that the
object is about to enter the UI-
active state.

IOleInPlaceSiteWindowless
Methods

Description

CanWindowlessActivate Informs an object if its container
can support it as a windowless
object that can be in-place
activated.

GetCapture Called by an in-place active,
windowless object to determine if it
still has the mouse capture or not.

SetCapture Enables an in-place active,
windowless object to capture all
mouse messages.

GetFocus Called by an in-place active,
windowless object to determine if it
still has the keyboard focus or not.

SetFocus Sets the keyboard focus for a UI-
active, windowless object.

GetDC Provides an object with a handle to
a device context for a screen or
compatible device from its
container.

ReleaseDC Releases the device context
previously obtained by a call to
IOleInPlaceSiteWindowless::Get
DC.

InvalidateRect Enables an object to invalidate a
specified rectangle of its in-place
image on the screen.

InvalidateRgn Enables an object to invalidate a
specified region of its in-place
image on the screen.

ScrollRect Enables an object to scroll an area
within its in-place active image on
the screen.

AdjustRect Adjusts a specified rectangle if it is
entirely or partially covered by
overlapping, opaque objects.

OnDefWindowMessage Invokes the default processing for
all messages passed to an object.

See Also
IAdviseSinkEx, IOleControl, IOleInPlaceActiveObject::TranslateAccelerator,
IOleInPlaceObjectWindowless,

IOleInPlaceSiteWindowless::AdjustRect

Adjusts a specified rectangle if it is entirely or partially covered by overlapping, opaque objects.

HRESULT AdjustRect(

 LPRECT prc //Rectangle to adjust
);

Parameters
prc

[in,out] Rectangle to adjust.

Return Values
S_OK

The rectangle was adjusted successfully. Note S_OK means that the rectangle was not completely
covered.

S_FALSE

The rectangle was adjusted successfully. Note S_FALSE means that the rectangle was completely
covered. Its width and height are now NULL.

Remarks
The main use of this method is to adjust the size of the caret. An object willing to create a caret should
submit the caret rectangle to its site object by calling this method and using the adjusted rectangle
returned from it for the caret. If the caret is entirely hidden, this method will return S_FALSE and the caret
should not be shown at all in this case.

In a situation where objects are overlapping this method should return the largest rectangle that is fully
visible.

This method can also be used to figure whether a point or a rectangular area is visible or hidden by
overlapping objects.

IOleInPlaceSiteWindowless::CanWindowlessActivate

Informs an object if its container can support it as a windowless object that can be in-place activated.

HRESULT CanWindowlessActivate(void);

Return Values
S_OK

The object can activate in place without a window.

Remarks
If this method returns S_OK, the container can dispatch events to it using
IOleInPlaceObjectWindowless.

If this method returns S_FALSE, the object should create a window and behave as a normal compound
document object.

See Also
IOleInPlaceObjectWindowless

IOleInPlaceSiteWindowless::GetCapture

Called by an in-place active, windowless object to determine if it still has the mouse capture or not.

HRESULT GetCapture(void);

Return Values
S_OK

The object currently has the mouse capture.
S_FALSE

The object does not currently have the mouse capture.

Remarks
As an alternative to calling this method, the object can cache information about whether it has the mouse
capture or not.

IOleInPlaceSiteWindowless::GetDC

Provides an object with a handle to a device context for a screen or compatible device from its container.

HRESULT GetDC(

 LPCRECT pRect, //Pointer to rectangle
 DWORD grfFlags, //OLEDCFLAGS value
 HDC* phDC //Pointer to device context
);

Parameters
pRect

[in] Pointer to the rectangle that the object wants to redraw, in client coordinates of the containing
window. If this parameter is NULL, the object's full extent is redrawn.

grfFlags

[in] A combination of values from the OLEDCFLAGS enumeration.
phDC

[out] Pointer to a returned device context.

Return Values
S_OK

A device context was successfully returned.
OLE_E_NESTEDPAINT

The container is already in the middle of a paint session. That is, this method has already been
called, and the ReleaseDC method has not yet been called.

Remarks
A device context obtained by this method should be released by calling
IOleInPlaceSiteWindowless::ReleaseDC.

Like other methods in this interface, rectangles are specified in client coordinates of the containing
window. The container is expected to intersect this rectangle with the object's site rectangle and clip out
everything outside the resulting rectangle. This prevents objects from inadvertently drawing where they
are not supposed to.

Containers are also expected to map the device context origin so the object can draw in client coordinates
of the containing window, usually the container's window. If the container is merely passing its window
device context, this occurs automatically. If it is returning another device context, for example, an
offscreen memory device context, then the viewport origin should be set appropriately.

Notes to Implementers
Depending whether it is returning an on-screen or off-screen device context and depending on how
sophisticated it is, container can use one of the following algorithms:

1. On-screen, one pass drawing

In the GetDC method, the container should:
· Get the window device context.
· If OLEDC_PAINTBKGND is set, draw the DVASPECT_CONTENT aspect of every object behind

the object requesting the device context.
· Return the device context.

In the ReleaseDC method, the container should:
· Draw the DVASPECT_CONTENT of every overlapping object.
· Release the device context.

2. On-screen, two pass drawing
In the GetDC method, the container should:
· Get the window device context.
· Clip out the opaque regions of any overlapping object. These regions do not need to be redrawn

since they are already correct on the screen.
· If OLEDC_PAINTBKGND is not set, return the device context.
· Otherwise, clip out the opaque parts of the object requesting the device context and draw the

opaque parts of every object behind it going front to back.
· Draw the transparent aspects of every object behind going back to front, setting the clipping region

appropriately each time.
· Finally return the device context.

In the ReleaseDC method, the container should:
· Draw the transparent parts of every overlapping object.
· Release the device context.

3. Off-screen drawing
In the GetDC method, the container should:
· Create a screen compatible memory device context, containing a compatible bitmap of appropriate

size.
· Map the viewport origin of the device context to ensure that the calling object can draw using client

area coordinates of the containing window.
· If OLEDC_PAINTBKGND is set, draw the DVASPECT_CONTENT of every object behind the

calling object.
· Return the device context.

In the ReleaseDC method, the container should:
· Draw the DVASPECT_CONTENT aspect of every overlapping object.
· Copy the off-screen bitmap to the screen at the location the calling object originally requested in

GetDC.
· Delete and release the memory device context.

When this method returns, the clipping region in the device context should be set so that the object can't
paint in any area it is not supposed to. If the object is not opaque, the background should have been
painted. If the device context is a screen, any overlapping opaque areas should be clipped out.

See Also
IOleInPlaceSiteWindowless::ReleaseDC, OLEDCFLAGS

IOleInPlaceSiteWindowless::GetFocus
Called by an in-place active, windowless object to determine if it still has the keyboard focus or not.

HRESULT GetFocus(void);

Return Values
S_OK

The object currently has the keyboard focus.
S_FALSE

The object does not currently have the keyboard focus.

Remarks
A windowless object calls this method to find out if it currently has the focus or not. As an alternative to
calling this method, the object can cache information about whether it has the keyboard focus or not.

IOleInPlaceSiteWindowless::InvalidateRect

Enables an object to invalidate a specified rectangle of its in-place image on the screen.

HRESULT InvalidateRect(

 LPCRECT pRect, //Rectangle to be invalidated
 BOOL fErase //Indicates whether to erase the background
);

Parameters
pRect

[in] Rectangle to invalidate, in client coordinates of the containing window. If this parameter is NULL,
the object's full extent is invalidated.

fErase

[in] Specifies whether the background within the update region is to be erased when the region is
updated. If this parameter is TRUE, the background is erased. If this parameter is FALSE, the
background remains unchanged.

Return Values
S_OK

The specified rectangle was successfully invalidated.

Remarks
An object is only allowed to invalidate pixels contained in its own site rectangle. Any attempt to invalidate
an area outside of that rectangle should result in a no-op.

IOleInPlaceSiteWindowless::InvalidateRgn

Enables an object to invalidate a specified region of its in-place image on the screen.

HRESULT InvalidateRgn(

 HRGN hRGN, //Region to be invalidated
 BOOL fErase //Indicates whether to erase the background
);

Parameters
hRGN

[in] Region to invalidate, in client coordinates of the containing window. If this parameter is NULL, the
object's full extent is invalidated.

fErase

[in] Specifies whether the background within the update region is to be erased when the region is
updated. If this parameter is TRUE, the background is erased. If this parameter is FALSE, the
background remains unchanged.

Return Values
S_OK

The specified region was successfully invalidated.

Remarks
An object is only allowed to invalidate pixels contained in its own site region. Any attempt to invalidate an
area outside of that region should result in a no-op.

IOleInPlaceSiteWindowless::OnDefWindowMessage

Invokes the default processing for all messages passed to an object.

HRESULT OnDefWindowMessage(

 UINT msg, //Message Identifier as provided by Windows
 WPARAM wParam, //Message parameter as provided by Windows
 LPARAM lParam, //Message parameter as provided by Windows
 LRESULT* plResult //Pointer to message result code
);

Parameters
msg

[in] Identifier for the window message provided to the container by Windows.
wParam

[in] Parameter for the window message provided to the container by Windows.
lParam

[in] Parameter for the window message provided to the container by Windows.
plResult

[out] Pointer to result code for the window message as defined in the Windows API.

Return Values
S_OK

The container's default processing for the window message was successfully invoked.
S_FALSE

The container's default processing for the window message was not invoked. See Note to
Implementers below.

Remarks
A windowless object can explicitly invoke the default processing for a window message by calling this
method. A container dispatches window messages to its windowless objects by calling
IOleInPlaceObjectWindowless::OnWindowMessage. The object usually returns S_FALSE to indicate
that it did not process the message. Then, the container can perform the default behavior for the message
by calling the Windows API function DefWindowProc.

Instead, the object can call this method on the container's site object to explicitly invoke the default
processing. Then, the object can take action on its own if the container does not handle the message.

Note to Implementers
The container must pass the following window messages to its default window procedure (the
DefWindowProc Windows API function) and return S_OK. Note that *plResult should contain the value
returned by DefWindowProc.

WM_MOUSEMOVE WM_DEADCHAR
WM_XBUTTONxxx WM_SYSKEYUP
WM_KEYDOWN WM_SYSCHAR
WM_KEYUP WM_SYSDEADCHAR
WM_CHAR WM_IMExxx

The container can either process the window messages as its own and return S_OK or not do anything
and return S_FALSE.

WM_SETCURSOR
WM_CONTEXTMENU
WM_HELP

If the container returns S_FALSE, the object can take action to process the window message on its own.

See Also
IOleInPlaceObjectWindowless::OnWindowMessage

IOleInPlaceSiteWindowless::ReleaseDC

Releases the device context previously obtained by a call to IOleInPlaceSiteWindowless::GetDC.

HRESULT ReleaseDC(

 HDC hDC //Device context to be released
);

Parameters
hDC

[in] Specifies the device context to be released.

Return Values
S_OK

The device context was successfully released.

Remarks
An object calls this method to notify its container that the object is done with the device context. If the
device context was used for drawing, the container should ensure that all overlapping objects are
repainted correctly. If the device context was an offscreen device context, its content should also be
copied to the screen in the rectangle originally passed to IOleInPlaceSiteWindowless::GetDC. See
IOleInPlaceSiteWindowless::GetDC for implementation notes relevant to ReleaseDC.

See Also
IOleInPlaceSiteWindowless::GetDC

IOleInPlaceSiteWindowless::ScrollRect
Enables an object to scroll an area within its in-place active image on the screen.

HRESULT ScrollRect(

 int dx, //Amount to scroll on the x-axis
 int dy, //Amount to scroll on the y-axis
 LPCRECT pRectScroll, //Rectangle to scroll
 LPCRECT pRectClip //Rectangle to clip
);

Parameters
dx

[in] Amount to scroll on the x-axis.
dy

[in] Amount to scroll on the y-axis.
pRectScroll

[in] Rectangle to scroll, in client coordinates of the containing window. NULL means the full object.
pRectClip

[in] Rectangle to clip to as defined for the Windows API function. Only pixels scrolling into this
rectangle are drawn. Pixels scrolling out are not. If this parameter is NULL, the rectangle is not
clipped.

Return Values
S_OK

The rectangle was successfully scrolled.

Remarks
This method should take in account the fact that the caller may be transparent and that there may be
opaque or transparent overlapping objects. See Notes to Implementers below for suggestions on
algorithms this method can use.

Note to Implementers
Containers can implement this method in a variety of ways. However, all of them should account for the
possibility that the object requesting scrolling may be transparent or may not have a solid background.
Containers should also take into account that there may be overlapping objects.

The simplest way to implement this method consists in simply redrawing the rectangle to scroll.

An added refinement to this simple implementation is to use the ScrollDC Windows API function when
the object requesting the scroll is opaque, the object has a solid background, and there are no
overlapping objects.

More sophisticated implementations can use the following procedure:

· Check whether the object is opaque and has a solid background, using
IViewObjectEx::GetViewStatus. If not, simply invalidate the rectangle to scroll. An added refinement
is to check whether the scrolling rectangle is entirely in the opaque region of a partially transparent
object.

· Get the window device context.
· Clip out the opaque parts of any overlapping object returned by IViewObjectEx::GetRect.
· Clip out and invalidate the transparent parts of any overlapping object.
· Finally, call the Windows API function ScrollDC.
· Redraw the previously invalidated transparent parts of any overlapping object.

Regardless of the scrolling and clipping rectangle, only pixels contained in the object's site rectangle will
be painted. The area uncovered by the scrolling operation is invalidated and redrawn immediately, before
this method returns.

All redraw generated by this method should happen synchronously before this method returns.

This method should automatically hide the caret during the scrolling operation and should move the caret
by the scrolling amounts if it is inside the clip rectangle.

See Also
IViewObjectEx::GetViewStatus, IViewObjectEx::GetRect

IOleInPlaceSiteWindowless::SetCapture

Enables an in-place active, windowless object to capture all mouse messages.

HRESULT SetCapture(

 BOOL fCapture //Set or release mouse capture
);

Parameters
fCapture

[in] If TRUE, the container should capture the mouse for the object. If FALSE, the container should
release mouse capture for the object.

Return Values
S_OK

Mouse capture was successfully granted to the object. If called to release the mouse capture, this
method must not fail.

S_FALSE

Mouse capture was denied to the object.

Remarks
A windowless object captures the mouse input, by calling
IOleInPlaceSiteWindowless::SetCapture(TRUE) on its site object. The container can deny mouse
capture, in which case this method returns S_FALSE. If the capture is granted, the container must set the
Windows mouse capture to its own window and dispatch any subsequent mouse message to the object,
regardless of whether the mouse cursor position is over this object or not.

The object can later release mouse capture by calling
IOleInPlaceSiteWindowless::SetCapture(FALSE) on its site object. The capture can also be released
because of an external event, such as the ESC key being pressed. In this case, the object is notified by a
WM_CANCELMODE message that the container dispatches along with the keyboard focus.

Containers should dispatch all mouse messages, including WM_SETCURSOR, to the windowless OLE
object that has captured the mouse. If no object has captured the mouse, the container should dispatch
the mouse message to the object under the mouse cursor.

The container dispatches these window messages by calling
IOleInPlaceObjectWindowless::OnWindowMessage on the windowless object. The windowless object
can return S_FALSE to this method to indicate that it did not process the mouse message. Then, the
container should perform the default behavior for the message by calling the Windows API function
DefWindowProc. For WM_SETCURSOR, the container can either set the cursor itself or do nothing.

Objects can also use IOleInPlaceSiteWindowless::OnDefWindowMessage to invoke the default
message processing from the container. In the case of the WM_SETCURSOR message, this allows an
object to take action if the container does not set the cursor.

See Also

IOleInPlaceSiteWindowless::OnDefWindowMessage

IOleInPlaceSiteWindowless::SetFocus

Sets the keyboard focus for a UI-active, windowless object.

HRESULT SetFocus(

 BOOL fFocus //Set or release the keyboard focus
);

Parameters
fFocus

[in] If TRUE, sets the keyboard focus to the calling object. If FALSE, removes the keyboard focus from
the calling object, provided that the object has the focus.

Return Values
S_OK

Keyboard focus was successfully given to the object. If this method is called to release the focus, it
should never fail.

S_FALSE

Keyboard focus was denied to the object.

Remarks
A windowless object calls this method whenever a windowed object would call the Windows API function
SetFocus. Through this call, the windowless object obtains the keyboard focus and can respond to
window messages. Normally, this call is made during the UI activation process and within the notification
methods IOleInPlaceActiveObject::OnDocWindowActivate(TRUE) and
IOleInPlaceActiveObject::OnFrameWindowActivate(TRUE).

In response to this call, the container sets the Windows focus to the window being used to get keyboard
messages (usually the container window) and redirects any subsequent keyboard messages to the
windowless object that requested the focus.

A windowless object also calls the IOleInPlaceSiteWindowless::SetFocus method with the fFocus
parameter set to FALSE to release the keyboard focus without assigning it to any other object. In this
case, the container must call the Windows API function SetFocus with a NULL parameter so that no
window has the focus.

See Also
IOleInPlaceActiveObject

IOleInPlaceUIWindow

The IOleInPlaceUIWindow interface is implemented by container applications and used by object
applications to negotiate border space on the document or frame window. The container provides a RECT
structure in which the object can place toolbars and other similar controls, determines if tools can in fact
be installed around the object's window frame, allocates space for the border, and establishes a
communication channel between the object and each frame and document window.

The document window may not exist in all applications. When this is the case,
IOleInPlaceSite::GetWindowContext returns NULL for IOleInPlaceUIWindow.

When to Implement
You must implement this interface if you are writing a container application that will participate in in-place
activation.

When to Use
Used by object applications to negotiate border space on the document or frame window when one of its
objects is being activated, or to renegotiate border space if the size of the object changes.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context-

sensitive help.

IOleInPlaceUIWindow Methods Description
GetBorder Specifies a RECT structure for

toolbars and controls.
RequestBorderSpace Determines if tools can be installed

around object's window frame.
SetBorderSpace Allocates space for the border.
SetActiveObject Provides for direct communication

between the object and each
document and frame window.

See Also
IOleWindow

IOleInPlaceUIWindow::GetBorder

Returns a RECT structure in which the object can put toolbars and similar controls while active in place.

HRESULT GetBorder(

 LPRECT lprectBorder //Pointer to structure
);

Parameter
lprectBorder

[out] Pointer to a RECT structure where the outer rectangle is to be returned. The RECT structure's
coordinates are relative to the window being represented by the interface.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The rectangle was successfully returned.
E_NOTOOLSPACE

The object cannot install toolbars in this window object.

Remarks
Notes to Callers
The IOleInPlaceUIWindow::GetBorder function, when called on a document or frame window object,
returns the outer rectangle (relative to the window) where the object can put toolbars or similar controls.

If the object is to install these tools, it should negotiate space for the tools within this rectangle using
IOleInPlaceUIWindow::RequestBorderSpace and then call IOleInPlaceUIWindow::SetBorderSpace
to get this space allocated.

Note While executing IOleInPlaceUIWindow::GetBorder, do not make calls to the Windows
PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the system to
deadlock. There are further restrictions on which OLE interface methods and functions can be called
from within GetBorder.

See Also
IOleInPlaceUIWindow::RequestBorderSpace, IOleInPlaceUIWindow::SetBorderSpace

PeekMessage, GetMessage in Win32

IOleInPlaceUIWindow::RequestBorderSpace

Determines if there is available space for tools to be installed around the object's window frame while the
object is active in place.

HRESULT RequestBorderSpace(

 LPCBORDERWIDTHS pborderwidths //Pointer to a structure
);

Parameter
pborderwidths

[in] Pointer to a BORDERWIDTHS structure containing the requested widths (in pixels) needed on
each side of the window for the tools.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The requested space could be allocated to the object.
E_NOTOOLSPACE

The object cannot install toolbars in this window object because the implementation does not support
toolbars, or there is insufficient space to install the toolbars.

Remarks
Notes to Callers
The active in-place object calls IOleInPlaceUIWindow::RequestBorderSpace to ask if tools can be
installed inside the window frame. These tools would be allocated between the rectangle returned by
IOleInPlaceUIWindow::GetBorder and the BORDERWIDTHS structure specified in the argument to this
call.

The space for the tools is not actually allocated to the object until it calls
IOleInPlaceUIWindow::SetBorderSpace, allowing the object to negotiate for space (such as while
dragging toolbars around), but deferring the moving of tools until the action is completed.

The object can install these tools by passing the width in pixels that is to be used on each side. For
example, if the object required 10 pixels on the top, 0 pixels on the bottom, and 5 pixels on the left and
right sides, it would pass the following BORDERWIDTHS structure to
IOleInPlaceUIWindow::RequestBorderSpace:

lpbw->top = 10
lpbw->bottom = 0
lpbw->lLeft = 5
lpbw->right = 5

Note While executing IOleInPlaceUIWindow::RequestBorderSpace, do not make calls to the
Windows PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the system

to deadlock. There are further restrictions on which OLE interface methods and functions can be
called from within RequestBorderSpace.

Notes to Implementers
If the amount of space an active object uses for its toolbars is irrelevant to the container, it can simply
return NOERROR as shown in the following IOleInPlaceUIWindow::RequestBorderSpace example.
Containers should not unduly restrict the display of tools by an active in-place object.

HRESULT InPlaceUIWindow_RequestBorderSpace(
 IOleInPlaceFrame * lpThis,
 LPCBORDERWIDTHS pborderwidths)
{
 /* Container allows the object to have as much border space as it
 ** wants.
 */
 return NOERROR;
}

See Also

IOleInPlaceUIWindow::GetBorder, IOleInPlaceUIWindow::SetBorderSpace PeekMessage,
GetMessage in Win32

IOleInPlaceUIWindow::SetActiveObject

Provides a direct channel of communication between the object and each of the frame and document
windows.

HRESULT SetActiveObject(

 IOleInPlaceActiveObject *pActiveObject, //Pointer to active in-place object
 LPCOLESTR pszObjName //Pointer tostring containing a name describing the object
);

Parameters
pActiveObject

[in] Pointer to the IOleInPlaceActiveObject interface on the active in-place object.
pszObjName

[in] Pointer to a string containing a name that describes the object an embedding container can use in
composing its window title. It can be NULL if the object does not require the container to change its
window titles. The Microsoft Windows User Interface Design Guide recommends that containers
ignore this parameter and always use their own name in the title bar.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The method completed successfully.

Remarks
Generally, an embedded object should pass NULL for the pszObjName parameter (see "Notes to
Implementers" below). However, if you are working in conjunction with a container that does display the
name of the in-place active object in its title bar, then you should compose a string in the following form:

<application name> - <object short-type name>

Notes to Callers
IOleInPlaceUIWindow::SetActiveObject is called by the object to establish a direct communication link
between itself and the document and frame windows.

When deactivating, the object calls IOleInPlaceUIWindow::SetActiveObject, passing NULL for the
pActiveObject and pszObjName parameters.

An object must call IOleInPlaceUIWindow::SetActiveObject before calling
IOleInPlaceFrame::SetMenu to give the container the pointer to the active object. The container then
uses this pointer in processing IOleInPlaceFrame::SetMenu and to pass to OleSetMenuDescriptor.

Notes to Implementers
The Microsoft Windows User Interface Design Guide recommends that an in-place container ignore the
pszObjName parameter passed in this method. The guide says "The title bar is not affected by in-place

activation. It always displays the top-level container's name."

See Also
IOleInPlaceFrame::SetMenu, OleSetMenuDescriptor

IOleInPlaceUIWindow::SetBorderSpace

Allocates space for the border requested in the call to IOleInPlaceUIWindow::RequestBorderSpace.

HRESULT SetBorderSpace(

 LPCBORDERWIDTHS pborderwidths //Pointer to a structure
);

Parameter
pborderwidths

[in] Pointer to a BORDERWIDTHS structure containing the requested width (in pixels) of the tools. It
can be NULL, indicating the object does not need any space.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The requested space has been allocated to the object.
OLE_E_INVALIDRECT

The rectangle does not lie within the specifications returned by IOleInPlaceUIWindow::GetBorder.

Remarks
The object must call IOleInPlaceUIWindow::SetBorderSpace. It can do any one of the following:

· Use its own toolbars, requesting border space of a specific size, or,
· Use no toolbars, but force the container to remove its toolbars by passing a valid BORDERWIDTHS

structure containing nothing but zeros in the pborderwidths parameter, or,
· Use no toolbars but allow the in-place container to leave its toolbars up by passing NULL as the

pborderwidths parameter.

The BORDERWIDTHS structure used in this call would generally have been passed in a previous call to
IOleInPlaceUIWindow::RequestBorderSpace, which must have returned S_OK.

If an object must renegotiate space on the border, it can call SetBorderSpace again with the new widths.
If the call to SetBorderSpace fails, the object can do a full negotiation for border space with calls to
GetBorder, RequestBorderSpace, and SetBorderSpace.

Note While executing IOleInPlaceUIWindow::SetBorderSpace, do not make calls to the
Windows PeekMessage or GetMessage functions, or a dialog box. Doing so may cause the system
to deadlock. There are further restrictions on which OLE interface methods and functions can be
called from within SetBorderSpace.

See Also

IOleInPlaceUIWindow::GetBorder, IOleInPlaceUIWindow::RequestBorderSpace PeekMessage,
GetMessage in Win32

IOleItemContainer

The IOleItemContainer interface is used by item monikers when they are bound to the objects they
identify.

When any container of objects uses item monikers to identify its objects, it must define a naming scheme
for those objects. The container's IOleItemContainer implementation uses knowledge of that naming
scheme to retrieve an object given a particular name. Item monikers use the container's
IOleItemContainer implementation during binding.

When to Implement
You must implement IOleItemContainer if you're a moniker provider handing out item monikers. Being a
moniker provider means handing out monikers that identify your objects to make them accessible to
moniker clients. You must use item monikers if the objects you're identifying are contained within another
object and can be individually identified using a string.

The most common example of moniker providers are OLE applications that support linking. If your OLE
application supports linking to objects smaller than a file-based document, you need to use item
monikers. For a server application that allows linking to a portion of a document (such as selections within
a document), you use the item monikers to identify those objects. For a container application that allows
linking to embedded objects, you use the item monikers to identify the embedded objects.

You must define a naming scheme for identifying the objects within the container; for example, embedded
objects in a document could be identified with names of the form "embedobj1," "embedobj2," and so forth,
while ranges of cells in a spreadsheet could be identified with names of the form "A1:E7," "G5:M9," and
so forth. (Ranges of cells in a spreadsheet are examples of "pseudo-objects" because they do not have
their own persistent storage, but simply represent a portion of the container's internal state.) You create
an item moniker that represents an object's name using the CreateItemMoniker function and hand it out
to a moniker client. When an item moniker is bound, your implementation of IOleItemContainer must be
able to take a name and retrieve the corresponding object.

When to Use
Applications typically do not call IOleItemContainer methods directly. The item moniker implementation
of IMoniker is the primary caller of IOleItemContainer methods.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IParseDisplayName Method Description
ParseDisplayName Parses object's display name to

form moniker.

IOleContainer Methods Description
EnumObjects Enumerates objects in a container.
LockContainer Keeps container running until

explicitly released.

IOleItemContainer Methods Description
GetObject Returns a pointer to a specified

object.
GetObjectStorage Returns a pointer to an object's

storage.
IsRunning Checks whether an object is

running.

See Also
CreateItemMoniker, IMoniker - Item Moniker Implementation

IOleItemContainer::GetObject
Returns a pointer to the object identified by the specified name.

HRESULT GetObject(

 LPOLESTR pszItem, //Pointer to name of the object requested
 DWORD dwSpeedNeeded, //Speed requirements on binding
 IBindCtx *pbc, //Pointer to bind context object to be used
 REFIID riid, //Reference to the identifier of the interface pointer desired
 void **ppvObject //Indirect pointer to interface
);

Parameters
pszItem

[in] Pointer to a zero-terminated string containing the container's name for the requested object. For
Win32 applications, the LPOLESTR type indicates a wide character string (two bytes per character);
otherwise, the string has one byte per character.

dwSpeedNeeded

[in] Indicates approximately how long the caller will wait to get the object. The legal values for
dwSpeedNeeded are taken from the enumeration BINDSPEED. For information on the BINDSPEED
enumeration, see the "Data Structures" section.

pbc

[in] Pointer to the IBindCtx interface on the bind context object to be used in this binding operation.
The bind context caches objects bound during the binding process, contains parameters that apply to
all operations using the bind context, and provides the means by which the binding implementation
should retrieve information about its environment. For more information, see IBindCtx.

riid

[in] Reference to the identifier of the interface pointer requested.
ppvObject

[out] When successful, indirect pointer to the location of the interface specified in riid on the object
named by pszItem. In this case, the implementation must call IUnknown::AddRef on the parameter;
it is the caller's responsibility to call IUnknown::Release. If an error occurs, the implementation sets
ppvObject to NULL.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The specified object was successfully returned.
MK_E_EXCEEDEDDEADLINE

The binding operation could not be completed within the time limit specified by the bind context's
BIND_OPTS structure, or with the speed indicated by the dwSpeedNeeded parameter.

MK_E_NOOBJECT

The parameter pszItem does not identify an object in this container.
E_NOINTERFACE

The requested interface was not available.

Remarks
The item moniker implementation of IMoniker::BindToObject calls this method, passing the name stored
within the item moniker as the pszItem parameter.

Notes to Implementers
Your implementation of IOleItemContainer::GetObject should first determine whether pszItem is a valid
name for one of the container's objects. If not, you should return MK_E_NOOBJECT.

If pszItem names an embedded or linked object, your implementation must check the value of the
dwSpeedNeeded parameter. If the value is BINDSPEED_IMMEDIATE and the object is not yet loaded,
you should return MK_E_EXCEEDEDDEADLINE. If the object is loaded, your implementation should
determine whether the object is running (for example, by calling the OleIsRunning function). If it is not
running and the dwSpeedNeeded value is BINDSPEED_MODERATE, your implementation should return
MK_E_EXCEEDEDDEADLINE. If the object is not running and dwSpeedNeeded is
BINDSPEED_INDEFINITE, your implementation should call the OleRun function to put the object in the
running state. Then it can query the object for the requested interface. Note that it is important the object
be running before you query for the interface.

If pszItem names a pseudo-object, your implementation can ignore the dwSpeedNeeded parameter
because a pseudo-object is running whenever its container is running. In this case, your implementation
can simply query for the requested interface.

If you want more specific information about the time limit than is given by dwSpeedNeeded, you can call
IBindCtx::GetBindOptions on the pbc parameter to get the actual deadline parameter.

See Also
IMoniker::BindToObject, IBindCtx::GetBindOptions, OleIsRunning, OleRun

IOleItemContainer::GetObjectStorage

Returns a pointer to the storage for the object identified by the specified name.

HRESULT GetObjectStorage(

 LPOLESTR pszItem, //Name of the string containing the name of object whose storage is requested
 IBindCtx *pbc, //Pointer to bind context to be used
 REFIID riid, //Reference to the identifier of the interface pointer desired
 void **ppvStorage //Indirect pointer to object's storage
);

Parameters
pszItem

[in] Pointer to a zero-terminated string containing the compound document's name for the object
whose storage is requested. For Win32 applications, the LPOLESTR type indicates a wide character
string (two bytes per character); otherwise, the string has one byte per character.

pbc

[in] Pointer to the IBindCtx interface on the bind context to be used in this binding operation. The bind
context caches objects bound during the binding process, contains parameters that apply to all
operations using the bind context, and provides the means by which the binding implementation
should retrieve information about its environment. For more information, see IBindCtx.

riid

[in] Reference to the identifier of the interface to be used to communicate with the object, usually
IStorage.

ppvStorage

[out] When successful, indirect pointer to the location of the interface specified in riid, on the storage
for the object named by pszItem. In this case, the implementation must call IUnknown::AddRef on
the parameter; it is the caller's responsibility to call IUnknown::Release. If an error occurs,
ppvStorage is set to NULL.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The storage of the specified object was successfully returned.
MK_E_NOOBJECT

The parameter pszItem does not identify a object in this container.
MK_E_NOSTORAGE

The object does not have its own independent storage.
E_NOINTERFACE

The requested interface is not available.

Remarks
The item moniker implementation of IMoniker::BindToStorage calls this method.

Notes to Implementers
If pszItem designates a pseudo-object, your implementation should return MK_E_NOSTORAGE, because
pseudo-objects do not have their own independent storage. If pszItem designates an embedded object, or
a portion of the document that has its own storage, your implementation should return the specified
interface pointer on the appropriate storage object.

See Also
IMoniker - Item Moniker Implementation

IOleItemContainer::IsRunning

Indicates whether the object identified by the specified name is running.

HRESULT IsRunning(

 LPOLESTR pszItem //Pointer to string containing name of object
);

Parameter
pszItem

[in] Pointer to a zero-terminated wide character string (two bytes per character) containing the
container's name for the object.

Return Values
S_OK

The specified object is running.
S_FALSE

The object is not running.
MK_E_NOOBJECT

The parameter pszItem does not identify an object in this container.

Remarks
The item moniker implementation of IMoniker::IsRunning calls this method.

Notes to Implementers
Your implementation of IOleItemContainer::IsRunning should first determine whether pszItem identifies
one of the container's objects. If it does not, your implementation should return MK_E_NOOBJECT. If the
object is not loaded, your implementation should return S_FALSE. If it is loaded, your implementation can
call the OleIsRunning function to determine whether it is running.

If pszItem names a pseudo-object, your implementation can simply return S_OK because a pseudo-
object is running whenever its container is running.

See Also
IMoniker::IsRunning

IOleLink

The IOleLink interface is the means by which a linked object provides its container with functions
pertaining to linking. The most important of these functions is binding to the link source, that is, activating
the connection to the document that stores the linked object's native data. IOleLink also defines functions
for managing information about the linked object, such as the location of the link source and the cached
presentation data for the linked object.

A container application can distinguish between embedded objects and linked objects by querying for
IOleLink; only linked objects implement IOleLink.

When to Implement
You do not have to implement this interface yourself; the system supplies an implementation of IOleLink
that is suitable for all situations. This implementation is used automatically whenever you create or load a
linked object.

When to Use
You must use IOleLink if you are writing a container application that allows its documents to contain
linked objects. You primarily call IOleLink methods in order to implement the Links dialog box. If you use
the OleUIEditLinks function to display the Links dialog box, your calls to IOleLink methods take place in
your implementation of the IOleUILinkContainer interface.

Some IOleLink methods don't have to be called directly. Instead, you call methods of IOleObject; the
default linked object provides an implementation of IOleObject that often calls methods of IOleLink. For
example, a container application typically activates a linked object by calling IOleObject::DoVerb, which
in turn calls IOleLink::BindToSource.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleLink Methods Description
SetUpdateOptions Sets the update options.
GetUpdateOptions Returns the update options.
SetSourceMoniker Sets the moniker for the link source.
GetSourceMoniker Returns the moniker for the link

source.
SetSourceDisplayName Sets the display name for the link

source.
GetSourceDisplayName Returns the display name for the

link source.
BindToSource Binds the moniker to the link

source.
BindIfRunning Binds the moniker if the source is

running.
GetBoundSource Returns a pointer to the link source

if it's running.

UnbindSource Break connection to the link source.
Update Update the cached views of the link

source.

See Also
IOleObject, IOleUILinkContainer, OleUIEditLinks

IOleLink::BindIfRunning

Activates the connection between the linked object and the link source if the link source is already
running.

HRESULT BindIfRunning(void);

Return Values
S_OK

The link source was bound.
S_FALSE

The link source is not running.
CreateBindCtx, IMoniker::IsRunning, or IOleLink::BindToSource errors

Binding the moniker might require calling these functions, therefore, errors generated by these
functions may be returned.

Remarks
You typically do not need to call IOleLink::BindIfRunning. This method is primarily called by the linked
object.

Notes on Provided Implementation
The linked object's implementation of IOleLink::BindIfRunning checks the Running Object Table (ROT)
to determine whether the link source is already running. It checks both the relative and absolute monikers.
If the link source is running, IOleLink::BindIfRunning calls IOleLink::BindToSource to connect the
linked object to the link source.

See Also
IOleLink::BindToSource

IOleLink::BindToSource

Activates the connection to the link source by binding the moniker stored within the linked object.

HRESULT BindToSource(

 DWORD bindflags, //Flag in case CLSID of link source is different
 IBindCtx *pbc //Pointer to bind context to be used
);

Parameters
bindflags

[in] Specifies how to proceed if the link source has a different CLSID from the last time it was bound.
If this parameter is zero and the CLSIDs are different, the method fails and returns
OLE_E_CLASSDIFF. If the OLELINKBIND_EVENIFCLASSDIFF value from the OLELINKBIND
enumeration is specified and the CLSIDs are different, the method binds successfully and updates
the CLSID stored in the linked object.

pbc

[in] Pointer to the IBindCtx interface on the bind context to be used in this binding operation. This
parameter can be NULL. The bind context caches objects bound during the binding process, contains
parameters that apply to all operations using the bind context, and provides the means by which the
binding implementation should retrieve information about its environment. For more information, see
IBindCtx.

Return Values
S_OK

The link source is bound.
OLE_E_CLASSDIFF

The link source was not bound because its CLSID has changed. This error is returned only if the
OLELINKBIND_EVENIFCLASSDIFF flag is not specified in the bindflags parameter.

MK_E_NOOBJECT

The link source could not be found or (if the link source's moniker is a composite) some intermediate
object identified in the composite could not be found.

E_UNSPEC

The link's moniker is NULL.
CreateBindCtx errors

Binding the moniker might require calling this function; therefore, this method may return errors
generated by this function.

Remarks
Notes to Callers
Typically, your container application does not need to call the IOleLink::BindToSource method directly.
When it's necessary to activate the connection to the link source, your container typically calls

IOleObject::DoVerb, IOleObject::Update, or IOleLink::Update. The linked object's implementation of
these methods calls IOleLink::BindToSource. Your container can also call the OleRun function, which ¾

when called on a linked object ¾ calls IOleLink::BindToSource.

In each of the examples listed previously, in which IOleLink::BindToSource is called indirectly, the
bindflags parameter is set to zero. Consequently, these calls can fail with the OLE_E_CLASSDIFF error if
the class of the link source is different from what it was the last time the linked object was bound. This
could happen, for example, if the original link source was an embedded Lotus spreadsheet that an end
user had subsequently converted (using the Change Type dialog box) to an Excel spreadsheet.

If you want your container to bind even though the link source now has a different CLSID, you can call
IOleLink::BindToSource directly and specify OLELINKBIND_EVENIFCLASSDIFF for the bindflags
parameter. This call binds to the link source and updates the link object's CLSID. Alternatively, your
container can delete the existing link and use the OleCreateLink function to create a new linked object.

Notes on Provided Implementation
The linked object caches the interface pointer to the link source acquired during binding.

The linked object's IOleLink::BindToSource implementation first tries to bind using a moniker consisting
of the compound document's moniker composed with the link source's relative moniker. If successful, it
updates the link's absolute moniker. Otherwise, it tries to bind using the absolute moniker, updating the
relative moniker if successful.

If IOleLink::BindToSource binds to the link source, it calls the compound document's
IOleContainer::LockContainer implementation to keep the containing compound document alive while
the link source is running. IOleLink::BindToSource also calls the IOleObject::Advise and
IDataObject::DAdvise implementations of the link source to set up advisory connections. The
IOleLink::UnbindSource implementation unlocks the container and deletes the advisory connections.

See Also
IDataObject::DAdvise, IOleContainer::LockContainer, IOleLink::Update, IOleLink::UnbindSource,
IOleObject::Advise, IOleObject::DoVerb, IOleObject::Update, OleRun

IOleLink::GetBoundSource

Returns an IUnknown pointer to the link source if the connection is currently active.

HRESULT GetBoundSource(

 IUnknown **ppunk //Indirect pointer to location of the link source
);

Parameter
ppunk

[out] When successful, indirect pointer to the location of the IUnknown interface on the link source. In
this case, the implementation must call IUnknown::AddRef on the parameter; it is the caller's
responsibility to call IUnknown::Release. If an error occurs, the implementation sets ppunk to NULL.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

A pointer was returned successfully.

Remarks
You typically do not need to call IOleLink::GetBoundSource.

IOleLink::GetSourceDisplayName

Retrieves the display name of the link source of the linked object.

HRESULT GetSourceDisplayName(

 LPOLESTR *ppszDisplayName //Indirect pointer to string containing display name of link source
);

Parameter
ppszDisplayName

[out] Indirect pointer to the location of a zero-terminated wide character string (two bytes per
character) containing the display name of the link source. If an error occurs, ppszDisplayName is set
to NULL; otherwise, the implementation must use IMalloc::Alloc to allocate the string returned in
ppszDisplayName, and the caller is responsible for calling IMalloc::Free to free it. Both caller and
called use the allocator returned by CoGetMalloc.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The display name was successfully retrieved.
CreateBindCtx and IMoniker::GetDisplayName errors

Retrieving the display name requires calling these functions; therefore, this method may return errors
generated by these functions.

Remarks
Notes to Callers
Your container application can call IOleLink::GetSourceDisplayName in order to display the current
source of a link.

The current source of a link is displayed in the Links dialog box. If you use the OleUIEditLinks function to
display the Links dialog box, you must implement the IOleUILinkContainer interface. The dialog box calls
your implementations of IOleUILinkContainer::GetLinkSource to get the string it should display. Your
implementation of that method can call IOleLink::GetSourceDisplayName.

Notes on Provided Implementation
The linked object's implementation of IOleLink::GetSourceDisplayName calls
IOleLink::GetSourceMoniker to get the link source moniker, and then calls IMoniker::GetDisplayName
to get that moniker's display name. This operation is potentially expensive because it might require
binding the moniker. All of the system-supplied monikers can return a display name without binding, but
there is no guarantee that other moniker implementations can. Instead of making repeated calls to
IOleLink::GetSourceDisplayName, your container application can cache the name and update it
whenever the link source is bound.

See Also
IOleLink::SetSourceDisplayName, IOleUILinkContainer, IMoniker::GetDisplayName,

OleUIEditLinks

IOleLink::GetSourceMoniker

Retrieves the moniker identifying the link source of a linked object.

HRESULT GetSourceMoniker(

 IMoniker **ppmk //Indirect pointer to a moniker identifying link source
);

Parameter
ppmk

[out] When successful, indirect pointer to the IMoniker interface on an absolute moniker that identifies
the link source. In this case, the implementation must call IUnknown::AddRef on the parameter; it is
the caller's responsibility to call IUnknown::Release. May be NULL if an error occurs.

Return Values
S_OK

The moniker was returned successfully.
MK_E_UNAVAILABLE

No moniker is available.

Remarks
Notes to Callers
Your container application can call IOleLink::GetSourceMoniker to display the current source of a link in
the Links dialog box. Note that this requires your container to use the IMoniker::GetDisplayName
method to get the display name of the moniker. If you'd rather get the display name directly, your
container can call IOleLink::GetSourceDisplayName instead of IOleLink::GetSourceMoniker.

If you use the OleUIEditLinks function to display the Links dialog box, you must implement the
IOleUILinkContainer interface. The dialog box calls your implementations of
IOleUILinkContainer::GetLinkSource to get the string it should display. Your implementation of that
method can call IOleLink::GetSourceMoniker.

Notes on Provided Implementation
The linked object stores both an absolute and a relative moniker for the link source. If the relative moniker
is non-NULL and a moniker is available for the compound document, IOleLink::GetSourceMoniker
returns the moniker created by composing the relative moniker onto the end of the compound document's
moniker. Otherwise, it returns the absolute moniker or, if an error occurs, NULL.

The container specifies the absolute moniker when it calls one of the OleCreateLink functions to create a
link. The application can call IOleLink::SetSourceMoniker or IOleLink::SetSourceDisplayName to
change the absolute moniker. In addition, the linked object automatically updates the monikers whenever
it successfully binds to the link source, or when it is bound to the link source and it receives a rename
notification through the IAdviseSink::OnRename method.

See Also
IOleLink::SetSourceDisplayName, IOleLink::SetSourceMoniker

IOleLink::GetUpdateOptions

Retrieves a value indicating how often the linked object updates its cached data.

HRESULT GetUpdateOptions(

 DWORD *pdwUpdateOpt //Pointer to update option
);

Parameter
pdwUpdateOpt

[out] Pointer to a DWORD that specifies the current value for the linked object's update option,
indicating how often the linked object updates the cached data for the linked object. The legal values
for pdwUpdateOpt are taken from the enumeration OLEUPDATE.

Return Value
S_OK

The update option was retrieved successfully.

Remarks
Notes to Callers
Your container application should call IOleLink::GetUpdateOptions to display the current update option
for a linked object.

A linked object's current update option is displayed in the Links dialog box. If you use the OleUIEditLinks
function to display the Links dialog box, you must implement the IOleUILinkContainer interface. The
dialog box calls your implementation of IOleUILinkContainer::GetLinkUpdateOptions to determine
which update option it should display. Your implementation of that method should call
IOleLink::GetUpdateOptions to retrieve the current update option.

See Also
IOleLink::SetUpdateOptions, IOleUILinkContainer, OleUIEditLinks

IOleLink::SetSourceDisplayName

Specifies the new link source of a linked object using a display name.

HRESULT SetSourceDisplayName(

 LPCOLESTR pszStatusText //Pointer to display name of new link source
);

Parameter
pszStatusText

[in] Pointer to the display name of the new link source. It may not be NULL.

Return Values
S_OK

The display name was set successfully.
MkParseDisplayName errors

Setting the display name requires calling this function; therefore, this method may return errors
generated by this function.

Remarks
Notes to Callers
Your container application can call IOleLink::SetSourceDisplayName when the end user changes the
source of a link or breaks a link. Note that this requires the linked object to create a moniker out of the
display name. If you'd rather parse the display name into a moniker yourself, your container can call
IOleLink::SetSourceMoniker instead of IOleLink::SetSourceDisplayName.

If you use the OleUIEditLinks function to display the Links dialog box, you must implement the
IOleUILinkContainer interface. The dialog box calls your implementations of
IOleUILinkContainer::SetLinkSource and IOleUILinkContainer::CancelLink. Your implementation of
these methods can call IOleLink::SetSourceDisplayName.

If your container application is immediately going to bind to a newly specified link source, you should call
MkParseDisplayName and IOleLink::SetSourceMoniker instead, and then call
IOleLink::BindToSource using the bind context from the parsing operation. By reusing the bind context,
you can avoid redundant loading of objects that might otherwise occur.

Notes on Provided Implementation
The contract for IOleLink::SetSourceDisplayName does not specify when the linked object will parse
the display name into a moniker. The parsing can occur before IOleLink::SetSourceDisplayName
returns, or the linked object can store the display name and parse it only when it needs to bind to the link
source. Note that parsing the display name is potentially an expensive operation because it might require
binding to the link source. The provided implementation of IOleLink::SetSourceDisplayName parses the
display name and then releases the bind context used in the parse operation. This can result in running
and then stopping the link source server.

If the linked object is bound to the current link source, the implementation of
IOleLink::SetSourceDisplayName breaks the connection.

For more information on how the linked object stores and uses the moniker to the link source, see
IOleLink::SetSourceMoniker.

See Also
IOleLink::SetSourceMoniker, IOleUILinkContainer, MkParseDisplayName, OleUIEditLinks

IOleLink::SetSourceMoniker

Specifies the new link source of a linked object using a moniker.

HRESULT SetSourceMoniker(

 IMoniker *pmk, //Pointer to a moniker identifying new link source
 REFCLSID rclsid //CLSID of link source
);

Parameters
pmk

[in] Pointer to the IMoniker interface on a moniker that identifies the new link source of the linked
object. A value of NULL breaks the link.

rclsid

[in] Specifies the CLSID of the link source that the linked object should use to access information
about the linked object when it is not bound.

Return Value
S_OK

The moniker was set successfully.

Remarks
Notes to Callers
Your container application can call IOleLink::SetSourceMoniker when the end user changes the source
of a link or breaks a link. Note that this requires your container to use the MkParseDisplayName function
to create a moniker out of the display name that the end user enters. If you'd rather have the linked object
perform the parsing, your container can call IOleLink::SetSourceDisplayName instead of
IOleLink::SetSourceMoniker.

The end user changes the source of a link or breaks a link using the Links dialog box. If you use the
OleUIEditLinks function to display the Links dialog box, you must implement the IOleUILinkContainer
interface. The dialog box calls your implementations of IOleUILinkContainer::SetLinkSource and
IOleUILinkContainer::CancelLink; your implementation of these methods can call
IOleLink::SetSourceMoniker.

If the linked object is currently bound to its link source, the linked object's implementation of
IOleLink::SetSourceMoniker closes the link before changing the moniker.

Notes on Provided Implementation
The IOleLink contract does not specify how the linked object stores or uses the link source moniker. The
provided implementation stores the absolute moniker specified when the link is created or when the
moniker is changed; it then computes and stores a relative moniker. Future implementations might
manage monikers differently to provide better moniker tracking. The absolute moniker provides the
complete path to the link source. The linked object uses this absolute moniker and the moniker of the
compound document to compute a relative moniker that identifies the link source relative to the
compound document that contains the link.

pmkCompoundDoc->RelativePathTo(pmkAbsolute, ppmkRelative)

When binding to the link source, the linked object first tries to bind using the relative moniker. If that fails,
it tries to bind the absolute moniker.

When the linked object successfully binds using either the relative or the absolute moniker, it
automatically updates the other moniker. The linked object also updates both monikers when it is bound
to the link source and it receives a rename notification through the IAdviseSink::OnRename method. A
container application can also use the IOleLink::SetSourceDisplayName method to change a link's
moniker.

The linked object's implementation of IPersistStorage::Save saves both the relative and the absolute
moniker.

See Also
IOleLink::GetSourceMoniker, IOleLink::SetSourceDisplayName, IOleUILinkContainer,
OleUIEditLinks

IOleLink::SetUpdateOptions

Specifies how often a linked object should update its cached data.

HRESULT SetUpdateOptions(

 DWORD dwUpdateOpt //Update option
);

Parameter
dwUpdateOpt

[in] Specifies how often a linked object should update its cached data. The legal values for
dwUpdateOpt are taken from the enumeration OLEUPDATE.

Return Values
This method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The update option was successfully set.

Remarks
Notes to Callers
Your container application should call IOleLink::SetUpdateOptions when the end user changes the
update option for a linked object.

The end user selects the update option for a linked object using the Links dialog box. If you use the
OleUIEditLinks function to display this dialog box, you must implement the IOleUILinkContainer
interface. The dialog box calls your IOleUILinkContainer::SetLinkUpdateOptions method to specify the
update option chosen by the end user. Your implementation of this method should call the
IOleLink::SetUpdateOptions method to pass the selected option to the linked object.

Notes on Provided Implementation
The default update option is OLEUDPATE_ALWAYS. The linked object's implementation of
IPersistStorage::Save saves the current update option.

If OLEUDPATE_ALWAYS is specified as the update option, the linked object updates the link's caches in
the following situations:

· When the update option is changed from manual to automatic, if the link source is running.
· Whenever the linked object binds to the link source.
· Whenever the link source is running and the linked object's IOleObject::Close,

IPersistStorage::Save, or IAdviseSink::OnSave implementations are called.

For both manual and automatic links, the linked object updates the cache whenever the container
application calls IOleObject::Update or IOleLink::Update.

See Also

IOleObject::Update, IOleLink::GetUpdateOptions, IOleLink::Update, IOleUILinkContainer,
OleUIEditLinks

IOleLink::UnbindSource

Deactivates the connection between a linked object and its link source.

HRESULT UnbindSource(void);

Return Value
S_OK

The connection was deactivated.

Remarks
You typically do not call IOleLink::UnbindSource directly. When it's necessary to deactivate the
connection to the link source, your container typically calls IOleObject::Close or IUnknown::Release;
the linked object's implementation of these methods calls IOleLink::UnbindSource. The linked object's
IAdviseSink::OnClose implementation also calls IOleLink::UnbindSource.

Notes on Provided Implementation
The linked object's implementation of IOleLink::UnbindSource does nothing if the link source is not
currently bound. If the link source is bound, IOleLink::UnbindSource calls the link source's
IOleObject::Unadvise and IDataObject::DUnadvise implementations to delete the advisory connections
to the link source. The IOleLink::UnbindSource method also calls the compound document's
IOleClientSite::LockContainer implementation to unlock the containing compound document. This
undoes the lock on the container and the advisory connections that were established in
IOleLink::BindToSource. IOleLink::UnbindSource releases all the linked object's interface pointers to
the link source.

See Also
IAdviseSink::OnClose, IDataObject::DUnadvise, IOleObject::Close, IOleObject::Unadvise,
IOleLink::BindToSource

IOleLink::Update

Updates the compound document's cached data for a linked object. This involves binding to the link
source, if it is not already bound.

HRESULT Update(

 IBindCtx *pbc //Pointer to bind context to be used
);

Parameter
pbc

[in] Pointer to the IBindCtx interface on the bind context to be used in binding the link source. This
parameter can be NULL. The bind context caches objects bound during the binding process, contains
parameters that apply to all operations using the bind context, and provides the means by which the
binding implementation should retrieve information about its environment. For more information, see
IBindCtx.

Return Values
S_OK

All caches were updated successfully.
CACHE_E_NOCACHE_UPDATED

The bind operation worked but no caches were updated.
CACHE_S_SOMECACHES_NOTUPDATED

The bind operation worked but not all caches were updated.
OLE_E_CANT_BINDTOSOURCE

Unable to bind to the link source.

Remarks
Notes to Callers
Your container application should call IOleLink::Update if the end user updates the cached data for a
linked object.

The end user can update the cached data for a linked object by choosing the Update Now button in the
Links dialog box. If you use the OleUIEditLinks function to display the Links dialog box, you must
implement the IOleUILinkContainer interface. The dialog box calls your implementations of
IOleUILinkContainer::UpdateLink when the end user chooses the Update Now button. Your
implementation of that method can call IOleLink::Update.

Your container application can also call IOleObject::Update to update a linked object, because that
method ¾ when called on a linked object ¾ calls IOleLink::Update.

This method updates both automatic links and manual links. For manual links, calling IOleLink::Update
or IOleObject::Update is the only way to update the caches. For more information on automatic and
manual links, see IOleLink::SetUpdateOptions.

Notes on Provided Implementation
If pbc is non-NULL, the linked object's implementation of IOleLink::Update calls
IBindCtx::RegisterObjectBound to register the bound link source. This ensures that the link source
remains running until the bind context is released.

The current caches are left intact if the link source cannot be bound.

See Also
IBindCtx::RegisterObjectBound, IOleLink::SetUpdateOptions, IOleObject::Update,
IOleUILinkContainer, OleUIEditLinks

IOleObject

The IOleObject interface is the principal means by which an embedded object provides basic functionality
to, and communicates with, its container.

When to Implement
An object application must implement this interface, along with at least IDataObject and IPersistStorage,
for each type of embedded object that it supports. Although this interface contains 21 methods, only three
are nontrivial to implement and must be fully implemented: DoVerb, SetHostNames, and Close. Six of
the methods provide optional functionality, which, if not desired, can be implemented to return
E_NOTIMPL: SetExtent, InitFromData, GetClipboardData, SetColorScheme, SetMoniker, and
GetMoniker. The latter two methods are useful mainly for enabling links to embedded objects.

When to Use
Call the methods of this interface to enable a container to communicate with an embedded object. A
container must call DoVerb to activate an embedded object, SetHostNames to communicate the names
of the container application and container document, and Close to move an object from a running to a
loaded state. Calls to all other methods are optional.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IOleObject Methods Description
SetClientSite Informs object of its client site in

container.
GetClientSite Retrieves object's client site.
SetHostNames Communicates names of container

application and container
document.

Close Moves object from running to
loaded state.

SetMoniker Informs object of its moniker.
GetMoniker Retrieves object's moniker.
InitFromData Initializes embedded object from

selected data.
GetClipboardData Retrieves a data transfer object

from the Clipboard.
DoVerb Invokes object to perform one of its

enumerated actions ("verbs").
EnumVerbs Enumerates actions ("verbs") for

an object.
Update Updates an object.
IsUpToDate Checks if object is up to date.
GetUserClassID Returns an object's class identifier.
GetUserType Retrieves object's user-type name.

SetExtent Sets extent of object's display area.
GetExtent Retrieves extent of object's display

area.
Advise Establishes advisory connection

with object.
Unadvise Destroys advisory connection with

object.
EnumAdvise Enumerates object's advisory

connections.
GetMiscStatus Retrieves status of object.
SetColorScheme Recommends color scheme to

object application.

IOleObject::Advise

Establishes an advisory connection between a compound document object and the calling object's advise
sink, through which the calling object receives notification when the compound document object is
renamed, saved, or closed.

HRESULT Advise(

 IAdviseSink *pAdvSink, //Pointer to advisory sink
 DWORD *pdwConnection //Pointer to a token
);

Parameters
pAdvSink

[in] Pointer to the IAdviseSink interface on the advise sink of the calling object.
pdwConnection

[out] Pointer to a DWORD token that can be passed to IOleObject::Unadvise to delete the advisory
connection.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

Advisory connection is successfully established.

Remarks
The Advise method sets up an advisory connection between an object and its container, through which
the object informs the container's advise sink of close, save, rename, and link-source change events in
the object. A container calls this method, normally as part of initializing an object, to register its advisory
sink with the object. In return, the object sends the container compound-document notifications by calling
IAdviseSink or IAdviseSink2.

If container and object successfully establish an advisory connection, the object receiving the call returns
a nonzero value through pdwConnection to the container. If the attempt to establish an advisory
connection fails, the object returns zero. To delete an advisory connection, the container calls
IOleObject::Unadvise and passes this nonzero token back to the object.

An object can delegate the job of managing and tracking advisory events to an OLE advise holder, to
which you obtain a pointer by calling CreateOleAdviseHolder. The returned IOleAdviseHolder interface
has three methods for sending advisory notifications, as well as Advise, Unadvise, and EnumAdvise
methods that are identical to those for IOleObject. Calls to IOleObject:Advise, Unadvise, or
EnumAdvise are delegated to corresponding methods in the advise holder.

To destroy the advise holder, simply call Release on the IOleAdviseHolder interface.

See Also
CreateOleAdviseHolder, IOleObject::UnAdvise, IOleObject::EnumAdvise,
IOleAdviseHolder::Advise

IOleObject::Close

Changes an embedded object from the running to the loaded state. Disconnects a linked object from its
link source.

HRESULT Close(

 DWORD dwSaveOption //Indicates whether to save object before closing
);

Parameter
dwSaveOption

[in] DWORD that indicates whether the object is to be saved as part of the transition to the loaded
state. Valid values are taken from the enumeration OLECLOSE.

Note The OLE 2 user model recommends that object applications do not prompt users before
saving linked or embedded objects, including those activated in place. This policy represents a
change from the OLE 1 user model, in which object applications always prompt the user to decide
whether to save changes.

Return Values
S_OK

The object closed successfully.
OLE_E_PROMPTSAVECANCELLED

The user was prompted to save but chose the Cancel button from the prompt message box.

Remarks
Notes to Callers
A container application calls IOleObject::Close when it wants to move the object from a running to a
loaded state. Following such a call, the object still appears in its container but is not open for editing.
Calling IOleObject::Close on an object that is loaded but not running has no effect. Closing a linked
object simply means disconnecting it.

Notes to Implementers
Upon receiving a call to IOleObject::Close, a running object should do the following:

· If the object has been changed since it was last opened for editing, it should request to be saved, or
not, according to instructions specified in dwSaveOption. If the option is to save the object, then it
should call its container's IOleClientSite::SaveObject interface.

· If the object has IDataObject::DAdvise connections with ADVF_DATAONSTOP flags, then it should
send an OnDataChange notification. See IDataObject::DAdvise for details.

· If the object currently owns the Clipboard, it should empty it by calling OleFlushClipboard.
· If the object is currently visible, notify its container by calling IOleClientSite::OnShowWindow with

the fshow argument set to FALSE.

· Send IAdvise::OnClose notifications to appropriate advise sinks.
· Finally, forcibly cut off all remoting clients by calling CoDisconnectObject.

If the object application is a local server (an EXE rather than a DLL), closing the object should also shut
down the object application unless the latter is supporting other running objects or has another reason to
remain in the running state. Such reasons might include the presence of IClassFactory::LockServer
locks, end-user control of the application, or the existence of other open documents requiring access to
the application.

Calling IOleObject::Close on a linked object disconnects it from, but does not shut down, its source
application. A source application that is visible to the user when the object is closed remains visible and
running after the disconnection and does not send an OnClose notification to the link container.

See Also
CoDisconnectObject, IAdviseSink::OnClose, IClassFactory::LockServer, IDataObject::DAdvise,
IOleClientSite::OnShowWindow, IOleClientSite::SaveObject, OLECLOSE, OleFlushClipboard

IOleObject::DoVerb

Requests an object to perform an action in response to an end-user's action. The possible actions are
enumerated for the object in IOleObject::EnumVerbs.

HRESULT DoVerb(

 LONG iVerb, //Value representing verb to be performed
 LPMSG lpmsg, //Pointer to structure that describes Windows message
 IOleClientSite *pActiveSite, //Pointer to active client site
 LONG lindex, //Reserved
 HWND hwndParent, //Handle of window containing the object
 LPCRECT lprcPosRect //Pointer to object's display rectangle
);

Parameters
iVerb

[in] Number assigned to the verb in the OLEVERB structure returned by IOleObject::EnumVerbs.
lpmsg

[in] Pointer to the MSG structure describing the event (such as a double-click) that invoked the verb.
The caller should pass the MSG structure unmodified, without attempting to interpret or alter the
values of any of the fields of lpmsg.

pActiveSite

[in] Pointer to the IOleClientSite interface on the object's active client site, where the event occurred
that invoked the verb.

lindex

[in] Reserved for future use; must be zero.
hwndParent

[in] Handle of the document window containing the object. This and lprcPosRect together make it
possible to open a temporary window for an object, where hwndParent is the parent window in which
the object's window is to be displayed, and lprcPosRect defines the area available for displaying the
object window within that parent. A temporary window is useful, for example, to a multimedia object
that opens itself for playback but not for editing.

lprcPosRect

[in] Pointer to the RECT structure containing the coordinates, in pixels, that define an object's
bounding rectangle in hwndParent. This and hwndParent together enable opening multimedia objects
for playback but not for editing.

Return Values
S_OK

Object successfully invoked specified verb.
OLE_E_NOT_INPLACEACTIVE

iVerb set to OLEIVERB_UIACTIVATE or OLEIVERB_INPLACEACTIVATE and object is not already

visible.
OLE_E_CANT_BINDTOSOURCE

The object handler or link object cannot connect to the link source.
DV_E_LINDEX

Invalid lindex.
OLEOBJ_S_CANNOT_DOVERB_NOW

The verb is valid, but in the object's current state it cannot carry out the corresponding action.
OLEOBJ_S_INVALIDHWND

DoVerb was successful but hwndParent is invalid.
OLEOBJ_E_NOVERBS

The object does not support any verbs.
OLEOBJ_S_INVALIDVERB

Object does not recognize a positive verb number. Verb is treated as OLEIVERB_PRIMARY.
MK_E_CONNECT

Link source is across a network that is not connected to a drive on this machine.
OLE_E_CLASSDIFF

Class for source of link has undergone a conversion.
E_NOTIMPL

Object does not support in-place activation or does not recognize a negative verb number.

Remarks
A "verb" is an action that an OLE object takes in response to a message from its container. An object's
container, or a client linked to the object, normally calls IOleObject::DoVerb in response to some end-
user action, such as double-clicking on the object. The various actions that are available for a given object
are enumerated in an OLEVERB structure, which the container obtains by calling
IOleObject::EnumVerbs. IOleObject::DoVerb matches the value of iVerb against the iVerb member of
the structure to determine which verb to invoke.

Through IOleObject::EnumVerbs, an object, rather than its container, determines which verbs (i.e.,
actions) it supports. OLE 2 defines seven verbs that are available, but not necessarily useful, to all
objects. In addition, each object can define additional verbs that are unique to it. The following table
describes the verbs defined by OLE:

Verb Description
OLEIVERB_PRIMARY (0L) Specifies the action that occurs

when an end user double-clicks
the object in its container. The
object, not the container,
determines this action. If the object
supports in-place activation, the
primary verb usually activates the
object in place.

OLEIVERB_SHOW (-1) Instructs an object to show itself for
editing or viewing. Called to display
newly inserted objects for initial

editing and to show link sources.
Usually an alias for some other
object-defined verb.

OLEIVERB_OPEN (-2) Instructs an object, including one
that otherwise supports in-place
activation, to open itself for editing
in a window separate from that of
its container. If the object does not
support in-place activation, this
verb has the same semantics as
OLEIVERB_SHOW.

OLEIVERB_HIDE (-3) Causes an object to remove its
user interface from the view.
Applies only to objects that are
activated in-place.

OLEIVERB_UIACTIVATE (-4) Activates an object in place, along
with its full set of user-interface
tools, including menus, toolbars,
and its name in the title bar of the
container window. If the object
does not support in-place
activation, it should return
E_NOTIMPL.

OLEIVERB_INPLACEACTIVATE (-
5)

Activates an object in place without
displaying tools, such as menus
and toolbars, that end users need
to change the behavior or
appearance of the object. Single-
clicking such an object causes it to
negotiate the display of its user-
interface tools with its container. If
the container refuses, the object
remains active but without its tools
displayed.

OLEIVERB_DISCARDUNDOSTATE
(-6)

Used to tell objects to discard any
undo state that they may be
maintaining without deactivating
the object.

Note to Callers
Containers call IOleObject::DoVerb as part of initializing a newly created object. Before making the call,
containers should first call IOleObject::SetClientSite to inform the object of its display location and
IOleObject::SetHostNames to alert the object that it is an embedded object and to trigger appropriate
changes to the user interface of the object application in preparation for opening an editing window.

Like the OleActivate function in OLE 1, IOleObject::DoVerb automatically runs the OLE server
application. If an error occurs during verb execution, the object application is shut down.

If an end user invokes a verb by some means other than selecting a command from a menu (say, by
double-clicking or, more rarely, single-clicking an object), the object's container should pass a pointer
(lpmsg) to a Windows MSG structure containing the appropriate message. For example, if the end user
invokes a verb by double-clicking the object, the container should pass a MSG structure containing
WM_LBUTTONDBLCLK, WM_MBUTTONDBLCLK, or WM_RBUTTONDBLCLK. If the container passes
no message, lpmsg should be set to NULL. The object should ignore the hwnd member of the passed

MSG structure, but can use all the other MSG members.

If the object's embedding container calls IOleObject::DoVerb, the client-site pointer (pClientSite) passed
to DoVerb is the same as that of the embedding site. If the embedded object is a link source, the pointer
passed to DoVerb is that of the linking client's client site.

When IOleObject::DoVerb is invoked on an OLE link, it may return OLE_E_CLASSDIFF or
MK_CONNECTMANUALLY. The link object returns the former error when the link source has been
subjected to some sort of conversion while the link was passive. The link object returns the latter error
when the link source is located on a network drive that is not currently connected to the caller's computer.
The only way to connect a link under these conditions is to first call QueryInterface, ask for IOleLink,
allocate a bind context, and run the link source by calling IOleLink::BindToSource.

Container applications that do not support general in-place activation can still use the hwndParent and
lprcPosRect parameters to support in-place playback of multimedia files. Containers must pass valid
hwndParent and lprcPosRect parameters to IOleObject::DoVerb.

Some code samples pass a lindex value of -1 instead of zero. The value -1 works but should be avoided
in favor of zero. The lindex parameter is a reserved parameter, and for reasons of consistency Microsoft
recommends assigning a zero value to all reserved parameters.

Notes to Implementers
In addition to the above verbs, an object can define in its OLEVERB structure additional verbs that are
specific to itself. Positive numbers designate these object-specific verbs. An object should treat any
unknown positive verb number as if it were the primary verb and return OLE_S_INVALIDVERB to the
calling function. The object should ignore verbs with negative numbers that it does not recognize and
return E_NOTIMPL.

If the verb being executed places the object in the running state, you should register the object in the
Running Object Table (ROT) even if its server application doesn't support linking. Registration is important
because the object at some point may serve as the source of a link in a container that supports links to
embeddings. Registering the object with the ROT enables the link client to get a pointer to the object
directly, instead of having to go through the object's container. To perform the registration, call
IOleClientSite::GetMoniker to get the full moniker of the object, call the GetRunningObjectTable
function to get a pointer to the ROT, and then call IRunningObjectTable::Register.

Note When the object leaves the running state, remember to revoke the object's registration with
the ROT by calling IOleObject::Close. If the object's container document is renamed while the object
is running, you should revoke the object's registration and re-register it with the ROT, using its new
name. The container should inform the object of its new moniker either by calling
IOleObject::SetMoniker or by responding to the object's calling IOleClientSite::GetMoniker.

When showing a window as a result of DoVerb, it is very important for the object to explicitly call
SetForegroundWindow on its editing window. This ensures that the object's window will be visible to the
user even if another process originally obscured it. For more information about SetForegroundWindow
and SetActiveWindow, see the Win32 SDK.

See Also
GetRunningObjectTable, IOleClientSite::GetMoniker, IOleLink::BindToSource, IOleObject::Close,
IOleObject::EnumVerbs, IOleObject::GetMoniker, IOleObject::SetMoniker,
IRunningObjectTable::Register, OleRun, SetForegroundWindow, SetActiveWindow in Win32

IOleObject::EnumAdvise

Retrieves a pointer to an enumerator that can be used to enumerate the advisory connections registered
for an object, so a container can know what to release prior to closing down.

HRESULT EnumAdvise(

 IEnumSTATDATA **ppenumAdvise //Indirect pointer to enumerator object
);

Parameter
ppenumAdvise

[out] When there are existing advisory connections, indirect pointer to the location of the
IEnumSTATDATA interface on the enumerator object. If the object does not have any advisory
connections, the value will be NULL. NULL will also be the value if the method returns an error. Each
time an object receives a successful call to EnumAdvise, it must increase the reference count on the
pointer it returns. It is the caller's responsibility to call Release when it is done with the pointer.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

Enumerator returned successfully.
E_NOTIMPL

EnumAdvise is not implemented.

Remarks
The EnumAdvise method supplies an enumerator that provides a way for containers to keep track of
advisory connections registered for their objects. A container normally would call this function so that it
can instruct an object to release each of its advisory connections prior to closing down.

The enumerator to which you get access through IOleObject::EnumAdvise enumerates items of type
STATDATA. Upon receiving the pointer, the container can then loop through STATDATA and call
IOleObject::Unadvise for each enumerated connection.

The usual way to implement this function is to delegate the call to the IOleAdviseHolder interface. Only
the pAdvise and dwConnection members of STATDATA are relevant for IOleObject::EnumAdvise.

See Also
IOleObject::Advise, IOleObject::UnAdvise

IOleObject::EnumVerbs

Exposes a pull-down menu listing the verbs available for an object in ascending order by verb number.

HRESULT EnumVerbs(

 IEnumOleVerb **ppEnumOleVerb //Indirect pointer to storage of enumerator object
);

Parameter
ppEnumOleVerb

[out] When successful, indirect pointer to where the IEnumOLEVERB interface on the new
enumerator should be returned. Each time an object receives a call to EnumVerbs, it must increase
the reference count on the pointer the method returns. It is the caller's responsibility to call Release
when it is done with the pointer. If an error is returned, this parameter must be set to NULL.

Return Values
S_OK

Verb(s) enumerated successfully.
OLE_S_USEREG

Delegate to the default handler to use the entries in the registry to provide the enumeration.
OLEOBJ_E_NOVERBS

Object does not support any verbs.

Remarks
Notes to Callers
Containers call this method to expose a pull-down menu of the verbs available for their embedded
objects. You may want your container to call IOleObject::EnumVerbs each and every time such a menu
is selected in order to enable such objects as media clips, whose verbs may change while they are
running, to update their menus. The default verb for a media clip, for example, changes from "Play"
before it is activated to "Stop" once it is running.

Notes to Implementers
The default handler's implementation of IOleObject::EnumVerbs uses the registry to enumerate an
object's verbs. If an object application is to use the default handler's implementation, it should return
OLE_S_USEREG.

The enumeration returned is of type IEnumOLEVERB:

typedef Enum < OLEVERB > IEnumOLEVERB;

where OLEVERB is defined as:

typedef struct tagOLEVERB
{
 LONG iVerb;

 LPOLESTR lpszVerbName;
 DWORD fuFlags;
 DWORD grfAttribs;
} OLEVERB;

The following table describes the members of the OLEVERB structure:

OLEVERB Member Description
iVerb Verb number being enumerated. If the object

supports OLEIVERB_OPEN,
OLEIVERB_SHOW and/or OLEIVERB_HIDE
(or another predefined verb), these will be the
first verbs enumerated, since they have the
lowest verb numbers.

lpszVerbName Name of the verb.
In Windows, this value, along with optional
embedded ampersand characters to indicate
accelerator keys, can be passed to the
AppendMenu function.
On the Macintosh, the following
metacharacters may be passed along with this
value:

· ! marks the menu item with the
subsequent character

· < sets the character style of the item
· (disables the item.

The metacharacters / and ^ are not permitted.
fuFlags In Windows, a group of flags taken from the

flag constants beginning with MF_ defined in
AppendMenu. Containers should use these
flags in building an object's verb menu. All
Flags defined in AppendMenu are supported
except for:
· MF_BITMAP
· MF_OWNERDRAW
· MF_POPUP

grfAttribs In Windows, a group of flag bits taken from the
enumeration OLEVERBATTRIB. The flag
OLEVERBATTRIB_NEVERDIRTIES indicates
that executing this verb will not cause the
object to become dirty and is therefore in need
of saving to persistent storage.
OLEVERBATTRIB_ONCONTAINERMENU
indicates that this verb should be placed on the
container's menu of object verbs when the
object is selected. OLEIVERB_HIDE,
OLEIVERB_SHOW, and OLEIVERB_OPEN
never have this value set.

For more information on the Windows AppendMenu function, see the Microsoft Win32 SDK.

See Also
IOleObject::DoVerb, OleRegEnumVerbs

IOleObject::GetClientSite

Obtains a pointer to an embedded object's client site.

HRESULT GetClientSite(

 IOleClientSite **ppClientSite //Indirect pointer to storage of object's client site
);

Parameter
ppClientSite

[out] Indirect pointer to an IOleClientSite interface on the object's client site. If an object does not yet
know its client site, or an error has occurred, this parameter must be set to NULL. Each time an object
receives a call to GetClientSite, it must increase the reference count on the pointer the method
returns. It is the caller's responsibility to call Release when it is done with the pointer.

Return Value
S_OK

Client site pointer returned successfully.

Remarks
Link clients most commonly call the IOleObject::GetClientSite method in conjunction with the
IOleClientSite::GetContainer method to traverse a hierarchy of nested objects. A link client calls
IOleObject::GetClientSite to get a pointer to the link source's client site. The client then calls
IOleClientSite::GetContainer to get a pointer to the link source's container. Finally, the client calls
IOleContainer::QueryInterface to get IOleObject and IOleObject::GetClientSite to get the container's
client site within its container. By repeating this sequence of calls, the caller can eventually retrieve a
pointer to the master container in which all the other objects are nested.

Notes to Callers
The returned client-site pointer will be NULL if an embedded object has not yet been informed of its client
site. This will be the case with a newly loaded or created object when a container has passed a NULL
client-site pointer to one of the object-creation helper functions but has not yet called
IOleObject::SetClientSite as part of initializing the object.

See Also
IOleObject::SetClientSite

IOleObject::GetClipboardData

Retrieves a data object containing the current contents of the embedded object on which this method is
called. Using the pointer to this data object, it is possible to create a new embedded object with the same
data as the original.

HRESULT GetClipboardData(

 DWORD dwReserved, //Reserved
 IDataObject **ppDataObject //Indirect pointer to storage of data object
);

Parameters
dwReserved

[in] Reserved for future use; must be zero.
ppDataObject

[out] Indirect pointer to the IDataObject interface on the data object. If an error is returned, this
parameter must be set to NULL. Each time an object receives a call to GetClipboardData, it must
increase the reference count on the pointer that the method returns. It is the caller's responsibility to
call Release when it is done with the pointer.

Return Values
S_OK

The data transfer object is successfully returned.
E_NOTIMPL

GetClipboardData is not supported.
OLE_E_NOTRUNNING

The object is not running.

Remarks
You can use the GetClipboardData method to convert a linked object to an embedded object, in which
case the container application would call IOleObject::GetClipboardData and then pass the data
received to OleCreateFromData. This method returns a pointer to a data object that is identical to what
would have been passed to the Clipboard by a standard copy operation.

Notes to Callers
If you want a stable snapshot of the current contents of an embedded object, call
IOleObject::GetClipboardData. Should the data change, you will need to call the function again for an
updated snapshot. If you want the caller to be informed of changes that occur to the data, call
IDataObject::QueryInterface, then call IDataObject::DAdvise.

Notes to Implementers
If you implement this function, you must return an IDataObject pointer for an object whose data will not
change.

See Also
IDataObject, IOleObject::InitFromData, IUnknown::QueryInterface, OleCreateFromData

IOleObject::GetExtent
Retrieves a running object's current display size.

HRESULT GetExtent(

 DWORD dwDrawAspect, //Value indicating object aspect
 SIZEL *psizel //Pointer to storage of object size limit
);

Parameters
dwDrawAspect

[in] Value indicating the aspect of the object whose limit is to be retrieved; the value is obtained from
the enumerations DVASPECT and from DVASPECT2. Note that newer objects and containers that
support optimized drawing interfaces support the DVASPECT2 enumeration values. Older objects
and containers that do not support optimized drawing interfaces may not support DVASPECT2. The
most common value for this method is DVASPECT_CONTENT, which specifies a full rendering of the
object within its container.

psizel

[out] Pointer to where the object's size is to be returned.

Return Values
This method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Extent information successfully returned.

Remarks
A container calls IOleObject::GetExtent on a running object to retrieve its current display size. If the
container can accommodate that size, it will normally do so because the object, after all, knows what size
it should be better than the container does. A container normally makes this call as part of initializing an
object.

The display size returned by IOleObject::GetExtent may differ from the size last set by
IOleObject::SetExtent because the latter method dictates the object's display space at the time the
method is called but does not necessarily change the object's native size, as determined by its
application.

Note This method must return the same size as DVASPECT_CONTENT for all the new aspects in
DVASPECT2. IViewObject2::GetExtent must do the same thing.

If one of the new aspects is requested in dwAspect, this method can either fail or return the same
rectangle as for the DVASPECT_CONTENT aspect.

Notes to Callers
Because a container can make this call only to a running object, the container must instead call

IViewObject2::GetExtent if it wants to get the display size of a loaded object from its cache.

Notes to Implementers
Implementation consists of filling the sizel structure with an object's height and width.

See Also
DVASPECT, DVASPECT2, IOleObject::SetExtent, IViewObject2::GetExtent

IOleObject::GetMiscStatus

Returns a value indicating the status of an object at creation and loading.

HRESULT GetMiscStatus(

 DWORD dwAspect, //Value indicating object aspect
 DWORD *pdwStatus //Pointer to storage of status information
);

Parameters
dwAspect

[in] Value indicating the aspect of an object about which status information is being requested. The
value is obtained from the enumeration DVASPECT (see "FORMATETC Data Structure").

pdwStatus

[out] Pointer to where the status information is returned. May not be NULL.

Return Values
S_OK

Status information returned successfully.
OLE_S_USEREG

Delegate the retrieval of miscellaneous status information to the default handler's implementation of
this method.

CO_E_CLASSNOTREG

There is no CLSID registered for the object.
CO_E_READREGDB

Error accessing the registry.

Remarks
A container normally calls IOleObject::GetMiscStatus when it creates or loads an object in order to
determine how to display the object and what types of behaviors it supports.

Objects store status information in the registry. If the object is not running, the default handler's
implementation of IOleObject::GetMiscStatus retrieves this information from the registry. If the object is
running, the default handler invokes IOleObject::GetMiscStatus on the object itself.

The information that is actually stored in the registry varies with individual objects. The status values to be
returned are defined in the enumeration OLEMISC.

Notes to Implementers
Implementation normally consists of delegating the call to the default handler.

See Also
DVASPECT, FORMATETC, OLEMISC

IOleObject::GetMoniker

Retrieves an embedded object's moniker, which the caller can use to link to the object.

HRESULT GetMoniker(

 DWORD dwAssign, //Specifies how moniker is assigned to object
 DWORD dwWhichMoniker, //Specifies which moniker is assigned
 IMoniker **ppmk //Indirect pointer to location of object's moniker
);

Parameters
dwAssign

[in] Determines how the moniker is assigned to the object. Depending on the value of dwAssign,
IOleObject::GetMoniker does one of the following:
· Obtains a moniker only if one has already been assigned,
· Forces assignment of a moniker, if necessary, in order to satisfy the call, or
· Obtains a temporary moniker.
Values for dwAssign are specified in the enumeration OLEGETMONIKER.

Note You cannot pass OLEGETMONIKER_UNASSIGN when calling
IOleObject::GetMoniker. This value is valid only when calling IOleClientSite::GetMoniker.

dwWhichMoniker

[in] Specifies the form of the moniker being requested. Valid values are taken from the enumeration
OLEWHICHMK.

ppmk

[out] Indirect pointer to the location of the IMonikerinterface on the object's moniker. If an error is
returned, this parameter must be set to NULL. Each time an object receives a call to GetMoniker, it
must increase the reference count on the pointer the method returns. It is the caller's responsibility to
call Release when it is done with the pointer.

Remarks
The IOleObject::GetMoniker method returns an object's moniker. Like IOleObject::SetMoniker, this
method is important only in the context of managing links to embedded objects and even in that case is
optional. A potential link client that requires an object's moniker to bind to the object can call this method
to obtain that moniker. The default implementation of IOleObject::GetMoniker calls the
IOleClientSite::GetMoniker, returning E_UNEXPECTED if the object is not running or does not have a
valid pointer to a client site.

See Also
CreateItemMoniker, IOleClientSite::GetMoniker, IOleObject::SetMoniker, OLEGETMONIKER,
OLEWHICHMK

IOleObject::GetUserClassID

Returns an object's class identifier, the CLSID corresponding to the string identifying the object to an end
user.

HRESULT GetUserClassID(

 CLSID *pClsid //Pointer to the class identifier
);

Parameter
pClsid

[out] Pointer to the class identifier (CLSID) to be returned. An object's CLSID is the binary equivalent
of the user-type name returned by IOleObject::GetUserType.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

CLSID returned successfully.

Remarks
GetUserClassID returns the CLSID associated with the object in the registration database. Normally, this
value is identical to the CLSID stored with the object, which is returned by IPersist::GetClassID. For
linked objects, this is the CLSID of the last bound link source. If the object is running in an application
different from the one in which it was created and for the purpose of being edited is emulating a class that
the container application recognizes, the CLSID returned will be that of the class being emulated rather
than that of the object's own class.

See Also
IOleObject::GetUserType, IPersist::GetClassID, OleDoAutoConvert, OleGetAutoConvert,
OleSetAutoConvert, GetConvertStg, SetConvertStg

IOleObject::GetUserType

Retrieves the user-type name of an object for display in user-interface elements such as menus, list
boxes, and dialog boxes.

HRESULT GetUserType(

 DWORD dwFormOfType, //Specifies form of type name
 LPOLESTR *pszUserType //Indirect pointer to storage of string
);

Parameters
dwFormOfType

[in] Value specifying the form of the user-type name to be presented to users. Valid values are
obtained from the USERCLASSTYPE enumeration.

pszUserType

[out] Indirect pointer to where the user-type string will be placed. The caller must free lpszUserType
using the current IMalloc instance. If an error is returned, this parameter must be set to NULL.

Return Values
S_OK

The object's user-type name is successfully returned.
OLE_S_USEREG

Delegate to the default handler's implementation using the registry to provide the requested
information.

Remarks
Containers call IOleObject::GetUserType in order to represent embedded objects in list boxes, menus,
and dialog boxes by their normal, user-recognizable names. Examples include "Word Document," "Excel
Chart," and "Paintbrush Object." The information returned by IOleObject::GetUserType is the user-
readable equivalent of the binary class identifier returned by IOleObject::GetUserClassID.

Notes to Callers
The default handler's implementation of IOleObject::GetUserType uses the object's class identifier (the
pClsid parameter returned by IOleObject::GetUserClassID) and the dwFormOfType parameter together
as a key into the registry. If an entry is found that matches the key exactly, then the user type specified by
that entry is returned. If only the CLSID part of the key matches, then the lowest-numbered entry available
(usually the full name) is used. If the CLSID is not found, or there are no user types registered for the
class, the user type currently found in the object's storage is used.

You should not cache the string returned from GetUserType. Instead, call this method each and every
time the string is needed. This guarantees correct results when the embedded object is being converted
from one type into another without the caller's knowledge. Calling this method is inexpensive because the
default handler implements it using the registry.

Notes to Implementers

You can use the implementation provided by the default handler by returning OLE_S_USEREG as your
application's implementation of this method. If the user type name is an empty string, the message
"Unknown Object" is returned.

You can call the OLE helper function OleRegGetUserType to return the appropriate user type.

See Also
IOleObject::SetHostNames, IOleObject::GetUserClassID, OleRegGetUserType,
ReadFmtUserTypeStg, USERCLASSTYPE

IOleObject::InitFromData

Initializes a newly created object with data from a specified data object, which can reside either in the
same container or on the Clipboard.

HRESULT InitFromData(

 IDataObject *pDataObject, //Pointer to data object
 BOOL fCreation, //Specifies how object is created
 DWORD dwReserved //Reserved
);

Parameters
pDataObject

[in] Pointer to the IDataObject interface on the data object from which the initialization data is to be
obtained. This parameter can be NULL, which indicates that the caller wants to know if it is worthwhile
trying to send data; that is, whether the container is capable of initializing an object from data passed
to it. The data object to be passed can be based on either the current selection within the container
document or on data transferred to the container from an external source.

fCreation

[in] TRUE indicates the container is inserting a new object inside itself and initializing that object with
data from the current selection; FALSE indicates a more general programmatic data transfer, most
likely from a source other than the current selection.

dwReserved

[in] Reserved for future use; must be zero.

Return Values
S_OK

If pDataObject is not NULL, the object successfully attempted to initialize itself from the provided data;
if pDataObject is NULL, the object is able to attempt a successful initialization.

S_FALSE

If pDataObject is not NULL, the object made no attempt to initialize itself; if pDataObject is NULL, the
object cannot attempt to initialize itself from the data provided.

E_NOTIMPL

The object does not support InitFromData.
OLE_E_NOTRUNNING

The object is not running and therefore cannot perform the operation.

Remarks
This method enables a container document to insert within itself a new object whose content is based on
a current data selection within the container. For example, a spreadsheet document may want to create a
graph object based on data in a selected range of cells.

Using this method, a container can also replace the contents of an embedded object with data transferred

from another source. This provides a convenient way of updating an embedded object.

Notes to Callers
Following initialization, the container should call IOleObject::GetMiscStatus to check the value of the
OLEMISC_INSERTNOTREPLACE bit. If the bit is on, the new object inserts itself following the selected
data. If the bit is off, the new object replaces the selected data.

Notes to Implementers
A container specifies whether to base a new object on the current selection by passing either TRUE or
FALSE to the fCreation parameter.

If fCreation is TRUE, the container is attempting to create a new instance of an object, initializing it with
the selected data specified by the data object.

If fCreation is FALSE, the caller is attempting to replace the object's current contents with that pointed to
by pDataObject. The usual constraints that apply to an object during a paste operation should be applied
here. For example, if the type of the data provided is unacceptable, the object should fail to initialize and
return S_FALSE.

If the object returns S_FALSE, it cannot initialize itself from the provided data.

See Also
IOleObject::GetMiscStatus, IDataObject::SetData

IOleObject::IsUpToDate

Checks recursively whether or not an object is up to date.

HRESULT IsUpToDate();

Return Values
S_OK

Object is up to date.
S_FALSE

Object is not up to date.
OLE_E_UNAVAILABLE

Status of object cannot be determined in a timely manner.

Remarks
The IsUpToDate method provides a way for containers to check recursively whether or not all objects are
up to date. That is, when the container calls this method on the first object, the object in turn calls it for all
its own objects, and they in turn for all of theirs, until all objects have been checked.

Notes to Implementers
Because of the recursive nature of IOleObject:IsUpToDate, determining whether an object is out-of-date,
particularly one containing one or more other objects, can be as time-consuming as simply updating the
object in the first place. If you would rather avoid lengthy queries of this type, make sure that
IOleObject::IsUpToDate returns OLE_E_UNAVAILABLE. In cases where the object to be queried is
small and contains no objects itself, thereby making an efficient query possible, this method can return
either S_OK or S_FALSE.

See Also
IOleObject::UpDate

IOleObject::SetClientSite

Informs an embedded object of its display location, called a "client site," within its container.

HRESULT SetClientSite(

 IOleClientSite *pClientSite //Pointer to an embedded object's client site
);

Parameter
pClientSite

[in] Pointer to the IOleClientSite interface on the container application's client-site.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

Client site successfully set.

Remarks
Within a compound document, each embedded object has its own client site ¾ the place where it is
displayed and through which it receives information about its storage, user interface, and other resources.
IOleObject::SetClientSite is the only method enabling an embedded object to obtain a pointer to its
client site.

Notes to Callers
A container can notify an object of its client site either at the time the object is created or, subsequently,
when the object is initialized.

When creating or loading an object, a container may pass a client-site pointer (along with other
arguments) to one of the following helper functions: OleCreate, OleCreateFromFile,
OleCreateFromData or OleLoad. These helper functions load an object handler for the new object and
call IOleObject::SetClientSite on the container's behalf before returning a pointer to the new object.

Passing a client-site pointer informs the object handler that the client site is ready to process requests. If
the client site is unlikely to be ready immediately after the handler is loaded, you may want your container
to pass a NULL client-site pointer to the helper function. The NULL pointer says that that no client site is
available and thereby defers notifying the object handler of the client site until the object is initialized. In
response, the helper function returns a pointer to the object, but upon receiving that pointer the container
must call SetClientSite as part of initializing the new object.

Notes to Implementers
Implementation consists simply of incrementing the reference count on, and storing, the pointer to the
client site.

See Also
IOleClientSite, IOleObject::GetClientSite, OleCreate, OleCreateFromFile, OleCreateFromData,
OleLoad

IOleObject::SetColorScheme

Specifies the color palette that the object application should use when it edits the specified object.

HRESULT SetColorScheme(

 LOGPALETTE *pLogpal //Pointer to a structure
);

Parameter
pLogpal

[in] Pointer to a LOGPALETTE structure that specifies the recommended palette.

Return Values
S_OK

Color palette received successfully.
E_NOTIMPL

Object does not support setting palettes.
OLE_E_PALETTE

Invalid LOGPALETTE structure pointed to by lpLogPal.
OLE_E_NOTRUNNING

Object must be running to perform this operation.

Remarks
The IOleObject::SetColorScheme method sends the container application's recommended color palette
to the object application, which is not obliged to use it.

Notes to Implementers
Upon receiving the palette, the object application should:

1. Allocate and fill in its own LOGPALETTE structure with the colors specified in the container
application's LOGPALETTE structure.

2. Call CreatePalette to create a palette from the resulting LOGPALETTE structure. This palette can be
used to render objects and color menus as the user edits objects in the document.

The first palette entry in the LOGPALETTE structure specifies the foreground color recommended by the
container. The second palette entry specifies the recommended background color. The first half of the
remaining palette entries are fill colors and the second half are colors for the lines and text.

Container applications typically specify an even number of palette entries. If a container specifies an odd
number of entries, the object application should assume that the first half of the total entries plus one
designate fill colors, while the remainder designate line and text colors. For example, if there are five
entries, the first three should be interpreted as fill colors and the last two as line and text colors.

IOleObject::SetExtent
Informs an object of how much display space its container has assigned it.

HRESULT SetExtent(

 DWORD dwDrawAspect, //DVASPECT value
 SIZEL *psizel //Pointer to size limit for object
);

Parameters
dwDrawAspect

[in] DWORD that describes which form, or "aspect," of an object is to be displayed. The object's
container obtains this value from the enumeration DVASPECT (refer to the FORMATETC
enumeration). The most common aspect is DVASPECT_CONTENT, which specifies a full rendering
of the object within its container. An object can also be rendered as an icon, a thumbnail version for
display in a browsing tool, or a print version, which displays the object as it would be rendered using
the File Print command.

psizel

[in] Pointer to the size limit for the object.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The object has resized successfully.
OLE_E_NOTRUNNING

The object is not running.

Remarks
A container calls IOleObject::SetExtent when it needs to dictate to an embedded object the size at which
it will be displayed. Often, this call occurs in response to an end user resizing the object window. Upon
receiving the call, the object, if possible, should recompose itself gracefully to fit the new window.

Whenever possible, a container seeks to display an object at its finest resolution, sometimes called the
object's native size. All objects, however, have a default display size specified by their applications, and in
the absence of other constraints, this is the size they will use to display themselves. Since an object
knows its optimum display size better than does its container, the latter normally requests that size from a
running object by calling IOleObject::GetExtent. Only in cases where the container cannot
accommodate the value returned by the object does it override the object's preference by calling
IOleObject::SetExtent.

Notes to Callers
You can call SetExtent on an object only when the object is running. If a container resizes an object while
an object is not running, the container should keep track of the object's new size but defer calling
IOleObject::SetExtent until a user activates the object. If the OLEMISC_RECOMPOSEONRESIZE bit is
set on an object, its container should force the object to run before calling OleObject::SetExtent.

As noted above, a container may want to delegate responsibility for setting the size of an object's display
site to the object itself, by calling IOleObject::GetExtent.

Notes to Implementers
You may want to implement this method so that your object rescales itself to match as closely as possible
the maximum space available to it in its container.

If an object's size is fixed, that is, if it cannot be set by its container, OleObject::SetExtent should return
E_FAIL. This is always the case with linked objects, whose sizes are set by their link sources, not by their
containers.

See Also
IAdviseSink::OnViewChange, IOleObject::GetExtent, IViewObject2::GetExtent

IOleObject::SetHostNames

Provides an object with the name of its container application and the compound document in which it is
embedded.

HRESULT SetHostNames(

 LPCOLESTR szContainerApp, //Pointer to name of container application
 LPCOLESTR szContainerObj //Pointer to name of container document
);

Parameters
szContainerApp

[in] Pointer to the name of the container application in which the object is running.
szContainerObj

[in] Pointer to the name of the compound document that contains the object. If you do not wish to
display the name of the compound document, you can set this parameter to NULL.

Return Value
S_OK

Window title information set successfully.

Remarks
When a container initializes an embedded object, it calls this function to inform the object of the names of
both the container application and container document. When the object is opened for editing, it displays
these names in the title bar of its window.

Notes to Callers
Call SetHostNames only for embedded objects, because for linked objects, the link source supplies its
own separate editing window and title bar information.

Notes to Implementers
An object's application of SetHostNames should include whatever modifications to its user interface may
be appropriate to an object's embedded state. Such modifications typically will include adding and
removing menu commands and altering the text displayed in the title bar of the editing window.

The complete window title for an embedded object in an SDI container application or an MDI application
with a maximized child window should appear as follows:

<object application name> - <object short type> in <container document>

Otherwise, the title should be:

<object application name> - <container document>

The "object short type" refers to a form of an object's name short enough to be displayed in full in a list
box.

Since these identifying strings are not stored as part of the persistent state of the object,
IOleObject::SetHostNames must be called each time the object loads or runs.

See Also
IOleObject::GetUserType

IOleObject::SetMoniker

Notifies an object of its container's moniker, the object's own moniker relative to the container, or the
object's full moniker.

HRESULT SetMoniker(

 DWORD dwWhichMoniker, //Value specifying moniker being set
 IMoniker *pmk //Pointer to moniker
);

Parameters
dwWhichMoniker

[in] Value specifying which moniker is passed in pmk. Values are from the enumeration
OLEWHICHMK.

pmk

[in] Pointer to where to return the moniker.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

Moniker successfully set.

Remarks
A container that supports links to embedded objects must be able to inform an embedded object when its
moniker has changed. Otherwise, subsequent attempts by link clients to bind to the object will fail. The
IOleObject::SetMoniker method provides one way for a container to communicate this information.

The container can pass either its own moniker, an object's moniker relative to the container, or an object's
full moniker. In practice, if a container passes anything other than an object's full moniker, each object
calls the container back to request assignment of the full moniker, which the object requires to register
itself in the running object table.

The moniker of an object relative to its container is stored by the object handler as part of the object's
persistent state. The moniker of the object's container, however, must not be persistently stored inside the
object because the container can be renamed at any time.

Notes to Callers
A container calls IOleObject::SetMoniker when the container has been renamed, and the container's
embedded objects currently or can potentially serve as link sources. Containers call SetMoniker mainly in
the context of linking because an embedded object is already aware of its moniker. Even in the context of
linking, calling this method is optional because objects can call IOleClientSite::GetMoniker to force
assignment of a new moniker.

Note to Implementers
Upon receiving a call to SetMoniker, an object should register its full moniker in the running object table
and send OnRename notification to all advise sinks that exist for the object.

See Also
CreateItemMoniker, IAdviseSink::OnRename, IOleClientSite::GetMoniker, IOleObject::GetMoniker

IOleObject::Unadvise

Deletes a previously established advisory connection.

HRESULT Unadvise(

 DWORD dwConnection //Token
);

Parameter
dwConnection

[in] Contains a token of nonzero value, which was previously returned from IOleObject::Advise
through its pdwConnection parameter.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

Advisory connection deleted successfully.
OLE_E_NOCONNECTION

dwConnection does not represent a valid advisory connection.

Remarks
Normally, containers call IOleObject::Unadvise at shutdown or when an object is deleted. In certain
cases, containers can call this method on objects that are running but not currently visible as a way of
reducing the overhead of maintaining multiple advisory connections. The easiest way to implement this
method is to delegate the call to IOleAdviseHolder::Unadvise.

See Also
IOleObject::Advise, IOleObject::EnumAdvise, IOleAdviseHolder::Unadvise

IOleObject::Update

Updates an object handler's or link object's data or view caches.

HRESULT Update();

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

All caches are up to date.
OLE_E_CANT_BINDTOSOURCE

Cannot run object to get updated data. The object is for some reason unavailable to the caller.
CACHE_E_NOCACHE_UPDATED

No caches were updated.
CACHE_S_SOMECACHES_NOTUPDATED

Some caches were not updated.

Remarks
The Update method provides a way for containers to keep data updated in their linked and embedded
objects. A link object can become out-of-date if the link source has been updated. An embedded object
that contains links to other objects can also become out of date. An embedded object that does not
contain links cannot become out of date because its data is not linked to another source.

Notes to Implementers
When a container calls a link object's IOleObject::Update method, the link object finds the link source
and gets a new presentation from it. This process may also involve running one or more object
applications, which could be time-consuming.

When a container calls an embedded object's IOleObject::Update method, it is requesting the object to
update all link objects it may contain. In response, the object handler recursively calls
IOleObject::Update for each of its own linked objects, running each one as needed.

See Also
IOleObject::IsUpToDate

IOleParentUndoUnit

The IOleParentUndoUnit interface enables undo units to contain child undo units. For example, a
complex action can be presented to the end user as a single undo action even though a number of
separate actions are involved. All the subordinate undo actions are contained within the top-level, parent
undo unit.

A parent undo unit is initially created using the IOleUndoManager::Open method. Then, to add another
parent unit nested within an existing parent unit, you call IOleParentUndoUnit::Open. While a parent unit
is open, the undo manager adds undo units to it by calling IOleParentUndoUnit::Add. When the undo
manager closes a top-level parent, the entire undo unit with its nested subordinates is placed on top of
the undo stack.

This interface is derived from IOleUndoUnit and supports all the methods on that interface.

If an object needs to create a parent unit, there are several cases to consider:

· To create an enabling parent unit, the object calls IOleUndoManager::GetOpenParentState on the
undo manager and checks the return value. If the value is S_FALSE, then the object creates the
enabling parent and opens it. If the return value is S_OK, then there is a parent already open. If the
open parent is blocked (UAS_BLOCKED bit set), or an enabling parent (UAS_BLOCKED and
UAS_NOPARENTENABLE bits not set), then there is no need to create the enabling parent. If the
currently open parent is a disabling parent (UAS_NOPARENTENABLE bit set), then the enabling
parent should be created and opened to re-enable adding undo units. Note that UAS_NORMAL has a
value of zero, which means it is the absence of all other bits and is not a bit flag that can be set. If
comparing *pdwState against UAS_NORMAL, mask out unused bits from *pdwState with
UAS_MASK to allow for future expansion.

· To create a blocked parent, the object calls IOleUndoManager::GetOpenParentState and checks for
an open parent that is already blocked. If one exists, then there is no need to create the new blocking
parent. Otherwise, the object creates it and opens it on the stack.

· To create a disabling parent, the object calls IOleUndoManager::GetOpenParentState and checks
for an open parent that is blocked or disabling. If either one exists it is unnecessary to create the new
parent. Otherwise, the object creates the parent and opens it on the stack.

In the event that both the UAS_NOPARENTENABLE and UAS_BLOCKED flags are set, the flag that is
most relevant to the caller should be used with UAS_NOPARENTENABLE taking precedence. For
example, if an object is creating a simple undo unit, it should pay attention to the
UAS_NOPARENTENABLE flag and clear the undo stack. If it is creating an enabling parent unit, then it
should pay attention to the UAS_BLOCKED flag and skip the creation.

When the parent undo unit is marked blocked, it discards any undo units it receives.

When to Implement
An undo unit that is capable of containing child undo units implements this interface in addition to
IOleUndoUnit.

When to Use
The undo manager calls the methods in this interface to add child undo units.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.

AddRef Increments the reference count.
Release Decrements the reference count.

IOleUndoUnit Methods Description
Do Instructs the undo unit to carry out

its action.
GetDescription Returns a string that describes the

undo unit and can be used in the
undo or redo user interface.

GetUnitType Returns the CLSID and a type
identifier for the undo unit.

OnNextAdd Notifies the last undo unit in the
collection that a new unit has been
added.

IOleParentUndoUnit Methods Description
Open Opens a new parent undo unit,

which becomes part of the
containing unit's undo stack.

Close Closes the most recently opened
parent undo unit.

Add Adds a simple undo unit to the
collection.

FindUnit Indicates if the specified unit is a
child of this undo unit or one of its
children, that is if the specified unit
is part of the hierarchy in this
parent unit.

GetParentState Returns state information about the
innermost open parent undo unit.

See Also
IOleUndoManager, IOleUndoUnit

IOleParentUndoUnit::Add

Adds a simple undo unit to the collection.

HRESULT Add(

 IOleUndoUnit* pUU //Pointer to undo unit to be added
);

Parameters
pUU

[in] Pointer to undo unit to be added.

Return Values
S_OK

The specified unit was successfully added or the parent unit was blocked.

Remarks
The parent undo unit or undo manager must accept any undo unit given to it, unless it is blocked. If it is
blocked, it should do nothing but return S_OK.

See Also
IOleUndoManager::Add

IOleParentUndoUnit::Close

Closes the specified parent undo unit.

HRESULT Close(

 IOleParentUndoUnit* pPUU, //Pointer to the currently open parent unit
 BOOL fCommit //Indicates whether to keep or discard the unit
);

Parameters
pPUU

[in] Pointer to the currently open parent unit to be closed.
fCommit

[in] Indicates whether to keep or discard the unit. If TRUE, the unit is kept in the collection. If FALSE, the
unit is discarded. This parameter is used to allow the client to discard an undo unit under construction if an
error or a cancellation occurs.

Return Values
S_OK

The parent unit had open child units and it was successfully closed.
S_FALSE

The parent undo unit did not have an open child and it was successfully closed.
E_INVALIDARG

If pPUU does not match the currently open parent undo unit, then implementations of this method
should return E_INVALIDARG without changing any internal state unless the parent unit is blocked.

Remarks
A parent undo unit knows it is being closed when it returns S_FALSE from this method. At that time, it
should terminate any communication with other objects which may be giving data to it through private
interfaces.

Note to Implementers
To process a Close, a parent undo unit first checks to see if it has an open child unit. If it does not, it
returns S_FALSE.

If it does have a child unit open, it calls the Close method on the child. If the child returns S_FALSE, then
the parent undo unit verifies that pPUU points to the child unit, and closes that child undo unit. If the child
returns S_OK then it handled the Close internally and its parent should do nothing.

If the parent unit is blocked, it should check the pPUU parameter to determine the appropriate return
code. If pPUU is pointing to itself, then it should return S_FALSE.

Otherwise, it should return S_OK; the fCommit parameter is ignored; and no action is taken.

If pPUU does not match the currently open parent undo unit, then implementations of this method should

return E_INVALIDARG without changing any internal state. The only exception to this is if the unit is
blocked.

Note to Callers
An error return indicates a fatal error condition.

The parent unit or undo manager must accept the undo unit if fCommit is TRUE.

See Also
IOleUndoManager::Close

IOleParentUndoUnit::FindUnit
Indicates if the specified unit is a child of this undo unit or one of its children, that is if the specified unit is
part of the hierarchy in this parent unit.

HRESULT FindUnit(

 IOleUndoUnit* pUU //Pointer to the undo unit to be found
);

Parameters
pUU

[in] Pointer to the undo unit to be found.

Return Values
S_OK

The specified undo unit is in the hierarchy subordinate to this parent.
S_FALSE

The specified undo unit is not part of the hierarchy under this parent. An error indicates an RPC
failure condition.

Remarks
This is typically called by the undo manager in its implementation of its DiscardFrom method in the rare
event that the unit being discarded is not a top-level unit. The parent unit should look in its own list first,
then delegate to each child that is also a parent unit, as determined by doing a QueryInterface for
IOleParentUndoUnit.

See Also
IOleUndoManager::DiscardFrom

IOleParentUndoUnit::GetParentState

Returns state information about the innermost open parent undo unit.

HRESULT GetParentState(

 DWORD* pdwState //Pointer to state information
);

Parameters
pdwState

[out] Pointer to state information. This information is a value taken from the UASFLAGS enumeration.

Return Values
S_OK

The parent's state was successfully returned.

Remarks
Note to Implementers
If the unit has an open child, it should delegate this method to that child. If not, it should fill in *pdwState
values appropriately and return. Note that a parent unit must never be blocked while it has an open child.
If this happened it could prevent the child unit from being closed, which would cause serious problems.

Note to Callers
When checking for a normal state, use the UAS_MASK value to mask unused bits in the pdwState
parameter to this method for future compatibility. For example:

fNormal = ((pdwState & UAS_MASK) == UAS_NORMAL)

See Also

UASFLAGS

IOleParentUndoUnit::Open

Opens a new parent undo unit, which becomes part of the containing unit's undo stack.

HRESULT Open(

 IOleParentUndoUnit*
pPUU

//Pointer to the parent undo unit to open

);

Parameters
pPUU

[in] Pointer to the parent undo unit to be opened.

Return Values
S_OK

The parent undo unit was successfully opened or it is currently blocked.

Remarks
The specified parent unit is created and remains open. The undo manager then calls the Add or Open
methods on this parent unit to add new units to it. This parent unit receives any additional undo units until
its Close method is called.

The parent unit specified by pPUU is not added to the undo stack until its Close method is called with the
fCommit parameter set to TRUE.

The parent undo unit or undo manager must contain any undo unit given to it unless it is blocked. If it is
blocked, it must return S_OK but should do nothing else.

See Also
IOleUndoManager::Open

IOleUILinkContainer

The IOleUILinkContainer interface is implemented by containers and used by OLE common dialog
boxes. It supports these dialog boxes by providing the methods needed to manage a container's links.

The IOleUILinkContainer methods enumerate the links associated with a container, and specify how
they should be updated, automatically or manually. They change the source of a link and obtain
information associated with a link. They also open a link's source document, update links, and break a link
to the source.

When to Implement
You must implement this interface if you are creating a container application that will use the Links,
Change Source, or Update Links dialog boxes, as well as the Object Properties dialog box, which uses
this interface indirectly. The Links dialog box calls back to the container application to perform OLE
functions that manipulate the links within the container.

When to Use
OLE common dialog boxes use only this interface to manage the properties of a container's links. They
can also use it to manage non-OLE (DDE and other container-specific) links.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleUILinkContainer Methods Description
GetNextLink Enumerates the links in the

container.
SetLinkUpdateOptions Sets update options.
GetLinkUpdateOptions Determines current update options

for the link.
SetLinkSource Changes the source of the link.
GetLinkSource Returns Links dialog box

information about the link.
OpenLinkSource Opens a link's source.
UpdateLink Forces a link to connect to its

source and update.
CancelLink Disconnects selected links.

See Also
OleUIEditLinks, OleUIChangeSource, OleUIUpdateLinks, OleUIObjectProperties, OLEUIEDITLINKS

IOleUILinkContainer::CancelLink

Disconnects the selected links.

HRESULT CancelLink(

 DWORD dwLink //Unique 32-bit link identifier
);

Parameter
dwLink

[in] Container-defined unique 32-bit identifier for a single link. Containers can use the pointer to the
link's container site for this value.

Return Values
This method supports the standard return values E_FAIL,

E_INVALIDARG, and E_OUTOFMEMORY, as well as the following:

S_OK

Successfully disconnected the selected links.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Callers
Call CancelLink when the user selects the Break Link button from the Links dialog box. The link should
be converted to a picture. The Links dialog box will not be dismissed for OLE links.

Notes To Implementers
For OLE links, OleCreateStaticFromData can be used to create a static picture object using the
IDataObject interface of the link as the source.

See Also
IDataObject, OleCreateStaticFromData

IOleUILinkContainer::GetLinkSource

Returns information about a link that can be displayed in the UI.

HRESULT GetLinkSource(

 DWORD dwLink, //Unique 32-bit link identifier
 LPTSTR FAR* lplpszDisplayName, //Indirect pointer to length of display name portion
 ULONG FAR* lplenFileName, //Pointer to length of file name portion
 LPTSTR FAR* lplpszFullLinkType, //Indirect pointer to full-link type string
 LPTSTR FAR* lplpszShortLinkType, //Indirect pointer to short-link type string
 BOOL FAR* lpfSourceAvailable, //Pointer to availability of link
 BOOL FAR* lpfIsSelected //Pointer to indicate that link entry should be selected in listbox
);

Parameters
dwLink

[in] Container-defined unique 32-bit identifier for a single link. See
IOleUILinkContainer::GetNextLink.

lplpszDisplayName

[out] Indirect pointer to the allocated full-link source display name string. The Links dialog box will free
this string.

lplenFileName

[out] Pointer to the length of the leading file name portion of the lplpszDisplayName string. If the link
source is not stored in a file, then *lplenFileName should be 0. For OLE links, call
IOleLink::GetSourceDisplayName.

lplpszFullLinkType

[out] Indirect pointer to the allocated full-link type string that is displayed at the bottom of the Links
dialog box. The Links dialog box will free this string. For OLE links, this should be the full User Type
name. Use IOleObject::GetUserType, specifying USERCLASSTYPE_FULL for dwFormOfType.

lplpszShortLinkType

[out] Indirect pointer to the allocated short-link type string that is displayed in the listbox of the Links
dialog box. The Links dialog box will free this string. For OLE links, this should be the short User Type
name. Use IOleObject::GetUserType, specifying USERCLASSTYPE_SHORT for dwFormOfType.

lpfSourceAvailable

[out] Pointer that returns FALSE if it is known that a link is unavailable since the link is to some known
but unavailable document. Certain options, such as Update Now, are disabled (grayed in the UI) for
such cases.

lpfIsSelected

[out] Pointer to a BOOL variable that tells the Edit Links dialog box that this link's entry should be
selected in the dialog's multi-selection listbox. OleUIEditLinks calls this method at least once for
each item to be placed in the links list. If none of them return TRUE, then none of them will be
selected when the dialog box is first displayed. If all of them return TRUE, then all will be displayed.
That is, it returns TRUE if this link is currently part of the selection in the underlying document, FALSE
if not. Any links that are selected in the underlying document are selected in the dialog box; this way,

the user can select a set of links and use the dialog box to update them or change their source(s)
simultaneously.

Return Values
This method supports the standard return values E_FAIL,

E_INVALIDARG, and E_OUTOFMEMORY, as well as the following:

S_OK

Successfully returned link information.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Callers
Call this method during dialog box initialization, after returning from the Change Source dialog box.

See Also
IOleLink::GetSourceDisplayName, IOleObject::GetUserType, USERCLASSTYPE,
OleUIChangeSource, OLEUICHANGESOURCE_com_OLEUICHANGESOURCE_str

IOleUILinkContainer::GetLinkUpdateOptions

Determine the current update options for a link.

HRESULT GetNextLink(

 DWORD dwLink, //Unique 32-bit link identifier
 DWORD FAR * lpdwUpdateOpt //Pointer to address to return update option
);

Parameters
dwLink

[in] Container-defined unique 32-bit identifier for a single link. See
IOleUILinkContainer::GetNextLink.

lpdwUpdateOpt

[out] Pointer to the location that the current update options will be written.

Return Values
This method supports the standard return values E_FAIL,

E_INVALIDARG, and E_OUTOFMEMORY, as well as the following:

S_OK

Successfully determined update options.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Implementers
Containers can implement this method for OLE links simply by calling IOleLink::SetUpdateOptions on
the link object.

See Also
IOleUILinkContainer::GetNextLink, IOleUILinkContainer::SetLinkUpdateOptions,
IOleLink::SetUpdateOptions

IOleUILinkContainer::GetNextLink

Enumerates the links in a container.

DWORD GetNextLink(

 DWORD dwLink //Unique 32-bit linkidentifier
);

Parameter
dwLink

[in] Container-defined unique 32-bit identifier for a single link. This value is only passed to other
methods on this interface, so it can be any value that uniquely identifies a link to the container.
Containers frequently use the pointer to the link's container site object for this value.

Return Values
Returns a container's link identifiers in sequence; NULL if it has returned the last link.

Remarks
Notes to Callers
Call this method to enumerate the links in a container. If the value passed in dwLink is NULL, then the
container should return the first link's 32-bit identifier. If dwLink identifies the last link in the container, then
the container should return NULL.

See Also
IOleUILinkContainer::SetLinkUpdateOptions, IOleUILinkContainer::GetLinkUpdateOptions

IOleUILinkContainer::OpenLinkSource

Opens the link's source.

HRESULT OpenLinkSource(

 DWORD dwLink //Unique 32-bit link identifier
);

Parameter
dwLink

[in] Container-defined unique 32-bit identifier for a single link. Containers can use the pointer to the
link's container site for this value.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

Successfully opened the link's source.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Callers
The OpenLinkSource method is called when the Open Source button is selected from the Links dialog
box. For OLE links, call IOleObject::DoVerb, specifying OLEIVERB_SHOW for iVerb.

See Also
IOleObject::DoVerb, OLEVERB

IOleUILinkContainer::SetLinkSource

Changes the source of a link.

HRESULT SetLinkSource(

 DWORD dwLink, //Unique 32-bit link identifier
 LPTSTR lpszDisplayName, //Pointer to source string to parse
 ULONG FAR* lenFileName, //Length of the file name portion
 ULONG FAR* pchEaten, //Pointer to number of characters successfully parsed
 BOOL fValidateSource //Specifies whether moniker should be validated
);

Parameters
dwLink

[in] Container-defined unique 32-bit identifier for a single link. See
IOleUILinkContainer::GetNextLink .

lpszDisplayName

[in] Pointer to new source string to be parsed.
lenFileName

Length of the leading file name portion of the lpszDisplayName string. If the link source is not stored
in a file, then lenFileName should be 0. For OLE links, call IOleLink::GetSourceDisplayName.

pchEaten

[out] Pointer to the number of characters successfully parsed in lpszDisplayName.
fValidateSource

[in] TRUE if the moniker should be validated; for OLE links, MkParseDisplayName should be called.
FALSE if the moniker should not be validated. If possible, the link should accept the unvalidated
source, and mark itself as unavailable.

Return Values
This method supports the standard return values E_FAIL,

E_INVALIDARG, and E_OUTOFMEMORY, as well as the following:

S_OK

Successfully changed the links source.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Callers
Call this method from the Change Source dialog box, with fValidateSource initially set to TRUE. Change
Source can be called directly or from the Links dialog box. If this call to SetLinkSource returns an error

(e.g., MkParseDisplayName failed because the source was unavailable), then you should display an
Invalid Link Source message, and the user should be allowed to decide whether or not to fix the source. If
the user chooses to fix the source, then the user should be returned to the Change Source dialog box
with the invalid portion of the input string highlighted. If the user chooses not to fix the source, then
SetLinkSource should be called a second time with fValidateSource set to FALSE, and the user should
be returned to the Links dialog box with the link marked Unavailable.

See Also
MkParseDisplayName

IOleUILinkContainer::SetLinkUpdateOptions

Sets a link's update options to Automatic (OLEUPDATE_ALWAYS) or Manual (OLEUPDATE_ONCALL).

HRESULT SetLinkUpdate(

 DWORD dwLink, //Unique 32-bit link identifier
 DWORD dwUpdateOpt //Update options
);

Parameters
dwLink

[in] Container-defined unique 32-bit identifier for a single link. See
IOleUILinkContainer::GetNextLink.

dwUpdateOpt

[in] Update options, which can be Automatic (OLEUPDATE_ALWAYS) or Manual
(OLEUPDATE_ONCALL).

Return Values
This method supports the standard return values E_FAIL,

E_INVALIDARG, and E_OUTOFMEMORY, as well as the following:

S_OK

Successfully set the links update options.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
The user selects update options from the Links dialog box.

Notes To Implementers
Containers can implement this method for OLE links by simply calling IOleLink::SetUpdateOptions on
the link object.

See Also
IOleUILinkContainer::GetNextLink, IOleUILinkContainer::GetLinkUpdateOptions,
IOleLink::SetUpdateOptions

IOleUILinkContainer::UpdateLink

Forces selected links to connect to their source and retrieve current information.

HRESULT UpdateLink(

 DWORD dwLink, //Unique 32-bit link identifier
 DWORD fErrorMessage, //Determines whether or not caller should display error message
 DWORD fReserved //Reserved
);

Parameters
dwLink

[in] Container-defined unique 32-bit identifier for a single link. Containers can use the pointer to the
link's container site for this value.

fErrorMessage

[in] Determines whether or not the caller (implementer of IOleUILinkContainer) should show an error
message upon failure to update a link. The Update Links dialog box sets this to FALSE. The Object
Properties and Links dialog boxes set it to TRUE.

fReserved

[in] Reserved for future use; must be set to FALSE.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

Successfully updated linked objects.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Callers
Call this method with fErrorMessage set to TRUE in cases where the user expressly presses a button to
have a link updated, that is, presses the Links' Update Now button. Call it with FALSE in cases where the
container should never display an error message, that is, where a large set of operations are being
performed and the error should be propagated back to the user later, as might occur with the Update links
progress meter. Rather than providing one message for each failure, assuming there are failures, provide
a single message for all failures at the end of the operation.

Notes To Implementers
For OLE links, call IOleObject::Update.

See Also

IOleObject::Update

IOleUILinkInfo

The IOleUILinkInfo interface is an extension of the IOleUILinkContainer interface. It returns the time
that an object was last updated, which is link information that IOleUILinkContainer does not provide.

When To Implement
You must implement this interface so your container can support the "Link" page of the Object Properties
dialog box. If you are writing a container that does not implement links, you do not need to implement this
interface.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleUILinkContainer Methods Description
GetNextLink Enumerates the links in the

container.
SetLinkUpdateOptions Sets update options.
GetLinkUpdateOptions Determines current update options

for the link.
SetLinkSource Changes the source of the link.
GetLinkSource Returns Links dialog box

information about link.
OpenLinkSource Opens a link's source.
UpdateLink Forces a link to connect to its

source and update.
CancelLink Breaks the link.

IOleUILinkInfo Methods Description
GetLastUpdate Determines the last time the object

was updated, whether
automatically or manually.

IOleUILinkInfo::GetLastUpdate

Indicates when the object was last updated.

HRESULT GetLastUpdate(

 DWORD dwLink, //Unique 32-bit link identifier
 FILETIME FAR * lpLastUpdate //Pointer to the time object was last updated
);

Parameters
dwLink

[in] Container-defined unique 32-bit identifier for a single link. Containers can use the pointer to the
link's container site for this value.

lpLastUpdate

[out] Pointer to the time that the object was last updated.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

Successfully returned link information.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Implementers
If the time that the object was last updated is known, copy it to lpLastUpdate. If it is not known, then leave
lpLastUpdate unchanged and Unknown will be displayed in the link page.

IOleUIObjInfo

The IOleUIObjInfo interface is implemented by containers and used by the container's Object Properties
dialog box and by the Convert dialog box. It provides information used by the General and View pages of
the Object Properties dialog box , which display information about the object's size, location, type, and
name. It also allows the object to be converted via the Convert dialog box. The View page allows the
object's icon to be modified from its original form, and its display aspect to be changed (iconic versus
content). Optionally, you can have your implementation of this interface allow the scale of the object to be
changed.

When To Implement
You must implement this interface so your container application can support the OleUIObjectProperties
function and the dialog box that it implements.

When To Use
Use this interface when you need to get and set information required by the Object Properties dialog box ,
and to support the Convert dialog box.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleUILinkContainer Methods Description
GetNextLink Enumerates the links in the

container.
SetLinkUpdateOptions Sets update options.
GetLinkUpdateOptions Determines current update options

for the link.
SetLinkSource Changes the source of the link.
GetLinkSource Returns Links dialog box

information about link.
OpenLinkSource Opens a link's source.
UpdateLink Forces a link to connect to its

source and update.
CancelLink Breaks the link.

IOleUIObjInfo Methods Description
GetObjectInfo Gets general information about the

object.
GetConvertInfo Gets information that is used for

the Convert dialog box.
ConvertObject Converts the object once the user

selects a destination type.
GetViewInfo Gets the current icon, aspect, and

scale of the object.

SetViewInfo Sets the current icon, aspect, and
scale of the object.

See Also
OleUIObjectProperties

IOleUIObjInfo::ConvertObject
Converts the object to the type of the new CLSID.

HRESULT ConvertObject(

 DWORD dwObject, //Unique 32-bit object identifier
 REFCLSID clsidNew //CLSID to convert the object to
);

Parameters
dwObject

[in] Unique 32-bit identifier for the object.
clsidNew

[in] CLSID to convert the object to.

Return Values
This method supports the standard return values E_FAIL,

E_INVALIDARG, and E_OUTOFMEMORY, as well as the following:

S_OK

Successfully returned link information.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Implementers
Your implementation of ConvertObject needs to convert the object to the CLSID specified. The actions
taken by the convert operation are similar to the actions taken after calling OleUIConvert.

See Also
OleUIConvert

IOleUIObjInfo::GetConvertInfo

Gets the conversion information associated with the specified object.

HRESULT GetConvertInfo(

 DWORD dwObject, //Unique 32-bit object identifier
 CLSID FAR * lpClassID, //Pointer to location of CLSID of the object
 WORD FAR *lpwFormat, //Pointer to clipboard format of the object
 CLSID FAR * lpConvertDefaultClassID, //Pointer to default class to convert object to
 LPCLSID FAR * lplpClsidExclude, //Indirect pointer to excluded CLSIDs
 UINT FAR * lpcClsidExclude //Pointer to number of CLSIDs in lplpClsidExclude
);

Parameters
dwObject

[in] Unique 32-bit identifier for the object.
lpClassID

[out] Pointer to the location to return the object's CLSID.
lpwFormat

[out] Pointer to the clipboard format of the object.
lpConvertDefaultClassID

[out] Pointer to the default class, selected from the UI, to convert the object to.
lplpClsidExclude

[out] Indirect pointer to an array of CLSIDs that should be excluded from the UI for this object. May be
NULL, if lpcClsidExclude is zero.

lpcClsidExclude

[out] Pointer to number of CLSIDs in lplpClsidExclude. May be zero.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

Successfully returned link information.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Implementers
You must fill in the CLSID of the object at a minimum. lpwFormat may be left at zero if the format of the
storage is unknown.

IOleUIObjInfo::GetObjectInfo

Gets size, type, name and location information about an object.

HRESULT GetObjectInfo(

 DWORD dwObject, //Unique 32-bit object identifier
 DWORD FAR *lpdwObjSize, //Pointer to object's size
 LPTSTR FAR *lplpszLabel, //Indirect pointer to object's label.
 LPTSTR FAR * lplpszType, //Indirect pointer to object's "long" type
 LPTSTR FAR * lplpszShortType, //Indirect pointer to object's "short" type
 LPTSTR FAR * lplpszLocation //Indirect pointer to the object's source
);

Parameters
dwObject

[in] Unique 32-bit identifier for the object.
lpdwObjSize

[out] Pointer to the object's size, in bytes, on disk. This may be an approximate value.
lplpszLabel

[out] Indirect pointer to the object's label. May be NULL, which indicates that the implementation
should not fill this in.

lplpszType

[out] Indirect pointer to the object's "long" type. May be NULL, which indicates that the implementation
should not fill this in.

lplpszShortType

[out] Indirect pointer to the object's "short" type. May be NULL, which indicates that the
implementation should not fill this in.

lplpszLocation

[out] Indirect pointer to the object's source. May be NULL, which indicates that the implementation
should not fill this in.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

Successfully returned object information.

Remarks
The strings and the object's size are displayed in the object properties "General" page.

Notes To Implementers

Your implementation of GetObjectInfo should place each of the object's attributes in the out parameters
provided. Set lpdwObjSize to (DWORD)-1 when the size of the object is unknown. Allocate all strings (the
rest of the params) with the OLE task allocator obtained via CoGetMalloc, as is standard for all OLE
interfaces with [out] string parameters, or you can simply use CoTaskMemAlloc.

See Also
CoGetMalloc, CoTaskMemAlloc

IOleUIObjInfo::GetViewInfo

Gets the view information associated with the object.

HRESULT GetViewInfo(

 DWORD dwObject, //Unique 32-bit object identifier
 HGLOBAL FAR * phMetaPict, //Pointer to object's current icon
 DWORD * pdvAspect, ///Pointer to object's current aspect
 int * pnCurrentScale ///Pointer to object's current scale
);

Parameters
dwObject

[in] Unique 32-bit identifier for the object.
phMetaPict

[in] Pointer to the object's current icon. Could be NULL, indicating that the caller is not interested in
the object's current presentation.

pdvAspect

[in] Pointer to the object's current aspect. Could be NULL, indicating that the caller is not interested in
the object's current aspect, i.e., DVASPECT_ICONIC or DVASPECT_CONTENT.

pnCurrentScale

[in] Pointer to the object's current scale. Could be NULL, indicating that the caller is not interested in
the current scaling factor applied to the object in the container's view.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

Successfully returned link information.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Implementers
You must fill in the object's current icon, aspect, and scale.

See Also
OLEUIVIEWPROPS

IOleUIObjInfo::SetViewInfo

Sets the view information associated with the object.

HRESULT SetViewInfo(

 DWORD dwObject, //Unique 32-bit object identifier
 HGLOBAL hMetaPict, //New icon for the object
 DWORD dvAspect, //New display aspect for the objec
 int nCurrentScale, //New scale for the objec
 BOOL bRelativeToOrig //Scale of the object relative to origin
);

Parameters
dwObject

[in] Unique 32-bit identifier for the object.
hMetaPict

[in] New icon for the object.
dvAspect

[in] Object's new display aspect or view.
nCurrentScale

[in] Object's new scale.
bRelativeToOrig

[in] Scale of the object, relative to the origin. This value is TRUE if the new scale should be relative to
the original scale of the object. If FALSE, nCurrentScale applies to the object's current size.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

Successfully returned link information.
E_ACCESSDENIED

Insufficient access permissions.

Remarks
Notes To Implementers
You should apply the new attributes (icon, aspect, and scale) to the object. If bRelativeToOrig is set to
TRUE, nCurrentScale (in percentage units) applies to the original size of the object before it was scaled. If
bRelativeToOrig is FALSE, nCurrentScale applies to the object's current size.

See Also

DVASPECT

IOleUndoManager

The IOleUndoManager interface enables containers to implement multi-level undo and redo operations
for actions that occur within contained controls.

The control must create an undo unit with the IOleUndoUnit interface or a parent undo unit with the
IOleParentUndoUnit interface derived from IOleUndoUnit. Both of these interfaces perform the undo
action and the parent undo unit additionally can contain nested undo units.

The undo manager provides a centralized undo and redo service. It manages parent undo units and
simple undo units on the undo and redo stacks. Whether an object is UI-active or not, it can deposit undo
units on these stacks by calling methods in the undo manager.

The centralized undo manager then has the data necessary to support the undo and redo user interface
for the host application and can discard undo information gradually as the stack becomes full.

The undo manager is implemented as a service and objects obtain a pointer to IOleUndoManger from
the IServiceProvider interface. It is usually implemented by the container. The service manages two
stacks, the undo stack and the redo stack, each of which contains undo units generated by embedded
objects or by the container application itself.

Undo units are typically generated in response to actions taken by the end user. An object does not
generate undo actions for programmatic events. In fact, programmatic events should clear the undo stack
since the programmatic event can possibly invalidate assumptions made by the undo units on the stack.

When the object's state changes, it creates an undo unit encapsulating all the information needed to undo
that change. The object calls methods in the undo manager to place its undo units on the stack. Then,
when the end user selects an Undo operation, the undo manager takes the top undo unit off the stack,
invokes its action by calling its IOleUndoUnit::Do method, and then releases it. When an end user
selects a Redo operation, the undo manager takes the top redo unit off the stack, invokes its action by
calling its IOleUndoUnit::Do method, and then releases it.

The undo manager has three states: the base state, the undo state, and the redo state. It begins in the
base state. To perform an action from the undo stack, it puts itself into the undo state, calls
IOleUndoUnit::Do on the undo unit, and goes back to the base state. To perform an action from the redo
stack, it puts itself into the redo state, calls IOleUndoUnit::Do on the undo unit, and goes back to the
base state.

If the undo manager receives a new undo unit while in the base state, it places the unit on the undo stack
and discards the entire redo stack. While it is in the undo state, it puts incoming units on the redo stack.
While it is in the redo state, it places them on the undo stack without flushing the redo stack.

The undo manager also allows objects to discard the undo or redo stack starting from any object in either
stack.

The host application determines the scope of an undo manager. For example, in one application, the
scope might be at the document level; a separate undo manager is maintained for each document; and
undo is managed independently for each document. However, another application maintain one undo
manager, and therefore one undo scope, for the entire application.

Handling Errors
Having an undo operation fail and leaving the document in an unstable state is something the undo
manager, undo units, and the application itself all have to work together to avoid. As a result, there are
certain requirements that undo units, the undo manager, and the application or component using undo
must conform to.

To perform an undo, the undo manager calls IOleUndoUnit::Do on one or more undo units which can, in
turn, contain more units. If a unit somewhere in the hierarchy fails, the error will eventually reach the undo
manager, which is responsible for making an attempt to roll back the state of the document to what it was
before the call to the last top-level unit. The undo manager performs the rollback by calling
IOleUndoUnit::Do on the unit that was added to the redo stack during the undo attempt. If the rollback
also fails, then the undo manager is forced to abandon everything and return to the application. The undo
manager indicates whether or not the rollback succeeded, and the application can take different actions
based on this, such as reinitializing components so they're in a known state.

All the steps in adding an undo unit to the stack should be performed atomically. That is, all steps must
succeed or none of them should succeed.

The host application that provides the undo manager decides what action to take when undo fails. At the
very least, it should inform the user of the failure. The host application will be told by the undo manager
whether or not the undo succeeded and whether or not the attempted rollback succeeded. In case both
the undo and rollback failed, the host application can present the user with several options, including
immediately shutting down the application.

Simple undo units must not change the state of any object if they return failure. This includes the state of
the redo stack or undo stack if performing a redo. They are also required to put a corresponding unit on
the redo or undo stack if they succeed. The application should be stable before and after the unit is
called.

Parent undo units have the same requirements as simple units, with one exception. If one or more
children succeeded prior to another child's failure, the parent unit must commit its corresponding unit on
the redo stack and return the failure to its parent. If no children succeeded, the parent unit should commit
its redo unit only if it has made a state change that needs to be rolled back. For example, suppose a
parent unit contains three simple units. The first two succeed and added units to the redo stack, but the
third one failed. At this point, the parent unit commits its redo unit and returns the failure.

As a side effect, the parent unit should never make state changes that depend on the success of their
children. Doing this will cause the rollback behavior to break. If a parent unit makes state changes, it
should do them before calling any children. Then, if the state change fails, it should not commit its redo
unit, it should not call any children, and it should return the failure to its parent.

The undo manager has one primary requirement for error handling: to attempt rollback when an undo or
redo fails.

Non-compliant Objects
Objects that do not support multi-level undo can cause serious problems for a global undo service. Since
the object cannot be relied on to properly update the undo manager, any units submitted by other objects
are also suspect, because their units may rely on the state of the non-compliant object. Attempting to
undo a compliant object's units may not be successful, because the state in the non-compliant object will
not match.

To detect objects that do not support multi-level undo, check for the
OLEMISC_SUPPORTSMULTILEVELUNDO value. An object that can participate in the global undo
service sets this value.

When an object without this value is added to a user-visible undo context, the safest thing to do is disable
the undo user interface for this context. Alternatively, a dialog could be presented to the user, asking them
whether to attempt to provide partial undo support, working around the non-compliance of the new object.

In addition, non-compliant objects may be added to nested containers. In this case, the nested container
needs to notify the undo manager that undo can no longer be safely supported by calling
IOleUndoManager::Enable(FALSE).

When to Implement
Implement this interface to provide centralized undo services to the objects in a container.

When to Use
Call the methods in this interface to participate in global undo services.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleUndoManager Methods Description
Open Opens a new parent undo unit,

which becomes part of its
containing unit's undo stack.

Close Closes the specified parent undo
unit.

Add Adds a simple undo unit to the
collection.

GetOpenParentState Returns state information about the
innermost open parent undo unit.

DiscardFrom Instructs the undo manager to
discard the specified undo unit and
all undo units below it on the undo
or redo stack.

UndoTo Instructs the undo manager to
perform actions back through the
undo stack, down to and including
the specified undo unit.

RedoTo Instructs the undo manager to
invoke undo actions back through
the redo stack, down to and
including the specified undo unit.

EnumUndoable Creates an enumerator object that
the caller can use to iterate
through a series of top-level undo
units from the undo stack.

EnumRedoable Creates an enumerator object that
the caller can use to iterate
through a series of top-level undo
units from the redo stack.

GetLastUndoDescription Returns the description for the top-
level undo unit that is on top of the
undo stack.

GetLastRedoDescription Returns the description for the top-
level undo unit that is on top of the
redo stack.

Enable Enables or disables the undo

manager.

See Also
IOleParentUndoUnit, IOleUndoUnit

IOleUndoManager::Add

Adds a simple undo unit to the collection.

HRESULT Add(

 IOleUndoUnit* pUU //Pointer to undo unit to be added
);

Parameters
pUU

[in] Pointer to undo unit to be added.

Return Values
S_OK

The specified unit was successfully added, the parent unit was blocked, or the undo manager is
disabled.

Remarks
This method is implemented the same as IOleParentUndoUnit::Add. The parent undo unit or undo
manager must accept any undo unit given to it, unless it is blocked. If it is blocked, it should do nothing
but return S_OK.

Note to Implementers
If the undo manager is in the base state, it should put the new unit on the undo stack and discard the
entire redo stack. If the undo manager is in the undo state, it should put new units on the redo stack. If the
undo manager is in the redo state, it should put units on the undo stack without affecting the redo stack.

See Also
IOleParentUndoUnit::Add

IOleUndoManager::Close

Closes the specified parent undo unit.

HRESULT Close(

 IOleParentUndoUnit*
pPUU,

//Pointer to the currently open parent unit

 BOOL fCommit //Indicates whether to keep or discard the unit
);

Parameters
pPUU

[in] Pointer to the currently open parent unit to be closed.
fCommit

[in] Indicates whether to keep or discard the unit. If TRUE, the unit is kept in the collection. If FALSE, the
unit is discarded. This parameter is used to allow the client to discard an undo unit under construction if an
error or a cancellation occurs.

Return Values
S_OK

The parent unit had open child units and it was successfully closed. If the undo manager is disabled,
it should immediately return S_OK and do nothing else.

S_FALSE

The parent undo unit did not have an open child and it was successfully closed.
E_INVALIDARG

If pPUU does not match the currently open parent undo unit, then implementations of this method
should return E_INVALIDARG without changing any internal state unless the parent unit is blocked.

Remarks
This method is implemented the same as IOleParentUndoUnit::Close. A parent undo unit knows it is
being closed when it returns S_FALSE from this method. At that time, it should terminate any
communication with other objects which may be giving data to it through private interfaces.

Note to Implementers
To process a Close, a parent undo unit first checks to see if it has an open child unit. If it does not, it
returns S_FALSE.

If it does have a child unit open, it calls the Close method on the child. If the child returns S_FALSE, then
the parent undo unit verifies that pPUU points to the child unit, and closes that child undo unit. If the child
returns S_OK then it handled the Close internally and its parent should do nothing.

If the parent unit is blocked, it should check the pPUU parameter to determine the appropriate return
code. If pPUU is pointing to itself, then it should return S_FALSE.

Otherwise, it should return S_OK; the fCommit parameter is ignored; and no action is taken.

If pPUU does not match the currently open parent undo unit, then implementations of this method should
return E_INVALIDARG without changing any internal state. The only exception to this is if the unit is
blocked.

Note to Callers
An error return indicates a fatal error condition.

The parent unit or undo manager must accept the undo unit if fCommit is TRUE.

See Also
IOleParentUndoUnit::Close

IOleUndoManager::DiscardFrom

Instructs the undo manager to discard the specified undo unit and all undo units below it on the undo or
redo stack.

HRESULT DiscardFrom(

 IOleUndoUnit* pUU //Pointer to undo unit to be discarded
);

Parameters
pUU

[in] Pointer to undo unit to be discarded. This parameter can be NULL to discard the entire undo or redo
stack.

Return Values
S_OK

The specified undo unit was successfully discarded.
E_INVALIDARG

The specified undo unit was not found in the stacks.
E_UNEXPECTED

The undo manager is disabled.

Remarks
The undo manager first searches the undo stack for the given unit, and if not found there searches the
redo stack. Once found, the given unit and all below it on the same stack are discarded. The undo unit
may be a child of a parent unit contained by the undo manager, as determined by calling
IOleParentUndoUnit::FindUnit. If it is a child unit, then the root unit containing the given unit and all
units below it on the appropriate stack are discarded.

If there is an open parent unit and DiscardFrom(NULL) is called, the undo manager should immediately
release and discard the open parent unit without calling the Close method first. When the object that
opened the parent unit attempts to close it, IOleUndoManager::Close will return S_FALSE. If pUU is not
NULL, then any open parent units should be left open.

See Also
IOleParentUndoUnit::FindUnit, IOleUndoManager::Close

IOleUndoManager::Enable

Enables or disables the undo manager.

HRESULT Enable(

 BOOL fEnable //Indicates whether to enable or disable the undo manager
);

Parameters
fEnable

[in] Indicates whether to enable or disable the undo manager. If TRUE, the undo manager should be
enabled. If FALSE, the undo manager should be disabled.

Return Values
S_OK

The undo manager was successfully enabled or disabled.
E_UNEXPECTED

There is an open undo unit on the stack or the undo manager is currently performing an undo or a
redo.

Remarks
The undo manager should clear both stacks when making the transition from enabled to disabled.

If the undo manager is disabled, each method in IOleUndoManager must behave as specified. See each
method for details.

See Also
IOleUndoManager

IOleUndoManager::EnumRedoable

Creates an enumerator object that the caller can use to iterate through a series of top-level undo units
from the redo stack.

HRESULT EnumRedoable(

 IEnumOleUndoUnits**
ppEnum

//Indirect pointer to new enumerator object

);

Parameters
ppEnum

[out] Indirect pointer to the IEnumOleUndoUnits interface on the enumerator object.

Return Values
S_OK

The enumerator object was successfully created and the interface pointer was returned.
E_UNEXPECTED

The undo manager is disabled.

Remarks
A new enumerator object is created each time this method is called. If the series of enumerated items
changes over time, the results of enumeration operations can vary from one call to the next.

This method calls AddRef on the new enumerator object to increment its reference count. The caller is
responsible for calling Release on the enumerator object when it is no longer needed.

See Also
IEnumOleUndoUnits

IOleUndoManager::EnumUndoable

Creates an enumerator object that the caller can use to iterate through a series of top-level undo units
from the undo stack.

HRESULT EnumUndoable(

 IEnumOleUndoUnits**
ppEnum

//Indirect pointer to new enumerator object

);

Parameters
ppEnum

[out] Indirect pointer to the IEnumOleUndoUnits interface on the enumerator object.

Return Values
S_OK

The enumerator object was successfully created and the interface pointer was returned.
E_UNEXPECTED

The undo manager is disabled.

Remarks
A new enumerator object is created each time this method is called. If the series of enumerated items
changes over time, the results of enumeration operations can vary from one call to the next.

This method calls AddRef on the new enumerator object to increment its reference count. The caller is
responsible for calling Release on the enumerator object when it is no longer needed.

See Also
IEnumOleUndoUnits

IOleUndoManager::GetLastRedoDescription

Returns the description for the top-level undo unit that is on top of the redo stack.

HRESULT GetLastRedoDescription(

 BSTR* pBstr //Pointer to string
);

Parameters
pBstr

[out] Pointer to a string that contains a description of the top-level undo unit on the redo stack.

Return Values
S_OK

The string was successfully returned and it contains a valid description.
E_FAIL

The undo stack is empty.
E_UNEXPECTED

The undo manager is disabled.

Remarks
This method provides a convenient shortcut for the host application to add a description to its Edit Redo
menu item. The *pbstr parameter is a string allocated with the standard string allocator. The caller is
responsible for freeing this string.

See Also
IOleUndoManager::GetLastUndoDescription

IOleUndoManager::GetLastUndoDescription

Returns the description for the top-level undo unit that is on top of the undo stack.

HRESULT GetLastUndoDescription(

 BSTR* pBstr //Pointer to string
);

Parameters
pBstr

[out] Pointer to a string that contains a description of the top-level undo unit on the undo stack.

Return Values
S_OK

The string was successfully returned and it contains a valid description.
E_FAIL

The undo stack is empty.
E_UNEXPECTED

The undo manager is disabled.

Remarks
This method provides a convenient shortcut for the host application to add a description to its Edit Undo
menu item. The *pbstr parameter is a string allocated with the standard string allocator. The caller is
responsible for freeing this string.

See Also
IOleUndoManager::GetLastRedoDescription

IOleUndoManager::GetOpenParentState

Returns state information about the innermost open parent undo unit.

HRESULT GetOpenParentState(

 DWORD* pdwState //Pointer to state information
);

Parameters
pdwState

[out] Pointer to state information. This information is a value taken from the UASFLAGS enumeration.

Return Values
S_OK

There was an open parent unit and its state was successfully returned or the undo manager is
disabled.

S_FALSE

There is no open parent unit.

Remarks
Note to Implementers
If there is an open parent unit, this method calls IOleParentUnit::GetParentState.

If the undo manager is disabled, it should fill the pdwState parameter with UAS_BLOCKED and return
S_OK.

Note to Callers
When checking for a normal state, use the UAS_MASK value to mask unused bits in the pdwState
parameter to this method for future compatibility. For example:

fNormal = ((pdwState & UAS_MASK) == UAS_NORMAL)

See Also

UASFLAGS

IOleUndoManager::Open

Opens a new parent undo unit, which becomes part of its containing unit's undo stack.

HRESULT Open(

 IOleParentUndoUnit* pPUU //Pointer to the parent undo unit to open
);

Parameters
pPUU

[in] Pointer to the parent undo unit to be opened.

Return Values
S_OK

The parent undo unit was successfully opened or if a currently open unit is blocked. If the undo
manager is currently disabled, it should return S_OK and do nothing else.

Remarks
This method is implemented the same as IOleParentUndoUnit::Open. The specified parent unit is
created and remains open. The undo manager then calls the Add or Open methods on this parent unit to
add new units to it. This parent unit receives any additional undo units until its Close method is called.

The parent unit specified by pPUU is not added to the undo stack until its Close method is called with the
fCommit parameter set to TRUE.

The parent undo unit or undo manager must contain any undo unit given to it unless it is blocked. If it is
blocked, it must return S_OK but should do nothing else.

See Also
IOleParentUndoUnit::Open

IOleUndoManager::RedoTo
Instructs the undo manager to invoke undo actions back through the redo stack, down to and including
the specified undo unit.

HRESULT RedoTo(

 IOleUndoUnit* pUU //Pointer to the top level unit to redo
);

Parameters
pUU

[in] [in] Pointer to the top level unit to redo. If this parameter is NULL, the most recently added top
level unit is used.

Return Values
S_OK

The specified undo unit was successfully invoked to perform its undo action.
E_INVALIDARG

The specified undo unit is not on the redo stack.
E_ABORT

Both the undo attempt and the rollback attempt failed. The undo manager should never propagate the
E_ABORT obtained from a contained undo unit. Instead, it should map any E_ABORT values
returned from other undo units to E_FAIL.

E_UNEXPECTED

The undo manager is disabled.

Remarks
This method calls the IOleUndoUnit::Do method on each top-level undo unit. Then, it releases that undo
unit.

Note that the specified undo unit must be a top-level unit, typically retrieved through
IOleUndoManager::EnumRedoable.

In case an error is returned from the undo unit, the undo manager needs to attempt to rollback the state of
the document to recover from the error by performing actions on the redo stack.

No matter what the success of the rollback, the undo manager should always clear both stacks before
returning the error.

If the undo manager has called the Do method on more than one top-level unit, it should only rollback the
unit that returned the error. The top-level units that succeeded should not be rolled back.

The undo manager must also keep track of whether or not units were added to the opposite stack so it
won't attempt rollback if nothing was added. See the IOleUndoManager interface for detailed description
of error handling.

See Also
IOleUndoManager::EnumRedoable, IOleUndoManager::UndoTo, IOleUndoUnit::Do

IOleUndoManager::UndoTo

Instructs the undo manager to invoke undo actions back through the undo stack, down to and including
the specified undo unit.

HRESULT UndoTo(

 IOleUndoUnit* pUU //Pointer to the top level unit to undo
);

Parameters
pUU

[in] Pointer to the top level unit to undo. If this parameter is NULL, the most recently added top level
unit is used.

Return Values
S_OK

The specified undo unit was successfully invoked to perform its undo action.
E_INVALIDARG

The specified undo unit is not on the undo stack.
E_ABORT

Both the undo attempt and the rollback attempt failed. The undo manager should never propagate the
E_ABORT obtained from a contained undo unit. Instead, it should map any E_ABORT values
returned from other undo units to E_FAIL.

E_UNEXPECTED

The undo manager is disabled.

Remarks
This method calls the IOleUndoUnit::Do method on each top-level undo unit. Then, it releases that undo
unit.

Note that the specified undo unit must be a top-level unit, typically retrieved through
IOleUndoManager::EnumUndoable.

In case an error is returned from the undo unit, the undo manager needs to attempt to rollback the state of
the document to recover from the error by performing actions on the redo stack.

No matter what the success of the rollback, the undo manager should always clear both stacks before
returning the error.

If the undo manager has called the Do method on more than one top-level unit, it should only rollback the
unit that returned the error. The top-level units that succeeded should not be rolled back.

The undo manager must also keep track of whether or not units were added to the opposite stack so it
won't attempt rollback if nothing was added. See the IOleUndoManager interface for detailed description
of error handling.

See Also
IOleUndoManager::EnumUndoable, IOleUndoManager::RedoTo, IOleUndoUnit::Do

IOleUndoUnit

The IOleUndoUnit interface is the main interface on an undo unit. An undo unit encapsulates the
information necessary to undo or redo a single action.

When an object's state changes and it needs to create an undo unit, it first needs to know what parent
units are open. It calls the IOleUndoManager::GetOpenParentState method to determine this. If the call
returns S_FALSE, then there is no enabling parent. If the call returns S_OK but the
UAS_NOPARENTENABLE flag is set, then the open parent is a disabling parent. In either of these cases,
the object calls IOleUndoManager::DiscardFrom(NULL) on the undo manager and skips creating the
undo unit.

If the method returns S_OK, but the UAS_BLOCKED flag is set, then the open parent is a blocking
parent. The object does not need to create an undo unit, since it would be immediately discarded. If the
return value is S_OK and neither of the bit flags are set, then the object creates the undo unit and calls
IOleUndoManager::Add on the undo manager.

The object should retain a pointer to the undo manager.

When to Implement
An object creates an undo unit that implements this interface when the end user has performed an action
that can be undone. The object calls the IOleUndoManager::Add method to add the undo unit to the
undo stack. Most controls can implement this interface to support the centralized undo operations. They
do not have to implement IOleParentUndoUnit or IOleUndoManager. The undo manager with the
IOleUndoManager interface is usually provided by the object container.

When to Use
The undo manager calls the Do and GetDescription methods in this interface to perform undo actions
and to get strings that can be displayed in the user interface to describe the undo action. A parent undo
unit can call the GetUnitType and OnNextAdd methods.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleUndoUnit Methods Description
Do Instructs the undo unit to carry out

its action.
GetDescription Returns a string that describes the

undo unit and can be used in the
undo or redo user interface.

GetUnitType Returns the CLSID and a type
identifier for the undo unit.

OnNextAdd Notifies the last undo unit in the
collection that a new unit has been
added.

See Also
IOleParentUndoUnit, IOleUndoManager

IOleUndoUnit::Do

Instructs the undo unit to carry out its action. Note that if it contains child undo units, it must call their Do
methods as well.

HRESULT Do(

 IOleUndoManager* pUndoManager //Pointer to the undo manager
);

Parameters
pUndoManager

[in] Pointer to the undo manager.

Return Values
S_OK

The undo unit successfully carried out its action.

Remarks
The undo unit is responsible for carrying out its action. Performing its own undo action results in another
action that can potentially be reversed. However, if pUndoManager is NULL, the undo unit should perform
its undo action but should not attempt to put anything on the redo or undo stack.

If pUndoManager is not NULL, then the unit is required to put a corresponding unit on the redo or undo
stack. As a result, this method either moves itself to the redo or undo stack, or it creates a new undo unit
and adds it to the appropriate stack. After creating a new undo unit, this undo unit calls
IOleUndoManager::Open or IOleUndoManager::Add. The undo manager will put the new undo unit on
the undo or redo stack depending on its current state.

A parent unit must pass to its children the same undo manager, possibly NULL, that was given to the
parent. It is permissible, but not necessary, when pUndoManager is NULL to open a parent unit on the
redo or undo stack as long as it is not committed. A blocked parent unit ensures that nothing is added to
the stack by child units.

If this undo unit is a parent unit, it should put itself on the redo or undo stack before calling the Do on its
children.

After calling this method, the undo manager must release the undo unit.

Note to Implementers
See the IOleUndoManager interface for error handling strategies for undo units. The error handling
strategy affects the implementation of this method, particularly for parent units.

See Also
IOleUndoManager::Add, IOleUndoManager::Open

IOleUndoUnit::GetDescription

Returns a string that describes the undo unit and can be used in the undo or redo user interface.

HRESULT GetDescription(

 BSTR* pbstr //Pointer to string
);

Parameters
pbstr

[out] Pointer to string describing this undo unit.

Return Values
S_OK

The string was successfully returned.

Remarks
All units are required to provide a user-readable description of themselves.

Note to Callers
The *pbstr parameter is allocated with the standard string allocator. The caller is responsible for freeing
this string.

IOleUndoUnit::GetUnitType

Returns the CLSID and a type identifier for the undo unit.

HRESULT GetUnitType(

 CLSID* pClsid , //Pointer to CLSID for undo unit
 LONG* plID //Pointer to type identifier for undo unit
);

Parameters
pclsid

[out] Pointer to CLSID for the undo unit.
plID

[out] Pointer to the type identifier for the undo unit.

Return Values
S_OK

Both the CLSID and type identifier were successfully returned.

Remarks
A parent undo unit can call this method on its child units to determine whether it can apply special
handling to them. The CLSID returned can be the CLSID of the undo unit itself, of its creating object, or
an arbitrary GUID. The undo unit has the option of returning CLSID_NULL, in which case the caller can
make no assumptions about the type of this unit. The only requirement is that the CLSID and type
identifier together uniquely identify this type of undo unit.

Note that the undo manager and parent undo units do not have the option of accepting or rejecting child
units based on their type.

IOleUndoUnit::OnNextAdd

Notifies the last undo unit in the collection that a new unit has been added.

HRESULT OnNextAdd(void);

Return Values
S_OK

Implementations of this method always return S_OK. The HRESULT return type is provided only for
remotability.

Remarks
An object can create an undo unit for an action and add it to the undo manager but can continue inserting
data into it through private interfaces. When the undo unit receives a call to this method, it communicates
back to the creating object that the context has changed. Then, the creating object stops inserting data
into the undo unit.

The parent undo unit calls this method on its most recently added child undo unit to notify the child unit
that the context has changed and a new undo unit has been added.

For example, this method is used for supporting fuzzy actions, like typing, which do not have a clear point
of termination but instead are terminated only when something else happens.

This method may not always be called if the undo manager or an open parent unit chooses to discard the
unit by calling Release instead. Any connection which feeds data to the undo unit behind the scenes
through private interfaces should not AddRef the undo unit.

Note to Implementers
Note that parent units merely delegate this method to their most recently added child unit. A parent unit
should terminate communication through any private interfaces when it is closed. A parent unit knows it is
being closed when it receives S_FALSE from calling IOleParentUndoUnit::Close.

See Also
IOleParentUndoUnit::Close

IOleWindow

The IOleWindow interface provides methods that allow an application to obtain the handle to the various
windows that participate in in-place activation, and also to enter and exit context-sensitive help mode.

Several other in-place activation interfaces are derived from the IOleWindow interface. Containers and
objects must implement and use these interfaces in order to support in-place activation. The following
table briefly summarizes each of these interfaces:

IOleWindow The base interface. Implemented
and used by containers and objects
to obtain window handles and
manage context-sensitive help.

IOleInPlaceObject Implemented by objects and used by
an object's immediate container to
activate and deactivate the object.

IOleInPlaceActiveObject Implemented by objects and used by
the top-level container to manipulate
the object while it is active. Provides
a direct channel of communication
between an active object and its
frame and document windows.

IOleInPlaceUIWindow Implemented by containers and used
by objects to manipulate the
container's document window.

IOleInPlaceFrame Implemented by containers and used
by objects to control the container's
frame window.

IOleInPlaceSite Implemented by containers and used
by objects to interact with the in-
place client site.

IOleInPlaceSiteEx Implemented by containers and
called by objects to optimize
activation and deactivation.

IOleInPlaceSiteWIndowless Implemented by containers and
called by windowless object to obtain
services from its container.

IOleInPlaceObjectWindowles
s

Implemented by windowless objects
called by containers to support
window message processing and
drag and drop operations for
windowless objects.

These interfaces can be arranged in three hierarchical levels with various interfaces implemented at each
level. Calls that install user-interface menus commands and frame adornments, activate and switch
between windows, and dispatch menu and keystrokes take place between the top-level container and the
active object. Calls that support activating, deactivating, scrolling, or clipping span the containment
hierarchy, with each level performing the correct actions.

{ewc msdncd, EWGraphic, bsd23521 0 /a "SDK.WMF"}

When to Implement

The inherited methods of this interface are implemented by all in-place objects and containers.

When to Use
Use this interface to obtain the window handle to the windows associated with in-place activation (frame,
document, parent, and in-place object). It is also used to enter and exit context-sensitive help.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IOleWindow Methods Description
GetWindow Gets a window handle.
ContextSensitiveHelp Controls enabling of context-

sensitive help.

See Also
IOleInPlaceObject, IOleInPlaceActiveObject, IOleInPlaceUIWindow, IOleInPlaceFrame,
IOleInPlaceSite, OleCreateMenuDescriptor, OleDestroyMenuDescriptor, OleTranslateAccelerator,
IOleInPlaceSiteEx, IOleInPlaceSiteWIndowless, IOleInPlaceObjectWindowless

IOleWindow::ContextSensitiveHelp

Determines whether context-sensitive help mode should be entered during an in-place activation session.

HRESULT ContextSensitiveHelp(

 BOOL fEnterMode //Specifies whether or not to enter help mode
);

Parameter
fEnterMode

[in] TRUE if help mode should be entered; FALSE if it should be exited.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The help mode was entered or exited successfully, depending on the value passed in fEnterMode.

Remarks
Applications can invoke context-sensitive help when the user

· Presses SHIFT+F1, then clicks a topic.
· Presses F1 when a menu item is selected.

When SHIFT+F1 is pressed, either the frame or active object can receive the keystrokes. If the container's
frame receives the keystrokes, it calls its containing document's IOleWindow::ContextSensitiveHelp
method with fEnterMode set to TRUE. This propagates the help state to all of its in-place objects so they
can correctly handle the mouse click or WM_COMMAND.

If an active object receives the SHIFT+F1 keystrokes, it calls the container's
IOleInPlaceSite::ContextSensitiveHelp method with fEnterMode TRUE, which then recursively calls
each of its in-place sites until there are no more to be notified. The container then calls its document's or
frame's ContextSensitiveHelp method with fEnterMode TRUE.

When in context-sensitive help mode, an object that receives the mouse click can either:

1. Ignore the click if it does not support context-sensitive help, or
2. Tell all the other objects to exit context-sensitive help mode with ContextSensitiveHelp set to FALSE

and then provide help for that context.

An object in context-sensitive help mode that receives a WM_COMMAND should tell all the other in-place
objects to exit context-sensitive help mode and then provide help for the command.

If a container application is to support context-sensitive help on menu items, it must either provide its own
message filter so that it can intercept the F1 key or ask the OLE library to add a message filter by calling
OleSetMenuDescriptor, passing valid, non-NULL values for the lpFrame and lpActiveObj parameters.

See Also
OleSetMenuDescriptor

IOleWindow::GetWindow

Returns the window handle to one of the windows participating in in-place activation (frame, document,
parent, or in-place object window).

HRESULT GetWindow(

 HWND * phwnd //Pointer to where to return window handle
);

Parameter
phwnd

[out] Pointer to where to return the window handle.

Return Values
This method supports the standard return values E_FAIL, E_OUTOFMEMORY, E_INVALIDARG, and
E_UNEXPECTED, as well as the following:

S_OK

The window handle was successfully returned.

Note For windowless objects, this method should always fail and return E_FAIL.

Remarks
Five types of windows comprise the windows hierarchy. When a object is active in place, it has access to
some or all of these windows:

Window Description
Frame The outermost main window where the container

application's main menu resides.
Document The window that displays the compound document

containing the embedded object to the user.
Pane The subwindow of the document window that contains

the object's view. Applicable only for applications with
split-pane windows.

Parent The container window that contains that object's view.
The object application installs its window as a child of
this window.

In-place The window containing the active in-place object. The
object application creates this window and installs it
as a child of its hatch window, which is a child of the
container's parent window.

Each type of window has a different role in the in-place activation architecture. However, it is not
necessary to employ a separate physical window for each type. Many container applications use the
same window for their frame, document, pane, and parent windows.

IParseDisplayName

The IParseDisplayName interface parses a displayable name string to convert it into a moniker. Display
name parsing is necessary when the end user inputs a string to identify a component, as in the following
situations:

· A compound document application that supports linked components typically supports the Edit:Links...
dialog box. Through this dialog box, the end user can enter a display name to specify a new link
source for a specified linked component. The compound document needs to have this input string
converted into a moniker.

· A script language such as the macro language of a spreadsheet can allow textual references to a
component. The language's interpreter needs to have such a reference converted into a moniker in
order to execute the macro.

When to Implement
Compound document applications that support links to embedded components or to pseudo-objects
within their documents must provide an implementation of the IOleItemContainer interface, which is
derived indirectly from IParseDisplayName. In effect, such a compound document is providing a
namespace for identifying its internal components; and its IOleItemContainer implementation (which
includes the IParseDisplayName implementation) is the interface through which another application can
access this namespace. Alternatively, the compound document application can implement
IParseDisplayName as part of its class object, which is accessible through the CoGetClassObject
function.

When to Use
If you are implementing your own moniker class, you might need to use this interface from your
implementation of IMoniker::ParseDisplayName. If you call the MkParseDisplayName function, you are
indirectly using IParseDisplayName.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IParseDisplayName Method Description
ParseDisplayName Parses the display name.

See Also
IMoniker::ParseDisplayName, IOleItemContainer, MkParseDisplayName

IParseDisplayName::ParseDisplayName

Parses the display name to extract a component of the string that it can convert into a moniker, using the
maximum number of characters from the left side of the string.

HRESULT ParseDisplayName(

 IBindCtx *pbc, //Pointer to bind context
 LPOLESTR pszDisplayName, //Pointer to string containing display name
 ULONG *pchEaten, //Pointer to length, in characters, of display name
 IMoniker **ppmkOut //Indirect pointer to moniker that results
);

Parameters
pbc

[in] Pointer to the bind context to be used in this binding operation.
pszDisplayName

[in] Pointer to a zero-terminated string containing the display name to be parsed. For Win32
applications, the LPOLESTR type indicates a wide character string (two bytes per character);
otherwise, the string has one byte per character.

pchEaten

[out Pointer to the number of characters in the display name that correspond to the ppmkOut moniker.
ppmkOut

[out] Indirect pointer to the resulting moniker. If an error occurs, the implementation sets *ppmkOut to
NULL. If *ppmkOut is non-NULL, the implementation must call (*ppmkOut)->IUnknown::AddRef; so
it is the caller's responsibility to call (*ppmkOut)->IUnknown::Release.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

Success.
MK_E_SYNTAX

Syntax error in the display name.
MK_E_NOOBJECT

The display name does not identify a component in this namespace.

See Also
MkParseDisplayName, IMoniker::ParseDisplayName

IPerPropertyBrowsing

The IPerPropertyBrowsing interface accesses the information in the property pages offered by an
object.

When to Implement
Implement this interface on all objects that have property pages so that clients can access information
about the properties.

When to Use
Use this interface to access information about an object's properties.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPerPropertyBrowsing
Methods

Description

GetDisplayString Returns a text string describing the
specified property.

MapPropertyToPage Returns the CLSID of the property
page that allows manipulation of the
specified property.

GetPredefinedStrings Returns a counted array of strings
(LPOLESTR pointers) listing the
descriptions of the allowable values
that the specified property can
accept (i.e., the values returned from
IPerPropertyBrowsing::GetPredefi
nedValue.

GetPredefinedValue Returns a VARIANT containing the
value of a property identified with
dispID that is associated with a
predefined string name as returned
from
IPerPropertyBrowsing::GetPredefi
nedStrings.

See Also
IPropertyPage, IPropertyPage2, IPropertyPageSite, ISpecifyPropertyPages

IPerPropertyBrowsing::GetDisplayString

Returns a text string describing the property identified with dispID in the caller's user interface. In other
words, the returned text is a displayable name describing the property and can be displayed in the caller's
user interface. The string itself is a BSTR allocated by this method with SysAllocString. Upon return, the
string is the responsibility of the caller, which must free it with SysFreeString when it is no longer needed.

HRESULT GetDisplayString(

 DISPID dispID , //Dispatch identifier for the property
 BSTR *pbstr //Receives a pointer to the displayable string describing the property
);

Parameters
dispID

[in] Dispatch identifier of the property whose display name is requested.
pbstr

[out] Pointer to the BSTR containing the display name for the property identified with dispID.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The display name was successfully returned.
E_NOTIMPL

The object does not provide display names for individual properties. The caller has the recourse to
check the object's type information for the text name of the object in this case.

E_POINTER

The address in pbstr is not valid. For example, it may be NULL.

Remarks
Notes to Implementers
The caller is responsible for freeing the pbstr string with SysFreeString when it is no longer needed.

IPerPropertyBrowsing::GetPredefinedStrings

Returns a counted array of string pointers (LPOLESTR pointers). The strings pointed to provide a list of
names that each correspond to values that the property specified with dispID can accept.

HRESULT GetPredefinedStrings(

 DISPID dispID , //Dispatch identifier for property
 CALPOLESTR *pcaStringsOut , //Receives a pointer to an array of strings
 CADWORD *pcaCookiesOut //Receives a pointer to array of DWORDs
);

Parameters
dispID

[in] Dispatch identifier of the property for which the caller is requesting the string list.
pcaStringsOut

[out] Pointer to a caller-allocated, counted array structure that contains the element count and
address of a method-allocated array of string pointers. This method also allocates memory for the
string values containing the predefined names, and it stores the string pointers in the array. If the
method fails, no memory is allocated, and the contents of the structure are undefined.

pcaCookiesOut

[out] Pointer to the caller-allocated, counted array structure that contains the element count and
address of a method-allocated array of DWORDs. The DWORD values in the array can be passed to
IPerPropertyBrowsing::GetPredefinedValue to retrieve the value associated with the name in the
same array position inside pcaStringsOut. If the method fails, no memory is allocated, and the
contents of the structure are undefined.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The arrays were allocated and filled successfully.
E_NOTIMPL

This method is not implemented and predefined names are not supported.
E_POINTER

The address in pcaStringsOut or pcaCookiesOut is not valid. For example, either may be NULL.

Remarks
Each string returned in the array pointed to by pcaStringsOut has a matching token in the counted array
pointed to by pcaCookiesOut, where the token can be passed to
IPerPropertyBrowsing::GetPredefinedValue to get the actual value (a VARIANT) corresponding to the
string.

Using the predefined strings, a caller can obtain a list of strings for populating user interface elements,

such as a drop-down listbox. When the end user selects one of these strings as a value to assign to a
property, the caller can then obtain the corresponding value through
IPerPropertyBrowsing::GetPredefinedValue.

Notes to Callers
Both the CALPOLESTR and CADWORD structures passed to this method are caller-allocated. The caller
is responsible for freeing each string pointed to from the CALPOLESTR array as well as the
CALPOLESTR structure.

All memory is allocated with CoTaskMemAlloc. The caller is responsible for freeing the strings and the
array with CoTaskMemFree.

Upon return from this method, the caller is responsible for all this memory and must free it when it is no
longer needed. Code to achieve this appears as follows:

CALPOLESTR castr;
CWDWORD cadw;
ULONG i;

pIPerPropertyBrowsing->GetPredefinedStrings(dispID, &castr, &cadw);

//...Use the strings and the cookies

CoTaskMemFree((void *)cadw.pElems);

for (i=0; i < castr.cElems; i++)
 CoTaskMemFree((void *)castr.pElems[i]);

CoTaskMemFree((void *)castr.pElems);

Notes to Implementers
Support for predefined names and values is not required. If your object does not support these names,
return E_NOTIMPL from this method. If this method is not implemented,
IPerPropertyBrowsing::GetPredefinedValue must not be implemented either.

This method fills the cElems and pElems fields of the CADWORD and CALPOLESTR structures. It
allocates the arrays pointed to by these structures with CoTaskMemAlloc and fills those arrays. In the
CALPOLESTR case, this method also allocates each string with CoTaskMemAlloc, storing each string
pointer in the array.

See Also
CADWORD, CALPOLESTR, CoTaskMemAlloc, CoTaskMemFree,
IPerPropertyBrowsing::GetPredefinedValue

IPerPropertyBrowsing::GetPredefinedValue

Returns a VARIANT containing the value of the property specified by dispID. This property is associated
with a predefined string name as returned from IPerPropertyBrowsing::GetPredefinedStrings. The
predefined string is identified by a token returned from GetPredefinedStrings.

HRESULT GetPredefinedValue(

 DISPID dispID , //Dispatch identifier for property
 DWORD dwCookie , //Token returned
 VARIANT *pVarOut //Receives a pointer to a VARIANT value for the property
);

Parameters
dispID

[in] Dispatch identifier of the property for which a predefined value is requested.
dwCookie

[in] Token identifying which value to return. The token was previously returned in the pcaCookiesOut
array filled by IPerPropertyBrowsing::GetPredefinedStrings.

pVarOut

[out] Pointer to the VARIANT value for the property.

Return Values
This method supports the standard return values E_INVALIDARG,

E_OUTOFMEMORY, and E_UNEXPECTED, as well as the following:

S_OK

The value was returned successfully.
E_NOTIMPL

This object does not support predefined strings or predefined values.
E_POINTER

The address in pVarOut is not valid. For example, it may be NULL.

Remarks
Notes to Callers
The caller is responsible for freeing any allocations contained in the VARIANT. Unless the vt field of
VARIANT is VT_VARIANT, the caller can free memory using a single call to VariantClear. Otherwise, the
caller must recursively free the contained VARIANTs before freeing the outer VARIANT.

Notes to Implementers
Support for predefined names and values is not required. If your object does not support these names,
return E_NOTIMPL from this method. If this method is not implemented,
IPerPropertyBrowsing::GetPredefinedStrings must not be implemented either.

This method allocates any memory needed inside the VARIANT.

See Also
IPerPropertyBrowsing::GetPredefinedStrings

IPerPropertyBrowsing::MapPropertyToPage

Returns the CLSID of the property page associated with the specified property. In other words, this
method maps a specified property to the property page that allows a user to manipulate that property. The
CLSID returned from this method can be passed to OleCreatePropertyFrameIndirect to specify the
initial page to display in the property sheet.

HRESULT MapPropertyToPage(

 DISPID dispID , //Dispatch identifier for the property
 CLSID *pclsid //Receives a pointer to CLSID for property
);

Parameters
dispID

[in] Dispatch identifier of the property of interest.
pclsid

[out] Pointer to the CLSID identifying the property page associated with the property specified by
dispID. If this method fails, *pclsid is set to CLSID_NULL.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The CLSID was successfully returned.
E_NOTIMPL

The object does not support property pages at all or doesn't support mapping properties to the page
CLSID. In other words, this feature of specific property browsing is not supported.

E_POINTER

The address in pclsid is not valid. For example, it may be NULL.

 IPersist

The IPersist interface defines the single method GetClassID, which is designed to supply the CLSID of
an object that can be stored persistently in the system. A call to this method can allow the object to
specify which object handler to use in the client process, as it is used in the OLE default implementation
of marshaling.

IPersist is the base interface for three other interfaces: IPersistStorage, IPersistStream, and
IPersistFile. Each of these interfaces, therefore, includes the GetClassID method, and the appropriate
one of these three interfaces is implemented on objects that can be serialized to a storage, a stream, or a
file. The methods of these interfaces allow the state of these objects to be saved for later instantiations,
and load the object using the saved state. Typically, the persistence interfaces are implemented by an
embedded or linked object, and are called by the container application or the default object handler

When to Implement
You must implement the single method of IPersist in implementing any one of the other persistence
interfaces: IPersistStorage, IPersistStream, or IPersistFile. Typically, for example, you would
implement IPersistStorage on an embedded object, IPersistFile on a linked object, and IPersistStream
on a new moniker class, although their uses are not limited to these objects. You could implement
IPersist in a situation where all that is required is to obtain the CLSID of a persistent object, as it is used
in marshaling.

When to Use
The single method of IPersist is rarely called directly in application code. It is called by the default object
handler to get the CLSID of an embedded object, or an object to be marshaled. A container application,
for example, would probably not call the GetClassID method directly unless it provided object handlers
for specific classes of objects.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IPersist Method Description
GetClassID Returns the class identifier (CLSID)

for the component object.

 IPersist::GetClassID

Retrieves the class identifier (CLSID) of an object. The CLSID is a unique value that identifies the code
that can manipulate the persistent data.

HRESULT GetClassID(

 CLSID *pClassID //Pointer to CLSID of object

);

Parameter
pClassID

[out]Points to the location of the CLSID on return. The CLSID is a globally unique identifier (GUID)
that uniquely represents an object class that defines the code that can manipulate the object's data.

Return Values
S_OK

The CLSID was successfully retrieved.
E_FAIL

The CLSID could not be retrieved.

Remarks
The GetClassID method retrieves the class identifier (CLSID) for an object, used in later operations to
load object-specific code into the caller's context.

Notes to Callers
A container application might call this method to retrieve the original CLSID of an object that it is treating
as a different class. Such a call would be necessary if a user performed an editing operation that required
the object to be saved. If the container were to save it using the treat-as CLSID, the original application
would no longer be able to edit the object. .Typically, in this case, the container calls the OleSave helper
function, which performs all the necessary steps. For this reason, most container applications have no
need to call this method directly.

The exception would be a container that provides an object handler for certain objects. In particular, a
container application should not get an object's CLSID and then use it to retrieve class specific
information from the registry. Instead, the container should use IOleObject and IDataObject interfaces to
retrieve such class-specific information directly from the object.

Notes to Implementers
Typically, implementations of this method simply supply a constant CLSID for an object. If, however, the
object's TreatAs registry key has been set by an application that supports emulation (and so is treating
the object as one of a different class), a call to IPersist::GetClassID must supply the CLSID specified in
the TreatAs key. For more information on emulation, refer to CoTreatAsClass.

When an object is in the running state, the default handler calls an implementation of
IPersist::GetClassID that delegates the call to the implementation in the object. When the object is not
running, the default handler instead calls the ReadClassStg function to read the CLSID that is saved in

the object's storage.

If you are writing a custom object handler for your object, you might want to simply delegate this method
to the default handler implementation (see OleCreateDefaultHandler).

See Also
IPersistStorage, IPersistStream, IPersistFile, ReadClassStg

 IPersistFile

The IPersistFile interface provides methods that permit an object to be loaded from or saved to a disk
file, rather than a storage object or stream. Because the information needed to open a file varies greatly
from one application to another, the implementation of IPersistFile::Load on the object must also open
its disk file.

The IPersistFile interface inherits its definition from IPersist, so all implementations must also include the
GetClassID method of IPersist.

When to Implement
Implement IPersistFile when you want to read or write information from a separate file, which could be of
any file format.

This interface should be implemented on any objects that support linking through a file moniker, including
the following:

· Any object that supports links to its files or to pseudo-objects within its files
· A container application that supports links to objects within its compound file

Typically, you implement the IPersistFile interface as part of an aggregate object that includes other
interfaces that are appropriate for the type of moniker binding that is supported.

For example, in either of the cases mentioned above, the moniker for the linked object can be a
composite moniker. In the first case, a composite moniker identifies the pseudo-object contained within
the file. In the second case, a composite moniker identifies the embedded object contained within the
compound file. In either case of composite monikers, you must implement the IPersistFile interface as
part of the same object on which the IOleItemContainer interface is implemented. Then, when the
application for the linked object is run, OLE queries for the IOleItemContainer interface to locate the
embedded object or the pseudo-object contained in the file.

As another example, if the moniker is a simple file moniker (i.e., the link is to the entire file), OLE queries
for the interface that the initiator of the bind operation requested. Typically, this is one of the compound
document interfaces, such as IOleObject, IDataObject, or IPersistStorage.

When to Use
Call methods in the IPersistFile interface to load or save a linked object in a specified file.

When IPersistFile is implemented on an object that supports linking through a file moniker and the
application for the linked object is run, OLE calls IPersistFile::Load. Once the file is loaded, OLE calls
IPersistFile::QueryInterface to get another interface pointer to the loaded object. The IPersistFile
interface is typically part of an aggregate object that offers other interfaces.

In this case, the only IPersistFile method that OLE calls is the Load method to load a file linked to a
container, running the application associated with the file. It would also be unusual for applications to call
other methods in this case, which support saving an object to a file. Generally, it is left to the end user and
the application for the linked object to decide when to save the object. This differs from the situation for an
embedded object, in which the container application uses the IPersistStorage interface to provide the
storage and to tell the object when to save itself.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IPersist Method Description
GetClassID Returns the class identifier (CLSID)

for the component object.

IPersistFile Methods Description
IsDirty Checks an object for changes

since it was last saved to its
current file.

Load Opens the specified file and
initializes an object from the file
contents.

Save Saves the object into the specified
file.

SaveCompleted Notifies the object that it can revert
from NoScribble mode to Normal
mode.

GetCurFile Gets the current name of the file
associated with the object.

 IPersistFile::GetCurFile

Retrieves either the absolute path to the object's current working file or, if there is no current working file,
the object's default filename prompt.

HRESULT GetCurFile(

 LPOLESTR *ppszFileName //Pointer to the path for the current file or the default save prompt

);

Parameter
ppszFileName

[out]Points to the location of a pointer to a zero-terminated string containing the path for the current
file or the default filename prompt (such as *.txt). If an error occurs, ppszFileName is set to NULL.

Return Values
S_OK

A valid absolute path was successfully returned.
S_FALSE

The default save prompt was returned.
E_OUTOFMEMORY

The operation failed due to insufficient memory.
E_FAIL

The operation failed due to some reason other than insufficient memory.

Remarks
This method returns the current filename or the default save prompt for the object.

This method allocates memory for the string returned in the ppszFileName parameter using the
IMalloc::Alloc method. The caller is responsible for calling the IMalloc::Free method to free the string.
Both the caller and this method use the OLE task allocator provided by a call to CoGetMalloc.

The LPOLESTR type indicates a wide character string (two bytes per character); otherwise, the string has
one byte per character.

The filename returned in ppszFileName is the name specified in a call to IPersistFile::Load when the
document was loaded; or in IPersistFile::SaveCompleted if the document was saved to a different file.

If the object does not have a current working file, it should supply the default filename prompt that it would
display in a "Save As" dialog. For example, the default save prompt for a word processor object could be:

*.txt

Notes to Callers
OLE does not call the IPersistFile::GetCurFile method. Applications would not call this method unless
they are also calling the save methods of this interface.

In saving the object, you can call this method before calling IPersistFile:Save to determine whether the
object has an associated file. If this method returns S_OK, you can then call IPersistFile::Save with a
NULL filename and a TRUE value for the fRemember parameter to tell the object to save itself to its
current file. If this method returns S_FALSE, you can use the save prompt returned in the ppszFileName
parameter to ask the end user to provide a filename. Then, you can call IPersistFile::Save with the
filename that the user entered to perform a "Save As" operation.

See Also
IPersistFile::Load, IPersistFile::Save, IPersistFile::SaveCompleted

 IPersistFile::IsDirty

Checks an object for changes since it was last saved to its current file.

HRESULT IsDirty(void);

Return Values
S_OK

The object has changed since it was last saved.
S_FALSE

The object has not changed since the last save.

Remarks
This method checks whether an object has changed since it was last saved. Call it to determine whether
an object should be saved before closing it. The dirty flag for an object is conditionally cleared in the
IPersistFile::Save method.

Notes to Callers
OLE does not call IPersistFile::IsDirty. Applications would not call it unless they are also saving an
object to a file.

You should treat any error return codes as an indication that the object has changed. Unless this method
explicitly returns S_FALSE, assume that the object must be saved.

Notes to Implementers
An object with no contained objects simply checks its dirty flag to return the appropriate result.

A container with one or more contained objects must maintain an internal dirty flag that is set when any of
its contained objects has changed since it was last saved. To do this, the container should maintain an
advise sink by implementing the IAdviseSink interface. Then, the container can register each link or
embedding for data change notifications with a call to IDataObject::DAdvise. Then, the container can set
its internal dirty flag when it receives an IAdviseSink::OnDataChange notification. If the container does
not register for data change notifications, the IPersistFile::IsDirty implementation would call
IPersistStorage::IsDirty for each of its contained objects to determine whether they have changed.

The container can clear its dirty flag whenever it is saved, as long as the file to which the object is saved
is the current working file after the save. Therefore, the dirty flag would be cleared after a successful
"Save" or "Save As" operation, but not after a "Save A Copy As . . ." operation.

See Also
IAdviseSink::OnDataChange, IDataObject::DAdvise, IPersistStorage::IsDirty

 IPersistFile::Load

Opens the specified file and initializes an object from the file contents.

HRESULT Load(

 LPCOLESTR pszFileName, //Pointer to absolute path of the file to open

 DWORD dwMode //Specifies the access mode from the STGM enumeration

);

Parameters
pszFileName

[in]Points to a zero-terminated string containing the absolute path of the file to open.
dwMode

[in]Specifies some combination of the values from the STGM enumeration to indicate the access
mode to use when opening the file. IPersistFile::Load can treat this value as a suggestion, adding
more restrictive permissions if necessary. If dwMode is zero, the implementation should open the file
using whatever default permissions are used when a user opens the file.

Return Values
S_OK

The object was successfully loaded.
E_OUTOFMEMORY

The object could not be loaded due to a lack of memory.
E_FAIL

The object could not be loaded for some reason other than a lack of memory.
IPersistFile::Load STG_E_* error codes.

Remarks
IPersistFile::Load loads the object from the specified file. This method is for initialization only and does
not show the object to the end user. It is not equivalent to what occurs when an end user selects the File
Open command.

Notes to Callers
The BindToObject method in file monikers calls this method to load an object during a moniker binding
operation (when a linked object is run). Typically, applications do not call this method directly.

Notes to Implementers
Because the information needed to open a file varies greatly from one application to another, the object
on which this method is implemented must also open the file specified by the pszFileName parameter.
This differs from the IPersistStorage::Load and IPersistStream::Load, in which the caller opens the
storage or stream and then passes an open storage or stream pointer to the loaded object.

For an application that normally uses OLE compound files, your IPersistFile::Load implementation can
simply call the StgOpenStorage function to open the storage object in the specified file. Then, you can
proceed with normal initialization. Applications that do not use storage objects can perform normal file-
opening procedures.

When the object has been loaded, your implementation should register the object in the Running Object
Table (see IRunningObjectTable::Register).

See Also
IRunningObjectTable::Register, StgOpenStorage

 IPersistFile::Save

Saves a copy of the object into the specified file.

HRESULT Save(

 LPCOLESTR pszFileName, //Pointer to absolute path of the file where the object is saved

 BOOL fRemember //Specifies whether the file is to be the current working file or not

);

Parameters
pszFileName

[in]Points to a zero-terminated string containing the absolute path of the file to which the object should
be saved. If pszFileName is NULL, the object should save its data to the current file, if there is one.

fRemember

[in]Indicates whether the pszFileName parameter is to be used as the current working file. If TRUE,
pszFileName becomes the current file and the object should clear its dirty flag after the save. If
FALSE, this save operation is a "Save A Copy As ..." operation. In this case, the current file is
unchanged and the object should not clear its dirty flag. If pszFileName is NULL, the implementation
should ignore the fRemember flag.

Return Values
S_OK

The object was successfully saved.
E_FAIL

The file was not saved.
IPersistFile::Save STG_E_* errors.

Remarks
This method can be called to save an object to the specified file in one of three ways:

Save

Call IPersistFile::GetCurFile first to determine whether the object has an associated filename. If so,
call IPersistFile::Save specifying NULL for the pszFileName parameter in this method to indicate that
the object should be saved to its current file. Then call IPersistFile::SaveCompleted to indicate
completion.

Save As

Call IPersistFile::Save specifying TRUE in the fRemember parameter and a non-NULL value,
indicating the name of the new file the object is to be saved to, for the pszFileName parameter . Then
call IPersistFile::SaveCompleted to indicate completion.

Save a Copy As

Call IPersistFile::Save specifying FALSE in the fRemember parameter and a non-NULL value,

indicating the name of the new file the object is to be copied to, for the pszFileName parameter.

The implementer must detect which type of save operation the caller is requesting. If the pszFileName
parameter is NULL, a "Save" is being requested. If the pszFileName parameter is not NULL, use the
value of the fRemember parameter to distinguish between a "Save As" and a "Save a Copy As".

In "Save" or "Save As" operations, IPersistFile::Save clears the internal dirty flag after the save and
sends IAdviseSink::OnSave notifications to any advisory connections (see also
IOleAdviseHolder::SendOnSave). Also, in these operations, the object is in NoScribble mode until it
receives an IPersistFile::SaveCompleted call. In NoScribble mode, the object must not write to the file.

In the "Save As" scenario, the implementation should also send IAdviseSink::OnRename notifications to
any advisory connections (see also IOleAdviseHolder::SendOnRename).

In the "Save a Copy As" scenario, the implementation does not clear the internal dirty flag after the save.

Notes to Callers
OLE does not call IPersistFile::Save. Typically, applications would not call it unless they are saving an
object to a file directly, which is generally left to the end-user.

See Also
IOleAdviseHolder::SendOnRename, IOleAdviseHolder::SendOnSave, IPersistFile::GetCurFile,
IPersistFile::SaveCompleted

 IPersistFile::SaveCompleted

Notifies the object that it can write to its file. It does this by notifying the object that it can revert from
NoScribble mode (in which it must not write to its file), to Normal mode (in which it can). The component
enters NoScribble mode when it receives an IPersistFile::Save call.

HRESULT SaveCompleted(

 LPCOLESTR pszFileName //Pointer to absolute path of the file where the object was saved

);

Parameter
pszFileName

[in]Points to the absolute path of the file where the object was previously saved.

Return Value
S_OK

Returned in all cases.

Remarks
IPersistFile::SaveCompleted is called when a call to IPersistFile::Save is completed, and the file that
was saved is now the current working file (having been saved with "Save" or "Save As" operations). The
call to Save puts the object into NoScribble mode so it cannot write to its file. When SaveCompleted is
called, the object reverts to Normal mode, in which it is free to write to its file.

Notes to Callers
OLE does not call the IPersistFile::SaveCompleted method. Typically, applications would not call it
unless they are saving objects directly to files, an operation which is generally left to the end-user.

See Also
IPersistFile::Save

IPersistMemory

The IPersistMemory interface operates exactly as IPersistStreamInit, except that it allows the caller to
provide a fixed-size memory block (identified with a void *) as opposed to IPersistStreamInit which
involves an arbitrarily expandable IStream.

The cbSize argument to the Load and Save methods indicate the amount of memory accessible through
pvMem.

The IsDirty, GetSizeMax, and InitNew methods are semantically and syntactically identical to those in
IPersistStreamInit. Only Load and Save differ.

When to Implement
An object implements this interface to save itself in memory.

When to Use
A container calls the methods of this interface to instruct an object to save and load itself in memory.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPersist Method Description
GetClassID Returns the class identifier (CLSID)

for the component object.

IPersistMemory Methods Description
IsDirty Checks the object for changes since

it was last saved.
Load Initializes an object from the memory

block where it was previously saved.
Save Saves an object into the specified

memory block and indicates whether
the object should reset its dirty flag.

GetSizeMax Returns the size in bytes of the
memory block needed to save the
object.

InitNew Initializes an object to a default state.

IPersistMemory::GetSizeMax

Returns the size in bytes of the memory block needed to save the object.

HRESULT GetSizeMax(

 ULARGE_INTEGER* pcbSize //Pointer to size of memory needed to save object
);

Parameter
pcbSize

[out]Pointer to a 64-bit unsigned integer value indicating the size in bytes of the memory needed to
save this object.

Return Value
S_OK

The size was successfully returned.

Remarks
This method returns the size needed to save an object. You can call this method to determine the size
and set the necessary buffers before calling the IPersistMemory::Save method.

Notes to Implementers
The GetSizeMax implementation must return a conservative estimate of the necessary size because the
IPersistMemory::Save method uses a fixed size memory block.

See Also
IPersistMemory::Save

IPersistMemory::InitNew

Initializes the object to a default state. This method is called instead of IPersistMemory::Load.

HRESULT InitNew(void);

Return Values
S_OK

The object successfully initialized itself.
E_NOTIMPL

The object requires no default initialization. This error code is allowed because an object may choose
to implement IPersistMemory simply for orthogonality or in anticipation of a future need for this
method.

E_UNEXPECTED

This method was called after the object was already initialized with IPersistMemory::Load. Only one
initialization is allowed per instance.

E_OUTOFMEMORY

There was not enough memory for the object to initialize itself.

Notes to Implementers
If the object has already been initialized with Load, then this method must return E_UNEXPECTED.

See Also
IPersistMemory::Load

IPersistMemory::IsDirty

Checks the object for changes since it was last saved.

HRESULT IsDirty(void);

Return Values
S_OK

The object has changed since it was last saved.
S_FALSE

The object has not changed since the last save.

Remarks
This method checks whether an object has changed since it was last saved so you can avoid losing
information in objects that have not yet been saved. The dirty flag for an object is conditionally cleared in
the IPersistMemory::Save method.

Notes to Callers
You should treat any error return codes as an indication that the object has changed. In other words,
unless this method explicitly returns S_FALSE, you must assume that the object needs to be saved.

See Also
IPersistMemory::Save

IPersistMemory::Load

Instructs the object to load its persistent data from the memory pointed to by pvMem where cbSize
indicates the amount of memory at pvMem. The object must not read past the address (BYTE*)((BYTE
*)pvMem+cbSize).

HRESULT Load(

 void* pvMem, //Pointer to the stream from which the object should be loaded
 ULONG cbSize //Amount of memory from which the object can read its data
);

Parameters
pvMem

[in] Pointer to the address in memory from which the object can read up to cbSize bytes of its data.
cbSize

[in] The amount of memory available at pvMem from which the object can read its data.

Return Values
S_OK

The object successfully loaded its data.
E_UNEXPECTED

This method was called after the object was already initialized with IPersistMemory::Load. Only one
initialization is allowed per instance.

E_POINTER

The pointer in pvMem is NULL.

Remarks
Any object that implements IPersistMemory has some information to load persistently, therefore
E_NOTIMPL is not a valid return code.

See Also
IPersistMemory::InitNew

IPersistMemory::Save

Instructs the object to save its persistent data to the memory pointed to by pvMem where cbSize indicates
the amount of memory available at pvMem. The object must not write past the address (BYTE*)((BYTE
*)pvMem+cbSize). The fClearDirty flag determines whether the object is to clear its dirty state after the
save is complete.

HRESULT Save(

 void* pvMem, //Pointer to the stream where the object is to be saved
 BOOL fClearDirty, //Specifies whether to clear the dirty flag
 ULONG cbSize //Amount of memory to which the object can write its data
);

Parameters
pvMem

[in] Pointer to the memory in which the object should save up to cbSize bytes of its data.
fClearDirty

[in] A flag indicating whether the object should clear its dirty state on return from Save or leave that
state as-is.

cbSize

[in] The amount of memory available at pvMem to which the object can write its data.

Return Values
S_OK

The object successfully initialized itself.
E_UNEXPECTED

This method was called before the object was initialized with IPersistMemory::InitNew or
IPersistMemory::Load.

E_INVALIDARG

The number of bytes indicated by cbSize is too small to allow the object to save itself completely.
E_POINTER

The pointer in pvMem is NULL.

Remarks
Any object that implements IPersistMemory has some information to save persistently, therefore
E_NOTIMPL is not a valid return code.

The caller should ideally allocate as many bytes as the object returns from
IPersistMemory::GetSizeMax.

See Also
IPersistMemory::InitNew, IPersistMemory::Load

IPersistPropertyBag

The IPersistPropertyBag interface works in conjunction with IPropertyBag and IErrorLog to define an
individual property-based persistence mechanism. Whereas a mechanism like IPersistStream gives an
object an IStream in which to store its binary data, IPersistPropertyBag provides an object with an
IPropertyBag interface through which it can save and load individual properties. The implementer of
IPropertyBag can then save those properties in whatever way it chooses, such as name/value pairs in a
text file. Errors encountered in the process (on either side) are recorded in an error log through
IErrorLog. This error reporting mechanism work on a per-property basis instead of an all properties as a
whole basis through just the return value of IPersist*::Load or IPersist*::Save.

The basic mechanism is that a container tells the object to save or load its properties through
IPersistPropertyBag. For each property, the object calls the container's IPropertyBag interface passed
to the IPersistPropertyBag methods. IPropertyBag::Write saves a property in whatever place the
container wants to put it, and IPropertyBag::Read retrieves a property.

This protocol is essentially a means of sequentially communicating individual property values from the
object to the container, which is useful for doing save-as-text operations and the like. The object gives the
container the choice of the format in which each property is saved, while retaining itself the decision as to
which properties are saved or loaded.

When to Implement
An object implements this interface to enable saving its properties persistently.

When to Use
A container calls the methods on this interface to instruct an object to load and save its properties to the
supplied property bag.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPersist Method Description
GetClassID Returns the class identifier (CLSID)

for the component object.

IPersistPropertyBag Methods Description
InitNew Called by the container when the

control is initialized to initialize the
property bag.

Load Called by the container to load the
control's properties.

Save Called by the container to save the
object's properties.

See Also

IErrorLog, IPropertyBag

IPersistPropertyBag::InitNew
Called by the container when the control is initialized to initialize the property bag.

HRESULT InitNew(void);

Return Values
S_OK

The object successfully initialized itself. This should be returned even if the object doesn't do anything
in the method.

CO_E_ALREADYINITIALISED

The object has already been initialized.
E_OUTOFMEMORY

The storage object was not initialized due to a lack of memory.
E_UNEXPECTED

The storage object was not initialized due to some reason other than a lack of memory.

Remarks
This method informs the object that it is being initialized as a newly created object.

E_NOTIMPL should not be returned¾use S_OK when the object has nothing to do in the method.

See Also
IPersistPropertyBag::Load

IPersistPropertyBag::Load
Called by the container to load the control's properties.

HRESULT Load(

 IPropertyBag* pPropBag, //Pointer to caller's property bag
 IErrorLog* pErrorLog //Pointer to error log
);

Parameters
pPropBag

[in] Pointer to the caller's IPropertyBag interface bag that the control uses to read its properties.
Cannot be NULL.

pErrorLog

[in] Pointer to the caller's IErrorLog interface in which the object stores any errors that occur during
initialization. Can be NULL in which case the caller is not interested in errors.

Return Values
S_OK

The object successfully initialized itself.
E_UNEXPECTED

This method was called after IPersistPropertyBag::InitNew has already been called. They two
initialization methods are mutually exclusive.

E_OUTOFMEMORY

The properties were not loaded due to a lack of memory.
E_POINTER

The address in pPropBag is not valid (such as NULL) and therefore the object cannot initialize itself.
E_FAIL

The object was unable to retrieve a critical property that is necessary for the object's successful
operation. The object was therefore unable to initialize itself completely.

Remarks
This method instructs the object to initialize itself using the properties available in the property bag,
notifying the provided error log object when errors occur. All property storage must take place within this
method call as the object cannot hold the IPropertyBag pointer.

E_NOTIMPL is not a valid return code as any object implementing this interface must support the entire
functionality of the interface.

See Also
IPersistPropertyBag::InitNew

IPersistPropertyBag::Save
Called by the container to save the object's properties.

HRESULT Save(

 IPropertyBag* pPropBag, //Pointer to the caller's property bag
 BOOL fClearDirty, //Specifies whether to clear the dirty flag
 BOOL fSaveAllProperties //Specifies whether to save all properties or just those that have changed
);

Parameters
pPropBag

[in] Pointer to the caller's IPropertyBag interface through which the object can write properties.
Cannot be NULL.

fClearDirty

[in] A flag indicating whether the object should clear its dirty flag when saving is complete. TRUE
means clear the flag, FALSE means leave the flag unaffected. FALSE is used when the caller wishes
to do a Save Copy As type of operation.

fSaveAllProperties

[in] A flag indicating whether the object should save all its properties (TRUE) or only those that have
changed since the last save or initialization (FALSE).

Return Values
S_OK

The object successfully saved the requested properties itself.
E_FAIL

There was a problem saving one of the properties. The object can choose to fail only if a necessary
property could not be saved, meaning that the object can assume default property values if a given
property is not seen through IPersistPropertyBag::Load at some later time.

E_POINTER

The address in pPropBag is not valid (such as NULL) and therefore the object cannot initialize itself.
STG_E_MEDIUMFULL

The object was not saved because of a lack of space on the disk.

Remarks
This method instructs the object to save its properties to the specified property bag, optionally clearing the
object's dirty flag. The caller can request that the object save all properties or that the object save only
those that are known to have changed.

E_NOTIMPL is not a valid return code as any object implementing this interface must support the entire
functionality of the interface.

See Also

IPersistPropertyBag::InitNew, IPersistPropertyBag::Load

 IPersistStorage

The IPersistStorage interface defines methods that enable a container application to pass a storage
object to one of its contained objects and to load and save the storage object. This interface supports the
structured storage model, in which each contained object has its own storage that is nested within the
container's storage.

The IPersistStorage contract inherits its definition from IPersist, so all implementations must also
include the GetClassID method of IPersist.

When to Implement
Any object that can be embedded in a container must implement the IPersistStorage interface. This
interface is one of the primary interfaces for a compound document object. Embeddable objects must also
implement the IOleObject and IDataObject interfaces.

The OLE default handler for embedded objects provides an implementation of the IPersistStorage
interface that is used when the object is in the loaded state. Similarly, the OLE default link handler
provides an IPersistStorage implementation that manages storage for a linked object. These default
handlers both interact with the OLE default cache implementation, which has its own IPersistStorage
implementation.

If you are providing a custom embedding or link handler for your objects, the handler must include an
implementation of IPersistStorage. You can delegate calls to the default handler so you can take
advantage of the default cache implementation.

When to Use
When an OLE container creates a new object, loads an existing object from storage, or inserts a new
object in a clipboard or a drag-and-drop operation, the container uses the IPersistStorage interface to
initialize the object and put it in the loaded or running state. When an object is loaded or running, an OLE
container calls other IPersistStorage methods to instruct the object to perform various save operations or
to release its storage.

Typically, applications use helper functions such as OleLoad or OleCreate, rather than calling the
IPersistStorage::Load or IPersistStorage::InitNew methods directly. Similarly, applications typically call
the OleSave helper function rather than calling IPersistStorage::Save directly.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPersist Method Description
GetClassID Returns the class identifier (CLSID)

for the object on which it is
implemented.

IPersistStorage Methods Description
IsDirty Indicates whether the object has

changed since it was last saved to

its current storage.
InitNew Initializes a new storage object.
Load Initializes an object from its existing

storage.
Save Saves an object, and any nested

objects that it contains, into the
specified storage object. The object
enters NoScribble mode.

SaveCompleted Notifies the object that it can revert
from NoScribble or HandsOff
mode, in which in must not write to
its storage object, to Normal mode
in which it can.

HandsOffStorage Instructs the object to release all
storage objects that have been
passed to it by its container and to
enter HandsOffAfterSave or
HandsOffFromNormal mode.

See Also
IDataObject, IOleObject, OleCreate, OleLoad, OleSave

 IPersistStorage::HandsOffStorage

Instructs the object to release all storage objects that have been passed to it by its container and to enter
HandsOff mode, in which the object cannot do anything and the only operation that works is a close
operation.

HRESULT HandsOffStorage(void);

Return Value
S_OK

The object has successfully entered HandsOff mode.

Remarks
This method causes an object to release any storage objects that it is holding and to enter the HandsOff
mode until a subsequent IPersistStorage::SaveCompleted call. In HandsOff mode, the object cannot do
anything and the only operation that works is a close operation.

A container application typically calls this method during a full save or low-memory full save operation to
force the object to release all pointers to its current storage. In these scenarios, the HandsOffStorage
call comes after a call to either OleSave or IPersistStorage::Save, putting the object in
HandsOffAfterSave mode. Calling this method is necessary so the container application can delete the
current file as part of a full save, or so it can call the IRootStorage::SwitchToFile method as part of a
low-memory save.

A container application also calls this method when an object is in Normal mode to put the object in
HandsOffFromNormal mode.

While the component object is in either HandsOffAfterSave or HandsOffFromNormal mode, most
operations on the object will fail. Thus, the container should restore the object to Normal mode as soon as
possible. The container application does this by calling the IPersistStorage::SaveCompleted method,
which passes a storage pointer back to the component object for the new storage object.

Notes to Implementers
This method must release all pointers to the current storage object, including pointers to any nested
streams and storages. If the object contains nested objects, the container application must recursively call
this method for any nested objects that are loaded or running.

See Also
OleSave, IPersistStorage::Save, IPersistStorage::SaveCompleted, IRootStorage::SwitchToFile

 IPersistStorage::InitNew

Initializes a new object, providing a pointer to the storage to be used for the object.

HRESULT InitNew(

 IStorage *pStg //Points to the new storage object

);

Parameter
pStg

[in]IStorage pointer to the new storage object to be initialized. The container creates a nested storage
object in its storage object (see IStorage::CreateStorage). Then, the container calls the
WriteClassStg function to initialize the new storage object with the object class identifier (CLSID).

Return Values
S_OK

The new storage object was successfully initialized.
CO_E_ALREADYINITIALIZED

The object has already been initialized by a previous call to either the IPersistStorage::Load method
or the IPersistStorage::InitNew method.

E_OUTOFMEMORY

The storage object was not initialized due to a lack of memory.
E_FAIL

The storage object was not initialized for some reason other than a lack of memory.

Remarks
A container application can call this method when it needs to initialize a new object, for example, with an
InsertObject command.

An object that supports the IPersistStorage interface must have access to a valid storage object at all
times while it is running. This includes the time just after the object has been created but before it has
been made persistent. The object's container must provide the object with a valid IStorage pointer to the
storage during this time through the call to IPersistStorage::InitNew. Depending on the container's state,
a temporary file might have to be created for this purpose.

If the object wants to retain the IStorage instance, it must call IUnknown::AddRef to increment its
reference count.

After the call to IPersistStorage::InitNew, the object is in either the loaded or running state. For example,
if the object class has an in-process server, the object will be in the running state. However, if the object
uses the default handler, the container's call to InitNew only invokes the handler's implementation which
does not run the object. Later if the container runs the object, the handler calls the
IPersistStorage::InitNew method for the object.

Notes to Callers

Rather than calling IPersistStorage::InitNew directly, you typically call the OleCreate helper function
which does the following:

1. Calls the CoCreateInstance function to create an instance of the object class
2. Queries the new instance for the IPersistStorage interface
3. Calls the IPersistStorage::InitNew method to initialize the object

The container application should cache the IPersistStorage pointer to the object for use in later
operations on the object.

Notes to Implementers
An implementation of IPersistStorage::InitNew should initialize the object to its default state, taking the
following steps:

1. Pre-open and cache the pointers to any streams or storages that the object will need to save itself to
this storage.

2. Call IPersistStorage::AddRef and cache the storage pointer that is passed in.
3. Call the WriteFmtUserTypeStg function to write the native clipboard format and user type string for

the object to the storage object.
4. Set the dirty flag for the object.

The first two steps are particularly important for ensuring that the object can save itself in low memory
situations. Pre-opening and holding onto pointers to the stream and storage interfaces guarantee that a
save operation to this storage will not fail due to insufficient memory.

Your implementation of this method should return the CO_E_ALREADYINITIALIZED error code if it
receives a call to either the IPersistStorage::InitNew method or the IPersistStorage::Load method after
it is already initialized.

See Also
IPersistStorage::Load, OleCreate, WriteFmtUserTypeStg

 IPersistStorage::IsDirty

Indicates whether the object has changed since it was last saved to its current storage.

HRESULT IsDirty(void);

Return Values
S_OK

The object has changed since it was last saved.
S_FALSE

The object has not changed since the last save.

Remarks
This method checks whether an object has changed since it was last saved so you can save it before
closing it. The dirty flag for an object is conditionally cleared in the IPersistStorage::Save method.

For example, you could optimize a File:Save operation by calling the IPersistStorage::IsDirty method for
each object and then calling the IPersistStorage::Save method only for those objects that are dirty.

Notes to Callers
You should treat any error return codes as an indication that the object has changed. In other words,
unless this method explicitly returns S_FALSE, you must assume that the object needs to be saved.

Notes to Implementers
A container with one or more contained objects must maintain an internal dirty flag that is set whenever
any of its contained objects are dirty.

See Also
IAdviseSink::OnDataChange, IDataObject::DAdvise, IPersistStorage::Save

 IPersistStorage::Load

Loads an object from its existing storage.

HRESULT Load(

 IStorage *pStg //Pointer to existing storage for the object

);

Parameter
pStg

[in]IStorage pointer to the existing storage from which the object is to be loaded.

Return Values
S_OK

The object was successfully loaded.
CO_E_ALREADYINITIALIZED

The object has already been initialized by a previous call to the IPersistStorage::Load method or the
IPersistStorage::InitNew method.

E_OUTOFMEMORY

The object was not loaded due to lack of memory.
E_FAIL

The object was not loaded due to some reason besides a lack of memory.

Remarks
This method initializes an object from an existing storage. The object is placed in the loaded state if this
method is called by the container application. If called by the default handler, this method places the
object in the running state.

Either the default handler or the object itself can hold onto the IStorage pointer while the object is loaded
or running.

Notes to Callers
Rather than calling IPersistStorage::Load directly, you typically call the OleLoad helper function which
does the following:

1. Create an uninitialized instance of the object class
2. Query the new instance for the IPersistStorage interface
3. Call IPersistStorage::Load to initialize the object from the existing storage

You also call this method indirectly when you call the OleCreateFromData function or the
OleCreateFromFile function to insert an object into a compound file (as in a drag-and-drop or clipboard
paste operation).

The container should cache the IPersistStorage pointer for use in later operations on the object.

Notes to Implementers
Your implementation should perform the following steps to load an object:

1. Open the object's streams in the storage object, and read the necessary data into the object's internal
data structures.

2. Clear the object's dirty flag.
3. Call the IPersistStorage::AddRef method and cache the passed in storage pointer.
4. Keep open and cache the pointers to any streams or storages that the object will need to save itself to

this storage.
5. Perform any other default initialization required for the object.

Steps 3 and 4 are particularly important for ensuring that the object can save itself in low memory
situations. Holding onto pointers to the storage and stream interfaces guarantees that a save operation to
this storage will not fail due to insufficient memory.

Your implementation of this method should return the CO_E_ALREADYINITIALIZED error code if it
receives a call to either the IPersistStorage::InitNew method or the IPersistStorage::Load method after
it is already initialized.

See Also
GetConvertStg, IPersistStorage::InitNew, OleLoad, ReadFmtUserTypeStg, SetConvertStg,
WriteFmtUserTypeStg

 IPersistStorage::Save

Saves an object, and any nested objects that it contains, into the specified storage. The object is placed
in NoScribble mode, and it must not write to the specified storage until it receives a call to its
IPersistStorage::SaveCompleted method.

HRESULT Save(

 IStorage *pStgSave, //Pointer to storage object

 BOOL fSameAsLoad //Indicates whether the specified storage object is the current one

);

Parameters
pStgSave

[in]IStorage pointer to the storage into which the object is to be saved.
fSameAsLoad

[in]Indicates whether the specified storage is the current one, which was passed to the object by one
of the following calls:

· IPersistStorage::InitNew when it was created.
· IPersistStorage::Load when it was loaded.
· IPersistStorage::SaveCompleted when it was saved to a storage different from its current

storage.
This parameter is set to FALSE when performing a Save As or Save A Copy To operation or when
performing a full save. In the latter case, this method saves to a temporary file, deletes the original
file, and renames the temporary file.
This parameter is set to TRUE to perform a full save in a low-memory situation or to perform a fast
incremental save in which only the dirty components are saved.

Return Values
S_OK

The object was successfully saved.
STG_E_MEDIUMFULL

The object was not saved because of a lack of space on the disk.
E_FAIL

The object could not be saved due to errors other than a lack of disk space.

Remarks
This method saves an object, and any nested objects it contains, into the specified storage. It also places
the object into NoScribble mode. Thus, the object cannot write to its storage until a subsequent call to the
IPersistStorage::SaveCompleted method returns the object to Normal mode.

If the storage object is the same as the one it was loaded or created from, the save operation may be able
to write incremental changes to the storage object. Otherwise, a full save must be done.

This method recursively calls the IPersistStorage::Save method, the OleSave function, or the
IStorage::CopyTo method to save its nested objects.

This method does not call the IStorage::Commit method. Nor does it write the CLSID to the storage
object. Both of these tasks are the responsibilities of the caller.

Notes to Callers
Rather than calling IPersistStorage::Save directly, you typically call the OleSave helper function which
performs the following steps:

1. Call the WriteClassStg function to write the class identifier for the object to the storage.
2. Call the IPersistStorage::Save method.
3. If needed, call the IStorage::Commit method on the storage object.

Then, a container application performs any other operations necessary to complete the save and calls the
SaveCompleted method for each object.

If an embedded object passes the IPersistStorage::Save method to its nested objects, it must receive a
call to its IPersistStorage::SaveCompleted method before calling this method for its nested objects.

See Also
IPersistStorage::InitNew, IPersistStorage::Load, IPersistStorage::SaveCompleted, OleSave,
IStorage::Commit, IStorage::CopyTo, OleSave, WriteClassStg, WriteFmtUserTypeStg

 IPersistStorage::SaveCompleted

Notifies the object that it can revert from NoScribble or HandsOff mode, in which it must not write to its
storage object, to Normal mode, in which it can. The object enters NoScribble mode when it receives an
IPersistStorage::Save call.

HRESULT SaveCompleted(

 IStorage *pStgNew //Pointer to the current storage object

);

Parameter
pStgNew

[in]IStorage pointer to the new storage object, if different from the storage object prior to saving. This
pointer can be NULL if the current storage object does not change during the save operation. If the
object is in HandsOff mode, this parameter must be non-NULL.

Return Values
S_OK

The object was successfully returned to Normal mode.
E_OUTOFMEMORY

The object remained in HandsOff mode or NoScribble mode due to a lack of memory. Typically, this
error occurs when the object is not able to open the necessary streams and storage objects in
pStgNew.

E_INVALIDARG

The pStgNew parameter is not valid. Typically, this error occurs if pStgNew is NULL when the object
is in HandsOff mode.

E_UNEXPECTED

The object is in Normal mode, and there was no previous call to IPersistStorage::Save or
IPersistStorage::HandsOffStorage.

Remarks
This method notifies an object that it can revert to Normal mode and can once again write to its storage
object. The object exits NoScribble mode or HandsOff mode.

If the object is reverting from HandsOff mode, the pStgNew parameter must be non-NULL. In
HandsOffFromNormal mode, this parameter is the new storage object that replaces the one that was
revoked by the IPersistStorage::HandsOffStorage method. The data in the storage object is a copy of
the data from the revoked storage object. In HandsOffAfterSave mode, the data is the same as the data
that was most recently saved. It is not the same as the data in the revoked storage object.

If the object is reverting from NoScribble mode, the pStgNew parameter can be NULL or non-NULL. If
NULL, the object once again has access to its storage object. If it is not NULL, the component object
should simulate receiving a call to its IPersistStorage::HandsOffStorage method. If the component
object cannot simulate this call, its container must be prepared to actually call the
IPersistStorage::HandsOffStorage method.

The IPersistStorage::SaveCompleted method must recursively call any nested objects that are loaded
or running.

If this method returns an error code, the object is not returned to Normal mode. Thus, the container object
can attempt different save strategies.

See Also
IAdviseSink::OnSave, IOleObject::Close, IPersistStorage::HandsOffStorage,
IPersistStorage::Save, IRootStorage::SwitchToFile

 IPersistStream

The IPersistStream interface provides methods for saving and loading objects that use a simple serial
stream for their storage needs. The IPersistStream interface inherits its definition from the IPersist
interface, and so the includes the GetClassID method of IPersist.

One way in which it is used is to support OLE moniker implementations. Each of the OLE-provided
moniker interfaces provides an IPersistStream implementation through which the moniker saves or loads
itself. An instance of the OLE generic composite moniker class calls the IPersistStream methods of its
component monikers to load or save the components in the proper sequence in a single stream.

OLE containers with embedded and linked component objects do not use this interface; they use the
IPersistStorage interface instead.

When to Implement
Implement the IPersistStream interface on objects that are to be saved to a simple stream. Some objects
of this type are monikers and some OLE controls, although generally, controls use the IPersistStreamInit
interface, which has the same methods as IPersistStream, with one added method,
IPersistStreamInit::InitNew. The IMoniker interface is derived from the IPersistStream interface, so
you must implement the IPersistStream interface if you are implementing a new moniker class.

When to Use
Call methods of IPersistStream from a container application to save or load objects that are contained in
a simple stream. When used to save or load monikers, typical applications do not call the methods
directly, but allow the default link handler to make the calls to save and load the monikers that identify the
link source. These monikers are stored in a stream in the storage for the linked object. If you are writing a
custom link handler for your class of objects, you would call the methods of IPersistStream to implement
the link handler.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IPersist Method Description
GetClassID Returns the class identifier (CLSID)

for the component object.

IPersistStream Methods Description
IsDirty Checks the object for changes

since it was last saved.
Load Initializes an object from the stream

where it was previously saved.
Save Saves an object into the specified

stream and indicates whether the
object should reset its dirty flag.

GetSizeMax Return the size in bytes of the
stream needed to save the object.

See Also
IMoniker

 IPersistStream::GetSizeMax

Returns the size in bytes of the stream needed to save the object.

HRESULT GetSizeMax(

 ULARGE_INTEGER *pcbSize //Pointer to size of stream needed to save object

);

Parameter
pcbSize

[out]Points to a 64-bit unsigned integer value indicating the size in bytes of the stream needed to save
this object.

Return Value
S_OK

The size was successfully returned.

Remarks
This method returns the size needed to save an object. You can call this method to determine the size
and set the necessary buffers before calling the IPersistStream::Save method.

Notes to Implementers
The GetSizeMax implementation should return a conservative estimate of the necessary size because
the caller might call the IPersistStream::Save method with a non-growable stream.

See Also
IPersistStream::Save

 IPersistStream::IsDirty

Checks the object for changes since it was last saved.

HRESULT IsDirty(void);

Return Values
S_OK

The object has changed since it was last saved.
S_FALSE

The object has not changed since the last save.

Remarks
This method checks whether an object has changed since it was last saved so you can avoid losing
information in objects that have not yet been saved. The dirty flag for an object is conditionally cleared in
the IPersistStream::Save method.

Notes to Callers
You should treat any error return codes as an indication that the object has changed. In other words,
unless this method explicitly returns S_FALSE, you must assume that the object needs to be saved.

Note that the OLE-provided implementations of the IPersistStream::IsDirty method in the OLE-provided
moniker interfaces always return S_FALSE because their internal state never changes.

See Also
IPersistStream::Save

 IPersistStream::Load

Initializes an object from the stream where it was previously saved.

HRESULT Load(

 IStream *pStm //Pointer to the stream from which the object should be loaded

);

Parameter
pStm

[in]IStream pointer to the stream from which the object should be loaded.

Return Values
S_OK

The object was successfully loaded.
E_OUTOFMEMORY

The object was not loaded due to a lack of memory.
E_FAIL

The object was not loaded due to some reason other than a lack of memory.

Remarks
This method loads an object from its associated stream. The seek pointer is set as it was in the most
recent IPersistStream::Save method. This method can seek and read from the stream, but cannot write
to it.

On exit, the seek pointer must be in the same position it was in on entry, immediately past the end of the
data.

Notes to Callers
Rather than calling IPersistStream::Load directly, you typically call the OleLoadFromStream function
does the following:

1. Calls the ReadClassStm function to get the class identifier from the stream.
2. Calls the CoCreateInstance function to create an instance of the object.
3. Queries the instance for IPersistStream.
4. Calls IPersistStream::Load.

The OleLoadFromStream function assumes that objects are stored in the stream with a class identifier
followed by the object data. This storage pattern is used by the generic, composite-moniker
implementation provided by OLE.

If the objects are not stored using this pattern, you must call the methods separately yourself.

See Also

CoCreateInstance, OleLoadFromStream, ReadClassStm

 IPersistStream::Save

Saves an object to the specified stream.

HRESULT Save(

 IStream *pStm, //Pointer to the stream where the object is to be saved

 BOOL fClearDirty //Specifies whether to clear the dirty flag

);

Parameters
pStm

[in]IStream pointer to the stream into which the object should be saved.
fClearDirty

[in]Indicates whether to clear the dirty flag after the save is complete. If TRUE, the flag should be
cleared. If FALSE, the flag should be left unchanged.

Return Values
S_OK

The object was successfully saved to the stream.
STG_E_CANTSAVE

The object could not save itself to the stream. This error could indicate, for example, that the object
contains another object that is not serializable to a stream or that an IStream::Write call returned
STG_E_CANTSAVE.

STG_E_MEDIUMFULL

The object could not be saved because there is no space left on the storage device.

Remarks
IPersistStream::Save saves an object into the specified stream and indicates whether the object should
reset its dirty flag.

The seek pointer is positioned at the location in the stream at which the object should begin writing its
data. The object calls the IStream::Write method to write its data.

On exit, the seek pointer must be positioned immediately past the object data. The position of the seek
pointer is undefined if an error returns.

Notes to Callers
Rather than calling IPersistStream::Save directly, you typically call the OleSaveToStream helper
function which does the following:

1. Calls IPersistStream::GetClassID to get the object's CLSID.
2. Calls the WriteClassStm function to write the object's CLSID to the stream.
3. Calls IPersistStream::Save.

If you call these methods directly, you can write other data into the stream after the CLSID before calling
IPersistStream::Save.

The OLE-provided implementation of IPersistStream follows this same pattern.

Notes to Implementers
The IPersistStream::Save method does not write the CLSID to the stream. The caller is responsible for
writing the CLSID.

The IPersistStream::Save method can read from, write to, and seek in the stream; but it must not seek
to a location in the stream before that of the seek pointer on entry.

See Also
IPersist::GetClassID, IStream::Write, OleSaveToStream

IPersistStreamInit

The IPersistStreamInit interface is defined as a replacement for IPersistStream in order to add an
initialization method, InitNew. This interface is not derived from IPersistStream; it is mutually exclusive
with IPersistStream. An object chooses to support only one of the two interfaces, based on whether it
requires the InitNew method. Otherwise, the signatures and semantics of the other methods are the
same as the corresponding methods of IPersistStream, except as described below.

When to Implement
Implement this interface on any object that needs to support initialized stream-based persistence,
regardless of whatever else the object does. The presence of the InitNew method requires some
changes to other methods that are common to IPersistStream, as noted in the method descriptions.

When to Use
Use this interface to initialize a stream-based object and to save that object to a stream.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPersistStreamInit Methods Description
IsDirty Checks the object for changes since

it was last saved.
Load Initializes an object from the stream

where it was previously saved.
Save Saves an object into the specified

stream and indicates whether the
object should reset its dirty flag.

GetSizeMax Return the size in bytes of the
stream needed to save the object.

InitNew Initializes an object to a default state.

See Also
IPersistStream

IPersistStreamInit::GetSizeMax

Same as IPersistStream::GetSizeMax.

HRESULT GetSizeMax(

 ULARGE_INTEGER* pcbSize //Receives a pointer to the size of the stream needed to save object
);

IPersistStreamInit::InitNew

Initializes the object to a default state. This method is called instead of IPersistStreamInit::Load.

HRESULT InitNew(void);

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The object successfully initialized itself.
E_NOTIMPL

The object requires no default initialization. This error code is allowed because an object may choose
to implement IPersistStreamInit simply for orthogonality or in anticipation of a future need for this
method.

Remarks
Notes to Implementers
If the object has already been initialized with Load, then this method must return E_UNEXPECTED.

See Also
IPersistStreamInit::Load

IPersistStreamInit::IsDirty

Same as IPersistStream::IsDirty.

HRESULT IsDirty(void);

IPersistStreamInit::Load

Same as IPersistStream::Load.

HRESULT Load(

 LPSTREAM pStm //Pointer to the stream from which the object should be loaded
);

Remarks
Notes to Implementers
If the object has already been initialized with InitNew, then this method must return E_UNEXPECTED.

IPersistStreamInit::Save

Same as IPersistStream::Save.

HRESULT Save(

 LPSTREAM pStm , //Pointer to the stream where the object is to be saved
 BOOL fClearDirty //Specifies whether to clear the dirty flag
);

IPicture

The IPicture interface manages a picture object and its properties. Picture objects provide a language-
neutral abstraction for bitmaps, icons, and metafiles. As with the standard font object, the system provides
a standard implementation of the picture object. Its primary interfaces are IPicture and IPictureDisp, the
latter being derived from IDispatch to provide access to the picture's properties through Automation. A
picture object is created with OleCreatePictureIndirect.

The picture object also supports the outgoing interface IPropertyNotifySink, so a client can determine
when picture properties change. Since the picture object supports at least one outgoing interface, it also
implements IConnectionPointContainer and its associated interfaces for this purpose.

The picture object also supports IPersistStream so it can save and load itself from an instance of
IStream. An object that uses a picture object internally would normally save and load the picture as part
of the object's own persistence handling. The function OleLoadPicture simplifies the creation of a picture
object based on stream contents.

When to Implement
Typically, you use the OLE-provided picture object, which provides the IPicture and IPictureDisp
interfaces for you. The IPicture interface is the primary interface implemented by the OLE-provided
picture object. It allows the caller to manage picture properties and to use that picture in graphical
rendering. Each property in the IPicture interface includes a get_PropertyName method if the property
supports read access and a put_PropertyName method if the property supports write access. Most of the
properties support only read access with the exception of hPal.

Property Type

Access
Allowed

Description
HANDLE OLE_HANDLE (int) R The Windows GDI handle of

the picture
hPal OLE_HANDLE (int) RW The Windows handle of the

palette used by the picture
Type short R The type of picture (see

below)
Width OLE_XSIZE_HIMETRIC

(long)
R The width of the picture

Height OLE_YSIZE_HIMETRIC
(long)

R The height of the picture

CurDC HDC R The current device context
KeepOriginalForm
at

BOOL RW If TRUE, the picture object
maintains the entire original
state of the picture in
memory. If FALSE, any state
not applicable to the user's
machine is discarded

Attributes DWORD R Miscellaneous bit attributes of
the picture (see below)

When to Use
Use this interface to change the properties of a picture object.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPicture Methods Description
get_Handle Returns the Windows GDI handle of

the picture managed within this
picture object.

get_Hpal Returns a copy of the palette
currently used by the picture object.

get_Type Returns the current type of the
picture.

get_Width Returns the current width of the
picture in the picture object.

get_Height Returns the current height of the
picture in the picture object.

Render Draws the specified portion of the
picture onto the specified device
context, positioned at the specified
location.

set_Hpal Sets the current palette of the
picture.

get_CurDC Returns the current device context
into which this picture is selected.

SelectPicture Selects a bitmap picture into a given
device context, returning the device
context in which the picture was
previously selected as well as the
picture's GDI handle.

get_KeepOriginalFormat Returns the current value of the
picture object's KeepOriginalFormat
property.

put_KeepOriginalFormat Sets the picture object's
KeepOriginalFormat property.

PictureChanged Notifies the picture object that its
picture resource changed.

SaveAsFile Saves the picture's data into a
stream in the same format that it
would save itself into a file.

get_Attributes Returns the current set of the
picture's bit attributes.

See Also
IPicture - Ole Implementation, IPictureDisp

IPicture::get_Attributes

Returns the current set of the picture's bit attributes.

HRESULT get_Attributes(

 DWORD* pdwAttr //Receives a pointer to attribute value.
);

Parameters
pdwAttr

[out] Pointer to the caller's variable that receives the attribute value.
The Attributes property can contain any combination of the values from the PICTURE enumeration.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The attribute bits were returned successfully.
E_POINTER

The address in pdwAttr is not valid. For example, it may be NULL.

See Also
PICTURE

IPicture::get_CurDC

Returns the handle of the current device context. This property is valid only for bitmap pictures.

HRESULT get_CurDC(

 HDC* phdcOut //Receives a pointer to device context
);

Parameters
phdcOut

[out] Pointer to the caller's variable to receive the device context.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The device context was returned successfully.
E_POINTER

The address in phdcOut is not valid. For example, it may be NULL.

Remarks
The CurDC property and the IPicture::SelectPicture method exist to circumvent restrictions in Windows;
specifically, that an object can only be selected into exactly one device context at a time. In some cases,
a picture object may be permanently selected into a particular device context (for example, a control may
use a certain picture for a background). To use this picture property elsewhere, it must be temporarily
deselected from its old device context, selected into the new device context for the operation, then
reselected back into the old device context. The IPicture::get_CurDC method returns the device context
handle into which the picture is currently selected. The IPicture::SelectPicture method selects the
picture into a new device context, returning the old device context and the picture's GDI handle. The caller
should select the picture back into the old device context when the caller is done with it, as is normal for
Windows code.

Notes to Callers
The caller always owns any device contexts passed between it and the picture object. Since the picture
object maintains a copy of the HDC, the caller should use a memory device context (created with the
Win32 function CreateCompatibleDC) and not a screen device context (from GetDC, CreateDC, or
BeginPaint), because the screen device contexts are a limited system resource.

See Also
IPicture::SelectPicture

IPicture::get_Handle

Returns the Windows GDI handle of the picture managed within this picture object to a specified location.

HRESULT get_Handle(

 OLE_HANDLE* phandle //Receives a pointer to GDI handle
);

Parameters
phandle

[out] Pointer to the caller's OLE_HANDLE variable that receives the handle. The caller is responsible
for this handle upon successful return. The variable is set to NULL on failure.

Return Values
This method supports the standard return values E_FAIL and E_OUTOFMEMORY, as well as the
following:

S_OK

The handle was returned successfully.
E_POINTER

The address in phandle is not valid. For example, it may be NULL.

Remarks
Notes to Callers
The picture object may retain ownership of the picture; however, the caller can be assured that the picture
will remain valid until either the caller specifically destroys the picture or the picture object is itself
destroyed. The fOwn parameter to OleCreatePictureIndirect determines ownership when the picture
object is created. OleLoadPicture forces fOwn to TRUE.

IPicture::get_Height
Returns the current height of the picture in the picture object.

HRESULT get_Height(

 OLE_YSIZE_HIMETRIC* pheight //Receives a pointer to height
);

Parameters
pheight

[out] Pointer to the caller's OLE_YSIZE_HIMETRIC variable that receives the height.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The height was returned successfully.
E_POINTER

The address in pheight is not valid. For example, it may be NULL.

IPicture::get_hPal
Returns a copy of the palette currently used by the picture object.

HRESULT get_hPal(

 OLE_HANDLE* phpal //Receives a pointer to palette handle
);

Parameters
phpal

[out] Pointer to the caller's OLE_HANDLE variable to receive the palette handle. The variable is set to
NULL on failure.

Return Values
This method supports the standard return values E_FAIL and E_OUTOFMEMORY, as well as the
following:

S_OK

The handle was returned successfully.
S_FALSE

This picture has no palette. The parameter *phpal is set to NULL.
E_POINTER

The address in phpal is not valid. For example, it may be NULL.

Remarks
Notes to Callers
If the picture object has ownership of the picture, it also has ownership of the palette and will destroy it
when the object is itself destroyed. Otherwise the caller owns the palette. The fOwn parameter to
OleCreatePictureIndirect determines ownership. OleLoadPicture sets fOwn to TRUE to indicate that
the picture object owns the palette.

IPicture::get_KeepOriginalFormat

Returns the current value of the picture's KeepOriginalFormat property.

HRESULT get_KeepOriginalFormat(

 BOOL* pfkeep //Receives a pointer to the value of KeepOriginalFormat
);

Parameters
pfkeep

[out] Pointer to the caller's BOOL variable that receives the value of the property.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The value of the KeepOriginalFormat property was returned successfully.
E_POINTER

The address in pfkeep is not valid. For example, it may be NULL.

See Also
IPicture::put_KeepOriginalFormat

IPicture::get_Type

Returns the current type of the picture contained in the picture object.

HRESULT get_Type(

 short* ptype //Receives a pointer to the picture type
);

Parameters
ptype

[out] Pointer to the caller's short variable to receive the picture type. The Type property can have any
one of the values contained in the PICTYPE enumeration.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The type was returned successfully.
E_POINTER

The address in ptype is not valid. For example, it may be NULL.

See Also
OleCreatePictureIndirect, PICTYPE

IPicture::get_Width

Returns the current width of the picture in the picture object.

HRESULT get_Width(

 OLE_XSIZE_HIMETRIC* pwidth //Receives a pointer to width
);

Parameters
pwidth

[out] Pointer to the caller's OLE_XSIZE_HIMETRIC variable that receives the width.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The width was returned successfully.
E_POINTER

The address in pwidth is not valid. For example, it may be NULL.

IPicture::PictureChanged

Notifies the picture object that its picture resource has changed. On Win32, this method only sends an
IPropertyNotifySink::OnChanged(DISPID_PICT_HANDLE) to any connected sinks.

HRESULT PictureChanged(void);

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

This value is returned in all cases except when the picture object is uninitialized.

IPicture::put_KeepOriginalFormat

Sets the value of the picture's KeepOriginalFormat property.

HRESULT put_KeepOriginalFormat(

 BOOL keep //Specifies the new value of KeepOriginalFormat
);

Parameters
keep

[in] Specifies the new value to assign to the property.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The property was successfully changed.

See Also
IPicture::get_KeepOriginalFormat

IPicture::Render

Renders (draws) a specified portion of the picture defined by the offset (xSrc,ySrc) of the source picture
and the dimensions to copy (cxSrc,xySrc). This picture is rendered onto the specified device context,
positioned at the point (x,y), and scaled to the dimensions (cx,cy). The prcWBounds parameter specifies
the position of this rendering if the destination device context is itself a metafile. Such information is
necessary to place one metafile in another. For more information, see the prcWBounds parameter of
IViewObject2::Draw.

HRESULT Render(

 HDC hdc , //Handle of device context on which to render the image
 long x , //Horizontal position of image in hdc
 long y , //Vertical position of image in hdc
 long cx , //Horizontal dimension of destination rectangle
 long cy , //Vertical dimension of destination rectangle
 OLE_XPOS_HIMETRIC xSrc , //Horizontal offset in source picture
 OLE_YPOS_HIMETRIC ySrc , //Vertical offset in source picture
 OLE_XSIZE_HIMETRIC cxSrc , //Amount to copy horizontally in source picture
 OLE_YSIZE_HIMETRIC cySrc , //Amount to copy vertically in source picture
 LPCRECT prcWBounds //Pointer to position of destination for a metafile hdc
);

Parameters
hdc

[in] Handle of the device context on which to render the image.
x

[in] Horizontal coordinate in hdc at which to place the rendered image.
y

[in] Vertical coordinate in hdc at which to place the rendered image.
cx

[in] Horizontal dimension of the destination rectangle.
cy

[in] Vertical dimension of the destination rectangle.
xSrc

[in] Horizontal offset in the source picture from which to start copying.
ySrc

[in] Vertical offset in the source picture from which to start copying.
cxSrc

[in] Horizontal extent to copy from the source picture.
cySrc

[in] Vertical extent to copy from the source picture.

prcWBounds

[in] Pointer to a rectangle containing the position of the destination within a metafile device context if
hdc is a metafile DC. Cannot be NULL in such cases.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

The picture was rendered successfully.
E_POINTER

The address in prcWBounds is not valid when hdc contains a metafile device context.

IPicture::SaveAsFile

Saves the picture's data into a stream in the same format that it would save itself into a file. Bitmaps use
the BMP file format, metafiles the WMF format, and icons the ICO format. For more information, see the
Win32 Programmer's Reference.

HRESULT SaveAsFile(

 IStream * pstream , //Pointer to stream where picture writes its data
 BOOL fSaveMemCopy , //Indicates whether to save the picture in memory
 LONG* pcbSize //Receives a pointer to the number of bytes written to stream
);

Parameters
pstream

[in] Pointer to the stream into which the picture writes its data.
fSaveMemCopy

[in] Flag indicating whether or not to save a copy of the picture in memory.
pcbSize

[out] Pointer to the caller's LONG variable to receive the number of bytes written into the stream. This
value can be NULL, indicating that the caller does not require this information.

Return Values
This method supports the standard return values E_FAIL and E_INVALIDARG, as well as the following:

S_OK

The picture was saved successfully.

IPicture::SelectPicture

Selects a bitmap picture into a given device context, and returns the device context in which the picture
was previously selected as well as the picture's GDI handle. This method works in conjunction with
IPicture::get_CurDC.

HRESULT SelectPicture(

 HDC hdcIn , //New device context
 HDC* phdcOut , //Receives a pointer to the previous device context
 OLE_HANDLE* phbmpOut //Receives a pointer to GDI handle of the picture
);

Parameters
hdcIn

[in] Device context in which to select the picture.
phdcOut

[out] Pointer to the caller's HDC variable to receive the previous device context. This parameter can
be NULL if the caller does not need this information. Ownership of the device context is always the
responsibility of the caller.

phbmpOut

[out] Pointer to the caller's HDC variable to receive the GDI handle of the picture. This parameter can
be NULL if the caller does not need the handle. Ownership of this handle is determined by the fOwn
parameter passed to OleCreatePictureIndirect. Pictures loaded from a stream always own their
resources.

Return Values
This method supports the standard return valuesE_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

The picture was selected successfully.

See Also
IPicture::get_CurDC

IPicture::set_hPal
Assigns a GDI palette to the picture contained in the picture object.

HRESULT set_hPal(

 OLE_HANDLE hpal //Handle for GDI palette for the picture
);

Parameters
hpal

[in] Handle to the GDI palette assigned to the picture.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

The palette was assigned successfully.

Remarks
Notes to Implementers
Ownership of the palette passed to this method depends on how the picture object was created, as
specified by the fOwn parameter to OleCreatePictureIndirect. OleLoadPicture forces fOwn to TRUE; if
the object owns the picture, then it takes over ownership of this palette.

IPicture - Ole Implementation
Picture objects provide a language-neutral abstraction for bitmaps, icons, and metafiles. As with the
standard font object, the system provides a standard implementation of the picture object. Its primary
interfaces are IPicture and IPictureDisp, the latter being derived from IDispatch to provide access to the
picture's properties through Automation. A picture object is created with OleCreatePictureIndirect and
supports both the IPicture and the IPictureDisp interfaces.

Remarks
The OLE-provided picture object implements the complete semantics of the IPicture and IPictureDisp
interfaces.

See Also
IPicture

IPictureDisp

The IPictureDisp interface exposes the picture object's properties through Automation. It provides a
subset of the functionality available through IPicture methods.

When to Implement
A picture object implements this interface along with IPicture to provide access to the picture's properties
through Automation. Typically, it is not necessary to implement this interface on your own object since
there is an OLE-provided picture object.

The following table describes the dispIDs for the various picture properties.

Symbol Value
DISPID_PICT_HANDLE 0
DISPID_PICT_HPAL 2
DISPID_PICT_TYPE 3
DISPID_PICT_WIDTH 4
DISPID_PICT_HEIGHT 5
DISPID_PICT_RENDER 6

Each property in the IPictureDisp interface includes a get_PropertyName method if the property supports
read access and a put_PropertyName method if the property supports write access. Most of the
properties support read access only with the exception of the hPal property.

Property Type

Access
Allowed

Description
Handle OLE_HANDLE (int) R The Windows GDI handle of the

picture
hPal OLE_HANDLE (int) RW The Windows handle of the

palette used by the picture.
Type short R The type of picture (see below).
Width OLE_XSIZE_HIMETRIC

(long)
R The width of the picture.

Height OLE_YSIZE_HIMETRIC
(long)

R The height of the picture.

When to Use
Use this interface to change or retrieve the properties of a picture object.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

See Also

IPicture

IPictureDisp - Ole Implementation
Picture objects provide a language-neutral abstraction for bitmaps, icons, and metafiles. As with the
standard font object, the system provides a standard implementation of the picture object. Its primary
interfaces are IPicture and IPictureDisp, the latter being derived from IDispatch to provide access to the
picture's properties through Automation. A picture object is created with OleCreatePictureIndirect and
supports both the IPicture and the IPictureDisp interfaces.

Remarks
The OLE-provided picture object implements the complete semantics of the IPicture and IPictureDisp
interfaces.

See Also
IPicture, IPictureDisp

IPointerInactive

The IPointerInactive interface enables an object to remain inactive most of the time, yet still participate in
interaction with the mouse, including drag and drop.

Objects can be active (in-place or UI active) or they can be inactive (loaded or running). An active object
creates a window and can receive Windows mouse and keyboard messages. An inactive object can
render itself and provide a representation of its data in a given format. While they provide more
functionality, active objects also consume more resources than inactive objects. Typically, they are larger
and slower than inactive objects. Thus, keeping an object inactive can provide performance
improvements.

However, an object, such as a control, needs to be able to control the mouse pointer, fire mouse events,
and act as a drop target so it can participate in the user interface of its container application.

When to Implement
Implement this interface on an object, such as a control, so the object can support a minimal level of
interaction with the mouse and keyboard while it is in the inactive state. The object can control the mouse
pointer, fire mouse events, and act as a drop target without being in the active state at all times. The
object does not have to set the OLEMISC_ACTIVATEWHENVISIBLE enumeration value, does not have
to have a window, and thus, can increase its performance.

If the object must work with down-level containers, it may have to set the
OLEMISC_ACTIVATEWHENVISIBLE enumeration value. However, an updated container that supports
objects that implement IPointerInactive can use the OLEMISC_IGNOREACTIVATEWHENVISIBLE
enumeration value to override OLEMISC_ACTIVATEWHENVISIBLE.

When to Use
A container calls the methods in this interface for its embedded objects so that the embedded objects can
participate in the user interface for the application.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns a pointer to a specified

interface.
AddRef Increments the reference count.
Release Decrements the reference count.

IPointerInactive Methods Description
GetActivationPolicy Returns the present activation

policy for the object.
OnInactiveMouseMove Notifies the object that the mouse

pointer has moved over it so the
object can fire mouse events.

OnInactiveSetCursor Sets the mouse pointer for an
inactive object.

See Also
OLEMISC

IPointerInactive::GetActivationPolicy

Returns the present activation policy for the object. This method is called by the container on receipt of a
WM_SETCURSOR or WM_MOUSEMOVE message when an inactive object is under the mouse pointer.

HRESULT GetActivationPolicy(

 DWORD* pdwPolicy //Pointer to activation policy
);

Parameter
pdwPolicy

[out] Pointer to the activation policy as specified by the POINTERINACTIVE enumeration values.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The activation policy was successfully returned.

Remarks
A container calls this method when it receives a WM_SETCURSOR or WM_MOUSEMOVE message with
the mouse pointer over an inactive object that supports IPointerInactive. The object returns its activation
policy through the POINTERINACTIVE enumeration values.

The object can request to be in-place activated as soon as the mouse enters it through the
POINTERINACTIVE_ACTIVATEONENTRY value. An object that provides more visual feedback than
simply setting the mouse pointer would use this value. For example, if the object supports special visual
feedback, it must enter the active state so it can draw the visual feedback that it supports.

An object can also use this method to request activation when the mouse is dragged over them during a
drag and drop operation through the POINTERINACTIVE_ACTIVATEONDRAG. See the
POINTERINACTIVE enumeration for more information.

If the object returns one of these values, the container should activate the object immediately and forward
the Window message that triggered the call. The object then stays active and processes subsequent
messages through its own window until the container gets another WM_SETCURSOR or
WM_MOUSEMOVE. At this point, the container should deactivate the object.

Note For windowless OLE objects this mechanism is slightly different. See
IOleInPlaceSiteWindowless for more information on drag and drop operations for windowless
objects.

If the object returns both the POINTERINACTIVE_ACTIVATEONENTRY and the
POINTERINACTIVE_DEACTIVATEONLEAVE values, the object is activated only when the mouse is over
the object. If the POINTERINACTIVE_ACTIVATEONENTRY value alone is set, the object is activated
once when the mouse first enters it, and it remains active.

Note to Callers
The activation policy should not be cached. The container should call this method each time the mouse
enters an inactive object.

See Also
IOleInPlaceSiteWindowless, POINTERINACTIVE

IPointerInactive::OnInactiveMouseMove

Notifies the object that the mouse pointer has moved over it so the object can fire mouse events. This
method is called by the container on receipt of a WM_MOUSEMOVE method when an inactive object is
under the mouse pointer.

HRESULT OnInactiveMouseMove(

 LPCRECT pRectBounds, //Object bounding rectangle
 LONG x, //Horizontal coordinate
 LONG y, //Vertical coordinate
 DWORD grfKeyState //
);

Parameter
pRectBounds

[in] The object bounding rectangle, in client coordinates of the containing window. This parameter tells
the object its exact position and size on the screen when the WM_MOUSEMOVE message was
received. This value is specified in units of the client's coordinate system.

x

[in] Horizontal coordinate of mouse location in units of the client's containing window.
y

[in] Vertical coordinate of mouse location in units of the client's containing window.
grfKeyState

[in] Identifies the current state of the keyboard modifier keys on the keyboard. Valid values can be a
combination of any of the values MK_CONTROL, MK_SHIFT, MK_ALT, MK_BUTTON,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The mouse pointer was successfully set.

Remarks
The container calls this method to notify the object that the mouse pointer is over the object after checking
the object's activation policy by calling the IPointerInactive::GetActivationPolicy method. If the object
has not requested to be activated in-place through that call, the container dispatches subsequent
WM_MOUSEMOVE messages to the inactive object by calling OnInactiveMouseMove as long as the
mouse pointer stays over the object. The object can then fire mouse move events.

To avoid rounding errors and to make the job easier on the object implementer, this method takes window
coordinates in the units of its containing client window, that is, the window in which the object is displayed,
instead of the usual HIMETRIC units. Thus, the same coordinates and code path can be used when the
object is active and inactive. The window coordinates specify the mouse position. The bounding rectangle
is also specified in the same coordinate system.

See Also
IPointerInactive::GetActivationPolicy

IPointerInactive::OnInactiveSetCursor

Sets the mouse pointer for an inactive object. This method is called by the container on receipt of a
WM_SETCURSOR method when an inactive object is under the mouse pointer.

HRESULT OnInactiveSetCursor(

 LPCRECT pRectBounds, //Object bounding rectangle
 LONG x, //Horizontal coordinate
 LONG y, //Vertical coordinate
 DWORD dwMouseMsg, //Mouse message identifier
 BOOL fSetAlways //Indicates whether object must set the mouse pointer
);

Parameter
pRectBounds

[in] The object bounding rectangle specified in client coordinate units of the containing window. This
parameter tells the object its exact position and size on the screen when the WM_SETCURSOR
message was received. This value is specified in units of the client's coordinate system.

x

[in] Horizontal coordinate of mouse location in units of the client's containing window.
y

[in] Vertical coordinate of mouse location in units of the client's containing window.
dwMouseMsg

[in] Identifier of the mouse message for which a WM_SETCURSOR occurred.
fSetAlways

[in] If this value is TRUE, the object must set the cursor; if this value is FALSE, the object is not
obligated to set the cursor, and should return S_FALSE in that case.

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

The mouse pointer was successfully set.
S_FALSE

The object did not set the cursor; the container should either set the cursor or call the object again
with the parameter fSetAlways set to TRUE.

Remarks
The container calls this method to set the mouse pointer over an inactive object after checking the
object's activation policy by calling the IPointerInactive::GetActivationPolicy method. If the object has
not requested to be activated in-place through that call, the container dispatches subsequent
WM_SETCURSOR messages to the inactive object by calling OnInactiveSetCursor as long as the

mouse pointer stays over the object.

To avoid rounding errors and to make the job easier on the object implementer, this method takes window
coordinates in the units of its containing client window, that is, the window in which the object is displayed,
instead of the usual HIMETRIC units. Thus, the same coordinates and code path can be used when the
object is active and inactive. The window coordinates specify the mouse position. The bounding rectangle
is also specified in the same coordinate system.

OnInactiveSetCursor takes an additional parameter (fSetAlways) indicating whether the object is
obligated to set the cursor or not. Containers should first call this method with this parameter FALSE. The
object may return S_FALSE to indicate that it did not set the cursor. In that case, the container should
either set the cursor itself, or, if it does not wish to do this, call the OnInactiveSetCursor method again
with fSetAlways being TRUE.

See Also
IPointerInactive::GetActivationPolicy

IProgressNotify
The IProgressNotify interface enables applications and other objects to receive notifications of
changes in the progress of a downloading operation.

When to Implement
You do not need to implement IProgressNotify. The downloading code implements this interface, and the
asynchronous storage implementation provides a connection point for dispatching notifications to it. An
application can also register an IProgressNotify sink to receive progress notifications for individual
streams.

When to Use
You do not need to call this interface. The Compound Files implementation uses
IProgressNotify::OnProgress to control the blocking behavior of the asynchronous storage and to
trigger additional byte range requests if applicable.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IProgressNotify Method Description
OnProgress Receives status information about

progress of download operation.

IProgressNotify::OnProgress
Notifies registered objects and applications of the progress of a downloading operation.

HRESULT OnProgress(

DWORD dwProgressCurrent // Amount of data available
DWORD dwProgressMaximum // Total amount of data to be downloaded
BOOL fAccurate // Reliability of notifications
BOOL fOwner // Ownership of blocking behavior
);

Parameters
dwProgressCurrent

[in] The amount of data available.
dwProgressMaximum

[in] The total amount of data to be downloaded.
fAccurate

[in] Values in dwProgressCurrent and dwProgressMaximum are either reliable (TRUE) or unreliable
(FALSE). The FALSE value indicates that control structures for determining the actual position of, or
amount of, data yet to be downloaded are not available.

fOwner

[in] Indicates whether this OnProgress call can control the blocking behavior of the operation. If
TRUE, the caller can use return values from OnProgress to block (STG_S_BLOCK), retry
(STG_S_RETRYNOW), or monitor (STG_S_MONITORING) the operation. If FALSE, the return value
from OnProgress has no influence on blocking behavior.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL, as well as the following:

STG_S_RETRYNOW

The caller is to retry the operation immediately. (This value is most useful for applications that do
blocking from within the callback routine.)

STG_S_BLOCK

The caller is to block the download and retry the call as needed to determine if additional data is
available. This is the default behavior if no sinks are registered on the connection point.

STG_S_MONITORING

The callback recipient reliquishes control of the downloading process to one of the other objects or
applications that have registered progress notification sinks on the same stream. This is useful if the
notification sink is interested only in gathering statistics.

E_PENDING

Data is currently unavailable. The caller is to try again after some desired interval. The notification
sink returns this value if the asynchronous storage is to operate in nonblocking mode.

Remarks
Sinks may be inherited by any substorage or substream of a given storage. If no sink is registered, the
thread will block until the requested data becomes available, or the download is canceled by the
downloader.

Where multiple objects or applications have registered progress notification sinks on a single stream, only
one of them can control the behavior of a download. Ownership of the download goes to:

1. The first sink to register with the storage or stream.
2. Any advise skinks that may have been inherited from the parent storage (if the storage was created

with ASYNC_MODE_COMPATIBILITY.
Any one of the sinks can relinquish control to the next connection point by returning
STG_S_MONITORING to the connection point making the current caller. Once a connection point obtains
control (through receiving STG_S_BLOCK or STG_S_RETRYNOW), all subsequent connection points
calling IProgressNotify::OnProgress will set fOwner to FALSE.

IPropertyBag
The IPropertyBag interface provides an object with a property bag in which the object can persistently
save its properties.

When a client wishes to have exact control over how individually named properties of an object are
saved, it would attempt to use an object's IPersistPropertyBag interface as a persistence mechanism. In
that case the client supplies a property bag to the object in the form of an IPropertyBag interface.

When the object wishes to read a property in IPersistPropertyBag::Load it will call
IPropertyBag::Read. When the object is saving properties in IPersistPropertyBag::Save it will call
IPropertyBag::Write. Each property is described with a name in pszPropName whose value is
exchanged in a VARIANT. This information allows a client to save the property values as text, for
instance, which is the primary reason why a client might choose to support IPersistPropertyBag.

The client records errors that occur during reading into the supplied error log.

When to Implement
A container implements this interface to provide its object with a way to store their properties persistently.

When to Use
An object calls the methods on this interface to read and write its properties into the container provided
property bag.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPropertyBag Methods Description
Read Called by the control to read a

property from the storage provided
by the container.

Write Called by the control to write each
property in turn to the storage
provided by the container.

See Also
IErrorLog, IPersistPropertyBag

IPropertyBag::Read
Called by the control to read a property from the storage provided by the container.

HRESULT Read(

 LPCOLESTR pszPropName, //Pointer to the property to be read
 VARIANT* pVar, //Pointer to the VARIANT to receive the property value
 IErrorLog* pErrorLog //Pointer to the caller's error log
);

Parameters
pszPropName

[in] Pointer to the name of the property to read. Cannot be NULL.
pVar

[in, out] Pointer to the caller-initialized VARIANT that is to receive the property value on output. The
method must set both type and value fields in the VARIANT before returning. If the caller initialized
the pVar->vt field on entry, the property bag should attempt to coerce the value it knows into this type.
If the caller sets pVar->vt to VT_EMPTY, the property bag can use whatever type is convenient.

pErrorLog

[in] Pointer to the caller's IErrorLog interface in which the property bag stores any errors that occur
during reads. Can be NULL in which case the caller is not interested in errors.

Return Values
S_OK

The property was read successfully. The caller becomes responsible for any allocations that are
contained in the VARIANT in pVar.

E_POINTER

The address in pszPropName is not valid (such as NULL).
E_INVALIDARG

The property named with pszPropName does not exist in the property bag.
E_FAIL

The property bag was unable to read the specified property, such as if the caller specified a data type
to which the property bag could not coerce the known value. If the caller supplied an error log, a more
descriptive error was sent there.

Remarks
This method asks the property bag to read the property named with pszPropName into the caller-
initialized VARIANT in pVar. Errors that occur are logged in the error log pointed to by pErrorLog. When
pVar->vt specifies another object pointer (VT_UNKNOWN) then the property bag is responsible for
creating and initializing the object described by pszPropName.

E_NOTIMPL is not a valid return code since any object implementing this interface must support the
entire functionality of the interface.

See Also
IPropertyBag::Write

IPropertyBag::Write
Called by the control to write each property in turn to the storage provided by the container.

HRESULT Write(

 LPCOLESTR pszPropName, //Points to the property to be written
 VARIANT* pVar //Points to the VARIANT containing the property value and type
);

Parameters
pszPropName

[in] Pointer to the name of the property to write. Cannot be NULL.
pVar

[in] Pointer to the caller-initialized VARIANT that holds the property value to save. The caller owns
this VARIANT and is responsible for all allocations therein. That is, the property bag itself does not
attempt to free data in the VARIANT.

Return Values
S_OK

The property bag successfully saved the requested property.
E_FAIL

There was a problem writing the property. It is possible that the property bag does not understand
how to save a particular VARIANT type.

E_POINTER

The address in pszPropName or pVar is not valid (such as NULL). The caller must supply both.

Remarks
This method asks the property bag to save the property named with pszPropName using the type and
value in the caller-initialized VARIANT in pVar. In some cases the caller may be asking the property bag
to save another object, that is, when pVar->vt is VT_UNKNOWN. In such cases, the property bag queries
this object pointer for some persistence interface, like IPersistStream or even IPersistPropertyBag
again and has that object save its data as well. Usually, this results in the property bag having some byte
array for this object which can be saved as encoded text (hex string, MIME, etc.). When the property bag
is later used to reinitialize a control, the client that owns the property bag must recreate the object when
the caller asks for it, initializing that object with the previously saved bits.

This allows very efficient persistence operations for large BLOB properties like a picture, where the owner
of the property bag itself directly asks the picture object (managed as a property in the control being
saved) to save into a specific location. This avoids potential extra copy operations that would be involved
with other property-based persistence mechanisms.

E_NOTIMPL is not a valid return code as any object implementing this interface must support the entire
functionality of the interface.

See Also

IPropertyBag::Read

IPropertyNotifySink

The IPropertyNotifySink interface is implemented by a sink object to receive notifications about property
changes from an object that supports IPropertyNotifySink as an "outgoing" interface. The client that
needs to receive the notifications in this interface (from a supporting connectable object) creates a sink
with this interface and connects it to the connectable object through the connection point mechanism. For
more information on connection points, see IConnectionPointContainer.

The object is itself required to call the methods of IPropertyNotifySink only for those properties marked
with the [bindable] and [requestedit] attributes in the object's type information. When the object changes
a [bindable] property, it is required to call IPropertyNotifySink::OnChanged. When the object is about
to change a [requestedit] property, it must call IPropertyNotifySink::OnRequestEdit before changing
the property and must also honor the action specified by the sink on return from this call.

The one exception to this rule is that no notifications are sent as a result of an object's initialization or
loading procedures. At initialization time, it is assumed that all properties change and that all must be
allowed to change. Notifications to this interface are therefore meaningful only in the context of a fully
initialized/loaded object.

When to Implement
Implement this interface for a sink object that receives notifications about property changes from an object
that supports this kind of notification.

When to Use
Use this interface to notify a sink object about changes in a property.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPropertyNotifySink Methods Description
OnChanged Notifies a sink that a bindable

property has changed.
OnRequestEdit Notifies a sink that a requestedit

property is about to change.

See Also
IConnectionPoint, IConnectionPointContainer

Also, see the Automation branch of the help file for further explanations of type information, ODL files, and
type libraries.

IPropertyNotifySink::OnChanged

Notifies a sink that the [bindable] property specified by dispID has changed. If dispID is
DISPID_UNKNOWN, then multiple properties have changed together. The client (owner of the sink)
should then retrieve the current value of each property of interest from the object that generated the
notification.

HRESULT OnChanged(

 DISPID dispID //Dispatch identifier of the property that changed
);

Parameters
dispID

[in] Dispatch identifier of the property that changed, or DISPID_UNKNOWN if multiple properties have
changed.

Return Values
S_OK

This return value is returned in all cases.

Remarks
S_OK is returned in all cases even when the sink does not need [bindable] properties or when some other
failure has occurred. In short, the calling object simply sends the notification and cannot attempt to use an
error code (such as E_NOTIMPL) to determine whether to not send the notification in the future. Such
semantics are not part of this interface.

See Also
IPropertyNotifySink::OnRequestEdit

IPropertyNotifySink::OnRequestEdit

Notifies a sink that a [requestedit] property is about to change and that the object is asking the sink how
to proceed.

HRESULT OnRequestEdit(

 DISPID dispID //Dispatch identifier of the property that is about to change
);

Parameters
dispID

[in] Dispatch identifier of the property that is about to change or DISPID_UNKNOWN if multiple
properties are about to change.

Return Values
S_OK

The specified property or properties are allowed to change.
S_FALSE

The specified property or properties are not allowed to change. The caller must obey this return value
by discarding the new property value(s). This is part of the contract of the [requestedit] attribute and
this method.

Remarks
The sink may choose to allow or disallow the change to take place. For example, the sink may enforce a
read-only state on the property. DISPID_UNKNOWN is a valid parameter to this method to indicate that
multiple properties are about to change. In this case, the sink can enforce a global read-only state for all
[requestedit] properties in the object, including any specific ones that the sink otherwise recognizes.

If the sink allows changes, the object must also make IPropertyNotifySink::OnChanged notifications for
any properties that are marked [bindable] in addition to [requestedit].

This method cannot be used to implement any sort of data validation. At the time of the call, the desired
new value of the property is unavailable and thus cannot be validated. This method's only purpose is to
allow the sink to enforce a read-only state on a property.

See Also
IPropertyNotifySink::OnChanged

IPropertyPage

The IPropertyPage interface provides the main features of a property page object that manages a
particular page within a property sheet. A property page implements at least IPropertyPage and can
optionally implement IPropertyPage2 if selection of a specific property is supported. See
IPerPropertyBrowsing::MapPropertyToPage for more information on specific property browsing. The
methods of IPropertyPage2 allow the property sheet or property frame to instruct the page when to
perform specific actions, mostly based on user input such as switching between pages or pressing
various buttons that the frame itself manages in the dialog box.

A property page manages a dialog box that contains only those controls that should be displayed for that
one page within the property sheet itself. This means that the dialog box template used to define the page
should only carry the WS_CHILD style and no others. It should not include any style related to a frame,
caption, or system menus or controls.

When to Implement
Implement this interface on a property page object.

When to Use
Use this interface to manage a property page object. Typically, this method is called within the OLE-
supplied property frame created through OleCreatePropertyFrame or
OleCreatePropertyFrameIndirect. Using the methods in this interface, the frame can display the
properties and process end-user changes to the property values.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPropertyPage Methods Description
SetPageSite Initializes a property page and

provides the page with a pointer to
the IPropertyPageSite interface
through which the property page
communicates with the property
frame.

Activate Creates the dialog box window for
the property page.

Deactivate Destroys the window created with
Activate.

GetPageInfo Returns information about the
property page.

SetObjects Provides the property page with an
array of IUnknown pointers for
objects associated with this property
page.

Show Makes the property page dialog box
visible or invisible.

Move Positions and resizes the property

page dialog box within the frame.
IsPageDirty Indicates whether the property page

has changed since activated or since
the most recent call to Apply.

Apply Applies current property page values
to underlying objects specified
through SetObjects.

Help Invokes help in response to end-user
request.

TranslateAccelerator Provides a pointer to a MSG
structure that specifies a keystroke to
process.

See Also
IPerPropertyBrowsing, IPropertyPage2, IPropertyPageSite, ISpecifyPropertyPages,
OleCreatePropertyFrame, OleCreatePropertyFrameIndirect

IPropertyPage::Activate

Creates the dialog box for the property page (without a frame, caption, or system menu/controls) using
hWndParent as the parent window and prc as the positioning rectangle. The bModal flag indicates the
modality of the dialog box frame (in the current implementation of OleCreatePropertyFrame and
OleCreatePropertyFrameIndirect, this parameter is always TRUE). The text in the dialog should match
the locale obtained through IPropertyPageSite::GetLocaleID.

The property page maintains the window handle created in this process, which it uses to destroy the
dialog box within IPropertyPage::Deactivate.

HRESULT Activate(

 HWND hWndParent , //Parent window handle
 LPCRECT prc , //Pointer to RECT structure
 BOOL bModal //Dialog box frame is modal or modeless
);

Parameters
hWndParent

[in] Window handle of the parent of the dialog box that is being created.
prc

[in] Pointer to the RECT structure containing the positioning information for the dialog box. This
method must create its dialog box with the placement and dimensions described by this rectangle,
that is, origin point at (prc->left, prc->top) and dimensions of (prc->right-prc->Left, prc->bottom-prc-
>top).

bModal

[in] Indicates whether the dialog box frame is modal (TRUE) or modeless (FALSE).

Return Values
This method supports the standard return values E_OUTOFMEMORY and

E_UNEXPECTED, as well as the following:

S_OK

The page dialog box was created successfully.
E_POINTER

The address in prc is not valid. For example, it may be NULL.

Remarks
Notes to Implementers
E_NOTIMPL is not a valid return value.

See Also
IPropertyPage::Activate

IPropertyPage::Apply

Applies the current values to the underlying objects associated with the property page as previously
passed to IPropertyPage::SetObjects.

HRESULT Apply(void);

Return Values
This method supports the standard return values E_OUTOFMEMORY and

E_UNEXPECTED, as well as the following:

S_OK

Changes were successfully applied and the property page is current with the underlying objects.
S_FALSE

Changes were applied, but the property page cannot determine if its state is current with the objects.

Remarks
The objects to be changed are provided through a previous call to IPropertyPage::SetObjects. By
calling IPropertyPage::SetObjects prior to calling this method, the caller ensures that all underlying
objects have the correct interfaces through which to communicate changes. Therefore, this method
should not fail because of non-existent interfaces.

After applying its values, the property page should determine if its state is now current with the objects in
order to properly implement IPropertyPage::IsPageDirty and to provide both S_OK and S_FALSE return
values.

Notes to Implementers
E_NOTIMPL is not a valid return value.

See Also
IPropertyPage::IsPageDirty, IPropertyPage::SetObjects

IPropertyPage::Deactivate

Destroys the window created in IPropertyPage::Activate.

HRESULT Deactivate(void);

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The dialog was successfully destroyed.

Remarks
Notes to Implementers
It is important that property pages not keep the dialog box around as an optimization. In a property sheet
with many property pages, memory consumption would become excessive if all property pages kept their
dialog boxes created at all times. Destroying the dialog box prevents excessive memory consumption due
to a very large number of created controls in the dialog boxes. If the frame wishes to keep pages alive
while they are not visible, it can use IPropertyPage::Show for that purpose. The decision is ultimately left
to the frame.

E_NOTIMPL is not a valid return value.

See Also
IPropertyPage::Activate

IPropertyPage::GetPageInfo

Fills a caller-allocated PROPPAGEINFO structure to provide the caller with information about the property
page.

HRESULT GetPageInfo(

 PROPPAGEINFO *pPageInfo //Receives a pointer to property page information structure
);

Parameters
pPageInfo

[out] Pointer to the caller-allocated PROPPAGEINFO structure in which the property page stores its
page information. All allocations stored in this structure become the responsibility of the caller.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The structure was successfully filled.
E_POINTER

The address in pPageInfo is not valid. For example, it may be NULL.

Remarks
Notes to Implementers
E_NOTIMPL is not a valid return value.

See Also
PROPPAGEINFO

IPropertyPage::Help

Invokes the property page help in response to an end-user request.

HRESULT Help(

 LPCOLESTR pszHelpDir //Pointer to string from HelpDir key
);

Parameters
pszHelpDir

[in] Pointer to the string under the HelpDir key in the property page's CLSID information in the
registry. If HelpDir does not exist, this will be the path found in the InProcServer32 entry minus the
server file name. (Note that LocalServer32 is not checked in the current implementation, since local
property pages are not currently supported).

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The page displayed its own help.
E_NOTIMPL

Help is either not provided or is provided only through the information in PROPPAGEINFO.

Remarks
Notes to Callers
Calls to this method must occur between calls to IPropertyPage::Activate and
IPropertyPage::Deactivate.

Notes to Implementers
If the page fails this method (such as E_NOTIMPL), then the frame will attempt to use the pszHelpFile
and dwHelpContext fields of the PROPPAGEINFO structure obtained through
IPropertyPage::GetPageInfo. Therefore, the page should either implement IPropertyPage::Help or
return help information through IPropertyPage::GetPageInfo.

See Also
IPropertyPage::Activate, IPropertyPage::Deactivate, IPropertyPage::GetPageInfo, PROPPAGEINFO

IPropertyPage::IsPageDirty

Indicates whether the property page has changed its state since activation or since the last call to
IPropertyPage::Apply. The property sheet uses this information to enable or disable the Apply button in
the dialog box. There is no need to apply the values on a property page if those values are already
current with the underlying objects.

HRESULT IsPageDirty(void);

Return Values
S_OK

The value state of the property page is dirty, that is, it has changed and is different from the state of
the objects.

S_FALSE

The value state of the page has not changed and is current with that of the objects.

Remarks
Notes to Implementers
This method has no reason to return an error code, since the inability to determine if the page is dirty
should return S_OK as a default. In this way, the user has a chance to update the values. The page
should not return an error code, since an error code is not the same as S_OK and would indicate that the
page is not dirty. Then, the property frame could potentially disable the Apply button, not allowing the user
to make sure that the property values are current.

See Also
IPropertyPage::Apply

IPropertyPage::Move

Repositions and resizes the property page dialog box according to the contents of prc. The rectangle
specified by prc is treated identically to that passed to IPropertyPage::Activate.

HRESULT Move(

 LPCRECT prc //Pointer to RECT structure
);

Parameters
prc

[in] Pointer to the RECT structure containing the positioning information for the page dialog box.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The page repositioned itself successfully.
E_POINTER

The address in prc is not valid. For example, it may be NULL.

Remarks
Notes to Callers
Calls to this method must occur after a call to IPropertyPage::Activate and before a corresponding call
to IPropertyPage::Deactivate.

Notes to Implementers
The page must create its dialog box with the placement and dimensions described by this rectangle, that
is, origin point at (prc->left, prc->top) and dimensions of (prc->right-prc->Left, prc->bottom-prc->top).

See Also
IPropertyPage::Activate, IPropertyPage::Deactivate

IPropertyPage::SetObjects

Provides the IUnknown pointers of the objects affected by the property sheet in which this property page
is displayed. When the property page receives a call to IPropertyPage::Apply, it must send value
changes to these objects through whatever interfaces are appropriate. The property page must query for
those interfaces. This method can fail if the objects do not support the interfaces expected by the property
page.

HRESULT SetObjects(

 ULONG cObjects , //Number of IUnknown pointers in the ppUnk array
 IUnknown **ppUnk //Pointer to array
);

Parameters
cObjects

[in] Number of IUnknown pointers in the array pointed to by ppUnk. If zero, the property page must
release any pointers previously passed to this method.

ppUnk

[in] Pointer to an array of IUnknown interface pointers where each pointer identifies a unique object
affected by the property sheet in which this (and possibly other) property pages are displayed. The
property page must cache these pointers calling IUnknown::AddRef for each pointer at that time.
This array of pointers is the same one that was passed to OleCreatePropertyFrame or
OleCreatePropertyFrameIndirect to invoke the property sheet.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG,

E_OUTOFMEMORY, and E_UNEXPECTED, as well as the following:

S_OK

The property page successfully saved the pointers it needed.
E_NOINTERFACE

One of the objects in ppUnk did not support the interface expected by this property page, and so this
property page cannot communicate with it.

E_POINTER

The address in ppUnk is not valid. For example, it may be NULL.

Remarks
The property page is required to keep the pointers returned by this method or others queried through
them. If these specific IUnknown pointers are held, the property page must call IUnknown::AddRef
through each when caching them, until the time when IPropertyPage::SetObjects is called with cObjects
equal to zero. At that time, the property page must call IUnknown::Release through each pointer,
releasing any objects that it held.

The caller must provide the property page with these objects before calling IPropertyPage::Activate, and

should call IPropertyPage::SetObjects with zero as the parameter when deactivating the page or when
releasing the object entirely. Each call to SetObjects with a non-NULL ppUnk parameter must be
matched with a later call to SetObjects with zero in the cObjects parameter.

Notes to Implementers
E_NOTIMPL is not a valid return value.

See Also
IPropertyPage::Activate, OCPFIPARAMS, OleCreatePropertyFrame,
OleCreatePropertyFrameIndirect

IPropertyPage::SetPageSite

Initializes a property page and provides the property page object with the IPropertyPageSite interface
through which the property page communicates with the property frame.

HRESULT SetPageSite(

 IPropertyPageSite *pPageSite //Pointer to the site object
);

Parameters
pPageSite

[in] Pointer to the IPropertyPageSite interface of the page site that manages and provides services
to this property page within the entire property sheet.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The page site was saved and the page object was fully initialized.

Remarks
Notes to Implementers
If the pPageSite parameter is NULL, this method must call pPageSite->Release on any IPropertyPageSite
pointer passed during a previous call to this method. If non-NULL, this method must save the
IPropertyPageSite pointer value and call pPageSite->AddRef. Two consecutive calls to this method with a
non-NULL site pointer are not allowed and should cause the property page to return E_UNEXPECTED.

E_NOTIMPL is not a valid return value. All property pages must implement this method.

See Also
IPropertyPageSite

IPropertyPage::Show

Makes the property page dialog box visible or invisible according to the nCmdShow parameter. If the
page is made visible, the page should set the focus to itself, specifically to the first property on the page.

HRESULT Show(

 UINT nCmdShow //Indicates whether to make the page visible or hidden
);

Parameters
nCmdShow

[in] Command describing whether to become visible (SW_SHOW or SW_SHOWNORMAL) or hidden
(SW_HIDE). No other values are valid for this parameter.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The show command was successfully invoked.

Remarks
Notes to Callers
Calls to this method must occur after a call to IPropertyPage::Activate and before a corresponding call
to IPropertyPage::Deactivate.

Notes to Implementers
E_NOTIMPL is not a valid return value. E_OUTOFMEMORY is not a valid return value, since no memory
should be used in implementing this method.

See Also
IPropertyPage::Activate, IPropertyPage::Deactivate

IPropertyPage::TranslateAccelerator

Instructs the property page to process the keystroke described in pMsg.

HRESULT TranslateAccelerator(

 LPMSG pMsg //Pointer to MSG structure
);

Parameters
pMsg

[in] Pointer to the MSG structure describing the keystroke to process.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The property page handles the accelerator.
S_FALSE

The property page handles accelerators, but this one was not useful to it.
E_NOTIMPL

The property page does not handle accelerators.
E_POINTER

The address in pMsg is not valid. For example, it may be NULL.

Remarks
Notes to Callers
Calls to this method must occur after a call to IPropertyPage::Activate and before the corresponding call
to IPropertyPage::Deactivate.

See Also
IPropertyPage::Activate, IPropertyPage::Deactivate

IPropertyPage2

The IPropertyPage2 interface is an extension to IPropertyPage to support initial selection of a property
on a page. It works in conjunction with the implementation of
IPerPropertyBrowsing::MapPropertyToPage on an object that supplies properties and specifies
property pages through ISpecifyPropertyPages. This interface has only one extra method in addition to
those in IPropertyPage. That method, IPropertyPage2::EditProperty tells the page which property to
highlight.

When to Implement
Implement this interface if your property page object supports selection of a specific property.

When to Use
Use this interface to select a specific property in a property page.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPropertyPage Methods Description
SetPageSite Initializes a property page and

provides the page with a pointer to
the IPropertyPageSite interface
through which the property page
communicates with the property
frame.

Activate Creates the dialog box window for
the property page.

Deactivate Destroys the window created with
Activate.

GetPageInfo Returns information about the
property page.

SetObjects Provides the property page with an
array of IUnknown pointers for
objects associated with this property
page.

Show Makes the property page dialog box
visible or invisible.

Move Positions and resizes the property
page dialog box within the frame.

IsPageDirty Indicates whether the property page
has changed since activated or since
the most recent call to Apply.

Apply Applies current property page values
to underlying objects specified
through SetObjects.

Help Invokes help in response to end-user

request.
TranslateAccelerator Provides a pointer to a MSG

structure that specifies a keystroke to
process.

IPropertyPage2 Methods Description
EditProperty Specifies which field is to receive the

focus when the property page is
activated.

See Also
IPerPropertyBrowsing, IPropertyPage, IPropertyPageSite, ISpecifyPropertyPages,
IPerPropertyBrowsing::MapPropertyToPage

IPropertyPage2::EditProperty

Specifies in dispID the property's control on the property page to receive the focus when the page is
activated.

HRESULT EditProperty(

 DISPID dispID //Dispatch identifier for property
);

Parameters
dispID

[in] Identifies the property that is to receive the focus.

Return Values
This method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The property was successfully highlighted.
E_NOTIMPL

This method is not currently implemented; the interface is probably provided in anticipation of future
work on this page.

Remarks
Notes to Implementers
If this method is called before a page is activated, the page should store the property and set the focus to
it in the next call to IPropertyPage::Activate. If the page is already active,
IPropertyPage2::EditProperty should set the focus to the specific property field.

See Also
IPropertyPage::Activate

IPropertyPageSite

The IPropertyPageSite interface provides the main features for a property page site object. For each
property page created within a property frame, the frame creates a property page site to provide
information to the property page and to receive notifications from the page when changes occur. This
latter notification is used to initiate a call to IPropertyPage::IsPageDirty, the return value of which is then
used to enable or disable the frame's Apply button.

When to Implement
Implement this interface on a site object that will manage a property page on behalf of the property frame.
Typically, the OLE-provided property frame created through OleCreatePropertyFrame and
OleCreatePropertyFrameIndirect implements site objects.

When to Use
Use a site object with this interface to set up communications between the property frame and the
property page object.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPropertyPageSite Methods Description
OnStatusChange Indicates that the user has modified

property values on the property
page.

GetLocaleID Returns the locale identifier so the
property page can adjust itself to
country-specific settings.

GetPageContainer Returns an IUnknown pointer for the
object representing the entire
property frame dialog box that
contains all the pages.

TranslateAccelerator Passes a keystroke to the property
frame for processing.

See Also
IPerPropertyBrowsing, IPropertyPage, IPropertyPage2, IPropertyPageSite - Ole Implementation,
ISpecifyPropertyPages

IPropertyPageSite::GetLocaleID

Returns the locale identifier (an LCID) that a property page can use to adjust itself to the language in use
and other country-specific settings.

HRESULT GetLocaleID(

 LCID* pLocaleID //Receives a pointer to the locale identifier
);

Parameters
pLocaleID

[out] Pointer to locale identifier.

Return Values
S_OK

The locale was returned successfully.
E_POINTER

The address in pLocaleID is not valid. For example, it may be NULL.

See Also
OCPFIPARAMS, PROPPAGEINFO

IPropertyPageSite::GetPageContainer

Returns an IUnknown pointer to the object representing the entire property frame dialog box that
contains all the pages. Calling this method could potentially allow one page to navigate to another.

However, there are no "container" interfaces currently defined for this role, so this method always fails in
the current property frame implementation.

HRESULT GetPageContainer(

 IUnknown** ppUnk //Indirect pointer to the interface of the container object
);

Parameters
ppUnk

[out] Indirect pointer to the IUnknown interface on the container objectSet to NULL on failure.

Return Values
E_NOTIMPL

This is the only return value allowed at this time.

IPropertyPageSite::OnStatusChange

Informs the frame that the property page managed by this site has changed its state, that is, one or more
property values have been changed in the page. Property pages should call this method whenever
changes occur in their dialog boxes.

HRESULT OnStatusChange(

 DWORD dwFlags //Indicates what changes have occurred
);

Parameters
dwFlags

[in] Flags to indicate what changes have occurred. The dwFlags parameter can contain either of
these two values to indicate the type of status change:

Flag Value Description
PROPPAGESTATUS_DIRTY Values in pages have changed so

the state of the Apply button
should be updated.

PROPPAGESTATUS_VALIDAT
E

Now is an appropriate time to
apply changes.

Return Values
This method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The status change was noted.

IPropertyPageSite::TranslateAccelerator

Instructs the page site to process a keystroke if it desires.

HRESULT TranslateAccelerator(

 LPMSG pMsg //Pointer to MSG structure
);

Parameters
pMsg

[in] Pointer to the MSG structure to be processed.

Return Values
S_OK

The page site processed the message.
S_FALSE

The page site did not process the message.
E_NOTIMPL

The page site does not support keyboard processing.

IPropertyPageSite - Ole Implementation
The system provides an implementation of the IPropertyPageSite interface through the
OleCreatePropertyFrame or OleCreatePropertyFrameIndirect functions.

The current frame implementation provided through OleCreatePropertyFrame and
OleCreatePropertyFrameIndirect only implements the OnStatusChange and GetLocaleID methods.

Remarks
OnStatusChange

Indicates that the property page has changed.
GetLocaleID

Returns the locale identifier so the property page can adjust itself to country-specific settings.
GetPageContainer

Returns E_NOTIMPL.
TranslateAccelerator

Returns E_NOTIMPL.

See Also
IPropertyPageSite

IPropertySetStorage

Creates, opens, deletes, and enumerates property set storages that support instances of the
IPropertyStorage interface. The IPropertyStorage interface manages a single property set in a property
storage subobject; the IPropertySetStorage interface manages the storage of groups of such property
sets. IPropertySetStorage can be supported by any file system entity, and is currently implemented in
the OLE compound file object.

The IPropertySetStorage and IPropertyStorage interfaces provide a uniform way to create and manage
property sets, whether or not these sets reside in a storage object that supports IStorage. When called
through an object supporting IStorage (such as structured and compound files and directories) or
IStream, the property sets created conform to the OLE property set format, described in detail in
Appendix C of the OLE Programming Guide. Similarly, properties written using IStorage to the OLE
property set format are visible through IPropertySetStorage and IPropertyStorage. IPropertyStorage
does not support extensions to the OLE serialized property set format or multiple sections, because you
can get equivalent functionality as simply by creating new sets or by adding new properties to existing
property sets.

IPropertySetStorage methods identify property sets through a GUID called a format identifier (FMTID).
The FMTID for a property set identifies the set of property identifiers in the property set, their meaning,
and any constraints on the values. The format identifier of a property set should also provide the means to
manipulate that property set. Only one instance of a given FMTID may exist at a time within a single
property storage.

When to Implement
Implement IPropertySetStorage to store persistent properties in the file system. If you are using the OLE
compound files implementation, you can use the implementation on the compound file object created
through a call to StgCreateDocfile or StgOpenStorage. Once you have a pointer to any of the interface
implementations (such as IStorage) on this object, you can call QueryInterface to get a pointer to the
IPropertySetStorage interface implementation.

When to Use
Call IPropertySetStorage methods to create, open, or delete one or more property sets, or to enumerate
the property sets contained in this property set storage.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPropertySetStorage Methods Description
Create Creates a new property set.
Open Opens a previously created property

set.
Delete Deletes an existing property set.
Enum Creates and retrieves a pointer to an

object that can be used to enumerate
property sets.

See Also
IPropertyStorage, IEnumSTATPROPSETSTG, STATPROPSETSTG, PROPVARIANT

IPropertySetStorage::Create

Creates and opens a new property set in the property set storage object.

HRESULT Create(

 REFFMTID fmtid, //Format identifier of the property set to be created
 CLSID * pclsid, //Pointer to initial CLSID for this property set
 DWORD grfFlags, //PROPSETFLAG values
 DWORD grfMode, //Storage mode of new property set
 IPropertyStorage** ppPropStg //Indirect pointer to property storage sub-object
);

Parameters
fmtid

[in] Format identifier of the property set to be created.
pclsid

[in] Pointer to the initial CLSID for this property set. May be NULL, in which case it is set to all zeroes.
grfFlags

[in] Values from the PROPSETFLAG enumeration.
grfMode

[in] Access mode in which the newly created property set is to be opened, taken from certain values
of the STGM enumeration, as described in the Remarks.

ppPropStg

[out] Indirect pointer to the IPropertyStorage interface on the new property storage sub-object.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The property set was created.
STG_E_FILEALREADYEXISTS

A property set of the indicated name already exists, and STGM_CREATE was not specified.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation.
STG_E_INVALIDPARAMETER

A parameter is invalid.

Remarks
IPropertySetStorage::Create creates and opens a new property set sub-object (supporting the
IPropertyStorage interface) contained in this property set storage object. The property set automatically
contains code page and locale ID properties. These are set to the current system default, and the current
user default, respectively.

The grfFlags parameter is a combination of values taken from the enumeration PROPSETFLAG.

The grfMode parameter specifies the access mode in which the newly created set is to be opened. Values
for this parameter are as in the like-named parameter to IPropertySetStorage::Open, with the addition of
the following values:

Value Meaning
STGM_FAILIFTHERE If another property set with the specified

fmtid already exists, the call fails. This is
the default action; that is, unless
STGM_CREATE is specified,
STGM_FAILIFTHERE is implied.

STGM_CREATE If another property set with the specified
fmtid already exists, it is removed and
replaced with this new one.

STGM_DIRECT Open the property set without an
additional level of transaction nesting.
This is the default (the behavior if neither
STGM_DIRECT nor
STGM_TRANSACTED is specified).

STGM_TRANSACTED Open the property set with an additional
level of transaction nesting (beyond the
transaction, if any, on this property set
storage). This is possible only when you
specify PROPSETFLAG_NONSIMPLE
in the grfFlags parameter. Changes in
the property set must be committed with
IPropertyStorage::Commit before they
are visible to the transaction on this
property set storage.

STGM_READ Read access is desired on the property
set. Read permission is required on the
property set storage.

STGM_WRITE Write access is desired on the property
set. Write permission is not required on
the property set storage; however, such
write permission is required for changes
in the storage to be committed.

STGM_READWRITE Read-write access is desired on the
property set. Note that this flag is not the
binary OR of the values STGM_READ
and STGM_WRITE.

STGM_SHARE_EXCLUSIV
E

Prevents others from subsequently
opening the property set either in
STGM_READ or STGM_WRITE mode.

Note The only access mode supported by Create is STGM_SHARE_EXCLUSIVE. To use the

resulting property set in an access mode other than STGM_SHARE_EXCLUSIVE, the caller should
close the stream and then re-open it with a call to IPropertySetStorage::Open.

See Also
IPropertySetStorage::Open

IPropertySetStorage::Delete

Deletes one of the property sets contained in the property set storage object.

HRESULT Delete(

 REFFMTID fmtid //Format identifier of the property set to be deleted.
);

Parameters
fmtid

[in] Format identifier of the property set to be deleted.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The property set was successfully deleted.
STG_E_FILENOTFOUND

The specified property set does not exist.
STG_E_ACCESSDENIED

The requested access to the property set storage object has been denied.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation.
STG_E_INVALIDPARAMETER

The parameter is invalid.

Remarks
IPropertySetStorage::Delete deletes the property set specified by its format identifier. Specifying a
property set that does not exist returns an error. Open substorages and streams (opened through one of
the storage- or stream-valued properties) are put into the reverted state.

IPropertySetStorage::Enum

Creates an enumerator object which contains information on the property sets stored in this property set
storage. On return, this method supplies a pointer to the IEnumSTATPROPSETSTG pointer on the
enumerator object.

HRESULT Enum(

 IEnumSTATPROPSETSTG**ppenum //Indirect pointer to the new enumerator
);

Parameters
ppenum

[out] Indirect pointer to the IEnumSTATPROPSETSTG on the newly created enumeration object.

Return Values
S_OK

The enumerator object was successfully created.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation.

Remarks
IPropertySetStorage::Enum creates an enumerator object that can be used to iterate through
STATPROPSETSTG structures. These sometimes provide information on the property sets managed by
IPropertySetStorage. This method, on return, supplies a pointer to the IEnumSTATPROPSETSTG
interface on this enumerator object on return.

See Also
IEnumSTATPROPSETSTG, IEnumSTATPROPSETSTG -- Compound File Implementation

IPropertySetStorage::Open

Opens a property set contained in the property set storage object.

HRESULT Open(

 REFFMTID fmtid, //The format identifier of the property set to be opened
 DWORD grfMode, //Storage mode in which property set is to be opened
 IPropertyStorage** ppPropStg //Indirect pointer to property storage object
);

Parameters
fmtid

[in] Format identifier of the property set to be opened.
grfMode

[in] Access mode in which the newly created property set is to be opened. These flags are taken from
the STGM enumeration. Flags that may be used and their meanings in the context of this method are
described in the Remarks.

ppPropStg

[in] Indirect pointer to the IPropertyStorage interface on the requested property storage sub-object.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

Success.
STG_E_FILENOTFOUND

A property set of the indicated name does not exist.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied, or the property set is
corrupted.

STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation.
STG_E_INVALIDPARAMETER

A parameter is invalid.

Remarks
The mode in which the property set is to be opened is specified in the parameter grfMode. These flags
are taken from the STGM enumeration, but, for this method, legal values and their meanings are as
follows (only certain combinations of these flag values are legal).

Value Meaning

STGM_DIRECT Open the property set without an
additional level of transaction nesting.
This is the default (the behavior if
neither STGM_DIRECT nor
STGM_TRANSACTED is specified).

STGM_TRANSACTED Open the property set with an
additional level of transaction nesting
(beyond the transaction, if any, on this
property set storage object).
Transacted mode is available only on
non-simple property sets, because
they use an IStorage with a contents
stream. Changes in the property set
must be committed with a call to
IPropertyStorage::Commit before
they are visible to the transaction on
this property set storage.

STGM_READ Open the property set with read
access. Read permission is required
on the property set storage.

STGM_WRITE Open the property set with write
access. Write permission is not
required on the IPropertySetStorage;
however, such write permission is
required for changes in the storage to
be committed.

STGM_READWRITE Open the property set with read-write
access. Note that this flag is not the
binary OR of the values STGM_READ
and STGM_WRITE.

STGM_SHARE_DENY_NON
E

Subsequent openings of the property
set are not denied read or write
access. Not available in compound file
implementation.

STGM_SHARE_DENY_REA
D

Subsequent openings of the property
set in are denied read access. Not
available in compound file
implementation.

STGM_SHARE_DENY_WRI
TE

Subsequent openings of the property
set are denied write access. This value
is typically used to prevent making
unnecessary copies of an object
opened by multiple users. If this value
is not specified, a snapshot is made,
whether there are subsequent
openings or not. Thus, you can
improve performance by specifying this
value. Not available in compound file
implementation.

STGM_SHARE_EXCLUSIVE The combination of
STGM_SHARE_DENY_READ and
STGM_SHARE_DENY_WRITE.

IPropertySetStorage-Compound File Implementation
The OLE compound file storage object implementation includes an implementation of both
IPropertyStorage, the interface that manages a single persistent property set, and
IPropertySetStorage, the interface that manages groups of persistent property sets.

To get a pointer to the compound file implementation of IPropertySetStorage, first call StgCreateDocfile
to create a new compound file object or StgOpenStorage to open a previously created compound file.
Both functions supply a pointer to the object's IStorage interface. When you want to deal with persistent
property sets, call IStorage::QueryInterface for the IPropertySetStorage interface, specifying the
header-defined name for the interface identifier IID_IPropertySetStorage.

When to Use
Call the methods of IPropertySetStorage to create, open, or delete property sets in the current
compound file property set storage. There is also a method that supplies a pointer to an enumerator that
can be used to enumerate the property sets in the storage.

Remarks
IPropertySetStorage::Create

Creates a new property set in the current compound file storage and, on return, supplies an indirect
pointer to the IPropertyStorage compound file implementation. In this implementation, property sets
may be transacted only if PROPSETFLAG_NONSIMPLE is specified.

IPropertySetStorage::Open

Opens an existing property set in the current property storage. On return, it supplies an indirect
pointer to the compound file implementation of IPropertyStorage.

IPropertySetStorage::Delete

Deletes a property set in this property storage.
IPropertySetStorage::Enum

Creates an object that can be used to enumerate STATPROPSETSTG structures. Each
STATPROPSETSTG structure provides information about a single property set. The implementation
calls the constructor for IEnumSTATPROPSETSTG, which, in turn, uses the pointer to the IStorage
interface to create a STATSTG enumerator, which is then used over the actual storage to get the
information about the property sets.

Note The DocumentSummaryInformation property set is special, in that it may have two property
set sections. This property set is described in the OLE Programmer's Reference, in the section titled
The DocumentSummaryInformation Property Set. The second section is referred to as the User-
Defined Properties. Each section is identified with a unique Format ID, for example
FMTID_DocumentSummaryInformation and FMTID_UserDefinedProperties.

When IPropertySetStorage::Create is called to create the User-Defined Property Set, the first
section is created automatically. Thus once FMTID_UserDefinedProperties is created,
FMTID_DocumentSummaryInformation need not be created, but can be opened with a call to
IPropertySetStorage::Open. Note that creating the first section does not automatically create the
second section. It is not possible to open both sections simultaneously.

When IPropertySetStorage::Create is called to create the User-Defined Property Set, the first
section is created automatically. Thus once FMTID_UserDefinedProperties is created,
FMTID_DocumentSummaryInformation need not be created, but can be opened with a call to
IPropertySetStorage::Open. Note that creating the first section does not automatically create the
second section. It is not possible to open both sections simultaneously.

Alternately, when IPropertySetStorage::Delete is called to delete the first section, both sections are
deleted. That is, calling IPropertySetStorage::Delete with FMTID_DocumentSummaryInformation,
causes both that section and the FMTID_UserDefinedProperties section to be deleted. Note that
deleting the second section does not automatically delete the first section.

Finally, when IPropertySetStorage::Enum is used to enumerate property sets, the User-Defined
Property Set will not be enumerated.

See Also
IPropertyStorage, IPropertySetStorage - Compound File Implementation, STATPROPSETSTG
structure, PROPSETFLAG enumeration, IStorage::EnumElements

IPropertyStorage

Manages the persistent properties of a single property set. Persistent properties consist of information
that can be stored persistently in a property set, such as the summary information associated with a file.
This contrasts with run-time properties associated with Controls and Automation, which can be used to
affect system behavior. Use the methods of the IPropertySetStorage interface to create or open a
persistent property set. An IPropertySetStorage instance can manage zero or more IPropertyStorage
instances.

Each property within a property set is identified by a property identifier, a four-byte ULONG value unique
to that set. You can also assign a string name to a property through the IPropertyStorage interface.

Property identifiers are different from the dispatch identifiers used in Automation dispid property name
tags. One difference is that the general-purpose use of property identifier values zero and one is
prohibited in IPropertyStorage, while no such restriction exists in IDispatch. In addition, while there is
significant overlap in the data types for property values that may be used in IPropertyStorage and
IDispatch, the sets are not identical. Persistent property data types used in IPropertyStorage methods
are defined in the PROPVARIANT structure.

When to Implement
Implement IPropertyStorage when you want to store properties in the file system. If you are using the
OLE compound files implementation, the compound file object created through a call to StgCreateDocfile
includes an implementation of IPropertySetStorage, which allows access to the implementation of
IPropertyStorage. Once you have a pointer to any of the interface implementations (such as IStorage)
on this object, you can call QueryInterface to get a pointer to the IPropertySetStorage interface
implementation, and then call either the Open or Create method, as appropriate to obtain a pointer to the
IPropertyStorage interface managing the specified property set.

When to Use
Use IPropertyStorage to create and manage properties that are stored in a given property set.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPropertyStorage Methods Description
ReadMultiple Reads property values in a property

set.
WriteMultiple Writes property values in a property

set.
DeleteMultiple Deletes properties in a property set.
ReadPropertyNames Gets corresponding string names for

given property identifiers.
WritePropertyNames Creates or changes string names

corresponding to given property
identifiers.

DeletePropertyNames Deletes string names for given
property identifiers.

SetClass Assigns a CLSID to the property set.
Commit As in IStorage::Commit, flushes or

commits changes to the property
storage object.

Revert When the property storage is opened
in transacted mode, discards all
changes since the last commit.

Enum Creates and gets a pointer to an
enumerator for properties within this
set.

Stat Receives statistics about this
property set.

SetTimes Sets modification, creation, and
access times for the property set.

See Also
IPropertySetStorage, IEnumSTATPROPSTG, IEnumSTATPROPSETSTG, STATPROPSTG,
STATPROPSETSTG, PROPVARIANT

IPropertyStorage::Commit
Saves any changes made to a property storage object to the parent storage object.

HRESULT Commit(

 DWORD grfCommitFlags //Flags specifying conditions for the commit
);

Parameters
grfCommitFlags

[in] Flags specifying the conditions under which the commit is to be performed. Specific flags and their
meanings are described in the following Remarks section.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The changes were saved successfully.
STG_E_NOTCURRENT

STGC_ONLYIFCURRENT was specified, but the optimistic concurrency control failed.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation.
STG_E_INVALIDPARAMETER

One or more flags specified in grfCommitFlags is invalid.

Remarks
As in IStorage::Commit, ensures that any changes made to a property storage object are reflected in the
parent storage.

In direct mode in the compound file implementation, this call causes any changes currently buffered up in
memory to be flushed to the underlying property stream. In the compound file implementation for non-
simple property sets, IStorage::Commit is also called on the underlying substorage object with the
passed grfCommitFlags parameter.

In transacted mode, this method causes the changes to be permanently reflected in the persistent image
of the storage object. The changes that are committed must have been made to this property set since it
was opened or since the last commit on this opening of the property set. One could think of the action of
committing as publishing the changes that this level currently knows about one more layer outwards. Of
course, this is still subject to any outer level transaction that may be present on the object in which this
property set is contained. Write permission must be specified when the property set is opened (through
IPropertySetStorage) on the property set opening for the commit operation to succeed.

If the commit operation fails for any reason, the state of the property storage object is as it was before the
commit.

This call has no effect on existing storage- or stream-valued properties opened from this property storage,
but it does commit them.

Valid values for the grfCommitFlags parameter are as follows:

Value Meaning
STGC_DEFAULT Commit per the usual transaction

semantics. Last writer wins. This flag may
not be specified with other flag values.

STGC_ONLYIFCURREN
T

Commit the changes only if the current
persistent contents of the property set are
the ones on which the changes about to be
committed are based. That is, do not
commit changes if the contents of the
property set have been changed by a
commit from another opening of the
property set. The error
STG_E_NOTCURRENT is returned if the
commit does not succeed for this reason.

STGC_OVERWRITE Only useful when committing a transaction
which has no further outer nesting level of
transactioning, though legal in all cases.
Indicates that the caller is willing to take
some risk of data corruption at the expense
of a decreased usage of disk on the
destination volume. This flag is potentially
useful in low disk space scenarios, though
should be used only with caution.

See Also
IPropertyStorage::ReadMultiple, IStorage::Commit

IPropertyStorage::DeleteMultiple

Deletes as many of the indicated properties as exist in this property set.

HRESULT DeleteMultiple(

 ULONG cpspec, //Count of properties to be deleted
 PROPSPEC const
rgpspec[]

//Array of properties to be deleted

);

Parameters
cpspec

[in] Count of properties being deleted. May legally be zero, though this is a no-op, deleting no
properties.

rgpspec[]

[in] Properties to be deleted. A mixture of property identifiers and string-named properties is permitted.
There may be duplicates, and there is no requirement that properties be specified in any order.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

All of the specified properties that exist in the property set have been deleted.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied. No properties were deleted.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation. Some properties may not have been deleted.
STG_E_INVALIDPARAMETER

At least one of the parameters is invalid, as when one of the PROPSPECs contains an illegal ulKind
value. Some properties may not have been deleted.

STG_E_INVALIDPOINTER

May be returned when at least one of the pointers passed in is invalid. Some properties may not have
been written. More frequently, an invalid pointer will instead result in an access violation.

Remarks
IPropertyStorage::DeleteMultiple must delete as many of the indicated properties as are in the current
property set. If a deletion of a stream- or storage-valued property occurs while that property is open, the
deletion will succeed and place the previously returned IStream or IStorage pointer in the reverted state.

IPropertyStorage::DeletePropertyNames

Deletes specified string names from the current property set.

HRESULT DeletePropertyNames(

 ULONG cpropid, //Size of the rgpropid array
 PROPID const
rgpropid[]

//Property identifiers for which string names are to be deleted

);

Parameters
cpropid

[in] The size on input of the array rgpropid. If 0, no property names are deleted.
rgpropid[]

[in] Property identifiers for which string names are to be deleted.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

Success. The names of all of the indicated properties that exist in this set have been deleted.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied. No property names were
deleted.

STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation. Some property names may not have been
deleted.

STG_E_INVALIDPARAMETER

At least one of the parameters is invalid. Some property names may not have been deleted.

Remarks
For each property identifier in rgpropid, IPropertyStorage::DeletePropertyNames removes the
corresponding name-to-property identifier mapping, if any. An attempt to delete the name of a property
that either does not exist or does not presently have a string name associated with it is silently ignored.
This method has no effect on the properties themselves.

Note All the stored string property names can be deleted by deleting property identifier zero, but
cpropid must be equal to 1 for this to not be an invalid parameter error.

See Also
IPropertyStorage::ReadPropertyNames

IPropertyStorage::Enum

Creates an enumerator object designed to enumerate data of type STATPROPSTG, which contains
information on the current property set. On return, this method supplies a pointer to the
IEnumSTATPROPSTG pointer on this object.

HRESULT Enum(

 IEnumSTATPROPSTG**
ppenum

//Indirect pointer to new enumerator

);

Parameters
ppenum

[out] Indirect pointer to the IEnumSTATPROPSTG interface on the new enumeration object.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

A pointer to the enumerator has been retrieved.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation.
STG_E_INVALIDPARAMETER

The parameter is invalid.
STG_E_READFAULT

Error reading storage.

Remarks
IPropertyStorage::Enum creates an enumeration object that can be used to iterate STATPROPSTG
structures. On return, this method supplies a pointer to an instance of IEnumSTATPROPSTG interface on
this objects whose methods you can call to obtain information on the current property set.

See Also
IEnumSTATPROPSTG, IEnumSTATPROPSTG -- Compound File Implementation

IPropertyStorage::ReadMultiple

Reads specified properties from the current property set.

HRESULT ReadMultiple(

 ULONG cpspec, //Count of properties being read.
 PROPSPEC const
rgpspec[],

//Array of the properties to be read

 PROPVARIANT rgvar[] //Array of PROPVARIANTs containing the property values on
return

);

Parameters
cpspec

[in] Count of properties specified in the rgpspec array. May legally be zero, though this is a no-op,
reading no properties.

rgpspec[]

[in] The properties to be read in the PROPSPEC structures. Properties can be specified either by
property identifier or by optional string name. It is not necessary to specify properties in any particular
order in the array. The array can contain duplicate properties, resulting in duplicate property values on
return for simple properties. Non-simple properties should return access denied on an attempt to
open them a second time. The array can contain a mixture of property identifiers and string identifiers.

rgvar[]

[in, out] Caller-allocated array of PROPVARIANTs that, on return, contains the values of the
properties specified by rgpspec. The array must be able to receive at least cpspec PROPVARIANTs.
The caller does not need to initialize these PROPVARIANTs in any particular way; the implementation
must fill in all field members correctly on return. If there is no other appropriate value, the
implementation must set the vt member of each PROPVARIANT to VT_EMPTY.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

Success. At least some of the requested properties were retrieved.
S_FALSE

All the property names or identifiers had valid syntax, but none of them exist in this property set.
Accordingly, no properties were retrieved., and each PROPVARIANT structure is set to VT_EMPTY.

STG_E_ACCESSDENIED

The requested access to the property set has been denied, or, when one or more of the properties is
a stream or storage object, access to that substorage or substream has been denied. (The storage or
stream may already be open). No properties were retrieved.

STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation. No properties were retrieved.
STG_E_INVALIDPARAMETER

At least one of the parameters is invalid, such as when one of the PROPSPECs contains an illegal
ulKind value. No properties were retrieved.

STG_E_INVALIDPOINTER

At least one of the pointers passed in is invalid. No properties were retrieved.
HRESULT_FROM_WIN32(ERROR_NO_UNICODE_TRANSLATION)

There was a failed attempt to translate a Unicode string to or from Ansi.

Remarks
IPropertyStorage::ReadMultiple reads as many of the properties specified in the rgpspec array as are
found in the property set. As long as any of the properties requested is read, a request to retrieve a
property that does not exist is not an error. Instead, this must cause VT_EMPTY to be written for that
property to the rgvar[] array on return. When none of the requested properties exist, the method should
return S_FALSE, and set VT_EMPTY in each PROPVARIANT. If any other error is returned, no property
values are retrieved, and the caller need not worry about releasing them.

The rgpspec parameter is an array of PROPSPEC structures, which specify for each property either its
property identifier or, if one is assigned, a string identifier. You can map a string to a property identifier by
calling IPropertyStorage::WritePropertyNames. The use of property identifiers is, however, likely to be
significantly more efficient than the use of strings.

Properties that are requested by string name (PRSPEC_LPWSTR) are mapped case-insensitively to
property identifiers as they are specified in the current property set (and according to the current system
locale).

All propvariants, except for those that are pointers to streams and storages, are called simple
propvariants. These simple propvariants receive data by value, so a call to
IPropertyStorage::ReadMultiple supplies a copy of the data that the caller then owns. To create or
update these properties, call IPropertyStorage::WriteMultiple.

In contrast, the variant types VT_STREAM, VT_STREAMEDOBJECT, VT_STORAGE, and
VT_STOREDOBJECT are non-simple properties, because rather than supplying a value, the method
retrieves a pointer to the indicated interface, from which the data can then be read. These types permit
the storage of large amounts of information through a single property. There are several issues that arise
in using non-simple properties.

To create these properties, as for the other properties, call IPropertyStorage::WriteMultiple. Rather than
calling the same method to update, however, it is more efficient to first call
IPropertyStorage::ReadMultiple to get the interface pointer to the stream or storage, then write data
using the IStream or IStorage methods. A stream or storage opened through a property is always opened
in direct mode, so an additional level of nested transaction is not introduced. There may, however, still be
a transaction on the property set as a whole, depending on how it was opened or created through
IPropertySetStorage. Further, the access and share mode tags specified when the property set is
opened or created, are passed to property-based streams or storages.

The lifetimes of property-based stream or storage pointers, although theoretically independent of their
associated IPropertyStorage and IPropertySetStorage pointers, in fact, effectively depend on them.
The data visible through the stream or storage is related to the transaction on the property storage object
from which it is retrieved, just as for a storage object (supporting IStorage) with contained stream and
storage sub-objects. If the transaction on the parent object is aborted, existing IStream and IStorage
pointers subordinate to that object enter a "zombie" state. Because IPropertyStorage is the only
interface on the property storage object, the useful lifetime of the contained IStream and IStorage
pointers is bounded by the lifetime of the IPropertyStorage interface.

The implementation must also deal with the situation where the same stream- or storage-valued property
is requested multiple times through the same IPropertyStorage interface instance. For example, in the
OLE compound file implementation, the open will succeed or fail depending on whether or not the
property is already open.

Another issue is multiple opens in transacted mode. The result depends on the isolation level that was
specified through a call to IPropertySetStorage methods, (either the Open or Create method, through
the STGM flags) at the time that the property storage was opened .

If the call to open the property set specifies read-write access, IStorage- and IStream-valued properties
are always opened with read-write access. Data can then be written through these interfaces, changing
the value of the property, which is the most efficient way to update these properties. The property value
itself does not have an additional level of transaction nesting, so changes are scoped under the
transaction (if any) on the property storage object.

See Also
IPropertySetStorage, IPropertyStorage::WriteMultiple, IPropertyStorage::WritePropertyNames

IPropertyStorage::ReadPropertyNames

Retrieves any existing string names for the specified property identifiers.

HRESULT ReadPropertyNames(

 ULONG cpropid, //Number of elements in rgpropid
 PROPID const rgpropid[], //Property identifiers for which names are to be retrieved.
 LPWSTR rglpwstrName[] //Array of returned string names
);

Parameters
cpropid

[in] Number of elements on input of the array rgpropid. May legally be zero, though this is a no-op,
reading no property names.

rgpropid[]

[in] Array of property identifiers for which names are to be retrieved.
rglpwstrName[]

[in, out] Caller-allocated array of size cpropid of LPWSTRs. On return, the implementation fills in this
array. A given entry contains either the corresponding string name of a property identifier or NULL if
the property identifier has no string name.
Each LPWSTR member of the array should be freed using CoTaskMemFree.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

One or more string names were retrieved and all members of rglpwstrName are valid (either NULL or
a valid LPWSTR).

S_FALSE

No string names were retrieved because none of the requested property identifiers have string names
presently associated with them in this property storage object (this result does not address whether
the given property identifiers presently exist in the set).

STG_E_INVALIDHEADER

The property name dictionary was not found.
STG_E_READFAULT

Error reading the storage.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied. No string names were
retrieved.

STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation. No string names were retrieved.

STG_E_INVALIDPARAMETER

A parameter is invalid. No string names were retrieved.
HRESULT_FROM_WIN32(ERROR_NO_UNICODE_TRANSLATION)

There was a failed attempt to translate a Unicode string to or from Ansi.

Remarks
For each property identifier in the list of property identifiers supplied in the rgpropid array,
IPropertyStorage::ReadPropertyNames retrieves the corresponding string name, if there is one. String
names are created either by specifying the names in calls to IPropertyStorage::WriteMultiple when you
are creating the property, or through a call to IPropertyStorage::WritePropertyNames. In any case, the
string name is optional; all properties must have a property identifier.

String names mapped to property identifiers must be unique within the set.

See Also
IPropertyStorage::WritePropertyNames, IPropertyStorage::WriteMultiple

IPropertyStorage::Revert
Discards all changes to the property set it was opened or changes were last committed. Has no effect on
a direct-mode property set.

HRESULT Revert();

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

Success.

Remarks
For transacted-mode property sets, discards all changes that have been made in this property set since
set was opened or the time it was last committed (depending on which is later). After this operation, any
existing storage- or stream-valued properties that have been opened from the property set being reverted
are invalid and can no longer be used. The error STG_E_REVERTED will be returned on all calls except
Release using these streams or storages.

For direct-mode property sets, this request is ignored and returns S_OK.

See Also
IPropertyStorage::Commit

IPropertyStorage::Stat
Retrieves information about the current open property set.

HRESULT Stat(

 STATPROPSTG* pstatpsstg //Pointer to a filled-in STATPROPSETSTG structure
);

Parameters
pstatpsstg

[out] Pointer to a STATPROPSETSTG structure, which contains statistics about the current open
property set.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

Statistics were successfully obtained.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation.
STG_E_INVALIDPARAMETER

The parameter is invalid.

Remarks
IPropertyStorage::Stat fills in and returns a pointer to a STATPROPSETSTG structure, containing
statistics about the current property set. STATPROPSETSTG fields have the following meanings:

Field Meaning
fmtid The FMTID of this property set, specified when the

property set was initially created.
clsid The CLSID of this property set, specified when the

property set was initially created and possibly modified
thereafter with IPropertyStorage::SetClass. If not set,
the value will be CLSID_NULL.

grfFlags The flag values this set was created with. For details,
see IPropertySetStorage::Create.

mtime The time in UTC (FILETIME) at which this property set
was last modified. Not all IPropertyStorage
implementations maintain modification times on
property sets; those who do not will return zero for this
value.

ctime The time in UTC (FILETIME) at which this property set

was created. Not all IPropertyStorage implementations
maintain creation times on property sets; those that do
not will set this value to 0.

atime The time in UTC (FILETIME) at which this property set
was last accessed. Not all IPropertyStorage
implementations maintain last access times on
property sets; those that do not will set this value to 0.

See Also
STATPROPSETSTG structure, IPropertySetStorage::Enum, FILETIME structure

IPropertyStorage::SetClass

Assigns a new CLSID to the current property storage object, and persistently stores the CLSID with the
object.

HRESULT SetClass(

 REFCLSID clsid //New CLSID for the property set
);

Parameters
clsid

[in] New CLSID to be associated with the property set.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The CLSID has been assigned.
STG_E_ACCESSDENIED

The requested access to the IPropertyStorage interface has been denied. The CLSID was not
assigned.

STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation. The CLSID was not assigned.
STG_E_INVALIDPARAMETER

The parameter is invalid. The CLSID was not assigned.

Remarks
Assigns a CLSID to the current property storage object. The CLSID has no relationship to the stored
property identifiers. Assigning a CLSID allows a piece of code to be associated with a given instance of a
property set; such code, for example, might manage the user interface. Different CLSIDs can be
associated with different property set instances that have the same FMTID.

If the property set is created with NULL specified as the IPropertySetStorage::Create pclsid parameter,
the CLSID is set to all zeroes.

The current CLSID on a property storage object can be retrieved with a call to IPropertyStorage::Stat.
The initial value for the CLSID can be specified at the time that the storage is created with a call to
IPropertySetStorage::Create.

Setting the CLSID on a non-simple property set (one that can legally contain storage- or stream-valued
properties, as described in IPropertySetStorage::Create) also sets the CLSID on the underlying sub-
storage.

See Also
IPropertySetStorage::Create, IPropertyStorage::Stat

IPropertyStorage::SetTimes

Sets the modification, access, and creation times of this property set, if supported by the implementation.
Not all implementations support all these time values.

HRESULT SetTimes(

 FILETIME const * pctime, //New creation time for the property set
 FILETIME const * patime, //New access time for the property set
 FILETIME const * pmtime //New modification time for the property set
);

Parameters
pctime

[in] Pointer to the new creation time for the property set. May be NULL, indicating that this time is not
to be modified by this call.

patime

[in] Pointer to the new access time for the property set. May be NULL, indicating that this time is not
to be modified by this call.

pmtime

[in] Pointer to the new modification time for the property set. May be NULL, indicating that this time is
not to be modified by this call.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

All the requested times have been successfully updated.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied; no times have been updated.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation.
STG_E_INVALIDPARAMETER

The parameter is invalid. This error is returned if an attempt is made to set a time value which is not
supported by this implementation.

Remarks
Sets the modification, access, and creation times of the current open property set, if supported by the
implementation (not all implementations support all these time values). Unsupported timestamps are
always reported as zero, enabling the caller to test for support. A call to IPropertyStorage::Stat supplies
(among other information) timestamp information.

Notice that this functionality is provided as an IPropertyStorage method on a property storage object that
is already open, in contrast to being provided as a method in IPropertySetStorage. Normally, when the

SetTimes method is not explicitly called, the access and modification times are updated as a side effect
of reading and writing the property set. When SetTimes is used, the latest specified times supersede
either default times or time values specified in previous calls to SetTimes.

See Also
IPropertyStorage::Stat, FILETIME structure

IPropertyStorage::WriteMultiple

Writes a specified group of properties to the current property set. If a property with a specified name
already exists, it is replaced, even when the old and new types for the property value are different. If a
property of a given name or property identifier does not exist, it is created.

HRESULT WriteMultiple(

 ULONG cpspec, //The number of properties being set.
 PROPSPEC const
rgpspec[],

//Property specifiers

 PROPVARIANT const
rgvar[],

//Array of PROPVARIANT values

 PROPID propidNameFirst //Minimum value for property identifiers when they must be
allocated

);

Parameters
cpspec

[in] The number of properties being set. May legally be zero, though this is a no-op, writing no
properties.

rgpspec[]

[in] Array of the specifiers to which properties are to be set. These are in no particular order, and may
legally contain duplicates (the last specified is to take effect). A mixture of property identifiers and
string names is permitted.

rgvar[]

[in] An array (of size cpspec) of PROPVARIANTs that contain the property values to be written. The
array must be of the size specified by cpspec.

propidNameFirst

[in] Specifies the minimum value for the property identifiers the method must assign if the rgpspec
parameter specifies string-named properties for which no property identifiers currently exist. If all
string-named properties specified already exist in this set, and thus already have property identifiers,
this value is ignored. When not ignored, this value must be at least two (property identifiers 0and 1
are reserved for special uses) and less than 0x80000000 (property identifier values beyond that are
reserved for special use).

HRESULT_FROM_WIN32(ERROR_NO_UNICODE_TRANSLATION)

There was a failed attempt to translate a Unicode string to or from Ansi.

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

All of the indicated properties were successfully written.
STG_E_ACCESSDENIED

The requested access to the property storage object has been denied. No properties have been

written. The property set was opened in STGM_READ mode.
STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation. Some properties may or may not have been
written.

STG_E_INVALIDPARAMETER

At least one of the parameters is invalid. Some properties may not have been written. This error
would be returned in several situations, for example: 1) rgvar may be NULL; 2) a stream- or storage-
valued property is present in rgpspec but the property set was created without
PROPSETFLAG_NONSIMPLE; 3) one or more property variant types may be invalid; 4) one of the
PROPSPECs contains an illegal ulKind value.

STG_E_INVALIDPOINTER

May be returned when at least one of the pointers passed in is invalid. Some properties may or may
not have been written. More frequently, an invalid pointer will instead result in an access violation.

STG_E_WRITEFAULT

Error writing the storage.
STG_E_REVERTED

The property set was reverted. For example, if the property set is deleted while open (by using
IPropertySetStorage::Delete) this status would be returned.

STG_E_MEDIUMFULL

The disk is full. Some properties may or may not have been written.
STG_E_PROPSETMISMATCHED

An attempt was made to write a non-simple (stream- or storage-valued) property to a simple property
set.

Remarks
If a specified property already exists, it's value is replaced with the new one, even when the old and new
types for the property value are different. If you specify a property identifier that does not exist, that
property is created. If a string name is supplied for a property which does not exist, the method will
allocate a property identifier for that property, and the name will be added to the dictionary.

When allocating a property identifier, the implementation can choose any value not currently in use in the
property set for a property identifier, as long as it is not 0 or 1 or greater than 0x80000000, all of which are
reserved values. The propidNameFirst parameter establishes a minimum value for property identifiers
within the set, and must be greater than 1 and less than 0x80000000.

If there is an attempt to write a property that already exists with an invalid parameter, the method should
return STG_E_INVALIDPARAMETER; if the property does not exist, it should not be created. This
behavior facilitates the use of a ReadMultiple - update - WriteMultiple sequence to update a group of
properties without requiring that the calling code ensure that all the requested properties in the call to
ReadMultiple were retrieved.

It is recommended that property sets be created as Unicode, by not setting the PROPSETFLAG_ANSI
flag in the grfFlags parameter of IPropertySetStorage::Create. It is also recommended that you avoid
using VT_LPSTR values, and use VT_LPWSTR values instead. When the property set code page is
Unicode, VT_LPSTR string values are converted to Unicode when stored, and back to multibyte string
values when retrieved. When the code page of the property set is not Unicode, property names,
VT_BSTR strings, and non-simple property values are converted to multibyte strings when stored, and

converted back to Unicode when retrieved, all using the current system ANSI code page.

To create stream or storage object as a property in a nonsimple property set, call
IPropertyStorage::WriteMultiple. While you would also call this method to update simple properties, it is
not an efficient way to update stream and storage objects in a property set. This is because updating one
of these properties through a call to WriteMultiple creates in the property storage object a copy of the
passed-in data, and the IStorage or IStream pointers are not retained beyond the duration of this call. It
is usually more efficient to update stream or storage objects by first calling
IPropertyStorage::ReadMultiple to get the interface pointer to the stream or storage, then writing data
through the IStream or IStorage methods.

A stream or storage opened through a property is always opened in direct mode, so an additional level of
nested transaction is not introduced. There is still likely to be a transaction on the property set as a whole.
Further, a property-based stream or storage is opened in read-write mode, if possible, given the mode on
the property set; otherwise, read mode is used.

When the copy is made, the underlying CopyTo operation on VT_STREAM properties operates on the
current seek position of the source. The seek position is destroyed on failure, but on success it is at EOF.

If a stream or storage property does not exist, passing an IStream or IStorage pointer with a value of
NULL creates an empty stream or storage property value. If a stream or storage property is already open
from a call to ReadMultiple, a NULL value must cause the WriteMultiple operation to truncate it and
return S_OK, placing the previously returned stream- and storage-valued pointers into the reverted state
(as happens in the compound file implementation.)

Storage- and stream-valued properties always manifest themselves to downlevel clients as sibling
streams or storages to the stream containing the main contents of the property set¾they are never stored
directly in-line in the property set. This allows smooth interoperability and control when down-level clients
interact with up-level clients. Thus, from a downlevel perspective, property sets containing IStream or
IStorage valued properties are always stored in a storage object, not a stream. The specific name of the
sibling used is completely under the control of the IPropertyStorage implementation, as long as the
name is from the non-reserved part of the IStorage name space. See Appendix C of the OLE
Programmer's Guide for a discussion of the serialized property set format for further details. As is
described there, the string name is stored in the same format as a VT_BSTR. Refer also to the earlier
discussion in this method of multibyte to Unicode conversions for property names.

If the WriteMultiple method returns an error when writing stream- or storage-valued properties (indirect
properties), the amount of data actually written is undefined. If the caller requires consistency of the
property set and its indirect properties when writing stream- and/or storage-valued properties, use of
transacted mode is advised.

If an implicit deletion of a stream- or storage-valued property occurs while that property is open, (as, for
example, when a VT_I4 is written over a VT_STREAM), the deletion will succeed and place the
previously returned IStream pointer in the reverted state.

See Also
IPropertySetStorage::Create, IPropertyStorage::ReadMultiple

IPropertyStorage::WritePropertyNames
Assigns string names to a specified array of property IDs in the current property set.

HRESULT WritePropertyNames(

 ULONG cpropid, //Size on input of the array rgpropid
 PROPID const rgpropid[], //Property identifiers for which names are to be set
 LPWSTR const
rglpwstrName[],

//New names of the corresponding property identifiers

);

Parameters
cpropid

[in] Size on input of the array rgpropid. May legally be zero, though this is a no-op, writing no property
names.

rgpropid[]

[in] Array of the property identifiers for which names are to be set.
rglpwstrName[]

[in] Array of new names to be assigned to the corresponding property identifiers in the rgpropid array.
These names may not exceed 255 characters (not including the NULL terminator).

Return Values
This method supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

Success. All of the indicated string names were successfully set.
STG_E_INVALIDNAME

At least one of the indicated property identifier values does not exist in this property set. No names
were set.

STG_E_ACCESSDENIED

The requested access to the property storage object has been denied. No property names have been
changed in the storage.

STG_E_INSUFFICIENTMEMORY

There is not sufficient memory to perform this operation. Some names may not have been set.
STG_E_INVALIDPARAMETER

A parameter is invalid. Some names may not have been set.
HRESULT_FROM_WIN32(ERROR_NO_UNICODE_TRANSLATION)

There was a failed attempt to translate a Unicode string to or from Ansi.

Remarks
IPropertyStorage::WritePropertyNames assigns string names to property identifiers passed to the

method in the rgpropid array. It associates each string name in the rglpwstrName array with the
respective property identifier in rgpropid. It is explicitly valid to define a name for a property identifier that
is not currently present in the property storage object.

It is also valid to change the mapping for an existing string name (determined by a case-insensitive
match). That is, you can use the WritePropertyNames method to map an existing name to a new
property identifier, or to map a new name to a property identifier that already has a name in the dictionary.
In either case, the original mapping is deleted. Property names must be unique (as are property
identifiers) within the property set.

The storage of string property names preserves the case. String property names are limited in length to
128 characters. Property names that begin with the binary Unicode characters 0x0001 through 0x001F
are reserved for future use.

See Also
IPropertyStorage::ReadPropertyNames, IPropertyStorage::ReadMultiple,
IPropertyStorage::WriteMultiple

IPropertyStorage-Compound File Implementation
The OLE implementation of the Structured Storage architecture is called compound files. Storage objects
as implemented in compound files include an implementation of both IPropertyStorage, the interface that
manages a single persistent property set, and IPropertySetStorage, the interface that manages groups
of persistent property sets.

To get a pointer to the compound file implementation of IPropertyStorage, first call StgCreateDocfile to
create a new compound file object or StgOpenStorage, to open a previously created compound file. Both
functions supply a pointer to the object's IStorage interface. When you want to deal with persistent
property sets, call QueryInterface for the IPropertySetStorage interface, specifying the header-defined
name for the interface identifier IID_IPropertySetStorage. Calling either the Create or Open method of
that interface, you get a pointer to the IPropertyStorage interface, which you can use to call any of its
methods.

When to Use
Use IPropertyStorage to manage properties within a single property set. Its methods support reading,
writing, and deleting both properties and the optional string names that can be associated with property
identifiers. Other methods support the standard commit and revert storage operations. There is also a
method that allows you to set times associated with the property storage, and another that permits the
assignment of a CLSID that can be used to associate other code, such as user interface code, with the
property set. Calling the Enum method supplies a pointer to the compound file implementation of
IEnumSTATPROPSTG, which allows you to enumerate the properties in the set.

Remarks
The compound file implementation of IPropertyStorage caches open property sets in memory in order to
improve performance. As a result, changes to a property set are not written to the compound file until the
Commit or Release (last reference) methods are called.

IPropertyStorage::ReadMultiple

Reads the properties specified in the rgpspec array and supplies the values of all valid properties in
the rgvar array of PROPVARIANTs. In the OLE compound file implementation, duplicate property
identifiers that refer to stream- or storage-types result in multiple calls to IStorage::OpenStream or
IStorage::OpenStorage and the success or failure of ReadMultiple depends on the underlying
storage implementation's ability to share opens. Because in a compound file
STGM_SHARE_EXCLUSIVE is forced, multiple opens will fail. Opening the same storage object
more than once from the same parent storage is not supported. The STGM_SHARE_EXCLUSIVE
flag must be specified.
In addition, to ensure thread-safe operation if the same stream- or storage-valued property is
requested multiple times through the same IPropertyStorage pointer in the OLE compound file
implementation, the open will succeed or fail depending on whether or not the property is already
open and on whether the underlying file system handles multiple opens of a stream or storage. Thus,
the ReadMultiple operation on a stream- or storage-valued property always results in a call to
IStorage::OpenStream, or IStorage::OpenStorage, passing the access (STGM_READWRITE, etc.)
and share flags (STGM_SHARE_EXCLUSIVE, etc) specified when the original property set was
opened or created.
If the method fails, the values written to rgvar[] are undefined. If some stream- or storage-valued
properties are opened successfully but an error occurs before execution is complete, these should be
released before the method returns.

IPropertyStorage::WriteMultiple

Writes the properties specified in the rgpspec[] array, assigning them the PROPVARIANT tags and
values specified in rgvar[]. Properties that already exist are assigned the specified PROPVARIANT

values, and properties that do not currently exist are created.
IPropertyStorage::DeleteMultiple

Deletes the properties specified in the rgpspec[].
IPropertyStorage::ReadPropertyNames

Reads existing string names associated with the property identifiers specified in the rgpropid[] array.
IPropertyStorage::WritePropertyNames

Assigns string names specified in the rglpwstrName array to property identifiers specified in the
rgpropid array.

IPropertyStorage::DeletePropertyNames

Deletes the string names of the property identifiers specified in the rgpropid array by writing NULL to
the property name.

IPropertyStorage::SetClass

Sets the CLSID field of the property set stream. In this implementation, setting the CLSID on a non-
simple property set (one that can legally contain storage- or stream-valued properties, as described in
IPropertySetStorage::Create) also sets the CLSID on the underlying sub-storage so that it can be
obtained through a call to IStorage::Stat.

IPropertyStorage::Commit

For both simple and non-simple property sets, flushes the memory image to the disk subsystem. In
addition, for non-simple transacted-mode property sets, this method performs a commit (as in
IStorage::Commit) on the property set.

IPropertyStorage::Revert

For non-simple property sets only, calls the underlying storage's Revert method and re-opens the
'contents' stream. For simple property sets, returns E_OK.

IPropertyStorage::Enum

Constructs an instance of IEnumSTATPROPSTG, the methods of which can be called to enumerate
the STATPROPSTG structures that provide information about each of the properties in the set. This
implementation creates an array into which the entire property set is read and which can be shared
when IEnumSTATPROPSTG::Clone is called.

IPropertyStorage::Stat

Fills in the fields of a STATPROPSETSTG structure, which contains information about the property
set as a whole. On return, supplies a pointer to the structure. For non-simple storage sets, this
implementation calls IStorage::Stat (or IStream::Stat) to get the times from the underlying storage or
stream. For simple storage sets, no times are maintained.

IPropertyStorage::SetTimes

For non-simple property sets only, sets the times supported by the underlying storage. The compound
file storage implementation supports all three: modification, access, and creation. This implementation
of SetTimes calls the IStorage::SetElementTimes method of the underlying storage to retrieve
these times.

See Also
IPropertyStorage, IStorage::SetElementTimes

IProvideClassInfo

The IProvideClassInfo interface provides a single method for accessing the type information for an
object's coclass entry in its type library.

When to Implement
Implement this interface on any object that can provide type information for its entire class, that is, the
coclass entry in the type library.

When to Use
Use this interface to access the coclass type information for an object.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IProvideClassInfo Methods Description
GetClassInfo Returns the ITypeInfo interface for

the object's coclass type
information.

IProvideClassInfo::GetClassInfo

Returns a pointer to the ITypeInfo interface for the object's type information. The type information for an
object corresponds to the object's coclass entry in a type library.

HRESULT GetClassInfo(

 ITypeInfo** ppTI //Indirect pointer to object's type information
);

Parameters
ppTI

[out] Indirect pointer to object's type information. The caller is responsible for calling
ITypeInfo::Release on the returned pointer if this method returns successfully.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The type information was successfully returned.
E_POINTER

The address in ppTI is not valid. For example, it may be NULL.

Remarks
Notes to Callers
The caller is responsible for calling ITypeInfo::Release when the returned interface pointer is no longer
needed.

Notes to Implementers
This method must call ITypeInfo::AddRef before returning. If the object loads the type information from a
type library, the type library itself will call AddRef in creating the pointer.

Because the caller cannot specify a locale identifier (LCID) when calling this method, this method must
assume the neutral language, that is, LANGID_NEUTRAL, and use this value to determine what locale-
specific type information to return.

This method must be implemented; E_NOTIMPL is not an acceptable return value.

IProvideClassInfo2

The IProvideClassInfo2 interface is a simple extension to IProvideClassInfo for the purpose of making
it quick and easy to retrieve an object's outgoing interface IID for its default event set. The mechanism,
the added GetGUID method, is extensible for other types of GUIDs as well.

When to Implement
An object implements this interface to provide type information for its outgoing interfaces.

When to Use
Call the method in this interface to obtain type information on an object's outgoing interfaces.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IProvideClassInfo Method Description
GetClassInfo Returns the ITypeInfo interface for

the object's coclass type
information.

IProvideClassInfo2 Method Description
GetGUID Returns the GUID for the object's

outgoing IID for its default event set.

IProvideClassInfo2::GetGUID

Returns a GUID corresponding to the specified dwGuidKind. The dwGuidKind parameter has several
values defined. See GUIDKIND. Additional flags can be defined at a later time and will be recognized by
an IProvideClassInfo2 implementation.

HRESULT GetGUID(

 DWORD dwGuidKind, //Desired GUID
 GUID* pGUID //Pointer to the desired GUID
);

Parameters
dwGuidKind

[in] Specifies the GUID desired on return. This parameter takes a value from the GUIDKIND
enumeration.

pGUID

[out] Pointer to the caller's variable in which to store the GUID associated with dwGuidKind.

Return Values
S_OK

The GUID was successfully returned in *pGUID.
E_POINTER

The address in pGUID is not valid (such as NULL).
E_UNEXPECTED

An unknown error occurred.
E_INVALIDARG

The dwGuidKind value does not correspond to a supported GUID kind.

Remarks
E_NOTIMPL is not a valid return code since it would be pointless to implement this interface without
implementing this method.

See Also
GUIDKIND

IQuickActivate

The IQuickActivate interface allows controls and containers to avoid performance bottlenecks on loading
controls. It combines the load-time or initialization-time handshaking between the control and its container
into a single call.

When to Implement
Implement this interface on controls to achieve performance improvements during activation of the
control.

If this interface is supported then all methods of this interface must be implemented.

When to Use
Containers call this interface on controls to achieve performance improvements in activating the control.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IQuickActivate Methods Description
QuickActivate Quick activates a control.
SetContentExtent Sets the content extent of a control.
GetContentExtent Gets the content extent of a control.

IQuickActivate::GetContentExtent
Gets the content extent of the control.

HRESULT GetContentExtent(

 LPSIZEL psizel //Pointer to size of the content extent
);

Parameters
psizel

[out] Pointer to size of the content extent.

Return Values
S_OK

The content extent was successfully returned.

IQuickActivate::QuickActivate

Quick activates a control.

HRESULT QuickActivate(

 QACONTAINER*
pQaContainer,

//Pointer to container information structure

 QACONTROL* pQaControl //Pointer to control information structure
);

Parameters
pQaContainer

[in] Pointer to a structure containing information about the container.
pQaControl

[out] Pointer to a structure filled in by the control to return information about the control to the
container. The container calling this method must reserve memory for this structure.

Return Values
S_OK

The quick activation is proceeding and the QACONTROL structure has been completed.
E_FAIL

An unexpected error occurred. The quick activation is not completed.

Remarks
If the control does not support IQuickActivate, the container performs certain handshaking operations
when it loads the control. The container calls certain interfaces on the control and the control, in turn, calls
back to certain interfaces on the container's client site. First, the container creates the control object and
calls QueryInterface to query for interfaces that it needs. Then, the container calls
IOleObjectSetClientSite on the control, passing a pointer to its client site. Next, the control calls
QueryInterface on this site, retrieving a pointer to additional necessary interfaces.

Using the new IQuickActivate::QuickActivate method, the container passes a pointer to a
QACONTAINER structure. The structure contains pointers to interfaces which are needed by the control
and the values of some ambient properties that the control may need. Upon return, the control passes a
pointer to a QACONTROL structure that contains pointers to its own interfaces that the container
requires, and additional status information.

The IPersist*::Load and IPersist*::InitNew methods should be called after quick activation occurs. The
control should establish its connections to the container's sinks during quick activation. However, these
connections are not live until IPersist*::Load or IPersist*::InitNew has been called.

See Also
QACONTROL

IQuickActivate::SetContentExtent

Sets the content extent of the control.

HRESULT SetContentExtent(

 LPSIZEL psizel //Size of the content extent
);

Parameter
psizel

[in] Size of the content extent.

Return Values
S_OK

The extent was successfully set.
E_FAIL

The object's size is fixed and the extent cannot be set.

IRootStorage

The IRootStorage interface contains a single method that switches a storage object to a different
underlying file and saves the storage object to that file. The save operation occurs even with low memory
conditions and uncommitted changes to the storage object. A subsequent call to IStorage::Commit is
guaranteed to not consume any additional memory.

When to Implement
Storage objects that are based on a file should implement IRootStorage in addition to the IStorage
interface. For storage objects that are not file-based, this interface is not necessary.

OLE provides an implementation of a storage object, including the IRootStorage interface, as part of its
compound file implementation.

When to Use
The primary use for the IRootStorage interface is to save a storage object to a file during low memory
conditions. Typically, the container application calls the IRootStorage interface to switch to a new file.

If you have an IStorage pointer to a compound file object, you can call IStorage::QueryInterface with
IID_IRootStorage to obtain a pointer to the IRootStorage interface.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IRootStorage Method Description
SwitchToFile Copy the file underlying this root

storage object, then associate this
storage with the copied file.

See Also
IStorage, StgCreateDocfile

IRootStorage::SwitchToFile

Copies the current file associated with the storage object to a new file. The new file is then used for the
storage object and any uncommitted changes.

HRESULT SwitchToFile(

 LPOLESTR pszFile //Filename for the new file

);

Parameter
pszFile

Specifies the filename for the new file. It cannot be the name of an existing file. If NULL, this method
creates a temporary file with a unique name, and you can call IStorage::Stat to retrieve the name of
the temporary file.

Return Values
S_OK

The file was successfully copied.
STG_E_MEDIUMFULL

The file was not copied because of insufficient space on the storage device.
STG_E_ACCESSDENIED

The file was not copied because the caller does not have permission to access storage device.
STG_E_INVALIDPOINTER

The file was not copied because the pszFile pointer is invalid.
STG_E_FILEALREADYEXISTS

The file was not copied because the new filename (pszFile) points to an existing file.

Remarks
The IRootStorage::SwitchToFile method copies the file associated with the storage object. An OLE
container calls SwitchToFile to perform a full save on a file in a low-memory situation. Typically, this is
done only after a normal full save operation (i.e., save to temporary file, delete original file, rename
temporary file) has failed with an E_OUTOFMEMORY error.

It is illegal to call SwitchToFile if the storage object or anything contained within it has been marshalled to
another process. As a consequence, before calling SwitchToFile, the container must call the
IPersistStorage::HandsOffStorage method for any element within the storage object that is loaded or
running. The HandsOffStorage method forces the element to release its storage pointers and enter the
hands-off storage mode. The container must also release all pointers to streams or storages that are
contained in this root storage. After the full save operation is completed, the container returns the
contained elements to normal storage mode.

Notes to Implementers
If you are implementing your own storage objects, the IRootStorage methods (including QueryInterface,
AddRef, and Release) must not consume additional memory or file handles.

See Also

IPersistStorage::HandsOffStorage, IPersistStorage::SaveCompleted, IStorage::Commit,
IStorage::Stat

IRootStorage - Compound File Implementation
OLE's compound file implementation of IRootStorage provides a way to support saving files in low-
memory or low disk-space situations. For information on how this interface behaves, see IRootStorage.

When to Use
Use the system-supplied implementation of IRootStorage only to support saving files under low memory
conditions.

Remarks
It is possible to call OLE's implementation of IRootStorage::SwitchToFile to do a normal Save As
operation to

another file. Applications that do so, however, may not be compatible with future generations of OLE
storage. To avoid this possibility, applications performaing a Save As operation should manually create
the second docfile and invoke

IStorage::CopyTo. IRootStorage::SwitchToFile should beused only in emergency (low memory or disk
space) situations.

See Also
IRootStorage; IRootStorage::SwitchToFile

IROTData

The IROTData interface is implemented by monikers to enable the Running Object Table (ROT) to
compare monikers against each other.

The ROT uses the IROTData interface to test whether two monikers are equal. The ROT must do this
when, for example, it checks whether a specified moniker is registered as running.

When to Implement
You must implement IROTData if you are writing your own moniker class (that is, writing your own
implementation of the IMoniker interface), and if your monikers are meant to be registered in the ROT.

When to Use
You typically do not need to use this interface. This interface is used by the system's implementation of
the ROT.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IROTData Method Description
GetComparisonData Retrieve data to allow moniker to

be compared with another.

See Also
IMoniker, IRunningObjectTable

IROTData::GetComparisonData

Retrieves data from a moniker that can be used to test the moniker for equality against another moniker.

HRESULT GetComparisonData(

 PVOID *ppvData, //Indirect pointer to a buffer that receives the comparison
data

 ULONG cbMax, //Length of buffer
 PULONG pcbData //Pointer to the length of the comparison data
);

Parameters
ppvData

[out] Indirect pointer to a buffer that receives the comparison data.
cbMax

[in] Length of the buffer specified in ppvData.
pcbData

[out] Pointer to the length of the comparison data.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The comparison data was successfully returned.

Remarks
The IROTData::GetComparisonData method is primarily called by the Running Object Table (ROT). The
comparison data returned by the method is tested for binary equality against the comparison data
returned by another moniker. The pcbData parameter enables the ROT to locate the end of the data
returned.

Notes to Implementers
The comparison data that you return must uniquely identify the moniker, while still being as short as
possible. The comparison data should include information about the internal state of the moniker, as well
as the moniker's CLSID. For example, the comparison data for a file moniker would include the path
name stored within the moniker, as well as the CLSID of the file moniker implementation. This makes it
possible to distinguish two monikers that happen to store similar state information but are instances of
different moniker classes.

The comparison data for a moniker cannot exceed 2048 bytes in length. For composite monikers, the
total length of the comparison data for all of its components cannot exceed 2048 bytes; consequently, if
your moniker can be a component within a composite moniker, the comparison data you return must be
significantly less than 2048 bytes.

If your comparison data is longer than the value specified by the cbMax parameter, you must return an
error. Note that when IROTData::GetComparisionData is called on the components of a composite

moniker, the value of cbMax becomes smaller for each moniker in sequence.

See Also
IMoniker, IRunningObjectTable

IRunnableObject

The IRunnableObject interface enables a container to control the running of its embedded objects. In the
case of an object implemented with a local server, calling IRunnableObject::Run launches the
server's .EXE file. In the case of an object implemented with an in-process server, calling the Run method
causes the object .DLL file to transition into the running state.

When to Implement
Object handlers should implement IRunnableObject to provide their containers with a way to run them
and manage their running state. DLL object applications should implement IRunnableObject to support
silent updates of their objects.

When to Use
Containers call IRunnableObject to determine if an embedded object is running, to force an object to run,
to lock an object into the running state, or to inform an object handler whether its object is being run as
either a simple embedding or as a link source.

Methods VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IRunnableObject Methods Description
GetRunningClass Returns CLSID of a running object.
Run Forces an object to run.
IsRunning Determines if an object is running.
LockRunning Locks an object into running state.
SetContainedObject Indicates that an object is

embedded.

IRunnableObject::GetRunningClass

Returns the CLSID of a running object.

HRESULT GetRunningClass(

 LPCLSID lpClsid //Pointer to an object's CLSID
);

Parameter
lpClsid

[out] Pointer to the object's class identifier.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

CLSID was returned successfully.

Remarks
If an embedded document was created by an application that is not available on the user's computer, the
document, by a call to CoTreatAsClass, may be able to display itself for editing by emulating a class that
is supported on the user's machine. In this case, the CLSID returned by a call to
IRunnableObject::GetRunningClass will be that of the class being emulated, rather than the
document's native class.

See Also
CoTreatAsClass

IRunnableObject::IsRunning

Determines whether an object is currently in the running state.

BOOL IsRunning();

Return Values
TRUE

The object is in the running state.
FALSE

The object is not in the running state.

Remarks
A container application could call IRunnableObject::IsRunning when it needs to know if the server is
immediately available. For example, a container's implementation of the IOleItemContainer::GetObject
method would return an error if the server is not running and the bindspeed parameter specifies
BINDSPEED_IMMEDIATE.

An object handler could call IRunnableObject::IsRunning when it wants to avoid conflicts with a running
server or when the running server might have more up-to-date information. For example, a handler's
implementation of IOleObject::GetExtent would delegate to the object server if it is running, because the
server's information might be more current than that in the handler's cache.

OleIsRunning is a helper function that conveniently repackages the functionality offered by
IRunnableObject::IsRunning. With the release of OLE 2.01, the implementation of OleIsRunning was
changed so that it calls QueryInterface, asks for IRunnableObject, and then calls
IRunnableObject::IsRunning. In other words, you can use the interface and the helper function
interchangeably.

See Also
OleIsRunning

IRunnableObject::LockRunning

Locks an already running object into its running state or unlocks it from its running state.

HRESULT LockRunning(

 BOOL fLock, //Flag indicating whether object is locked
 BOOL fLastUnlockCloses //Flag indicating whether to close object
);

Parameters
fLock

[in] TRUE locks the object into its running state. FALSE unlocks the object from its running state.
fLastUnlockCloses

[in] TRUE specifies that if the connection being released is the last external lock on the object, the
object should close. FALSE specifies that the object should remain open until closed by the user or
another process.

Return Values
This method supports the standard return values E_FAIL, E_INVALIDARG, E_OUTOFMEMORY and
E_UNEXPECTED, as well as the following:

S_OK

If the value of fLock is TRUE, the object was successfully locked; if the value of fLock is FALSE, the
object was successfully unlocked.

Remarks
Most implementations of IRunnableObject::LockRunning call CoLockObjectExternal.

OleLockRunning is a helper function that conveniently repackages the functionality offered by
IRunnableObject::LockRunning. With the release of OLE 2.01, the implementation of OleLockRunning
was changed to call QueryInterface, ask for IRunnableObject, and then call
IRunnableObject::LockRunning. In other words, you can use the interface and the helper function
interchangeably.

See Also
CoLockObjectExternal

IRunnableObject::Run

Runs an object.

HRESULT Run(

 LPBC lpbc //Pointer to binding context
);

Parameter
lpbc

[in] Pointer to the binding context of the run operation. May be NULL.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The object was successfully placed in the running state.

Remarks
Containers call IRunnableObject::Run to force their objects to enter the running state. If the object is not
already running, calling IRunnableObject::Run can be an expensive operation, on the order of many
seconds. If the object is already running, then this method has no effect on the object.

Notes to Callers
When called on a linked object that has been converted to a new class since the link was last activated,
IRunnableObject::Run may return OLE_E_CLASSDIFF. In this case, the client should call
IOleLink::BindToSource.

OleRun is a helper function that conveniently repackages the functionality offered by
IRunnableObject::Run. With the release of OLE 2.01, the implementation of OleRun was changed so
that it calls QueryInterface, asks for IRunnableObject, and then calls IRunnableObject::Run. In other
words, you can use the interface and the helper function interchangeably.

Notes to Implementers
The object should register in the running object table if it has a moniker assigned. The object should not
hold any strong locks on itself; instead, it should remain in the unstable, unlocked state. The object should
be locked when the first external connection is made to the object.

An embedded object must hold a lock on its embedding container while it is in the running state. The
Default handler provided by OLE 2 takes care of locking the embedding container on behalf of objects
implemented by an EXE object application. Objects implemented by a DLL object application must
explicitly put a lock on their embedding containers, which they do by first calling
IOleClientSite::Getcontainer to get a pointer to the container, then calling
IOleContainer::LockContainer to actually place the lock. This lock must be released when
IOleObject::Close is called.

See Also

IOleLink::BindToSource, OleRun

IRunnableObject::SetContainedObject
Notifies an object that it is embedded in an OLE container, which ensures that reference counting is done
correctly for containers that support links to embedded objects.

HRESULT SetContainedObject(

 BOOL fContained //Flag indicating whether object is embedded
);

Parameter
fContained

[in] TRUE specifies that the object is contained in an OLE container. FALSE indicates that it is not.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY AND
E_UNEXPECTED, as well as the following:

S_OK

Object has been marked as a contained embedding.

Remarks
The IRunnableObject::SetContainedObject method enables a container to inform an object handler
that it is embedded in the container, rather than acting as a link. This call changes the container's
reference on the object from strong, the default for external connections, to weak. When the object is
running visibly, this method is of little significance because the end user has a lock on the object. During a
silent update of an embedded link source, however, the container should not be able to hold an object in
the running state after the link has been broken. For this reason, the container's reference to the object
must be weak.

Notes to Callers
A container application must call IRunnableObject::SetContainedObject if it supports linking to
embedded objects. It normally makes the call immediately after calling OleLoad or OleCreate and never
calls the method again, even before it closes. Moreover, a container almost always calls this method with
fContained set to TRUE. The use of this method with fContained set to FALSE is rare.

Calling IRunnableObject::SetContainedObject is optional only when you know that the embedded
object will not be referenced by any client other than the container. If your container application does not
support linking to embedded objects; it is preferable, but not necessary, to call
IRunnableObject::SetContainedObject.

OleSetContainedObject is a helper function that conveniently repackages the functionality offered by
IRunnableObject::SetContainedObject. With the release of OLE 2.01, the implementation of
OleSetContainedObject was changed to call QueryInterface, ask for IRunnableObject, and then call
IRunnableObject::SetContainedObject. In other words, you can use the interface and the helper
function interchangeably.

See Also
OleSetContainedObject, OleNoteObjectVisible, CoLockObjectExternal

IRunningObjectTable

The IRunningObjectTable interface manages access to the Running Object Table (ROT), a globally
accessible look-up table on each workstation. A workstation's ROT keeps track of those objects that can
be identified by a moniker and that are currently running on the workstation. When a client tries to bind a
moniker to an object, the moniker checks the ROT to see if the object is already running; this allows the
moniker to bind to the current instance instead of loading a new one.

The ROT contains entries of the form:

(pmkObjectName, pUnkObject)

The pmkObjectName element is a pointer to the moniker that identifies the running object. The
pUnkObject element is a pointer to the running object itself. During the binding process, monikers consult
the pmkObjectName entries in the Running Object Table to see if an object is already running.

Objects that can be named by monikers must be registered with the ROT when they are loaded and their
registration must be revoked when they are no longer running.

When to Implement
You do not need to implement this interface. The system provides an implementation of the Running
Object Table that is suitable for all situations.

When to Use
You typically use the ROT if you're a moniker provider (that is, you hand out monikers identifying your
objects to make them accessible to others) or if you're writing your own moniker class (that is,
implementing the IMoniker interface).

If you are a moniker provider, you register your objects with the ROT when they begin running and revoke
their registrations when they are no longer running. This enables the monikers that you hand out to be
bound to running objects. You should also use the ROT to record the object's last modification time. You
can get an IRunningObjectTable interface pointer to the local ROT by calling the
GetRunningObjectTable function.

The most common type of moniker provider is a compound-document link source. This includes server
applications that support linking to their documents (or portions of a document) and container applications
that support linking to embeddings within their documents. Server applications that do not support linking
can also use the ROT to cooperate with container applications that support linking to embeddings.

If you are writing your own moniker class, you use the ROT to determine whether a object is running and
to retrieve the object's last modification time. You can get an IRunningObjectTable interface pointer to
the local ROT by calling the IBindCtx::GetRunningObjectTable method on the bind context for the
current binding operation. Moniker implementations should always use the bind context to acquire a
pointer to the ROT; this allows future implementations of IBindCtx to modify binding behavior. Note that
you must also implement the IROTData interface on your moniker class in order to allow your monikers to
be registered with the ROT.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IRunningObjectTable Methods Description
Register Registers an object with the ROT.
Revoke Revokes an object's registration

with the ROT.
IsRunning Checks whether an object is

running.
GetObject Returns a pointer to an object given

its moniker.
NoteChangeTime Notifies the ROT that an object has

changed.
GetTimeOfLastChange Returns the time an object was last

changed.
EnumRunning Returns an enumerator for the

ROT.

See Also
IBindCtx::GetRunningObjectTable, IROTData, GetRunningObjectTable

IRunningObjectTable::EnumRunning

Creates and returns a pointer to an enumerator that can list the monikers of all the objects currently
registered in the Running Object Table (ROT).

HRESULT EnumRunning(

 IEnumMoniker **ppenumMoniker //Indirect pointer to the enumerator for ROT
);

Parameter
ppenumMoniker

[out] When successful, indirect pointer to the IEnumMoniker interface on the new enumerator. In this
case, the implementation calls IUnknown::AddRef on the parameter; it is the caller's responsibility to
call IUnknown::Release. If an error occurs; the implementation sets ppenumMoniker to NULL.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

An enumerator was successfully returned.

Remarks
IRunningObjectTable::EnumRunning must create and return a pointer to an IEnumMoniker interface
on an enumerator object. The standard enumerator methods can then be called to enumerate the
monikers currently registered in the registry. The enumerator cannot be used to enumerate monikers that
are registered in the ROT after the enumerator has been created.

The EnumRunning method is intended primarily for the use by the system in implementing the Alert
Object Table. Note that OLE 2 does not include an implementation of the Alert Object Table.

See Also
IEnum XXXX , IEnumMoniker

IRunningObjectTable::GetObject
Determines whether the object identified by the specified moniker is running, and if it is, retrieves a
pointer to that object. This method looks for the moniker in the Running Object Table (ROT), and retrieves
the pointer registered there.

HRESULT GetObject(

 IMoniker *pmkObjectName, //Pointer to the moniker on the object
 IUnknown **ppunkObject //Indirect pointer to the object
);

Parameters
pmkObjectName

[in] Pointer to the moniker to search for in the Running Object Table.
ppunkObject

[out] When successful. indirect pointer to the IUnknown interface on the running object. In this case,
the implementation calls IUnknown::AddRef on the parameter; it is the caller's responsibility to call
IUnknown::Release. If the object is not running or if an error occurs, the implementation sets
ppunkObject to NULL.

Return Values
S_OK

Indicates that pmkObjectName was found in the ROT and a pointer was returned.
S_FALSE

There is no entry for pmkObjectName in the ROT, or that the object it identifies is no longer running
(in which case, the entry is revoked).

Remarks
This method checks the ROT for the moniker specified by pmkObjectName. If that moniker had previously
been registered with a call to IRunningObjectTable::Register, this method returns the pointer that was
registered at that time.

Notes to Callers
Generally, you call the IRunningObjectTable::GetObject method only if you are writing your own
moniker class (that is, implementing the IMoniker interface). You typically call this method from your
implementation of IMoniker::BindToObject.

However, note that not all implementations of IMoniker::BindToObject need to call this method. If you
expect your moniker to have a prefix (indicated by a non-NULL pmkToLeft parameter to
IMoniker::BindToObject), you should not check the ROT. The reason for this is that only complete
monikers are registered with the ROT, and if your moniker has a prefix, your moniker is part of a
composite and thus not complete. Instead, your moniker should request services from the object identified
by the prefix (for example, the container of the object identified by your moniker).

See Also

IMoniker::BindToObject

IRunningObjectTable::GetTimeOfLastChange

Returns the time that an object was last modified. The object must have previously been registered with
the Running Object Table (ROT). This method looks for the last change time recorded in the ROT.

HRESULT GetTimeOfLastChange(

 IMoniker *pmkObjectName, //Pointer to moniker on the object whose status is desired
 FILETIME *pfiletime //Pointer to structure that receives object's last change time
);

Parameters
pmkObjectName

[in] Pointer to the IMoniker interface on the moniker to search for in the ROT.
pfiletime

[out] Pointer to a FILETIME structure that receives the object's last change time.

Return Values
S_OK

The last change time was successfully retrieved.
S_FALSE

There is no entry for pmkObjectName in the ROT, or that the object it identifies is no longer running
(in which case, the entry is revoked).

Remarks
This method returns the change time that was last reported for this object by a call to
IRunningObjectTable::NoteChangeTime. If IRunningObjectTable::NoteChangeTime has not been
called previously, the method returns the time that was recorded when the object was registered.

This method is provided to enable checking whether a connection between two objects (represented by
one object holding a moniker that identifies the other) is up-to-date. For example, if one object is holding
cached information about the other object, this method can be used to check whether the object has been
modified since the cache was last updated. See IMoniker::GetTimeOfLastChange.

Notes to Callers
Generally, you call IRunningObjectTable::GetTimeOfLastChange only if you are writing your own
moniker class (that is, implementing the IMoniker interface). You typically call this method from your
implementation of IMoniker::GetTimeOfLastChange. However, you should do so only if the pmkToLeft
parameter of IMoniker::GetTimeOfLastChange is NULL. Otherwise, you should call
IMoniker::GetTimeOfLastChange on your pmkToLeft parameter instead.

See Also
IMoniker::GetTimeOfLastChange, IRunningObjectTable::NoteChangeTime

IRunningObjectTable::IsRunning

Determines whether the object identified by the specified moniker is currently running. This method looks
for the moniker in the Running Object Table (ROT).

HRESULT IsRunning(

 IMoniker *pmkObjectName //Pointer to the moniker of the object whose status is desired
);

Parameter
pmkObjectName

[in] Pointer to the IMoniker interface on the moniker to search for in the Running Object Table.

Return Values
S_OK

The object identified by pmkObjectName is running.
S_FALSE

There is no entry for pmkObjectName in the ROT, or that the object it identifies is no longer running
(in which case, the entry is revoked).

Remarks
This method simply indicates whether a object is running. To retrieve a pointer to a running object, use the
IRunningObjectTable::GetObject method.

Notes to Callers
Generally, you call the IRunningObjectTable::IsRunning method only if you are writing your own
moniker class (that is, implementing the IMoniker interface). You typically call this method from your
implementation of IMoniker::IsRunning. However, you should do so only if the pmkToLeft parameter of
IMoniker::IsRunning is NULL. Otherwise, you should call IMoniker::IsRunning on your pmkToLeft
parameter instead.

See Also
IMoniker::IsRunning

IRunningObjectTable::NoteChangeTime

Records the time that a running object was last modified. The object must have previously been
registered with the Running Object Table (ROT). This method stores the time of last change in the ROT.

HRESULT NoteChangeTime(

 DWORD dwRegister, //Value identifying registration being updated
 FILETIME *pfiletime //Pointer to structure containing object's last change time
);

Parameters
dwRegister

[in] Value identifying the ROT entry of the changed object. This value was previously returned by
IRunningObjectTable::Register.

pfiletime

[in] Pointer to a FILETIME structure containing the object's last change time.

Return Values
This method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The change time was recorded successfully.

Remarks
The time recorded by this method can be retrieved by calling
IRunningObjectTable::GetTimeOfLastChange.

This method is provided to enable a program to check whether a connection between two objects
(represented by one object holding a moniker that identifies the other) is up-to-date. For example, if one
object is holding cached information about the other object, this method can be used to check whether the
object has been modified since the cache was last updated. See IMoniker::GetTimeOfLastChange.

Notes to Callers
If you're a moniker provider (that is, you hand out monikers identifying your objects to make them
accessible to others), you must call the IRunningObjectTable::NoteChangeTime method whenever your
objects are modified. You must have previously called IRunningObjectTable::Register and stored the
identifier returned by that method; you use that identifier when calling
IRunningObjectTable::NoteChangeTime.

The most common type of moniker provider is a compound-document link source. This includes server
applications that support linking to their documents (or portions of a document) and container applications
that support linking to embeddings within their documents. Server applications that do not support linking
can also use the ROT to cooperate with container applications that support linking to embeddings.

When an object is first registered in the ROT, the ROT records its last change time as the value returned
by calling IMoniker::GetTimeOfLastChange on the moniker being registered.

See Also
IRunningObjectTable::GetTimeOfLastChange, IMoniker::GetTimeOfLastChange

IRunningObjectTable::Register

Registers an object and its identifying moniker in the Running Object Table (ROT).

HRESULT Register(

 DWORD grfFlags, //Specifies a weak or a strong reference
 IUnknown *punkObject, //Pointer to the object being registered
 IMoniker *pmkObjectName, //Pointer to the moniker of the object being registered
 DWORD *pdwRegister //Pointer to the value identifying the registration
);

Parameters
grfFlags

[in] Specifies whether the ROT's reference to punkObject is weak or strong. This value must be either
zero, indicating a weak reference that does not call IUnknown::AddRef; or
ROTFLAGS_REGISTRATIONKEEPSALIVE, indicating a strong reference that calls
IUnknown::AddRef and can keep the object running. If a strong reference is registered, a strong
reference is released when the object's registration is revoked. Most callers specify zero, indicating a
weak reference.

punkObject

[in] Pointer to the object that is being registered as running.
pmkObjectName

[in] Pointer to the moniker that identifies punkObject.
pdwRegister

[out] Pointer to a 32-bit value that can be used to identify this ROT entry in subsequent calls to
IRunningObjectTable::Revoke or IRunningObjectTable::NoteChangeTime. The caller cannot
specify NULL for this parameter. If an error occurs, *pdwRegister is set to zero.

Return Values
This method supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

The object was successfully registered.
MK_S_MONIKERALREADYREGISTERED

The moniker/object pair was successfully registered, but that another object (possibly the same
object) has already been registered with the same moniker.

Remarks
This method registers a pointer to an object under a moniker that identifies the object. The moniker is
used as the key when the table is searched with IRunningObjectTable::GetObject.

Registering a second object with the same moniker, or re-registering the same object with the same
moniker, creates a second entry in the ROT. In this case, IRunningObjectTable::Register returns

MK_S_MONIKERALREADYREGISTERED. Each call to IRunningObjectTable::Register must be
matched by a call to IRunningObjectTable::Revoke because even duplicate entries have different
pdwRegister identifiers. A problem with duplicate registrations is that there is no way to determine which
object will be returned if the moniker is specified in a subsequent call to
IRunningObjectTable::IsRunning.

Notes to Callers
If you're a moniker provider (that is, you hand out monikers identifying your objects to make them
accessible to others), you must call the IRunningObjectTable::Register method to register your objects
when they begin running. You must also call this method if you rename your objects while they are
loaded.

The most common type of moniker provider is a compound-document link source. This includes server
applications that support linking to their documents (or portions of a document) and container applications
that support linking to embeddings within their documents. Server applications that do not support linking
can also use the ROT to cooperate with container applications that support linking to embeddings.

If you're writing a server application, you should register an object with the ROT when it begins running,
typically in your implementation of IOleObject::DoVerb. The object must be registered under its full
moniker, which requires getting the moniker of its container document using IOleClientSite::GetMoniker.
You should also revoke and re-register the object in your implementation of IOleObject::SetMoniker,
which is called if the container document is renamed.

If you're writing a container application that supports linking to embeddings, you should register your
document with the ROT when it is loaded. If your document is renamed, you should revoke and re-
register it with the ROT and call IOleObject::SetMoniker for any embedded objects in the document to
give them an opportunity to re-register themselves.

You must cache the identifier returned in pdwRegister, and use it in a call to
IRunningObjectTable::Revoke to revoke the registration when the object is no longer running or when
its moniker changes. This revocation is important because there is no way for the system to automatically
remove entries from the ROT.

The system's implementation of IRunningObjectTable::Register calls IMoniker::Reduce on the
pmkObjectName parameter to ensure that the moniker is fully reduced before registration. If a object is
known by more than one fully reduced moniker, then it should be registered under all such monikers.

See Also
IMoniker::Reduce, IOleClientSite::GetMoniker, IOleObject::SetMoniker,
IRunningObjectTable::IsRunning, IRunningObjectTable::Revoke

IRunningObjectTable::Revoke

Removes from the Running Object Table (ROT) an entry that was previously registered by a call to
IRunningObjectTable::Register.

HRESULT Revoke(

 DWORD dwRegister //Value identifying registration to be revoked
);

Parameter
dwRegister

[in] Value identifying the ROT entry to revoke. This value was previously returned by
IRunningObjectTable::Register.

Return Values
This method supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The object's registration was successfully revoked.

Remarks
This method undoes the effect of a call to IRunningObjectTable::Register, removing both the moniker
and the pointer to the object identified by that moniker.

Notes to Callers
If you're a moniker provider (that is, you hand out monikers identifying your objects to make them
accessible to others), you must call the IRunningObjectTable::Revoke method to revoke the registration
of your objects when they stop running. You must have previously called
IRunningObjectTable::Register and stored the identifier returned by that method; you use that identifier
when calling IRunningObjectTable::Revoke.

The most common type of moniker provider is a compound-document link source. This includes server
applications that support linking to their documents (or portions of a document) and container applications
that support linking to embeddings within their documents. Server applications that do not support linking
can also use the ROT to cooperate with container applications that support linking to embeddings.

If you're writing a container application, you must revoke a document's registration when the document is
closed. You must also revoke a document's registration before re-registering it when it is renamed.

If you're writing a server application, you must revoke an object's registration when the object is closed.
You must also revoke an object's registration before re-registering it when its container document is
renamed (see IOleObject::SetMoniker).

See Also
IOleObject::SetMoniker, IRunningObjectTable::Register

IServerSecurity

Used by a server to help identify the client and to manage impersonation of the client.
IServerSecurity:QueryBlanket and IServerSecurity::ImpersonateClient may only be called before the
ORPC call completes. The interface pointer must be released when it is no longer needed.

When a client calls a server, the server can call CoGetCallContext until the server sends the reply back
to the client. The pointer to the instance of IServerSecurity returned by CoGetCallContext is
automaticly deleted when the server sends the reply back to the client.

When to Implement
The stub managment code in the system provides an implementation of IServerSecurity for objects by
default as part of each incoming call, so typically you would not implement this interface.

You may choose to implement IServerSecurity on the custom stubs of objects that support custom
marshaling to maintain a consistent programming model for their objects.

When to Use
The methods of the IServerSecurity interface are called by the server/object to examine or alter the
security level of the connection between the caller and this particular object. Its most common use is for
impersonation (IServerSecurity::ImpersonateClient and ::RevertToSelf), where the server
impersonates the client to test the privilege level of the calling client with an AccessCheck call. The
information obtained through IServerSecurity also allows an object to implement its own security
framework, perhaps not based on the Access Control Lists (ACLs) that impersonation is geared toward. A
different implementation could base its security framework on the client name or other information
available through a call to the QueryBlanket method.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IServerSecurity Methods Description
QueryBlanket Called by the server to find out

about the client that invoked one
of its methods.

ImpersonateClient Allows a server to impersonate a
client for the duration of a call.

RevertToSelf Restores the authentication
information on a thread to the
process's identity.

IsImpersonating Indicates whether the server is
currently impersonating the
client.

See Also
Security in COM

IServerSecurity::ImpersonateClient

Allows a server to impersonate a client for the duration of a call.

HRESULT ImpersonateClient()

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

Success.

Remarks
IServerSecurity::ImpersonateClient allows a server to impersonate a client for the duration of a call.
What the server may do depends on the impersonation level, specified through one of the
RPC_C_IMP _ LEVEL_ xxx constants. The server may impersonate the client on any secure call at
identify, impersonate, or delegate level. At identify level, the server may only find out the client name and
perform ACL checks; it may not access system objects as the client. At delegate level, the server may
make off-machine calls while impersonating the client. The impersonation information only lasts until the
end of the current method call. At that time, IServerSecurity::RevertToSelf will automatically be called if
necessary.

Traditionally, impersonation information is not nested - the last call to any Win32 impersonation
mechanism overrides any previous impersonation. However, in the apartment model, impersonation is
maintained during nested calls. Thus if the server A receives a call from B, impersonates, calls C,
receives a call from D, impersonates, reverts, and receives the reply from C, the impersonation will be set
back to B, not A.

Distributed COM currently does not support dynamic impersonation. The only way to change the client
token associated with remote OLE calls is to use IClientSecurity::SetBlanket on the proxy being called.
Calling IServerSecurity::ImpersonateClient to impersonate your client and then making a remote call to
another server will not affect the token the second server sees when it impersonates on your call.

See Also
CoImpersonateClient

IServerSecurity::IsImpersonating

Indicates whether IServerSecurity::ImpersonateClient has been called without a matching call to
IServerSecurity::RevertToSelf.

BOOL IsImpersonating()

Return Values
TRUE

This thread has called IServerSecurity::ImpersonateClient and is currently impersonating the client
of this call.

FALSE

This thread is not currently impersonating the client of this call.

See Also
IServerSecurity::RevertToSelf .

IServerSecurity::QueryBlanket
Called by the server to find out about the client that invoked one of its methods.

HRESULT QueryBlanket(

 DWORD* pAuthnSvc, //Pointer to the current authentication service
 DWORD* pAuthzSvc, //Pointer to the current authorization service
 OLECHAR ** pServerPrincNam, //Pointer to the current principal name
 DWORD * pAuthnLevel, //Pointer to the current authentication level
 DWORD * pImpLevel, //Must be NULL
 RPC_AUTHZ_HANDLE * pPrivs, //Pointer to string identifying client
 DWORD ** pCapabilities //Pointer to flags indicating further capabilities of the proxy
);

Parameter
pAuthnSvc

[out] Pointer to the current authentication service. This will be a single value taken from the list of
RPC_C_AUTHN_xxx constants. May be NULL, in which case the current authentication service is
not returned.

pAuthzSvc

[out] Pointer to the current authorization service. This will be a single value taken from the list of
RPC_C_AUTHZ_ xxx constants. May be NULL, in which case the current authorization service is not
returned.

pServerPrincName

[out] Pointer to the current principal name. The string will be allocated by the callee using
CoTaskMemAlloc, and must be freed by the caller using CoTaskMemFree when they are done with
it. May be NULL, in which case the principal name is not returned.

pAuthnLevel

[out] Pointer to the current authentication level. This will be a single value taken from the list of
RPC_C_AUTHN_LEVEL_ xxx constants. May be NULL, in which case the current authorization level
is not returned.

pImpLevel

[out] Must be NULL; the current authentication level is not supplied.
pPrivs

[out] Pointer to a string identifying the client. For NTLMSSP the string is of the form domain\user.
This is not a copy, and so should not be modified or freed, and is not valid after the ORPC call
completes.

pCapabilities

[out] Pointer to return flags indicating further capabilities of the call. Currently, no flags are defined for
this parameter and it will only return EOAC_NONE. May be NULL, in which case the flags indicating
further capabilities are not returned.

Return Values

This method supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

Success.

Remarks
IServerSecurity::QueryBlanket is used by the server to find out about the client that invoked one of its
methods. To get a pointer to IServerSecurity for the current call on the current thread, call
CoGetCallContext, specifying IID_IServerSecurity. This interface pointer may only be used in the same
apartment as the call for the duration of the call.

See Also
CoGetCallContext

IServerSecurity::RevertToSelf

Restores the authentication information on a thread to the process's identity.

HRESULT RevertToSelf()

Return Values
This method supports the standard return value E_FAIL, as well as the following:

S_OK

Success.

Remarks
IServerSecurity::RevertToSelf restores the authentication information and reverts an impersonation on
a thread to the process's identity. This method will only revert impersonation changes made by
IServerSecurity::ImpersonateClient. If the thread token is modified by other means (through the
SetThreadToken or RpcImpersonateClient Win32 functions) the result of this function is undefined.

In the apartment model, CoRevertToSelf (IServerSecurity::RevertToSelf) affects only the current
method invocation. If there are nested method invocations, they each may have their own impersonation
and COM will correctly restore the impersonation before returning to them (regardless of whether or not
CoRevertToSelf/IServerSecurity::RevertToSelf was called).

See Also
CoRevertToSelf

IServiceProvider
[New - Windows NT]

The IServiceProvider interface locates a service specified by its GUID and returns the interface pointer
for the requested interface on the service.

When to Implement
An object that provides services should implement the IServiceProvider interface as a general way to
supply its clients with interface pointers to the interfaces on the service.

A service is often provided through a separate object from the client site. For example, the service can be
provided through a separate control or some other object that the client can communicate with.

Usually, the client communicates through its client site object in the container. The container calls
IOleObject::SetClientSite to provide a pointer to the IOleClientSite interface for the embedded object's
client site. Then, the client must call methods in the IOleClientSite interface to find out about services
that its container supports. Thus, the client site must provide a way for the client to access the service
when necessary, even if the service is provided through a separate object.

For example, an in-place object calls IOleInPlaceSite::GetWindowContext to obtain interface pointers
for the document object that contains the site and for the frame object that contains the document. Both of
these interface pointers are on objects separate from the site object, so the client cannot call
IOleInPlaceSite::QueryInterface to obtain these interface pointers.

The IServiceProvider interface is a general way to provide interface pointers for services, so that the site
object need not implement ad hoc solutions as the need arises.

When to Use
This interface itself has only one method, IServiceProvider::QueryService. The caller specifies a GUID
for the service and the IID of the requested interface. The interface pointer is returned in a caller-supplied
variable.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IServiceProvider Methods Description
QueryService Returns an interface pointer to the

requested interface on a service.

See Also

IServiceProvider::QueryService
Creates or accesses the specified service and returns an interface pointer to the specified interface for
the service.

HRESULT QueryService(

 REFGUID guidService, //Unique identifier for the requested service
 REFIID riid, //Unique identifier for the requested interface
 void** ppv //Indirect pointer to the interface on the service
);

Parameter
guidService

[in] Unique identifier for the requestedservice.
riid

[in] Unique identifier for the requested interface on the service.
ppv

[out] Indirect pointer to the interface on the service.

Return Values
S_OK

The service was successfully created or retrieved.
E_OUTOFMEMORY

There is not enough memory to create the service.
E_UNEXPECTED

An unknown error occurred.
E_NOINTERFACE

The service exists but the requested interface is not provided by the service.
SVC_E_UNKNOWNSERVICE

The service identified with guidService is not recognized.

Note to Callers
The caller is responsible for releasing the interface pointer when it is no longer needed.

Note to Implementers
Because there is only one method in this interface, E_NOTIMPL is not a valid return code.

ISimpleFrameSite

The ISimpleFrameSite interface supports simple frame controls that act as simple containers for other
nested controls. Some controls merely contain other controls. In such cases, the simple control container,
called a simple frame, doesn't have to implement all container requirements. It can delegate most of the
interface calls from its contained controls to the outer container that manages the simple frame. To
support what are called simple frame controls, a container implements this interface as well as other site
interfaces such as IOleControlSite.

An example of a simple frame control is a group box that only needs to capture a few keystrokes for its
contained controls to implement the correct tab or arrow key behavior, but does not want to handle every
other message. Through the two methods of this interface, the simple frame control passes messages to
its control site both before and after its own processing. If that site is itself a simple frame, it can continue
to pass messages up the chain.

When to Implement
Implement this interface on a control object to support nested controls without requiring the control to
itself be a full container.

When to Use
Use this interface to pass messages to a container for processing.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

ISimpleFrameSite Methods Description
PreMessageFilter Sends the simple frame site a

message that is received by a
control's own window before the
control itself does any processing.

PostMessageFilter Sends the simple frame site a
message that is received by a
control's own window after the
control does its own processing.

See Also
IOleControl, IOleControlSite

ISimpleFrameSite::PostMessageFilter

Sends the simple frame site a message that is received by a control's own window after both
ISimpleFrameSite::PreMessageFilter and the control have had a chance to process the message.

HRESULT PostMessageFilter(

 HWND hWnd , //Handle of window receiving message
 UINT msg , //Received message
 WPARAM wp , //WPARAM of message
 LPARAM lp , //LPARAM of message
 LRESULT* plResult , //Pointer to variable to receive result
 DWORD dwCookie //Token returned by PreMessageFilter
);

Parameters
hWnd

[in] Handle of the control window receiving the message.
msg

[in] Message received by the simple frame site.
wp

[in] The WPARAM of the message.
lp

[in] The LPARAM of the message.
plResult

[out] Pointer to the variable that receives the result of the message processing.
dwCookie

[in] The DWORD value that was returned by ISimpleFrameSite::PreMessageFilter through its
pdwCookie parameter.

Return Values
S_OK

The site processed the message.
S_FALSE

The site did not process the message.
E_NOTIMPL

The site does not filter any messages.

See Also
ISimpleFrameSite:PreMessageFilter

ISimpleFrameSite::PreMessageFilter

Provides a site with the opportunity to process a message that is received by a control's own window
before the control itself does any processing.

HRESULT PreMessageFilter(

 HWND hWnd , //Handle of window receiving message
 UINT msg , //Received message
 WPARAM wp , //WPARAM of message
 LPARAM lp , //LPARAM of message
 LRESULT* plResult , //Pointer to variable to receive result of message processing
 DWORD* pdwCookie //Pointer to a variable used later
);

Parameters
hWnd

[in] Handle of the control window receiving the message.
msg

[in] Message received by the simple frame site.
wp

[in] The WPARAM of the message.
lp

[in] The LPARAM of the message.
plResult

[out] Pointer to the address of the result variable to receive the result of the message processing.
pdwCookie

[out] Pointer to the DWORD variable that will be passed to PostMessageFilter if it is called later. This
parameter should only contain allocated data if this method returns S_OK so it will also receive a call
to PostMessageFilter which can free the allocation. The caller is not in any way responsible for
anything returned in this parameter.

Return Values
S_OK

The simple frame site will not use the message in this filter so more processing can take place.
S_FALSE

The site has processed the message and no further processing should occur.
E_NOTIMPL

The site does not do any message filtering, indicating that PostMessageFilter need not be called
later.

E_POINTER

The addresses in plResultor pdwCookie are not valid.

Remarks
Successful return values indicate whether the site wishes to allow further processing. S_OK indicates
further processing, whereas S_FALSE means do not process further. S_OK also indicates that the control
must later call ISimpleFrameSite::PostMessageFilter.

See Also
ISimpleFrameSite::PostMessageFilter

ISpecifyPropertyPages

The ISpecifyPropertyPage interface indicates that an object supports property pages. OLE property
pages enable an object to display its properties in a tabbed dialog box known as a property sheet. An end
user can then view and change the object's properties. An object can display its property pages
independent of its client, or the client can manage the display of property pages from a number of
contained objects in a single property sheet. Property pages also provide a means for notifying a client of
changes in an object's properties.

A property page object manages a particular page within a property sheet. A property page implements at
least IPropertyPage and can optionally implement IPropertyPage2 if selection of a specific property is
supported.

An object specifies its support for property pages by implementing ISpecifyPropertyPages. Through this
interface the caller can obtain a list of CLSIDs identifying the specific property pages that the object
supports. If the object specifies a property page CLSID, the object must be able to receive property
changes from the property page.

When to Implement
Implement this interface on an object to indicate support for a property sheet and at least one property
page.

When to Use
Use this interface to obtain a list of property page CLSIDs that this object supports. The CLSID list can be
later passed to OleCreatePropertyFrame or OleCreatePropertyFrameIndirect to invoke a property
sheet. If a caller wants to display a property sheet for multiple objects, it must first obtain the CLSID list for
each object, then create a list containing only the intersection of the set of CLSID in each separate list. In
other words, whoever invokes a property sheet for any number of objects must guarantee that each
property page CLSID was specified by all objects for which the sheet is being displayed. This avoids the
possibility that a property page is displayed for an object that doesn't understand that page; if this were
allowed, it would result in problems when the page sent unknown and unexpected information to an
object.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

ISpecifyPropertyPages
Methods

Description

GetPages Fills an array of CLSIDs for each
property page that can be displayed
in this object's property sheet.

See Also
IPerPropertyBrowsing, IPropertyPage, IPropertyPage2, IPropertyPageSite,
OleCreatePropertyFrame, OleCreatePropertyFrameIndirect

ISpecifyPropertyPages::GetPages

Fills a counted array of GUID values where each GUID specifies the CLSID of each property page that
can be displayed in the property sheet for this object.

HRESULT GetPages(

 CAUUID *pPages //Pointer to structure
);

Parameters
pPages

[out] Pointer to a caller-allocated CAUUID structure that must be initialized and filled before returning.
The pElems field in the CAUUID structure is allocated by the callee with CoTaskMemAlloc and freed
by the caller with CoTaskMemFree.

Return Values
This method supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The array was filled successfully.
E_POINTER

The address in pPages is not valid. For example, it may be NULL.

Remarks
The CAUUID structure is caller-allocated, but is not initialized by the caller. The
ISpecifyPropertyPages::GetPages method fills the cElements field in the CAUUID structure. This
method also allocates memory for the array pointed to by the pElems field in CAUUID using
CoTaskMemAlloc. Then, it fills the newly allocated array. After this method returns successfully, the
structure contains a counted array of UUIDs, each UUID specifying a property page CLSID.

Notes to Callers
The caller must release the memory pointed to by the pElems field of CAUUID, using CoTaskMemFree
when it is no longer needed.

Notes to Implementers
E_NOTIMPL is not allowed as a return value since an object with no property pages should not expose
the ISpecifyPropertyPages interface at all.

See Also
CAUUID, CoTaskMemAlloc, CoTaskMemFree, OleCreatePropertyFrame,
OleCreatePropertyFrameIndirect

IStdMarshalInfo

The IStdMarshalInfo interface returns the CLSID identifying the handler to be used in the destination
process during standard marshaling.

An object that uses OLE's default implementation of IMarshal does not provide its own proxy but, by
implementing IStdMarshalInfo, can nevertheless specify a handler to be loaded in the client process.
Such a handler would typically handle certain requests in-process and use OLE's default marshaling to
delegate others back to the original object.

To create an instance of an object in some client process, COM must first determine whether the object
uses default marshaling or its own implementation. If the object uses default marshaling, COM then
queries the object to determine whether it uses a special handler or, simply, OLE's default proxy. To get
the CLSID of the handler to be loaded, COM queries the object for the IStdMarshalInfo interface and
then the IPersist interface. If neither interface is supported, a standard handler is used.

When to Implement
If you are writing a server application that supports class emulation (that is, if your server can manipulate
objects of another type in response to the Activate As option in the Convert dialog box), you must
implement the IStdMarshalInfo interface in order to return the CLSID of the handler to be used for the
object.

Note that your handler must aggregate the default handler.

When to Use
You typically don't call this interface yourself. COM queries for this interface when performing standard
marshaling.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IStdMarshalInfo Method Description
GetClassForHandler Obtains the class identifier of the

object handler in the destination
process.

See Also
IMarshal

IStdMarshalInfo::GetClassForHandler

Retrieves the CLSID of the object handler to be used in the destination process during standard
marshaling.

HRESULT GetClassForHandler(

 DWORD dwDestContext, //Destination process
 void * pvDestContext, //Reserved
 CLSID * pClsid //Pointer to the CLSID
);

Parameters
dwDestContext

[in] Destination context, that is, the process in which the unmarshaling will be done. The legal values
for dwDestContext are taken from the enumeration MSHCTX. For information on the MSHCTX
enumeration, see the "Data Structures" section.

pvDestContext

[in] Reserved for future use; must be NULL.
pClsid

[out] Pointer to the handler's CLSID.

Return Values
This method supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The CLSID was retrieved successfully.

Remarks
Notes to Implementers
Your implementation of IStdMarshalInfo::GetClassForHandler must return your own CLSID. This allows
an object created by a different server to behave as one your server created.

IStorage

The IStorage interface supports the creation and management of structured storage objects. Structured
storage allows hierarchical storage of information within a single file, and is often referred to as "a file
system within a file". Elements of a structured storage object are storages and streams. Storages are
analogous to directories, and streams are analogous to files. Within a structured storage there will be a
primary storage object that may contain substorages, possibly nested, and streams. Storages provide the
structure of the object, and streams contain the data, which is manipulated through the IStream interface.

The IStorage interface provides methods for creating and managing the root storage object, child storage
objects, and stream objects. These methods can create, open, enumerate, move, copy, rename, or delete
the elements in the storage object.

An application must release its IStorage pointers when it is done with the storage object to deallocate
memory used. There are also methods for changing the date and time of an element.

There are a number of different modes in which a storage object and its elements can be opened,
determined by setting values from the STGM enumeration. One aspect of this is how changes are
committed. You can set direct mode, in which in which changes to an object are immediately written to it,
or transacted mode, in which changes are written to a buffer until explicitly committed. The IStorage
interface provides methods for committing changes and reverting to the last-committed version. Other
storage modes set, for example, a stream can be opened in read only mode or read/write mode. For more
information, refer to the STGM enumeration.

Other methods provide a means to gain access to information about a storage object and its elements
through the STATSTG structure.

When to Implement
Generally, you would not implement this interface unless you were defining a new storage scheme for
your system. OLE provides a compound file implementation of the IStorage interface that supports
transacted access. OLE provides a set of helper APIs to facilitate using the compound file implementation
of storage objects. Refer to IStorage - Compound File Implementation.

When to Use
Call the methods of IStorage to manage substorages or streams within the current storage. This
management includes creating, opening, or destroying sub-storages or streams, as well as managing
aspects such as time stamps, names, etc. You can also commit changes or revert to previous version for
storages opened in transacted mode. The methods of IStorage do not include means to read and write
data¾this is reserved for IStream, which manages the actual data. While the IStorage and IStream
interfaces are used to manipulate the storage object and its elements, the IPersistStorage interface
contains methods that are called to serialize the storage object and its elements to a disk file.

Methods VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IStorage Methods Description
CreateStream Creates and opens a stream object

with the specified name contained

in this storage object.
OpenStream Opens an existing stream object

within this storage object using the
specified access permissions in
grfMode.

CreateStorage Creates and opens a new storage
object within this storage object.

OpenStorage Opens an existing storage object
with the specified name according
to the specified access mode.

CopyTo Copies the entire contents of this
open storage object into another
storage object. The layout of the
destination storage object may
differ.

MoveElementTo Copies or moves a substorage or
stream from this storage object to
another storage object.

Commit Reflects changes for a transacted
storage object to the parent level.

Revert Discards all changes that have
been made to to the storage object
since the last commit operation.

EnumElements Returns an enumerator object that
can be used to enumerate the
storage and stream objects
contained within this storage object.

DestroyElement Removes the specified storage or
stream from this storage object.

RenameElement Renames the specified storage or
stream in this storage object.

SetElementTimes Sets the modification, access, and
creation times of the indicated
storage element, if supported by
the underlying file system.

SetClass Assigns the specified CLSID to this
storage object.

SetStateBits Stores up to 32 bits of state
information in this storage object.

Stat Returns the STATSTG structure for
this open storage object.

IStorage::Commit
Ensures that any changes made to a storage object open in transacted mode are reflected in the parent
storage; for a root storage, reflects the changes in the actual device, for example, a file on disk. For a root
storage object opened in direct mode, this method has no effect except to flush all memory buffers to the
disk. For non-root storage objects in direct mode, this method has no effect.

HRESULT Commit(

 DWORD grfCommitFlags //Specifies how changes are to be committed

);

Parameter
grfCommitFlags

[in] Controls how the changes are committed to the storage object. See the STGC enumeration for a
definition of these values.

Return Values
S_OK

Changes to the storage object were successfully committed to the parent level.
E_PENDING

Asynchronous Storage only: Part or all of the data to be committed is currently unavailable. For more
information, see IFillLockBytes and Asynchronous Storage.

STG_E_INVALIDFLAG

The value for the grfCommitFlags parameter is not valid.
STG_E_INVALIDPARAMETER

One of the parameters was not valid.
STG_E_NOTCURRENT

Another open instance of the storage object has committed changes. Thus, the current commit
operation may overwrite previous changes.

STG_E_MEDIUMFULL

No space left on device to commit.
STG_E_TOOMANYOPENFILES

The commit operation could not be completed because there are too many open files.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.

Remarks
IStorage::Commit makes permanent changes to a storage object that is in transacted mode, in which
changes are accumulated in a buffer, and not reflected in the storage object until there is a call to this
method. The alternative is to open an object in direct mode, in which changes are immediately reflected in
the storage object and so does not require a commit operation. Calling this method on a storage opened
in direct mode has no effect, unless it is a root storage, in which case it ensures that changes in memory
buffers are written to the underlying storage device.

The commit operation publishes the current changes in this storage object and its children to the next
level up in the storage hierarchy. To undo current changes before committing them, call IStorage::Revert
to roll back to the last-committed version.

Calling IStorage::Commit has no effect on currently-opened nested elements of this storage object. They
are still valid and can be used. However, the IStorage::Commit method does not automatically commit
changes to these nested elements. The commit operation publishes only known changes to the next
higher level of the storage hierarchy. Thus, transactions to nested levels must be committed to this
storage object before they can be committed to higher levels.

In commit operations, you need to take steps to ensure that data is protected during the commit process:

· When committing changes to root storage objects, the caller must check the return value to determine
whether the operation has been completed successfully, and if not, that the old committed contents of
the IStorage are still intact and can be restored.

· If this storage object was opened with some of its items excluded, then the caller is responsible for
rewriting them before calling commit. Write mode is required on the storage opening for the commit to
succeed.

· Unless prohibiting multiple simultaneous writers on the same storage object, an application calling
this method should specify at least STGC_ONLYIFCURRENT in the grfCommitFlags parameter to
prevent the changes made by one writer from inadvertently overwriting the changes made by another.

See Also
IStorage - Compound File Implementation, STGC, IStorage::Revert

IStorage::CopyTo

Copies the entire contents of an open storage object to another storage object.

HRESULT CopyTo(

 DWORD ciidExclude, //Number of elements in rgiidExclude

 IID const * rgiidExclude, //Array of interface identifiers (IIDs)

 SNB snbExclude, //Points to a block of stream names in the storage object

 IStorage * pstgDest //Points to destination storage object

);

Parameters
ciidExclude

[in] The number of elements in the array pointed to by rgiidExclude. If rgiidExclude is NULL, then
ciidExclude is ignored.

rgiidExclude

[in] An array of interface identifiers that either the caller knows about and does not want to be copied
or that the storage object does not support but whose state the caller will later explicitly copy. The
array can include IStorage, indicating that only stream objects are to be copied, and IStream,
indicating that only storage objects are to be copied. An array length of zero indicates that only the
state exposed by the IStorage object is to be copied; all other interfaces on the object are to be
ignored. Passing NULL indicates that all interfaces on the object are to be copied.

snbExclude

[in] A string name block (refer to SNB) that specifies a block of storage or stream objects that are not
to be copied to the destination. These elements are not created at the destination. If IID_IStorage is in
the rgiidExclude array, this parameter is ignored. This parameter may be NULL.

pstgDest

[in] Points to the open storage object into which this storage object is to be copied. The destination
storage object can be a different implementation of the IStorage interface from the source storage
object. Thus, IStorage::CopyTo can only use publicly available methods of the destination storage
object. If pstgDest is open in transacted mode, it can be reverted by calling its IStorage::Revert
method.

Return Values
S_OK

The storage object was successfully copied.
E_PENDING

Asynchronous Storage only: Part or all of the data to be copied is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The destination storage object is a child of the source storage object.
STG_E_INSUFFICIENTMEMORY

The copy was not completed due to a lack of memory.
STG_E_INVALIDPOINTER

The pointer specified for the storage object was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_TOOMANYOPENFILES

The copy was not completed because there are too many open files.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.
STG_E_MEDIUMFULL

The copy was not completed because the storage medium is full.

Remarks
This method merges elements contained in the source storage object with those already present in the
destination. The layout of the destination storage object may differ from the source storage object.

The copy process is recursive, invoking IStorage::CopyTo and IStream::CopyTo on the elements
nested inside the source.

When copying a stream on top of an existing stream with the same name, the existing stream is first
removed and then replaced with the source stream. When copying a storage on top of an existing
storage with the same name, the existing storage is not removed. As a result,, after the copy operation,
the destination IStorage contains older elements, unless they were replaced by newer ones with the
same names.

A storage object may expose interfaces other than IStorage, including IRootStorage, IPropertyStorage,
or IPropertySetStorage. The rgiidExclude parameter provides a way to exclude any or all of these
additional interfaces from the copy operation.

A caller with a newer or more efficient copy of an existing substorage or stream object may want to
exclude the current versions of these objects from the copy operation. The snbExclude and rgiidExclude
parameters provide two different ways of excluding a storage objects existing storages or streams.

Note to Callers
The most common way to use this method is to copy everything possible from the source to the
destination, as in most Full Save and SaveAs operations. The following example illustrates this call:

pstg->CopyTo(0, Null, Null, pstgDest)

See Also

IStorage - Compound File Implementation, IStorage::MoveElementTo, IStorage::Revert

IStorage::CreateStorage

Creates and opens a new storage object nested within this storage object.

HRESULT CreateStorage(

 const WCHAR * pwcsName, //Points to the name of the new storage object

 DWORD grfMode, //Access mode for the new storage object

 DWORD reserved1, //Reserved; must be zero

 DWORD reserved2, //Reserved; must be zero

 IStorage ** ppstg //Points to new storage object

);

Parameters
pwcsName

[in] Points to a wide character string that contains the name of the newly created storage object. This
name can be used later to reopen the storage object.

grfMode

[in] Specifies the access mode to use when opening the newly created storage object. See the STGM
enumeration values for descriptions of the possible values.

reserved1

[in] Reserved for future use; must be zero.
reserved2

[in] Reserved for future use; must be zero.
ppstg

[out] When successful, points to the location of the IStorage pointer to the newly-created storage
object. This parameter is set to NULL if an error occurs.

Return Values
S_OK

The storage object was created successfully.
E_PENDING

Asynchronous Storage only: Part or all of the necessary data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

Insufficient permissions to create storage object.
STG_E_FILEALREADYEXISTS

The name specified for the storage object already exists in the storage object and the grfmode flag
includes the flag STGM_FAILIFTHERE.

STG_E_INSUFFICIENTMEMORY

The storage object was not created due to a lack of memory.
STG_E_INVALIDFLAG

The value specified for the grfMode flag is not a valid STGM enumeration value.
STG_E_INVALIDFUNCTION

The specified combination of grfMode flags is not supported.
STG_E_INVALIDNAME

Invalid value for pwcsName.
STG_E_INVALIDPOINTER

The pointer specified for the storage object was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.
STG_E_TOOMANYOPENFILES

The storage object was not created because there are too many open files.
STG_S_CONVERTED

The existing stream with the specified name was replaced with a new storage object containing a
single stream called CONTENTS. The new storage object will be added.

Remarks
If a storage with the name specified in the pwcsName parameter already exists within the parent storage
object, and the grfMode parameter includes the STGM_CREATE flag, the existing storage is replaced by
the new one. If the grfMode parameter includes the STGM_CONVERT flag, the existing element is
converted to a stream object named CONTENTS and the new storage object is created containing the
CONTENTS stream object. The destruction of the old element and the creation of the new storage object
are both subject to the transaction mode on the parent storage object.

If a storage object with the same name already exists and grfMode is set to STGM_FAILIFTHERE, this
method fails with the return value STG_E_FILEALREADYEXISTS.

See Also
IStorage - Compound File Implementation, IStorage::OpenStorage

IStorage::CreateStream

Creates and opens a stream object with the specified name contained in this storage object. All elements
within a storage object ¾ both streams and other storage objects ¾ are kept in the same name space.

HRESULT CreateStream(

 const WCHAR * pwcsName, //Points to the name of the new stream

 DWORD grfMode, //Access mode for the new stream

 DWORD reserved1, //Reserved; must be zero

 DWORD reserved2, //Reserved; must be zero

 IStream ** ppstm //Points to new stream object

);

Parameters
pwcsName

[in] Points to a wide character string that contains the name of the newly created stream. This name
can be used later to open or reopen the stream.

grfMode

[in] Specifies the access mode to use when opening the newly created stream. See the STGM
enumeration values for descriptions of the possible values.

reserved1

[in] Reserved for future use; must be zero.
reserved2

[in] Reserved for future use; must be zero.
ppstm

[out] On return, points to the location of the new IStream interface pointer. This is only valid if the
operation is successful. When an error occurs, this parameter is set to NULL.

Return Values
S_OK

The new stream was successfully created
E_PENDING

Asynchronous Storage only: Part or all of the necessary data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

Insufficient permissions to create stream.
STG_E_FILEALREADYEXISTS

The name specified for the stream already exists in the storage object and the grfmode flag includes
the flag STGM_FAILIFTHERE.

STG_E_INSUFFICIENTMEMORY

The stream was not created due to a lack of memory.
STG_E_INVALIDFLAG

The value specified for the grfMode flag is not a valid STGM enumeration value.
STG_E_INVALIDFUNCTION

The specified combination of grfMode flags is not supported. For example, if this method is called
without the STGM_SHARE_EXCLUSIVE flag.

STG_E_INVALIDNAME

Invalid value for pwcsName.
STG_E_INVALIDPOINTER

The pointer specified for the stream object was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.
STG_E_TOOMANYOPENFILES

The stream was not created because there are too many open files.

Remarks
If a stream with the name specified in the pwcsName parameter already exists and the grfMode
parameter includes the STGM_CREATE flag, the existing stream is replaced by a newly created one.
Both the destruction of the old stream and the creation of the new stream object are subject to the
transaction mode on the parent storage object.

If the stream already exists and grfMode is set to STGM_FAILIFTHERE, this method fails with the return
value STG_E_FILEALREADYEXISTS.

See Also
IStorage - Compound File Implementation, IStorage::OpenStream, IStream

IStorage::DestroyElement
Removes the specified storage or stream from this storage object.

HRESULT DestroyElement(

 wchar * pwcsName //Points to the name of the element to be removed

);

Parameter
pwcsName

[in] Points to a wide character string that contains the name of the storage or stream to be removed.

Return Values
S_OK

The element was successfully removed.
E_PENDING

Asynchronous Storage only: Part or all of the element's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for removing the element.
STG_E_FILENOTFOUND

The element with the specified name does not exist.
STG_E_INSUFFICIENTMEMORY

The element was not removed due to a lack of memory.
STG_E_INVALIDNAME

Invalid value for pwcsName.
STG_E_INVALIDPOINTER

The pointer specified for the element was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.
STG_E_TOOMANYOPENFILES

The element was not removed because there are too many open files.

Remarks
The DestroyElement method deletes a substorage or stream from the current storage object. After a
successful call to DestroyElement, any open instance of the destroyed element from the parent storage
becomes invalid.

If a storage object is opened in transacted mode, destruction of an element requires that the call to

DestroyElement be followed by a call to IStorage::Commit.

See Also
IStorage - Compound File Implementation

IStorage::EnumElements

Retrieves a pointer to an enumerator object that can be used to enumerate the storage and stream
objects contained within this storage object.

HRESULT EnumElements(

 DWORD reserved1, //Reserved; must be zero

 void * reserved2, //Reserved; must be NULL

 DWORD reserved3, //Reserved; must be zero

 IEnumSTATSTG ** ppenum //Indirect pointer to IEnumSTATSTG

);

Parameters
reserved1

[in] Reserved for future use; must be zero.
reserved2

[in] Reserved for future use; must be NULL.
reserved3

[in] Reserved for future use; must be zero.
ppenum

[out] When successful, points to the location of an IEnumSTATSTG pointer to new enumerator object.

Return Values
S_OK

The enumerator object was successfully returned.
E_PENDING

Asynchronous Storage only: Part or all of the element's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_INSUFFICIENTMEMORY

The enumerator object could not be created due to lack of memory.
STG_E_INVALIDPARAMETER

One of the parameters was not valid.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.

Remarks
The enumerator object returned by this method implements the IEnumSTATSTG interface, one of the
standard enumerator interfaces that contain the Next, Reset, Clone, and Skip methods.
IEnumSTATSTG enumerates the data stored in an array of STATSTG structures.

The storage object must be open in read mode to allow the enumeration of its elements.

The order in which the elements are enumerated and whether the enumerator is a snapshot or always
reflects the current state of the storage object, and depends on the IStorage implementation.

See Also
IStorage - Compound File Implementation, IEnumXXXX, IEnumSTATSTG, STATSTG

IStorage::MoveElementTo

Copies or moves a substorage or stream from this storage object to another storage object.

HRESULT MoveElementTo(

 const WCHAR * pwcsName, //Name of the element to be moved

 IStorage * pstgDest, //Points to destination storage object

 LPWSTR pwcsNewName, //Points to new name of element in destination

 DWORD grfFlags //Specifies a copy or a move

);

Parameters
pwcsName

[in] Points to a wide character string that contains the name of the element in this storage object to be
moved or copied.

pstgDest

[in] IStorage pointer to the destination storage object.
pwcsNewName

[in] Points to a wide character string that contains the new name for the element in its new storage
object.

grfFlags

[in] Specifies whether the operation should be a move (STGMOVE_MOVE) or a copy
(STGMOVE_COPY). See the STGMOVE enumeration.

Return Values
S_OK

The storage object was successfully copied or moved.
E_PENDING

Asynchronous Storage only: Part or all of the element's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The destination storage object is a child of the source storage object.
STG_E_FILENOTFOUND

The element with the specified name does not exist.
STG_E_FILEALREADYEXISTS

The specified file already exists.
STG_E_INSUFFICIENTMEMORY

The copy or move was not completed due to a lack of memory.
STG_E_INVALIDFLAG

The value for the grfFlags parameter is not valid.
STG_E_INVALIDNAME

Invalid value for pwcsName.
STG_E_INVALIDPOINTER

The pointer specified for the storage object was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.
STG_E_TOOMANYOPENFILES

The copy or move was not completed because there are too many open files.

Remarks
The IStorage::MoveElementTo method is typically the same as invoking the IStorage::CopyTo method
on the indicated element and then removing the source element. In this case, the MoveElementTo
method uses only the publicly available functions of the destination storage object to carry out the move.

If the source and destination storage objects have special knowledge about each other's implementation
(they could, for example, be different instances of the same implementation), this method can be
implemented more efficiently.

Before calling this method, the element to be moved must be closed, and the destination storage must be
open.

See Also
IStorage - Compound File Implementation, STGMOVE, IStorage::CopyTo

IStorage::OpenStorage

Opens an existing storage object with the specified name in the specified access mode.

HRESULT OpenStorage(

 const WCHAR * pwcsName, //Points to the name of the storage object to open

 IStorage * pstgPriority, //Points to previous opening of the storage object

 DWORD grfMode, //Access mode for the new storage object

 SNB snbExclude, //Points to a block of stream names in the storage object

 DWORD reserved, //Reserved; must be zero

 IStorage ** ppstg //Points to opened storage object

);

Parameters
pwcsName

[in] Points to a wide character string that contains the name of the storage object to open. It is ignored
if pstgPriority is non-NULL.

pstgPriority

[in] If the pstgPriority parameter is not NULL, it is an IStorage pointer to a previous opening of an
element of the storage object, usually one that was opened in priority mode. The storage object
should be closed and re-opened according to grfMode. When the IStorage::OpenStorage method
returns, pstgPriority is no longer valid. Use the value supplied in the ppstg parameter. If the
pstgPriority parameter is NULL, it is ignored.

grfMode

[in] Specifies the access mode to use when opening the storage object. See the STGM enumeration
values for descriptions of the possible values. Whatever other modes you may choose, you must at
least specify STGM_SHARE_EXCLUSIVE when calling this method.

snbExclude

[in] Must be NULL. A non-NULL value will return STG_E_INVALIDPARAMETER.
reserved

[in] Reserved for future use; must be zero.
ppstg

[out] When the operation is successful, points to the location of an IStorage pointer to the opened
storage object. This parameter is set to NULL if an error occurs.

Return Values
S_OK

The storage object was opened successfully.
E_PENDING

Asynchronous Storage only: Part or all of the storage's data is currently unavailable. For more

information see IFillLockBytes and Asynchronous Storage.
STG_E_ACCESSDENIED

Insufficient permissions to open storage object.
STG_E_FILENOTFOUND

The storage object with the specified name does not exist.
STG_E_INSUFFICIENTMEMORY

The storage object was not opened due to a lack of memory.
STG_E_INVALIDFLAG

The value specified for the grfMode flag is not a valid STGM enumeration value.
STG_E_INVALIDFUNCTION

The specified combination of grfMode flags is not supported.
STG_E_INVALIDNAME

Invalid value for pwcsName.
STG_E_INVALIDPOINTER

The pointer specified for the storage object was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.
STG_E_TOOMANYOPENFILES

The storage object was not created because there are too many open files.
STG_S_CONVERTED

The existing stream with the specified name was replaced with a new storage object containing a
single stream called CONTENTS. In direct mode, the new storage is immediately written to disk. In
transacted mode, the new storage is written to a temporary storage in memory and later written to
disk when it is committed.

Remarks
Storage objects can be opened with STGM_DELETEONRELEASE, in which case the object is destroyed
when it receives its final release. This is useful for creating temporary storage objects.

See Also
IStorage - Compound File Implementation, IStorage::CreateStorage

IStorage::OpenStream

Opens an existing stream object within this storage object in the specified access mode.

HRESULT OpenStream(

 const WCHAR * pwcsName, //Points to name of stream to open

 void * reserved1, //Reserved; must be NULL

 DWORD grfMode, //Access mode for the new stream

 DWORD reserved2, //Reserved; must be zero

 IStream ** ppstm //Indirect pointer to opened stream object

);

Parameters
pwcsName

[in] Points to a wide character string that contains the name of the stream to open.
reserved1

[in] Reserved for future use; must be NULL.
grfMode

[in] Specifies the access mode to be assigned to the open stream. See the STGM enumeration
values for descriptions of the possible values. . Whatever other modes you may choose, you must at
least specify STGM_SHARE_EXCLUSIVE when calling this method.

reserved2

[in] Reserved for future use; must be zero.
ppstm

[out] On successful return, points to the location of an IStream pointer to the newly-opened stream
object. This parameter is set to NULL if an error occurs.

Return Values
S_OK

The stream was successfully opened.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

Insufficient permissions to open stream.
STG_E_FILENOTFOUND

The stream with specified name does not exist.
STG_E_INSUFFICIENTMEMORY

The stream was not opened due to a lack of memory.

STG_E_INVALIDFLAG

The value specified for the grfMode flag is not a valid STGM enumeration value.
STG_E_INVALIDFUNCTION

The specified combination of grfMode flags is not supported. For example, if this method is called
without the STGM_SHARE_EXCLUSIVE flag.

STG_E_INVALIDNAME

Invalid value for pwcsName.
STG_E_INVALIDPOINTER

The pointer specified for the stream object was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.
STG_E_TOOMANYOPENFILES

The stream was not opened because there are too many open files.

Remarks
IStorage::OpenStream opens an existing stream object within this storage object in the access mode
specified in grfMode. There are restrictions on the permissions that can be given in grfMode. For
example, the permissions on this storage object restrict the permissions on its streams. In general,
access restrictions on streams should be stricter than those on their parent storages. Compound-file
streams must be opened with STGM_SHARE_EXCLUSIVE.

See Also
IStorage - Compound File Implementation, IStorage::CreateStream, IStream

IStorage::RenameElement
Renames the specified substorage or stream in this storage object.

HRESULT RenameElement(

 const WCHAR * pwcsOldName, //Points to the name of the element to be changed

 const WCHAR * pwcsNewName //Points to the new name for the specified element

);

Parameters
pwcsOldName

[in] Points to a wide character string that contains the name of the substorage or stream to be
changed.

pwcsNewName

[in] Points to a wide character string that contains the new name for the specified sustorage or
stream.

Return Values
S_OK

The element was successfully renamed.
E_PENDING

Asynchronous Storage only: Part or all of the element's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for renaming the element.
STG_E_FILENOTFOUND

The element with the specified old name does not exist.
STG_E_FILEALREADYEXISTS

The element specified by the new name already exists.
STG_E_INSUFFICIENTMEMORY

The element was not renamed due to a lack of memory.
STG_E_INVALIDNAME

Invalid value for one of the names.
STG_E_INVALIDPOINTER

The pointer specified for the element was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.

STG_E_TOOMANYOPENFILES

The element was not renamed because there are too many open files.

Remarks
IStorage::RenameElement renames the specified substorage or stream in this storage object. An
element in a storage object cannot be renamed while it is open. The rename operation is subject to
committing the changes if the storage is open in transacted mode.

The IStorage::RenameElement method is not guaranteed to work in low memory with storage objects
open in transacted mode. It may work in direct mode.

See Also
IStorage - Compound File Implementation

IStorage::Revert
Discards all changes that have been made to the storage object since the last commit.

HRESULT Revert(void);

Return Values
S_OK

The revert operation was successful.
E_PENDING

Asynchronous Storage only: Part or all of the storage's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_INSUFFICIENTMEMORY

The revert operation could not be completed due to a lack of memory.
STG_E_TOOMANYOPENFILES

The revert operation could not be completed because there are too many open files.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.

Remarks
For storage objects opened in transacted mode, the IStorage::Revert method discards any uncommitted
changes to this storage object or changes that have been committed to this storage object from nested
elements.

After this method returns, any existing elements (substorages or streams) that were opened from the
reverted storage object are invalid and can no longer be used. Specifying these reverted elements in any
call except IStorage::Release returns the error STG_E_REVERTED

This method has no effect on storage objects opened in direct mode.

See Also
IStorage - Compound File Implementation, IStorage::Commit

IStorage::SetClass

Assigns the specified CLSID to this storage object.

HRESULT SetClass(

 REFCLSID clsid //Class identifier to be assigned to the storage object

);

Parameter
clsid

[in] The class identifier (CLSID) that is to be associated with the storage object.

Return Values
S_OK

The CLSID was successfully assigned.
E_PENDING

Asynchronous Storage only: Part or all of the storage's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for assigning a class identifier to the storage object.
STG_E_MEDIUMFULL

Not enough space was left on device to complete the operation.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.

Remarks
When first created, a storage object has an associated CLSID of CLSID_NULL. Call this method to assign
a CLSID to the storage object.

Call the IStorage::Stat method to retrieve the current CLSID of a storage object.

See Also
IStorage - Compound File Implementation, IStorage::Stat

IStorage::SetElementTimes

Sets the modification, access, and creation times of the specified storage element, if supported by the
underlying file system.

HRESULT SetElementTimes(

 const WCHAR * pwcsName, //Points to name of element to be changed

 FILETIME const * pctime, //New creation time for element, or NULL

 FILETIME const * patime, //New access time for element, or NULL

 FILETIME const * pmtime //New modification time for element, or NULL

);

Parameters
pwcsName

[in] The name of the storage object element whose times are to be modified. If NULL, the time is set
on the root storage rather than one of its elements.

pctime

[in] Either the new creation time for the element or NULL if the creation time is not to be modified.
patime

[in] Either the new access time for the element or NULL if the access time is not to be modified.
pmtime

[in] Either the new modification time for the element or NULL if the modification time is not to be
modified.

Return Values
S_OK

The time values were successfully set.
E_PENDING

Asynchronous Storage only: Part or all of the element's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for changing the element.
STG_E_FILENOTFOUND

The element with the specified name does not exist.
STG_E_INSUFFICIENTMEMORY

The element was not changed due to a lack of memory.
STG_E_INVALIDNAME

Invalid value for the element name.
STG_E_INVALIDPOINTER

The pointer specified for the element was invalid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.
STG_E_TOOMANYOPENFILES

The element was not changed because there are too many open files.
STG_E_REVERTED

The storage object has been invalidated by a revert operation above it in the transaction tree.

Remarks
This method sets time statistics for the specified storage element within this storage object.

Not all file systems support all of the time values. This method sets those times that are supported and
ignores the rest. Each of the time value parameters can be NULL; indicating that no modification should
occur.

Call the IStorage::Stat method to retrieve these time values.

See Also
IStorage - Compound File Implementation, IStorage::Stat

IStorage::SetStateBits

Stores up to 32 bits of state information in this storage object.

HRESULT SetStateBits(

 DWORD grfStateBits, //Specifies new values of bits

 DWORD grfMask //Specifies mask that indicates which bits are significant

);

Parameters
grfStateBits

[in] Specifies the new values of the bits to set. No legal values are defined for these bits; they are all
reserved for future use and must not be used by applications.

grfMask

[in] A binary mask indicating which bits in grfStateBits are significant in this call.

Return Values
S_OK

The state information was successfully set.
E_PENDING

Asynchronous Storage only: Part or all of the storage's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for changing this storage object.
STG_E_INVALIDFLAG

The value for the grfStateBits or grfMask parameters are not valid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.

Remarks
This interface is reserved for future use. The values for the state bits are not currently defined.

See Also
IStorage - Compound File Implementation, IStorage::Stat

IStorage::Stat
Retrieves the STATSTG structure for this open storage object.

HRESULT Stat(

 STATSTG * pstatstg, //Location for STATSTG structure

 DWORD grfStatFlag //Values taken from the STATFLAG enumeration

);

Parameters
pstatstg

[out] On return, points to a STATSTG structure where this method places information about the open
storage object. This parameter is NULL if an error occurs.

grfStatFlag

[in] Specifies that some of the fields in the STATSTG structure are not returned, thus saving a
memory allocation operation. Values are taken from the STATFLAG enumeration.

Return Values
S_OK

The STATSTG structure was successfully returned at the specified location.
E_PENDING

Asynchronous Storage only: Part or all of the storage's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for accessing statistics for this storage object.
STG_E_INSUFFICIENTMEMORY

The STATSTG structure was not returned due to a lack of memory.
STG_E_INVALIDFLAG

The value for the grfStateFlag parameter is not valid.
STG_E_INVALIDPARAMETER

One of the parameters was invalid.

Remarks
IStorage::Stat retrieves the STATSTG structure for the current storage. This structure contains statistical
information about the storage. IStorage::EnumElements creates an enumerator object with the
IEnumSTATSTG interface, though which you can enumerate the substorages and streams of a storage
through the STATSTG structure of each.

See Also
IStorage - Compound File Implementation, STATFLAG, STATSTG, IEnumSTATSTG,
IStorage::SetClass, IStorage::SetElementTimes, IStorage::SetStateBits

IStorage - Compound File Implementation
The compound file implementation of IStorage allows you to create and manage substorages and
streams within a storage object residing in a compound file object. To create a compound file object and
get an IStorage pointer, call the API function StgCreateDocfile. To open an existing compound file object
and get its root IStorage pointer, call StgOpenStorage.

When to Use
Most applications use this implementation to to create and manage storages and streams.

Remarks
IStorage::CreateStream

Creates and opens a stream object with the specified name contained in this storage object. The
OLE-provided compound file implementation of the IStorage::CreateStream method does not
support the following behaviors:
· The STGM_DELETEONRELEASE flag is not supported.
· Transacted mode is not supported for stream objects.
· Opening the same stream more than once from the same storage is not supported. The

STGM_SHARE_EXCLUSIVE flag must be specified.
IStorage::OpenStream

Opens an existing stream object within in this storage object using the specified access modes
specified in the grfMode parameter. The OLE-provided compound file implementation of the
IStorage::OpenStream method does not support the following behavior:
· The STGM_DELETEONRELEASE flag is not supported.
· Transacted mode is not supported for stream objects.
· Opening the same stream more than once from the same storage is not supported. The

STGM_SHARE_EXCLUSIVE flag must be specified.
IStorage::CreateStorage

The OLE-provided compound file implementation of the IStorage::CreateStorage method does not
support the STGM_DELETEONRELEASE flag. Specifying this flag causes the method to return
STG_E_INVALIDFLAG.

IStorage::OpenStorage

Opens an existing storage object with the specified name in the specified access mode. The OLE-
provided compound file implementation of the IStorage::OpenStorage method does not support the
following behavior:
· The STGM_PRIORITY flag is not supported for non-root storages.
· Opening the same storage object more than once from the same parent storage is not supported.

The STGM_SHARE_EXCLUSIVE flag must be specified.
· The STGM_DELETEONRELEASE flag is not supported. If this flag is specified, the function

returns STG_E_INVALIDFUNCTION.
IStorage::CopyTo

Copies only the substorages and streams of this open storage object into another storage object. The
rgiidExclude parameter can be set to IID_IStream to copy only substorages, or to IID_IStorage to
copy only streams.

IStorage::MoveElementTo

Copies or moves a substorage or stream from this storage object to another storage object.

IStorage::Commit

Ensures that any changes made to a storage object open in transacted mode are reflected in the
parent storage; for a root storage, reflects the changes in the actual device, for example, a file on
disk. For a root storage object opened in direct mode, this method has no effect except to flush all
memory buffers to the disk. For non-root storage objects in direct mode, this method has no effect.
The OLE-provided compound files implementation uses a two phase commit process unless
STGC_OVERWRITE is specified in the grfCommitFlags parameter. This two-phase process ensures
the robustness of data in case the commit operation fails. First, all new data is written to unused
space in the underlying file. If necessary, new space is allocated to the file. Once this step has been
successfully completed, a table in the file is updated using a single sector write to indicate that the
new data is to be used in place of the old. The old data becomes free space to be used at the next
commit. Thus, the old data is available and can be restored in case an error occurs when committing
changes. If STGC_OVERWRITE is specified, a single phase commit operation is used.

IStorage::Revert

Discards all changes that have been made to the storage object since the last commit.
IStorage::EnumElements

Creates and retrieves a pointer to an enumerator object that can be used to enumerate the storage
and stream objects contained within this storage object.The OLE-provided compound file
implementation takes a snapshot.

IStorage::DestroyElement

Removes the specified element (substorage or stream) from this storage object.
IStorage::RenameElement

Renames the specified substorage or stream in this storage object.
IStorage::SetElementTimes

Sets the modification, access, and creation times of the specified storage element. The OLE-provided
compound file implementation maintains modification and change times for internal storage objects.
For root storage objects, whatever is supported by the underlying file system (or ILockBytes) is
supported. The compound file implementation does not maintain any time stamps for internal
streams. Unsupported time stamps are reported as zero, enabling the caller to test for support.

IStorage::SetClass

Assigns the specified CLSID to this storage object.
IStorage::SetStateBits

Stores up to 32 bits of state information in this storage object. The state set by this method is for
external use only. The OLE-provided compound file implementation does not perform any action
based on the state.

IStorage::Stat

Retrieves the STATSTG structure for this open storage object.

See Also
IStorage, IStream, StgCreateDocfile, StgOpenStorage, IFillLockBytes, ILockBytes, IRootStorage

IStream

The IStream interface supports reading and writing data to stream objects. Stream objects contain the
data in a structured storage object, where storages provide the structure. Simple data can be written
directly to a stream, but most frequently, streams are elements nested within a storage object. They are
similar to standard files.

The IStream interface defines methods similar to the MS-DOS FAT file functions. For example, each
stream object has its own access rights and a seek pointer. The main difference between a stream object
and a DOS file is that streams are not opened using a file handle, but through an IStream interface
pointer.

The methods in this interface present your object's data as a contiguous sequence of bytes that you can
read or write. There are also methods for committing and reverting changes on streams open in
transacted mode and methods for restricting access to a range of bytes in the stream.

Streams can remain open for long periods of time without consuming file system resources. The
IStream::Release method is similar to a close function on a file. Once released, the stream object is no
longer valid and cannot be used.

When to Implement
Implement IStream on a container or object application when you require functionality not provided by the
OLE compound file implementation. The specification of IStream defines more functionality that the OLE
implementation supports. In addition, if you are creating a stream object that is larger than the heap in
your machine's memory and you are using a global memory handle, the compound file implementation
calls GlobalRealloc internally whenever it needs more memory, which can be extremely inefficient. In this
case, the preferred solution is to implement an IStream that uses memory allocated by VirtualAlloc
instead of GlobalAlloc. This can reserve a large chunk of virtual address space and then commit memory
within that address space as required. No data copying occurs and memory is committed only as it is
needed. For more information, refer to IStream - Compound File Implementation.

When to Use
Call the methods of the IStream interface from a container or application to read and write the data for an
object. Since stream objects can be marshaled to other processes, applications can share the data in
storage objects without having to use global memory.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IStream Methods Description
Read Reads a specified number of bytes

from the stream object into memory
starting at the current seek pointer.

Write Writes a specified number from
bytes into the stream object starting
at the current seek pointer.

Seek Changes the seek pointer to a new
location relative to the beginning of

the stream, the end of the stream,
or the current seek pointer.

SetSize Changes the size of the stream
object.

CopyTo Copies a specified number of bytes
from the current seek pointer in the
stream to the current seek pointer
in another stream.

Commit Ensures that any changes made to
a stream object open in transacted
mode are reflected in the parent
storage object.

Revert Discards all changes that have
been made to a transacted stream
since the last IStream::Commit
call.

LockRegion Restricts access to a specified
range of bytes in the stream.
Supporting this functionality is
optional since some file systems do
not provide it.

UnlockRegion Removes the access restriction on
a range of bytes previously
restricted with
IStream::LockRegion.

Stat Retrieves the STATSTG structure
for this stream.

Clone Creates a new stream object that
references the same bytes as the
original stream but provides a
separate seek pointer to those
bytes.

IStream::Clone

Creates a new stream object with its own seek pointer that references the same bytes as the original
stream.

HRESULT Clone(

 IStream ** ppstm //Points to location for pointer to the new stream object

);

Parameter
ppstm

[out] When successful, points to the location of an IStream pointer to the new stream object. If an
error occurs, this parameter is NULL.

Return Values
S_OK

The stream was successfully cloned.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_INSUFFICIENT_MEMORY

The stream was not cloned due to a lack of memory.
STG_E_INVALIDPOINTER

The ppStm pointer is not valid.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
This method creates a new stream object for accessing the same bytes but using a separate seek pointer.
The new stream object sees the same data as the source stream object. Changes written to one object
are immediately visible in the other. Range locking is shared between the stream objects.

The initial setting of the seek pointer in the cloned stream instance is the same as the current setting of
the seek pointer in the original stream at the time of the clone operation.

See Also
IStream - Compound File Implementation, IStream::CopyTo

IStream::Commit
Ensures that any changes made to a stream object open in transacted mode are reflected in the parent
storage. If the stream object is open in direct mode, IStream::Commit has no effect other than flushing
all memory buffers to the next level storage object. The OLE compound file implementation of streams
does not support opening streams in transacted mode.

HRESULT Commit(

 DWORD grfCommitFlags //Specifies how changes are committed

);

Parameter
grfCommitFlags

[in] Controls how the changes for the stream object are committed. See the STGC enumeration for a
definition of these values.

Return Values
S_OK

Changes to the stream object were successfully committed to the parent level.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_MEDIUMFULL

The commit operation failed due to lack of space on the storage device.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
This method ensures that changes to a stream object opened in transacted mode are reflected in the
parent storage. Changes that have been made to the stream since it was opened or last committed are
reflected to the parent storage object. If the parent is opened in transacted mode, the parent may still
revert at a later time rolling back the changes to this stream object. The compound file implementation
does not support opening streams in transacted mode, so this method has very little effect other than to
flush memory buffers. For more information, refer to IStream - Compound File Implementation.

If the stream is open in direct mode, this method ensures that any memory buffers have been flushed out
to the underlying storage object. This is much like a flush in traditional file systems.

The IStream::Commit method is useful on a direct mode stream when the implementation of the IStream
interface is a wrapper for underlying file system APIs. In this case, IStream::Commit would be connected
to the file system's flush call.

See Also
IStream - Compound File Implementation, IStorage::Commit

IStream::CopyTo

Copies a specified number of bytes from the current seek pointer in the stream to the current seek pointer
in another stream.

HRESULT CopyTo(

 IStream * pstm, //Points to the destination stream

 ULARGE_INTEGER cb, //Specifies the number of bytes to copy

 ULARGE_INTEGER * pcbRead, //Pointer to the actual number of bytes read from the source

 ULARGE_INTEGER * pcbWritten //Pointer to the actual number of bytes written to the destination

);

Parameters
pstm

[in] Points to the destination stream. The stream pointed to by pstm can be a new stream or a clone of
the source stream.

cb

[in] Specifies the number of bytes to copy from the source stream.
pcbRead

[out] Pointer to the location where this method writes the actual number of bytes read from the
source. You can set this pointer to NULL to indicate that you are not interested in this value. In this
case, this method does not provide the actual number of bytes read.

pcbWritten

[out] Pointer to the location where this method writes the actual number of bytes written to the
destination. You can set this pointer to NULL to indicate that you are not interested in this value. In
this case, this method does not provide the actual number of bytes written.

Return Values
S_OK

The stream object was successfully copied.
E_PENDING

Asynchronous Storage only: Part or all of the data to be copied is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_INVALIDPOINTER

The value of one of the pointer parameters is not valid.
STG_E_MEDIUMFULL

The stream is not copied because there is no space left on the storage device.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
This method copies the specified bytes from one stream to another. The seek pointer in each stream
instance is adjusted for the number of bytes read or written. This method is equivalent to reading cb bytes
into memory using IStream::Read and then immediately writing them to the destination stream using
IStream::Write, although IStream::CopyTo will be more efficient.

The destination stream can be a clone of the source stream created by calling the IStream::Clone
method.

If IStream::CopyTo returns an error, you cannot assume that the seek pointers are valid for either the
source or destination. Additionally, the values of pcbRead and pcbWritten are not meaningful even though
they are returned.

If IStream::CopyTo returns successfully, the actual number of bytes read and written are the same.

To copy the remainder of the source from the current seek pointer, specify the maximum large integer
value for the cb parameter. If the seek pointer is the beginning of the stream, this technique copies the
entire stream.

See Also
IStream - Compound File Implementation, IStream::Read, IStream::Write, IStream::Clone

IStream::LockRegion

Restricts access to a specified range of bytes in the stream. Supporting this functionality is optional since
some file systems do not provide it.

HRESULT LockRegion(

 ULARGE_INTEGER libOffset, //Specifies the byte offset for the beginning of the range

 ULARGE_INTEGER cb, //Specifies the length of the range in bytes

 DWORD dwLockType //Specifies the restriction on accessing the specified range

);

Parameters
libOffset

[in] Integer that specifies the byte offset for the beginning of the range.
cb

[in] Integer that specifies the length of the range, in bytes, to be restricted.
dwLockType

[in] Specifies the restrictions being requested on accessing the range.

Return Values
S_OK

The specified range of bytes was locked.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_INVALIDFUNCTION

Locking is not supported at all or the specific type of lock requested is not supported.
STG_E_LOCKVIOLATION

Requested lock is supported, but cannot be granted because of an existing lock.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
The byte range can extend past the current end of the stream. Locking beyond the end of a stream is
useful as a method of communication between different instances of the stream without changing data
that is actually part of the stream.

Three types of locking can be supported: locking to exclude other writers, locking to exclude other readers
or writers, and locking that allows only one requestor to obtain a lock on the given range, which is usually
an alias for one of the other two lock types. A given stream instance might support either of the first two

types, or both. The lock type is specified by dwLockType, using a value from the LOCKTYPE
enumeration.

Any region locked with IStream::LockRegion must later be explicitly unlocked by calling
IStream::UnlockRegion with exactly the same values for the libOffset, cb, and dwLockType parameters.
The region must be unlocked before the stream is released. Two adjacent regions cannot be locked
separately and then unlocked with a single unlock call.

Notes to Callers
Since the type of locking supported is optional and can vary in different implementations of IStream, you
must provide code to deal with the STG_E_INVALIDFUNCTION error.

This method has no effect in the compound file implementation, because the implementation does not
support range locking.

Notes to Implementers
Support for this method is optional for implementations of stream objects since it may not be supported by
the underlying file system. The type of locking supported is also optional. The
STG_E_INVALIDFUNCTION error is returned if the requested type of locking is not supported.

See Also
IStream - Compound File Implementation, LOCKTYPE, IStream::UnlockRegion

IStream::Read

Reads a specified number of bytes from the stream object into memory starting at the current seek
pointer.

HRESULT Read(

 void * pv, //Pointer to buffer into which the stream is read

 ULONG cb, //Specifies the number of bytes to read

 ULONG * pcbRead //Pointer to location that contains actual number of bytes read

);

Parameters
pv

[in] Points to the buffer into which the stream is read. If an error occurs, this value is NULL.
cb

[in] Specifies the number of bytes of data to attempt to read from the stream object.
pcbRead

[out] Pointer to a location where this method writes the actual number of bytes read from the stream
object. You can set this pointer to NULL to indicate that you are not interested in this value. In this
case, this method does not provide the actual number of bytes read.

Return Values
S_OK

Data was successfully read from the stream object.
S_FALSE

The data could not be read from the stream object.
E_PENDING

Asynchronous Storage only: Part or all of the data to be read is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for reading this stream object.
STG_E_INVALIDPOINTER

One of the pointer values is invalid.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
This method reads bytes from this stream object into memory. The stream object must be opened in
STGM_READ mode. This method adjusts the seek pointer by the actual number of bytes read.

The number of bytes actually read is returned in the pcbRead parameter.

Notes to Callers
The actual number of bytes read can be fewer than the number of bytes requested if an error occurs or if
the end of the stream is reached during the read operation.

Some implementations might return an error if the end of the stream is reached during the read. You must
be prepared to deal with the error return or S_OK return values on end of stream reads.

See Also
IStream - Compound File Implementation, STGMOVE, IStorage::OpenStream, IStream::Write

IStream::Revert
Discards all changes that have been made to a transacted stream since the last IStream::Commit call.
On streams open in direct mode and streams using the OLE compound file implementation of
IStream::Revert, this method has no effect.

HRESULT Revert(void);

Return Values
S_OK

The stream was successfully reverted to its previous version.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

Remarks
This method discards changes made to a transacted stream since the last commit operation.

See Also
IStream - Compound File Implementation, IStream::Commit

IStream::Seek

Changes the seek pointer to a new location relative to the beginning of the stream, to the end of the
stream, or to the current seek pointer.

HRESULT Seek(

 LARGE_INTEGER dlibMove, //Offset relative to dwOrigin

 DWORD dwOrigin, //Specifies the origin for the offset

 ULARGE_INTEGER * plibNewPosition //Pointer to location containing new seek pointer

);

Parameters
dlibMove

[in] Displacement to be added to the location indicated by dwOrigin. If dwOrigin is
STREAM_SEEK_SET, this is interpreted as an unsigned value rather than signed.

dwOrigin

[in] Specifies the origin for the displacement specified in dlibMove. The origin can be the beginning of
the file, the current seek pointer, or the end of the file. See the STREAM_SEEK enumeration for the
values.

plibNewPosition

[out] Pointer to the location where this method writes the value of the new seek pointer from the
beginning of the stream. You can set this pointer to NULL to indicate that you are not interested in this
value. In this case, this method does not provide the new seek pointer.

Return Values
S_OK

The seek pointer has been successfully adjusted.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_INVALIDPOINTER

The value of the plibNewPosition parameter is not valid.
STG_E_INVALIDFUNCTION

The value of the dwOrigin parameter is not valid.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
IStream::Seek changes the seek pointer so subsequent reads and writes can take place at a different
location in the stream object. It is an error to seek before the beginning of the stream. It is not, however,
an error to seek past the end of the stream. Seeking past the end of the stream is useful for subsequent
writes, as the stream will at that time be extended to the seek position immediately before the write is
done.

You can also use this method to obtain the current value of the seek pointer by calling this method with
the dwOrigin parameter set to STREAM_SEEK_CUR and the dlibMove parameter set to 0 so the seek
pointer is not changed. The current seek pointer is returned in the plibNewPosition parameter.

See Also
IStream - Compound File Implementation, STREAM_SEEK, IStream::Read, IStream::Write

IStream::SetSize

Changes the size of the stream object.

HRESULT SetSize(

 ULARGE_INTEGER libNewSize //Specifies the new size of the stream object

);

Parameter
libNewSize

[in] Specifies the new size of the stream as a number of bytes.

Return Values
S_OK

The size of the stream object was successfully changed.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_MEDIUMFULL

The stream size is not changed because there is no space left on the storage device.
STG_E_INVALIDFUNCTION

The value of the libNewSize parameter is not valid. Since streams cannot be greater than 232 bytes in
the OLE-provided implementation, the high DWORD of libNewSize must be 0. If it is nonzero, this
parameter is not valid.

STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
IStream::SetSize changes the size of the stream object. Call this method to preallocate space for the
stream. If the libNewSize parameters larger than the current stream size, the stream is extended to the
indicated size by filling the intervening space with bytes of undefined value. This operation is similar to the
IStream::Write method if the seek pointer is past the current end-of-stream.

If the libNewSize parameter is smaller than the current stream, then the stream is truncated to the
indicated size.

The seek pointer is not affected by the change in stream size.

Calling IStream::SetSize can be an effective way of trying to obtain a large chunk of contiguous space.

See Also
IStream - Compound File Implementation, IStream::Write

IStream::Stat
Retrieves the STATSTG structure for this stream.

HRESULT Stat(

 STATSTG * pstatstg, //Location for STATSTG structure

 DWORD grfStatFlag //Values taken from the STATFLAG enumeration

);

Parameters
pstatstg

[out] Points to a STATSTG structure where this method places information about this stream object.
This pointer is NULL if an error occurs.

grfStatFlag

[in] Specifies that this method does not return some of the fields in the STATSTG structure, thus
saving a memory allocation operation. Values are taken from the STATFLAG enumeration.

Return Value
S_OK

The STATSTG structure was successfully returned at the specified location.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_ACCESSDENIED

The caller does not have sufficient permissions for accessing statistics for this storage object.
STG_E_INSUFFICIENTMEMORY

The STATSTG structure was not returned due to a lack of memory.
STG_E_INVALIDFLAG

The value for the grfStateFlag parameter is not valid.
STG_E_INVALIDPOINTER

The pStatStg pointer is not valid.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
IStream::Stat retrieves a pointer to the STATSTG structure that contains information about this open
stream. When this stream is within a structured storage and IStorage::EnumElements is called, it
creates an enumerator object with the IEnumSTATSTG interface on it, which can be called to enumerate
the storages and streams through the STATSTG structures associated with each of them.

See Also
IStream - Compound File Implementation, STATFLAG, STATSTG

IStream::UnlockRegion

Removes the access restriction on a range of bytes previously restricted with IStream::LockRegion.

HRESULT UnlockRegion(

 ULARGE_INTEGER libOffset, //Specifies the byte offset for the beginning of the range

 ULARGE_INTEGER cb, //Specifies the length of the range in bytes

 DWORD dwLockType //Specifies the access restriction previously placed on the range

);
Parameters

libOffset

[in] Specifies the byte offset for the beginning of the range.
cb

[in] Specifies, in bytes, the length of the range to be restricted.
dwLockType

[in] Specifies the access restrictions previously placed on the range.

Return Values
S_OK

The byte range was unlocked.
E_PENDING

Asynchronous Storage only: Part or all of the stream's data is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_INVALIDFUNCTION

Locking is not supported at all or the specific type of lock requested is not supported.
STG_E_LOCKVIOLATION

The requested unlock cannot be granted.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.

Remarks
IStream::UnlockRegion unlocks a region previously locked with the IStream::LockRegion method.
Locked regions must later be explicitly unlocked by calling IStream::UnlockRegion with exactly the same
values for the libOffset, cb, and dwLockType parameters. The region must be unlocked before the stream
is released. Two adjacent regions cannot be locked separately and then unlocked with a single unlock
call.

See Also
IStream - Compound File Implementation, LOCKTYPE, IStream::LockRegion

IStream::Write

Writes a specified number from bytes into the stream object starting at the current seek pointer.

HRESULT Write(

 void const* pv, //Pointer to buffer from which stream is written

 ULONG cb, //Specifies the number of bytes to write

 ULONG * pcbWritten //Specifies the actual number of bytes written

);

Parameters
pv

[in] Points to the buffer from which the stream should be written.
cb

[in] The number of bytes of data to attempt to write into the stream.
pcbWritten

[out] Pointer to a location where this method writes the actual number of bytes written to the stream
object. The caller can set this pointer to NULL, in which case, this method does not provide the actual
number of bytes written.

Return Values
S_OK

The data was successfully written into the stream object.
E_PENDING

Asynchronous Storage only: Part or all of the data to be written is currently unavailable. For more
information see IFillLockBytes and Asynchronous Storage.

STG_E_MEDIUMFULL

The write operation was not completed because there is no space left on the storage device.
STG_E_ACCESSDENIED

The caller does not have sufficient permissions for writing this stream object.
STG_E_CANTSAVE

Data cannot be written for reasons other than no access or space.
STG_E_INVALIDPOINTER

One of the pointer values is invalid.
STG_E_REVERTED

The object has been invalidated by a revert operation above it in the transaction tree.
STG_E_WRITEFAULT

The write operation was not completed due to a disk error.

Remarks

IStream::Write writes the specified data to a stream object. The seek pointer is adjusted for the number
of bytes actually written. The number of bytes actually written is returned in the pcbWrite parameter. If the
byte count is zero bytes, the write operation has no effect.

If the seek pointer is currently past the end of the stream and the byte count is non-zero, this method
increases the size of the stream to the seek pointer and writes the specified bytes starting at the seek
pointer. The fill bytes written to the stream are not initialized to any particular value. This is the same as
the end-of-file behavior in the MS-DOS FAT file system.

With a zero byte count and a seek pointer past the end of the stream, this method does not create the fill
bytes to increase the stream to the seek pointer. In this case, you must call the IStream::SetSize method
to increase the size of the stream and write the fill bytes.

The pcbWrite parameter can have a value even if an error occurs.

In the OLE-provided implementation, stream objects are not sparse. Any fill bytes are eventually allocated
on the disk and assigned to the stream.

See Also
IStream - Compound File Implementation

IStream - Compound File Implementation
The IStream interface supports reading and writing data to stream objects. Stream objects contain the
data in a structured storage object, where storages provide the structure. Simple data can be written
directly to a stream, but most frequently, streams are elements nested within a storage object. They are
similar to standard files.

The specification of IStream defines more functionality that the OLE implementation supports. For
example, the IStream interface defines streams up to 264 bytes in length requiring a 64-bit seek pointer.
However, the OLE implementation only supports streams up to 232 bytes in length and read and write
operations are always limited to 232 bytes at a time. The OLE implementation also does not support
stream transactioning or region locking.

When you want to create a simple stream based on global memory, you can get an IStream pointer by
calling the API function CreateStreamOnHGlobal. To get an IStream pointer within a compound file
object, call either StgCreateDocfile or StgOpenStorage. These functions retrieve an IStorage pointer,
with which you can then call CreateStream/OpenStream for an IStream pointer. In either case, the same
IStream implementation code is used.

When to Use
Call the methods of IStream to read and write data to a stream.

Since stream objects can be marshaled to other processes, applications can share the data in storage
objects without having to use global memory. In the OLE compound file implementation of stream objects,
the custom marshaling facilities in OLE create a remote version of the original object in the new process
when the two processes have shared memory access. Thus, the remote version does not need to
communicate with the original process to carry out its functions.

The remote version of the stream object shares the same seek pointer as the original stream. If you do
not want to share the seek pointer, you should use the IStream::Clone method to provide a copy of the
stream object for the remote process.

Note If you are creating a stream object that is larger than the heap in your machine's memory and
you are using an HGLOBAL, the stream object calls GlobalRealloc internally whenever it needs
more memory. Because GlobalRealloc always copies data from the source to the destination,
increasing a stream object from 20M to 25M, for example, consumes immense amounts of time. This
is due to the size of the increments copied and is worsened if there is less than 45M of memory on
the machine because of disk swapping.

The preferred solution is to implement an IStream that uses memory allocated by VirtualAlloc
instead of GlobalAlloc. This can reserve a large chunk of virtual address space and then commit
memory within that address space as required. No data copying occurs and memory is committed
only as it is needed.

Another alternative is to call the IStream::SetSize method on the stream object to increase the
memory allocation in advance. This is not, however, as efficient as using VirtualAlloc as described
above.

Remarks
IStream::Read

Reads a specified number of bytes from the stream object into memory starting at the current seek
pointer. This implementation returns S_OK if the end of the stream was reached during the read.

(This is the same as the "end of file" behavior found in the MS-DOS FAT file system.
IStream::Write

Writes a specified number from bytes into the stream object starting at the current seek pointer. In this
implementation, stream objects are not sparse. Any fill bytes are eventually allocated on the disk and
assigned to the stream.

IStream::Seek

Changes the seek pointer to a new location relative to the beginning of the stream, to the end of the
stream, or to the current seek pointer.

IStream::SetSize

Changes the size of the stream object. In this implementation, there is no guarantee that the space
allocated will be contiguous

IStream::CopyTo

Copies a specified number of bytes from the current seek pointer in the stream to the current seek
pointer in another stream.

IStream::Commit

The compound file implementation of IStream supports opening streams only in direct mode, not
transacted mode. Therefore, the method has no effect when called other than to flush all memory
buffers to the next storage level.
In this implementation, it does not matter if you commit changes to streams, you need only commit
changes for storage objects.

IStream::Revert

This implementation does not support transacted streams, so a call to this method has no effect.
IStream::LockRegion

Range-locking is not supported by this implementation, so a call to this method has no effect.
IStream::UnlockRegion

Removes the access restriction on a range of bytes previously restricted with IStream::LockRegion.
IStream::Stat

Retrieves the STATSTG structure for this stream
IStream::Clone

Creates a new stream object with its own seek pointer that references the same bytes as the original
stream.

See Also
IStream, IStorage, CreateStreamOnHGlobal, StgCreateDocfile, StgOpenStorage

IUnknown

The IUnknown interface lets clients get pointers to other interfaces on a given object through the
QueryInterface method, and manage the existence of the object through the IUnknown::AddRef and
IUnknown::Release methods. All other COM interfaces are inherited, directly or indirectly, from
IUnknown. Therefore, the three methods in IUnknown are the first entries in the VTable for every
interface.

When to Implement
You must implement IUnknown as part of every interface. If you are using C++ multiple inheritance to
implement multiple interfaces, the various interfaces can share one implementation of IUnknown. If you
are using nested classes to implement multiple interfaces, you must implement IUnknown once for each
interface you implement.

When to Use
Use IUnknown methods to switch between interfaces on an object, add references, and release objects.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IUnknown::AddRef
The IUnknown::AddRef method increments the reference count for an interface on an object. It should
be called for every new copy of a pointer to an interface on a given object.

ULONG AddRef(void);

Return Value
Returns an integer from 1 to n, the value of the new reference count. This information is meant to be used
for diagnostic/testing purposes only, because, in certain situations, the value may be unstable.

Remarks
Objects use a reference counting mechanism to ensure that the lifetime of the object includes the lifetime
of references to it. You use IUnknown::AddRef to stabilize a copy of an interface pointer. It can also be
called when the life of a cloned pointer must extend beyond the lifetime of the original pointer. The cloned
pointer must be released by calling IUnknown::Release.

Objects must be able to maintain (2 (31))-1 outstanding pointer references. Therefore, the internal
reference counter that IUnknown::AddRef maintains must be a 32-bit unsigned integer.

Notes to Callers
Call this function for every new copy of an interface pointer that you make. For example, if you are
passing a copy of a pointer back from a function, you must call IUnknown::AddRef on that pointer. You
must also call IUnknown::AddRef on a pointer before passing it as an in-out parameter to a function; the
function will call IUnknown::Release before copying the out-value on top of it.

See Also
IUnknown::Release

IUnknown::QueryInterface

Returns a pointer to a specified interface on an object to which a client currently holds an interface
pointer. This function must call IUnknown::AddRef on the pointer it returns.

HRESULT QueryInterface(

 REFIID iid, //Identifier of the requested interface
 void ** ppvObject //Indirect pointer to the object
);

Parameters
iid

[in] Identifier of the interface being requested.
ppvObject

[out] Indirectly points to the interface specified in iid. If the object does not support the interface
specified in iid, *ppvObject is set to NULL.

Return Value
S_OK if the interface is supported, E_NOINTERFACE if not.

Remarks
The QueryInterface method gives a client access to other interfaces on an object.

For any one object, a specific query for the IUnknown interface on any of the object's interfaces must
always return the same pointer value. This allows a client to determine whether two pointers point to the
same component by calling QueryInterface on both and comparing the results. It is specifically not the
case that queries for interfaces (even the same interface through the same pointer) must return the same
pointer value.

There are four requirements for implementations of QueryInterface (In these cases, "must succeed"
means "must succeed barring catastrophic failure."):

· The set of interfaces accessible on an object through IUnknown::QueryInterface must be static, not
dynamic. This means that if a call to QueryInterface for a pointer to a specified interface succeeds
the first time, it must succeed again, and if it fails the first time, it must fail on all subsequent queries.

· It must be symmetric ¾ if a client holds a pointer to an interface on an object, and queries for that
interface, the call must succeed.

· It must be reflexive ¾ if a client holding a pointer to one interface queries successfully for another, a
query through the obtained pointer for the first interface must succeed.

· It must be transitive ¾ if a client holding a pointer to one interface queries successfully for a second,
and through that pointer queries successfully for a third interface, a query for the first interface
through the pointer for the third interface must succeed.

IUnknown::Release

Decrements the reference count for the calling interface on a object. If the reference count on the object
falls to 0, the object is freed from memory.

ULONG Release(void);

Return Value
Returns the resulting value of the reference count, which is used for diagnostic/testing purposes only. If
you need to know that resources have been freed, use an interface with higher-level semantics.

Remarks
If IUnknown::AddRef has been called on this object's interface n times and this is the n+1th call to
IUnknown::Release, the implementation of IUnknown::AddRef must cause the interface pointer to free
itself. When the released pointer is the only existing reference to an object (whether the object supports
single or multiple interfaces), the implementation must free the object.

Note Aggregation of objects restricts the ability to recover interface pointers.

Notes to Callers
Call this function when you no longer need to use an interface pointer. If you are writing a function that
takes an in-out parameter, call IUnknown::Release on the pointer you are passing in before copying the
out-value on top of it.

See Also
IUnknown::AddRef

IViewObject

The IViewObject interface enables an object to display itself directly without passing a data object to the
caller. In addition, this interface can create and manage a connection with an advise sink so the caller can
be notified of changes in the view object.

The caller can request specific representations and specific target devices. For example, a caller can ask
for either an object's content or an iconic representation. Also, the caller can ask the object to compose a
picture for a target device that is independent of the drawing device context. As a result, the picture can
be composed for one target device and drawn on another device context. For example, to provide a print
preview operation, you can compose the drawing for a printer target device but actually draw the
representation on the display.

The IViewObject interface is similar to IDataObject; except that IViewObject places a representation of
the data onto a device context while IDataObject places the representation onto a transfer medium.

Unlike most other interfaces, IViewObject cannot be marshaled to another process. This is because
device contexts are only effective in the context of one process.

When to Implement
Object handlers and in-process servers that manage their own presentations implement IViewObject for
use by compound document containers. OLE provides an IViewObject implementation for its default
object handler's cache.

When to Use
You call IViewObject from a container application if you need to draw a contained object on a specific
device context. For example, if you want to print the object to a printer, you call the Draw method in the
IViewObject interface.

Methods in VTable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IViewObject Methods Description
Draw Draws a representation of the object

onto a device context.
GetColorSet Returns the logical palette the object

uses for drawing.
Freeze Freezes the drawn representation of an

object so it will not change until a
subsequent Unfreeze.

Unfreeze Unfreezes the drawn representation of
an object.

SetAdvise Sets up a connection between the view
object and an advise sink so that the
advise sink can receive notifications of
changes in the view object.

GetAdvise Returns the information on the most

recent SetAdvise.

IViewObject::Draw

Draws a representation of an object onto the specified device context.

HRESULT Draw(

 DWORD dwAspect, //Aspect to be drawn
 LONG lindex, //Part of the object of interest in the draw operation
 void * pvAspect, //Pointer to DVASPECTINFO structure or NULL
 DVTARGETDEVICE * ptd, //Pointer to target device in a structure
 HDC hicTargetDev, //Information context for the target device
 HDC hdcDraw, //Device context on which to draw
 const LPRECTL lprcBounds, //Pointer to the rectangle in which the object is drawn
 const LPRECTL lprcWBounds, //Pointer to the window extent and window origin when drawing a metafile
 BOOL (*) (DWORD) pfnContinue, //Pointer to the callback function for canceling or continuing the drawing
 DWORD dwContinue //Value to pass to the callback function
);

Parameters
dwAspect

[in] Specifies the aspect to be drawn, that is, how the object is to be represented. Representations
include content, an icon, a thumbnail, or a printed document. Valid values are taken from the
enumerations DVASPECT and DVASPECT2. Note that newer objects and containers that support
optimized drawing interfaces support the DVASPECT2 enumeration values. Older objects and
containers that do not support optimized drawing interfaces may not support DVASPECT2.
Windowless objects allow only DVASPECT_CONTENT, DVASPECT_OPAQUE, and
DVASPECT_TRANSPARENT.

lindex

[in] Portion of the object that is of interest for the draw operation. Its interpretation varies depending
on the value in the dwAspect parameter. See the DVASPECT enumeration for more information.

pvAspect

[in] Pointer to additional information in a DVASPECTINFO structure that enables drawing
optimizations depending on the aspect specified. Note that newer objects and containers that support
optimized drawing interfaces support this parameter as well. Older objects and containers that do not
support optimized drawing interfaces always specify NULL for this parameter.

ptd

[in] Pointer to the DVTARGETDEVICE structure that describes the device for which the object is to be
rendered. If NULL, the view should be rendered for the default target device (typically the display). A
value other than NULL is interpreted in conjunction with hicTargetDev and hdcDraw. For example, if
hdcDraw specifies a printer as the device context, the ptd parameter points to a structure describing
that printer device. The data may actually be printed if hicTargetDev is a valid value or it may be
displayed in print preview mode if hicTargetDev is NULL.

hicTargetDev

[in] Information context for the target device indicated by the ptd parameter from which the object can
extract device metrics and test the device's capabilities. If ptd is NULL; the object should ignore the
value in the hicTargetDev parameter.

hdcDraw

[in] Device context on which to draw. For a windowless object, the hdcDraw parameter should be in
MM_TEXT mapping mode with its logical coordinates matching the client coordinates of the
containing window. For a windowless object, the device context should be in the same state as the
one normally passed by a WM_PAINT message.

lprcBounds

[in] Pointer to a RECTL structure specifying the rectangle on hdcDraw and in which the object should
be drawn. This parameter controls the positioning and stretching of the object. This parameter should
be NULL to draw a windowless in-place active object. In every other situation, NULL is not a legal
value and should result in an E_INVALIDARG error code. If the container passes a non-NULL value
to a windowless object, the object should render the requested aspect into the specified device
context and rectangle. A container can request this from a windowless object to render a second, non-
active view of the object or to print the object.

lprcWBounds

[in] If hdcDraw is a metafile device context, pointer to a RECTL structure specifying the bounding
rectangle in the underlying metafile. The rectangle structure contains the window extent and window
origin. These values are useful for drawing metafiles. The rectangle indicated by lprcBounds is nested
inside this lprcWBounds rectangle; they are in the same coordinate space.
If hdcDraw is not a metafile device context; lprcWBounds will be NULL.

pfnContinue

[in] Pointer to a callback function that the view object should call periodically during a lengthy drawing
operation to determine whether the operation should continue or be canceled. This function returns
TRUE to continue drawing. It returns FALSE to stop the drawing in which case IViewObject::Draw
returns DRAW_E_ABORT.

dwContinue

[in] Value to pass as a parameter to the function pointed to by the pfnContinue parameter. Typically,
dwContinue is a pointer to an application-defined structure needed inside the callback function.

Return Values
This method supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

The object was drawn successfully.
OLE_E_BLANK

No data to draw from.
DRAW_E_ABORT

Draw operation aborted.
VIEW_E_DRAW

Error in drawing.
DV_E_LINDEX

Invalid value for lindex; currently only -1 is supported.
DV_E_DVASPECT

Invalid value for dwAspect.
OLE_E_INVALIDRECT

Invalid rectangle.

Remarks
A container application issues a call to IViewObject::Draw to create a representation of a contained
object. This method draws the specified piece (lindex) of the specified view (dwAspect and pvAspect) on
the specified device context (hdcDraw). Formatting, fonts, and other rendering decisions are made on the
basis of the target device specified by the ptd parameter.

There is a relationship between the dwDrawAspect value and the lprcbounds value. The lprcbounds value
specifies the rectangle on hdcDraw into which the drawing is to be mapped. For
DVASPECT_THUMBNAIL, DVASPECT_ICON, and DVASPECT_SMALLICON, the object draws
whatever it wants to draw, and it maps it into the space given in the best way. Some objects might scale
to fit while some might scale to fit but preserve the aspect ratio. In addition, some might scale so the
drawing appears at full width, but the bottom is cropped. The container can suggest a size via
IOleObject::SetExtent, but it has no control over the rendering size. In the case of
DVASPECT_CONTENT, the Draw implementation should either use the extents given by
IOleObject::SetExtent or use the bounding rectangle given in the lprcBounds parameter.

For newer objects that support optimized drawing techniques and for windowless objects, this method
should be used as follows:

· New drawing aspects are supported in dwAspect as defined in DVASPECT2.
· The pvAspect parameter can be used to pass additional information allowing drawing optimizations

through the DVASPECTINFO structure.
· The Draw method can be called to redraw a windowless in-place active object by setting the

lrpcBounds parameter to NULL. In every other situation, NULL is an illegal value and should result in
an E_INVALIDARG error code. A windowless object uses the rectangle passed by the activation verb
or calls IOleInPlaceSite::SetObjectRects instead of using this parameter. If the container passes a
non-NULL value to a windowless object, the object should render the requested aspect into the
specified device context and rectangle. A container can request this from a windowless object to
render a second, non-active view of the object or to print the object. See the
IOleInPlaceSiteWindowless interface for more information on drawing windowless objects.

· For windowless objects, the dwAspect parameter only allows the DVASPECT_CONTENT,
DVASPECT_OPAQUE, and DVASPECT_TRANSPARENT aspects.

· For a windowless object, the hdcDraw parameter should be in MM_TEXT mapping mode with its
logical coordinates matching the client coordinates of the containing window. For a windowless object,
the device context should be in the same state as the one normally passed by a WM_PAINT
message.

To maintain compatibility with older objects and containers that do not support drawing optimizations, all
objects, rectangular or not, are required to maintain an origin and a rectangular extent. This allows the
container to still consider all its embedded objects as rectangles and to pass them appropriate rendering
rectangles in IViewObjectEx::Draw.

An object's extent depends on the drawing aspect. For non-rectangular objects, the extent should be the
size of a rectangle covering the entire aspect. By convention, the origin of an object is the top-left corner
of the rectangle of the DVASPECT_CONTENT aspect. In other words, the origin always coincides with
the top-left corner of the rectangle maintained by the object's site, even for a non-rectangular object.

Note to Callers
The value of hicTargetDevice is typically an information context for the target device. However, it may be
a full device context instead.

Note to Implementers
If you are writing an object handler (such as the default handler) that implements IViewObject::Draw by
playing a metafile, you have to treat SetPaletteEntries metafile records in a special way because of
Windows' behavior. The Windows function PlayMetaFile sets these palette entries to the foreground. You
must override this default by setting them to the background palette. Use EnumMetaFile to do this.
Enhanced metafiles are always recorded with the background palette so there is no need to do it
manually.

See Also
DVASPECT, DVASPECT2, DVASPECTINFO, IOleInPlaceSiteWindowless, OleDraw

IViewObject::Freeze

Freezes a certain aspect of the object's presentation so that it does not change until the
IViewObject::Unfreeze method is called. The most common use of this method is for banded printing.

HRESULT Freeze(

 DWORD dwAspect, //How the object is to be represented
 LONG lindex, //Part of the object of interest in the draw operation
 void * pvAspect, //Always NULL
 DWORD * pdwFreeze //Points to location containing an identifying key
);

Parameters
dwAspect

[in] Specifies how the object is to be represented. Representations include content, an icon, a
thumbnail, or a printed document. Valid values are taken from the enumeration DVASPECT. See the
DVASPECT enumeration for more information.

lindex

[in] Portion of the object that is of interest for the draw operation. Its interpretation varies with
dwAspect. See the DVASPECT enumeration for more information.

pvAspect

[in] Pointer to additional information about the view of the object specified in dwAspect. Since none of
the current aspects support additional information, pvAspect must always be NULL.

pdwFreeze

[out] Pointer to where an identifying DWORD key is returned. This unique key is later used to cancel
the freeze by calling IViewObject::Unfreeze. This key is an index that the default cache uses to keep
track of which object is frozen.

Return Values
S_OK

The presentation was successfully frozen.
VIEW_S_ALREADYFROZEN

Presentation has already been frozen. The value of pdwFreeze is the identifying key of the already
frozen object.

OLE_E_BLANK

Presentation not in cache.
DV_E_LINDEX

Invalid value for lindex; currently; only -1 is supported.
DV_E_DVASPECT

Invalid value for dwAspect.

Remarks
The IViewObject::Freeze method causes the view object to freeze its drawn representation until a
subsequent call to IViewObject::Unfreeze releases it. After calling IViewObject::Freeze, successive
calls to IViewObject::Draw with the same parameters produce the same picture until
IViewObject::Unfreeze is called.

IViewObject::Freeze is not part of the persistent state of the object and does not continue across
unloads and reloads of the object.

The most common use of this method is for banded printing.

While in a frozen state, view notifications are not sent. Pending view notifications are deferred to the
subsequent call to IViewObject::Unfreeze.

See Also
DVASPECT, IViewObject::Unfreeze

IViewObject::GetAdvise

Retrieves the existing advisory connection on the object if there is one. This method simply returns the
parameters used in the most recent call to the IViewObject::SetAdvise method.

HRESULT GetAdvise(

 DWORD * pdwAspect, //Pointer to where dwAspect parameter from previous SetAdvise call is
returned

 DWORD * padvf, //Pointer to where advf parameter from previous SetAdvise call is returned
 IAdviseSink ** ppAdvSink //Indirect pointer to interface on an advise sink
);

Parameters
pdwAspect

[out] Pointer to where the dwAspect parameter from the previous SetAdvise call is returned. If this
pointer is NULL, the caller does not permit this value to be returned.

padvf

[out] Pointer to where the advf parameter from the previous SetAdvise call is returned. If this pointer
is NULL, the caller does not permit this value to be returned.

ppAdvSink

[out] Indirect pointer to an IAdviseSink interface on an advise sink. The connection to this advise sink
must have been established with a previous SetAdvise call, which provides the pAdvSink parameter.
If this pointer is NULL, there is no established advisory connection.

Return Values
This method supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

The existing advisory connection was retrieved.

See Also
ADVF, IAdviseSink, IViewObject::SetAdvise

IViewObject::GetColorSet
Returns the logical palette that the object will use for drawing in its IViewObject::Draw method with the
corresponding parameters.

HRESULT GetColorSet(

 DWORD dwAspect, //How the object is to be represented
 LONG lindex, //Part of the object of interest in the draw operation
 void * pvAspect, //Always NULL
 DVTARGETDEVICE * ptd, //Pointer to target device in a structure
 HDC hicTargetDev, //Information context for the target device
 LOGPALETTE ** ppColorSet //Indirect pointer to a structure
);

Parameters
dwAspect

[in] Specifies how the object is to be represented. Representations include content, an icon, a
thumbnail, or a printed document. Valid values are taken from the enumeration DVASPECT. See the
DVASPECT enumeration for more information.

lindex

[in] Portion of the object that is of interest for the draw operation. Its interpretation varies with
dwAspect. See the DVASPECT enumeration for more information.

pvAspect

[in] Pointer to additional information about the view of the object specified in dwAspect. Since none of
the current aspects support additional information, pvAspect must always be NULL.

ptd

[in] Pointer to the DVTARGETDEVICE structure that describes the device for which the object is to be
rendered. If NULL, the view should be rendered for the default target device (typically the display). A
value other than NULL is interpreted in conjunction with hicTargetDev and hdcDraw. For example, if
hdcDraw specifies a printer as the device context, ptd points to a structure describing that printer
device. The data may actually be printed if hicTargetDev is a valid value or it may be displayed in print
preview mode if hicTargetDev is NULL.

hicTargetDev

[in] Information context for the target device indicated by the ptd parameter from which the object can
extract device metrics and test the device's capabilities. If ptd is NULL, the object should ignore the
hicTargetDev parameter.

ppColorSet

[out] Indirect pointer to where a LOGPALETTE structure is returned. The LOGPALETTE structure
contains the set of colors that would be used if IViewObject::Draw were called with the same
parameters for dwAspect, lindex, pvAspect, ptd, and hicTargetDev. A NULL pointer to the
LOGPALETTE structure means that the object does not use a palette.

Return Values
This method supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the

following:

S_OK

The set of colors was returned successfully.
S_FALSE

Set of colors is empty or the object will not give out the information.
OLE_E_BLANK

No presentation data for object.
DV_E_LINDEX

Invalid value for lindex; currently only -1 is supported.
DV_E_DVASPECT

Invalid value for dwAspect.

Remarks
The IViewObject::GetColorSet method recursively queries any nested objects and returns a color set
that represents the union of all colors requested. The color set eventually percolates to the top-level
container that owns the window frame. This container can call IViewObject::GetColorSet on each of its
embedded objects to obtain all the colors needed to draw the embedded objects. The container can use
the color sets obtained in conjunction with other colors it needs for itself to set the overall color palette.

The OLE-provided implementation of IViewObject::GetColorSet looks at the data it has on hand to draw
the picture. If CF_DIB is the drawing format, the palette found in the bitmap is used. For a regular bitmap,
no color information is returned. If the drawing format is a metafile, the object handler enumerates the
metafile looking for a CreatePalette metafile record. If one is found, the handler uses it as the color set.

Note to Implementers
Object applications that rely on the default handler for drawing and that use metafiles for doing so should
provide a SetPaletteEntries record when they generate their metafiles. If a SetPaletteEntries record is not
found, the default object handler returns S_FALSE.

See Also
DVASPECT

IViewObject::SetAdvise

Sets up a connection between the view object and an advise sink so that the advise sink can be notified
about changes in the object's view.

HRESULT SetAdvise(

 DWORD dwAspect, //View for which notification is being requested
 DWORD advf, //Information about the advise sink
 IAdviseSink * pAdvSink //Pointer to the advise sink that is to receive change notifications
);

Parameters
dwAspect

[in] View for which the advisory connection is being set up. Valid values are taken from the
enumeration DVASPECT. See the DVASPECT enumeration for more information.

advf

[in] Contains a group of flags for controlling the advisory connection. Valid values are from the
enumeration ADVF. However, only some of the possible ADVF values are relevant for this method.
The following table briefly describes the relevant values. See the ADVF enumeration for a more
detailed description.

ADVF Value Description
ADVF_ONLYONCE Causes the advisory connection

to be destroyed after the first
notification is sent.

ADVF_PRIMEFIRST Causes an initial notification to be
sent regardless of whether data
has changed from its current
state.

Note that the ADVF_ONLYONCE and ADVF_PRIMEFIRST can be combined to provide an
asynchronous call to IDataObject::GetData.

pAdvSink

[out] Pointer to the IAdviseSink interface on the advisory sink that is to be informed of changes. A
NULL value deletes any existing advisory connection.

Return Values
This method supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

The advisory connection was successfully established.
OLE_E_ADVISENOTSUPPORTED

Advisory notifications are not supported.
DV_E_DVASPECT

Invalid value for dwAspect.

Remarks
A container application that is requesting a draw operation on a view object can also register with the
IViewObject::SetAdvise method to be notified when the presentation of the view object changes. To find
out about when an object's underlying data changes, you must call IDataObject::DAdvise separately.

To remove an existing advisory connection, call the IViewObject::SetAdvise method with pAdvSink set
to NULL.

If the view object changes, a call is made to the appropriate advise sink through its
IAdviseSink::OnViewChange method.

At any time, a given view object can support only one advisory connection. Therefore, when
IViewObject::SetAdvise is called and the view object is already holding on to an advise sink pointer,
OLE releases the existing pointer before the new one is registered.

See Also
ADVF, IAdviseSink, IViewObject::GetAdvise

IViewObject::Unfreeze

Releases a previously frozen drawing. The most common use of this method is for banded printing.

HRESULT Unfreeze(

 DWORD dwFreeze //Contains key that determines view object to unfreeze
);

Parameter
dwFreeze

[in] Contains a key previously returned from IViewObject::Freeze that determines which view object
to unfreeze.

Return Values
S_OK

The drawing was unfrozen successfully.
OLE_E_NOCONNECTION

Error in the unfreezing process or the object is currently not frozen.

See Also
IViewObject::Freeze

IViewObject2

The IViewObject2 interface is an extension to the IViewObject interface which returns the size of the
drawing for a given view of an object. You can prevent the object from being run if it isn't already running
by calling this method instead of IOleObject::GetExtent.

Like the IViewObject interface, IViewObject2 cannot be marshaled to another process. This is because
device contexts are only effective in the context of one process.

The OLE-provided default implementation provides the size of the object in the cache.

When to Implement
Object handlers and in-process servers that manage their own presentations implement IViewObject2 for
use by compound document containers.

When to Use
A container application or object handler calls the GetExtent method in the IViewObject2 interface to get
the object's size from its cache.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IViewObject Methods Description
Draw Draws a representation of the

object onto a device context.
GetColorSet Returns the logical palette the

object uses for drawing.
Freeze Freezes the drawn representation

of an object so it will not change
until a subsequent Unfreeze.

Unfreeze Unfreezes the drawn representation
of an object.

SetAdvise Sets up a connection between the
view object and an advise sink so
that the advise sink can receive
notifications of changes in the view
object.

GetAdvise Returns the information on the most
recent SetAdvise.

IViewObject2 Method Description
GetExtent Returns the size of the view object

from the cache.

IViewObject2::GetExtent
Returns the size that the specified view object will be drawn on the specified target device.

HRESULT GetExtent(

 DWORD dwAspect, //View object for which the size is being requested
 DWORD lindex, //Part of the object to draw
 DVTARGETDEVICE ptd, //Pointer to the target device in a structure
 LPSIZEL lpsizel //Pointer to size of object
);

Parameters
dwAspect

[in] Requested view of the object whose size is of interest. Valid values are taken from the
enumerations DVASPECT and from DVASPECT2. Note that newer objects and containers that
support optimized drawing interfaces support the DVASPECT2 enumeration values. Older objects
and containers that do not support optimized drawing interfaces may not support DVASPECT2.

lindex

[in] Portion of the object that is of interest. Currently only -1 is valid.
ptd

[in] Pointer to the DVTARGETDEVICE structure defining the target device for which the object's size
should be returned.

lpsizel

[out] Pointer to where the object's size is returned.

Return Values
This method supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The object's extent was successfully returned.
OLE_E_BLANK

An appropriate cache is not available.

Remarks
The OLE-provided implementation of IViewObject2::GetExtent searches the cache for the size of the
view object.

The GetExtent method in the IOleObject interface provides some of the same information as
IViewObject2::GetExtent.

Note This method must return the same size as DVASPECT_CONTENT for all the new aspects in
DVASPECT2. IOleObject::GetExtent must do the same thing.

If one of the new aspects is requested in dwAspect, this method can either fail or return the same
rectangle as for the DVASPECT_CONTENT aspect.

Note to Callers
To prevent the object from being run if it isn't already running, you can call IViewObject2::GetExtent
rather than IOleObject::GetExtent to determine the size of the presentation to be drawn.

See Also
DVASPECT, DVASPECT2, IOleObject::GetExtent, IViewObject

IViewObjectEx

The IViewObjectEx interface is an extension derived from IViewObject2 to provide support for:

· enhanced, flicker-free drawing for non-rectangular objects and transparent objects
· hit testing for non-rectangular objects
· control sizing

Flicker free drawing
Containers can now choose between a variety of drawing algorithms, depending on their sophistication
and the situation.

Flicker is created by redrawing the background before letting an object redraw its foreground as in the
back to front drawing algorithm known as the Painter's Algorithm. There are essentially two ways to avoid
flickering:

· Draw into an offscreen bitmap and then copy the resulting image to the screen in one chunk. This
technique might require significant additional resources to store the offscreen image, depending on
the size of the region to drawn, the resolution, and the number of colors.

· Draw front to back, instead of back to front, excluding each rectangular area from the clipping region
as soon as its has been painted. One benefit of this technique is that each pixel is painted only once.
Speed depends essentially on the performance of the clipping support.

Each technique has advantages and disadvantages, depending on the specific situation. There is no
single algorithm that is most efficient in all situations. Depending on the situation and their sophistication,
containers may choose to use one or another, or a mix of both. The IViewObjectEx interface provides
methods to support both techniques or a mixture of the two. Simple containers can implement a simplistic
back to front painting algorithm directly to the screen. The speed is likely to be high but so will flicker. If
flicker is to be reduced to a minimum, painting to an off-screen device context is the solution of choice. If
memory consumption is a problem, containers can use clipping to reduce the use of off screen bitmaps.

To draw as flicker-free as possible without using an offscreen bitmap, the container will have to paint in
two passes. The first pass is done front to back. During that pass, each object draws regions of itself that
are cheap enough to clip out efficiently and that it can entirely obscure. These regions are known as
opaque. After each object is done, the container clips out the regions just painted to ensure that
subsequent objects will not modify the bits on the screen.

During the second pass, which occurs back to front, each object draws its remaining parts - irregular,
oblique or in general difficult to clip out, such as text on transparent background. Such parts are known as
transparent. At this point, the container is responsible for clipping out any opaque, already painted regions
in front of the object currently drawing. The less painting during this second pass, the less flicker on the
screen.

Clipping during the second pass may be very inefficient, since the clipping region needs to be recreated
for every object that has something to draw. This might be acceptable if not too many overlapping objects
have irregular or transparent parts. An object can tell its container ahead of time whether it wants to be
called during this second pass or not.

If the container provides an offscreen bitmap to paint into, then it can skip the first pass and ask every
object to render itself entirely during the second pass. In certain cases, the container may also decide
than flicker is not a problem and use that same technique while painting directly on screen. For example,
flicker might be acceptable when painting a form for the first time, but not when repainting.

Note Although documented here two pass drawing is not currently utilized by any containers.

Hit testing for non-rectangular objects
The IViewEx interface supports hit detection for non-rectangular objects. Using the QueryHitPoint and
QueryHitRect methods, the object can participate in the hit-test logic with the container.

Control Sizing
The IViewEx interface allows controls to provide sizing hints as the user resizes the control. The control
can specify a minimum and maximum size and can specify the nearest good size to a size requested by
the user.

When to Implement
Implement this interface on objects that need to support efficient flicker-free drawing, non-rectangular hit
testing, or control sizing. This interface is derived from the IViewObject2 interface which, in turn, is
derived from IViewObject.

All IViewObjectEx methods described in this document that take or return a position assume that the
location is expressed in HIMETRIC units relative to the origin of the object.

When to Use
Containers call the methods of this interface to draw objects in an efficient, flicker free manner, test
whether points or rectangles are within the object, or to resize controls.

Methods in Vtable Order
IUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IViewObject Methods Description
Draw Draws a representation of the

object onto a device context.
GetColorSet Returns the logical palette the

object uses for drawing.
Freeze Freezes the drawn representation

of an object so it will not change
until a subsequent Unfreeze.

Unfreeze Unfreezes the drawn representation
of an object.

SetAdvise Sets up a connection between the
view object and an advise sink so
that the advise sink can receive
notifications of changes in the view
object.

GetAdvise Returns the information on the most
recent SetAdvise.

IViewObject2 Method Description

GetExtent Returns the size that the specified
view object will be drawn on the
specified target device.

IViewObjectEx Methods Description
GetRect Returns a rectangle describing a

requested drawing aspect.
GetViewStatus Returns information about the

opacity of the object, and what
drawing aspects are supported.

QueryHitPoint Indicates whether a point is within a
given aspect of an object.

QueryHitRect Indicates whether any point in a
rectangle is within a given drawing
aspect of an object.

GetNaturalExtent Provides sizing hints from the
container for the object to use as the
user resizes it.

See Also
IViewObject2

IViewObjectEx::GetNaturalExtent

Provides sizing hints from the container for the object to use as the user resizes it.

HRESULT GetNaturalExtent(

 DWORD dwAspect, //Requested drawing aspect
 LONG lindex, //Portion of object for draw operation
 DVTARGETDEVICE* ptd, //Pointer to structure describing target device
 HDC hicTargetDev, //Information context for ptd
 DVEXTENTINFO*
pExtentInfo,

//Structure specifying sizing data

 LPSIZEL* pSizel, //Pointer to sizing data returned by object
);

Parameters
dwAspect

[in] Requested drawing aspect. It can be any of the values from the DVASPECT enumeration.
lindex

[in] Indicates the portion of the object that is of interest for the draw operation. Its interpretation varies
depending on the value in the dwAspect parameter. See the DVASPECT enumeration for more
information.

ptd

[in] Pointer to the target device structure that describes the device for which the object is to be
rendered. If NULL, the view should be rendered for the default target device (typically the display). A
value other than NULL is interpreted in conjunction with hicTargetDev and hdcDraw. For example, if
hdcDraw specifies a printer as the device context, the ptd parameter points to a structure describing
that printer device. The data may actually be printed if hicTargetDev is a valid value or it may be
displayed in print preview mode if hicTargetDev is NULL.

hicTargetDev

[in] Specifies the information context for the target device indicated by the ptd parameter from which
the object can extract device metrics and test the device's capabilities. If ptd is NULL; the object
should ignore the value in the hicTargetDev parameter.

pExtentInfo

[in] Pointer to DVEXTENTINFO structure that specifies the sizing data.
pSizel

[out] Pointer to sizing data returned by the object. The returned sizing data is set to -1 for any
dimension that was not adjusted. That is if cx is -1 then the width was not adjusted, if cy is -1 then the
height was not adjusted. If E_FAIL is returned indicating no size was adjusted then psizel may be
NULL.

Return Values
S_OK

The sizing hints were successfully returned.

E_FAIL

This method is not implemented for the specified dwAspect, or the size was not adjusted.
E_NOTIMPL

This method was not implemented.

Remarks
There are two general approaches to sizing a control. The first approach gives the control responsibility
for sizing itself; the second approach gives the container responsibility for sizing the control. The first
approach is called autosizing. There are two alternatives involved in the second approach: content sizing
and integral sizing.

The IViewObjectEx::GetNaturalExtent method supports both content and integral sizing. In content
sizing, the container passes the DVEXTENTINFO structure to the object into which the object returns a
suggested size. In integral sizing, the container passes a preferred size to the object in DVEXTENTINFO,
and the object actually adjusts its height. Integral sizing is used when the user rubberbands a new size in
design mode.

Autosizing typically occurs with objects such as the Label control which resizes if the autosize property
was enabled and the associated text changed. Autosizing is handled differently depending on the state of
the object.

If the object is inactive, the following occurs:

1. The object calls IOleClientSite::RequestNewObjectLayout.
2. The container calls IOleObject::GetExtent and retrieves the new extents
3. The container calls IOleObject::SetExtent and adjusts the new extents.

If the object is active, the following occurs:

1. The object calls IOleInPlaceSite::OnPosRectChange to specify that it requires resizing.
2. The container calls IOleInPlaceObject::SetObjectRects and specifies the new size.

The values of the dwAspect parameter can be one of the following DVASPECT enumeration values:

DVASPECT_CONTENT

Provide a representation of the control so it can be displayed as an embedded object inside of a
container. This value is typically specified for compound document objects. The presentation can be
provided for the screen or printer.

DVASPECT_DOCPRINT

Provide a representation of the control on the screen as though it were printed to a printer using the
Print command from the File menu. The described data may represent a sequence of pages..

DVASPECT_ICON

Provide an iconic representation of the control.
DVASPECT_THUMBNAIL

Provide a thumbnail representation of an object so it can be displayed in a browsing tool. The
thumbnail is approximately a 120 by 120 pixel, 16-color (recommended) device-independent bitmap
potentially wrapped in a metafile.

See Also
DVASPECT, DVEXTENTINFO, IOleClientSite::RequestNewObjectLayout,
IOleInPlaceObject::SetObjectRects, IOleInPlaceSite::OnPosRectChange, IOleObject::GetExtent,
IOleObject::SetExtent,

IViewObjectEx::GetRect
Returns a rectangle describing a requested drawing aspect.

HRESULT GetRect(

 DWORD dwAspect, //Requested drawing aspect
 LPRECTL pRect //Pointer to the rectangle
);

Parameters
dwAspect

[in] Drawing aspect requested.
pRect

[out] Pointer to the rectangle describing the requested drawing aspect.

Return Values
S_OK

The rectangle was successfully returned.
DV_E_DVASPECT

The method does not support the specified aspect. Either the object does not support the aspect
requested or the aspect is not rectangular.

Remarks
This method returns a rectangle describing the specified drawing aspect. The returned rectangle is in
HIMETRIC units, relative to the object's origin. The rectangle returned depends on the drawing aspect as
follows:

DVASPECT_CONTENT

Objects should return the bounding rectangle of the whole object. The top-left corner is at the object's
origin and the size is equal to the extent returned by IViewObject2::GetExtent.

DVASPECT_OPAQUE

Objects with a rectangular opaque region should return that rectangle. Others should fail and return
error code DV_E_DVASPECT.
If a rectangle is returned, it is guaranteed to be completely obscured by calling IViewObject::Draw
for that aspect. The container should use that rectangle to clip out the object's opaque parts before
drawing any object behind it during the back to front pass. If this method fails on an object with a non-
rectangular opaque region, the container should draw the entire object in the back to front part using
the DVASPECT_CONTENT aspect.

DVASPECT_TRANSPARENT

Objects should return the rectangle covering all transparent or irregular parts. If the object does not
have any transparent or irregular parts, it may return DV_E_ASPECT. A container may use this
rectangle to determine whether there are other objects overlapping the transparent parts of a given
object.

IViewObjectEx::GetViewStatus

Returns information about the opacity of the object, and what drawing aspects are supported.

HRESULT GetViewStatus(

 DWORD* pdwStatus, //Pointer to the view status
);

Parameters
pdwStatus

[out] Pointer to the view status. This information is returned as a combination of the VIEWSTATUS
enumeration values.

Return Values
S_OK

The view status was successfully returned. This method should never fail or return an error code.

Remarks
In order to optimize the drawing process, the container needs to be able to determine whether an object is
opaque and whether it has a solid background. It is not necessary to redraw objects that are entirely
covered by a completely opaque object. Other operations, such as scrolling for example, can also be
highly optimized if an object is opaque and has a solid background.

The IViewObjectEx::GetViewStatus method returns whether the object is entirely opaque or not
(VIEWSTATUS_OPAQUE bit) and whether its background is solid (VIEWSTATUS_SOLIDBKGND bit).
This information may change in time. An object may be opaque at a given time and become totally or
partially transparent later on, for example, because of a change of the BackStyle property. An object
should notify its sites when it changes using IAdviseSinkEx::OnViewStatusChange so the sites can
cache this information for high speed access.

Objects not supporting IViewObjectEx are considered to be always transparent.

The IViewObjectEx::GetViewStatus method also returns a combination of bits indicating which aspects
are supported.

If a given drawing aspect is not supported, all IViewObjectEx methods taking a drawing aspect as an
input parameter should fail and return E_INVALIDARG. The IViewObjectEx::GetViewStatus method
allows the container to get back information about all drawing aspects in one quick call. Normally the set
of supported drawing aspects should not change with time. However, if this was not the case, an object
should notify its container using IAdviseSinkEx::OnViewStatusChange.

Which drawing aspects are supported is independent of whether the object is opaque, partially
transparent, or totally transparent. In particular, a transparent object that does not support
DVASPECT_TRANSPARENT should be drawn correctly during the back to front pass using
DVASPECT_CONTENT. However, this is likely to result in more flicker.

See Also
IAdviseSinkEx::OnViewStatusChange, VIEWSTATUS

IViewObjectEx::QueryHitPoint
Indicates whether a point is within a given aspect of an object.

HRESULT QueryHitPoint(

 DWORD dwAspect, //Requested drawing aspect
 LPRECT pRectBounds, //Object bounding rectangle
 POINTL ptlLoc, //Hit location
 LONG lCloseHint, //Suggested distance considered close
 DWORD* pHitResult //Pointer to returned hit information
);

Parameters
dwAspect

[in] Requested drawing aspect.
pRectBounds

[in] Object bounding rectangle in client coordinates of the containing window. This rectangle is
computed and passed by the container so that the object can meaningfully interpret the hit location.

ptlLoc

[in] Hit location in client coordinates of the containing window.
lCloseHint

[in] Suggested distance in HIMETRIC units that the container considers close. This value is a hint,
and objects can interpret it in their own way. Objects can also use this hint to roughly infer output
resolution to choose expansiveness of hit test implementation.

pHitResult

[out] Pointer to returned information about the hit expressed as the HITRESULT enumeration values.

Return Values
S_OK

The hit information was successfully returned in pHitResult.
E_FAIL

This method is not implemented for the requested aspect. Use DVASPECT_CONTENT instead.

Remarks
To support hit detection on non-rectangular objects, the container needs a reliable way to ask an object
whether or not a given location is inside one of its drawing aspects. This function is provided by
IViewObjectEx::QueryHitPoint.

Note that since this method is part of the IViewObjectEx interface, the container can figure whether an
mouse hit is over an object without having to necessarily launch the server. If the hit happens to be inside
the object, then it is likely that the object will be in-place activated and the server started.

Typically, the container first quickly determines whether a given location is within the rectangular extent of
an object. If the location is within the rectangular extent of an object, the container calls
IViewObjectEx::QueryHitPoint to get confirmation that the location is actually inside the object. The hit
location is passed in client coordinates of the container window. Since the object may be inactive when
this method is called, the bounding rectangle of the object in the same coordinate system is also passed
to this method, similarly to what happens in IPointerInactive::OnInactiveSetCursor.

Possible returned values include:

· outside, on a transparent region
· close enough to be considered a hit (may be used by small or thin objects)
· hit

QueryHitPoint is not concerned by the sub-objects of the object it is called for. It merely indicates
whether the mouse hit was within the object or not.

QueryHitPoint can be called for any of the drawing aspects an object supports. It should fail if the it is not
supported for the requested drawing aspect.

Transparent objects may wish to implement a complex hit-detection mechanism where the user can
select either the transparent object or an object behind it, depending on where exactly the click happens
inside the object. For example, a transparent TextBox showing big enough text may let the user select the
object behind, for example, a bitmap, when the user clicks between the characters. For this reason, the
information returned by QueryHitPoint includes indication about whether the hit happens on an opaque
or transparent region.

An example of non-rectangular and transparent hit detection is a transparent circle control with an object
behind it (a line in the example below):

{ewc msdncd, EWGraphic, bsd23522 0 /a "SDK.WMF"}

The values shown are for hit tests against the circle; gray regions are not part of the control, but are
shown here to indicate an area around the image considered close. Each object implements its own
definition of close but is assisted by a hint provided by the container so that closeness can be adjusted as
images zoom larger or smaller.

In the picture above, the points marked "Hit", "Close" and "Transparent" would all be hits of varying
strength on the circle, with the exception of the one marked "Transparent, (but for the line, close)." This
illustrates the effect of the different strength of hits. Since the circle responds "transparent" while the line
claims "close," and transparent is weaker than close, the line takes the hit.

Note to Implementers
An object supporting IViewObjectEx is required to implement this method at least for the
DVASPECT_CONTENT aspect. The object should not take any other action in response to this method
other than to return the information; there should be no side-effects.

See Also
IPointerInactive::OnInactiveSetCursor, HITRESULT

IViewObjectEx::QueryHitRect
Indicates whether any point in a rectangle is within a given drawing aspect of an object.

HRESULT QueryHitRect(

 DWORD dwAspect, //Requested drawing aspect
 LPRECT pRectBounds, //Object bounding rectangle
 LPRECT pRectLoc, //Hit location
 LONG lCloseHint, //Suggested distance considered close
 DWORD* pHitResult //Pointer to returned hit information
);

Parameters
dwAspect

[in] Requested drawing aspect.
pRectBounds

[in] Object bounding rectangle in client coordinates of the containing window. This rectangle is
computed and passed by the container so that the object can meaningfully interpret the hit location.

pRectLoc

[in] Hit test rectangle in specified in HIMETRIC units, relative to the top-left corner of the object.
lCloseHint

[in] Suggested distance in HIMETRIC units that the container considers close. This value is a hint,
and objects can interpret it in their own way. Objects can also use this hint to roughly infer output
resolution to choose expansiveness of hit test implementation.

pHitResult

[out] Pointer to returned information about the hit expressed as the HITRESULT enumeration values.

Return Values
S_OK

The hit information was successfully returned in pHitInfo.
E_FAIL

This method is not implemented for the requested aspect. Use DVASPECT_CONTENT instead.

Remarks
Containers may need to test whether an object overlaps a given drawing aspect of another object. They
can determine whether the objects overlap by requesting a region or at least a bounding rectangle of the
aspect in question. However, a quicker way to do this is to call IViewObjectEx::QueryHitRect to ask the
object whether a given rectangle intersects one of its drawing aspects.

Note Unlike IViewObjectEx::QueryHitPoint, this method does not return
HITRESULT_TRANSPARENT or HITRESULT_CLOSE. It is strictly hit or miss, returning
HITRESULT_OUTSIDE if no point in the rectangle is hit and HITRESULT_HIT if at least one point in

the rectangle is a hit.

Note to Implementers
An object supporting IViewObjectEx is required to implement this method at least for the
DVASPECT_CONTENT aspect. The object should not take any other action in response to this method
other than to return the information; there should be no side-effects. If there is any ambiguity about
whether a point is a hit, for instance due to coordinates not converting exactly, the object should return
HITRESULT_HIT whenever any point in the rectangle might be a hit on the object. That is, it is
permissible to claim a hit for a point that is not actually rendered, but never correct to claim a miss for any
point that is in the rendered image of the object.

See Also
HITRESULT

BindMoniker

Locates an object by means of its moniker, activates the object if it is inactive, and retrieves a pointer to
the specified interface on that object.

HRESULT BindMoniker(

 LPMONIKER pmk, //Pointer to the object's moniker
 DWORD grfOpt, //Reserved
 REFIID iidResult, //Interface identifier
 LPVOID FAR *ppvResult //Indirect pointer to requested interface
);

Parameters
pmk

[in] Pointer to the object's moniker.
grfOpt

[in] Reserved for future use; must be zero.
iidResult

[in] Interface identifier to be used to communicate with the object.
ppvResult

[out] Indirect pointer to the requested interface. If an error occurs, ppvResult is NULL. If the call is
successful, the caller is responsible for releasing the pointer with a call to the object's
IUnknown::Release.

Return Values
S_OK

The object was located and activated, if necessary, and that a pointer to the requested interface was
returned.

MK_E_NOOBJECT

The object that the moniker object identified could not be found.

This function can also return any of the error values returned by the IMoniker::BindToObject method.

Remarks
BindMoniker is a helper function supplied as a convenient way for a client that has the moniker of an
object to obtain a pointer to one of its interfaces. The BindMoniker function packages the following calls:

CreateBindCtx(0, &pbc);
pmk->BindToObject(pbc, NULL, riid, ppvObj);

CreateBindCtx creates a bind context object that supports the system implementation of IBindContext.
The pmk parameter is actually a pointer to the IMoniker implementation on a moniker object. This
implementation's BindToObject method supplies the pointer to the requested interface pointer.

If you have several monikers to bind in quick succession, and if you know that those monikers will activate
the same object, it may be more efficient to call the IMoniker::BindToObject method directly, which
allows you to use the same bind context object for all the monikers. See the IBindCtx interface for more
information.

Container applications that allow their documents to contain linked objects are a special client that
generally does not make direct calls to IMoniker methods. Instead, the client manipulates the linked
objects through the IOleLink interface. The default handler implements this interface and calls the
appropriate IMoniker methods as needed.

See Also
CreateBindCtx, IMoniker::BindToObject

CLSIDFromProgID

Looks up a CLSID in the registry, given a ProgID.

HRESULT CLSIDFromProgID(

 LPCOLESTR lpszProgID, //Pointer to the ProgID
 LPCLSID pclsid //Pointer to the CLSID
);

Parameters
lpszProgID

[in] Pointer to the ProgID whose CLSID is requested.
pclsid

[out] Pointer to the retrieved CLSID on return.

Return Values
S_OK

The CLSID was retrieved successfully.
CO_E_CLASSSTRING

The registered CLSID for the ProgID is invalid.
REGDB_E_WRITEREGDB

An error occurred writing the CLSID to the registry. See "Remarks" below.

Remarks
Given a ProgID, CLSIDFromProgID looks up its associated CLSID in the registry. If the ProgID cannot be
found in the registry, CLSIDFromProgID creates an OLE 1 CLSID for the ProgID and a CLSID entry in
the registry. Because of the restrictions placed on OLE 1 CLSID values, CLSIDFromProgID and
CLSIDFromString are the only two functions that can be used to generate a CLSID for an OLE 1 object.

See Also
ProgIDFromCLSID

CLSIDFromString

Converts a string generated by the StringFromCLSID function back into the original CLSID.

HRESULT CLSIDFromString(

 LPOLESTR lpsz, //Pointer to the string representation of the CLSID
 LPCLSID pclsid //Pointer to the CLSID
);

Parameters
lpsz

[in] Pointer to the string representation of the CLSID.
pclsid

[out] Pointer to the CLSID on return.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

NOERROR

The CLSID was obtained successfully.
CO_E_CLASSTRING

The class string was improperly formatted.
REGDB_E_WRITEREGDB

The CLSID corresponding to the class string was not found in the registry.

Remarks
Because of the restrictions placed on OLE 1 CLSID values, CLSIDFromProgID and CLSIDFromString
are the only two functions that can be used to generate a CLSID for an OLE 1 object.

See Also
CLSIDFromProgID, StringFromCLSID

CoAddRefServerProcess
Increments a global per-process reference count.

ULONG CoAddRefServerProcess(void);

Return Values
S_OK

The CLSID was retrieved successfully.

Remarks
Servers can call CoAddRefServerProcess to increment a global per-process reference count. This
function is particularly helpful to servers that are implemented with multiple threads, either multi-
apartmented or free-threaded. Servers of these types must coordinate the decision to shut down with
activation requests across multiple threads. Calling CoAddRefServerProcess increments a global per-
process reference count, and calling CoReleaseServerProcess decrements that count.

When that count reaches zero, OLE automatically calls CoSuspendClassObjects, which prevents new
activation requests from coming in. This permits the server to deregister its class objects from its various
threads without worry that another activation request may come in. New activation requests result in
launching a new instance of the local server process.

The simplest way for a local server application to make use of these API functions is to call
CoAddRefServerProcess in the constructor for each of it's instance objects, and in each of its
IClassFactory::LockServer methods when the fLock parameter is TRUE. The server application should
also call CoReleaseServerProcess in the destruction of each of its instance objects, and in each of its
IClassFactory::LockServer methods when the fLock parameter is FALSE. Finally, the server application
should pay attention to the return code from CoReleaseServerProcess and if it returns 0, the server
application should initiate its cleanup, which, for a server with multiple threads, typically means that it
should signal its various threads to exit their message loops and call CoRevokeClassObject and
CoUninitialize.

If these APIs are used at all, they must be called in both the object instances and the LockServer
method, otherwise the server application may be shut down prematurely. In-process servers typically
should not call CoAddRefServerProcess or CoReleaseServerProcess.

See Also
CoReleaseServerProcess, IClassFactory::LockServer, Out-of-process Server Implementation
Helpers

CoBuildVersion

This function is obsolete.

CoCopyProxy

Makes a private copy of the specified proxy.

HRESULT CoCopyProxy(

 IUnknown * punkProxy //IUnknown pointer to the proxy to copy
 IUnknown ** ppunkCopy //Indirect IUnknown pointer to the copy
);

Parameter
punkProxy

[in] Points to the IUnknown interface on the proxy to be copied. May not be NULL.
ppunkCopy

[out] Points to the location of the IUnknown pointer to the copy of the proxy. It may not be NULL.

Return Values
S_OK

Success.
E_INVALIDARG

One or more arguments are invalid.

Remarks
CoCopyProxy makes a private copy of the specified proxy. Typically, this is called when a client needs to
change the authentication information of its proxy through a call to either CoSetClientBlanket or
IClientSecurity::SetBlanket without changing this information for other clients. CoSetClientBlanket
affects all the users of an instance of a proxy, so creating a private copy of the proxy through a call to
CoCopyProxy eliminates the problem.

This function encapsulates the following sequence of common calls (error handling excluded):

 pProxy->QueryInterface(IID_IClientSecurity, (void**)&pcs);
 pcs->CopyProxy(punkProxy, ppunkCopy);
 pcs->Release();

Local interfaces may not be copied. IUnknown and IClientSecurity are examples of existing local
interfaces.

Copies of the same proxy have a special relationship with respect to QueryInterface. Given a proxy, a, of
the IA interface of a remote object, suppose a copy of a is created, called b. In this case, calling
QueryInterface from the b proxy for IID_IA will not retrieve the IA interface on b, but the one on a, the
original proxy with the "default" security settings for the IA interface.

See Also
IClientSecurity::CopyProxy, Security in COM

CoCreateFreeThreadedMarshaler

Creates an aggregatable object capable of context-dependent marshaling.

HRESULT CoCreateFreeThreadedMarshaler(

 LPUNKNOWN punkOuter, // Pointer to object aggregating the marshaler object
 LPUNKNOWN * ppunkMarshaler // Indirect pointer to the marshaler object
);

Parameters
punkOuter

[in] Pointer to the aggregating object's controlling IUnknown.
ppunkMarshaler

[out] Indirect pointer to the aggregatable marshaler's IUnknown.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The marshaler was created.

Remarks
The CoCreateFreeThreadedMarshaler function enables an object to efficiently marshal interface
pointers between threads in the same process. If your objects do not support interthread marshaling, you
have no need to call this function.

The CoCreateFreeThreadedMarshaler function performs the following tasks:

1. Creates a free-threaded marshaler object.
2. Aggregates this marshaler to the object specified by the punkOuter parameter. This object is normally

the one whose interface pointers are to be marshaled.

The aggregating object's implementation of IMarshal should delegate QueryInterface calls for
IID_IMarshal to the IUnknown of the free-threaded marshaler. Upon receiving a call, the free-threaded
marshaler performs the following tasks:

1. Checks the destination context specified by the CoMarshalInterface function's dwDestContext
parameter.

2. If the destination context is MSHCTX_INPROC, copies the interface pointer into the marshaling
stream.

3. If the destination context is any other value, finds or creates an instance of COM's default (standard)
marshaler and delegates marshaling to it.

Values for dwDestContext come from the MSHCTX enumeration. MSHCTX_INPROC indicates that the
interface pointer is to be marshaled between different threads in the same process. Because both threads

have access to the same address space, the client thread can dereference the pointer directly rather than
having to direct calls to a proxy. In all other cases, a proxy is required, so
CoCreateFreeThreadedMarshaler delegates the marshaling job to COM's default implementation.

See Also
CoMarshalInterThreadInterfaceInStream, CoGetInterfaceAndReleaseStream

CoCreateGuid

Creates a GUID, a unique 128-bit integer used for CLSIDs and interface identifiers.

HRESULT CoCreateGuid(

 GUID *pguid //Pointer to the GUID on return
);

Parameter
pguid

[out] Pointer to the requested GUID on return.

Return Value
S_OK

The GUID was successfully created.

Win32 errors are returned by UuidCreate but wrapped as an HRESULT.

Remarks
The CoCreateGuid function calls the RPC function UuidCreate, which creates a GUID, a globally unique
128-bit integer. Use the CoCreateGuid function when you need an absolutely unique number that you will
use as a persistent identifier in a distributed environment.To a very high degree of certainty, this function
returns a unique value - no other invocation, on the same or any other system (networked or not), should
return the same value.

See Also
UuidCreate (documented in the RPC Programmer's Guide and Reference)

CoCreateInstance

Creates a single uninitialized object of the class associated with a specified CLSID. Call
CoCreateInstance when you want to create only one object on the local system. To create a single object
on a remote system, call CoCreateInstanceEx. To create multiple objects based on a single CLSID, refer
to the CoGetClassObject function.

STDAPI CoCreateInstance(

 REFCLSID rclsid, //Class identifier (CLSID) of the object
 LPUNKNOWN pUnkOuter, //Pointer to whether object is or isn't part of an aggregate
 DWORD dwClsContext, //Context for running executable code
 REFIID riid, //Reference to the identifier of the interface
 LPVOID * ppv //Indirect pointer to requested interface
);

Parameters
rclsid

[in] CLSID associated with the data and code that will be used to create the object.
pUnkOuter

[in] If NULL, indicates that the object is not being created as part of an aggregate. If non-NULL,
pointer to the aggregate object's IUnknown interface (the controlling IUnknown).

dwClsContext

[in] Context in which the code that manages the newly created object will run. The values are taken
from the enumeration CLSCTX.

riid

[in] Reference to the identifier of the interface to be used to communicate with the object.
ppv

[out] Indirect pointer to the requested interface.

Return Values
S_OK

An instance of the specified object class was successfully created.
REGDB_E_CLASSNOTREG

A specified class is not registered in the registration database. Also can indicate that the type of
server you requested in the CLSCTX enumeration is not registered or the values for the server types
in the registry are corrupt.

CLASS_E_NOAGGREGATION

This class cannot be created as part of an aggregate.

Remarks
The CoCreateInstance helper function provides a convenient shortcut by connecting to the class object

associated with the specified CLSID, creating an uninitialized instance, and releasing the class object. As
such, it encapsulates the following functionality:

CoGetClassObject(rclsid, dwClsContext, NULL, IID_IClassFactory, &pCF);
hresult = pCF->CreateInstance(pUnkOuter, riid, ppvObj)
pCF->Release();

It is convenient to use CoCreateInstance when you need to create only a single instance of an object on
the local machine. If you are creating an instance on remote machine, call CoCreateInstanceEx. When
you are creating multiple instances, it is more efficient to obtain a pointer to the class object's
IClassFactory interface and use its methods as needed. In the latter case, you should use the
CoGetClassObject function.

In the CLSCTX enumeration, you can specify the type of server used to manage the object. The
constants can be CLSCTX_INPROC_SERVER, CLSTCTX_INPROC_HANDLER,
CLSCTX_LOCAL_SERVER, or any combination of these values. The constant CLSCTX_ALL is defined
as the combination of all three. For more information about the use of one or a combination of these
constants, refer to CLSCTX.

See Also
CoGetClassObject, IClassFactory::CreateInstance, CoCreateInstanceEx, CLSCTX, Instance
Creation Helper Functions

CoCreateInstanceEx

Creates an instance of a specific class on a specific machine.

HRESULT CoCreateInstanceEx(

 REFCLSID rclsid, //CLSID of the object to be created
 IUnknown * punkOuter, //If part of an aggregate, the controlling IUnknown
 DWORD dwClsCtx, //CLSCTX values
 COSERVERINFO* pServerInfo, //Machine on which the object is to be instantiated
 ULONG cmq, //Number of MULTI_QI structures in rgmqResults
 MULTI_QI rgmqResults //Array of MULTI_QI structures
);

Parameters
rclsid

[in] CLSID of the object to be created.
punkOuter

[in] When non-NULL, indicates the instance is being created as part of an aggregate, and punkOuter
is to be used as the new instance's controlling IUnknown. Aggregation is currently not supported
cross-process or cross-machine. When instantiating an object out of process,
CLASS_E_NOAGGREGATION will be returned if punkOuter is non-NULL.

dwClsCtx

[in] Values taken from the CLSCTX enumeration.
pServerInfo

[in] Machine on which to instantiate the object. May be NULL, in which case the object is instantiated
on the current machine or at the machine specified in the registry under the class's
RemoteServerName named-value, according to the interpretation of the dwClsCtx parameter. See
the CLSCTX documentation for details).

cmq

[in] Number of MULTI_QI structures in rgmqResults. Must be greater than zero.
rgmqResults

Array of MULTI_QI structures. Each structure has three members: the identifier for a requested
interface (pIID), the location to return the interface pointer (pItf) and the return value of the call to
QueryInterface (hr).

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Indicates success.
CO_S_NOTALLINTERFACES

At least one, but not all of the interfaces requested in the rgmqResults array were successfully

retrieved. The hr field of each of the MULTI_QI structures in rgmqResults indicates with S_OK or
E_NOINTERFACE whether the specific interface was returned.

E_NOINTERFACE

None of the interfaces requested in the rgmqResults array were successfully retrieved.

Remarks
CoCreateInstanceEx creates a single uninitialized object associated with the given CLSID on a specified
remote machine. This is an extension of the function CoCreateInstance, which creates an object on the
local machine only. In addition, rather than requesting a single interface and obtaining a single pointer to
that interface, CoCreateInstanceEx makes it possible to specify an array of structures, each pointing to
an interface identifier (IID) on input, and, on return, containing (if available) a pointer to the requested
interface and the return value of the QueryInterface call for that interface. This permits fewer round trips
between machines.

The CoCreateInstanceEx helper function encapsulates three calls: first, to CoGetClassObject to
connect to the class object associated with the specified CLSID, specifying the machine location of the
class; second, to IClassFactory::CreateInstance to create an uninitialized instance, and finally, to
IClassFactory::Release, to release the class object.

The object so created must still be initialized through a call to one of the initialization interfaces (such as
IPersistStorage:::Load). The two helper functions, CoGetInstanceFromFile and
CoGetInstanceFromIStorage encapsulate both the instance creation and initialization from the obvious
sources.

See Also
CoGetInstanceFromFile, CoGetInstanceFromIStorage, CLSCTX, COSERVERINFO, Instance
Creation Helper Functions

CoCreateStandardMalloc
This function is obsolete. Refer to CoGetMalloc.

CoDisconnectObject

Disconnects all remote process connections being maintained on behalf of all the interface pointers that
point to a specified object. Only the process that actually manages the object should call
CoDisconnectObject.

STDAPI CoDisconnectObject(

 IUnknown * pUnk, //Pointer to the interface on the object
 DWORD dwReserved //Reserved for future use
);

Parameters
pUnk

[in] Pointer to any IUnknown-derived interface on the object to be disconnected.
dwReserved

[in] Reserved for future use; must be zero.

Return Values
S_OK

All connections to remote processes were successfully deleted.

Remarks
The CoDisconnectObject function enables a server to correctly disconnect all external clients to the
object specified by pUnk.

The CoDisconnectObject function performs the following tasks:

1. Checks to see if the object to be disconnected implements the IMarshal interface. If so, it gets the
pointer to that interface; if not, it gets a pointer to the standard marshaler's (i.e., COM's) IMarshal
implementation.

2. Using whichever IMarshal interface pointer it has acquired, the function then calls
IMarshal::DisconnectObject to disconnect all out-of-process clients.

An object's client does not call CoDisconnectObject to disconnect itself from the server (clients should
use IUnknown::Release for this purpose). Rather, an OLE server calls CoDisconnectObject to forcibly
disconnect an object's clients, usually in response to a user closing the server application.

Similarly, an OLE container that supports external links to its embedded objects can call
CoDisconnectObject to destroy those links. Again, this call is normally made in response to a user
closing the application. The container should first call IOleObject::Close for all its OLE objects, each of
which should send IAdviseSink::OnClose notifications to their various clients. Then the container can
safely call CoDisconnectObject to close any existing connections.

See Also
IOleObject::Close, IMarshal::DisconnectObject

CoDosDateTimeToFileTime

Converts the MS-DOS representation of the time and date to a FILETIME structure, which Win32 uses to
determine the date and time.

BOOL CoDosDateTimeToFileTime(

 WORD nDosDate, //16-bit MS-DOS date
 WORD nDosTime, //16-bit MS-DOS time
 FILETIME * lpFileTime //Pointer to the structure
);

Parameters
nDosDate

[in] 16-bit MS-DOS date.
nDosTime

[in] 16-bit MS-DOS time.
lpFileTime

[out] Pointer to the FILETIME structure.

Return Values
TRUE

The FILETIME structure was created successfully.
FALSE

The FILETIME structure was not created successfully, probably because of invalid arguments.

Remarks
The FILETIME structure and the CoDosDateTimeToFileTime and CoFileTimeToDosDateTime
functions are part of the Win32 API definition. They are provided for compatibility in all OLE
implementations, but are redundant on Win32 platforms.

MS-DOS records file dates and times as packed 16-bit values. An MS-DOS date has the following format:

Bits Contents
0-4 Days of the month (1-31).
5-8 Months (1 = January, 2 = February, and so forth).
9-15 Year offset from 1980 (add 1980 to get actual

year).

An MS-DOS time has the following format:

Bits Contents
0-4 Seconds divided by 2.
5-10 Minutes (0-59).

11-15 Hours (0-23 on a 24-hour clock).

See Also
CoFileTimeToDosDateTime, CoFileTimeNow

CoFileTimeNow

Returns the current time as a FILETIME structure.

HRESULT CoFileTimeNow(

 FILETIME * lpFileTime //Pointer to return the structure
);

Parameter
lpFileTime

[out] Pointer to return the FILETIME structure.

Return Values
S_OK

The current time was converted to a FILETIME structure.

See Also
CoDosDateTimeToFileTime, CoFileTimeToDosDateTime

CoFileTimeToDosDateTime
Converts a FILETIME into MS-DOS date and time values.

BOOL CoFileTimeToDosDateTime(

 FILETIME * lpFileTime, //Pointer to the structure to be converted
 LPWORD lpDosDate, //Pointer to the 16-bit MS-DOS date
 LPWORD lpDosTime //Pointer to the 16-bit MS-DOS time
);

Parameters
lpFileTime

[in] Pointer to the FILETIME structure to be converted.
lpDosDate

[out] Pointer to the 16-bit MS-DOS date.
lpDosTime

[out] Pointer to the 16-bit MS-DOS time.

Return Values
TRUE

The FILETIME structure was converted successfully.
FALSE

The FILETIME structure was not converted successfully.

Remarks
This is the inverse of the operation provided by the CoDosDateTimeToFileTime function.

See Also
CoDosDateTimeToFileTime, CoFileTimeNow

CoFreeAllLibraries

Frees all the DLLs that have been loaded with the CoLoadLibrary function (called internally by
CoGetClassObject), regardless of whether they are currently in use. This function is usually not called
directly, because CoUninitialize and OleUninitialize call it internally.

void CoFreeAllLibraries();

Remarks
To unload libraries, CoFreeAllLibraries uses a list of loaded DLLs for each process that the COM library
maintains. The CoUninitialize function calls CoFreeAllLibraries internally, so OLE applications usually
have no need to call this function directly.

See Also
CoLoadLibrary, CoFreeLibrary, CoFreeUnusedLibraries, CoGetClassObject, CoUninitialize,
OleUninitialize

CoFreeLibrary

Frees a library that, when loaded, was specified to be freed explicitly.

void CoFreeLibrary(

 HINSTANCE hInst //Handle of the library module to be freed
);

Parameter
hInst

[in] Handle to the library module to be freed, as returned by CoLoadLibrary.

Remarks
The CoFreeLibrary function should be called to free a library that is to be freed explicitly. This is
established when the library is loaded with the bAutoFree parameter of CoLoadLibrary set to FALSE. It
is illegal to free a library explicitly when the corresponding CoLoadLibrary call specifies that it be freed
automatically (the bAutoFree parameter is set to TRUE).

See Also
CoFreeAllLibraries, CoFreeUnusedLibraries, CoLoadLibrary

CoFreeUnusedLibraries

Unloads any DLLs that are no longer in use and that, when loaded, were specified to be freed
automatically.

void CoFreeUnusedLibraries();

Remarks
Applications can call CoFreeUnusedLibraries periodically to free resources. It is most efficient to call it
either at the top of a message loop or in some idle-time task. DLLs that are to be freed automatically have
been loaded with the bAutoFree parameter of the CoLoadLibrary function set to TRUE.
CoFreeUnusedLibraries internally calls DllCanUnloadNow for DLLs that implement and export that
function.

See Also
CoFreeLibrary, CoFreeUnusedLibraries, CoLoadLibrary, DLLCanUnloadNow

CoGetCallContext

Retrieves the context of the current call on the current thread.

HRESULT CoGetCallContext(

 REFIID riid, //Interface identifier
 void ** ppv //Pointer to the requested interface
);

Parameters
riid

[in] Interface identifier (IID) of the call context that is being requested. If you are using the default call
context supported by standard marshaling, only IID_IServerSecurity is available.

ppv

[out] Indirect pointer to the requested interface.

Return Values
S_OK

Success.
E_NOINTERFACE

The call context does not support the interface identified by riid.

Remarks
CoGetCallContext retrieves the context of the current call on the current thread. The riid parameter
specifies the interface on the context to be retrieved. Currently, only IServerSecurity is available from the
default call context supported by standard marshaling.

This is one of the functions provided to give the server access to any contextual information of the caller
and to encapsulate common sequences of security checking and caller impersonation.

See Also
IServerSecurity, Security in COM

CoGetClassObject

Provides a pointer to an interface on a class object associated with a specified CLSID.
CoGetClassObject locates, and if necessary, dynamically loads the executable code required to do this.

Call CoGetClassObject directly when you want to create multiple objects through a class object for which
there is a CLSID in the system registry. You can also retrieve a class object from a specific remote
machine. Most class objects implement the IClassFactory interface. You would then call
IClassFactory::CreateInstance to create an uninitialized object. It is not always necessary to go through
this process. To create a single object, call instead the either the CoCreateInstanceEx function, which
allows you to create an instance on a remote machine. This replaces the CoCreateInstance function,
which can still be used to create an instance on a local machine. Both functions encapsulate connecting
to the class object, creating the instance, and releasing the class object. Two other functions,
CoGetInstanceFromFile and CoGetInstanceFromIStorage, provide both instance creation on a remote
system, and object activation. OLE also provides many other ways to create an object in the form of
numerous helper functions and interface methods whose function is to create objects of a single type and
provide a pointer to an interface on that object.

STDAPI CoGetClassObject(

 REFCLSID rclsid, //CLSID associated with the class object
 DWORD dwClsContext, //Context for running executable code
 COSERVERINFO * pServerInfo, //Pointer to machine on which the object is to be instantiated
 REFIID riid, //Reference to the identifier of the interface
 LPVOID * ppv //Indirect pointer to the interface
);

Parameters
rclsid

[in] CLSID associated with the data and code that you will use to create the objects.
dwClsContext

[in] Context in which the executable code is to be run. To enable a remote activation,
CLSCTX_REMOTE_SERVER must be included. For more information on the context values and their
use, see the CLSCTX enumeration.

pServerInfo

[in] Pointer to machine on which to instantiate the class object. May be NULL, in which case the class
object is instantiated on the current machine or at the machine specified under the class's
RemoteServerName key in the registry, according to the interpretation of the dwClsCtx parameter
(see the CLSCTX documentation for details).

riid

[in] Reference to the identifier of the interface, which will be supplied in ppv on successful return. This
interface will be used to communicate with the class object. Typically this value is IID_IClassFactory,
although other values - such as IID_IClassFactory2 which supports a form of licensing - are allowed.
All OLE-defined interface IIDs are defined in the OLE header files as IID_interfacename, where
interfacename is the name of the interface.

ppv

[out] On successful return, indirect pointer to the requested interface.

Return Values
S_OK

Location and connection to the specified class object was successful.
REGDB_E_CLASSNOTREG

CLSID is not properly registered. Can also indicate that the value you specified in dwClsContext is not
in the registry.

E_NOINTERFACE

Either the object pointed to by ppv does not support the interface identified by riid, or the
QueryInterface operation on the class object returned E_NOINTERFACE.

REGDB_E_READREGDB

Error reading the registration database.
CO_E_DLLNOTFOUND

In-process DLL or handler DLL not found (depends on context).
CO_E_APPNOTFOUND

EXE not found (CLSCTX_LOCAL_SERVER only).
E_ACCESSDENIED

General access failure (returned from LoadLib/CreateProcess).
CO_E_ERRORINDLL

EXE has error in image.
CO_E_APPDIDNTREG

EXE was launched, but it didn't register class object (may or may not have shut down).

Remarks
A class object in OLE is an intermediate object that supports an interface that permits operations common
to a group of objects. The objects in this group are instances derived from the same object definition
represented by a single CLSID. Usually, the interface implemented on a class object is IClassFactory,
through which you can create object instances of a given definition (class).

A call to CoGetClassObject creates, initializes, and gives the caller access (through a pointer to an
interface specified with the riid parameter) to the class object. The class object is the one associated with
the CLSID that you specify in the rclsid parameter. The details of how the system locates the associated
code and data within a given machine are transparent to the caller, as is the dynamic loading of any code
that is not already loaded.

If the class context is CLSCTX_REMOTE_SERVER, indicating remote activation is required, the
COSERVERINFO structure provided in the pServerInfo parameter allows you to specify the machine on
which the server is located. For information on the algorithm used to locate a remote server when
pServerInfo is NULL, refer to the CLSCTX enumeration.

There are two places to find a CLSID for a given class:

· The registry holds an association between CLSIDs and file suffixes, and between CLSIDs and file
signatures for determining the class of an object.

· When an object is saved to persistent storage, its CLSID is stored with its data.

To create and initialize embedded or linked OLE document objects, it is not necessary to call
CoGetClassObject directly. Instead, call one of the OleCreate or OleCreateXxx helper functions. These
functions encapsulate the entire object instantiation and initialization process, and call, among other
functions, CoGetClassObject.

The riid parameter specifies the interface the client will use to communicate with the class object. In most
cases, this interface is IClassFactory. This provides access to the IClassFactory::CreateInstance
method, through which the caller can then create an uninitialized object of the kind specified in its
implementation. All classes registered in the system with a CLSID must implement IClassFactory.

In rare cases, however, you may want to specify some other interface that defines operations common to
a set of objects. For example, in the way OLE implements monikers, the interface on the class object is
IParseDisplayName, used to transform the display name of an object into a moniker.

The dwClsContext parameter specifies the execution context, allowing one CLSID to be associated with
different pieces of code in different execution contexts. The CLSCTX enumeration, defined in Compobj.H,
specifies the available context flags. CoGetClassObject consults (as appropriate for the context
indicated) both the registry and the class objects that are currently registered by calling the
CoRegisterClassObject function.

To release a class object, use the class object's Release method. The function CoRevokeClassObject is
to be used only to remove a class object's CLSID from the system registry.

See Also
CoCreateInstanceEx, CoRegisterClassObject, CoRevokeClassObject, OleLoad, CLSCTX, Creating
an Object through a Class Object

CoGetCurrentProcess

Returns a value that is unique to the current thread. It can be used to avoid PROCESSID reuse problems.

DWORD CoGetCurrentProcess();

Return Value
DWORD value

Unique value for the current thread that can be used to avoid PROCESSID reuse problems.

Remarks
The CoGetCurrentProcess function returns a value that is effectively unique, because it is not used
again until 2 (32) more threads have been created on the current workstation or until the workstation is
rebooted.

Using the value returned from a call to CoGetCurrentProcess can help you maintain tables that are
keyed by threads or in uniquely identifying a thread to other threads or processes.

Using the value returned by CoGetCurrentProcess is more robust than using the HTASK task handle
value returned by the Win32 function GetCurrentTask, because Windows task handles can be reused
relatively quickly when a window's task dies.

CoGetInstanceFromFile

Creates a new object and initializes it from a file using IPersistFile::Load.

HRESULT CoGetInstanceFromFile(

 COSERVERINFO * pServerInfo, //Pointer to COSERVERINFO struct indicating remote system
 CLSID* pclsid, //Pointer to the class of the object to create
 IUnknown * punkOuter, //If part of an aggregate, pointer to the controlling IUnknown
 DWORD dwClsCtx, //CLSCTX values
 OLECHAR* szName, //File to initialize the object with
 ULONG cmq, //Number of MULTI_QI structures in rgmqResults
 MULTI_QI * rgmqResults //Array of MULTI_QI structures
);

Parameters
pServerInfo

[in] Pointer to a COSERVERINFO structure that specifies the machine on which to instantiate the
object and the authentication setting to be used. May be NULL, in which case the object is
instantiated (1) on the current machine, (2) at the machine specified under the RemoteServerName
named-value for the class in the registry, or (3) at the machine where the szName file resides if the
ActivateAtStorage named-value is specified for the class in the registry or there is no local registry
information.

pclsid

[in] Pointer to the class of the object to create. May be NULL, in which case there is a call to
GetClassFile, using szName as its parameter to get the class of the object to be instantiated.

punkOuter

[in] When non-NULL, indicates the instance is being created as part of an aggregate, and punkOuter
is to be used as the pointer to the new instance's controlling IUnknown. Aggregation is currently not
supported cross-process or cross-machine. When instantiating an object out of process,
CLASS_E_NOAGGREGATION will be returned if punkOuter is non-NULL.

dwClsCtx

[in] Values taken from the CLSCTX enumeration.
szName

[in] File to initialize the object with using IPersistFile::Load. May not be NULL.
cmq

[in] Number of MULTI_QI structures in rgmqResults. Must be greater than zero.
rgmqResults

[in] Array of MULTI_QI structures. Each structure has three members: the identifier for a requested
interface (pIID), the location to return the interface pointer (pItf) and the return value of the call to
QueryInterface (hr).

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Indicates success.
CO_S_NOTALLINTERFACES

At least one, but not all of the interfaces requested in the rgmqResults array were successfully
retrieved. The hr field of each of the MULTI_QI structures in rgmqResults indicates with S_OK or
E_NOINTERFACE whether or not the specific interface was returned.

E_NOINTERFACE

None of the interfaces requested in the rgmqResults array were successfully retrieved.

Remarks
CoGetInstanceFromFile creates a new object and initializes it from a file using IPersistFile::Load. The
result of this function is similar to creating an instance with a call to CoCreateInstanceEx, followed by an
initializing call to IPersistFile::Load, with the following important distinctions:

· Fewer network round trips are required by this function when instantiating an object on a remote
machine.

· In the case where dwClsCtx is set to CLSCTX_REMOTE_SERVER and pServerInfo is NULL, if the
class is registered with the ActivateAtStorage sub-key or has no associated registry information, this
function will instantiate an object on the machine where szName resides, providing the least possible
network traffic. For example, if szName specified "\\myserver\users\johndo\file", the object would be
instantiated on the "myserver" machine, and the object would access the file directly.

See Also
CoCreateInstanceEx, CoGetInstanceFromIStorage, CLSCTX, Instance Creation Helper Functions

CoGetInstanceFromIStorage

Creates a new object and initializes it from a storage object through an internal call to
IPersistStorage::Load.

HRESULT CoGetInstanceFromIStorage(

 COSERVERINFO * pServerInfo, //Pointer to COSERVERINFO struct indicating remote system
 CLSID * pclsid, //Pointer to the CLSID of the object to be created
 IUnknown * punkOuter, //If part of an aggregate, pointer to the controlling IUnknown
 DWORD dwClsCtx, //Values taken from the CLSCTX enumeration
 IStorage * pstg, //Pointer to storage from which object is to be initialized
 ULONG cmq, //Number of MULTI_QI structures in rgmqResults
 MULTI_QI * rgmqResults //Array of MULTI_QI structures
);

Parameters
pServerInfo

[in] Pointer to a COSERVERINFO structure that specifies the machine on which to instantiate the
object and the authentication setting to be used. May be NULL, in which case the object is either
instantiated (1) on the current machine, (2) at the machine specified under the RemoteServerName
named-value for the class in the registry, or (3) at the machine where the storage object pointed to by
pstg is located if the class is registered with ActivateAtStorage specified or has no local registry
information.

pclsid

[in] Pointer to the class identifier (CLSID) of the object to be created. May be NULL, in which case
there is a call to IStorage:Stat to find the class of the object.

punkOuter

[in] When non-NULL, indicates the instance is being created as part of an aggregate, and punkOuter
is to be used as the pointer to the new instance's controlling IUnknown. Aggregation is currently not
supported cross-process or cross-machine. When instantiating an object out of process,
CLASS_E_NOAGGREGATION will be returned if punkOuter is non-NULL.

dwClsCtx

Values taken from the CLSCTX enumeration.
pstg

Pointer to storage to initialize the object with using IPersistStorage::Load. May not be NULL.
cmq

Number of MULTI_QI structures in rgmqResults. Must be greater than zero.
rgmqResults

Array of MULTI_QI structures. Each structure has three members: the identifier for a requested
interface (pIID), the location to return the interface pointer (pItf) and the return value of the call to
QueryInterface (hr).

Return Values

This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Indicates success.
CO_S_NOTALLINTERFACES

At least one, but not all of the interfaces requested in the rgmqResults array were successfully
retrieved. The hr field of each of the MULTI_QI structures in rgmqResults indicates with S_OK or
E_NOINTERFACE whether the specific interface pointer was retrieved.

E_NOINTERFACE

None of the interfaces requested in the rgmqResults array were successfully retrieved.

Remarks
CoGetInstanceFromIStorage creates a new object and initializes it from a storage object through a call
to IPersistStorage::Load. This function is similar to creating an instance using CoCreateInstanceEx
followed by a call to IPersistStorage::Load, with the following important distinctions:

· Fewer network round trips are required by thisfunction when instantiating remotely.
· In the case where dwClsCtx is set to CLSCTX_REMOTE_SERVER and pServerInfo is NULL, if the

class is registered with the ActivateAtStorage named value or has no associated registry
information, this function will instantiate an object on the same machine where the storage object
pointed to by pstg resides, providing the least possible network traffic. For example, if pstg were
obtained through a call to StgCreateDocfile, specifying "\\myserver\users\johndo\file", the object
would be instantiated on the "myserver" machine, and the object would access the storage object
directly.

See Also
CoCreateInstanceEx, CoGetInstanceFromFile, CLSCTX, Instance Creation Helper Functions

CoGetInterfaceAndReleaseStream

Unmarshals a buffer containing an interface pointer and releases the stream when an interface pointer
has been marshaled from another thread to the calling thread.

HRESULT CoGetInterfaceAndReleaseStream(

 LPSTREAM pStm, //Pointer to the stream from which the object is to be marshaled
 REFIID riid, //Reference to the identifier of the interface
 LPVOID * ppv //Indirect pointer to the interface
);

Parameters
pStm

[in] Pointer to the IStream interface on the stream to be unmarshaled.
riid

[in] Reference to the identifier of the interface requested from the unmarshaled object.
ppv

[out] Indirect pointer to the unmarshaled interface.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Indicates the output interface was unmarshaled and the stream was released.

This function can also return any of the values returned by CoUnmarshalInterface.

Remarks
The CoGetInterfaceAndReleaseStream function performs the following tasks:

1. Calls CoUnmarshalInterface to unmarshal an interface pointer previously passed in a call to
CoMarshalInterThreadInterfaceInStream.

2. Releases the stream pointer. Even if the unmarshaling fails, the stream is still released because there
is no effective way to recover from a failure of this kind.

See Also
CoMarshalInterThreadInterfaceInStream, CoUnmarshalInterface

CoGetMalloc

Retrieves a pointer to the default OLE task memory allocator (which supports the system implementation
of the IMalloc interface) so applications can call its methods to manage memory.

HRESULT CoGetMalloc(

 DWORD dwMemContext, //Indicates if memory is private or shared
 LPMALLOC * ppMalloc //Indirect pointer to memory allocator
);

Parameters
dwMemContext

[in] Reserved; value must be 1.
ppMalloc

[out] Indirect pointer to an IMalloc interface on the memory allocator.

Return Values
This function supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

Indicates the allocator was retrieved successfully.

Remarks
The pointer to the IMalloc interface pointer received through the ppMalloc parameter cannot be used
from a remote process¾each process must have its own allocator.

See Also
IMalloc, CoTaskMemAlloc

CoGetMarshalSizeMax

Returns an upper bound on the number of bytes needed to marshal the specified interface pointer to the
specified object.

STDAPI CoGetMarshalSizeMax(

 ULONG *pulSize, //Pointer to the upper-bound value
 REFIID riid, //Reference to the identifier of the interface
 IUnknown * pUnk, //Pointer to the interface to be marshaled
 DWORD dwDestContext, //Destination process
 LPVOID pvDestContext, //Reserved for future use
 DWORD mshlflags //Reason for marshaling
);

Parameters
pulSize

[out] Pointer to the upper-bound value on the size, in bytes, of the data packet to be written to the
marshaling stream; a value of zero means that the size of the packet is unknown.

riid

[in] Reference to the identifier of the interface whose pointer is to be marshaled. This interface must
be derived from the IUnknown interface.

pUnk

[in] Pointer to the interface to be marshaled; can be NULL. This interface must be derived from the
IUnknown interface.

dwDestContext

[in] Destination context where the specified interface is to be unmarshaled. Values for dwDestContext
come from the enumeration MSHCTX. Currently, unmarshaling can occur either in another apartment
of the current process (MSHCTX_INPROC) or in another process on the same computer as the
current process (MSHCTX_LOCAL).

pvDestContext

[in] Reserved for future use; must be NULL.
mshlflags

[in] Flag indicating whether the data to be marshaled is to be transmitted back to the client
process¾the normal case¾or written to a global table, where it can be retrieved by multiple clients.
Values come from the enumeration MSHLFLAGS.

Return Values
This function supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

The upper bound was returned successfully.
CO_E_NOTINITIALIZED

The CoInitialize or OleInitialize function was not called on the current thread before this function was
called.

Remarks
This function performs the following tasks:

1. Queries the object for an IMarshal pointer or, if the object does not implement IMarshal, gets a
pointer to COM's standard marshaler.

2. Using whichever pointer is obtained in the preceding step, calls IMarshal::GetMarshalSizeMax.
3. Adds to the value returned by the call to GetMarshalSizeMax the size of the marshaling data header

and, possibly, that of the proxy CLSID to obtain the maximum size in bytes of the amount of data to
be written to the marshaling stream.

You do not explicitly call this function unless you are implementing IMarshal, in which case your
marshaling stub should call this function to get the correct size of the data packet to be marshaled.

The value returned by this method is guaranteed to be valid only as long as the internal state of the object
being marshaled does not change. Therefore, the actual marshaling should be done immediately after
this function returns, or the stub runs the risk that the object, because of some change in state, might
require more memory to marshal than it originally indicated.

See Also
CoMarshalInterface, IMarshal::GetMarshalSizeMax

CoGetPSClsid
This function returns the CLSID of the DLL that implements the proxy and stub for the specified interface.

WINOLEAPI CoGetPSClsid(

 REFIID riid, // Interface whose proxy/stub CLSID is to be returned

 CLSID *pclsid // Where to store returned proxy/stub CLSID

);

Parameters
riid

[in] The interface whose proxy/stub CLSID is to be returned.
pclsid

[out] Where to store the proxy/stub CLSID for the interface specified by riid.

Return Values
S_OK

The proxy/stub CLSID was successfully returned.
E_INVALIDARG

One of the parameters is invalid.
E_OUTOFMEMORY

There is insufficient memory to complete this operation.

Remarks
The CoGetPSClsid function looks at the HKEY_CLASSES_ROOT\Interfaces\{ string form of riid }\
ProxyStubClsid32 key in the registry to determine the CLSID of the DLL to load in order to create the
proxy and stub for the interface specified by riid. This function also returns the CLSID for any interface IID
registered by CoRegisterPSClsid within the current process.

See Also
CoRegisterPSClsid

CoGetStandardMarshal
Creates a default, or standard, marshaling object in either the client process or the server process,
depending on the caller, and returns a pointer to that object's IMarshal implementation.

STDAPI CoGetStandardMarshal(

 REFIID riid, //Reference to the identifier of the interface
 IUnknown * pUnk, //Pointer to the interface to be marshaled
 DWORD dwDestContext, //Destination process
 LPVOID pvDestContext, //Reserved for future use
 DWORD mshlflags, //Reason for marshaling
 LPMARSHAL * ppMarshal //Indirect pointer to default IMarshal implementation
);

Parameters
riid

[in] Reference to the identifier of the interface whose pointer is to be marshaled. This interface must
be derived from the IUnknown interface.

pUnk

[in] Pointer to the interface to be marshaled.
dwDestContext

[in] Destination context where the specified interface is to be unmarshaled. Values for dwDestContext
come from the enumeration MSHCTX. Currently, unmarshaling can occur either in another apartment
of the current process (MSHCTX_INPROC) or in another process on the same computer as the
current process (MSHCTX_LOCAL).

pvDestContext

[in] Reserved for future use; must be NULL.
mshlflags

[in] Flag indicating whether the data to be marshaled is to be transmitted back to the client
process¾the normal case¾or written to a global table, where it can be retrieved by multiple clients.
Valid values come from the MSHLFLAGS enumeration.

ppMarshal

[out] Indirect pointer to the standard marshaler.

Return Values
This function supports the standard return values E_FAIL, E_OUTOFMEMORY and E_UNEXPECTED,
as well as the following:

S_OK

The IMarshal instance was returned successfully.
CO_E_NOTINITIALIZED

The CoInitialize or OleInitialize function was not called on the current thread before this function was

called.

Remarks
The CoGetStandardMarshal function creates a default, or standard, marshaling object in either the client
process or the server process, as may be necessary, and returns that object's IMarshal pointer to the
caller. If you implement IMarshal, you may want your implementation to call CoGetStandardMarshal as
a way of delegating to COM's default implementation any destination contexts that you don't fully
understand or want to handle. Otherwise, you can ignore this function, which COM calls as part of its
internal marshaling procedures.

When the COM library in the client process receives a marshaled interface pointer, it looks for a CLSID to
be used in creating a proxy for the purposes of unmarshaling the packet. If the packet does not contain a
CLSID for the proxy, COM calls CoGetStandardMarshal, passing a NULL pUnk value. This function
creates a standard proxy in the client process and returns a pointer to that proxy's implementation of
IMarshal. COM uses this pointer to call CoUnmarshalInterface to retrieve the pointer to the requested
interface.

If your OLE server application's implementation of IMarshal calls CoGetStandardMarshal, you should
pass both the IID of (riid), and a pointer to (pUnk), the interface being requested.

This function performs the following tasks:

1.Determines whether pUnk is NULL.
2.If pUnk is NULL, creates a standard interface proxy in the client process for the specified riid and

returns the proxy's IMarshal pointer.
3.If pUnk is not NULL, checks to see if a marshaler for the object already exists, creates a new one if

necessary, and returns the marshaler's IMarshal pointer.

See Also
IMarshal

CoGetTreatAsClass

Returns the CLSID of an object that can emulate the specified object.

HRESULT CoGetTreatAsClass(

 REFCLSID clsidOld, //CLSID of object that is being emulated
 LPCLSID pclsidNew //Pointer to CLSID for object that can emulate clsidOld
);

Parameters
clsidOld

[in] CLSID of the object that can be emulated (treated as) an object with a different CLSID.
pclsidNew

[out] Pointer to where the CLSID that can emulate clsidOld objects is retrieved. This parameter
cannot be NULL. If there is no emulation information for clsidOld objects, the clsidOld parameter is
supplied.

Return Values
S_OK

A new CLSID was successfully returned.
S_FALSE

No emulation information for the clsidOld parameter and that the pclsidNew parameter is set to
clsidOld.

REGDB_E_READREGDB

An error reading the registry.

This function can also return any of the error values returned by the CLSIDFromString function.

Remarks
CoGetTreatAsClass returns the TreatAs entry in the registry for the specified object. The TreatAs entry,
if set, is the CLSID of a registered object (an application) that can emulate the object in question. The
TreatAs entry is set through a call to the CoTreatAsClass function. Emulation allows an application to
open and edit an object of a different format, while retaining the original format of the object. Objects of
the original CLSID are activated and treated as objects of the second CLSID. When the object is saved,
this may result in loss of edits not supported by the original format. If there is no TreatAs entry for the
specfied object, this function returns the CLSID of the original object (clsidOld).

See Also
CoTreatAsClass

CoImpersonateClient

Allows the server to impersonate the client of the current call for the duration of the call.

HRESULT CoImpersonateClient()

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Indicates success.

Remarks
Allows the server to impersonate the client of the current call for the duration of the call. If you do not call
CoRevertToSelf, OLE reverts automatically for you. This function will fail unless the object is being called
with RPC_C_AUTHN_LEVEL_CONNECT or higher authentication in effect (any authentication level
except RPC_C_AUTHN_LEVEL_NONE) This function encapsulates the following sequence of common
calls (error handling excluded):

 CoGetCallContext(IID_IServerSecurity, (void**)&pss);
 pss->ImpersonateClient();
 pss->Release();

This helper function encapsulates the process of getting a pointer to an instance of IServerSecurity that
contains data about the current call, calling its ImpersonateClient method, and then releasing the
pointer.

See Also
IServerSecurity::ImpersonateClient, Security in COM

CoInitialize

The CoInitialize function initializes the Component Object Model(COM) library. You must initialize the
library before you can call its functions. Applications must call CoInitialize before they make any other
COM library calls except the CoGetMalloc function and memory allocation calls.

HRESULT CoInitialize(

 LPVOID pvReserved //Reserved, must be NULL
);

Parameter
pvReserved

[in] In 32-bit OLE, this parameter must be NULL. The 32-bit version of OLE does not support
applications replacing OLE's allocator and if the parameter is not NULL, CoInitialize returns
E_INVALIDARG.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The library was initialized successfully.
S_FALSE

The library is already initialized or that it could not release the default allocator.

Remarks
You need to call this before you call any of the OLE library functions (except CoGetMalloc, to get a
pointer to the standard allocator, and the memory allocation functions and methods) unless you call the
OleInitialize function, which calls CoInitialize internally.

Typically, CoInitialize is called only once in the process that uses the OLE library. There can be multiple
calls, but subsequent calls return S_FALSE. To close the library gracefully, each successful call to
CoInitialize, including those that return S_FALSE, must be balanced by a corresponding call to its
companion helper function, CoUninitialize.

See Also
CoUninitialize, OleInitialize, Processes and Threads

CoInitializeEx

Initializes the Component Object Model (COM) for use by the current thread. You can call CoinitializeEx
in preference to calling CoInitialize, the implementation of which simply calls CoInitializeEx, specifying
COINIT_APARTMENTTHREADED.

HRESULT CoInitializeEx(

 void * pvReserved, //Reserved
 DWORD dwCoInit //COINIT value
);

Parameters
pvReserved

[in] Reserved for future use; must be NULL.
dwCoInit

[in] This may contain any set of values from the COINIT enumeration except for both apartment and
multi-threaded.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Indicates success.
RPC_E_CHANGED_MODE

A previous call to CoInitializeEx specified a concurrency model for this thread different from the one
currently specified for this thread.

Remarks
CoInitializeEx initializes the Component Object Model (COM) for use by the current thread. The dwCoInit
parameter specifies the type of concurrency control - multi-threaded or apartment-threaded - required by
objects created by this thread. A call to CoInitializeEx specifying COINIT_APARTMENTTHREADED is
equivalent to a call to CoInitialize, because prior to NT 4.0, the default concurrency control required by
objects was apartment-threaded.

Objects created on a multi-threaded COM thread must be able to receive calls on their methods from
other threads at any time. Typically, you would implement some form of concurrency control in a multi-
threaded object's code using Win32 synchronization primitives, such as critical sections, semaphores, or
mutexes, to protect the object's data. Objects created on an apartment-threaded COM thread receive
calls on their methods from their apartment's thread only, so calls are serialized, and calls only arrive at
message-queue boundaries (PeekMessage, SendMessage).

Applications must call CoInitializeEx or CoInitialize before making any other COM library calls except
the CoGetMalloc function and other memory allocation calls (CoTaskMemAlloc, CoTaskMemFree,
CoTaskMemReAlloc, and the IMalloc methods on the task allocator supplied by CoGetMalloc).

Typically, CoInitializeEx is called only once by each thread in the process that uses the OLE library.

Multiple calls by the same thread are allowed so long as they pass the same concurrency flag, but
subsequent valid calls return S_FALSE. To close the library gracefully, each successful call to CoInitialize
or CoInitializeEx, including those that return E_INVALIDARG, must be balanced by a corresponding call
to CoUninitialize.

Internally, the OleInitialize function calls CoInitializeEx with the COINIT_APARTMENTTHREADED flag.
This implies that a thread that uses CoInitializeEx to initialize a thread for multi-threaded object
concurrency may not use the features enabled by OleInitialize, because OleInitialize will fail.

See Also
COINIT, CoInitialize, Processes and Threads

CoInitializeSecurity

Registers security and sets the default security values. For legacy applications, COM automatically calls
this function with values from the registry.

HRESULT CoInitializeSecurity(

 PSECURITY_DESCRIPTOR pVoid, //Points to security descriptor
 DWORD cAuthSvc, //Count of entries in asAuthSvc
 SOLE_AUTHENTICATION_SERVICE * asAuthSvc, //Array of names to register
 void * pReserved1, //Reserved for future use
 DWORD dwAuthnLevel, //The default authentication level for proxies
 DWORD dwImpLevel, //The default impersonation level for proxies
 RPC_AUTH_IDENTITY_HANDLE pAuthInfo, //Reserved; must be set to NULL
 DWORD dwCapabilities, //Additional client and/or server-side capabilities
 void * pvReserved2 //Reserved for future use
);

Parameters
pVoid

[in] Security descriptor. If NULL, no ACL checking will be done. If not NULL, COM will check ACLs on
new connections. If not NULL, dwAuthnLevel cannot be RPC_C_AUTHN_LEVEL_NONE.

cAuthSvc

[in] Count of entries in asAuthSvc. Zero means register no services. A value of -1 tells COM to choose
which authentication services to register.

asAuthSvc

[in] Array of authentication/authorization/principal names to register. These values are registered to
allow incoming calls. After that they are ignored. The default authentication/authorization/principal for
each proxy will be negotiated regardless of whether these are set. For example, if the application
registers RPC_C_AUTHN_WINNT and receives and interface from a machine that only supports
RPC_C_AUTHN_DEC_PUBLIC, COM will choose RPC_C_AUTHN_DEC_PUBLIC if this machine
supports it.

pReserved1

[in] Reserved for future use; must be NULL.
dwAuthnLevel

[in] The default authentication level for proxies. On the server side, COM will fail calls that arrive at a
lower level. All calls to AddRef and Release are made at this level.

dwImpLevel

[in] The default impersonation level for proxies. This value is not checked on the server side. AddRef
and Release calls are made with this impersonation level so even security aware apps should set this
carefully. Setting IUnknown security only affects calls to QueryInterface, not AddRef or Release.

pAuthInfo

[in] Reserved for future use; must be NULL.
dwCapabilities

[in] Additional client and/or server-side capabilities. Any set of EOAC flags may be passed. Currently
only EOAC_MUTUAL_AUTH, EOAC_SECURE_REFS, and EOAC_NONE are defined.

pReserved2

[in] Reserved for future use; must be zero.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Indicates success.

Remarks
The CoInitializeSecurity layer initializes the security layer and sets the specified values as the security
default. The pSecDesc parameter contains two ACLs. The discretionary ACL (DACL) indicates who is
allowed to call this process and who is explicitly denied. The system ACL (SACL) contains audit
information; this is not supported in the current release, so this portion of pSecDesc must be NULL, so
there is no auditing.

A NULL DACL will allow calls from anyone. A DACL with no ACEs allows no access. For information on
ACLs and ACEs, refer to Win32 Programmers Reference/Overviews/System
Services/Security/Security/Security Model.

The owner and group of the SECURITY_DESCRIPTOR must be set ¾ applications should call
AccessCheck (not IsValidSecurityDescriptor) to ensure that their security descriptor is correctly formed
prior to calling CoInitializeSecurity.

If the application passes a NULL security descriptor, COM will construct one that allows calls from the
current user and local system. All new connections will be audited. Distributed COM will copy the security
descriptor.

If mutual authentication is enabled all calls will fail unless the server identity is verified to match the
principal name set on the proxy. Without mutual authentication, security only helps the server; the client
has no idea who is handling his call. While CoInitializeSecurity takes principal names as parameters,
that does not mean that the server can register any arbitrary name. The security provider verifies that the
server has a right to use the names registered.

Secure references cause DCOM to make extra callbacks to insure that objects are not released
maliciously.

See Also
RPC_C_IMP _ LEVEL_ xxx , RPC_C_AUTHN_LEVEL_ xxx , Security in COM

CoIsHandlerConnected

Determines whether a remote object is connected to the corresponding in-process object.

BOOL CoIsHandlerConnected(

 LPUNKNOWN pUnk //Pointer to the remote object
);

Parameter
pUnk

[in] Pointer to the controlling IUnknown interface on the remote object.

Return Values
TRUE

The object is not remote or that it is remote and is still connected to its remote handler.
FALSE

The object is remote and is invalid (no longer connected to its remote handler).

Remarks
The CoIsHandlerConnected function determines the status of a remote object. You can use it to
determine when to release a remote object. You specify the remote object by giving the function a pointer
to its controlling IUnknown interface (the pUnk parameter). A TRUE returned from the function indicates
either that the specified object is not remote, or that it is remote and is still connected to its remote
handler. A FALSE returned from the function indicates that the object is remote but is no longer connected
to its remote handler; in this case, the caller should respond by releasing the object.

CoIsOle1Class

Determines if a given CLSID represents an OLE 1 object.

BOOL CoIsOle1Class(

 REFCLSID rclsid //CLSID to check
);

Parameter
rclsid

[in] CLSID to check.

Return Values
S_TRUE

CLSID refers to an OLE 1 object.
S_FALSE

CLSID does not refer to an OLE 1 object.

Remarks
CoIsOle1Class determines whether an object class is from OLE 1. You can use it to prevent linking to
embedded OLE 1 objects within a container, which OLE 1 objects do not support. Once a container has
determined that copied data represents an embedded object, the container code can call CoIsOle1Class
to determine whether the embedded object is an OLE 1 object. If CoIsOle1Class returns S_TRUE, the
container does not offer CF_LINKSOURCE as one of its clipboard formats. This is one of several OLE
compatibility functions. Other compatibility functions, listed below, can be used to convert the storage
formats of objects between OLE 1 and OLE.

See Also
OleConvertIStorageToOLESTREAM, OleConvertIStorageToOLESTREAMEx,
OleConvertOLESTREAMToIStorage, OleConvertOLESTREAMToIStorageEx

CoLoadLibrary

Loads a specific DLL into the caller's process. The CoGetClassObject function calls CoLoadLibrary
internally; applications should not call it directly.

HINSTANCE CoLoadLibrary(

 LPOLESTR lpszLibName, //Pointer to the name of the library to be loaded
 BOOL bAutoFree //Whether library is automatically freed
);

Parameters
lpszLibName

[in] Pointer to the name of the library to be loaded. The use of this name is the same as in the Win32
function LoadLibrary.

bAutoFree

[in] If TRUE, indicates that this library is freed when it is no longer needed, through a call to either the
CoFreeUnusedLibraries or CoUninitialize functions. If FALSE, the library should be explicitly freed
with the CoFreeLibrary function.

Return Values
Module Handle

Handle of the loaded library.
NULL

Library could not be loaded.

Remarks
The CoLoadLibrary function is called internally by the CoGetClassObject function when the class
context (CLSCTX) indicates a DLL. CoLoadLibrary loads a DLL specified by the lpszLibName parameter
into the process that called CoGetClassObject. Containers should not call CoLoadLibrary directly.

Internally, a reference count is kept on the loaded DLL, by using CoLoadLibrary to increment the count
and the CoFreeLibrary function to decrement it.

See Also
CoFreeAllLibraries, CoFreeLibrary, CoFreeUnusedLibraries, CoGetClassObject

CoLockObjectExternal
Called either to lock an object to ensure that it stays in memory, or to release such a lock. Call
CoLockObjectExternal to place a strong lock on an object to ensure that it stays in memory.

STDAPI CoLockObjectExternal(

 IUnknown * pUnk, //Pointer to object to be locked or unlocked
 BOOL fLock, //TRUE = lock, FALSE = unlock
 BOOL fLastUnlockReleases //TRUE = release all pointers to object
);

Parameters
pUnk

[in] Pointer to the IUnknown interface on the object to be locked or unlocked.
fLock

[in] Whether the object is to be locked or released. Specifying TRUE holds a reference to the object
(keeping it in memory), locking it independently of external or internal AddRef/Release operations,
registrations, or revocations. If fLock is TRUE, fLastLockReleases is ignored. FALSE releases a lock
previously set with a call to this function.

fLastUnlockReleases

[in] Whether a given lock is the last reference that is supposed to keep an object alive. If it is, TRUE
releases all pointers to the object (there may be other references that are not supposed to keep it
alive).

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The object was locked successfully.

Remarks
The CoLockObjectExternal function prevents the reference count of an object from going to zero,
thereby "locking" it into existence until the lock is released. The same function (with different parameters)
releases the lock. The lock is implemented by having the system call IUnknown::AddRef on the object.
The system then waits to call IUnknown::Release on the object until a later call to
CoLockObjectExternal with fLock set to FALSE. This function can be used to maintain a reference count
on the object on behalf of the end user, because it acts outside of the object, as does the user.

The CoLockObjectExternal function must be called in the process in which the object actually resides
(the EXE process, not the process in which handlers may be loaded).

Calling CoLockObjectExternal sets a strong lock on an object. A strong lock keeps an object in memory,
while a weak lock does not. Strong locks are required, for example, during a silent update to an OLE
embedding. The embedded object's container must remain in memory until the update process is
complete. There must also be a strong lock on an application object to ensure that the application stays

alive until it has finished providing services to its clients. All external references place a strong reference
lock on an object.

The CoLockObjectExternal function is typically called in the following situations:

· Object servers should call CoLockObjectExternal with both fLock and fLastLockReleases set to
TRUE when they become visible. This call creates a strong lock on behalf of the user. When the
application is closing, free the lock with a call to CoLockObjectExternal, setting fLock to FALSE and
fLastLockReleases to TRUE.

· A call to CoLockObjectExternal on the server can also be used in the implementation of
IOleContainer::LockContainer.

There are several things to be aware of when you use CoLockObjectExternal in the implementation of
IOleContainer::LockContainer. An embedded object would call IOleContainer::LockContainer on its
container to keep it running (to lock it) in the absence of other reasons to keep it running. When the
embedded object becomes visible, the container must weaken its connection to the embedded object with
a call to the OleSetContainedObject function, so other connections can affect the object.

Unless an application manages all aspects of its application and document shutdown completely with
calls to CoLockObjectExternal, the container must keep a private lock count in
IOleContainer::LockContainer so that it exits when the lock count reaches zero and the container is
invisible. Maintaining all aspects of shutdown, and thereby avoiding keeping a private lock count, means
that CoLockObjectExternal should be called whenever one of the following conditions occur:

· A document is created and destroyed or made visible or invisible.
· An application is started and shut down by the user.
· A pseudo-object is created and destroyed.

For debugging purposes, it may be useful to keep a count of the number of external locks (and unlocks)
set on the application.

Note The end user has explicit control over the lifetime of an application, even if there are external
locks on it. That is, if a user decides to close the application (File, Exit), it must shut down. In the
presence of external locks (such as the lock set by CoLockObjectExternal), the application can call
the CoDisconnectObject function to force these connections to close prior to shutdown.

See Also
IOleContainer::LockContainer, OleSetContainedObject

CoMarshalHresult

Marshals an HRESULT to the specified stream, from which it can be unmarshaled using the
CoUnmarshalHresult function.

STDAPI CoMarshalHresult(

 IStream * pStm, //Pointer to the marshaling stream
 HRESULT hresult //HRESULT to be marshaled
);

Parameters
pStm

[in] Pointer to the marshaling stream.
hresult

[in] HRESULT in the originating process.

Return Values
This function supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The HRESULT was marshaled successfully.
STG_E_INVALIDPOINTER

Bad pointer passed in for pStm.
STG_E_MEDIUMFULL

The medium is full.

Remarks
An HRESULT is process-specific, so an HRESULT that is valid in one process might not be valid in
another. If you are writing your own implementation of IMarshal and need to marshal an HRESULT from
one process to another, either as a parameter or a return code, you must call this function. In other
circumstances, you will have no need to call this function.

This function perfoms the following tasks:

1. Writes an HRESULT to a stream.
2. Returns an IStream pointer to that stream.

See Also
CoUnmarshalHresult, IStream

CoMarshalInterface

Writes into a stream the data required to initialize a proxy object in some client process. The COM library
in the client process calls the CoUnmarshalInterface function to extract the data and initialize the proxy.
CoMarshalInterface can marshal only interfaces derived from IUnknown.

STDAPI CoMarshalInterface(

 IStream *pStm, //Pointer to the stream used for marshaling
 REFIID riid, //Reference to the identifier of the interface
 IUnknown *pUnk, //Pointer to the interface to be marshaled
 DWORD dwDestContext, //Destination context
 void *pvDestContext, //Reserved for future use
 DWORD mshlflags //Reason for marshaling
);

Parameters
pStm

[in] Pointer to the stream to be used during marshaling.
riid

[in] Reference to the identifier of the interface to be marshaled. This interface must be derived from
the IUnknown interface.

pUnk

[in] Pointer to the interface to be marshaled; can be NULL if the caller does not have a pointer to the
desired interface. This interface must be derived from the IUnknown interface.

dwDestContext

[in] Destination context where the specified interface is to be unmarshaled. Values for dwDestContext
come from the enumeration MSHCTX. Currently, unmarshaling can occur either in another apartment
of the current process (MSHCTX_INPROC) or in another process on the same computer as the
current process (MSHCTX_LOCAL).

pvDestContext

[in] Reserved for future use; must be NULL.
mshlflags

[in] Flag specifying whether the data to be marshaled is to be transmitted back to the client
process¾the normal case¾or written to a global table, where it can be retrieved by multiple clients.
Values come from the MSHLFLAGS enumeration.

Return Values
This function supports the standard return values E_FAIL, E_OUTOFMEMORY, and E_UNEXPECTED,
as well as the following:

S_OK

The interface pointer was marshaled successfully.
CO_E_NOTINITIALIZED

The CoInitialize or OleInitialize function was not called on the current thread before this function was
called.

IStream errors

This function can also return any of the stream-access error values returned by the IStream interface.

Remarks
The CoMarshalInterface function marshals the interface referred to by riid on the object whose
IUnknown implementation is pointed to by pUnk. To do so, the CoMarshalInterface function performs
the following tasks:

1. Queries the object for a pointer to the IMarshal interface. If the object does not implement IMarshal,
meaning that it relies on COM to provide marshaling support, CoMarshalInterface gets a pointer to
COM's default implementation of IMarshal.

2. Gets the CLSID of the object's proxy by calling IMarshal::GetUnmarshalClass, using whichever
IMarshal interface pointer has been returned.

3. Writes the CLSID of the proxy to the stream to be used for marshaling.
4. Marshals the interface pointer by calling IMarshal::MarshalInterface.

If you are implementing existing COM interfaces or defining your own interfaces using the Microsoft
Interface Definition Language (MIDL), the MIDL-generated proxies and stubs call CoMarshalInterface for
you. If you are writing your own proxies and stubs, your proxy code and stub code should each call
CoMarshalInterface to correctly marshal interface pointers. Calling IMarshal directly from your proxy and
stub code is not recommended.

If you are writing your own implementation of IMarshal, and your proxy needs access to a private object,
you can include an interface pointer to that object as part of the data you write to the stream. In such
situations, if you want to use COM's default marshaling implementation when passing the interface
pointer, you can call CoMarshalInterface on the object to do so.

See Also
CoUnmarshalInterface, IMarshal::MarshalInterface

CoMarshalInterThreadInterfaceInStream
Marshals an interface pointer from one thread to another thread in the same process.

HRESULT CoMarshalInterThreadInterfaceInStream(

 REFIID riid, //Reference to the identifier of the interface
 LPUNKNOWN pUnk, //Pointer to the interface to be marshaled
 LPSTREAM * ppStm //Indirect pointer
);

Parameters
riid

[in] Reference to the identifier of the interface to be marshaled.
pUnk

[in] Pointer to the interface to be marshaled, which must be derived from IUnknown; can be NULL.
ppStm

[out] Indirect pointer to the stream that contains the marshaled interface.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The interface was marshaled successfully.

Remarks
The CoMarshalInterThreadInterfaceInStream function enables an object to easily and reliably marshal
an interface pointer to another thread in the same process. The stream returned in ppStm is guaranteed
to behave correctly when a client running in the receiving thread attempts to unmarshal the pointer. The
client can then call the CoGetInterfaceAndReleaseStream to unmarshal the interface pointer and
release the stream object.

The CoMarshalInterThreadInterfaceInStream function performs the following tasks:

1. Creates a stream object.
2. Passes the stream object's IStream pointer to CoMarshalInterface.
3. Returns the IStream pointer to the caller.

See Also
CoGetInterfaceAndReleaseStream

CoQueryAuthenticationServices

Retrieves a list of the authentication services registered when the process called CoInitializeSecurity.

HRESULT CoQueryAuthenticationServices(

 DWORD * pcAuthSvc, //Pointer to the number of entries returned in the array
 SOLE_AUTHENTICATION_SERVICE** prgAuthSvc //Pointer to an array of structures
);

Parameters
pcAuthSvc

[out] Pointer to return the number of entries returned in the rgAuthSvc array. May not be NULL.
prgAuthSvc

[out] Pointer to an array of SOLE_AUTHENTICATION_SERVICE structures. The list is allocated
through a call to CoTaskMemAlloc. The caller must free the list when finished with it by calling
CoTaskMemFree.

Return Values
This function supports the standard return values E_INVALIDARG and

E_OUTOFMEMORY, as well as the following:

S_OK

Indicates success.

Remarks
CoQueryAuthenticationServices retrieves a list of the authentication services currently registered. If the
process calls CoInitializeSecurity, these are the services registered through that call; if not, those
registered by default by OLE.

This function is primarily useful for custom marshalers, to determine which principal names an application
can use.

Different authentication services support different levels of security. For example, NTLMSSP does not
support delegation or mutual authentication while Kerberos does. The application is responsible only for
registering authentication services that provide the features the application needs. This is the way to
query which services have been registered with CoInitializeSecurity.

See Also
CoInitializeSecurity, SOLE_AUTHENTICATION_SERVICE structure, Security in COM

CoQueryClientBlanket

Called by the server to find out about the client that invoked the method executing on the current thread.

HRESULT CoQueryClientBlanket(

 DWORD* pAuthnSvc, //Pointer to the current authentication service
 DWORD* pAuthzSvc, //Pointer to the current authorization service
 OLECHAR ** pServerPrincName, //Pointer to the current principal name
 DWORD * pAuthnLevel, //Pointer to the current authentication level
 DWORD * pImpLevel, //Must be NULL
 void ** ppPrivs, //Pointer to unicode string identifying client
 DWORD ** pCapabilities //Pointer to flags indicating further capabilities of the proxy
);

Parameters
pAuthnSvc

[out] Pointer to a DWORD value defining the current authentication service. This will be a single value
taken from the list of RPC_C_AUTHN_ xxx constants. May be NULL, in which case the current
authentication service is not returned.

pAuthzSvc

[out] Pointer to a DWORD value defining the current authorization service. This will be a single value
taken from the list of RPC_C_AUTHZ_ xxx constants. May be NULL, in which case the current
authorization service is not returned.

pServerPrincName

[out] Pointer to the current principal name. The string will be allocated by the callee using
CoTaskMemAlloc and must be freed by the caller using CoTaskMemFree when they are done with
it. May be NULL, in which case the principal name is not returned.

pAuthnLevel

[out] Pointer to a DWORD value defining the current authentication level. This will be a single value
taken from the list of RPC_C_AUTHN_LEVEL_ xxx constants. May be NULL, in which case the
current authentication level is not returned.

pImpLevel

[out] Must be NULL; does not supplythe current impersonation level is not returned.
pPrivs

[out] Pointer to a unicode string identifying the client. This string is not a copy, the user must not
change it or free it. The string is not valid past the end of the call. For NTLMSSP the string is of the
form domain\user.

pCapabilities

[out] Pointer to flags indicating further capabilities of the call. Currently, no flags are defined for this
parameter and the value retrieved is EOAC_NONE. May be NULL, in which case no value is
retrieved. EOAC_MUTUAL_AUTH is defined but not used by NTLMSSP. Third party security
providers may return that flag.

Return Values
S_OK

Success.
E_INVALIDARG

One or more arguments are invalid.
E_OUTOFMEMORY

Insufficient memory to create the pServerPrincName out-parameter.

Remarks
CoQueryClientBlanket is called by the server to get security information about the client that invoked the
method executing on the current thread. This function encapsulates the following sequence of common
calls (error handling excluded):

 CoGetCallContext(IID_IServerSecurity, (void**)&pss);
 pss->QueryBlanket(pAuthnSvc, pAuthzSvc, pServerPrincName,
 pAuthnLevel, pImpLevel, pPrivs, pCapabilities);
 pss->Release();

See Also

IServerSecurity::QueryBlanket, Security in COM

CoQueryProxyBlanket

Retrieves the authentication information the client uses to make calls on the specified proxy.

HRESULT CoQueryProxyBlanket(

 void* pProxy, //Location for the proxy to query
 DWORD* pAuthnSvc, //Location for the the current authorization service
 DWORD* pAuthzSvc, //Location for the the current authorization service
 OLECHAR ** pServerPrincName, //Location for the current principal name
 DWORD * pAuthnLevel, //Location for the current authentication level
 DWORD * pImpLevel, //Location for the current impersonation level
 RPC_AUTH_IDENTITY_HANDLE ** ppAuthInfo, //Location for the value passed to IClientSecurity::SetBlanket
 DWORD ** pCapabilities //Location for flags indicating further capabilities of the proxy
);

Parameters
pProxy

[in] Pointer to an interface on the proxy to query.
pAuthnSvc

[out] Pointer to a DWORD value defining the current authentication service. This will be a single value
taken from the list of RPC_C_AUTHN_ xxx constants. May be NULL, in which case the current
authentication service is not retrieved.

pAuthzSvc

[out] Pointer to a DWORD value defining the current authorization service. This will be a single value
taken from the list of RPC_C_AUTHZ_ xxx constants. May be NULL, in which case the current
authorization service is not retrieved.

pServerPrincName

[out] Pointer to the current principal name. The string will be allocated by the one called using
CoTaskMemAlloc and must be freed by the caller using CoTaskMemFree when they are done with
it. May be NULL, in which case the principal name is not retrieved.

pAuthnLevel

[out] Pointer to a DWORD value defining the current authentication level. This will be a single value
taken from the list of RPC_C_AUTHN_LEVEL_ xxx constants. May be NULL, in which case the
current authentication level is not retrieved.

pImpLevel

[out] Pointer to a DWORD value defining the current impersonation level. This will be a single value
taken from the list of RPC_C_IMP_LEVEL_ xxx constants. May be NULL, in which case the current
authentication level is not retrieved.

ppAuthInfo

[out] Pointer to the pointer value passed to IClientSecurity::SetBlanket indicating the identity of the
client. Because this points to the value itself and is not a copy, it should not be manipulated. May be
NULL, in which case the information is not retrieved.

pCapabilities

[out] Pointer to a DWORD of flags indicating further capabilities of the proxy. Currently, no flags are
defined for this parameter and it will only return EOAC_NONE. May be NULL, in which case the flags
indicating further capabilities are not retrieved.

Return Values
S_OK

Success.
E_INVALIDARG

One or more arguments are invalid.
E_OUTOFMEMORY

Insufficient memory to create the pasAuthnSvc out-parameter.

Remarks
CoQueryProxyBlanket is called by the client to retrieve the authentication information COM will use on
calls made from the specified proxy. This function encapsulates the following sequence of common calls
(error handling excluded):

pProxy->QueryInterface(IID_IClientSecurity, (void**)&pcs);
pcs->QueryBlanket(pProxy, pAuthnSvc, pAuthzSvc, pServerPrincName,
 pAuthnLevel, pImpLevel, ppAuthInfo, pCapabilities);
pcs->Release();

This sequence calls QueryInterface on the proxy for IClientSecurity, and with the resulting pointer, calls
IClientSecurity::QueryBlanket, and then releases the pointer.

In pProxy, you can pass any proxy, such as a proxy you get through a call to CoCreateInstance,
CoUnmarshalInterface, or just passing an interface pointer as a parameter. It can be any interface. You
cannot pass a pointer to something that is not a proxy. Thus you can't pass a pointer to an interface that
has the local keyword in its interface definition since no proxy is created for such an interface. IUnknown
is the exception.

See Also
IClientSecurity::QueryBlanket, Security in COM

CoRegisterClassObject

Registers an EXE class object with OLE so other applications can connect to it. EXE object applications
should call CoRegisterClassObject on startup. It can also be used to register internal objects for use by
the same EXE or other code (such as DLLs) that the EXE uses.

STDAPI CoRegisterClassObject(

 REFCLSID rclsid, //Class identifier (CLSID) to be registered
 IUnknown * pUnk, //Pointer to the class object
 DWORD dwClsContext, //Context for running executable code
 DWORD flags, //How to connect to the class object
 LPDWORD * lpdwRegister //Pointer to the value returned
);

Parameters
rclsid

[in] CLSID to be registered.
pUnk

[in] Pointer to theIUnknown interface on the class object whose availability is being published.
dwClsContext

[in] Context in which the executable code is to be run. For information on these context values, see
the CLSCTX enumeration.

flags

[in] How connections are made to the class object. For information on these flags, see the REGCLS
enumeration.

lpdwRegister

[out] Pointer to a value that identifies the class object registered; later used by the
CoRevokeClassObject function to revoke the registration.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The class object was registered successfully.
CO_E_OBJISREG

Already registered in the class object table.

Remarks
Only EXE object applications call CoRegisterClassObject. Object handlers or DLL object applications do
not call this function ¾ instead, they must implement and export the DllGetClassObject function.

At startup, a multiple-use EXE object application must create a class object (with the IClassFactory
interface on it), and call CoRegisterClassObject to register the class object. Object applications that
support several different classes (such as multiple types of embeddable objects) must allocate and
register a different class object for each.

Multiple registrations of the same class object are independent and do not produce an error. Each
subsequent registration yields a unique key in lpdwRegister.

Multiple document interface (MDI) applications must register their class objects. Single document
interface (SDI) applications must register their class objects only if they can be started by means of the
/Embedding switch.

The server for a class object should call CoRevokeClassObject to revoke the class object (remove its
registration) when all of the following are true:

· There are no existing instances of the object definition
· There are no locks on the class object
· The application providing services to the class object is not under user control (not visible to the user

on the display).

After the class object is revoked, when its reference count reaches zero, the class object can be released,
allowing the application to exit.

For information on the flags parameter, refer to the REGCLS enumeration.

See Also
CoGetClassObject, CoRevokeClassObject, DllGetClassObject, REGCLS, CLSCTX

CoRegisterMallocSpy

Registers an implementation of the IMallocSpy interface in OLE, thereafter requiring OLE to call its
wrapper methods around every call to the corresponding IMalloc method. IMallocSpy is defined in OLE
to allow developers to debug memory allocations.

HRESULT CoRegisterMallocSpy(

 LPMALLOCSPY pMallocSpy //Pointer to the interface
);

Parameter
pMallocSpy

[in] Pointer to an instance of the IMallocSpy implementation.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The IMallocSpy object is successfully registered.
CO_E_OBJISREG

There is already a registered spy.

Remarks
The CoRegisterMallocSpy function registers the IMallocSpy object, which is used to debug calls to
IMalloc methods. The function calls QueryInterface on the pointer pMallocSpy for the interface
IID_IMallocSpy. This is to ensure that pMallocSpy really points to an implementation of IMallocSpy. By
the rules of OLE, it is expected that a successful call to QueryInterface has added a reference (through
the AddRef method) to the IMallocSpy object. That is, CoRegisterMallocSpy does not directly call
AddRef on pMallocSpy, but fully expects that the QueryInterface call will.

When the IMallocSpy object is registered, whenever there is a call to one of the IMalloc methods, OLE
first calls the corresponding IMallocSpy pre-method. Then, after executing the IMalloc method, OLE calls
the corresponding IMallocSpy post-method. For example, whenever there is a call to IMalloc::Alloc,
from whatever source, OLE calls IMallocSpy::PreAlloc, calls IMalloc::Alloc, and after that allocation is
completed, calls IMallocSpy::PostAlloc.

See Also
IMallocSpy, CoRevokeMallocSpy, CoGetMalloc

CoRegisterMessageFilter

Registers with OLE the instance of an EXE application's IMessageFilter interface, which is to be used for
handling concurrency issues. DLL object applications cannot register a message filter.

HRESULT CoRegisterMessageFilter(

 LPMESSAGEFILTER lpMessageFilter, //Pointer to interface
 LPMESSAGEFILTER * lplpMessageFilter //Indirect pointer to prior instance if non-NULL
);

Parameters
lpMessageFilter

[in] Pointer to theIMessageFilter interface on the message filter supplied by the application. Can be
NULL, indicating that the current IMessageFilter registration should be revoked.

lplpMessageFilter

[out] If a message filter has been previously registered, indirect pointer to an IMessageFilter interface
to that instance. If the value of this parameter on return is NULL, this indicates that no previous
IMessageFilter instance was registered. This parameter rarely returns NULL, however, returning
instead a pointer to the default message filter.

Return Values
S_OK

The IMessageFilter instance registered or revoked successfully.
S_FALSE

Error registering or revoking IMessageFilter instance.

CoRegisterPSClsid
Enables a downloaded DLL to register its custom interfaces within its running process so that the
marshaling code will be able to marshal those interfaces.

WINOLEAPI CoRegisterPSCLsid(

 REFIID riid, // Custom interface to be registered

 REFCLSID rclsid // DLL containing the proxy/stub code for riid

);

Parameters
riid

[in] Points to the IID of the interface to be registered.
rclsid

[in] Points to the CLSID of the DLL that contains the proxy/stub code for the custom interface
specified by riid.

Return Values
S_OK

The custom interface was successfully registered.
E_INVALIDARG

One of the parameters is invalid.
E_OUTOFMEMORY

There is insufficient memory to complete this operation.

Remarks
Normally the code responsible for marshaling an interface pointer into the current running process reads
the HKEY_CLASSES_ROOT\Interfaces section of the registry to obtain the CLSID of the DLL containing
the ProxyStub code to be loaded. To obtain the ProxyStub CLSIDs for an existing interface, the code calls
the CoGetPSClsid function.

In some cases, however, it may be desirable or necessary for an in-process handler or in-process server
to make its custom interfaces available without writing to the registry. A DLL downloaded across a network
may not even have permission to access the local registry, and because the code originated on another
machine, the user, for security purposes, may want to run it in a restricted environment. Or a DLL may
have custom interfaces that it uses to talk to a remote server and may also include the ProxyStub code
for those interfaces. In such cases, a DLL needs an alternative way to register its interfaces.
CoRegisterPSClsid, used in conjunction with CoRegisterClassObject, provides that alternative.

A DLL would normally call CoRegisterPSClsid as shown in the following code fragment:

HRESULT RegisterMyCustomInterface(DWORD *pdwRegistrationKey)
{
 HRESULT hr = CoRegisterClassObject(CLSID_MyProxyStubClsid,
 pIPSFactoryBuffer,
 CLSCTX_INPROC_SERVER,
 REGCLS_MULTIPLEUSE
 pdwRegistrationKey);
 if(SUCCEEDED)(hr))
 {
 hr = CoRegisterPSClsid(IID_MyCustomInterface,
CLSID_MyProxyStubClsid);
 }

 return hr;
}

See Also

CoGetPSClsid, CoRegisterClassObject

CoReleaseMarshalData

Destroys a previously marshaled data packet.

STDAPI CoReleaseMarshalData(

 IStream * pStm //Pointer to stream containing data packet
);

Parameter
pStm

[in] Pointer to the stream that contains the data packet to be destroyed.

Return Values
This function supports the standard return values E_FAIL, E_INVALIDARG,

E_OUTOFMEMORY, and E_UNEXPECTED, as well as the following:

S_OK

The data packet was successfully destroyed.
STG_E_INVALIDPOINTER

An IStream error dealing with the pStm parameter.
CO_E_NOTINITIALIZED

The CoInitialize or OleInitialize function was not called on the current thread before this function was
called.

Remarks
The CoReleaseMarshalData function performs the following tasks:

1. The function reads a CLSID from the stream.
2. If COM's default marshaling implementation is being used, the function gets an IMarshal pointer to an

instance of the standard unmarshaler. If custom marshaling is being used, the function creates a
proxy by calling the CoCreateInstance function, passing the CLSID it read from the stream, and
requesings an IMarshal interface pointer to the newly created proxy.

3. Using whichever IMarshal interface pointer it has acquired, the function calls
IMarshal::ReleaseMarshalData.

You typically do not call this function. The only situation in which you might need to call this function is if
you use custom marshaling (write and use your own implementation of IMarshal). Examples of when
CoReleaseMarshalData should be called include the following situations:

· An attempt was made to unmarshal the data packet, but it failed.
· A marshaled data packet was removed from a global table.

As an analogy, the data packet can be thought of as a reference to the original object, just as if it were
another interface pointer being held on the object. Like a real interface pointer, that data packet must be
released at some point. The use of IMarshal::ReleaseMarshalData to release data packets is analogous
to the use of IUnknown::Release to release interface pointers.

Note that you do not need to call CoReleaseMarshalData after a successful call of the
CoUnmarshalInterface function; that function releases the marshal data as part of the processing that it
does.

See Also
IMarshal::ReleaseMarshalData

CoReleaseServerProcess
Decrements the global per-process reference count

ULONG CoReleaseServerProcess(void);

Return Values
S_OK

The CLSID was retrieved successfully.

Remarks
Servers can call CoReleaseServerProcess to decrement a global per-process reference count
incremented through a call to CoAddRefServerProcess

When that count reaches zero, OLE automatically calls CoSuspendClassObjects, which prevents new
activation requests from coming in. This permits the server to deregister its class objects from its various
threads without worry that another activation request may come in. New activation requests result in
launching a new instance of the local server process.

The simplest way for a local server application to make use of these API functions is to call
CoAddRefServerProcess in the constructor for each of its instance objects, and in each of its
IClassFactory::LockServer methods when the fLock parameter is TRUE. The server application should
also call CoReleaseServerProcess in the destruction of each of its instance objects, and in each of its
IClassFactory::LockServer methods when the fLock parameter is FALSE. Finally, the server application
must check the return code from CoReleaseServerProcess; if it returns 0, the server application should
initiate its cleanup. This typically means that a server with multiple threads should signal its various
threads to exit their message loops and call CoRevokeClassObject and CoUninitialize.

If these APIs are used at all, they must be called in both the object instances and the LockServer
method, otherwise the server application may be shutdown prematurely. In-process Servers typically
should not call CoAddRefServerProcess or CoReleaseServerProcess.

See Also
CoSuspendClassObjects, CoReleaseServerProcess, IClassFactory::LockServer, Out-of-process
Server Implementation Helpers

CoResumeClassObjects
Called by a server that can register multiple class objects to inform the OLE SCM about all registered
classes, and permits activation requests for those class objects.

WINOLEAPI CoResumeClassObjects(void);

Return Values
S_OK

The CLSID was retrieved successfully.

Remarks
Servers that can register multiple class objects call CoResumeClassObjects once, after having first
called CoRegisterClassObject, specifying REGCLS_LOCAL_SERVER | REGCLS_SUSPENDED for
each CLSID the server supports. This function causes OLE to inform the SCM about all the registered
classes, and begins letting activation requests into the server process.

This reduces the overall registration time, and thus the server application startup time, by making a single
call to the SCM, no matter how many CLSIDs are registered for the server. Another advantage is that if
the server has multiple apartments with different CLSIDs registered in different apartments, or is a free-
threaded server, no activation requests will come in until the server calls CoResumeClassObjects. This
gives the server a chance to register all of its CLSIDs and get properly set up before having to deal with
activation requests, and possibly shutdown requests.

See Also
CoRegisterClassObject, CoSuspendClassObjects, Out-of-process Server Implementation Helpers

CoRevertToSelf

Restores the authentication information on a thread of execution to its previous identity.

HRESULT CoRevertToSelf()

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Indicates success.

Remarks
CoRevertToSelf restores the authentication information on a thread of execution to its previous identity
after a previous server call to CoImpersonateClient. This is a helper function that encapsulates the
following common sequence of calls (error handling excluded):

 CoGetCallContext(IID_IServerSecurity, (void**)&pss);
 pss->RevertToSelf();
 pss->Release();

See Also

IServerSecurity::RevertToSelf, CoGetCallContext, Security in COM

CoRevokeClassObject

Informs OLE that a class object, previously registered with the CoRegisterClassObject function, is no
longer available for use.

HRESULT CoRevokeClassObject(

 DWORD dwRegister //Token on class object
);

Parameter
dwRegister

[in] Token previously returned from the CoRegisterClassObject function.

Return Values
This function supports the standard return values E_INVALIDARG,

E_OUTOFMEMORY, and E_UNEXPECTED, as well as the following:

S_OK

The class object was successfully revoked.

Remarks
A successful call to CoRevokeClassObject means that the class object has been removed from the
global class object table (although it does not release the class object). If other clients still have pointers
to the class object and have caused the reference count to be incremented by calls to
IUnknown::AddRef, the reference count will not be zero. When this occurs, applications may benefit if
subsequent calls (with the obvious exceptions of IUnknown::AddRef and IUnknown::Release) to the
class object fail.

An object application must call CoRevokeClassObject to revoke registered class objects before exiting
the program. Class object implementers should call CoRevokeClassObject as part of the release
sequence. You must specifically revoke the class object even when you have specified the flags value
REGCLS_SINGLEUSE in a call to CoRegisterClassObject, indicating that only one application can
connect to the class object.

See Also
CoGetClassObject, CoRegisterClassObject

CoRevokeMallocSpy

Revokes a registered IMallocSpy object.

HRESULT CoRevokeMallocSpy();

Return Values
S_OK

The IMallocSpy object is successfully revoked.
CO_E_OBJNOTREG

No spy is currently registered.
E_ACCESSDENIED

Spy is registered but there are outstanding allocations (not yet freed) made while this spy was active.

Remarks
The IMallocSpy object is released when it is revoked. This release corresponds to the call to
IUnknown::AddRef in the implementation of the QueryInterface function by the CoRegisterMallocSpy
function. The implementation of the IMallocSpy interface should then do any appropriate cleanup.

If the return code is E_ACCESSDENIED, there are still outstanding allocations that were made while the
spy was active. In this case, the registered spy cannot be revoked at this time because it may have
attached arbitrary headers and/or trailers to these allocations that only the spy knows about. Only the
spy's PreFree (or PreRealloc) method knows how to account for these headers and trailers. Before
returning E_ACCESSDENIED, CoRevokeMallocSpy notes internally that a revoke is pending. When the
outstanding allocations have been freed, the revoke proceeds automatically, releasing the IMallocSpy
object. Thus, it is necessary to call CoRevokeMallocSpy only once for each call to
CoRegisterMallocSpy, even if E_ACCESSDENIED is returned.

See Also
IMallocSpy, CoRegisterMallocSpy, CoGetMalloc

CoSetProxyBlanket

Sets the authentication information that will be used to make calls on the specified proxy.

HRESULT CoSetProxyBlanket(

 void * pProxy, //Indicates the proxy to set
 DWORD dwAuthnSvc, //Authentication service to use
 DWORD dwAuthzSvc, //Authorization service to use
 WCHAR * pServerPrincName, //The server principal name to use with the authentication service
 DWORD dwAuthnLevel, //The authentication level to use
 DWORD dwImpLevel, //The impersonation level to use
 RPC_AUTH_IDENTITY_HANDLE * pAuthInfo, //The identity of the client
 DWORD dwCapabilities //Undefined ¾ capability flags
);

Parameter
pProxy

[in] Pointer to an interface on the proxy for which this authentication information is to be set.
dwAuthnSvc

[in] A single DWORD value from the list of RPC_C_AUTHN_ xxx constants indicating the
authentication service to use. It may be RPC_C_AUTHN_NONE if no authentication is required.

dwAuthzSvc

[in] A single DWORD value from the list of RPC_C_AUTHZ_ xxx constants indicating the authorization
service to use. If you are using the system default authentication service, use
RPC_C_AUTHZ_NONE.

pServerPrincName

[in] Points to a WCHAR string that indicates the server principal name to use with the authentication
service. If you are using RPC_C_AUTHN_WINNT, the principal name must be NULL.

dwAuthnLevel

[in] A single DWORD value from the list of RPC_C_AUTHN_LEVEL_ xxx constants indicating the
authentication level to use.

dwImpLevel

[in] A single DWORD value from the list of RPC_C_IMP_LEVEL_ xxx constants indicating the
impersonation level to use. Currently, only RPC_C_IMP_LEVEL_IMPERSONATE and
RPC_C_IMP_LEVEL_IDENTIFY are supported.

pAuthInfo

[in] Establishes the identity of the client. It is authentication service specific. Some authentication
services allow the application to pass in a different user name and password. COM keeps a pointer to
the memory passed in until COM is uninitialized or a new value is set. If NULL is specified COM uses
the current identity (the process token). For NTLMSSP the structure is
SEC_WINNT_AUTH_IDENTITY_W.

dwCapabilities

[in] Flags to establish indicating the further capabilities of this proxy. Currently, no capability flags are

defined.
The caller should specify EOAC_NONE. EOAC_MUTUAL_AUTH is defined and may be used by
other security providers, but is not supported by NTLMSSP. Thus, NTLMSSP will accept this flag
without generating an error but without providing mutual authentication.

Return Values
S_OK

Success, append the headers.
E_INVALIDARG

One or more arguments is invalid.

Remarks
Sets the authentication information that will be used to make calls on the specified proxy. This function
encapsulates the following sequence of common calls (error handling excluded):

 pProxy->QueryInterface(IID_IClientSecurity, (void**)&pcs);
 pcs->SetBlanket(pProxy, dwAuthnSvc, dwAuthzSvc, pServerPrincName,
 dwAuthnLevel, dwImpLevel, pAuthInfo, dwCapabilities);
 pcs->Release();

See Also

IClientSecurity::SetBlanket, CoQueryClientBlanket, Security in COM

CoSuspendClassObjects
Prevents any new activation requests from the SCM on all class objects registered within the process.

WINOLEAPI CoSuspendClassObjects(void);

Return Values
S_OK

The CLSID was retrieved successfully.

Remarks
CoSuspendClassObjects prevents any new activation requests from the SCM on all class objects
registered within the process. Even though a process may call this API, the process still must call
CoRevokeClassObject for each CLSID it has registered, in the apartment it registered in. Applications
typically do not need to call this API, which is generally only called internally by OLE when used in
conjunction with CoReleaseServerProcess.

See Also
CoRevokeClassObject, CoReleaseServerProcess, Out-of-process Server Implementation Helpers

CoTaskMemAlloc

Allocates a block of task memory in the same way that IMalloc::Alloc does.

LPVOID CoTaskMemAlloc(

 ULONG cb //Size in bytes of memory block to be allocated
);

Parameter
cb

[in] Size, in bytes, of the memory block to be allocated.

Return Values
Allocated memory block

Memory block allocated successfully.
NULL

Insufficient memory available.

Remarks
The CoTaskMemAlloc function uses the default allocator to allocate a memory block in the same way
that IMalloc::Alloc does. It is not necessary to call the CoGetMalloc function before calling
CoTaskMemAlloc.

The initial contents of the returned memory block are undefined - there is no guarantee that the block has
been initialized. The allocated block may be larger than cb bytes because of the space required for
alignment and for maintenance information.

If cb is zero, CoTaskMemAlloc allocates a zero-length item and returns a valid pointer to that item. If
there is insufficient memory available, CoTaskMemAlloc returns NULL.

Note Applications should always check the return value from this method, even when requesting
small amounts of memory, because there is no guarantee the memory will be allocated.

See Also
IMalloc::Alloc, CoGetMalloc, CoTaskMemFree, CoTaskMemRealloc

CoTaskMemFree

Frees a block of task memory previously allocated through a call to the CoTaskMemAlloc or
CoTaskMemRealloc function.

void CoTaskMemFree(

 void pv //Pointer to memory block to be freed
);

Parameter
pv

[in] Pointer to the memory block to be freed.

Remarks
The CoTaskMemFree function, using the default OLE allocator, frees a block of memory previously
allocated through a call to the CoTaskMemAlloc or CoTaskMemRealloc function.

The number of bytes freed equals the number of bytes that were originally allocated or reallocated. After
the call, the memory block pointed to by pv is invalid and can no longer be used.

Note The pv parameter can be NULL, in which case this method has no effect.

See Also
CoTaskMemAlloc, CoTaskMemRealloc, CoGetMalloc, IMalloc::Free

CoTaskMemRealloc

Changes the size of a previously allocated block of task memory.

LPVOID CoTaskMemRealloc(

 LPVOID pv, //Pointer to memory block to be reallocated
 ULONG cb //Size of block to be reallocated
);

Parameters
pv

[in] Pointer to the memory block to be reallocated. It can be a NULL pointer, as discussed in the
Remarks.

cb

[in] Size, in bytes, of the memory block to be reallocated. It can be zero, as discussed in the following
remarks.

Return Values
Reallocated memory block

Memory block successfully reallocated.
NULL

Insufficient memory or cb is zero and pv is not NULL.

Remarks
The CoTaskMemRealloc function changes the size of a previously allocated memory block in the same
way that IMalloc::Realloc does. It is not necessary to call the CoGetMalloc function to get a pointer to
the OLE allocator before calling CoTaskMemRealloc.

The pv argument points to the beginning of the memory block. If pv is NULL, CoTaskMemRealloc
allocates a new memory block in the same way as the CoTaskMemAlloc function. If pv is not NULL, it
should be a pointer returned by a prior call to CoTaskMemAlloc.

The cb argument specifies the size (in bytes) of the new block. The contents of the block are unchanged
up to the shorter of the new and old sizes, although the new block can be in a different location. Because
the new block can be in a different memory location, the pointer returned by CoTaskMemRealloc is not
guaranteed to be the pointer passed through the pv argument. If pv is not NULL and cb is zero, then the
memory pointed to by pv is freed.

CoTaskMemRealloc returns a void pointer to the reallocated (and possibly moved) memory block. The
return value is NULL if the size is zero and the buffer argument is not NULL, or if there is not enough
memory available to expand the block to the given size. In the first case, the original block is freed; in the
second, the original block is unchanged.

The storage space pointed to by the return value is guaranteed to be suitably aligned for storage of any
type of object. To get a pointer to a type other than void, use a type cast on the return value.

See Also
CoTaskMemAlloc, CoTaskMemFree, CoGetMalloc, IMalloc::Realloc

CoTreatAsClass

Establishes or removes an emulation, in which objects of one class are treated as objects of a different
class.

STDAPI CoTreatAsClass(

 REFCLSID clsidOld, //CLSID for the original object to be emulated
 REFCLSID clsidNew //CLSID for the new object that emulates the original
);

Parameters
clsidOld

[in] CLSID of the object to be emulated.
clsidNew

[in] CLSID of the object that should emulate the original object. This replaces any existing emulation
for clsidOld. Can be CLSID_NULL, in which case any existing emulation for clsidOld is removed.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The emulation was successfully established or removed.
REGDB_E_CLASSNOTREG

The clsidOld parameter is not properly registered in the registration database.
REGDB_E_READREGDB

Error reading from registration database.
REGDB_E_WRITEREGDB

Error writing to registration database.

Remarks
This function sets the TreatAs entry in the registry for the specified object, allowing the object to be
emulated by another application. Emulation allows an application to open and edit an object of a different
format, while retaining the original format of the object. After this entry is set, whenever any function like
CoGetClassObject specifies the object's original CLSID (clsidOld), it is transparently forwarded to the
new CLSID (clsidNew), thus launching the application associated with the TreatAs CLSID. When the
object is saved, it can be saved in its native format, which may result in loss of edits not supported by the
original format.

You would call CoTreatAsClass in two situations if your application supports emulation:

· In response to an end-user request (through a conversion dialog box) that a specified object be
treated as an object of a different class (an object created under one application be run under another
application, while retaining the original format information).

· In a setup program, to register that one class of objects be treated as objects of a different class.

An example of the first case is that an end user might wish to edit a spreadsheet created by one
application using a different application that can read and write the spreadsheet format of the original
application. For an application that supports emulation, CoTreatAsClass can be called to implement a
Treat As option in a conversion dialog box.

An example of the use of CoTreatAsClass in a setup program would be in an updated version of an
application. When the application is updated, the objects created with the earlier version can be activated
and treated as objects of the new version, while retaining the previous format information. This would
allow you to give the user the option to convert when they save, or to save it in the previous format,
possibly losing format information not available in the older version.

One result of setting an emulation is that when you enumerate verbs, as in the IOleObject::EnumVerbs
method implementation in the default handler, this would enumerate the verbs from clsidNew instead of
clsidOld.

To ensure that existing emulation information is removed when you install an application, your setup
programs should call CoTreatAsClass, setting the clsidNew parameter to CLSID_NULL to remove any
existing emulation for the classes they install.

If there is no CLSID assigned to the AutoTreatAs key in the registry, setting clsidNew and clsidOld to the
same value removes the TreatAs entry, so there is no emulation. If there is a CLSID assigned to the
AutoTreatAs key, that CLSID is assigned to the TreatAs key.

The CoTreatAsClass function does not validate whether an appropriate registry entry for clsidNew
currently exists.

See Also
CoGetTreatAsClass

CoUninitialize

Closes the OLE Component Object Model (COM) library, freeing any resources that it maintains and
forcing all RPC connections to close.

void CoUninitialize();

Remarks
The CoInitialize and CoUninitialize calls must be balanced - if there are multiple calls to the CoInitialize
function, there must be the same number of calls to CoUninitialize. Only the CoUninitialize call
corresponding to the CoInitialize call that initialized the library can close it.

The OleUninitialize function calls CoUninitialize internally, so applications that call OleUninitialize do
not also need to call CoUninitialize.

CoUninitialize should be called on application shutdown, as the last call made to the COM library after
the application hides its main windows and falls through its main message loop. If there are open
conversations remaining, CoUninitialize starts a modal message loop and dispatches any pending
messages from the containers or server for this OLE application. By dispatching the messages,
CoUninitialize ensures that the application does not quit before receiving all of its pending messages.
Non-OLE messages are discarded.

See Also
CoInitialize, OleUninitialize

CoUnmarshalHresult

Unmarshals an HRESULT type from the specified stream.

STDAPI CoUnmarshalHresult(

 LPSTREAM pStm, //Pointer to stream used for unmarshaling
 HRESULT * phresult //Pointer to the HRESULT
);

Parameters
pStm

[in] Pointer to the stream from which the HRESULT is to be unmarshaled.
phresult

[out] Pointer to the unmarshaled HRESULT.

Return Values
This function supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The HRESULT was unmarshaled successfully.
STG_E_INVALIDPOINTER

pStm is an invalid pointer.

Remarks
You do not explicitly call this function unless you are performing custom marshaling (that is, writing your
own implementation of IMarshal), and your implementation needs to unmarshal an HRESULT.

You must use CoUnmarshalHresult to unmarshal HRESULTs previously marshaled by a call to the
CoMarshalHresult function.

This function performs the following tasks:

1. Reads an HRESULT from a stream.
2. Returns the HRESULT.

See Also
CoMarshalHresult, IStream

CoUnmarshalInterface

Initializes a newly created proxy using data written into the stream by a previous call to the
CoMarshalInterface function, and returns an interface pointer to that proxy.

STDAPI CoUnmarshalInterface(

 IStream * pStm, //Pointer to the stream
 REFIID riid, //Reference to the identifier of the interface
 void ** ppv //Indirect pointer to the unmarshaled interface
);

Parameters
pStm

[in] Pointer to the stream from which the interface is to be unmarshaled.
riid

[in] Reference to the identifier of the interface to be unmarshaled.
ppv

[out] Indirect pointer to the interface that was unmarshaled.

Return Values
This function supports the standard return value E_FAIL, as well as the following:

S_OK

The interface pointer was unmarshaled successfully.
STG_E_INVALIDPOINTER

pStm is an invalid pointer.
CO_E_NOTINITIALIZED

The CoInitialize or OleInitialize function was not called on the current thread before this function was
called.

CO_E_OBJNOTCONNECTED

The object application has been disconnected from the remoting system (for example, as a result of a
call to the CoDisconnectObject function).

REGDB_E_CLASSNOTREG

An error occurred reading the registration database.
E_NOINTERFACE

The final QueryInterface of this function for the requested interface returned E_NOINTERFACE.
CoCreateInstance errors

An error occurred when creating the handler.

Remarks
The CoUnmarshalInterface function performs the following tasks:

1. Reads from the stream the CLSID to be used to create an instance of the proxy.
2. Gets an IMarshal pointer to the proxy that is to do the unmarshaling. If the object uses COM's default

marshaling implementation, the pointer thus obtained is to an instance of the generic proxy object. If
the marshaling is occurring between two threads in the same process, the pointer is to an instance of
the in-process free threaded marshaler. If the object provides its own marshaling code,
CoUnmarshalInterface calls the CoCreateInstance function, passing the CLSID it read from the
marshaling stream. CoCreateInstance creates an instance of the object's proxy and returns an
IMarshal interface pointer to the proxy.

3. Using whichever IMarshal interface pointer it has acquired, the function then calls
IMarshal::UnmarshalInterface and, if appropriate, IMarshal::ReleaseMarshalData.

The primary caller of this function is COM itself, from within interface proxies or stubs that unmarshal an
interface pointer. There are, however, some situations in which you might call CoUnmarshalInterface.
For example, if you are implementing a stub, your implementation would call CoUnmarshalInterface
when the stub receives an interface pointer as a parameter in a method call.

See Also
CoMarshalInterface, IMarshal::UnmarshalInterface

CreateAntiMoniker

Creates and supplies a new anti-moniker.

WINOLEAPI CreateAntiMoniker(

 LPMONIKER FAR *ppmk //Indirect pointer to the anti-moniker
);

Parameter
ppmk

[out] Indirect pointer to the IMoniker interface on the new anti-moniker. When successful, the function
has called IUnknown::AddRef on the parameter and the caller is responsible for calling
IUnknown::Release. When an error occurs, the pointer is NULL.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The anti-moniker has been created successfully.

Remarks
You would call this function only if you are writing your own moniker class (implementing the IMoniker
interface). If you are writing a new moniker class that has no internal structure, you can use
CreateAntiMoniker in your implementation of the IMoniker::Inverse method, and then check for an anti-
moniker in your implementation of IMoniker::ComposeWith.

Like the ".." directory in MS-DOS file systems, which acts as the inverse to any directory name just
preceding it in a path, an anti-moniker acts as the inverse of a simple moniker that precedes it in a
composite moniker. An anti-moniker is used as the inverse of simple monikers with no internal structure.
For example, the system-provided implementations of file monikers, item monikers, and pointer monikers
all use anti-monikers as their inverse; consequently, an anti-moniker composed to the right of one of
these monikers composes to nothing.

A moniker client (an object that is using a moniker to bind to another object) typically does not know the
class of a given moniker, so the client cannot be sure that an anti-moniker is the inverse. Therefore, to get
the inverse of a moniker, you would call IMoniker::Inverse rather than CreateAntiMoniker.

To remove the last piece of a composite moniker, you would do the following:

1. Call IMoniker::Enum on the composite, specifying FALSE as the first parameter. This creates an
enumerator that returns the component monikers in reverse order.

2. Use the enumerator to retrieve the last piece of the composite.
3. Call IMoniker::Inverse on that moniker. The moniker returned by IMoniker::Inverse will remove the

last piece of the composite.

See Also
IMoniker::Inverse, IMoniker::ComposeWith, IMoniker - Anti-Moniker Implementation

CreateBindCtx

Supplies a pointer to an implementation of IBindCtx (a bind context object). This object stores information
about a particular moniker-binding operation. The pointer this function supplies is required as a parameter
in many methods of the IMoniker interface and in certain functions related to monikers.

WINOLEAPI CreateBindCtx(

 DWORD reserved, //Reserved for future use
 LPBC FAR* ppbc //Indirect pointer to the bind context
);

Parameters
reserved

[in] Reserved for future use; must be zero.
ppbc

[out] Indirect pointer to an IBindCtx interface on the new bind context object. When the function is
successful, the caller is responsible for calling IUnknown::Release on the parameter. A NULL value
indicates that an error occurred.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The bind context was allocated and initialized successfully.

Remarks
CreateBindCtx is most commonly used in the process of binding a moniker (locating and getting a
pointer to an interface by identifying it through a moniker), as in the following steps:

1. Get a pointer to a bind context by calling the CreateBindCtx function.
2. Call the IMoniker::BindToObject method on the moniker, retrieving an interface pointer to the object

to which the moniker refers.
3. Release the bind context.
4. Use the interface pointer.
5. Release the interface pointer.

The following code fragment illustrates these steps:

// pMnk is an IMoniker * that points to a previously acquired moniker
IFoo *pFoo;
IBindCtx *pbc;

CreateBindCtx(0, &pbc);
pMnk->BindToObject(pbc, NULL, IID_IFoo, &pFoo);
pbc->Release();

// pFoo now points to the object; safe to use pFoo
pFoo->Release();

Bind contexts are also used in other methods of the IMoniker interface besides IMoniker::BindToObject
and in the MkParseDisplayName function.

A bind context retains references to the objects that are bound during the binding operation, causing the
bound objects to remain active (keeping the object's server running) until the bind context is released.
Reusing a bind context when subsequent operations bind to the same object can improve performance.
You should, however, release the bind context as soon as possible, because you could be keeping the
objects activated unnecessarily.

A bind context contains a BIND_OPTS structure, which contains parameters that apply to all steps in a
binding operation. When you create a bind context using CreateBindCtx, the fields of the BIND_OPTS
structure are initialized to the following values:

cbStruct = sizeof(BIND_OPTS)
grfFlags = 0
grfMode = STGM_READWRITE
dwTickCountDeadline = 0.

You can call the IBindCtx::SetBindOptions method to modify these default values.

See Also
BIND_OPTS, IBindCtx, IMoniker, MkParseDisplayName

CreateClassMoniker
Creates a file moniker based on the specified path.

WINOLEAPI CreateClassMoniker(

 REFCLSID rclsid, //Class this moniker binds to
 IMoniker **ppmk //Indirect pointer to class moniker
);

Parameters
rclsid

[in] Reference to the CLSID of the object type to which this moniker binds.
ppmk

[out] When successful, indirect pointer to the IMoniker interface on the new class moniker. In this
case, the function has called IUnknown::AddRef on the parameter and the caller is responsible for
calling IUnknown::Release. When an error occurs, the value of the pointer is NULL.

Return Values
S_OK

The moniker has been created successfully.
E_INVALIDARG

One or more arguments are invalid.

Remarks
CreateClassMoniker creates a class moniker that refers to the given class. The class moniker will
supports binding to a fresh instance of the class identified by the CLSID in rclsid..

See Also
IMoniker - Class Moniker Implementation

CreateDataAdviseHolder

Supplies a pointer to the OLE implementation of IDataAdviseHolder on the data advise holder object.

WINOLEAPI CreateDataAdviseHolder(

 IDataAdviseHolder **ppDAHolder //Indirect pointer to the advise holder object
);

Parameter
ppDAHolder

[out] Indirect pointer to the IDataAdviseHolder interface on the new advise holder object.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The advise holder object has been instantiated and the pointer supplied.

Remarks
Call CreateDataAdviseHolder in your implementation of IDataObject::DAdvise to get a pointer to the
OLE implementation of IDataAdviseHolder interface. With this pointer, you can then complete the
implementation of IDataObject::DAdvise by calling the IDataAdviseHolder::Advise method, which
creates an advisory connection between the calling object and the data object.

See Also
IDataAdviseHolder

CreateDataCache

Supplies a pointer to a new instance of an OLE-provided implementation of a data cache.

WINOLEAPI CreateDataCache(

 LPUNKNOWN pUnkOuter, //Pointer to whether cache is to be aggregated
 REFCLSID rclsid, //CLSID used to generate icon labels
 REFIID riid, //Reference to the identifier of the interface
 LPVOID FAR *ppvObj //Indirect pointer to interface on supplied cache object
);

Parameters
pUnkOuter

[in] If the cache is to be created as part of an aggregate, pointer to the controlling IUnknown of the
aggregate. If not, the parameter should be NULL.

rclsid

[in] CLSID used to generate icon labels. This value is typically CLSID_NULL.
riid

[in] Reference to the identifier of the interface the caller wants to use to communicate with the cache.
This value is typically IID_IOleCache (defined in the OLE headers to equal the interface identifier for
IOleCache).

ppvObj

[out] Iindirect points to the interface requested in riid on the cache object.

Return Values
This function supports the standard return values E_INVALIDARG and

E_OUTOFMEMORY, as well as the following:

S_OK

The OLE-provided cache was instantiated and the pointer supplied.
E_NOINTERFACE

The interface represented by riid is not supported by the object. The parameter ppvObj is set to
NULL.

Remarks
The cache object created by CreateDataCache supports the IOleCache, IOleCache2, and
IOleCacheControl interfaces for controlling the cache. It also supports the IPersistStorage, IDataObject
(without advise sinks), IViewObject, and IViewObject2 interfaces.

See Also
IOleCache, IOleCache2, IOleCacheControl

CreateFileMoniker

Creates a file moniker based on the specified path.

WINOLEAPI CreateFileMoniker(

 LPCOLESTR lpszPathName, //Pointer to path to be used
 LPMONIKER FAR *ppmk //Indirect pointer to file moniker
);

Parameters
lpszPathName

[in] Pointer to a zero-terminated wide character string (two bytes per character) containing the path on
which this moniker is based.

ppmk

[out] When successful, indirect pointer to the IMoniker interface on the new file moniker. In this case,
the function has called IUnknown::AddRef on the parameter and the caller is responsible for calling
IUnknown::Release. When an error occurs, the value of the pointer is NULL.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The moniker has been created successfully.
MK_E_SYNTAX

Error in the syntax of a path was encountered while creating a moniker.

Remarks
CreateFileMoniker creates a moniker for an object that is stored in a file. A moniker provider (an object
that provides monikers to other objects) can call this function to create a moniker to identify a file-based
object that it controls, and can then make the pointer to this moniker available to other objects. An object
identified by a file moniker must also implement the IPersistFile interface so it can be loaded when a file
moniker is bound.

When each object resides in its own file, as in an OLE server application that supports linking only to file-
based documents in their entirety, file monikers are the only type of moniker necessary. To identify objects
smaller than a file, the moniker provider must use another type of moniker (such as an item moniker) in
addition to file monikers, creating a composite moniker. Composite monikers would be needed in an OLE
server application that supports linking to objects smaller than a document (such as sections of a
document or embedded objects).

The lpszPathName can be a relative path, a UNC path (e.g., \\server\share\path), or a drive-letter-based
path (e.g., c:\). If based on a relative path, the resulting moniker must be composed onto another file
moniker before it can be bound.

A file moniker can be composed to the right only of another file moniker when the first moniker is based
on an absolute path and the other is a relative path, resulting in a single file moniker based on the

combination of the two paths. A moniker composed to the right of another moniker must be a refinement
of that moniker, and the file moniker represents the largest unit of storage. To identify objects stored within
a file, you would compose other types of monikers (usually item monikers) to the right of a file moniker.

See Also
IMoniker - File Moniker Implementation

CreateGenericComposite

Performs a generic composition of two monikers and supplies a pointer to the resulting composite
moniker.

WINOLEAPI CreateGenericComposite(

 LPMONIKER pmkFirst, //Pointer to the first moniker
 LPMONIKER pmkRest, //Pointer to the second moniker
 LPMONIKER FAR *ppmkComposite //Indirect pointer to the composite
);

Parameters
pmkFirst

[in] Pointer to the moniker to be composed to the left of the moniker that pmkRest points to. Can point
to any kind of moniker, including a generic composite.

pmkRest

[in] Pointer to the moniker to be composed to the right of the moniker that pmkFirst points to. Can
point to any kind of moniker compatible with the type of the pmkRest moniker, including a generic
composite.

ppmkComposite

[out] Indirect pointer to the IMoniker interface on the composite moniker object that is the result of
composing pmkFirst and pmkRest. This object supports the OLE composite moniker implementation
of IMoniker. When successful, the function has called IUnknown::AddRef on the parameter and the
caller is responsible for calling IUnknown::Release. If either pmkFirst or pmkRest are NULL, the
supplied pointer is the one that is non-NULL. If both pmkFirst and pmkRest are NULL, or if an error
occurs, the returned pointer is NULL.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The two input monikers were successfully composed.
MK_E_SYNTAX

The two monikers could not be composed due to an error in the syntax of a path (for example, if both
pmkFirst and pmkRest are file monikers based on absolute paths).

Remarks
CreateGenericComposite joins two monikers into one. The moniker classes being joined can be
different, subject only to the rules of composition. Call this function only if you are writing a new moniker
class by implementing the IMoniker interface, within an implementation of IMoniker::ComposeWith that
includes generic composition capability.

Moniker providers should call IMoniker::ComposeWith to compose two monikers together.
Implementations of ComposeWith should (as do OLE implementations) attempt, when reasonable for the
class, to perform non-generic compositions first, in which two monikers of the same class are combined. If

this is not possible, the implementation can call CreateGenericComposite to do a generic composition,
which combines two monikers of different classes, within the rules of composition. You can define new
types of non-generic compositions if you write a new moniker class.

During the process of composing the two monikers, CreateGenericComposite makes all possible
simplifications. Consider the example where pmkFirst is the generic composite moniker, A · B · C, and
pmkRest is the generic composite moniker, C (-1) · B (-1) · Z (where C (-1) is the inverse of C). The
function first composes C to C (-1) , which composes to nothing. Then it composes B and B (-1) to nothing.
Finally, it composes A to Z, and supplies a pointer to the generic composite moniker, A · Z.

See Also
IMoniker::ComposeWith, IMoniker - Generic Composite Moniker Implementation

CreateILockBytesOnHGlobal
Creates a byte array object that allows you use global memory as the physical device underneath a
compound file implementation. This object supports an OLE implementation of the ILockBytes interface.

WINOLEAPI CreateILockBytesOnHGlobal(

 HGLOBAL hGlobal, //Memory handle for the byte array object
 BOOL fDeleteOnRelease, //Whether to free memory when the object is released
 ILockBytes ** ppLkbyt //Indirect pointer to the new byte array object
);

Parameters
hGlobal

[in] Memory handle allocated by the GlobalAlloc function. The handle must be allocated as moveable
and nondiscardable. If the handle is to be shared between processes, it must also be allocated as
shared. New handles should be allocated with a size of zero. If hGlobal is NULL,
CreateILockBytesOnHGlobal internally allocates a new shared memory block of size zero.

fDeleteOnRelease

[in] IWhether the underlying handle for this byte array object should be automatically freed when the
object is released.

ppLkbyt

[out] Indirect pointer to the ILockBytes interface on the new byte array object.

Return Values
This function supports the standard return values E_INVALIDARG and

E_OUTOFMEMORY, as well as the following:

S_OK

The byte array object was created successfully.

Remarks
The CreateILockBytesOnHGlobal function creates a byte array object based on global memory. This
object supports an OLE implementation of the ILockBytes interface, and is intended to be used as the
basis for a compound file. You can then use the supplied ILockBytes pointer in a call to the
StgCreateDocfileOnILockBytes function to build a compound file on top of this byte array object. The
ILockBytes instance calls the GlobalReAlloc function to grow the memory block as needed.

The current contents of the memory block are undisturbed by the creation of the new byte array object.
After creating the ILockBytes instance, you can use the StgOpenStorageOnILockBytes function to
reopen a previously existing storage object already contained in the memory block. You can also call
GetHGlobalFromILockBytes to get the global memory handle associated with the byte array object
created by CreateILockBytesOnHGlobal.

Note If you free the hGlobal memory handle, the byte array object is no longer valid. You must call
the ILockBytes::Release method before freeing the memory handle.

The value of the hGlobal parameter can be changed by a subsequent call to the GlobalReAlloc
function; thus, you cannot rely on this value after the byte array object is created.

See Also
StgOpenStorageOnILockBytes, GetHGlobalFromILockBytes, ILockBytes

CreateItemMoniker

Creates an item moniker that identifies an object within a containing object (typically a compound
document).

WINOLEAPI CreateItemMoniker(

 LPCOLESTR lpszDelim, //Pointer to delimiter string
 LPCOLESTR lpszItem, //Pointer to item name
 LPMONIKER FAR *ppmk //Indirect pointer to the item moniker
);

Parameters
lpszDelim

[in] Pointer to a wide character string (two bytes per character) zero-terminated string containing the
delimiter (typically "!") used to separate this item's display name from the display name of its
containing object.

lpszItem

[in] Pointer to a zero-terminated string indicating the containing object's name for the object being
identified. This name can later be used to retrieve a pointer to the object in a call to
IOleItemContainer::GetObject.

ppmk

[out] Indirect pointer to an IMoniker interface on the new item moniker. When successful, the function
has called IUnknown::AddRef on the pointer and the caller is responsible for calling
IUnknown::Release. If an error occurs, the supplied pointer has a NULL value.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The moniker was created successfully.

Remarks
A moniker provider, which hands out monikers to identify its objects so they are accessible to other
parties, would call CreateItemMoniker to identify its objects with item monikers. Item monikers are based
on a string, and identify objects that are contained within another object and can be individually identified
using a string. The containing object must also implement the IOleContainer interface.

Most moniker providers are OLE applications that support linking. Applications that support linking to
objects smaller than file-based documents, such as a server application that allows linking to a selection
within a document, should use item monikers to identify the objects. Container applications that allow
linking to embedded objects use item monikers to identify the embedded objects.

The lpszItem parameter is the name used by the document to uniquely identify the object. For example, if
the object being identified is a cell range in a spreadsheet, an appropriate name might be something like
"A1:E7." An appropriate name when the object being identified is an embedded object might be
something like "embedobj1." The containing object must provide an implementation of the

IOleItemContainer interface that can interpret this name and locate the corresponding object. This allows
the item moniker to be bound to the object it identifies.

Item monikers are not used in isolation. They must be composed with a moniker that identifies the
containing object as well. For example, if the object being identified is a cell range contained in a file-
based document, the item moniker identifying that object must be composed with the file moniker
identifying that document, resulting in a composite moniker that is the equivalent of "C:\work\sales.xls!
A1:E7."

Nested containers are allowed also, as in the case where an object is contained within an embedded
object inside another document. The complete moniker of such an object would be the equivalent of "C:\
work\report.doc!embedobj1!A1:E7." In this case, each containing object must call CreateItemMoniker
and provide its own implementation of the IOleItemContainer interface.

See Also
IMoniker::ComposeWith, IOleItemContainer, IMoniker - Item Moniker Implementation

CreateOleAdviseHolder

Creates an advise holder object for managing compound document notifications. It returns a pointer to the
object's OLE implementation of the IOleAdviseHolder interface.

WINOLEAPI CreateOleAdviseHolder(

 ppOAHolder //Indirect pointer to the advise holder object
);

Parameter
ppOAHolder

[out] Indirect pointer to the IOleAdviseHolder interface on the new advise holder object.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The new OLE advise holder returned successfully.

Remarks
The function CreateOleAdviseHolder creates an instance of an advise holder, which supports the OLE
implementation of the IOleAdviseHolder interface. The methods of this interface are intended to be used
to implement the advisory methods of IOleObject, and, when advisory connections have been set up with
objects supporting an advisory sink, to send notifications of changes in the object to the advisory sink.
The advise holder returned by CreateOleAdviseHolder will suffice for the great majority of applications.
The OLE-provided implementation does not, however, support IOleAdviseHolder::EnumAdvise, so if
you need to use this method, you will need to implement your own advise holder.

See Also
IOleAdviseHolder, IOleObject

CreatePointerMoniker

Creates a pointer moniker based on a pointer to an object.

WINOLEAPI CreatePointerMoniker(

 LPUNKNOWN punk, //Pointer to the interface to be used
 LPMONIKER FAR *ppmk //Indirect pointer to the moniker
);

Parameters
punk

[in] Pointer to an IUnknown interface on the object to be identified by the resulting moniker.
ppmk

[out] Indirect pointer to the IMoniker interface on the new pointer moniker. When successful, the
function has called IUnknown::AddRef on the parameter and the caller is responsible for calling
IUnknown::Release. When an error occurs, the returned pointer has a NULL value.

Return Values
This function supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The pointer moniker was created successfully.

Remarks
A pointer moniker wraps an existing interface pointer in a moniker that can be passed to those interfaces
that require monikers. Pointer monikers allow an object that has no persistent representation to
participate in a moniker-binding operation.

Pointer monikers are not commonly used, so this function is not often called.

See Also
IMoniker - Pointer Moniker Implementation

CreateStreamOnHGlobal
Creates a stream object stored in global memory.

WINOLEAPI CreateStreamOnHGlobal(

 HGLOBAL hGlobal, //Memory handle for the stream object
 BOOL fDeleteOnRelease, //Whether to free memory when the object is released
 LPSTREAM * ppstm //Indirect pointer to the new stream object
);

Parameters
hGlobal

[in] Memory handle allocated by the GlobalAlloc function. The handle must be allocated as moveable
and nondiscardable. If the handle is to be shared between processes, it must also be allocated as
shared. New handles should be allocated with a size of zero. If hGlobal is NULL, the
CreateStreamOnHGlobal function internally allocates a new shared memory block of size zero.

fDeleteOnRelease

[in] Whether the underlying handle for this stream object should be automatically freed when the
stream object is released.

ppstm

[out] Indirect pointer to the IStream interface on the new stream object. Its value cannot be NULL.

Return Values
This function supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

The stream object was created successfully.

Remarks
The CreateStreamOnHGlobal function creates a stream object in memory that supports the OLE
implementation of the IStream interface. The returned stream object supports both reading and writing, is
not transacted, and does not support locking.

The initial contents of the stream are the current contents of the memory block provided in the hGlobal
parameter. If the hGlobal paramter is NULL, this function internally allocates memory.

The current contents of the memory block are undisturbed by the creation of the new stream object. Thus,
you can use this function to open an existing stream in memory.

The initial size of the stream is the size of the memory handle returned by the Win32 GlobalSize function.
Because of rounding, this is not necessarily the same size that was originally allocated for the handle. If
the logical size of the stream is important, you should follow the call to this function with a call to the
IStream::SetSize method.

After you have created the stream object with CreateStreamOnHGlobal, you can call

GetHGlobalFromStream to get the global memory handle associated with the stream object.

See Also
CreateStreamOnHGlobal, GetHGlobalFromStream, IStream::SetSize, GlobalSize in Win32

DllCanUnloadNow

Determines whether the DLL that implements this function is in use. If not, the caller can safely unload the
DLL from memory.

Note OLE does not provide this function. DLLs that support the OLE Component Object Model
(COM) should implement and export DllCanUnloadNow.

STDAPI DllCanUnloadNow();

Return Values
S_OK

The DLL can be unloaded.
S_FALSE

The DLL cannot be unloaded now.

Remarks
A call to DllCanUnloadNow determines whether the DLL from which it is exported is still in use. A DLL is
no longer in use when it is not managing any existing objects (the reference count on all of its objects is
0).

Notes to Callers
You should not have to call DllCanUnloadNow directly. OLE calls it only through a call to the
CoFreeUnusedLibraries function. When it returns S_OK, CoFreeUnusedLibraries safely frees the DLL.

Notes to Implementers
You need to implement DllCanUnloadNow in, and export it from, DLLs that are to be dynamically loaded
through a call to the CoGetClassObject function. (You also need to implement and export the
DllGetClassObject function in the same DLL).

If a DLL loaded through a call to CoGetClassObject fails to export DllCanUnloadNow, the DLL will not
be unloaded until the application calls the CoUninitialize function to release the OLE libraries.

If the DLL links to another DLL, returning S_OK from DllCanUnloadNow will also cause the second,
dependent DLL to be unloaded. To eliminate the possibility of a crash, the primary DLL should call the
CoLoadLibrary function, specifying the path to the second DLL as the first parameter, and setting the
auto free parameter to TRUE. This forces the COM library to reload the second DLL and set it up for a call
to CoFreeUnusedLibraries to free it separately when appropriate.

DllCanUnloadNow should return S_FALSE if there are any existing references to objects that the DLL
manages.

See Also
DllGetClassObject

DllGetClassObject

Retrieves the class object from a DLL object handler or object application. DllGetClassObject is called
from within the CoGetClassObject function when the class context is a DLL.

Note OLE does not provide this function. DLLs that support the OLE Component Object Model
(COM) must implement DllGetClassObject in OLE object handlers or DLL applications.

STDAPI DllGetClassObject(

 REFCLSID rclsid, //CLSID for the class object
 REFIID riid, //Reference to the identifier of the interface that communicates with the class object
 LPVOID * ppv //Indirect pointer to the communicating interface
);

Parameters
rclsid

[in] CLSID that will associate the correct data and code.
riid

[in] Reference to the identifier of the interface that the caller is to use to communicate with the class
object. Usually, this is IID_IClassFactory (defined in the OLE headers as the interface identifier for
IClassFactory).

ppv

[out] Indirect pointer to the requested interface or, if an error occurs, to NULL.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY and
E_UNEXPECTED, as well as the following:

S_OK

The object was retrieved successfully.
CLASS_E_CLASSNOTAVAILABLE

The DLL does not support the class (object definition).

Remarks
If a call to the CoGetClassObject function finds the class object that is to be loaded in a DLL,
CoGetClassObject uses the DLL's exported DllGetClassObject function.

Notes to Callers
You should not call DllGetClassObject directly. When an object is defined in a DLL, CoGetClassObject
calls the CoLoadLibrary function to load the DLL, which, in turn, calls DllGetClassObject.

Notes to Implementers

You need to implement DllGetClassObject in (and export it from) DLLs that support the OLE Component
Object Model.

Example
Following is an example (in C++) of an implementation of DllGetClassObject. In this example,
DllGetClassObject creates a class object and calls its QueryInterface method to retrieve a pointer to the
interface requested in riid. The implementation safely releases the reference it holds to the IClassFactory
interface because it returns a reference-counted pointer to IClassFactory to the caller.

HRESULT_export PASCAL DllGetClassObject
 (REFCLSID rclsid, REFIID riid, LPVOID * ppvObj)
{
 HRESULT hres = E_OUTOFMEMORY;
 *ppvObj = NULL;

 CClassFactory *pClassFactory = new CClassFactory(rclsid);
 if (pClassFactory != NULL) {
 hRes = pClassFactory->QueryInterface(riid, ppvObj);
 pClassFactory->Release();
 }
 return hRes;
}

See Also

CoGetClassObject, DllCanUnloadNow

DllRegisterServer

Instructs an in-process server to create its registry entries for all classes supported in this server module.
If this function fails, the state of the registry for all its classes is indeterminate.

STDAPI DllRegisterServer(void);

Return Values
This function supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The registry entries were created successfully.
SELFREG_E_TYPELIB

The server was unable to complete the registration of all the type libraries used by its classes.
SELFREG_E_CLASS

The server was unable to complete the registration of all the object classes.

Remarks
E_NOTIMPL is not a valid return code.

See Also
DllUnregisterServer

DllUnregisterServer

Instructs an in-process server to remove only those entries created through DllRegisterServer.

STDAPI DllUnregisterServer(void);

Return Values
This function supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The registry entries were created successfully.
S_FALSE

Unregistration of this server's known entries was successful, but other entries still exist for this
server's classes.

SELFREG_E_TYPELIB

The server was unable to remove the entries of all the type libraries used by its classes.
SELFREG_E_CLASS

The server was unable to remove the entries of all the object classes.

Remarks
The server must not disturb any entries that it did not create which currently exist for its object classes.
For example, between registration and unregistration, the user may have specified a TreatAs relationship
between this class and another. In that case, unregistration can remove all entries except the TreatAs key
and any others that were not explicitly created in DllRegisterServer. The Win32 registry functions
specifically disallow the deletion of an entire populated tree in the registry. The server can attempt, as the
last step, to remove the CLSID key, but if other entries still exist, the key will remain.

See Also
DllRegisterServer

DoDragDrop

Carries out an OLE drag and drop operation.

WINOLEAPI DoDragDrop(

 IDataObject * pDataObject, //Pointer to the data object
 IDropSource * pDropSource, //Pointer to the source
 DWORD dwOKEffect, //Effects allowed by the source
 DWORD * pdwEffect //Pointer to effects on the source
);

Parameters
pDataObject

[in] Pointer to the IDataObject interface on a data object that contains the data being dragged.
pDropSource

[in] Pointer to an implementation of the IDropSource interface, which is used to communicate with
the source during the drag operation.

dwOKEffect

[in] Effects the source allows in the OLE drag-and-drop operation. Most significant is whether it
permits a move. The dwOKEffect and pdwEffect parameters obtain values from the DROPEFFECT
enumeration. For a list of values, see DROPEFFECT.

pdwEffect

[out] Pointer to a value that indicates how the OLE drag-and-drop operation affected the source data.
The pdwEffect parameter is set only if the operation is not canceled.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

DRAGDROP_S_DROP

The OLE drag-and-drop operation was successful.
DRAGDROP_S_CANCEL

The OLE drag-and-drop operation was canceled.
E_UNSPEC

Unexpected error occurred.

Remarks
If you are developing an application that can act as a data source for an OLE drag-and-drop operation,
you must call DoDragDrop when you detect that the user has started an OLE drag-and-drop operation.

The DoDragDrop function enters a loop in which it calls various methods in the IDropSource and
IDropTarget interfaces. (For a successful drag-and-drop operation, the application acting as the data
source must also implement IDropSource, while the target application must implement IDropTarget.)

1. The DoDragDrop function determines the window under the current cursor location. It then checks to
see if this window is a valid drop target.

2. If the window is a valid drop target, DoDragDrop calls IDropTarget::DragEnter. This method
supplies an effect code indicating what would happen if the drop actually occurred. For a list of valid
drop effects, see the DROPEFFECT enumeration.

3. DoDragDrop calls IDropSource::GiveFeedback with the effect code so that the drop source
interface can provide appropriate visual feedback to the user. The pDropSource pointer passed into
DoDragDrop specifies the appropriate IDropSource interface.

4. DoDragDrop tracks mouse cursor movements and changes in the keyboard or mouse button state.
· If the user moves out of a window, DoDragDrop calls IDropTarget::DragLeave.
· If the mouse enters another window, DoDragDrop determines if that window is a valid drop target

and then calls IDropTarget::DragEnter for that window.
· If the mouse moves but stays within the same window, DoDragDrop calls

IDropTarget::DragOver.

5. If there is a change in the keyboard or mouse button state, DoDragDrop calls
IDropSource::QueryContinueDrag and determines whether to continue the drag, to drop the data,
or to cancel the operation based on the return value.
· If the return value is S_OK, DoDragDrop first calls IDropTarget::DragOver to continue the

operation. This method returns a new effect value and DoDragDrop then calls
IDropSource::GiveFeedback with the new effect so appropriate visual feedback can be set. For a
list of valid drop effects, see the DROPEFFECT enumeration. IDropTarget::DragOver and
IDropSource::GiveFeedback are paired so that as the mouse moves across the drop target, the
user is given the most up-to-date feedback on the mouse's position.

· If the return value is DRAGDROP_S_DROP, DoDragDrop calls IDropTarget::Drop. The
DoDragDrop function returns the last effect code to the source, so the source application can
perform the appropriate operation on the source data, for example, cut the data if the operation
was a move.

· If the return value is DRAGDROP_S_CANCEL, the DoDragDrop function calls
IDropTarget::DragLeave.

See Also
IDropSource

FACILITY_NT_BIT

#define FACILITY_NT_BIT 0x10000000

Defines bits so macros are guaranteed to work.

FAILED

#define FAILED(Status) ((HRESULT)(Status)<0)

Provides a generic test for failure on any status value. Negative numbers indicate failure.

FreePropVariantArray

Calls PropVariantClear on each of the PROPVARIANTs in the rgvar array to zero the value of each of
the members of the array.

HRESULT FreePropVariantArray(

 ULONG cVariant, //Count of elements in the structure
 PROPVARIANT* rgvar[] //Pointer to the PROPVARIANT

structure
);

Parameters
cVariant

[in] Count of elements in the PROPVARIANT array (rgvar).
rgvar

[in] Pointer to an initialized array of PROPVARIANT structures for which any deallocatable elements
are to be freed. On exit, all zeroes are written to the PROPVARIANT (thus tagging them as
VT_EMPTY).

Return Values
S_OK

The variant types are recognized and all items that can be freed have been freed.
STG_E_INVALID_PARAMETER

One or more PROPVARIANTs has an unknown type.

Remarks
FreePropVariantArray calls PropVariantClear on an array of PROPVARIANTs to clear all the valid
members. All valid PROPVARIANTS are freed. If any of the PROPVARIANTs contain illegal VT-types,
valid members are freed and the function returns STG_E_INVALIDPARAMETER.

Passing NULL for rgvar is legal, and produces a return code of S_OK.

See Also
PropVariantClear

GetClassFile

Supplies the CLSID associated with the given filename.

WINOLEAPI GetClassFile(

 LPCWSTR szFileName, //Pointer to filename for which you are requesting a CLSID

 CLSID * pclsid //Pointer to location for returning the CLSID

);

Parameters
szFileName

[in] Points to the filename for which you are requesting the associated CLSID.
pclsid

[out] Points to the location where the associated CLSID is written on return.

Return Values
S_OK

Indicates the CLSID was successfully supplied.
MK_E_CANTOPENFILE

Indicates unable to open the specified filename.
MK_E_INVALIDEXTENSION

Indicates the specified extension in the registry is invalid.

Note This function can also return any file system errors.

Comments
When given a filename, the GetClassFile function finds the CLSID associated with that file. Examples of
its use are in OleCreateFromFile, which is passed a file name and requires an associated CLSID, and in
the OLE implementation of IMoniker::BindToObject, which, when a link to a file-based document is
activated, calls GetClassFile to locate the object application that can open the file.

GetClassFile uses the following strategies to determine an appropriate CLSID:

1. If the file contains a storage object, as determined by a call to the StgIsStorageFile function,
GetClassFile returns the CLSID that was written with the IStorage::SetClass method.

2. If the file is not a storage object, the GetClassFile function attempts to match various bits in the file
against a pattern in the registry. A pattern in the registry can contain a series of entries of the form:
regdb key = offset, cb, mask, value

The value of the offset item is an offset from the beginning or end of the file and the cb item is a
length in bytes. These two values represent a particular byte range in the file. (A negative value for

the offset item is interpreted from the end of the file). The mask value is a bit mask that is used to
perform a logical AND operation with the byte range specified by offset and cb. The result of the
logical AND operation is compared with the value item. If the mask is omitted, it is assumed to be all
ones.
Each pattern in the registry is compared to the file in the order of the patterns in the database. The
first pattern where each of the value items matches the result of the AND operation determines the
CLSID of the file. For example, the pattern contained in the following entries of the registry requires
that the first four bytes be AB CD 12 34 and that the last four bytes be FE FE FE FE:
HKEY_CLASSES_ROOT

FileType
 {12345678-0000-0001-C000-000000000095}
 0 = 0, 4, FFFFFFFF, ABCD1234
 1 = -4, 4, , FEFEFEFE

If a file contains such a pattern, the CLSID {12345678-0000-0001-C000-000000000095} will be
associated with this file.

3. If the above strategies fail, the GetClassFile function searches for the File Extension key in the
registry that corresponds to the .ext portion of the filename. If the database entry contains a valid
CLSID, this function returns that CLSID.

4. If all strategies fail, the function returns MK_E_INVALIDEXTENSION.

See Also
WriteClassStg

GetConvertStg

Returns the current value of the convert bit for the specified storage object.

WINOLEAPI GetConvertStg(

 IStorage * pStg //Points to the IStorage interface on the storage object

);

Parameter
pStg

[in] IStorage pointer to the storage object from which the convert bit is to be retrieved.

Return Values
S_OK

Indicates the convert bit is set to TRUE.
S_FALSE

Indicates the convert bit is cleared (FALSE).
STG_E_ACCESSDENIED

Access denied because the caller has insufficient permission, or another caller has the file open and
locked.

STG_E_LOCKVIOLATION

Access denied because another caller has the file open and locked.

IStorage::OpenStream, IStorage::OpenStorage, and IStream::Read storage and stream access
errors.

Comments
The GetConvertStg function is called by object servers that support the conversion of an object from one
format to another. The server must be able to read the storage object using the format of its previous
CLSID and write the object using the format of its new CLSID to support the object's conversion. For
example, a spreadsheet created by one application can be converted to the format used by a different
application.

The convert bit is set by a call to the SetConvertStg function. A container application can call this function
on the request of an end user, or a setup program can call it when installing a new version of an
application. An end user requests converting an object through the Convert To dialog box. When an object
is converted, the new CLSID is permanently assigned to the object, so the object is subsequently
associated with the new CLSID.

Then, when the object is activated, its server calls the GetConvertStg function to retrieve the value of the
convert bit from the storage object. If the bit is set, the object's CLSID has been changed, and the server
must read the old format and write the new format for the storage object.

After retrieving the bit value, the object application should clear the convert bit by calling the
SetConvertStg function with its fConvert parameter set to FALSE.

See Also
SetConvertStg

GetHGlobalFromILockBytes

Retrieves a global memory handle to a byte array object created using the CreateILockBytesOnHGlobal
function.

WINOLEAPI GetHGlobalFromILockBytes(

 ILockBytes * pLkbyt, //Points to the byte array object

 HGLOBAL * phglobal //Points to the current memory handle for the specified byte array

);

Parameters
pLkbyt

[in] Points to the ILockBytes interface on the byte array object previously created by a call to the
CreateILockBytesOnHGlobal function.

phglobal

[out] Points to the current memory handle used by the specified byte array object.

Return Values
S_OK

Indicates the handle was returned successfully.
E_INVALIDARG

Indicates invalid value specified for the pLkbyt parameter. It can also indicate that the byte array
object passed in is not one created by the CreateILockBytesOnHGlobal function.

Comments
After a call to CreateILockBytesOnHGlobal, which creates a byte array object on global memory,
GetHGlobalFromILockBytes retrieves a pointer to the handle of the global memory underlying the byte
array object. The handle this function returns might be different from the original handle due to intervening
calls to the GlobalRealloc function.

The contents of the returned memory handle can be written to a clean disk file, and then opened as a
storage object using the StgOpenStorage function.

This function only works within the same process from which the byte array was created.

See Also
StgOpenStorage, CreateILockBytesOnHGlobal

GetHGlobalFromStream

Retrieves the global memory handle to a stream that was created through a call to the
CreateStreamOnHGlobal function.

WINOLEAPI GetHGlobalFromStream(

 IStream * pstm, //Points to the stream object

 HGLOBAL * phglobal //Points to the current memory handle for the specified stream

);

Parameters
pstm

[in] IStream pointer to the stream object previously created by a call to the CreateStreamOnHGlobal
function.

phglobal

[out] Points to the current memory handle used by the specified stream object.

Return Values
S_OK

Indicates the handle was successfully returned.
E_INVALIDARG

Indicates invalid value specified for the pstm parameter. It can also indicate that the stream object
passed in is not one created by a call to the CreateStreamOnHGlobal function.

Comments
The handle this function returns may be different from the original handle due to intervening
GlobalRealloc calls.

This function can be called only from within the same process from which the byte array was created.

See Also
CreateStreamOnHGlobal

GlobalRealloc in Win32

GetRunningObjectTable

Supplies a pointer to the IRunningObjectTable interface on the local Running Object Table (ROT).

WINOLEAPI GetRunningObjectTable(

 DWORD reserved, //Reserved
 LPRUNNINGOBJECTTABLE *pprot //Indirect pointer
);

Parameters
reserved

[in] Reserved for future use; must be zero.
pprot

[out] Indirect pointer to the IRunningObjectTable interface on the local ROT. When the function is
successful, the caller is responsible for calling IUnknown::Release on the pointer. If an error occurs,
pprot is undefined.

Return Values
This function supports the standard return value E_UNEXPECTED, as well as the following:

S_OK

An IRunningObjectTable pointer was successfully returned.

Remarks
Each workstation has a local ROT that maintains a table of the objects that have been registered as
running on that machine. This function returns an IRunningObjectTable interface pointer, which provides
access to that table.

Moniker providers, which hand out monikers that identify objects so they are accessible to others, should
call GetRunningObjectTable. Use the interface pointer returned by this function to register your objects
when they begin running, to record the times that those objects are modified, and to revoke their
registrations when they stop running. See the IRunningObjectTable interface for more information.

Compound-document link sources are the most common example of moniker providers. These include
server applications that support linking to their documents (or portions of a document) and container
applications that support linking to embeddings within their documents. Server applications that do not
support linking can also use the ROT to cooperate with container applications that support linking to
embeddings.

If you are implementing the IMoniker interface to write a new moniker class, and you need an interface
pointer to the ROT, call IBindCtx::GetRunningObjectTable rather than the GetRunningObjectTable
function. This allows future implementations of the IBindCtx interface to modify binding behavior.

See Also
IBindCtx::GetRunningObjectTable, IMoniker, IRunningObjectTable

GetScode

#define GetScode(hr) ((SCODE) (hr))

Extracts the SCODE from an HRESULT.

This macro is obsolete and should not be used.

HRESULT_CODE

#define HRESULT_CODE(hr) ((hr) & 0xFFFF)

Returns the error code part of the HRESULT.

HRESULT_FACILITY

#define HRESULT_FACILITY(hr) (((hr) >> 16) & 0x1fff)

Returns the facility from the HRESULT.

HRESULT_FROM_NT

#define HRESULT_FROM_NT(x) ((HRESULT) ((x) | FACILITY_NT_BIT))

Maps an NT status value into an HRESULT.

HRESULT_FROM_WIN32

#define HRESULT_FROM_WIN32(x) (x ? ((HRESULT) (((x) & 0x0000FFFF) | (FACILITY_WIN32 << 16)
| 0x80000000)) : 0)

Maps a WIN32 error value into an HRESULT. Note that this assumes WIN32 errors fall in the range of -
32k to 32k.

HRESULT_SEVERITY

#define HRESULT_SEVERITY(hr) (((hr) >> 31) & 0x1)

Returns the severity bit from the HRESULT.

IIDFromString

Converts a string generated by the StringFromIID function back into the original interface identifier (IID).

WINOLEAPI IIDFromString(

 LPOLESTR lpsz, //Pointer to the string representation of the IID
 LPIID lpiid //Pointer to the requested IID on return
);

Parameters
lpsz

[in] Pointer to the string representation of the IID.
lpiid

[out] Pointer to the requested IID on return.

Return Values
This function supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

The string was successfully converted.

Remarks
The function converts the interface identifier in a way that guarantees different interface identifiers will
always be converted to different strings.

See Also
StringFromIID

IsAccelerator

Determines whether the keystroke maps to an accelerator in the given accelerator table.

BOOL IsAccelerator(

 HACCEL hAccel, //Handle to accelerator table
 INT cAccelEntries, //Number of entries in the accelerator table
 LPMSG lpMsg, //Pointer to the keystroke message to be translated
 WORD * lpwCmd //Pointer to return the corresponding command identifier
);

Parameters
hAccel

[in] Handle to the accelerator table.
cAccelEntries

[in] Number of entries in the accelerator table.
lpMsg

[in] Pointer to the keystroke message to be translated.
lpwCmd

[out] Pointer to where to return the corresponding command identifier if there is an accelerator for the
keystroke. It may be NULL.

Return Values
TRUE

The message is for the object application.
FALSE

The message is not for the object and should be forwarded to the container.

Remarks
While an object is active in-place, the object always has first chance to translate the keystrokes into
accelerators. If the keystroke corresponds to one of its accelerators, the object must not call the
OleTranslateAccelerator function ¾ even if its call to the Windows TranslateAccelerator function fails.
Failure to process keystrokes in this manner can lead to inconsistent behavior.

If the keystroke is not one of the object's accelerators, then the object must call OleTranslateAccelerator
to let the container try its accelerator translation.

The object's server can call IsAccelerator to determine if the accelerator message belongs to it. Some
servers do accelerator translation on their own and do not call TranslateAccelerator. Those applications
will not call IsAccelerator, because they already have the information.

See Also
OleTranslateAccelerator, TranslateAccelerator in Win32

IS_ERROR

#define IS_ERROR(Status) ((unsigned long)(Status) >> 31 == SEVERITY_ERROR)

Provides a generic test for errors on any status value.

IsEqualGUID

Determines whether two GUIDs are equal.

BOOL IsEqualGUID(

 REFGUID rguid1, //GUID to compare to rguid2
 REFGUID rguid2 //GUID to compare to rguid1
);

Parameters
rguid1

[in] GUID to compare to rguid2.
rguid2

[in] GUID to compare to rguid1.

Return Values
TRUE

The GUIDs are equal.
FALSE

The GUIDs are not equal.

Remarks
IsEqualGUID is used by the IsEqualCLSID and IsEqualIID functions.

See Also
IsEqualCLSID, IsEqualIID

IsEqualCLSID

Determines whether two CLSIDs are equal.

BOOL IsEqualCLSID(

 REFCLSID rclsid1, //CLSID to compare to rclsid2
 REFCLSID rclsid2 //CLSID to compare to rclsid1
);

Parameters
rclsid1

[in] CLSID to compare to rclsid2.
rclsid2

[in] CLSID to compare to rclsid1.

Return Values
TRUE

The CLSIDs are equal.
FALSE

The CLSIDs are not equal.

See Also
IsEqualGUID, IsEqualIID

IsEqualIID

Determines whether two interface identifiers are equal.

BOOL IsEqualIID(

 REFGUID riid1, //Interface identifier to compare to riid2
 REFGUID riid2 //Interface identifier to compare to riid1
);

Parameters
riid1

[in] Interface identifier to compare with riid2.
riid2

[in] Interface identifier to compare with riid1.

Return Values
TRUE

The interface identifiers are equal.
FALSE

The interface identifiers are not equal.

See Also
IsEqualGUID, IsEqualCLSID

IsValidIid
This function is obsolete.

IsValidInterface
This function is obsolete.

IsValidPtrIn
This function is obsolete.

IsValidPtrOut

This function is obsolete.

MAKE_HRESULT

#define MAKE_HRESULT(sev,fac,code) \HRESULT) (((unsigned long)(sev)<<31) | ((unsigned long)
(fac)<<16) | ((unsigned long)(code))))

Creates an HRESULT value from component pieces of the 32-bit value.

MAKE_SCODE

#define MAKE_SCODE(sev,fac,code) \((SCODE) (((unsigned long)(sev)<<31) | ((unsigned long)
(fac)<<16) | ((unsigned long)(code))))

Returns an SCODE given an HRESULT.

MkParseDisplayName

Converts a string into a moniker that identifies the object named by the string. This is the inverse of the
IMoniker::GetDisplayName operation, which retrieves the display name associated with a moniker.

WINOLEAPI MkParseDisplayName(

 LPBC pbc, //Pointer to the bind context object
 LPCOLESTR szUserName, //Pointer to display name
 ULONG FAR *pchEaten, //Pointer to the number of characters consumed
 LPMONIKER FAR *ppmk //Indirect pointer to the moniker
);

Parameters
pbc

[in] Pointer to the IBindCtx interface on the bind context object to be used in this binding operation.
szUserName

[in] Pointer to a zero-terminated wide character string (two bytes per character) containing the display
name to be parsed.

pchEaten

[out] Pointer to the number of characters of szUserName that were consumed. If the function is
successful, *pchEaten is the length of szUserName; otherwise, it is the number of characters
successfully parsed.

ppmk

[out] Indirect pointer to the IMoniker implementation on the moniker that was built from szUserName.
When successful, the function has called IUnknown::AddRef on the parameter and the caller is
responsible for calling IUnknown::Release. If an error occurs, the supplied pointer value is NULL.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The parse operation was successful and the moniker was created.
MK_E_SYNTAX

Error in the syntax of a file name or an error in the syntax of the resulting composite moniker.

This function can also return any of the error values returned by IMoniker::BindToObject,
IOleItemContainer::GetObject, or IParseDisplayName::ParseDisplayName.

Remarks
The MkParseDisplayName function parses a human-readable name into a moniker that can be used to
identify a link source. The resulting moniker can be a simple moniker (such as a file moniker), or it can be
a generic composite made up of the component moniker pieces. For example, the following display name:

"c:\mydir\somefile!item 1"

could be parsed into the following generic composite moniker:

(FileMoniker based on "c:\mydir\somefile") · (ItemMoniker based on "item 1")

The most common use of MkParseDisplayName is in the implementation of the standard Links dialog
box, which allows an end user to specify the source of a linked object by typing in a string. You may also
need to call MkParseDisplayName if your application supports a macro language that permits remote
references (reference to elements outside of the document).

Parsing a display name often requires activating the same objects that would be activated during a
binding operation, so it can be just as expensive (in terms of performance) as binding. Objects that are
bound during the parsing operation are cached in the bind context passed to the function. If you plan to
bind the moniker returned by MkParseDisplayName, it is best to do so immediately after the function
returns, using the same bind context, which removes the need to activate objects a second time.

MkParseDisplayName parses as much of the display name as it understands into a moniker. The
function then calls IMoniker::ParseDisplayName on the newly created moniker, passing the remainder
of the display name. The moniker returned by IMoniker::ParseDisplayName is composed onto the end
of the existing moniker and, if any of the display name remains unparsed, IMoniker::ParseDisplayName
is called on the result of the composition. This process is repeated until the entire display name has been
parsed.

The MkParseDisplayName function attempts the following strategies to parse the beginning of the
display name, using the first one that succeeds:

1. The function looks in the Running Object Table for file monikers corresponding to all prefixes of
szDisplayName that consist solely of valid file name characters. This strategy can identify documents
that are as yet unsaved.

2. The function checks the maximal prefix of szDisplayName, which consists solely of valid file name
characters, to see if an OLE 1 document is registered by that name (this may require some DDE
broadcasts). In this case, the returned moniker is an internal moniker provided by the OLE 1
compatibility layer of OLE 2.

3. The function consults the file system to check whether a prefix of szDisplayName matches an existing
file. The file name can be drive-absolute, drive-relative, working-directory relative, or begin with an
explicit network share name. This is the common case.

4. If the initial character of szDisplayName is an '@', the function finds the longest string immediately
following it that conforms to the legal ProgID syntax. The function converts this string to a CLSID
using the CLSIDFromProgID function. If the CLSID represents an OLE 2 class, the function loads the
corresponding class object and asks for an IParseDisplayName interface pointer. The resulting
IParseDisplayName interface is then given the whole string to parse, starting with the '@'. If the
CLSID represents an OLE 1 class, then the function treats the string following the ProgID as an
OLE1/DDE link designator having <filename>!<item> syntax.

See Also
IMoniker::ParseDisplayName, IMoniker::GetDisplayName, IParseDisplayName

MonikerCommonPrefixWith

Creates a new moniker based on the common prefix that this moniker (the one comprising the data of this
moniker object) shares with another moniker. This function is intended to be called only in
implementations of IMoniker::CommonPrefixWith.

WINOLEAPI MonikerCommonPrefixWith(

 LPMONIKER pmkThis, //Pointer to the first moniker being compared
 LPMONIKER pmkOther, //Pointer to the second moniker being compared
 LPMONIKER FAR *ppmkCommon //Indirect pointer to a moniker
);

Parameters
pmkThis

[in] Pointer to the IMoniker interface on one of the monikers for which a common prefix is sought;
usually the moniker in which this call is used to implement IMoniker::CommonPrefixWith.

pmkOther

[in] Pointer to the IMoniker interface on the other moniker to compare with the first moniker.
ppmkCommon

[out] When successful, indirect pointer to an IMoniker interface on a moniker based on the common
prefix of pmkThis and pmkOther. In this case, the function has called IUnknown::AddRef on the
parameter and the caller is responsible for calling IUnknown::Release. If an error occurs, the
supplied pointer value is NULL if an error occurs.

Return Values
This function supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

A common prefix exists that is neither pmkThis nor pmkOther.
MK_S_HIM

The entire pmkOther moniker is a prefix of the pmkThis moniker.
MK_S_ME

The entire pmkThis moniker is a prefix of the pmkOther moniker.
MK_S_US

The pmkThis and pmkOther monikers are equal.
MK_E_NOPREFIX

The monikers have no common prefix.
MK_E_NOTBINDABLE

This function was called on a relative moniker. It is not meaningful to take the common prefix of
relative monikers.

Remarks
Call MonikerCommonPrefixWith only in the implementation of IMoniker::CommonPrefixWith for a
new moniker class.

Your implementation of IMoniker::CommonPrefixWith should first check whether the other moniker is of
a type that you recognize and handle in a special way. If not, you should call
MonikerCommonPrefixWith, passing itself as pmkThis and the other moniker as pmkOther.
MonikerCommonPrefixWith correctly handles the cases where either moniker is a generic composite.

You should call this function only if pmkThis and pmkOther are both absolute monikers (where an
absolute moniker is either a file moniker or a generic composite whose leftmost component is a file
moniker, and where the file moniker represents an absolute path). Do not call this function on relative
monikers.

See Also
IMoniker::CommonPrefixWith

MonikerRelativePathTo

Provides a moniker that, when composed onto the end of the first specified moniker (or one with a similar
structure), yields the second specified moniker. This function is intended for use only by
IMoniker::RelativePathTo implementations.

WINOLEAPI MonikerRelativePathTo(

 LPMONIKER pmkSrc, //Pointer to the source identified by the moniker
 LPMONIKER pmkDest, //Pointer to the destination identified by the moniker
 LPMONIKER FAR * ppmkRelPath, //Indirect pointer to the relative moniker
 BOOL dwReserved //Reserved; must be non-zero
);

Parameters
pmkSrc

[in] Pointer to the IMoniker interface on the moniker that, when composed with the relative moniker to
be created, produces pmkDest. This moniker identifies the "source" of the relative moniker to be
created.

pmkDest

[in] Pointer to the IMoniker interface on the moniker to be expressed relative to pmkSrc. This moniker
identifies the destination of the relative moniker to be created.

ppmkRelPath

[out] Indirect pointer to an IMoniker interface on the new relative moniker. When successful, the
function has called IUnknown::AddRef on the parameter and the caller is responsible for calling
IUnknown::Release. If an error occurs, the pointer value is NULL.

dwReserved

[in] Reserved; must be non-zero.

Return Values
This function supports the standard return value E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

A meaningful relative path has been returned.
MK_S_HIM

The only form of the relative path is the other moniker.
MK_E_NOTBINDABLE

Indicates that pmkSrc is a relative moniker, such as an item moniker, and must be composed with the
moniker of its container before a relative path can be determined.

Remarks
Call MonikerRelativePathTo only in the implementation of IMoniker::RelativePathTo if you are

implementing a new moniker class.

Your implementation of IMoniker::RelativePathTo should first check whether the other moniker is of a
type you recognize and handle in a special way. If not, you should call MonikerRelativePathTo, passing
itself as pmkThis and the other moniker as pmkOther. MonikerRelativePathTo correctly handles the
cases where either moniker is a generic composite.

You should call this function only if pmkSrc and pmkDest are both absolute monikers, where an absolute
moniker is either a file moniker or a generic composite whose leftmost component is a file moniker, and
where the file moniker represents an absolute path. Do not call this function on relative monikers.

See Also
IMoniker::RelativePathTo

OleBuildVersion

This function is obsolete.

OleConvertIStorageToOLESTREAM

Converts the specified storage object from OLE 2 structured storage to the OLE 1 storage model but does
not include the presentation data. This is one of several compatibility functions.

WINOLEAPI OleConvertIStorageToOLESTREAM(

 IStorage * pStg, //Pointer to the OLE 2 storage object to be converted
 LPOLESTREAM lpolestream //Pointer to the stream where the OLE1 storage is written
);

Parameters
pStg

[in] Pointer to the IStorage interface on the storage object to be converted to an OLE 1 storage.
lpolestream

[out] Pointer to an OLE 1 stream structure where the persistent representation of the object is saved
using the OLE 1 storage model.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The storage object was successfully converted and the OLESTREAM structure contains the
persistent representation of an OLE 1 object.

CONVERT10_E_STG_NO_STD_STREAM

Object cannot be converted because its storage is missing a stream.
CONVERT10_S_NO_PRESENTATION

The specified storage object contains a Paintbrush object in DIB format and there is no presentation
data in the OLESTREAM.

Remarks
This function converts an OLE 2 storage object to OLE 1 format. The OLESTREAM code implemented
for OLE 1 must be available.

On entry, the stream pointed to by lpolestm should be created and positioned just as it would be for an
OleSaveToStream call. On exit, the stream contains the persistent representation of the object using
OLE 1 storage.

Note Paintbrush objects are dealt with differently from other objects because their native data is in DIB
format. When Paintbrush objects are converted using OleConvertIStorageToOLESTREAM, no
presentation data is added to the OLESTREAM. To include presentation data, use the
OleConvertIStorageToOLESTREAMEx function instead.

See Also

CoIsOle1Class, OleConvertIStorageToOLESTREAMEx, OleConvertOLESTREAMToIStorage,
OleConvertOLESTREAMToIStorageEx

OleConvertIStorageToOLESTREAMEx

Converts the specified storage object from OLE 2 structured storage to the OLE 1 storage model,
including the presentation data. This is one of several compatibility functions.

WINOLEAPI OleConvertIStorageToOLESTREAMEx(

 IStorage * pStg, //Pointer to the OLE 2 storage object to be converted
 CLIPFORMAT cfFormat, //Presentation data format
 LONG lWidth, //Width in HIMETRIC
 LONG lHeight, //Height in HIMETRIC
 DWORD dwSize, //Size of data
 STGMEDIUM pmedium, //Pointer to data
 LPOLESTREAM lpolestm //Pointer to the stream where the OLE1 storage is written
);

Parameters
pStg

[in] Pointer to the IStorage interface on the storage object to be converted to an OLE 1 storage.
cfFormat

[in] Format of the presentation data. May be NULL, in which case the lWidth, lHeight, dwSize, and
pmedium parameters are ignored.

lWidth

[in] Width of the object presentation data in HIMETRIC units.
lHeight

[in] Height of the object presentation data in HIMETRIC units.
dwSize

[in] Size of the data, in bytes, to be converted.
pmedium

[in] Pointer to the STGMEDIUM structure for the serialized data to be converted. See STGMEDIUM
for more information.

lpolestm

[out] Pointer to a stream where the persistent representation of the object is saved using the OLE 1
storage model.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The conversion was completed successfully.
DV_E_STGMEDIUM

The hGlobal member of STGMEDIUM is NULL.

DV_E_TYMED

The tymed member of the STGMEDIUM structure is not TYMED_HGLOBAL or TYMED_ISTREAM.

Remarks
The OleConvertIStorageToOLESTREAMEx function converts an OLE 2 storage object to OLE 1 format.
It differs from the OleConvertIStorageToOLESTREAM function in that the presentation data to be written
to the OLE 1 storage is passed in.

Because OleConvertIStorageToOLESTREAMEx can specify which presentation data to convert, it can
be used by applications that do not use OLE default caching resources but do use OLE's conversion
resources.

The value of the tymed member of STGMEDIUM must be either TYMED_HGLOBAL or
TYMED_ISTREAM; refer to the TYMED enumeration for more information. The medium is not released
by OleConvertIStorageToOLESTREAMEx.

See Also
CoIsOle1Class, OleConvertIStorageToOLESTREAM, OleConvertOLESTREAMToIStorage,
OleConvertOLESTREAMToIStorageEx, STGMEDIUM structure, TYMED enumeration

OleConvertOLESTREAMToIStorage

Converts the specified object from the OLE 1 storage model to an OLE 2 structured storage object
without specifying presentation data. This is one of several compatibility functions.

WINOLEAPI OleConvertOLESTREAMToIStorage(

 LPOLESTREAM lpolestream, //Pointer to the stream where the OLE 1 storage is written
 IStorage * pstg, //Pointer to OLE 2 storage object
 const DVTARGETDEVICE * ptd //Pointer to target device
);

Parameters
lpolestream

[in] Pointer to a stream that contains the persistent representation of the object in the OLE 1 storage
format.

pstg

[out] Pointer to the IStorage interface on the OLE 2 structured storage object.
ptd

[in] Pointer to the DVTARGETDEVICE structure specifying the target device for which the OLE 1
object is rendered.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

The object was successfully converted.
CONVERT10_S_NO_PRESENTATION

The object either has no presentation data or uses native data for its presentation.
DV_E_DVTARGETDEVICE or DV_E_DVTARGETDEVICE_SIZE

Invalid value for ptd.

Remarks
This function converts an OLE 1 object to an OLE 2 structured storage object. You can use this function to
update OLE 1 objects to OLE 2 objects when a new version of the object application supports OLE 2.

On entry, the lpolestm parameter should be created and positioned just as it would be for an
OleLoadFromStream function call. On exit, the lpolestm parameter is positioned just as it would be on
exit from an OleLoadFromStream function, and the pstg parameter contains the uncommitted persistent
representation of the OLE 2 storage object.

For OLE 1 objects that use native data for their presentation, the OleConvertOLESTREAMToIStorage
function returns CONVERT10_S_NO_PRESENTATION. On receiving this return value, callers should call
IOleObject::Update to get the presentation data so it can be written to storage.

Applications that do not use OLE's default caching resources, but do use the conversion resources, can
use an alternate function, OleConvertOLESTREAMToIStorageEx, which can specify which presentation
data to convert. In the OleConvertOLESTREAMToIStorageEx function, the presentation data read from
the OLESTREAM structure is passed out and the newly created OLE 2 storage object does not contain a
presentation stream.

The following steps describe the conversion process using OleConvertOLESTREAMToIStorage:

1. Create a root IStorage object by calling the StgCreateDocfile function(..., &pstg).
2. Open the OLE 1 file (using OpenFile or another OLE 1 technique).
3. Using the OLE 1 procedure for reading files, read from the file until an OLE object is encountered.
4. Allocate an IStorage object from the root IStorage created in step 1:

pstg->lpVtbl->CreateStorage(...&pStgChild);
hRes = OleConvertIStorageToOLESTREAM(polestm, pStgChild);
hRes = OleLoad(pStgChild, &IID_IOleObject, pClientSite, ppvObj);

5. Repeat step 3 until the file is completely read.

See Also
CoIsOle1Class, OleConvertIStorageToOLESTREAM, OleConvertIStorageToOLESTREAMEx,
OleConvertOLESTREAMToIStorageEx,DVTARGETDEVICE structure, STGMEDIUM structure, TYMED
enumeration

OleConvertOLESTREAMToIStorageEx

Converts the specified object from the OLE 1 storage model to an OLE 2 structured storage object
including presentation data. This is one of several compatibility functions.

WINOLEAPI OleConvertOLESTREAMToIStorageEx(

 LPOLESTREAM lpolestm, //Pointer to the stream where the OLE1 storage is written
 IStorage * pstg, //Pointer to OLE 2 storage object
 CLIPFORMAT * pcfFormat, //Pointer to presentation data
 LONG * plWidth, //Points to width value
 LONG * plHeight, //Pointer to height value
 DWORD * pdwSize, //Pointer to size
 STGMEDIUM pmedium //Pointer to the structure
);

Parameters
lpolestm

[in] Pointer to the stream that contains the persistent representation of the object in the OLE 1 storage
format.

pstg

[out] Pointer to the OLE 2 structured storage object.
pcfFormat

[out] Pointer to where the format of the presentation data is returned. May be NULL, indicating the
absence of presentation data.

plWidth

[out] Pointer to where the width value (in HIMETRIC) of the presentation data is returned.
plHeight

[out] Pointer to where the height value (in HIMETRIC) of the presentation data is returned.
pdwSize

[out] Pointer to where the size in bytes of the converted data is returned.
pmedium

[out] Pointer to where the STGMEDIUM structure for the converted serialized data is returned.

Return Values
S_OK

The conversion was completed successfully.
DV_E_TYMED|

Value of the tymed member of STGMEDIUM is not TYMED_ISTREAM or TYMED_NULL.

Remarks

This function converts an OLE 1 object to an OLE 2 structured storage object. You can use this function to
update OLE 1 objects to OLE 2 objects when a new version of the object application supports OLE 2.

This function differs from the OleConvertOLESTREAMToIStorage function in that the presentation data
read from the OLESTREAM structure is passed out and the newly created OLE 2 storage object does not
contain a presentation stream.

Since this function can specify which presentation data to convert, it can be used by applications that do
not use OLE's default caching resources but do use the conversion resources.

The tymed member of STGMEDIUM can only be TYMED_NULL or TYMED_ISTREAM. If it is
TYMED_NULL, the data will be returned in a global handle through the hGlobal member of STGMEDIUM,
otherwise data will be written into the pstm member of this structure.

See Also
CoIsOle1Class, OleConvertIStorageToOLESTREAM, OleConvertIStorageToOLESTREAMEx,
OleConvertOLESTREAMToIStorage , STGMEDIUM structure, TYMED enumeration

OleCreate

Creates an embedded object identified by a CLSID. You use it typically to implement the menu item that
allows the end user to insert a new object.

WINOLEAPI OleCreate(

 REFCLSID rclsid, //CLSID of embedded object to be created
 REFIID riid, //Reference to the identifier of the interface used to communicate with new

object
 DWORD renderopt, //RENDEROPT value indicating cached capabilities
 FORMATETC * pFormatEtc, //Pointer to a FORMATETC structure
 IOleClientSite * pClientSite, //Pointer to request services from the container
 IStorage * pStg, //Pointer to storage for the object
 void ** ppvObject //Indirect pointer to new object
);

Parameters
rclsid

[in] CLSID of the embedded object that is to be created.
riid

[in] Reference to the identifier of the interface, usually IID_IOleObject (defined in the OLE headers as
the interface identifier for IOleObject), through which the caller will communicate with the new object.

renderopt

[in] A value from the enumeration OLERENDER, indicating the locally cached drawing capabilities the
newly created object is to have. The OLERENDER value chosen affects the possible values for the
pFormatEtc parameter.

pFormatEtc

[in] Depending on which of the OLERENDER flags is used as the value of renderopt, pointer to one of
the FORMATETC enumeration values. Refer to the OLERENDER enumeration for restrictions. This
parameter, along with the renderopt parameter, specifies what the new object can cache initially.

pClientSite

[in] If you want OleCreate to call IOleObject::SetClientSite, pointer to the IOleClientSite interface
on the container. The value may be NULL, in which case you must specifically call
IOleClientSite::SetClientSite before attempting operations.

pStg

[in] Pointer to an instance of the IStorage interface on the storage object. This parameter may not be
NULL.

ppvObject

[out] Upon successful return, indirect pointer to the interface requested in riid on the newly created
object.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

Embedded object created successfully.

Remarks
The OleCreate function creates a new embedded object, and is typically called to implement the menu
item Insert New Object. When OleCreate returns, the object it has created is blank (contains no data),
unless renderopt is OLERENDER_DRAW or OLERENDER_FORMAT, and is loaded. Containers typically
then call the OleRun function or IOleObject::DoVerb to show the object for initial editing.

The rclsid parameter specifies the CLSID of the requested object. CLSIDs of registered objects are stored
in the system registry. When an application user selects Insert Object, a selection box allows the user to
select the type of object desired from those in the registry. When OleCreate is used to implement the
Insert Object menu item, the CLSID associated with the selected item is assigned to the rclsid parameter
of OleCreate.

The riid parameter specifies the interface the client will use to communicate with the new object. Upon
successful return, the ppvObject parameter holds a pointer to the requested interface.

The created object's cache contains information that allows a presentation of a contained object when the
container is opened. Information about what should be cached is passed in the renderopt and pFormatetc
values. When OleCreate returns, the created object's cache is not necessarily filled. Instead, the cache is
filled the first time the object enters the running state. The caller can add additional cache control with a
call to IOleCache::Cache after the return of OleCreate and before the object is run. If renderopt is
OLERENDER_DRAW or OLERENDER_FORMAT, OleCreate requires that the object support the
IOleCache interface. There is no such requirement for any other value of renderopt.

If pClientSite is non-NULL, OleCreate calls IOleObject::SetClientSite through the pClientSite pointer.
IOleClientSite is the primary interface by which an object requests services from its container. If
pClientSite is NULL, you must make a specific call to IOleObject::SetClientSite before attempting any
operations.

See Also
OLERENDER, FORMATETC, IOleClientSite, IOleObject

OleCreateDefaultHandler

Creates a new instance of the default embedding handler. This instance is initialized so it creates a local
server when the embedded object enters the running state.

WINOLEAPI OleCreateDefaultHandler(

 REFCLSID clsid, //OLE server to be loaded
 LPUNKNOWN pUnkOuter, //Pointer to controlling IUnknown if aggregated; else NULL
 REFIID riid, //Reference to the identifier of the interface for communicating with handler
 LPVOID FAR * ppvObj //Indirect pointer to interface on handler
);

Parameters
clsid

[in] CLSID identifying the OLE server to be loaded when the embedded object enters the running
state.

pUnkOuter

[in] Pointer to the controlling IUnknown interface if the handler is to be aggregated; NULL if it is not to
be aggregated.

riid

[in] Reference to the identifier of the interface, usually IID_IOleObject, through which the caller will
communicate with the handler.

ppvObj

[out] Indirect pointer to the interface requested in riid on the newly created handler.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

NOERROR

The creation operation was successful.

Remarks
OleCreateDefaultHandler creates a new instance of the default embedding handler, initialized so it
creates a local server identified by the clsid parameter when the embedded object enters the running
state. If you are writing a handler and want to use the services of the default handler, call
OleCreateDefaultHandler. OLE also calls it internally when the CLSID specified in an object creation call
is not registered.

If the given class does not have a special handler, a call to OleCreateDefaultHandler produces the same
results as a call to the CoCreateInstance function with the class context parameter assigned the value
CLSCTX_INPROC_HANDLER.

See Also
CoCreateInstance, CLSCTX

OleCreateEmbeddingHelper

Creates an OLE embedding helper object using application-supplied code aggregated with pieces of the
OLE default object handler. This helper object can be created and used in a specific context and role, as
determined by the caller.

WINOLEAPI OleCreateEmbeddingHelper(

 REFCLSID clsid, //Identifier of the class to be helped
 LPUNKNOWN pUnkOuter, //Pointer to controlling IUnknown if aggregated; else NULL
 DWORD flags, //Purpose for the helper
 LPCLASSFACTORY pCF, //Pointer on the class object for the secondary object
 REFIID riid, //Reference to the identifier of the interface desired by the caller
 LPVOID * ppvObj //Indirect pointer to requested interface on helper
);

Parameters
clsid

[in] CLSID of the class to be helped.
pUnkOuter

[in] If the embedding helper is to be aggregated, pointer to the outer object's controlling IUnknown
interface. If it is not to be aggregated, although this is rare, the value should be NULL.

flags

[in] DWORD containing flags that specify the role and creation context for the embedding helper. For
legal values, see the following Remarks section.

pCF

[in] Pointer to the IClassFactory interface on the class object the function uses to create the
secondary object. In some situations, this value may be NULL. For more information, see the
following Remarks section.

riid

[in] Reference to the identifier of the interface desired by the caller.
ppvObj

[out] Indirect pointer to the requested interface on the newly created embedding helper.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The OLE embedding helper was created successfully.
E_NOINTERFACE

The interface is not supported by the object.

Remarks
The OleCreateEmbeddingHelper function creates an object that supports the same interface
implementations found in the default handler, but which has additional hooks that allow it to be used more
generally than just as a handler object. The following two calls produce the same result:

OleCreateEmbeddingHelper(clsid, pUnkOuter, EMBDHLP_INPROC_HANDLER |
 EMBDHLP_CREATENOW, NULL, iid, ppvObj)

OleCreateDefaultHandler(clsid, pUnkOuter, iid, ppvObj)

The embedding helper is aggregatable; pUnkOuter is the controlling IUnknown of the aggregate of which
the embedding helper is to be a part. It is used to create a new instance of the OLE default handler, which
can be used to support objects in various roles. The caller passes a pointer to its IClassFactory
implementation to OleCreateEmbeddingHelper. This object and the default handler are then aggregated
to create the new embedding helper object.

The OleCreateEmbeddingHelper function is usually used to support one of the following
implementations:

· An EXE object application that is being used as both a container and a server, and which supports
inserting objects into itself. For this case, CreateEmbeddingHelper allows the object to support the
interfaces usually supported only in the handler. To accomplish this, the application must first register
its CLSID for different contexts, making two registration calls to the CoRegisterClassObject function,
rather than one, as follows:

 CoRegisterClassObject(clsidMe, pUnkCfLocal, CLSCTX_LOCAL_SERVER,
 REGCLS_MULTI_SEPARATE...)

 CoRegisterClassObject(clsidMe, pUnkCfInProc, CLSCTX_INPROC_SERVER,
 REGCLS_MULTI_SEPARATE...)

In these calls, you would pass along different class factory implementations to each of pUnkCfLocal
and pUnkCfInProc. The class factory pointed to by pUnkCfLocal would be used to create objects that
are to be embedded in a remote process, which is the normal case which uses a handler object
associated with the client. However, when a server both creates an object and embeds it within itself,
pUnkCfInProc points to a class object that can create an object that supports the handler interfaces.
The local class is used to create the object and the in-process class creates the embedding helper,
passing in the pointer to the first object's class factory in pCF.

· A custom in-process object handler, in which case, the DLL creates the embedding helper by passing
in a pointer to a private implementation of IClassFactory in pCF.

The flags parameter indicates how the embedding helper is to be used and how and when the embedding
helper is initialized. The values for flags are obtained by OR-ing together values from the following table:

Values for flags Parameter Purpose
EMBDHLP_INPROC_HANDLER Creates an embedding helper that

can be used with DLL object
applications; specifically, the helper
exposes the caching features of
the default object handler.

EMBDHLP_INPROC_SERVER Creates an embedding helper that
is to be used as part of an in-
process server. pCF cannot be
NULL.

EMBDHLP_CREATENOW Creates the secondary object using

pCF immediately; if pCF is null, the
standard proxy manager is used.

EMBDHLP_DELAYCREATE Delays creation of the secondary
object until it is needed (when the
helper is put into the running state)
to enhance speed and memory
use. pCF must not be NULL. The
EMBDHLP_INPROC_HANDLER
flag cannot be used with this flag.

See Also
OleCreateDefaultHandler

OleCreateEx

Extends OleCreate functionality by supporting more efficient instantiation of objects in containers
requiring caching of multiple presentation formats or data, instead of the single format supported by
OleCreate.

HRESULT OleCreateEx(

 REFCLSID rclsid, //Class of object to create
 REFIID riid, //Reference to the identifier of the interface of object to return
 DWORD dwFlags, //Value from OLECREATE enumeration
 DWORD renderopt, //Value from OLERENDER enumeration
 ULONG cFormats, //Number of FORMATETC structures in rgFormatEtc
 DWORD rgAdvf, //Points to an array of cFormats DWORD elements
 LPFORMATETC rgFormatEtc, //Points to an array of cFormats FORMATETC structures; NULL otherwise
 LPADVISESINK pAdviseSink, //IAdviseSink pointer (custom caching); NULL (default caching); NULL otherwise
 DWORD* rgdwConnection, //Location to return array of dwConnection values
 LPOLECLIENTSITE pClientSite, //Pointer to the primary interface the object will use to request services
 LPSTORAGE pStg, //Pointer to storage to use for object
 LPVOID FAR* ppvObj //Indirect pointer to location to return riid interface
);

Parameters
rclsid

Identifies the class of the object to create.
riid

Reference to the identifier of the interface of the object to return.
dwFlags

Value taken from the OLECREATE enumeration.
renderopt

Value taken from the RENDEROPT enumeration.
cFormats

When renderopt is OLERENDER_FORMAT, indicates the number of FORMATETC structures in the
rgFormatEtc array, which must be at least one. In all other cases, this parameter must be zero.

rgAdvf

When renderopt is OLERENDER_FORMAT, points to an array of cFormats DWORD elements, each
of which is a combination of values from the ADVF enumeration. Each element of this array is passed
in as the advf parameter to a call to either IOleCache::Cache or IDataObject::DAdvise, depending
on whether pAdviseSink is NULL or non-NULL (see below). In all other cases, this parameter must be
NULL.

rgFormatEtc

When renderopt is OLERENDER_FORMAT, points to an array of cFormats FORMATETC structures.
When pAdviseSink is NULL, each element of this array is passed as the pFormatEtc parameter to a
call to the object's IOleCache::Cache. This populates the data and presentation cache managed by
the objects in-process handler (typically the default handler) with presentation or other cacheable

data. When pAdviseSink is non-NULL, each element of this array is passed as the pFormatEtc
parameter to a call to IDataObject::DAdvise. This allows the caller (typically an OLE Container) to do
its own caching or processing of data received from the object. In all other cases, this parameter must
be NULL.

pAdviseSink

When renderopt is OLERENDER_FORMAT, may be either a valid IAdviseSink pointer, indicating
custom caching or processing of data advises, or NULL, indicating default caching of data formats. In
all other cases, this parameter must be NULL.

rgdwConnection

Location to return the array of dwConnection values returned when the pAdviseSink interface is
registered for each advisory connection using IDataObject::DAdvise, or NULL if the returned
advisory connections are not needed. Must be NULL, if pAdviseSink is NULL.

pClientSite

Pointer to the primary interface through which the object will request services from its container. This
parameter may be NULL, in which case it is the caller's responsibility to establish the client site as
soon as possible using IOleObject::SetClientSite.

pStg

Pointer to the storage to use for the object and any default data or presentation caching established
for it. This parameter may not be NULL.

ppvObj

Location to return the riid interface of the newly created object.

Return Values
This function supports the standard return value E_INVALIDARG, as well as the following:

S_OK

Success.
E_NOINTERFACE

The object does not support the riid interface.

Remarks
The following call to OleCreate:

 OleCreate(rclsid, riid, renderopt, pFormatEtc, pClientSite, pStg,
ppvObj);

is equivalent to the following call to OleCreateEx:

 DWORD advf = ADVF_PRIMEFIRST;
 OleCreateEx(rclsid, riid, renderopt, 1, &advf, pFormatEtc, NULL,
pClientSite, pStg, ppvObj);

Existing instantiation functions, (OleCreate, OleCreateFromFile, OleCreateFromData, OleCreateLink,
OleCreateLinkToFile, and OleCreateLinkFromData) create only a single presentation or data format
cache in the default cache location (within the '\001OlePresXXX' streams of the passed-in IStorage),
during instantiation. Plus, these caches must be created when the object next enters the running state.
Since most applications require caching at least two presentations (screen and printer) and may require
caching data in a different format or location from the handler, applications must typically launch and shut
down the object server multiple times in order to prime their data caches during object creation, i.e., Insert

Object, Insert Object from File, and Paste Object.

Extended versions of these creation functions solve this problem. OleCreateEx, OleCreateFromFileEx,
OleCreateFromDataEx, OleCreateLinkEx, OleCreateLinkToFileEx, and OleCreateLinkFromDataEx
contain the following new parameters: dwFlags to indicate additional options, cFormats to indicate how
many formats to cache, rgAdvf, from the ADVF enumeration, to specify the advise flags for each format to
be cached, pAdviseSink to indicate whether presentation (default-handler) or data (non-default-handler)
caching is required, rgdwConnection to return IDataObject::DAdvise cookies, and pFormatEtc, an array
of formats rather than a single format.

Containers requiring that multiple presentations be cached on their behalf by the object's handler can
simply call these functions and specify the number of formats in cFormats, the ADVF flags for each
format in rgAdvf, and the set of formats in pFormatEtc. These containers pass NULL for pAdviseSink.

Containers performing all their own data- or presentation-caching perform these same steps, but pass a
non-NULL pAdviseSink. They perform their own caching or manipulation of the object or data during
IAdviseSink::OnDataChange. Typically such containers never establish the advisory connections with
ADVF_NODATA, although they are not prevented from doing so.

These new functions are for OLE Compound Documents. Using these functions, applications can avoid
the repeated launching and initialization steps required by the current functions. They are targeted at OLE
Compound Document container applications that use default data- and presentation-caching, and also at
applications that provide their own caching and data transfer from the underlying IDataObject::DAdvise
support.

See Also
OleCreate, IOleCache::Cache, IDataObject::DAdvise, IOleObject::SetClientSite,
IAdviseSink::OnDataChange, IStorage, OLERENDER, FORMATETC, ADVF

OleCreateFontIndirect

Creates and initializes a standard font object using an initial description of the font's properties in a
FONTDESC structure. The function returns an interface pointer to the new font object specified by caller
in the riid parameter. A QueryInterface is built into this call. The caller is responsible for calling Release
through the interface pointer returned.

STDAPI OleCreateFontIndirect(

 FONTDESC* pFontDesc, //Pointer to the structure of parameters for font
 REFIID riid, //Reference to the identifier of the interface
 VOID** ppvObj //Indirect pointer to the object
);

Parameters
pFontDesc

[in] Pointer to a caller-allocated structure containing the initial state of the font.
riid

[in] Reference to the identifier of the interface describing the type of interface pointer to return in
ppvObj.

ppvObj

[out] Indirect pointer to the initial interface pointer on the new object. If successful, the caller is
responsible to call Release through this interface pointer when the new object is no longer needed. If
unsuccessful, the value of ppvObj is set to NULL.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The new font was created successfully.
E_NOINTERFACE

The object does not support the interface specified in riid.
E_POINTER

The address in pFontDesc or ppvObj is not valid. For example, it may be NULL.

See Also
FONTDESC

OleCreateFromData

Creates an embedded object from a data transfer object retrieved either from the clipboard or as part of
an OLE drag-and-drop operation. It is intended to be used to implement a paste from an OLE drag-and-
drop operation.

WINOLEAPI OleCreateFromData(

 LPDATAOBJECT pSrcDataObj, //Pointer to the data transfer object
 REFIID riid, //Reference to the identifier of the interface to be used to communicate with the new object
 DWORD renderopt, //Value from OLERENDER
 LPFORMATETC pFormatEtc, //Pointer to value from FORMATETC, depending on renderopt
 LPOLECLIENTSITE pClientSite, //Pointer to interface
 LPSTORAGE pStg, //Pointer to storage of object
 LPVOID FAR* ppvObj //Indirect pointer to the interface requested in riid
);

Parameters
pSrcDataObj

[in] Pointer to the IDataObject interface on the data transfer object that holds the data from which the
object is created.

riid

[in] Reference to the identifier of the interface the caller later uses to communicate with the new object
(usually IID_IOleObject, defined in the OLE headers as the interface identifier for IOleObject).

renderopt

[in] Value from the enumeration OLERENDER that indicates the locally cached drawing or data-
etrieval capabilities the newly created object is to have. Additional considerations are described in the
following Remarks section.

pFormatEtc

[in] Pointer to a value from the enumeration OLERENDER that indicates the locally cached drawing
or data-retrieval capabilities the newly created object is to have. The OLERENDER value chosen
affects the possible values for the pFormatEtc parameter.

pClientSite

[in] Pointer to an instance of IOleClientSite, the primary interface through which the object will
request services from its container. May be NULL.

pStg

[in] Pointer to the IStorage interface on the storage object. This parameter may not be NULL.
ppvObj

[out] Indirect pointer to the interface requested in riid on the newly created object.

Return Values
S_OK

The embedded object was created successfully.

OLE_E_STATIC

Indicates OLE can create only a static object.
DV_E_FORMATETC

No acceptable formats are available for object creation.

Remarks
The OleCreateFromData function creates an embedded object from a data transfer object supporting the
IDataObject interface. The data object in this case is either the type retrieved from the clipboard with a
call to the OleGetClipboard function or is part of an OLE drag-and-drop operation (the data object is
passed to a call to IDropTarget::Drop).

If either the FileName or FileNameW clipboard format (CF_FILENAME) is present in the data transfer
object, and CF_EMBEDDEDOBJECT or CF_EMBEDSOURCE do not exist, OleCreateFromData first
attempts to create a package containing the indicated file. Generally, it takes the first available format.
The Microsoft Windows NT File Manager places these formats on the clipboard when the user selects the
File/Copy To Clipboard menu command.

If OleCreateFromData cannot create a package, it tries to create an object using the
CF_EMBEDDEDOBJECT format. If that format is not available, OleCreateFromData tries to create it with
the CF_EMBEDSOURCE format. If neither of these formats is available and the data transfer object
supports the IPersistStorage interface, OleCreateFromData calls the object's IPersistStorage::Save to
have the object save itself.

If an existing linked object is selected, then copied, it appears on the clipboard as just another
embeddable object. Consequently, a paste operation that invokes OleCreateFromData may create a
linked object. After the paste operation, the container should call the QueryInterface function, requesting
IID_IOleLink (defined in the OLE headers as the interface identifier for IOleLink), to determine if a linked
object was created.

Use the renderopt and pFormatetc parameters to control the caching capability of the newly created
object. For general information about using the interaction of these parameters to determine what is to be
cached, refer to the OLERENDER enumeration. There are, however, some additional specific effects of
these parameters on the way OleCreateFromData initializes the cache.

When OleCreateFromData uses either the CF_EMBEDDEDOBJECT or the CF_EMBEDSOURCE
clipboard format to create the embedded object, the main difference between the two is where the cache-
initialization data is stored:

· CF_EMBEDDEDOBJECT indicates that the source is an existing embedded object. It already has in
its cache the appropriate data, and OLE uses this data to initialize the cache of the new object.

· CF_EMBEDSOURCE indicates that the source data object contains the cache-initialization
information in formats other than CF_EMBEDSOURCE. OleCreateFromData uses these to initialize
the cache of the newly embedded object.

The renderopt values affect cache initialization as follows:

Value Description
OLERENDER_DRAW &
OLERENDER_FORMAT

If the presentation information to be cached
is currently present in the appropriate
cache-initialization pool, it is used.
(Appropriate locations are in the source
data object cache for

CF_EMBEDDEDOBJECT, and in the other
formats in the source data object for
CF_EMBEDSOURCE.) If the information is
not present, the cache is initially empty, but
will be filled the first time the object is run.
No other formats are cached in the newly
created object.

OLERENDER_NONE Nothing is to be cached in the newly
created object. If the source has the
CF_EMBEDDEDOBJECT format, any
existing cached data that has been copied
is removed.

OLERENDER_ASIS If the source has the
CF_EMBEDDEDOBJECT format, the cache
of the new object is to contain the same
cache data as the source object. For
CF_EMBEDSOURCE, nothing is to be
cached in the newly created object.
This option should be used by more
sophisticated containers. After this call,
such containers would call
IOleCache::Cache and
IOleCache::Uncache to set up exactly
what is to be cached. For
CF_EMBEDSOURCE, they would then also
call IOleCache::InitCache.

See Also
OleCreate, IDataObject

OleCreateFromDataEx

Extends OleCreateFromData functionality by supporting more efficient instantiation of objects in
containers requiring caching of multiple formats of presentation or data, instead of the single format
supported by OleCreateFromData.

HRESULT OleCreateFromDataEx(

 LPDATAOBJECT pSrcDataObj, //Pointer to data transfer object
 REFIID riid, //Reference to the identifier of the interface of object to return
 DWORD dwFlags, //Value from OLECREATE enumeration
 DWORD renderopt, //Value from OLERENDER enumeration
 ULONG cFormats, //Number of FORMATETCs in rgFormatEtc
 DWORD rgAdvf, //Points to an array of cFormats DWORD elements
 LPFORMATETC rgFormatEtc, //Points to an array of cFormats FORMATETC structures
 LPADVISESINK pAdviseSink, //IAdviseSink pointer, or NULL, indicating default data format caching
 DWORD FAR* rgdwConnection, //Location to return array of dwConnection values
 LPCLIENTSITE pClientSite, //Pointer to primary interface the object will use to request services
 LPSTORAGE pStg, //Pointer to storage to use for object
 LPVOID FAR* ppvObj ///Indirect pointer to location to return riid interface
);

Parameters
pSrcDataObj

Pointer to the data transfer object holding the new data used to create the new object. (see
OleCreateFromData).

riid

Reference to the identifier of the interface of the object to return.
dwFlags

Value taken from the OLECREATE enumeration.
renderopt

Value taken from the RENDEROPT enumeration.
cFormats

When renderopt is OLERENDER_FORMAT, indicates the number of FORMATETC structures in the
rgFormatEtc array, which must be at least one. In all other cases, this parameter must be zero.

rgAdvf

When renderopt is OLERENDER_FORMAT, points to an array of cFormats DWORD elements, each
of which is a combination of values from the ADVF enumeration. Each element of this array is passed
in as the advf parameter to a call to either IOleCache::Cache or IDataObject::DAdvise, depending
on whether pAdviseSink is NULL or non-NULL (see below). In all other cases, this parameter must be
NULL.

rgFormatEtc

When renderopt is OLERENDER_FORMAT, points to an array of cFormats FORMATETC structures.
When pAdviseSink is NULL, each element of this array is passed as the pFormatEtc parameter to a
call to the object's IOleCache::Cache. This populates the data and presentation cache managed by

the object's in-process handler (typically the default handler) with presentation or other cacheable
data. When pAdviseSink is non-NULL, each element of this array is passed as the pFormatEtc
parameter to a call to IDataObject::DAdvise. This allows the caller (typically an OLE Container) to do
its own caching or processing of data received from the object.

pAdviseSink

When renderopt is OLERENDER_FORMAT, may be either a valid IAdviseSink pointer, indicating
custom caching or processing of data advises, or NULL, indicating default caching of data formats.

rgdwConnection

Location to return the array of dwConnection values returned when the pAdviseSink interface is
registered for each advisory connection using IDataObject::DAdvise, or NULL if the returned
advisory connections are not needed. Must be NULL, if pAdviseSink is NULL.

pClientSite

Pointer to the primary interface through which the object will request services from its container. This
parameter may be NULL, in which case it is the caller's responsibility to establish the client site as
soon as possible using IOleObject::SetClientSite.

pStg

Pointer to the storage to use for the object and any default data or presentation caching established
for it.

ppvObj

Location to return the riid interface of the newly created object.

Return Values
S_OK

Success.
E_NOINTERFACE

The object does not support the riid interface.
E_INVALIDARG

One or more arguments are invalid.

Remarks
The following call to OleCreateFromData:

 OleCreateFromData(lpszFileName, riid, renderopt, pFormatEtc,
pClientSite, pStg, ppvObj);

is equivalent to the following call to OleCreateFromDataEx:

 DWORD advf = ADVF_PRIMEFIRST;
 OleCreateFromFileEx(rclsid, lpszFileName, riid, renderopt, 1, &advf,
pFormatEtc, NULL, pClientSite, pStg, ppvObj);

Existing instantiation functions (OleCreate, OleCreateFromFile, OleCreateFromData, OleCreateLink,
OleCreateLinkToFile, and OleCreateLinkFromData) create only a single presentation or data format
cache in the default cache location (within the '\001OlePresXXX' streams of the passed-in IStorage)
during instantiation. Plus, these caches must be created when the object next enters the running state.
Since most applications require caching at least two presentations (screen and printer) and may require
caching data in a different format or location from the handler, applications must typically launch and shut

down the object server multiple times in order to prime their data caches during object creation, i.e., Insert
Object, Insert Object from File, and Paste Object.

Extended versions of these creation functions solve this problem. OleCreateEx, OleCreateFromFileEx,
OleCreateFromDataEx, OleCreateLinkEx, OleCreateLinkToFileEx, and OleCreateLinkFromDataEx,
contain the following new parameters: dwFlags to indicate additional options, cFormats to indicate how
many formats to cache, rgAdvf, from the ADVF enumeration, to specify the advise flags for each format to
be cached, pAdviseSink to indicate whether presentation (default-handler) or data (non-default-handler)
caching is required, rgdwConnection to return IDataObject::DAdvise cookies, and pFormatEtc, an array
of formats rather than a single format.

Containers requiring that multiple presentations be cached on their behalf by the object's handler can
simply call these functions and specify the number of formats in cFormats, the ADVF flags for each
format in rgAdvf, and the set of formats in pFormatEtc. These containers pass NULL for pAdviseSink.

Containers performing all their own data- or presentation-caching perform these same steps, but pass a
non-NULL pAdviseSink. They perform their own caching or manipulation of the object or data during
IAdviseSink::OnDataChange. Typically, such containers never establish the advisory connections with
ADVF_NODATA, although they are not prevented from doing so.

These new functions are for OLE Compound Documents. Using these functions, applications can avoid
the repeated launching and initialization steps required by the current functions. They are targeted at OLE
Compound Document container applications that use default data- and presentation-caching, and also at
applications that provide their own caching and data transfer from the underlying IDataObject::DAdvise
support.

See Also
OleCreateFromData, IOleCache::Cache, IDataObject::DAdvise, IStorage,
IAdviseSink::OnDataChange, IOleObject::SetClientSite, OLECREATE, OLERENDER, FORMATETC,
ADVF

OleCreateFromFile

Creates an embedded object from the contents of a named file.

WINOLEAPI OleCreateFromFile(

 REFCLSID rclsid, //Reserved. Must be CLSID_NULL
 LPCOLESTR lpszFileName, //Pointer to full path of file used to create object
 REFIID riid, //Reference to the identifier of the interface to be used to communicate with new object
 DWORD renderopt, //Value from OLERENDER
 LPFORMATETC pFormatEtc, //Pointer to the FORMATETC structure
 LPOLECLIENTSITE pClientSite, //Pointer to an interface
 LPSTORAGE pStg, //Pointer tothe interface to be used as object storage
 LPVOID FAR* ppvObj //Indirect pointer to the interface requested in riid
);

Parameters
rclsid

[in] Reserved. Must be CLSID_NULL.
lpszFileName

[in] Pointer to a string specifying the full path of the file from which the object should be initialized.
riid

[in] Reference to the identifier of the interface the caller later uses to communicate with the new object
(usually IID_IOleObject, defined in the OLE headers as the interface ID of IOleObject).

renderopt

[in] Value from the enumeration OLERENDER that indicates the locally cached drawing or data-
retrieval capabilities the newly created object is to have. The OLERENDER value chosen affects the
possible values for the pFormatEtc parameter.

pFormatEtc

[in] Depending on which of the OLERENDER flags is used as the value of renderopt, pointer to one of
the FORMATETC enumeration values. Refer also to the OLERENDER enumeration for restrictions.

pClientSite

[in] Pointer to an instance of IOleClientSite, the primary interface through which the object will
request services from its container. May be NULL.

pStg

[in] Pointer to the IStorage interface on the storage object. This parameter may not be NULL.
ppvObj

[out] Indirect pointer to the interface requested in riid on the newly created object on return.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

Embedded object successfully created.
STG_E_FILENOTFOUND

File not bound.
OLE_E_CANT_BINDTOSOURCE

Not able to bind to source.
STG_E_MEDIUMFULL

The medium is full.
DV_E_TYMED

Invalid TYMED.
DV_E_LINDEX

Invalid LINDEX.
DV_E_FORMATETC

Invalid FORMATETC structure.

Remarks
The OleCreateFromFile function creates a new embedded object from the contents of a named file. If the
ProgID in the registration database contains the PackageOnFileDrop key, it creates a package. If not, the
function calls the GetClassFile function to get the CLSID associated with the lpszFileName parameter,
and then creates an OLE 2-embedded object associated with that CLSID. The rclsid parameter of
OleCreateFromFile will always be ignored, and should be set to CLSID_NULL.

As for other OleCreateXxx functions, the newly created object is not shown to the user for editing, which
requires a DoVerb operation. It is used to implement insert file operations, such as the Create from File
command in Word for Windows.

See Also
GetClassFile

OleCreateFromFileEx

Extends OLeCreateFromFile functionality by supporting more efficient instantiation of objects in
containers requiring caching of multiple presentation formats or data, instead of the single format
supported by OleCreateFromFile.

HRESULT OleCreateFromFileEx(

 REFCLSID rclsid, //Reserved; must be CLSID_NULL
 LPCOLESTR lpszFileName, //Pointer to name of file to initialize new object from
 REFIID riid, //Reference to the identifier of the interface of object to return
 DWORD dwFlags, //Value from OLECREATE enumeration
 DWORD renderopt, //Value from OLERENDER enumeration
 ULONG cFormats, //Number of FORMATETC structures in the rgFormatEtc array
 DWORD rgAdvf, //Points to an array of cFormats DWORD elements
 LPFORMATETC rgFormatEtc, //Points to an array of cFormats FORMATETC structures
 LPADVISESINK pAdviseSink, //IAdviseSink pointer (custom caching), or NULL (default caching)
 DWORD FAR* rgdwConnection, //Location to return the array of dwConnection values
 LPCLIENTSITE pClientSite, //Pointer to primary interface the object will use to request services
 LPSTORAGE pStg, //Pointer to storage to use for object
 LPVOID FAR* ppvObj //Indirect pointer to location to return riid interface
);

Parameters
rclsid

Reserved for future use; must be CLSID_NULL.
lpszFileName

Pointer to the name of the file from which the new object should be initialized.
riid

Reference to the identifier of the interface of the object to return.
dwFlags

Value taken from the OLECREATE enumeration.
renderopt

Value taken from the OLERENDER enumeration.
cFormats

When renderopt is OLERENDER_FORMAT, indicates the number of FORMATETC structures in the
rgFormatEtc array, which must be at least one. In all other cases, this parameter must be zero.

rgAdvf

When renderopt is OLERENDER_FORMAT, points to an array of cFormats DWORD elements, each
of which is a combination of values from the ADVF enumeration. Each element of this array is passed
in as the advf parameter to a call to either IOleCache::Cache or IDataObject::DAdvise, depending
on whether pAdviseSink is NULL or non-NULL (see below). In all other cases, this parameter must be
NULL.

rgFormatEtc

When renderopt is OLERENDER_FORMAT, points to an array of cFormats FORMATETC structures.
When pAdviseSink is NULL, each element of this array is passed as the pFormatEtc parameter to a
call to the object's IOleCache::Cache. This populates the data and presentation cache managed by
the objects in-process handler (typically the default handler) with presentation or other cacheable
data. When pAdviseSink is non-NULL, each element of this array is passed as the pFormatEtc
parameter to a call to IDataObject::DAdvise. This allows the caller (typically an OLE Container) to do
its own caching or processing of data received from the object.

pAdviseSink

When renderopt is OLERENDER_FORMAT, may be either a valid IAdviseSink pointer, indicating
custom caching or processing of data advises, or NULL, indicating default caching of data formats.

rgdwConnection

Location to return the array of dwConnection values returned when the pAdviseSink interface is
registered for each advisory connection using IDataObject::DAdvise, or NULL if the returned
advisory connections are not needed. Must be NULL, if pAdviseSink is NULL.

pClientSite

Pointer to the primary interface through which the object will request services from its container. This
parameter may be NULL, in which case it is the caller's responsibility to establish the client site as
soon as possible using IOleObject::SetClientSite.

pStg

Pointer to the storage to use for the object and any default data or presentation caching established
for it.

ppvObj

Location to return the riid interface of the newly created object.

Return Values
S_OK

Success.
E_NOINTERFACE

The object does not support the riid interface.
E_INVALIDARG

One or more arguments are invalid.

Remarks
The following call to OleCreateFromFile:

 OleCreateFromFile(rclsid, lpszFileName, riid, renderopt, pFormatEtc,
pClientSite, pStg, ppvObj);

is equivalent to the following call to OleCreateFromFileEx:

 DWORD advf = ADVF_PRIMEFIRST;
 OleCreateFromFileEx(rclsid, lpszFileName, riid, renderopt, 1, &advf,
pFormatEtc, NULL, pClientSite, pStg, ppvObj);

Existing instantiation functions (OleCreate, OleCreateFromFile, OleCreateFromData, OleCreateLink,
OleCreateLinkToFile, and OleCreateLinkFromData) create only a single presentation or data format
cache in the default cache location (within the '\001OlePresXXX' streams of the passed-in IStorage),
during instantiation. Plus, these caches must be created when the object next enters the running state.

Since most applications require caching at least two presentations (screen and printer) and may require
caching data in a different format or location from the handler, applications must typically launch and shut
down the object server multiple times in order to prime their data caches during object creation, i.e., Insert
Object, Insert Object from File, and Paste Object.

Extended versions of these creation functions solve this problem. OleCreateEx, OleCreateFromFileEx,
OleCreateFromDataEx, OleCreateLinkEx, OleCreateLinkToFileEx, and OleCreateLinkFromDataEx,
contain the following new parameters: dwFlags to indicate additional options, cFormats to indicate how
many formats to cache, rgAdvf, from the ADVF enumeration, to specify the advise flags for each format to
be cached, pAdviseSink to indicate whether presentation (default-handler) or data (non-default-handler)
caching is required, rgdwConnection to return IDataObject::DAdvise cookies, and pFormatEtc, an array
of formats rather than a single format.

Containers requiring that multiple presentations be cached on their behalf by the object's handler can
simply call these functions and specify the number of formats in cFormats, the ADVF flags for each
format in rgAdvf, and the set of formats in pFormatEtc. These containers pass NULL for pAdviseSink.

Containers performing all their own data- or presentation-caching perform these same steps, but pass a
non-NULL pAdviseSink. They perform their own caching or manipulation of the object or data during
IAdviseSink::OnDataChange. Typically, such containers never establish the advisory connections with
ADVF_NODATA, although they are not prevented from doing so.

These new functions are for OLE Compound Documents. Using these functions, applications can avoid
the repeated launching and initialization steps required by the current functions. They are targeted at OLE
Compound Document container applications that use default data- and presentation-caching, and also at
applications that provide their own caching and data transfer from the underlying IDataObject::DAdvise
support.

See Also
OleCreateFromFile, IOleCache::Cache, IDataObject::DAdvise, IAdviseSink::OnDataChange,
IOleObject::SetClientSite, IStorage, OLERENDER, FORMATETC, ADVF

OleCreateLink

Creates an OLE compound-document linked object.

WINOLEAPI OleCreateLink(

 LPMONIKER pmkLinkSrc, //Pointer to moniker indicating source of linked object
 REFIID riid, //Reference to the identifier of the interfacer to be used to communicate with the new

object
 DWORD renderopt, //Value from OLERENDER
 LPFORMATETC pFormatEtc, //Pointer to a FORMATETC structure
 LPOLECLIENTSITE pClientSite, //Pointer to an interface
 LPSTORAGE pStg, //Pointer to the object's storage
 LPVOID FAR* ppvObj //Indirect pointer to the interface requested in riid
);

Parameters
pmkLinkSrc

[in] Pointer to the IMoniker interface on the moniker that can be used to locate the the source of the
linked object.

riid

[in] Reference to the identifier of the interface the caller later uses to communicate with the new object
(usually IID_IOleObject, defined in the OLE headers as the interface identifier for IOleObject).

renderopt

[in] Specifies a value from the enumeration OLERENDER that indicates the locally cached drawing or
data-retrieval capabilities the newly created object is to have. Additional considerations are described
in the Remarks section below.

pFormatEtc

[in] Pointer to a value from the enumeration OLERENDER that indicates the locally cached drawing
or data-retrieval capabilities the newly created object is to have. The OLERENDER value chosen
affects the possible values for the pFormatEtc parameter.

pClientSite

[in] Pointer to an instance of IOleClientSite, the primary interface through which the object will
request services from its container. May be NULL.

pStg

[in] Pointer to the IStorage interface on the storage object. This parameter may not be NULL.
ppvObj

[out] Indirect pointer to the interface requested in riid on the newly created object.

Return Values
S_OK

The compound-document linked object was created successfully.
OLE_E_CANT_BINDTOSOURCE

Not able to bind to source. Binding is necessary to get the cache's initialization data.

Remarks
Call OleCreateLink to allow a container to create a link to an object.

See Also
IOleObject::SetMoniker, IOleClientSite::GetMoniker

OleCreateLinkEx

Extends OleCreateLink functionality by supporting more efficient instantiation of objects in containers
requiring caching of multiple formats of presentations or data, instead of the single format supported by
OleCreateLink.

HRESULT OleCreateFromLinkEx(

 LPMONIKER pmkLinkSrc, //Pointer to a moniker to object to create link to
 REFIID riid, //Reference to the identifier of the interface of the link object to return
 DWORD dwFlags, //Value from OLECREATE enumeration
 DWORD renderopt, //Value from OLERENDER enumeration
 ULONG cFormats, //Number of FORMATETCs in rgFormatEt
 DWORD rgAdvf, //Points to an array of cFormats DWORD elements
 LPFORMATETC rgFormatEtc, //Points to an array of cFormats FORMATETC structures
 LPADVISESINK pAdviseSink, //IAdviseSink pointer, or NULL, indicating default data format caching
 DWORD FAR* rgdwConnection, //Location to return array of dwConnection values
 LPCLIENTSITE pClientSite, //Pointer to the primary interface the object will to use to request services
 LPSTORAGE pStg, //Pointer to storage to use for the object
 LPVOID FAR* ppvObj //Indirect pointer to location to return riid interface
);

Parameters
pmkLinkSrc

Pointer to a moniker to the object to create a link to.
riid

Reference to the identifier of the interface of the object to return.
dwFlags

Value taken from the OLECREATE enumeration.
renderopt

Value taken from the OLERENDER enumeration.
cFormats

When renderopt is OLERENDER_FORMAT, indicates the number of FORMATETC structures in the
rgFormatEtc array, which must be at least one. In all other cases, this parameter must be zero.

rgAdvf

When renderopt is OLERENDER_FORMAT, points to an array of cFormats DWORD elements, each
of which is a combination of values from the ADVF enumeration. Each element of this array is passed
in as the advf parameter to a call to either IOleCache::Cache or IDataObject::DAdvise, depending
on whether pAdviseSink is NULL or non-NULL (see below). In all other cases, this parameter must be
NULL.

rgFormatEtc

When renderopt is OLERENDER_FORMAT, points to an array of cFormats FORMATETC structures.
When pAdviseSink is NULL, each element of this array is passed as the pFormatEtc parameter to a
call to the object's IOleCache::Cache. This populates the data and presentation cache managed by
the objects in-process handler (typically the default handler) with presentation or other cacheable

data. When pAdviseSink is non-NULL, each element of this array is passed as the pFormatEtc
parameter to a call to IDataObject::DAdvise. This allows the caller (typically an OLE Container) to do
its own caching or processing of data received from the object.

pAdviseSink

When renderopt is OLERENDER_FORMAT, may be either a valid IAdviseSink pointer, indicating
custom caching or processing of data advises, or NULL, indicating default caching of data formats.

rgdwConnection

Location to return the array of dwConnection values returned when the pAdviseSink interface is
registered for each advisory connection using IDataObject::DAdvise, or NULL if the returned
advisory connections are not needed. Must be NULL, if pAdviseSink is NULL.

pClientSite

Pointer to the primary interface through which the object will request services from its container. This
parameter may be NULL, in which case it is the caller's responsibility to establish the client site as
soon as possible using IOleObject::SetClientSite.

pStg

Pointer to the storage to use for the object and any default data or presentation caching established
for it.

ppvObj

Indirect pointer to location to return the riid interface of the newly created object.

Return Values
S_OK

Success.
E_NOINTERFACE

The object does not support the riid interface.
E_INVALIDARG

One or more arguments are invalid.

Remarks
The following call to OleCreateLink:

 OleCreateLink(pmkLinkSrc, riid, renderopt, pFormatEtc, pClientSite,
pStg, ppvObj);

is equivalent to the following call to OleCreateLinkEx:

 DWORD advf = ADVF_PRIMEFIRST;
 OleCreateFromFileEx(pmkLinkSrc, riid, renderopt, 1, &advf, pFormatEtc,
NULL, NULL, pClientSite, pStg, ppvObj);

Existing instantiation functions (OleCreate, OleCreateFromFile, OleCreateFromData, OleCreateLink,
OleCreateLinkToFile, and OleCreateLinkFromData) create only a single presentation or data format
cache in the default cache location (within the '\001OlePresXXX' streams of the passed-in IStorage)
during instantiation. Plus, these caches must be created when the object next enters the running state.
Since most applications require caching in at least two presentations (screen and printer) and may require
caching data in a different format or location from the handler, applications must typically launch and shut
down the object server multiple times in order to prime their data caches during object creation, i.e., Insert
Object, Insert Object from File, and Paste Object.

Extended versions of these creation functions solve this problem. OleCreateEx, OleCreateFromFileEx,
OleCreateFromDataEx, OleCreateLinkEx, OleCreateLinkToFileEx, and OleCreateLinkFromDataEx,
contain the following new parameters: dwFlags to indicate additional options, cFormats to indicate how
many formats to cache, rgAdvf, from the ADVF enumeration, to specify the advise flags for each format to
be cached, pAdviseSink to indicate whether presentation (default-handler) or data (non-default-handler)
caching is required, rgdwConnection to return IDataObject::DAdvise cookies, and pFormatEtc, an array
of formats rather than a single format.

Containers requiring that multiple presentations be cached on their behalf by the object's handler can
simply call these functions and specify the number of formats in cFormats, the ADVF flags for each
format in rgAdvf, and the set of formats in pFormatEtc. These containers pass NULL for pAdviseSink.

Containers performing all their own data- or presentation-caching perform these same steps, but pass a
non-NULL pAdviseSink. They perform their own caching or manipulation of the object or data during
IAdviseSink::OnDataChange. Typically, such containers never establish the advisory connections with
ADVF_NODATA, although they are not prevented from doing so.

These new functions are for OLE Compound Documents. Using these functions, applications can avoid
the repeated launching and initialization steps required by the current functions. They are targeted at OLE
Compound Document container applications that use default data- and presentation-caching, and also at
applications that provide their own caching and data transfer from the underlying IDataObject::DAdvise
support.

See Also
OleCreateLink, IOleCache::Cache, IDataObject::DAdvise, IAdviseSink::OnDataChange,
IOleObject::SetClientSite, OLECREATE, OLERENDER, FORMATETC, ADVF

OleCreateLinkFromData

Creates a linked object from a data transfer object retrieved either from the clipboard or as part of an OLE
drag-and-drop operation.

WINOLEAPI OleCreateLinkFromData(

 LPDATAOBJECT pSrcDataObj, //Pointer to data transfer objectt
 REFIID riid, //Reference to the identifier of the interface to be used to communicate with the new object
 DWORD renderopt, //OLERENDER value
 LPFORMATETC pFormatEtc, //Pointer to a FORMATETC structure
 LPOLECLIENTSITE pClientSite, //Pointer to an interface
 LPSTORAGE pStg, //Pointer to the object storage
 LPVOID FAR* ppvObj //Indirect pointer to requested object
);

Parameters
pSrcDataObj

[in] Pointer to the IDataObject interface on the data transfer object from which the linked object is to
be created.

riid

[in] Reference to the identifier of interface the caller later uses to communicate with the new object
(usually IID_IOleObject, defined in the OLE headers as the interface identifier for IOleObject).

renderopt

[in] Value from the enumeration OLERENDER that indicates the locally cached drawing or data-
retrieval capabilities the newly created object is to have. Additional considerations are described in
the following Remarks section.

pFormatEtc

[in] Pointer to a value from the enumeration OLERENDER that indicates the locally cached drawing
or data-retrieval capabilities the newly created object is to have. The OLERENDER value chosen
affects the possible values for the pFormatEtc parameter.

pClientSite

[in] Pointer to an instance of IOleClientSite, the primary interface through which the object will
request services from its container. May be NULL.

pStg

[in] Pointer to the IStorage interface on the storage object. This parameter may not be NULL.
ppvObj

[out] Indirect pointer to the interface requested in riid on the newly created object on return.

Return Values
S_OK

The linked object was created successfully.
CLIPBRD_E_CANT_OPEN

Not able to open the clipboard.
OLE_E_CANT_GETMONIKER

Not able to extract the object's moniker.
OLE_E_CANT_BINDTOSOURCE

Not able to bind to source. Binding is necessary to get the cache's initialization data.

Remarks
The OleCreateLinkFromData function is used to implement either a paste-link or a drag-link operation.
Its operation is similar to that of the OleCreateFromData function, except that it creates a link, and looks
for different data formats. If the CF_LINKSOURCE format is not present, and either the FileName or
FileNameW clipboard format is present in the data transfer object, OleCreateLinkFromData creates a
package containing the link to the indicated file.

You use the renderopt and pFormatetc parameters to control the caching capability of the newly created
object. For general information on how to determine what is to be cached, refer to the OLERENDER
enumeration for a description of the interaction between renderopt and pFormatetc. There are, however,
some additional specific effects of these parameters on the way OleCreateLinkFromData initializes the
cache, as follows:

Value Description
OLERENDER_DRAW,
OLERENDER_FORMAT

If the presentation information is in
the other formats in the source
data object, this information is
used. If the information is not
present, the cache is initially
empty, but will be filled the first
time the object is run. No other
formats are cached in the newly
created object.

OLERENDER_NONE,
OLERENDER_ASIS

Nothing is to be cached in the
newly created object.

See Also
OleCreateLink

OleCreateLinkFromDataEx

Extends OleCreateLinkFromData functionality by supporting more efficient instantiation of objects in
containers requiring caching of multiple formats of presentations or data, instead of the single format
supported by OleCreateLinkFromData.

HRESULT OleCreateLinkFromDataEx(

 LPDATAOBJECT pSrcDataObj, //Pointer to the data object to create a link object from
 REFIID riid, //Reference to the identifier of the interface of the link object to return
 DWORD dwFlags, //Value from OLECREATE enumeration
 DWORD renderopt, //Value from OLERENDER enumeration
 ULONG cFormats, //Number of FORMATETCs in rgFormatEtc
 DWORD rgAdvf, //Points to an array of cFormats DWORD elements
 LPFORMATETC rgFormatEtc, //Points to an array of cFormats FORMATETC structures
 LPADVISESINK pAdviseSink, //IAdviseSink pointer (custom caching); NULL (default caching); NULL otherwise
 DWORD FAR* rgdwConnection, //Location to return array of dwConnection values
 LPCLIENTSITE pClientSite, //Pointer to the primary interface the object will use to request services
 LPSTORAGE pStg, //Pointer to storage to use for object
 LPVOID FAR* ppvObj //Indirect pointer to location to return riid interface
);

Parameters
pSrcDataObj

Pointer to the data object to create a link object from.
riid

Reference to the identifier of the interface of the object to return.
dwFlags

Value taken from the OLECREATE enumeration.
renderopt

Value taken from the RENDEROPT enumeration.
cFormats

When renderopt is OLERENDER_FORMAT, indicates the number of FORMATETC structures in the
rgFormatEtc array, which must be at least one. In all other cases, this parameter must be zero.

rgAdvf

When renderopt is OLERENDER_FORMAT, points to an array of cFormats DWORD elements, each
of which is a combination of values from the ADVF enumeration. Each element of this array is passed
in as the advf parameter to a call to either IOleCache::Cache or IDataObject::DAdvise, depending
on whether pAdviseSink is NULL or non-NULL (see below). In all other cases, this parameter must be
NULL.

rgFormatEtc

When renderopt is OLERENDER_FORMAT, points to an array of cFormats FORMATETC structures.
When pAdviseSink is NULL, each element of this array is passed as the pFormatEtc parameter to a
call to the object's IOleCache::Cache. This populates the data and presentation cache managed by
the objects in-process handler (typically the default handler) with presentation or other cacheable

data. When pAdviseSink is non-NULL, each element of this array is passed as the pFormatEtc
parameter to a call to IDataObject::DAdvise. This allows the caller (typically an OLE Container) to do
its own caching or processing of data received from the object.

pAdviseSink

When renderopt is OLERENDER_FORMAT, may be either a valid IAdviseSink pointer, indicating
custom caching or processing of data advises, or NULL, indicating default caching of data formats.

rgdwConnection

Location to return the array of dwConnection values returned when the pAdviseSink interface is
registered for each advisory connection using IDataObject::DAdvise, or NULL if the returned
advisory connections are not needed. Must be NULL, if pAdviseSink is NULL.

pClientSite

Pointer to the primary interface through which the object will request services from its container. This
parameter may be NULL, in which case it is the caller's responsibility to establish the client site as
soon as possible using IOleObject::SetClientSite.

pStg

Pointer to the storage to use for the object and any default data or presentation caching established
for it.

ppvObj

Indirect pointer to location to return the riid interface of the newly created object.

Return Values
S_OK

Success.
E_NOINTERFACE

The object does not support the riid interface.
E_INVALIDARG

One or more arguments are invalid.

Remarks
The following call to OleCreateLinkFromData:

 OleCreateLinkFromData(pSrcDataObj, riid, renderopt, pFormatEtc,
pClientSite, pStg, ppvObj);

is equivalent to the following call to OleCreateLinkFromDataEx:

 DWORD advf = ADVF_PRIMEFIRST;
 OleCreateLinkFromDataEx(pSrcDataObj, riid, renderopt, 1, &advf,
pFormatEtc, NULL, NULL, pClientSite, pStg, ppvObj);

Existing instantiation functions (OleCreate, OleCreateFromFile, OleCreateFromData, OleCreateLink,
OleCreateLinkToFile, and OleCreateLinkFromData), create only a single presentation or data format
cache in the default cache location (within the '\001OlePresXXX' streams of the passed-in IStorage)
during instantiation. Plus, these caches must be created when the object next enters the running state.
Since most applications require caching at least two presentations (screen and printer) and may require
caching data in a different format or location from the handler, applications must typically launch and shut
down the object server multiple times in order to prime their data caches during object creation, i.e., Insert

Object, Insert Object from File, and Paste Object.

Extended versions of these creation functions solve this problem. OleCreateEx, OleCreateFromFileEx,
OleCreateFromDataEx, OleCreateLinkEx, OleCreateLinkToFileEx, and OleCreateLinkFromDataEx,
contain the following new parameters: dwFlags to indicate additional options, cFormats to indicate how
many formats to cache, rgAdvf, from the ADVF enumeration, to specify the advise flags for each format to
be cached, pAdviseSink to indicate whether presentation (default-handler) or data (non-default-handler)
caching is required, rgdwConnection to return IDataObject::DAdvise cookies, and pFormatEtc, an array
of formats rather than a single format.

Containers requiring that multiple presentations be cached on their behalf by the object's handler can
simply call these functions and specify the number of formats in cFormats, the ADVF flags for each
format in rgAdvf, and the set of formats in pFormatEtc. These containers pass NULL for pAdviseSink.

Containers performing all their own data- or presentation-caching perform these same steps, but pass a
non-NULL pAdviseSink. They perform their own caching or manipulation of the object or data during
IAdviseSink::OnDataChange. Typically such containers never establish the advisory connections with
ADVF_NODATA, although they are not prevented from doing so.

These new functions are for OLE Compound Documents. Using these functions, applications can avoid
the repeated launching and initialization steps required by the current functions. They are targeted at OLE
Compound Document container applications that use default data- and presentation-caching, and also at
applications that provide their own caching and data transfer from the underlying IDataObject::DAdvise
support.

See Also
OleCreateLinkFromData, IOleCache::Cache, IDataObject::DAdvise, IAdviseSink::OnDataChange,
IOleObject::SetClientSite, OLECREATE, OLERENDER, FORMATETC, ADVF

OleCreateLinkToFile

Creates an object that is linked to a file.

WINOLEAPI OleCreateLinkToFile(

 LPWSTR lpszFileName, //Pointer to source of linked object
 REFIID riid, //Reference to the identifier of the interface to be used to communicate with the new object
 DWORD renderopt, //Value from OLERENDER
 LPFORMATETC pFormatEtc, //Pointer to a FORMATETC structure
 IOleClientSite * pClientSite, //Pointer to an interface
 IStorage * pStg, //Pointer to the object's storage
 void ** ppvObj //Indirect pointer to the interface requested in riid
);

Parameters
lpszFileName

[in] Pointer to a string naming the source file to be linked to.
riid

[in] Reference to the identifier of the interface the caller later uses to communicate with the new object
(usually IID_IOleObject, defined in the OLE headers as the interface identifier for IOleObject).

renderopt

[in] Value from the enumeration OLERENDER that indicates the locally cached drawing or data-
retrieval capabilities the newly created object is to have. Additional considerations are described in
the following Remarks section.

pFormatEtc

[in] Pointer to a value from the enumeration OLERENDER that indicates the locally cached drawing
or data-retrieval capabilities the newly created object is to have. The OLERENDER value chosen
affects the possible values for the pFormatEtc parameter.

pClientSite

[in] Pointer to an instance of IOleClientSite, the primary interface through which the object will
request services from its container. May be NULL.

pStg

[in] Pointer to the IStorage interface on the storage object. This parameter may not be NULL.
ppvObj

[out] Indirect pointer to the interface requested in riid on the newly created object on return.

Return Values
S_OK

The object was created successfully.
STG_E_FILENOTFOUND

The file name is invalid.

OLE_E_CANT_BINDTOSOURCE

Not able to bind to source.

Remarks
The OleCreateLinkToFile function differs from the OleCreateLink function because it can create links
both to files that are not aware of OLE, as well as to those that are using the Windows Packager.

See Also
OleCreateLink

OleCreateLinkToFileEX
Extends OleCreateLinkToFile functionality by supporting more efficient instantiation of objects in
containers requiring caching of multiple formats of presentations or data, instead of the single format
supported by OleCreateLinkToFile.

HRESULT OleCreateLinkToFileEx(

 LPCOLESTR lpszFileName, //Pointer to the name of the file to create a link to.
 REFIID riid, //Reference to the identifier of the interface of the link object to return
 DWORD dwFlags, //Value from OLECREATE enumeration
 DWORD renderopt, //Value from OLERENDER enumeration
 ULONG cFormats, //Number of FORMATETCs in rgFormatEtc
 DWORD rgAdvf, //Points to an array of cFormats DWORD elements
 LPFORMATETC rgFormatEtc, //Points to an array of cFormats FORMATETC structures
 LPADVISESINK pAdviseSink, ///IAdviseSink pointer (custom caching); NULL (default caching); NULL otherwise
 DWORD FAR* rgdwConnection, //Location to return array of dwConnection values
 LPCLIENTSITE pClientSite, //Pointer to the primary interface the object will use to request services.
 LPSTORAGE pStg, //Pointer to storage to use for object
 LPVOID FAR* ppvObj //Indirect pointer to location to return riid interface
);

Parameters
lpszFileName

Pointer to the name of the file to create a link to.
riid

Reference to the identifier of the interface of the object to return.
dwFlags

Value taken from the OLECREATE enumeration.
renderopt

Value taken from the RENDEROPT enumeration.
cFormats

When renderopt is OLERENDER_FORMAT, indicates the number of FORMATETC structures in the
rgFormatEtc array, which must be at least one. In all other cases, this parameter must be zero.

rgAdvf

When renderopt is OLERENDER_FORMAT, points to an array of cFormats DWORD elements, each
of which is a combination of values from the ADVF enumeration. Each element of this array is passed
in as the advf parameter to a call to either IOleCache::Cache or IDataObject::DAdvise, depending
on whether pAdviseSink is NULL or non-NULL (see below). In all other cases, this parameter must be
NULL.

rgFormatEtc

When renderopt is OLERENDER_FORMAT, points to an array of cFormats FORMATETC structures.
When pAdviseSink is NULL, each element of this array is passed as the pFormatEtc parameter to a
call to the object's IOleCache::Cache. This populates the data and presentation cache managed by
the objects in-process handler (typically the default handler) with presentation or other cacheable

data. When pAdviseSink is non-NULL, each element of this array is passed as the pFormatEtc
parameter to a call to IDataObject::DAdvise. This allows the caller (typically an OLE Container) to do
its own caching or processing of data received from the object.

pAdviseSink

When renderopt is OLERENDER_FORMAT, may be either a valid IAdviseSink pointer, indicating
custom caching or processing of data advises, or NULL, indicating default caching of data formats.

rgdwConnection

Location to return the array of dwConnection values returned when the pAdviseSink interface is
registered for each advisory connection using IDataObject::DAdvise, or NULL if the returned
advisory connections are not needed. Must be NULL, if pAdviseSink is NULL.

pClientSite

Pointer to the primary interface through which the object will request services from its container. This
parameter may be NULL, in which case it is the caller's responsibility to establish the client site as
soon as possible using IOleObject::SetClientSite.

pStg

Pointer to the storage to use for the object and any default data or presentation caching established
for it.

ppvObj

Location to return the riid interface of the newly created object.

Return Values
S_OK

Success.
E_NOINTERFACE

The object does not support the riid interface.
E_INVALIDARG

One or more arguments are invalid.

Remarks
The following call to OleCreateLinkToFile:

 OleCreateLinkToFile(lpszFileName, riid, renderopt, pFormatEtc,
pClientSite, pStg, ppvObj);

is equivalent to the following call to OleCreateLinkToFileEx:

 DWORD advf = ADVF_PRIMEFIRST;
 OleCreateLinkToFileEx(lpszFileName, riid, renderopt, 1, &advf,
pFormatEtc, NULL, NULL, pClientSite, pStg, ppvObj);

Existing instantiation functions (OleCreate, OleCreateFromFile, OleCreateFromData, OleCreateLink,
OleCreateLinkToFile, and OleCreateLinkFromData) create only a single presentation or data format
cache in the default cache location (within the '\001OlePresXXX' streams of the passed-in IStorage)
during instantiation. Plus, these caches must be created when the object next enters the running state.

Since most applications require caching at least two presentations (screen and printer) and may require
caching data in a different format or location from the handler, applications must typically launch and shut
down the object server multiple times in order to prime their data caches during object creation, i.e., Insert
Object, Insert Object from File, and Paste Object.

Extended versions of these creation functions solve this problem. OleCreateEx, OleCreateFromFileEx,
OleCreateFromDataEx, OleCreateLinkEx, OleCreateLinkToFileEx, and OleCreateLinkFromDataEx,
contain the following new parameters: dwFlags to indicate additional options, cFormats to indicate how
many formats to cache, rgAdvf, from the ADVF enumeration, to specify the advise flags for each format to
be cached, pAdviseSink to indicate whether presentation (default-handler) or data (non-default-handler)
caching is required, rgdwConnection to return IDataObject::DAdvise cookies, and pFormatEtc, an array
of formats rather than a single format.

Containers requiring that multiple presentations be cached on their behalf by the object's handler can
simply call these functions and specify the number of formats in cFormats, the ADVF flags for each
format in rgAdvf, and the set of formats in pFormatEtc. These containers pass NULL for pAdviseSink.

Containers performing all their own data- or presentation-caching perform these same steps, but pass a
non-NULL pAdviseSink. They perform their own caching or manipulation of the object or data during
IAdviseSink::OnDataChange. Typically, such containers never establish the advisory connections with
ADVF_NODATA, although they are not prevented from doing so.

These new functions are for OLE Compound Documents. Using these functions, applications can avoid
the repeated launching and initialization steps required by the current functions. They are targeted at OLE
Compound Document container applications that use default data- and presentation-caching, and also at
applications that provide their own caching and data transfer from the underlying IDataObject::DAdvise
support.

See Also
OleCreateLinkToFile, IOleCache::Cache, IDataObject::DAdvise, IStorage,
IAdviseSink::OnDataChange, IOleObject::SetClientSite, OLECREATE, OLERENDER, FORMATETC,
ADVF

OleCreateMenuDescriptor

Creates and returns an OLE menu descriptor (that is, an OLE-provided data structure that describes the
menus) for OLE to use when dispatching menu messages and commands.

HOLEMENU OleCreateMenuDescriptor(

 HMENU hmenuCombined, //Handle to the combined menu
 LPOLEMENUGROUPWIDTHS lpMenuWidths //Pointer to the number of menus in each group
);

Parameters
hmenuCombined

[in] Handle to the combined menu created by the object.
lpMenuWidths

[in] Pointer to an array of six LONG values giving the number of menus in each group.

Return Value
Returns the handle to the descriptor, or NULL if insufficient memory is available.

Remarks
The OleCreateMenuDescriptor function can be called by the object to create a descriptor for the
composite menu. OLE then uses this descriptor to dispatch menu messages and commands. To free the
shared menu descriptor when it is no longer needed, the container should call the companion helper
function, OleDestroyMenuDescriptor.

See Also
OleDestroyMenuDescriptor

OleCreatePictureIndirect

Creates a new picture object initialized according to a PICTDESC structure, which can be NULL to create
an uninitialized object if the caller wishes to have the picture initialize itself through
IPersistStream::Load. The fOwn parameter indicates whether the picture is to own the GDI picture
handle for the picture it contains, so that the picture object will destroy its picture when the object itself is
destroyed. The function returns an interface pointer to the new picture object specified by the caller in the
riid parameter. A QueryInterface is built into this call. The caller is responsible for calling Release through
the interface pointer returned.

STDAPI OleCreatePictureIndirect(

 PICTDESC* pPictDesc, //Pointer to the structure of parameters for picture
 REFIID riid, //Reference to the identifier of the interface
 BOOL fOwn, //Whether the picture is to be destroyed
 VOID** ppvObj //Indirect pointer to the initial interface pointer on the new object
);

Parameters
pPictDesc

[in] Pointer to a caller-allocated structure containing the initial state of the picture.
riid

[in] Reference to the identifier of the interface describing the type of interface pointer to return in
ppvObj.

fOwn

[in] If TRUE, the picture object is to destroy its picture when the object is destroyed. If FALSE, the
caller is responsible for destroying the picture.

ppvObj

[out] Indirect pointer to the initial interface pointer on the new object. If the call is successful, the caller
is responsible for calling Release through this interface pointer when the new object is no longer
needed. If the call fails, the value of ppvObj is set to NULL.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The new picture object was created successfully.
E_NOINTERFACE

The object does not support the interface specified in riid.
E_POINTER

The address in pPictDesc or ppvObj is not valid. For example, it may be NULL.

See Also

OleLoadPicture, PICTDESC

OleCreatePropertyFrame

Invokes a new property frame, that is, a property sheet dialog box, whose parent is hwndOwner, where
the dialog is positioned at the point (x,y) in the parent window and has the caption lpszCaption.

STDAPI OleCreatePropertyFrame(

 HWND hwndOwner, //Parent window of property sheet dialog box
 UINT x, //Horizontal position for dialog box
 UINT y, //Vertical position for dialog box
 LPCOLESTR lpszCaption, //Pointer to the dialog box caption
 ULONG cObjects, //Number of object pointers in lplpUnk
 LPUNKNOWN FAR* lplpUnk, //Pointer to the objects for property sheet
 ULONG cPages, //Number of property pages in lpPageClsID
 LPCLSID lpPageClsID, //Array of CLSIDs for each property page
 LCID lcid, //Locale identifier for property sheet locale
 DWORD dwReserved, //Reserved
 LPVOID lpvReserved //Reserved
);

Parameters
hwndOwner

[in] Parent window of the resulting property sheet dialog box.
x

[in] Horizontal position for the dialog box relative to hwndOwner.
y

[in] Vertical position for the dialog box relative to hwndOwner.
lpszCaption

[in] Pointer to the string used for the caption of the dialog box.
cObjects

[in] Number of object pointers passed in lplpUnk.
lplpUnk

[in] An array of IUnknown pointers on the objects for which this property sheet is being invoked. The
number of elements in the array is specified by cObjects. These pointers are passed to each property
page through IPropertyPage::SetObjects.

cPages

[in] Number of property pages specified in lpPageCIsID.
lpPageCIsID

[in] Array of size cPages containing the CLSIDs of each property page to display in the property
sheet.

lcid

[in] Locale identifier to use for the property sheet. Property pages can retrieve this identifier through

IPropertyPageSite::GetLocaleID.
dwReserved

[in] Reserved for future use; must be zero.
lpvReserved

[in] Reserved for future use; must be NULL.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The dialog box was invoked and operated successfully.
E_POINTER

The address in lpszCaption, lplpUnk, or lpPageCIsID is not valid. For example, any one of them may
be NULL.

Remarks
The property pages to be displayed are identified with lpPageClsID, which is an array of cPages CLSID
values. The objects that are affected by this property sheet are identified in lplpUnk, an array of size
cObjects containing IUnknown pointers.

This function always creates a modal dialogbox and does not return until the dialog box is closed.

See Also
OleCreatePropertyFrameIndirect

OleCreatePropertyFrameIndirect

Creates a property frame, that is, a property sheet dialog box, based on a structure (OCPFIPARAMS)
that contains the parameters, rather than specifying separate parameters as when calling
OleCreatePropertyFrame.

STDAPI OleCreatePropertyFrameIndirect(

 OCPFIPARAMS* pParams //Pointer to the structure of parameters for dialog box
);

Parameters
pParams

[in] Pointer to the caller-allocated structure containing the creation parameters for the dialog box.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The dialog box was invoked and operated successfully.
E_POINTER

The address in pParams is not valid. For example, it may be NULL.

Remarks
Besides cbStructSize (the size of the structure) and dispIDInitialProperty, all of the members of the
OCPFIPARAMS structure have the same semantics as the parameters for OleCreatePropertyFrame.
When dispIDInitialProperty is DISPID_UNKNOWN, the behavior of the two functions is identical.

Working in conjunction with IPerPropertyBrowsing and IPropertyPage2, dispIDInitialProperty allows the
caller to specify which single property should be highlighted when the dialog box is made visible. This
feature is not available when using OleCreatePropertyFrame. To determine the page and property to
show initially, the property frame will do the following:

1. Call (*lplpUnk)->QueryInterface(IID_IPerPropertyBrowsing, ...) to get an interface pointer to the first
object.

2. Call IPerPropertyBrowsing::MapPropertyToPage(dispIDInitialProperty, ...) to determine which page CLSID
contains the property to be highlighted. All objects for which this frame is being invoked must
support the set of properties displayed in the frame.

3. When the dialog box is created, the property page with the CLSID retrieved in Step 2 is activated
with IPropertyPage::Activate.

4. The property frame queries the active page for IPropertyPage2.
5. If successful, the frame calls IPropertyPage2::EditProperty(dispIDInitialProperty) to highlight the correct

field in that dialog box.

See Also
OCPFIPARAMS, OleCreatePropertyFrame

OleCreateStaticFromData

Creates a static object (containing only a representation, with no native data) from a data transfer object.

WINOLEAPI OleCreateStaticFromData(

 LPDATAOBJECT pSrcDataObj, //Pointer to the data transfer object
 REFIID riid, //Reference to the identifier of the interface to be used to communicate with the new object
 DWORD renderopt, //Value from OLERENDER
 LPFORMATETC pFormatEtc, //Depending on renderopt, pointer to value from FORMATETC
 LPOLECLIENTSITE pClientSite, //Pointer to the interface
 LPSTORAGE pStg, //Pointer to store object
 LPVOID FAR* ppvObj //Indirect pointer to the interface requested in riid
);

Parameters
pSrcDataObj

[in] Pointer to the IDataObject interface on the data transfer object that holds the data from which the
object will be created.

riid

[in] Reference to the identifier of the interface with which the caller is to communicate with the new
object (usually IID_IOleObject, defined in the OLE headers as the interface identifier for IOleObject).

renderopt

[in] Value from the enumeration OLERENDER indicating the locally cached drawing or data-retrieval
capabilities that the container wants in the newly created component. It is an error to pass the render
options OLERENDER_NONE or OLERENDER_ASIS to this function.

pFormatEtc

[in] Depending on which of the OLERENDER flags is used as the value of renderopt, may be a
pointer to one of the FORMATETC enumeration values. Refer to the OLERENDER enumeration for
restrictions.

pClientSite

[in] Pointer to an instance of IOleClientSite, the primary interface through which the object will
request services from its container. May be NULL.

pStg

[in] Pointer to the IStorage interface for storage for the object. This parameter may not be NULL.
ppvObj

[out] When the function returns successfully, indirect pointer to the interface requested in riid on the
newly created object.

Return Value
S_OK

The object was successfully created.

Remarks
The OleCreateStaticFromData function can convert any object, as long as it provides an IDataObject
interface, to a static object. It is useful in implementing the Convert To Picture option for OLE linking or
embedding.

Static objects can be created only if the source supports one of the OLE-rendered clipboard formats:
CF_METAFILEPICT, CF_DIB, or CF_ BITMAP, and CF_ENHMF.

You can also call OleCreateStaticFromData to paste a static object from the clipboard. To determine
whether an object is static, call the OleQueryCreateFromData function, which returns OLE_S_STATIC if
one of CF_METAFILEPICT, CF_DIB, or CF_BITMAP is present and an OLE format is not present. This
indicates that you should call OleCreateStaticFromData rather than the OleCreateFromData function to
create the object.

The new static object is of class CLSID_StaticMetafile (in the case of CF_METAFILEPICT) and
CLSID_StaticDib (in the case of CF_DIB or CF_BITMAP). The static object sets the OLEMISC_STATIC
and OLE_CANTLINKINSIDE bits returned from IOleObject::GetMiscStatus. The static object will have
the aspect DVASPECT_CONTENT and a LINDEX of -1.

The pDataObject is still valid after OleCreateStaticFromData returns. It is the caller's responsibility to
free pDataObject ¾ OLE does not release it.

There cannot be more than one presentation stream in a static object.

Note The OLESTREAM<->IStorage conversion functions also convert static objects.

See Also
OleCreateFromData

OleDestroyMenuDescriptor

Called by the container to free the shared menu descriptor allocated by the OleCreateMenuDescriptor
function.

void OleDestroyMenuDescriptor(

 HOLEMENU holemenu //Handle to the shared menu descriptor
);

Parameter
holemenu

[in] Handle to the shared menu descriptor that was returned by the OleCreateMenuDescriptor
function.

Return Value
None. (This function does not indicate failure.)

See Also
OleCreateMenuDescriptor

OleDoAutoConvert

Automatically converts an object to a new class if automatic conversion for that object class is set in the
registry.

WINOLEAPI OleDoAutoConvert(

 IStorage * pStg, //Pointer to storage object to be converted
 LPCLSID pClsidNew //Pointer to new CLSID of converted object
);

Parameters
pStg

[in] Pointer to the IStorage interface on the storage object to be converted.
pClsidNew

[out] Pointserto the new CLSID for the object being converted. If there was no automatic conversion,
this may be the same as the original class.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

No conversion is needed or a conversion was successfully completed.
REGDB_E_KEYMISSING

The function cannot read a key from the registry.

This function can also return any of the error values returned by the OleGetAutoConvert function. When
accessing storage and stream objects, see the IStorage::OpenStorage and IStorage::OpenStream
methods for possible errors. When it is not possible to determine the existing CLSID or when it is not
possible to update the storage object with new information, see the IStream interface for other error
return values.

Remarks
The OleDoAutoConvert function automatically converts an object if automatic conversion has previously
been specified in the registry by the OleSetAutoConvert function. Object conversion means that the
object is permanently associated with a new CLSID. Automatic conversion is typically specified by the
setup program for a new version of an object application, so that objects created by its older versions can
be automatically updated.

A container application that supports object conversion should call OleDoAutoConvert each time it loads
an object. If the container uses the OleLoad helper function, it need not call OleDoAutoConvert explicitly
because OleLoad calls it internally.

OleDoAutoConvert first determines whether any conversion is required by calling the
OleGetAutoConvert function, which, if no conversion is required, returns S_OK. If the object requires
conversion, OleDoAutoConvert modifies and converts the storage object by activating the new object

application. The new object application reads the existing data format, but saves the object in the new
native format for the object application.

If the object to be automatically converted is an OLE 1 object, the ItemName string is stored in a stream
called "\1Ole10ItemName." If this stream does not exist, the object's item name is NULL.

The storage object must be in the unloaded state when OleDoAutoConvert is called.

See Also
OleSetAutoConvert

OleDraw

The OleDraw helper function can be used to draw objects more easily. You can use it instead of calling
IViewObject::Draw directly.

WINOLEAPI OleDraw(

 IUnknown * pUnk, //Pointer to the view object to be drawn
 DWORD dwAspect, //How the object is to be represented
 HDC hdcDraw, //Device context on which to draw
 LPCRECT lprcBounds //Pointer to the rectangle in which the object is drawn
);

Parameters
pUnk

[in] Pointer to the IUnknown interface on the view object that is to be drawn.
dwAspect

[in] How the object is to be represented. Representations include content, an icon, a thumbnail, or a
printed document. Valid values are taken from the enumeration DVASPECT. See DVASPECT for
more information.

hdcDraw

[in] Device context on which to draw. Cannot be a metafile device context.
lprcBounds

[in] Pointer to a RECT structure specifying the rectangle in which the object should be drawn. This
parameter is converted to a RECTL structure and passed to IViewObject::Draw.

Return Values
This function supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

Object was successfully drawn.
OLE_E_BLANK

No data to draw from.
E_ABORT

The draw operation was aborted.
VIEW_E_DRAW

An error occurred in drawing.
OLE_E_INVALIDRECT

The rectangle is invalid.
DV_E_NOIVIEWOBJECT

The object doesn't support the IViewObject interface.

Remarks
The OleDraw helper function calls the QueryInterface method for the object specified (pUnk), asking for
an IViewObject interface on that object. Then, OleDraw converts the RECT structure to a RECTL
structure, and calls IViewObject::Draw as follows:

lpViewObj->Draw(dwAspect,-1,0,0,0,hdcDraw,&rectl,0,0,0);

Do not use OleDraw to draw into a metafile because it does not specify the lprcWBounds parameter
required for drawing into metafiles.

See Also
IViewObject::Draw

OleDuplicateData

Duplicates the data found in the specified handle and returns a handle to the duplicated data. The source
data is in a clipboard format. Use this function to help implement some of the data transfer interfaces such
as IDataObject.

HANDLE OleDuplicateData(

 HANDLE hSrc, //Handle of the source data
 CLIPFORMAT cfFormat, //Clipboard format of the source data
 UINT uiFlags //Flags used in global memory allocation
);

Parameters
hSrc

[in] Handle of the source data.
cfFormat

[in] Clipboard format of the source data.
uiFlags

[in] Flags to be used to allocate global memory for the copied data. These flags are passed to
GlobalAlloc. If the value of uiFlags is NULL, GMEM_MOVEABLE is used as a default flag.

Return Values
handle

When the function is successful, contains the handle to the new data because data was successfully
duplicated.

NULL

A NULL return value indicates that there was an error duplicating data.

Remarks
The CF_METAFILEPICT, CF_PALETTE, or CF_BITMAP formats receive special handling. They are GDI
handles and a new GDI object must be created instead of just copying the bytes. All other formats are
duplicated byte-wise. For the formats that are duplicated byte-wise, hSrc must be a global memory
handle.

OleFlushClipboard

Carries out the clipboard shutdown sequence. It also releases the IDataObject pointer that was placed on
the clipboard by the OleSetClipboard function.

WINOLEAPI OleFlushClipboard();

Return Values
S_OK

The clipboard has been flushed.
CLIPBRD_E_CANT_OPEN

The Windows OpenClipboard function used within OleFlushClipboard failed.
CLIPBRD_E_CANT_CLOSE

The Windows CloseClipboard function used within OleFlushClipboard failed.

Remarks
OleFlushClipboard renders the data from a data object onto the clipboard and releases the IDataObject
pointer to the data object. While the application that put the data object on the clipboard is running, the
clipboard holds only a pointer to the data object, thus saving memory. If you are writing an application that
acts as the source of a clipboard operation, you can call the OleFlushClipboard function when your
application is closed, such as when the user exits from your application. Calling OleFlushClipboard
enables pasting and paste-linking of OLE objects after application shutdown.

Before calling OleFlushClipboard, you can easily determine if your data is still on the clipboard with a
call to the OleIsCurrentClipboard function.

OleFlushClipboard leaves all formats offered by the data transfer object, including the OLE 1
compatibility formats, on the clipboard so they are available after application shutdown. In addition to OLE
1 compatibility formats, these include all formats offered on a global handle medium (all except for
TYMED_FILE) and formatted with a NULL target device. For example, if a data-source application offers
a particular clipboard format (say cfFOO) on an IStorage object, and calls the OleFlushClipboard
function, the storage object is copied into memory and the hglobal memory handle is put on the
Clipboard.

To retrieve the information on the clipboard, you can call the OleGetClipboard function from another
application, which creates a default data object, and the hglobal from the clipboard again becomes a
storage object. Furthermore, the FORMATETC enumerator and the IDataObject::QueryGetData method
would all correctly indicate that the original clipboard format (cfFOO) is again available on a
TYMED_ISTORAGE.

To empty the clipboard, call the OleSetClipboard function specifying a NULL value for its parameter. The
application should call this when it closes if there is no need to leave data on the clipboard after
shutdown, or if data will be placed on the clipboard using the standard Windows clipboard functions.

See Also
OleGetClipboard, OleSetClipboard, OleIsCurrentClipboard, IDataObject

OleGetAutoConvert

Determines whether the registry is set for objects of a specified CLSID to be automatically converted to
another CLSID, and if so, retrieves the new CLSID.

WINOLEAPI OleGetAutoConvert(

 REFCLSID clsidOld, //CLSID of the object to be converted
 LPCLSID pClsidNew //Pointer to new CLSID for object being converted
);

Parameters
clsidOld

[in] CLSID for an object to determine whether that CLSID is set for automatic conversion.
pClsidNew

[out] Pointrt to where the new CLSID, if any, is written. If auto-conversion for clsidOld is not set in the
registry, clsidOld is written to that location. The pClsidNew parameter is never NULL.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

IA value was successfully returned through the pclsidNew parameter.
REGDB_E_CLASSNOTREG

The clsidOld CLSID is not properly registered in the registry.
REGDB_E_READREGDB

Error reading the registry.
REGDB_E_KEYMISSING

Auto-convert is not active or there was no registry entry for the clsidOld parameter.

Remarks
The OleGetAutoConvert function returns the AutoConvertTo entry in the registry for the specified object.
The AutoConvertTo subkey specifies whether objects of a given CLSID are to be automatically converted
to a new CLSID. This is usually used to convert files created by older versions of an application to the
current version. If there is no AutoConvertTo entry, this function returns the value of clsidOld.

The OleDoAutoConvert function calls OleGetAutoConvert to determine if the object specified is to be
converted. A container application that supports object conversion should call OleDoAutoConvert each
time it loads an object. If the container uses the OleLoad helper function, it need not call
OleDoAutoConvert explicitly because OleLoad calls it internally.

To set up automatic conversion of a given class, you can call the OleSetAutoConvert function (typically
in the setup program of an application installation). This function uses the AutoConvertTo subkey to tag a
class of objects for automatic conversion to a different class of objects. This is a subkey of the CLSID key,

and contains the following information:

CLSID\{clsid}=MainUserTypeName\AutoConvertTo = clsid

See Also

OleSetAutoConvert, OleDoAutoConvert

OleGetClipboard

Retrieves a data object that you can use to access the contents of the clipboard.

WINOLEAPI OleGetClipboard(

 IDataObject ** ppDataObj //Indirect pointer to the interface on the data object
);

Parameter
ppDataObj

[out] Indirect pointer to the IDataObject interface on the clipboard data object.

Return Values
This function supports the standard return values E_INVALIDARG and E_OUTOFMEMORY, as well as
the following:

S_OK

The data object was successfully retrieved.
CLIPBRD_E_CANT_CLOSE

The Windows CloseClipboard function used within OleGetClipboard failed.
CLIPBRD_E_CANT_OPEN

The Windows OpenClipboard function used with OleGetClipboard failed.

Remarks
If you are writing an application that can accept data from the clipboard, call the OleGetClipboard
function to get a pointer to the IDataObject interface that you can use to retrieve the contents of the
clipboard.

OleGetClipboard handles three cases:

1. The application that placed data on the clipboard with the OleSetClipboard function is still running.
2. The application that placed data on the clipboard with the OleSetClipboard function has

subsequently called the OleFlushClipboard function.
3. There is data from a non-OLE application on the clipboard.

In the first case, the clipboard data object returned by OleGetClipboard may forward calls as necessary
to the original data object placed on the clipboard and, thus, can potentially make RPC calls.

In the second case, OLE creates a default data object and returns it to the user. Because the data on the
Clipboard originated from an OleSetClipboard call, the OLE-provided data object contains more accurate
information about the type of data on the Clipboard. In particular, the original medium (TYMED) on which
the data was offered is known. Thus, if a data-source application offers a particular clipboard format, for
example cfFOO, on a storage object and calls the OleFlushClipboard function, the storage object is
copied into memory and the hglobal memory handle is put on the Clipboard. Then, when the
OleGetClipboard function creates its default data object, the hglobal from the clipboard again becomes

an IStorage object. Furthermore, the FORMATETC enumerator and the IDataObject::QueryGetData
method would all correctly indicate that the original clipboard format (cfFOO) is again available on a
TYMED_ISTORAGE.

In the third case, OLE still creates a default data object, but there is no special information about the data
in the Clipboard formats (particularly for application-defined Clipboard formats). Thus, if an hGlobal-based
storage medium were put on the Clipboard directly by a call to the SetClipboardData function, the
FORMATETC enumerator and the IDataObject::QueryGetData method would not indicate that the data
was available on a storage medium. A call to the IDataObject::GetData method for TYMED_ISTORAGE
would succeed, however. Because of these limitations, it is strongly recommended that OLE-aware
applications interact with the Clipboard using the OLE Clipboard functions.

The clipboard data object created by the OleGetClipboard function has a fairly extensive IDataObject
implementation. The OLE-provided data object can convert OLE 1 clipboard format data into the
representation expected by an OLE 2 caller. Also, any structured data is available on any structured or flat
medium, and any flat data is available on any flat medium. However, GDI objects (such as metafiles and
bitmaps) are only available on their respective mediums.

Note that the tymed member of the FORMATETC structure used in the FORMATETC enumerator
contains the union of supported mediums. Applications looking for specific information (such as whether
CF_TEXT is available on TYMED_HGLOBAL) should do the appropriate bit masking when checking this
value.

If you call the OleGetClipboard function, you should only hold on to the returned IDataObject for a very
short time. It consumes resources in the application that offered it.

See Also
OleSetClipboard

OleGetIconOfClass

Returns a handle to a metafile containing an icon and a string label for the specified CLSID.

HGLOBAL OleGetIconOfClass(

 REFCLSID rclsid, //CLSID for which information is requested
 LPOLESTR lpszLabel, //Pointer to string to use as label for icon
 BOOL fUseTypeAsLabel //Whether to use CLSID's user type name as icon label
);

Parameters
rclsid

[in] CLSID for which the icon and string are requested.
lpszLabel

[in] Pointer to a string to use as a label for the icon.
fUseTypeAsLabel

[in] Whether or not to use the user type string in the CLSID as the icon label.

Return Value
HGLOBAL

The hGlobal value returned when the function succeeds is a handle to a metafile that contains an icon
and label for the specified CLSID. If the CLSID cannot be found in the registration database, NULL is
returned.

See Also
OleGetIconOfFile, OleMetafilePictFromIconAndLabel

OleGetIconOfFile

Returns a handle to a metafile containing an icon and string label for the specified file name.

HGLOBAL OleGetIconOfFile(

 LPOLESTR lpszPath, //Pointer to string that specifies the file for which info is requested
 BOOL fUseFileAsLabel //Whether to use the file name as the icon label
);

Parameters
lpszPath

[in] Pointer to a file for which the icon and string are requested.
fUseFileAsLabel

[in] Whether or not to use the file name as the icon label.

Return Value
HGLOBAL

The hGlobal returned is a handle to a metafile that contains an icon and label for the specified file. If
there is no CLSID in the registration database for the file, then the string "Document" is used. If the
value of lpszPath is NULL, then NULL is returned.

See Also
OleGetIconOfClass, OleMetafilePictFromIconAndLabel

OleIconToCursor

Converts an icon to a cursor. For Win32 applications, this function calls the Win32 function
CopyCursor(hIcon).

STDAPI OleIconToCursor(

 HINSTANCE hinstExe, //Ignored in Win32
 HICON hIcon //Handle to the icon
);

Parameters
hinstExe

[in] Ignored in Win32.
hIcon

[in] Handle to the icon to be converted to a cursor.

Remarks
The return value is an HCURSOR for the new cursor object. The caller is responsible for deleting this
cursor with the Win32 function DestroyCursor. If the conversion could not be completed, the return value
is NULL.

OleInitialize

The OleInitialize function initializes the OLE library. You must initialize the library before you can call OLE
functions.

WINOLEAPI OleInitialize(

 LPVOID pvReserved //Reserved
);

Parameter
pvReserved

[in] In 32-bit OLE, reserved; must be NULL. The 32-bit version of OLE does not support applications
replacing OLE's allocator and if the parameter is not NULL, OleInitialize returns E_INVALIDARG.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY, and
E_UNEXPECTED, as well as the following:

S_OK

The library was initialized successfully.
S_FALSE

The OLE library is already initialized; a pointer to the IMalloc implementation was not used.
OLE_E_WRONGCOMPOBJ

Indicates COMPOBJ.DLL is the wrong version for OLE2.DLL.

Remarks
Compound document applications must call OleInitialize before calling any other function in the OLE
library. OleInitialize calls the CoInitialize function internally.

Typically, OleInitialize is called only once in the process that uses the OLE library. There can be multiple
calls, but subsequent calls return S_FALSE. To close the library gracefully, each successful call to
OleInitialize, including those that return S_FALSE, must be balanced by a corresponding call to the
OleUninitialize function.

See Also
OleUninitialize, CoInitialize

OleIsCurrentClipboard

Determines whether the data object pointer previously placed on the clipboard by the OleSetClipboard
function is still on the clipboard.

WINOLEAPI OleIsCurrentClipboard(

 IDataObject * pDataObject //Pointer to the data object previously copied or cut
);

Parameter
pDataObject

[in] Pointer to the IDataObject interface on the data object containing clipboard data of interest, which
the caller previously placed on the clipboard.

Return Values
S_OK

The IDataObject pointer is currently on the clipboard and the caller is the owner of the clipboard.
S_FALSE

The indicated pointer is not on the clipboard.

Remarks
OleIsCurrentClipboard only works for the data object used in the OleSetClipboard function. It cannot
be called by the consumer of the data object to determine if the object that was on the clipboard at the
previous OleGetClipboard call is still on the clipboard.

See Also
OleFlushClipboard, OleSetClipboard

OleIsRunning

Determines whether a compound document object is currently in the running state.

BOOL OleIsRunning(

 LPOLEOBJECT pObject //Pointer to the interface
);

Parameter
pObject

[in] Pointer to the IOleObject interface on the object of interest.

Return Value
The return value is TRUE if the object is running; otherwise, it is FALSE.

Remarks
You can use OleIsRunning and IRunnableObject::IsRunning interchangeably. OleIsRunning queries
the object for a pointer to the IRunnableObject interface and calls its IsRunning method. If successful,
the function returns the results of the call to IRunnableObject::IsRunning.

Note The implementation of OleIsRunning in earlier versions of OLE differs from that described
here.

See Also
IRunnableObject::IsRunning

OleLoad

Loads into memory an object nested within a specified storage object.

WINOLEAPI OleLoad(

 IStorage * pStg, //Pointer to the storage object from which to load
 REFIID riid, //Reference to the identifier interface
 IOleClientSite * pClientSite, //Pointer to the client site for the object
 LPVOID * ppvObj //Indirect pointer to the newly loaded object
);

Parameters
pStg

[in] Pointer to the IStorage interface on the storage object from which to load the specified object.
riid

[in] Reference to the identifier of the interface that the caller wants to use to communicate with the
object once it is loaded.

pClientSite

[in] Pointer to the IOleClientSite interface on the client site object being loaded.
ppvObj

[out] When successful, indirect pointer to the interface specified in riid on the newly loaded object.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The object was loaded successfully.
E_NOINTERFACE

The object does not support the specified interface.

This function can return any of the error values returned by the IPersistStorage::Load method.

Remarks
OLE containers load objects into memory by calling this function. When calling the OleLoad function, the
container application passes in a pointer to the open storage object in which the nested object is stored.
Typically, the nested object to be loaded is a child storage object to the container's root storage object.
Using the OLE information stored with the object, the object handler (usually, the default handler)
attempts to load the object. On completion of the OleLoad function, the object is said to be in the loaded
state with its object application not running.

Some applications load all of the object's native data. Containers often defer loading the contained
objects until required to do so. For example, until an object is scrolled into view and needs to be drawn, it
does not need to be loaded.

The OleLoad function performs the following steps:

1. If necessary, performs an automatic conversion of the object (see the OleDoAutoConvert function).
2. Gets the CLSID from the open storage object by calling the IStorage::Stat method.
3. Calls the CoCreateInstance function to create an instance of the handler. If the handler code is not

available, the default handler is used (see the OleCreateDefaultHandler function).
4. Calls the IOleObject::SetClientSite method with the pClientSite parameter to inform the object of its

client site.
5. Calls the QueryInterface method for the IPersistStorage interface. If successful, the

IPersistStorage::Load method is invoked for the object.
6. Queries and returns the interface identified by the riid parameter.

See Also
ReadClassStg, IClassFactory::CreateInstance, IPersistStorage::Load

OleLoadFromStream

Loads an object from the stream.

WINOLEAPI OleLoadFromStream(

 IStream * pStm, //Pointer to stream from which object is to be loaded
 REFIID iidInterface, //Interface identifier
 void ** ppvObj //Indirect pointer to the newly loaded object
);

Parameters
pStm

[in] Pointer to the IStream interface on the stream from which the object is to be loaded.
iidInterface

[in] Interface identifier (IID) the caller wants to use to communicate with the object once it is loaded.
ppvObj

[out] On successful return, indirect pointer to the interface requested in iidInterface on the newly
loaded object.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The object was successfully loaded.
E_NOINTERFACE

The specified interface is not supported.

This function can also return any of the error values returned by the ReadClassStm and
CoCreateInstance functions, and the IPersistStorage::Load method.

Remarks
This function can be used to load an object that supports the IPersistStream interface. The CLSID of the
object must immediately precede the object's data in the stream, which is accomplished by the
companion function OleSaveToStream (or the operations it wraps, which are described under that topic).

If the CLSID for the stream is CLSID_NULL, the ppvObj parameter is set to NULL.

See Also
OleSaveToStream

OleLoadPicture

Creates a new picture object and initializes it from the contents of a stream. This is equivalent to calling
OleCreatePictureIndirect(NULL, ...) followed by IPersistStream::Load.

STDAPI OleLoadPicture(

 IStream * pStream, //Pointer to the stream that contains picture's data
 LONG lSize, //Number of bytes read from the stream
 BOOL fRunmode, //The opposite of the initial value of the picture's property
 REFIID riid, //Reference to the identifier of the interface describing the type of interface pointer to return
 VOID ppvObj //Indirect pointer to the object
);

Parameters
pStream

[in] Pointer to the stream that contains the picture's data.
lSize

[in] Number of bytes that should be read from the stream, or zero if the entire stream should be read.
fRunmode

[in] The opposite of the initial value of the KeepOriginalFormat property. If TRUE,
KeepOriginalFormat is set to FALSE and vice-versa.

riid

[in] Reference to the identifier of the interface describing the type of interface pointer to return in
ppvObj.

ppvObj

[out] Indirect pointer to the interface identified by riid on the storage of the object identified by the
moniker. If ppvObj is non-NULL, the implementation must call IUnknown::AddRef on the parameter;
it is the caller's responsibility to call IUnknown::Release. If an error occurs, ppvObj is set to NULL.

Return Values
This function supports the standard return values E_OUTOFMEMORY and E_UNEXPECTED, as well as
the following:

S_OK

The picture was created successfully.
E_POINTER

The address in pStream or ppvObj is not valid. For example, either may be NULL.
E_NOINTERFACE

The object does not support the interface specified in riid.

Remarks

The stream must be in BMP (bitmap), WMF (metafile), or ICO (icon) format. A picture object created using
OleLoadPicture always has ownership of its internal resources (fOwn==TRUE is implied).

See Also
OleCreatePictureIndirect, PICTDESC

OleLockRunning

Locks an already running object into its running state or unlocks it from its running state.

WINOLEAPI OleLockRunning(

 LPUNKNOWN pUnknown, //Pointer to interface
 BOOL fLock, //Flag indicating whether object is locked
 BOOL fLastUnlockCloses //Flag indicating whether to close object
);

Parameters
pUnknown

[in] Pointer to the IUnknown interface on the object, which the function uses to query for a pointer to
IRunnableObject.

fLock

[in] TRUE locks the object into its running state. FALSE unlocks the object from its running state.
fLastUnlockCloses

[in] TRUE specifies that if the connection being released is the last external lock on the object, the
object should close. FALSE specifies that the object should remain open until closed by the user or
another process.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY and
E_UNEXPECTED, as well as the following:

S_OK

The object was successfully locked or unlocked.

Remarks
The OleLockRunning function saves you the trouble of calling the IRunnableObject::LockRunning
method. You can use OleLockRunning and IRunnableObject::LockRunning interchangeably. With the
IUnknown pointer passed in with the pUnknown parameter, OleLockRunning queries for an
IRunnableObject pointer. If successful, it calls IRunnableObject::LockRunning and returns the results
of the call.

Note The implementation of OleLockRunning in earlier versions of OLE differs from that
described here.

For more information on using this function, see IRunnableObject::LockRunning.

See Also
CoLockObjectExternal, IRunnableObject::LockRunning, OleNoteObjectVisible

OleMetafilePictFromIconAndLabel
Creates a METAFILEPICT structure that contains a metafile in which the icon and label are drawn.

HGLOBAL OleMetafilePictFromIconAndLabel(

 HICON hIcon, //Handle to the icon to be drawn into the metafile
 LPOLESTR lpszLabel, //Pointer to the string to be used as the icon label
 LPOLESTR lpszSourceFile, //Pointer to the string that contains the path to the icon file
 UINT iIconIndex //Index of icon in lpszSourceFile
);

Parameters
hIcon

[in] Handle to the icon that is to be drawn into the metafile.
lpszLabel

[in] Pointer to the string to be used as the icon label.
lpszSourceFile

[in] Pointer to the string that contains the path and file name of the icon file. This string can be
obtained from the user or from the registration database.

iIconIndex

[in] Index to the icon within the lpszSourceFile file.

Return Value
HGLOBAL

An hGlobal handle to a METAFILEPICT structure containing the icon and label. The metafile uses the
MM_ANISOTROPIC mapping mode.

See Also
OleGetIconOfClass, OleGetIconOfFile

OleNoteObjectVisible

Increments or decrements an external reference that keeps an object in the running state.

WINOLEAPI OleNoteObjectVisible(

 LPUNKNOWN pUnknown, //Pointer to the interface on the object in question
 BOOL fVisible //Whether object is visible
);

Parameters
pUnknown

[in] Pointer to the IUnknown interface on the object that is to be locked or unlocked.
fVisible

[in] Whether the object is visible. If TRUE, OLE increments the reference count to hold the object
visible and alive regardless of external or internal IUnknown::AddRef and IUnknown::Release
operations, registrations, or revocation. If FALSE, OLE releases its hold (decrements the reference
count) and the object can be closed.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY and
E_UNEXPECTED, as well as the following:

S_OK

Indicates the object was successfully locked or unlocked.

Remarks
The OleNoteObjectVisible function calls the CoLockObjectExternal function. It is provided as a
separate function to reinforce the need to lock an object when it becomes visible to the user and to
release the object when it becomes invisible. This creates a strong lock on behalf of the user to ensure
that the object cannot be closed by its container while it is visible.

See Also
CoLockObjectExternal

OleQueryCreateFromData

Checks whether a data object has one of the formats that would allow it to become an embedded object
through a call to either the OleCreateFromData or OleCreateStaticFromData function.

WINOLEAPI OleQueryCreateFromData(

 IDataObject * pSrcDataObject //Pointer to the data transfer object to be queried
);

Parameter
pSrcDataObject

[in] Pointer to the IDataObject interface on the data transfer object to be queried.

Return Values
S_OK

Formats that support embedded-object creation are present.
S_FALSE

No formats are present that support either embedded- or static-object creation.
OLE_S_STATIC

Formats that support static-object creation are present.

Remarks
When an application retrieves a data transfer object through a call to the OleGetClipboard function, the
application should call OleQueryCreateFromData as part of the process of deciding to enable or disable
the Edit/Paste or Edit/Paste Special... commands. It tests for the presence of the following formats in
the data object:

CF_EMBEDDEDOBJECT
CF_EMBEDSOURCE
cfFileName
CF_METAFILEPICT
CF_DIB
CF_BITMAP

Determining that the data object has one of these formats does not absolutely guarantee that the object
creation will succeed, but is intended to help the process.

If OleQueryCreateFromData finds one of the CF_METAFILEPICT, CF_BITMAP, or CF_DIB formats and
none of the other formats, it returns OLE_S_STATIC, indicating that you should call the
OleCreateStaticFromData function to create the embedded object.

If OleQueryCreateFromData finds one of the other formats (CF_EMBEDDEDOBJECT,
CF_EMBEDSOURCE, or cfFileName), even in combination with the static formats, it returns S_OK,
indicating that you should call the OleCreateFromData function to create the embedded object.

See Also
OleCreateFromData, OleCreateStaticFromData, OleQueryLinkFromData

OleQueryLinkFromData

The OleQueryLinkFromData function determines whether an OLE linked object (rather than an OLE
embedded object) can be created from a clipboard data object.

WINOLEAPI OleQueryLinkFromData(

 IDataObject * pSrcDataObject //Pointer to the clipboard data object to be used to create the new object
);

Parameter
pSrcDataObject

[in] Pointer to the IDataObject interface on the clipboard data object from which the object is to be
created.

Return Value
Returns S_OK if the OleCreateLinkFromData function can be used to create the linked object; otherwise
S_FALSE.

Remarks
The OleQueryLinkFromData function is similar to the OleQueryCreateFromData function, but
determines whether an OLE linked object (rather than an OLE embedded object) can be created from the
clipboard data object. If the return value is S_OK, the application can then attempt to create the object
with a call to OleCreateLinkFromData. A successful return from OleQueryLinkFromData does not,
however, guarantee the successful creation of a link.

OleRegGetUserType

Gets the user type of the specified class from the registry. Developers of custom DLL object applications
use this function to emulate the behavior of the OLE default handler.

WINOLEAPI OleRegGetUserType(

 REFCLSID clsid, //Class identifier
 DWORD dwFormOfType, //Specifies form of type name
 LPOLESTR * pszUserType //Pointer to storage of string pointer
);

Parameters
clsid

[in] Class identifier for which user type is requested.
dwFormOfType

[in] Value that describes the form of the user-presentable string from the enumeration
USERCLASSTYPE.

pszUserType

[out] Pointer to a string that stores the user type on return.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The user type was returned successfully.
REGDB_E_CLASSNOTREG

There is no CLSID registered for the class object.
REGDB_E_READREGDB

There was an error reading the registry.
OLE_E_REGDB_KEY

The ProgID = MainUserTypeName and CLSID = MainUserTypeName keys are missing from the
registry.

Remarks
Object applications can ask OLE to get the user type name of a specified class in one of two ways. One
way is to call OleRegGetUserType. The other is to return OLE_S_USEREG in response to calls by the
default object handler to IOleObject::GetUserType. OLE_S_USEREG instructs the default handler to call
OleRegGetUserType. Because DLL object applications cannot return OLE_S_USEREG, they must call
OleRegGetUserType, rather than delegating the job to the object handler.

The OleRegGetUserType function and its sibling functions, OleRegGetMiscStatus,
OleRegEnumFormatEtc, and OleRegEnumVerbs, provide a way for developers of custom DLL object
applications to emulate the behavior of OLE's default object handler in getting information about objects

from the registry. By using these functions, you avoid the considerable work of writing your own, and the
pitfalls inherent in working directly in the registry. In addition, you get future enhancements and
optimizations of these functions without having to code them yourself.

See Also
IOleObject::GetUserType, OleRegGetMiscStatus, OleRegEnumFormatEtc, OleRegEnumVerbs,
USERCLASSTYPE

OleRegGetMiscStatus

Gets miscellaneous information about the presentation and behaviors supported by the specified CLSID
from the registry. Used by developers of custom DLL object applications to emulate the behavior of the
OLE default handler.

WINOLEAPI OleRegGetMiscStatus(

 REFCLSID clsid, //Class identifier
 DWORD dwAspect, //Value specifying aspect of requested class
 DWORD * pdwStatus //Pointer to returned status information
);

Parameters
clsid

[in] CLSID of the class for which status information is requested.
dwAspect

[in] DWORD specifying the presentation aspect of the class for which information is requested. Values
are taken from the DVASPECT enumeration.

pdwStatus

[out] Pointer to the location of the status information on the function's return.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The status information was returned successfully.
REGDB_E_CLASSNOTREG

No CLSID is registered for the class object.
REGDB_E_READREGDB

An error occurred reading the registry.
OLE_E_REGDB_KEY

The GetMiscStatus key is missing from the registry.

Remarks
Object applications can ask OLE to get miscellaneous status information in one of two ways. One way is
to call OleRegGetMiscStatus. The other is to return OLE_S_USEREG in response to calls by the default
object handler to IOleObject::GetMiscStatus. OLE_S_USEREG instructs the default handler to call
OleRegGetMiscStatus. Because DLL object applications cannot return OLE_S_USEREG, they must call
OleRegGetMiscStatus rather than delegating the job to the object handler.

OleRegGetMiscStatus and its sibling functions, OleRegGetUserType, OleRegEnumFormatEtc, and
OleRegEnumVerbs, provide a way for developers of custom DLL object applications to emulate the
behavior of OLE's default object handler in getting information about objects from the registry. By using

these functions, you avoid the considerable work of writing your own, and the pitfalls inherent in working
directly in the registry. In addition, you get future enhancements and optimizations of these functions
without having to code them yourself.

See Also
DVASPECT, FORMATETC, OLEMISC, IOleObject::GetMiscStatus, OleRegEnumFormatEtc,
OleRegEnumVerbs, OleRegGetUserType

OleRegEnumFormatEtc

Supplies a pointer to an enumeration object that can be used to enumerate data formats that an OLE
object server has registered in the system registry. An object application or object handler calls this
function when it must enumerate those formats. Developers of custom DLL object applications use this
function to emulate the behavior of the default object handler.

WINOLEAPI OleRegEnumFormatEtc(

 REFCLSID clsid, //Class identifier
 DWORD dwDirection, //Value specifying data formats
 LPENUMFORMATETC * ppenumFormatetc //Indirect pointer to returned format information
);

Parameters
clsid

[in] CLSID of the class whose formats are being requested.
dwDirection

[in] Whether to enumerate formats that can be passed to IDataObject::GetData or formats that can
be passed to IDataObject::SetData. Valid values are taken from the enumeration DATADIR.

ppenumFormatetc

[out] Indirect pointer to the IEnumFORMATETC interface on the new enumeration object.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The enumerator was returned successfully.
REGDB_E_CLASSNOTREG

There is no CLSID registered for the class object.
REGDB_E_READREGDB

There was an error reading the registry.
OLE_E_REGDB_KEY

The DataFormats/GetSet key is missing from the registry.

Remarks
Object applications can ask OLE to create an enumeration object for FORMATETC structures to
enumerate supported data formats in one of two ways. One way is to call OleRegEnumFormatEtc. The
other is to return OLE_S_USEREG in response to calls by the default object handler to
IDataObject::EnumFormatEtc. OLE_S_USEREG instructs the default handler to call
OleRegEnumFormatEtc. Because DLL object applications cannot return OLE_S_USEREG, they must
call OleRegEnumFormatEtc rather than delegating the job to the object handler. With the supplied
IEnumFORMATETC pointer to the object, you can call the standard enumeration object methods to do
the enumeration.

The OleRegEnumFormatEtc function and its sibling functions, OleRegGetUserType,
OleRegGetMiscStatus, and OleRegEnumVerbs, provide a way for developers of custom DLL object
applications to emulate the behavior of OLE's default object handler in getting information about objects
from the registry. By using these functions, you avoid the considerable work of writing your own, and the
pitfalls inherent in working directly in the registry. In addition, you get future enhancements and
optimizations of these functions without having to code them yourself.

See Also
IDataObject::EnumFormatEtc, IEnumFORMATETC

OleRegEnumVerbs

Supplies an enumeration of the registered verbs for the specified class. Developers of custom DLL object
applications use this function to emulate the behavior of the default object handler.

WINOLEAPI OleRegEnumVerbs(

 REFCLSID clsid, //Class identifier
 LPENUMOLEVERB * ppenumOleVerb //Indirect pointer to returned enumerator
);

Parameters
clsid

[in] Class identifier whose verbs are being requested.
ppenumOleVerb

[out] On successful return, indirect pointer to an IEnumOLEVERB interface on the new enumeration
object.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The enumerator was created successfully.
OLEOBJ_E_NOVERBS

No verbs are registered for the class.
REGDB_E_CLASSNOTREG

No CLSID is registered for the class object.
REGDB_E_READREGDB

An error occurred reading the registry.
OLE_E_REGDB_KEY

The DataFormats/GetSet key is missing from the registry.

Remarks
Object applications can ask OLE to create an enumeration object for OLEVERB structures to enumerate
supported verbs in one of two ways. One way is to call OleRegEnumVerbs. The other way is to return
OLE_S_USEREG in response to calls by the default object handler to IOleObject::EnumVerbs.
OLE_S_USEREG instructs the default handler to call OleRegEnumVerbs. Because DLL object
applications cannot return OLE_S_USEREG, they must call OleRegEnumVerbs rather than delegating
the job to the object handler. With the supplied IEnumOLEVERB pointer to the object, you can call the
standard enumeration object methods to do the enumeration.

The OleRegEnumVerbs function and its sibling functions, OleRegGetUserType,
OleRegGetMiscStatus, and OleRegEnumFormatEtc, provide a way for developers of custom DLL
object applications to emulate the behavior of OLE's default object handler in getting information about

objects from the registry. By using these functions, you avoid the considerable work of writing your own,
and the pitfalls inherent in working directly in the registry. In addition, you get future enhancements and
optimizations of these functions without having to code them yourself.

See Also
IOleObject::EnumVerbs, IEnumOLEVERB

OleRun

Puts an OLE compound document object into the running state.

WINOLEAPI OleRun(

 LPUNKNOWN pUnknown //Pointer to interface on the object
);

Parameter
pUnknown

[in] Pointer to the IUnknown interface on the object, with which it will query for a pointer to the
IRunnableObject interface, and then call its Run method.

Return Values
This function supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The object was successfully placed in the running state.
OLE_E_CLASSDIFF

The source of an OLE link has been converted to a different class.

Remarks
The OleRun function puts an object in the running state. The implementation of OleRun was changed in
OLE 2.01 to coincide with the publication of the IRunnableObject interface. You can use OleRun and
IRunnableObject::Run interchangeably. OleRun queries the object for a pointer to IRunnableObject. If
successful, the function returns the results of calling the IRunnableObject::Run method.

Note The implementation of OleRun in earlier versions of OLE differs from that described here.

For more information on using this function, see IRunnableObject::Run.

See Also
IOleLink::BindToSource, IRunnableObject::Run

OleSave

Saves an object opened in transacted mode into the specified storage object.

WINOLEAPI OleSave(

 IPersistStorage * pPS, //Pointer to the object to be saved
 IStorage * pStg, //Pointer to the destination storage to which pPS is saved
 BOOL fSameAsLoad //Whether the object was loaded from pstg or not
);

Parameters
pPS

[in] Pointer to the IPersistStorage interface on the object to be saved.
pStg

[in] Pointer to the IStorage interface on the destination storage object to which the object indicated in
pPS is to be saved.

fSameAsLoad

[in] TRUE indicates that pStg is the same storage object from which the object was loaded or created;
FALSE indicates that pstg was loaded or created from a different storage object.

Return Values
S_OK

The object was successfully saved.
STG_E_MEDIUMFULL

The object could not be saved due to lack of disk space.

This function can also return any of the error values returned by the IPersistStorage::Save method.

Remarks
The OleSave helper function handles the common situation in which an object is open in transacted
mode and is then to be saved into the specified storage object which uses the OLE-provided compound
file implementation. Transacted mode means that changes to the object are buffered until either of the
IStorage methods Commit or Revert is called. Callers can handle other situations by calling the
IPersistStorage and IStorage interfaces directly.

OleSave does the following:

1. Calls the IPersistStorage::GetClassID method to get the CLSID of the object.
2. Writes the CLSID to the storage object using the WriteClassStg function.
3. Calls the IPersistStorage::Save method to save the object.
4. If there were no errors on the save; calls the IStorage::Commit method to commit the changes.

Note Static objects are saved into a stream called CONTENTS. Static metafile objects get saved in

"placeable metafile format" and static DIB data gets saved in "DIB file format." These formats are
defined to be the OLE standards for metafile and DIB. All data transferred using an IStream interface
or a file (that is, via IDataObject::GetDataHere) must be in these formats. Also, all objects whose
default file format is a metafile or DIB must write their data into a CONTENTS stream using these
standard formats.

See Also
IStorage, IPersistStorage

OleSaveToStream

Saves an object with the IPersistStream interface on it to the specified stream.

WINOLEAPI OleSaveToStream(

 IPersistStream * pPStm, //Pointer to the interface on the object to be saved
 IStream * pStm //Pointer to the destination stream to which the object is saved
);

Parameters
pPStm

[in] Pointer to the IPersistStream interface on the object to be saved to the stream. Can be NULL,
which has the effect of writing CLSID_NULL to the stream.

pStm

[in] Pointer to the IStream interface on the stream in which the object is to be saved.

Return Values
S_OK

The object was successfully saved.
STG_E_MEDIUMFULL

There is no space left on device to save the object.

This function can also return any of the error values returned by the WriteClassStm function or the
IPersistStream::Save method.

Remarks
This function simplifies saving an object that implements the IPersistStream interface to a stream. In this
stream, the object's CLSID precedes its data. When the stream is retrieved, the CLSID permits the proper
code to be associated with the data. The OleSaveToStream function does the following:

1. Calls the IPersistStream::GetClassID method to get the object's CLSID.
2. Writes the CLSID to the stream with the WriteClassStm function.
3. Calls the IPersistStream::Save method with fClearDirty set to TRUE, which clears the dirty bit in the

object.
The companion helper, OleLoadFromStream, loads objects saved in this way.

See Also
OleLoadFromStream, IPersistStream, IStream

OleSetAutoConvert

Specifies a CLSID for automatic conversion to a different class when an object of that class is loaded.

WINOLEAPI OleSetAutoConvert(

 REFCLSID clsidOld, //CLSID to be converted
 REFCLSID clsidNew //New CLSID after conversion
);

Parameters
clsidOld

[in] CLSID of the object class to be converted.
clsidNew

[in] CLSID of the object class that should replace clsidOld. This new CLSID replaces any existing
auto-conversion information in the registry for clsidOld. If this value is CLSID_NULL, any existing
auto-conversion information for clsidOld is removed from the registry.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY and
E_UNEXPECTED, as well as the following:

S_OK

The object was tagged successfully.
REGDB_E_CLASSNOTREG

The CLSID is not properly registered in the registry.
REGDB_E_READREGDB

Error reading from the registry.
REGDB_E_WRITEREGDB

Error writing to the registry.
REGDB_E_KEYMISSING

Cannot read a key from the registry.

Remarks
The OleSetAutoConvert function goes to the system registry, finds the AutoConvertTo subkey under the
CLSID specified by clsidOld, and sets it to clsidNew. This function does not validate whether an
appropriate registry entry for clsidNew currently exists. These entries appear in the registry as subkeys of
the CLSID key:

CLSID\{clsid}=MainUserTypeName\AutoConvertTo = clsid

Object conversion means that the object's data is permanently associated with a new CLSID. Automatic
conversion is typically specified in the setup program of a new version of an object application, so objects
created by its older versions can be automatically updated to the new version.

For example, it may be necessary to convert spreadsheets that were created with earlier versions of a
spreadsheet application to the new version. The spreadsheet objects from earlier versions have different
CLSIDs than the new version. For each earlier version that you want automatically updated, you would
call OleSetAutoConvert in the setup program, specifying the CLSID of the old version, and that of the
new one. Then, whenever a user loads an object from a previous version, it would be automatically
updated. To support automatic conversion of obects, a server that supports conversion must be prepared
to manually convert objects that have the format of an earlier version of the server. Automatic conversion
relies internally on this manual-conversion support.

Before setting the desired AutoConvertTo value, setup programs should also call OleSetAutoConvert to
remove any existing conversion for the new class, by specifying the new class as the clsidOld parameter,
and setting the clsidNew parameter to CLSID_NULL.

See Also
OleDoAutoConvert

OleSetClipboard

Places a pointer to a specific data object onto the clipboard. This makes the data object accessible to the
OleGetClipboard function.

WINOLEAPI OleSetClipboard(

 IDataObject * pDataObj //Pointer to the data object being copied or cut
);

Parameter
pDataObj

[in] Pointer to the IDataObject interface on the data object from which the data to be placed on the
clipboard can be obtained. This parameter can be NULL; in which case the clipboard is emptied.

Return Values
S_OK

The IDataObject pointer was placed on the clipboard.
CLIPBRD_E_CANT_OPEN

The Windows OpenClipboard function used within OleSetClipboard failed.
CLIPBRD_E_CANT_EMPTY

The Windows EmptyClipboard function used within OleSetClipboard failed.
CLIPBRD_E_CANT_CLOSE

The Windows CloseClipboard function used within OleSetClipboard failed.

Remarks
If you are writing an application that can act as the source of a clipboard operation, you must do the
following:

1. Create a data object (on which is the IDataObject interface) for the data being copied or cut to the
clipboard. This object should be the same object used in OLE drag-and-drop operations.

2. Call OleSetClipboard to place the IDataObject pointer onto the clipboard, so it is accessible to the
OleGetClipboard function. OleSetClipboard also calls the IUnknown::AddRef method on your data
object.

3. If you wish, release the data object once you have placed it on the clipboard to free the
IUnknown::AddRef counter in your application.

4. If the user is cutting data (deleting it from the document and putting it on to the clipboard), remove the
data from the document.

All formats are offered on the clipboard using delayed rendering (the clipboard contains only a pointer to
the data object unless a call to OleFlushClipboard renders the data onto the clipboard). The formats
necessary for OLE 1 compatibility are synthesized from the OLE 2 formats that are present and are also
put on the clipboard.

The OleSetClipboard function assigns ownership of the clipboard to an internal OLE window handle. The

reference count of the data object is increased by 1, to enable delayed rendering. The reference count is
decreased by a call to the OleFlushClipboard function or by a subsequent call to OleSetClipboard
specifying NULL as the parameter value (which clears the clipboard).

When an application opens the clipboard (either directly or indirectly by calling the Win32 OpenClipboard
function), the clipboard cannot be used by any other application until it is closed. If the clipboard is
currently open by another application, OleSetClipboard fails. The internal OLE window handle satisfies
WM_RENDERFORMAT messages by delegating them to the IDataObject implementation on the data
object that is on the clipboard.

Specifying NULL as the parameter value for OleSetClipboard empties the current clipboard. If the
contents of the clipboard are the result of a previous OleSetClipboard call and the clipboard has been
released, the IDataObject pointer that was passed to the previous call is released. The clipboard owner
should use this as a signal that the data it previously offered is no longer on the clipboard.

If you need to leave the data on the clipboard after your application is closed, you should call
OleFlushClipboard instead of OleSetClipboard.

See Also
OleFlushClipboard, OleGetClipboard, OleIsCurrentClipboard

OleSetContainedObject

Notifies an object that it is embedded in an OLE container, which ensures that reference counting is done
correctly for containers that support links to embedded objects.

WINOLEAPI OleSetContainedObject(

 LPUNKNOWN pUnk, //Pointer to the interface on the embedded object
 BOOL fContained //Indicates if the object is embedded
);

Parameters
pUnk

[in] Pointer to the IUnknown interface of the object.
fContained

[in] TRUE if the object is an embedded object; FALSE otherwise.

Return Values
This function supports the standard return values E_INVALIDARG, E_OUTOFMEMORY and
E_UNEXPECTED, as well as the following:

S_OK

The object was notified successfully.

Remarks
The OleSetContainedObject function notifies an object that it is embedded in an OLE container. The
implementation of OleSetContainedObject was changed in OLE 2.01 to coincide with the publication of
the IRunnableObject interface. You can use OleSetContainedObject and the
IRunnableObject::SetContainedObject method interchangeably. The OleSetContainedObject function
queries the object for a pointer to the IRunnableObject interface. If successful, the function returns the
results of calling IRunnableObject::SetContainedObject.

Note The implementation of OleSetContainedObject in earlier versions of OLE differs from that
described here.

See Also
IRunnableObject::SetContainedObject

OleSetMenuDescriptor

Installs or removes OLE dispatching code from the container's frame window.

WINOLEAPI OleSetMenuDescriptor(

 HOLEMENU holemenu, //Handle to the composite menu descriptor
 HWND hwndFrame, //Handle to the container's frame window
 HWND hwndActiveObject, //Handle to the object's in-place activation window
 LPOLEINPLACEFRAME lpFrame, //Pointer to the container's frame window
 LPOLEINPLACEACTIVEOBJECT lpActiveObj //Active in-place object
);

Parameters
holemenu

[in] Handle to the composite menu descriptor returned by the OleCreateMenuDescriptor function. If
NULL, the dispatching code is unhooked.

hwndFrame

[in] Handle to the container's frame window where the in-place composite menu is to be installed.
hwndActiveObject

[in] Handle to the object's in-place activation window. OLE dispatches menu messages and
commands to this window.

lpFrame

[in] Pointer to the IOleInPlaceFrame interface on the container's frame window.
lpActiveObj

[in] Pointer to the IOleInPlaceActiveObject interface on the active in-place object.

Return Values
This function supports the standard return values E_FAIL, E_INVALIDARG and E_UNEXPECTED, as
well as the following:

S_OK

The menu was installed correctly.

Remarks
The container should call OleSetMenuDescriptor to install the dispatching code on hwndFrame when
the object calls the IOleInPlaceFrame::SetMenu method, or to remove the dispatching code by passing
NULL as the value for holemenu to OleSetMenuDescriptor.

If both the lpFrame and lpActiveObj parameters are non-NULL, OLE installs the context-sensitive help F1
message filter for the application. Otherwise, the application must supply its own message filter.

See Also
OleCreateMenuDescriptor, IOleInPlaceFrame::SetMenu, IOleInPlaceActiveObject

OleTranslateAccelerator

Called by the object application, allows an object's container to translate accelerators according to the
container's accelerator table.

WINOLEAPI OleTranslateAccelerator(

 LPOLEINPLACEFRAME lpFrame, //Pointer to send keystrokes
 LPOLEINPLACEFRAMEINFO lpFrameInfo, //Pointer to accelerator table obtained from container
 LPMSG lpmsg //Pointer to structure containing the keystroke
);

Parameters
lpFrame

[in] Pointer to the IOleInPlaceFrame interface to which the keystroke might be sent.
lpFrameInfo

[in] Pointer to an OLEINPLACEFRAMEINFO structure containing the accelerator table obtained from
the container.

lpmsg

[in] Pointer to an MSG structure containing the keystroke.

Return Values
This function supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The keystroke was processed.
S_FALSE

The object should continue processing this message.

Remarks
Object servers call OleTranslateAccelerator to allow the object's container to translate accelerator
keystrokes according to the container's accelerator table, pointed to by lpFrameInfo. While a contained
object is the active object, the object's server always has first chance at translating any messages
received. If this is not desired, the server calls OleTranslateAccelerator to give the object's container a
chance. If the keyboard input matches an accelerator found in the container-provided accelerator table,
OleTranslateAccelerator passes the message and its command identifier on to the container through the
IOleInPlaceFrame::TranslateAccelerator method. This method returns S_OK if the keystroke is
consumed; otherwise it returns S_FALSE.

The OleTranslateAccelerator function is intended to be called only by local server applications and not
by in-process servers. For objects managed by local servers, keyboard input goes directly to the server's
message pump. If the object does not translate the key, OleTranslateAccelerator gives the container
application an opportunity to do it. For objects managed by in-process servers, the keyboard input goes
directly to the container's message pump.

Note Accelerator tables for containers should be defined so they will work properly with object
applications that do their own accelerator keystroke translations. These tables should take the form:

"char", wID, VIRTKEY, CONTROL

This is the most common way to describe keyboard accelerators. Failure to do so can result in
keystrokes being lost or sent to the wrong object during an in-place session.

Objects can call the IsAccelerator function to see whether the accelerator keystroke belongs to the
object or the container.

See Also
IsAccelerator, IOleInPlaceFrame::TranslateAccelerator

OleTranslateColor

Converts an OLE_COLOR type to a COLORREF.

STDAPI OleTranslateColor (

 OLE_COLOR clr, //Color to be converted into a COLORREF
 HPALETTE hpal, //Palette used for conversion
 COLORREF *pcolorref //Pointer to the caller's variable that receives the converted result
);

Parameters
clr

[in] The OLE color to be converted into a COLORREF.
hpal

[in] Palette used as a basis for the conversion.
pcolorref

[out] Pointer to the caller's variable that receives the converted COLORREF result. This can be NULL,
indicating that the caller wants only to verify that a converted color exists.

Return Values
This function supports the standard return values E_INVALIDARG and E_UNEXPECTED, as well as the
following:

S_OK

The color was translated successfully.

Remarks
The following table describes the color conversion:

OLE_COLOR hPal Resulting
COLORREF

invalid Undefined
(E_INVALIDARG)

0x800000xx, xx is not a valid
Win32 GetSysColor index

Undefined
(E_INVALIDARG)

invalid Undefined
(E_INVALIDARG)

0x0100iiii, iiii is not a valid
palette index

valid palette Undefined
(E_INVALIDARG)

0x800000xx, xx is a valid
GetSysColor index

NULL 0x00bbggrr

0x0100iiii, iiii is a valid
palette index

NULL 0x0100iiii

0x02bbggrr (palette relative) NULL 0x02bbggrr

0x00bbggrr NULL 0x00bbggrr
0x800000xx, xx is a valid
GetSysColor index

valid palette 0x00bbggrr

0x0100iiii, iiii is a valid
palette index in hPal

valid palette 0x0100iiii

0x02bbggrr (palette relative) valid palette 0x02bbggrr
0x00bbggrr valid palette 0x02bbggrr

OleUIAddVerbMenu

Adds the Verb menu for the specified object to the given menu.

BOOL OleUIAddVerbMenu(

 LPOLEOBJECT *lpOleObj, //Pointer to the object
 LPCTSTR lpszShortType, //Pointer to the short name corresponding to the object
 HMENU hMenu, //Handle to the menu to modify
 UINT uPos, //Position of the menu item.
 UINT uIDVerbMin, //Value at which to start the verbs
 UINT uIDVerbMax, //Maximum identifier value for object verbs
 BOOL bAddConvert, //Whether to add convert item
 UINT idConvert, //Value to use for the convert item
 HMENU FAR * lphMenu //Pointer to the cascading verb menu, if created
);

Parameters
lpOleObj

[in] Pointer to the IOleObject interface on the selected object. If this is NULL, then a default disabled
menu item is created.

lpszShortType

[in] Pointer to the short name defined in the registry (AuxName==2) for the object identified with
lpOleObj. If the string is NOT known, then NULL may be passed. If NULL is passed,
IOleObject::GetUserType is called to retrieve it. If the caller has easy access to the string, it is faster
to pass it in.

hMenu

[in] Handle to the menu in which to make modifications.
uPos

[in] Position of the menu item.
iIDVerbMin

[in] The UINT identifier value at which to start the verbs.
uIDVerbMax

[in] The UINT Maximum identifier value to be used for object verbs. If uIDVerbMax is 0, then no
maximum identifier value is used.

bAddConvert

[in] The BOOL specifying whether or not to add a Convert item to the bottom of the menu (preceded
by a separator).

idConvert

[in] The UINT identifier value to use for the Convert menu item, if bAddConvert is TRUE.
lphMenu

[out] An HMENU pointer to the cascading verb menu if it's created. If there is only one verb, this will
be filled with NULL.

Return Values
TRUE

Indicates lpOleObj was valid and at least one verb was added to the menu.
FALSE

Indicates lpOleObj was NULL and a disabled default menu item was created.

Remarks
If the object has one verb, the verb is added directly to the given menu. If the object has multiple verbs, a
cascading sub-menu is created.

OleUIBusy

Invokes the standard Busy dialog box, allowing the user to manage concurrency.

UINT OleUIBusy(

 LPOLEUIBUSY lpBZ //Pointer to the initialization structure
);

Parameter
lpBZ

[in] Pointer to an OLEUIBUSY structure that contains information used to initialize the dialog box.

Return Values
Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user has pressed the Cancel button and that the caller should cancel the operation.
OLEUI_BZ_SWITCHTOSELECTED

The user has pressed Switch To and OleUIBusy was unable to determine how to switch to the
blocking application. In this case, the caller should either take measures to attempt to resolve the
conflict itself, if possible, or retry the operation. OleUIBusy will only return
OLEUI_BZ_SWITCHTOSELECTED if the user has pressed the Switch To button, hTask is NULL and
the BZ_NOTRESPONDING flag is set.

OLEUI_BZ_RETRYSELECTED

The user has either pressed the Retry button or attempted to resolve the conflict (probably by
switching to the blocking application). In this case, the caller should retry the operation.

OLEUI_BZ_CALLUNBLOCKED

The dialog box has been informed that the operation is no longer blocked.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.
OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.
OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.
OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_BZERR_HTASKINVALID

The hTask specified in the hTask member of the OLEUIBUSY structure is invalid.

Remarks
The standard OLE Server Busy dialog box notifies the user that the server application is not receiving
messages. The dialog box then asks the user to cancel the operation, switch to the task that is blocked,
or continue waiting.

See Also
OLEUIBUSY

OleUICanConvertOrActivateAs

Determines if there are any OLE object classes in the registry that can be used to convert or activate the
specified CLSID from.

BOOL OleUICanConvertOrActivateAs(

 REFCLSID rClsid, //CLSID of the specified class
 BOOL fIsLinkedObject, //Whether the original object was a linked object
 WORD wFormat //Format of the original class
);

Parameters
rClsid

[in] The CLSID of the class for which the information is required.
fIsLinkedObject

[in] TRUE if the original object is a linked object; FALSE otherwise.
wFormat

[in] Format of the original class.

Return Values
TRUE

The specified class can be converted to or activated as another class.
FALSE

The specified class cannot be converted to or activated as another class.

Remarks
OleUICanConvertOrActivateAs searches the registry for classes that include wFormat in their \
Conversion\Readable\Main, \Conversion\ReadWriteable\Main, and \DataFormats\DefaultFile entries.

This function is useful for determining if a Convert... menu item should be disabled. If the
CF_DISABLEDISPLAYASICON flag is specified in the call to OleUIConvert, then the Convert... menu
item should be enabled only if OleUICanConvertOrActivateAs returns TRUE.

See Also
OleUIConvert

OleUIChangeIcon

Invokes the standard Change Icon dialog box, which allows the user to select an icon from an icon file,
executable, or DLL.

UINT OleUIChangeIcon(

 LPOLEUICHANGEICON lpCI //Pointer to the in-out structure for this dialog box
);

Parameter
lpCI

[in] Pointer to the in-out OLEUICHANGEICON structure for this dialog box.

Return Values
Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user pressed the Cancel button.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.
OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.
OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.
OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_CIERR_MUSTHAVECLSID

The clsid member was not the current CLSID.
OLEUI_CIERR_MUSTHAVECURRENTMETAFILE

The hMetaPict member was not the current metafile.
OLEUI_CIERR_SZICONEXEINVALID

The szIconExe value was invalid.

Remarks
OleUIChangeIcon uses information contained in the OLEUICHANGEICON structure.

See Also
OLEUICHANGEICON

OleUIChangeSource

Invokes the Change Source dialog box, allowing the user to change the source of a link.

UINT OleUIChangeSource(

 LPOLEUICHANGESOURCE lpCS //Pointer to the in-out structure
);

Parameter
lpCS

[in] Pointer to the in-out OLEUICHANGESOURCE structure for this dialog box.

Return Values
Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user pressed the Cancel button.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.
OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.
OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.

OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_CSERR_LINKCNTRNULL

The lpOleUILinkContainer value is NULL.
OLEUI_CSERR_LINKCNTRINVALID

The lpOleUILinkContainer value is invalid.
OLEUI_CSERR_FROMNOTNULL

The lpszFrom value is not NULL.
OLEUI_CSERR_TONOTNULL

The lpszTo value is not NULL.
OLEUI_CSERR_SOURCEINVALID

The lpszDisplayName or nFileLength value is invalid, or cannot retrieve the link source.
OLEUI_CSERR_SOURCEPARSEERROR

The nFilename value is wrong.

Remarks
The link source is not changed by the Change Source dialog box itself. Instead, it is up to the caller to
change the link source using the returned file and item strings. The Edit Links dialog box typically does
this for the caller.

See Also
OLEUICHANGESOURCE, OleUIEditLinks, IOleUILinkContainer

OleUIConvert

Invokes the standard Convert dialog box, allowing the user to change the type of a single specified object,
or the type of all OLE objects of the specified object's class.

UINT OleUIConvert(

 LPOLEUICONVERT lpCV //Pointer to initialization structure
);

Parameter
lpCV

[in] Pointer to an OLEUICONVERT structure that contains information used to initialize the dialog box.

Return Values
Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user pressed the Cancel button.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.
OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.
OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.
OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_CTERR_CLASSIDINVALID

A clsid value was invalid.
OLEUI_CTERR_DVASPECTINVALID

The dvAspect value was invalid. This member specifies the aspect of the object.
OLEUI_CTERR_CBFORMATINVALID

The wFormat value was invalid. This member specifies the data format of the object.

OLEUI_CTERR_STRINGINVALID

A string value (for example, lpszUserType or lpszDefLabel) was invalid.

Remarks
OleUIConvert populates the Convert dialog box's list box with object classes by traversing the Registry
and looking for entries in the Readable and ReadWritable keys. Every class that includes the original
class' default file format in its Readable key is added to the Convert list, and every class that includes the
original class' default file format in its ReadWritable key is added to the Activate As list. The Convert list is
shown in the dialog box's list box when the Convert radio button is selected (the default selection), and
the Activate As list is shown when Activate As is selected.

Note that you can change the type of all objects of a given class only when CF_CONVERTONLY is not
specified.

The convert command, which invokes this function, should only be made available to the user if
OleUIConvertOrActivateAs returns S_OK.

See Also
OLEUICONVERT, OleUICanConvertOrActivateAs

OleUIEditLinks

Invokes the standard Links dialog box, allowing the user to make modifications to a container's linked
objects.

UINT OleUIEditLinks(

 LPOLEUIEDITLINKS lpEL //Pointer to the initialization structure
);

Parameter
lpEL

[in] Pointer to an OLEUIEDITLINKS structure that contains information used to initialize the dialog
box.

Return Values
Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user pressed the Cancel button.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.
OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.

OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.
OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

See Also
OLEUIEDITLINKS, IOleUILinkContainer

OleUIInsertObject

Invokes the standard Insert Object dialog box, which allows the user to select an object source and class
name, as well as the option of displaying the object as itself or as an icon.

UINT OleUIInsertObject(

 LPOLEUIINSERTOBJECT lpIO //Pointer to the in-out structure
);

Parameter
lpIO

[in] Pointer to the in-out OLEUIINSERTOBJECT structure for this dialog box.

Return Values
Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user pressed the Cancel button.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.
OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.
OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.
OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_IOERR_LPSZFILEINVALID

The lpszFile value is invalid or user has insufficient write access permissions.. This lpszFile member
points to the name of the file linked to or inserted.

OLEUI_IOERR_LPFORMATETCINVALID

The lpFormatEtc value is invalid. This member identifies the desired format.
OLEUI_IOERR_PPVOBJINVALID

The ppvOjb value is invalid. This member points to the location where the pointer for the object is
returned.

OLEUI_IOERR_LPIOLECLIENTSITEINVALID

The lpIOleClientSite value is invalid. This member points to the client site for the object.
OLEUI_IOERR_LPISTORAGEINVALID

The lpIStorage value is invalid. This member points to the storage to be used for the object.
OLEUI_IOERR_SCODEHASERROR

The sc member of lpIO has additional error information.
OLEUI_IOERR_LPCLSIDEXCLUDEINVALID

The lpClsidExclude value is invalid. This member contains the list of CLSIDs to exclude.
OLEUI_IOERR_CCHFILEINVALID

The cchFile or lpszFile value is invalid. The cchFile member specifies the size of the lpszFile buffer.
The lpszFile member points to the name of the file linked to or inserted.

Remarks
OleUIInsertObject allows the user to select the type of object to be inserted from a list box containing the
object applications registered on the user's system. To populate that list box, OleUIInsertObject traverses
the registry, adding every object server it finds that meets the following criteria:

· The registry entry does not include the NotInsertable key.
· The registry entry includes an OLE 1.0 style Protocol\\StdFileEditing\\Server key.
· The registry entry includes the Insertable key.
· The object's CLSID is not included in the list of objects to exclude (the lpClsidExclude member of

OLEUIINSERTOBJECT).

By default, OleUIInsertObject does not validate object servers, however, if the
IOF_VERIFYSERVEREXIST flag is included in the dwFlags member of the OLEUIINSERTOBJECT
structure, OleUIInsertObject verifies that the server exists. If it does not exist, then the server's object is
not added to the list of available objects. Server validation is a time-extensive operation and is a
significant performance factor.

To free an HMETAFILEPICT returned from the Insert Object or Paste Special dialog box, delete the
attached metafile on the handle, as follows:

void FreeHmetafilepict(HMETAFILEPICT hmfp)
{
 if (hmfp != NULL)
 {
 LPMETAFILEPICT pmfp = GlobalLock(hmfp);

 DeleteMetaFile(pmfp->hMF);
 GlobalUnlock(hmfp);
 GlobalFree(hmfp);
 }
} // FreeHmetafilepict

See Also

OLEUIINSERTOBJECT, OpenFile, DeleteMetaFile, GlobalUnlock, GlobalFree in Win32

OleUIObjectProperties

Invokes the Object Properties dialog box, which displays General, View, and Link information about an
object.

UINT OleUIObjectProperties(

 LPOLEUIOBJECTPROPS lpOP //Pointer to the structure
);

Parameter
lpOP

[in] Pointer to the OLEUIOBJECTPROPS structure.

Return Values
Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user pressed the Cancel button.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.
OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.
OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.
OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_OPERR_SUBPROPNULL

lpGP or lpVP is NULL, or dwFlags and OPF_OBJECTISLINK and lpLP are NULL.
OLEUI_OPERR_SUBPROPINVALID

Insufficient write-access permissions for the structures pointed to by lpGP, lpVP, or lpLP.
OLEUI_OPERR_PROPSHEETNULL

The lpLP value is NULL.

OLEUI_OPERR_PROPSHEETINVALID

Insufficient write access for one or more of the structures used by OLEUIOBJECTPROPS.
OLEUI_OPERR_SUPPROP

The sub-link property pointer, lpLP, is NULL.
OLEUI_OPERR_PROPSINVALID

Insufficient write access for the sub-link property pointer, lpLP.
OLEUI_OPERR_PAGESINCORRECT

Some sub-link properties of the lpPS member are incorrect.
OLEUI_OPERR_INVALIDPAGES

Some sub-link properties of the lpPS member are incorrect.
OLEUI_OPERR_NOTSUPPORTED

A sub-link property of the lpPS member is incorrect.
OLEUI_OPERR_DLGPROCNOTNULL

A sub-link property of the lpPS member is incorrect.
OLEUI_OPERR_LPARAMNOTZERO

A sub-link property of the lpPS member is incorrect.
OLEUI_GPERR_STRINGINVALID

A string value (for example, lplpszLabel or lplpszType) is invalid.
OLEUI_GPERR_CLASSIDINVALID

The clsid value is invalid.
OLEUI_GPERR_LPCLSIDEXCLUDEINVALID

The ClsidExcluded value is invalid.
OLEUI_GPERR_CBFORMATINVALID

The wFormat value is invalid.
OLEUI_VPERR_METAPICTINVALID

The hMetaPict value is invalid.
OLEUI_VPERR_DVASPECTINVALID

The dvAspect value is invalid.
OLEUI_OPERR_PROPERTYSHEET

The lpPS value is incorrect.
OLEUI_OPERR_OBJINFOINVALID

The lpObjInfo value is NULL or the calling process doesn't have read access.
OLEUI_OPERR_LINKINFOINVALID

The lpLinkInfo value is NULL or the calling process doesn't have read access.

Remarks

OleUIObjectProperties is passed an OLEUIOBJECTPROPS structure, which supplies the information
needed to fill in the General, View, and Link tabs of the Object Properties dialog box.

See Also
IOleUIObjInfo, IOleUILinkInfo, OLEUIOBJECTPROPS, OLEUIGNRLPROPS, OLEUIVIEWPROPS,
OLEUILINKPROPS

OleUIPasteSpecial
Invokes the standard Paste Special dialog box, allowing the user to select the format of the clipboard
object to be pasted or paste-linked.

UINT OleUIPasteSpecial(*

 LPOLEUIPASTESPECIAL lpPS //Pointer to the in-out structure for this dialog box
);

Parameter
lpPS

[in] Pointer to the in-out OLEUIPASTESPECIAL structure for this dialog box.

Return Values
Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user pressed the Cancel button.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.
OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.
OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.
OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_IOERR_SRCDATAOBJECTINVALID

The lpSrcDataObject field of OLEUIPASTESPECIAL is invalid.
OLEUI_IOERR_ARRPASTEENTRIESINVALID

The arrPasteEntries field of OLEUIPASTESPECIAL is invalid.
OLEUI_IOERR_ARRLINKTYPESINVALID

The arrLinkTypes field of OLEUIPASTESPECIAL is invalid.

OLEUI_PSERR_CLIPBOARDCHANGED

The clipboard contents changed while the dialog box was displayed.
OLEUI_PSERR_GETCLIPBOAARDFAILED

The lpSrcDataObj member is incorrect.

Remarks
The design of the Paste Special dialog box assumes that if you are willing to permit a user to link to an
object, you are also willing to permit the user to embed that object. For this reason, if any of the
OLEUIPASTE_LINKTYPE flags associated with the OLEUIPASTEFLAG enumeration are set, then the
OLEUIPASTE_PASTE flag must also be set in order for the data formats to appear in the Paste Special
dialog box.

The text displayed in the Source field of the standard Paste Special dialog box, which is implemented in
OLEDLG32.DLL, is the null-terminated string whose offset in bytes is specified in the dwSrcofCopy field
of the OBJECTDESCRIPTOR structure for the object to be pasted. If an OBJECTDESCRIPTOR
structure is not available for this object, the dialog box displays whatever text may be associated with
CF_LINKSOURCEDESCRIPTOR. If neither structure is available, the dialog box looks for
CF_FILENAME. If CF_FILENAME is not found, the dialog box displays the string "Unknown Source".

To free an HMETAFILEPICT returned from the Insert Object or Paste Special dialog box, delete the
attached metafile on the handle, as follows:

void FreeHmetafilepict(HMETAFILEPICT hmfp)
{
 if (hmfp != NULL)
 {
 LPMETAFILEPICT pmfp = GlobalLock(hmfp);

 DeleteMetaFile(pmfp->hMF);
 GlobalUnlock(hmfp);
 GlobalFree(hmfp);
 }
} // FreeHmetafilepict

See Also

OLEUIPASTEFLAG, DeleteMetaFile, GlobalUnlock, GlobalFree in Win32

OleUIPromptUser

Displays a dialog box with the specified template and returns the response (button identifier) from the
user. This function is used to display OLE warning messages, for example, Class Not Registered.

int OleUIPromtUser(

 int nTemplate, //Resource number of dialog box
 HWND hwndParent //Handle to the parent window of the dialog box
);

Parameters
nTemplate

[in] Resource number of the dialog box to display. See Remarks.
hwndParent

[in] Handle to the parent window of the dialog box. Specifies zero or more optional arguments. These
parameters are passed to wsprintf to format the message string.

Return Values
Returns the button identifier selected by the user (template dependent).

Standard Success/Error Definitions

OLEUI_FALSE

Unknown failure (unused).
OLEUI_SUCCESS

No error, same as OLEUI_OK.
OLEUI_OK

The user pressed the OK button.
OLEUI_CANCEL

The user pressed the Cancel button.

Standard Field Validation Errors

OLEUI_ERR_STANDARDMIN

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

OLEUI_ERR_STRUCTURENULL

The pointer to an OLEUIXXX structure passed into the function was NULL.
OLEUI_ERR_STRUCTUREINVALID

Insufficient permissions for read or write access to an OLEUIXXX structure.

OLEUI_ERR_CBSTRUCTINCORRECT

The cbstruct value is incorrect.
OLEUI_ERR_HWNDOWNERINVALID

The hWndOwner value is invalid.
OLEUI_ERR_LPSZCAPTIONINVALID

The lpszCaption value is invalid.
OLEUI_ERR_LPFNHOOKINVALID

The lpfnHook value is invalid.
OLEUI_ERR_HINSTANCEINVALID

The hInstance value is invalid.
OLEUI_ERR_LPSZTEMPLATEINVALID

The lpszTemplate value is invalid.
OLEUI_ERR_HRESOURCEINVALID

The hResource value is invalid.

Initialization Errors

OLEUI_ERR_FINDTEMPLATEFAILURE

Unable to find the dialog box template.
OLEUI_ERR_LOADTEMPLATEFAILURE

Unable to load the dialog box template.
OLEUI_ERR_DIALOGFAILURE

Dialog box initialization failed.
OLEUI_ERR_LOCALMEMALLOC

A call to LocalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_GLOBALMEMALLOC

A call to GlobalAlloc or the standard IMalloc allocator failed.
OLEUI_ERR_LOADSTRING

Unable to LoadString localized resources from the library.
OLEUI_ERR_OLEMEMALLOC

A call to the standard IMalloc allocator failed.

Function Specific Errors

OLEUI_ERR_STANDARDMAX

Errors common to all dialog boxes lie in the range OLEUI_ERR_STANDARDMIN to
OLEUI_ERR_STANDARDMAX. This value allows the application to test for standard messages in
order to display error messages to the user.

Remarks
The following dialog box templates are defined in Windows Interface Guidelines--A Guide for Designing
Software. The nTemplate parameter must be a currently defined resource, however, additional templates
can be added to prompt.dlg.

IDD_LINKSOURCEUNAVAILABLE
IDD_CANNOTUPDATELINK
IDD_SERVERNOTREG
IDD_CANNOTRESPONDVERB
IDD_SERVERNOTFOUND
IDD_UPDATELINKS

See Also

wsprintf in Win32

OleUIUpdateLinks

Updates all links in the link container and displays a dialog box that shows the progress of the updating
process. The process is stopped if the user presses the Stop button or when all links are processed.

BOOL OleUIUpdateLink(

 LPOLEUILINKCONTAINER lpOleUILinkCntr, //Pointer to the link container
 HWND hwndParent, //Dialog box's parent window
 LPTSTR lpszTitle, //pointer to the dialog box title
 int cLinks //Number of links
);

Parameters
lpOleUILinkCntr

[in] Pointer to the IOleUILinkContainer interface on the link container.
hwndParent

[in] Parent window of the dialog box.
lpszTitle

[in] Pointer to the title of the dialog box.
cLinks

[in] Total number of links.

Return Values
TRUE

The links were successfully updated.
FALSE

Unable to update the links.

See Also
IOleUILinkContainer::GetLinkUpdateOptions, IOleUILinkContainer::UpdateLink

OleUninitialize

Closes the OLE library, freeing any resources that it maintains.

void OleUninitialize();

Remarks
Call this function on application shutdown, as the last OLE library call. OleUninitialize calls the
CoUninitialize function internally to shut down the OLE Component Object(COM) Library.

The OleInitialize and OleUninitialize calls must be balanced ¾ if there are multiple calls to the
OleInitialize function, there must be the same number of calls to OleUninitialize: Only the
OleUninitialize call corresponding to the OleInitialize call that actually initialized the library can close it.

See Also
OleInitialize, CoUninitialize

ProgIDFromCLSID

Retrieves the ProgID for a given CLSID.

WINOLEAPI ProgIDFromCLSID(

 REFCLSID clsid, //CLSID for which the ProgID is requested
 LPOLESTR * lplpszProgID //Indirect pointer to the requested ProgID on return
);

Parameters
clsid

[in] Specifies the CLSID for which the ProgID is requested.
lplpszProgID

[out] Indirect pointer to the requested ProgID.

Return Values
S_OK

The ProgID was returned successfully.
REGDB_E_CLASSNOTREG

Class not registered in the registry.
REGDB_E_READREGDB

Error reading registry.

Remarks
Every OLE object class listed in the Insert Object dialog box must have a programmatic identifier
(ProgID), a string that uniquely identifies a given class, stored in the registry. In addition to determining
the eligibility for the Insert Object dialog box, the ProgID can be used as an identifier in a macro
programming language to identify a class. Finally, the ProgID is also the class name used for an object of
an OLE class that is placed in an OLE 1 container.

The ProgIDFromCLSID function uses entries in the registry to do the conversion. OLE application
authors are responsible for ensuring that the registry is configured correctly in the application's setup
program.

The ProgID string must be different than the class name of any OLE 1 application, including the OLE 1
version of the same application, if there is one. In addition, a ProgID string must not contain more than 39
characters, start with a digit, or, except for a single period, contain any punctuation (including
underscores).

The ProgID must never be shown to the user in the user interface. If you need a short displayable string
for an object, call IOleObject::GetUserType.

Call the CLSIDFromProgID function to find the CLSID associated with a given ProgID. CLSIDs can be
freed with the task allocator (refer to the CoGetMalloc function).

See Also
CLSIDFromProgID

PropagateResult

#define PropagateResult(hrPrevious, scBase) ((HRESULT) scBase)

PropagateResult is a NO-OP.

This macro is obsolete and should not be used.

PropVariantClear

Frees all elements that can be freed in a given PROPVARIANT structure.

HRESULT PropVariantClear(

 PROPVARIANT* pvarg //Pointer to a
PROPVARIANT structure

);

Parameters
pvarg

[in] Pointer to an initialized PROPVARIANT structure for which any deallocatable elements are to be
freed. On return, all zeroes are written to the PROPVARIANT.

Return Values
S_OK

The VT types are recognized and all items that can be freed have been freed.
STG_E_INVALID_PARAMETER

The variant has an unknown VT type.

Remarks
At any level of indirection, a NULL pointer is ignored. For example, in a VT_CF PROPVARIANT, the
pvarg¾pclipdata¾pClipData could be NULL. In this case, the pvarg¾pclipdata¾pClipData pointer would
be ignored, but the pvarg¾pclipdata pointer would be freed.

On return, this function writes zeroes to the specified PROPVARIANT, so the VT-type is VT_EMPTY.

Passing NULL as the pvarg parameter produces a return code of S_OK.

See Also
FreePropVariantArray

PropVariantCopy

Copies the contents of a PROPVARIANT structure to another.

HRESULT PropVariantCopy(

 PROPVARIANT * pDest //Pointer to uninitialized PROPVARIANT that is filled
on return

 PROPVARIANT *pvarg //PROPVARIANT to be copied
);

Parameters
pDest

[in, out] Pointer to an uninitialized PROPVARIANT structure that receives the copy.
pvarg

[in] Pointer to the PROPVARIANT to be copied.

Return Values
S_OK

The copy was successfully completed.
STG_E_INVALID_PARAMETER

The variant has an unknown type.

Remarks
Copies a PROPVARIANT by value so the original pvarg and new pDest may be freed independently with
calls to PropVariantClear. For non-simple PROPVARIANT types such as VT_STREAM, VT_STORAGE,
etc, which require a subobject, the copy is made by reference. The pointer is copied and AddRef is called
on it. It is illegal to pass NULL for either pDest or pvarg.

See Also
PROPVARIANT, PropVariantClear

ReadClassStg

Reads the CLSID previously written to a storage object with the WriteClassStg.

WINOLEAPI ReadClassStg(

 IStorage * pStg, //Pointer to the storage object containing the CLSID
 CLSID * pclsid //Pointer to return the CLSID
);

Parameters
pStg

[in] Pointer to the IStorage interface on the storage object containing the CLSID to be retrieved.
pclsid

[out] Pointer to where the CLSID is written. May return CLSID_NULL.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The CLSID was returned successfully.

This function also returns any of the error values returned by the IStorage::Stat method.

Remarks
This function is simply a helper function that calls the IStorage::Stat method and retrieves the CLSID
previously written to the storage object with a call to WriteClassStg from the STATSTG structure.

See Also
OleLoad, WriteClassStg, IStorage::Stat, STATSTG structure.

ReadClassStm

Reads the CLSID previously written to a stream object with the WriteClassStm method.

WINOLEAPI ReadClassStm(

 IStream * pStm, //Pointer to the stream holding the CLSID
 CLSID * pclsid //Pointer to where the CLSID is to be written
);

Parameters
pStm

[in] Pointer to the IStream interface on the stream object containing the CLSID to be read. This
CLSID must have been previously written to the stream object using WriteClassStm.

pclsid

[out] Pointer to where the CLSID is to be written.

Return Values
S_OK

The CLSID was successfully retrieved.
STG_E_READFAULT

End of file was reached.

This function also returns any of the error values returned by the IStream::Read method.

Remarks
Most applications do not call the ReadClassStm method directly. OLE calls it before making a call to an
object's IPersistStream::Load implementation.

See Also
WriteClassStm, ReadClassStg, WriteClassStg

ReadFmtUserTypeStg

Returns the clipboard format and user type previously saved with the WriteFmtUserTypeStg function.

WINOLEAPI ReadFmtUserTypeStg(

 IStorage * pStg, //Pointer to storage object holding the values
 CLIPFORMAT * pcf, //Pointer to return the clipboard format
 LPWSTR * lplpszUserType //Indirect pointer to return the user type string
);

Parameters
pStg

[in] Pointer to the IStorage interface on the storage object from which the information is to be read.
pcf

[out] Pointer to where the clipboard format is to be written on return. It can be NULL, indicating the
format is of no interest to the caller.

lplpszUserType

[out] Indirect pointer to where the user type string is to be returned. It can be NULL, indicating that the
user type is of no interest to the caller. This method allocates memory for the string. The caller is
responsible for freeing the memory with CoTaskMemFree.

Return Values
This function supports the standard return values E_FAIL, E_INVALIDARG, and E_OUTOFMEMORY, as
well as the following:

S_OK

The requested information was read successfully.

This function also returns any of the error values returned by the IStream::Read method.

Remarks
This function returns the clipboard format and the user type string from the specified storage object. The
WriteClassStg function must have been called before calling the ReadFmtUserTypeStg function.

See Also
CoTaskMemFree, WriteFmtUserTypeStg

RegisterDragDrop

Registers the specified window as one that can be the target of an OLE drag-and-drop operation and
specifies the IDropTarget instance to use for drop operations.

WINOLEAPI RegisterDragDrop(

 HWND hwnd, //Handle to a window that can accept drops
 IDropTarget * pDropTarget //Pointer to object that is to be target of drop
);

Parameters
hwnd

[in] Handle to a window that can be a target for an OLE drag-and-drop operation.
pDropTarget

[in] Pointer to the IDropTarget interface on the object that is to be the target of a drag-and-drop
operation in a specified window. This interface is used to communicate OLE drag-and-drop
information for that window.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

The application was registered successfully.
DRAGDROP_E_INVALIDHWND

Invalid handle returned in the hwnd parameter.
DRAGDROP_E_ALREADYREGISTERED

The specified window has already been registered as a drop target.

Remarks
If your application can accept dropped objects during OLE drag-and-drop operations, you must call the
RegisterDragDrop function. Do this whenever one of your application windows is available as a potential
drop target, i.e., when the window appears unobscured on the screen.

The RegisterDragDrop function only registers one window at a time, so you must call it for each
application window capable of accepting dropped objects.

As the mouse passes over unobscured portions of the target window during an OLE drag-and-drop
operation, the DoDragDrop function calls the specified IDropTarget::DragOver method for the current
window. When a drop operation actually occurs in a given window, the DoDragDrop function calls
IDropTarget::Drop.

The RegisterDragDrop function also calls the IUnknown::AddRef method on the IDropTarget pointer.

See Also
RevokeDragDrop

ReleaseStgMedium

Frees the specified storage medium.

void ReleaseStgMedium(

 STGMEDIUM * pmedium //Pointer to storage medium to be freed
);

Parameter
pmedium

[in] Pointer to the storage medium that is to be freed.

Return Value
None.

Remarks
The ReleaseStgMedium function calls the appropriate method or function to release the specified
storage medium. Use this function during data transfer operations where storage medium structures are
parameters, such as IDataObject::GetData or IDataObject::SetData. In addition to identifying the type of
the storage medium, this structure specifies the appropriate IUnknown::Release method for releasing
the storage medium when it is no longer needed.

It is common to pass a STGMEDIUM from one body of code to another, such as in
IDataObject::GetData, in which the one called can allocate a medium and return it to the caller.
ReleaseStgMedium permits flexibility in whether the receiving body of code owns the medium, or
whether the original provider of the medium still owns it, in which case the receiving code needs to inform
the provider that it can free the medium.

When the original provider of the medium is responsible for freeing the medium, the provider calls
ReleaseStgMedium, specifying the medium and the appropriate IUnknown pointer as the
punkForRelease structure member. Depending on the type of storage medium being freed, one of the
following actions is taken, followed by a call to the Release method on the specified IUnknown pointer:

Medium ReleaseStgMedium Action
TYMED_HGLOBAL None.
TYMED_GDI None.
TYMED_ENHMF None.
TYMED_MFPICT None.
TYMED_FILE Frees the file name string using standard

memory management mechanisms.
TYMED_ISTREAM Calls IStream::Release.
TYMED_ISTORAGE Calls IStorage::Release.

The provider indicates that the receiver of the medium is responsible for freeing the medium by specifying
NULL for the punkForRelease structure member. Then the receiver calls ReleaseStgMedium, which
makes a call as described in the following table depending on the type of storage medium being freed:

Medium ReleaseStgMedium Action
TYMED_HGLOBAL Calls the Win32 GlobalFree function on

the handle.
TYMED_GDI Calls the Win32 DeleteObject function on

the handle.
TYMED_ENHMF Deletes the enhanced metafile.
TYMED_MFPICT The hMF that it contains is deleted with the

Win32 DeleteMetaFile function; then the
handle itself is passed to GlobalFree.

TYMED_FILE Frees the disk file by deleting it. Frees the
file name string by using the standard
memory management paradigm.

TYMED_ISTREAM Calls IStream::Release.
TYMED_ISTORAGE Calls IStorage::Release.

In either case, after the call to ReleaseStgMedium, the specified storage medium is invalid and can no
longer be used.

See Also
STGMEDIUM structure

ResultFromScode

#define ResultFromScode(sc) ((HRESULT) (sc))

Converts an SCODE into an HRESULT.

This macro is obsolete and should not be used.

RevokeDragDrop

Revokes the registration of the specified application window as a potential target for OLE drag-and-drop
operations.

WINOLEAPI RevokeDragDrop(

 HWND hwnd //Handle to a window that can accept drops
);

Parameter
hwnd

[in] Handle to a window previously registered as a target for an OLE drag-and-drop operation.

Return Values
This function supports the standard return value E_OUTOFMEMORY, as well as the following:

S_OK

Registration as a target window was revoked successfully.
DRAGDROP_E_INVALIDHWND

Invalid handle returned in the hwnd parameter.
DRAGDROP_E_NOTREGISTERED

An attempt was made to revoke a drop target that has not been registered.

Remarks
When your application window is no longer available as a potential target for an OLE drag-and-drop
operation, you must call RevokeDragDrop.

This function calls the IUnknown::Release method for your drop target interface.

See Also
RegisterDragDrop

SCODE_CODE

#define SCODE_CODE(sc) ((sc) & 0xFFFF)

Extracts the code part of the SCODE.

SCODE_FACILITY

#define SCODE_FACILITY(sc) (((sc) >> 16) & 0x1fff)

Extracts the facility from the SCODE.

SCODE_SEVERITY

#define SCODE_SEVERITY(sc) (((sc) >> 31) & 0x1)

Extracts the severity field from the SCODE.

SetConvertStg

Sets the convert bit in a storage object to indicate that the object is to be converted to a new class when it
is opened. The setting can be retrieved with a call to the GetConvertStg function.

WINOLEAPI SetConvertStg(

 IStorage * pStg, //Points to storage object where the conversion bit is to be set

 BOOL fConvert //Indicates whether an object is to be converted

);

Parameters
pStg

IStorage pointer to the storage object in which to set the conversion bit.
fConvert

If TRUE, sets the conversion bit for the object to indicate the object is to be converted when opened.
If FALSE, clears the conversion bit.

Return Values
S_OK

Indicates the object's conversion bit was set successfully.
STG_E_ACCESSDENIED

Access denied because the caller has insufficient permission, or another caller has the file open and
locked.

STG_E_LOCKVIOLATION

Access denied because another caller has the file open and locked.
E_OUTOFMEMORY

Indicates the conversion bit was not set due to a lack of memory.
E_INVALIDARG

Indicates one or more arguments are invalid.
E_UNEXPECTED

Indicates an unexpected error occurred.

See the IStorage::CreateStream, IStorage::OpenStream, IStream::Read, and IStream::Write
methods for possible storage and stream access errors.

Remarks
The SetConvertStg function determines the status of the convert bit in a contained object. It is called by
both the container application and the server in the process of converting an object from one class to
another. When a user specifies through a Convert To dialogue (which the container produces with a call
to the OleUIConvert function) that an object is to be converted, the container must take the following
steps:

1. Unload the object if it is currently loaded.
2. Call WriteClassStg to write the new CLSID to the object storage.
3. Call WriteFmtUserTypeStg to write the new user type name and the existing main format to the

storage.
4. Call SetConvertStg with the fConvert parameter set to TRUE to indicate that the object has been

tagged for conversion to a new class the next time it is loaded.
5. Just before the object is loaded, call OleDoAutoConvert to handle any needed object conversion,

unless you call OleLoad, which calls it internally.

When an object is initialized from a storage object and the server is the destination of a Convert To
operation, the object server should do the following:

1. Call the GetConvertStg function to retrieve the value of the conversion bit.
2. If the bit is set, the server reads the data out of the object according to the format associated with the

new CLSID.
3. When the object is asked to save itself, the object should call WriteFmtUserType() using the normal

native format and user type of the object.
4. The object should then call SetConvertStg with the fConvert parameter set to FALSE to reset the

object's conversion bit.

See Also
GetConvertStg

StgCreateDocfile

Creates a new compound file storage object using the OLE-provided compound file implementation for
the IStorage interface.

WINOLEAPI StgCreateDocfile(

 const WCHAR * pwcsName, //Points to pathname of compound file to create

 DWORD grfMode, //Specifies the access mode for opening the storage object

 DWORD reserved, //Reserved; must be zero

 IStorage ** ppstgOpen //Points to location for returning the new storage object

);

Parameters
pwcsName

[in] Points to the pathname of the compound file to create. It is passed uninterpreted to the file
system. This can be a relative name or NULL. If NULL, a temporary compound file is allocated with a
unique name.

grfMode

[in] Specifies the access mode to use when opening the new storage object. For more information,
see the STGM enumeration. If the caller specifies transacted mode together with STGM_CREATE or
STGM_CONVERT, the overwrite or conversion takes place at the time the storage object is opened
and therefore is not revertible.

reserved

[in] Reserved for future use; must be zero.
ppstgOpen

[out] Points to the location of the IStorage pointer to the new storage object.

Return Values
S_OK

Indicates the compound file was successfully created.

STG_E_ACCESSDENIED

Access denied because the caller has insufficient permission, or another caller has the file open and
locked.

STG_E_LOCKVIOLATION

Access denied because another caller has the file open and locked.
STG_E_FILEALREADYEXISTS

Indicates the compound file already exists and grfMode is set to STGM_FAILIFTHERE.
STG_S_CONVERTED

Indicates the specified file was successfully converted to Storage format.
STG_E_INSUFFICIENTMEMORY

Indicates the compound file was not created due to a lack of memory.
STG_E_INVALIDNAME

Indicates bad name in the pwcsName parameter.
STG_E_INVALIDPOINTER

Indicates bad pointer in the pwcsName parameter or the ppStgOpen parameter.
STG_E_INVALIDFLAG

Indicates bad flag combination in the grfMode pointer.
STG_E_TOOMANYOPENFILES

Indicates the compound file was not created due to a lack of file handles.

See also any file system errors for other error return values.

Remarks
The StgCreateDocfile function creates a new storage object using the OLE-provided, compound-file
implementation for the IStorage interface. The name of the open compound file can be retrieved by
calling the IStorage::Stat method.

StgCreateDocfile creates the file if it does not exist. If it does exist, the use of the STGM_CREATE,
STGM_CONVERT, and STGM_FAILIFTHERE flags in the grfMode parameter indicate how to proceed.
See the STGM enumeration for more information on these values.

If the compound file is opened in transacted mode (the grfMode parameter specifies
STGM_TRANSACTED) and a file with this name already exists, the existing file is not altered until all
outstanding changes are committed. If the calling process lacks write access to the existing file (because
of access control in the file system), the grfMode parameter can only specify STGM_READ and not
STGM_WRITE or STGM_READWRITE. The resulting new open compound file can still be written to, but
a commit operation will fail (in transacted mode, write permissions are enforced at commit time).

Specifying STGM_SIMPLE provides a much faster implementation of a compound file object in a limited,
but frequently-used case. This can be used by applications that require a compound file implementation
with multiple streams and no storages. The simple mode does not support all of the methods on
IStorage. For more information, refer to the STGM enumeration.

If the grfMode parameter specifies STGM_TRANSACTED and no file yet exists with the name specified
by the pwcsName parameter, the file is created immediately. In an access-controlled file system, the
caller must have write permissions in the file system directory in which the compound file is created. If
STGM_TRANSACTED is not specified, and STGM_CREATE is specified, an existing file with the same
name is destroyed before creating the new file.

StgCreateDocfile can be used to create a temporary compound file by passing a NULL value for the
pwcsName parameter. However, these files are temporary only in the sense that they have a system-
provided unique name - likely one that is meaningless to the user. The caller is responsible for deleting
the temporary file when finished with it, unless STGM_DELETEONRELEASE was specified for the
grfMode parameter.

See Also
StgCreateDocFileOnILockBytes

StgCreateDocfileOnILockBytes

Creates and opens a new compound file storage object on top of a byte array object provided by the
caller. The storage object supports the OLE-provided, compound-file implementation for the IStorage
interface.

WINOLEAPI StgCreateDocfileOnILockBytes(

 ILockBytes * plkbyt, //Points to the ILockBytes interface on the byte array object

 DWORD grfMode, //Specifies the access mode

 DWORD reserved, //Reserved; must be zero

 IStorage ** ppstgOpen //Points to location for returning the new storage object

);

Parameters
plkbyt

[in] Points to the ILockBytes interface on the underlying byte array object on which to create a
compound file.

grfMode

[in] Specifies the access mode to use when opening the new compound file. For more information,
see the STGM enumeration.

reserved

[in] Reserved for future use; must be zero.
ppstgOpen

[out] Points to the location of the IStorage pointer on the new storage object.

Return Values
S_OK

Indicates the compound file was successfully created.
STG_E_ACCESSDENIED

Access denied because the caller has insufficient permission, or another caller has the file open and
locked.

STG_E_LOCKVIOLATION

Access denied because another caller has the file open and locked.
STG_E_FILEALREADYEXISTS

Indicates the compound file already exists and the grfMode parameter is set to STGM_FAILIFTHERE.
STG_S_CONVERTED

Indicates the compound file was successfully converted. The original byte array object was
successfully converted to IStorage format.

STG_E_INSUFFICIENTMEMORY

Indicates the storage object was not created due to a lack of memory.
STG_E_INVALIDPOINTER

Indicates a bad pointer was in the pLkbyt parameter or the ppStgOpen parameter.
STG_E_INVALIDFLAG

Indicates a bad flag combination was in the grfMode parameter.
STG_E_TOOMANYOPENFILES

Indicates the storage object was not created due to a lack of file handles.

See also any file system errors for other error return values.

See also the ILockBytes interface for other error return values.

Remarks
The StgCreateDocfileOnILockBytes function creates a storage object on top of a byte array object
using the OLE-provided, compound-file implementation of the IStorage interface.
StgCreateDocfileOnILockBytes can be used to store a document in a relational database. The byte
array (indicated by the pLkbyt parameter, which points to the ILockBytes interface on the object) is used
for the underlying storage in place of a disk file.

Except for specifying a programmer-provided byte-array object, StgCreateDocfileOnILockBytes is
similar to the StgCreateDocfile function. For more information, refer to StgCreateDocfile.

The newly created compound file is opened according to the access modes in the grfMode parameter.
For conversion purposes, the file is always considered to already exist. As a result, it is not useful to use
the STGM_FAILIFTHERE value, because it always causes an error to be returned. However,
STGM_CREATE and STGM_CONVERT are both still useful.

The ability to build a compound file on top of a byte array object is provided to support having the data
(underneath an IStorage and IStream tree structure) live in a non-persistent space. Given this capability,
there is nothing preventing a document that is stored in a file from using this facility. For example, a
container might do this to minimize the impact on its file format caused by adopting OLE. However, it is
recommended that OLE documents adopt the IStorage interface for their own outer-level storage. This
has the following advantages:

· The storage structure of the document is the same as its storage structure when it is an embedded
object, reducing the number of cases the application needs to handle.

· One can write tools to access the OLE embeddings and links within the document without special
knowledge of the document's file format. An example of such a tool is a copy utility that copies all the
documents included in a container containing linked objects. A copy utility like this needs access to
the contained links to determine the extent of files to be copied.

· The IStorage implementation addresses the problem of how to commit the changes to the file. An
application using the ILockBytes interface must handle these issues itself.

· Future file systems will likely implement the IStorage and IStream interfaces as their native
abstractions, rather than layer on top of a byte array as is done in compound files. Such a file system
could be built so documents using the IStorage interface as their outer level containment structure
would get an automatic efficiency gain by having the layering flattened when files are saved on the
new file system.

See Also
StgCreateDocfile

StgGetIFillLockBytesOnFile
Opens a wrapper object on a temporary file.

WINOLEAPI StgGetIFillLockBytes(

 OLECHAR *pwcsName // Pointer to file specified by filename
 IFillLockBytes **ppflb // Pointer to new byte array wrapper object
);

Parameters
pwcsName

[in] Pointer to the name of the file to be instantiated.
pflb

[out] Indirect pointer to new byte array wrapper object.

Remarks
The moniker that manages the downloading of the file specified in pwcsName calls this function in the
course of creating the asynchronous storage necessary to manage the asynchronous downloading of
data. The moniker first creates a temporary file, then calls this function to create the wrapper object on
that file. Finally, the moniker calls StgOpenAsyncDocfileOnIFillLockBytes to open the root storage of
the compound file that is to be downloaded into the temporary file.

See Also
IFillLockBytes, ILockBytes, StgOpenAsyncDocfileOnIFillLockBytes

StgGetIFillLockBytesOnILockBytes
Creates a new wrapper object on a byte array object provided by the caller.

WINOLEAPI StgOpenAsyncDocFileOnIFillLockBytes(

 ILockBytes *pilb // Pointer to existing byte array object
 IFillLockBytes **ppflb // Pointer to new byte array wrapper object
);

Parameters
pilb

[in] Pointer to an existing byte array object.
pflb

[out] Indirect pointer to new byte array wrapper object..

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL, as well as the following:

Remarks
The StgGetIFillLockBytesOnILockBytes function makes it possible to create an asynchronous storage
wrapper object on a custom byte array object. For example, if you wanted to implement asynchronous
storage on a database for which you have already created a byte array object, you would call this function
to create the wrapper object for the byte array. To do so, the function instantiates a new wrapper object
and then initializes it by passing it a pointer to the existing byte array object.

See Also
IFillLockBytes, ILockBytes

StgIsStorageFile

Indicates whether a particular disk file contains a storage object.

WINOLEAPI StgIsStorageFile(

 const WCHAR * pwcsName //Points to a pathname of the file to check

);

Parameter
pwcsName

[in] Points to the name of the disk file to be examined. The pwcsName parameter is passed
uninterpreted to the underlying file system.

Return Values
S_OK

Indicates the file contains a storage object.
S_FALSE

Indicates the file does not contain a storage object.
STG_E_INVALIDFILENAME

Indicates a bad filename was passed in the pwcsName parameter.
STG_E_FILENOTFOUND

Indicates the file was not found.

See also any file system errors for other error return values.

Remarks
At the beginning of the disk file underlying a storage object is a signature distinguishing a storage object
from other file formats. The StgIsStorageFile function is useful to applications whose documents use a
disk file format that might or might not use storage objects.

If a root compound file has been created in transacted mode but not yet committed, this method will still
return S_OK.

See Also
StgIsStorageILockBytes

StgIsStorageILockBytes

Indicates whether the specified byte array contains a storage object.

WINOLEAPI StgIsStorageILockBytes(

 ILockBytes * plkbyt //ILockBytes pointer to the byte array to be examined

);

Parameter
plkbyt

ILockBytes pointer to the byte array to be examined.

Return Values
S_OK

Indicates the specified byte array contains a storage object.
S_FALSE

Indicates the specified byte array does not contain a storage object.

File system errors.

ILockBytes interface error return values.

Remarks
At the beginning of the byte array underlying a storage object is a signature distinguishing a storage
object (supporting the IStorage interface) from other file formats. The StgIsStorageILockBytes function
is useful to applications whose documents use a byte array (a bye array object supports the ILockBytes
interface) that might or might not use storage objects.

See Also
StgIsStorageFile, ILockBytes

StgOpenAsyncDocfileOnIFillLockBytes
Opens an existing root asynchronous storage object on a byte array wrapper object provided by the
caller.

WINOLEAPI StgOpenAsyncDocFileOnIFillLockBytes(

 IFillLockBytes *pflb // Pointer to byte array wrapper object
 DWORD grfmode // Storage access mode
 DWORD asyncFlags // Asynchronous storage flags
 IStorage **ppstgOpen // Indirect pointer to asynchronous storage
);

Parameters
pflb

[in] IFillLockBytes pointer to the byte array wrapper object that contains the storage object to be
opened.

grfmode

[in] Specifies the access mode to use to open the storage object. The most common access mode,
taken from the STGM enumeration, is STGM_READ.

asyncFlags

[in] Indicates whether a connection point on a storage will be inherited by its substorages and
streams. ASYNC_MODE_COMPATIBILITY indicates that the connection point is inherited;
ASYNC_MODE_DEFAULT indicates that the connection point is not inherited.

ppstgOpen

[out] Pointer to IStorage pointer on root asynchronous storage object.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL, as well as the following:

E_PENDING

Data is currently unavailable.
E_NOINTERFACE

A pointers was not returned to the requested interface.
STG_E_INSUFFICIENTMEMORY

There is insufficient memory to complete this operation.

Remarks
The root storage of the asynchronous storage object is opened according to the access mode in the
grfMode parameter. A pointer to the IStorage interface on the opened storage object is supplied
through the ppstgOpen parameter.

The byte array wrapper object must have been previously instantiated through a call to the
StgGetIFillLockBytesOnFile function.

StgOpenAsyncDocFileOnIFillLockBytes does not support priority access mode or exclusions.
Otherwise, it works in much the same way as the StgOpenStorageOnILockBytes function.

The returned storage object has a connection point for IProgressNotify.

See Also
IFillLockBytes, ILockBytes, StgGetIFillLockBytesOnFile, StgOpenStorageOnILockBytes.

StgOpenLayoutDocfile
Opens a compound file on an ILockBytes implementation that that is capable of monitoring sector
information.

WINOLEAPI StgOpenLayoutDocfile(

 OLECHAR *pwcsName // Pointer to name of compound file to be opened
 DWORD grfMode // Access mode for the new storage object.
 DWORD reserved // Reserved for future use.
 IStorage **ppstgOpen // Indirect pointer to the new root storage object.
);

Parameters
pwcsName

[in] Pointer to the name of the compound file to be opened.
grfMode

[in] Access mode to use when opening the newly created storage object. Values are taken from the
STGM enumeration. Note that priority mode and exclusions are not supported. The most common
access mode is likely to be STGM_DIRECT | STGM_READ | STGM_SHARE_EXCLUSIVE.

ppstgOpen

[out] Indirect pointer to the IStorage interface on the root object of the newly created root storage
object.

Return Values
This function supports the standard return values E_OUTOFMEMORY, E_UNEXPECTED,
E_INVALIDARG, and E_FAIL, as well as the following:

STG_E_INVALIDPARAMETER

One of the parameters is invalid
STG_E_INVALIDNAME

The name passed to this function is not a valid filename
STG_E_INSUFFICIENTMEMORY

There is insufficient memory to complete this operation.
This function can also return any of the error values returned by the StgOpenStorageOnILockBytes
function.

Remarks
The compound file implementation created by this function exposes the ILayoutStorage interface on its
root storage. Applications use this interface to express the optimal layout of their compound files for the
purpose of more rapidly downloading and rendering data over a slow link. StgOpenLayoutDocfile
returns a pointer to the IStorage interface on the root storage of the newly created compound file. Using
this pointer, applications call QueryInterface to obtain a pointer to ILayoutStorage.

See Also

ILockBytes, IStorage, STGM

StgOpenStorage

Opens an existing root storage object in the file system. You can use this function to open compound files,
but you cannot use it to open directories, files, or summary catalogs. Nested storage objects can only be
opened using their parent's IStorage::OpenStorage method.

WINOLEAPI StgOpenStorage(

 const WCHAR * pwcsName, //Points to the pathname of the file containing storage object

 IStorage * pstgPriority, //Points to a previous opening of a root storage object

 DWORD grfMode, //Specifies the access mode for the object

 SNB snbExclude, //Points to an SNB structure specifying elements to be excluded

 DWORD reserved, //Reserved; must be zero

 IStorage ** ppstgOpen //Indirect IStorage pointer to the storage object on return

);

Parameters
pwcsName

[in] Points to the pathname of the storage object to open. This parameter is ignored if the pStgPriority
parameter is not NULL.

pstgPriority

[in] Most often NULL. If not NULL, this parameter is used instead of the pwcsName parameter to
specify the pointer to the IStorage interface on the storage object to open. It points to a previous
opening of a root storage object, most often one that was opened in priority mode.
After the StgOpenStorage function returns, the storage object specified in the pStgPriority parameter
on function entry is invalid, and can no longer be used. Use the one specified in the ppStgOpen
parameter instead.

grfMode

[in] Specifies the access mode to use to open the storage object.
snbExclude

[in] If not NULL, this parameter points to a block of elements in this storage that are to be excluded as
the storage object is opened. This exclusion occurs independent of whether a snapshot copy
happens on the open. May be NULL.

reserved

[in] Indicates reserved for future use; must be zero.
ppstgOpen

[out] Points to the location of the IStorage pointer on the opened storage.

Return Values
S_OK

Indicates the storage object was successfully opened.
STG_E_FILENOTFOUND

Indicates the specified file does not exist.
STG_E_ACCESSDENIED

Access denied because the caller has insufficient permission, or another caller has the file open and
locked.

STG_E_LOCKVIOLATION

Access denied because another caller has the file open and locked.
STG_E_FILEALREADYEXISTS

Indicates the file exists but is not a storage object.
STG_E_TOOMANYOPENFILES

Indicates the storage object was not opened because there are too many open files.
STG_E_INSUFFICIENTMEMORY

Indicates the storage object was not opened due to a lack of memory.
STG_E_INVALIDNAME

Indicates bad name in the pwcsName parameter.
STG_E_INVALIDPOINTER

Indicates bad pointer in one of the parameters: snbExclude, pwcsName, pstgPriority, or ppStgOpen.
STG_E_INVALIDFLAG

Indicates bad flag combination in the grfMode parameter.
STG_E_INVALIDFUNCTION

Indicates STGM_DELETEONRELEASE specified in the grfMode parameter.
STG_E_OLDFORMAT

Indicates the storage object being opened was created by the Beta 1 storage provider. This format is
no longer supported.

STG_E_OLDDLL

Indicates the DLL being used to open this storage object is a version prior to the one used to create it.
STG_E_PATHNOTFOUND

Specified pathname does not exist.

Remarks
The StgOpenStorage function opens the specified root storage object according to the access mode in
the grfMode parameter, and, if successful, supplies an IStorage pointer to the opened storage object in
the ppstgOpen parameter.

Note Opening a storage object in read and/or write mode without denying writer permission to
others (the grfMode parameter specifies STGM_SHARE_DENY_WRITE) can be a time-consuming
operation since the StgOpenStorage call must make a snapshot of the entire storage object.

Applications will often try to open storage objects with the following access permissions:

STGM_READ_WRITE | STGM_SHARE_DENY_WRITE
 // transacted vs. direct mode omitted for exposition

If the application succeeds, it will never need to do a snapshot copy. If it fails, the application can revert to
using the permissions and make a snapshot copy:

STGM_READ_WRITE
 // transacted vs. direct mode omitted for exposition

In this case, the application should prompt the user before doing a time-consuming copy. Alternatively, if
the document sharing semantics implied by the access modes are appropriate, the application could try to
open the storage as follows:

STGM_READ | STGM_SHARE_DENY_WRITE
 // transacted vs. direct mode omitted for exposition

In this case, if the application succeeds, a snapshot copy will not have been made (because
STGM_SHARE_DENY_WRITE was specified, denying others write access).

To reduce the expense of making a snapshot copy, applications can open storage objects in priority mode
(grfMode specifies STGM_PRIORITY).

The snbExclude parameter specifies a set of element names in this storage object that are to be emptied
as the storage object is opened: streams are set to a length of zero; storage objects have all their
elements removed. By excluding certain streams, the expense of making a snapshot copy can be
significantly reduced. Almost always, this approach will be used after first opening the storage object in
priority mode, then completely reading the now-excluded elements into memory. This earlier priority mode
opening of the storage object should be passed through the pstgPriority parameter to remove the
exclusion implied by priority mode. The calling application is responsible for rewriting the contents of
excluded items before committing. Thus, this technique is most likely only useful to applications whose
documents do not require constant access to their storage objects while they are active.

See Also
IStorage, StgCreateDocfile

StgOpenStorageOnILockBytes

Opens an existing storage object that does not reside in a disk file, but instead has an underlying byte
array provided by the caller.

WINOLEAPI StgOpenStorageOnILockBytes(

 ILockBytes * plkbyt, //Points to the ILockBytes interface on the underlying byte array

 IStorage * pStgPriority, //Points to a previous opening of a root storage object

 DWORD grfMode, //Specifies the access mode for the object

 SNB snbExclude, //Points to an SNB structure specifying elements to be excluded

 DWORD reserved, //Reserved, must be zero

 IStorage ** ppstgOpen //Points to location for returning the storage object

);

Parameters
plkbyt

[in] ILockBytes pointer to the underlying byte array object that contains the storage object to be
opened.

pStgPriority

[in] Most often NULL. If not NULL, this parameter is used instead of the plkbyt parameter to specify
the storage object to open. In this case, it points to the IStorage interface on a previously opened root
storage object, most often one that was opened in priority mode.
After the StgOpenStorageOnILockBytes function returns, the storage object specified in the
pStgPriority parameter on function entry is invalid, and can no longer be used; use the one specified
in the ppStgOpen parameter instead.

grfMode

[in] Specifies the access mode to use to open the storage object.
snbExclude

[in] May be NULL. If not NULL, this parameter points to a block of elements in this storage that are to
be excluded as the storage object is opened. This exclusion occurs independent of whether a
snapshot copy happens on the open. .

reserved

[in] Indicates reserved for future use; must be zero.
ppstgOpen

[out] Points to the location of an IStorage pointer to the opened storage on successful return.

Return Values
S_OK

The storage object was successfully opened.

STG_E_FILENOTFOUND

The specified byte array does not exist.
STG_E_ACCESSDENIED

Access denied because the caller has insufficient permission, or another caller has the file open and
locked.

STG_E_LOCKVIOLATION

Access denied because another caller has the file open and locked.
STG_E_FILEALREADYEXISTS

The byte array exists but is not a storage object.
STG_E_TOOMANYOPENFILES

The storage object was not opened because there are too many open files.
STG_E_INSUFFICIENTMEMORY

The storage object was not opened due to a lack of memory.
STG_E_INVALIDNAME

Either pwcsName or snbExclude contains an invalid name.
STG_E_INVALIDPOINTER

Either snbExclude, pwcsName, pstgPriority, or ppStgOpen contains an invalid pointer.
STG_E_INVALIDFLAG

The grfMode parameter contains a bad flag combination.
STG_E_INVALIDFUNCTION

The access mode STGM_DELETEONRELEASE was specified in the grfMode parameter.
STG_E_OLDDLL

The DLL being used to open this storage object is a version prior to the one used to create it.
STG_E_OLDFORMAT

The storage object being opened was created by the Beta 1 storage provider. This format is no longer
supported.

File system error return values.

ILockBytes interface error return values.

Remarks
StgOpenStorageOnILockBytes opens the specified root storage object. The storage object is opened
according to the access mode in the grfMode parameter; a pointer to the IStorage interface on the
opened storage object is supplied through the ppstgOpen parameter.

The storage object must have been previously created by the StgCreateDocfileOnILockBytes function.

Except for specifying a programmer-provided byte-array object, StgOpenStorageOnILockBytes is
similar to the StgOpenStorage function. For more information, refer to StgOpenStorage.

See Also

StgOpenStorage, StgCreateDocfileOnILockBytes

StgSetTimes

Sets the creation, access, and modification times of the indicated file, if supported by the underlying file
system.

WINOLEAPI StgSetTimes(

 WCHAR const * lpszName, //Points to the name of the file to be changed

 FILETIME const * pctime, //Points to the new value for the creation time

 FILETIME const * patime, //Points to the new value for the access time

 FILETIME const * pmtime //Points to the new value for the modification time

);

Parameters
lpszName

[in] Points to the name of the file to be changed.
pctime

[in] Points to the new value for the creation time.
patime

[in] Points to the new value for the access time.
pmtime

[in] Points to the new value for the modification time.

Return Values
S_OK

Indicates time values successfully set.
STG_E_FILENOTFOUND

Indicates element does not exist.
STG_E_INVALIDNAME

Indicates bad name passed in the lpszName parameter, or a file system error.
STG_E_ACCESSDENIED

Access denied because the caller has insufficient permission, or another caller has the file open and
locked.

STG_E_LOCKVIOLATION

Access denied because another caller has the file open and locked.

File system error return values.

Remarks

The StgSetTimes function sets the time values for the specified file. Each of the time value parameters
can be NULL, indicating no modification should occur.

It is possible that one or more of these time values are not supported by the underlying file system. This
function sets the times that can be set and ignores the rest.

StringFromCLSID

Converts a CLSID into a string of printable characters. Different CLSIDs always convert to different
strings.

WINOLEAPI StringFromCLSID(

 REFCLSID rclsid, //CLSID to be converted
 LPOLESTR * ppsz //Indirect pointer to the resulting string on return
);

Parameters
rclsid

[in] CLSID to be converted.
ppsz

[out] Pointer to the resulting string.

Return Values
This function supports the standard return value E_OUTOFMEMORY; as well as the following:

S_OK

Indicates the CLSID was successfully converted and returned.

Remarks
The StringFromCLSID function calls the StringFromGuid2 function to convert a globally unique
identifier (GUID) into a string of printable characters.

See Also
CLSIDFromString, StringFromGuid2

StringFromGUID2

Converts a globally unique identifier (GUID) into a string of printable characters.

StringFromGUID2(

 REFGUID rguid, //Interface identifier to be converted
 LPOLESTR lpsz, //Pointer to the resulting string on return
 int cbMax //Maximum size the returned string is expected to be
);

Parameters
rguid

[in] Interface identifier to be converted.
lpsz

[out] Pointer to the resulting string on return.
cbMax

[in] Maximum size the returned string is expected to be.

Return Values
0 (zero)

Buffer is too small for returned string.
Non-zero value

The number of characters in the returned string, including the null terminator.

Remarks
The string that the lpsz parameter receives has a format like the following sample:

[c200e360-38c5-11ce-ae62-08002b2b79ef]

where the successive fields break the GUID into the form DWORD-WORD-WORD-WORD-
WORD.DWORD covering the 128-bit GUID. The string includes enclosing braces, which are an OLE
convention.

See Also
StringFromCLSID

StringFromIID

Converts an interface identifier into a string of printable characters.

WINOLEAPI StringFromIID(

 REFIID rclsid //Interface identifier to be converted
 LPOLESTR * lplpsz //Indirect pointer to the resulting string
);

Parameters
rclsid

[in] Interface identifier to be converted.
lplpsz

[out] Indirect pointer to the resulting string on return.

Return Values
This function supports the standard return value E_OUTOFMEMORY; as well as the following:

S_OK

The character string was successfully returned.

Remarks
The string returned by the function is freed in the standard way, using the task allocator (refer to the
CoGetMallocfunction).

See Also
IIDFromString, CoGetMalloc

SUCCEEDED

#define SUCCEEDED(Status) ((HRESULT)(Status) >= 0)

Provides a generic test for success on any status value. Non-negative numbers indicate success.

WriteClassStg

Stores the specified CLSID in a storage object.

WINOLEAPI WriteClassStg(

 IStorage * pStg, //Points to the IStorage interface on the storage object

 REFCLSID rclsid //Specifies the CLSID to be stored in the storage object

);

Parameters
pStg

[in] IStorage pointer to the storage object that will get a new CLSID.
rclsid

[in] Points to the CLSID to be stored with the object.

Return Values
S_OK

Indicates the CLSID was successfully written to the file.
STG_E_MEDIUMFULL

Indicates the CLSID could not be written due to lack of memory.

IStorage::SetClass method error return values.

Remarks
The WriteClassStg function writes a CLSID to the specified storage object so it can be read by the
ReadClassStg function. Container applications typically call this function before calling the
IPersistStorage::Save method.

See Also
OleSave, ReadClassStg

WriteClassStm

Stores the specified CLSID in the stream.

WINOLEAPI WriteClassStm(

 IStream * pStm, //Points to the IStream interface on the stream object

 REFCLSID rclsid //Specifies the CLSID to be stored in the stream object

);

Parameters
pStm

[in] IStream pointer to the stream into which the CLSID is to be written.
rclsid

[in] Specifies the CLSID to write to the stream.

Return Values
S_OK

Indicates the CLSID was successfully written.
STG_E_MEDIUMFULL

The CLSID could not be written because there is no space left on device.

IStorage::SetClass method error return values.

Remarks
The WriteClassStm function writes a CLSID to the specified stream object so it can be read by the
ReadClassStm function. Most applications do not call WriteClassStm directly. OLE calls it before
making a call to an object's IPersistStream::Save method.

See Also
ReadClassStm, WriteClassStg, ReadClassStg

WriteFmtUserTypeStg

Writes a clipboard format and user type to the storage object.

WINOLEAPI WriteFmtUserTypeStg(

 IStorage * pStg, //Points to the IStorage interface on the storage object

 CLIPFORMAT cf, //Specifies the clipboard format
 LPWSTR * lpszUserType //Points to the current user type
);

Parameters
pStg

[in] IStorage pointer to the storage object where the information is to be written.
cf

[in] Specifies the clipboard format that describes the structure of the native area of the storage object.
The format tag includes the policy for the names of streams and substorages within this storage
object and the rules for interpreting data within those streams.

lpszUserType

[in] Points to the object's current user type. It cannot be NULL. This is the type returned by the
IOleObject::GetUserType method. If this function is transported to a remote machine where the
object class does not exist, this persistently stored user type can be shown to the user in dialog
boxes.

Return Values
S_OK

Indicates the information was written successfully.
STG_E_MEDIUMFULL

Indicates information could not be written due to lack of space on the storage medium.

IStream::Write method error return values.

Remarks
The WriteFmtUserTypeStg function must be called in an object's implementation of the
IPersistStorage::Save method. It must also be called by document-level objects that use structured
storage for their persistent representation in their save sequence.

To read the information saved, applications call the ReadFmtUserTypeStg function.

See Also
IPersistStorage::Save, ReadFmtUserTypeStg

BIND_OPTS

Contains parameters used during a moniker-binding operation. The BIND_OPTS2 structure may be used
in its place. A BIND_OPTS structure is stored in a bind context; the same bind context is used by each
component of a composite moniker during binding, allowing the same parameters to be passed to all
components of a composite moniker. See IBindCtx for more information about bind contexts.

If you're a moniker client (that is, you use a moniker to acquire an interface pointer to an object), you
typically do not need to specify values for the fields of this structure. The CreateBindCtx function creates
a bind context with the bind options set to default values that are suitable for most situations; the
BindMoniker function does the same thing when creating a bind context for use in binding a moniker. If
you want to modify the values of these bind options, you can do so by passing a BIND_OPTS structure to
the IBindCtx::SetBindOptions method. Moniker implementers can pass a BIND_OPTS structure to the
IBindCtx::GetBindOptions method to retrieve the values of these bind options.

The BIND_OPTS structure is defined in OBJIDL.IDL.

typedef struct tagBIND_OPTS
{
 DWORD cbStruct;
 DWORD grfFlags;
 DWORD grfMode;
 DWORD dwTickCountDeadline;
} BIND_OPTS, *LPBIND_OPTS;

Members

cbStruct

Size of this structure in bytes (that is, the size of the BIND_OPTS structure).
grfFlags

Flags that control aspects of moniker binding operations. This value is any combination of the bit flags
in the BINDFLAGS enumeration. New values may be defined in the future, so moniker
implementations should ignore any bits in this field that they do not understand. The CreateBindCtx
function initializes this field to zero.

grfMode

Flags that should be used when opening the file that contains the object identified by the moniker.
The values are taken from the STGM enumeration. The binding operation uses these flags in the call
to IPersistFile::Load when loading the file. If the object is already running, these flags are ignored by
the binding operation. The CreateBindCtx function initializes this field to STGM_READWRITE.

dwTickCountDeadline

Clock time (in milliseconds, as returned by the GetTickCount function) by which the caller would like
the binding operation to be completed. This member lets the caller limit the execution time of an
operation when speed is of primary importance. A value of zero indicates that there is no deadline.
Callers most often use this capability when calling the IMoniker::GetTimeOfLastChange method,
though it can be usefully applied to other operations as well. The CreateBindCtx function initializes
this field to zero.
Typical deadlines allow for a few hundred milliseconds of execution. This deadline is a
recommendation, not a requirement; however, operations that exceed their deadline by a large
amount may cause delays for the end user. Each moniker implementation should try to complete its
operation by the deadline, or fail with the error MK_E_EXCEEDEDDEADLINE.
If a binding operation exceeds its deadline because one or more objects that it needs are not running,

the moniker implementation should register the objects responsible in the bind context using the
IBindCtx::RegisterObjectParam. The objects should be registered under the parameter names
"ExceededDeadline", "ExceededDeadline1", "ExceededDeadline2", and so on. If the caller later finds
the object in the Running Object Table, the caller can retry the binding operation.
The GetTickCount function indicates the number of milliseconds since system startup, and wraps
back to zero after 2^31 milliseconds. Consequently, callers should be careful not to inadvertently pass
a zero value (which indicates no deadline), and moniker implementations should be aware of clock
wrapping problems (see the GetTickCount function for more information).

See Also
BIND_OPTS2, BIND_FLAGS, CreateBindCtx, IBindCtx::SetBindOptions

BIND_OPTS2
Contains parameters used during a moniker-binding operation. A BIND_OPTS2 structure is stored in a
bind context; the same bind context is used by each component of a composite moniker during binding,
allowing the same parameters to be passed to all components of a composite moniker. See IBindCtx for
more information about bind contexts. BIND_OPTS2 replaces the previously defined BIND_OPTS
structure, including the previously defined members, and adding four new members.

Moniker clients (those using a moniker to acquire an interface pointer to an object) typically do not need
to specify values for the fields of this structure. The CreateBindCtx function creates a bind context with
the bind options set to default values that are suitable for most situations. The BindMoniker function
does the same thing when creating a bind context for use in binding a moniker. If you want to modify the
values of these bind options, you can do so by passing a BIND_OPTS2 structure to the
IBindCtx::SetBindOptions method. Moniker implementers can pass a BIND_OPTS2 structure to the
IBindCtx::GetBindOptions method to retrieve the values of these bind options.

The BIND_OPTS2 structure is defined in OBJIDL.IDL

typedef struct tagBIND_OPTS2 {
 DWORD cbStruct; // sizeof(BIND_OPTS2)
 DWORD grfFlags;
 DWORD grfMode;
 DWORD dwTickCountDeadline;
 DWORD dwTrackFlags;
 DWORD dwClassContext;
 LCID locale;
 COSERVERINFO * pServerInfo;
} BIND_OPTS2, * LPBIND_OPTS2;

Members

cbStruct

Size of this structure in bytes (that is, the size of the BIND_OPTS2 structure).
grfFlags

Flags that control aspects of moniker binding operations. This value is any combination of the bit flags
in the BINDFLAGS enumeration. New values may be defined in the future, so moniker
implementations should ignore any bits in this field that they do not understand. The CreateBindCtx
function initializes this field to zero.

grfMode

Flags that should be used when opening the file that contains the object identified by the moniker.
The values are taken from the STGM enumeration. The binding operation uses these flags in the call
to IPersistFile::Load when loading the file. If the object is already running, these flags are ignored by
the binding operation. The CreateBindCtx function initializes this field to STGM_READWRITE.

dwTickCountDeadline

Clock time (in milliseconds, as returned by the GetTickCount function) by which the caller would like
the binding operation to be completed. This member lets the caller limit the execution time of an
operation when speed is of primary importance. A value of zero indicates that there is no deadline.
Callers most often use this capability when calling the IMoniker::GetTimeOfLastChange method,
though it can be usefully applied to other operations as well. The CreateBindCtx function initializes
this field to zero.

Typical deadlines allow for a few hundred milliseconds of execution. This deadline is a
recommendation, not a requirement; however, operations that exceed their deadline by a large
amount may cause delays for the end user. Each moniker implementation should try to complete its
operation by the deadline, or fail with the error MK_E_EXCEEDEDDEADLINE.
If a binding operation exceeds its deadline because one or more objects that it needs are not running,
the moniker implementation should register the objects responsible in the bind context using the
IBindCtx::RegisterObjectParam. The objects should be registered under the parameter names
"ExceededDeadline", "ExceededDeadline1", "ExceededDeadline2", and so on. If the caller later finds
the object in the Running Object Table, the caller can retry the binding operation.
The GetTickCount function indicates the number of milliseconds since system startup, and wraps
back to zero after 2^31 milliseconds. Consequently, callers should be careful not to inadvertently pass
a zero value (which indicates no deadline), and moniker implementations should be aware of clock
wrapping problems (see the GetTickCount function for more information).

dwTrackFlags

A moniker can use this value during link tracking. If the original persisted data that the moniker is
referencing has been moved, the moniker can attempt to reestablish the link by searching for the
original data though some adequate mechanism. dwTrackFlags provides additional information on
how the link should be resolved. See the documentation of the fFlags parameter in
IShellLink::Resolve in the Win32 SDK for more details.
COM's file moniker implementation uses the shell link mechanism to reestablish links and passes
these flags to IShellLink::Resolve.

dwClassContext

The class context, taken from the CLSCTX enumeration, that is to be used for instantiating the object.
Monikers typically pass this value to the dwClsContext parameter of CoCreateInstance.

locale

The LCID value indicating the client's preference for the locale to be used by the object to which they
are binding. A moniker passes this value to IClassActivator::GetClassObject.

pServerInfo

Points to a COSERVERINFO structure. This member allows clients calling IMoniker::BindToObject
to specify server information. Clients may pass a BIND_OPTS2 structure to the
IBindCtx::SetBindOptions method. If a server name is specified in the COSERVERINFO struct, the
moniker bind will be forwarded to the specified machine. SetBindOptions only copies the struct
members of BIND_OPTS2, not the COSERVERINFO structure and the pointers it contains. Callers
may not free any of these pointers until the bind context is released. COM's new class moniker does
not currently honor the pServerInfo flag.

See Also
BIND_OPTS, BIND_FLAGS, CreateBindCtx, IBindCtx::SetBindOptions

CADWORD

The CADWORD structure is a counted array of DWORDs. It is used, for example, in the
IPerPropertyBrowsing::GetPredefinedStrings method. The values returned in this counted array can
be passed into the IPerPropertyBrowsing::GetPredefinedValue method to obtain the value
corresponding to one of the predefined strings for a property.

typedef struct tagCADWORD
{
 ULONG cElems;
 DWORD FAR* pElems;
} CADWORD;

Members

cElems

Size of the array pointed to by pElems.
pElems

Pointer to an array of DWORD values, each of which can be passed to the
IPerPropertyBrowsing::GetPredefinedValue method to obtain the corresponding value for one of
the property's predefined strings. This array is allocated by the callee using CoTaskMemAlloc and is
freed by the caller using CoTaskMemFree.

See Also
CALPOLESTR, IPerPropertyBrowsing::GetPredefinedStrings,
IPerPropertyBrowsing::GetPredefinedValue

CALPOLESTR

The CALPOLESTR structure is a counted array of LPOLESTR types, that is, a counted array of pointers
to strings. It is used, for example, in the IPerPropertyBrowsing::GetPredefinedStrings method to
specify the predefined strings that a property can accept.

typedef struct tagCALPOLESTR
{
 ULONG cElems;
 LPOLESTR FAR* pElems;
} CALPOLESTR;

Members

cElems

Size of the array pointed to by pElems.
pElems

Pointer to an array of LPOLESTR values, each of which corresponds to an allowable value that a
particular property can accept. The caller can use these string values in user interface elements, such
as drop-down list boxes. This array, as well as the strings in the array, are allocated by the callee
using CoTaskMemAlloc and is freed by the caller using CoTaskMemFree.

See Also
IPerPropertyBrowsing::GetPredefinedStrings

CAUUID

The CAUUID structure is a Counted Array of UUID or GUID types. It is used, for example, in the
ISpecifyPropertyPages::GetPages method to receive an array of CLSIDs for the property pages that
the object wants displayed.

typedef struct tagCAUUID
{
 ULONG cElems;
 GUID FAR* pElems;
} CAUUID;

Members

cElems

Size of the array pointed to by pElems.
pElems

Pointer to an array of UUID values, each of which specifies a CLSID of a particular property page.
This array is allocated by the callee using CoTaskMemAlloc and is freed by the caller using
CoTaskMemFree.

See Also
ISpecifyPropertyPages::GetPages

COAUTHINFO
Determines the authentication settings used while making a remote activation request from the client scm
to the server.

typedef struct _COAUTHINFO
{
 DWORD dwAuthnSvc;
 DWORD dwAuthzSvc;
 [string] WCHAR * pwszServerPrincName;
 DWORD dwAuthnLevel;
 DWORD dwImpersonationLevel;
 AUTH_IDENTITY * pAuthIdentityData;
 DWORD dwCapabilities;
} COAUTHINFO;

Members

dwAuthnSvc

[in] A single DWORD value from the list of RPC_C_AUTHN_ xxx constants indicating the
authentication service to use. It may be RPC_C_AUTHN_NONE if no authentication is required.

dwAuthzSvc

[in] A single DWORD value from the list of RPC_C_AUTHZ_ xxx constants indicating the authorization
service to use. If you are using the NT authentication service, use RPC_C_AUTHZ_NONE.

pwszServerPrincName

Pointer to a WCHAR string that indicates the server principal name to use with the authentication
service. If you are using RPC_C_AUTHN_WINNT, the principal name must be NULL.

dwAuthnLevel

[in] A single DWORD value from the list of RPC_C_AUTHN_LEVEL_ xxx constants indicating the
authentication level to use.

dwImpersonationLevel

[in] A single DWORD value from the list of RPC_C_IMP_LEVEL_ xxx constants indicating the
impersonation level to use. Currently, only RPC_C_IMP_LEVEL_IMPERSONATE and
RPC_C_IMP_LEVEL_IDENTIFY are supported.

pAuthIdentityData

Pointer to an AUTH_IDENTITY structure that establishes the identity of the client. It is authentication-
service specific. It is in the form of Windows NT's SEC_WINNT_AUTH_IDENTITY, as follows:
typedef struct _AUTH_IDENTITY
{
 [size_is(UserLength+1)] USHORT * User;
 ULONG UserLength;
 [size_is(DomainLength+1)] USHORT * Domain;
 ULONG DomainLength;
 [size_is(PasswordLength+1)] USHORT * Password;
 ULONG PasswordLength;
 ULONG Flags;
} AUTH_IDENTITY;

dwCapabilities

[in] A DWORD defining flags to establish indicating the further capabilities of this proxy. Currently, no
capability flags are defined.

Remarks
The values of the COAUTHINFO structure determine the authentication settings used while making a
remote activation request from the client's scm to the server's scm. This structure is defined by default
for NTLMSSP, and is described only for cases that need it to allow DCOM activations to work correctly
with security providers other than NTLMSSP, or to specify additional security information used during
remote activations for interoperability with alternate implementations of distributed COM. Currently, the
impersonation level must be set to RPC_C_IMP_LEVEL_IMPERSONATE, or the result will be a failed
activation when the server is running WindowsNT.

See Also
COSERVERINFO

CONNECTDATA

The CONNECTDATA structure is the type enumerated through the IEnumConnections::Next method.
Each structure describes a connection that exists to a given connection point.

typedef struct tagCONNECTDATA
{
 IUnknown* pUnk;
 DWORD dwCookie;
} CONNECTDATA;

Members

pUnk

Pointer to the IUnknown interface on a connected advisory sink. The caller must call
IUnknown::Release using this pointer when the CONNECTDATA structure is no longer needed. The
caller is responsible for calling Release for each CONNECTDATA structure enumerated through
IEnumConnections::Next.

dwCookie

Connection where this value is the same token that is returned originally from calls to
IConnectionPoint::Advise. This token can be used to disconnect the sink pointed to by a pUnk by
passing dwCookie to IConnectionPoint::Unadvise.

See Also
IConnectionPoint, IEnumConnections

CONTROLINFO

The CONTROLINFO structure contains parameters that describe a control's keyboard mnemonics and
keyboard behavior. The structure is filled during the IOleControl::GetControlInfo method.

typedef struct tagCONTROLINFO
 {
 ULONG cb;
 HACCEL hAccel;
 USHORT cAccel;
 DWORD dwFlags;
 } CONTROLINFO;

Members

cb

Size of the CONTROLINFO structure.
hAccel

Handle to an array of Windows ACCEL structures, each structure describing a keyboard mnemonic.
The array is allocated with the GlobalAlloc function. The control always maintains the memory for
this array; the caller of IOleControl::GetControlInfo should not attempt to free the memory.

cAccel

Number of mnemonics described in the hAccel field. This value can be zero to indicate no
mnemonics.

dwFlags

Flags that indicate the keyboard behavior of the control. The possible values are:
CTRLINFO_EATS_RETURN

When the control has the focus, it will process the Return key.
CTRLINFO_EATS_ESCAPE

When the control has the focus, it will process the Escape key.
When the control has the focus, the dialog box containing the control cannot use the Return or
Escape keys as mnemonics for the default and cancel buttons.

See Also
IOleControl::GetControlInfo

COSERVERINFO

Identifies a remote machine resource to the new or enhanced activation functions. The structure is
defined as follows in the Wtypes.h header file:

typedef struct _COSERVERINFO
 {
 DWORD dwReserved1;
 LPWSTR pwszName;
 COAUTHINFO *pAuthInfo;
 DWORD dwReserved2;
 } COSERVERINFO;

Members

dwReserved1

Reserved for future use. Must be 0.
pszName

Pointer to the name of the machine to be used.
pAuthInfo

When using NTLMSSP, this value must be set to zero. A non-zero value, which is a pointer to a
COAUTHINFO structure, would only be used when a security package other than NTLMSSP is being
used.

dwReserved2

Reserved for future use. Must be 0.

Remarks
The COSERVERINFO structure is used primarily to identify a remote system in object creation functions.
Machine resources are named using the naming scheme of the network transport. By default, all UNC ("\\
server" or "server") and DNS names ("server.com", "www.foo.com", or "135.5.33.19") names are allowed.

If you are using the NTLMSSP security package, the default case, the pAuthinfo parameter should be set
to zero. If you are a vendor supporting another security package, refer to COAUTHINFO. The mechanism
described there is intended to allow DCOM activations to work correctly with security providers other than
NTLMSSP, or to specify additional security information used during remote activations for interoperability
with alternate implementations of DCOM. If pAuthInfo is set, those values will be used to specify the
authentication settings for the remote call. These settings will be passed to RpcBindingSetAuthInfoEx.

If the pAuthInfo field is not specified, any values in the AppID section of the registry will be used to
override the following default authentication settings:

dwAuthnSvc RPC_C_AUTHN_WINNT
dwAuthzSvc RPC_C_AUTHZ_NONE
pszServerPrincName NULL
dwAuthnLevel RPC_C_AUTHN_LEVEL_CONNECT
dwImpersonationLevel RPC_C_IMP_LEVEL_IMPERSONATE
pvAuthIdentityData NULL
dwCapabilities RPC_C_QOS_CAPABILITIES_DEFAULT

See Also
CLSCTX, CoGetClassObject, CoGetInstanceFromFile, CoGetInstanceFromIStorage,
CoCreateInstanceEx, Locating a Remote Object

DVASPECTINFO

The DVASPECTINFO structure is used in the IViewObject::Draw method to optimize rendering of an
inactive object by making more efficient use of the GDI. The pvAspect parameter in IViewObject::Draw
points to this structure. It is defined as follows:

typedef struct STRUCT tagDVASPECTINFO
{
 UNIT cb;
 DWORD dwFlags;
} DVASPECTINFO;

Members

cb

Size of the structure in bytes. The size includes this member as well as the dwFlags member.
dwFlags

A value taken from the DVASPECTINFOFLAG enumeration.

See Also
DVASPECTINFOFLAG

DVEXTENTINFO

The DVEXTENTINFO structure is used in IViewObjectEx::GetNaturalExtent.

typedef struct tagDVEXTENTINFO
{
 ULONG cb;
 DWORD dwExtentMode;
 SIZEL sizelProposed;
}DVEXTENTINFO;

Members

cb

Size of the structure in bytes. The size includes this member as well as the dwExtentMode and
sizelProposed members.

dwExtentMode

Indicates whether the sizing mode is content or integral sizing. See the DVEXTENTMODE
enumeration for these values.

sizelProposed

Specifies the proposed size in content sizing or the preferred size in integral sizing.

See Also
DVEXTENTMODE

DVTARGETDEVICE

Use the DVTARGETDEVICE structure to specify information about the target device for which data is
being composed. DVTARGETDEVICE contains enough information about a Windows target device so a
handle to a device context (hDC) can be created using the Windows CreateDC function.

typedef struct tagDVTARGETDEVICE
{
 DWORD tdSize;
 WORD tdDriverNameOffset;
 WORD tdDeviceNameOffset;
 WORD tdPortNameOffset;
 WORD tdExtDevmodeOffset;
 BYTE tdData[1];
}DVTARGETDEVICE;

Members

tdSize

Size, in bytes, of the DVTARGETDEVICE structure. The initial size is included so the structure can be
copied more easily.

tdDriverNameOffset

Offset, in bytes, from the beginning of the structure to the device driver name, which is stored as a
NULL-terminated string in the tdData buffer.

tdDeviceNameOffset

Offset, in bytes, from the beginning of the structure to the device name, which is stored as a NULL-
terminated string in the tdData buffer. This value can be zero to indicate no device name.

tdPortNameOffset

Offset, in bytes, from the beginning of the structure to the port name, which is stored as a NULL-
terminated string in the tdData buffer. This value can be zero to indicate no port name.

tdExtDevmodeOffset

Offset, in bytes, from the beginning of the structure to the DEVMODE structure retrieved by calling
ExtDeviceMode.

tdData

Aray of bytes containing data for the target device. It is not necessary to include empty strings in
tdData (for names where the offset value is zero).

Remarks
Some OLE 1 client applications incorrectly construct target devices by allocating too few bytes in the
DEVMODE structure for the OLETARGETDEVICE. They typically only supply the number of bytes in the
DEVMODE.dmSize member. The number of bytes to be allocated should be the sum of
DEVMODE.dmSize + DEVMODE.dmDriverExtra. When a call is made to the CreateDC function with an
incorrect target device, the printer driver tries to access the additional bytes and unpredictable results can
occur. To protect against a crash and make the additional bytes available, OLE pads the size of OLE 2
target devices created from OLE 1 target devices.

See Also

FORMATETC, IEnumFORMATETC, IViewObject, OleConvertOLESTREAMToIStorage

FILETIME

The FILETIME data structure is a 64-bit value representing the number of 100-nanosecond intervals
since January 1, 1601. It is the means by which Win32 determines the date and time. FILETIME is used
by the CoDosDateTimeToFileTime, CoFileTimeToDosDateTime, and CoFileTimeNow functions. It is
defined as follows:

typedef struct STRUCT tagFILETIME
{
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;
} FILETIME;

Members

dwLowDateTime

The low 32 bits of the Win32 date/time value.
dwHighDateTime

The upper 32 bits of the Win32 date/time value.

Remarks
The FILETIME data structure is used in the time conversion functions between DOS and Win32.

See Also
CoDosDateTimeToFileTime, CoFileTimeNow, CoFileTimeToDosDateTime

FONTDESC

The FONTDESC structure contains parameters used to create a font object through the
OleCreateFontIndirect function.

typedef struct tagFONTDESC
 {
 UINT cbSizeOfStruct;
 LPOLESTR lpstrName;
 CY cySize;
 SHORT sWeight;
 SHORT sCharset;
 BOOL fItalic;
 BOOL fUnderline;
 BOOL fStrikethrough;
 } FONTDESC;

Members
cbSizeOfStruct

Size of the FONTDESC structure.
lpstrName

Pointer to the caller-owned string specifying the font name.
cySize

Initial point size of the font in CY units.
sWeight

Initial weight of the font. If the weight is below 550 (the average of FW_NORMAL, 400, and
FW_BOLD, 700), then the Bold property is also initialized to FALSE. If the weight is above 550, the
Bold property is set to TRUE.

sCharset

Initial character set of the font.
fItalic

Initial italic state of the font.
fUnderline

Initial underline state of the font.
fStrikethrough

Initial strikethrough state of the font.

See Also
OleCreateFontIndirect

FORMATETC

The FORMATETC structure is a generalized Clipboard format. It is enhanced to encompass a target
device, the aspect or view of the data, and a storage medium indicator. Where one might expect to find a
Clipboard format, OLE uses a FORMATETC data structure instead. This structure is used as a parameter
in OLE functions and methods that require data format information.

typedef struct tagFORMATETC
{
 CLIPFORMAT cfFormat;
 DVTARGETDEVICE *ptd;
 DWORD dwAspect;
 LONG lindex;
 DWORD tymed;
}FORMATETC, *LPFORMATETC;

Members

cfFormat

Particular clipboard format of interest. There are three types of formats recognized by OLE:
· Standard interchange formats, such as CF_TEXT.
· Private application formats understood only by the application offering the format, or by other

applications offering similar features.
· OLE formats, which are used to create linked or embedded objects.

ptd

Pointer to a DVTARGETDEVICE structure containing information about the target device for which
the data is being composed. A NULL value is used whenever the specified data format is independent
of the target device or when the caller doesn't care what device is used. In the latter case, if the data
requires a target device, the object should pick an appropriate default device (often the display for
visual components). Data obtained from an object with a NULL target device, such as most metafiles,
is independent of the target device. The resulting data is usually the same as it would be if the user
chose the Save As command from the File menu and selected an interchange format.

dwAspect

One of the DVASPECT enumeration constants that indicate how much detail should be contained in
the rendering. A single clipboard format can support multiple aspects or views of the object. Most data
and presentation transfer and caching methods pass aspect information. For example, a caller might
request an object's iconic picture, using the metafile clipboard format to retrieve it. Note that only one
DVASPECT value can be used in dwAspect. That is, dwAspect cannot be the result of a BOOLEAN
OR operation on several DVASPECT values.

lindex

Part of the aspect when the data must be split across page boundaries. The most common value is -
1, which identifies all of the data. For the aspects DVASPECT_THUMBNAIL and DVASPECT_ICON,
lindex is ignored.

tymed

One of the TYMED enumeration constants which indicate the type of storage medium used to transfer
the object's data. Data can be transferred using whatever medium makes sense for the object. For
example, data can be passed using global memory, a disk file, or structured storage objects. For
more information, see the TYMED enumeration.

Remarks
The FORMATETC structure is used by methods in the data transfer and presentation interfaces as a
parameter specifying the data being transferred. For example, the IDataObject::GetData method uses
the FORMATETC structure to indicate exactly what kind of data the caller is requesting.

See Also
DVASPECT, IDataAdviseHolder, IDataObject, IEnumFORMATETC, IOleCache, OleCreate,
OleCreateFromData, OleCreateLinkFromData, OleCreateStaticFromData, OleCreateLink,
OleCreateLinkToFile, OleCreateFromFile, STATDATA, STGMEDIUM, TYMED

INTERFACEINFO

The INTERFACEINFO structure contains information about incoming calls. The structure is defined as
follows:

typedef struct tagINTERFACEINFO
{
 LPUNKNOWN pUnk;
 IID iid;
 WORD wMethod;
} INTERFACEINFO, * LPINTERFACEINFO;

Members

pUnk

Pointer to the IUnknown interface on the object.
iid

Identifier of the requested interface
wMethod

Interface method.

See Also
IMessageFilter::HandleIncomingCall

LICINFO

The LICINFO structure contains parameters that describe the licensing behavior of a class factory that
supports licensing. The structure is filled during the IClassFactory2::GetLicInfo method.

typedef struct tagLICINFO
 {
 ULONG cbLicInfo;
 BOOL fRuntimeKeyAvail;
 BOOL fLicVerified;
 } LICINFO;

Members

cbLicInfo

Size of the LICINFO structure.
fRuntimeKeyAvail

Whether this class factory allows the creation of its objects on a unlicensed machine through the use
of a license key. If TRUE, IClassFactory2::RequestLicKey can be called to obtain the key. If FALSE,
objects can be created only on a fully licensed machine.

fLicVerified

Whether a full machine license exists so that calls to IClassFactory::CreateInstance and
IClassFactory2::RequestLicKey will succeed. If TRUE, the full machine license exists. Thus,
objects can be created freely. and a license key is available if fRuntimeKeyAvail is also TRUE. If
FALSE, this class factory cannot create any instances of objects on this machine unless the proper
license key is passed to IClassFactory2::CreateInstanceLic.

See Also
IClassFactory::CreateInstance, IClassFactory2::CreateInstanceLic, IClassFactory2::GetLicInfo,
IClassFactory2::RequestLicKey

MULTI_QI
To optimize network performance, most remote activation functions take an array of MULTI_QI structures
rather than just a single IID as input and a single pointer to the requested interface on the object as
output, as do local machine activation functions. This allows a set of pointers to interfaces to be returned
from the same object in a single round-trip to the server. In network scenarios, requesting multiple
interfaces at the time of object construction can save considerable time over using a number of calls to
the QueryInterface method for unique interfaces, each of which would require a round-trip to the server.

typedef struct _MULTI_QI {
 const IID* pIID;
 IUnknown * pItf;
 HRESULT hr;
 } MULTI_QI;

Members

pIID

[in] Pointer to an interface identifier.
pItf

[out] Pointer to the interface requested in pIID. Must be set to NULL on entry.
hr

[out] Return value of the QueryInterface call made to satisfy the request for the interface requested
in pIID. Common return values are S_OK and E_NOINTERFACE. Must be set to zero on entry.

See Also
CoGetInstanceFromFile, CoGetInstanceFromIStorage, CoCreateInstanceEx

OBJECTDESCRIPTOR

The OBJECTDESCRIPTOR structure is the data structure used for the CF_OBJECTDESRIPTOR and
CF_LINKSRCDESCRIPTOR file formats. These formats provide user interface information during data
transfer operations, for example, the Paste Special dialog box or target feedback information during drag-
and-drop operations.

typedef struct tagOBJECTDESCRIPTOR
{
 ULONG cbSize;
 CLSID clsid;
 DWORD dwDrawAspect;
 SIZEL sizel;
 POINTL pointl;
 DWORD dwStatus;
 DWORD dwFullUserTypeName;
 DWORD dwSrcOfCopy;
 /* variable sized string data may appear here */
} OBJECTDESCRIPTOR;

Members

cbSize

Size of structure in bytes.
clsid

CLSID of the object being transferred. The clsid is used to obtain the icon for the Display As Icon
option in the Paste Special dialog box and is applicable only if the Embed Source or Embedded
Object formats are offered. If neither is offered, the value of clsid should be CLSID_NULL. The clsid
can be retrieved by the source by loading the object and calling the IOleObject::GetUserClassID
method. Note that for link objects, this value is not the same as the value returned by the
IPersist::GetClassID method.

dwDrawAspect

Display aspect of the object. Typically, this value is DVASPECT_CONTENT or DVASPECT_ICON. If
the source application did not draw the object originally, the dwDrawAspect field contains a zero value
(which is not the same as DVASPECT_CONTENT).

sizel

True extent of the object (without cropping or scaling) in HIMETRIC units. Setting this field is optional.
The value can be (0,0) for applications that do not draw the object being transferred. This field is used
primarily by targets of drag-and-drop operations, so they can give appropriate feedback to the user.

pointl

Offset in HIMETRIC units from the upper-left corner of the object where a drag-and-drop operation
was initiated. This field is only meaningful for a drag-and-drop transfer operation since it corresponds
to the point where the mouse was clicked to initiate the drag-and-drop operation. The value is (0,0) for
other transfer situations, such as a Clipboard copy and paste.

dwStatus

Copy of the status flags for the object. These flags are defined by the OLEMISC enumeration. If an
embedded object is being transferred, they are returned by calling the IOleObject::GetMiscStatus
method.

dwFullUserTypeName

Offset for finding the full user type name of the object being transferred. It specifies the offset, in
bytes, from the beginning of the OBJECTDESCRIPTOR data structure to the null-terminated string
that specifies the full user type name of the object being transferred. The value is zero if the string is
not present. This string is used by the destination of a data transfer to create labels in the Paste
Special dialog box. The destination application must be able to handle the cases when this string is
omitted.

dwSrcOfCopy

Offset, in bytes, from the beginning of the data structure to the null-terminated string that specifies the
source of the transfer. The dwSrcOfCopy field is typically implemented as the display name of the
temporary moniker that identifies the data source. The value for dwSrcOfCopy is displayed in the
Source line of the Paste Special dialog box. A zero value indicates that the string is not present. If
dwSrcOfCopy is zero, the string "Unknown Source" is displayed in the Paste Special dialog box.

See Also
IDataObject, FORMATETC

OCPFIPARAMS

The OCPFIPARAMS structure contains parameters used to invoke a property sheet dialog box through
the OleCreatePropertyFrameIndirect function.

typedef struct tagOCPFIPARAMS
{
 ULONG cbStructSize;
 HWND hWndOwner;
 int x;
 int y;
 LPCOLESTR lpszCaption;
 ULONG cObjects;
 LPUNKNOWN FAR* lplpUnk;
 ULONG cPages;
 CLSID FAR* lpPages;
 LCID lcid;
 DISPID dispIDInitialProperty;
} OCPFIPARAMS;

Members

cbStructsize

Size of the OCPFIPARAMS structure.
hWndOwner

Parent window of the resulting property sheet dialog box.
x

Horizontal position for the dialog box relative to hWndOwner.
y

Vertical position for the dialog box relative to hWndOwner.
lpszCaption

Pointer to the string used for the caption of the dialog.
cObjects

Number of object pointers passed in lplpUnk.
lplpUnk

Array of IUnknown pointers on the objects for which this property sheet is being invoked. The
number of elements inthe aray is specified by cObject. These pointers are passed to each property
page through IPropertyPage::SetObjects.

cPages

Number of property pages specified in lpPages.
lpPages

Pointer to an array of size cPages containing the CLSIDs of each property page to display in the
property sheet.

lcid

Locale identifier for the property sheet. This value will be returned through
IPropertyPageSite::GetLocaleID.

dispIDInitialProperty

Property that is highlighted when the dialog box is made visible.

See Also
IPropertyPage::SetObjects, IPropertyPageSite::GetLocaleID, OleCreatePropertyFrameIndirect

OLEINPLACEFRAMEINFO

The OLEINPLACEFRAMEINFO structure contains information about the accelerators supported by a
container during an in-place session. The structure is used in the IOleInPlaceSite::GetWindowContext
method and the OleTranslateAccelerator function.

typedef struct tagOIFI
{
 UINT cb;
 BOOL fMDIApp;
 HWND hwndFrame;
 HACCEL haccel;
 UINT cAccelEntries;
} OLEINPLACEFRAMEINFO, *LPOLEINPLACEFRAMEINFO;

Members

cb

Size in bytes of this structure. The object server must specify sizeof(OLEINPLACEFRAMEINFO) in
the structure it passes to IOleInPlaceSite::GetWindowContext. The container can then use this size
to determine the structure's version.

fMDIApp

Whether the container is an MDI application.
hwndFrame

Handle to the container's top-level frame window.
haccel

Handle to the accelerator table that the container wants to use during an in-place editing session.
cAccelEntries

Number of accelerators in haccel.

Remarks
When an object is being in-place activated, its server calls the container's
IOleInPlaceSite::GetWindowContext method, which fills in an OLEINPLACEFRAMEINFO structure.
During an in-place session, the message loop of an EXE server passes a pointer to the
OLEINPLACEFRAMEINFO structure to OleTranslateAccelerator. OLE uses the information in this
structure to determine whether a message maps to one of the container's accelerators.

See Also
IOleInPlaceSite::GetWindowContext, OleTranslateAccelerator

OLEMENUGROUPWIDTHS

The OLEMENUGROUPWIDTHS structure is the mechanism for building a shared menu. It indicates the
number of menu items in each of the six menu groups of a menu shared between a container and an
object server during an in-place editing session.

The structure is defined in the IOleInPlaceFrame interface (inplcf.idl). It is used in the
IOleInPlaceFrame::InsertMenus and ICDStandardForm::SetMenu methods, and the
OleCreateMenuDescriptor function.

typedef struct tagOleMenuGroupWidths
{
 LONG width[6];
} OLEMENUGROUPWIDTHS, * LPOLEMENUGROUPWIDTHS;

Member

width

An array whose elements contain the number of menu items in each of the six menu groups of a
shared in-place editing menu. Each menu group can have any number of menu items. The container
uses elements 0, 2, and 4 to indicate the number of menu items in its File, View, and Window menu
groups. The object server uses elements 1, 3, and 5 to indicate the number of menu items in its Edit,
Object, and Help menu groups.

Remarks
A container application and an object server use this structure to build a shared menu. The object server
initializes to zeros the array elements in an OLEMENUGROUPWIDTHS structure and passes a pointer to
it along with a menu handle to the container in a call to IOleInPlaceFrame::InsertMenus. The container
adds its menu items to the menu, and fills in the structure with the number of items in each of its groups
(indexes 0, 2, and 4). The server then uses the group width values returned by the container to insert its
menu items in the appropriate position in the menu. The server fills in the structure with the number of
items in each of its groups (indexes 1, 3, and 5), and then passes the structure to OLE in a call to the
OleCreateMenuDescriptor function. This enables OLE to intercept the container's menu messages and
redirect the messages generated by the server's menus.

See Also
IOleInPlaceFrame::InsertMenus, OleCreateMenuDescriptor

OLEUIBUSY

The OLEUIBUSY structure contains information that the OLE User Interface Library uses to initialize the
Busy dialog box, and space for the library to return information when the dialog box is dismissed.

typedef struct tagOLEUIBUSY
{
// These IN fields are standard across all OLEUI dialog box functions.
 DWORD cbStruct;
 DWORD dwFlags;
 HWND hWndOwner;
 LPCSTR lpszCaption;
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 HINSTANCE hInstance;
 LPCSTR lpszTemplate;
 HRSRC hResource;

// Specifics for OLEUIBUSY.
 HTASK hTask;
 HWND FAR * lphWndDialog;
} OLEUICHANGEICON, *POLEUICHANGEICON, FAR *LPOLEUICHANGEICON;

Members

cbStruct

Size of the structure in bytes. This field must be filled on input.
dwFlags

On input, specifies the initialization and creation flags. On exit, it specifies the user's choices. It may
be a combination of the following flags:
BZ_DISABLECANCELBUTTON

Input only: This flag disables the Cancel button.
BZ_DISABLESWITCHTOBUTTON

Input only: This flag disables the Switch To... button.
BZ_DISABLERETRYBUTTON

Input only: This flag disables the Retry button.
BZ_NOTRESPONDINGDIALOG

Input only: This flag generates a Not Responding dialog box instead of a Busy dialog box. The text
is slightly different, and the Cancel button is disabled.

hWndOwner

Window that owns the dialog box. It should not be NULL.
lpszCaption

Pointer to a string to be used as the title of the dialog box. If NULL, then the library uses Busy.
lpfnHook

Pointer to a hook function that processes messages intended for the dialog box. The hook function

must return zero to pass a message that it didn't process back to the dialog box procedure in the
library. The hook function must return a non-zero value to prevent the library's dialog box procedure
from processing a message it has already processed.

lCustData

Application-defined data that the library passes to the hook function pointed to by the lpfnHook
member. The library passes a pointer to the OLEUIBUSY structure in the lParam parameter of the
WM_INITDIALOG message; this pointer can be used to retrieve the lCustData member.

hInstance

Instance that contains a dialog box template specified by the lpTemplateName member.
lpszTemplate

Pointer to a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the library's Busy dialog box template.

hResource

Customized template handle.
hTask Input only:

Handle to the task that is blocking.
lphWndDialog

Pointer to the dialog box's HWND.

See Also
OleUIBusy

OLEUICHANGEICON

The OLEUICHANGEICON structure contains information that the OLE User Interface Library uses to
initialize the Change Icon dialog box, and it contains space for the library to return information when the
dialog box is dismissed.

typedef struct tagOLEUICHANGEICON
{
// These IN fields are standard across all OLEUI dialog box functions.
 DWORD cbStruct;
 DWORD dwFlags;
 HWND hWndOwner;
 LPCSTR lpszCaption;
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 HINSTANCE hInstance;
 LPCSTR lpszTemplate;
 HRSRC hResource;

 // Specifics for OLEUICHANGEICON.
 HGLOBAL hMetaPict;
 CLSID clsid;
 char szIconExe[OLEUI_CCHPATHMAX];
 int cchIconExe;
} OLEUICHANGEICON, *POLEUICHANGEICON, FAR *LPOLEUICHANGEICON;

Members

cbStruct

Size of the structure in bytes. This field must be filled on input.
dwFlags

On input, specifies the initialization and creation flags. On exit, it specifies the user's choices. It can
be a combination of the following flags:
CIF_SHOWHELP

Dialog box will display a Help button.
CIF_SELECTCURRENT

On input, selects the Current radio button on initialization. On exit, specifies that the user selected
Current.

CIF_SELECTDEFAULT

On input, selects the Default radio button on initialization. On exit, specifies that the user selected
Default.

CIF_SELECTFROMFILE

On input, selects the From File radio button on initialization. On exit, specifies that the user
selected From File.

CIF_USEICONEXE

Input only. Extracts the icon from the executable specified in the szIconExe member, instead of
retrieving it from the class. This is useful for OLE embedding or linking to non-OLE files.

hWndOwner

Window that owns the dialog box. It should not be NULL.
lpszCaption

Pointer to a string to be used as the title of the dialog box. If NULL, then the library uses Change Icon.
lpfnHook

Pointer to a hook function that processes messages intended for the dialog box. The hook function
must return zero to pass a message that it didn't process back to the dialog box procedure in the
library. The hook function must return a non-zero value to prevent the library's dialog box procedure
from processing a message it has already processed.

lCustData

Application-defined data that the library passes to the hook function pointed to by the lpfnHook
member. The library passes a pointer to the OLEUICHANGEICON structure in the lParam parameter
of the WM_INITDIALOG message; this pointer can be used to retrieve the lCustData member.

hInstance

Instance that contains a dialog box template specified by the lpTemplateName member.
lpszTemplate

Pointer to a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the library's Change Icon dialog box template.

hResource

Customized template handle.
hMetaPict

Current and final image. The source of the icon is embedded in the metafile itself.
clsid

Input only. The class to use to get the Default icon.
szIconExe

Input only. Pointer to the executable to extract the default icon from. This member is ignored unless
CIF_USEICONEXE is included in the dwFlags parameter and an attempt to retrieve the class icon
from the specified CLSID fails.

cchIconExe

Input only. The number of characters in szIconExe. This member is ignored unless
CIF_USEICONEXE is included in the dwFlags member.

See Also
OleUIChangeIcon

OLEUICHANGESOURCE

This structure is used to initialize the standard Change Source dialog box. It allows the user to modify the
destination or source of a link. This may simply entail selecting a different file name for the link, or
possibly changing the item reference within the file, for example, changing the destination range of cells
within the spreadsheet that the link is to.

typedef struct tagOLEUICHANGESOURCEW
{
// These IN fields are standard across all OLEUI dialog box functions.
 DWORD cbStruct;
 DWORDT dwFlags;
 HWND hWndOwner;
 LPCWSTR lpszCaption;
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 HINSTANCE hInstance;
 LPCWSTR lpszTemplate;
 HRSRC hResource;

// INTERNAL ONLY: do not modify these members
 OPENFILENAMEW* lpOFN;
 DWORD dwReserved1[4];

// Specifics for OLEUICHANGESOURCE.
 LPOLEUILINKCONTAINERW lpOleUILinkContainer;
 DWORD dwLink;
 LPTSTR lpszDisplayName;
 ULONG nFileLength;
 LPTSTR lpszFrom;
 LPTSTR lpszTo;
} OLEUICHANGESOURCEW, *POLEUICHANGESOURCEW, FAR *LPOLEUICHANGESOURCEW;

Members

cbStruct

Size of the structure in bytes.
dwFlags

On input, this field specifies the initialization and creation flags. On exit, it specifies the user's choices.
It may be a combination of the following flags:
CSF_SHOWHELP

Enables or shows the Help button.
CSF_VALIDSOURCE

Indicates that the link was validated.
CSF_ONLYGETSOURCE

Disables automatic validation of the link source when the user presses OK. If you specify this flag,
you should validate the source when the dialog box returns OK.

hWndOwner

Window that owns the dialog box.
lpszCaption

Pointer to a string to be used as the title of the dialog box. If NULL, then the library uses Change
Source.

lpfnHook

Pointer to a hook function that processes messages intended for the dialog box. The hook function
must return zero to pass a message that it didn't process back to the dialog box procedure in the
library. The hook function must return a non-zero value to prevent the library's dialog box procedure
from processing a message it has already processed.

lCustData

Application-defined data that the library passes to the hook function pointed to by the lpfnHook
member. The library passes a pointer to the OLEUICHANGEICON structure in the lParam parameter
of the WM_INITDIALOG message; this pointer can be used to retrieve the lCustData member.

hInstance

Instance that contains a dialog box template specified by the lpszTemplate member. This member is
ignored if the lpszTemplate member is NULL or invalid.

lpszTemplate

Pointer to a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the library's Convert dialog box template.

hResource

Resource handle for a custom dialog box. If this member is NULL, then the library uses the standard
Convert dialog box template, or if it is valid, the template named by the lpszTemplate member.

lpOFN

Pointer to the OPENFILENAME structure, which contains information used by the operating system
to initialize the system-defined Open or Save As dialog boxes.

dwReserved1[4]

Reserved for future use.
lpOleUILinkContainer

Pointer to the container's implementation of the IOleUILinkContainer interface, used to validate the
link source. The Edit Links dialog box uses this to allow the container to manipulate its links.

dwLink

Container-defined unique 32-bit link identifier used to validate link sources. Used by
lpOleUILinkContainer.

lpszDisplayName

Pointer to the complete source display name.
nFileLength

File moniker portion of lpszDisplayName.
lpszFrom

Pointer to the prefix of the source that was changed from.
lpszTo

Pointer to the prefix of the source to be changed to.

See Also
IOleUILinkContainer, OleUIChangeSource

OLEUICONVERT

The OLEUICONVERT structure contains information that the OLE User Interface Library uses to initialize
the Convert dialog box, and space for the library to return information when the dialog box is dismissed.

typedef struct tagOLEUICONVERT
{
// These IN fields are standard across all OLEUI dialog functions.
 DWORD cbStruct
 DWORD dwFlags
 HWND hWndOwner
 LPCSTR lpszCaption
 LPFNOLEUIHOOK lpfnHook
 LPARAM lCustData
 HINSTANCE hInstance
 LPCSTR lpszTemplate
 HRSRC hResource

// Specifics for OLEUICONVERT.
 CLSID clsid;
 CLSID clsidConvertDefault;
 CLSID clsidActivateDefault;
 CLSID clsidNew;
 DWORD dvAspect;
 WORD wFormat;
 BOOL fIsLinkedObject;
 HGLOBAL hMetaPict;
 LPTSTR lpszUserType;
 BOOL fObjectsIconChanged;
 LPTSTR lpszDefLabel
 UINT cClsidExclude
 LPCLSID lpClsidExclude
} OLEUICONVERT, *POLEUICONVERT, FAR *LPOLEUICONVERT;

Members

cbStruct

Size of the structure, in bytes. This field must be filled on input.
dwFlags

On input, this field specifies the initialization and creation flags. On exit, it specifies the user's choices.
It may be a combination of the following flags:
CF_SHOWHELPBUTTON

Dialog box will display a Help button. This flag is set on input.
CF_SETCONVERTDEFAULT

Class whose CLSID is specified by clsidConvertDefault will be used as the default selection. This
selection appears in the class listbox when the Convert To radio button is selected. This flag is set
on input.

CF_SETACTIVATEDEFAULT

Class whose CLSID is specified by clsidActivateDefault will be used as the default selection. This

selection appears in the class listbox when the Activate As radio button is selected. This flag is set
on input.

CF_SELECTCONVERTTO

On input, this flag specifies that Convert To will be initially selected (default behavior). This flag is
set on output if Convert To was selected when the user dismissed the dialog box.

CF_SELECTACTIVATEAS

On input, this flag specifies that Activate As will be initially selected. This flag is set on output if
Activate As was selected when the user dismissed the dialog box.

CF_DISABLEDISPLAYASICON

The Display As Icon button will be disabled on initialization.
CF_DISABLEACTIVATEAS

The Activate As radio button will be disabled on initialization.
CF_HIDECHANGEICON

The Change Icon button will be hidden in the Convert dialog box.
CF_CONVERTONLY

The Activate As radio button will be disabled in the Convert dialog box.
hWndOwner

Window that owns the dialog box. It should not be NULL.
lpszCaption

Pointer to a string to be used as the title of the dialog box. If NULL, then the library uses Convert.
lpfnHook

Pointer to a hook function that processes messages intended for the dialog box. The hook function
must return zero to pass a message that it didn't process back to the dialog box procedure in the
library. The hook function must return a non-zero value to prevent the library's dialog box procedure
from processing a message it has already processed.

lCustData

Application-defined data that the library passes to the hook function pointed to by the lpfnHook
member. The library passes a pointer to the OLEUICONVERT structure in the lParam parameter of
the WM_INITDIALOG message; this pointer can be used to retrieve the lCustData member.

hInstance

Instance that contains a dialog box template specified by the lpszTemplate member. This member is
ignored if the lpszTemplate member is NULL or invalid.

lpszTemplate

Pointer to a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the library's Convert dialog box template.

hResource

Resource handle for a custom dialog box. If this member is NULL, then the library uses the standard
Convert dialog box template, or if it is valid, the template named by the lpszTemplate member.

clsid

The CLSID of the object to be converted or activated. This member is set on input.

clsidConvertDefault

The CLSID to use as the default class when Convert To is selected. This member is ignored if the
dwFlags member does not include CF_SETCONVERTDEFAULT. This member is set on input.

clsidActivateDefault

The CLSID to use as the default class when Activate As is selected. This member is ignored if the
dwFlags member does not include CF_SETACTIVATEDEFAULT. This member is set on input.

clsidNew

The CLSID of the selected class. This member is set on output.
dvAspect

Aspect of the object. This must be either DVASPECT_CONTENT or DVASPECT_ICON. If dvAspect
is DVASPECT_ICON on input, then the Display As Icon box is checked and the object's icon is
displayed. This member is set on input and output.

wFormat

Data format of the object to be converted or activated.
fIsLinkedObject

TRUE if the object is linked. This member is set on input.
hMetaPict

The METAFILEPICT containing the iconic aspect. This member is set on input and output.
lpszUserType

Pointer to the User Type name of the object to be converted or activated. If this value is NULL, then
the dialog box will retrieve the User Type name from the registry. This string is freed on exit.

fObjectsIconChanged

TRUE if the object's icon changed. (that is, if OleUIChangeIcon was called and not canceled.). This
member is set on output.

lpszDefLabel

Pointer to the default label to use for the icon. If NULL, the short user type name will be used. If the
object is a link, the caller should pass the Display Name of the link source. This is freed on exit.

cClsidExclude

Number of CLSIDs in lpClsidExclude.
lpClsidExclude

Pointer to the list of CLSIDs to exclude from the list.

See Also
OleUIConvert, OleUIChangeIcon

OLEUIEDITLINKS

The OLEUIEDITLINKS structure contains information that the OLE User Interface Library uses to
initialize the Edit Links dialog box, and contains space for the library to return information when the dialog
box is dismissed.

typedef struct tagOLEUIEDITLINKS
{
// These IN fields are standard across all OLEUI dialog box functions.
 DWORD cbStruct;
 DWORD dwFlags;
 HWND hWndOwner;
 LPCSTR lpszCaption;
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 HINSTANCE hInstance;
 LPCSTR lpszTemplate;
 HRSRC hResource;

// Specifics for OLEUIEDITLINKS.
 LPOLEUILINKCONTAINER lpOleUILinkContainer;
} OLEUIEDITLINKS, *POLEUIEDITLINKS, FAR *LPOLEUIEDITLINKS;

Members

cbStruct

Size of the structure in bytes. This field must be filled on input.
dwFlags

On input, dwFlags specifies the initialization and creation flags. It may be a combination of the
following flags:
ELF_SHOWHELP

Specifies that the dialog box will display a Help button.
ELF_DISABLEUPDATENOW

Specifies that the Update Now button will be disabled on initialization.
ELF_DISABLEOPENSOURCE

Specifies that the Open Source button will be disabled on initialization.
ELF_DISABLECHANGESOURCE

Specifies that the Change Source button will be disabled on initialization.
ELF_DISABLECANCELLINK

Specifies that the Cancel Link button will be disabled on initialization.
hWndOwner

Window that owns the dialog box. It should not be NULL.
lpszCaption

Pointer to a string to be used as the title of the dialog box. If NULL, then the library uses Links.
lpfnHook

Pointer to a hook function that processes messages intended for the dialog box. The hook function
must return zero to pass a message that it didn't process back to the dialog box procedure in the
library. The hook function must return a non-zero value to prevent the library's dialog box procedure
from processing a message it has already processed.

lCustData

Application-defined data that the library passes to the hook function pointed to by the lpfnHook
member. The library passes a pointer to the OLEUIEDITLINKS structure in the lParam parameter of
the WM_INITDIALOG message; this pointer can be used to retrieve the lCustData member.

hInstance

Instance that contains a dialog box template specified by the lpTemplateName member.
lpszTemplate

Pointer to a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the library's Edit Links dialog box template.

hResource

Customized template handle.
lpOleUILinkContainer

Pointer to the container's implementation of the IOleUILinkContainer Interface. The Edit Links dialog
box uses this to allow the container to manipulate its links.

See Also
IOleUILinkContainer, OleUIEditLinks

OLEUIGNRLPROPS

This structure is used to initialize the General tab of the Object Properties dialog box. A reference to it is
passed in as part of the OLEUIOBJECTPROPS structure to the OleUIObjectProperties function. This
tab shows the type and size of an OLE embedding and allows it the user to tunnel to the Convert dialog
box. This tab also shows the link destination if the object is a link.

typedef struct tagOLEUIGNRLPROPS
{
// These IN fields are standard across all OLEUI property pages.
 DWORD cbStruct;
 DWORD dwFlags;
 DWORD dwReserved1[2];
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 DWORD dwReserved2[3];
 struct tagOLEUIOBJECTPROPSW* lpOP;
} OLEUIGNRLPROPSW, *POLEUIGNRLPROPSW, FAR* LPOLEUIGNRLPROPSW;

Members

cbStruct

Size of the structure in bytes. This field must be filled on input.
dwFlags

Currently no flags associated with this member. It should be set to 0 (zero).
dwReserved1[2]

Reserved for future use.
lpfnHook

Pointer to a hook function that processes messages intended for the dialog box. The hook function
must return zero to pass a message that it didn't process back to the dialog box procedure in the
library. The hook function must return a non-zero value to prevent the library's dialog box procedure
from processing a message it has already processed.

lCustData

Application-defined data that the library passes to the hook function pointed to by the lpfnHook
member during WM_INITDIALOG.

dwReserved2[3]

Reserved for future use.
lpOP

Used internally.

See Also
OleUIObjectProperties, OLEUIOBJECTPROPS

OLEUIINSERTOBJECT

The OLEUIINSERTOBJECT structure contains information that the OLE User Interface Library uses to
initialize the Insert Object dialog box, and space for the library to return information when the dialog box is
dismissed.

typedef struct tagOLEUIINSERTOBJECT
{
// These IN fields are standard across all OLEUI dialog box functions.
 DWORD cbStruct;
 DWORD dwFlags;
 HWND hWndOwner;
 LPCSTR lpszCaption;
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 HINSTANCE hInstance;
 LPCSTR lpszTemplate;
 HRSRC hResource;
 CLSID clsid;

// Specifics for OLEUIINSERTOBJECT.
 LPTSTR lpszFile;
 UINT cchFile;
 UINT cClsidExclude;
 LPCLSID lpClsidExclude;
 IID iid;

// Specific to create objects if flags say so
 DWORD oleRender;
 LPFORMATETC lpFormatEtc;
 LPOLECLIENTSITE lpIOleClientSite;
 LPSTORAGE lpIStorage;
 LPVOID FAR * ppvObj;
 SCODE sc;
 HGLOBAL hMetaPict;
} OLEUIINSERTOBJECT, *POLEUIINSERTOBJECT, FAR *LPOLEUIINSERTOBJECT;

Members

cbStruct

Size of the structure in bytes. This field must be filled on input.
dwFlags

On input, specifies the initialization and creation flags. On exit, specifies the user's choices. It can be
a combination of the following flags:
IOF_SHOWHELP

The dialog box will display a Help button.
IOF_SELECTCREATENEW

The Create New radio button will initially be checked. This cannot be used with
IOF_SELECTCREATEFROMFILE.

IOF_SELECTCREATEFROMFILE

The Create From File radio button will initially be checked. This cannot be used with
IOF_SELECTCREATENEW.

IOF_CHECKLINK

The Link check box will initially be checked.
IOF_CHECKDISPLAYASICON

The Display As Icon check box will initially be checked, the current icon will be displayed, and the
Change Icon button will be enabled.

IOF_CREATENEWOBJECT

A new object should be created when the user selects OK to dismiss the dialog box and the Create
New radio button was selected.

IOF_CREATEFILEOBJECT

A new object should be created from the specified file when the user selects OK to dismiss the
dialog box and the Create From File radio button was selected.

IOF_CREATELINKOBJECT

A new linked object should be created when the user selects OK to dismiss the dialog box and the
user checked the Link check box.

IOF_DISABLELINK

The Link check box will be disabled on initialization.
IOF_VERIFYSERVERSEXIST

The dialog box should validate the classes it adds to the listbox by ensuring that the server
specified in the registration database exists. This is a significant performance factor.

IOF_DISABLEDISPLAYASICON

The Display As Icon check box will be disabled on initialization.
IOF_HIDECHANGEICON

The Change Icon button will be hidden in the Insert Object dialog box.
IOF_SHOWINSERTCONTROL

Displays the Insert Control radio button.
IOF_SELECTCREATECONTROL

Displays the Create Control radio button.
hWndOwner

Window that owns the dialog box. It should not be NULL.
lpszCaption

Pointer to a string to be used as the title of the dialog box. If NULL, then the library uses Insert Object.
lpfnHook

Pointer to a hook function that processes messages intended for the dialog box. The hook function
must return zero to pass a message that it didn't process back to the dialog box procedure in the
library. The hook function must return a non-zero value to prevent the library's dialog box procedure
from processing a message it has already processed.

lCustData

Application-defined data that the library passes to the hook function pointed to by the lpfnHook

member. The library passes a pointer to the OLEUIINSERTOBJECT structure in the lParam
parameter of the WM_INITDIALOG message; this pointer can be used to retrieve the lCustData
member.

hInstance

Instance that contains a dialog box template specified by the lpTemplateName member.
lpszTemplate

Pointer to a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the library's Insert Object dialog box template.

hResource

Customized template handle.
clsid

CLSID for class of the object to be inserted. Filled on output.
lpszFile

Pointer to the name of the file to be linked or embedded. Filled on output.
cchFile

Size of lpszFile buffer; will not exceed OLEUI_CCHPATHMAX.
cClsidExclude

Number of CLSIDs included in the lpClsidExclude list. Filled on input.
lpClsidExclude

Pointer to a list of CLSIDs to exclude from listing.
iid

Identifier of the requested interface. If OleUIInsertObject creates the object, then it will return a
pointer to this interface. This parameter is ignored if OleUIInsertObject does not create the object.

oleRender

Rendering option. If OleUIInsertObject creates the object, then it selects the rendering option when it
creates the object. This parameter is ignored if OleUIInsertObject does not create the object.

lpFormatEtc

Desired format. If OleUIInsertObject creates the object, then it selects the format when it creates the
object. This parameter is ignored if OleUIInsertObject does not create the object.

lpIOleClientSite

Pointer to the client site to be used for the object. This parameter is ignored if OleUIInsertObject
does not create the object.

lpIStorage

Pointer to the storage to be used for the object. This parameter is ignored if OleUIInsertObject does
not create the object.

ppvObj

Indirect pointer to where the object is returned. This parameter is ignored if OleUIInsertObject does
not create the object.

sc

Result of creation calls. This parameter is ignored if OleUIInsertObject does not create the object.

hMetaPict

MetafilePict structure containing the iconic aspect, if it wasn't placed in the object's cache.

See Also
OleUIInsertObject

OLEUILINKPROPS

This structure is used to initialize the Link tab of the Object Properties dialog box. A reference to it is
passed in as part of the OLEUIOBJECTPROPS structure to the OleUIObjectProperties function. This
tab shows the location, update status, and update time for a link. It allows the user to change the source
of the link, toggle its update status between automatic and manual update, open the source, force an
update of the link, or break the link (convert it to a static picture).

// These IN fields are standard across all OLEUI property pages.

typedef struct tagOLEUILINKPROPSW
{
// These IN fields are standard across all OLEUI property pages.
 DWORD cbStruct;
 DWORD dwFlags;
 DWORD dwReserved1[2];
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 DWORD dwReserved2[3];

 struct tagOLEUIOBJECTPROPSW* lpOP;
} OLEUILINKPROPSW, *POLEUILINKPROPSW, FAR* LPOLEUILINKPROPSW;

Members
cbStruct

Size of the structure in bytes.
dwFlags

Contains in/out flags specific to the Links page.
dwReserved1[2]

Reserved for future use.
lpfnHook

Pointer to the hook callback (not used in this dialog box).
lCustData

Custom data to pass to hook (not used in this dialog box).
dwReserved2[3]

Reserved for future use.
lpOP

Used internally.

See Also
OleUIObjectProperties, OLEUIOBJECTPROPS

OLEUIOBJECTPROPS

This structure is used to initialize the standard Object Properties dialog box. It contains references to
interfaces used to gather information about the embedding or link, references to three structures that are
used to initialize the default tabs¾General (OLEUIGNRLPROPS), View (OLEUIVIEWPROPS), and Link
(OLEUILINKPROPS), if appropriate¾and a standard property-sheet extensibility interface that allows the
caller to add additional custom property sheets to the dialog box.

typedef struct tagOLEUIOBJECTPROPS
{

// These IN fields are standard across all OLEUI property sheets.

 DWORD cbStruct;
 DWORD dwFlags;

// Standard PROPSHEETHEADER used for extensibility
 LPPROPSHEETHEADER lpPS;

// Data which allows manipulation of the object
 DWORD dwObject;
 LPOLEUIOBJINFO lpObjInfo;

// Data which allows manipulation of the link
 DWORD dwLink;
 LPOLEUILINKINFO lpLinkInfo;

// Data specfic to each page
 LPOLEUIGNRLPROPS lpGP;
 LPOLEUIVIEWPROPS lpVP;
 LPOLEUILINKPROPS lpLP;

} OLEUIOBJECTPROPS, *POLEUIOBJECTPROPS, FAR* LPOLEUIOBJECTPROPS;

Members

cbStruct

Size of the structure in bytes.
dwFlags

Contains in/out global flags for the property sheet.
OPF_OBJECTISLINK

Object is a link object and therefore has a link property page.
OPF_NOFILLDEFAULT

Do not fill in default values for the object.
OPF_SHOWHELP

Dialog box will display a Help button.
OPF_DISABLECONVERT

The Convert button will be disabled on the general property page.

lpPS

[in] Pointer to the standard property sheet header (PROPSHEETHEADER), used for extensibility.
//Data which allows manipulation of the object

dwObject

[in] Identifier for the object.
lpObjInfo

[in] Pointer to the interface to manipulate object.
//Data which allows manipulation of the link

dwLink;

[in] Container-defined unique 32-bit identifier for a single link. Containers can use the pointer to the
link's container site for this value.

lpLinkInfo

[in] Pointer to the interface to manipulate link.
// Data specific to each page

lpGP

[in] Pointer to the general page data.
lpVP

[in] Pointer to the view page data.
lpLP

[in] Pointer to the link page data.

See Also
OleUIObjectProperties, OLEUIGNRLPROPS, OLEUIVIEWPROPS, OLEUILINKPROPS

OLEUIPASTEENTRY

This structure is an array of OLEUIPASTEENTRY entries specified in the OLEUIPASTESPECIAL
structure for the Paste Special dialog box. Each entry includes a FORMATETC which specifies the
formats that are acceptable, a string that is to represent the format in the dialog box's listbox, a string to
customize the result text of the dialog box, and a set of flags from the OLEUIPASTEFLAG enumeration.
The flags indicate if the entry is valid for pasting only, linking only or both pasting and linking. If the entry
is valid for linking, the flags indicate which link types are acceptable by OR'ing together the appropriate
OLEUIPASTE_LINKTYPE<#> values. These values correspond to the array of link types as follows:

OLEUIPASTE_LINKTYPE1=arrLinkTypes[0]
OLEUIPASTE_LINKTYPE2=arrLinkTypes[1]
OLEUIPASTE_LINKTYPE3=arrLinkTypes[2]
OLEUIPASTE_LINKTYPE4=arrLinkTypes[3]
OLEUIPASTE_LINKTYPE5=arrLinkTypes[4]
OLEUIPASTE_LINKTYPE6=arrLinkTypes[5]
OLEUIPASTE_LINKTYPE7=arrLinkTypes[6]
OLEUIPASTE_LINKTYPE8=arrLinkTypes[7]

arrLinkTypes[] is an array of registered clipboard formats for linking. A maximum of eight link types are
allowed.

typedef struct tagOLEUIPASTEENTRY
{
 FORMATETC fmtetc;
 LPCSTR lpstrFormatName;
 LPCSTR lpstrResultText;
 DWORD dwFlags;
 DWORD dwScratchSpace;
} OLEUIPASTEENTRY, *POLEUIPASTEENTRY, FAR *LPOLEUIPASTEENTRY;

Members

fmtetc

Format that is acceptable. The Paste Special dialog box checks if this format is offered by the object
on the clipboard and if so, offers it for selection to the user.

lpstrFormatName

Pointer to the string that represents the format to the user. Any %s in this string is replaced by the
FullUserTypeName of the object on the clipboard and the resulting string is placed in the list box of
the dialog box. Only one %s is allowed. The presence or absence of %s specifies whether the result-
text is to indicate that data is being pasted or that an object that can be activated by an application is
being pasted. If %s is present, the resulting text says that an object is being pasted. Otherwise, it
says that data is being pasted.

lpstrResultText

Pointer to the string used to customize the resulting text of the dialog box when the user selects the
format corresponding to this entry. Any %s in this string is replaced by the application name or
FullUserTypeName of the object on the clipboard. Only one %s is allowed.

dwFlags

Values from OLEUIPASTEFLAG enumeration.
dwScratchSpace

Scratch space available to routines that loop through an IEnumFORMATETC to mark if the
PasteEntry format is available. This field CAN be left uninitialized.

See Also
OLEUIPASTEFLAG, OleUIPasteSpecial, OLEUIPASTESPECIAL

OLEUIPASTESPECIAL

The OLEUIPASTESPECIAL structure contains information that the OLE User Interface Library uses to
initialize the Paste Special dialog box, as well as space for the library to return information when the
dialog box is dismissed.

typedef struct tagOLEUIPASTESPECIAL
{
// These IN fields are standard across all OLEUI dialog box functions.
 DWORD cbStruct;
 DWORD dwFlags;
 HWND hWndOwner;
 LPCSTR lpszCaption;
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 HINSTANCE hInstance;
 LPCSTR lpszTemplate;
 HRSRC hResource;

// Specifics for OLEUIPASTESPECIAL.
 LPDATAOBJECT lpSrcDataObj;
 LPOLEUIPASTEENTRY arrPasteEntries;
 int cPasteEntries;
 UINT FAR * arrLinkTypes;
 int cLinkTypes;
 UINT cClsidExclude;
 LPCLSID lpClsidExclude;
 int nSelectedIndex;
 BOOL fLink;
 HGLOBAL hMetaPict;
 SIZEL sizel;
} OLEUIPASTESPECIAL, *POLEUIPASTESPECIAL, FAR *LPOLEUIPASTESPECIAL;

Members

cbStruct

Size of the structure, in bytes. This field must be filled on input.
dwFlags

On input, dwFlags specifies the initialization and creation flags. On exit, it specifies the user's choices.
It may be a combination of the following flags:
PSF_SHOWHELP

Dialog box will display a Help button.
PSF_SELECTPASTE

The Paste radio button will be selected at dialog box startup. This is the default, if
PSF_SELECTPASTE or PSF_SELECTPASTELINK are not specified. Also, it specifies the state of
the button on dialog termination. IN/OUT flag.

PSF_SELECTPASTELINK

The PasteLink radio button will be selected at dialog box startup. Also, specifies the state of the
button on dialog termination. IN/OUT flag.

PSF_CHECKDISPLAYASICON

Whether the Display As Icon radio button was checked on dialog box termination. OUT flag.
PSF_DISABLEDISPLAYASICON

The Display As Icon check box will be disabled on initialization.
HIDECHANGEICON

Used to disable the change-icon button in the dialog box , which is available to users when they're
pasting an OLE object by default. See STAYONCLIPBOARDCHANGE otherwise.

STAYONCLIPBOARDCHANGE

Used to tell the dialog box to stay up if the clipboard changes while the dialog box is up. If the user
switches to another application and copies or cuts something, the dialog box will, by default,
perform a cancel operation, which will remove the dialog box since the options it's in the middle of
presenting to the user are no longer up-to-date with respect to what's really on the clipboard.

NOREFRESHDATAOBJECT

Used in conjunction with STAYONCLIPBOARDCHANGE (it doesn't do anything otherwise). If the
clipboard changes while the dialog box is up and STAYONCLIPBOARDCHANGE is specified, then
NOREFRESHDATAOBJECT indicates that the dialog box should NOT refresh the contents of the
dialog box to reflect the new contents of the clipboard. This is useful if the application is using the
paste-special dialog box on an IDataObject besides the one on the clipboard, for example, as part
of a right-click drag-and-drop operation.

hWndOwner

Wwindow that owns the dialog box. It should not be NULL.
lpszCaption

Pointer to a string to be used as the title of the dialog box. If NULL, then the library uses Paste
Special.

lpfnHook

Pointer to a hook function that processes messages intended for the dialog box. The hook function
must return zero to pass a message that it didn't process back to the dialog box procedure in the
library. The hook function must return a non-zero value to prevent the library's dialog box procedure
from processing a message it has already processed.

lCustData

Application-defined data that the library passes to the hook function pointed to by the lpfnHook
member. The library passes a pointer to the OLEUIPASTESPECIAL structure in the lParam
parameter of the WM_INITDIALOG message; this pointer can be used to retrieve the lCustData
member.

hInstance

Instance that contains a dialog box template specified by the lpTemplateName member.
lpszTemplate

Pointer to a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the library's Paste Special dialog box template.

hResource

Customized template handle.
lpSrcDataObj

Pointer to the IDataObject* interface of the data object to be pasted (from the clipboard). This field is
filled on input. If lpSrcDataObj is NULL when OleUIPasteSpecial is called, then OleUIPasteSpecial
will attempt to retrieve a pointer to an IDataObject from the clipboard. If OleUIPasteSpecial
succeeds, it is the caller's responsibility to free the IDataObject returned in lpSrcDataObj.

arrPasteEntries

The OLEUIPASTEENTRY array which specifies acceptable formats. This field is filled on input.
cPasteEntries

Number of OLEUIPASTEENTRY array entries. This field is filled on input.
arrLinkTypes

List of link types that are acceptable. Link types are referred to using OLEUIPASTEFLAG in
arrPasteEntries. This field is filled on input.

cLinkTypes

Number of link types. This field is filled on input.
cClsidExclude

Number of CLSIDs in lpClsidExclude. This field is filled on input.
lpClsidExclude

Pointer to an array of CLSIDs to exclude from the list of available server objects for a Paste operation.
Note that this does not affect Paste Link. An application can prevent embedding into itself by listing its
own CLSID in this list. This field is filled on input.

nSelectedIndex

Index of arrPasteEntries[] that the user selected. This field is filled on output.
fLink

Whether Paste or Paste Link was selected by the user. This field is filled on output.
hMetaPict

Handle to the Metafile containing the icon and icon title selected by the user. This field is filled on
output.

sizel

Size of object as displayed in its source, if the display aspect chosen by the user matches the aspect
displayed in the source. If the user chooses a different aspect, then sizel.cx and sizel.cy are both set
to zero. The size of the object as it is displayed in the source is retrieved from the ObjectDescriptor if
fLink is FALSE and from the LinkSrcDescriptor if fLink is TRUE. This field is filled on output.

See Also
OleUIPasteSpecial, OLEUIPASTEENTRY, OLEUIPASTEFLAG

OLEUIVIEWPROPS

This structure is used to initialize the View tab of the Object properties dialog box. A reference to it is
passed in as part of the OLEUIOBJECTPROPS structure to the OleUIObjectProperties function. This
tab allows the user to toggle between "content" and "iconic" views of the object, and change its scaling
within the container. It also allows the user to tunnel to the change icon dialog box when the object is
being displayed iconically.

// These IN fields are standard across all OLEUI property pages.

typedef struct tagOLEUIVIEWPROPSA
{
// These IN fields are standard across all OLEUI property pages.
 DWORD cbStruct;
 DWORD dwFlags;
 DWORD dwReserved1[2];
 LPFNOLEUIHOOK lpfnHook;
 LPARAM lCustData;
 DWORD dwReserved2[3];

struct tagOLEUIOBJECTPROPS* lpOP;

 int nScaleMin;
 int nScaleMax;

} OLEUIVIEWPROPSA, *POLEUIVIEWPROPSA, FAR* LPOLEUIVIEWPROPSA;

Members

cbStruct

Size of the structure in bytes.
dwFlags

IN-OUT: flags specific to view page
VPF_SELECTRELATIVE

[in] Relative to origin.
VPF_DISABLERELATIVE

[in] Disable relative to origin.
VPF_DISABLESCALE

[in] Disable scale option.
dwReserved1[2]

Reserved for future use.
lpfnHook

Pointer to hook callback (not used in this dialog box).
lCustData

Custom data to pass to hook (not used in this dialog box).
dwReserved2[3];

Reserved for future use.
lpOP;

Used internally.
nScaleMin

Minimum value for the scale range.
nScaleMax

Maximum value for the scale range.

See Also
OleUIObjectProperties, OLEUIOBJECTPROPS

OLEVERB

The OLEVERB structure defines a verb that an object supports. The IOleObject::EnumVerbs method
creates an enumerator that can enumerate these structures for an object, and supplies a pointer to the
enumerator's IEnumOLEVERB.

typedef struct tagOLEVERB
{
 LONG lVerb;
 LPWSTR lpszVerbName;
 DWORD fuFlags;
 DWORD grfAttribs;
} OLEVERB, * LPOLEVERB;

Members

lVerb

Integer identifier associated with this verb.
lpszVerbName

Pointer to a string that contains the verb's name.
fuFlags

In Windows, a group of flags taken from the flag constants beginning with MF_ defined in
AppendMenu. Containers should use these flags in building an object's verb menu. All Flags defined
in AppendMenu are supported except for MF_BITMAP, MF_OWNERDRAW, and MF_POPUP.

grfAttribs

Combination of the verb attributes in the OLEVERBATTRIB enumeration.

See Also
IEnumOLEVERB, IOleObject::EnumVerbs

PICTDESC

The PICTDESC structure contains parameters to create a picture object through the
OleCreatePictureIndirect function.

typedef struct tagPICTDESC
{
 UINT cbSizeOfStruct;
 UINT picType;
 union
 {
 struct
 {
 HBITMAP hbitmap;
 HPALETTE hpal;
 } bmp;
 struct
 {
 HMETAFILE hmeta;
 int xExt;
 int yExt;
 } wmf;
 struct
 {
 HICON hicon;
 } icon;
 struct
 {
 HENHMETAFILE hemf;
 } emf;
 } ;
} PICTDESC;

Members

cbSizeOfStruct

Size of the PICTDESC structure.
picType

Type of picture described by this structure, which can be any value from the PICTYPE enumeration.
bmp

Structure containing bitmap information if picType is PICTYPE_BITMAP.
bmp.hbitmap

The HBITMAP identifying the bitmap assigned to the picture object.
bmp.hpal

The HPALETTE identifying the color palette for the bitmap.
wmf

Structure containing metafile information if picType is PICTYPE_METAFILE.
wmf.hmeta

The HMETAFILE handle identifying the metafile assigned to the picture object.
wmf.xExt

Horizontal extent of the metafile in HIMETRIC units.
wmf.yExt

Vertical extent of the metafile in HIMETRIC units.
icon

Identifies a structure containing icon information if picType is PICTYPE_ICON.
icon.hicon

The HICON identifying the icon assigned to the picture object.
emf

Structure containing enhanced metafile information if picType is PICTYPE_ENHMETAFILE.
emf.hemf

The HENHMETAFILE identifying the enhanced metafile to assign to the picture object.

See Also
OleCreatePictureIndirect, PICTYPE

POINTF

The POINTF structure is used in the IOleControlSite::TransformCoords method to convert between
container units, expressed in floating point, and control units, expressed in HIMETRIC. The POINTF
structure specifically holds the floating point container units. Controls do not attempt to interpret either
value in the structure.

typedef struct tagPOINTF
{
 float x;
 float y;
} POINTF;

Members

x

The x-coordinates of the point in units that the container finds convenient.
y

The y coordinates of the point in units that the container finds convenient.

See Also
IControlOleSite::TransformCoords

PROPPAGEINFO

The PROPPAGEINFO structure contains parameters used to describe a property page to a property
frame. A property page fills a caller-provided structure in the IPropertyPage::GetPageInfo method.

The pszTitle, pszDocString, and the pszHelpFile members specified in this structure should contain text
sensitive to the locale obtained through IPropertyPageSite::GetLocaleID.

typedef struct tagPROPPAGEINFO
{
 ULONG cb;
 LPOLESTR pszTitle;
 SIZE size;
 LPOLESTR pszDocString;
 LPOLESTR pszHelpFile;
 DWORD dwHelpContext;
} PROPPAGEINFO;

Members

cb

Size of the PROPPAGEINFO structure.
pszTitle

Pointer to the string that appears in the tab for this page. The string must be allocated with
CoTaskMemAlloc. The caller of IPropertyPage::GetPageInfo is responsible for freeing the memory
with CoTaskMemFree.

size

Required dimensions of the page's dialog box, in pixels.
pszDocString

Pointer to a text string describing the page, which can be displayed in the property sheet dialog box
(current frame implementation doesn't use this field). The text must be allocated with
CoTaskMemAlloc. The caller of IPropertyPage::GetPageInfo is responsible for freeing the memory
with CoTaskMemFree.

pszHelpFile

Pointer to the simple name of the help file that describes this property page used instead of
implementing IPropertyPage::Help. When the user presses Help, the Help method is normally
called. If that method fails, the frame will open the help system with this help file (prefixed with the
value of the HelpDir key in the property page's registry entries under its CLSID) and will instruct the
help system to display the context described by the dwHelpContext field. The path must be allocated
with CoTaskMemAlloc. The caller of IPropertyPage::GetPageInfo is responsible for freeing the
memory with CoTaskMemFree.

dwHelpContext

Context identifier for the help topic within pszHelpFile that describes this page.

See Also
CoTaskMemAlloc, CoTaskMemFree, IPropertyPageSite::GetLocaleID, IPropertyPage::GetPageInfo,
IPropertyPage::Help

PROPSPEC

The PROPSPEC structure is used by many of the methods of IPropertyStorage to specify a property
either by its property identifier or the associated string name. The structure and related definitions are
defined as follows in the header files:

const ULONG PRSPEC_LPWSTR = 0
const ULONG PRSPEC_PROPID = 1

typedef ULONG PROPID

typedef struct tagPROPSPEC
{
 ULONG ulKind; // PRSPEC_LPWSTR or PRSPEC_PROPID
 union
 {
 PROPID propid;
 LPOLESTR lpwstr;
 }
} PROPSPEC

Members

ulKind

If ulKind is set to PRSPEC_LPWSTR, lpwstr is used and set to a string name. If ulKind is set to
PRSPEC_PROPID, propid is used and set to a property identifier value.

propid

Specifies the value of the property identifier. Use either this value or the following lpwstr, not both.
lpwstr

Specifies the string name of the property as a null-terminated Unicode string.

Remarks
String names are optional and can be assigned to a set of properties when the property is created
with a call to IPropertyStorage::WriteMultiple, or later, with a call to
IPropertyStorage::WritePropertyNames.

See Also
IPropertyStorage

PROPVARIANT

The PROPVARIANT structure is used in most of the methods of IPropertyStorage to define the type tag
and the value of a property in a property set. There are five members. The first, the value type tag, and
the last, the value of the property, are significant. The middle three are reserved for future use. The
PROPVARIANT structure is defined as follows:

Note The bool member in previous definitions of this structure has been renamed to boolVal, since
some compilers now recognize bool as a keyword.

struct PROPVARIANT{
 VARTYPE vt; // value type tag
 WORD wReserved1;
 WORD wReserved2;
 WORD wReserved3;
 union {
 // none // VT_EMPTY, VT_NULL, VT_ILLEGAL
 unsigned char bVal; // VT_UI1
 short iVal; // VT_I2
 USHORT uiVal; // VT_UI2
 long lVal; // VT_I4
 ULONG ulVal; // VT_UI4
 LARGE_INTEGER hVal; // VT_I8
 ULARGE_INTEGER uhVal; // VT_UI8
 float fltVal; // VT_R4
 double dblVal; // VT_R8
 CY cyVal; // VT_CY
 DATE date; // VT_DATE
 BSTR bstrVal; // VT_BSTR
 VARIANT_BOOL boolVal; // VT_BOOL
 SCODE scode; // VT_ERROR
 FILETIME filetime; // VT_FILETIME
 LPSTR pszVal; // VT_LPSTR // string in the current
system Ansi code page
 LPWSTR pwszVal; // VT_LPWSTR // string in Unicode
 CLSID* puuid; // VT_CLSID
 CLIPDATA* pclipdata; // VT_CF

 BLOB blob; // VT_BLOB, VT_BLOBOBJECT
 IStream* pStream; // VT_STREAM, VT_STREAMED_OBJECT
 IStorage* pStorage; // VT_STORAGE, VT_STORED_OBJECT

 CAUB caub; // VT_VECTOR | VT_UI1
 CAI cai; // VT_VECTOR | VT_I2
 CAUI caui; // VT_VECTOR | VT_UI2
 CAL cal; // VT_VECTOR | VT_I4
 CAUL caul; // VT_VECTOR | VT_UI4
 CAH cah; // VT_VECTOR | VT_I8
 CAUH cauh; // VT_VECTOR | VT_UI8
 CAFLT caflt; // VT_VECTOR | VT_R4
 CADBL cadbl; // VT_VECTOR | VT_R8
 CACY cacy; // VT_VECTOR | VT_CY

 CADATE cadate; // VT_VECTOR | VT_DATE
 CABSTR cabstr; // VT_VECTOR | VT_BSTR
 CABOOL cabool; // VT_VECTOR | VT_BOOL
 CASCODE cascode; // VT_VECTOR | VT_ERROR
 CALPSTR calpstr; // VT_VECTOR | VT_LPSTR
 CALPWSTR calpwstr; // VT_VECTOR | VT_LPWSTR
 CAFILETIME cafiletime; // VT_VECTOR | VT_FILETIME
 CACLSID cauuid; // VT_VECTOR | VT_CLSID
 CACLIPDATA caclipdata; // VT_VECTOR | VT_CF
 CAPROPVARIANT capropvar; // VT_VECTOR | VT_VARIANT
 }} PROPVARIANT

Remarks

PROPVARIANT is the fundamental data type by which property values are read and written through the
IPropertyStorage interface.

The data type PROPVARIANT is related to the data type VARIANT, defined as part of Automation in
OLE2 and defined in the Win32 SDK header file oleauto.h. Several definitions are reused from
Automation, as follows:

typedef struct tagCY {
 unsigned long Lo;
 long Hi;
 } CY

typedef CY CURRENCY;
typedef short VARIANT_BOOL;
typedef unsigned short VARTYPE;
typedef double DATE;
typedef OLECHAR* BSTR;

typedef struct tagCLIPDATA {
 ULONG cbSize; //Includes sizeof(ulClipFmt)
 long ulClipFmt;
 BYTE* pClipData;
 } CLIPDATA

In addition, several new data types that define counted arrays of other data types are required. The data
types of all counted arrays begin with the letters CA (such as CAUB) and have an ORed vt value. The
counted array structure has the following form (where name is the specific name of the counted array):

#define TYPEDEF_CA(type, name)

 typedef struct tag ## name {\
 ULONG cElems;\
 type *pElems;\
 } name

Propvariant Type Code Propvariant
Member

Value Representation

VT_EMPTY 0 None A property with a type indicator of
VT_EMPTY has no data associated with
it; that is, the size of the value is zero.

VT_NULL 1 None This is like a pointer to NULL.

VT_UI1 17 bVal 1-byte unsigned integer
VT_I2 2 iVal Two bytes representing a 2-byte signed

integer value.
VT_UI2 18 uiVal 2-byte unsigned integer
VT_I4 3 lVal 4-byte signed integer value
VT_UI4 19 ulVal 4-byte unsigned integer
VT_I8 20 hVal 8-byte signed integer
VT_UI8 21 uhVal 8-byte unsigned integer
VT_R4 4 fltVal 32-bit IEEE floating point value
VT_R8 5 dblVal 64-bit IEEE floating point value
VT_CY 6 cyVal 8-byte two's complement integer (scaled

by 10,000). This type is commonly used
for currency amounts.

VT_DATE 7 date A 64-bit floating point number
representing the number of days (not
seconds) since December 31, 1899. For
example, January 1, 1900 is 2.0, January
2, 1900 is 3.0, and so on). This is stored
in the same representation as VT_R8.

VT_BSTR 8 bstrVal Pointer to a null terminated Unicode
string. The string is immediately
preceded by a DWORD representing the
byte count, but bstrVal points past this
DWORD to the first character of the
string. BSTRs must be allocated and
freed using the OLE Automation
SysAllocString and SysFreeString calls.

VT_BOOL 11 boolVal (bool
in earlier
designs)

Boolean value, a WORD containing 0
(false) or -1 (true).

VT_ERROR 10 scode A DWORD containing a status code.
VT_FILETIME 64 filetime 64-bit FILETIME structure as defined by

Win32. It is recommended that all times
be stored in Universal Coordinate Time
(UTC).

VT_LPSTR 30 pszVal Pointer to a null terminated ANSI string in
the system default code page.

VT_LPWSTR 31 pwszVal Pointer to a null terminated Unicode
string in the user's default locale.

VT_CLSID 72 puuid Pointer to a CLSID (or other GUID).
VT_CF 71 pclipdata Pointer to a CLIPDATA structure,

described above.
VT_BLOB 65 blob DWORD count of bytes, followed by that

many bytes of data. The byte count does
not include the four bytes for the length
of the count itself; an empty BLOB would
have a count of zero, followed by zero
bytes. This is similar to VT_BSTR but
does not guarantee a null byte at the end
of the data.

VT_BLOBOBJECT 70 blob A BLOB containing a serialized object in

the same representation as would
appear in a VT_STREAMED_OBJECT.
That is, a DWORD byte count (where the
byte count does not include the size of
itself) which is in the format of a class
identifier followed by initialization data for
that class.
The only significant difference between
VT_BLOB_OBJECT and
VT_STREAMED_OBJECT is that the
former does not have the system-level
storage overhead that the latter would
have, and is therefore more suitable for
scenarios involving numbers of small
objects.

VT_STREAM 66 pStream Pointer to an IStream interface,
representing a stream which is a sibling
to the "Contents" stream.

VT_STREAMED_
OBJECT

68 pStream As in VT_STREAM, but indicates that the
stream contains a serialized object,
which is a CLSID followed by initialization
data for the class. The stream is a sibling
to the Contents stream that contains the
property set.

VT_STORAGE 67 pStorage Pointer to an IStorage interface,
representing a storage object that is a
sibling to the "Contents" stream.

VT_STORED_
OBJECT

69 pStorage As in VT_STORAGE, but indicates that
the designated IStorage contains a
loadable object.

VT_VECTOR 0x1000 ca* If the type indicator is one of the simple
propvariant types ORed with this one, the
value is one of the counted array values.
This is a DWORD count of elements,
followed by that many repetitions of the
value.
For example, a type indicator of
VT_LPSTR|VT_VECTOR has a DWORD
element count, a DWORD byte count, the
first string data, padding bytes for 32-bit
alignment (see below), a DWORD byte
count, the second string data, and so on.
Nonsimple types cannot be ORed with
VT_VECTOR. These types are
VT_STREAM, VT_STREAM_OBJECT,
VT_STORAGE,
VT_STORAGE_OBJECT. VT_BLOB and
VT_BLOB_OBJECT types also cannot
be ORed with VT_VECTOR.

VT_VARIANT 12 capropvar A DWORD type indicator followed by the
corresponding value. VT_VARIANT can
be used only with VT_VECTOR.

VT_TYPEMASK 0xFFF Used as a mask for VT_VECTOR and

other modifiers to extract the raw VT
value.

Clipboard format identifiers, stored with the tag VT_CF, use one of five different representations (identified
in the ulClipFmt member of the CLIPDATA structure):

ulClipFmt Value pClipData value
-1L a DWORD containing a built-in Windows

clipboard format value.
-2L a DWORD containing a Macintosh clipboard

format value.
-3L a GUID containing a format identifier (rarely

used).
any positive value a null-terminated string containing a Windows

clipboard format name, one suitable for passing
to RegisterClipboardFormat. The code page
used for characters in the string is per the code
page indicator. The "positive value" here is the
length of the string, including the null byte at the
end.

0L no data (rarely used)

Within a vector of values, each repetition of a value is to be aligned to 32-bit boundaries. The exception to
this rule is scalar types which are less than 32 bits: VT_UI1, VT_12, VT_U12, and VT_BOOL. Vectors of
these values are packed.

Therefore, a value with type tag VT_I2 | VT_VECTOR would be a DWORD element count, followed by a
sequence of packed 2-byte integers with no padding between them.

However, a value with type tag VT_LPSTR | VT_VECTOR would be a DWORD element count, followed
by a sequence of (DWORD cch, char rgch[]) strings, each of which may be followed by null padding to
round to a 32-bit boundary.

QACONTAINER

The QACONTAINER structure is used in IQuickActivate::QuickActivate to specify container
information.

typedef struct tagQACONTAINER
{
 ULONG cbSize;
 IOleClientSite* pClientSite;
 IAdviseSinkEx* pAdviseSink;
 IPropertyNotifySink* pPropertyNotifySink;
 IUnknown* pUnkEventSink;
 DWORD dwAmbientFlags;
 OLE_COLOR colorFore;
 OLE_COLOR colorBack;
 IFont* pFont;
 IOleUndoManager* pUndoMgr;
 DWORD dwAppearance;
 LONG lcid;
 HPALETTE hpal;
 struct IBindHost* pBindHost;
} QACONTAINER;

Members

cbsize

Specifies the size of the structure in bytes.
pClientSite

Pointer to an IOleClientSite interface in the container.
pAdviseSink

Pointer to an IAdviseSinkEx interface in the container.
pPropertyNotifySink

Pointer to an IPropertyNotifySink interface in the container.
pUnkEventSink

Pointer to an IUnknown interface on the container's sink object.
dwAmbientFlags

Specifies a number of ambient properties supplied by the container using values from the
QACONTAINERFLAGS enumeration.

colorFore

Specifies ForeColor, an ambient property supplied by the container with a DISPID = -704.
colorBack

Specifies BackColor, an ambient property supplied by the container with a DISPID = -701.
pFont

Specifies Font, an ambient property supplied by the container with a DISPID = -703.
pUndoMgr

Pointer to an IOleUndoManager interface in the container.
dwAppearance

Specifies Appearance, an ambient property supplied by the container with a DISPID = -716.
lcid

Specifies LocaleIdentifier, an ambient property supplied by the container with a DISPID = -705.
hPal

Specifies Palette, an ambient property supplied by the container with a DISPID = -726.
pBindHost

Pointer to an IBindHost interface in the container.

Remarks
If an interface pointer in the QACONTAINER structure is NULL it does not indicate that the interface is not
supported. In this situation, the control should use QueryInterface to obtain the interface pointer in the
standard manner.

See Also
IQuickActivate::QuickActivate, QACONTAINERFLAGS

QACONTROL

The QACONTROL structure is used in IQuickActivate::QuickActivate to specify control information.

typedef struct tagQACONTROL
{
 ULONG cbSize;
 DWORD dwMiscStatus;
 DWORD dwViewStatus;
 DWORD dwEventCookie;
 DWORD dwPropNotifyCookie;
 DWORD dwPointerActivationPolicy;
}QACONTROL;

Members

cbsize

Size of the structure in bytes.
dwMiscStatus

Specifies the control's miscellaneous status bits that can also be returned by
IOleObject::GetMiscStatus. See OLEMISC for more information.

dwViewStatus

Specifies the control's view status that can also be returned by IViewObjectEx::GetViewStatus. See
VIEWSTATUS for more information.

dwEventCookie

Unique identifier for control-defined events.
dwPropNotifyCookie

Unique identifier for control-defined properties.
dwPointerActivationPolicy

Specifies the control's activation policy that can also be returned by
IPointerInactive::GetActivationPolicy. If all the bits of dwPointerActivationPolicy are set, then the
IPointerInactive interface may not be supported. The container should QueryInterface to obtain the
interface pointer in the standard manner.

See Also
IQuickActivate::QuickActivate

RemSNB

The RemSNB structure is used for marshaling the SNB data type.

Defined in the IStorage interface (storag.idl).

typedef struct tagRemSNB {
 unsigned long ulCntStr;
 unsigned long ulCntChar;
 [size_is(ulCntChar)] wchar_t rgString[];
} RemSNB;
typedef [transmit_as(RemSNB)] wchar_t **SNB;

Members

ulCntStr

Number of strings in the rgString buffer.
ulCntChar

Size in bytes of the rgString buffer.
rgString

Pointer to an array of bytes containing the stream name strings from the SNB.

See Also
IStorage

SNB

A string name block (SNB) is a pointer to an array of pointers to strings, that ends in a NULL pointer.
String name blocks are used by the IStorage interface and by function calls that open storage objects.
The strings point to contained storage objects or streams that are to be excluded in the open calls.

typedef OLESTR **SNB

Remarks

The SNB should be created by allocating a contiguous block of memory in which the pointers to strings
are followed by a NULL pointer, which is then followed by the actual strings.

The marshaling of a string name block is based on the assumption that the SNB passed in was created
this way. Although it could be stored in other ways, the SNB created in this manner has the advantage of
requiring only one allocation operation and one freeing of memory for all the strings.

See Also
IStorage

SOLE_AUTHENTICATION_SERVICE

Identifies an authentication service. This structure is retrieved through a call to
CoQueryAuthenticationServices, and passed in to CoInitializeSecurity.

 typedef struct tagSOLE_AUTHENTICATION_SERVICE {
 DWORD dwAuthnSvc;
 DWORD dwAuthzSvc;
 OLECHAR* pPrincipalName;
 HRESULT hr;
 } SOLE_AUTHENTICATION_SERVICE;

Members

dwAuthnSvc

The authentication service. It may contain a single value taken from the list of RPC_C_AUTHN_ xxx
constants defined in rpcdce.h. RPC_C_AUTHN_NONE turns off authentication. On Win32,
RPC_C_AUTHN_DEFAULT causes COM to use the RPC_C_AUTHN_WINNT authentication.

dwAuthzSvc

The authorization service. It may contain a single value taken from the list of RPC_C_AUTHZ_ xxx
constants defined in rpcdce.h. The validity and trustworthiness of authorization data, like any
application data, depends on the authentication service and authentication level selected. This
parameter is ignored when using the RPC_C_AUTHN_WINNT authentication service.

pPrincipalName

Principal name to be used with the authentication service. If the principal name is NULL, COM
assumes the current user identifier. A NULL principal name is allowed for NT LM SSP and kerberos
authentication services, but may not work for other authentication services.

hr

When used in CoInitializeSecurity, set on return to indicate the status of the call to register the
authentication services.

See Also
RPC_C_AUTHN_xxx, RPC_C_AUTHZ_xxx, CoInitializeSecurity

STATDATA

The STATDATA structure is the data structure used to specify each advisory connection. It is used for
enumerating current advisory connections. It holds data returned by the IEnumSTATDATA enumerator.
This enumerator interface is returned by IDataObject:DAdvise. Each advisory connection is specified by
a unique STATDATA structure.

typedef struct tagSTATDATA
{
 FORMATETC formatetc;
 DWORD grfAdvf;
 IAdviseSink* pAdvSink;
 DWORD dwConnection;
} STATDATA;

Members

formatetc

The FORMATETC structure for the data of interest to the advise sink. The advise sink receives
notification of changes to the data specified by this FORMATETC structure.

grfAdvf

The ADVF enumeration value that determines when the advisory sink is notified of changes in the
data.

pAdvSink

The pointer for the IAdviseSink interface that will receive change notifications.
dwConnection

The token that uniquely identifies the advisory connection. This token is returned by the method that
sets up the advisory connection.

See Also
IEnumSTATDATA

STATPROPSETSTG

Contains information about a property set. To get this information, call IPropertyStorage::Stat, which fills
in a buffer containing the information describing the current property set. To enumerate the
STATPROPSETSTG structures for the property sets in the current property set storage, call
IPropertySetStorage::Enum to get a pointer to an enumerator. You can then call the enumeration
methods of the IEnumSTATPROPSETSTG interface on the enumerator. The structure is defined as
follows:

typedef struct tagSTATPROPSETSTG {
 FMTID fmtid;
 CLSID clsid;
 DWORD grfFlags;
 FILETIME mtime;
 FILETIME ctime;
 FILETIME atime;
 } STATPROPSETSTG

Members

fmtid

Format identifier of the current property set.
clsid

The CLSID associated with this property set.
grfFlags

Flag values of the property set, as specified in IPropertySetStorage::Create.
mtime

Time in Universal Coordinated Time (UTC) that the property set was last modified.
ctime

Time in UTC at which this property set was created.
atime

Time in UCT at which this property set was last accessed.

See Also
IPropertySetStorage::Create, IEnumSTATPROPSETSTG, IPropertyStorage::Stat, FILETIME structure

STATPROPSTG

Each STATPROPSTG structure contains information about a single property in a property set. This
information is the property identifier and type tag, and the optional string name that may be associated
with the property.

IPropertyStorage::Enum supplies a pointer to the IEnumSTATPROPSTG interface on an enumerator
object that can be used to enumerate through the STATPROPSTG structures for the properties in the
current property set. STATPROPSTG is defined as follows:

typedef struct tagSTATPROPSTG {
 LPWSTR lpwstrName;
 PROPID propid;
 VARTYPE vt;
} STATPROPSTG

Members

lpwstrName

Wide-character string containing the optional string name that can be associated with the property.
May be NULL. This member must be freed using CoTaskMemFree.

propid

A 32-bit identifier that uniquely identifies the property within the property set. All properties within
property sets must have unique property identifiers.

vt

Type of the property.

See Also
IPropertyStorage::Enum, IEnumSTATPROPSTG

STATSTG

The STATSTG structure contains statistical information about an open storage, stream, or byte array
object. This structure is used in the IEnumSTATSTG, ILockBytes, IStorage, and IStream interfaces.

typedef struct tagSTATSTG
{
 LPWSTR pwcsName;
 DWORD type;
 ULARGE_INTEGER cbSize;
 FILETIME mtime;
 FILETIME ctime;
 FILETIME atime;
 DWORD grfMode;
 DWORD grfLocksSupported;
 CLSID clsid;
 DWORD grfStateBits;
 DWORD reserved;
} STATSTG;

Members

pwcsName

Points to a NULL-terminated string containing the name. Space for this string is allocated by the
method called and freed by the caller (refer to CoTaskMemFree). You can specify not to return this
member by specifying the STATFLAG_NONAME value when you call a method that returns a
STATSTG structure, except for calls to IEnumSTATSTG::Next, which provides no way to specify this
value.

type

Indicates the type of storage object. This is one of the values from the STGTY enumeration.
cbSize

Specifies the size in bytes of the stream or byte array.
mtime

Indicates the last modification time for this storage, stream, or byte array.
ctime

Indicates the creation time for this storage, stream, or byte array.
atime

Indicates the last access time for this storage, stream or byte array.
grfMode

Indicates the access mode specified when the object was opened. This member is only valid in calls
to Stat methods.

grfLocksSupported

Indicates the types of region locking supported by the stream or byte array. See the LOCKTYPES
enumeration for the values available. This member is not used for storage objects.

clsid

Indicates the class identifier for the storage object; set to CLSID_NULL for new storage objects. This
member is not used for streams or byte arrays.

grfStateBits

Indicates the current state bits of the storage object, that is, the value most recently set by the
IStorage::SetStateBits method. This member is not valid for streams or byte arrays.

dwStgFmt

Indicates the format of the storage object. This is one of the values from the STGFMT enumeration.

See Also
IStorage::SetElementTimes

STORAGELAYOUT
The STORAGELAYOUT structure describes a single block of data, including its name, location, and
length. To optimize a compound file, an application or layout tool passes an array of StorageLayout
structures in a call to ILayoutStorage::LayoutScript.

typedef struct tagSTORAGELAYOUT
{
 DWORD LayoutType;
 OLECHAR* pwcsElementName;
 LARGE_INTEGER cOffset;
 LARGE_INTEGER cBytes;
} STORAGELAYOUT;

Members

LayoutType

The type of element to be written. Values are taken from the STGTY enumeration. STGTY_STREAM
means read the block of data named by pwcsElementName. STGTY_STORAGE means open the
storage specified in pwcsElementName. STGTY_REPEAT is used in multimedia applications to
interlace audio, video, text, and other elements. An opening STGTY_REPEAT elements means that
the elements that follow are to be repeated a specified number of times. The closing
STGTY_REPEAT element marks the end of those elements that are to be repeated. Nested
STGY_REPEAT pairs are permitted.

pwcsElementName

The name of the storage or stream. If the element is a substorage or embedded object, the fully
qualified storage path must be specified; for example:RootStorageName\SubStorageName\
Substream.

cOffset

Where LayoutType is STGTY_STREAM, this flag specifies the beginning offset into the steam named
in pwscElementName.
Where LayoutType is STGTY_STORAGE, this flag should be set to zero.
Where LayoutType is STGTY_REPEAT, this flag should be set to zero.

cBytes

Length in bytes of the data block named in pwcsElementName.
Where LayoutType is STGTY_STREAM, cBytes specifies the number of bytes to read at offset
cOffset from the stream nemaed in pwcsElementName.
Where LayoutType is STGTY_STORAGE, this flag is ignored.
Where LayoutType is STGTY_REPEAT, a positive cBytes specifies the beginning of a repeat block.
STGTY_REPEAT with zero cBytes marks the end of a repeat block.
A beginning block value of STG_TOEND specifies that elements in a following block are to be
repeated after each stream has been completely read.

An array of StorageLayout structures might appear as follows:

StorageLayout arrScript[]=
 // Read first 2k of "WordDocument" stream
 {STGTY_STREAM,L"WordDocument",{0,0},{0,2048}},

 //Test if "ObjectPool\88112233" storage exists
 {STGTY_STORAGE,L"ObjectPool\\88112233",{0,0},{0,0}},

 //Read 2k at offset 1048 of "WordDocument" stream
 {STGTY_STREAM,L"WordDocument",{0,10480},{0,2048}},

 //Interlace "Audio", "Video", and "Caption" streams
 {STGTY_REPEAT,NULL,0,STG_TOEND},
 {STGTY_STREAM,L"Audio", {0,0},{0,2048}}, // 2k of Audio
 {STGTY_STREAM,L"Video", {0,0},{0,65536}}, // 64k of Video
 {STGTY_STREAM,L"Caption", {0,0},{0,128}}, // 128b of text
 {STGTY_REPEAT,NULL, {0,0},{0,0}}
};

Note The parameters cOffest and cBytes are LARGE_INTEGER structures and they must be
represented as a structure with {LARGE_INTEGER} or {DWORD lowpart, LONG highpart}.

See Also
ILayoutStorage::LayoutScript

STGMEDIUM

The STGMEDIUM structure is a generalized global memory handle used for data transfer operations by
the IAdviseSink, IDataObject, and IOleCache interfaces.

typedef struct tagSTGMEDIUM
{
 DWORD tymed;
 [switch_type(DWORD), switch_is((DWORD) tymed)]
 union {
 [case(TYMED_GDI)] HBITMAP hBitmap;
 [case(TYMED_MFPICT)] HMETAFILEPICT hMetafilePict;
 [case(TYMED_ENHMF)] HENHMETAFILE hEnhMetaFile;
 [case(TYMED_HGLOBAL)] HGLOBAL hGlobal;
 [case(TYMED_FILE)] LPWSTR lpszFileName;
 [case(TYMED_ISTREAM)] IStream *pstm;
 [case(TYMED_ISTORAGE)] IStorage *pstg;
 [default] ;
 };
 [unique] IUnknown *pUnkForRelease;
}STGMEDIUM;
typedef STGMEDIUM *LPSTGMEDIUM;

Members

tymed

Type of storage medium. The marshaling and unmarshaling routines use this value to determine
which union member was used. This value must be one of the elements of the TYMED enumeration.

union member

Handle, string, or interface pointer that the receiving process can use to access the data being
transferred. If tymed is TYMED_NULL, the union member is undefined; otherwise, it is one of the
following:
hBitmap

Bitmap handle. The tymed member is TYMED_GDI.
hMetafilePict

Metafile handle. The tymed member is TYMED_MFPICT.
hEnhMetaFile

Enhanced metafile handle. The tymed member is TYMED_ENHMF.
hGlobal

Global memory handle. The tymed member is TYMED_HGLOBAL.
lpszFileName

Pointer to the path of a disk file that contains the data. The tymed member is TYMED_FILE.
pstm

Pointer to an IStream interface. The tymed member is TYMED_ISTREAM.
pstg

Pointer to an IStorage interface. The tymed member is TYMED_ISTORAGE.
pUnkForRelease

Pointer to an interface instance that allows the sending process to control the way the storage is
released when the receiving process calls the ReleaseStgMedium function. If pUnkForRelease is
NULL, ReleaseStgMedium uses default procedures to release the storage; otherwise,
ReleaseStgMedium uses the specified IUnknown interface.

See Also
FORMATETC, IAdviseSink, IDataObject, IOleCache, ReleaseStgMedium

ACTIVATEFLAGS

The ACTIVATEFLAGS enumeration value indicates whether an object is activated as a windowless
object. It is used in IOleInPlaceSiteEx::OnInPlaceActivateEx.

typedef enum tagACTIVATEFLAGS
{
 ACTIVATE_WINDOWLESS = 1
} ACTIVATEFLAGS;

Elements

ACTIVATE_WINDOWLESS

If TRUE, indicates that the object is activated in place as a windowless object. In the
IOleInPlaceSiteEx::OnInPlaceActivateEx method, the container uses this value returned in the
dwFlags parameter instead of calling the GetWindow method in the IOleInPlaceObjectWindowless
interface to determine if the object is windowless or not.

ADVF

The ADVF enumeration values are flags used by a container object to specify the requested behavior
when setting up an advise sink or a caching connection with an object. These values have different
meanings, depending on the type of connection in which they are used, and each interface uses its own
subset of the flags.

typedef enum tagADVF
{
 ADVF_NODATA = 1,
 ADVF_PRIMEFIRST = 4,
 ADVF_ONLYONCE = 2,
 ADVF_DATAONSTOP = 64,
 ADVFCACHE_NOHANDLER = 8,
 ADVFCACHE_FORCEBUILTIN = 16,
 ADVFCACHE_ONSAVE = 32
} ADVF;

Elements

ADVF_NODATA

For data advisory connections (IDataObject::DAdvise or IDataAdviseHolder::Advise), this flag
requests the data object not to send data when it calls IAdviseSink::OnDataChange. The recipient
of the change notification can later request the data by calling IDataObject::GetData. The data object
can honor the request by passing TYMED_NULL in the STGMEDIUM parameter, or it can provide the
data anyway. For example, the data object might have multiple advisory connections, not all of which
specified ADVF_NODATA, in which case the object might send the same notification to all
connections. Regardless of the container's request, its IAdviseSink implementation must check the
STGMEDIUM parameter because it is responsible for releasing the medium if it is not TYMED_NULL.
For cache connections (IOleCache::Cache), this flag requests that the cache not be updated by
changes made to the running object. Instead, the container will update the cache by explicitly calling
IOleCache::SetData. This situation typically occurs when the iconic aspect of an object is being
cached.
ADVF_NODATA is not a valid flag for view advisory connections (IViewObject::SetAdvise) and it
returns E_INVALIDARG.

ADVF_PRIMEFIRST

Requests that the object not wait for the data or view to change before making an initial call to
IAdviseSink::OnDataChange (for data or view advisory connections) or updating the cache (for
cache connections). Used with ADVF_ONLYONCE, this parameter provides an asynchronous
GetData call.

ADVF_ONLYONCE

Requests that the object make only one change notification or cache update before deleting the
connection.
ADVF_ONLYONCE automatically deletes the advisory connection after sending one data or view
notification. The advisory sink receives only one IAdviseSink call. A nonzero connection identifier is
returned if the connection is established, so the caller can use it to delete the connection prior to the
first change notification.
For data change notifications, the combination of ADVF_ONLYONCE and ADVF_PRIMEFIRST
provides, in effect, an asynchronous IDataObject::GetData call.
When used with caching, ADVF_ONLYONCE updates the cache one time only, on receipt of the first
OnDataChange notification. After the update is complete, the advisory connection between the object

and the cache is disconnected. The source object for the advisory connection calls the
IAdviseSink::Release method.

ADVF_DATAONSTOP

For data advisory connections, assures accessibility to data. This flag indicates that when the data
object is closing, it should call IAdviseSink::OnDataChange, providing data with the call. Typically,
this value is used in combination with ADVF_NODATA. Without this value, by the time an
OnDataChange call without data reaches the sink, the source might have completed its shutdown
and the data might not be accessible. Sinks that specify this value should accept data provided in
OnDataChange if it is being passed, because they may not get another chance to retrieve it.
For cache connections, this flag indicates that the object should update the cache as part of object
closure.
ADVF_DATAONSTOP is not a valid flag for view advisory connections.

ADVFCACHE_NOHANDLER

Synonym for ADVFCACHE_FORCEBUILTIN, which is used more often.
ADVFCACHE_FORCEBUILTIN

This value is used by DLL object applications and object handlers that perform the drawing of their
objects. ADVFCACHE_FORCEBUILTIN instructs OLE to cache presentation data to ensure that there
is a presentation in the cache. This value is not a valid flag for data or view advisory connections. For
cache connections, this flag caches data that requires only code shipped with OLE (or the underlying
operating system) to be present in order to produce it with IDataObject::GetData or
IViewObject::Draw. By specifying this value, the container can ensure that the data can be retrieved
even when the object or handler code is not available.

ADVFCACHE_ONSAVE

For cache connections, this flag updates the cached representation only when the object containing
the cache is saved. The cache is also updated when the OLE object transitions from the running state
back to the loaded state (because a subsequent save operation would require rerunning the object).
This value is not a valid flag for data or view advisory connections.

Remarks
For a data or view advisory connection, the container uses the ADVF constants when setting up a
connection between an IAdviseSink instance and and either an IDataObject or IViewObject instance.
These connections are set up using the IDataObject::DAdvise, IDataAdviseHolder::Advise, or
IViewObject::SetAdvise methods.

For a caching connection, the constants are specified in the IOleCache::Cache method to indicate the
container's requests on how the object should update its cache.

These constants are also used in the advf member of the STATDATA structure. This structure is used by
IEnumSTATDATA to describe the enumerated connections, and the advf member indicates the flags that
were specified when the advisory or cache connection was established. When STATDATA is used for an
IOleObject::EnumAdvise enumerator, the advf member is indeterminate.

See Also
IDataAdviseHolder, IDataObject, IEnumSTATDATA, IOleCache, IViewObject

BIND_FLAGS

The BIND_FLAGS enumeration values are used to control aspects of moniker binding operations. The
values are used in the BIND_OPTS structure. Callers of IMoniker methods can specify values from this
enumeration, and implementers of IMoniker methods can use these values in determining what they
should do.

typedef enum tagBIND_FLAGS
{
 BIND_MAYBOTHERUSER = 1,
 BIND_JUSTTESTEXISTENCE = 2,
} BIND_FLAGS;

Elements

BIND_MAYBOTHERUSER

If this flag is specified, the moniker implementation can interact with the end user. If not present, the
moniker implementation should not interact with the user in any way, such as by asking for a
password for a network volume that needs mounting. If prohibited from interacting with the user when
it otherwise would, a moniker implementation can use a different algorithm that does not require user
interaction, or it can fail with the error MK_MUSTBOTHERUSER.

BIND_JUSTTESTEXISTENCE

If this flag is specified, the caller is not interested in having the operation carried out, but only in
learning whether the operation could have been carried out had this flag not been specified. For
example, this flag lets the caller indicate only an interest in finding out whether an object actually
exists by using this flag in a IMoniker::BindToObject call. Moniker implementations can, however,
ignore this possible optimization and carry out the operation in full. Callers must be able to deal with
both cases.

See Also
BIND_OPTS, IBindCtx

BINDSPEED

The BINDSPEED enumeration values indicate approximately how long the caller will wait to bind to an
object. Callers of the IOleItemContainer::GetObject method specify values from this enumeration, and
implementers of that method use these values as a guideline for how quickly they must complete their
operation.

typedef enum tagBINDSPEED
{
 BINDSPEED_INDEFINITE = 1,
 BINDSPEED_MODERATE = 2,
 BINDSPEED_IMMEDIATE = 3
} BINDSPEED;

Elements

BINDSPEED_INDEFINITE

There is no time limit on the binding operation.
BINDSPEED_MODERATE

The IOleItemContainer::GetObject operation must be completed in a moderate amount of time. If
this flag is specified, the implementation of IOleItemContainer::GetObject should return
MK_E_EXCEEEDEDDEADLINE unless the object is one of the following:

· Already in the running state
· A pseudo-object (i.e., an object internal to the item container, such as a cell-range in a spreadsheet

or a character-range in a word processor).
· An object supported by an in-process server (so it is always in the running state when it is loaded).

In this case, IOleItemContainer::GetObject should load the designated object, and, if the
OleIsRunning function indicates that the object is running, return successfully.

BINDSPEED_IMMEDIATE

The caller will wait only a short time. In this case, IOleItemContainer::GetObject should return
MK_E_EXCEEEDEDDEADLINE unless the object is already in the running state or is a pseudo-
object.

Remarks
The system-supplied item moniker implementation is the primary caller of
IOleItemContainer::GetObject. The BINDSPEED value that it specifies depends on the deadline
specified by the caller of the moniker operation.

The deadline is stored in the dwTickCountDeadline field of the BIND_OPTS structure in the bind context
passed to the moniker operation. This value is based on the return value of the GetTickCount function. If
dwTickCountDeadline is zero, indicating no deadline, the item moniker implementation specifies
BINDSPEED_INDEFINITE. (This is the default dwTickCountDeadline value for a bind context returned by
the CreateBindCtx function.) If the difference between dwTickCountDeadline and the value returned by
the GetTickCount function is greater than 2500, the item moniker implementation specifies
BINDSPEED_MODERATE. If the difference is less than 2500, the item moniker implementation specifies
BINDSPEED_IMMEDIATE.

Implementations of IOleItemContainer::GetObject can use the BINDSPEED value as a shortcut
approximation of the binding deadline, or they can use the IBindCtx instance parameter to determine the

exact deadline.

See Also
BIND_OPTS, IBindCtx::GetBindOptions, IOleItemContainer::GetObject

CALLTYPE

The CALLTYPE enumeration constant specifies the call types used by
IMessageFilter::HandleInComingCall.

typedef enum tagCALLTYPE
{
 CALLTYPE_TOPLEVEL = 1,
 CALLTYPE_NESTED = 2,
 CALLTYPE_ASYNC = 3,
 CALLTYPE_TOPLEVEL_CALLPENDING = 4,
 CALLTYPE_ASYNC_CALLPENDING = 5
} CALLTYPE;

Elements

CALLTYPE_TOPLEVEL

A top-level call has arrived and that the object is not currently waiting for a reply from a previous
outgoing call. Calls of this type should always be handled.

CALLTYPE_NESTED

A call has arrived bearing the same logical thread identifier as that of a previous outgoing call for
which the object is still awaiting a reply. Calls of this type should always handled.

CALLTYPE_ASYNC

An aysnchronous call has arrived. Calls of this type cannot be rejected. OLE always delivers calls of
this type.

CALLTYPE_TOPLEVEL_CALLPENDING

A new top-level call has arrived with a new logical thread identifier and that the object is currently
waiting for a reply from a previous outgoing call. Calls of this type may be handled or rejected.

CALLTYPE_ASYNC_CALLPENDING

An asynchronous call has arrived with a new logical thread identifier and that the object is currently
waiting for a reply from a previous outgoing call. Calls of this type cannot be rejected.
async call - can NOT be rejected

See Also
IMessageFilter::HandleInComingCall, IMessageFilter

CLSCTX

Values from the CLSCTX enumeration are used in activation calls to indicate the execution contexts in
which an object is to be run. These values are also used in calls to CoRegisterClassObject to indicate
the set of execution contexts in which a class object is to be made available for requests to construct
instances.

typedef enum tagCLSCTX
{
 CLSCTX_INPROC_SERVER = 1,
 CLSCTX_INPROC_HANDLER = 2,
 CLSCTX_LOCAL_SERVER = 4
 CLSCTX_REMOTE_SERVER = 16
} CLSCTX;
#define CLSCTX_SERVER (CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER |
CLSCTX_REMOTE_SERVER)
#define CLSCTX_ALL (CLSCTX_INPROC_HANDLER | CLSCTX_SERVER)

Elements

CLSCTX_INPROC_SERVER

The code that creates and manages objects of this class runs in the same process as the caller of the
function specifying the class context.

CLSCTX_INPROC_HANDLER

The code that manages objects of this class is an in-process handler. This is a DLL that runs in the
client process and implements client-side structures of this class when instances of the class are
accessed remotely.

CLSCTX_LOCAL_SERVER

The EXE code that creates and manages objects of this class is loaded in a separate process space
(runs on same machine but in a different process).

CLSCTX_REMOTE_SERVER

A remote machine context. The LocalServer32 or LocalService code that creates and manages
objects of this class is run on a different machine.

Defined Terms
CLSCTX_SERVER

Indicates server code, whether in-process, local, or remote. This definition ORs
CLSCTX_INPROC_SERVER, CLSCTX_LOCAL_SERVER, and CLSCTX_REMOTE_SERVER.

CLSCTX_ALL

Indicates all class contexts. This definition ORs CLSCTX_INPROC_HANDLER and
CLSCTX_SERVER.

Remarks
Values from the CLSCTX enumeration are used in activation calls (CoCreateInstance,
CoCreateInstanceEx, CoGetClassObject, etc.) to indicate the preferred execution contexts - in-process,
local, or remote - in which an object is to be run. They are also used in calls to CoRegisterClassObject

to indicate the set of execution contexts in which a class object is to be made available for requests to
construct instances (IClassFactory::CreateInstance).

To indicate that more than one context is acceptable, you can string multiple values together with Boolean
ORs. The contexts are tried in the order in which they are listed.

The following table shows how other OLE functions and methods that call CoGetClassObject use the
CLSCTX values:

Function Called Context Flag Used
OleLoad CLSCTX_INPROC_HANDLER |

CLSCTX_INPROC_SERVER
Putting an OLE object into the
loaded state requires in-process
access; but, it doesn't matter if all
of the object's function is presently
available.

IRunnableObject::Run CLSCTX_INPROC_SERVER |
CLSCTX_LOCAL_SERVER
Running an OLE object requires
connecting to the full code of the
object wherever it is located.

CoUnMarshalInterface CLSCTX_INPROC_HANDLER
Unmarshaling needs the form of
the class designed for remote
access.

IMoniker::BindToObject, for a
file moniker created through a call
to CreateFileMoniker

In this case, uses
CLSCTX_SERVER interally to
create the instance after calling
GetClassFile to determine the
class to be instantiated.

The CLSCTX_REMOTE_SERVER value is added to the CLSCTX enumeration for distributed COM. The
CLSCTX_SERVER and CLSCTX_ALL constants are further updated to include the
CLSCTX_REMOTE_SERVER value.

Given a set of CLSCTX flags, dwClsCtx, the execution context to be used depends on the availability of
registered class codes and other parameters according to the following algorithm:

The first part of the processing determines whether CLSCTX_REMOTE SERVER should be specified as
follows:

1. If the call specifies either
a) an explicit COSERVERINFO structure indicating a machine different from the current machine, or
b) there is no explicit COSERVERINFO structure specified, but the specified class is registered with

either the RemoteServerName or ActivateAtStorage named-value.
then CLSCTX_REMOTE_SERVER is implied and is added to dwClsCtx. The second case allows
applications written prior to the release of distributed COM to be the configuration of classes for
remote activation to be used by client applications available prior to DCOM and the
CLSCTX_REMOTE_SERVER flag. The cases in which there would be no explicit COSERVERINFO
structure are 1) The value is specified as NULL, or 2) It is not one of the function parameters, as
would be the case in calls to CoCreateInstance or CoGetClassObject in existing applications.

2. If the explicit COSERVERINFO parameter indicates the current machine,

CLSCTX_REMOTE_SERVER is removed (if present) from dwClsCtx.

The rest of the processing proceeds by looking at the value(s) of dwClsCtx in the following sequence.

1. If dwClsCtx includes CLSCTX_REMOTE_SERVER and no COSERVERINFO parameter is specified,
if the activation request indicates a persistent state from which to initialize the object (with
CoGetInstanceFromFile, CoGetInstanceFromIStorage, or, for a file moniker, in a call to
IMoniker::BindToObject) and the class has an ActivateAtStorage sub-key or no class registry
information whatsoever, the request to activate and initialize is forwarded to the machine where the
persistent state resides. (Refer to the remote activation functions listed in the See Also section for
details.)

2. If dwClsCtx includes CLSCTX_INPROC_SERVER, the class code in the DLL found under the class's
InprocServer32 key is used if this key exists. The class code will run within the same process as the
caller.

3. If dwClsCtx includes CLSCTX_INPROC_HANDLER, the class code in the DLL found under the
class's InprocHandler32 key is used if this key exists. The class code will run within the same
process as the caller.

4. If dwClsCtx includes CLSCTX_LOCAL_SERVER, the class code in the Win32 service found under
the class's LocalService key is used if this key exists. If no Win32 service is specified, but an EXE is
specified under that same key, the class code associated with that EXE is used. The class code (in
either case) will be run in a separate service process on the same machine as the caller.

5. If dwClsCtx is set to CLSCTX_REMOTE_SERVER and an additional COSERVERINFO parameter to
the function specifies a particular remote machine, a request to activate is forwarded to this remote
machine with dwClsCtx modified to be CLSCTX_LOCAL_SERVER. The class code will run in its own
process on this specific machine, which must be different from that of the caller.

6. Finally, if dwClsCtx includes CLSCTX_REMOTE_SERVER and no COSERVERINFO parameter is
specified, if a machine name is given under the class's RemoteServerName named-value, the
request to activate is forwarded to this remote machine with dwClsCtx modified to be
CLSCTX_LOCAL_SERVER. The class code will run in its own process on this specific machine,
which must be different from that of the caller.

See Also
CoCreateInstance, CoGetClassObject, CoRegisterClassObject, CoGetInstanceFromFile,
CoGetInstanceFromIStorage, CoCreateInstanceEx, COSERVERINFO structure, Creating an Object
through a Class Object, Registering a Running EXE Server

COINIT

A set of values from the COINIT enumeration is passed as the dwCoInit parameter to CoInitializeEx. This
value determines the concurrency model used for incoming calls to objects created by this thread. This
concurrency model can be either apartment-threaded or multi-threaded.

The COINIT enumeration is defined as follows:

typedef enum tagCOINIT{
 COINIT_APARTMENTTHREADED = 0x2, // Apartment model
 COINIT_MULTITHREADED = 0x0, // OLE calls objects on any thread.
 COINIT_DISABLE_OLE1DDE = 0x4, // Don't use DDE for Ole1 support.
 COINIT_SPEED_OVER_MEMORY = 0x8, // Trade memory for speed.
} COINIT;

Members

COINIT_MULTITHREADED

Initializes the thread for multi-threaded object concurrency (see Remarks).
COINIT_APARTMENTTHREADED

Initializes the thread for apartment-threaded object concurrency (see Remarks).
COINIT_DISABLE_OLE1DDE

Disables DDE for Ole1 support.
COINIT_SPEED_OVER_MEMORY

Trades memory for speed.

Remarks
When a thread is initialized through a call to CoInitializeEx, you choose whether to initialize it as
apartment-threaded or multi-threaded by designating one of the members of COINIT as its second
parameter. This designates how incoming calls to any object created by that thread are handled, that is,
the object's concurrency.

Apartment-threading, the default model for earlier versions of Windows NT, while allowing for multiple
threads of execution, serializes all incoming calls by requiring that calls to methods of objects created by
this thread always run on the same thread - the apartment/thread that created them. In addition, calls can
arrive only at message-queue boundaries (i.e., only during a PeekMessage, SendMessage,
DispatchMessage, etc.). Because of this serialization, it is not typically necessary to write concurrency
control into the code for the object, other than to avoid calls to PeekMessage and SendMessage during
processing that must not be interrupted by other method invocations or calls to other objects in the same
apartment/thread.

Multi-threading (also called free-threading) allows calls to methods of objects created by this thread to be
run on any thread. There is no serialization of calls - many calls may occur to the same method or to the
same object or simultaneously. Multi-threaded object concurrency offers the highest performance and
takes the best advantage of multi-processor hardware for cross-thread, cross-process, and cross-
machine calling, since calls to objects are not serialized in any way. This means, however, that the code
for objects must enforce its own concurrency model, typically through the use of Win32 synchronization
primitives, such as critical sections, semaphores, or mutexes. In addition, because the object doesn't
control the lifetime of the threads that are accessing it, no thread-specific state may be stored in the
object (in Thread-Local-Storage).

See Also
CoInitializeEx, Processes and Threads

DATADIR

The DATADIR enumeration values specify the direction of the data flow in the dwDirection parameter of
the IDataObject::EnumFormatEtc method. This determines the formats that the resulting enumerator
can enumerate.

typedef enum tagDATADIR
{
 DATADIR_GET = 1,
 DATADIR_SET = 2
} DATADIR;

Elements

DATADIR_GET

Requests that IDataObject::EnumFormatEtc supply an enumerator for the formats that can be
specified in IDataObject::GetData.

DATADIR_SET

Requests that IDataObject::EnumFormatEtc supply an enumerator for the formats that can be
specified in IDataObject::SetData.

See Also
IDataObject

DISCARDCACHE

The DISCARDCACHE enumeration values are used in the IOleCache2::DiscardCache method to
specify what to do with caches that are to be discarded from memory if their dirty bit has been set. The
dwDiscardOptions parameter specifies whether or not to save these caches.

Defined in the

typedef enum tagDISCARDCACHE
{
 DISCARDCACHE_SAVEIFDIRTY = 0,
 DISCARDCACHE_NOSAVE = 1
} DISCARDCACHE;

Elements

DISCARDCACHE_SAVEIFDIRTY

The cache is to be saved to disk.
DISCARDCACHE_NOSAVE

The cache can be discarded without saving it.

See Also
IOleCache2::DiscardCache

DROPEFFECT

The DoDragDrop function and many of the methods in the IDropSource and IDropTarget interfaces
pass information about the effects of a drag-and-drop operation in a DROPEFFECT enumeration.

Valid drop-effect values are the result of applying the OR operation to the values contained in the
DROPEFFECT enumeration:

typedef enum tagDROPEFFECT
{
 DROPEFFECT_NONE = 0,
 DROPEFFECT_COPY = 1,
 DROPEFFECT_MOVE = 2,
 DROPEFFECT_LINK = 4,
 DROPEFFECT_SCROLL = 0x80000000
}DROPEFFECT;

These values have the following meaning:

DROPEFFECT name Value Description
DROPEFFECT_NONE 0 Drop target cannot accept the data.
DROPEFFECT_COPY 1 Drop results in a copy. The original

data is untouched by the drag
source.

DROPEFFECT_MOVE 2 Drag source should remove the data.
DROPEFFECT_LINK 4 Drag source should create a link to

the original data.
DROPEFFECT_SCROLL 0x80000000 Scrolling is about to start or is

currently occurring in the target. This
value is used in addition to the other
values.

Note Your application should always mask values from the DROPEFFECT enumeration to ensure
compatibility with future implementations. Presently, only four of the 32-bit positions in a
DROPEFFECT have meaning. In the future, more interpretations for the bits will be added. Drag
sources and drop targets should carefully mask these values appropriately before comparing. They
should never compare a DROPEFFECT against, say, DROPEFFECT_COPY by:

if (dwDropEffect == DROPEFFECT_COPY)...

Instead, the application should always mask for the value or values being sought:

if (dwDropEffect & DROPEFFECT_COPY) == DROPEFFECT_COPY)...

or

if (dwDropEffect & DROPEFFECT_COPY)...

This allows for the definition of new drop effects, while preserving backwards compatibility with
existing code.

See Also
DoDragDrop, IDropSource, IDropTarget

DVASPECT

The DVASPECT enumeration values specify the desired data or view aspect of the object when drawing
or getting data.

typedef enum tagDVASPECT
{
 DVASPECT_CONTENT = 1,
 DVASPECT_THUMBNAIL = 2,
 DVASPECT_ICON = 4,
 DVASPECT_DOCPRINT = 8
} DVASPECT;

Elements

DVASPECT_CONTENT

Provides a representation of an object so it can be displayed as an embedded object inside of a
container. This value is typically specified for compound document objects. The presentation can be
provided for the screen or printer.

DVASPECT_THUMBNAIL

Provides a thumbnail representation of an object so it can be displayed in a browsing tool. The
thumbnail is approximately a 120 by 120 pixel, 16-color (recommended) device-independent bitmap
potentially wrapped in a metafile.

DVASPECT_ICON

Provides an iconic representation of an object.
DVASPECT_DOCPRINT

Provides a representation of the object on the screen as though it were printed to a printer using the
Print command from the File menu. The described data may represent a sequence of pages.

Remarks
Values of this enumeration are used to define the dwAspect field of the FORMATETC structure. Only one
DVASPECT value can be used to specify a single presentation aspect in a FORMATETC structure. The
FORMATETC structure is used in many OLE functions and interface methods that require information on
data presentation.

See Also
IAdviseSink, IDataObject, IOleObject, IViewObject, IViewObject2, OleDraw, FORMATETC,
OBJECTDESCRIPTOR

DVASPECT2

The DVASPECT2 enumeration value is used in IViewObject::Draw to specify new drawing aspects used
to optimize the drawing process.

typedef enum tagDVASPECT2
{
 DVASPECT_OPAQUE = 16,
 DVASPECT_TRANSPARENT = 32
} DVASPECT2;

Elements

DVASPECT_OPAQUE

Represents the opaque, easy to clip parts of an object. Objects may or may not support this aspect.
DVASPECT_TRANSPARENT

Represents the transparent or irregular parts of on object, typically parts that are expensive or
impossible to clip out. Objects may or may not support this aspect.

Remarks
To support drawing optimizations to reduce flicker, an object needs to be able to draw and return
information about three separate aspects of itself:

DVASPECT_CONTENT

Same as before. Specifies the entire content of an object. All objects should support this aspect.
DVASPECT_OPAQUE

Represents the opaque, easy to clip parts of an object. Objects may or may not support this aspect.
DVASPECT_TRANSPARENT

Represents the transparent or irregular parts of on object, typically parts that are expensive or
impossible to clip out. Objects may or may not support this aspect.

The container can determine which of these drawing aspects an object supports by calling the new
method IViewObjectEx::GetViewStatus. Individual bits return information about which aspects are
supported. If an object does not support the IViewObjectEx interface, it is assumed to support only
DVASPECT_CONTENT.

Depending on which aspects are supported, the container can ask the object to draw itself during the front
to back pass only, the back to front pass only, or both. The various possible cases are:

· Objects supporting only DVASPECT_CONTENT should be drawn during the back to front pass, with
all opaque parts of any overlapping object clipped out. Since all objects should support this aspect, a
container not concerned about flickering - maybe because it is drawing in an offscreen bitmap - can
opt to draw all objects that way and skip the front to back pass.

· Objects supporting DVASPECT_OPAQUE may be asked to draw this aspect during the front to back
pass. The container is responsible for clipping out the object's opaque regions (returned by
IViewObjectEx::GetRegion) before painting any further object behind it.

· Objects supporting DVASPECT_TRANSPARENT may be asked to draw this aspect during the back
to front pass. The container is responsible for clipping out opaque parts of overlapping objects before

letting an object draw this aspect.

Even when DVASPECT_OPAQUE and DVASPECT_TRANSPARENT are supported, the container is free
to use these aspects or not. In particular, if it is painting in an offscreen bitmap and consequently is
unconcerned about flicker, the container may use DVASPECT_CONTENT and a one-pass drawing only.
However, in a two-pass drawing, if the container uses DVASPECT_OPAQUE during the front to back
pass, then it must use DVASPECT_TRANSPARENT during the back to front pass to complete the
rendering of the object.

See Also
IViewObject::Draw

DVASPECTINFOFLAG

The DVASPECTINFOFLAG enumeration value is used in the DVASPECTINFO structure to indicate
whether an object can support optimized drawing of itself.

typedef enum tagDVASPECTINFOFLAG
{
 DVASPECTINFOFLAG_CANOPTIMIZE = 1
} DVASPECTINFOFLAG;

Elements

DVASPECTINFOFLAG_CANOPTIMIZE

If TRUE, indicates that the object can support optimized rendering of itself. Since most objects on a
form share the same font, background color, and border types, leaving these values in the device
context allows the next object to use them without having to re-select them. Specifically, the object
can leave the font, brush, and pen selected on return from the IViewObject::Draw method instead of
deselecting these from the device context. The container then must deselect these values at the end
of the overall drawing process. The object can also leave other drawing state changes in the device
context, such as the background color, the text color, raster operation code, the current point, the line
drawing, and the poly fill mode. The object cannot change state values unless other objects are
capable of restoring them. For example, the object cannot leave a changed mode, transformation
value, selected bitmap, clip region, or metafile.

See Also
DVASPECTINFO

DVEXTENTMODE

The DVEXTENTMODE enumeration values are used in IViewObjectEx::GetNaturalExtent.

typedef enum tagDVEXTENTMODE
{
 DVEXTENT_CONTENT = 0,
 DVEXTENT_INTEGRAL = 1
} DVEXTENTMODE;

Elements

DVEXTENT_CONTENT

Indicates that the container will ask the object how big it wants to be to exactly fit its content, for
example, in snap-to-size operations.

DVEXTENT_INTEGRAL

Indicates that the container will provide a proposed size to the object for its use in resizing.

See Also
IViewObjectEx::GetNaturalExtent

EXTCONN

The EXTCONN enumeration specifies the type of external connection existing on an embedded object.
Currently, the only supported type is EXTCONN_STRONG, meaning that the external connection is a link.
This EXTCONN constant is used in the IExternalConnection::AddConnection and
IExternalConnection::ReleaseConnection methods.

typedef enum tagEXTCONN
{
 EXTCONN_STRONG = 0X0001,
 EXTCONN_WEAK = 0X0002,
 EXTCONN_CALLABLE = 0X0004
} EXTCONN;

Elements

EXTCONN_STRONG

If this value is specified, the external connection must keep the object alive until all strong external
connections are cleared through IExternalConnection::ReleaseConnection.

EXTCONN_WEAK

This value is currently not used.
EXTCONN_CALLABLE

This value is currently not used.

GUIDKIND

The GUIDKIND enumeration values are flags used to specify the kind of information requested from an
object in the IProvideClassInfo2.

typedef enum tagGUIDKIND
{
 GUIDKIND_DEFAULT_SOURCE_DISP_IID = 1,
 GUIDKIND_DEFAULT_SOURCE_IID = 2,
 GUIDKIND_DEFAULT_DISP_IID = 3,
 GUIDKIND_DEFAULT_IID = 4,
 GUIDKIND_TLBID = 5,
 GUIDKIND_CLSID = 6
} GUIDKIND;

Members

GUIDKIND_DEFAULT_SOURCE_DISP_IID

The interface identifier (IID) of the object's outgoing dispinterface, labeled [source, default]. The
outgoing interface in question must be derived from IDispatch.

GUIDKIND_DEFAULT_SOURCE_IID

The interface identifier (IID) of the object's outgoing interface, labeled [source, default]. The outgoing
interface can be any COM interface.

GUIDKIND_DEFAULT_DISP_IID

The interface identifier (IID) of the object's [default] dispinterface that best represents the object as a
whole. This dispinterface must be derived from IDispatch..

GUIDKIND_DEFAULT_IID

The interface identifier (IID) of the object's [default] interface that best represents the object as a
whole. This interface can be any COM interface.

GUIDKIND_TLBID

The GUID identifying the object's current type library.
GUIDKIND_CLSID

The object's CLSID.

See Also
IProvideClassInfo2

HITRESULT

The HITRESULT enumeration values are used in IViewObjectEx::QueryHitPoint and
IViewObjectEx::QueryHitRect.

typedef enum tagHITRESULT
{
 HITRESULT_OUTSIDE = 0,
 HITRESULT_TRANSPARENT = 1,
 HITRESULT_CLOSE = 2,
 HITRESULT_HIT = 3
} HITRESULT;

Elements

HITRESULT_OUTSIDE

The specified location is outside the object and not close to the object.
HITRESULT_TRANSPARENT

The specified location is within the bounds of the object, but not close to the image. For example, a
point in the middle of a transparent circle could be HITRESULT_TRANSPARENT.

HITRESULT_CLOSE

The specified location is inside the object or is outside the object but is close enough to the object to
be considered inside. Small, thin or detailed objects may use this value. Even if a point is outside the
bounding rectangle of an object it may still be close. This value is needed for hitting small objects.

HITRESULT_HIT

The specified location is within the image of the object

See Also
IViewObjectEx::QueryHitPoint, IViewObjectEx::QueryHitRect

KEYMODIFIERS

The KEYMODIFIERS enumeration values are flags used in calls to
IOleControlSite::TranslateAccelerator to describe additional keyboard states that can modify the
meaning of the keyboard messages that are also passed into IOleControlSite::TranslateAccelerator.

typedef enum tagKEYMODIFIERS
{
 KEYMOD_SHIFT = 0x00000000,
 KEYMOD_CONTROL = 0x00000001,
 KEYMOD_ALT = 0x00000002
} KEYMODIFIERS;

Elements

KEYMOD_SHIFT

The Shift key is currently depressed.
KEYMOD_CONTROL

The Control key is currently depressed.
KEYMOD_ALT

The Alt key is currently depressed.

See Also
IOleControlSite::TranslateAccelerator

LOCKTYPE

The LOCKTYPE enumeration values indicate the type of locking requested for the specified range of
bytes. The values are used in the ILockBytes::LockRegion and IStream::LockRegion methods.

typedef enum tagLOCKTYPE
{
 LOCK_WRITE = 1,
 LOCK_EXCLUSIVE = 2,
 LOCK_ONLYONCE = 4
} LOCKTYPE;

Elements

LOCK_WRITE

If this lock is granted, the specified range of bytes can be opened and read any number of times, but
writing to the locked range is prohibited except for the owner that was granted this lock.

LOCK_EXCLUSIVE

If this lock is granted, writing to the specified range of bytes is prohibited except for the owner that
was granted this lock.

LOCK_ONLYONCE

If this lock is granted, no other LOCK_ONLYONCE lock can be obtained on the range. Usually this
lock type is an alias for some other lock type. Thus, specific implementations can have additional
behavior associated with this lock type.

MKRREDUCE

The MKRREDUCE enumeration constants are used to specify how far the moniker should be reduced.
They are used in the IMoniker::Reduce method.

typedef enum tagMKRREDUCE
{
 MKRREDUCE_ONE = 3<<16,
 MKRREDUCE_TOUSER = 2<<16,
 MKRREDUCE_THROUGHUSER = 1<<16,
 MKRREDUCE_ALL = 0
} MKRREDUCE;

Elements

MKRREDUCE_ONE

Performs only one step of reducing the moniker. In general, the caller must have specific knowledge
about the particular kind of moniker to take advantage of this option.

MKRREDUCE_TOUSER

Reduces the moniker to a form that the user identifies as a persistent object. If no such point exists,
then this option should be treated as MKRREDUCE_ALL.

MKRREDUCE_THROUGHUSER

Reduces the moniker to where any further reduction would reduce it to a form that the user does not
identify as a persistent object. Often, this is the same stage as MKRREDUCE_TOUSER.

MKRREDUCE_ALL

Reduces the moniker until it is in its simplest form, that is, reduce it to itself.

See Also
IMoniker::Reduce

MKSYS

The MKSYS enumeration constants indicate the moniker's class. They are returned from the
IMoniker::IsSystemMoniker method. MKSYS is defined in Objidl.h.

typedef enum tagMKSYS
{
 MKSYS_NONE = 0,
 MKSYS_GENERICCOMPOSITE = 1,
 MKSYS_FILEMONIKER = 2,
 MKSYS_ANTIMONIKER = 3,
 MKSYS_ITEMMONIKER = 4,
 MKSYS_POINTERMONIKER = 5,
 MKSYS_CLASSMONIKER = 7
} MKSYS;

Elements

MKSYS_NONE

Indicates a custom moniker implementation.
MKSYS_GENERICCOMPOSITE

Indicates the system's generic composite moniker class.
MKSYS_FILEMONIKER

Indicates the system's file moniker class.
MKSYS_ANTIMONIKER

Indicates the system's anti-moniker class.
MKSYS_ITEMMONIKER

Indicates the system's item moniker class.
MKSYS_POINTERMONIKER

Indicates the system's pointer moniker class.
MKSYS_CLASSMONIKER

Indicates the system's class moniker class.

See Also
IMoniker::IsSystemMoniker

MSHCTX

The MSHCTX enumeration constants specify the destination context, which is the process in which the
unmarshaling is to be done. These flags are used in the IMarshal and IStdMarshalInfo interfaces and in
the CoMarshalInterface and CoGetStandardMarshal functions.

typedef enum tagMSHCTX
{
 MSHCTX_LOCAL = 0,
 MSHCTX_NOSHAREDMEM = 1,
 MSHCTX_DIFFERENTMACHINE = 2,
 MSHCTX_INPROC = 3
} MSHCTX;

Elements

MSHCTX_LOCAL

The unmarshaling process is local and has shared memory access with the marshaling process.
MSHCTX_NOSHAREDMEM

The unmarshaling process does not have shared memory access with the marshaling process.
MSHCTX_DIFFERENTMACHINE

The unmarshaling process is on a different machine. The marshaling code cannot assume that a
particular piece of application code is installed on that machine.

MSHCTX_INPROC

The unmarshaling will be done in another apartment in the same process. If your object supports
multiple threads, your custom marshaler can pass a direct pointer instead of creating a proxy object.

See Also
CoGetStandardMarshal, CoMarshalInterface, IMarshal, IStdMarshalInfo

MSHLFLAGS

The MSHLFLAGS enumeration constants determine why the marshaling is to be done. These flags are
used in the IMarshal interface and the CoMarshalInterface and CoGetStandardMarshal functions.

typedef enum tagMSHLFLAGS
{
 MSHLFLAGS_NORMAL = 0,
 MSHLFLAGS_TABLESTRONG = 1,
 MSHLFLAGS_TABLEWEAK = 2
} MSHLFLAGS;

Elements

MSHLFLAGS_NORMAL

The marshaling is occurring because an interface pointer is being passed from one process to
another. This is the normal case. The data packet produced by the marshaling process will be
unmarshaled in the destination process. The marshaled data packet can be unmarshaled just once,
or not at all. If the receiver unmarshals the data packet successfully, the CoReleaseMarshalData
function is automatically called on the data packet as part of the unmarshaling process. If the receiver
does not or cannot unmarshal the data packet, the sender must call the CoReleaseMarshalData
function on the data packet.

MSHLFLAGS_TABLESTRONG

The marshaling is occurring because the data packet is to be stored in a globally accessible table
from which it can be unmarshaled one or more times, or not at all. The presence of the data packet in
the table counts as a strong reference to the interface being marshaled, meaning that it is sufficient to
keep the object alive. When the data packet is removed from the table, the table implementer must
call the CoReleaseMarshalData function on the data packet.
MSHLFLAGS_TABLESTRONG is used by the RegisterDragDrop function when registering a
window as a drop target. This keeps the window registered as a drop target no matter how many
times the end user drags across the window. The RevokeDragDrop function calls
CoReleaseMarshalData.

MSHLFLAGS_TABLEWEAK

The marshaling is occurring because the data packet is to be stored in a globally accessible table
from which it can be unmarshaled one or more times, or not at all. However, the presence of the data
packet in the table acts as a weak reference to the interface being marshaled, meaning that it is not
sufficient to keep the object alive. When the data packet is removed from the table, the table
implementer must call the CoReleaseMarshalData function on the data packet.
MSHLFLAGS_TABLEWEAK is typically used when registering an object in the Running Object Table
(ROT). This prevents the object's entry in the ROT from keeping the object alive in the absence of any
other connections. See IRunningObjectTable::Register for more information.

See Also
CoGetStandardMarshal, CoMarshalInterface, CoReleaseMarshalData, IMarshal

OLECLOSE

The OLECLOSE enumeration constants are used in the IOleObject::Close method to determine whether
the object should be saved before closing.

typedef enum tagOLECLOSE
{
 OLECLOSE_SAVEIFDIRTY = 0,
 OLECLOSE_NOSAVE = 1,
 OLECLOSE_PROMPTSAVE = 2
} OLECLOSE;

Elements

OLECLOSE_SAVEIFDIRTY

The object should be saved if it is dirty.
OLECLOSE_NOSAVE

The object should not be saved, even if it is dirty. This flag is typically used when an object is being
deleted.

OLECLOSE_PROMPTSAVE

If the object is dirty, the IOleObject::Close implementation should display a dialog box to let the end
user determine whether to save the object. However, if the object is in the running state but its user
interface is invisible, the end user should not be prompted, and the close should be handled as if
OLECLOSE_SAVEIFDIRTY had been specified.

See Also
IOleObject::Close

OLECONTF

The OLECONTF enumeration indicates the kind of objects to be enumerated by the returned
IEnumUnknown interface. OLECONTF contains a set of bitwise constants used in the
IOleContainer::EnumObjects method.

typedef enum tagOLECONTF
{
 OLECONTF_EMBEDDINGS = 1;
 OLECONTF_LINKS = 2;
 OLECONTF_OTHERS = 4;
 OLECONTF_ONLYUSER = 8;
 OLECONTF_ONLYIFRUNNING = 16
} OLECONTF;

Elements

OLECONTF_EMBEDDINGS

Enumerates the embedded objects in the container.
OLECONTF_LINKS

Enumerates the linked objects in the container.
OLECONTF_OTHERS

Enumerates all objects in the container that are not OLE compound document objects (i.e., objects
other than linked or embedded objects). Use this flag to enumerate the container's pseudo-objects.

OLECONTF_ONLYUSER

Enumerates only those objects the user is aware of. For example, hidden named-ranges in Microsoft
Excel would not be enumerated using this value.

OLECONTF_ONLYIFRUNNING

Enumerates only those linked or embedded objects that are currently in the running state for this
container.

See Also
IEnumUnknown, IOleContainer::EnumObjects

OLECREATE

Values from the OLECREATE enumeration are passed as the dwFlags parameter to the OleCreateXXX
functions to indicate how the creation operation should proceed.

typedef enum tagOLECREATE
{
 OLECREATE_LEAVERUNNING = 1,
} OLECREATE;

Elements

OLECREATE_LEAVERUNNING

Indicates that the newly created object should be left in the running state upon successful completion
of the call.

See Also
OleCreateEx, OleCreateFromFileEx, OleCreateFromDataEx, OleCreateLinkEx,
OleCreateLinkToFileEx, OleCreateLinkFromDataEx

OLEDCFLAGS

The OLEDCFLAGS enumeration value supplies additional information to the container about the device
context that the object has requested. It is used in IOleInPlaceSiteWindowless::GetDC.

typedef enum tagOLEDCFLAGS
{
 OLEDC_NODRAW = 0x1,
 OLEDC_PAINTBKGND = 0x2,
 OLEDC_OFFSCREEN = 0x4
} OLEDCFLAGS;

Elements

OLEDC_NODRAW

Indicates that the object will not use the returned hDC for drawing but merely to get information about
the display device. In this case, the container can simply pass the window's device context without
further processing.

OLEDC_PAINTBKGND

Requests that the container paint the background behind the object before returning the device
context. Objects should use this flag when requesting a device context to paint a transparent area.

OLEDC_OFFSCREEN

Indicates that the object prefers to draw into an offscreen device context that should then be copied to
the screen. The container can honor this request or not. If this bit is cleared, the container must return
an on-screen device context allowing the object to perform direct screen operations such as showing
a selection via an XOR operation. An object can specify this value when the drawing operation
generates a lot of screen flicker.

See Also
IOleInPlaceSiteWindowless::GetDC

OLEGETMONIKER

The OLEGETMONIKER enumeration constants indicate the requested behavior of the
IOleObject::GetMoniker and IOleClientSite::GetMoniker methods.

typedef enum tagOLEGETMONIKER
{
 OLEGETMONIKER_ONLYIFTHERE = 1,
 OLEGETMONIKER_FORCEASSIGN = 2,
 OLEGETMONIKER_UNASSIGN = 3,
 OLEGETMONIKER_TEMPFORUSER = 4
} OLEGETMONIKER;

Elements

OLEGETMONIKER_ONLYIFTHERE

If a moniker for the object or container does not exist, GetMoniker should return E_FAIL and not
assign a moniker.

OLEGETMONIKER_FORCEASSIGN

If a moniker for the object or container does not exist, GetMoniker should create one.
OLEGETMONIKER_UNASSIGN

IOleClientSite::GetMoniker can release the object's moniker (although it is not required to do so).
This constant is not valid in IOleObject::GetMoniker.

OLEGETMONIKER_TEMPFORUSER

If a moniker for the object does not exist, IOleObject::GetMoniker can create a temporary moniker
that can be used for display purposes (IMoniker::GetDisplayName) but not for binding. This enables
the object server to return a descriptive name for the object without incurring the overhead of creating
and maintaining a moniker until a link is actually created.

Remarks
If the OLEGETMONIKER_FORCEASSIGN flag causes a container to create a moniker for the object, the
container should notify the object by calling the IOleObject::SetMoniker method.

See Also
IMoniker, IOleClientSite::GetMoniker, IOleObject::GetMoniker

OLELINKBIND

The OLELINKBIND enumeration constants control binding operations to a link source. They are used in
the IOleLink::BindToSource method.

typedef enum tagOLELINKBIND
{
 OLELINKBIND_EVENIFCLASSDIFF = 1,
} OLELINKBIND;

Element

OLELINKBIND_EVENIFCLASSDIFF

The binding operation should proceed even if the current class of the link source is different from the
last time the link was bound. For example, the link source could be a Lotus spreadsheet that was
converted to an Excel spreadsheet.

See Also
IOleLink::BindToSource

OLEMISC

The OLEMISC enumeration is a set of bitwise constants that can be combined to describe miscellaneous
characteristics of an object or class of objects. A container can call the IOleObject::GetMiscStatus
method to determine the OLEMISC bits set for an object. The values specified in an object server's
CLSID\MiscStatus entry in the registration database are based on the OLEMISC enumeration. These
constants are also used in the dwStatus member of the OBJECTDESCRIPTOR structure.

typedef enum tagOLEMISC // bitwise
{
 OLEMISC_RECOMPOSEONRESIZE = 1,
 OLEMISC_ONLYICONIC = 2,
 OLEMISC_INSERTNOTREPLACE = 4,
 OLEMISC_STATIC = 8,
 OLEMISC_CANTLINKINSIDE = 16,
 OLEMISC_CANLINKBYOLE1 = 32,
 OLEMISC_ISLINKOBJECT = 64,
 OLEMISC_INSIDEOUT = 128,
 OLEMISC_ACTIVATEWHENVISIBLE = 256,
 OLEMISC_RENDERINGISDEVICEINDEPENDENT = 512,
 OLEMISC_INVISIBLEATRUNTIME = 1024
 OLEMISC_ALWAYSRUN = 2048,
 OLEMISC_ACTSLIKEBUTTON = 4096,
 OLEMISC_ACTSLIKELABEL = 8192,
 OLEMISC_NOUIACTIVATE = 16384,
 OLEMISC_ALIGNABLE = 32768,
 OLEMISC_SIMPLEFRAME = 65536,
 OLEMISC_SETCLIENTSITEFIRST = 131072,
 OLEMISC_IMEMODE = 262144,
 OLEMISC_IGNOREACTIVATEWHENVISIBLE = 524288,
 OLEMISC_WANTSTOMENUMERGE = 1048576,
 OLEMISC_SUPPORTSMULTILEVELUNDO = 2097152
} OLEMISC;

Elements

OLEMISC_RECOMPOSEONRESIZE

When the container resizes the space allocated to displaying one of the object's presentations, the
object wants to recompose the presentation. This means that on resize, the object wants to do more
than scale its picture. If this bit is set, the container should force the object to the running state and
call IOleObject::SetExtent with the new size.

OLEMISC_ONLYICONIC

The object has no useful content view other than its icon. From the user's perspective, the Display As
Icon checkbox (in the Paste Special dialog box) for this object should always be checked, and should
not be uncheckable. Note that such an object should still have a drawable content aspect; it will look
the same as its icon view.

OLEMISC_INSERTNOTREPLACE

The object has initialized itself from the data in the container's current selection. Containers should
examine this bit after calling IOleObject::InitFromData to initialize an object from the current
selection. If set, the container should insert the object beside the current selection rather than
replacing the current selection. If this bit is not set, the object being inserted replaces the current
selection.

OLEMISC_STATIC

This object is a static object, which is an object that contains only a presentation; it contains no native
data. See OleCreateStaticFromData.

OLEMISC_CANTLINKINSIDE

This object cannot be the link source that when bound to activates (runs) the object. If the object is
selected and copied to the clipboard, the object's container can offer a link in a clipboard data transfer
that, when bound, must connect to the outside of the object. The user would see the object selected
in its container, not open for editing. Rather than doing this, the container can simply refuse to offer a
link source when transferring objects with this bit set. Examples of objects that have this bit set
include OLE1 objects, static objects, and links.

OLEMISC_CANLINKBYOLE1

This object can be linked to by OLE 1 containers. This bit is used in the dwStatus member of the
OBJECTDESCRIPTOR structure transferred with the Object and Link Source Descriptor formats. An
object can be linked to by OLE 1 containers if it is an untitled document, a file, or a selection of data
within a file. Embedded objects or pseudo-objects that are contained within an embedded object
cannot be linked to by OLE 1 containers (i.e., OLE 1 containers cannot link to link sources that, when
bound, require more than one object server to be run.

OLEMISC_ISLINKOBJECT

This object is a link object. This bit is significant to OLE 1 and is set by the OLE 2 link object; object
applications have no need to set this bit.

OLEMISC_INSIDEOUT

This object is capable of activating in-place, without requiring installation of menus and toolbars to
run. Several such objects can be active concurrently. Some containers, such as forms, may choose to
activate such objects automatically.

OLEMISC_ACTIVATEWHENVISIBLE

This bit is set only when OLEMISC_INSIDEOUT is set, and indicates that this object prefers to be
activated whenever it is visible. Some containers may always ignore this hint.

OLEMISC_RENDERINGISDEVICEINDEPENDENT

This object does not pay any attention to target devices. Its presention data will be the same in all
cases.

OLEMISC_INVISIBLEATRUNTIME

This value is used with controls. It indicates that the control has no run-time user interface, but that it
should be visible at design time. For example, a timer control that fires a specific event periodically
would not show itself at run time, but it needs a design-time user interface so a form designer can set
the event period and other properties.

OLEMISC_ALWAYSRUN

This value is used with controls. It tells the container that this control always wants to be running. As a
result, the container should call OleRun when loading or creating the object.

OLEMISC_ACTSLIKEBUTTON

This value is used with controls. It indicates that the control is buttonlike in that it understands and
obeys the container's DisplayAsDefault ambient property.

OLEMISC_ACTSLIKELABEL

This value is used with controls. It marks the control as a label for whatever control comes after it in
the form's ordering. Pressing a mnemonic key for a label control activates the control after it.

OLEMISC_NOUIACTIVATE

This value is used with controls. It indicates that the control has no UI active state, meaning that it
requires no in-place tools, no shared menu, and no accelerators. It also means that the control never
needs the focus.

OLEMISC_ALIGNABLE

This value is used with controls. It indicates that the control understands how to align itself within its
display rectangle, according to alignment properties such as left, center, and right.

OLEMISC_SIMPLEFRAME

This value is used with controls. It indicates that the control is a simple grouping of other controls and
does little more than pass Windows messages to the control container managing the form. Controls of
this sort require the implementation of ISimpleFrameSite on the container's site.

OLEMISC_SETCLIENTSITEFIRST

This value is used with controls. It indicates that the control wants to use IOleObject::SetClientSite
as its initialization function, even before a call such as IPersistStreamInit::InitNew or
IPersistStorage::InitNew. This allows the control to access a container's ambient properties before
loading information from persistent storage. Note that the current implementations of OleCreate,
OleCreateFromData, OleCreateFromFile, OleLoad, and the default handler do not understand this
value. Control containers that wish to honor this value must currently implement their own versions of
these functions in order to establish the correct initialization sequence for the control.

OLEMISC_IMEMODE

Obsolete. A control that works with an Input Method Editor (IME) system component can control the
state of the IME through the IMEMode property rather than using this value in the OLEMISC
enumeration. You can use an IME component to enter information in Asian character sets with a
regular keyboard. A Japanese IME, for example, allows you to type a word such as "sushi," on a
regular keyboard and when you hit the spacebar, the IME component converts that word to
appropriate kanji or proposes possible choices. The OLEMISC_IMEMODE value was previously used
to mark a control as capable of controlling an IME mode system component.

OLEMISC_IGNOREACTIVATEWHENVISIBLE

For new ActiveX controls to work in an older container, the control may need to have the
OLEMISC_ACTIVATEWHENVISIBLE value set. However, in a newer container that understands and
uses IPointerInactive, the control does not wish to be in-place activated when it becomes visible. To
allow the control to work in both kinds of containers, the control can set this value. Then, the container
ignores OLEMISC_ACTIVATEWHENVISIBLE and does not in-place activate the control when it
becomes visible.

OLEMISC_WANTSTOMENUMERGE

A control that can merge its menu with its container sets this value.
OLEMISC_SUPPORTSMULTILEVELUNDO

A control that supports multi-level undo sets this value.

See Also
IOleObject::GetMiscStatus, OBJECTDESCRIPTOR

OLERENDER

The OLERENDER enumeration constants are used in the various object creation functions to indicate the
type of caching requested for the newly created object.

typedef enum tagOLERENDER
{
 OLERENDER_NONE = 0;
 OLERENDER_DRAW = 1;
 OLERENDER_FORMAT = 2;
 OLERENDER_ASIS = 3
} OLERENDER;

Elements

OLERENDER_NONE

The client is not requesting any locally cached drawing or data retrieval capabilities in the object. The
pFormatEtc parameter of the calls is ignored when this value is specified for the renderopts
parameter.

OLERENDER_DRAW

The client will draw the content of the object on the screen (a NULL target device) using
IViewObject:Draw. The object itself determines the data formats that need to be cached. With this
render option, only the ptd and dwAspect members of pFormatEtc are significant, since the object
may cache things differently depending on the parameter values. However, pFormatEtc can legally be
NULL here, in which case the object is to assume the display target device and the
DVASPECT_CONTENT aspect.

OLERENDER_FORMAT

The client will pull one format from the object using IDataObject::GetData(). The format of the data to
be cached is passed in pFormatEtc, which may not in this case be NULL.

OLERENDER_ASIS

The client is not requesting any locally cached drawing or data retrieval capabilities in the object.
pFormatEtc is ignored for this option. The difference between this and the OLERENDER_FORMAT
value is important in such functions as OleCreateFromData() and OleCreateLinkFromData().

See Also
OleCreate, OleCreateFromData, OleCreateFromFile, OleCreateLink, OleCreateLinkFromData,
OleCreateLinkToFile, OleCreateStaticFromData

OLEUIPASTEFLAG

This enumeration is used to indicate the user options that are available to the user when pasting this
format, and within which group or list of choices (Paste, Paste Link, etc.) this entry is to be available.
OLEUIPASTEFLAG is used by the OLEUIPASTEENTRY structure.

typedef enum tagOLEUIPASTEFLAG
{
 OLEUIPASTE_ENABLEICON = 2048,
 OLEUIPASTE_PASTEONLY = 0,
 OLEUIPASTE_PASTE = 512,
 OLEUIPASTE_LINKANYTYPE = 1024,
 OLEUIPASTE_LINKTYPE1 = 1,
 OLEUIPASTE_LINKTYPE2 = 2,
 OLEUIPASTE_LINKTYPE3 = 4,
 OLEUIPASTE_LINKTYPE4 = 8,
 OLEUIPASTE_LINKTYPE5 = 16,
 OLEUIPASTE_LINKTYPE6 = 32,
 OLEUIPASTE_LINKTYPE7 = 64,
 OLEUIPASTE_LINKTYPE8 = 128
} OLEUIPASTEFLAG;

Elements

OLEUIPASTE_ENABLEICON

If the container does not specify this flag for the entry in the OLEUIPASTEENTRYarray passed as
input to OleUIPasteSpecial, the DisplayAsIcon button will be unchecked and disabled when the user
selects the format that corresponds to the entry.

OLEUIPASTE_PASTEONLY

The entry in the OLEUIPASTEENTRY array is valid for pasting only.
OLEUIPASTE_PASTE

The entry in the OLEUIPASTEENTRYarray is valid for pasting. It may also be valid for linking if any of
the following linking flags are specified. If it is valid for linking, then the following flags indicate which
link types are acceptable by OR'ing together the appropriate OLEUIPASTE_LINKTYPE<#> values.
These values correspond as follows to the array of link types passed to OleUIPasteSpecial:
OLEUIPASTE_LINKTYPE1=arrLinkTypes[0]
OLEUIPASTE_LINKTYPE2=arrLinkTypes[1]
OLEUIPASTE_LINKTYPE3=arrLinkTypes[2]
OLEUIPASTE_LINKTYPE4=arrLinkTypes[3]
OLEUIPASTE_LINKTYPE5=arrLinkTypes[4]
OLEUIPASTE_LINKTYPE6=arrLinkTypes[5]
OLEUIPASTE_LINKTYPE7=arrLinkTypes[6]
OLEUIPASTE_LINKTYPE8=arrLinkTypes[7]
where,
UINT arrLinkTypes[8] is an array of registered clipboard formats for linking. A maximum of 8 link types
is allowed.

OLEUPDATE

The OLEUPDATE enumeration constants are used to indicate whether the linked object updates the
cached data for the linked object automatically or only when the container calls either the
IOleObject::Update or IOleLink::Update methods. The constants are used in the IOleLink interface.

typedef enum tagOLEUPDATE
{
 OLEUPDATE_ALWAYS = 1;
 OLEUPDATE_ONCALL = 3
} OLEUPDATE;
typedef OLEUPDATE *LPOLEUPDATE;

Elements

OLEUPDATE_ALWAYS

Update the link object whenever possible, this option corresponds to the Automatic update option in
the Links dialog box.

OLEUPDATE_ONCALL

Update the link object only when IOleObject::Update or IOleLink::Update is called, this option
corresponds to the Manual update option in the Links dialog box.

See Also
IOleLink::SetUpdateOptions, IOleLink::GetUpdateOptions

OLEVERBATTRIB

The OLEVERBATTRIB enumeration constants are used in the OLEVERB structure to describe the
attributes of a specified verb for an object. Values are used in the enumerator (which supports the
IEnumOLEVERB interface) that is created by a call to IOleObject::EnumVerbs.

typedef enum tagOLEVERBATTRIB
{
 OLEVERBATTRIB_NEVERDIRTIES = 1,
 OLEVERBATTRIB_ONCONTAINERMENU = 2
} OLEVERBATTRIB;

Elements

OLEVERBATTRIB_NEVERDIRTIES

Executing this verb will not cause the object to become dirty and is therefore in need of saving to
persistent storage.

OLEVERBATTRIB_ONCONTAINERMENU

Indicates a verb that should appear in the container's menu of verbs for this object.
OLEIVERB_HIDE, OLEIVERB_SHOW, and OLEIVERB_OPEN never have this value set.

See Also
IOleObject::EnumVerbs, IEnumOLEVERB, OLEVERB

OLEWHICHMK

The OLEWHICHMK enumeration constants indicate which part of an object's moniker is being set or
retrieved. These constants are used in the IOleObject and IOleClientSite interfaces.

typedef enum tagOLEWHICHMK
{
 OLEWHICHMK_CONTAINER = 1,
 OLEWHICHMK_OBJREL = 2,
 OLEWHICHMK_OBJFULL = 3
} OLEWHICHMK;

Elements

OLEWHICHMK_CONTAINER

The moniker of the object's container. Typically, this is a file moniker. This moniker is not persistently
stored inside the object, since the container can be renamed even while the object is not loaded.

OLEWHICHMK_OBJREL

The moniker of the object relative to its container. Typically, this is an item moniker, and it is part of the
persistent state of the object. If this moniker is composed on to the end of the container's moniker, the
resulting moniker is the full moniker of the object.

OLEWHICHMK_OBJFULL

The full moniker of the object. Binding to this moniker results in a connection to the object. This
moniker is not persistently stored inside the object, since the container can be renamed even while
the object is not loaded.

See Also
IOleClientSite::GetMoniker, IOleObject::GetMoniker, IOleObject::SetMoniker

PENDINGMSG

The PENDINGMSG enumeration constants are return values of IMessageFilter::MessagePending.

Defined in the IMessageFilter interface (msgflt.idl).

typedef enum tagPENDINGMSG
{
 PENDINGMSG_CANCELCALL = 0,
 PENDINGMSG_WAITNOPROCESS = 1,
 PENDINGMSG_WAITDEFPROCESS = 2
} PENDINGMSG;

Elements

PENDINGMSG_CANCELCALL

Cancel the outgoing call.
PENDINGMSG_WAITNOPROCESS

Wait for the return and don't dispatch the message.
PENDINGMSG_WAITDEFPROCESS

Wait and dispatch the message.

See Also
IMessageFilter::MessagePending

PENDINGTYPE

The PENDINGTYPE enumeration constants indicate the level of nesting in the
IMessageFilter::MessagePending method.

typedef enum tagPENDINGTYPE
{
 PENDINGTYPE_TOPLEVEL = 1,
 PENDINGTYPE_NESTED = 2
} PENDINGTYPE;

Elements

PENDINGTYPE_TOPLEVEL

Top-level call.
PENDINGTYPE_NESTED

Nested call.

See Also
IMessageFilter::MessagePending

PICTURE

The PICTURE enumeration values describe attributes of a picture object as returned through the
IPicture::get_Attributes method.

typedef enum tagPICTURE
{
 PICTURE_SCALABLE = 0x00000001,
 PICTURE_TRANSPARENT = 0x00000002
} PICTURE;

Elements

PICTURE_SCALABLE

The picture object is scalable, such that it can be redrawn with a different size than was used to
create the picture originally. Metafile-based pictures are considered scalable; icon and bitmap
pictures, while they can be scaled, do not express this attribute because both involve bitmap
stretching instead of true scaling.

PICTURE_TRANSPARENT

The picture object contains an image that has transparent areas, such that drawing the picture will not
necessarily fill in all the spaces in the rectangle it occupies. Metafile and icon pictures have this
attribute; bitmap pictures do not.

See Also
IPicture::get_Attributes

PICTYPE

The PICTYPE enumeration values are used to describe the type of a picture object as returned by
IPicture::get_Type, as well as to describe the type of picture in the picType field of the PICTDESC
structure that is passed to OleCreatePictureIndirect.

typedef enum tagPICTYPE
{
 PICTYPE_UNINITIALIZED = -1,
 PICTYPE_NONE = 0,
 PICTYPE_BITMAP = 1,
 PICTYPE_METAFILE = 2,
 PICTYPE_ICON = 3
 PICTYPE_ENHMETAFILE = 4
} PICTYPE;

Elements

PICTYPE_UNINITIALIZED

The picture object is currently uninitialized. This value is only valid as a return value from
IPicture::get_Type and is not valid with the PICTDESC structure.

PICTYPE_NONE

A new picture object is to be created without an initialized state. This value is valid only in the
PICTDESC structure.

PICTYPE_BITMAP

The picture type is a bitmap. When this value occurs in the PICTDESC structure, it means that the
bmp field of that structure contains the relevant initialization parameters.

PICTYPE_METAFILE

The picture type is a metafile. When this value occurs in the PICTDESC structure, it means that the
wmf field of that structure contains the relevant initialization parameters.

PICTYPE_ICON

The picture type is an icon. When this value occurs in the PICTDESC structure, it means that the
icon field of that structure contains the relevant initialization parameters.

PICTYPE_ENHMETAFILE

The picture type is a Win32-enhanced metafile. When this value occurs in the PICTDESC structure, it
means that the emf field of that structure contains the relevant initialization parameters.

See Also
IPicture::get_Type, OleCreatePictureIndirect, PICTDESC

POINTERINACTIVE

The POINTERINACTIVE enumeration values indicate the activation policy of the object and are used in
the IPointerInactive::GetActivationPolicy method.

typedef enum tagPOINTERINACTIVE
{
 POINTERINACTIVE_ACTIVATEONENTRY = 1,
 POINTERINACTIVE_DEACTIVATEONLEAVE = 2,
 POINTERINACTIVE_ACTIVATEONDRAG = 4
} POINTERINACTIVE;

Elements

POINTERINACTIVE_ACTIVATEONENTRY

The object should be in-place activated when the mouse enters it during a mouse move operation.
POINTERINACTIVE_DEACTIVATEONLEAVE

The object should be deactivated when the mouse leaves the object during a mouse move operation.
POINTERINACTIVE_ACTIVATEONDRAG

The object should be in-place activated when the mouse is dragged over it during a drag and drop
operation.

Remarks
For more information on using the POINTERINACTIVE_ACTIVATEONENTRY and
POINTERINACTIVE_DEACTIVATEONLEAVE values, see the IPointerInactive::GetActivationPolicy
method.

The POINTERINACTIVE_ACTIVATEONDRAG value can be used to support drag and drop operations on
an inactive object. An inactive object has no window to register itself as a potential drop target. Most
containers ignore embedded, inactive objects as drop targets because of the overhead associated with
activating them.

As an alternative to activating an object when the mouse pointer is over it during a drag and drop
operation, the container can first QueryInterface to determine if the inactive object supports
IPointerInactive. Then, if the object does not support IPointerInactive, the container can assume that it
is not a drop target. If the object does support IPointerInactive, the container calls the
IPointerInactive::GetActivationPolicy method. If the POINTERINACTIVE_ACTIVATEONDRAG value is
set, the container activates the object in-place so the object can register its own IDropTarget interface.

The container is processing its own IDropTarget::DragOver method when all these actions occur. To
complete that method, the container returns DROPEFFECT_NONE for the pdwEffect parameter. Then,
the drag and drop operation continues by calling the container's IDropTarget::DragLeave and then
calling the object's IDropTarget::DragEnter.

Note For windowless OLE objects this mechanism is slightly different. See
IOleInPlaceSiteWindowless for more information on drag and drop operations for windowless
objects.

If the drop occurs on the embedded object, the object is UI-activated and will get UI-deactivated when the

focus changes again. If the drop does not occur on the object, the container should deactivate the object
the next time it gets a call to its own IDropTarget::DragEnter. It is possible for the drop to occur on a
third active object without an intervening call to the container's IDropTarget::DragEnter. In this case, the
container should try to deactivate the object as soon as it can, for example, when it UI-activates another
object.

See Also
IDropTarget, IPointerInactive::GetActivationPolicy

PROPSETFLAG

The PROPSETFLAG enumeration values define characteristics of a property set. The values are used in
the IPropertySetStorage::Create method.

typedef enum PROPSETFLAG {
 PROPSETFLAG_DEFAULT = 0,
 PROPSETFLAG_NONSIMPLE = 1,
 PROPSETFLAG_ANSI = 2,
 } PROPSETFLAG

Members

PROPSETFLAG_NONSIMPLE

If specified, storage-valued and stream-valued properties are permitted in the newly created set.
Otherwise, they are not permitted. In the compound file implementation, property sets may be
transacted only if PROPSETFLAG_NONSIMPLE is specified.

PROPSETFLAG_ANSI

If specified, all string values in the property set that are not explicitly Unicode (those other than
VT_LPWSTR) are stored with the current system ANSI code page (see the Win32 function GetACP).
Use of this flag is not recommended, as described in the following Remarks section.
If this flag is absent, string values in the new property set are stored in Unicode. The degree of control
afforded by this flag is necessary so clients using the property-related interfaces can interoperate well
with standard property sets such as the OLE2 summary information, which may exist in the ANSI
code page.

Remarks
These values can be set and checked for using bitwise operations, permitting up to four possible
combinations: non-simple Unicode, simple Unicode, non-simple ANSI, and simple ANSI.

It is recommended that property sets be created as Unicode, by not setting the PROPSETFLAG_ANSI
flag in the grfFlags parameter of IPropertySetStorage::Create. It is also recommended that you avoid
using VT_LPSTR values, and use VT_LPWSTR values instead. When the property set code page is
Unicode, VT_LPSTR string values are converted to Unicode when stored, and back to multibyte string
values when retrieved. When the code page of the property set is not Unicode, property names,
VT_BSTR strings, and non-simple property values are converted to multibyte strings when stored, and
converted back to Unicode when retrieved, all using the current system ANSI code page.

See Also
IPropertySetStorage::Create, IPropertySetStorage::Open

QACONTAINERFLAGS

The QACONTAINERFLAGS enumeration value indicates ambient properties supplied by the container. It
is used in the dwAmbientFlags member of the QACONTAINER structure.

typedef enum tagQACONTAINERFLAGS
{
 QACONTAINER_SHOWHATCHING = 0x1,
 QACONTAINER_SHOWGRABHANDLES = 0x2,
 QACONTAINER_USERMODE = 0x4,
 QACONTAINER_DISPLAYASDEFAULT = 0x8,
 QACONTAINER_UIDEAD = 0x10,
 QACONTAINER_AUTOCLIP = 0x20,
 QACONTAINER_MESSAGEREFLECT = 0x40,
 QACONTAINER_SUPPORTSMNEMONICS = 0x80
} QACONTAINERFLAGS;

Elements

QACONTAINER_SHOWHATCHING

Specifies the ShowHatching ambient property, which has a standard ambient DISPID of -712.
QACONTAINER_SHOWGRABHANDLES

Specifies the ShowGrabHandles ambient property, which has a standard ambient DISPID of -711.
QACONTAINER_USERMODE

Specifies the UserMode ambient property, which has a standard ambient DISPID of -709.
QACONTAINER_DISPLAYASDEFAULT

Specifies the DisplayAsDefault ambient property, which has a standard ambient DISPID of -713.
QACONTAINER_UIDEAD

Specifies the UIDead ambient property, which has a standard ambient DISPID of -710.
QACONTAINER_AUTOCLIP

Specifies the AutoClip ambient property, which has a standard ambient DISPID of -715.
QACONTAINER_MESSAGEREFLECT

Specifies the MessageReflect ambient property, which has a standard ambient DISPID of -706.
QACONTAINER_SUPPORTSMNEMONICS

Specifies the SupportsMnemonics ambient property, which has a standard ambient DISPID of -714.

Remarks
See the ActiveX Controls chapter in the OLE Programmer's Guide for further information on standard
ambient properties.

See Also
QACONTAINER

 REGCLS

The REGCLS enumeration defines flags used in CoRegisterClassObject to control the type of
connections to the class object. It is defined as follows:

typedef enum tagREGCLS
{
 REGCLS_SINGLEUSE = 0,
 REGCLS_MULTIPLEUSE = 1,
 REGCLS_MULTI_SEPARATE = 2,
} REGCLS;

Elements

REGCLS_SINGLEUSE

Once an application has connected to the class object with CoGetClassObject, the class object is
removed from public view so that no other applications can connect to it. This flag is commonly used
for single document interface (SDI) applications. Specifying this flag does not affect the responsibility
of the object application to call CoRevokeClassObject; it must always call CoRevokeClassObject
when it is finished with an object class.

REGCLS_MULTIPLEUSE

Multiple applications can connect to the class object through calls to CoGetClassObject.
REGCLS_MULTI_SEPARATE

Similar to REGCLS_MULTIPLEUSE, except that REGCLS_MULTI_SEPARATE does not
automatically register the class object as CLSCTX_INPROC_SERVER for a local server. Instead, it
provides separate control over each context. When a class is registered this way, if that server tries to
bind to an object with its own class identifier, it will start another copy of the server.

Remarks
In CoRegisterClassObject, members of both the REGCLS and the CLSCTX enumerations, taken
together, determine how the class object is registered.

The following table summarizes the allowable flag combinations and the object registrations affected by
the combinations.

REGCLS_
SINGLEUSE

REGCLS_
MULTIPLEUS
E

REGCLS_
MULTI_
SEPARATE

Other
CLSCTX_
INPROC_
SERVER

Error Inproc Inproc Error

CLSCTX_
LOCAL_
SERVER

Local Inproc/local Local Error

Both of the
above

Error Inproc/local Inproc/local Error

Other Error Error Error Error

REGCLS_MULTIPLEUSE in combination with CLSCTX_LOCAL_SERVER automatically registers the
class object as an in-process server (CLSCTX_INPROC_SERVER). In contrast, registering a class object
as a local server and specifying REGCLS_MULTIPLE_SEPARATE does not register the class object as
an in-process server (registers the object with the CLSCTX_LOCAL_SERVER flag, but does not
automatically add the CLSCTX_INPROC_SERVER flag, as is the case when you specify the
REGCLS_MULTIPLEUSE flag. This distinction is important in applications that are both OLE containers
and OLE embeddings, allowing a container/server to be inserted into itself.

In general, the following two registrations have the same effect -- they register class objects as both
multiple-use and as in-process servers:

CLSCTX_LOCAL_SERVER, REGCLS_MULTIPLEUSE

(CLSCTX_INPROC_SERVER|CLSCTX_LOCAL_SERVER), REGCLS_MULTI_SEPARATE

The following registers the class object only as a multiple-use local server:

CLSCTX_LOCAL_SERVER, REGCLS_MULTI_SEPARATE

See Also

CoGetClassObject, CoRegisterClassObject, CoRevokeClassObject, DllGetClassObject

RPC_C_AUTHN_xxx

These values, along with the RPC_C_AUTHZ_xxx values, are assigned to the
SOLE_AUTHENICATION_SERVICE structure, which is retrieved by the
CoQueryAuthenticationServices function, and passed in to the CoInitializeSecurity function.

Note Only RPC_C_AUTHN_WINNT is supported in NT 4.0. The others may be supported with
software purchased from other companies.

Values
RPC_C_AUTHN_NONE

No authentication.
RPC_C_AUTHN_DCE_PRIVATE

DCE private key authentication.
RPC_C_AUTHN_DCE_PUBLIC

DCE public key authentication.
RPC_C_AUTHN_DEC_PUBLIC

DEC public key authentication (reserved for future use).
RPC_C_AUTHN_WINNT

NT LM SSP (NT Security Service).
RPC_C_AUTHN_DEFAULT

The system default authentication service. Windows NT 4.0 defaults to DCE private key
authentication (RPC_C_AUTHN_DCE_PRIVATE).

See Also
CoInitializeSecurity, CoQueryAuthenticationServices

RPC_C_AUTHN_LEVEL_xxx

Used in the security functions and interfaces to specify the authentication level.

Values
RPC_C_AUTHN_LEVEL_NONE

Performs no authentication.
RPC_C_AUTHN_LEVEL_CONNECT

Authenticates only when the client establishes a relationship with the server. Datagram transports
always use RPC_AUTHN_LEVEL_PKT instead.

RPC_C_AUTHN_LEVEL_CALL

Authenticates only at the beginning of each remote procedure call when the server receives the
request. Datagram transports use RPC_C_AUTHN_LEVEL_PKT instead.

RPC_C_AUTHN_LEVEL_PKT

Authenticates that all data received is from the expected client.
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY

Authenticates and verifies that none of the data transferred between client and server has been
modified.

RPC_C_AUTHN_LEVEL_PKT_PRIVACY

Authenticates all previous levels and encrypts the argument value of each remote procedure call.

Windows95: While Windows95 can make calls at any level, it can only receive calls at NONE or
CONNECT. This applies to RPC today, although Windows95 does not support distributed COM at this
time.

See Also
IClientSecurity, IServerSecurity

RPC_C_AUTHZ_xxx

These values define what the server authorizes, and are used by methods of the IClientSecurity
interface. Along with the RPC_C_AUTHN_xxx values, these are the values assigned to the
SOLE_AUTHENTICATION_SERVICE structure, which is retrieved by the
CoQueryAuthenticationServices function, and passed in to the CoInitializeSecurity function.

Values
RPC_C_AUTHZ_NONE

Server performs no authorization.
RPC_C_AUTHZ_NAME

Server performs authorization based on the client's principal name.
RPC_C_AUTHZ_DCE

Server performs authorization checking using the client's DCE privilege attribute certificate (PAC)
information, which is sent to the server with each remote procedure call made using the binding
handle. Generally, access is checked against DCE access control lists (ACLs).

See Also
SOLE_AUTHENTICATION_SERVICE

RPC_C_IMP_LEVEL_xxx

Used in the security functions and interfaces to specify the authentication level.

Values
RPC_C_IMP_LEVEL_ANONYMOUS

(Not supported in this release.) The client is anonymous to the server. The server process cannot
obtain identification information about the client and it cannot impersonate the client.

RPC_C_IMP_LEVEL_IDENTIFY

The server can obtain the client's identity. The server can impersonate the client for ACL checking, but
cannot access system objects as the client. This information is obtained when the connection is
established, not on every call.

Note GetUserName will fail while impersonating at identify level. The workaround is to
impersonate, OpenThreadToken, revert, call GetTokenInformation, and finally, call
LookupAccountSid.

RPC_C_IMP_LEVEL_IMPERSONATE

The server process can impersonate the client's security context while acting on behalf of the client.
This information is obtained when the connection is established, not on every call.

RPC_C_IMP_LEVEL_DELEGATE

(Not supported in this release.) The server process can impersonate the client's security context while
acting on behalf of the client. The server process can also make outgoing calls to other servers while
acting on behalf of the client. This information is obtained when the connection is established, not on
every call.

Comments
Only the RPC_C_IMP_LEVEL_IDENTIFY and RPC_C_IMP_LEVEL_IMPERSONATE levels are
supported in NT 4.0.

See Also
CoInitializeSecurity

SERVERCALL

The SERVERCALL enumeration constants indicate the status of server call ¾ returned by
IMessageFilter::HandleInComingCall and passed to IMessageFilter::RetryRejectedCall.

Defined in the IMessageFilter interface (msgflt.idl).

typedef enum tagSERVERCALL
{
 SERVERCALL_ISHANDLED = 0,
 SERVERCALL_REJECTED = 1,
 SERVERCALL_RETRYLATER = 2
} SERVERCALL;

Elements

SERVERCALL_ISHANDLED

The object may be able to process the call.
SERVERCALL_REJECTED

The object cannot handle the call due to an unforeseen problem, such as network unavailability.
SERVERCALL_RETRYLATER

The object cannot handle the call at this time. For example, an application might return this value
when it is in a user-controlled modal state.

See Also
IMessageFilter::HandleInComingCall, IMessageFilter::RetryRejectedCall

STATFLAG

The STATFLAG enumeration values indicate whether the method should try to return a name in the
pwcsName member of the STATSTG structure. The values are used in the ILockBytes::Stat,
IStorage::Stat, and IStream::Stat methods to save memory when the pwcsName member is not
needed.

Defined in the IOLETypes pseudo-interface (oletyp.idl).

typedef enum tagSTATFLAG
{
 STATFLAG_DEFAULT = 0,
 STATFLAG_NONAME = 1
} STATFLAG;

Elements

STATFLAG_DEFAULT

Requests that the statistics include the pwcsName member of the STATSTG structure.
STATFLAG_NONAME

Requests that the statistics not include the pwcsName member of the STATSTG structure. If the
name is omitted, there is no need for the Stat methods to allocate and free memory for the string
value for the name and the method can save an Alloc and Free operation.

See Also
ILockBytes::Stat, IStorage::Stat, IStream::Stat

STATSTATE
The STATSTATE enumeration values indicate state information about the storage object and are used as
a mask. The values are used in the IStorage::SetStateBits method.

typedef enum tagSTATSTATE
{
 STATSTATE_DOC = 1,
 STATSTATE_CONVERT = 2,
 STATSTATE_FILESTGSAME = 4
} STATSTATE;

Elements

STATSTATE_DOC

The storage object is a document file. This bit is set on the root storage object as part of a normal
File/Save sequence. With nested storage objects, the application manages the storage objects and
sets or clears this bit as appropriate. If the nested object is an embedded object, this bit can be
ignored. It is cleared in a newly created storage object. However, some applications might use this bit
to enable editing an embedded storage object without first copying the object to the file system. For
example, a mail application might set this bit for attachments so the attachments can be edited
without copying them first to a file.

STATSTATE_CONVERT

A convert operation was done on this storage object while it was in a passive state.
STATSTATE_FILESTGSAME

The embedded object and document representations for the storage object are the same. Thus, the
storage object can be saved in a document file simply by copying the storage object bits.

See Also
IStorage::SetStateBits

STGC

The STGC enumeration constants specify the conditions for performing the commit operation in the
IStorage::Commit and IStream::Commit methods.

Defined in the IOLETypes pseudo-interface (oletyp.idl).

typedef enum tagSTGC
{
 STGC_DEFAULT = 0,
 STGC_OVERWRITE = 1,
 STGC_ONLYIFCURRENT = 2,
 STGC_DANGEROUSLYCOMMITMERELYTODISKCACHE = 4
} STGC;

Elements

STGC_DEFAULT

None of the other values apply. You can specify this condition or some combination of the other three.
You would use this value mainly to make your code more readable.

STGC_OVERWRITE

The commit operation can overwrite existing data to reduce overall space requirements. This value is
not recommended for typical usage because it is not as robust as the default case. In this case, it is
possible for the commit to fail after the old data is overwritten but before the new data is completely
committed. Then, neither the old version nor the new version of the storage object will be intact.
You can use this value in cases where:
· the user has indicated a willingness to risk losing the data
· the low memory save sequence will be used to safely save the storage object to a smaller file
· a previous commit returned STG_E_MEDIUMFULL but overwriting the existing data would provide

enough space to commit changes to the storage object
Note that the commit operation checks for adequate space before any overwriting occurs. Thus, even
with this value specified, if the commit operation fails due to space requirements, the old data will
remain safe. The case where data loss can occur is when the commit operation fails due to some
reason other than lack of space and the STGC_OVERWRITE value was specified.

STGC_ONLYIFCURRENT

Prevents multiple users of a storage object from overwriting one another's changes. The commit
operation occurs only if there have been no changes to the saved storage object since the user most
recently opened the storage object. Thus, the saved version of the storage object is the same version
that the user has been editing. If other users have changed the storage object, the commit operation
fails and returns the STG_E_NOTCURRENT value. You can override this behavior by calling the
Commit method again using the STGC_DEFAULT value.

STGC_DANGEROUSLYCOMMITMERELYTODISKCACHE

Commits the changes to a write-behind disk cache, but does not save the cache to the disk. In a
write-behind disk cache, the operation that writes to disk actually writes to a disk cache, thus
increasing performance. The cache is eventually written to the disk, but usually not until after the write
operation has already returned. The performance increase comes at the expense of an increased risk
of losing data if a problem occurs before the cache is saved and the data in the cache is lost.
If you do not specify this value, then committing changes to root-level storage objects is robust even if
a disk cache is used. The two-phase commit process ensures that data is stored on the disk and not
just to the disk cache.

Remarks
You can specify STGC_DEFAULT or some combination of the other three values. Typically, you would
use STGC_ONLYIFCURRENT to protect the storage object in cases where more than one user can edit
the object simultaneously.

See Also
IPropertyStorage, IStorage, IStream

STGFMT

The STGFMT enumeration values indicate the format of a storage object and are used in the STATSTG
structure and in the StgCreateDocFile and StgIsStorageFile functions.

typedef enum tagSTGFMT
{
 STGFMT_DOCUMENT = 0,
 STGFMT_DIRECTORY = 1,
 STGFMT_CATALOG = 2,
 STGFMT_FILE = 3
} STGFMT;

Elements

STGFMT_DOCUMENT

Indicates a document format.
STGFMT_DIRECTORY

Indicates a directory format.
STGFMT_CATALOG

Indicates a catalog format.
STGFMT_FILE

Indicates a file format.

See Also
STATSTG, StgCreateDocfile, StgIsStorageFile

STGM

The STGM enumeration values are used in the storage and stream interfaces to indicate the conditions
for creating and deleting the object and access modes for the object.

The STGM values are used in the IStorage and IStream interfaces, and in the StgCreateDocfile and
StgCreateDocfileOnILockBytes functions to indicate the conditions for creating and deleting the object
and access modes for the object.

STGM values are as follows:

STGM_DIRECT 0x00000000L
STGM_TRANSACTED 0x00010000L
STGM_SIMPLE 0x08000000L
STGM_READ 0x00000000L
STGM_WRITE 0x00000001L
STGM_READWRITE 0x00000002L
STGM_SHARE_DENY_NONE 0x00000040L
STGM_SHARE_DENY_READ 0x00000030L
STGM_SHARE_DENY_WRITE 0x00000020L
STGM_SHARE_EXCLUSIVE 0x00000010L
STGM_PRIORITY 0x00040000L
STGM_DELETEONRELEASE 0x04000000L
STGM_CREATE 0x00001000L
STGM_CONVERT 0x00020000L
STGM_FAILIFTHERE 0x00000000L
STGM_NOSCRATCH 0x00100000L

Elements
STGM_DIRECT. STGM_TRANSACTED, STGM_SIMPLE group:
STGM_DIRECT

In direct mode, each change to a storage element is written as it occurs. This is the default.
STGM_TRANSACTED

In transacted mode, changes are buffered and are written only if an explicit commit operation is
called. The changes can be ignored by calling the Revert method in the IStream or IStorage
interfaces. The OLE compound file implementation does not support transacted streams, which
means that streams can be opened only in direct mode, and you cannot revert changes to them.
Transacted storages are, however, supported.

STGM_SIMPLE

STGM_SIMPLE is a mode that provides a much faster implementation of a compound file in a limited,
but frequently used case. It is described in detail in the following Remarks section.

STGM_READ, STGM_WRITE, STGM_READWRITE group:
STGM_READ

For stream objects, STGM_READ allows you to call the IStream::Read method. For storage objects,

you can enumerate the storage elements and open them for reading.
STGM_WRITE

STGM_WRITE lets you save changes to the object.
STGM_READWRITE

STGM_READWRITE is the combination of STGM_READ and STGM_WRITE.

STGM_SHARE_* group:
STGM_SHARE_DENY_NONE

Specifies that subsequent openings of the object are not denied read or write access.
STGM_SHARE_DENY_READ

Prevents others from subsequently opening the object in STGM_READ mode. It is typically used on a
root storage object.

STGM_SHARE_DENY_WRITE

Prevents others from subsequently opening the object in STGM_WRITE mode. This value is typically
used to prevent unnecessary copies made of an object opened by multiple users. If this value is not
specified, a snapshot is made, independent of whether there are subsequent opens or not. Thus, you
can improve performance by specifying this value.

STGM_SHARE_EXCLUSIVE

The combination of STGM_SHARE_DENY_READ and STGM_SHARE_DENY_WRITE.

STGM_PRIORITY
STGM_PRIORITY

Opens the storage object with exclusive access to the most recently committed version. Thus, other
users cannot commit changes to the object while you have it open in priority mode. You gain
performance benefits for copy operations, but you prevent others from committing changes. So, you
should limit the time you keep objects open in priority mode. You must specify STGM_DIRECT and
STGM_READ with priority mode.

STGM_DELETEONRELEASE
STGM_DELETEONRELEASE

Indicates that the underlying file is to be automatically destroyed when the root storage object is
released. This capability is most useful for creating temporary files.

STGM_CREATE, STGM_CONVERT, STGM_FAILIFTHERE Group
STGM_CREATE

Indicates that an existing storage object or stream should be removed before the new one replaces it.
A new object is created when this flag is specified, only if the existing object has been successfully
removed.
This flag is used in three situations:
· when you are trying to create a storage object on disk but a file of that name already exists
· when you are trying to create a stream inside a storage object but a stream with the specified

name already exists
· when you are creating a byte array object but one with the specified name already exists

STGM_CONVERT

Creates the new object while preserving existing data in a stream named CONTENTS. In the case of
a storage object or a byte array, the old data is flattened to a stream regardless of whether the
existing file or byte array currently contains a layered storage object.

STGM_FAILIFTHERE

Causes the create operation to fail if an existing object with the specified name exists. In this case,
STG_E_FILEALREADYEXISTS is returned. STGM_FAILIFTHERE applies to both storage objects
and streams.

STGM_NOSCRATCH

Windows95 only: In transacted mode, a scratch file is usually used to save until the commit
operation. Specifying STGM_NOSCRATCH permits the unused portion of the original file to be used
as scratch space. This does not affect the data in the original file, and is a much more efficient use of
memory.

Remarks
You can combine these flags but you can only choose one flag from each group of related flags. Groups
are indicated under the headings in the previous section.

The STGM_SIMPLE flag is applicable only when combined with:

STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE

Note that direct mode is implied by the absence of STGM_TRANSACTED.

This mode is useful for applications that perform complete save operations. It has the following
constraints:

1. There is no support for substorages.
2. Access to streams follows a linear pattern. Once a stream is released, that stream cannot be opened

for read/write operations again. The IStorage::OpenStream method is not supported in this
implementation.

3. The storage and stream objects cannot be marshaled.
4. Each stream is at least 4096 bytes in length. If fewer than 4096 bytes are written into a stream by the

time the stream is released, the stream will be extended to contain 4096 bytes.
5. In this compound file implementation, only a subset of the methods of IStorage and IStream are

available.

Specifically, in simple mode, supported IStorage methods are QueryInterface, AddRef, Release,
CreateStream, Commit, and SetClass. In addition, SetElementTimes is supported with a NULL name,
allowing applications to set times on a root storage in simple mode.

Supported IStream methods are QueryInterface, AddRef, Release, Write, Seek, SetSize, and Read.

All the other methods of IStorage and IStream return STG_E_INVALIDFUNCTION.

See Also
StgCreateDocfile, IStream::Read, IStorage, StgCreateDocfileOnILockBytes, StgOpenStorage,
StgOpenStorageOnILockBytes

STGMOVE

The STGMOVE enumeration values indicate whether a storage element is to be moved or copied. They
are used in the IStorage::MoveElementTo method.

typedef enum tagSTGMOVE
{
 STGMOVE_MOVE = 0,
 STGMOVE_COPY = 1
} STGMOVE;

Elements

STGMOVE_MOVE

Indicates the method should move the data from the source to the destination.
STGMOVE_COPY

Indicates the method should copy the data from the source to the destination. A copy is the same as a
move except the source element is not removed after copying the element to the destination. Copying
an element on top of itself is undefined.

See Also
IStorage::MoveElementTo

STGTY

The STGTY enumeration values are used in the type member of the STATSTG structure to indicate the
type of the storage element. A storage element is a storage object, a stream object, or a byte array object
(LOCKBYTES).

typedef enum tagSTGTY
{
 STGTY_STORAGE = 1,
 STGTY_STREAM = 2,
 STGTY_LOCKBYTES = 3,
 STGTY_PROPERTY = 4
} STGTY;

Elements

STGTY_STORAGE

Indicates that the storage element is a storage object.
STGTY_STREAM

Indicates that the storage element is a stream object.
STGTY_LOCKBYTES

Indicates that the storage element is a byte array object.
STGTY_PROPERTY

Indicates that the storage element is a property storage object.

See Also
IStream, STATSTG

STREAM_SEEK

The STREAM_SEEK enumeration values specify the origin from which to calculate the new seek pointer
location. They are used for the dworigin parameter in the IStream::Seek method. The new seek position
is calculated using this value and the dlibMove parameter.

typedef enum tagSTREAM_SEEK
{
 STREAM_SEEK_SET = 0,
 STREAM_SEEK_CUR = 1,
 STREAM_SEEK_END = 2
} STREAM_SEEK;

Elements

STREAM_SEEK_SET

The new seek pointer is an offset relative to the beginning of the stream. In this case, the dlibMove
parameter is the new seek position relative to the beginning of the stream.

STREAM_SEEK_CUR

The new seek pointer is an offset relative to the current seek pointer location. In this case, the
dlibMove parameter is the signed displacement from the current seek position.

STREAM_SEEK_END

The new seek pointer is an offset relative to the end of the stream. In this case, the dlibMove
parameter is the new seek position relative to the end of the stream.

See Also
IStream::Seek

TYMED

The TYMED enumeration values indicate the type of storage medium being used in a data transfer. They
are used in the STGMEDIUM or FORMATETC structures.

typedef [transmit_as(long)] enum tagTYMED
{
 TYMED_HGLOBAL = 1;
 TYMED_FILE = 2;
 TYMED_ISTREAM = 4;
 TYMED_ISTORAGE = 8;
 TYMED_GDI = 16;
 TYMED_MFPICT = 32;
 TYMED_ENHMF = 64;
 TYMED_NULL = 0
} TYMED;

Elements

TYMED_HGLOBAL

The storage medium is a global memory handle (HGLOBAL). Allocate the global handle with the
GMEM_SHARE flag. If the STGMEDIUM punkForRelease member is NULL, the destination process
should use GlobalFree to release the memory.

TYMED_FILE

The storage medium is a disk file identified by a path. If the STGMEDIUM punkForRelease member is
NULL, the destination process should use OpenFile to delete the file.

TYMED_ISTREAM

The storage medium is a stream object identified by an IStream pointer. Use IStream::Read to read
the data. If the STGMEDIUM punkForRelease member is NULL, the destination process should use
IStream::Release to release the stream component.

TYMED_ISTORAGE

The storage medium is a storage component identified by an IStorage pointer. The data is in the
streams and storages contained by this IStorage instance. If the STGMEDIUM punkForRelease
member is NULL, the destination process should use IStorage::Release to release the storage
component.

TYMED_GDI

The storage medium is a GDI component (HBITMAP). If the STGMEDIUM punkForRelease member
is NULL, the destination process should use DeleteObject to delete the bitmap.

TYMED_MFPICT

The storage medium is a metafile (HMETAFILE). Use the Windows or WIN32 functions to access the
metafile's data. If the STGMEDIUM punkForRelease member is NULL, the destination process
should use DeleteMetaFile to delete the bitmap.

TYMED_ENHMF

The storage medium is an enhanced metafile. If the STGMEDIUM punkForRelease member is NULL,
the destination process should use DeleteEnhMetaFile to delete the bitmap.

TYMED_NULL

No data is being passed.

Remarks
During data transfer operations, a storage medium is specified. This medium must be released after the
data transfer operation. The provider of the medium indicates its choice of ownership scenarios in the
value it provides in the STGMEDIUM structure. A NULL value for the IUNKNOWN field indicates that the
receiving body of code owns and can free the medium. A non-NULL pointer specifies that
ReleaseStgMedium can always be called to free the medium.

See Also
FORMATETC, IAdviseSink, IDataObject, IOleCache, ReleaseStgMedium, STGMEDIUM

UASFLAGS

The UASFLAGS enumeration value supplies information about the parent undo unit. It is used in
IOleParentUndoUnit::GetParentState.

typedef enum tagUASFLAGS
{
 UAS_NORMAL = 0,
 UAS_BLOCKED = 0x1,
 UAS_NOPARENTENABLE = 0x2,
 UAS_MASK = 0x3,
} UASFLAGS;

Elements

UAS_NORMAL

The currently open parent undo unit is in a normal, unblocked state and can accept any new units
added through calls to its Open or Add methods.

UAS_BLOCKED

The currently open undo unit is blocked and will reject any undo units added through calls to its Open
or Add methods. The caller need not create any new units since they will just be rejected.

UAS_NOPARENTENABLE

The currently open undo unit will accept new units, but the caller should act like there is no currently
open unit. This means that if the new unit being created requires a parent, then this parent does not
satisfy that requirement and the undo stack should be cleared.

UAS_MASK

When checking for a normal state, use this value to mask unused bits in the pdwState parameter to
the GetParentState method for future compatibility. For example:
 fNormal = ((pdwState & UAS_MASK) == UAS_NORMAL)

See Also
IOleParentUndoUnit::GetParentState

USERCLASSTYPE

The USERCLASSTYPE enumeration constants indicate the different variants of the display name
associated with a class of objects. They are used in the IOleObject::GetUserType method and the
OleRegGetUserType function.

typedef enum tagUSERCLASSTYPE
{
 USERCLASSTYPE_FULL = 1,
 USERCLASSTYPE_SHORT = 2,
 USERCLASSTYPE_APPNAME = 3,
} USERCLASSTYPE;

Elements

USERCLASSTYPE_FULL

The full type name of the class.
USERCLASSTYPE_SHORT

A short name (maximum of 15 characters) that is used for popup menus and the Links dialog box.
USERCLASSTYPE_APPNAME

The name of the application servicing the class and is used in the Result text in dialog boxes.

See Also
IOleObject::GetUserType, OleRegGetUserType

VIEWSTATUS

The VIEWSTATUS enumeration is used in IViewObjectEx::GetViewStatus to specify the opacity of the
object and the drawing aspects supported by the object.

typedef enum tagVIEWSTATUS
{
 VIEWSTATUS_OPAQUE = 1,
 VIEWSTATUS_SOLIDBKGND = 2,
 VIEWSTATUS_DVASPECTOPAQUE = 4,
 VIEWSTATUS_DVASPECTTRANSPARENT = 8
} VIEWSTATUS;

Elements

VIEWSTATUS_OPAQUE

The object is completely opaque. So, for any aspect, it promises to draw the entire rectangle passed
to the IViewObject::Draw method. If this value is not set, the object contains transparent parts. If it
also support DVASPECT_TRANSPARENT, then this aspect may be used to draw the transparent
parts only.
This bit applies only to CONTENT related aspects and not to DVASPECT_ICON or
DVASPECT_DOCPRINT.

VIEWSTATUS_SOLIDBKGND

The object has a solid background (consisting in a solid color, not a brush pattern). This bit is
meaningful only if VIEWSTATUS_OPAQUE is set.
This bit applies only to CONTENT related aspects and not to DVASPECT_ICON or
DVASPECT_DOCPRINT.

VIEWSTATUS_DVASPECTOPAQUE

Object supports DVASPECT_OPAQUE. All IViewObjectEx methods taking a drawing aspect as a
parameter can be called with this aspect.

VIEWSTATUS_DVASPECTTRANSPARENT

The object supports DVASPECT_TRANSPARENT. All IViewObjectEx methods taking a drawing
aspect as a parameter can be called with this aspect.

See Also
IViewObjectEx::GetViewStatus

OLE Registry Entries
To become functional, OLE servers and containers must add information to the system registry. Most of
that information is stored in keys and named values under the HKEY_LOCAL_MACHINE\SOFTWARE\
Classes and HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE keys. This section discusses these
registry keys and information Orequired to support OLE functionality. For general information on the
registry, the structure of registry entries, and registry functions, search for Registry topics in the Microsoft
Win32 Programmer's Reference.

Note that HKEY_CLASSES_ROOT is equivalent to HKEY_LOCAL MACHINE\SOFTWARE\Classes
and that these keys can be used interchangeably. HKEY_CLASSES_ROOT also provides compatibility
with Windows 3.1 and Windows 95.

Installation and Setup
Your installation/setup program must add information to the registry, and its associated subkeys, if it is to
perform any of the three following types of installations:

Installing an OLE server application.
Installing an OLE container/server application.
Installing a container application that allows linking to its embedded objects.

In all three cases, you must register OLE 2 library (DLL) information as well as application-specific
information.

For information on registering COM servers, see Registering COM Servers..

OLE Registry Functions
For information about OLE registry functions, refer to the following API functions:

CoGetTreatAsClass
CoTreatAsClass
OleDoAutoConvert
OleGetAutoConvert
OleSetAutoConvert
SetConvertStg
GetConvertStg
OleRegGetUserType
OleRegEnumFormatEtc
OleRegGetMiscStatus
OleRegEnumVerbs

Registering OLE 2 Libraries
The OLE 2 libraries require that many internal interfaces be registered. If your installation program installs
the OLE 2 libraries on a machine that does not already have them, it should register OLE 2-specific
information during installation.

If your installation program does not install OLE 2 libraries when it finds more recent libraries on the
user's drive, it should not register the OLE 2 interface information.

Note When checking the version stamp (using VER.DLL) on existing OLE 2 libraries to determine
whether or not to replace them on the user's hard drive, check on a per file basis.

Checking Registration During Run Time
An application should check its registration at application load time, noting the following issues:

· If the CLSID(s) that the application services is not present in the registry, the application should
register as it does during the original setup.

· If the application's CLSID is present, but has no OLE 2-related information in it, the application should
register as it does during the original setup.

· If the path containing server entries (LocalServer and LocalServer32, InprocServer and
InprocServer32, and DefaultIcon) does not point to the location in which the application is currently
installed, the application should rewrite the path entries to point to its current location.

 Specifying Unknown User Types
It is possible to facilitate product localization by adding a key to the registry. This key allows functions to
return a specified string instead of a default value or "Unknown."

The OLE 2 default handler's implementation of IOleObject::GetUserType first examines the registry by
calling OleRegGetUserType. If the object's class is not found in the registry, the User Type from the
object's IStorage instance is returned. If the class is not found in the object's IStorage instance, the string
"Unknown" is returned.

By inserting the

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE2
\UnknownUserType = <usertype>

key in the registry, the IOleObject::GetUserType method returns the value of the string specified by
<usertype>. This string can be localized for a different language user-type name, instead of using the
"Unknown" string, for the User Type.

 Conventions Used in Examples
In the registry examples in this appendix, boldface indicates a literal standard key or subkey, <italics>
indicates an application-supplied string or value, and <boldface-italics> indicates an application-
supplied key or subkey. In the first example, "OLE1ClassName," "OLE1UserTypeName," and "CLSID" are
all supplied by the application.

HKEY_LOCAL_MACHINE\SOFTWARE\Classes
The subkeys and named values associated with key contain information about an application that is
needed to support OLE functionality. This information includes such topics as supported data formats,
compatibility information, programmatic identifiers, distributed com, and controls.

AppID Key
Application identifiers (AppIDs), group the configuration options, a set of named-values, for one or more
distributed COM objects into one centralized location in the registry. Distributed COM objects hosted by
the same executable are grouped into one AppID to simplify the management of common security and
configuration settings. The HKEY_LOCAL_MACHINE\SOFTWARE\Classes key corresponds to the
HKEY_CLASSES_ROOT, which definition was retained for compatibility with earlier versions of OLE.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppID\
 {AppID_value}\named_value = value

Comments
AppIDs are located in a newly created registry key hierarchy. The AppID_value is a 128-bit Globally
Unique Identifier (GUID) that uniquely identifies the AppID.

AppIDs are mapped to executables and classes using two different mechanisms.

Classes indicate their corresponding AppID in their CLSID key. A named-value "AppID" of type REG_SZ
contains the string value corresponding to the AppID_value under the AppID sub-key. This mapping is
used during activation.

Executables are registered under the AppID key in a named-value indicating the module name (such as
"MYOLDAPP.EXE"). This named-value is of type REG_SZ and contains the stringized AppID associated
with the executable. This mapping is used to obtain the default access permissions.

Named Values:

\RemoteServerName = value Sets name of remote server
\ActivateAtStorage = value Configures client to activate on same

system as persistent storage
\LocalService = value Sets the application as a Win32

service
\ServiceParameters = value Sets parameters to be passed to a

LocalService on invocation
\RunAs = value Sets an application to run only as a

given user.
\LaunchPermission = value Sets an ACL that determines who

can launch the application
\AccessPermission = value Sets an ACL that determines access

See Also
CLSID key, OLE Registry Entries, Registering COM Servers

RemoteServerName
A server may install the RemoteServerName named-value on client machines to configure the client to
request the object be run at a particular machine whenever an activation function is called for which a
COSERVERINFO structure is not specified.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\
 {AppID_value}\RemoteServerName = server_name

Remarks
As described in the documentation for the CLSCTX enumeration and the COSERVERINFO structure,
one of the parameters of the distributed COM activation is a pointer to a COSERVERINFO structure.
When this value is not NULL, the information in the COSERVERINFO structure overrides the setting of
the RemoteServerName key for the function call.

RemoteServerName allows simple configuration management of client applications - they may be written
without hard-coded server names, and can be configured by modifying the RemoteServerName registry
values of the classes of objects they use.

See Also
CLSCTX enumeration, COSERVERINFO structure, CoCreateInstanceEx, CoGetInstanceFromFile,
CoGetInstanceFromIStorage, Registering COM Servers

ActivateAtStorage
Servers can install this named-value on client machines. When this value is not overridden by certain
parameters passed to distributed COM activation API functions, the ActivateAtStorage named-value
configures the client to instantiate objects on the same machine as the persistent state they are using or
from which they are initialized.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\
 {AppID_value}\ActivateAtStorage = value

Remarks
The ActivateAtStorage named-value can be set by the server to configure the client to instantiate its
objects on the same machine as the persistent state used or from which the objects are initialized. The
value is a REG_SZ; any value beginning with Y or y means that ActivageAtStorage should be used.

When a value is set for ActivateAtStorage, this becomes the default behavior in calls to the
CoGetInstanceFromFile and CoGetInstanceFromIStorage functions, as well as to the file moniker
implementation of IMoniker::BindToObject.

In all of these calls, specifying a COSERVERINFO structure overrides the setting of ActivateAtStorage
for the duration of the function call. The caller can pass COSERVERINFO information to
IMoniker::BindToObject through the BIND_OPTS2 structure.

The value set for ActivateAtStorage is also the default behavior when CLSCTX_REMOTE_SERVER is
specified if no registry information for the class is installed on the client's machine. Client applications
written to take advantage of ActivateAtStorage may therefore require less administration.

The ActivateAtStorage capability provides a transparent way to allow clients to locate running objects on
the same machine as the data that they use. This reduces network traffic, because the object performs
local file-system calls instead of calls across the network.

See Also
CoGetInstanceFromFile, CoGetInstanceFromIStorage, IMoniker::BindToObject, COSERVERINFO
structure, CLSCTX, Registering COM Servers

LocalService
Allows an object to be installed as a Win32 service.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\
 {AppID_value}\LocalService = service_name

Remarks
In addition to running as a local server executable (EXE), a COM object may also choose to package
itself to run as a Win32 service when activated by a local or remote client. Win32 services support
numerous useful and UI-integrated administrative features, including local and remote starting, stopping,
pausing, and restarting, as well as the ability to establish the server to run under a specific user account
and Window Station, and optionally interactive with the desktop.

An object written as a Win32 service is installed for use by OLE by establishing a LocalService named-
value under its CLSID key and performing a standard service installation (refer to the Win32
documentation and the SECSVR distributed COM sample application for more information on writing,
installing, and debugging Win32 services.). The LocalService named-value must be set to the service
name - as configured in HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services - as the default
REG_SZ value.

Additionally, when LocalService is set, any string assigned to the named REG_SZ value,
ServiceParameters, will be passed on the command line to the service as it is being launched.

For example, the following keys register the c:\mydb\mydb.exe executable to launch as the MyDatabase
service when activated remotely. When launched as a service, the process receives "-Service" on its
command-line.

HKEY_CLASSES_ROOT\APPID\{c5b7ac20-523f-11cf-8117-00aa00389b71}\LocalService
= MyDatabase

HKEY_CLASSES_ROOT\APPID\{c5b7ac20-523f-11cf-8117-00aa00389b71}\
ServiceParameters = -Service

The service configuration is preferred in many situations where the capabilities of the local and remote
service management APIs and user interface might be useful for the services that the object provides. For
example, if the object is long-lived, or readily supports concepts such as starting, stopping, resetting, or
pausing, leveraging the existing administrative framework of the service architecture should be an
obvious choice.

Services can be dynamically configured using the 'Services' application in the Control Panel, and can be
configured to run automatically when the machine boots, or to be launched when requested by a client
application.

There are several additional points you should be aware of if you are implementing classes as services:

· The LocalService named-value is used in preference to the LocalServer32 key for local and remote
activation requests - if LocalService exists and refers to a valid service, the LocalServer32 key is
ignored.

· Currently only a single instance of a Win32 service may be running at a given time on a machine.
OLE services must therefore register their class objects on launch using REGCLS_MULTIPLEUSE to
support multiple clients.

· OLE services configured to run automatically when a machine boots must include "RPCSS" in their
list of dependent services in order to launch and initialize properly.

· Although services may be configured to interact with the interactive user, they are always run in a
separate window-station and desktop from the interactive user. This prevents service processes from
being automatically terminated when the interactive user logs off.

See Also
ServiceParameters, Registering COM Servers

ServiceParameters
When an object is written as a Win32 service and installed for use by OLE through setting the
LocalService named value under the AppID key, the ServiceParameters named-value can be set to
pass the given parameter on the command line when the service is launched.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\
 {AppID_value}\ServiceParameters = parameter

Remarks
The parameter value for the ServiceParameters named-value is any REG_SZ string value. This string is
passed on the command line to the service as it is being launched.

For example, the following keys register the c:\mydb\mydb.exe executable to launch as the MyDatabase
service when activated remotely. When launched as a service, the process receives "-Service" on its
command-line.

HKEY_CLASSES_ROOT\APPID\{c5b7ac20-523f-11cf-8117-00aa00389b71}\LocalService
= MyDatabase

HKEY_CLASSES_ROOT\APPID\{c5b7ac20-523f-11cf-8117-00aa00389b71}\
ServiceParameters = -Service

Refer to the Win32 SDK documentation about services and the SECSVR sample Distributed COM
application for more information about writing, installing, and debugging Win32 services.

See Also
LocalService, Registering COM Servers

RunAs
Configures a class to run under a specific user account when activated by a remote client without being
written as a Win32 service. To do this, the RunAs named-value is set for the class to a user-name and
optionally a password. These are then used when the Service Control Manager launches its local server
process.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\
 {AppID_value}\RunAs = value

Remarks
The value specifies the user name, and must either of the form username, domain\username, or the
string Interactive User.

Classes configured to RunAs a particular user may not be registered under any other identity, so calls to
CoRegisterClassObject with this CLSID will fail unless the process was launched by OLE on behalf of
an actual activation request.

The user-name is taken from the RunAs named-value under the class's AppID key. If the user-name is
"Interactive User", the server is run in the identity of the user currently logged on and is connected to the
interactive desktop.

Otherwise, the password is retrieved from a secret and safe portion of the registry available only to
administrators of the machine and to the system. The user-name and password are then used to create a
logon-session in which the server is run. When launched in this way, the user runs with its own desktop
and window-station, and does not share window-handles, the clipboard, or other UI elements with the
interactive user or other user running in other user accounts.

To establish a password for a RunAs class, you must use the DCOMCNFG administrative tool installed in
the system directory.

For RunAs identities used by DCOM servers, the user account specified in the value must have the rights
to log on as a batch job. This right can be added using the NT User Manager, under Policies-User Rights.
Click on the Show Advanced User Rights box, select log on as a batch job, and add the RunAs user
account.

The RunAs value is not used for servers configured to be run as services. COM services that wish to
run under an identity other than LocalSystem should set the appropriate user name and password using
the services control panel applet.

See Also
Registering COM Servers

LaunchPermission
Contains data describing the Access Control List (ACL) of the principals that can start new servers for this
class. The LaunchPermission named-value may be added under any AppID key to limit activation by
remote clients of specific classes.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\
 {AppID_value}\LaunchPermission = ACL

Remarks
The LaunchPermission named-value is REG_BINARY. Upon receiving a local or remote request to
launch the server of this class, the ACL described by this value is checked while impersonating the client,
and its success either allows or disallows the launching of the server. If this value does not exist, the
machine-wide DefaultLaunchPermission value is checked in the same way as a default to determine if
the class code can be launched.

See Also
DefaultLaunchPermission, Security in COM

AccessPermission
Contains data describing the Access Control List (ACL) of the principals that can access instances of this
class. This ACL is only used by applications that do not call CoInitializeSecurity.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\
 {AppID_value}\AccessPermission = ACL

Remarks
This named-value is a REG_BINARY. It contains data describing the Access Control List (ACL) of the
principals that can access instances of this class. Upon receiving a request to connect to an existing
object of this class, the ACL is checked by the application being called while impersonating the caller. If
the access-check fails the connection is disallowed. If this named-value does not exist, the machine-wide
DefaultAccessPermission ACL is tested in an identical manner (see above) as a default to determine if
the connection is to be allowed.

See Also
DefaultAccessPermission, Security in COM

CLSID Key
A CLSID is a globally unique identifier that identifies an OLE class object. If your server or container
allows linking to its embedded objects, then you need to register a CLSID for each supported class of
objects.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID = <CLSID>

Value Entries
<CLSID>

Specifies a name that can be displayed in the user interface.

Remarks
The CLSID key contains information used by the default OLE handler to return information about a class
when it is in the running state.

To obtain a CLSID for your application, you can use the UUIDGEN.EXE found in the \TOOLs directory of
the OLE 2 Toolkit, or use CoCreateGuid.

The CLSID is a 128 bit number, spelled in hex, within a pair of brarces.

SubKeys and Named Values
\CLSID = <CLSID>

 \<CLSID> Human readable name
 \AppID Application identifiers
 \AutoConvertTo Automatic object class conversion
 \AutoTreatAs Assigns the TreatAs value.
 \AuxUserType Identifies object as a control
 \Control Displayable application name.
 \Conversion Conversion used by the Convert dialog
 \DataFormats Formats supported by applications.
 \DefaultIcon Provides default icon information
 \InprocHandler Registers a 16-bit handler DLL.
 \InprocHandler32 Registers a 32-bit handler DLL.
 \InprocServer Registers a 16-bit in-process server DLL
 \InprocServer32 Registers a 32-bit in-process server DLL
 \Insertable Indicates object is insertable in OLE 2 applications
 \Interface Associates interface name with IID
 \LocalServer Full path to a 16- or 32-bit application
 \LocalServer32 Full path to a 32-bit application
 \MiscStatus Default status used for all aspects
 \ProgID Programmatic identifier for a class
 \ToolBoxBitmap32 Module name and resourdeID for a 16 x 16 bitmap
 \TreatAs OlLE1 / OLE 2 compatibility.
 \Verb Verbs associated with an application
 \Version Version number of the control

See Also
CoCreateGuid

<CLSID>
A globally unique identifier (GUID) used to map information about a component class.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \<CLSID>= HumanReadableName

Value Entries
HumanReadableName

Specifies a name that can be displayed in the user interface.

Remarks
COM uses the information mapped by the CLSID to locate and create an instance the object associated
with the CLISID.

See Also
CoCreateGuid

AppID
Associate an AppID with a CLSID.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \AppID = <CLSID>

Value Entries
<CLSID>

The AppID to associate with this CLSID.

See Also
AppID

AutoConvertTo
Specifies the automatic conversion of a given class of objects (ClsidOld) to a new class of objects
(pClsidNew).

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \AutoConvertTo = <CLSID>

Value Entries
<CLSID>

The class identifier of the object to which a given object or class of objects should be converted.

Remarks
This key is typically used to automatically convert files created by an older version of an application to a
newer version of the application.

See Also
OleGetAutoConvert, OleDoAutoConvert, OleSetAutoConvert

AutoTreatAs
Automatically sets the CLSID for the TreatAs key to the specified value.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \AutoTreatAs = <CSID>

Value Entries
MCLSID>

The CLSID that will automatically be assigned to the TreatAs entry.

See Also
CoTreatAsClass

AuxUserType
Specifies an application's short display name and application names.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \AuxUserType
 \2 = <ShortDisplayName>
 \3 = <ApplicationName>

Value Entries
<ShortDisplayName>

Specifies an application's short display name, used in menus, including pop-ups.
<ApplicationName>

Specifies an application name, used in the Results field of the Paste Special dialog box.

Remarks
The recommended maximum length for the short display name is 15 characters. For example:

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \AuxUserType\2 = In-Place Outline

The application name should contain the actual name of the application (such as "Acme Draw 2.0"). For
example:

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \AuxUserType\3 = Ole 2 In-Place Server

See Also

IOleObject::GetUserType

Control
Identifies an object as an OLE Control.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \Control

Remarks
This optional entry is used by containers to fill in dialog boxes. The container uses this subkey to
determine whether to include an object in a dialog box that displays OLE Controls.. A control can omit this
entry if it is only designed to work with a specific container and thus does not wish to be inserted in other
containers.

Conversion
Used by the Convert Dialog to determines the formats an application can read and write.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \Conversion
 \Readable
 \Main = <forma>t, ...
 \ReadWritable
 \Main = <format>, ...

Value Entries
<format>

The file format an application can read (convert from).
<format>

The file format an application can read and write (activate as).

Remarks
Conversion information is used by the Convert dialog box to determine what formats an application can
read and write. A comma-delimited file format is indicated by a number if it is one of the Clipboard formats
defined in WINDOWS.H. A string indicates the format is not one defined in WINDOWS.H (private). In this
case, the readable and writable format is CF_OUTLINE (private).

The following is a \Readable entry:

KEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \Conversion\Readable\Main = Outline,1

The following is a \ReadWritable entry:

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \Conversion\Readwritable\Main = Outline,1

DataFormats
Specifies the default and main data formats supported by an application.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \DataFormats
 \DefaultFile = <defaultfile/objectformat>
 \GetSet
 \ n = <default formats for EnumFormatEt>

Value Entries
<default file/object format>

Specifies the default, main file or object format for objects of this class.
<default formats for EnumFormatEtc>

Specifies a list of formats for default implementations of EnumFormatEtc, where <n> is a zero-based
integer index. For example, <n> = <format ,aspect, medium, flag>, where format is a clipboard format,
aspect is one or more members of DVASPECT, medium is one or more members of TYMED, and
flag is one or more members of DATADIR.

Remarks
Information associated with this entry is used by: IDataObject::GetData, IDataObject::SetData and
IDataObject::EnumFormatEtc methods.

The values defined in the following example entry are CF_TEXT, DVASPECT_CONTENT,
TYMED_HGLOBAL, and DATADIR_GET | DATADIR_SET.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \DataFormats\GetSet\0 = 1,1,1,3

The values defined in the following entry are: CF_METAFILEPICT DVASPECT_CONTENT,
TYMED_MFPICT, DATADIR_GET.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \DataFormats\GetSet\1 = 3,1,32,1

The values defined in the following entry are: 2 = cfEmbedSource, DVASPECT_CONTENT,
TYMED_ISTORAGE, and DATADIR_GET.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \DataFormats\GetSet\2 = Embed Source,1,8,1

The values defined in the following entry are: 3 = cfOutline, DVASPECT_CONTENT, TYMED_HGLOBAL,
and DATADIR_GET | DATADIR_SET.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \DataFormats\GetSet\3 = Outline,1,1,3

The following entry declares that the default File Format supported by this application is CF_OUTLINE.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \DataFormats\DefaultFile = Outline

See Also

IDataObject::GetData, IDataObject::SetData, IDataObject::EnumFormatEtc

DefaultIcon
Provides default icon information for iconic presentations of objects.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \DefaultIcon = <full path to exe, resoruce id>

Value Entries
<full path to exe, resource id>

Specifies the full path to the executable name of the object application and the resourceID of the icon
within the executable.

Remarks
DefaultIcon identifies the icon to use when, for example, a control is minimized to an icon. This entry
contains the full path to the executable name of the server application and the resourceID of the icon
within the executable. Applications can use the information provided by DefaultIcon to obtain an icon
handle with ExtractIcon.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \DefaultIcon = c:\samp\isvrotl.exe,0

See Also

ExtractIcon

InprocHandler
Specifies whether or not an application uses a custom handler.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID
 \InprocHandler = <handler.dll>

Value Entries
<handler.dll>

Specifies the custom handler used by the application.

Remarks
If A custom handler is not used, the entry should be set to OLE2.DLL, as shown in the following example.

HKEY_-CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \InprocHandler = ole2.dll

If a container is searching the registry for an InprocHandler, the 16-bit version has priority with a 16-bit
container, and the 32-bit version has priority with a 32-bit container.

See Also
InprocHandler32

InprocHandler32
Specifies whether or not an application uses a custom handler.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID
 \InprocHandler32 = <handler.dll>

Value Entries
<handler.dll>

Specifies the custom handler used by the application.

Remarks
If A custom handler is not used, the entry should be set to OLE32.DLL, as shown in the following
example.

HKEY_-CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \InprocHandler = ole32.dll

If a container is searching the registry for an InprocHandler, the 16-bit version has priority with a 16-bit
container, and the 32-bit version has priority with a 32-bit container.

See Also
InprocHandler

InprocServer
Specifies the path to the inprocess-server DLL.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \InprocServer = <full path>

Value Entries
<full path>

Specifies the path to the inprocess server DLL.

Remarks
The InprocServer entry is relatively rare for insertable classes.

If a container is searching the registry for an InprocServer, the 16-bit version has priority with a 16-bit
container, and 32-bit version has priority with a 32-bit container.

See Also
InprocServer32

InprocServer32
Registers a 32-bit in-process server DLL and specifies the threading model.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \InprocServer32 = <path to 32-bit inproc server dll>
 \ThreadingModel = <threading model>

Value Entries
<path to 32-bit inproc server dll>

Specifies the path to the 32-bit inproc server.
<threading model>

Specifies the threading model. In-process servers do not CoInitialize call or CoInitializeEx; they
must use the registry to specify an applications threading model. Threading models used for this
purpose are:
· ThreadingModel = no value specified: Supports single threading model.
· ThreadingModel=Apartment. Supports apartment model.
· ThreadingModel=Both. Supports apartment model and free threading.
· ThreadingModel=Free. Supports only free threading...
Currently the ThreadingModel value must be the same for all objects
provided by an inproc server.

Remarks
For a 32-bit InprocServer, the required entries are InprocHandler32, InprocServer, InprocServer32, and
Insertable. Note that InprocServer entry provides backward compatibility. If it is missing, the class will still
work, but can't be inserted in 16-bit applications.

If a container is searching the registry for an InprocServer, the 16-bit version has priority with a 16-bit
container, and 32-bit version has priority with a 32-bit container.

The required entries for 32-bit InprocServers are InprocHandler32, InprocServer, InProcServer32, and
Insertable. Note that LocalServer and InprocServer entries provide backward compatibility. If they are
missing, the class will work, but cannot be inserted into 16-bit applications.

See Also
InprocServer, CoInitialize, CoInitializeEx

Insertable
Indicates that objects of this class should appear in the Insert Object dialog box's list box when used by
OLE 2 container applications.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \Insertable

Remarks
This key is a required entry for 32-bit OLE applications whose objects can be inserted into existing 16-bit
applications. Existing 16-bit applications look in the registry for this key, which informs the application that
the server supports embeddings. If the Insertable key exists, 16-bit applications may also attempt to verify
that the server exists on the machine. 16-bit applications typically will retrieve the value of the LocalServer
key from the class and check to see if it is a valid file on the system. Therefore, for a 32-bit application to
be insertable by a 16-bit application, the 32-bit application should register the LocalServer subkey in
addition to registering LocalServer32.

Used with controls, this entry indicates that an object can act only as an in-place embedded object with no
special control features. Objects that have this key appear in the Insert Object dialog box fo their
container. When used with controls, this entry also indicates the control has been tested with non-control
containers. This entry is also optional and can be omitted when a control is not designed to work with
older containers that do not understand controls.

Note that this key is not present for internal classes like the moniker classes.

See Also
ProgID

Interface
An optional entry that specifies all interface IDs (IIDs) supported by the associated class.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\Interface

 \<IID> = <name of interface1>
 \<IID> = <name of interface2>
 \...

Value Entries
<name of interface1>, <name of interface2>, ...

Interfaces supported by this class.

Remarks
If an interface name is not present in this list, then the interface can never be supported by an instance of
this class.

See Also
Interface

LocalServer
Specifies the full path to a 16-bit local server application.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \LocalServer = <full path>

Value Entries
<full path>

Specifies the full path to the local server, and can include command-line arguments.

Remarks
OLE 2 appends the "-Embedding" flag to the string, so the application that uses flags must parse the
whole string and check for the -Embedding flag.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \LocalServer = c:\samp\isvrotl.exe

To run an OLE object server in a separate memory space (Windows NT 3.5 and above only), change the
LocalServer key in the registry for the CLSID to the following:

cmd /c start /separate <path.exe

If a container is searching the registry for a local server, a 32-bit local server has priority over a 16-bit
local server.

See Also
LocalServer32

LocalServer32
Specifies the full path to a 32-bit local server application.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \LocalServer32 = <full path>

Value Entries
<full path>

Specifies the full path to the 32-bit local server, and can include command-line arguments.

Remarks
OLE 2 appends the "-Embedding" flag to the string, so the application that uses flags will need to parse
the whole string and check for the -Embedding flag.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \LocalServer32 = c:\samp\isvrotl.exe

When OLE starts a 32-bit local server, the server must register a class object within an elapsed time set
by the user. By default, the elapsed time value must be at least five minutes, in milliseconds, but cannot
exceed the number of milliseconds in 30 days. Applications typically should not set this value which is in
the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE2\ServerStartElapsedTime entry.

The required entries for 32-bit local servers are InprocHandler32, LocalServer, LocalServer32, and
Insertable.

If a container is searching the registry for a local server, a 32-bit local server has priority over a 16-bit
local server.

See Also
LocalServer

MiscStatus
Specifies how to create and display an object.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \MiscStatus = <object description>
 \n = value

Value Entries
object description

The value or combination of values from OLEMISC that describe the object.
value

Specifies a value from the OLEMISC enumeration.

Remarks
Information used to describe objects is found in the OLEMISC enumeration.

The following is an example of a MiscStatus entry. Refer to the IOleObject::GetMiscStatus method
description for information on the different settings.

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \MiscStatus = 2

See Also

IOleObject::GetMiscStatus, OLEMISC

ProgID
Associates a ProgID with a CLSID.

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID
 \ProgID = <programatic identifier>

Value Entries
<programatic identifier>

Specifies the ProgID: <vendor>.<component>.<version>.

Remarks
Every insertable object class has a <ProgID>. For information on creating a <ProgID>, see the <ProgID>
key.

See Also
VersionIndependentProgID, <ProgID>

ToolBoxBitmap32
Identifies the module name and resourdeID for a 16 x 16 bitmap to use for the face of a toolbar or toolbox
button.

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID
 \ToolBoxBitmap32 = <filename>.<ext>, resourceID

Value Entries
<filename>.<ext>, resourceID>

Specifies the module name and the resorucID for the bitmap.

Remarks
The standard Windows icon size is too large to be used for this purpose. This specifically supports control
containers that have a design mode in which one selects controls and places them on a form being
designed. For example, in Visual Basic, the control's icon is displayed in the Visual Basic Toolbox during
design mode.

TreatAs
Specifies the CLSID of a class that can emulate the current class.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \TreatAs = <CLSID>

Value Entries
<CLSID>

Class that is to perform the emulation.

Remarks
Emulation is the ability of one application to open and edit an object of a different class, while retaining
the original format of the object.

See Also
CoTreatAsClass, CoGetTreatAsClass, AutoTreatAs, IOleObject::EnumVerbs

Verb
Specifies the verbs to be registered for an application.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID

 \Verb
 \1 = <verb1>
 \2 = <verb2>
 \3 =

Value Entries
<verb1>, <verb2>, ...

Each value specifies a verb, and its associated menu and verb flags. Each verb is specified by its
own NamedValue / Value pair, as in verb number = <name, menu flag, verb flag> For example:
 \Verb
 0 = &Edit, 0, 2 // primary verb; on menu, possibly dirties object,
 1 = &Play, 0, 3 // other verb; on menu; leaves object clean
 -3 = Hide, 0, 1 // pseudo verb, hides window; not on menu, opt.
 -2 = Open, 0, 1 // pseudo verb, opens in sep. window; not on menu, opt.
 -1 = Show, 0, 1 // pseudo verb, show in preferred state; not on menu, opt.
See IOleObject::DoVerb for general information about verbs, descriptions of OLE predefined verbs,
and positive and negative verbs, plus other material.

Remarks
Verbs must be numbered consecutively. The first value after the verb string describes how the verb is
appended by an AppendMenu function call.

The second value indicates whether the verb will dirty the object. It also indicates whether the verb should
appear in the menu, as defined by OLEVERBATTRIB enumeration, used by the OLEVERB structure.

For still more information, see IOleObject::EnumVerbs and OleRegEnumVerbs.

Following are two example entries:

Verb 0: "Edit", MF_UNCHECKED | MF_ENABLED, no OLEVERATTRIB flags:

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \Verb\0 = &Edit,0,0

Verb 1: "Open", MF_UNCHECKED | MF_ENABLED, no OLEVERATTRIB flags:

HKEY_CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \Verb\1 = &Open,0,0

See Also

IOleObject::EnumVerbs, OleRegEnumVerbs, AppendMenu, OLEVERB, OLEVERBATTRIB

Version
Specifies the version number of the control.

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID
 \Version = <VersionNumber>

Value Entries
<ersionNumber>

The version number of the control.

Remarks
The version number should match the version of the type library associated with the control.

ProgID Key
A ProgID, or programmatic identifier, is a registry entry that can be associated with a CLSID. The format
of a ProgID is <Vendor>.<Component>.<Version>, separated by periods and with no spaces, as in
Word.Document.6. Like the CLSID, the ProgID identifies a class, but with less precision.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\<ProgID> =

You can use a ProgID in programming situations where it is not possible to use a CLSID. ProgIDs should
not appear in the user interface. ProgIDs are not guaranteed to be unique so they can be used only
where name collisions are manageable.

The <ProgID> must:

· Have no more than 39 characters.
· Contain no punctuation (including underscores) except one or more periods.
· Not start with a digit.
· Be different from the class name of any OLE 1 application, including the OLE 1 version of the same

application, if there is one.

Since the <ProgID> should not appear in the user interface, you can obtain a displayable name by calling
IOleObject::GetUserType. Also, see OleRegGetUserType>

The value of the <ProgID> is a human readable name such as Microsoft Word Document, and is
displayed in dialog boxes.

SubKeys and Named Values
\<ProgID> = <HumanReadableNamen>

 \CLSID Object's CLSID
 \Insertable Indicates that class is insertable in OLE 2 containers
 \Protocol Indicates class is insertable in OLE 1 container
 \Shell Windows 3.1 File Manager information

See Also
IOleObject::GetUserType, OleRegGetUserType

CLSID
Associates a ProgID with a CLSID.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\ProgID

 \CLSID = <CLSID>

Value Entries
<CLSID>

The object's CLSID.

See Also
GetClassFile

Insertable
Indicates that this class is insertable in OLE 2 containers.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\ProgID

 \Insertable

Remarks
This is a required entry for objects that are insertable in OLE 2 containers.

Protocol
Indicates that this OLE 2 class is insertable in OLE 1 containers.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\ProgID

 \Protocol
 \StdFileEditing
 \Server = <full path to OLE 2 server app>
 \Verb =
 \0 = <verb value0>
 \1 = <verb value>
 \, ...

Value Entries
<full path to OLE 2 server app>

Specifies the full path to the OLE 2 server application.
<verb value>

The primary verb; must start with zero.
<verb value>, ...

Additional verb, numbered consecutively.

Remarks
The StdFileEditing entry is specifies OLE 1 compatibility information. It should be present only if, objects
of this class are insertable in OLE 1 containers.

Shell
Provides Windows 3.1 shell printing and File Open information.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\ProgID

 \Shell
 \Open
 \command = <path to application exe %1>
 \Print
 \command = <path to application exe %1>

Value Entries
<path to application exe %1>

Specifies the path to the executable.

Remarks
These entries should provide the path and filename of the application. The examples provided here are
simple entries. More complex entries could contain DDE entries.

HKEY_CLASSES_ROOT\OLE2ISvrOtl\Shell\Print\Command =
 c:\svr\isvrotl.exe %1
HKEY_CLASSES_ROOT\OLE2ISvrOtl\Shell\Open\Command =
 c:\svr\isvrotl.exe %1

VersionIndependentProgID Key
The values associated with this key associate a ProgID with a CLSID. Used to determine the latest
version of an object application.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes

 \<VersionIndependentProgID> = <Vendor>.<Component>
 \CLSID = <CLSID>
 \CurVer = <ProgID>

Value Entries
<Vendor>.<Component>

The name of the latest version of the object application.
<CLSID>

The CLSID of the newest installed version of the class.
<ProgID>

The <ProgID> of the newest installed version of the class.

Remarks
The format or the <VersionIndependentProgID> is <Vendor>.<Component>, separated by periods, no
spaces, and no version number. The version-independent ProgID, like the ProgID, can be registered with
a human readable name.

Applications must register a version-independent programmatic identifier under the
VersionIndependentProgID key. The <VersionIndependentProgID> refers to the application's class, and
does not change from version to version, instead remaining constant across all versions, for example,
Microsoft Word Document. It is used with macro languages and refers to the currently installed version of
the application's class. The <VersionIndependentProgID> must correspond to the name of the latest
version of the object application.

The <VersionIndependentProgID> is used when, for example, a container application creates a chart or
table with a toolbar button. In this situation the application can use the <VersionIndependentProgID> to
determine the latest version of the needed object application.

The <VersionIndependentProgID> is stored and maintained solely by application code. When given the
VersionIndependentProgID, the CLSIDFromProgID function returns the CLSID of the current version.

You can use CLSIDFromProgID and ProgIDFromCLSID to convert between these two representations.

You can use IOleObject::GetUserType or OleRegGetUserType to change the identifier to a displayable
string.

If A custom handler is not used, the entry should be set to OLE32.DLL, as shown in the following
example.

HKEY_-CLASSES_ROOT\CLSID\{00000402-0000-0000-C000-000000000046}
 \InprocHandler = ole32.dll

In addition to the preceding registry entry, you should add the following corresponding entry under the
CLSID key:

\CLSID
 \<CLSID> = <human readable name>
 \<VersionIndependentProgID> = human readable name

See Also

ProgID, CLSIDFromProgID, ProgIDFromCLSID, IOleObject::GetUserType, OleRegGetUserType

File Extension Key
Associates a file extension with a ProgID, indicating that an OLE 2 application can handle requests from
the Windows 3.1 File Manager.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes

 \<.ext> = <ProgID>

Value Entries
<ProgID>

The ProgID associated with

Remarks
The information contained in the file extension key is used by both File Manager and File Monikers.
GetClassFile uses the file extension key to supply the associated CLSID.

See Also
GetClassFile

(Non-Compound) FileType Key
Used by GetClassFile to match patterns against various file bytes in a non-compound file.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\

 \FileType
 \<CLSID>
 \<n> = <offset, cb, mask, value>

Value Entries
<offset, cb, mask, value>

Offset and cb are limited to 16 bits. Offset is from the beginning or end of the file, with a negative
value for offset being interpreted from the end of the file; cb is a the length in bytes. Together, these
values represent a particular byte range in the file. mask is a bit mask used to perform a logical AND
operation, using the byte range spedified by offsert and cb. The result of the AND operation is
compared with If mask is omitted, it is assumed to all ones. offset and cb are decimal unless
preceded by "0x". mask and pattern are always hex.

Remarks
Entries under the FileType key are used by the GetClassFile function to match patterns against various
file bytes in a non-compound file. FileType has CLSID subkeys, each of which has a series of subkeys \
0, \1, \2, ... These values contain a pattern that, if matched, should yield the indicated CLSID. See also
the GetClassFile function.

Following are examples of FileType entries.
 \0 = 0, 4, FFFFFFFF, ABCD1234
where the first 4 bytes must be ABCD12 34, in that order, or
 \1 = 0, 4, FFFFFFFF, 9876543
where they must match 9876543, or .
 \2 = -4, 4, FEFEFEFE
where the last four bytes in the file must be FEFEFEFE.

See Also
GetClassFile, File Extension

Interface Key
Registers new interfaces by associating an interface name with an interface ID (IID).

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Interface

If your application adds a new interface, the Interface key must be completed for OLE 2 to register the
new interface. There must be one IID subkey for each new interface.

Note that you must use ProxyStubCLSID32 because the IID-to-CLSID mapping may be different for 16-
and 32-bit interfaces. The IID-to-CLSID depends on the way the interface proxies are packaged into a set
of proxy DLLs.

SubKeys and Named Values
\Interface

 <IID> Interface identifier
 \BaseInterface Interface derived from
 \NumMethods Number of methods
 \ProsyStubCLSID Maps IID to CLSiD (16-bit DLLs)
 \ProsyStubCLSID32 Maps IID to CLSiD (32-bit DLLs)

See Also
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\Interface

<IID>
Associates an interface ID (IID) with a textual name for the interface.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes

 \Interface
 \<IID> = name of interface

Value Entries
<name of interface>

Textual name for a given interface. For example:
\{00000112-0000-0000-C000-0000000000-46} = IOleObject

Remarks
If your application adds a new interface, the interface key must be completed for OLE 2 to register the
new interface. There must be one entry for each new interface.

BaseInterface
Identifies the interface from which the current interface is derived.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Interface

 \BaseInterface = <name of interface>

Value Entries
<name of interface>

Identifies the name of the interface from which the current interface is derived.

NumMethods
Contains the number of interfaces in the associated interface.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes

 \Interface
 \NumMethods = <number of methods>

Value Entries
<number of methods>

Specifies the number of methods in the interface.

ProxyStubClsid
Maps an IID to a CLSID in 16-bit proxy DLLs.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes

 \Interface
 \ProxyStubClsid = <CLSID>

Value Entries
<CLSID>

Specifies the CLSID to map the IID to.

Remarks
If you add interfaces, you must use this entry to register them (16-bit systems) so that OLE can find the
appropriate remoting code to establish interprocess communication.

See Also
ProxyStubClsid32

ProxyStubClsid32
Maps an IID to a CLSID in 32-bit proxy DLLs.

Registry Entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes

 \Interface
 \ProxyStubClsid32 = <CLSID>

Value Entries
<CLSID>

Specifies the CLSID to map the IID to.

Remarks
This is a required entry since the IID-to-CLSID mapping may be different for 16- and 32-bit interfaces. The
IID-to-CLSID mapping depends on the way the interface proxies are packaged into a set of proxy DLLs.

If you add interfaces, you must use this entry to register them (32-bit systems)so that OLE can find the
appropriate remoting code to establish interprocess communication.

See Also
ProxyStubClsid, IMarshal

HKEY_LOCAL_MACHINE\Software\Microsoft\OLE
The named-values under the HKEY_LOCAL_MACHINE\Software\Microsoft\OLE key control Distributed
COM's default launch and access permission settings and call-level security capabilities for applications
that do not call CoInitializeSecurity. Only machine administrators and the system have full-access to this
portion of the registry. All other users have only read-access.

HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\named_value = value

Named Values:

\EnableDCOM = value Sets the global activation policy for
the machine

\DefaultLaunchPermission = value Defines default ACL for the machine
\DefaultAccessPermission = value Defines default access permission

list for the machine
\LegacyAuthenticationLevel = value Sets the default authentication level
\LegacyImpersonationLevel = value Sets the default impersonation level
\LegacyMutualAuthentication = value Determines if mutual authentication

is enabled
\LegacySecureReferences = value Determines if AddRef/Release

invocations are secure

See Also
Security in COM

EnableDCOM
The EnableDCOM controls the global activation policies of the machine. Only machine administrators
and the system have full-access to this portion of the registry. All other users have only read-access.

Registry Entry
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\

 EnableDCOM = value

Remarks
This named-value is a REG_SZ, and has two possible values.

N (or n)

No remote clients may launch servers or connect to objects on this machine. Local launching of class
code and connecting to objects is allowed on a per-class basis according to the value and access
permissions of the class's AppID\{…}\LaunchPermission key and the global DefaultLaunchPermission
key. See the description of these keys, below.

Y (or y)

Launching of servers and connecting to objects by remote clients is allowed on a per-class basis
according to the value and access permissions of the class's LaunchPermission named-value and
the global DefaultLaunchPermission named-value.

See Also
LaunchPermission, DefaultLaunchPermission, Security in COM

DefaultLaunchPermission
Defines the Access Control List (ACL) of the principals that can launch classes that do not specify their
own ACL through the LaunchPermission named-value

Registry Entry
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\named_value

Remarks
The value for the DefaultLaunchPermission named-value is a REG_BINARY that contains the Access
Control List (ACL) of the principals who can launch classes on the current system. If the
LaunchPermission named-value is set for a server, it takes precedence over the
DefaultLaunchPermission named-value. Upon receiving a local or remote request to launch a server
whose APPID key has no LaunchPermission value of its own, the ACL described by this value is checked
while impersonating the client, and its success either allows or disallows the launching of the class code.

This entry supports a simple level of centralized administration of the default launching access to
otherwise unadministered classes on a machine. For example, an administrator might use the
DCOMCNFG tool to configure the system to allow read-access only for power-users of the machine. OLE
would therefore restrict requests to launch class code to members of the power-users group. The
administrator could subsequently configure launch permissions for individual classes to grant the ability to
launch class code to other groups or individual users as needed.

The access-permissions in this named-value default to the following:

· machine-administrators: allow-launch
· SYSTEM: allow-launch
· INTERACTIVE: allow-launch

See Also
LaunchPermission, Registering COM Servers

DefaultAccessPermission
Sets the Access Control List (ACL) of the principals that can access classes for which there is no
AccessPermission setting. This ACL is only used by applications that don't call CoInitializeSecurity and
do not have an AccessPermission value under their AppID.

Registry Entry
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\DefaultAccessPermission = ACL

Remarks
The DefaultAccessPermission is a named-value that is set to a REG_BINARY that contains data
describing the Access Control List (ACL) of the principals who can access classes for which there is no
AccessPermission named-value. In this case, the server checks the ACL described by this value while
impersonating the caller that is attempting to connect to the object, and its success determines if the
access is allowed or disallowed. If the access-check fails, the connection to the object is disallowed. If
this named value does not exist, only the ID of the server and local system are allowed to call the server.

This key supports a simple level of centralized administration of the default connection access to running
objects on a machine.

The access-permissions on this key default to the following:

· machine-administrators: allow-access
· SYSTEM: allow-access
· INTERACTIVE: allow-access

See Also
AccessPermission, Registering COM Servers

LegacyAuthenticationLevel
Sets the default authentication level for applications that do not call CoInitializeSecurity.

Registry Entry
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\

 LegacyAuthenticationLevel= default_authentication_level

Remarks
LegacyAuthenticationLevel is a named-value is a REG_WORD that sets the default level of
authentication for all applications which do not call CoInitializeSecurity. Values are from 1 through 6, and
correspond to the RPC_C_AUTHN_LEVEL_ xxx constants:

Value Meaning
1 RPC_C_AUTHN_LEVEL_NONE
2 RPC_C_AUTHN_LEVEL_CONNECT
3 RPC_C_AUTHN_LEVEL_CALL
4 RPC_C_AUTHN_LEVEL_PKT
5 RPC_C_AUTHN_LEVEL_PKT_INTEGRITY
6 RPC_C_AUTHN_LEVEL_PKT_PRIVACY

When this named-value is not present, the default authentication level established by the system is 2
(RPC_C_AUTHN_CONNECT).

See Also
CoInitializeSecurity, RPC_C_AUTHN_LEVEL_ xxx , Registering COM Servers

LegacyImpersonationLevel
Sets the default level of impersonation for applications that do not call CoInitializeSecurity.

Registry Entry
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\LegacyImpersonationLevel=

default_impersonation_level

Remarks
The LegacyImpersonationLevel named-value is a REG_WORD that sets the default level of
impersonation. The values, from 1 through 4, correspond to the values of the RPC_C_IMP _ LEVEL_ xxx
constants.

Value Meaning
1 RPC_C_IMP_LEVEL_ANONYMOUS
2 RPC_C_IMP_LEVEL_IDENTIFY
3 RPC_C_IMP_LEVEL_IMPERSONATE
4 RPC_C_IMP_LEVEL_DELEGATE

When this named-value is not present, the default impersonation level established by the system is 2
(RPC_C_IMP_LEVEL_IDENTIFY). NTLMSSP on Windows NT 4.0 supports only
RPC_C_IMP_LEVEL_IDENTIFY and RPC_C_IMP_LEVEL_IMPERSONATE.

See Also
RPC_C_IMP _ LEVEL_ xxx , Registering COM Servers

LegacyMutualAuthentication
Determines whether mutual authentication is enabled.

Note Mutual authentication is not supported and is not available by default with Windows NT 4.0.
This named-value is only useful if the network administrator installs a security provider that supports
mutual authentication.

Registry Entry
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\LegacyMutualAuthentication= value

Remarks
The LegacyMutualAuthentication named-value is a REG_SZ that provides the default setting for use of
mutual authentication for all applications that do not call CoInitializeSecurity. Values of "Y" or "y" indicate
that mutual authentication is enabled. Any other value or the lack of this named-value implies that mutual
authentication is disabled.

See Also
CoInitializeSecurity, Registering COM Servers

LegacySecureReferences
Determines whether AddRef/Release invocations are secure for applications that do not call
CoInitializeSecurity.

Registry Entry
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\LegacySecureReferences= ACL

Remarks
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE

The LegacySecureReferences named-value is a REG_SZ that provides the default setting for securing
IUnknown::AddRef and IUnknown::Release method invokations for all applications that do not call
CoInitializeSecurity. Values of "Y" or "y" indicate that AddRef/Release is secured. Any other value or
the lack of this named-value implies that AddRef/Release is not secured. Enabling secure references
slows COM.

See Also
CoInitializeSecurity, Registering COM Servers

Glossary
A
Activation

The process of loading an object in memory, which puts it into its running state. See also Binding.

Active state
A COM object that is in running state and has a visible user interface. See also Loaded state, Object
state, Passive state, and Running state.

Absolute moniker
A moniker that specifies the absolute location of an object. An absolute moniker is analogous to a full
path. See also Moniker.

Advisory holder
A COM object that caches, manages, and sends notifications of changes to container applications'
advisory sinks. See also Advisory sink.

Advisory sink
A COM object that can receive notifications of changes in an embedded object or linked object
because it implements the IAdviseSink or IAdviseSink2 interface. Containers that need to be
notified of changes in objects implement an advisory sink. Notifications originate in the server, which
uses an advisory holder object to cache and manage notifications to containers. See also Advisory
holder, Container application, and Object handler.

Aggregate object
A COM object that is made up of one or more other COM objects. One object in the aggregate is
designated the controlling object, which controls which interfaces in the aggregate are exposed and
which are private. This controlling object has a special implementation of IUnknown called the
controlling IUnknown. All objects in the aggregate must pass calls to IUnknown methods through
the controlling IUnknown. See also Aggregation.

Aggregation
A composition technique for implementing COM objects. It allows you to build a new object by
reusing one or more existing objects' interface implementations. The aggregate object chooses
which interfaces to expose to clients, and the interfaces are exposed as if they were implemented by
the aggregate object. Clients of the aggregate object communicate only with the aggregate object.
See also Aggregate object. Contrast with Containment.

Ambient property
A run-time property that is managed and exposed by the container. Typically, an ambient property
represents a characteristic of a form, such as background color, that needs to be communicated to a
control so that the control can assume the look and feel of its surrounding environment. See also
Run-time property.

Anti-moniker

The inverse of a file, item, or pointer moniker. An anti-moniker is added to the end of a file, item, or
pointer moniker to nullify it. Anti-monikers are used in the construction of relative monikers. See also
Relative Moniker.

Artificial reference counting
A technique used to safeguard an object before calling a function or method that could prematurely
destroy it. A program calls IUnknown::AddRef to increment the object's reference count before
making the call that could free the object. After the function returns, the program calls
IUnknown::Release to decrement the count.

Asynchronous binding
A type of binding in which it is necessary for the process to occur asynchronously to avoid
performance degradation for the end user. Typically, asynchronous binding is used in distributed
environments such as the World Wide Web. OLE supports asynchronous moniker classes and
callback mechanisms that allow the process of locating and initializing an object in a distributed
environment to occur while other operations are being carried out. See also Asynchronous moniker,
and Binding.

Asynchronous call
A call to a function that is executed separately so that the caller can continue processing instructions
without waiting for the function to return. Contrast with Synchronous call.

Asynchronous moniker
A moniker that supports asynchronous binding. For example, instances of the system-supplied URL
moniker class are asynchronous monikers. See also Asynchronous binding, Moniker, and URL
moniker.

Automation
A way to manipulate an application's objects from outside the application. Automation is typically
used to create applications that expose objects to programming tools and macro languages, create
and manipulate one application's objects from another applications, or to create tools for accessing
and manipulating objects.

B
Bind context

A COM object that implements the IBindCtx interface. Bind contexts are used in moniker operations
to hold references to the objects activated when a moniker is bound. The bind context contains
parameters that apply to all operations during the binding of a generic composite moniker and
provides the moniker implementation with access to information about its environment. See also
Binding, Generic composite moniker, and Moniker.

Binding
Associating a name with its referent. Specifically, locating the object named by a moniker, putting it
into its running state if it isn't already, and returning an interface pointer to it. Objects can be bound
at run time (also called late binding or dynamic binding) or at compile time (also called static
binding). See also Moniker and Running state.

C

Cache
A (usually temporary) local store of information. In OLE, a cache contains information that defines
the presentation of a linked or embedded object when the container is opened. See also Container,
Embedded object, and Linked object.

Cache initialization
Filling a linked or embedded object's cache with presentation data. The IOleCache interface
provides methods that a container can call to control the data that gets cached for linked or
embedded objects. See also Container, Embedded object, and Linked object.

Class
The definition of an object in code. In C++, the class of an object is defined as a data type, but this is
not the case in other languages. Because OLE can be coded in any language, class is used to refer
to the general object definition. See also Class factory.

Class factory
A COM object that implements the IClassFactory interface and that creates one or more instances
of an object identified by a given class identifier(CLSID). See also Class identifier.

Class identifier (CLSID)
A globally unique identifier (GUID) associated with an OLE class object. If a class object will be used
to create more than one instance of an object, the associated server application should register its
CLSID in the system registry so that clients can locate and load the executable code associated with
the object(s). Every OLE server or container that allows linking to its embedded objects must register
a CLSID for each supported object definition. See also Class and Class factory.

Class object
In object-oriented programming, an object whose state is shared by all the objects in a class and
whose behavior acts on that classwide state data. In COM, class objects are called class factories,
and typically have no behavior except to create new instances of the class. See also Class factory.

Client
A COM object that requests services from another object. See also Container.

Client site
The display site for an embedded or linked object within a compound document. The client site is the
principal means by which an object requests services from its container. See also Compound
document and Container.

CLSID
See Class identifier.

Commit
To persistently save any changes made to a storage or stream object since it was opened or
changes were last saved. See also Revert.

Component

An object that encapsulates both data and code, and provides a well-specified set of publicly
available services.

Component Object Model (COM)
The OLE object-oriented programming model that defines how objects interact within a single
process or between processes. In COM, clients have access to an object through interfaces
implemented on the object. See also Interface.

Composite menu bar
A shared menu bar composed of menu groups from both a container application and an in-place-
activated server application. See also In-place activation.

Composite moniker
A moniker that consists of two or more monikers that are treated as a unit. A composite moniker can
be non-generic, meaning that its component monikers have special knowledge of each other, or
generic, meaning that its component monikers know nothing about each other except that they are
monikers. See also Generic composite moniker.

Compound document
A document that includes linked or embedded objects, as well as its own native data. See also
Embedded object and Linked object.

Compound File
An OLE-provided Structured Storage implementation that includes the IStorage, IStream, and
ILockBytes interfaces. The StgXxx helper functions create and manipulate compound files. See
also Structured Storage.

COM object
An object that conforms to the OLE Component Object Model (COM). A COM object is an instance
of an object definition, which specifies the object's data and one or more implementations of
interfaces on the object. Clients interact with a COM object only through its interfaces. See also
Component Object Model and Interface.

Connectable object
A COM object that implements, at a minimum, the IConnectionPointContainer interface, for the
management of connection point objects. Connectable objects support communication from the
server to the client. A connectable object creates and manages one or more connection point
subobjects, which receive events from interfaces implemented on other objects and send them on to
the client. See also Connection point object and Advisory sink.

Connection point object
A COM object that is managed by a connectable object and that implements the IConnectionPoint
interface. One or more connection point objects can be created and managed by a connectable
object. Each connection point object manages incoming events from a specific interface on another
object and sends those events on to the client. See also Connectable object, Advisory sink.

Container
See Container application.

Container application
An application that supports compound documents. The container application provides storage for
an embedded or linked object, a site for its display, access to the display site, and an advisory sink
for receiving notifications of changes in the object. See also Advisory sink, Compound document,
Client site, Embedded object, and Linked object.

Containment
A composition technique for implementing COM objects. It allows one object to reuse some or all of
the interface implementations of one or more other objects. The outer object acts as a client to the
other objects, delegating implementation when it wishes to use the services of one of the contained
objects. Contrast with Aggregation.

Control
An embeddable, reusable COM object that supports, at a minimum, the IOleControl interface.
Controls are typically associated with the user interface. They also support communication with a
container and can be reused by multiple clients, depending upon licensing criteria. See also
Licensing.

Control container
An application that supports embedding of controls by implementing the IOleControlSite interface.
See also Control.

Control property
A run-time property that is exposed and managed by the control itself. For example, the font and text
size used by the control are control properties. See also Run-time property.

Controlling object
The object within an aggregate object that controls which interfaces within the aggregate object are
exposed and which are private. The IUnknown interface of the controlling object is called the
controlling IUnknown. Calls to IUnknown methods of other objects in the aggregate must be
passed to the controlling IUnknown. See also Aggregate object.

Control site
A structure implemented by a control container for managing the display and storage of a control.
Within a given container, each control has a corresponding control site. See also Control and Control
container.

D
Data transfer object

An object that implements the IDataObject interface and contains data to be transferred from one
object to another through either the Clipboard or drag-and-drop operations.

Default object handler
A DLL provided with OLE that acts as a surrogate in the processing space of the container
application for the real object.

With the default object handler, it is possible to look at an object's stored data without actually
activating the object. The default object handler performs other tasks, such as rendering an object

from its cached state when the object is loaded into memory.

Dependent object
A COM object that is typically initialized by another object (the host object). Although the dependent
object's lifetime may only make sense during the lifetime of the host object, the host object does not
function as the controlling IUnknown for the dependent object. In contrast, an object is an
aggregated object when its lifetime (by means of its reference count) is completely controlled by the
managing object. See also Host object. Contrast with Aggregation and Containment.

Direct access mode
One of two access modes in which a storage object can be opened. In direct mode, all changes are
immediately committed to the root storage object. See also Transacted access mode.

Document object
An OLE document that can display one or more in-place activated views of its data within a native or
foreign frame, such as a browser, while retaining full control over its user interface. In addition to
implementing the usual OLE document and in-place activation interfaces, a document object must
implement IOleDocument, and each of its views (in the form of a document view object) must
implement IOleDocumentView. See also Document view, Document view object, and Frame.

Document object container
A container application capable of displaying one or more views of one or more document objects
and of managing all contained document objects within a file. Each document object is associated
with a document site, and each document site contains one or more document view sites
corresponding to the views supported by the document object. A document object container also
includes a container frame, which handles menu and toolbar negotiation and the enumeration of
contained objects. See also Document object, Document site, Document view, Document view site,
and Frame.

Document object server
A server application capable of providing document objects. See also Document object and
Document object container.

Document site
A client site implemented by a document object container for managing the display and storage of a
document object. Each document object in a container has a corresponding document site. See also
Document object and Document object container.

Document site object
A COM object that implements the IOleDocumentSite interface, in addition to the usual client-site
interfaces (such as IOleClientSite). See also Document site.

Document view
A particular presentation of a document's data. A single document object can have one or more
views, but a single document view can belong to one and only one document object. See also
Document object.

Document view object

A COM object that implements the IOleDocumentView interface and corresponds to a particular
document view. An object with multiple document views aggregates a separate document view
object for each view. See also Document view.

Document view site
An object aggregated by a document site object for managing the display space for a particular view
of a document object. Within a given document site, each document view has a corresponding
document view site. See also Document object, Document site object, and Document view.

Document view site object
A COM object that is aggregated in a document site object and implements the IOleInPlaceSite
interface and, optionally, the IContinueCallback interface. See also Document site object.

Drag and drop
An operation in which the end user uses the mouse or other pointing device to move data to another
location in the same window or another window.

E
Embed

To insert an object into a compound document in such a way as to preserve the data formats native
to that object, and to enable it to be edited from within its container using tools exposed by its server.

Embedded object
An object whose data is stored in a compound document, but the object runs in the process space of
its server. The default object handler provides a surrogate in the processing space of the container
application for the real object. See also Default object handler, Compound document, and Container
application.

.EXE server
See Out-of-process server.

Extended property
A run-time property, such as a control's position and size, that a user would assume to be exposed
by the control but is exposed and managed by the container. See also Run-time property.

F
File moniker

A moniker based on a path in the file system. File monikers can be used to identify objects that are
saved in their own files. A file moniker is a COM object that supports the system-provided
implementation of the IMoniker interface for the file moniker class. See also Item moniker, Generic
composite moniker, and Moniker.

Font object
A COM object that provides access to Graphics Device Interface (GDI) fonts by implementing the
IFont interface.

Format identifier
A GUID that identifies a persistent property set. Also referred to as FMTID. See also Property set.

Frame
The part of a container application responsible for negotiating menus, accelerator keys, toolbars,
and other shared user-interface elements with an embedded COM object or a document object. See
also Document object and Embedded object.

Frame object
A COM object that implements the IOleInPlaceFrame interface and, optionally, the
IOleCommandTarget interface.

G
Generic composite moniker

A sequenced collection of monikers, starting with a file moniker to provide the document-level path
and continuing with one or more item monikers that, taken as a whole, uniquely identifies an object.
See also Composite moniker, Item moniker, and File moniker.

H
Helper function

A function that encapsulates calls to other functions and interface methods publicly available in the
OLE SDK. Helper functions are a convenient way to call frequently used sequences of function and
method calls that accomplish common tasks.

Host object
A COM object that forms a hierarchical relationship with one or more other COM objects, known as
the dependent objects. Typically, the host object instantiates the dependent objects, and their
existence only makes sense within the lifetime of the host object. However, the host object does not
act as the controlling IUnknown for the dependent objects, nor does it directly delegate to the
interface implementations of those objects. See also Dependent object.

HRESULT
An opaque result handle defined to be zero for a successful return from a function and nonzero if
error or status information is returned. To convert an HRESULT into the more detailed SCODE,
applications call GetScode(). See also SCODE.

Hyperlink object
A COM object that implements, at a minimum, the IHlink interface and acts as a link to an object at
another location (the target). A hyperlink is made up of four parts: a moniker that identifies the
target's location; a string for the location within the target; a friendly, or displayable, name for the
target; and a string that can contain additional parameters.

Hyperlink browse context
A COM object that implements the IHlinkBrowseContext interface and maintains the hyperlink
navigation stack. The browse context object manages the hyperlink frame window and hyperlink
target object's window. See also Hyperlink target.

Hyperlink container
A container application that supports hyperlinks by implementing the IHlinkSite interface and, if the
container's objects can be targets of other hyperlinks, the IHlinkTarget interface. See also
Container.

Hyperlink frame object
A COM object that implements the IHlinkFrame interface and controls the top-level navigation and
display of hyperlinks for the frame's container and the hyperlink target's server.

Hyperlink site object
A COM object that implements the IHlinkSite interface and supplies either the moniker or interface
identifier of its hyperlink container. One hyperlink site can serve multiple hyperlinks. See also
Hyperlink and Hyperlink container.

Hyperlink target object
A COM object that implements the IHlinkTarget interface and supplies its moniker, friendly name,
and other information that other hyperlink objects will use to navigate to it.

I
In parameter

A parameter that is allocated, set, and freed by the caller of a function or interface method. An In
parameter is not modified by the called function. See also In/Out parameter and Out parameter.

In/Out parameter
A parameter that is initially allocated by the caller of a function or interface method, and set, freed,
and reallocated, if necessary, by the process that is called. See also In parameter and Out
parameter.

In-place activation
Editing an embedded object within the window of its container, using tools provided by the server.
Linked objects do not support in-place activation; they are always edited in the window of the server.
See also Embedded object and Linked object.

In-process server
A server implemented as a DLL that runs in the process space of the client. See also Out-of-process
server, Local server, and Remote server.

Instance
An object for which memory is allocated or which is persistent.

Interface
A group of semantically related functions that provide access to a COM object. Each OLE interface
defines a contract that allows objects to interact according to the Component Object Model (COM).
While OLE provides many interface implementations, most interfaces can also be implemented by
developers designing OLE applications. See also Component Object Model and COM object.

Interface identifier (IID)

A globally unique identifier (GUID) associated with an interface. Some functions take IIDs as
parameters to allow the caller to specify which interface pointer should be returned.

Item moniker
A moniker based on a string that identifies an object in a container. Item monikers can identify
objects smaller than a file, including embedded objects in a compound document, or a pseudo-
object (like a range of cells in a spreadsheet). See also File moniker, Generic composite moniker,
Moniker, and Pseudo-object.

L
Licensing

A feature of COM that provides control over object creation. Licensed objects can be created only by
clients that are authorized to use them. Licensing is implemented in COM through the
IClassFactory2 interface and by support for a license key that can be passed at run time.

Link object
A COM object that is created when a linked COM object is created or loaded. The link object is
provided by OLE and implements the IOleLink interface.

Linked object
A COM object whose source data physically resides where it was initially created. Only a moniker
that represents the source data and the appropriate presentation data are kept with the compound
document. Changes made to the link source are automatically reflected in the linked object. See also
Link source.

Link source
The data that is the source of a linked object. A link source may be a file or a portion of a file, such
as a selected range of cells within a file (also called a pseudo object). See also Linked object.

Loaded state
The state of an object after its data structures have been loaded into memory and are accessible to
the client process. See also Active state, Passive state, and Running state.

Local server
An out-of-process server implemented as an .EXE application running on the same machine as its
client application. See also In-process server, Out-of-process server, and Remote server.

Lock
A pointer held to¾and possibly, a reference count incremented on¾a running object. OLE defines
two types of locks that can be held on an object: strong and weak. To implement a strong lock, a
server must maintain both a pointer and a reference count, so that the object will remain "locked" in
memory at least until the server calls Release. To implement a weak lock, the server maintains only
a pointer to the object, so that the object can be destroyed by another process.

M
Marshaling

Packaging and sending interface method calls across thread or process boundaries.

Media type
An extension of MIME that allows data format negotiation between a client and an object. See also
Multipurpose Internet Mail Extension (MIME).

MIME
See Multipurpose Internet Mail Extension.

MIME content type
See Media type.

Multipurpose Internet Mail Extension (MIME)
An Internet protocol originally developed to allow exchange of electronic mail messages with rich
content across heterogeneous network, machine, and e-mail environments. In practice, MIME has
also been adopted and extended by non-mail applications.

Moniker
An object that implements the IMoniker interface. A moniker acts as a name that uniquely identifies
a COM object. In the same way that a path identifies a file in the file system, a moniker identifies a
COM object in the directory namespace. See also Binding.

Moniker class
An implementation of the IMoniker interface. System-supplied moniker classes include file
monikers, item monikers, generic composite monikers, anti-monikers, pointer monikers, and URL
monikers.

Moniker client
An application that uses monikers to acquire interface pointers to objects managed by another
application.

Moniker provider
An application that makes available monikers that identify the objects it manages, so that the objects
are accessible to other applications.

N
Namespace extension

An in-process COM object that implements IShellFolder, IPersistFolder, and IShellView, which are
sometimes referred to as the namespace extension interfaces. A namespace extension is used
either to extend the shell's namespace or to create a separate namespace. Primary users are the
Windows Explorer and common file dialog boxes.

Native data
The data used by an OLE server application when editing an embedded object. See also
Presentation data.

O
Object

In OLE, a programming structure encapsulating both data and functionality that are defined and
allocated as a single unit and for which the only public access is through the programming
structure's interfaces. A COM object must support, at a minimum, the IUnknown interface, which
maintains the object's existence while it is being used and provides access to the object's other
interfaces. See also COM and Interface.

Object handler
See Default object handler.

Object state
The relationship between a compound document object in its container and the application
responsible for the object's creation: active, passive, loaded, or running. Passive objects are stored
on disk or in a database, and the object is not selected or active. In the loaded state, the object's
data structures have been loaded into memory, but they are not available for operations such as
editing. Running objects are both loaded and available for all operations. Active objects are running
objects that have a visible user interface.

Object type name
A unique identification string that is stored as part of the information available for an object in the
registration database.

OLE
Microsoft's object-based technology for sharing information and services across process and
machine boundaries.

OLE Automation
See Automation.

OLE control
See Control.

Out-of-process server
A server, implemented as an .EXE application, which runs outside the process of its client, either on
the same machine or a remote machine. See also Local server and Remote server.

Out parameter
A parameter that is allocated and freed by the caller, but its value is set by the function being called.
See also In parameter and In/Out parameter.

P
Passive state

The state of a COM object when it is stored (on disk or in a database). The object is not selected or
active. See also Active state, Loaded state, Object state, and Running state.

Persistent properties
Information that can be stored persistently as part of a storage object such as a file or directory.
Persistent properties are grouped into property sets, which can be displayed and edited.

Persistent properties are different from the run-time properties of objects created with OLE Controls
and Automation technologies, which can be used to affect system behavior. The PROPVARIANT
structure defines all valid types of persistent properties, whereas the VARIANT structure defines all
valid types of run-time properties. See also Compound files, Property, and Property sets.

Persistent storage
Storage of a file or object in a medium such as a file system or database so that the object and its
data persist when the file is closed and then re-opened at a later time.

Picture object
A COM object that provides access to GDI images by implementing the IPicture interface.

Pointer moniker
A moniker that maps an interface pointer to an object in memory. Whereas most monikers identify
objects that can be persistently stored, pointer monikers identify objects that cannot. They allow such
objects to participate in a moniker binding operation.

Presentation data
The data used by a container to display embedded or linked objects. See also Native data.

Primary verb
The action associated with the most common or preferred operation users perform on an object. The
primary verb is always defined as verb zero in the system registration database. An object's primary
verb is executed by double-clicking on the object.

Property
Information that is associated with an object. In OLE, properties fall into two categories: run-time
properties and persistent properties. Run-time properties are typically associated with control objects
or their containers. For example, background color is a run-time property set by a control's container.
Persistent properties are associated with stored objects. See also Persistent properties and Run-
time properties.

Property frame
The user interface mechanism that displays one or more property pages for a control. The OLE
Controls run-time system provides a standard implementation of a property frame that can be
accessed by using the OleCreatePropertyFrame helper funtion. See also Control and Property
page.

Property identifier
A four-byte signed integer that identifies a persistent property within a property set. See also
Persistent property and Property set.

Property page
A COM object with its own CLSID that is part of a user interface, implemented by a control, and

allows the control's properties to be viewed and set. Property page objects implement the
IPropertyPage interface. See also CLSID, Control.

Property page site
The location within a property frame where a property page is displayed. The property frame
implements the IPropertyPageSite interface, which contains methods to manage the sites of each
of the property pages supplied by a control. See also Property frame.

Property set
A logically related group of properties that is associated with a persistently stored object. To create,
open, delete, or enumerate one or more property sets, implement the IPropertySetStorage
interface. If you are using compound files, you can use OLE's implementation of this interface rather
than implementing your own. See also Persistent properties.

Property set storage
A COM storage object that holds a property set. A property set storage is a dependent object
associated with and managed by a storage object. See also Dependent object, Property set.

Property sheet
A set of property pages for one or more objects. See also Property page.

Proxy
An interface-specific object that packages parameters for that interface in preparation for a remote
method call. A proxy runs in the address space of the sender and communicates with a
corresponding stub in the receiver's address space. See also Stub, Marshaling, and Unmarshaling.

Proxy manager
In standard marshaling, a proxy that manages all the interface proxies for a single object. See also
Marshaling, Proxy.

Pseudo-object
A portion of a document or embedded object, such as a range of cells in a spreadsheet, that can be
the source for a COM object.

R
Reference counting

Keeping a count of each interface pointer held on an object to ensure that the object is not destroyed
before all references to it are released. See also Lock.

Relative moniker
A moniker that specifies the location of an object relative to the location of another object. A relative
moniker is analogous to a relative path, such as ..\backup\report.old. See also Moniker.

Remote Server
A server application, implemented as an EXE, running on a different machine from the client
application using it. See also In-process server, Local server, and Out-of-process server.

Revert
To discard any changes made to an object since the last time the changes were committed or the
object's storage was opened. See also Commit and Transacted access mode.

Root storage object
The outermost storage object in a document. A root storage object can contain other nested storage
and stream objects. For example, a compound document is saved on disk as a series of storage and
stream objects within a root storage object. See also Compound document, Storage object, and
Stream object.

Running state
The state of a COM object when its server application is running and it is possible to access its
interfaces and receive notification of changes. See also Active state, Loaded state, Passive state.

Running Object Table (ROT)
A globally accessible table on each computer that keeps track of all COM objects in the running state
that can be identified by a moniker. Moniker providers register an object in the table, which
increments the object's reference count. Before the object can be destroyed, its moniker must be
released from the table. See also Running state.

Run-time property
Discrete state information associated with a control object or its container. There are three types of
run-time properties: ambient properties, control properties, and extended properties. See also
Ambient property, Control property, and Extended property. Contrast with Persistent property.

S
SCODE

A DWORD value that is used to return detailed information to the caller of an interface method or
function. See also HRESULT.

Self-registration
The process by which a server can perform its own registry operations.

Server application
An application that can create COM objects. Container applications can then embed or link to these
objects. See also Container application.

Sink
See Advisory sink.

State
See Active state, Loaded state, Object state, Passive state, and Running state.

Static object
An object that contains only a presentation, with no native data. A container can treat a static object
as though it were a linked or embedded object, except that it is not possible to edit a static object.

A static object can result, for example, from the breaking of a link on a linked object¾that is, the
server application is unavailable, or the user doesn't want the linked object to be updated anymore.
See also Native data.

Storage object
A COM object that implements the IStorage interface. A storage object contains nested storage
objects or stream objects, resulting in the equivalent of a directory/file structure within a single file.
See also Root storage object and Stream object.

Stream object
A COM object that implements the IStream interface. A stream object is analogous to a file in a
directory/file system. See also Storage object.

Strong lock
See Lock.

Structured Storage
OLE's technology for storing compound files in native file systems. See also Compound file, Storage
object, and Stream object.

Stub
When a function's or interface method's parameters are marshaled across a process boundary, the
stub is an interface-specific object that unpackages the marshaled parameters and calls the required
method. The stub runs in the receiver's address space and communicates with a corresponding
proxy in the sender's address space. See also Proxy, Marshaling, and Unmarshaling.

Stub manager
Manages all of the interface stubs for a single object.

Subobject
See Dependent object.

Synchronous call
A function call that does not allow further instructions in the calling process to be executed until the
function returns. See also Asychronous call.

System registry
A system-wide repository of information supported by Windows, which contains information about
the system and its applications, including OLE clients and servers.

T
Transacted access mode

One of two access modes in which a storage object can be opened. When opened in transacted
mode, changes are stored in buffers until the root storage object commits its changes. See also
Direct access mode, Commit, Revert, and Root storage object.

Type information
Information about an object's class provided by a type library. To provide type information, a COM
object implements the IProvideClassInfo interface.

U
Uniform data transfer

A model for transferring data via the Clipboard, drag and drop, or Automation. Objects conforming to
this model implement the IDataObject interface. This model replaces DDE (dynamic data
exchange). See also Data transfer object.

Unmarshaling
Unpacking parameters that have been sent to a proxy across process boundaries.

Universal resource locator (URL)
The identifier used by the World Wide Web for the names and locations of objects on the Internet.
OLE provides a moniker class, URL moniker, whose implementation can be used to bind a client to
objects identified by a URL. See also URL moniker.

URL moniker
A moniker based on a universal resource locator (URL). A client can use URL monikers to bind to
objects that reside on the Internet. The system-supplied URL moniker class supports both
synchronous and asynchronous binding. See also Asynchronous binding.

V
Virtual Table (VTBL)

An array of pointers to interface method implementations. See also Interface.

Visual Editing
A term in end-user documents that refers to the user's ability to interact with a compound-document
object in the context of its container. The term most often used by developers is in-place activation.

W
Weak lock

See Lock .

Legal Information
Automation Programmer's Reference
Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1985-1996 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, MS, Visual Basic, Visual C++, Windows, Win32, Windows NT, and ActiveX are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Apple, Macintosh, and Power Macintosh are registered trademarks, and Power Mac is a trademark
of Apple Computer, Inc.

CompuServe is a registered trademark of CompuServe, Inc.

Unicode is a registered trademark of Unicode, Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

Introduction
This book provides procedural and reference information for Automation (formerly called OLE
Automation). While Automation runs on other platforms, the focus of this document is applications that
use the Microsoft® Windows® 32-bit operating system.

To get the most out of this book, you should be familiar with:

· The C++ and Microsoft Visual Basic® programming languages.
· The Microsoft Windows 95® and Windows NT® programming environments.
· The OLE protocols are implemented through dynamic link libraries (DLLs) that are used in

conjunction with other Microsoft Windows programs.
· The Component Object Model (COM).

This information is also available in the Win32® Software Development Kit (SDK), which is contained on
the Microsoft Developer Network (MSDN).

About This Book
This book contains the following chapters and appendixes:

Chapter 1, "Overview of Automation," introduces the basic concepts of Automation and identifies the
components.

Chapter 2, "Exposing ActiveX Objects," shows how to write and expose programmable objects for use
by ActiveX clients, and demonstrates programming techniques with sample code.

Chapter 3, "Accessing ActiveX Objects," explains how to write applications and programming tools
that access exposed objects.

Chapter 4, "Standard Objects and Naming Guidelines," lists the standard ActiveX objects that are
recommended for most applications, and describes naming conventions for objects.

Chapter 5, "Dispatch Interface and API Functions," describes the interfaces and functions that support
access to exposed objects.

Chapter 6, "Data Types, Structures, and Enumerations," describes functions that manipulate arrays,
strings, and variant types of data within Automation.

Chapter 7, "Conversion and Manipulation Functions," describes Automation API functions.

Chapter 8, "Type Libraries and the Object Description Language," describes the Microsoft Interface
Definition Language (MIDL) compiler and the MkTypLib tool and its source file language. MIDL and
MkTypLib creates type libraries according to the descriptions you provide.

Chapter 9, "Type Description Interfaces," describes the interfaces and functions that allow programs to
read and bind to the descriptions of objects in a type library.

Chapter 10, "Type Building Interfaces," describes interfaces and functions that build type libraries.

Chapter 11, "Error Handling Interfaces," describes how Automation error handling interfaces define
and return error information.

Appendix A, "National Language Support Functions," describes functions for 32-bit and 16-bit
systems that support multiple national languages.

Appendix B, "File Requirements," lists the files you and your customers need to run Automation
applications.

Appendix C, "Information for Visual Basic Programmers," lists the Automation APIs that are called by
Visual Basic statements.

Appendix D, "String Comparisons," describes the string comparison rules applied by Automation.

Appendix E, "Managing GUIDs," provides supplemental information on globally unique identifiers.

The Glossary defines some of the terms that are useful in understanding Automation.

Other Sources of Information
Automation and ActiveX technologies are implementations of the OLE COM, which provides mechanisms
for in-place activation, structured file storage, and many other application features. These parts of OLE
are fully described in the following sources:
· OLE Programmer's Guide and Reference describes the COM, in-place activation, visual editing,

structured file storage, and application registration in terms of the APIs and interfaces provided by
OLE.

· Microsoft Interface Definition Language Programmer's Guide and Reference, contained in the Win32
SDK on the MSDN, describes the MIDL compiler.

· Inside OLE, Second Edition, by Kraig Brockschmidt, published by Microsoft Press, provides
introductory and how-to information about implementing OLE objects and containers.

· If you are developing C++ applications, the ActiveX Control Developer's Kit and Microsoft Visual C++
version 4.x product documentation describes how to develop Automation applications using C++.

For technical support, see the OLE Programmer's Guide and Reference and the documentation for the
product with which you received OLE. Support for Automation is also provided on the World Wide Web on
the Microsoft home page at www.microsoft.com.

Document Conventions
The following typographical conventions are used throughout this book.

Convention Meaning
bold Indicates a word that is a function name, method,

attribute, or other fixed part of a programming
language, the Microsoft Windows operating system,
or the Application Programming Interface (API). For
example, DispInvoke is an OLE-specific function.
These words must always be typed exactly as they
are printed.

italic Indicates a word that is a placeholder or variable.
For example, ClassName would be a placeholder for
any ActiveX object class name. Function parameters
in API reference material are italic to indicate that
any variable name can be used. In addition, ActiveX
and OLE terms are italicized at first use to highlight
their definition.

UPPERCASE Indicates a constant or data structures. For example,
E_INVALIDARG is a constant.

InitialCaps Indicates the name of an object, property, method,
event, or file name. For example, the Application
object.

monospace Indicates source code and syntax spacing. For
example:

*pdwRegisterCF = 0;

Note The interface syntax in this book follows the variable-naming convention known as Hungarian
notation, invented by programmer Charles Simonyi. Variables are prefixed with lowercase letters
indicating their data type. For example, lpszNewDocname would be a long pointer to a zero-
terminated string named NewDocname. For more information about Hungarian notation, refer to
Programming Windows by Charles Petzold.

Overview of Automation
Automation (formerly called OLE Automation) is a technology that allows software packages to expose
their unique features to scripting tools and other applications. Automation uses the Component Object
Model (COM), but may be implemented independently from other OLE features, such as in-place
activation. Using Automation, you can:

· Create applications and programming tools that expose objects.
· Create and manipulate objects exposed in one application from another application.
· Create tools that access and manipulate objects. These tools can include embedded macro

languages, external programming tools, object browsers, and compilers.

The objects an application or programming tool exposes are called ActiveX™ objects. Applications and
programming tools that access those objects are called ActiveX clients. ActiveX objects and clients
interact as follows:

{ewc msdncd, EWGraphic, bsd23523 0 /a "SDK_01.WMF"}

Applications and other software packages that support ActiveX technology define and expose objects
which can be acted on by ActiveX components. ActiveX components are physical files (for example .exe
and .dll files) that contain classes, which are definitions of objects. Type information describes the
exposed objects, and can be used by ActiveX components at either compile time or at run time.

Why Expose Objects?
Exposing objects provides a way to manipulate an application's tools programmatically. This allows
customers to use a programming tool that automates repetitive tasks that might not have been
anticipated.

For example, Microsoft Excel® exposes a variety of objects that can be used to build applications. One
such object is the Workbook, which contains a group of related worksheets, charts, and macros ¾ the
Microsoft Excel equivalent of a three-ring binder. Using Automation, you could write an application that
accesses Microsoft Excel Workbook objects, possibly to print them, as in the following diagram:

{ewc msdncd, EWGraphic, bsd23523 1 /a "SDK_02.BMP"}

With Automation, solution providers can use your general-purpose objects to build applications that target
a specific task. For example, you could use a general-purpose drawing tool to expose objects that draw
boxes, lines, and arrows, insert text, and so forth. Another programmer could build a flowchart tool by
accessing the exposed objects and then adding a user interface and other application-specific features.

Exposing objects to Automation or supporting Automation within a macro language offers several benefits.

· Exposed objects from many applications are available in a single programming environment.
Software developers can choose from these objects to create solutions that span applications.

· Exposed objects are accessible from any macro language or programming tool that implements
Automation. Systems integrators are not limited to the programming language in which the objects
were developed. Instead, they can choose the programming tool or macro language that best suits
their own needs and capabilities.

· Object names can remain consistent across versions of an application, and can conform
automatically to the user's national language.

What Is An ActiveX Object?
An ActiveX object is an instance of a class that exposes properties, methods, and events to ActiveX
clients. ActiveX objects support the COM. An ActiveX component is an application or library that is
capable of creating one or more ActiveX objects. For example, Microsoft Excel exposes many objects that
you can use to create new applications and programming tools. Within Microsoft Excel, objects are
organized hierarchically, with an object named Application at the top of the hierarchy.

The following figure shows some of the objects in Microsoft Excel.

{ewc msdncd, EWGraphic, bsd23523 2 /a "SDK_03.WMF"}

Each ActiveX object has its own unique member functions. When the member functions are exposed, it
makes the object programmable by ActiveX clients. Three types of members for an object can be
exposed:

· Methods are actions that an object can perform. For example, the Worksheet object in Microsoft
Excel provides a Calculate method that recalculates the values in the worksheet.

· Properties are functions that access information about the state of an object. The Worksheet object's
Visible property determines whether the worksheet is visible.

· Events are actions recognized by an object, such as clicking the mouse or pressing a key. You can
write code to respond to such actions. In Automation, an event is a method that is called, rather than
implemented, by an object.

For example, you might expose the following objects in a document-based application by implementing
these methods and properties:

ActiveX object Methods Properties
Application Help

Quit
Save
Repeat
Undo

ActiveDocument
Application
Caption
DefaultFilePath
Documents
Height
Name
Parent
Path
Printers
StatusBar
Top
Value
Visible
Width

Document Activate
Close
NewWindow
Print
PrintPreview
RevertToSaved
Save
SaveAs

Application
Author
Comments
FullName
Keywords
Name
Parent
Path
ReadOnly
Saved
Subject
Title

Value

Often, an application works with several instances of an object which together make up a collection
object. For example, an ActiveX application based on Microsoft Excel might have multiple workbooks. To
provide an easy way to access and program the workbooks, Microsoft Excel exposes an object named
Workbooks, which refers to all of the current Workbook objects. Workbooks is a collection object.

In the preceding figure, collection objects in Microsoft Excel are shaded. Collection objects let you work
iteratively with the objects they manage. If an application is created with a multiple-document interface
(MDI), it might expose a collection object named Documents with the methods and properties in the
following table.

Collection object Methods Properties
Documents Add

Close
Item
Open

Application
Count
Parent

What Is An ActiveX Client?
An ActiveX client is an application or programming tool that manipulates one or more ActiveX objects. The
objects can exist in the same application or in another application. Clients can use existing objects, create
new instances of objects, get and set properties, and invoke methods supported by the object.

Microsoft Visual Basic® is an ActiveX client. You can use Visual Basic and similar programming tools to
create packaged scripts that access Automation objects. You can also create clients by doing the
following:

· Writing code within an application that accesses another application's exposed objects through
Automation.

· Revising an existing programming tool, such as an embedded macro language, to add support for
Automation.

· Developing a new application, such as a compiler or type information browser, that supports
Automation.

How Do Clients and Objects Interact?
ActiveX clients can access objects in two different ways:

· By using the IDispatch interface.
· By calling one of the member functions directly in the object's virtual function table (VTBL).

An Automation interface is a group of related functions that provide a service. All ActiveX objects must
implement the IUnknown interface because it manages all of the other interfaces that are supported by
the object. The IDispatch interface, which derives from the IUnknown interface, consists of functions that
allow access to the methods and properties of ActiveX objects.

A custom interface is a COM interface that is not defined as part of OLE. Any user-defined interface is a
custom interface.

The VTBL lists the addresses of all the properties and methods that are members of an object, including
the member functions of the interfaces that it supports. The first three members of the VTBL are the
members of the IUnknown interface. Subsequent entries are members of the other supported interfaces.

The following figure shows the VTBL for an object that supports the IUnknown and IDispatch interfaces.

{ewc msdncd, EWGraphic, bsd23523 3 /a "SDK_04.WMF"}

If an object does not support IDispatch, the member entries of the object's custom interfaces immediately
follow the members of IUnknown. For example, the following figure shows the VTBL for an object that
supports a custom interface named IMyInterface.

{ewc msdncd, EWGraphic, bsd23523 4 /a "SDK_05.WMF"}

When an object for Automation is exposed, you must decide whether to implement an IDispatch
interface, a VTBL interface, or both. Microsoft strongly recommends that objects provide a dual interface,
which supports both access methods.

In a dual interface, the first three entries in the VTBL are the members of IUnknown, the next four entries
are the members of IDispatch, and the subsequent entries are the addresses of the members of the dual
interface.

The following figure shows the VTBL for an object that supports a dual interface named IMyInterface:

{ewc msdncd, EWGraphic, bsd23523 5 /a "SDK_06.WMF"}

In addition to providing access to objects, Automation also provides information about exposed objects.
By using IDispatch or a type library, an ActiveX client or programming tool can determine which
interfaces an object supports, as well as the names of its members. Type libraries, which are files or parts
of files that describe the type of one or more ActiveX objects, are especially useful because they can be
accessed at compile time. For information on type libraries, refer to "What Is a Type Library?" later in this
chapter, and "Type Libraries" in Chapter 2, "Exposing ActiveX Objects."

Accessing an Object Through the IDispatch Interface
ActiveX clients can use the IDispatch interface to access objects that implement the interface. The client
must first create the object, and then query the object's IUnknown interface for a pointer to its IDispatch
interface.

Although programmers might know objects, methods, and properties by name, IDispatch keeps track of
them internally with a number called the dispatch identifier (DISPID). Before an ActiveX client can access
a property or method, it must have the DISPID that maps to the name of the member.

With the DISPID, a client can call the member IDispatch::Invoke to access the property or invoke the
method, and then package the parameters for the property or method into one of the IDispatch::Invoke
parameters.

The object's implementation of IDispatch::Invoke must then unpackage the parameters, call the property
or method, and handle any errors that occur. When the property or method returns, the object passes its
return value back to the client through an IDispatch::Invoke parameter.

DISPIDs are available at run time, and, in some circumstances, at compile time. At run time, clients get
DISPIDs by calling the IDispatch::GetIDsOfNames function. This is called late binding because the
controller binds to the property or method at run time instead of compile time.

The DISPID of each property or method is fixed, and is part of the object's type description. If the object is
described in a type library, an ActiveX client can read the DISPIDs from the type library at compile time,
and avoid calling IDispatch::GetIDsOfNames. This is called ID binding. Because it requires only one call
to IDispatch (the call to Invoke), rather than the two calls required by late binding, it is generally about
twice as fast. Late-binding clients can improve performance by caching DISPIDs after retrieving them, so
that IDispatch::GetIDsOfNames is called only once for each property or method.

Accessing an Object Through the VTBL
Automation allows an ActiveX client to call a method or property accessor function directly, either within or
across processes. This approach, called VTBL binding, does not use the IDispatch interface. The client
obtains type information from the type library at compile time, and then calls the methods and functions
directly. VTBL binding is faster than both ID binding and late binding because the access is direct, and no
calls are made through IDispatch.

In-Process and Out-of-Process Server Objects
ActiveX objects can exist in the same process as their controller, or in a different process. In-process
server objects are implemented in a dynamic-link library (DLL) and are run in the process space of the
controller. Because they are contained in a DLL, they cannot be run as stand-alone objects. Out-of-
process server objects are implemented in an executable file and are run in a separate process space.
Access to in-process objects is much faster than to out-of-process server objects because Automation
does not need to make remote procedure calls across the process boundary.

The access mechanism (IDispatch or VTBL) and the location of an object (in-process or out-of-process
server) determine the fixed overhead required for access. The most important factor in performance,
however, is the quantity and nature of the work performed by the methods and procedures that are
invoked. If a method is time consuming or requires remote procedure calls, the overhead of the call to
IDispatch may make a call to VTBL more appropriate.

What Is a Type Library?
A type library is a file or part of a file that describes the type of one or more ActiveX objects. Type libraries
do not store objects; they store type information. By accessing a type library, applications and browsers
can determine the characteristics of an object, such as the interfaces supported by the object and the
names and addresses of the members of each interface. A member can also be invoked through a type
library. For details about the interfaces, refer to Chapter 9, "Type Description Interfaces."

When ActiveX objects are exposed, you should create a type library to make objects easily accessible to
other developers. The simplest way to do this is to describe objects in an Object Description Language
(.odl) file, and then compile the file with the MkTypLib tool, as described in Chapter 8, "Type Libraries and
the Object Description Language."

For this release of Automation, the Microsoft Interface Definition Language (MIDL) compiler can be used
to generate a type library. For information about the MIDL compiler, refer to the Microsoft Interface
Definition Language Programmer's Guide and Reference in the Win32 Software Development Kit (SDK)
section of the Microsoft Developer's Network (MSDN).

Exposing ActiveX Objects
Exposing objects makes them available for programmatic use by other applications and programming
tools. This chapter discusses how to design an application that exposes objects, and then uses various
samples from the Microsoft OLE Programmer's Guide and Reference in the Win32 Software
Development Kit (SDK) to demonstrate how to implement the design.

Note Throughout this chapter, the file names of sample applications appear in parentheses before
the sample code.

Exposing Objects
To expose ActiveX objects, you write code to initialize the objects, implement the objects, and then
release OLE when the application terminates.

To initialize exposed objects
1. Initialize OLE.
2. Register the class factories of the exposed objects.
3. Register the active object.

To implement exposed objects
1. Implement the IUnknown, IDispatch, and virtual function table (VTBL) interfaces for the objects.
2. Implement the properties and methods of the objects.

To release OLE when the application terminates
1. Revoke the registration of the class factories and revoke the active object.
2. Uninitialize OLE.

To retrieve active objects for use by others
1. Create an object description language (.odl) file or create a library section in an interface definition

language (.idl) file that describes the properties and methods of the exposed objects. Use MkTypLib
to compile the .odl file into a type library or use the Microsoft Interface Definition Language (MIDL)
compiler for both the .idl file and .odl file.

2. Create a registration (.reg) file for the application.

Initializing Exposed Objects
To initialize OLE and the exposed objects, use the following functions:

· OleInitialize¾ Initializes OLE.
· CoRegisterClassObject¾Registers the object's class factory with OLE so other applications can use

it to create new objects.
· RegisterActiveObject¾ Registers the active object so other applications can connect to an existing

object.

Implementing Exposed Objects
The following figure shows the interfaces that you should implement to expose ActiveX objects.

{ewc msdncd, EWGraphic, bsd23524 0 /a "SDK_01.WMF"}

The member functions are listed under each interface name.

Implementing a Class Factory
Before OLE can create an object, it needs access to the object's class factory. The class factory
implements the IClassFactory interface. For detailed information about this interface, see the Microsoft
OLE Programmer's Guide and Reference and Inside OLE, Second Edition, published by Microsoft Press.
This chapter describes only what you must do to expose objects for Automation.

It is important to implement a class factory for objects that may be created explicitly through the OLE
function CoCreateInstance, or through the Visual Basic New keyword. For example, an application can
expose an Application object for creation, but may have many other programmable objects that can be
created or destroyed by referencing a member of the Application object. In this case, only the Application
object would need a class factory.

For each class factory, you need to implement the following two member functions of the IClassFactory
interface, which provide services for OLE API functions. The prototypes for the member functions reside
in the file Ole2.h.

· CreateInstance ¾ Creates an instance of the object's class.
· LockServer ¾ Prevents the object's server from shutting down, even if the last instance of the object

is released. LockServer can improve the performance of applications that frequently create and
release objects.

In general, the CreateInstance method should create a new instance of the object's class. For the
Application object, however, the CreateInstance method should return the existing instance of the
Application object, which is registered in the running object table (ROT).

The class factory object implements the IClassFactory and IUnknown interfaces. All objects must
implement IUnknown, which allows ActiveX clients to determine which interfaces the object supports. A
class factory can create instances of a class.

The object implements two interfaces: IUnknown and IMyInterface. The interface IMyInterface is a dual
interface, which supports both late binding through IDispatch, and early binding through the VTBL. The
dual interface provides two ways to invoke the object's methods and properties. IDispatch includes the
member functions GetIDsOfNames, GetTypeInfo, GetTypeInfoCount, and Invoke.

Member1 and Member2 are the members of IMyInterface. These members are available as direct entry
points through the object's VTBL. They can also be accessed through IDispatch::Invoke.

You must decide how to handle errors that occur in the exposed objects. If an object supports a dual
interface and needs to return detailed, contextual error information, you also need to implement the
Automation error interface, IErrorInfo.

In addition to writing code to implement objects, you must create a type library and a registration file.
Describe the types of exposed objects in the library section of the MIDL file or create an .odl file. Use the
MIDL compiler or the MkTypLib tool to compile the .odl file. A type library (.tlb) file and a header (.h) file
are created. The registration file provides information that the operating system and OLE need to locate
objects.

Exposing the Application Object
Any document-based, user-interactive applications that expose ActiveX objects should have one top-level
object named the Application object. This object is initialized as the active object when an application
starts.

The Application object identifies the application and provides a way for ActiveX clients to bind to and
navigate the application's exposed objects. All other exposed objects are subordinate to the Application
object; it is the root-level object in the object hierarchy.

The names of the Application object's members are part of the global name space, so ActiveX clients do
not need to qualify them. For example, if MyApplication is the name of the Application object, a Visual
Basic program can refer to a method of MyApplication as MyApplication.MyMethod or simply MyMethod.
However, you should be careful not to overload the Application object with too many members because it
can cause ambiguity and decrease performance. A large, complicated application with many members
should be organized hierarchically, with a few generalized objects at the top, branching out into smaller,
more specialized objects.

The following chart shows how applications should expose their Application and Document objects.

Command line Multiple-document
interface application

Single-document
interface application

/Embedding Expose class factories
for document classes,
but not for the
application.
Call
RegisterActiveObject
for the Application
object.

Expose class factories
for document class, but
not for the application.
Call
RegisterActiveObject
for the Application
object.

/Automation Expose class factories
for document classes.
Expose class factory
for the application
using
RegisterClassObject.
Call
RegisterActiveObject
for the Application
object.

Do not expose class
factory for document
class.
Expose class factory
for the Application
object using
RegisterClassObject.
Call
RegisterActiveObject
for the Application
object.

No OLE switches Expose class factories
for document classes,
but not for the
application.
Call
RegisterActiveObject
for the Application
object.

Call
RegisterActiveObject
for the Application
object.

The call to RegisterActiveObject enters the Application object in OLE's running object table (ROT), so
ActiveX clients can retrieve the active object instead of creating a new instance. Visual Basic applications
can use the GetObject statement to access an existing object.

Creating a Registration File
Before an application can use OLE and Automation, the OLE objects must be registered with the user's
system registration database. OLE provides sample registration files to perform this task for the OLE
objects and the sample applications. Registration makes the following possible:

· ActiveX clients can create instances of the objects through CoCreateInstance.
· Automation tools can find the type libraries that are installed on the user's computer.
· OLE can find remoting code for the interfaces.

You can use the DLLRegisterServer function to register all objects implemented by a DLL. This function
registers the class IDs for each object, the programmatic IDs for each application, and the type library. For
details, refer to the description of DLLRegisterServer in Programming with MFC, provided with Microsoft
Visual C++ version 4.1 and later product documentation.

The following sections give a brief overview of the syntax used in registering ActiveX objects. Descriptions
of the process are provided later in this chapter. For detailed information, refer to the Microsoft OLE
Programmer's Guide and Reference.

Registering the Application
Registration maps the programmatic ID (ProgID) of the application to a unique class ID (CLSID), so that
you can create instances of the application by name, rather than by CLSID. For example, registering
Microsoft Excel associates a CLSID with the ProgID Excel.Application. In Visual Basic, you use the ProgID
to create an instance of the application as follows:

SET xl = CreateObject("Excel.Application")

By passing the ProgID to CLSIDFromProgID, you can get the corresponding CLSID for use in
CoCreateInstance. Only applications that will be used in this way need to be registered.

The registration file uses the following syntax for the application:

\ AppName.ObjectName[.VersionNumber] = human_readable_string
\ AppName.ObjectName\CLSID = {UUID}

AppName
The name of the application.

ObjectName
The name of the object to be registered (in this case, Application).

VersionNumber
The optional version number of the object.

human_readable_string
A string that describes the application to users. The recommended maximum length is 40 characters.

UUID
The universally unique ID for the application CLSID. To generate a UUID for your class, run the utility
Guidgen.exe.

Registering Classes
Objects that can be created with CoCreateInstance must also be registered with the system. For these
objects, registration maps a CLSID to the Automation component file (.dll or .exe) in which the object
resides. The CLSID also maps an ActiveX object back to its application and ProgID.

The following figure shows how registration connects ProgIDs, CLSIDs, and ActiveX components.

{ewc msdncd, EWGraphic, bsd23524 1 /a "SDK_05.WMF"}

\CLSID\TypeLib = {UUID of type library}
The type library can be obtained from its CLSID.

\CLSID\Programmable
Indicates that the server is an ActiveX component.

These COM class registry keys are required. The following shows the resulting example code:

HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1} = Hello 2.0
Application
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\ProgID =
Hello.Application.2
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\
VersionIndependentProgID = Hello.Application
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\LocalServer32
= hello.exe /Automation
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\TypeLib =
{F37C8060-4AD5-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\Programmable

The registration file uses the following syntax for each class of each object that the application exposes.

\CLSID\{UUID} = human_readable_string
\CLSID\{UUID}\ProgID = AppName.ObjectName.VersionNumber
\CLSID\{UUID}\VersionIndependentProgID = AppName.ObjectName
\CLSID\{UUID}\LocalServer[32] = filepath[/Automation]
\CLSID\{UUID}\InProcServer[32] = filepath[/Automation]

human_readable_string
A string that describes the object to users. The recommended maximum length is 40 characters.

AppName
The name of the application, as specified previously in the application registration string.

ObjectName
The name of the object to be registered.

VersionNumber
The version number of the object.

UUID
The universally unique ID for the application CLSID. To generate a UUID for your class, run the utility
Guidgen.exe.

filepath
The full path and name of the file that contains the object. The optional /Automation switch tells the
application it was launched for Automation purposes. The switch should be specified for the
Application object's class. For more information on /Automation, see "Initializing the Active Object"
later in this chapter.

The ProgID and VersionIndependentProgID are used by other programmers to gain access to the objects

you expose. These IDs should use consistent naming guidelines across all your applications as follows:

· Can contain up to 39 characters.
· Must not contain any punctuation (except for the period)
· Must not start with a digit.

Version-independent names consist of an AppName.ObjectName, without a version number. For
example, Word.Document or Excel.Chart.

Version-dependent names consist of an AppName.ObjectName.VersionNumber, such as
Excel.Application.5.

LocalServer[32]
Indicates that the ActiveX component is an .exe file and runs in a separate process from the ActiveX
client. The optional 32 specifies a server intended for use on 32-bit Windows systems.

InProcServer[32]
Indicates that the ActiveX component is a DLL and runs in the same process space as the ActiveX
client. The optional 32 specifies a server intended for use on 32-bit Windows systems.
The filepath you register should give the full path and name. Applications should not rely on the MS-
DOS PATH variable to find the object.

Releasing OLE and Objects
To release OLE and the exposed objects, use the following functions:

· RevokeActiveObject¾Ends an object's status as the active object.
· CoRevokeClassObject¾Informs OLE that a class factory is no longer available for use by other

applications.
· OLEUninitialize¾Releases OLE.

Retrieving Objects
Automation provides several functions to identify and retrieve the active instance of an object or
application, so you can make the object available to others.

· RegisterActiveObject ¾ Sets the active object for an application. (Use when the application starts.)
· RevokeActiveObject ¾ Revokes the active object. (Use when the application ends.)
· GetActiveObject ¾ Retrieves a pointer to the active object. (In Visual Basic, this pointer is

implemented by the GetObject function.)

Applications can have more than one active object at a time. To be initialized as active, an object must:

· Have a class factory (that is, the object provides an interface for creating instances of itself).
· Identify its class factory by a ProgID in the system registry.
· Be registered by a call to RegisterActiveObject when the object is created, or when it becomes

active.

The Application object must be registered as an active object.

Returning Objects
To return an object from a property or method, the application should return a pointer to the object's
implementation of the IDispatch interface. The data type of the return value should be VT_DISPATCH, or
if the object does not support IDispatch, VT_UNKNOWN. The .odl file for the object should specify the
name of the interface, rather than IDispatch*, as follows:

ICustom * MyMember(...) {...};

The example declares a member that returns a pointer to a custom interface named ICustom.

Shutting Down Objects
ActiveX objects must shut down in the following way:

· If the object's application is visible, the object should shut down only in response to an explicit user
command (for example, clicking Exit on the File menu) or the equivalent command from an ActiveX
client.

· If the object's application is not visible, the object should shut down only when the last external
reference is gone.

· If the object's application is visible and is controlled by an ActiveX client, it should become invisible
when the user shuts it down (for example, clicking Exit on the File menu). This behavior allows the
controller to continue to control the object. The controller should shut down only when the last
external reference to the object has disappeared.

Application Design Considerations
When you expose objects to Automation, you need to decide which interfaces to implement and how to
organize your objects. You should also create a type library. This section provides information to guide
you in designing an Automation application.

Creating the Programmable Interface
An object's programmable interface comprises the properties, methods, and events that it defines.
Organizing the objects, properties, and methods that an application exposes is like creating an object-
oriented framework for an application. Chapter 4, "Standard Objects and Naming Guidelines," discusses
some of the concepts behind naming and organizing the programmable elements that an application can
expose.

Creating Methods
A method is an action that an object can perform, such as drawing a line or clearing the screen. Methods
can take any number of arguments (including optional arguments), and they can be passed either by
value or by reference. A method may or may not return a value.

Creating Properties
A property is a member function that sets or returns information about the state of the object, such as
color or visibility. Most properties have a pair of accessor functions ¾ a function to get the property value
and a function to set the property value. Properties that are read-only or write-only, however, have only
one accessor function.

Accessor Functions
The accessor functions for a single property have the same dispatch ID (DISPID). The purpose of each
function is indicated by attributes that are set for the function. These attributes are set in the .odl file
description of the function, and are passed in the wFlags parameter to Invoke in order to set the context
for the call. The attributes and flags are shown in the following table.

Purpose of
function

ODL attribute wFlags

Returns a value. propget DISPATCH_PROPERTYGET
Sets a value. propput DISPATCH_PROPERTYPUT
Sets a reference. propputref DISPATCH_PROPERTYPUTR

EF

The propget attribute designates the accessor function that gets the value of a property. When the
ActiveX client needs to get the value of the property, it passes the DISPATCH_PROPERTYGET flag to
Invoke.

The propput attribute designates the accessor function that sets the value of a property. When an ActiveX
client needs to set a property by value, it passes the DISPATCH_PROPERTYPUT flag to Invoke. In
Visual Basic, Let statements set properties by value.

The propputref attribute indicates that the property should be set by reference, rather than by value. In
these cases, ActiveX clients that need to set a reference to a property pass
DISPATCH_PROPERTYPUTREF. Visual Basic treats the Set statement as a by-reference property
assignment.

Implementing the Value Property
The Value property defines the default behavior of an object when no property or method is specified. It is
typically used for the property that users associate most closely with the object. For example, a cell in a
spreadsheet might have many properties (Font, Width, Height, and so on), but its Value property defines
the value of the cell. To refer to this property, a user does not need to specify the property name
Cell(1,1).Value, but can simply use Cell(1,1).The Value property is identified by the dispatch ID named
DISPID_VALUE. In an .odl file, the Value property for an object has the attribute id(0).

Handling Events
In addition to supporting properties and methods, ActiveX objects can be a source of events. In
Automation, an event is a method that is called by an ActiveX object, rather than implemented by the
object. For example, an object might include an event method named Button that retrieves clicks of the
mouse button. Instead of being implemented by the object, the Button method returns an object that is a
source of events.

In Automation, you use the source attribute to identify a member that is a source of events.

Details of the Automation event interfaces are provided in Programming with MFC, provided with Visual
C++ version 4.1 or later product documentation.

Creating the IUnknown Interface
The IUnknown interface defines three member functions that must be implemented for each object that is
exposed. The prototypes for these functions reside in the header file, Ole2.h.

· QueryInterface ¾ Identifies which OLE interfaces the object supports.
· AddRef ¾ Increments a member variable that tracks the number of references to the object.
· Release ¾ Decrements the member variable that tracks the instances of the object. If an object has

zero references, Release frees the object.

These functions provide the fundamental interface through which OLE can access objects. The Microsoft
OLE Programmer's Guide and Reference describes in detail how to implement the functions.

Creating the IDispatch Interface
The IDispatch interface provides a late-bound mechanism to access and retrieve information about an
object's methods and properties. In addition to the member functions inherited from IUnknown, the
following member functions should be implemented within the class definition of each object that will be
exposed through Automation.

· GetTypeInfoCount ¾ Returns the number of type descriptions for the object. For objects that support
IDispatch, the type information count is always 1.

· GetTypeInfo ¾ Retrieves a description of the object's programmable interface.
· GetIDsOfNames ¾ Maps the name of a method or property to a dispatch ID, which can later be used

to invoke the method or property.
· Invoke ¾Calls one of the object's methods, or gets or sets one of its properties.

You can implement IDispatch by any of the following means:

· Delegating to the DispInvoke and DispGetIDsOfNames functions, or to ITypeInfo::Invoke and
ITypeInfo::GetIDsOfNames. This is the recommended approach, because it supports multiple
locales and allows exceptions to be returned.

· Calling the CreateStdDispatch function. This approach is the simplest, but it does not provide for rich
error handling or multiple national languages.

· Implementing the member functions without delegating to the dispatch functions. This approach is
seldom necessary. Because Invoke is a complex interface with many subtle semantics that are
difficult to emulate, it is strongly recommended that code delegate to ITypeInfo::Invoke to implement
this mechanism.

Implementing Dual Interfaces
Although Automation allows you to implement an IDispatch interface, a VTBL interface, or a dual
interface (which encompasses both), it is strongly recommended that you implement dual interfaces for
all exposed ActiveX objects. Dual interfaces have significant advantages over IDispatch-only or VTBL-
only interfaces.

· Binding can take place at compile time through the VTBL interface, or at run time through IDispatch.
· ActiveX clients that can use the VTBL interface may benefit from improved performance.
· Existing ActiveX clients that use the IDispatch interface will continue to work.
· The VTBL interface is easier to call from C++.
· Dual interfaces are required for compatibility with Visual Basic object support features.

Converting Existing Objects to Dual Interfaces
If you have already implemented exposed objects that support only the IDispatch interface, you should
convert them to support dual interfaces. Use the following steps:

1. Edit the .odl file to declare a dual interface instead of an IDispatch-only interface.
2. Rearrange the parameter lists so that the methods and properties of your exposed objects return an

HRESULT and pass their return values in a parameter.
3. If your object implements an exception handler, revise your code to use the Automation error handling

interface. This interface provides detailed, contextual error information through both IDispatch and
VTBL interfaces.

Registering Interfaces
Applications that add interfaces need to register the interfaces so OLE can find the appropriate remoting
code for interprocess communication. By default, Automation registers dispinterfaces that appear in
the .odl file. It also registers remote Automation-compatible interfaces that are not registered elsewhere in
the system registry under the label ProxyStubClsid32 (or ProxyStubClsid on 16-bit systems).

The information registered for an interface is as follows:

\Interface\{IID} = InterfaceName
\Interface\{IID}\Typelib = LIBID
\Interface\{IID}\ProxyStubClsid[32] = CLSID

IID
The universally unique ID of the interface.

InterfaceName
The name of the interface.

LIBID
The universally unique ID associated with the type library in which the interface is described.

CLSID
The universally unique ID associated with the proxy/stub implementation of the interface, used
internally by OLE for interprocess communication. ActiveX objects use the proxy/stub implementation
of IDispatch.

Note To obtain a universally unique identifier (UUID), use the Guidgen.exe utility, which is a
random number generator for creating unique identifiers. For more information about this utility, refer
to Appendix E, "Managing GUIDs."

Creating Class Identifiers
Each object that is exposed for creation must have a unique class identifier (CLSID). Class IDs are
universally unique identifiers (UUIDs, also called globally unique identifiers, or GUIDs) that identify class
objects to OLE. The CLSID is included in an application, and must be registered with the operating
system when an application is installed.

To generate UUIDs, run the Guidgen.exe utility. By default, Guidgen.exe puts a DEFINE_GUID macro on
the Windows Clipboard, which can then be pasted into your source code.

Passing Formatted Data
Often, an application needs to accept formatted data as an argument to a method or property. Examples
include a bitmap, formatted text, or a spreadsheet range. When handling formatted data, the application
should pass an object that implements the OLE IDataObject interface. For detailed information about the
interface, see the Microsoft OLE Programmer's Guide and Reference.

By using this interface, applications can retrieve the data of any Clipboard format. Because an
IDataObject instance can provide data of more than one format, a caller can provide data in several
formats, and let the called object choose which format is most appropriate.

If the data object implements IDispatch, it should be passed using the VT_DISPATCH flag. If the data
object does not support IDispatch, it should be passed with the VT_UNKNOWN flag.

Implementing the IEnumVARIANT Interface
Automation defines the IEnumVARIANT interface to provide a standard way for ActiveX clients to iterate
over collection objects. Every collection object must expose a read-only property named _NewEnum to
let ActiveX clients know that the object supports iteration. The _NewEnum property returns an
enumerator object that supports IEnumVARIANT.

The IEnumVARIANT interface provides a way to iterate through the items contained by a collection
object. This interface is supported by an enumerator object that is returned by the _NewEnum property of
the collection object, as in the following figure.

{ewc msdncd, EWGraphic, bsd23524 2 /a "SDK_02.WMF"}

The IEnumVARIANT interface defines these member functions:

· Next ¾ Retrieves one or more elements in a collection, starting with the current element.
· Skip ¾ Skips over one or more elements in a collection.
· Reset ¾ Resets the current element to the first element in the collection.
· Clone ¾ Copies the current state of the enumeration so you can return to the current element after

using Skip or Reset.

Implementing the _NewEnum Property
The _NewEnum property identifies an object as supporting iteration through the IEnumVARIANT
interface. This property has the following requirements:

· Must be named _NewEnum and must not be localized.
· Must return a pointer to the enumerator object's IUnknown interface.
· Must include DISPID = DISPID_NEWENUM (-4).

Type Libraries
You must create a type library for each set of exposed objects. Because VTBL references are bound at
compile time, exposed objects that support VTBL binding must be described in a type library.

Type libraries provide these important benefits:

· Type checking can be performed at compile time. This may help developers of ActiveX clients to write
fast, correct code to access objects.

· You can describe an interface with type information and implement IDispatch::Invoke for the
interface using a single call to DispInvoke.

· Visual Basic applications can create objects with specific interface types, rather than the generic
Object type, to take advantage of early binding.

· ActiveX clients that do not support VTBLs can read and cache DISPIDs at compile time, improving
run-time performance.

· Type browsers can scan the library, allowing others to see the characteristics of objects.
· The RegisterTypeLib function can be used to register exposed objects in the registration database.
· The UnRegisterTypeLib function can be used to completely uninstall an application from the system

registry.
· Local server access is improved because Automation uses information from the type library to

package the parameters that are passed to an object in another process.

Creating a Type Library
Most ActiveX components create type libraries. Type libraries contain type information, Help file names
and contexts, and function-specific documentation strings. Access to this information is available at both
compile time and run time.

Type information is the Automation standard for describing the objects, properties, and methods exposed
by the ActiveX component. Browsers and compilers use the type information to display and access the
exposed objects.

Type libraries are described in Object Description Language (ODL) and are compiled by the MIDL
compiler or the MkTypLib utility.

MIDL library statement example
[
 uuid(F37C8060-4AD5-101B-B826-00DD01103DE1), // LIBID_Hello
 helpstring("Hello 2.0 Type Library"),
 lcid(0x0409),
 version(2.0)
]
library Hello
{
 importlib("stdole.tlb");
 [
 uuid(F37C8062-4AD5-101B-B826-00DD01103DE1), // IID_IHello
 helpstring("Application object for the Hello application."),
 oleautomation,
 dual
]
 interface IHello : IDispatch
 {
 [propget, helpstring("Returns the application of the object.")]
 HRESULT Application([in, lcid] long localeID,
 [out, retval] IHello** retval)
 }
}

Object description script example
/* TDATA.ODL */
AppName library{

dispinterface ObjeNamePro {
interface ObjName
}

}
Automation also supports the creation of alternative tools that compile and access type information. For
information about creating these tools, refer to Chapter 9, "Type Description Interfaces."

A type library stores complete type information for all of an application's exposed objects. It may be
included as a resource in a DLL or executable file, or remain as a stand-alone file (.tlb).

To create a type library
1. Write an object description script (.odl) file for the objects you expose.
2. Using the MIDL compiler or the MkTypLib utility, build the type library (.tlb) and class description

header (.h) file from the script.

Building a Type Library
The MIDL compiler and the MkTypLib utility build type libraries. These tools are described in Chapter 8,
"Type Libraries and the Object Description Language."

To create a type library from an object description script
Run the MIDL compiler or MkTypLib tool on the script. For example:

MIDL /TLB output.tlb /H output.h inscript.odl
or

MKTYPLIB /TLB output.tlb /H output.h inscript.odl

Based on the object description script inscript.odl, the example creates a type library named output.tlb and
a header file named output.h.

After creating the type library, you can include it in the resource step of building your application, or leave
it as a stand-alone file. In either case, be sure to specify the file name and path of the library in the
application's registration (.reg) file, so Automation can find the type library when necessary. See the
following section for information on registering the type library.

To build an application that uses a type library
1. Include the header file in the project.
2. Compile the project.
3. Optionally, use the Resource Compiler (RC) to bind the type library with the compiled project. The

type library can bind with DLLs or executable files. For example, to bind a type library named
output.tlb with a DLL, use the following statement in the .rc file for the DLL:
1 typelib output.tlb

A DLL that contains a type library resource usually has the .olb (object library) extension.

The following figure illustrates the process.

{ewc msdncd, EWGraphic, bsd23524 3 /a "SDK_04.WMF"}

Registering a Type Library
Tools and applications that expose type information must register the information so that it is available to
type browsers and programming tools. The correct registration entries for a type library can be generated
by calling the RegisterTypeLib function on the type library. Regedit.exe, which is supplied with the Win32
SDK as well as Windows NT and Windows 95, can then be used to write the registration entries to a text
file from the system registration database.

The following information is registered for a type library:

\TypeLib\{libUUID}
\TypeLib\{libUUID}\major.minor = human_readable_string
\TypeLib\{libUUID}\major.minor\HELPDIR = [helpfile_path]
\TypeLib\{libUUID}\major.minor\Flags = typelib_flags
\TypeLib\{libUUID}\major.minor\lcid\platform = localized_typelib_filename

libUUID
The universally unique ID of the type library.

major.minor
The two-part version number of the type library. If only the minor version number increases, all the
features of the previous type library are supported in a compatible way. If the major version number
changes, code that compiled against the type library must be recompiled. The version number of the
type library may differ from the version number of the application.

human_readable_string
A string that describes the type library to users. The recommended maximum length is 40 characters.

helpfile_path
The directory where the Help file for the types in the type library is located. If the application supports
type libraries for multiple languages, the libraries may refer to different file names in the Help file
directory.

typelib_flags
The hexadecimal representation of the type library flags for this type library. These are the values of
the LIBFLAGS enumeration, and are the same flags specified in the uLibFlags parameter to
ICreateTypeLib::SetLibFlags. These flags cannot have leading zeros or the 0x prefix.

lcid
The hexadecimal string representation of the locale ID (LCID). It is one to four hexadecimal digits with
no 0x prefix and no leading zeros. The locale ID may have a neutral sublanguage ID.

platform
The target operating system platform: 16-bit Windows, 32-bit Windows, or Apple® Macintosh®.

localized_typelib_filename
The full name of the localized type library.

Using the locale ID specifier, an application can explicitly register the file names of type libraries for
different languages. This allows the application to find the desired language without having to open all
type libraries with a given name.

For example, to find the type library for Australian English (309), the application first looks for it. If that
fails, the application looks for an entry for standard English (a primary identifier of 0x09). If there is no
entry for standard English, the application looks for LANG_SYSTEM_DEFAULT (0). For more information
on locale support, refer to your operating system documentation for the national language support (NLS)
interface. For 16-bit systems, see Appendix A.

Example

; Type library registration information.

HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0 =
Automation Hello 2.0 Type Library.
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0\HELPDIR
=
; U.S. English.
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0\9\win32
= hello.tlb

Returning an Error
ActiveX objects typically return rich contextual error information, which includes an error number, a
description of the error, and the path of a Help file that supplies more information. Objects that do not
need to return detailed error information can simply return an HRESULT that indicates the nature of the
error.

Passing Exceptions Through IDispatch
When an error occurs, objects invoked through IDispatch can return DISP_E_EXCEPTION and pass the
details in the pexcepinfo parameter (an EXCEPINFO structure) to IDispatch::Invoke. Refer to the
EXCEPINFO structure in Chapter 5, "Dispatch Interface and API Functions," and see "Passing
Exceptions Through VTBLs" later in this chapter.

"Hello" Sample
The Hello sample is an Automation application with one object. It has these characteristics:

· Supports VTBL binding.
· Permits multiple instances of its exposed object to exist at the same time.
· Implements IErrorInfo for exception handling.

This sample has been simplified for demonstration purposes. It has the following limitations:

· Has only one object.
· Uses only scalar argument types. Automation also supports methods and properties that accept

arguments of complex types, including arrays, references to objects, and formatted data, but not
structures.

· Supports one national language.

The sections that follow demonstrate how the Hello sample exposes a simple class. The code is abridged
to illustrate the essential parts. For a complete listing, see the source code in the Microsoft OLE
Programmer's Guide and Reference in the Win32 SDK.

Initializing OLE
When the Hello application starts, it initializes OLE and then creates the object to be exposed through
Automation. For example (Main.cpp):

BOOL InitInstance (HINSTANCE hinst)
{
 HRESULT hr;
 TCHAR ach[STR_LEN];

 // Intialize OLE.
 hr = OleInitialize(NULL);
 if (FAILED(hr))
 return FALSE;

 // Create an instance of the Hello Application object. The object is
 // created with refcount 0.
 LoadString(hinst, IDS_HelloMessage, ach, sizeof(ach));
 hr = CHello::Create(hinst, ach, &g_phello);
 if (FAILED(hr))
 return FALSE;
 return TRUE;
}

This function calls OleInitialize to initialize OLE. It loads the string ach with the initial Hello message,
obtained from the string table through the constant IDS_HelloMessage. Then it calls CHello::Create to create
a single, global instance of the application object, passing it the initial Hello message and receiving a
value for g_phello, a pointer to the instance. If the function is successful, it returns a value of True.

Registering the Active Object
After Hello creates an instance of the object, it exposes and registers the class factory (if necessary) and
registers the active object (Main.cpp):

BOOL ProcessCmdLine(LPSTR pCmdLine,

 LPDWORD pdwRegisterCF,
 LPDWORD pdwRegisterActiveObject,
 int nCmdShow)
{
 LPCLASSFACTORY pcf = NULL;
 HRESULT hr;

 *pdwRegisterCF = 0;
 *pdwRegisterActiveObject = 0;

 // Expose class factory for application object if command line
 // contains the /Automation switch.
 if (_fstrstr(pCmdLine, "-Automation") != NULL
 || _fstrstr(pCmdLine, "/Automation") != NULL)
 {
 pcf = new CHelloCF;
 if (!pcf)
 goto error;
 pcf->AddRef();
 hr = CoRegisterClassObject(CLSID_Hello, pcf,
 CLSCTX_LOCAL_SERVER,
 REGCLS_SINGLEUSE,
 pdwRegisterCF);
 if (hr != NOERROR)
 goto error;
 pcf->Release();
 }
 else g_phello->ShowWindow(nCmdShow); //Show if started stand-alone.

RegisterActiveObject(g_phello, CLSID_Hello, ACTIVEOBJECT_WEAK,
 pdwRegisterActiveObject);
 return TRUE;

error:
 if (!pcf)
 pcf->Release();
 return FALSE;
}

The sample first checks the command line for the /Automation switch. This switch indicates that the
application should be started for programmatic access, so that ActiveX clients can create additional
instances of the application's class. In this case, the class factory must be created and registered. If the
switch is present, the Hello sample creates a new CHelloCF object and calls its AddRef method, thereby
creating the class factory.

Next, the sample calls CoRegisterClassObject to register the class factory. It passes the object's class
ID (CLSID_Hello), a pointer to the CHelloCF object (pcf), and two constants (CLSCTX_LOCAL_SERVER and
REGCLS_SINGLEUSE) that govern the class factory's use.

· CLSCTX_LOCAL_SERVER indicates that the executable code for the object runs in a separate
process space from the controller.

· REGCLS_SINGLEUSE allows only one ActiveX client to use each instance of the class factory. The
value returned through pdwRegisterCF must later be used to revoke the class factory.

The example specifies weak registration (ACTIVEOBJECT_WEAK), which means that OLE will release the

object when all external connections to it have disappeared. You should always give ActiveX objects weak
registration. For more information, see "RegisterActiveObject" in Chapter 5, "Dispatch Interface and API
Functions."

The Microsoft OLE Programmer's Guide and Reference provides more information on the functions
OleInitialize and CoRegisterClassObject. Inside OLE, Second Edition, published by Microsoft Press,
provides more information about verifying application entries in the registration database.

Registering the Hello Application
Finally, the sample registers the Hello application object in the running object table (ROT). Registering an
active object allows ActiveX clients to retrieve an object that is already running, rather than create a new
instance of the object. Use weak registration (ACTIVEOBJECT_WEAK) so that the running object table
releases its reference when all external references are released. If strong registration is used (the
default), the running object table will not release the reference until RevokeActiveObject is called. For
more information, refer to Chapter 5, "Dispatch Interface and API Functions."

The following sample shows the registration entries for the Hello object.

REGEDIT
; Registration information for Automation Hello 2.0 Application.

; Version independent registration. Points to Version 2.0.
HKEY_CLASSES_ROOT\Hello.Application = Automation Hello Application
HKEY_CLASSES_ROOT\Hello.Application\Clsid = {F37C8061-4AD5-101B-B826-
00DD01103DE1}

; Version 2.0 registration.
HKEY_CLASSES_ROOT\Hello.Application.2 = Automation Hello 2.0 Application
HKEY_CLASSES_ROOT\Hello.Application.2\Clsid = {F37C8061-4AD5-101B-B826-
00DD01103DE1}

Implementing IDispatch
The IDispatch interface provides access to and information about an object. The interface requires the
member functions GetTypeInfoCount, GetTypeInfo, GetIdsOfNames, and Invoke. The Hello sample
implements IDispatch as follows (Hello.cpp):

STDMETHODIMP
CHello::GetTypeInfoCount(UINT FAR* pctinfo)
{

*pctinfo = 1;
return NOERROR;

}

STDMETHODIMP
CHello::GetTypeInfo(

UINT itinfo,
LCID lcid,
ITypeInfo FAR* FAR* pptinfo)

{
*pptinfo = NULL;

if(itinfo != 0)
return ResultFromScode(DISP_E_BADINDEX);

m_ptinfo->AddRef();

*pptinfo = m_ptinfo;

return NOERROR;
}

STDMETHODIMP
CHello::GetIDsOfNames(

REFIID riid,
OLECHAR FAR* FAR* rgszNames,
UINT cNames,
LCID lcid,
DISPID FAR* rgdispid)

{
return DispGetIDsOfNames(m_ptinfo, rgszNames, cNames, rgdispid);

}

STDMETHODIMP
CHello::Invoke(

DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
DISPPARAMS FAR* pdispparams,
VARIANT FAR* pvarResult,
EXCEPINFO FAR* pexcepinfo,
UINT FAR* puArgErr)

{
{

return DispInvoke(
this, m_ptinfo,
dispidMember, wFlags, pdispparams,
pvarResult, pexcepinfo, puArgErr);

}
}

Automation includes two functions, DispGetIdsOfNames and DispInvoke, which provide standard
implementations for IDispatch::GetIDsOfNames, and IDispatch::Invoke. The Hello sample uses these
two functions to simplify the code.

Implementing IUnknown
Every OLE object must implement the IUnknown interface, which allows controllers to query the object to
find out what interfaces it supports. IUnknown has three member functions: QueryInterface, AddRef,
and Release. The Hello sample implements these functions for the CHello object as follows (Hello.cpp):

STDMETHODIMP
CHello::QueryInterface(REFIID iid, void FAR* FAR* ppv)
{

*ppv = NULL;
if (iid == IID_IUnknown || iid == IID_IDispatch || iid == IID_IHello

*ppv = this;
else if (iid == IID_ISupportErrorInfo)

*ppv = &m_SupportErrorInfo;
else return ResultFromScode(E_NOINTERFACE);

AddRef();

return NOERROR;
}

STDMETHODIMP_(ULONG)
CHello::AddRef(void)
{

return ++m_cRef;
}

STDMETHODIMP_(ULONG)
CHello::Release(void)
{
if (--m_cRef == 0)

{
delete this;
return 0;

}
return m_cRef;

}

Implementing IClassFactory
A class factory is a class that is capable of creating instances of another class. The Hello sample
implements a single class factory named CHelloCF, as follows (HelloCf.cpp):

CHelloCF::CHelloCF(void)
{

m_cRef = 0;
}

STDMETHODIMP
CHelloCF::QueryInterface(REFIID iid, void FAR* FAR* ppv)
{

*ppv = NULL;
if (iid == IID_IUnknown || iid == IID_IClassFactory)

*ppv = this;
else

return ResultFromScode(E_NOINTERFACE);
AddRef();
return NOERROR;

}

STDMETHODIMP_(ULONG)
CHelloCF::AddRef(void)
{

return ++m_cRef;
}

STDMETHODIMP_(ULONG)
CHelloCF::Release(void)
{

if (--m_cRef == 0)
{

delete this;
return 0;

}
return m_cRef;

}

STDMETHODIMP
CHelloCF::CreateInstance(IUnknown FAR* punkOuter,

REFIID riid,
void FAR* FAR* ppv)

{
HRESULT hr;

*ppv = NULL;

// This implementation doesn't allow aggregation.
if (punkOuter)

return ResultFromScode(CLASS_E_NOAGGREGATION);

hr = g_phello->QueryInterface(riid, ppv);
if (FAILED(hr))
{

g_phello->Quit();
return hr;

}
return NOERROR;

}
STDMETHODIMP
CHelloCF::LockServer(BOOL fLock)
{

CoLockObjectExternal(g_phello, fLock, TRUE);
return NOERROR;

}

The function CHelloCF::CHelloCF is a C++ constructor function. By default, the constructor function
initializes the object's VTBLs; CHelloCF::CHelloCF also initializes the reference count for the class.

The class factory supports six member functions. QueryInterface, AddRef, and Release are the required
IUnknown members, and CreateInstance and LockServer are the required IClassFactory members.

Implementing VTBL Binding
In addition to the IDispatch interface, the Hello sample supports VTBL binding. When a member is
invoked, objects that support a VTBL interface return an HRESULT instead of a value, and pass their
return value as the last parameter. Objects may also accept a locale ID parameter, which allows them to
parse strings correctly for the local language. The following example shows how the Visible property is
implemented (Hello.cpp):

STDMETHODIMP
CHello::put_Visible(BOOL bVisible)
{

ShowWindow(bVisible ? SW_SHOW : SW_HIDE);
return NOERROR;

}

STDMETHODIMP
CHello::get_Visible(BOOL FAR* pbool)
{

*pbool = m_bVisible;
return NOERROR;

}

Additional information must be specified in the ODL to create a dual interface, as shown in "Creating
Type Information" later in this chapter.

Registering the Interface for VTBL Binding
The following lines from the Hello.reg file register the interface for VTBL binding. In the example,
ProxyStubClsid refers to the proxy and stub implementation of IDispatch.

HKEY_CLASSES_ROOT\Interface\{F37C8062-4AD5-101B-B826-00DD01103DE1} = IHello
HKEY_CLASSES_ROOT\Interface\{F37C806 2-4AD5-101B-B826-00DD01103DE1}\TypeLib
= {F37C8060-4AD5-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{F37C8062-4AD5-101B-B826-00DD01103DE1}\
ProxyStubClsid32 = {00020424-0000-0000-C000-000000000046}

Handling Errors
The Hello sample includes an exception handler that passes exceptions through IDispatch::Invoke, and
supports rich error information through VTBLs (Hello.cpp):

STDMETHODIMP
CHello::RaiseException(int nID)
{

extern return value g_scodes[];
char szError[STR_LEN];
ICreateErrorInfo *pcerrinfo;
IErrorInfo *perrinfo;
HRESULT hr;
BSTR bstrDescription = NULL;

if (LoadString(g_phello->m_hinst,nID, szError, sizeof(szError)))

bstrDescription = SysAllocString(TO_OLE_STRING(szError));

// Set ErrorInfo object so that VTBL binding controller can get
// rich error information. If the controller is using IDispatch
// to access properties or methods, DispInvoke will fill the
// EXCEPINFO structure using the values specified in the ErrorInfo
// object, and Dispinvoke will return DISP_E_EXCEPTION. The
// property or method must return a failure return value for DispInvoke
// to do this.
hr = CreateErrorInfo(hr))
{

pcerrinfo->SetGUID(rguid);
pcerrinfo->SetSource(g_phello->m_bstrProgID);
if (bstrDescription)

pcerrinfo->SetDescription(bstrDescription);
hr = pcerrinfo->QueryInterface(IID_IErrorInfo,
(LPVOID FAR*) &perrinfo);
if (succeeded(hr))
{

SetErrorInfo(0,perrinfo);

perrinfo->Release();
}

if (bstrDescription)
SysFreeString(bstrDescription);

return ResultFromScode(g_scodes[nID-1001]);
}

The member functions of the Hello sample call this routine when an exception occurs. RaiseException
sets the system's error object so that controller applications that call through VTBLs can retrieve rich error
information. Controllers that call through IDispatch::Invoke will be returned with this error information by
DispInvoke through the EXCEPINFO structure.

Hello also implements the ISupportErrorInfo interface, which allows ActiveX clients to query whether an
error object will be available (Hello.cpp):

CSupportErrorInfo::CSupportErrorInfo(IUnknown FAR* punkObject,
REFIID riid)

{
m_punkObject = punkObject;
m_iid = riid;

}

STDMETHODIMP
CSupportErrorInfo::QueryInterface(REFIID iid, void FAR* FAR* ppv)
{

return m_punkObject->QueryInterface(iid, ppv);
}

STDMETHODIMP_(ULONG)
CSupportErrorInfo::AddRef(void)
{

return m_punkObject->AddRef();
}

STDMETHODIMP_(ULONG)
CSupportErrorInfo::Release(void)
{

return m_punkObject->Release();
}

STDMETHODIMP
CSupportErrorInfo::InterfaceSupportsErrorInfo(REFIID riid)
{

return (riid == m_iid) ? NOERROR : ResultFromScode(S_FALSE);
}

Releasing Objects and OLE
When the Hello application ends, it revokes the class factory and the active object, and uninitializes OLE.
For example (Main.cpp):

void Uninitialize(DWORD dwRegisterCF, DWORD dwRegisterActiveObject)
{

if (dwRegisterCF != 0)
CoRevokeClassObject(dwRegisterCF);

if (dwRegisterActiveObject != 0)
RevokeActiveObject(dwRegisterActiveObject, NULL);

OleUninitialize();
}

Creating Type Information
Type information for the Hello sample is described in ODL. The MIDL compiler and MkTypLib use the .odl
file to create a type library (Hellotl.tlb) and a header file (Hellotl.h).

The following example shows the description for the Hello type library, interface, and Application object
(Hello.odl):

[
uuid(F37C8060-4AD5-101B-B826-00DD01103DE1), // LIBID_Hello.
helpstring("Hello 2.0 Type Library"),
lcid(0x009),
version(2.0)

]
library Hello
{

importlib("stdole32.tlb");
[
uuid(F37C8062-4AD5-101B-B826-00DD01103DE1), // IID_Ihello.
helpstring("Application object for the Hello application."),
oleautomation,
dual
]
interface IHello : IDispatch
{

[propget, helpstring("Returns the application of the object.")]
HRESULT Application([out, retval] IHello** retval);

[propget,
helpstring("Returns the full name of the application.")]
HRESULT FullName([out, retval] BSTR* retval);

[propget, id(0),
helpstring("Returns the name of the application.")]
HRESULT Name([out, retval] BSTR* retval);

[propget, helpstring("Returns the parent of the object.")]
HRESULT Parent([out, retval] IHello** retval);

[propput]
HRESULT Visible([in] boolean VisibleFlag);
[propget,
helpstring
("Sets or returns whether the main window is visible.")]
HRESULT Visible([out, retval] boolean* retval);

[helpstring("Exits the application.")]
HRESULT Quit();

[propput,
helpstring("Sets or returns the hello message to be used.")]

HRESULT HelloMessage([in] BSTR Message);
[propget]
HRESULT HelloMessage([out, retval] BSTR *retval);

[helpstring("Say Hello using HelloMessage.")]
HRESULT SayHello();

}

[
uuid(F37C8061-4AD5-101B-B826-00DD01103DE1), // CLSID_Hello.
helpstring("Hello Class"),
appobject

]
coclass Hello
{

[default] interface IHello;
interface IDispatch;

}
}

The items enclosed by square brackets are attributes, which provide further information about the objects
in the file. The oleautomation and dual attributes, for example, indicate that the IHello interface supports
both IDispatch and VTBL binding. The appobject attribute indicates that Hello is the Application object.

For more information about attributes, refer to Chapter 8, "Type Libraries and the Object Description
Language."

Creating the Hello Registration File
The system registration database lists all the OLE objects in the system. OLE uses this database to
locate objects and determine their capabilities. The registration file registers the application, the type
library, and the exposed classes of the sample (Hello.reg):

REGEDIT
; Registration information for Automation Hello 2.0 Application.

; Version independent registration. Points to Version 2.0.
HKEY_CLASSES_ROOT\Hello.Application = Hello 2.0 Application
HKEY_CLASSES_ROOT\Hello.Application\Clsid = {F37C8061-4AD5-101B-B826-
00DD01103DE1}

; Version 2.0 registration
HKEY_CLASSES_ROOT\Hello.Application.2 = Hello 2.0 Application
HKEY_CLASSES_ROOT\Hello.Application.2\Clsid = {F37C8061-4AD5-101B-B826-
00DD01103DE1}
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1} = Hello 2.0
Application
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\ProgID =
Hello.Application.2
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\
VersionIndependentProgID = Hello.Application
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\LocalServer =
hello.exe /Automation
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\TypeLib =
{F37C8061-4AD5-101B-B826-00DD01103DE1}

HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\Programmable

; Type library registration information
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0 = Hello
2.0 Type Library
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0\HELPDIR
=
; English
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0\9\win32
= hello.tlb

; Interface registration. All interfaces that support vtable binding must be
; registered as follows. RegisterTypeLib & LoadTypeLib will do this
automatically.

; IID_IHello = {F37C8062-4AD5-101B-B826-00DD01103DE1}
; LIBID_Hello = {F37C8060-4AD5-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{F37C8062-4AD5-101B-B826-00DD01103DE1} = IHello
HKEY_CLASSES_ROOT\Interface\{F37C8062-4AD5-101B-B826-00DD01103DE1}\TypeLib =
{F37C8060-4AD5-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{F37C8062-4AD5-101B-B826-00DD01103DE1}\
ProxyStubClsid32 = {00020424-0000-0000-C000-000000000046}

To merge an object's registration information with the system registry, the object should expose the
DLLRegisterServer API, as described in the Microsoft OLE Programmer's Guide and Reference.
DLLRegisterServer should call RegisterTypeLib to register the type library and the interfaces supported
by the application. This only applies to in-process servers. Out-of-process servers such as the Hello
sample do not export DLLRegisterServer.

"Lines" Sample
The Lines sample is an ActiveX component application that implements collections. This sample file
allows a collection of lines to be drawn on a pane using Automation. This sample implements the
following features:

· Dual interfaces that allow access to automation properties and methods through VTBL binding and
IDispatch.

· Rich error information for VTBL-binding controllers implemented by ISupportErrorInfo and
IErrorInfo.

· Two collections.
· Active object registration using RegisterActiveObject and RevokeActiveObject.
· Correct shutdown behavior.
· A registration file that contains Lines.Application as the programmatic ID.
· Initial invisibility.

The following routine initializes OLE, and then creates an instance of the Lines Application object
(Main.ccp):

BOOL InitInstance (HINSTANCE hinst)
{

HRESULT hr;

// Intialize OLE.
hr = OleInitialize(NULL);
if (FAILED(hr))

return FALSE;

// Create an instance of the Lines Application object. The object is
// created with refcount 0.
hr = CApplication::Create(hinst, &g_pApplication);
if (FAILED(hr))

return FALSE;
return TRUE;

}

Initializing the Active Object
The following function creates and registers the application's class factory, and then registers the Lines
Application object as the active object (Main.cpp):

BOOL ProcessCmdLine(LPSTR lpCmdLine, LPDWORD pdwRegisterCF,
LPDWORD pdwRegisterActiveObject, int nCmdShow)

{
LPCLASSFACTORY pcf = NULL;
HRESULT hr;
*pdwRegisterCF = 0;
*pdwRegisterActiveObject = 0;

// Expose class factory for application object if command line
// contains the /Automation switch.
if (_fstrstr(lpCmdLine, "-Automation") != NULL

|| _fstrstr(lpCmdLine, "/Automation") != NULL)
{

pcf = new CApplicationCF;
if (!pcf)

goto error;
pcf->AddRef();
hr = CoRegisterClassObject(CLSID_Lines, pcf,

CLSCTX_LOCAL_SERVER,
REGCLS_SINGLEUSE,

pdwRegisterCF);
if (hr != NOERROR)

goto error;
pcf->Release();

}
else // Show window if started as stand-alone.
g_pApplication->ShowWindow(nCmdShow);

// Register Lines Application object in the running object table (ROT). //
Use weak registration so that the ROT releases its reference when
// all external references are released.

RegisterActiveObject(g_pApplication, CLSID_Lines, ACTIVEOBJECT_WEAK,
pdwRegisterActiveObject);

return TRUE;

error:
if (pcf)

pcf->Release();
return FALSE;

}

Registering the Active Object
The sample application exposes the class factory for the Lines application, CApplicationCF, if the
command line contains the /Automation switch. The switch indicates that the application was started for
programmatic access, and therefore OLE needs to register the class factory and create an instance of the
Application object. OLE applies this switch if it appears on the command line or in the application's
registration file. OLE also supports the /Embedding switch, which indicates that an application has been
started by a container application.

You should register the class factory for the Application object only if the application is launched with the
/Automation switch. When /Automation is not specified, the application has been started for some
reason other than programmatic access through Automation. If the class factory is registered under these
circumstances, and a user later requests a new instance of the Application object, Automation will return
the existing instance instead of creating a new one.

The sample calls CoRegisterClassObject to register the class factory as the active object. The
CLSCTX_LOCAL_SERVER flag means the code that creates and manages Application objects will run in
a separate process space.

Because the Application object's class factory is exposed, the call specifies the REGCLS_SINGLEUSE
flag. When a multiple-document interface (MDI) application starts, it typically registers the class factory for
its Document object, specifying REGCLS_MULTIPLEUSE. This flag, defined in the REGCLS
enumeration, allows the existing application instance to be used later, when instances of the document
objects need to be created. Each new Application object, however, requires a new instance of the
application to be launched, and should therefore specify REGCLS_SINGLEUSE. If the application
registered its class factory using REGCLS_MULTIPLEUSE, then the next CreateObject call that tries to
create the application will get an existing copy.

In the following example, the macro defines a class ID for Lines (Tlb.h):

DEFINE_GUID(CLSID_Lines,0x3C591B21,0x1F13,0x101B,0xB8,0x26,0x00,0xDD,0x01,0x
10,0x3D,0xE1);

When the MIDL compiler ot MkTypLib creates the optional header file (Tlb.h), it inserts DEFINE_GUID
macros for each library, interface, and each class in an application.

Creating the Lines Registration File
The registration file provides information about the application, the Application object, classes of objects,
type libraries, and interfaces. Entries for objects and interfaces start with the constant
HKEY_CLASSES_ROOT, which represents the root key of the entire registration database. Entries for
type libraries start with HKEY_TYPELIB_ROOT. After the constant, each entry supplies specific
information about an object, type library, or interface.

Use the following steps to create the registration file:

1. Copy the file Lines.reg.
2. Rename and edit this file, adding entries for the application.

Registering the Lines Application Files
The Lines sample uses the following entries to register its Application object (Lines.Application) and its
type library with the system (Lines.reg):

REGEDIT
; Registration information for the Lines Application object. Version
independent registration.

HKEY_CLASSES_ROOT\Lines.Application = Lines
HKEY_CLASSES_ROOT\Lines.Application\Clsid = {3C591B21-1F13-101B-B826-
00DD01103DE1}

; Version 1.0 registration
HKEY_CLASSES_ROOT\Lines.Application.1 = Lines 1.0
HKEY_CLASSES_ROOT\Lines.Application.1\Clsid = {3C591B21-1F13-101B-B826-
00DD01103DE1}

HKEY_CLASSES_ROOT\CLSID\{3C591B21-1F13-101B-B826-00DD01103DE1} = Lines 1.0
HKEY_CLASSES_ROOT\CLSID\{3C591B21-1F13-101B-B826-00DD01103DE1}\ProgID =
Lines.Application.1
HKEY_CLASSES_ROOT\CLSID\{3C591B21-1F13-101B-B826-00DD01103DE1}\
VersionIndependentProgID = Lines.Application
HKEY_CLASSES_ROOT\CLSID\{3C591B21-1F13-101B-B826-00DD01103DE1}\LocalServer32
= lines.exe /Automation
HKEY_CLASSES_ROOT\CLSID\{3C591B21-1F13-101B-B826-00DD01103DE1}\TypeLib =
{3C591B20-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\CLSID\{3C591B21-1F13-101B-B826-00DD01103DE1}\Programmable

; Type library registration information.
HKEY_CLASSES_ROOT\TypeLib\{3C591B20-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\TypeLib\{3C591B20-1F13-101B-B826-00DD01103DE1}\1.0 = Lines
1.0 Type Library
HKEY_CLASSES_ROOT\TypeLib\{3C591B20-1F13-101B-B826-00DD01103DE1}\1.0\HELPDIR
=
;English

HKEY_CLASSES_ROOT\TypeLib\{3C591B20-1F13-101B-B826-00DD01103DE1}\1.0\9\win32
= lines.tlb

; Interface registration. All interfaces that support VTBL binding must be
; registered as follows. RegisterTypeLib will do this automatically.

; LIBID_Lines = {3C591B20-1F13-101B-B826-00DD01103DE1}

; IID_IPoint = {3C591B25-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B25-1F13-101B-B826-00DD01103DE1} = IPoint
HKEY_CLASSES_ROOT\Interface\{3C591B25-1F13-101B-B826-00DD01103DE1}\TypeLib =
{3C591B20-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B25-1F13-101B-B826-00DD01103DE1}\
ProxyStubClsid32 = {00020424-0000-0000-C000-000000000046}

; IID_ILine = {3C591B24-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B24-1F13-101B-B826-00DD01103DE1} = ILine
HKEY_CLASSES_ROOT\Interface\{3C591B24-1F13-101B-B826-00DD01103DE1}\TypeLib =
{3C591B20-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B24-1F13-101B-B826-00DD01103DE1}\
ProxyStubClsid32 = {00020424-0000-0000-C000-000000000046}

; IID_ILines = {3C591B26-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B26-1F13-101B-B826-00DD01103DE1} = ILines
HKEY_CLASSES_ROOT\Interface\{3C591B26-1F13-101B-B826-00DD01103DE1}\TypeLib =
{3C591B20-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B26-1F13-101B-B826-00DD01103DE1}\
ProxyStubClsid32 = {00020424-0000-0000-C000-000000000046}

; IID_IPoints = {3C591B27-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B27-1F13-101B-B826-00DD01103DE1} = IPoints
HKEY_CLASSES_ROOT\Interface\{3C591B27-1F13-101B-B826-00DD01103DE1}\TypeLib =
{3C591B20-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B27-1F13-101B-B826-00DD01103DE1}\
ProxyStubClsid32 = {00020424-0000-0000-C000-000000000046}

; IID_IPane = {3C591B23-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B23-1F13-101B-B826-00DD01103DE1} = IPane
HKEY_CLASSES_ROOT\Interface\{3C591B23-1F13-101B-B826-00DD01103DE1}\TypeLib =
{3C591B20-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B23-1F13-101B-B826-00DD01103DE1}\
ProxyStubClsid32 = {00020424-0000-0000-C000-000000000046}

; IID_IApplication = {3C591B22-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B22-1F13-101B-B826-00DD01103DE1} =
IApplication
HKEY_CLASSES_ROOT\Interface\{3C591B22-1F13-101B-B826-00DD01103DE1}\TypeLib =
{3C591B20-1F13-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\Interface\{3C591B22-1F13-101B-B826-00DD01103DE1}\ProxySt

Creating the IUnknown Interface for the Lines Application
The IUnknown interface for the Lines object looks like this (Lines.cpp):

STDMETHODIMP

CLine::QueryInterface(REFIID iid, void FAR* FAR* ppv)
{

*ppv = NULL;

if (iid == IID_IUnknown || iid == IID_IDispatch || iid == IID_ILine)
*ppv = this;

else if (iid == IID_ISupportErrorInfo)
*ppv = &m_SupportErrorInfo;

else return ResultFromScode(E_NOINTERFACE);

AddRef();
return NOERROR;

}

STDMETHODIMP_(ULONG)
CLine::AddRef(void)
{

return ++m_cRef;
}

STDMETHODIMP_(ULONG)
CLine::Release(void)
{

if(--m_cRef == 0)
{

delete this;
return 0;

}
return m_cRef;

}

Creating the IDispatch Interface for the Lines Application
The following sections explain how to to implement IDispatch by using CreateStdDispatch and
DispInvoke.

Implementing IDispatch by Calling CreateStdDispatch
The simplest way to implement the IDispatch interface is to call CreateStdDispatch. This approach
works for ActiveX objects that return only the standard dispatch exception codes, support a single national
language, and do not support dual interfaces.

CreateStdDispatch returns a pointer to the created IDispatch interface. It takes three pointers as input:
a pointer to the object's IUnknown interface, a pointer to the object to expose, and a pointer to the type
information for the object. The following example implements IDispatch for an object named CCalc by
calling CreateStdDispatch on the loaded type information:

CCalc FAR*
CCalc::Create()
{

HRESULT hresult;
CCalc FAR* pcalc;
ITypeLib FAR* ptlib;
ITypeInfo FAR* ptinfo;
IUnknown FAR* punkStdDisp;

ptlib = NULL;
ptinfo = NULL;

// Some error handling code omitted.
if ((pcalc = new FAR CCalc()) == NULL)

return NULL;
pcalc->AddRef();

// Load the type library from the information in the registry.
if ((hresult = LoadRegTypeLib(LIBID_DspCalc2, 1, 0, 0x0409, &ptlib))

!= NOERROR){
goto LError0;

}
if ((hresult = ptlib->GetTypeInfoOfGuid(IID_ICalculator, &ptinfo))

!= NOERROR){
goto LError0;

}

// Create an aggregate with an instance of the default
// implementation of IDispatch that is initialized with our
// TypeInfo.
//
hresult = CreateStdDispatch(

pcalc, // Controlling
unknown.

&(pcalc->m_arith), // VTBL pointer to
dispatch on.

ptinfo,
&punkStdDisp);

Implementing IDispatch by Delegating
Another way to implement IDispatch is to use the dispatch functions DispInvoke and
DispGetIDsOfNames. These functions give you the option of supporting multiple national languages and
creating application-specific exceptions that are passed back to ActiveX clients.

The Lines sample implements IDispatch::GetIDsOfNames and IDispatch::Invoke using these functions
(Lines.cpp):

STDMETHODIMP
CLines::GetIDsOfNames(

REFIID riid,
char FAR* FAR* rgszNames,
UINT cNames,
LCID lcid,
DISPID FAR* rgdispid)

{
return DispGetIDsOfNames(m_ptinfo, rgszNames, cNames, rgdispid);

}

STDMETHODIMP
CLines::Invoke(

DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,

DISPPARAMS FAR* pdispparams,
VARIANT FAR* pvarResult,
EXCEPINFO FAR* pexcepinfo,
UINT FAR* puArgErr)

{

{
return DispInvoke(

this, m_ptinfo,
dispidMember, wFlags, pdispparams,
pvarResult, pexcepinfo, puArgErr);

}
}

The Lines object implements the IID_ILine dual interface for VTBL binding. It also implements the
IID_ISupportErrorInfo interface so that it can return rich, contextual error information through VTBLs.

Implementing the Class Factory for the Lines Application
The Lines sample implements a class factory for its Application object, as follows (Appcf.cpp):

STDMETHODIMP
CApplicationCF::CreateInstance(IUnknown FAR* punkOuter,

REFIID riid,
void FAR* FAR* ppv)

{
HRESULT hr;

*ppv = NULL;

// This implementation doesn't allow aggregation.
if (punkOuter)

return ResultFromScode(CLASS_E_NOAGGREGATION);

// This is REGCLS_SINGLEUSE class factory, so CreateInstance will be
// called at most once. An application object has a REGCLS_SINGLEUSE
// class factory. The global application object has already been
// created when CreateInstance is called. A REGCLS_MULTIPLEUSE class
// factory's CreateInstance would be called multiple times and would
// create a new object each time. An MDI application would have a
// REGCLS_MULTIPLEUSE class factory for its document objects.

hr = g_pApplication->QueryInterface(riid, ppv);
if (FAILED(hr))
{

g_pApplication->Quit();
return hr;

}
return NOERROR;

}

STDMETHODIMP
CApplicationCF::LockServer(BOOL fLock)
{

CoLockObjectExternal(g_pApplication, fLock, TRUE);
return NOERROR;

}

The object's class factory must also implement an IUnknown interface. For example (Appcf.cpp):

STDMETHODIMP
CApplicationCF::QueryInterface(REFIID iid, void FAR* FAR* ppv)
{

*ppv = NULL;

if (iid == IID_IUnknown || iid == IID_IClassFactory)
*ppv = this;

else
return ResultFromScode(E_NOINTERFACE);

AddRef();
return NOERROR;

}

STDMETHODIMP_(ULONG)
CApplicationCF::AddRef(void)
{

return ++m_cRef;
}

STDMETHODIMP_(ULONG)
CApplicationCF::Release(void)
{

if(--m_cRef == 0)
{

delete this;
return 0;

}
return m_cRef;

}

Setting Up the VTBL Interface
The Lines sample supports VTBL binding as well as the IDispatch interface. By supporting this dual
interface, the sample allows ActiveX clients both the flexibility of the IDispatch interface and the speed of
VTBLs. Controllers that know the names of the members can compile directly against the function
pointers in the VTBL. Controllers that do not have this information can use IDispatch at
run time.

To have a dual interface, an interface must:

· Declare all of its members to return an HRESULT, and pass their actual return values as the last
parameter.

· Have only Automation-compatible parameters and return types, as described in Chapter 7,
"Conversion and Manipulation Functions."

· Specify the dual attribute on the interface description in the .odl file.
· Initialize the VTBLs with the appropriate member function pointers.

In the Lines sample, the interfaces IPoint, IPoints, ILine, ILines, IPane, and IApplication are all dual
interfaces. The IPoint interface defines functions that get and put the values of the X and Y properties, as
follows (Point.cpp):

STDMETHODIMP

CPoint::get_x(int FAR* pnX)
{

*pnX = m_nX;
return NOERROR;

}

STDMETHODIMP
CPoint::put_x(int nX)
{

m_nX = nX;
return NOERROR;

}

STDMETHODIMP
CPoint::get_y(int FAR* pnY)
{

*pnY = m_nY;
return NOERROR;

}

STDMETHODIMP
CPoint::put_y(int nY)
{

m_nY = nY;
return NOERROR;

}

The get_x and get_y accessor functions pass their return values in the last parameter, pnX and pnY, and
return an HRESULT as the function value.

In the .odl file, the interface is described as follows (Lines.odl):

[
uuid(3C591B25-1F13-101B-B826-00DD01103DE1), // IID_IPoint.
helpstring("Point object."),
oleautomation,
dual

]
interface IPoint : IDispatch
{

[propget, helpstring("Returns and sets x coordinate.")]
HRESULT x([out, retval] int* retval);
[propput, helpstring("Returns and sets x coordinate.")]
HRESULT x([in] int Value);

[propget, helpstring("Returns and sets y coordinate.")]
HRESULT y([out, retval] int* retval);
[propput, helpstring("Returns and sets y coordinate.")]
HRESULT y([in] int Value);

}

The attributes oleautomation and dual indicate that the interface supports both IDispatch and VTBL
binding. All of the member functions are declared with HRESULT return values. The Get accessor
functions, indicated by the propget attribute, return their value in the last parameter. This parameter has
the out and retval attributes.

In the Lines sample, the Application object exposes the following method (App.cpp):

STDMETHODIMP
CApplication::CreatePoint(IPoint FAR* FAR* ppPoint)
{

CPoint FAR* ppoint = NULL;
HRESULT hr;

// Create new item and QI for IDispatch.
hr = CPoint::Create(&ppoint);
if (FAILED(hr))

{hr = RaiseException(IDS_OutOfMemory); goto error;}

hr = ppoint->QueryInterface(IID_IDispatch, (void FAR* FAR*)ppPoint);
if (FAILED(hr))

{hr = RaiseException(IDS_Unexpected); goto error;}
return NOERROR;

error:
if (ppoint)

delete ppoint;
return hr;

}

The CreatePoint method creates a new point and returns a pointer to it in the parameter pPoint.

In the Lines sample, the CLine object exposes the Color property. This property is implemented by the
following accessor functions (Lines.cpp):

STDMETHODIMP
CLine::get_Color(long FAR* plColorref)
{

*plColorref = m_colorref;
return NOERROR;

}
STDMETHODIMP
CLine::put_Color(long lColorref)
{

m_colorref = (COLORREF)lColorref;
return NOERROR;

}

Implementing the Value Property
In the Lines sample, ILines.Item, IPoints.Item, and IApplication.Name are the Value properties of the objects
ILines, IPoints, and IApplication, respectively. The ILines.Item object is described as follows:

interface ILines : IDispatch
{

.

.// Some descriptions omitted for brevity.

.
[propget, id(0), helpstring(

"Given an integer index, returns one of the lines in the collection")]
HRESULT Item([in] long Index,[out, retval] ILine** retval);

.

}

Using this property, a user can refer to the fourth line in the collection as ILines(4).Item or simply as
ILines(4).

For more information on recommended objects, properties, and methods, see Chapter 4, "Standard
Objects and Naming Guidelines."

Restricting Access to Objects
Automation provides several ways of restricting access to objects. The simplest approach is not to
document the properties and methods you do not want users to see. Alternatively, you can prevent a
property or method from appearing in type library browsers by specifying the hidden attribute in the .odl
file.

The restricted attribute goes one step further, preventing user calls from binding to the property or
method, as well as hiding it from type browsers. For example, the following restricts access to the
_NewEnum property of the ILines object:

[propget, restricted, id(DISPID_NEWENUM)] // Must be propget.
HRESULT _NewEnum([out, retval] IUnknown** retval);

Restricted properties and methods can be invoked by ActiveX clients, but are not visible to the user who
may be using a language such as Visual Basic. In addition, they cannot be bound to by user calls.

Creating Collection Objects
A collection object contains a group of exposed objects of the same type and can iterate over them.
Collection objects do not need an IClassFactory implementation, because they are accessed from
elements that have their own class factories.

For example, the Lines sample has a collection object named CLines that iterates over a group of Line
objects. The following routine creates and initializes the CLines collection object (Lines.cpp):

STDMETHODIMP
CLines::Create(ULONG lMaxSize, long lLBound, CPane FAR* pPane,

CLines FAR* FAR* ppLines)
{

HRESULT hr;
CLines FAR* pLines = NULL;
SAFEARRAYBOUND sabound[1];

*ppLines = NULL;

// Create new collection.
pLines = new CLines();
if (pLines == NULL)

goto error;

pLines->m_cMax = lMaxSize;
pLines->m_cElements = 0;
pLines->m_lLBound = lLBound;
pLines->m_pPane = pPane;

// Load type information for the Lines collection from type library.
hr = LoadTypeInfo(&pLines->m_ptinfo, IID_ILines);
if (FAILED(hr))

goto error;

// Create a safe array of variants used to implement the collection.
sabound[0].cElements = lMaxSize;
sabound[0].lLbound = lLBound;
pLines->m_psa = SafeArrayCreate(VT_VARIANT, 1, sabound);
if (pLines->m_psa == NULL)
{

hr = ResultFromScode(E_OUTOFMEMORY);
goto error;

}

*ppLines = pLines;
return NOERROR;

error:
if (pLines == NULL)

return ResultFromScode(E_OUTOFMEMORY);
if (pLines->m_ptinfo)

pLines->m_ptinfo->Release();
if (pLines->m_psa)

SafeArrayDestroy(pLines->m_psa);

pLines->m_psa = NULL;
pLines->m_ptinfo = NULL;

delete pLines;
return hr;

}

The parameters to CLines::Create specify the maximum number of lines that the collection can contain,
the lower bound of the indexes of the collection, and a pointer to a pane, which contains the lines and
points in the sample.

Implementing the IEnumVARIANT Interface for the Lines Application
In the Lines sample, CEnumVariant implements the Next, Skip, Reset, and Clone member functions
(Enumvar.cpp):

STDMETHODIMP
CEnumVariant::Next(ULONG cElements, VARIANT FAR* pvar,

ULONG FAR* pcElementFetched)
{

HRESULT hr;
ULONG l;
long l1;
ULONG l2;

if (pcElementFetched != NULL)

*pcElementFetched = 0;

// Retrieve the elements of the next cElements.
for (l1=m_lCurrent, l2=0; l1<(long)(m_lLBound+m_cElements) &&

l2<cElements; l1++, l2++)
{

hr = SafeArrayGetElement(m_psa, &l1, &pvar[l2]);

if (FAILED(hr))
goto error;

}
// Set count of elements retrieved.
if (pcElementFetched != NULL)

*pcElementFetched = l2;
m_lCurrent = l1;

return (l2 < cElements) ? ResultFromScode(S_FALSE) : NOERROR;
error:

for (l=0; l<cElements; l++)
VariantClear(&pvar[l]);

return hr;
}

STDMETHODIMP
CEnumVariant::Skip(ULONG cElements)
{

m_lCurrent += cElements;
if (m_lCurrent > (long)(m_lLBound+m_cElements))
{

m_lCurrent = m_lLBound+m_cElements;
return ResultFromScode(S_FALSE);

}
else return NOERROR;

}

STDMETHODIMP
CEnumVariant::Reset()
{

m_lCurrent = m_lLBound;
return NOERROR;

}

STDMETHODIMP
CEnumVariant::Clone(IEnumVARIANT FAR* FAR* ppenum)
{

CEnumVariant FAR* penum = NULL;
HRESULT hr;

*ppenum = NULL;

hr = CEnumVariant::Create(m_psa, m_cElements, &penum);
if (FAILED(hr))

goto error;
penum->AddRef();
penum->m_lCurrent = m_lCurrent;

*ppenum = penum;
return NOERROR;

error:
if (penum)

penum->Release();
return hr;

}

Implementing the _NewEnum Property for the Lines Application
The Lines sample contains two collections, Lines and Points, and implements a _NewEnum property for
each. Both are restricted properties, available to ActiveX clients, but invisible to users of scripting or
macro languages supported by ActiveX clients. The property returns an enumerator (IEnumVARIANT) for
the items in the collection.

The following code implements the _NewEnum property for the Lines collection (Lines.cpp):

STDMETHODIMP
CLines::get__NewEnum(IUnknown FAR* FAR* ppunkEnum)
{

CEnumVariant FAR* penum = NULL;;
HRESULT hr;

*ppunkEnum = NULL;

// Create a new enumerator for items currently in the collection and
// QueryInterface for IUnknown.
hr = CEnumVariant::Create(m_psa, m_cElements, &penum);
if (FAILED(hr))

{hr = RaiseException(IDS_OutOfMemory); goto error;}
hr = penum->QueryInterface(IID_IUnknown, (VOID FAR* FAR*)ppunkEnum);
if (FAILED(hr))

{hr = RaiseException(IDS_Unexpected); goto error;}
return NOERROR;

error:
if (penum)

delete penum;
return hr;

}

Returning Errors
The Lines sample defines an exception handler that fills the EXCEPINFO structure and signals IDispatch
to return DISP_E_EXCEPTION (App.cpp):

STDMETHODIMP
HRESULT RaiseException (int nID, Refguid rguid)
{

extern return value g_scodes[];
TCHAR szError[STR_LEN];
ICreateErrorInfo *pcerrinfo;
IErrorInfo *perrinfo;
HRESULT hr;
BSTR bstrDescription = NULL;

if (LoadString(g_pApplication->m_hinst, nID, szError,
sizeof(szError)));
bstrDescription = SysAllocString(TO_OLE_STRING(szError));

// Set ErrInfo object so that VTBL binding controllers can get
// rich error information. If the controller is using IDispatch to
// access properties or methods, DispInvoke will fill the EXCEPINFO
// structure using the values specified in the ErrorInfo object and
// DispInvoke will return DISP_e_EXCEPTION. The property or method
// must return a failure return value for DispInvoke to do this.

hr = CreateErrorInfo(&pcerrinfo);
if (SUCCEEDED(hr))

{
pcerrinfo->SetGUID(rguid);
pcerrinfo->SetSource(g_pApplication->m_bstrProgID);
if (bstrDescription)

pcerrinfo->SetDescription(bstrDescription);
hr = pcerrinfo->QueryInterface(IID_IerrorInfo, (LPVOID FAR*)

&perrinfo);
if (SUCCEEDED(hr))

{
SetErrorInfo(0, perrinfo);
perrinfo->Release();

}
if (bstrDescription)

SysFreeString(bstrDescription);
return ResultFromScode(g_scodes[nID-1001]);

}

Properties and methods in the Lines sample call this routine when an exception occurs. RaiseException
sets the system's error object, so that controller applications that call through VTBLs can retrieve rich
error information. Controllers that call through IDispatch::Invoke will be returned with this error
information by DispInvoke through the EXCEPINFO structure.

Passing Exceptions Through VTBLs
The Lines sample also provides rich error information for members invoked through VTBLs. Because
VTBL-bound calls bypass the IDispatch interface, they cannot return exceptions through IDispatch.
Instead, they must use the error handling interfaces in Automation. The RaiseException function shown
in the example calls CreateErrorInfo to create an error object, then fills the object's data fields with
information about the error. When all of the information has been successfully recorded, it calls
SetErrorInfo to associate the error object with the current thread of execution.

ActiveX objects similar to the collection object (CApplication), which use the error interfaces, must also
implement the ISupportErrorInfo interface. This interface identifies the object as supporting the error
interfaces, and ensures that error information can be propagated correctly up the call chain. The following
example shows how the Lines sample implements this interface (Errinfo.cpp):

STDMETHODIMP
CSupportErrorInfo::CSupportErrorInfo(IUnknown FAR* punkObject,

REFIID riid)
{

m_punkObject = punkObject;
m_iid = riid;

}

CSupportErrorInfo::QueryInterface(REFIID iid, void FAR* FAR* ppv)
{

return m_punkObject->QueryInterface(iid, ppv);
}

STDMETHODIMP_(ULONG)
CSupportErrorInfo::AddRef(void)
{

return m_punkObject->AddRef();
}

STDMETHODIMP_(ULONG)
CSupportErrorInfo::Release(void)
{

return m_punkObject->Release();
}

STDMETHODIMP
CSupportErrorInfo::InterfaceSupportsErrorInfo(REFIID riid)
{

return (riid == m_iid) ? NOERROR : ResultFromScode(S_FALSE);
}

ISupportErrorInfo has the QueryInterface, AddRef, and Release methods inherited from the IUnknown
interface, along with the InterfaceSupportsErrorInfo method. ActiveX clients call
InterfaceSupportsErrorInfo to check whether the ActiveX object supports the IErrorInfo interface, so
they can access the error object. For details, see Chapter 11, "Error Handling Interfaces."

Releasing OLE on Exit
The following code revokes an active Lines object, revokes the Lines class, and then uninitializes OLE
(Main.cpp):

void Uninitialize(DWORD dwRegisterCF, DWORD dwRegisterActiveObject)
{

if (dwRegisterCF != 0)
CoRevokeClassObject(dwRegisterCF);

if (dwRegisterActiveObject != 0)
RevokeActiveObject(dwRegisterActiveObject, NULL);

OleUninitialize();
}

Writing an Object Description Script
An object description script is essentially an annotated header file, written in Object Description
Language. The following example shows a portion of Lines.odl, the object description script for the Lines
sample.

[
uuid(3C591B20-1F13-101B-B826-00DD01103DE1), // LIBID_Lines.
helpstring("Lines 1.0 Type Library"),
lcid(0x09),
version(1.0)

]

library Lines
{

importlib("stdole.tlb");
#define DISPID_NEWENUM -4

.

.

.

The preceding entry describes the type library (Lines.tlb) created by the sample. The items in square
brackets are attributes, which provide additional information about the library. In the example, the
attributes give the library's universally unique identifier (UUID), a Help string, a locale identifier, and a
version number.

The importlib directive is similar to the C or C++ #include directive. It allows access to the type
descriptions in the file Stdole.tlb from the Lines library. However, it does not copy those types into the
Lines.tlb. To use Lines.tlb, both the Lines.tlb and Stdole.tlb files must be available.

By default, .odl files are preprocessed with the C preprocessor, so the #include and #define directives
can be used.

The .odl file script continues with information on the objects in the type library:

[
uuid(3C591B25-1F13-101B-B826-00DD01103DE1), //

IID_Ipoint.
helpstring("Point object."),
oleautomation,
dual

]
interface IPoint : IDispatch
{

[propget, helpstring("Returns and sets x coordinate.")]
HRESULT x([out, retval] int* retval);
[propput, helpstring("Returns and sets x coordinate.")]
HRESULT x([in] int Value);

[propget, helpstring("Returns and sets y coordinate.")]
HRESULT y([out, retval] int* retval);
[propput, helpstring("Returns and sets y coordinate.")]
HRESULT y([in] int Value);

}
// .
// Additional definitions omitted for brevity.
// .

}

This entry describes the IPoint interface. The interface has the attributes oleautomation and dual,
indicating that the types of all its properties and methods are compatible with Automation, and that it
supports binding through both IDispatch and VTBLs. The IPoint interface has two pairs of property
accessor functions, which set and return the X and Y properties.

The Value parameter of both the X and Y properties has the in attribute. These parameters supply a
value and are read-only. Conversely, the retval parameter of each property has the out and retval
attributes, indicating that it returns the value of the property.

Because IPoint supports VTBL binding and rich error information, its properties return HRESULTs and
pass their function return values through retval parameters. For more information, see Chapter 8, "Type
Libraries and the Object Description Language."

[

uuid(3C591B21-1F13-101B-B826-00DD01103DE1), //
CLSID_Lines.

helpstring("Lines Class"),
appobject

]
coclass Lines
{

[default] interface IApplication;
interface IDispatch;

}
}

The file concludes with the description of the Lines Application object, as specified by the appobject
attribute. The default attribute applies to the IApplication interface, indicating that this interface will be
returned by default.

Supporting Multiple National Languages
Applications sometimes need to expose objects with names that differ across localized versions of the
product. The names pose a problem for programming languages that need to access these objects,
because late binding will be sensitive to the locale of the application. The IDispatch interface provides a
range of solutions that vary in cost of implementation and quality of language support. All methods of the
IDispatch interface that are potentially sensitive to language are passed a locale ID (LCID), which
identifies the local language context.

The following are some of the approaches a class implementation can take:

· Accept any locale ID and use the same member names in all locales. This is acceptable if the
exposed interface will typically be accessed only by very advanced users. For example, the member
names for OLE interfaces will never be localized.

· Accept all locale IDs supported by all versions of the product. In this case, the implementation of
GetIDsOfNames would need to interpret the passed array of names based on the given locale ID.
This is the most acceptable solution because it allows users to write code in their natural language
and run the code on any localized version of the application.

· Return an error (DISP_E_UNKNOWNLCID) from GetIDsOfNames if the caller's locale ID does not
match the localized version of the class. This prevents users from being able to write late-bound code
that runs on machines with different localized implementations of the class.

· Recognize the particular version's localized names, as well as one language that is recognized in all
versions. For example, a French version might accept French and English names, where English is
the language supported in all versions. Users who want to write code that runs in all countries would
have to use English names.

To provide general language support, the application should check the locale ID before interpreting
member names. Because Invoke is passed a locale ID, methods can properly interpret parameters
whose meaning varies by locale. The following sections provide examples and guidelines for creating
multilingual applications.

Implementing IDispatch for Multilingual Applications
When creating applications that will support multiple languages, you need to create separate type libraries
for each supported language, as well as for versions of the IDispatch member functions that include
dependencies for each language. In the example below, the Hello sample code has been modified to
define locale IDs for both U.S. English and German.

Implementing the IDispatch Member Functions
The following example code from the Hello sample implements language-sensitive versions of
GetTypeInfoCount, GetIDsOfNames, and Invoke. Note that Invoke does not check the locale ID,
but merely passes it to DispInvoke. GetTypeInfoCount does not contain any language-specific
information; however, GetTypeInfo does.

The IDispatch member functions must be implemented in such a way as to take into account any
language-specific features. DispInvoke is passed only the U.S. English type information pointer.

STDMETHODIMP
CHello::GetTypeInfoCount(UINT FAR* pctinfo)
{

*pctinfo = 1;
return NOERROR;

}

STDMETHODIMP
CHello::GetTypeInfo(

UINT itinfo,
LCID lcid,
ITypeInfo FAR* FAR* pptinfo)

{
LPTYPEINFO ptinfo;
*pptinfo = NULL;

if(itinfo != 0)
return ResultFromScode(DISP_E_BADINDEX);

if(lcid == LOCALE_SYSTEM_DEFAULT || lcid == 0)
lcid = GettSystemDefaultLCID();

if(lcid == LOCALE_USER_DEFAULT)
lcid = GetUserDefaultLCID();

switch(lcid)
{

case LCID_GERMAN:
ptinfo = m_ptinfoGerman;
break;

case LCID_ENGLISH:
ptinfo = m_ptinfoEnglish;
break;

default:
return ResultFromScode(DISP_E_UNKNOWNLCID);

}

ptinfo->AddRef();
*pptinfo = ptinfo;
return NOERROR;

}

STDMETHODIMP
CHello::GetIDsOfNames(

REFIID riid,
OLECHAR FAR* FAR* rgszNames,
UINT cNames,
LCID lcid,
DISPID FAR* rgdispid)

{
LPTYPEINFO ptinfo;

if(lcid == LOCALE_SYSTEM_DEFAULT || lcid == 0)
lcid = GetSystemDeraultLCID();

if(lcid == LOCALE_USER_DEFAULT)
lcid = GetUserDefaultLCID();

switch(lcid)
{

case LCID_GERMAN:
ptinfo = m_ptinfoGerman;
break;

case LCID_ENGLISH:
ptinfo = m_ptinfoEnglish;
break;

default:
return ResultFromScode(DISP_E_UNKNOWNLCID);

}
return DispGetIDsOfNames(ptinfo, rgszNames, cNames, rgdispid);

}

STDMETHODIMP
CHello::Invoke(

DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
DISPPARAMS FAR* pdispparams,
VARIANT FAR* pvarResult,
EXCEPINFO FAR* pexcepinfo,
UINT FAR* puArgErr)

{
return DispInvoke(
this, m_ptinfoEnglish,
dispidMember, wFlags, pdispparams,
pvarResult, pexcepinfo, puArgErr);

}

}

Creating Separate Type Libraries
For each supported language, write and register a separate type library. The type libraries use the same
dispatch IDs and globally unique identifers, but you should localize names and Help strings based on the
language. You must also define the locale IDs for the supported languages.

The following registration file example includes entries for U.S. English and German.

// Type library registration information.
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0 =Hello
2.0 Type Library
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0\HELPDIR
=
// U.S. English.
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0\409\
win16 = helloeng.tlb
// German.
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-00DD01103DE1}\2.0\407\
win16 = helloger.tlb

Defining the Locale IDs
Refer to the next section to obtain the language IDs for the supported languages.

// Locale IDs for the languages that are supported.
#define LCID_ENGLISH MAKELCID(MAKELANGID(0x09, 0x01))
#define LCID_GERMAN MAKELCID(MAKELANGID(0x07, 0x01))

Using the example code from the Hello sample, define member variables that can be used to contain U.S.
English and German type information.

class FAR CHello : public IHello
{
public:

:

private:

LPTYPEINFO m_ptinfoEnglish; // English type information of Hello
application interface.

LPTYPEINFO m_ptinfoGerman; // German type information of Hello
application

interface.
:

};

Loading Type information
The following example uses the Hello sample code to illustrate the LoadTypeInfo function that loads
locale-specific type library information when an object is created.

LoadTypeInfo(&phello->m_ptinfoEnglish, IID_IHello, LCID_ENGLISH);
LoadTypeInfo(&phello->m_ptinfoGerman, IID_IHello, LCID_GERMAN);

// LoadTypeInfo - Gets type information of an object's interface from
// the type library.
//
// Parameters:
// ppunkStdDispatch - Returns type information.
// clsid - Interface ID of object in type library.
// lcid - Locale ID of type information to be loaded.
//
// Return Value:
// HRESULT
//
//
HRESULT LoadTypeInfo(ITypeInfo FAR* FAR* pptinfo, REFCLSID clsid,
LCID lcid)
{

HRESULT hr;
LPTYPELIB ptlib = NULL;
LPTYPEINFO ptinfo = NULL;

*pptinfo = NULL;

// Load type library.
hr = LoadRegTypeLib(LIBID_Hello, 2, 0, lcid, &ptlib);
if (FAILED(hr))

return hr;

// Get type information for interface of the object.
hr = ptlib->GetTypeInfoOfGuid(clsid, &ptinfo);
if (FAILED(hr))
{

ptlib->Release();
return hr;

}

ptlib->Release();
*pptinfo = ptinfo;
return NOERROR;

}

Interpreting Arguments and Strings Based on the Locale ID
Some methods or properties need to interpret arguments based on the locale ID (LCID). These methods
or properties can require that an LCID be passed as an argument. Therefore, properties should be
designed to have an LCID parameter.

The following example code of an object description language file implements a property that takes a
locale ID.

[
uuid(83219430-CB36-11cd-B774-00DD01103DE1),
helpstring("Bank Account object."),
oleautomation,
dual
]
interface IBankAccount : IDispatch
{

[propget, helpstring("Returns account balance formatted for the
country described by localeID.")]

HRESULT CheckingBalance([in, lcid] long localeID, [out, retval]
BSTR* retval);
:

}

In this example, get_CheckingBalance returns a currency string that contains the balance in the
checking account. The currency string should be correctly formatted depending on the locale that is
passed in. ConvertCurrency is a private function that converts the checking balance to the currency of
the country described by the locale ID. The string form of converted currency is placed in m_szBalance.
GetCurrencyFormat is a 32-bit Windows function that formats a currency string for the given locale.

The following represents the information contained in the header file:

class FAR CBankAccount : public IBankAccount
{

public:
// IUnknown methods.

:

// IDispatch methods.
:

// IBankAccount methods.
STDMETHOD(get_CheckingBalance)(long llcid, BSTR FAR* pbstr);

:
}

The following represents the .cpp file:

STDMETHODIMP
CBankAccount::get_CheckingBalance(long llcid, BSTR FAR* pbstr)
{

TCHAR ach[100];
ConvertCurrency(llcid);

GetCurrencyFormat(llcid, 0, m_szBalance, NULL, ach,
sizeof(ach));

*pbstr = SysAllocString(ach); // Return currency
string

// formatted according to
// locale

ID.

return NOERROR;
}

The locale ID is commonly used to parse strings that contain locale-dependent information. For example,
a function that takes a string such as "6/11/96" needs the locale ID to determine whether the month is
June (6) or November (11). You should not use the locale ID for output strings, including error strings.
These strings should always be displayed in the current system language.

Locale, Language, and Sublanguage IDs
The following macro is defined for creating locale IDs (Winnt.h for 32-bit systems; Olenls.h for 16-bit
systems):

//*
// LCID creation/extraction macros:
//
// MAKELCID - construct locale ID from language ID and
// country code.
//
#define MAKELCID(l) ((DWORD)(((WORD)(l)) | (((DWORD)((WORD)(0))) << 16)))

There are two predefined locale ID values. The system default locale is LOCALE_SYSTEM_DEFAULT,
and the current user's locale is LOCALE_USER_DEFAULT.

Another macro constructs a language ID:

//
// Language ID creation/extraction macros:
//
// MAKELANGID - Construct language ID from primary language ID and
// sublanguage ID
//
#define MAKELANGID(p, s) ((((USHORT)(s)) << 10) | (USHORT)
(p))

The following three combinations of primary language ID and sublanguage ID have special meanings:

PRIMARYLANGID SUBLANGID Result
LANG_NEUTRAL SUBLANG_NEUTRAL Language neutral
LANG_NEUTRAL SUBLANG_SYS_DEFAUL

T
System default
language

LANG_NEUTRAL SUBLANG_DEFAULT User default language

For primary language IDs, the range 0x200 to 0x3ff is user definable. The range 0x000 to 0x1ff is
reserved for system use. For sublanguage IDs, the range 0x20 to 0x3f is user definable. The range 0x00
to 0x1f is reserved for system use.

Language Tables
The following table lists the primary language IDs supported by Automation. For more information about
national language support for 16-bit Windows systems, refer to Appendix A, "National Language Support
Functions." For information about 32-bit Windows systems, see your operating system documentation.

Language PRIMARYLANGID
Neutral 0x00
Chinese 0x04
Czech 0x05
Danish 0x06
Dutch 0x13
English 0x09
Finnish 0x0b
French 0x0c
German 0x07
Greek 0x08
Hungarian 0x0e
Icelandic 0x0F
Italian 0x10
Japanese 0x11
Korean 0x12
Norwegian 0x14
Polish 0x15
Portuguese 0x16
Russian 0x19
Slovak 0x1b
Spanish 0x0a
Swedish 0x1d
Turkish 0x1F

The following table lists the sublanguage IDs supported by Automation. For more information about
national language support for 16-bit systems, refer to Appendix A, "National Language Support
Functions." For information about 32-bit Windows systems, see your operating system documentation.

Sublanguage SUBLANGID
Neutral 0x00
Default 0x01
System Default 0x02
Chinese (Simplified) 0x02
Chinese (Traditional) 0x01
Czech 0x01
Danish 0x01
Dutch 0x01
Dutch (Belgian) 0x02
English (U.S.) 0x01
English (UK) 0x02

English (Australian) 0x03
English (Canadian) 0x04
English (Irish) 0x06
English (New Zealand) 0x05
Finnish 0x01
French 0x01
French (Belgian) 0x02
French (Canadian) 0x03
French (Swiss) 0x04
German 0x01
German (Swiss) 0x02
German (Austrian) 0x03
Greek 0x01
Hungarian 0x01
Icelandic 0x01
Italian 0x01
Italian (Swiss) 0x02
Japanese 0x01
Korean 0x01
Norwegian (Bokmal) 0x01
Norwegian (Nynorsk) 0x02
Polish 0x01
Portuguese 0x02
Portuguese (Brazilian) 0x01
Russian 0x01
Slovak 0x01
Spanish (Castilian) (1) 0x01
Spanish (Mexican) 0x02
Spanish (Modern) (1) 0x03
Swedish 0x01
Turkish 0x01

1 The only difference between Spanish (Castilian) and Spanish (Modern) is the sort ordering.
The LCType values are the same.

Accessing ActiveX™ Objects
To access exposed objects, you can create ActiveX clients using Visual Basic, Visual C++®, Microsoft
Excel, and other applications and programming languages that support the Automation technology. This
chapter discusses several strategies for accessing exposed objects.

· Creating scripts with Visual Basic
· Creating controllers that manipulate objects
· Creating type information browsers

Regardless of your strategy, an ActiveX client needs to follow these steps:

To initialize and create the object
1. Initialize OLE.
2. Create an instance of the exposed object.

To manipulate methods and properties
1. Get information about the object's methods and properties.
2. Invoke the methods and properties.

To release OLE when the application or programming tool
terminates
1. Revoke the active object.
2. Unitialize OLE.
Note Throughout this chapter, the file names of sample applications appear in parentheses before
the sample code.

Creating Scripts Using Visual Basic
Visual Basic provides a complete programming environment for creating Windows applications with which
you can manipulate the exposed ActiveX objects of other applications. Internally, Visual Basic fully
supports Automation dual interfaces.

For the syntax and semantics of the Automation features, see the Visual Basic Help file, Vb.hlp. To see
how the Visual Basic statements translate into ActiveX application programming interfaces (APIs), refer to
Appendix C, "Information for Visual Basic Programmers."

Note Visual Basic is not necessary to use Automation. It is presented here as an example of a
programming tool that supports Automation and is convenient for packaging Automation scripts.
Optionally, a different ActiveX client can be used for testing.

Exposed objects can be called directly from programs written with Visual Basic. The following figure
shows how this was done for the sample program Hello.exe.

{ewc msdncd, EWGraphic, bsd23525 0 /a "SDK_03.BMP"}

To access an exposed object
1. Start Visual Basic. (Initialization and release of OLE is handled automatically by Visual Basic.)
2. To select the type library of the object, click Tools on the References menu.
3. Add code to declare a variable of the interface type. For example:

Dim HelloObj As IHello

4. Add code in event procedures to create an instance of the object and to manipulate the object using
its properties and methods. For example:
Sub Form_Load ()

Set HelloObj = New Hello.Hello
End Sub
Sub SetVisible_Click ()

HelloObj.Visible = True
End Sub

5. Click Start on the Run menu, and then trigger the event by clicking the form.

The following figure shows the interfaces you use when accessing exposed objects through Visual Basic.

{ewc msdncd, EWGraphic, bsd23525 1 /a "SDK_10.WMF"}

Accessing a Remote Object
With Visual Basic, accessing a remote object requires only that the program declare an object variable
and assign the return of a New statement to the variable. The following is the syntax for the statements:

Dim ObjectVar As InterfaceName
Set ObjectVar = New CoClassName

The Dim statement declares a variable of an interface type. The New keyword creates an instance of an
object. Used together, the two declare and create an instance of an ActiveX object. For example:

Dim MyLines As ILines
Set MyLines = New Lines.Lines

The Dim statement declares the object variable MyLines of the interface type ILines. The Set statement
assigns a new object of the component object class (coclass) Lines to the variable MyLines. When you use
the Dim statement to set a variable to an interface type, subsequent uses of the variable will execute
faster than with the generic Object syntax.

The New keyword applies only to creating coclasses of interface or dispinterface types. To create other
types of objects, the variable must be declared with the Dim statement, and the CreateObject function
used as follows:

Set ObjectVar = CreateObject(ProgID)

CreateObject creates an ActiveX object, based on the specified programmatic ID (ProgID). The ProgID
has the form:

AppName.ObjectName

The AppName is the name of the application, and the ObjectName identifies the type of object to create.
For more information about ProgIDs, see "Registering the Application" in Chapter 2, "Exposing ActiveX
Objects."

You can use the GetObject function to re-establish the reference to the most recently used object that
corresponds to the Filename and AppName.ObjectName specification, as folllows:

Set ObjectVar = GetObject("Filename", ProgID)

For example, if the ActiveX client needs an existing instance of an object instead of a new instance, it can
use the GetObject function.

The Hello sample application, included in the Win32 Software Development Kit (SDK), displays a Hello
message in response to a mouse click. You can add a simple form that accesses the Hello application's
exposed object from another process.

To add a form
1. Start Visual Basic.
2. Click Open Project on the File menu.
3. In the dialog box, click Vb.mak in the Sample directory.
4. In the Forms box, click View Form to see the form, or click View Code to see the Visual Basic code.

'Module-level declarations
Dim HelloObj As IHello

Sub Form_load ()

Set HelloObj = New Hello.Hello
End Sub

Sub Invoke_SayHello_Method_Click ()
HelloObj.SayHello

End Sub

Sub Get_HelloMsg_Property_Click ()
Debug.Print HelloObj.HelloMessage

End Sub

Sub Set_HelloMsg_Property_Click ()
HelloObj.HelloMessage = "Hello Universe"

End Sub

Sub SetVisible_Click ()
HelloObj.Visible = True

End Sub

The Form_Load subroutine creates the Hello Application object. Other subroutines manipulate the Hello
Application object through the Visible and HelloMessage properties and the SayHello method.

To program an object in Visual Basic, you need its class name and the names and parameters of its
properties and methods. For the Hello sample application, you need to know the exact names of the
SayHello method, and the Visible and HelloMsg properties, along with the types of their arguments. This
information is provided in the documentation for many objects, such as those exposed by Microsoft Excel.
You can also get the information by viewing the object's type library with an object browser, such as the
one included in Visual Basic. A sample browser, Browse, is provided in the Win32 SDK.

Creating an Invisible Object
In the preceding section, Visual Basic was used to access and program a form-based interface for the
Hello sample. The Hello Application object was started as invisible, and was later displayed when its
Visible property was set to True. Some objects are not visible, and some objects are never displayed to
the user.

For example, a word-processing application may expose its spelling checker engine as an object. This
object might support a method called CheckWord that takes a string as an argument. If the string is
spelled correctly, the method returns True; otherwise, the method returns False. If the string is spelled
incorrectly, it could be passed to another (hypothetical) method called SuggestWord that returns a
suggestion for its correct spelling. The code might look something like this.

Sub CheckSpelling ()
Dim ObjVar As New SpellChecker
Dim MyWord, Result

MyWord = "potatoe"

' Check the spelling.
Result = ObjVar.CheckWord MyWord
' If False, get suggestion.
If Not Result Then

MyWord = ObjVar.SuggestWord MyWord
End If

End Sub

In this example, the spelling checker is never displayed to the user. Its capabilities are exposed through
the properties and methods of the spelling checker object.

As shown in the example, invisible objects can be created and referenced in the same way as any other
type of object.

Activating an Object from a File
Many Automation applications let the user save objects in files. For example, a spreadsheet application
that supports Worksheet objects lets the user save the worksheet in a file. The same application may also
support a Chart object that the user can save in a file.

To activate an object from a file, first declare an object variable, and then call the GetObject function
using the following syntax:

GetObject (filename[, ProgID])

The filename argument is a string containing the full path and name of the file to be activated. For
example, an application named SpdSheet.exe creates an object that was saved in a file named
Revenue.spd. The following code invokes Spdsheet.exe, loads the file Revenue.spd, and assigns
Revenue.spd to an object variable:

Dim Ss As Spreadsheet
Set Ss = GetObject("C:\Accounts\Revenue.spd")

If the filename argument is omitted, then GetObject returns the currently active object of the specified
ProgID. For example:

Set Ss = GetObject (,"SpdSheet.Application")

If there is no active object of the class SpdSheet.Application, an error will occur.

In addition to activating an entire file, some applications let you activate part of a file. To activate part of a
file, add an exclamation point (!) or a backslash (\) to the end of the file name, followed by a string that
identifies the part of the file you want to activate. For information on how to create this string, refer to the
object's documentation.

For example, if SpdSheet.exe is a spreadsheet application that uses R1C1 syntax, the following code
could be used to activate a range of cells within Revenue.spd:

Set Ss = GetObject("C:\Accounts\Revenue.spd!R1C1:R10C20")

These examples invoke an application and activate an object. In these examples, the application name
(SpdSheet.exe) is never specified. When GetObject is used to activate an object, the registry files
determine the application to invoke and the object to activate based on the file name or ProgID that is
provided. If a ProgID is not provided, Automation activates the default object of the specified file.

Some ActiveX components, however, support more than one class of object. Suppose the spreadsheet
file, Revenue.spd, supports three different classes of objects: an Application object, a Worksheet object,
and a Toolbar object, all of which are part of the same file. To specify which object to activate, an
argument must be supplied for the optional ProgID parameter. For example:

Set Ss = GetObject("C:\Revenue.spd", "SpdSheet.Toolbar")

This statement activates the SpdSheet.Toolbar object in the file Revenue.spd.

Accessing Linked and Embedded Objects
Some applications that supply objects support linking and embedding as well as Automation. Using the
ActiveX control (Msole2.vbx) from the OLE toolkit, you can create and display embedded objects in a
Visual Basic application. If the objects also support Automation, you can access their properties and
methods by using the Object property. The Object property returns the object in the ActiveX control. This
property refers to an ActiveX object in the same way an object variable created with the functions New,
CreateObject, or GetObject refers to the object.

For example, an ActiveX control named Ole1 contains an object that supports Automation. This object has
an Insert method, a Select method, and a Bold property. In this case, the following code could be written
to manipulate the ActiveX control's object:

' Insert text in the object.
Ole1.Object.Insert "Hello, world."
' Select the text.
Ole1.Object.Select
' Format the text as bold.
Ole1.Object.Bold = True

Manipulating Objects
Once a variable has been created that references an ActiveX object, the object can be manipulated in the
same way as any other Visual Basic object. To get and set an object's properties, or to perform an object's
methods, use the object.property or object.method syntax. Multiple objects, properties, and methods can
be included on the same line of code using the following syntax:

ObjVar.Cell(1,1).FontBold = True

Accessing the Properties of an Object
To assign a value to a property of an object, put the object variable and property name on the left side of
an assignment, and the desired property setting on the right side. For example:

Dim ObjVar As IMyInterface
Dim RowPos, ColPos
Set ObjVar = New MyObject

ObjVar.Text = "Hello, world"
ObjVar.Cell(RowPos, ColPos) = "This property accepts two arguments."
' Sets the font for ObjVar.Selection.
ObjVar.Selection.Font = 12

Property values can also be retrieved from an object:

Dim X As Object

X = ObjVar.Text
X = ObjVar.Range(12, 32)

Invoking Methods
In addition to getting and setting properties, an object can be manipulated using the methods it supports.
Some methods may return a value, as in the following example:

X = ObjVar.Calculate(1,2,3)

Methods that do not return a value behave like subroutines. For example:

' This method requires two arguments.
ObjVar.Move XPos, YPos

If such a method is assigned to a variable, an error will occur.

Creating Applications and Tools That Access Objects
Automation provides interfaces for accessing exposed objects from an application or programming tool
written in C or C++. The following sections show C++ code that uses the same type of access method as
the Visual Basic code, which is described earlier in this chapter. Although the process is more complex
with C++ than with Visual Basic, the approach is similar. This section shows the minimum code necessary
to access and manipulate a remote object.

You can use the IDispatch interface to access ActiveX objects, or you can access objects directly through
the VTBL. Because VTBL references can be bound at compile time, VTBL access is generally faster than
through IDispatch. Whenever possible, use the ITypeInfo interface to get information about an object,
including the VTBL addresses of the object's members. Then, use this information to access ActiveX
objects through the VTBL.

To create compilers and other programming tools that use information from type libraries, use the
ITypeComp interface. This interface binds to exposed objects at compile time. For details on
ITypeComp, see Chapter 9, "Type Description Interfaces."

Accessing Members Through VTBLs
For objects that have dual interfaces, the first seven members of the VTBL are the members of
IUnknown and IDispatch, and the subsequent members are standard COM entries for the interface's
member functions. You can call these entries directly from C++.

To access a method or property through the VTBL
1. Initialize OLE.
2. Create an instance of the exposed object.
3. Manipulate the properties and methods of the object.
4. Uninitialize OLE.

The code sample that follows shows how to access a property of the Hello object. Error handling has
been omitted for brevity (Hello.vbp).

HRESULT hr;
CLSID clsid; // Class ID of Hello object.
LPUNKNOWN punk = NULL; // Unknown of Hello object.
IHello* phello = NULL; // IHello interface of Hello object.

// Initialize OLE.
hr = OleInitialize(NULL);

// Retrieve CLSID from the ProgID for Hello.
hr = CLSIDFromProgID("Hello.Application", &clsid);

// Create an instance of the Hello object and ask for its
// IDispatch interface.
hr = CoCreateInstance(clsid, NULL, CLSCTX_SERVER,
 IID_IUnknown, (void FAR* FAR*)&punk);

hr = punk->QueryInterface(IID_IHello, (void FAR* FAR*)&pHello);

punk->Release(); // Release when no longer needed.

hr = pHello->put_Visible (TRUE);

// Additional code to work with other methods and properties.
// .
// .
// .

OleUninitialize();

The example initializes OLE, and then calls the CLSIDFromProgID function to obtain the CLSID for the
Hello application. With the CLSID, the example can call CoCreateInstance to create an instance of the
Hello Application object. CoCreateInstance returns a pointer to the object's IUnknown interface (punk),
and this, in turn, is used to call QueryInterface to get pHello, a pointer to the IID_IHello dual interface. The
punk is no longer needed, so the example releases it. The example then sets the value of the Visible
property to True.

If the function returns an error HRESULT, you can get detailed, contextual information through the
IErrorInfo interface. For details, see Chapter 11, "Error Handling Interfaces."

Accessing Members Through IDispatch
To bind to exposed objects at run time, use the IDispatch interface.

To create an ActiveX client using IDispatch
1. Initialize OLE.
2. Create an instance of the object you want to access. The object's ActiveX component creates the

object.
3. Obtain a reference to the object's IDispatch interface (if it has implemented one).
4. Manipulate the object through the methods and properties exposed in its IDispatch interface.
5. Terminate the object by invoking the appropriate method in its IDispatch interface, or by releasing all

references to the object.
6. Uninitialize OLE.

The following table shows the minimum set of functions necessary to manipulate a remote object.

Function Purpose Interface
OleInitialize Initializes OLE. OLE API function
CoCreateInstan
ce

Creates an instance of the
class represented by the
specified CLSID, and returns a
pointer to the object's
IUnknown interface.

Component object
API function

QueryInterface Checks whether IDispatch
has been implemented for the
object. If so, returns a pointer
to the IDispatch
implementation.

IUnknown

GetIDsOfNamesReturns DISPIDs for
properties and methods and
their parameters.

IDispatch

Invoke Invokes a method, or sets or
gets a property of the remote
object.

IDispatch

Release Decrements the reference
count for an IUnknown or
IDispatch object.

IUnknown

OleUninitialize Uninitializes OLE. OLE API function

The code that follows is extracted from a generalized Windows-based ActiveX client. The controller relies
on helper functions provided in the file Invhelp.cpp, which is available in the Browse directory of the
samples. Error checking is omitted to save space, but would normally be used where an HRESULT is
returned.

The two functions that follow initialize OLE, and then create an instance of an object and get a pointer to
the object's IDispatch interface (Invhelp.cpp):

BOOL InitOle(void)
{
 if(OleInitialize(NULL) != 0)
 return FALSE;

 return TRUE;
}
HRESULT CreateObject(LPSTR pszProgID, IDispatch FAR* FAR* ppdisp)
{
 CLSID clsid; // CLSID of ActiveX object.
 HRESULT hr;
 LPUNKNOWN punk = NULL; // IUnknown of ActiveX object.
 LPDISPATCH pdisp = NULL; // IDispatch of ActiveX object.

 *ppdisp = NULL;

 // Retrieve CLSID from the ProgID that the user specified.
 hr = CLSIDFromProgID(pszProgID, &clsid);
 if (FAILED(hr))
 goto error;

 // Create an instance of the ActiveX object and ask for the
 // IDispatch interface.
 hr = CoCreateInstance(clsid, NULL, CLSCTX_SERVER,
 IID_IUnknown, (void FAR* FAR*)&punk);
 if (FAILED(hr))
 goto error;

 hr = punk->QueryInterface(IID_IDispatch, (void FAR* FAR*)&pdisp);
 if (FAILED(hr))
 goto error;

 *ppdisp = pdisp;
 punk->Release();
 return NOERROR;

error:
 if (punk) punk->Release();
 if (pdisp) pdisp->Release();
 return hr;
}

The CreateObject function is passed a ProgID and returns a pointer to the IDispatch implementation of
the specified object. CreateObject calls the OLE API CLSIDFromProgID to get the CLSID that
corresponds to the requested object, and then passes the CLSID to CoCreateInstance to create an
instance of the object and get a pointer to the object's IUnknown interface. (The CLSIDFromProgID
function is described in the Microsoft OLE Programmer's Guide and Reference.) With this pointer,
CreateObject calls IUnknown::QueryInterface, specifying IID_IDispatch, to get a pointer to the object's
IDispatch interface.

HRESULT FAR
Invoke(LPDISPATCH pdisp,
 WORD wFlags,
 LPVARIANT pvRet,
 EXCEPINFO FAR* pexcepinfo,
 UINT FAR* pnArgErr,
 LPSTR pszName,
 char *pszFmt,
 ...)
{

 va_list argList;
 va_start(argList, pszFmt);
 DISPID dispid;
 HRESULT hr;
 VARIANTARG* pvarg = NULL;

 if (pdisp == NULL)
 return ResultFromScode(E_INVALIDARG);

 // Get DISPID of property/method.
 hr = pdisp->GetIDsOfNames(IID_NULL, &pszName, 1,
 LOCALE_SYSTEM_DEFAULT, &dispid);
 if(FAILED(hr))
 return hr;

 DISPPARAMS dispparams;
 _fmemset(&dispparams, 0, sizeof dispparams);

 // Determine number of arguments.
 if (pszFmt != NULL)
 CountArgsInFormat(pszFmt, &dispparams.cArgs);

 // Property puts have a named argument that represents the value
 // being assigned to the property.
 DISPID dispidNamed = DISPID_PROPERTYPUT;
 if (wFlags & DISPATCH_PROPERTYPUT)
 {
 if (dispparams.cArgs == 0)
 return ResultFromScode(E_INVALIDARG);
 dispparams.cNamedArgs = 1;
 dispparams.rgdispidNamedArgs = &dispidNamed;
 }
 if (dispparams.cArgs != 0)
 {
 // Allocate memory for all VARIANTARG parameters.
 pvarg = new VARIANTARG[dispparams.cArgs];
 if(pvarg == NULL)
 return ResultFromScode(E_OUTOFMEMORY);
 dispparams.rgvarg = pvarg;
 _fmemset(pvarg, 0, sizeof(VARIANTARG) * dispparams.cArgs);

 // Get ready to traverse the vararg list.
 LPSTR psz = pszFmt;
 pvarg += dispparams.cArgs - 1; // Params go in opposite order.

 while (psz = GetNextVarType(psz, &pvarg->vt))
 {
 if (pvarg < dispparams.rgvarg)
 {
 hr = ResultFromScode(E_INVALIDARG);
 goto cleanup;
 }
 switch (pvarg->vt)
 {
 case VT_I2:

 V_I2(pvarg) = va_arg(argList, short);
 break;
 case VT_I4:
 V_I4(pvarg) = va_arg(argList, long);
 break;
 // Additional cases omitted to save space.
 default:
 {
 hr = ResultFromScode(E_INVALIDARG);
 goto cleanup;
 }
 break;
 }
 --pvarg; // Get ready to fill next argument.
 } //while
 } //if

 // Initialize return variant, in case caller forgot. Caller can pass
 // Null if no return value is expected.
 if (pvRet)
 VariantInit(pvRet);
 // Make the call.
 hr = pdisp->Invoke(dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT, wFlags,
 &dispparams, pvRet, pexcepinfo, pnArgErr);

cleanup:
 // Clean up any arguments that need it.
 if (dispparams.cArgs != 0)
 {
 VARIANTARG FAR* pvarg = dispparams.rgvarg;
 UINT cArgs = dispparams.cArgs;
 while (cArgs--)
 {
 switch (pvarg->vt)
 {
 case VT_BSTR:
 VariantClear(pvarg);
 break;
 }
 ++pvarg;
 }
 }
 delete dispparams.rgvarg;
 va_end(argList);
 return hr;
}

In this example, the Invoke function is a general-purpose function that calls IDispatch::Invoke to invoke
a property or method of an ActiveX object. As arguments, it accepts the object's IDispatch
implementation, the name of the member to invoke, flags that control the invocation, and a variable list of
the member's arguments. It can be found in the Browse sample in the file Invelp.ccp.

Using the object's IDispatch implementation and the name of the member, it calls GetIDsOfNames to get
the dispatch ID (DISPID) of the requested member. The member's DISPID must be used later, in the call
to IDispatch::Invoke.

The invocation flags specify whether a method, PROPERTYPUT, or PROPERTYGET function is being
invoked. The helper function simply passes these flags directly to IDispatch::Invoke.

The helper function next fills in the DISPPARAMS structure with the parameters of the member.
DISPPARAMS structures have the following form:

typedef struct FARSTRUCT tagDISPPARAMS{
 VARIANTARG FAR* rgvarg; // Array of arguments.
 DISPID FAR* rgdispidNamedArgs; // DISPIDs of named arguments.
 UINT cArgs; // Number of arguments.
 UINT cNamedArgs; // Number of named arguments.
} DISPPARAMS;

The rgvarg field is a pointer to an array of VARIANTARG structures. Each element of the array specifies
an argument, whose position in the array corresponds to its position in the parameter list of the method
definition. The cArgs field specifies the total number of arguments, and the cNamedArgs field specifies
the number of named arguments.

For methods and property get functions, all arguments can be accessed as positional, or they can be
accessed as named arguments. Property put functions have a named argument that is the new value for
the property. The DISPID of this argument is DISPID_PROPERTYPUT.

To build the rgvarg array, the Invoke helper function retrieves the parameter values and types from its
own argument list, and constructs a VARIANTARG structure for each one. (For a description of the format
string that specifies the types of the parameters, see the file Invhelp.cpp.) Parameters are put in the array
in reverse order, so that the last parameter is in rgvarg[0], and so forth. Although VARIANTARG has the
following five fields, only the first and fifth are used.

typedef struct FARSTRUCT tagVARIANT VARIANTARG;

struct FARSTRUCT tagVARIANT{
 VARTYPE vt;
 unsigned short wReserved1;
 unsigned short wReserved2;
 unsigned short wReserved3;
 union {
 short iVal; /* VT_I2 */
.
. // The rest of this union specifies numerous other types.
.

 };
} VARIANTARG;

The first field contains the argument's type, and the fifth contains its value. To pass a long integer, for
example, the vt and iVal fields of the VARIANTARG structure would be filled with VT_I4 (long integer) and
the actual value of the long integer.

In addition, for property put functions, the first element of the rgdispidNamedArgs array must contain
DISPID_PROPERTYPUT.

After filling the DISPPARAMS structure, the Invoke helper function initializes pvRet, a variant in which
IDispatch::Invoke returns a value from the method or property. The following is the actual call to
IDispatch::Invoke:

hr = pdisp->Invoke(dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT, wFlags,
 &dispparams, pvRet, pexcepinfo, pnArgErr);

The variable pdisp is a pointer to the object's IDispatch interface. DISPID indicates the method or
property being invoked. The value IID_NULL must be specified for all IDispatch::Invoke calls, and
LOCALE_SYSTEM_DEFAULT is a constant denoting the default locale ID (LCID) for this system. In the
final two arguments, pexcepinfo and pnArgErr, IDispatch::Invoke can return error information.

If the invoked member has defined an exception handler, it returns exception information in pexcepinfo. If
certain errors occur in the argument vector, pnArgErr points to the errant argument. The function return
value hr is an HRESULT that indicates success or various types of failure.

For more information, including how to pass optional arguments, see "IDispatch::Invoke" in Chapter 5,
"Dispatch Interface and API Functions."

Creating Type Information Browsers
Type information browsers let users scan type libraries to determine what types of objects are available.
The following figure shows the interfaces you can use when creating compilers or browsers that access
type libraries.

{ewc msdncd, EWGraphic, bsd23525 2 /a "SDK_01.WMF"}

The Browse and BrowseH samples show how a browser might access a type library. The Browse sample
is a Windows-based browser that presents a dialog box from which type information items can be
selected to display. This example function prompts for the name of the type library, opens the library, and
gathers and displays information.

Standard Objects and Naming
Guidelines

This chapter describes the standard ActiveX objects, and discusses naming guidelines for creating
objects that are unique to applications, especially user-interactive applications that support a multiple-
document interface (MDI). If an ActiveX object is not user-interactive or supports only a single-document
interface (SDI), the standards and guidelines should be adapted as appropriate.

· Standard objects comprise a set of objects defined by Automation. You can use them as appropriate
to your application. The objects described in this chapter are oriented toward document-based, user-
interactive applications. Other applications (such as noninteractive database servers) may have
different requirements.

· Naming guidelines are recommendations meant to improve consistency across applications.

This chapter also provides examples in a hypothetical syntax derived from Visual Basic. The standards
and guidelines are subject to change.

Using Standard Objects
The following table lists the Automation standard objects. Although none of these objects are required,
user-interactive applications with subordinate objects should include an Application object.

Object name Description
Application Top-level object. Provides a standard way

for ActiveX clients to retrieve and navigate
an application's subordinate objects.

Document Provides a way to open, print, change, and
save an application document.

Documents Provides a way to iterate over and select
open documents in multiple-document
interface (MDI) applications.

Font Describes fonts that are used to display or
print text.

The following illustration shows how the standard objects fit into the organization of objects provided by
an application.

{ewc msdncd, EWGraphic, bsd23526 0 /a "SDK_01.WMF"}

The following sections describe the standard properties and methods for all objects, all collection objects,
and each of the standard objects. These sections list the standard methods and properties for each
object, as well as the standard arguments for those properties and methods.

Note You can define additional application-specific properties and methods for each object. You
can also provide additional optional arguments for any of the listed properties or methods; however,
the optional arguments should follow the standard arguments in a positional argument list.

Object Properties
All objects, including the Application object and collection objects, must provide the following properties:

Property
name

Return type Description

Application VT_DISPATCH Returns the Application object; read
only.

Parent VT_DISPATCH Returns the creator of the object;
read only.

Note The Application and Parent properties of the Application object return the Application object.

Collection Object Properties
A collection provides a set of objects over which iteration can be performed. All collection objects must
provide the following properties:

Property
name

Return type Description

Count VT_I4 Returns the number of items in the
collection; read only. Required.

_NewEnum VT_DISPATCH A special property that returns an
enumerator object that implements
IEnumVARIANT. Required.

Collection Methods
Methods for collections are described in the following table. The Item method is required; other methods
are optional.

Method
name

Return type Description

Add VT_DISPATCH
or VT_EMPTY

Adds an item to a collection. Returns
VT_DISPATCH if object is created
(object cannot exist outside the
collection) or VT_EMPTY if no object
is created (object can exist outside
the collection).

Item Varies with type
of collection

Returns the indicated item in the
collection. Required. The Item
method may take one or more
arguments to indicate the element
within the collection to return. This
method is the default member
(DISPID_VALUE) for the collection
object.

Remove VT_EMPTY Removes an item from a collection.
Uses indexing arguments in the same
way as the Item method.

All collection objects must provide at least one form of indexing through the Item method. The dispatch ID
of the Item method is DISPID_VALUE. Because it is the default member, it can be used in the following
form:

ThirdDef = MyWords(3).Definition ' Equivalent to
'

MyWords.Item(3).Definition

The Item method takes one or more arguments to indicate the index. Indexes can be numbers, strings, or
other types. For example:

DogDef = MyWords("dog").Definition

Important Within the application's type library, the _NewEnum property has a special dispatch
ID: DISPID_NEWENUM. The name _NewEnum should not be localized.

The Add method may take one or more arguments. For example, if MyWord is an object with the
properties Letters and Definition:

Dim MyWord As New Word
Dim MyDictionary as Words
MyWord = "dog"
MyWord.Letters = "Dog"
MyWord.Definition = "My best friend."
MyDictionary.Add MyWord
MyDictionary.Remove("Dog")

For more information about creating collection objects, see Chapter 2, "Exposing ActiveX objects."

Kinds of Collections
The standard for collections lets you describe two kinds of collections, depending on whether it makes
sense for the collected objects to exist outside the collection.

In some cases, it is not logical for an object to exist independently of its collection. For example, an
application's Documents collection contains all Document objects currently open. Opening a document
means adding it to the collection, and closing the document means removing it from the collection. All
open documents are part of the collection. The application cannot have open documents that are not part
of the collection. The relationship between the collection and the members of the collection can be shown
in the following ways:

· Documents.Add creates an object (an open document) and adds it to the collection. Because an
object is created, a reference to it is returned.
Set MyDoc = Documents.Add

· Document.Close removes an object from the collection.
Set SomeDoc = Documents(3)
SomeDoc.Close

In other cases, it is logical for the objects to exist outside the collection. For example, a Mail application
might have Name objects, and many collections of these Name objects. Each Name object would have a
user's e-mail name, full name, and possibly other information. The e-mail name and full name would likely
be properties named EmailName and FullName.

Additionally, the application might have the following collections of Name objects.

· A collection for the "To" list on each piece of e-mail.
· A collection of the names of the people to whom a user has sent e-mail.

The collections of Name objects could be indexed by using either EmailName or FullName.

For these collections, the Add method does not create an object because the object already exists.
Therefore, the Add method should take an object as an argument, and should not return a value.

Assuming the existence of two collections (AddressBook and ToList), a user might execute the following
code to add a Name object to the ToList collection:

Dim Message as Object
Dim AddressBook as Object
Dim NameRef as Object
.
.
.

Set NameRef = AddressBook.Names("Fred Funk")
Message.ToList.Add NameRef

The Name object already exists and is contained in the AddressBook collection. The first line of code
obtains a reference to the Name object for "Fred Funk" and points to NameRef. The second line of code
adds a reference to the object to the ToList collection. No new object is created, so no reference is
returned from the Add method.

Unlike the relationship between Documents and Document, there is no way for the collected object (the
Name) to know how to remove itself from the collections in which it is contained. To remove an item from
a collection, use the Remove method, as follows:

Message.ToList.Remove("Fred Funk")

This line of code removes the Name object that has the FullName "Fred Funk." The "Fred Funk" object
may exist in other collections, but they will be unaffected.

Using the Application Object in a Type Library
If you use a type library, the Application object should be the object that has the appobj attribute.
Because some ActiveX clients use the type information to allow unqualified access to the Application
object's members, it is important to avoid overloading the Application object with too many members.

The Application object should have the properties listed in the following table. The Application,
FullName, Name, Parent, and Visible properties are required; other properties are optional.

Property
name

Return type Description

ActiveDocum
ent

VT_DISPATCH
, VT_EMPTY

Returns the active document object or
VT_EMPTY if none; read only.

Application VT_DISPATCHReturns the Application object; read
only. Required.

Caption VT_BSTR Sets or returns the title of the
application window; read/write. Setting
the Caption to VT_EMPTY returns
control to the application.

DefaultFilePa
th

VT_BSTR Sets or returns the default path
specification used by the application
for opening files; read/write.

Documents VT_DISPATCHReturns a collection object for the
open documents; read only.

FullName VT_BSTR Returns the file specification for the
application, including path; read only.
For example, C:\Drawdir\Scribble.
Required.

Height VT_R4 Sets or returns the distance between
the top and bottom edge of the main
application window; read/write.

Interactive VT_BOOL Sets or returns True if the application
accepts actions from the user,
otherwise False; read/write.

Left VT_R4 Sets or returns the distance between
the left edge of the physical screen
and the main application window;
read/write.

Name VT_BSTR Returns the name of the application,
such as "Microsoft Excel"; read only.
The Name property is the default
member (DISPID_VALUE) for the
Application object. Required.

Parent VT_DISPATCHReturns the Application object; read
only. Required.

Path VT_BSTR Returns the path specification for the
application's executable file; read only.
For example, C:\Drawdir if the .exe file
is C:\Drawdir\Scribble.exe.

StatusBar VT_BSTR Sets or returns the text displayed in
the status bar; read/write.

Top VT_R4 Sets or returns the distance between

the top edge of the physical screen
and main application window;
read/write.

Visible VT_BOOL Sets or returns whether the application
is visible to the user; read/write. The
default is False when the application is
started with the /Automation
command-line switch. Required.

Width VT_R4 Sets or returns the distance between
the left and right edges of the main
application window; read/write.

The Application object should have the following methods. The Quit method is required; other methods
are optional.

Method
name

Return type Description

Help VT_EMPTY Displays online Help. May take three
optional arguments: helpfile
(VT_BSTR), helpcontextID (VT_I4),
and helpstring (VT_BSTR). The helpfile
argument specifies the Help file to
display; if omitted, the main Help file for
the application is displayed. The
helpcontextID and helpstring
arguments specify a Help context to
display; only one of them can be
supplied. If both are omitted, the default
Help topic is displayed.

Quit VT_EMPTY Exits the application and closes all
open documents. Required.

Repeat VT_EMPTY Repeats the previous action in the user
interface.

Undo VT_EMPTY Reverses the previous action in the
user interface.

Document Object Properties
If the application is document based, it should provide a Document object named Document. Use a
different name only if Document is inappropriate (for example, if the application uses highly technical or
otherwise specialized terminology within its user interface).

The Document object should have the properties listed in the table that follows. The properties
Application, FullName, Name, Parent, Path, and Saved are required; other properties are optional.

Property
name

Return type Description

Application VT_DISPATCH Returns the Application object; read
only. Required.

Author VT_BSTR Sets or returns summary information
about the document's author;
read/write.

Comments VT_BSTR Sets or returns summary information
comments for the document;
read/write.

FullName VT_BSTR Returns the file specification of the
document, including the path; read
only. Required.

Keywords VT_BSTR Sets or returns summary information
keywords associated with the
document; read/write.

Name VT_BSTR Returns the file name of the
document, not including the file's path
specification; read only.

Parent VT_DISPATCH Returns the Parent property of the
Document object; read only. Required.

Path VT_BSTR Returns the path specification for the
document, not including the file name
or file name extension; read only.
Required.

ReadOnly VT_BOOL Returns True if the file is read only,
otherwise False; read only.

Saved VT_BOOL Returns True if the document has
never been saved, but has not
changed since it was created. Returns
True if it has been saved and has not
changed since last saved. Returns
False if it has never been saved and
has changed since it was created; or if
it was saved, but has changed since
last saved. Read only; required.

Subject VT_BSTR Sets or returns summary information
about the subject of the document;
read/write.

Title VT_BSTR Sets or returns summary information
about the title of the document;
read/write.

The Document object should have the methods listed in the following table. The methods Activate,

Close, Print, Save, and SaveAs are required; other methods are optional.

Method
name

Return type Description

Activate VT_EMPTY Activates the first window associated
with the document. Required.

Close VT_EMPTY Closes all windows associated with
the document and removes the
document from the Documents
collection. Required. Takes two
optional arguments, saveChanges
(VT_BOOL) and filename
(VT_BSTR). The filename argument
specifies the name of the file in which
to save the document.

NewWindow VT_EMPTY Creates a new window for the
document.

Print VT_EMPTY Prints the document. Required. Takes
three optional arguments: from
(VT_I2), to (VT_I2), and copies
(VT_I2). The from and to arguments
specify the page range to print. The
copies argument specifies the number
of copies to print.

PrintOut VT_EMPTY Same as Print method, but provides
an easier way to use the method in
Visual Basic, because Print is a
Visual Basic keyword.

PrintPreview VT_EMPTY Previews the pages and page breaks
of the document. Equivalent to
clicking Print Preview on the File
menu.

RevertToSav
ed

VT_EMPTY Reverts to the last saved copy of the
document, and discards any changes.

Save VT_EMPTY Saves changes to the file specified in
the document's FullName property.
Required.

SaveAs VT_EMPTY Saves changes to a file. Required.
Takes one optional argument,
filename (VT_BSTR). The filename
argument can include an optional
path specification.

Documents Collection Object
If your application supports a multiple-document interface (MDI), you should provide a Documents
collection object. Use the name Documents for this collection, unless the name is inappropriate for the
application.

The Documents collection object should have all of the following properties.

Property
name

Return type Description

Application VT_DISPATCH Returns the Application object; read
only. Required.

Count VT_I4 Returns the number of items in the
collection; read only. Required.

_NewEnum VT_DISPATCH A special property that returns an
enumerator object that implements
IEnumVARIANT. Required.

Parent VT_DISPATCH Returns the parent of the Documents
collection object; read only. Required.

The Documents collection object should have all of the following methods.

Method
name

Return type Description

Add VT_DISPATCH Creates a new document and adds it
to the collection. Returns the
document that was created. Required.

Close VT_EMPTY Closes all documents in the
collection. Required.

Item VT_DISPATCH
or VT_EMPTY

Returns a Document object from the
collection or returns VT_EMPTY if the
document does not exist. Takes an
optional argument, index, which may
be a string (VT_BSTR) indicating the
document name, a number (VT_I4)
indicating the ordered position within
the collection, or either
(VT_VARIANT). If index is omitted,
returns the Document collection. The
Item method is the default member
(DISPID_VALUE). Required.

Open VT_DISPATCH
or VT_EMPTY

Opens an existing document and
adds it to the collection. Returns the
document that was opened, or
VT_EMPTY if the object could not be
opened. Takes one required
argument, filename, and one optional
argument, password. Both arguments
have the type VT_BSTR. Required.

The Font Object
The Font object may be appropriate for some applications. The properties Application, Bold, Italic,
Parent, and Size are required; other properties are optional. The Font object should have the following
properties.

Property
name

Return type Description

Application VT_DISPATCH Returns the Application object; read
only. Required.

Bold VT_BOOL Sets or returns True if the font is bold,
otherwise False; read/write. Required.

Color VT_I4 Sets or returns the RGB color of the
font; read/write.

Italic VT_BOOL Sets or returns True if the font is italic;
otherwise False, read/write. Required.

Name VT_BSTR Returns the name of the font; read
only.

OutlineFont VT_BOOL Sets or returns True if the font is
scaleable, otherwise False. For
example, bitmapped fonts are not
scaleable, whereas TrueType® fonts
are scaleable; read/write.

Parent VT_DISPATCH Returns the parent of the Font object;
read only. Required.

Shadow VT_BOOL Sets or returns True if the font
appears with a shadow, otherwise
False; read/write.

Size VT_R4 Sets or returns the point size of the
font; read/write. Required.

Strikethroug
h

VT_BOOL Sets or returns True if the font
appears with a line running through it,
otherwise False; read/write.

Subscript VT_BOOL Sets or returns True if the font is
subscripted, otherwise False;
read/write.

Superscript VT_BOOL Sets or returns True if the font is
superscripted, otherwise False;
read/write.

Naming Conventions
Choose names for exposed objects, properties, and methods that can be easily understood by users of
the application. The guidelines in this section apply to all of the following exposed items:

· Objects ¾ implemented as classes in an application
· Properties and methods ¾ implemented as members of a class
· Named arguments ¾ implemented as named parameters in a member function
· Constants and enumerations ¾ implemented as settings for properties and methods

Use entire words or syllables
It is easier for users to remember complete words than to remember whether you abbreviated Window as
Wind, Wn, or Wnd.

When you need to abbreviate because an identifier would be too long, try to use complete initial syllables.
For example, use AltExpEval instead of AlternateExpressionEvaluation.

Use Don't use
Application App
Window Wnd

Use mixed case
All identifiers should use mixed case, rather than underscores, to separate words.

Use Don't use
ShortcutMenus Shortcut_Menus, Shortcutmenus,

SHORTCUTMENUS,
SHORTCUT_MENUS

BasedOn basedOn

Use the same word used in the interface
Use consistent terminology. Do not use names like HWND that are based on Hungarian notation. Try to
use the same word users would use to describe a concept.

Use Don't use
Name Lbl

Use the correct plural for the class name
Collection classes should use the correct plural for the class name. For example, if you have a class
named Axis, store the collection of Axis objects in an Axes class. Similarly, a collection of Vertex objects
should be stored in a Vertices class. In cases where English uses the same word for the plural, append
the word "Collection."

Use Don't use
Axes Axiss
SeriesCollection CollectionSeries
Windows ColWindow

Using plurals rather than inventing new names for collections reduces the number of items a user must
remember, and simplifies the selection of names for collections.

For some collections, however, this may not be appropriate, especially where a set of objects exists
independently of the collection. For example, a Mail program might have a Name object that exists in
several collections, such as ToList, CCList, and GroupList. In this case, you might specify the individual
name collections as ToNames, CCNames, and GroupNames.

Programmability Interfaces
Embeddable objects, including ActiveX controls, often require access to the programmabilty interfaces of
their containers. Similarly, containers often require access to the programmabilty interfaces of their
embedded objects.

The following sections describe the standards for exposing the programmability interfaces from various
components. With the advent of document objects and ActiveX controls on the Internet, adhering to these
standards will become increasingly important.

Accessing the Containing Document
Objects that are embedded in a container often require access to that container's programmability
interface (for example, its IDispatch implementation). The container should implement its document-level
programmabity interface (for example, the Document object) that matches the one used by
IOleContainer (either VTBL or IDispatch). To access the containing document, an object can call
IOleClientSite::GetContainer, which returns a pointer to IOleContainer, and can then call
QueryInterface() for the appropriate interface (usually IID_IDispatch).

Embedded objects can also access type information by using VTBL binding to dual interfaces, calling
QueryInterface to IOleContainer for IProvideClassInfo.

Accessing the Containing Application
Embedded objects that require access to the Application object of their container (the top-level
programmability object for the process) should use the ServiceProvider interfaces to access it.

Containers should implement IServiceProvider with the same implementation as with IOleClientSite,
and at the minimum, should support SID_Application. If the container can also be embedded, use its
container's IServiceProvider implementation to access the Application object. If an error occurs,
embedded objects should perform a QueryInterface on IOleClientSite for IServiceProvider and use
IServiceProvider to request SID_Application.

The standards for Automation specify that document-level objects in an application's programmabilty
model should support the Parent and Application properties. If this also doesn't work (because the
immediate container does not support IServiceProivder, or SID_Application), an embedded object can
access the containing application by calling IOleClientSite::GetContainer,
QueryInterface(IID_IDispatch, followed by IDispatch::GetIDsofNames. This gets the dispatch ID for
the Parent or Application property.

Dispatch Interface and API
Functions

The dispatch interfaces provide a way to expose and access objects within an application. Automation
defines the following dispatch interfaces and functions.

· IDispatch interface ¾ Exposes objects, methods, and properties to Automation programming tools
and other applications.

· Dispatch API functions ¾ Simplifies the implementation of the IDispatch interface. Use these
functions to generate an IDispatch interface automatically.

· IEnumVARIANT interface ¾ Provides a way for ActiveX clients to iterate over collection objects. This
is a dispatch interface.

Overview of the IDispatch Interface
The following table describes the member functions of the IDispatch interface.

Interface Member function Purpose
IDispatch

GetIDsOfNames Maps a single member name
and an optional set of
argument names to a
corresponding set of integer
dispatch IDs, which can then
be used on subsequent calls
to Invoke.

GetTypeInfo Retrieves the type information
for an object.

GetTypeInfoCount Retrieves the number of type
information interfaces that an
object provides (either 0 or 1).

Invoke Provides access to properties
and methods exposed by an
object.

Implementing the IDispatch Interface
IDispatch is located in the Oleauto.h header file on 32-bit systems, and in Dispatch.h on 16-bit systems.

ActiveX or OLE objects can implement the IDispatch interface for access by ActiveX clients, such as
Visual Basic. The object's properties and methods can be accessed using IDispatch::GetIDsOfNames
and IDispatch::Invoke.

The following examples show how to access an ActiveX or OLE object through the IDispatch interface.
The code is abbreviated for brevity, and omits error handling.

// Declarations of variables used.
DEFINE_GUID(CLSID_Hello, // Portions omitted for brevity.

HRESULT hresult;
IUnknown * punk;
IDispatch * pdisp;
OLECHAR FAR* szMember = "SayHello";
DISPID dispid;
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};
EXCEPINFO excepinfo;
UINT nArgErr;

In the following code, the OleInitialize function loads the OLE dynamic-link libraries (DLLs), and the
CoCreateInstance function initializes the ActiveX or OLE object's class factory. For more information on
these two functions, see the Microsoft OLE Programmer's Guide and Reference.

// Initialize OLE DLLs.
hresult = OleInitialize(NULL);

// OLE function CoCreateInstance starts application using GUID.
hresult = CoCreateInstance(CLSID_Hello, NULL, CLSCTX_SERVER, IID_IUnknown,
(void FAR* FAR*)&punk);

QueryInterface checks whether the object supports IDispatch. (As with any call to QueryInterface, the
returned pointer must be released when it is no longer needed.)

// Call QueryInterface to see if object supports IDispatch.
hresult = punk->QueryInterface(IID_IDispatch, &pdisp);

GetIDsOfNames retrieves the dispatch ID (DISPID) for the indicated method or property, in this case,
szMember.

// Retrieve the dispatch identifier for the SayHello method.
// Use defaults where possible.
hresult = pdisp->GetIDsOfNames(

IID_NULL,
&szMember,
1,
LOCALE_USER_DEFAULT,
&dispid);

In the following call to Invoke, the dispatch identifier (DISPID) indicates the property or method to invoke.
The SayHello method does not take any parameters, so the fifth argument (&dispparamsNoArgs),
contains a Null and 0, as initialized at declaration.

To invoke a property or method that requires parameters, supply the parameters in the DISPPARAMS
structure.

// Invoke the method. Use defaults where possible.
hresult = pdisp->Invoke(

dispid,
IID_NULL,
LOCALE_SYSTEM_DEFAULT,
DISPATCH_METHOD,
&dispparamsNoArgs,
NULL,
NULL,
NULL);

IDispatch::GetIDsOfNames
HRESULT IDispatch::GetIDsOfNames(

 REFIID riid,
 OLECHAR FAR* FAR* rgszNames,
 unsigned int cNames,
 LCID lcid,
 DISPID FAR* rgdispid
);

Maps a single member and an optional set of argument names to a corresponding set of integer dispatch
IDs (DISPIDs), which can be used on subsequent calls to IDispatch::Invoke. The dispatch function
DispGetIDsOfNames provides a standard implementation of GetIDsOfNames.

Parameters
riid

Reserved for future use. Must be IID_NULL.
rgszNames

Passed-in array of names to be mapped.
cNames

Count of the names to be mapped.
lcid

The locale context in which to interpret the names.
rgdispid

Caller-allocated array, each element of which contains an ID corresponding to one of the names
passed in the rgszNames array. The first element represents the member name. The subsequent
elements represent each of the member's parameters.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
DISP_E_UNKNOWNNA
ME

One or more of the names were not known.
The returned array of dispatch IDs contains
DISPID_UNKNOWN for each entry that
corresponds to an unknown name.

DISP_E_UNKNOWNLC
ID

The locale ID (LCID) was not recognized.

Comments
An IDispatch implementation can associate any positive integer ID value with a given name. Zero is
reserved for the default, or Value property; -1 is reserved to indicate an unknown name; and other

negative values are defined for other purposes. For example, if GetIDsOfNames is called, and the
implementation does not recognize one or more of the names, it returns DISP_E_UNKNOWNNAME, and
the rgdispid array contains DISPID_UNKNOWN for the entries that correspond to the unknown names.

The member and parameter dispatch IDs must remain constant for the lifetime of the object. This allows a
client to obtain the dispatch IDs once, and cache them for later use.

When GetIDsOfNames is called with more than one name, the first name (rgszNames[0]) corresponds to
the member name, and subsequent names correspond to the names of the member's parameters.

The same name may map to different dispatch IDs, depending on context. For example, a name may
have a dispatch ID when it is used as a member name with a particular interface, a different ID as a
member of a different interface, and different mapping for each time it appears as a parameter.

The IDispatch interface binds to names at run time. To bind at compile time instead, an IDispatch client
can map names to dispatch IDs by using the type information interfaces described in Chapter 9, "Type
Description Interfaces." This allows a client to bind to members at compile time and avoid calling
GetIDsOfNames at run time. For a description of binding at compile time, see Chapter 9, "Type
Description Interfaces."

The implementation of GetIDsOfNames is case insensitive. Users that need case-sensitive name
mapping should use type information interfaces to map names to dispatch IDs (DISPIDs), rather than call
GetIDsOfNames.

Examples
The following code from the Lines sample file Lines.cpp implements the GetIDsOfNames member
function for the CLine class. The ActiveX or OLE object uses the standard implementation,
DispGetIDsOfNames.

STDMETHODIMP
CLine::GetIDsOfNames(

REFIID riid,
OLECHAR FAR* FAR* rgszNames,
UINT cNames,
LCID lcid,
DISPID FAR* rgdispid)

{
return DispGetIDsOfNames(m_ptinfo, rgszNames, cNames, rgdispid);

}

The following code might appear in an ActiveX client that calls GetIDsOfNames to get the dispatch ID of
the CLine Color property.

HRESULT hresult;
IDispatch FAR* pdisp = (IDispatch FAR*)NULL;
DISPID dispid;
OLECHAR FAR* szMember = "color";

// Code that sets a pointer to the dispatch (pdisp) is omitted.

hresult = pdisp->GetIDsOfNames(
IID_NULL,
&szMember,
1, LOCALE_SYSTEM_DEFAULT,
&dispid);

See Also
CreateStdDispatch, DispGetIDsOfNames, ITypeInfo::GetIDsOfNames

IDispatch::GetTypeInfo
HRESULT IDispatch::GetTypeInfo(

 unsigned int itinfo,
 LCID lcid,
 ITypeInfo FAR* FAR* pptinfo
);

Retrieves the type information for an object, which can then be used to get the type information for an
interface.

Parameters
itinfo

The type information to return. Pass 0 to retrieve type information for the IDispatch implementation.
lcid

The locale ID for the type information. An object may be able to return different type information for
different languages. This is important for classes that support localized member names. For classes
that do not support localized member names, this parameter can be ignored.

pptinfo

Receives a pointer to the requested type information object.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success; the type information element

exists.
DISP_E_BADINDEX Failure; itinfo argument was not 0.
TYPE_E_ELEMENTNOTF
OUND

Failure; itinfo argument was not 0.

Example
The following code from the sample file Lines.cpp loads information from the type library and implements
the member function GetTypeInfo:

// These lines are from CLines::Create load type information for the
// Lines collection from the type library.

hr = LoadTypeInfo(&pLines->m_ptinfo, IID_ILines);
if (FAILED(hr))

goto error;

// Additional code omitted for brevity.

// This function implements GetTypeInfo for the CLines collection.
STDMETHODIMP
CLines::GetTypeInfo(

UINT itinfo,
LCID lcid,
ITypeInfo FAR* FAR* pptinfo)

{
*pptinfo = NULL;

if(itinfo != 0)
return ResultFromScode(DISP_E_BADINDEX);

m_ptinfo->AddRef();
*pptinfo = m_ptinfo;

return NOERROR;
}

IDispatch::GetTypeInfoCount
HRESULT IDispatch::GetTypeInfoCount(

 unsigned int FAR* pctinfo
);

Retrieves the number of type information interfaces that an object provides (either 0 or 1).

Parameter
pctinfo

Points to a location that receives the number of type information interfaces provided by the object. If
the object provides type information, this number is 1; otherwise the number is 0.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_NOTIMPL Failure.

Comments
The function may return zero, which indicates that the object does not provide any type information. In
this case, the object may still be programmable through IDispatch, but does not provide type information
for browsers, compilers, or other programming tools that access type information. This can be useful for
hiding an object from browsers or for preventing early binding on an object.

Example
This code from the Lines sample file Lines.cpp implements the GetTypeInfoCount member function for
the CLines class (ActiveX or OLE object).

STDMETHODIMP
CLines::GetTypeInfoCount(UINT FAR* pctinfo)
{

*pctinfo = 1;
return NOERROR;

}

See Also

CreateStdDispatch

IDispatch::Invoke
HRESULT IDispatch::Invoke(

 DISPID dispidMember,
 REFIID riid,
 LCID lcid,
 WORD wFlags,
 DISPPARAMS FAR* pdispparams,
 VARIANT FAR* pvarResult,
 EXCEPINFO FAR* pexcepinfo,
 unsigned int FAR* puArgErr
);

Provides access to properties and methods exposed by an object. The dispatch function DispInvoke
provides a standard implementation of IDispatch::Invoke.

Parameters
dispidMember

Identifies the member. Use GetIDsOfNames or the object's documentation to obtain the dispatch
identifier.

riid

Reserved for future use. Must be IID_NULL.
lcid

The locale context in which to interpret arguments. The lcid is used by the GetIDsOfNames function,
and is also passed to Invoke to allow the object to interpret its arguments specific to a locale.
Applications that do not support multiple national languages can ignore this parameter. For more
information, refer to "Supporting Multiple National Languages" in Chapter 2, "Exposing ActiveX
objects."

wFlags

Flags describing the context of the Invoke call, as follows:

Value Description
DISPATCH_METHOD The member is invoked as a method.

If a property has the same name, both
this and the
DISPATCH_PROPERTYGET flag
may be set.

DISPATCH_PROPERTYG
ET

The member is retrieved as a property
or data member.

DISPATCH_PROPERTYPU
T

The member is changed as a property
or data member.

DISPATCH_PROPERTYPU
TREF

The member is changed by a
reference assignment, rather than a
value assignment. This flag is valid
only when the property accepts a
reference to an object.

pdispparams

Pointer to a structure containing an array of arguments, an array of argument dispatch IDs for named
arguments, and counts for the number of elements in the arrays. See the Comments section that
follows for a description of the DISPPARAMS structure.

pvarResult

Pointer to the location where the result is to be stored, or Null if the caller expects no result. This
argument is ignored if DISPATCH_PROPERTYPUT or DISPATCH_PROPERTYPUTREF is specified.

pexcepinfo

Pointer to a structure that contains exception information. This structure should be filled in if
DISP_E_EXCEPTION is returned. Can be Null.

puArgErr

The index within rgvarg of the first argument that has an error. Arguments are stored in pdispparams-
>rgvarg in reverse order, so the first argument is the one with the highest index in the array. This
parameter is returned only when the resulting return value is DISP_E_TYPEMISMATCH or
DISP_E_PARAMNOTFOUND. For details, see "Returning Errors" in the following Comments section.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
DISP_E_BADPARAMCOUN
T

The number of elements provided to
DISPPARAMS is different from the
number of arguments accepted by the
method or property.

DISP_E_BADVARTYPE One of the arguments in rgvarg is not a
valid variant type.

DISP_E_EXCEPTION The application needs to raise an
exception. In this case, the structure
passed in pexcepinfo should be filled in.

DISP_E_MEMBERNOTFO
UND

The requested member does not exist, or
the call to Invoke tried to set the value of
a read-only property.

DISP_E_NONAMEDARGS This implementation of IDispatch does
not support named arguments.

DISP_E_OVERFLOW One of the arguments in rgvarg could not
be coerced to the specified type.

DISP_E_PARAMNOTFOUN
D

One of the parameter dispatch IDs does
not correspond to a parameter on the
method. In this case, puArgErr should be
set to the first argument that contains the
error.

DISP_E_TYPEMISMATCH One or more of the arguments could not
be coerced. The index within rgvarg of
the first parameter with the incorrect type
is returned in the puArgErr parameter.

DISP_E_UNKNOWNINTER
FACE

The interface ID passed in riid is not
IID_NULL.

DISP_E_UNKNOWNLCID The member being invoked interprets
string arguments according to the locale
ID (LCID), and the LCID is not
recognized. If the LCID is not needed to
interpret arguments, this error should not
be returned.

DISP_E_PARAMNOTOPTI
ONAL

A required parameter was omitted.

In 16-bit versions, you can define your own errors using the MAKE_SCODE value macro.

Comments
Generally, you should not implement Invoke directly. Instead, use the dispatch interface create functions
CreateStdDispatch and DispInvoke. For details, refer to "CreateStdDispatch" and "DispInvoke" in this
chapter, and "Creating the IDispatch Interface " in Chapter 2, "Exposing ActiveX objects."

If some application-specific processing needs to be performed before calling a member, the code should
perform the necessary actions, and then call ITypeInfo::Invoke to invoke the member. ITypeInfo::Invoke
acts exactly like IDispatch::Invoke. The standard implementations of IDispatch::Invoke created by
CreateStdDispatch and DispInvoke defer to ITypeInfo::Invoke.

In an ActiveX client, IDispatch::Invoke should be used to get and set the values of properties, or to call a
method of an ActiveX object. The dispidMember argument identifies the member to invoke. The dispatch
IDs that identify members are defined by the implementor of the object and can be determined by using
the object's documentation, the IDispatch::GetIDsOfNames function, or the ITypeInfo interface.

The information that follows addresses developers of ActiveX clients and others who use code to expose
ActiveX objects. It describes the behavior that users of exposed objects should expect.

Calling a Method With No Arguments
The simplest use of Invoke is to call a method that does not have any arguments. You only need to pass
the dispatch ID of the method, a locale ID, the DISPATCH_METHOD flag, and an empty DISPPARAMS
structure. For example:

HRESULT hresult;
IUnknown FAR* punk;
IDispatch FAR* pdisp = (IDispatch FAR*)NULL;
OLECHAR FAR* szMember = "Simple";
DISPID dispid;
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};

hresult = CoCreateInstance(CLSID_CMyObject, NULL, CLSCTX_SERVER,

IID_Unknown, (void FAR* FAR*)&punk);

hresult = punk->QueryInterface(IID_IDispatch,
(void FAR* FAR*)&pdisp);

hresult = pdisp->GetIDsOfNames(IID_NULL, &szMember, 1,
LOCALE_USER_DEFAULT, &dispid);

hresult = pdisp->Invoke(
dispid,
IID_NULL,
LOCALE_USER_DEFAULT,

DISPATCH_METHOD,
&dispparamsNoArgs, NULL, NULL, NULL);

The example invokes a method named Simple on an object of the class CMyObject. First, it calls
CoCreateInstance, which instantiates the object and returns a pointer to the object's IUnknown interface
(punk). Next, it calls QueryInterface, receiving a pointer to the object's IDispatch interface (pdisp). It then
uses pdisp to call the object's GetIDsOfNames function, passing the string Simple in szMember to get the
dispatch ID for the Simple method. With the dispatch ID for Simple in dispid, it calls Invoke to invoke the
method, specifying DISPATCH_METHOD for the wFlags parameter and using the system default locale.

To further simplify the code, the example declares a DISPPARAMS structure named dispparamsNoArgs
that is appropriate to an Invoke call with no arguments.

Because the Simple method does not take any arguments and does not return a result, the puArgErr and
pvarResult parameters are Null. In addition, the example passes Null for pexcepinfo, indicating that it is not
prepared to handle exceptions and will handle only HRESULT errors.

Most methods, however, take one or more arguments. To invoke these methods, the DISPPARAMS
structure should be filled in, as described in "Passing Parameters" later in this chapter.

Automation defines special dispatch IDs for invoking an object's Value property (the default), and the
memebers _NewEnum, and Evaluate. For details, see "DISPID" in Chapter 6, "Data Types, Structures,
and Enumerations."

Getting and Setting Properties
Properties are accessed in the same way as methods, except you specify DISPATCH_PROPERTYGET
or DISPATCH_PROPERTYPUT instead of DISPATCH_METHOD. Some languages can not distinguish
between retrieving a property and calling a method. In this case, you should set the flags
DISPATCH_PROPERTYGET and DISPATCH_METHOD.

The following example gets the value of a property named On. You can assume that the object has been
created, and that its interfaces have been queried, as in the previous example.

VARIANT FAR *pvarResult;
// Code omitted for brevity.
szMember = "On";
hresult = pdisp->GetIDsOfNames(IID_NULL, &szMember, 1,

LOCALE_USER_DEFAULT, &dispid);

hresult = pdisp->Invoke(

dispid,
IID_NULL,
LOCALE_USER_DEFAULT,
DISPATCH_PROPERTYGET,
&dispparamsNoArgs, pvarResult, NULL, NULL);

As in the previous example, the code calls GetIDsOfNames for the dispatch ID of the On property, and
then passes the ID to Invoke. Then, Invoke returns the property's value in pvarResult. In general, the
return value does not set VT_BYREF. However, this bit may be set and a pointer returned to the return
value, if the lifetime of the return value is the same as that of the object.

To change the property's value, the call looks like this:

VARIANT FAR *pvarResult;
DISPPARAMS dispparams;
DISPID mydispid = DISP_PROPERTYPUT

// Code omitted for brevity.

szMember = "On";
dispparams.rgvarg[0].vt = VT_BOOL;
dispparams.rgvarg[0].bool = FALSE;
dispparams.rgdispidNamedArgs = &mydispid;
dispparams.cArgs = 1;
dispparams.cNamedArgs = 1;
hresult = pdisp->GetIDsOfNames(IID_NULL, &szMember, 1,

LOCALE_USER_DEFAULT, &dispid);

hresult = pdisp->Invoke(
dispid,
IID_NULL,
LOCALE_USER_DEFAULT,
DISPATCH_PROPERTYPUT,
&dispparams, NULL, NULL, NULL);

The new value for the property (the Boolean value False) is passed as an argument when the On
property's Put function is invoked. The dispatch ID for the argument is DISPID_PROPERTYPUT. This
dispatch ID is defined by Automation to designate the parameter that contains the new value for a
property's Put function. The remaining details of the DISPPARAMS structure are described in the next
section, "Passing Parameters."

The DISPATCH_PROPERTYPUT flag in the previous example indicates that a property is being set by
value. In Visual Basic, the following statement assigns the Value property (the default)of YourObj to the
Prop property:

MyObj.Prop = YourObj

This statement should be flagged as a DISPATCH_PROPERTYPUT. Similarly, statements like the
following assign the Value property of one object to the Value property of another object.

Worksheet.Cell(1,1) = Worksheet.Cell(6,6)
MyDoc.Text1 = YourDoc.Text1

These statements result in a PROPERTY_PUT operation on Worksheet.Cell(1,1) and MyDoc.Text1.

Use the DISPATCH_PROPERTYPUTREF flag to indicate a property or data member that should be set
by reference. For example, the following Visual Basic statement assigns the pointer YourObj to the
property Prop, and should be flagged as DISPATCH_PROPERTYPUTREF.

Set MyObj.Prop = YourObj

The Set statement causes a reference assignment, rather than a value assignment.

The parameter on the right side is always passed by name, and should not be accessed positionally.

Passing Parameters
Arguments to the method or property being invoked are passed in the DISPPARAMS structure. This
structure consists of a pointer to an array of arguments represented as variants, a pointer to an array of
dispatch IDs for named arguments, and the number of arguments in each array.

typedef struct FARSTRUCT tagDISPPARAMS{
VARIANTARG FAR* rgvarg; // Array of arguments.

DISPID FAR* rgdispidNamedArgs; // Dispatch IDs of named arguments.
unsigned int cArgs; // Number of arguments.
unsigned int cNamedArgs; // Number of named arguments.

} DISPPARAMS;

The arguments are passed in the array rgvarg[], with the number of arguments passed in cArgs. The
arguments in the array should be placed from last to first, so rgvarg[0] has the last argument and
rgvarg[cArgs -1] has the first argument. The method or property may change the values of elements
within the array rgvarg, but only if it has set the VT_BYREF flag. Otherwise, consider the elements as
read-only.

A dispatch invocation can have named arguments as well as positional arguments. If cNamedArgs is 0, all
the elements of rgvarg[] represent positional arguments. If cNamedArgs is not 0, each element of
rgdispidNamedArgs[] contains the dispatch ID of a named argument, and the value of the argument is in
the matching element of rgvarg[]. The dispatch IDs of the named arguments are always contiguous in
rgdispidNamedArgs, and their values are in the first cNamedArgs elements of rgvarg. Named arguments
cannot be accessed positionally, and positional arguments cannot be named.

The dispatch ID of an argument is its zero-based position in the argument list. For example, the following
method takes three arguments.

BOOL _export CDECL
CCredit::CheckCredit(BSTR bstrCustomerID,// DISPID = 0.

 BSTR bstrLenderID, // DISPID = 1.
 CURRENCY cLoanAmt) // DISPID = 2.

{
// Code omitted.
}

If you include the dispatch ID with each named argument, you can pass the named arguments to Invoke
in any order. For example, if a method is to be invoked with two positional arguments, followed by three
named arguments (A, B, and C), using the following hypothetical syntax, then cArgs would be 5, and
cNamedArgs would be 3.

object.method("arg1", "arg2", A := "argA", B := "argB", C := "argC")
The first positional argument would be in rgvarg[4]. The second positional argument would be in rgvarg[3].
The ordering of named arguments is not important to the IDispatch implementation, but these arguments
are generally passed in reverse order. The argument A would be in rgvarg[2], with the dispatch ID of A in
rgdispidNamedArgs[2]. The argument B would be in rgvarg[1], with the corresponding dispatch ID in
rgdispidNamedArgs[1]. The argument C would be in rgvarg[0], with the dispatch ID corresponding to C in
rgdispidNamedArgs[0]. The following diagram illustrates the arrays and their contents.

{ewc msdncd, EWGraphic, bsd23527 0 /a "SDK_01.WMF"}

You can also use Invoke on members with optional arguments, but all optional arguments must be of
type VARIANT. As with required arguments, the contents of the argument vector depend on whether the
arguments are positional or named. The invoked member must ensure that the arguments are valid.
Invoke merely passes the DISPPARAMS structure it receives.

Omitting named arguments is straightforward. You would pass the arguments in rgvarg and their dispatch
IDs in rgdispidNamedArgs. To omit the argument named B (in the preceding example) you would set
rgvarg[0] to the value of C, with its dispatch ID in rgdispidNamedArgs[0]; and rgvarg[1] to the value of A,
with its dispatch ID in rgdispidNamedArgs[1]. The subsequent positional arguments would occupy
elements 2 and 3 of the arrays. In this case, cArgs is 4 and cNamedArgs
is 2.

If the arguments are positional (unnamed), you would set cArgs to the total number of possible
arguments, cNamedArgs to 0, and pass VT_ERROR as the type of the omitted arguments, with the status
code DISP_E_PARAMNOTFOUND as the value. For example, the following code invokes ShowMe (,1).

VARIANT FAR *pvarResult;
EXCEPINFO FAR *pexcepinfo;
unsigned int FAR *puArgErr;
DISPPARAMS dispparams;

// Code omitted for brevity.

szMember = "ShowMe";
hresult = pdisp->GetIDsOfNames(IID_NULL, &szMember, 1,

LOCALE_USER_DEFAULT, &dispid)
;
dispparams.rgvarg[0].vt = VT_I2;
dispparams.rgvarg[0].ival = 1;
dispparams.rgvarg[1].vt = VT_ERROR;
dispparams.rgvarg[1].scode = DISP_E_PARAMNOTFOUND;
dispparams.cArgs = 2;
dispparams.cNamedArgs = 0;

hresult = pdisp->Invoke(
dispid,
IID_NULL,
LOCALE_USER_DEFAULT,
DISPATCH_METHOD,
&dispparams, pvarResult, pexcepinfo, puArgErr);

The example takes two positional arguments, but omits the first. Therefore, rgvarg[0] contains 1, the value
of the last argument in the argument list, and rgvarg[1] contains VT_ERROR and the error return value,
indicating the omitted first argument.

The calling code is responsible for releasing all strings and objects referred to by rgvarg[] or placed in
*pvarResult. As with other parameters that are passed by value, if the invoked member must maintain
access to a string after returning, you should copy the string. Similarly, if the member needs access to a
passed-object pointer after returning, it must call the AddRef function on the object. A common example
occurs when an object property is changed to refer to a new object, using the
DISPATCH_PROPERTYPUTREF flag.

For those implementing IDispatch::Invoke, Automation provides the DispGetParam function to retrieve
parameters from the argument vector and coerce them to the proper type. For details, see
"DispGetParam" later in this chapter.

Indexed Properties
When you invoke indexed properties of any dimension, you must pass the indexes as additional
arguments. To set an indexed property, place the new value in the first element of the rgvarg[] vector, and
the indexes in the subsequent elements. To get an indexed property, pass the indexes in the first n
elements of rgvarg, and the number of indexes in cArg. Invoke returns the value of the property in
pvarResult.

Automation stores array data in column-major order, which is the same ordering scheme used by Visual
Basic and FORTRAN, but different from C, C++, and Pascal. If you are programming in C, C++, or
Pascal, you must pass the indexes in the reverse order. The following example shows how to fill the
DISPPARAMS structure in C++.

dispparams.rgvarg[0].vt = VT_I2;
dispparams.rgvarg[0].iVal = 99;
dispparams.rgvarg[1].vt = VT_I2;
dispparams.rgvarg[1].iVal = 2;
dispparams.rgvarg[2].vt = VT_I2;
dispparams.rgvarg[2].iVal = 1;
dispparams.rgdispidNamedArgs = DISPID_PROPERTYPUT;
dispparams.cArgs = 3;
dispparams.cNamedArgs = 1;

The example changes the value of Prop[1,2] to 99. The new property value is passed in rgvarg[0]. The
right-most index is passed in rgvarg[1], and the next index in rgvarg[2]. The cArgs field specifies the
number of elements of rgvarg[] that contain data, and cNamedArgs is 1, indicating the new value for the
property.

Property collections are an extension of this feature.

Raising Exceptions During Invoke
When you implement IDispatch::Invoke, errors can be communicated either through the normal return
value or by raising an exception. An exception is a special situation that is normally handled by jumping to
the nearest routine enclosing the exception handler.

To raise an exception, IDispatch::Invoke returns DISP_E_EXCEPTION and fills the structure passed
through pexcepinfo with information about the cause of the exception or error. You can use the
information to understand the cause of the exception and proceed as necessary.

The exception information structure includes an error code number that identifies the kind of exception (a
string that describes the error in a human-readable way). It also includes a Help file and a Help context
number that can be passed to Windows Help for details about the error. At a minimum, the error code
number must be filled with a valid number.

If you consider IDispatch another way to call C++ methods in an interface, EXCEPINFO models the
raising of an exception or longjmp() call by such a method.

Returning Errors
Invoke returns DISP_E_MEMBERNOTFOUND if one of the following conditions occurs:

· A member or parameter with the specified dispatch ID and matching cArgs cannot be found, and the
parameter is not optional.

· The member is a void function, and the caller did not set pvarResult to Null.
· The member is a read-only property, and the caller set wFlags to DISPATCH_PROPERTYPUT or

DISPATCH_PROPERTYPUTREF.

If Invoke finds the member, but uncovers errors in the argument list, it returns one of several other errors.
DISP_E_BAD_PARAMCOUNT means that the DISPPARAMS structure contains an incorrect number of
parameters for the property or method. DISP_E_NONAMEDARGS means that Invoke received named
arguments, but they are not supported by the member.

DISP_E_PARAMNOTFOUND means that the correct number of parameters was passed, but the dispatch
ID for one or more parameters was incorrect. If Invoke cannot convert one of the arguments to the
desired type, it returns DISP_E_TYPEMISMATCH. In these two cases, if it can identify which argument is
incorrect, Invoke sets *puArgErr to the index within rgvarg of the argument with the error. For example, if
an Automation method expects a reference to a double-precision number as an argument, but receives a
reference to an integer, the argument is coerced. However, if the method receives a date,

IDispatch::Invoke returns DISP_E_TYPEMISMATCH and sets *puArgErr to the index of the integer in
the argument array.

Automation provides functions to perform standard conversions of VARIANT, and these functions should
be used for consistent operation. DISP_E_TYPEMISMATCH is returned only when these functions fail.
For more information about converting arguments, see Chapter 7, "Conversion and Manipulation
Functions."

Example
This code from the Lines sample file Lines.cpp implements the Invoke member function for the CLines
class.

STDMETHODIMP
CLines::Invoke(

DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
DISPPARAMS FAR* pdispparams,
VARIANT FAR* pvarResult,
EXCEPINFO FAR* pexcepinfo,
UINT FAR* puArgErr)

{
return DispInvoke(

this, m_ptinfo,
dispidMember, wFlags, pdispparams,
pvarResult, pexcepinfo, puArgErr);

}

The next code example calls the CLines::Invoke member function to get the value of the Color property:

HRESULT hr;
EXCEPINFO excepinfo;
UINT nArgErr;
VARIANT vRet;
DISPPARAMS FAR* pdisp;
OLECHAR FAR* szMember;
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};

// Initialization code omitted for brevity.
szMember = "Color";
hr = pdisp->GetIDsOfNames(IID_NULL, &szMember, 1, LOCALE_USER_DEFAULT,

&dispid);

// Get Color property.
hr = pdisp->Invoke(dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_PROPERTYGET, &dispparams, &vRet, &excepinfo, &nArgErr);

See Also
CreateStdDispatch, DispInvoke, DispGetParam, ITypeInfo::Invoke

Overview of Dispatch API Functions
For 32-bit systems, dispatch functions are provided in the file Oleaut32.dll. The header file is Oleauto.h,
and the import library is Oleaut32.lib. For 16-bit systems, the dispatch functions are provided in the file
Oledisp.dll. The header file is Dispatch.h, and the import library is Ole2disp.lib. These functions simplify
the creation of IDispatch interfaces. The dispatch functions are summarized in the following table.

Category Function name Purpose
Dispatch interface
creation

CreateDispTypeInf
o

Creates simplified type
information for an object.

CreateStdDispatch Creates a standard IDispatch
implementation for an object.

DispGetIDsOfNam
es

Converts a set of names to
dispatch IDs.

DispGetParam Retrieves and coerces
elements from a
DISPPARAMS structure.

DispInvoke Calls a member function of an
IDispatch interface.

Active object
initialization

GetActiveObject Retrieves an instance of an
object that is initialized with
OLE.

RegisterActiveObj
ect

Initializes a running object
with OLE. (Use when
application starts.)

RevokeActiveObje
ct

Revokes a running
application's initialization with
OLE. (Use when application
ends.)

Using API Functions with the IDispatch Interface
The following five functions are used to create and modify IDispatch.

CreateDispTypeInfo   

HRESULT CreateDispTypeInfo (

 INTERFACEDATA pInterfacedata,
 LCID lcid,
 ITypeInfo FAR* FAR* pptinfo
);

Creates simplified type information for use in an implementation of IDispatch.

Parameters
pInterfacedata

The interface description that this type information describes.
lcid

The locale ID (LCID) for the names used in the type information.
pptinfo

On return, pointer to a type information implementation for use in DispGetIDsOfNames and
DispInvoke.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The interface is supported.
E_INVALIDARG Either the interface description or the locale

ID is invalid.
E_OUTOFMEMORY Insufficient memory to complete the

operation.

Comments
You can construct type information at run time by using CreateDispTypeInfo and an INTERFACEDATA
structure that describes the object being exposed.

The type information returned by this function is primarily designed to automate the implementation of
IDispatch. CreateDispTypeInfo does not return all of the type information described in Chapter 9, "Type
Description Interfaces." The argument pInterfaceData is not a complete description of an interface. It does
not include Help information, comments, optional parameters, and other type information that is useful in
different contexts.

Accordingly, the recommended method for providing type information about an object is to describe the
object using the Object Description Language (ODL), and to compile the object description into a type
library using the MIDL compiler or the MkTypLib utility.

To use type information from a type library, use the LoadTypeLib and GetTypeInfoOfGuid functions
instead of CreateDispTypeInfo. For more information, see Chapter 9, "Type Description Interfaces."

Example
The code that follows creates type information from INTERFACEDATA to expose the CCalc object.

static METHODDATA NEARDATA rgmdataCCalc[] =
{

PROPERTY(VALUE, IMETH_ACCUM, IDMEMBER_ACCUM, VT_I4)
PROPERTY(ACCUM, IMETH_ACCUM, IDMEMBER_ACCUM, VT_I4)
PROPERTY(OPND, IMETH_OPERAND, IDMEMBER_OPERAND, VT_I4)
PROPERTY(OP, IMETH_OPERATOR, IDMEMBER_OPERATOR, VT_I2)
METHOD0(EVAL, IMETH_EVAL, IDMEMBER_EVAL, VT_BOOL)
METHOD0(CLEAR, IMETH_CLEAR, IDMEMBER_CLEAR, VT_EMPTY)
METHOD0(DISPLAY, IMETH_DISPLAY, IDMEMBER_DISPLAY, VT_EMPTY)
METHOD0(QUIT, IMETH_QUIT, IDMEMBER_QUIT, VT_EMPTY)
METHOD1(BUTTON, IMETH_BUTTON, IDMEMBER_BUTTON, VT_BOOL)

};

INTERFACEDATA NEARDATA g_idataCCalc =
{

rgmdataCCalc, DIM(rgmdataCCalc)
};

// Use Dispatch interface API functions to implement IDispatch.
CCalc FAR*
CCalc::Create()
{

HRESULT hresult;
CCalc FAR* pcalc;
CArith FAR* parith;
ITypeInfo FAR* ptinfo;
IUnknown FAR* punkStdDisp;

extern INTERFACEDATA NEARDATA g_idataCCalc;

if((pcalc = new FAR CCalc()) == NULL)
return NULL;

pcalc->AddRef();

parith = &(pcalc->m_arith);

// Build type information for the functionality on this object that
// is being exposed for external programmability.
hresult = CreateDispTypeInfo(

&g_idataCCalc, LOCALE_SYSTEM_DEFAULT, &ptinfo);
if(hresult != NOERROR)

goto LError0;

// Create an aggregate with an instance of the default
// implementation of IDispatch that is initialized with
// type information.
hresult = CreateStdDispatch(

pcalc, // Controlling unknown.
parith, // Instance to dispatch on.
ptinfo, // Type information describing the

instance.
&punkStdDisp);

ptinfo->Release();

if(hresult != NOERROR)
goto LError0;

pcalc->m_punkStdDisp = punkStdDisp;

return pcalc;

LError0:;
pcalc->Release();
return NULL;

}

CreateStdDispatch   

HRESULT CreateStdDispatch (

 IUnknown FAR* punkOuter,
 void FAR* pvThis,
 ITypeInfo FAR* ptinfo,
 IUnknown FAR* FAR* ppunkStdDisp
);

Creates a standard implementation of the IDispatch interface through a single function call. This
simplifies exposing objects through Automation.

Parameters
punkOuter

Pointer to the object's IUnknown implementation.
pvThis

Pointer to the object to expose.
ptinfo

Pointer to the type information that describes the exposed object.
ppunkStdDisp

This is the private unknown for the object that implements the IDispatch interface QueryInterface
call. This pointer is Null if the function fails.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_INVALIDARG One of the first three arguments is invalid.
E_OUTOFMEMORY There was insufficient memory to complete

the operation.

Comments
You can use CreateStdDispatch when creating an object instead of implementing the IDispatch member
functions for the object. However, the implementation that CreateStdDispatch creates has these
limitations:

· Supports only one national language.
· Supports only dispatch-defined exception codes returned from Invoke.

LoadTypeLib, GetTypeInfoOfGuid, and CreateStdDispatch comprise the minimum set of functions that
you need to call to expose an object using a type library. For more information on LoadTypeLib and
GetTypeInfoOfGuid, see Chapter 9, "Type Description Interfaces."

CreateDispTypeInfo and CreateStdDispatch comprise the minimum set of dispatch components you

need to call to expose an object using type information provided by the INTERFACEDATA structure.

Example
The following code implements the IDispatch interface for the CCalc class using CreateStdDispatch.

CCalc FAR*
CCalc::Create()
{

HRESULT hresult;
CCalc FAR* pcalc;
CArith FAR* parith;
ITypeInfo FAR* ptinfo;
IUnknown FAR* punkStdDisp;

extern INTERFACEDATA NEARDATA g_idataCCalc;

if((pcalc = new FAR CCalc()) == NULL)
return NULL;

pcalc->AddRef();

parith = &(pcalc->m_arith);

// Build type information for the functionality on this object that
// is being exposed for external programmability.
hresult = CreateDispTypeInfo(

&g_idataCCalc, LOCALE_SYSTEM_DEFAULT, &ptinfo);
if(hresult != NOERROR)

goto LError0;

// Create an aggregate with an instance of the default
// implementation of IDispatch that is initialized with
// type information.
hresult = CreateStdDispatch(

pcalc, // Controlling unknown.
parith, // Instance to dispatch on.
ptinfo, // Type information describing the

instance.
&punkStdDisp);

ptinfo->Release();

if(hresult != NOERROR)
goto LError0;

pcalc->m_punkStdDisp = punkStdDisp;

return pcalc;

LError0:;
pcalc->Release();
return NULL;

}

DispGetIDsOfNames   

HRESULT DispGetIDsOfNames (

 ITypeInfo* ptinfo,
 OLECHAR FAR* FAR* rgszNames,
 unsigned int cNames,
 DISPID FAR* rgdispid
);

Uses type information to convert a set of names to dispatch IDs. This is the recommended
implementation of IDispatch::GetIDsOfNames.

Parameters
ptinfo

Pointer to the type information for an interface. This type information is specific to one interface and
language code, so it is not necessary to pass an interface identifier (IID) or locale class identifier
(LCID) to this function.

rgszNames

An array of name strings that can be the same array passed to DispInvoke in the DISPPARAMS
structure. If cNames is greater than 1, the first name is interpreted as a method name, and
subsequent names are interpreted as parameters to that method.

cNames

The number of elements in rgszNames.
rgdispid

Pointer to an array of dispatch IDs to be filled in by this function. The first ID corresponds to the
method name. Subsequent IDs are interpreted as parameters to the method.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The interface is supported.
E_INVALIDARG One of the arguments is invalid.
DISP_E_UNKNOWNNA
ME

One or more of the given names were not
known. The returned array of dispatch IDs
contains DISPID_UNKNOWN for each
entry that corresponds to an unknown
name.

Other return codes Any of the ITypeInfo::Invoke errors can
also be returned.

Example
This code from the Lines sample file Points.cpp implements the member function GetIDsOfNames for the
CPoints class using DispGetIDsOfNames.

STDMETHODIMP
CPoints::GetIDsOfNames(

REFIID riid,
char FAR* FAR* rgszNames,
UINT cNames,
LCID lcid,
DISPID FAR* rgdispid)

{
return DispGetIDsOfNames(m_ptinfo, rgszNames, cNames, rgdispid);

}

See Also

CreateStdDispatch, IDispatch::GetIDsOfNames

DispGetParam   

HRESULT DispGetParam(

 DISPPARAMS FAR* dispparams,
 unsigned int iPosition,
 VARTYPE vt,
 VARIANT FAR* pvarResult,
 unsigned int FAR* puArgErr
);

Retrieves a parameter from the DISPPARAMS structure, checking both named parameters and positional
parameters, and coerces the parameter to the
specified type.

Parameters
dispparams

Pointer to the parameters passed to IDispatch::Invoke.
iPosition

The position of the parameter in the parameter list. DispGetParam starts at the end of the array, so if
iPosition is 0, the last parameter in the array is returned.

vt

The type the argument should be coerced to.
pvarResult

Pointer to the variant to pass the parameter into.
puArgErr

On return, pointer to the index of the argument that caused a DISP_E_TYPEMISMATCH error. This
pointer is returned to Invoke to indicate the position of the argument in DISPPARAMS that caused
the error.

Return Value
The return value obtained from the HRESULT is one of the following:

Return value Meaning
S_OK Success.
DISP_E_BADVARTYPE The variant type vt is not supported.
DISP_E_OVERFLOW The retrieved parameter could not be

coerced to the specified type.
DISP_E_PARAMNOTFO
UND

The parameter indicated by iPosition could
not be found.

DISP_E_TYPEMISMATC
H

The argument could not be coerced to the
specified type.

E_INVALIDARG One of the arguments was invalid.
E_OUTOFMEMORY Insufficient memory to complete operation.

Comments
The output parameter pvarResult must be a valid variant. Any existing contents are released in the
standard way. The contents of the variant are freed with VariantFree.

If you have used DispGetParam to get the right side of a property put operation, the second parameter
should be DISPID_PROPERTYPUT. For example:

DispGetParam(&dispparams, DISPID_PROPERTYPUT, VT_BOOL, &varResult)

Named parameters cannot be accessed positionally, and vice versa.

Example
The following example uses DispGetParam to set X and Y properties:

STDMETHODIMP
CPoint::Invoke(

DISPID dispidMember,
REFIID riid,
LCID lcid,
unsigned short wFlags,
DISPPARAMS FAR* pdispparams,
VARIANT FAR* pvarResult,
EXCEPINFO FAR* pexcepinfo,
unsigned int FAR* puArgErr)

{
unsigned int uArgErr;
HRESULT hresult;
VARIANTARG varg0;
VARIANT varResultDummy;

UNUSED(lcid);
UNUSED(pexcepinfo);

// Make sure the wFlags are valid.
if(wFlags & ~(DISPATCH_METHOD | DISPATCH_PROPERTYGET |

DISPATCH_PROPERTYPUT | DISPATCH_PROPERTYPUTREF))
return ResultFromScode(E_INVALIDARG);

// This object only exposes a "default" interface.
if(!IsEqualIID(riid, IID_NULL))

return ResultFromScode(DISP_E_UNKNOWNINTERFACE);

// It simplifies the following code if the caller
// ignores the return value.
if(puArgErr == NULL)

puArgErr = &uArgErr;
if(pvarResult == NULL)

pvarResult = &varResultDummy;

VariantInit(&varg0);

// Assume the return type is void, unless otherwise is found.
VariantInit(pvarResult);

switch(dispidMember){

case IDMEMBER_CPOINT_GETX:
V_VT(pvarResult) = VT_I2;
V_I2(pvarResult) = GetX();
break;

case IDMEMBER_CPOINT_SETX:
hresult = DispGetParam(pdispparams, 0, VT_I2, &varg0, puArgErr);
if(hresult != NOERROR)

return hresult;
SetX(V_I2(&varg0));
break;

case IDMEMBER_CPOINT_GETY:
V_VT(pvarResult) = VT_I2;
V_I2(pvarResult) = GetY();
break;

case IDMEMBER_CPOINT_SETY:
hresult = DispGetParam(pdispparams, 0, VT_I2, &varg0, puArgErr);
if(hresult != NOERROR)

return hresult;
SetY(V_I2(&varg0));
break;

default:
return ResultFromScode(DISP_E_MEMBERNOTFOUND);

}
return NOERROR;

}

See Also
CreateStdDispatch, IDispatch::Invoke

DispInvoke   

HRESULT DispInvoke(

 void FAR* _this,
 ITypeInfo FAR* ptinfo,
 DISPID dispidMember,
 unsigned short wFlags,
 DISPPARAMS FAR* pparams,
 VARIANT FAR* pvarResult,
 EXCEPINFO pexcepinfo,
 unsigned int FAR* puArgErr
);

Automatically calls member functions on an interface, given the type information for the interface. You can
describe an interface with type information and implement IDispatch::Invoke for the interface using this
single call.

Parameters
 _this

Pointer to an implementation of the IDispatch interface described by ptinfo.
ptinfo

Pointer to the type information that describes the interface.
dispidMember

Identifies the member. Use GetIDsOfNames or the object's documentation to obtain the dispatch ID.
wFlags

Flags describing the context of the Invoke call, as follows:

Value Description
DISPATCH_METHOD The member is invoked as a method.

If a property has the same name, both
this and the
DISPATCH_PROPERTYGET flag can
be set.

DISPATCH_PROPERTYG
ET

The member is retrieved as a property
or data member.

DISPATCH_PROPERTYPU
T

The member is changed as a property
or data member.

DISPATCH_PROPERTYPU
TREF

The member is changed by a
reference assignment, rather than a
value assignment. This flag is valid
only when the property accepts a
reference to an object.

pparams

Pointer to a structure containing an array of arguments, an array of argument dispatch IDs for named

arguments, and counts for number of elements in the arrays.
pvarResult

Pointer to where the result is to be stored, or Null if the caller expects no result. This argument is
ignored if DISPATCH_PROPERTYPUT or DISPATCH_PROPERTYPUTREF is specified.

pexcepinfo

Pointer to a structure containing exception information. This structure should be filled in if
DISP_E_EXCEPTION is returned.

puArgErr

The index within rgvarg of the first argument that has an error. Arguments are stored in pdispparams-
>rgvarg in reverse order, so the first argument is the one with the highest index in the array. This
parameter is returned only when the resulting return value is DISP_E_TYPEMISMATCH or
DISP_E_PARAMNOTFOUND.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
DISP_E_BADPARAMCOUN
T

The number of elements provided in
DISPPARAMS is different from the
number of arguments accepted by the
method or property.

DISP_E_BADVARTYPE One of the arguments in DISPPARAMS
is not a valid variant type.

DISP_E_EXCEPTION The application needs to raise an
exception. In this case, the structure
passed in pexcepinfo should be filled in.

DISP_E_MEMBERNOTFO
UND

The requested member does not exist.

DISP_E_NONAMEDARGS This implementation of IDispatch does
not support named arguments.

DISP_E_OVERFLOW One of the arguments in DISPPARAMS
could not be coerced to the specified
type.

DISP_E_PARAMNOTFOUN
D

One of the parameter IDs does not
correspond to a parameter on the
method. In this case, puArgErr is set to
the first argument that contains the error.

DISP_E_PARAMNOTOPTI
ONAL

A required parameter was omitted.

DISP_E_TYPEMISMATCH One or more of the arguments could not
be coerced. The index of the first
parameter with the incorrect type within
rgvarg is returned in puArgErr.

E_INVALIDARG One of the arguments is invalid.
E_OUTOFMEMORY Insufficient memory to complete the

operation.
Other return codes Any of the ITypeInfo::Invoke errors can

also be returned.

Comments
The parameter _this is a pointer to an implementation of the interface that is being deferred to.
DispInvoke builds a stack frame, coerces parameters using standard coercion rules, pushes them on the
stack, and then calls the correct member function in the VTBL.

Example
The following code from the Lines sample file Lines.cpp implements IDispatch::Invoke using
DispInvoke. This function uses m_bRaiseException to signal that an error occurred during the DispInvoke
call.

STDMETHODIMP
CLines::Invoke(

DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
DISPPARAMS FAR* pdispparams,
VARIANT FAR* pvarResult,
EXCEPINFO FAR* pexcepinfo,
UINT FAR* puArgErr)

{
return DispInvoke(
this, m_ptinfo,
dispidMember, wFlags, pdispparams,
pvarResult, pexcepinfo, puArgErr);

}

See Also
CreateStdDispatch, IDispatch::Invoke

Registering the Active Object with API Functions
These functions let you identify a running instance of an object. Because they use the OLE object table
(GetRunningObjectTable), they also require either Ole32.dll (for 32-bit systems) or Ole2.dll (for 16-bit
systems).

When an application is started with the /Automation switch, it should initialize its Application object as the
active object by calling RegisterActiveObject after it initializes OLE.

Applications can also register other top-level objects as the active object. For example, an application that
exposes a Document object may want to let ActiveX clients retrieve and modify the currently active
document.

For more information about registering the active object, see Chapter 2, "Exposing ActiveX objects." The
following table identifies the location of these API functions

Implemented by Used by

Header
file name

Import library
name

Oleaut32.dll
(32-bit systems)
Ole2disp.dll
(16-bit systems)

Applications that
expose or
access
programmable
objects.

Oleauto.h
Dispatch.h

Oleaut32.lib
Ole2disp.lib

GetActiveObject   

HRESULT GetActiveObject(

 REFCLSID rclsid,
 void FAR* pvreserved,
 IUnknown FAR* FAR* ppunk
);

Retrieves a pointer to a running object that has been registered with OLE.

Parameters
rclsid

Pointer to the class ID of the active object from the OLE registration database.
pvreserved

Reserved for future use. Must be Null.
ppunk

On return, a pointer to the requested active object.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
Other return codes Failure.

RegisterActiveObject   

HRESULT RegisterActiveObject (

 IUnknown FAR* punk,
 REFCLSID rclsid,
 DWORD dwFlags,
 unsigned long FAR* pdwRegister
);

Registers an object as the active object for its class.

Parameters
punk

Pointer to the IUnknown interface of the active object.
rclsid

Pointer to the class ID of the active object.

dwFlags

Flags controlling registration of the object. Possible values are ACTIVEOBJECT_STRONG and
ACTIVEOBJECT_WEAK.

pdwRegister

On return, a pointer to a handle. This handle must be passed to RevokeActiveObject to end the
object's active status.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
Other return codes Failure.

Comments
The RegisterActiveObject function registers the object to which punk points as the active object for the
class denoted by rclsid. Registration causes the object to be listed in the running object table (ROT) of
OLE, a globally accessible lookup table that keeps track of objects that are currently running on the
computer. (For more information about the running object table, see the Microsoft OLE Programmer's
Guide and Reference.) The dwFlags parameter specifies the strength or weakness of the registration,
which affects the way the object is shut down.

In general, ActiveX objects should behave in the following manner:

· If the object is visible, it should shut down only in response to an explicit user command (such as the
Exit command on the File menu), or to the equivalent command from an ActiveX client (invoking the
Quit or Exit method on the Application object).

· If the object is not visible, it should shut down only when the last external connection to it is gone.

Strong registration performs an AddRef on the object, incrementing the reference count of the object (and
its associated stub) in the running object table. A strongly registered object must be explicitly revoked
from the table with RevokeActiveObject. The default is strong registration (ACTIVEOBJECT_STRONG).

Weak registration keeps a pointer to the object in the running object table, but does not increment the
reference count. Consequently, when the last external connection to a weakly registered object
disappears, OLE releases the object's stub, and the object itself is no longer available.

To ensure the desired behavior, consider not only the default actions of OLE, but also the following:

· Even though code can create an invisible object, the object may become visible at some later time.
Once the object is visible, it should remain visible and active until it receives an explicit command to
shut down. This can occur after references from the code disappear.

· Other ActiveX clients may be using the object. If so, the code should not force the object to shut
down.

To avoid possible conflicts, you should always register ActiveX objects with ACTIVEOBJECT_WEAK, and
call CoLockObjectExternal, when necessary, to guarantee the object remains active.
CoLockObjectExternal adds a strong lock, thereby preventing the object's reference count from
reaching zero. For detailed information about this function, refer to the Microsoft OLE Programmer's
Guide and Reference.

Most commonly, objects need to call CoLockObjectExternal when they become visible, so they remain
active until the user requests the object to shut down.

To shut down correctly, code should follow these steps
1. When the object becomes visible, make the following call to add a lock for the user:

CoLockObjectExternal(punk, TRUE, TRUE)

The lock remains in effect until a user explicitly requests the object to be shut down, such as with a
Quit or Exit command.

2. When the user requests the object to be shut down, call CoLockObjectExternal again to free the
lock, as follows:
CoLockObjectExternal(punk, FALSE, TRUE)

3. Call RevokeActiveObject to make the object inactive.
4. To end all connections from remote processes, call CoDisconnectObject as follows:

CoDisconnectObject(punk, 0)

This function is described in more detail in the Microsoft OLE Programmer's Guide and Reference.

RevokeActiveObject   

HRESULT RevokeActiveObject (

 unsigned long dwRegister,
 void FAR* pvreserved
);

Ends an object's status as active.

Parameters
dwRegister

A handle previously returned by RegisterActiveObject.
pvreserved

Reserved for future use. Must be Null.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
Other return codes Failure.

IEnumVARIANT Interface
The IEnumVARIANT interface provides a method for enumerating a collection of variants, including
heterogeneous collections of objects and intrinsic types. Callers of this interface do not need to know the
specific type (or types) of the elements in the collection.

Implemented by Used by Header file name
Applications that
expose collections of
objects

Applications that
access collections of
objects

Oleauto.h (32-bit systems)
Dispatch.h (16-bit
systems)

The following is the definition that results from expanding the parameterized type IEnumVARIANT:

interface IEnumVARIANT : IUnknown {
virtual HRESULT Next(unsigned long celt,

VARIANT FAR* rgvar,
unsigned long FAR* pceltFetched) = 0;

virtual HRESULT Skip(unsigned long celt) = 0;
virtual HRESULT Reset() = 0;
virtual HRESULT Clone(IEnumVARIANT FAR* FAR* ppenum) = 0;
};

To see how to implement a collection of objects using IEnumVARIANT, refer to the file Enumvar.cpp in
the Lines sample code.

IEnumVARIANT::Clone
HRESULT IEnumVARIANT::Clone(

 IEnumVARIANT FAR* FAR* ppenum
);

Creates a copy of the current state of enumeration.

Parameter
ppenum

On return, pointer to the location of the clone enumerator.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Insufficient memory to complete the

operation.

Comments
Using this function, a particular point in the enumeration sequence can be recorded, and then returned to
at a later time. The returned enumerator is of the same actual interface as the one that is being cloned.

There is no guarantee that exactly the same set of variants will be enumerated the second time as was
enumerated the first. Although an exact duplicate is desirable, the outcome depends on the collection
being enumerated. You may find that it is impractical for some collections to maintain this condition (for
example, an enumeration of the files in a directory).

Example
The following code implements IEnumVariant::Clone for collections in the Lines sample file
Enumvar.cpp.

STDMETHODIMP
CEnumVariant::Clone(IEnumVARIANT FAR* FAR* ppenum)
{

CEnumVariant FAR* penum = NULL;
HRESULT hr;

*ppenum = NULL;

hr = CEnumVariant::Create(m_psa, m_cElements, &penum);
if (FAILED(hr))

goto error;
penum->AddRef();
penum->m_lCurrent = m_lCurrent;

*ppenum = penum;
return NOERROR;

error:
if (penum)

penum->Release();
return hr;

}

IEnumVARIANT::Next
HRESULT IEnumVARIANT::Next(

 unsigned long celt,
 VARIANT FAR* rgvar,
 unsigned long FAR* pceltFetched
);

Attempts to get the next celt items in the enumeration sequence, and return them through the array
pointed to by rgvar.

Parameters
celt

The number of elements to be returned.
rgvar

An array of at least size celt in which the elements are to be returned.
pceltFetched

Pointer to the number of elements returned in rgvar, or Null.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The number of elements returned is celt.
S_FALSE The number of elements returned is less

than celt.

Comments
If fewer than the requested number of elements remain in the sequence, Next returns only the remaining
elements. The actual number of elements returned is passed through *pceltFetched, unless it is Null.

Example
The following code implements IEnumVariant::Next for collections in the Lines sample file Enumvar.cpp.

STDMETHODIMP
CEnumVariant::Next(ULONG cElements, VARIANT FAR* pvar, ULONG FAR*
pcElementFetched)
{

HRESULT hr;
ULONG l;
long l1;
ULONG l2;

if (pcElementFetched != NULL)

*pcElementFetched = 0;

for (l=0; l<cElements; l++)
VariantInit(&pvar[l]);

// Retrieve the next cElements elements.
for (l1=m_lCurrent, l2=0; l1<(long)(m_lLBound+m_cElements) &&

l2<cElements; l1++, l2++)
{

hr = SafeArrayGetElement(m_psa, &l1, &pvar[l2]);
if (FAILED(hr))

goto error;
}
// Set count of elements retrieved.
if (pcElementFetched != NULL)

*pcElementFetched = l2;
m_lCurrent = l1;

return (l2 < cElements) ? ResultFromScode(S_FALSE) : NOERROR;

error:
for (l=0; l<cElements; l++)

VariantClear(&pvar[l]);
return hr;

}

IEnumVARIANT::Reset
HRESULT IEnumVARIANT::Reset()

Resets the enumeration sequence to the beginning.

Parameter
None

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
S_FALSE Failure.

Comments
There is no guarantee that exactly the same set of variants will be enumerated the second time as was
enumerated the first time. Although an exact duplicate is desirable, the outcome depends on the
collection being enumerated. You may find that it is impractical for some collections to maintain this
condition (for example, an enumeration of the files in a directory).

Example
The following code implements IEnumVariant::Reset for collections in the Lines sample file
Enumvar.cpp:

STDMETHODIMP
CEnumVariant::Reset()
{

m_lCurrent = m_lLBound;
return NOERROR;

}

IEnumVARIANT::Skip
HRESULT IEnumVARIANT::Skip(

 unsigned long celt
);

Attempts to skip over the next celt elements in the enumeration sequence.

Parameter
celt

The number of elements to skip.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The specified number of elements was

skipped.
S_FALSE The end of the sequence was reached

before skipping the requested number of
elements.

Example
The following code implements IEnumVariant::Reset for collections in the Lines sample file
Enumvar.cpp.

STDMETHODIMP
CEnumVariant::Skip(ULONG cElements)
{

m_lCurrent += cElements;
if (m_lCurrent > (long)(m_lLBound+m_cElements))
{

m_lCurrent = m_lLBound+m_cElements;
return ResultFromScode(S_FALSE);

}
else return NOERROR;

}

Data Types, Structures, and
Enumerations

Each Automation interface has associated data information. This chapter contains information on the
following:

· Data types
· Data structures
· Data enumerations

The interfaces discussed are:

· IDispatch
· ITypeInfo
· ITypeLib
· ITypeComp

IDispatch Data Types and Structures
The IDispatch interface uses the following data types and structures. For more information on the
implementation of the IDispatch interface, see Chapter 5, "Dispatch Interface and API Functions."

Name Purpose
BSTR A length-prefixed string.
CALLCONV Identifies the calling convention used by a

member function.
CURRENCY Provides a precise data type of monetary

data.
DECIMAL Provides a decimal data type.
DISPID Identifies a method, property, or argument to

Invoke.
DISPPARAMS Contains arguments passed to a method or

property.
EXCEPINFO Describes an error that occurred during

Invoke.
INTERFACEDATA Describes the members of an interface.
LCID Provides locale information for international

string comparisons and localized member
names.

METHODDATA Describes a method or property.
PARAMDATA Describes a parameter to a method.
VARIANT Describes a VARIANTARG that cannot have

the VT_BYREF bit set. Because VT_BYREF
is not set, the data of type VARIANT cannot
be passed within DISPPARAMS.

VARIANTARG Describes arguments that may be passed
within DISPPARAMS.

VARTYPE Identifies the available variant types.
VARENUM Used in VARIANT, TYPEDESC, and OLE

(ActiveX) property sets.

BSTR
A length-prefixed string used by Automation data manipulation functions.

typedef OLECHAR *BSTR;

BSTRs (binary strings) are wide, double-byte (Unicode) strings on 32-bit Windows platforms and narrow,
single-byte strings on the Apple® PowerMac™.

For details on the BSTR data type, see Chapter 7, "Conversion and Manipulation Functions."

CALLCONV
Identifies the calling convention used by a member function described in the METHODDATA structure.

typedef enum tagCALLCONV {
 CC_CDECL = 1
 , CC_MSCPASCAL
 , CC_PASCAL = CC_MSCPASCAL
 , CC_MACPASCAL
 , CC_STDCALL
 , CC_RESERVED
 , CC_SYSCALL
 , CC_MPWCDECL
 , CC_MPWPASCAL
 , CC_MAX // End of enum marker.
} CALLCONV;

On 16-bit Windows systems, functions implemented with the CC_CDECL calling convention cannot have
a return type of float or double. This includes functions that return DATE, which is a floating-point type.

CURRENCY
A currency number stored as an 8-byte, two's complement integer, scaled by 10,000 to give a fixed-point
number with 15 digits to the left of the decimal point and 4 digits to the right. This representation provides
a range of ±922337203685477.5807. The CURRENCY data type is useful for calculations involving
money, or for any fixed-point calculation where accuracy is particularly important.

typedef CY CURRENCY;

The data type is defined as a structure for working with currency more conveniently:

typedef struct tagCY
 {
 LONGLONG int64;
 }CY;

#else
// Real definition that works with the C++ compiler.
typedef union tagCY {
 struct {
#ifdef _MAC
 long Hi;
 unsigned long Lo;
#else
 unsigned long Lo;
 long Hi;
#endif
 };
 LONGLONG int64;
} CY;
#endif
#endif
// Size is 8.
typedef CY CURRENCY;

DECIMAL
A decimal data type that provides a size and scale for a number (as in coordinates).

See also "Numeric Parsing Functions" in Chapter 7, "Conversion and Manipulation Functions."

typedef struct tagDEC
{
unsigned short wReserved;
union {
struct {

char sign;
char scale;

};

DISPID
Used by IDispatch::Invoke to identify methods, properties, and arguments.

typedef LONG DISPID;

The following (dispatch IDs) DISPIDs have special meaning.

DISPID Description
DISPID_VALUE The default member for the object. This

property or method is invoked when an
ActiveX client specifies the object name
without a property or method.

DISPID_NEWENUM The _NewEnum property. This special,
restricted property is required for collection
objects. It returns an enumerator object that
supports IEnumVARIANT, and should have
the restricted attribute specified in object
description language.

DISPID_EVALUATE The Evaluate method. This method is
implicitly invoked when the ActiveX client
encloses the arguments in square brackets.
For example, the following two lines are
equivalent:
x.[A1:C1].value = 10
x.Evaluate("A1:C1").value = 10
The Evaluate method has the dispatch ID
DISPID_EVALUATE.

DISPID_PROPERTY
PUT

The parameter that receives the value of an
assignment in a PROPERTYPUT.

DISPID_CONSTRUC
TOR

The C++ constructor function for the object.

DISPID_DESTRUCT
OR

The C++ destructor function for the object.

DISPID_UNKNOWN The value returned by
IDispatch::GetIDsOfNames to indicate that a
member or parameter name was not found.

Note The reserved dispatch IDs (DISPIDs) are:

DISPID_Name -800
DISPID_Delete -801
DISPID_Object -802
DISPID_Parent -803

DISPPARAMS
Used by IDispatch::Invoke to contain the arguments passed to a method or property. For more
information, see "IDispatch::Invoke" in Chapter 5, "Dispatch Interface and API Functions."

typedef struct FARSTRUCT tagDISPPARAMS{
VARIANTARG FAR* rgvarg; // Array of arguments.

DISPID FAR* rgdispidNamedArgs; // Dispatch IDs of named arguments.
unsigned int cArgs; // Number of arguments.
unsigned int cNamedArgs; // Number of named arguments.

} DISPPARAMS;

EXCEPINFO
Describes an exception that occurred during IDispatch::Invoke. For more information on exceptions, see
"IDispatch::Invoke" in Chapter 5, "Dispatch Interface and API Functions."

typedef struct FARSTRUCT tagEXCEPINFO {
unsigned short wCode; // An error code describing the error.
unsigned short wReserved;
BSTR bstrSource; // Source of the exception.
BSTR bstrDescription; // Textual description of the error.
BSTR bstrHelpFile; // Help file path.
unsigned long dwHelpContext; // Help context ID.
void FAR* pvReserved;
// Pointer to function that fills in Help and description info.
HRESULT (STDAPICALLTYPE FAR* pfnDeferredFillIn)

(struct tagEXCEPINFO FAR*);
RETURN VALUE return value; // A return value describing the error.

} EXCEPINFO, FAR* LPEXCEPINFO;

The following table describes the fields of the EXCEPINFO structure.

Field name Type Description
wCode unsigned short An error code identifying the

error. Error codes should be
greater than 1000. Either this
field or the return value field
must be filled in; the other must
be set to 0.

wReserved unsigned short Reserved; should be set to 0.
bstrSource BSTR A textual, human-readable name

of the source of the exception.
Typically, this is an application
name. This field should be filled
in by the implementor of
IDispatch.

BstrDescriptio
n

BSTR A textual, human-readable
description of the error intended
for the customer. If no
description is available, use Null.

bstrHelpFile BSTR The fully qualified drive, path,
and file name of a Help file with
more information about the error.
If no Help is available, use Null.

DwHelpConte
xt

unsigned long The Help context ID of the topic
within the Help file. This field
should be filled in if and only if
the bstrHelpFile field is not Null.

pvReserved void FAR* Must be set to Null.
PfnDeferredFil
lIn

STDAPICALLTYPE Pointer to a function that takes
an EXCEPINFO structure as an
argument and returns an
HRESULT value. If deferred, fill-
in is not desired, this field should

be set to Null.
scode SCODE A return value describing the

error. Either this field or wCode
(but not both) must be filled in;
the other must be set to 0. (16-
bit versions only)

Use the pfnDeferredFillIn field to allow an object to defer filling in the bstrDescription, bstrHelpFile, and
dwHelpContext fields until they are needed. This field might be used, for example, if loading the string for
the error is a time-consuming operation. To use deferred fill-in, the object puts a function pointer in this
slot and does not fill any of the other fields except wCode, which is required.

To get additional information, the caller passes the EXCEPINFO structure back to the pexcepinfo callback
function, which fills in the additional information. When the ActiveX object and the ActiveX client are in
different processes, the ActiveX object calls pfnDeferredFillIn before returning to the controller.

INTERFACEDATA
Describes the ActiveX object's properties and methods.

typedef struct FARSTRUCT tagINTERFACEDATA {
METHODDATA FAR* pmethdata; // Pointer to an array of METHODDATAs.
unsigned int cMembers; // Count of members.

} INTERFACEDATA;

LCID
Identifies a locale for national language support. Locale information is used for international string
comparisons and localized member names. For information on locale IDs, see "Supporting Multiple
National Languages" in Chapter 2, "Exposing ACTIVEX Objects."

typedef unsigned long LCID;

METHODDATA
Used to describe a method or property.

typedef struct FARSTRUCT tagMETHODDATA {
OLECHAR FAR* szName; // Member name.
PARAMDATA FAR* ppdata; // Pointer to array of PARAMDATAs.
DISPID dispid; // Member ID.
unsigned int iMeth; // Method index.
CALLCONV cc; // Calling convention.
unsigned int cArgs; // Count of arguments.
unsigned short wFlags; // Description of whether this is a

// method or a PROPERTYGET,
PROPERTYPUT, or // or
PROPERTYPUTREF.

VARTYPE vtReturn; // Return type.
} METHODDATA;

The following table describes the fields of the METHODDATA structure.

Name Type Description
szName OLECHAR FAR* The method name.
Ppdata PARAMDATA

FAR*
The parameters for the method. The
first parameter is ppdata[0], and so
on.

Dispid DISPID The ID of the method, as used in
IDispatch.

IMeth unsigned int The index of the method in the VTBL
of the interface. The indexes start
with 0.

Cc CALLCONV The calling convention. The CDECL
and Pascal calling conventions are
supported by the dispatch interface
creation functions, such as
CreateStdDispatch.

CArgs unsigned int The number of arguments for the
method.

WFlags unsigned short Flags that indicate whether the
method is used for getting or setting
a property. The flags are the same as
in IDispatch::Invoke.
DISPATCH_METHOD indicates that
this is not used for a property.
DISPATCH_PROPERTYGET
indicates that the method is used to
get a property value.
DISPATCH_PROPERTYPUT
indicates that the method is used to
set the value of a property.
DISPATCH_PROPERTYPUTREF
indicates that the method is used to
make the property refer to a passed-
in object.

VtReturn VARTYPE Return type for the method.

PARAMDATA
Used to describe a parameter accepted by a method or property.

typedef struct FARSTRUCT tagPARAMDATA {
OLECHAR FAR* szName; // Parameter name.
VARTYPE vt; // Parameter type.

} PARAMDATA;

The following table describes the fields of the PARAMDATA structure.

Name Type Description
szName OLECHAR FAR* The parameter name. Names should

follow standard conventions for
programming language access; that is,
no embedded spaces or control
characters, and 32 or fewer characters.
The name should be localized because
each type description provides names
for a particular locale.

Vt VARTYPE The VARTYPE that will be used by the
receiver. If more than one parameter
type is accepted, VT_VARIANT should
be specified.

VARIANT and VARIANTARG
Use VARIANTARG to describe arguments passed within DISPPARAMS, and VARIANT to specify variant
data that cannot be passed by reference. The VARIANT type cannot have the VT_BYREF bit set.
VARIANTs can be passed by value, even if VARIANTARGs cannot.

typedef struct FARSTRUCT tagVARIANT VARIANT;
typedef struct FARSTRUCT tagVARIANT VARIANTARG;

typedef struct tagVARIANT {

VARTYPE vt;
unsigned short wReserved1;
unsigned short wReserved2;
unsigned short wReserved3;
union {

unsigned char bVal; // VT_UI1.
short iVal; // VT_I2 .
long lVal; // VT_I4 .
float fltVal; // VT_R4 .
double dblVal; // VT_R8 .
VARIANT_BOOL bool; // VT_BOOL.
RETURN VALUE return value; // VT_ERROR.
CY cyVal; // VT_CY .
DATE date; // VT_DATE.
BSTR bstrVal; // VT_BSTR.
IUnknown FAR* punkVal; // VT_UNKNOWN.
IDispatch FAR* pdispVal; // VT_DISPATCH.
SAFEARRAY FAR* parray; // VT_ARRAY|*.
unsigned char FAR *pbVal; // VT_BYREF|VT_UI1.
short FAR* piVal; // VT_BYREF|VT_I2.
long FAR* plVal; // VT_BYREF|VT_I4.
float FAR* pfltVal; // VT_BYREF|VT_R4.
double FAR* pdblVal; // VT_BYREF|VT_R8.
VARIANT_BOOL FAR* pbool; // VT_BYREF|VT_BOOL.
RETURN VALUE FAR* preturn value; //

VT_BYREF|VT_ERROR.
CY FAR* pcyVal; // VT_BYREF|

VT_CY.
DATE FAR* pdate; // VT_BYREF|VT_DATE.
BSTR FAR* pbstrVal; // VT_BYREF|VT_BSTR.
IUnknown FAR* FAR* ppunkVal; // VT_BYREF|VT_UNKNOWN.
IDispatch FAR* FAR* ppdispVal; // VT_BYREF|VT_DISPATCH.
SAFEARRAY FAR* FAR* parray; // VT_ARRAY|*.
VARIANT FAR* pvarVal; // VT_BYREF|VT_VARIANT.
void FAR* byref; // Generic ByRef.

};
};

To simplify extracting values from VARIANTARGs, Automation provides a set of functions for manipulating
this type. Use of these functions is strongly recommended to ensure that applications apply consistent
coercion rules.

The vt value governs the interpretation of the union as follows:

Value Description

VT_EMPTY No value was specified. If an optional
argument to an Automation method is left
blank, do not pass a VARIANT of type
VT_EMPTY. Instead, pass a VARIANT of type
VT_ERROR with a value of
DISP_E_MEMBERNOTFOUND.

VT_EMPTY |
VT_BYREF

Not valid.

VT_UI1 An unsigned 1-byte character is stored in
bVal.

VT_UI1 | VT_BYREF A reference to an unsigned 1-byte character
was passed. A pointer to the value is in pbVal.

VT_I2 A 2-byte integer value is stored in iVal.
VT_I2 | VT_BYREF A reference to a 2-byte integer was passed. A

pointer to the value is in piVal.
VT_I4 A 4-byte integer value is stored in lVal.
VT_I4 | VT_BYREF A reference to a 4-byte integer was passed. A

pointer to the value is in plVal.
VT_R4 An IEEE 4-byte real value is stored in fltVal.
VT_R4 | VT_BYREF A reference to an IEEE 4-byte real value was

passed. A pointer to the value is in pfltVal.
VT_R8 An 8-byte IEEE real value is stored in dblVal.
VT_R8 | VT_BYREF A reference to an 8-byte IEEE real value was

passed. A pointer to its value is in pdblVal.
VT_CY A currency value was specified. A currency

number is stored as an 8-byte, two's
complement integer, scaled by 10,000 to give
a fixed-point number with 15 digits to the left
of the decimal point and 4 digits to the right.
The value is in cyVal.

VT_CY | VT_BYREF A reference to a currency value was passed. A
pointer to the value is in pcyVal.

VT_BSTR A string was passed; it is stored in bstrVal.
This pointer must be obtained and freed by
the BSTR functions, which are described in
Chapter 7, "Conversion and Manipulation
Functions."

VT_BSTR |
VT_BYREF

A reference to a string was passed. A BSTR*
that points to a BSTR is in pbstrVal. The
referenced pointer must be obtained or freed
by the BSTR functions.

VT_NULL A propagating null value was specified. (This
should not be confused with the null pointer.)
The null value is used for tri-state logic, as
with SQL.

VT_NULL |
VT_BYREF

Not valid.

VT_ERROR An SCODE was specified. The type of the
error is specified in scodee. Generally,
operations on error values should raise an
exception or propagate the error to the return

value, as appropriate.
VT_ERROR |
VT_BYREF

A reference to an SCODE was passed. A
pointer to the value is in pscode.

VT_BOOL A Boolean (True/False) value was specified. A
value of 0xFFFF (all bits 1) indicates True; a
value of 0 (all bits 0) indicates False. No other
values are valid.

VT_BOOL |
VT_BYREF

A reference to a Boolean value. A pointer to
the Boolean value is in pbool.

VT_DATE A value denoting a date and time was
specified. Dates are represented as double-
precision numbers, where midnight, January
1, 1900 is 2.0, January 2, 1900 is 3.0, and so
on. The value is passed in date.
This is the same numbering system used by
most spreadsheet programs, although some
specify incorrectly that February 29, 1900
existed, and thus set January 1, 1900 to 1.0.
The date can be converted to and from an
MS-DOS representation using
VariantTimeToDosDateTime, which is
discussed in Chapter 7, "Conversion and
Manipulation Functions."

VT_DATE |
VT_BYREF

A reference to a date was passed. A pointer to
the value is in pdate.

VT_DISPATCH A pointer to an object was specified. The
pointer is in pdispVal. This object is known
only to implement IDispatch. The object can
be queried as to whether it supports any other
desired interface by calling QueryInterface on
the object. Objects that do not implement
IDispatch should be passed using
VT_UNKNOWN.

VT_DISPATCH |
VT_BYREF

A pointer to a pointer to an object was
specified. The pointer to the object is stored in
the location referred to by ppdispVal.

VT_VARIANT Invalid. VARIANTARGs must be passed by
reference.

VT_VARIANT |
VT_BYREF

A pointer to another VARIANTARG is passed
in pvarVal. This referenced VARIANTARG will
never have the VT_BYREF bit set in vt, so
only one level of indirection can ever be
present. This value can be used to support
languages that allow functions to change the
types of variables passed by reference.

VT_UNKNOWN A pointer to an object that implements the
IUnknown interface is passed in punkVal.

VT_UNKNOWN |
VT_BYREF

A pointer to the IUnknown interface is passed
in ppunkVal. The pointer to the interface is
stored in the location referred to by ppunkVal.

VT_ARRAY |
<anything>

An array of data type <anything> was passed.
(VT_EMPTY and VT_NULL are invalid types
to combine with VT_ARRAY.) The pointer in

pbyrefVal points to an array descriptor, which
describes the dimensions, size, and in-
memory location of the array. The array
descriptor is never accessed directly, but
instead is read and modified using the
functions described in Chapter 7, "Conversion
and Manipulation Functions."

VARTYPE
An enumeration type used in VARIANT, TYPEDESC, OLE property sets, and safe arrays.

The enumeration constants listed in the following VARENUM section are valid in the vt field of a VARIANT
structure.

typedef unsigned short VARTYPE;
enum VARENUM{

VT_EMPTY = 0, // Not specified.
VT_NULL = 1, // Null.
VT_I2 = 2, // 2-byte signed int.
VT_I4 = 3, // 4-byte signed int.
VT_R4 = 4, // 4-byte real.
VT_R8 = 5, // 8-byte real.
VT_CY = 6, // Currency.
VT_DATE = 7, // Date.
VT_BSTR = 8, // Binary string.
VT_DISPATCH = 9, // IDispatch FAR*.
VT_ERROR = 10, // Return value.
VT_BOOL = 11, // Boolean; True=-1, False=0.
VT_VARIANT = 12, // VARIANT FAR*.
VT_UNKNOWN = 13, // IUnknown FAR*.
VT_UI1 = 17, // Unsigned char.

// Other constants that are not valid in VARIANTs omitted here.

};
VT_RESERVED = (int) 0x8000
// By reference, a pointer to the data is passed.
VT_BYREF = (int) 0x4000
VT_ARRAY = (int) 0x2000 // A safe array of the data is passed.

VARENUM
An enumeration type used in VARIANT, TYPEDESC, OLE property sets, and safe arrays.

The following listing identifies the enumerations that apply to each.

// VARENUM usage key,
//
// [V] - May appear in a VARIANT.
// [T] - May appear in a TYPEDESC.
// [P] - May appear in an OLE property set.
// [S] - May appear in a safe array.
//
//
VT_EMPTY [V] [P] // Not specified.
VT_NULL [V] // SQL-style Null.
VT_I2 [V][T][P][S] // 2-byte signed int.
VT_I4 [V][T][P][S] // 4-byte-signed int.
VT_R4 [V][T][P][S] // 4-byte real.
VT_R8 [V][T][P][S] // 8-byte real.
VT_CY [V][T][P][S] // Currency.
VT_DATE [V][T][P][S] // Date.
VT_BSTR [V][T][P][S] // Automation string.
VT_DISPATCH [V][T] [S] // IDispatch FAR*.
VT_ERROR [V][T] [S] // Return value.
VT_BOOL [V][T][P][S] // Boolean; True=-1,
False=0.
VT_VARIANT [V][T][P][S] // VARIANT FAR*.
VT_UNKNOWN [V][T] [S] // IUnknown FAR*.
VT_I1 [T] // Signed char.
VT_UI1 [V][T] [S] // Unsigned char.
VT_UI2 [T] // Unsigned short.
VT_UI4 [T] // Unsigned short.
VT_I8 [T][P] // Signed 64-bit int.
VT_UI8 [T] // Unsigned 64-bit int.
VT_INT [T] // Signed machine int.
VT_UINT [T] // Unsigned machine
int.
VT_VOID [T] // C-style void.
VT_HRESULT [T]
VT_PTR [T] // Pointer type.
VT_SAFEARRAY [T] // Use VT_ARRAY in
VARIANT.
VT_CARRAY [T] // C-style array.
VT_USERDEFINED [T] // User-defined type.
VT_LPSTR [T][P] // Null-terminated
string.
VT_LPWSTR [T][P] // Wide null-terminated
string.
VT_FILETIME [P] // FILETIME.
VT_BLOB [P] // Length-prefixed
bytes.
VT_STREAM [P] // Name of the stream
follows.

VT_STORAGE [P] // Name of the storage
follows.
VT_STREAMED_OBJECT [P] // Stream contains an object.
VT_STORED_OBJECT [P] // Storage contains an
object.
VT_BLOB_OBJECT [P] // Blob contains an object.
VT_CF [P] // Clipboard format.
VT_CLSID [P] // A class ID.
VT_VECTOR [P] // Simple counted array.
VT_ARRAY [V] // SAFEARRAY*.
VT_BYREF [V]

ITypeInfo Data Types
ITypeInfo uses the following structures and enumerations. For more information about the ITypeInfo
interface , refer to Chapter 9, "Type Description Interfaces."

Name Purpose
ARRAYDESC Array description referenced by

TYPEDESC, containing the
element type, dimension count,
and a variable-length array.

ELEMDESC Includes the type description and
process-transfer information for a
variable, a function, or a function
parameter.

FUNCDESC Describes a function.
FUNCFLAGS Enumeration containing constants

that are used to define properties
of a function.

FUNCKIND Enumeration for defining whether a
function is accessd as a virtual,
pure virtual, nonvirtual, static, or
through IDispatch.

HREFTYPE A handle identifying a type
description.

PARAMDESC Contains information needed for
transferring a structure element,
parameter, or function return value
between processes.

PARAMFLAGS Identifies whether the parameter is
the return value of a member, the
local ID of a client, and passes
information from caller to callee, or
callee to caller.

IMPLTYPEFLAGS The interface or dispinterface
represents the default for the
source or sink. This member of a
coclass is called rather than
implemented. The member should
not be displayed or programmable
by users, or sinks receive events
through the VTBL.

INVOKEKIND Defines how a function is called
and invoked. Also passed to
IDispatch::Invoke.

MEMBERID Identifies the member in a type
description. For IDispatch
interfaces, this is the same as a
dispatch ID.

TYPEATTR Contains attributes of ITypeInfo.
TYPEDESC Describes the type of a variable,

the return type of a function, or the
type of a function parameter.

TYPEFLAGS Defines the properties and
attributes of a type description.

TYPEKIND Defines properties of a type.
VARDESC Describes a variable, constant, or

data member.
VARFLAGS Used to set attributes of a variable.
VARKIND Defines the kind of variable.

ARRAYDESC
Contained within the TYPEDESC, which describes the type of the array's elements, and information about
the array's dimensions. It is defined as follows:

typedef struct tagARRAYDESC{
TYPEDESC tdescElem; // Element type.
unsigned short cDims; // Dimension count.
SAFEARRAYBOUND rgbounds[1]; // Variable length array containing

// one element for each
dimension.
} ARRAYDESC;

ELEMDESC
Includes the type description and process-transfer information for a variable, a function, or a function
parameter. It is defined as follows:

typedef struct tagELEMDESC{
TYPEDESC tdesc; // Type of the element.
PARAMDESC idldesc; // Information needed for transferring

the
// element between processes.

} ELEMDESC;

FUNCDESC
Describes a function, and is defined as follows:

typedef struct tagFUNCDESC {
MEMBERID memid; // Function member ID.
RETURN VALUE FAR* lprgreturn value; // Legal return values for the

// function.
ELEMDESC FAR* lprgelemdescParam; // Array of parameter types.
FUNCKIND funckind; // Specifies whether

the //
function is virtual, static,

// or dispatch-only.
INVOKEKIND invkind; // Invocation kind. Indicates if this is

a // property function, and if so,
what kind.

CALLCONV callconv; // Specifies the function's calling
// convention.

short cParams; // Count of total number of parameters.
short cParamsOpt; // Count of optional parameters (detailed

// description follows).
short oVft; // For FUNC_VIRTUAL, specifies the offset

in // the VTBL.
short cReturn values; // Count of permitted return values.
ELEMDESC elemdescFunc; // Contains the return type of the function.
unsigned short wFuncFlags; // Definition of flags follows.

} FUNCDESC;

The cParams field specifies the total number of required and optional parameters.

The cParamsOpt field specifies the form of optional parameters accepted by the function, as follows:

· A value of 0 specifies that no optional arguments are supported.
· A value of -1 specifies that the method's last parameter is a pointer to a safe array of variants. Any

number of variant arguments greater than cParams -1 must be packaged by the caller into a safe
array and passed as the final parameter. This array of optional parameters must be freed by the caller
after control is returned from the call.

· Any other number indicates that the last n parameters of the function are variants and do not need to
be specified by the caller explicitly. The parameters left unspecified should be filled in by the compiler
or interpreter as variants of type VT_ERROR with the value DISP_E_PARAMNOTFOUND.

The fields cReturn values and lprgreturn value store the count and the set of errors that a function can
return. If cReturn values = -1, then the set of errors is unknown. If cReturn values = -1, or if cReturn
values = 0, then lprgreturn value is undefined.

FUNCFLAGS
Defined as follows:

typedef enum tagFUNCFLAGS {
FUNCFLAG_FRESTRICTED = 1

, FUNCFLAG_FSOURCE = 0x2
, FUNCFLAG_FBINDABLE = 0x4
, FUNCFLAG_FREQUESTEDIT = 0x8
, FUNCFLAG_FDISPLAYBIND = 0x10
, FUNCFLAG_FDEFAULTBIND = 0x20
, FUNCFLAG_FHIDDEN = 0x40

 , FUNCFLAG_FRESTRICTED = 0x80
 , FUNCFLAG_FDEFAULTCOLLELEM= 0x100
 , FUNCFLAG_FUIDEFAULT = 0x200
 , FUNCFLAG_FNONBROWSABLE = 0x400
 , FUNCFLAG_FREPLACEABLE = 0x800

} FUNCFLAGS;

Value Description
FUNCFLAG_FRESTRICTED The function should not be

accessible from macro languages.
This flag is intended for system-level
functions or functions that type
browsers should not display.

FUNCFLAG_FSOURCE The function returns an object that is
a source of events.

FUNCFLAG_FBINDABLE The function that supports data
binding.

FUNCFLAG_FREQUESTEDIT
FUNCFLAG_FDISPLAYBIND The function that is displayed to the

user as bindable.
FUNC_FBINDABLE must also be
set.

FUNCFLAG_FDEFAULTBIND The function that best represents the
object. Only one function in a type
information can have this attribute.

FUNCFLAG_FHIDDEN The function should not be displayed
to the user, although it exists and is
bindable.

FUNCFLAG_FDEFAULTCOLL
ELEM

Permits an optimization in which the
compiler looks for a member named
"xyz" on the type of "abc". If such a
member is found and is flagged as
an accessor function for an element
of the default collection, then a call is
generated to that member function.
Permitted on members in
dispinterfaces and interfaces; not
permitted on modules. For more
information, refer to "defaultcollelem"
in Chapter 8, "Type Libraries and the
Object Description Language."

FUNCFLAG_FUIDEFAULT The type information member is the
default member for display in the
user interface.

FUNCFLAG_FNONBROWSAB
LE

The property appears in an object
browser, but not in a properties
browser.

FUNCFLAG_FREPLACEABLE Tags the interface as having default
behaviors.

Note FUNCFLAG_FHIDDEN means that the property should never be shown in object browsers,
property browsers, and so on. This function is useful for removing items from an object model. Code
can bind to the member, but the user will never know that the member
exists.FUNCFLAG_FNONBROWSABLE means that the property should not be displayed in a
properties browser. It is used in cicrcumstances in which an error would occur if the property were
shown in a properties browser.

Examples
· The IsSelected property for a control. Setting it to False would confuse a user if the properties

browser was focus-oriented.
· Properties that take a long time to evaluate (for example, a Count property for a database object).

The time to evaluate might take longer than a user is willing to wait.
· Properties that have side effects.

FUNCFLAG_FRESRICTED means that macro-oriented programmers should not be allowed to access
this member. These members are usually treated as _FHIDDEN by tools such as Visual Basic, with the
main difference being that code cannot bind to those members.

FUNCKIND
The FUNCKIND enumeration is defined as follows:

typedef enum tagFUNCKIND {
FUNC_VIRTUAL,
FUNC_PUREVIRTUAL,
FUNC_NONVIRTUAL,
FUNC_STATIC,
FUNC_DISPATCH,

} FUNCKIND;

Value Description
FUNC_PUREVIRTUAL The function is accessed through the

virtual function table, and takes an
implicit this pointer.

FUNC_VIRTUAL The function is accessed the same as
PUREVIRTUAL, except the function has
an implementation.

FUNC_NONVIRTUAL The function is accessed by static
address and takes an implicit this
pointer.

FUNC_STATIC The function is accessed by static
address and does not take an implicit
this pointer.

FUNC_DISPATCH The function can be accessed only
through IDispatch.

HREFTYPE
A handle that identifies a type description.

typedef unsigned long HREFTYPE;

IMPLTYPEFLAGS
Defined as follows:

#define IMPLTYPEFLAG_FDEFAULT0x1
#define IMPLTYPEFLAG_FSOURCE 0x2
#define IMPLTYPEFLAG_FRESTRICTED 0x4
#define IMPLTYPEFLAG_FDEFAULTVTABLE0x800

Value Description
IMPLTYPEFLAG_FDEFAULT The interface or dispinterface

represents the default for the
source or sink.

IMPLTYPEFLAG_FSOURCE This member of a coclass is
called rather than implemented.

IMPLTYPEFLAG_FRESTRICTE
D

The member should not be
displayed or programmable by
users.

IMPLTYPEFLAG_FDEFAULTVT
ABLE

Sinks receive events through the
VTBL.

INVOKEKIND
Defined as follows:

typedef enum tagINVOKEKIND {
INVOKE_FUNC = DISPATCH_METHOD,
INVOKE_PROPERTYGET = DISPATCH_PROPERTYGET,
INVOKE_PROPERTYPUT = DISPATCH_PROPERTYPUT,
INVOKE_PROPERTYPUTREF = DISPATCH_PROPERTYPUTREF

} INVOKEKIND;

Value Description
INVOKE_FUNC The member is called using a

normal function invocation syntax.
INVOKE_PROPERTYGET The function is invoked using a

normal property-access syntax.
INVOKE_PROPERTYPUT The function is invoked using a

property value assignment syntax.
Syntactically, a typical programming
language might represent changing
a property in the same way as
assignment. For example:
object.property : = value.

INVOKE_PROPERTYPUTRE
F

The function is invoked using a
property reference assignment
syntax.

In C, value assignment is written as *pobj1 = *pobj2, while reference assignment is written as pobj1 =
pobj2. Other languages have other syntactic conventions. A property or data member can support only a
value assignment, a reference assignment, or both. For a detailed description of property functions, see
Chapter 5, "Dispatch Interface and API Functions." The INVOKEKIND enumeration constants are the
same constants that are passed to IDispatch::Invoke to specify the way in which a function is invoked.

MEMBERID
Identifies the member in a type description. For IDispatch interfaces, this is the same as DISPID.

typedef DISPID MEMBERID;

This is a 32-bit integral value in the following format.

Bits Value
0 - 15 Offset. Any value is permissible.
16 - 21 The nesting level of this type information in the

inheritance hierarchy. For example:
interface mydisp : IDispatch

The nesting level of IUnknown is 0, IDispatch is 1, and
MyDisp is 2.

22 - 25 Reserved. Must be zero.
26 - 28 Value of the dispatch ID.
29 True if this is the member ID for a FUNCDESC;

otherwise False.
30 - 31 Must be 01.

Negative IDs are reserved for use by Automation.

PARAMDESC
Contains information needed for transferring a structure element, parameter, or function return value
between processes. It is defined as follows:

typedef struct FARSTRUCT tagPARAMDESC {
unsigned long lpVarValue;
unsigned short wPARAMFlags;

} PARAMDESC

The lpVarValue field contains a pointer to a VARIANT that describes the default value for this parameter, if
the PARAMFLAG_FOPT and PARAMFLAG_FHASDEFAULT bit of wParamFlags is set.l.

PARAMFLAGS
Defined as follows:

#define PARAMFLAG_NONE 0
#define PARAMFLAG_FIN 0x1
#define PARAMFLAG_FOUT 0x2
#define PARAMFLAG_FLCID 0x4
#define PARAMFLAG_FRETVAL 0x8
#define PARAMFLAG_FOPT 0x10
#define PARAMFLAG_FHASDEFAULT0x20

Value Description
PARAMFLAG_NONE Whether the parameter passes or

receives information is unspecified.
IDispatch interfaces can use this flag.

PARAMFLAG_FIN Parameter passes information from the
caller to the callee.

PARAMFLAG_FOUT Parameter returns information from the
callee to the caller.

PARAMFLAG_FLCID Parameter is the locale ID of a client
application.

PARAMFLAG_FRETVAL Parameter is the return value of the
member.

PARAMFLAG_FOPT Parameter is optional. The lpVarValue
field contains a pointer to a VARIANT
describing the default value for this
parameter, if the PARAMFLAG_FOPT
and PARAMFLAG_FHASDEFAULT bit
of wParamFlags is set.l.

PARAMFLAG_FHASDEFAU
LT

Parameter has default behaviors
defined. The lpVarValue field contains
a pointer to a VARIANT that describes
the default value for this parameter, if
the PARAMFLAG_FOPT and
PARAMFLAG_FHASDEFAULT bit of
wParamFlags is set.l.

TYPEATTR
Contains attributes of an ITypeInfo, and is defined as follows:

typedef struct FARSTRUCT tagTYPEATTR {
GUID guid; // The GUID of the type

information.
LCID lcid; // Locale of member names and doc

// strings.
unsigned long dwReserved;
MEMBERID memidConstructor; // ID of constructor, or MEMBERID_NIL if

// none.
MEMBERID memidDestructor; // ID of destructor, or MEMBERID_NIL if

// none.

OLECHAR FAR* lpstrSchema; // Reserved for future use.
unsigned long cbSizeInstance;// The size of an instance of

// this type.
TYPEKIND typekind; // The kind of type this

information
// describes.

unsigned short cFuncs; // Number of functions.
unsigned short cVars; // Number of variables/data members.
unsigned short cImplTypes; // Number of implemented interfaces.
unsigned short cbSizeVft; // The size of this type's VTBL.
unsigned short cbAlignment; // Byte alignment for an instance

// of this type.
unsigned short wTypeFlags;
unsigned short wMajorVerNum; // Major version number.
unsigned short wMinorVerNum; // Minor version number.
TYPEDESC tdescAlias; // If TypeKind == TKIND_ALIAS,

// specifies the type for
which

// this type is an alias.
PARAMDESC paramdescType; // IDL attributes of the

// described type.
} TYPEATTR, FAR* LPTYPEATTR;

The cbAlignment field indicates how addresses are aligned. A value of 0 indicates alignment on the 64K
boundary; 1 indicates no special alignment. For other values, n indicates aligned on byte n.

TYPEDESC
Describes the type of a variable, the return type of a function, or the type of a function parameter. It is
defined as follows:

typedef struct FARSTRUCT tagTYPEDESC {
union {

// VT_PTR|VT_SAFEAEEAY, the pointed-at type.
struct FARSTRUCT tagTYPEDESC FAR* lptdesc;

// VT_CARRAY.

struct FARSTRUCT tagARRAYDESC FAR* lpadesc;

// VT_USERDEFINED is used to get type information for a
// user-defined type.

HREFTYPE hreftype;

}UNION_NAME(u);
VARTYPE vt;

} TYPEDESC;

If the variable is VT_SAFEARRAY or VT_PTR, the union portion of the TYPEDESC contains a pointer to
a TYPEDESC that specifies the element type.

TYPEFLAGS
The TYPEFLAGS enumeration is defined as follows:

typedef enum tagTYPEFLAGS {
TYPEFLAG_FAPPOBJECT = 0x01
, TYPEFLAG_FCANCREATE = 0x02
, TYPEFLAG_FLICENSED = 0x04
, TYPEFLAG_FPREDECLID = 0x08
, TYPEFLAG_FHIDDEN = 0x10
, TYPEFLAG_FCONTROL = 0x20
, TYPEFLAG_FDUAL = 0x40
, TYPEFLAG_FNONEXTENSIBLE = 0x80
, TYPEFLAG_FOLEAUTOMATION = 0x100
, TYPEFLAG_FAGGREGATABLE = 0x400
, TYPEFLAG_FREPLACEABLE = 0x800
, TYPEFLAG_FDISPATCHABLE = 0x1000

} TYPEFLAGS;

Value Description
TYPEFLAG_FAPPOBJECT A type description that describes an

Application object.
TYPEFLAG_FCANCREATE Instances of the type can be created

by ITypeInfo::CreateInstance.
TYPEFLAG_FLICENSED The type is licensed.
TYPEFLAG_FPREDECLID The type is predefined. The client

application should automatically
create a single instance of the object
that has this attribute. The name of
the variable that points to the object
is the same as the class name of the
object.

TYPEFLAG_FHIDDEN The type should not be displayed to
browsers.

TYPEFLAG_FCONTROL The type is a control from which
other types will be derived, and
should not be displayed to users.

TYPEFLAG_FDUAL The types in the interface derive
from IDispatch and are fully
compatible with Automation. Not
allowed on dispinterfaces (dispatch
interfaces).

TYPEFLAG_FNONEXTENSIBLE The interface cannot add members
at run time.

TYPEFLAG_FOLEAUTOMATION The types used in the interface are
fully compatible with Automation, and
may be displayed in an object
browser. Setting dual on an interface
sets this flag in addition to
TYPEFLAG_FDUAL. Not allowed on
dispinterfaces.

TYPEFLAG_FAGGREGATABLE The class supports aggregation.
TYPEFLAG_FREPLACEABLE The object supports

IConnectionPointWithDefault, and
has default behaviors.

TYPEFLAG_FDISPATCHABLE Indicates that the interface derives
from IDispatch, either directly or
indirectly. This flag is computed.
There is no Object Description
Language for the flag.

TYPEFLAG_FAPPOBJECT can be used on type descriptions with
TypeKind = TKIND_COCLASS, and indicates that the type description specifies an Application object.

Members of the Application object are globally accessible. The Bind method of the ITypeComp instance
associated with the library binds to the members of an Application object, just as it does for type
descriptions that have
TypeKind = TKIND_MODULE.

The type description implicitly defines a global variable with the same name and type described by the
type description. This variable is also globally accessible. When Bind is passed the name of an
Application object, a VARDESC is returned, which describes the implicit variable. The ID of the implicitly
created variable is always ID_DEFAULTINST.

The ITypeInfo::CreateInstance function of an Application object type description is called, and then it
uses GetActiveObject to retrieve the Application object. If GetActiveObject fails because the application
is not running, then CreateInstance calls CoCreateInstance, which should start the application.

When TYPEFLAG_FCANCREATE is True, ITypeInfo::CreateInstance can create an instance of the
type. This is currently true only for component object classes for which a globally unique ID has been
specified.

TYPEKIND
Defined as follows:

typedef enum tagTYPEKIND {
 TKIND_ENUM = 0
, TKIND_RECORD
, TKIND_MODULE
, TKIND_INTERFACE
, TKIND_DISPATCH
, TKIND_COCLASS
, TKIND_ALIAS
, TKIND_UNION
, TKIND_MAX

} TYPEKIND;

Value Description
TKIND_ALIAS A type that is an alias for another type.
TKIND_COCLASS A set of implemented component object

interfaces.
TKIND_DISPATCH A set of methods and properties that are

accessible through IDispatch::Invoke. By
default, dual interfaces return
TKIND_DISPATCH.

TKIND_ENUM A set of enumerators.
TKIND_INTERFACE A type that has virtual functions, all of

which are pure.
TKIND_MODULE A module that can only have static

functions and data (for example, a DLL).
TKIND_RECORD A structure with no methods.
TKIND_UNION A union, all of whose members have an

offset of zero.
TKIND_MAX End of ENUM marker.

VARDESC
Describes a variable, constant, or data member. It is defined as follows:

typedef struct FARSTRUCT tagVARDESC {
MEMBERID memid;
OLECHAR FAR* lpstrSchema; // Reserved for future use.
union {

// VAR_PERINSTANCE, the
offset of this

// variable within the
instance.

unsigned long oInst;

// VAR_CONST, the value of
the constant.

VARIANT FAR* lpvarValue;

} UNION_NAME(u);
ELEMDESC elemdescVar;
unsigned short wVarFlags;
VARKIND varkind;

} VARDESC

VARFLAGS
Defined as follows:

typedef enum tagVARFLAGS {
VARFLAG_FREADONLY = 0x1

 , VARFLAG_FSOURCE = 0x2
 , VARFLAG_FBINDABLE = 0x4
 , VARFLAG_FREQUESTEDIT = 0x8
 , VARFLAG_FDISPLAYBIND = 0x10
 , VARFLAG_FDEFAULTBIND = 0x20
 , VARFLAG_FHIDDEN = 0x40
 , VARFLAG_FRESTRICTED = 0x80
 , VARFLAG_FDEFAULTCOLLELEM= 0x100
 , VARFLAG_FUIDEFAULT = 0x200
 , VARFLAG_FNONBROWSABLE = 0x400
 , VARFLAG_FREPLACEABLE = 0x800

} VARFLAGS;

Value Description
VARFLAG_FREADONLY Assignment to the variable

should not be allowed.
VARFLAG_FSOURCE The variable returns an object

that is a source of events.
VARFLAG_FBINDABLE The variable supports data

binding.
VARFLAG_FREQUESTEDIT
VARFLAG_FDISPLAYBIND The variable is displayed to the

user as bindable.
VARFLAG_FBINDABLE must
also be set.

VARFLAG_FDEFAULTBIND The variable is the single
property that best represents the
object. Only one variable in type
information can have this
attribute.

VARFLAG_FHIDDEN The variable should not be
displayed to the user in a
browser, although it exists and is
bindable.

VARFLAG_FRESTRICTED The variable should not be
accessible from macro
languages. This flag is intended
for system-level variables or
variables that you do not want
type browsers to display.

VARFLAG_FDEFAULTCOLLELEM Permits an optimization in which
the compiler looks for a member
named "xyz" on the type of abc.
If such a member is found and is
flagged as an accessor function
for an element of the default
collection, then a call is

generated to that member
function. Permitted on members
in dispinterfaces and interfaces;
not permitted on modules.

VARFLAG_FUIDEFAULT The variable is the default
display in the user interface.

VARFLAG_FNONBROWSABLE The variable appears in an
object browser, but not in a
properties browser.

VARFLAG_FREPLACEABLE Tags the interface as having
default behaviors.

VARFLAG_FIMMEDIATEBIND The variable is mapped as
individual bindable properties.

VARKIND
Defined as follows:

typedef enum tagVARKIND {
VAR_PERINSTANCE,
VAR_STATIC,
VAR_CONST,
VAR_DISPATCH

} VARKIND;

Value Description
VAR_PERINSTANCE The variable is a field or member of the

type. It exists at a fixed offset within each
instance of the type.

VAR_STATIC There is only one instance of the variable.
VAR_CONST The VARDESC describes a symbolic

constant. There is no memory associated
with it.

VAR_DISPATCH The variable can only be accessed
through IDispatch::Invoke.

ITypeLib Structures and Enumerations
The type building interfaces use the following structures and enumerations.

LIBFLAGS
Defines flags that apply to type libraries. It is defined as follows:

typedef enum tagLIBFLAGS {
 LIBFLAG_FRESTRICTED = 0x01
, LIBFLAG_FCONTROL = 0x02
, LIBFLAG_FHIDDEN = 0x04

} LIBFLAGS;

Value Description
LIBFLAG_FCONTROL The type library describes controls, and

should not be displayed in type browsers
intended for nonvisual objects.

LIBFLAG_FRESTRICTEDThe type library is restricted, and should
not be displayed to users.

LIBFLAG_FHIDDEN The type library should not be displayed to
users, although its use is not restricted.
Should be used by controls. Hosts should
create a new type library that wraps the
control with extended properties.

REGKIND
Control how a type library is registered

typedef enum tagREGKIND{
 REGKIND_DEFAULT,
 REGKIND_REGISTER,
 REGKIND_NONE
} REGKIND;

Value Description
REGKIND_DEFAULT Use default register behavior
REGKIND_REGISTE
R

Registered type

REGKIND_NONE Not a registered type

SYSKIND
Identifies the target operating system platform. It is defined as follows:

typedef enum tagSYSKIND {
SYS_WIN16,
SYS_WIN32,
SYS_MAC

} SYSKIND;

Value Description
SYS_WIN16 The target operating system for the type

library is 16-bit Windows systems. By default,
data members are packed.

SYS_WIN32 The target operating system for the type
library is 32-bit Windows systems. By default,
data members are naturally aligned (for
example, 2-byte integers are aligned on even-
byte boundaries; 4-byte integers are aligned
on quad-word boundaries, and so on).

SYS_MAC The target operating system for the type
library is Apple Macintosh. By default, all data
members are aligned on even-byte
boundaries.

TLIBATTR
Contains information about a type library. Information from this structure is used to identify the type library
and to provide national language support for member names. It is defined as follows:

typedef struct FARSTRUCT tagTLIBATTR {
 GUID guid; // Unique ID of the library.
 LCID lcid; // Language/locale of the library.
 SYSKIND syskind; // Target hardware platform.
 unsigned short wMajorVerNum; // Major version number.
 unsigned short wMinorVerNum; // Minor version number.
 unsigned short wLibFlags; // Library flags.
} TLIBATTR, FAR * LPTLIBATTR;

For more information on national language support, see "Supporting Multiple National Languages" in
Chapter 2, "Exposing ActiveX objects," and refer to the National Language Support API reference material
in the Windows NT® documentation.

ITypeComp Structures and Enumerations
The ITypeComp interface uses the following structures and enumerations:

BINDPTR
A union containing a pointer to a FUNCDESC, VARDESC, or an ITypeComp interface. It is defined as
follows:

typedef union tagBINDPTR {
FUNCDESC FAR* lpfuncdesc;
VARDESC FAR* lpvardesc;
ITypeComp FAR* lptcomp;

} BINDPTR;

DESCKIND
Identifies the type description being bound to, and is defined as follows:

typedef enum tagDESCKIND {
DESCKIND_NONE,
DESCKIND_FUNCDESC,
DESCKIND_VARDESC,
DESCKIND_TYPECOMP,
DESCKIND_IMPLICITAPPOBJ

} DESCKIND;

Comments

Value Description
DESCKIND_NONE No match was found.
DESCKIND_FUNCDESC A FUNCDESC was returned.
DESCKIND_VARDESC A VARDESC was returned.
DESCKIND_TYPECOMP A TYPECOMP was returned.
DESCKIND_IMPLICITAPPOBJ An IMPLICITAPPOBJ was returned.

Conversion and Manipulation
Functions

Data manipulation and conversion functions access and manipulate the array, string, and variant data
types used by Automation. This chapter contains information about the following functions:

· Array manipulation
· String manipulation
· Variant manipulation
· Data type conversion
· BSTR and vector conversion
· Date and time conversion

You can locate all of the data functions and data types in the following files.

Implemented by Used by

Header
file name

Import library
file name

Oleaut32.dll (32-bit
systems)
Ole2disp.dll (16-bit
systems)

Applications that
expose or
access
programmable
objects.

Oleauto.h.
Dispatch.h

Oleauto32.lib
Ole2disp.lib

Overview of Functions
The data manipulation functions are summarized in the following table.

Category Function name Purpose
Array
manipulatio
n

SafeArrayAccessData Increments the lock count of
an array and returns a pointer
to array data.

SafeArrayAllocData Allocates memory for a safe
array based on a descriptor
created with
SafeArrayAllocDescriptor.

SafeArrayAllocDescript
or

Allocates memory for a safe
array descriptor.

SafeArrayCopy Copies an existing array.
SafeArrayCopyData Copies a source array to a

target array after releasing
source resources.

SafeArrayCreate Creates a new array
descriptor.

SafeArrayCreateVector Creates a one-dimensional
array whose lower bound is
always zero.

SafeArrayDestroy Destroys an array descriptor.
SafeArrayDestroyData Frees memory used by the

data elements in a safe array.
SafeArrayDestroyDescri
ptor

Frees memory used by a safe
array descriptor.

SafeArrayGetDim Returns the number of
dimensions in an array.

SafeArrayGetElement Retrieves an element of an
array.

SafeArrayGetElemsize Returns the size of an
element.

SafeArrayGetLBound Retrieves the lower bound for
a given dimension.

SafeArrayGetUBound Retrieves the upper bound for
a given dimension.

SafeArrayLock Increments the lock count of
an array.

SafeArrayPtrOfIndex Returns a pointer to an array
element.

SafeArrayPutElement Assigns an element into an
array.

SafeArrayRedim Resizes a safe array.
SafeArrayUnaccessData Frees a pointer to array data

and decrements the lock count
of the array.

SafeArrayUnlock Decrements the lock count of
an array.

String
manipulatio
n

SysAllocString Creates and initializes a string.

SysAllocStringByteLen Creates a zero-terminated
string of a specified length (32-
bit only).

SysAllocStringLen Creates a string of a specified
length.

SysFreeString Frees a previously created
string.

SysReAllocString Changes the size and value of
a string.

SysReAllocStringLen Changes the size of an
existing string.

SysStringByteLen Returns the length of a string
in bytes (32-bit only).

SysStringLen Returns the length of a string.
Variant
manipulatio
n

VariantChangeType Converts a variant to another
type.

VariantChangeTypeEx Converts a variant to another
type, using a locale ID.

VariantClear Releases resources and sets a
variant to VT_EMPTY.

VariantCopy Copies a variant.
VariantCopyInd Copies variants that may

contain a pointer.
VariantInit Initializes a variant.

Data type
conversion

VariantChangeType
VariantChangeTypeEx

Converts specific types of
variants to other variant types.

BSTR and
vector
conversion

VectorFromBstr Returns a vector, assigning
each character in the BSTR to
an element of the vector.

BstrFromVector Returns a BSTR, assigning
each element of the vector to a
character in the BSTR.

Time and
Date
conversion

DosDateTimeToVariantT
ime

Converts MS-DOS date and
time representations to a
variant time.

VariantTimeToDosDateT
ime

Converts a variant time to MS-
DOS date and time
representations.

VariantTimeToSystemTi
me

Converts a variant time to
system date and time
representations.

SystemTimeToVariantTi
me

Converts system date and
time representations to a
variant time.

Array Manipulation API Functions
The arrays passed by IDispatch::Invoke within VARIANTARGs are called safe arrays. Safe arrays
contain information about the number of dimensions and bounds within them. When an array is an
argument or the return value of a function, the parray field of VARIANTARG points to an array descriptor.
Do not access this array descriptor directly, unless you are creating arrays containing elements with
nonvariant data types. Instead, use the functions SafeArrayAccessData and SafeArrayUnaccessData
to access the data.

The base type of the array is indicated by VT_ tag | VT_ARRAY. The data referenced by an array
descriptor is stored in column-major order, which is the same ordering scheme used by Visual Basic and
FORTRAN, but different from C and Pascal. Column-major order is when the left-most dimension (as
specified in a programming language syntax) changes first.

The following sections define the safe array descriptor, along with the functions you use when accessing
the data in the descriptor and the array.

SAFEARRAY Data Type
The definition for a safe array varies, depending on the target operating system platform. On 32-bit
Windows systems, both the cbElements and cLocks parameters are unsigned long integers, and the
handle parameter is omitted. On 16-bit Windows systems, cbElements and cLocks are unsigned short
integers The handle parameter is retained for compatibility with earlier software. For example:

typedef struct FARSTRUCT tagSAFEARRAY {
unsigned short cDims; // Count of dimensions in this array.
unsigned short fFeatures; // Flags used by the SafeArray

// routines documented below.
#if defined(WIN32)

unsigned long cbElements; // Size of an element of the array.
// Does not include size of
// pointed-to data.

unsigned long cLocks; // Number of times the array has been
// locked without

corresponding unlock.
#else

unsigned short cbElements;
unsigned short cLocks;
unsigned long handle; // Unused but kept for compatibility.

#endif
void HUGEP* pvData; // Pointer to the data.
SAFEARRAYBOUND rgsabound[1]; // One bound for each dimension.

} SAFEARRAY;

The array rgsabound is stored with the left-most dimension in rgsabound[0] and the right-most dimension in
rgsabound[cDims - 1]. If an array was specified in a C-like syntax as a [2][5], it would have two elements in
the rgsabound vector. Element 0 has an lLbound of 0 and a cElements of 2. Element 1 has an lLbound of 0
and a cElements of 5.

The fFeatures flags describe attributes of an array that can affect how the array is released. This allows
freeing the array without referencing its containing variant. The bits are accessed using the following
constants:

#define FADF_AUTO 0x0001 // Array is allocated on the stack.
#define FADF_STATIC 0x0002 // Array is statically allocated.
#define FADF_EMBEDDED 0x0004 // Array is embedded in a structure.
#define FADF_FIXEDSIZE 0x0010 // Array may not be resized or

// reallocated.
#define FADF_BSTR 0x0100 // An array of BSTRs.
#define FADF_UNKNOWN 0x0200 // An array of IUnknown*.
#define FADF_DISPATCH 0x0400 // An array of IDispatch*.
#define FADF_VARIANT 0x0800 // An array of VARIANTs.
#define FADF_RESERVED 0xF0E8 // Bits reserved for future use.

SAFEARRAYBOUND Structure
Represents the bounds of one dimension of the array. The lower bound of the dimension is represented
by lLbound, and cElements represents the number of elements in the dimension. The structure is defined
as follows:
typedef struct tagSAFEARRAYBOUND {

unsigned long cElements;
long lLbound;

} SAFEARRAYBOUND;

SafeArrayAccessData   

HRESULT SafeArrayAccessData (

 SAFEARRAY FAR* psa,
 void HUGEP* FAR* ppvdata
);

Increments the lock count of an array, and retrieves a pointer to the array data.

Parameters
psa

Pointer to an array descriptor created by SafeArrayCreate.
ppvdata

On exit, pointer to a pointer to the array data. Arrays may be larger than 64K, so very large pointers
should be used only in Windows version 3.1 or later.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe array

descriptor.
E_UNEXPECTED The array could not be locked.

Example
The following example sorts a safe array of one dimension that contains BSTRs by accessing the array
elements directly. This approach is faster than using SafeArrayGetElement and SafeArrayPutElement.

long i, j, min;
BSTR bstrTemp;
BSTR HUGEP *pbstr;
HRESULT hr;

// Get a pointer to the the elements of the array.
hr = SafeArrayAccessData(psa, (void HUGEP* FAR*)&pbstr);
if (FAILED(hr))
goto error;

// Bubble sort.
cElements = lUBound-lLBound+1;
for (i = 0; i < cElements-1; i++)
{

min = i;
for (j = i+1; j < cElements; j++)
{

if (wcscmp(pbstr[j], pbstr[min]) < 0)
min = j;

}

// Swap array[min] and array[i].
bstrTemp = pbstr[min];
pbstr[min] = pbstr[i];
pbstr[i] = bstrTemp;

}

SafeArrayUnaccessData(psa);

SafeArrayAllocData   

HRESULT SafeArrayAllocData(

 SAFEARRAY FAR* psa
);

Allocates memory for a safe array, based on a descriptor created with SafeArrayAllocDescriptor.

Parameter
psa

Pointer to an array descriptor created by SafeArrayAllocDescriptor.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe

array descriptor.
E_UNEXPECTED The array could not be locked.

Example
The following example creates a safe array using the SafeArrayAllocDescriptor and
SafeArrayAllocData functions.

SAFEARRAY FAR* FAR*ppsa;
unsigned int ndim = 2;
HRESULT hresult = SafeArrayAllocDescriptor(ndim, ppsa);
if(FAILED(hresult))

return ERR_OutOfMemory;
(*ppsa)->rgsabound[0].lLbound = 0;
(*ppsa)->rgsabound[0].cElements = 5;
(*ppsa)->rgsabound[1].lLbound = 1;
(*ppsa)->rgsabound[1].cElements = 4;
hresult = SafeArrayAllocData(*ppsa);
if(FAILED(hresult)) {

SafeArrayDestroyDescriptor(*ppsa)
return ERR_OutOfMemory;

}

See Also

SafeArrayAllocData, SafeArrayDestroyData, SafeArrayDestroyDescriptor

SafeArrayAllocDescriptor   

HRESULT SafeArrayAllocDescriptor(

 unsigned int cDims,
 SAFEARRAY FAR* FAR* ppsaOut
);

Allocates memory for a safe array descriptor.

Parameters
cDims

The number of dimensions of the array.
ppsaOut

Pointer to a location in which to store the created array descriptor.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe array

descriptor.
E_UNEXPECTED The array could not be locked.

Comments
This function allows the creation of safe arrays that contain elements with data types other than those
provided by SafeArrayCreate. After creating an array descriptor using SafeArrayAllocDescriptor, set
the element size in the array descriptor, an call SafeArrayAllocData to allocate memory for the array
elements.

Example
The following example creates a safe array using the SafeArrayAllocDescriptor and
SafeArrayAllocData functions.

SAFEARRAY FAR* FAR*ppsa;
unsigned int ndim = 2;
HRESULT hresult = SafeArrayAllocDescriptor(ndim, ppsa);
if(FAILED(hresult))

return ERR_OutOfMemory;
(*ppsa)->rgsabound[0].lLbound = 0;
(*ppsa)->rgsabound[0].cElements = 5;
(*ppsa)->rgsabound[1].lLbound = 1;
(*ppsa)->rgsabound[1].cElements = 4;
hresult = SafeArrayAllocData(*ppsa);
if(FAILED(hresult)) {

SafeArrayDestroyDescriptor(*ppsa)
return ERR_OutOfMemory;

}

See Also

SafeArrayAllocData, SafeArrayDestroyData, SafeArrayDestroyDescriptor

SafeArrayCopy   

HRESULT SafeArrayCopy(

 SAFEARRAY FAR* psa,
 SAFEARRAY FAR* FAR* ppsaOut
);

Creates a copy of an existing safe array.

Parameters
psa

Pointer to an array descriptor created by SafeArrayCreate.
ppsaOut

Pointer to a location in which to return the new array descriptor.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe

array descriptor.
E_OUTOFMEMORY Insufficient memory to create the copy.

Comments
SafeArrayCopy calls the string or variant manipulation functions if the array to copy contains either of
these data types. If the array being copied contains object references, the reference counts for the objects
are incremented.

See Also
SysAllocStringLen, VariantCopy, VariantCopyInd

SafeArrayCopyData
HRESULT SafeArrayCopyData(

 SAFEARRAY FAR* psaSource,
 SAFEARRAY FAR* FAR* ppsaTarget
);

Copies the source array to the target array after releasing any resources in the target array. This is similar
to SafeArrayCopy, except that the target array has to be set up by the caller. The target is not allocated
or reallocated.

Parameters
psaSource

The safe array from which to be copied.
ppsaTarget

On exit, the array referred to by ppsaTarget contains a copy of the data in psaSource.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe

array descriptor.
E_OUTOFMEMORY Insufficient memory to create the copy.

Comments
Visual Basic for Applications and Automation use the same set of rules with cases in which the size or
types of source and destination arrays do not match. The rules of Visual Basic are described in the
following comments.

Array Assignment
In general, VBA3 supports array assignment.

Dim lhs(1 To 10) As Integer
Dim rhs(1 To 10) As Integer

lhs = rhs

When the number of dimensions, the size of those dimensions, and the element types match, data types
are differentiated based on the following factors:

· Fixed-size, left side. The left side is fixed if the type of the expression on the left side is a fixed-size
array. For example, the following statement is a declaration of a fixed-size array.
Dim x (1 To 10) As Integer

· Matching number of dimensions. The number of dimensions of the left side may or may not

match the number of dimensions of the array on the right side.
· Dimensions match. The dimensions match if, for each dimension, the number of elements match.

The dimensions can match even if the declarations are slightly different, such as when one array is
zero-based and another is one-based, but they have the same number of elements.

The following table shows what happens when the number of dimensions, size of the dimension, and
element types do not match:

Fixed-size,
left side

Number of
dimensions

Dimensions
match

What happens

No Yes or No Yes or No Success. If necessary, the
left side is resized to the size
of the right side.

Yes No Failure.
Yes Yes No Treated in same manner as

fixed-length strings.
If the right side has more
elements than the left side,
the assignment succeeds
and the extra elements have
no effect. If the left side has
more elements than the right
side, the assignment
succeeds and the unaffected
elements of the left side are
zero-, null-, or empty-filled,
depending on the types of
the elements.

Yes Yes Yes Success.

See Also
SysAllocStringLen, VariantCopy, VariantCopyInd

SafeArrayCreate   

HRESULT SafeArrayCreate(

 VARTYPE vt,
 unsigned int cDims,
 SAFEARRRAYBOUND FAR* rgsabound
);

Creates a new array descriptor, allocates and initializes the data for the array, and returns a pointer to the
new array descriptor.

Parameters
vt

The base type of the array (the VARTYPE of each element of the array). The VARTYPE is restricted
to a subset of the variant types. Neither the VT_ARRAY nor the VT_BYREF flag can be set.
VT_EMPTY and VT_NULL are not valid base types for the array. All other types are legal.

cDims

Number of dimensions in the array. The number cannot be changed after the array is created.
rgsabound

Pointer to a vector of bounds (one for each dimension) to allocate for the array.

Return Value
Points to the array descriptor, or Null if the array could not be created.

Example
HRESULT PASCAL __export CPoly::EnumPoints(IEnumVARIANT FAR* FAR* ppenum)
{

unsigned int i;
HRESULT hresult;
VARIANT var;
SAFEARRAY FAR* psa;
CEnumPoint FAR* penum;
POINTLINK FAR* ppointlink;
SAFEARRAYBOUND rgsabound[1];
rgsabound[0].lLbound = 0;
rgsabound[0].cElements = m_cPoints;
psa = SafeArrayCreate(VT_VARIANT, 1, rgsabound);
if(psa == NULL){hresult = ReportResult(0, E_OUTOFMEMORY, 0, 0);

goto LError0}

// Code omitted here for brevity.

LError0:;
return hresult;

}

SafeArrayCreateVector
HRESULT SafeArrayCreateVector(

 VARTYPE vt,
 long lbound,
 unsigned int cElements
);

Creates a one-dimensional array whose lower bound is always zero. A safe array created with
SafeArrayCreateVector is a fixed size, so the constant FADF_FIXEDSIZE is always set.

Parameters
vt

The base type of the array (the VARTYPE of each element of the array). The VARTYPE is restricted
to a subset of the variant types. Neither the VT_ARRAY nor the VT_BYREF flag can be set.
VT_EMPTY and VT_NULL are not valid base types for the array. All other types are legal.

lbound

The lower bound for the array. Can be negative.
cElements

The number of elements in the array.

Return Value
Points to the array descriptor, or Null if the array could not be created.

Comments
SafeArrayCreateVector allocates a single block of memory containing a SAFEARRAY structure for a
single-dimension array (24 bytes), immediately followed by the array data. All of the existing safe array
functions work correctly for safe arrays that are allocated with SafeArrayCreateVector.

A SafeArrayCreateVector is allocated as a single block of memory. Both the SafeArray descriptor and
the array data block are allocated contiguously in one allocation, which speeds up array allocation.
However, a user can allocate the descriptor and data area separately using the
SafeArrayAllocDescriptor and SafeArrayAllocData calls.

SafeArrayDestroy   

HRESULT SafeArrayDestroy(

 SAFEARRAY FAR* psa
);

Destroys an existing array descriptor and all of the data in the array. If objects are stored in the array,
Release is called on each object in the array.

Parameter
psa

Pointer to an array descriptor created by SafeArrayCreate.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_ARRAYISLOC
KED

The array is currently locked.

E_INVALIDARG The item pointed to by psa is not a safe array
descriptor.

Example
STDMETHODIMP_(ULONG) CEnumPoint::Release()
{

if(--m_refs == 0){
if(m_psa != NULL)
SafeArrayDestroy(m_psa);
delete this;
return 0;

}
return m_refs;

}

SafeArrayDestroyData   

HRESULT SafeArrayDestroyData(

 SAFEARRAY FAR* psa
);

Destroys all the data in a safe array.

Parameter
psa

Pointer to an array descriptor.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_ARRAYISLOC
KED

The array is currently locked.

E_INVALIDARG The item pointed to by psa is not a safe
array descriptor.

Comments
This function is typically used when freeing safe arrays that contain elements with data types other than
variants. If objects are stored in the array, Release is called on each object in the array.

See Also
SafeArrayAllocData, SafeArrayAllocDescriptor, SafeArrayDestroyDescriptor

SafeArrayDestroyDescriptor   

HRESULT SafeArrayDestroyDescriptor(

 SAFEARRAY FAR* psa
);

Destroys a descriptor of a safe array.

Parameter
psa

Pointer to a safe array descriptor.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_ARRAYISLOC
KED

The array is currently locked.

E_INVALIDARG The item pointed to by psa is not a safe array
descriptor.

Comments
This function is typically used to destroy the descriptor of a safe array that contains elements with data
types other than variants. Destroying the array descriptor does not destroy the elements in the array.
Before destroying the array descriptor, call SafeArrayDestroyData to free the elements.

See Also
SafeArrayAllocData, SafeArrayAllocDescriptor, SafeArrayDestroyData

SafeArrayGetDim   

HRESULT SafeArrayGetDim(

 unsigned int SafeArrayGetDim(psa),
 SAFEARRAY FAR* psa
);

Returns the number of dimensions in the array.

Parameters
psa

Pointer to an array descriptor created by SafeArrayCreate.

Return Value
Returns the number of dimensions in the array.

Example
HRESULT
CEnumPoint::Create(SAFEARRAY FAR* psa, CEnumPoint FAR* FAR* ppenum)
{

long lBound;
HRESULT hresult;
CEnumPoint FAR* penum;

// Verify that the SafeArray is the proper shape.
if(SafeArrayGetDim(psa) != 1)

return ReportResult(0, E_INVALIDARG, 0, 0);

// Code omitted here for brevity.

}

SafeArrayGetElement   

HRESULT SafeArrayGetElement(

 SAFEARRAY FAR* psa,
 long FAR* rgIndices,
 void FAR* pvData
);

Retrieves a single element of the array.

Parameters
psa

Pointer to an array descriptor created by SafeArrayCreate.
rgIndices

Pointer to a vector of indexes for each dimension of the array. The right-most (least significant)
dimension is rgIndices[0]. The left-most dimension is stored at rgIndices[psa->cDims - 1].

pvData

Pointer to the location to place the element of the array.

Comments
This function calls SafeArrayLock and SafeArrayUnlock automatically, before and after retrieving the
element. The caller must provide a storage area of the correct size to receive the data. If the data element
is a string, object, or variant, the function copies the element in the correct way.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_BADINDEX The specified index is invalid.
E_INVALIDARG One of the arguments is invalid.
E_OUTOFMEMORY Memory could not be allocated for the

element.

Example
STDMETHODIMP CEnumPoint::Next(

ULONG celt,
VARIANT FAR rgvar[],
ULONG FAR* pceltFetched)

{
unsigned int i;
long ix;
HRESULT hresult;

for(i = 0; i < celt; ++i)

VariantInit(&rgvar[i]);

for(i = 0; i < celt; ++i){
if(m_iCurrent == m_celts){
hresult = ReportResult(0, S_FALSE, 0, 0);

goto LDone;
}

ix = m_iCurrent++;
hresult = SafeArrayGetElement(m_psa, &ix, &rgvar[i]);
if(FAILED(hresult))

goto LError0;
}
hresult = NOERROR;

LDone:;
*pceltFetched = i;
return hresult;

LError0:;
for(i = 0; i < celt; ++i)

VariantClear(&rgvar[i]);
return hresult;

}

SafeArrayGetElemsize   

HRESULT SafeArrayGetElemsize(

 unsigned int SafeArrayGetElemsize(psa),
 SAFEARRAY FAR* psa
);

Returns the size (in bytes) of the elements of a safe array.

Parameter
psa

Pointer to an array descriptor created by SafeArrayCreate.

SafeArrayGetLBound   

HRESULT SafeArrayGetLBound(

 SAFEARRAY FAR* psa,
 unsigned int nDim,
 long FAR* plLbound
);

Returns the lower bound for any dimension of a safe array.

Parameters
psa

Pointer to an array descriptor created by SafeArrayCreate.
nDim

The array dimension for which to get the lower bound.
plLbound

Pointer to the location to return the lower bound.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_BADINDEX The specified index is out of bounds.
E_INVALIDARG One of the arguments is invalid.

Example
HRESULT
CEnumPoint::Create(SAFEARRAY FAR* psa, CEnumPoint FAR* FAR* ppenum)
{

long lBound;
HRESULT hresult;
CEnumPoint FAR* penum;

// Verify that the SafeArray is the proper shape.
hresult = SafeArrayGetLBound(psa, 1, &lBound);
if(FAILED(hresult))

return hresult;

// Code omitted here for brevity.

}

SafeArrayGetUBound   

HRESULT SafeArrayGetUBound(

 SAFEARRAY FAR* psa,
 unsigned int nDim,
 long FAR* plUbound
);

Returns the upper bound for any dimension of a safe array.

Parameters
psa

Pointer to an array descriptor created by SafeArrayCreate().
nDim

The array dimension for which to get the upper bound.
plUbound

Pointer to the location to return the upper bound.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_BADINDEX The specified index is out of bounds.
E_INVALIDARG One of the arguments is invalid.

Example
HRESULT
CEnumPoint::Create(SAFEARRAY FAR* psa, CEnumPoint FAR* FAR* ppenum)
{

long lBound;
HRESULT hresult;
CEnumPoint FAR* penum;

// Verify that the SafeArray is the proper shape.
hresult = SafeArrayGetUBound(psa, 1, &lBound);
if(FAILED(hresult))

goto LError0;

// Code omitted here for brevity.

LError0:;
penum->Release();

return hresult;
}

SafeArrayLock   

HRESULT SafeArrayLock(

 SAFEARRAY FAR* psa
);

Increments the lock count of an array, and places a pointer to the array data in pvData of the array
descriptor.

Parameter
psa

Pointer to an array descriptor created by SafeArrayCreate.

Comments
The pointer in the array descriptor is valid until SafeArrayUnlock is called. Calls to SafeArrayLock can
be nested. An equal number of calls to SafeArrayUnlock are required.

An array cannnot be deleted while it is locked.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe

array descriptor.
E_UNEXPECTED The array could not be locked.

SafeArrayPtrOfIndex   

HRESULT SafeArrayPtrOfIndex(

 SAFEARRAY FAR* psa,
 long FAR* rgIndices,
 void HUGEP* FAR* ppvData
);

Returns a pointer to an array element.

Parameters
psa

Pointer to an array descriptor created by SafeArrayCreate.
rgIndices

An array of index values that identify an element of the array. All indexes for the element must be
specified.

ppvData

On return, pointer to the element identified by the values in rgIndices.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe

array descriptor.
DISP_E_BADINDEX The specified index was invalid.

Comments
The array should be locked before SafeArrayPtrOfIndex is called. Failing to lock the array can cause
unpredictable results.

SafeArrayPutElement   

HRESULT SafeArrayPutElement(

 SAFEARRAY FAR* psa,
 long FAR* rgIndices,
 void FAR* pvData
);

Assigns a single element to the array.

Parameters
psa

Pointer to an array descriptor created by SafeArrayCreate.
rgIndices

Pointer to a vector of indexes for each dimension of the array. The right-most (least significant)
dimension is rgIndices[0]. The left-most dimension is stored at rgIndices[psa->cDims - 1].

pvData

Pointer to the data to assign to the array. The variant types VT_DISPATCH, VT_UNKNOWN, and
VT_BSTR are pointers, and do not require another level of indirection.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_BADINDEX The specified index was invalid.
E_INVALIDARG One of the arguments is invalid.
E_OUTOFMEMORY Memory could not be allocated for the

element.

Comments
This function automatically calls SafeArrayLock and SafeArrayUnlock before and after assigning the
element. If the data element is a string, object, or variant, the function copies it correctly. If the existing
element is a string, object, or variant, it is cleared correctly.

Note Multiple locks can be on an array. Elements can be put into an array while the array is locked
by other operations.

Example
HRESULT PASCAL __export CPoly::EnumPoints(IEnumVARIANT FAR* FAR* ppenum)
{

unsigned int i;
HRESULT hresult;

VARIANT var;
SAFEARRAY FAR* psa;
CEnumPoint FAR* penum;
POINTLINK FAR* ppointlink;
SAFEARRAYBOUND rgsabound[1];
rgsabound[0].lLbound = 0;
rgsabound[0].cElements = m_cPoints;

psa = SafeArrayCreate(VT_VARIANT, 1, rgsabound);
if(psa == NULL){

hresult = ResultFromScode(E_OUTOFMEMORY);
goto LError0;

}

// Code omitted here for brevity.

V_VT(&var) = VT_DISPATCH;
hresult = ppointlink->ppoint->QueryInterface(
IID_IDispatch, (void FAR* FAR*)&V_DISPATCH(&var));
if(hresult != NOERROR)

goto LError1;

ix[0] = i;
SafeArrayPutElement(psa, ix, &var);

ppointlink = ppointlink->next;
}

hresult = CEnumPoint::Create(psa, &penum);
if(hresult != NOERROR)

goto LError1;
*ppenum = penum;
return NOERROR;

LError1:;
SafeArrayDestroy(psa);

LError0:;
return hresult;

}

SafeArrayRedim   

HRESULT SafeArrayRedim(

 SAFEARRAY FAR* psa,
 SAFEARRAYBOUND FAR* psaboundNew
);

Changes the right-most (least significant) bound of a safe array.

Parameters
psa

Pointer to an array descriptor.
psaboundNew

Pointer to a new safe array bound structure that contains the new array boundary. You can change
only the least significant dimension of an array.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_ARRAYISLOCK
ED

The array is currently locked.

E_INVALIDARG The item pointed to by psa is not a safe
array descriptor.

Comments
If you reduce the bound of an array, SafeArrayRedim deallocates the array elements outside the new
array boundary. If the bound of an array is increased, SafeArrayRedim allocates and initializes the new
array elements. The data is preserved for elements that exist in both the old and new array.

SafeArrayUnaccessData   

HRESULT SafeArrayUnaccessData(

 SAFEARRAY FAR* psa
);

Decrements the lock count of an array, and invalidates the pointer retrieved by SafeArrayAccessData.

Parameter
psa

Pointer to an array descriptor created by SafeArrayCreate.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe

array descriptor.
E_UNEXPECTED The array could not be unlocked.

SafeArrayUnlock   

HRESULT SafeArrayUnlock(

 SAFEARRAY FAR* psa
);

Decrements the lock count of an array so it can be freed or resized.

Parameter
psa

Pointer to an array descriptor created by SafeArrayCreate.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_INVALIDARG The argument psa was not a valid safe

array descriptor.
E_UNEXPECTED The array could not be unlocked.

Comments
This function is called after access to the data in an array is finished.

String Manipulation Functions
To handle strings that are allocated by one component and freed by another, Automation defines a special
set of functions. These functions use the following data type:

typedef OLECHAR FAR* BSTR;

These strings are zero-terminated, and in most cases they can be treated just like OLECHAR* strings.
However, you can query a BSTR (Basic string) for its length rather than scan it, so it can contain
embedded null characters. The length is stored as an integer at the memory location preceding the data
in the string. Instead of reading this location directly, applications should use the string manipulation
functions to access the length of a BSTR.

In situations where a BSTR will not be translated from ANSI to Unicode, or vice versa, you can use
BSTRs to pass binary data. For example, if code will run only on 16-bit systems and interact only with
other 16-bit systems, you can use BSTRs. The preferred method of passing binary data is to use a
SAFEARRAY of VT_UI1.

In 32-bit OLE, BSTRs use Unicode like all other strings in 32-bit OLE. In 16-bit OLE, BSTRs use ANSI.
Win32 provides MultiByteToWideChar and WideCharToMultiByte to convert ANSI strings to Unicode,
and Unicode strings to ANSI. Automation caches the space allocated for BSTRs. This speeds up the
SysAllocString/SysFreeString sequence. However, this may also cause IMallocSpy to assign leaks to
the wrong memory user because it is not aware of the caching done by Automation.

For example, if the application allocates a BSTR and frees it, the free block of memory is put into the
BSTR cache by Automation. If the application then allocates another BSTR, it can get the free block from
the cache. If the second BSTR allocation is not freed, IMallocSpy will attribute the leak to the first
allocation of the BSTR. You can determine the correct source of the leak (the second allocation) by
disabling the BSTR caching using the debug version of Oleaut32.dll, and by setting the environment
variable OANOCACHE=1 before running the application.

A null pointer is a valid value for a BSTR variable. By convention, it is always treated the same as a
pointer to a BSTR that contains zero characters. Also by convention, calls to functions that take a BSTR
reference parameter must pass either a null pointer, or a pointer to an allocated BSTR. If the
implementation of a function that takes a BSTR reference parameter assigns a new BSTR to the
parameter, it must free the previously referenced BSTR.

SysAllocString   

BSTR SysAllocString(

 OLECHAR FAR* sz
);

Allocates a new string and copies the passed string into it. Returns Null if there is insufficient memory,
and if Null, Null is passed in.

Parameter
sz

A zero-terminated string to copy. The sz parameter must be a Unicode string in 32-bit applications,
and an ANSI string in 16-bit applications.

Return Value
If successful, points to a BSTR containing the string. If insufficient memory exists or sz was Null, returns
Null.

Comments
You can free strings created with SysAllocString using SysFreeString.

Example
inline void CStatBar::SetText(OLECHAR FAR* sz)
{

SysFreeString(m_bstrMsg);
m_bstrMsg = SysAllocString(sz);

}

SysAllocStringByteLen   

BSTR SysAllocStringByteLen(

 char FAR* psz,
 unsigned int len
);

Takes an ANSI string as input, and returns a BSTR that contains an ANSI string. Does not perform any
ANSI-to-Unicode translation.

Parameters
psz

A zero-terminated string to copy, or Null to keep the string uninitialized.
len

Number of bytes to copy from psz. A null character is placed afterwards, allocating a total of len+1
bytes.

Allocates a new string of len bytes, copies len bytes from the passed string into it, and then appends a
null character. Valid only for 32-bit systems.

Return Value
Points to a copy of the string, or Null if insufficient memory exists.

Comments
This function is provided to create BSTRs that contain binary data. You can use this type of BSTR only in
situations where it will not be translated from ANSI to Unicode, or vice versa.

For example, do not use these BSTRs between a 16-bit and a 32-bit application running on a 32-bit
Windows system. The OLE 16-bit to 32-bit (and 32-bit to 16-bit) interoperability layer will translate the
BSTR and corrupt the binary data. The preferred method of passing binary data is to use a SAFEARRAY
of VT_UI1, which will not be translated by OLE.

If psz is Null, a string of the requested length is allocated, but not initialized. The string psz can contain
embedded null characters, and does not need to end with a Null. Free the returned string later with
SysFreeString.

SysAllocStringLen   

BSTR SysAllocStringLen(

 OLECHAR FAR* pch,
 unsigned int cch
);

Allocates a new string, copies cch characters from the passed string into it, and then appends a null
character.

Parameters
pch

A pointer to cch characters to copy, or Null to keep the string uninitialized.
cch

Number of characters to copy from pch. A null character is placed afterwards, allocating a total of
cch+1 characters.

Return Value
Points to a copy of the string, or Null if insufficient memory exists.

Comments
If pch is Null, a string of the requested length is allocated, but not initialized. The pch string can contain
embedded null characters and does not need to end with a Null. Free the returned string later with
SysFreeString.

SysFreeString   

void SysFreeString(

 BSTR bstr
);

Frees a string allocated previously by SysAllocString, SysAllocStringByteLen, SysReAllocString,
SysAllocStringLen, or SysReAllocStringLen.

Parameter
bstr

A BSTR allocated previously, or Null. If Null, the function simply returns.

Return Value
None.

Example
CStatBar::~CStatBar()
{

SysFreeString(m_bstrMsg);
}

SysReAllocString   

BOOL SysReAllocString(

 BSTR FAR* pbstr,
 OLECHAR FAR* sz
);

Allocates a new BSTR and copies the passed string into it, then frees the BSTR referenced by pbstr, and
finally resets pbstr to point to the new BSTR.

Parameters
pbstr

Points to a variable containing a BSTR.
sz

A zero-terminated string to copy.

Return Value
Returns False if insufficient memory exists.

SysReAllocStringLen   

BOOL SysReAllocStringLen(

 BSTR FAR* pbstr,
 OLECHAR FAR* pch,
 unsigned int cch
);

Creates a new BSTR containing a specified number of characters from an old BSTR, and frees the old
BSTR.

Parameters
pbstr

Pointer to a variable containing a BSTR.
pch

Pointer to cch characters to copy, or Null to keep the string uninitialized.
cch

Number of characters to copy from pch. A null character is placed afterward, allocating a total of
cch+1 characters.

Return Value
Returns True if the string is reallocated successfully, or False if insufficient memory exists.

Comments
Allocates a new string, copies cch characters from the passed string into it, and then appends a null
character. Frees the BSTR referenced currently by pbstr, and resets pbstr to point to the new BSTR. If
pch is Null, a string of length cch is allocated but not initialized.

The pch string can contain embedded null characters and does not need to end with a Null.

SysStringByteLen   

unsigned int SysStringByteLen(

 BSTR bstr
);

Returns the length (in bytes) of a BSTR. Valid for 32-bit systems only.

Parameter
bstr

A BSTR allocated previously. It cannot be Null.

Return Value
The number of bytes in bstr, not including a terminating null character.

Comments
The returned value may be different from fstrlen(bstr) if the BSTR was allocated with
Sys[Re]AllocStringLen or SysAllocStringByteLen, and the passed-in characters included a null
character in the first len characters. For a BSTR allocated with Sys[Re]AllocStringLen or
SysAllocStringByteLen, this function always returns the number of bytes specified in the len parameter
at allocation time.

Example
// Display the status message.

TextOut(

hdc,
rcMsg.left + (m_dxFont / 2),
rcMsg.top + ((rcMsg.bottom - rcMsg.top - m_dyFont) / 2),
m_bstrMsg, SysStringByteLen(m_bstrMsg));

SysStringLen   

unsigned int SysStringLen(

 BSTR bstr
);

Returns the length of a BSTR.

Parameter
bstr

A BSTR allocated previously. Cannot be Null.

Return Value
The number of characters in bstr, not including a terminating null character.

Comments
The returned value may be different from _fstrlen(bstr) if the BSTR was allocated with
Sys[Re]AllocStringLen or SysAllocStringByteLen, and the passed-in characters included a null
character in the first cch characters. For a BSTR allocated with Sys[Re]AllocStringLen or
SysAllocStringByteLen, this function always returns the number of characters specified in the cch
parameter at allocation time.

Example
// Display the status message.
//
TextOut(

hdc,
rcMsg.left + (m_dxFont / 2),
rcMsg.top + ((rcMsg.bottom - rcMsg.top - m_dyFont) / 2),
m_bstrMsg, SysStringLen(m_bstrMsg));

Variant Manipulation API Functions
These functions are provided to allow applications to manipulate VARIANTARG variables. Applications
that implement IDispatch should test each VARIANTARG for all permitted types by attempting to coerce
the variant to each type using VariantChangeType or VariantChangeTypeEx. If objects are allowed, the
application should always test for object types before other types. If an object type is expected, the
application must use IUnknown::QueryInterface to test whether the object is the desired type.

Although applications can access and interpret the VARIANTARGs without these functions, using them
ensures uniform conversion and coercion rules for all implementors of IDispatch. For example, these
functions automatically coerce numeric arguments to strings, and vice versa, when necessary.

Because variants can contain strings, references to scalars, objects, and arrays, all data ownership rules
must be followed. All variant manipulation functions should conform to the following rules:

1. Before use, all VARIANTARGs must be initialized by VariantInit.
2. For the types VT_UI1, VT_I2, VT_I4, VT_R4, VT_R8, VT_BOOL, VT_ERROR, VT_CY, and

VT_DATE, data is stored within the VARIANT structure. Any pointers to the data become invalid when
the type of the variant is changed.

3. For VT_BYREF | any type, the memory pointed to by the variant is owned and freed by the caller of
the function.

4. For VT_BSTR, there is only one owner for the string. All strings in variants must be allocated with the
SysAllocString function. When releasing or changing the type of a variant with the VT_BSTR type,
SysFreeString is called on the contained string.

5. For VT_ARRAY | any type, the rule is analogous to the rule for VT_BSTR. All arrays in variants must
be allocated with SafeArrayCreate. When releasing or changing the type of a variant with the
VT_ARRAY flag set, SafeArrayDestroy is called.

6. For VT_DISPATCH and VT_UNKNOWN, the objects that are pointed to have reference counts that
are incremented when they are placed in a variant. When releasing or changing the type of the
variant, Release is called on the object that is pointed to.

VariantChangeType   

HRESULT VariantChangeType(

 VARIANTARG FAR* pvargDest,
 VARIANTARG FAR* pvargSrc,
 unsigned short wFlags,
 VARTYPE vtNew
);

Converts a variant from one type to another.

Parameters
pvargDest

Pointer to the VARIANTARG to receive the coerced type. If this is the same as pvargSrc, the variant
will be converted in place.

pvargSrc

Pointer to the source VARIANTARG to be coerced.
wFlags

Flags that control the coercion. The only defined flag is VARIANT_NOVALUEPROP, which prevents
the function from attempting to coerce an object to a fundamental type by getting the Value property.
Applications should set this flag only if necessary, because it makes their behavior inconsistent with
other applications.

vtNew

The type to coerce to. If the return code is S_OK, the vt field of the *pvargDest is always the same as
this value.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_BADVARTYPE The variant type vtNew is not a valid type

of variant.
DISP_E_OVERFLOW The data pointed to by pvargSrc does not

fit in the destination type.
DISP_E_TYPEMISMATC
H

The argument could not be coerced to the
specified type.

E_INVALIDARG One of the arguments is invalid.
E_OUTOFMEMORY Memory could not be allocated for the

conversion.

Comments
The VariantChangeType function handles coercions between the fundamental types (including numeric-
to-string and string-to-numeric coercions). A variant that has VT_BYREF set is coerced to a value by
obtaining the referenced value. An object is coerced to a value by invoking the object's Value property

(DISPID_VALUE).

Typically, the implementor of IDispatch::Invoke determines which member is being accessed, and then
calls VariantChangeType to get the value of one or more arguments. For example, if the IDispatch call
specifies a SetTitle member that takes one string argument, the implementor would call
VariantChangeType to attempt to coerce the argument to VT_BSTR. If VariantChangeType does not
return an error, the argument could then be obtained directly from the bstrVal field of the VARIANTARG. If
VariantChangeType returns DISP_E_TYPEMISMATCH, the implementor would set *puArgErr to 0
(indicating the argument in error) and return DISP_E_TYPEMISMATCH from IDispatch::Invoke.

Arrays of one type cannnot be converted to arrays of another type with this function.

Note The type of a VARIANTARG should not be changed in the rgvarg array in place.

See Also
VariantChangeTypeEx

VariantChangeTypeEx   

HRESULT VariantChangeTypeEx(

 VARIANTARG FAR* pvargDest,
 VARIANTARG FAR* pvargSrc,
 LCID lcid,
 unsigned short wFlags,
 VARTYPE vtNew
);

Converts a variant from one type to another, using a locale ID.

Parameters
pvargDest

Pointer to the VARIANTARG to receive the coerced type. If this is the same as pvargSrc, the variant
will be converted in place.

pvargSrc

Pointer to the source VARIANTARG to be coerced.
lcid

The locale ID for the variant to coerce. The locale ID is useful when the type of the source or
destination VARIANTARG is VT_BSTR, VT_DISPATCH, or VT_DATE.

wFlags

Flags that control the coercion. The only defined flag is VARIANT_NOVALUEPROP, which prevents
the function from attempting to coerce an object to a fundamental type by getting its Value property.
Applications should set this flag only if necessary, because it makes their behavior inconsistent with
other applications.

vtNew

The type to coerce to. If the return code is S_OK, the vt field of the *pvargDest is guaranteed to be
equal to this value.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_BADVARTYPE The variant type vtNew is not a valid type

of variant.
DISP_E_OVERFLOW The data pointed to by pvargSrc does not

fit in the destination type.
DISP_E_TYPEMISMATC
H

The argument could not be coerced to the
specified type.

E_INVALIDARG One of the arguments is invalid.
E_OUTOFMEMORY Memory could not be allocated for the

conversion.

Comments
The VariantChangeTypeEx function handles coercions between the fundamental types (including
numeric-to-string and string-to-numeric coercions). To change a type with the VT_BYREF flag set to one
without VT_BYREF, change the referenced value to VariantChangeTypeEx. To coerce objects to
fundamental types, obtain the value of the Value property.

Typically, the implementor of IDispatch::Invoke determines which member is being accessed, and then
calls VariantChangeType to get the value of one or more arguments. For example, if the IDispatch call
specifies a SetTitle member that takes one string argument, the implementor would call
VariantChangeTypeEx to attempt to coerce the argument to VT_BSTR.

If VariantChangeTypeEx does not return an error, the argument could then be obtained directly from the
bstrVal field of the VARIANTARG. If VariantChangeTypeEx returns DISP_E_TYPEMISMATCH, the
implementor would set *puArgErr to 0 (indicating the argument in error) and return
DISP_E_TYPEMISMATCH from IDispatch::Invoke.

Arrays of one type cannot be converted to arrays of another type with this function.

Note The type of a VARIANTARG should not be changed in the rgvarg array in place.

See Also
VariantChangeType

VariantClear   

HRESULT VariantClear(

 VARIANTARG FAR* pvarg
);

Clears a variant.

Parameter
pvarg

Pointer to the VARIANTARG to clear.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_ARRAYISLOCK
ED

The variant contains an array that is
locked.

DISP_E_BADVARTYPE The variant type pvarg is not a valid type
of variant.

E_INVALIDARG One of the arguments is invalid.

Comments
Use this function to clear variables of type VARIANTARG (or VARIANT) before the memory containing the
VARIANTARG is freed (as when a local variable goes out of scope).

The function clears a VARIANTARG by setting the vt field to VT_EMPTY and the wReserved field to 0.
The current contents of the VARIANTARG are released first. If the vt field is VT_BSTR, the string is freed.
If the vt field is VT_DISPATCH, the object is released. If the vt field has the VT_ARRAY bit set, the array
is freed.

In certain cases, it may be preferable to clear a variant in code without calling VariantClear. For example,
you can change the type of a VT_I4 variant to another type without calling this function. However, you
must call VariantClear if a VT_type is received but cannot be handled. Using VariantClear in these cases
ensures that code will continue to work if Automation adds new variant types in the future.

Example
for(i = 0; i < celt; ++i)

VariantClear(&rgvar[i]);

VariantCopy   

HRESULT VariantCopy(

 VARIANTARG FAR* pvargDest,
 VARIANTARG FAR* pvargSrc
);

Frees the destination variant and makes a copy of the source variant.

Parameters
pvargDest

Pointer to the VARIANTARG to receive the copy.
pvargSrc

Pointer to the VARIANTARG to be copied.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_ARRAYISLOCK
ED

The variant contains an array that is locked.

DISP_E_BADVARTYPE The source and destination have an invalid
variant type (usually uninitialized).

E_OUTOFMEMORY Memory could not be allocated for the copy.
E_INVALIDARG The argument pvargSrc was VT_BYREF.

Comments
First, free any memory that is owned by pvargDest, such as VariantClear (pvargDest must point to a valid
initialized variant, and not simply to an uninitialized memory location). Then pvargDest receives an exact
copy of the contents of pvargSrc.

If pvargSrc is a VT_BSTR, a copy of the string is made. If pvargSrc is a VT_ARRAY, the entire array is
copied. If pvargSrc is a VT_DISPATCH or VT_UNKNOWN, AddRef is called to increment the object's
reference count.

VariantCopyInd   

HRESULT VariantCopyInd(

 VARIANT FAR* pvarDest,
 VARIANTARG FAR* pvargSrc
);

Frees the destination variant and makes a copy of the source VARIANTARG, performing the necessary
indirection if the source is specified to be VT_BYREF.

Parameters
pvarDest

Pointer to the VARIANTARG that will receive the copy.
pvargSrc

Pointer to the VARIANTARG that will be copied.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_ARRAYISLOCK
ED

The variant contains an array that is
locked.

DISP_E_BADVARTYPE The source and destination have an
invalid variant type (usually uninitialized).

E_OUTOFMEMORY Memory could not be allocated for the
copy.

E_INVALIDARG The argument pvargSrc was VT_ARRAY.

Comments
This function is useful when a copy of a variant is needed, and to guarantee that it is not VT_BYREF,
such as when handling arguments in an implementation of IDispatch::Invoke.

For example, if the source is a (VT_BYREF | VT_I2), the destination will be a BYVAL | VT_I2. The same is
true for all legal VT_BYREF combinations, including VT_VARIANT.

If pvargSrc is (VT_BYREF | VT_VARIANT), and the contained variant is VT_BYREF, the contained
variant is also dereferenced.

This function frees any existing contents of pvarDest.

VariantInit   

void VariantInit(

 VARIANTARG FAR* pvarg
);

Initializes a variant.

Parameter
pvarg

Pointer to the VARIANTARG that will be initialized.

Comments
The VariantInit function initializes the VARIANTARG by setting the vt field to VT_EMPTY. Unlike
VariantClear, this function does not interpret the current contents of the VARIANTARG. Use VariantInit
to initialize new local variables of type VARIANTARG (or VARIANT).

Example
for(i = 0; i < celt; ++i)

VariantInit(&rgvar[i]);

Data Type Conversion APIs
The files Oleaut32.dll (for 32-bit systems) and Ole2disp.dll (for 16-bit systems) provide the following low-
level functions for converting variant data types. Higher-level variant manipulation functions (such as
VariantChangeType) use these functions, but they can also be called directly.

Convert to type From type Function
unsigned char unsigned char None

short VarUI1FromI2(sIn, pbOut)
long VarUI1FromI4(lIn, pbOut)
float VarUI1FromR4(fltIn, pbOut)
double VarUI1FromR8(dblIn, pbOut)
CURRENCY VarUI1FromCy(cyIn, pbOut)
DATE VarUI1FromDate(dateIn,

pbOut)
OLECHAR FAR* VarUI1FromStr(strIn, lcid,

dwFlags, pbOut)
IDispatch FAR* VarUI1FromDisp(pdispIn,

lcid, dwFlags, pbOut)
BOOL VarUI1FromBool(boolIn,

pbOut)
short unsigned char VarI2FromUI1(bIn, psOut)

short None
long VarI2FromI4(lIn, psOut)
float VarI2FromR4(fltIn, psOut)
double VarI2FromR8(dblIn, psOut)
CURRENCY VarI2FromCy(cyIn, psOut)
DATE VarI2FromDate(dateIn,

psOut)
OLECHAR FAR* VarI2FromStr(strIn, lcid,

dwFlags, psOut)
IDispatch FAR* VarI2FromDisp(pdispIn, lcid,

dwFlags, psOut)
BOOL VarI2FromBool(boolIn,

psOut)
long unsigned char VarI4FromUI1(bIn, plOut)

short VarI4FromI2(sIn, plOut)
long None
float VarI4FromR4(fltIn, plOut)
double VarI4FromR8(dblIn, plOut)
CURRENCY VarI4FromCy(cyIn, plOut)
DATE VarI4FromDate(dateIn,

plOut)
OLECHAR FAR* VarI4FromStr(strIn, lcid,

dwFlags, plOut)
IDispatch FAR* VarI4FromDisp(pdispIn, lcid,

dwFlags, plOut)
BOOL VarI4FromBool(boolIn,

plOut)
float unsigned char VarR4FromUI1(bIn, prOut)

short VarR4FromI2(sIn, prOut)
long VarR4FromI4(lIn, prOut)
float None
double VarR4FromR8(dblIn, prOut)
CURRENCY VarR4FromCy(cyIn, prOut)
DATE VarR4FromDate(dateIn,

prOut)
OLECHAR FAR* VarR4FromStr(strIn, lcid,

dwFlags, prOut)
IDispatch FAR* VarR4FromDisp(pdispIn,

lcid, dwFlags, prOut)
BOOL VarR4FromBool(boolIn,

prOut)
Convert to type From type Function
double unsigned char VarR8FromUI1(bIn, pdblOut)

short VarR8FromI2(sIn, pdblOut)
long VarR8FromI4(lIn, pdblOut)
float VarR8FromR4(fltIn, pdblOut)
double None
CURRENCY VarR8FromCy(cyIn, pdblOut)
DATE VarR8FromDate(dateIn,

pdblOut)
OLECHAR FAR* VarR8FromStr(strIn, lcid,

dwFlags, pdblOut)
IDispatch FAR* VarR8FromDisp(pdispIn,

lcid, dwFlags, pdblOut)
BOOL VarR8FromBool(boolIn,

pdblOut)
DATE unsigned char VarDateFromUI1(bIn,

pdateOut)
short VarDateFromI2(sIn,

pdateOut)
long VarDateFromI4(lIn,

pdateOut)
float VarDateFromR4(fltIn,

pdateOut)
double VarDateFromR8(dblIn,

pdateOut)
CURRENCY VarDateFromCy(cyIn,

pdateOut)
DATE None
OLECHAR FAR* VarDateFromStr(strIn, lcid,

dwFlags, pdateOut)
IDispatch FAR* VarDateFromDisp(pdispIn,

lcid, dwFlags, pdateOut)
BOOL VarDateFromBool(boolIn,

pdateOut)
CURRENCY unsigned char VarCyFromUI1(bIn, pcyOut)

short VarCyFromI2(sIn, pcyOut)
long VarCyFromI4(lIn, pcyOut)
float VarCyFromR4(fltIn, pcyOut)
double VarCyFromR8(dblIn, pcyOut)
CURRENCY None
DATE VarCyFromDate(dateIn,

pcyOut)
OLECHAR FAR* VarCyFromStr(strIn, lcid,

dwFlags, pcyOut)
IDispatch FAR* VarCyFromDisp(pdispIn,

lcid, dwFlags, pcyOut)
BOOL VarCyFromBool(boolIn,

pcyOut)
BSTR unsigned char VarBstrFromUI1(bIn, lcid,

dwFlags, pbstrOut)
short VarBstrFromI2(sIn, lcid,

dwFlags, pbstrOut)
long VarBstrFromI4(lIn, lcid,

dwFlags, pbstrOut)
float VarBstrFromR4(fltIn, lcid,

dwFlags, pbstrOut)
double VarBstrFromR8(dblIn, lcid,

dwFlags, pbstrOut)
CURRENCY VarBstrFromCy(cyIn, lcid,

dwFlags, pbstrOut)
DATE VarBstrFromDate(dateIn,

lcid, dwFlags, pbstrOut)
OLECHAR FAR* None
IDispatch FAR* VarBstrFromDisp(pdispIn,

lcid, dwFlags, pbstrOut)
BOOL VarBstrFromBool(boolIn,

lcid, dwFlags, pbstrOut)
BOOL unsigned char VarBoolFromUI1(bIn,

pboolOut)
short VarBoolFromI2(sIn,

pboolOut)
long VarBoolFromI4(lIn,

pboolOut)
float VarBoolFromR4(fltIn,

pboolOut)
double VarBoolFromR8(dblIn,

pboolOut)
CURRENCY VarBoolFromCy(cyIn,

pboolOut)
DATE VarBoolFromDate(dateIn,

pboolOut)
OLECHAR FAR* VarBoolFromStr(strIn, lcid,

dwFlags, pboolOut)
IDispatch FAR* VarBoolFromDisp(pdispIn,

lcid, dwFlags, pboolOut)
BOOL None

Parameters
bIn, sIn, lIn, fltIn, dblIn, cyIn, dateIn, strIn, pdispIn, boolIn

The value to coerce. These parameters have the following data types:

Parameter Data type
bIn unsigned char
sIn short
lIn long
fltIn float
dblIn double
cyIn CURRENCY
dateIn DATE
strIn OLECHAR FAR*
pdispIn IDispatch FAR*
boolIn BOOL

lcid

For conversions from string and VT_DISPATCH input, the locale ID to use for the conversion. For a
list of locale IDs, see "Supporting Multiple National Languages" in Chapter 2, "Exposing Automation
Objects."

dwFlags

One or more of the following flags:

Flag Description
LOCALE_NOUSEROVER
RIDE

Uses the system default locale
settings, rather than custom locale
settings.

VAR_TIMEVALUEONLY Omits the date portion of a VT_DATE
and returns only the time. Applies to
conversions to or from dates.

VAR_DATEVALUEONLY Omits the time portion of a VT_DATE
and returns only the time. Applies to
conversions to or from dates.

pbOut, psOut, plOut, pfltOut, pdblOut, pcyOut, pstrOut, pdispOut, pboolOut

A pointer to the coerced value. These parameters have the following data types:

Parameter Data type
pbOut unsigned char
psOut short
plOut long
pfltOut float
pdblOut double
pcyOut CURRENCY
pdateOut DATE
pstrOut OLECHAR FAR*
pdispOut IDispatch FAR*
pboolOut BOOL

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
DISP_E_BADVARTYPE The input parameter is not a valid type

of variant.
DISP_E_OVERFLOW The data pointed to by the output

parameter does not fit in the destination
type.

DISP_E_TYPEMISMATCH The argument could not be coerced to
the specified type.

E_INVALIDARG One of the arguments is invalid.
E_OUTOFMEMORY Memory could not be allocated for the

conversion.

BSTR and Vector Conversion Functions
Automation supports conversion between an array of bytes and a BSTR through the two low-level
conversion functions VectorFromBstr and BstrFromVector, and by performing the appropriate
conversions in VariantChangeType, ITypeInfo::Invoke, DispInvoke, and other relevant locations.

BSTRs are wide, double-byte (Unicode) strings on 32-bit Windows platforms, and narrow, single-byte
strings on the Apple PowerMac. These functions do not perform any special string handling. They simply
move bytes from one location to another, so the width of strings does not affect these API functions.

VectorFromBstr
HRESULT VectorFromBstr(

 BSTR bstr,
 SAFEARRAY FAR* FAR* ppsa
);

Returns a vector, assigning each character in the BSTR to an element of the vector.

Parameters
bstr

The BSTR to be converted to a vector.
ppsa

On exit, ppsa points to a one-dimensional safe array containing the characters in the BSTR.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG BSTR is Null.

BstrFromVector
HRESULT BstrFromVector(

 SAFEARRAY FAR* psa,
 BSTR FAR* pbstr
);

Returns a BSTR, assigning each element of the vector to a character in the BSTR.

Parameters
psa

The vector to be converted to a BSTR.
pbstr

On exit, pbstr points to a BSTR, each character of which is assigned to an element from the vector.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG The argument psa is Null.
DISP_E_TYPEMISMATCH The argument psa is not a vector

(not an array of bytes).

Numeric Parsing Functions
Internally, Automation uses a single, fast-parsing function for all conversions of a string to a numeric type.
Parsing a string to a number is a very common operation, so exposing this internal function will save
duplication of code and provide consistent results and performance. For example, Visual Basic for
Applications uses this function to implement file input of the DECIMAL data type.

// Flags used by both dwInFlags and dwOutFlags:
#define NUMPRS_LEADING_WHITE 0x0001
#define NUMPRS_TRAILING_WHITE0x0002
#define NUMPRS_LEADING_PLUS 0x0004
#define NUMPRS_TRAILING_PLUS 0x0008
#define NUMPRS_LEADING_MINUS 0x0010
#define NUMPRS_TRAILING_MINUS0x0020
#define NUMPRS_HEX_OCT 0x0040
#define NUMPRS_PARENS 0x0080
#define NUMPRS_DECIMAL 0x0100
#define NUMPRS_THOUSANDS 0x0200
#define NUMPRS_CURRENCY 0x0400
#define NUMPRS_EXPONENT 0x0800
#define NUMPRS_USE_ALL 0x1000
#define NUMPRS_STD 0x1FFF

// Flags used by dwOutFlags only:
#define NUMPRS_NEG 0x10000
#define NUMPRS_INEXACT 0x20000

// VarNumFromParseNum flags that indicate acceptable result types:
#define VTBIT_I1 (1 << VT_I1)
#define VTBIT_UI1 (1 << VT_UI1)
#define VTBIT_I2 (1 << VT_I2)
#define VTBIT_UI2 (1 << VT_UI2)
#define VTBIT_I4 (1 << VT_I4)
#define VTBIT_UI4 (1 << VT_UI4)
#define VTBIT_R4 (1 << VT_R4)
#define VTBIT_R8 (1 << VT_R8)
#define VTBIT_CY (1 << VT_CY)
#define VTBIT_DECIMAL (1 << VT_DECIMAL)

VarParseNumFromStr
HRESULT VarParseNumFromStr(

 [in] OLECHAR* strIn,
 [in] LCID lcid,
 [in] unsigned long dwFlags,
 [in] NUMPARSE *pnumprs,
 [out] unsigned char *rgbDig
);

Parses a string, and creates a type-independent description of the number it represents. The first three
parameters are identical to the first three parameters of VarI2FromStr, VarI4FromStr, VarR8FromStr,
and so on. The fourth parameter is a pointer to a NUMPARSE structure, which contains both input
information to the function as well as the results, as described above. The last parameter is a pointer to
an array of digits, filled in by the function.

The VarParseNumFromStr function fills in the dwOutFlags element with each corresponding feature that
was actually found in the string. This allows the caller to make decisions about what numeric type to use
for the number, based on the format in which it was entered. For example, one application might want to
use the CURRENCY data type if the currency symbol is used, and others may want to force a floating
point type if an exponent was used.

Parameters
[in] strIn

Input string to be converted to a number.
lcid

Locale identifier
dwFlags

Allows the caller to control parsing, therefore defining the acceptable syntax of a number. If this field
is set to zero, the input string must contain nothing but decimal digits. Setting each defined flag bit
enables parsing of that syntactic feature. Standard Automation parsing (for example, as used by
VarI2FromStr) has all flags set (NUMPRS_STD).

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Internal memory allocation failed.

(Used for DBCS only to create a
copy with all wide characters
mapped narrow.)

DISP_E_TYPEMISMATCH There is no valid number in the
string, or there is no closing
parenthesis to match an opening
one. In the former case, cDig and
cchUsed in the NUMPARSE
structure will be zero. In the latter,

the NUMPARSE structure and digit
array are fully updated, as if the
closing parenthesis was present.

DISP_E_OVERFLOW For hexadecimal and octal digists,
there are more digits than will fit
into the array. For decimal, the
exponent exceeds the maximum
possible. In both cases, the
NUMPARSE structure and digit
array are fully updated (for
decimal, the cchUsed field
excludes the entire exponent).

NUMPARSE Structure
The caller of VarParseNumFromStr() must initialize two elements of the passed-in NUMPARSE
structure:

typedef struct {
int cDig;
unsigned long dwInFlags;
unsigned long dwOutFlags;
int cchUsed;
int nBaseShift;
int nPwr10;

} NUMPARSE;

The cDig element is set to the size of the rgbDig array, and dwInFlags is set to parsing options. All other
elements may be uninitialized and are set by the function, except on error, as described in the following
paragraphs. The cDig element is also modified by the function to reflect the actual number of digits written
to the rgbDig array.

The cchUsed element of the NUMPARSE sturcture is filled in with the number of characters (from the
beginning of the string) that were successfully parsed. This allows the caller to determine if the entire
string was part of the number (as required by functions such as VarI2FromStr), or where to continue
parsing the string.

The nBaseShift element gives the number of bits per digit (3 or 4 for octal and hexadecimal numbers, and
zero for decimal).

The following apply only to decimal numbers:

· nPwr10 sets the decimal point position by giving the power of 10 of the least significant digit.
· If the number is negative, NUMPRS_NEG will be set in dwOutFlags.
· If there are more non-zero decimal digits than will fit into the digit array, the NUMPRS_INEXACT flag

will be set.

VarParseNumFromNum
HRESULT VarNumFromParseNum(

 [in] NUMPARSE *pnumprs,,
 [in] unsigned char *rgbDig,
 [in] unsigned long dwVtBits,
 [out] VARIANT *pvar
);

Once the number is parsed, the caller can call VarNumFromParseNum() to convert the parse results to a
number. The NUMPARSE structure and digit array must be passed in unchanged from the
VarParseNumFromStr() call. This function will choose the smallest type allowed that can hold the result
value with as little precision loss as possible. The result variant is an [out] parameter, so its contents are
not freed before storing the result.

Parameters
pnumprs

Parsed results.
rgbDig

Array.
dwVtBits

Contains one bit set for each type that is acceptable as a return value (in many cases, just one bit).
Pvar

Result variant.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
DISP_E_OVERFLOW The number is too large to be

represented in an allowed type.
There is no error if precision is lost
in the conversion.

The rgbDig array is filled in with the values for the digits in the range 0-7, 0-9, or 0-15, depending on
whether the number is octal, decimal, or hexadecimal. All leading zeros have been stripped off. For
decimal numbers, trailing zeros are also stripped off, unless the number is zero, in which case a single
zero digit will be present.

For rounding decimal numbers, the digit array must be at least one digit longer than the maximum
required for data types. The maximum number of digits required for the DECIMAL data type is 29, so the
digit array must have room for 30 digits. There must also be enough digits to accept the number in octal, if
that parsing options is selected. (Hexadecimal and octal numbers are limited by
VarNumFromParseNum() to the magnitude of an unsigned long [32 bits], so they need 11 octal digits.)

Date and Time Conversion Functions
The following functions are provided by Oleauto32.dll (for 32-bit systems) and Ole2disp.dll (for 16-bit
systems) to convert between dates and times stored in MS-DOS format and the variant representation.

DosDateTimeToVariantTime   

int DosDateTimeToVariantTime(

 unsigned short wDOSDate,
 unsigned short wDOSTime,
 double FAR* pvtime
);

Converts the MS-DOS representation of time to the date and time representation stored in a variant.

Parameters
wDOSDate

The MS-DOS date to convert.
wDOSTime

The MS-DOS time to convert.
pvtime

Pointer to the location to store the converted time.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Result Meaning
True Success.
False Failure.

Comments
MS-DOS records file dates and times as packed 16-bit values. An MS-DOS date has the following format.

Bits Contents
0-4 Day of the month (1-31).
5-8 Month (1 = January, 2 = February, and so on).
9-15 Year offset from 1980 (add 1980 to get the

actual year).

An MS-DOS time has the following format.

Bits Contents
0-4 Second divided by 2.
5-10 Minute (0-59).
11-15 Hour (0- 23 on a 24-hour clock).

VariantTimeToDosDateTime   

int VariantTimeToDosDateTime(

 double vtime,
 unsigned short FAR* pwDOSDate,
 unsigned short FAR* pwDOSTime
);

Converts the variant representation of a date and time to MS-DOS date and time values.

Parameters
vtime

The variant time to convert.
pwDOSDate

Pointer to the location to store the converted MS-DOS date.
pwDOSTime

Pointer to the location to store the converted MS-DOS time.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Result Meaning
True Success.
False Failure.

Comments
A variant time is stored as an 8-byte real value (double), representing a date between January 1, 1753
and December 31, 2078, inclusive. The value 2.0 represents January 1, 1900; 3.0 represents January 2,
1900, and so on. Adding 1 to the value increments the date by a day. The fractional part of the value
represents the time of day. Therefore, 2.5 represents noon on January 1, 1900; 3.25 represents 6:00 A.M.
on January 2, 1900, and so on. Negative numbers represent the dates prior to December 30, 1899.

For a description of the MS-DOS date and time formats, see DosDateTimeToVariantTime.

VariantTimeToSystemTime
int VariantTimeToSystemTime(

 double vtime,
 SYSTEMTIME *psystime
);

Converts the variant representation of time-to-system time values.

Parameters
vtime

The variant time that will be converted.
psystime

Pointer to the location where the converted time will be stored.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Result Meaning
True Success.
False Failure.

Comments
A variant time is stored as an 8-byte real value (double), representing a date between January 1, 1753
and December 31, 2078, inclusive. The value 2.0 represents January 1, 1900; 3.0 represents January 2,
1900, and so on. Adding 1 to the value increments the date by a day. The fractional part of the value
represents the time of day. Therefore, 2.5 represents noon on January 1, 1900; 3.25 represents 6:00 A.M.
on January 2, 1900, and so on. Negative numbers represent the dates prior to December 30, 1899.

Using the SYSTEMTIME structure is useful because:

· It spans all time/date periods. MS-DOS date/time is limited to representing only those dates between
1/1/1980 and 12/31/2107.

· The date/time elements are all easily accessible without needing to do any bit decoding.
· The National Language Support data and time formating functions GetDateFormat() and

GetTimeFormat() take a SYSTEMTIME value as input.
· It is the default Win32 time and date data format supported by Windows NT and Windows 95.

SystemTimeToVariantTime
int SystemTimeToVariantTime(psystime, pvtime)
SYSTEMTIME *psystime
double *vtime

Converts the variant representation of time-to-system time values.

Parameters
psystime

The system time.
vtime

Returned variant time.

Return Value
The return value obtained from the returned HRESULT is one of the following.

Result Meaning
True Success.
False Failure.

Comments
A variant time is stored as an 8-byte real value (double), representing a date between January 1, 1753
and December 31, 2078, inclusive. The value 2.0 represents January 1, 1900; 3.0 represents January 2,
1900, and so on. Adding 1 to the value increments the date by a day. The fractional part of the value
represents the time of day. Therfore, 2.5 represents noon on January 1, 1900; 3.25 represents 6:00 A.M.
on January 2, 1900, and so on. Negative numbers represent the dates prior to December 30, 1899.

The SYSTEMTIME structure is useful for the following reasons:

· It spans all time/date periods. MS-DOS date/time is limited to representing only those dates between
1/1/1980 and 12/31/2107.

· The date/time elements are all easily accessible without needing to do any bit decoding.
· The National Data Support data and time formating functions GetDateFormat() and

GetTimeFormat() take a SYSTEMTIME value as input.
· It is the default Win32 time/date data format supported by Windows NT and Windows 95.

Type Libraries and the Object
Description Language

When you expose ActiveX objects, it allows interoperability with the programs of other vendors. For
vendors to use these objects, they must have access to the characteristics of the objects (properties and
methods). To make this information available developers must:

· Publish object and type definitions (for example, as printed documentation).
· Code objects into a compiled .c or .cpp file so they can be accessed using IDispatch::GetTypeInfo

or implementations of the ITypeInfo and ITypeLib interfaces.
· Use the MIDL compiler or the MkTypLib utility to create a type library that contains the objects, and

then make the type library available.
The Microsoft Interface Definition Language (MIDL) compiler and the MkTypLib utility both compile scripts
that are written in the Object Description Language (ODL). Microsoft has expanded the Interface
Definition Language (IDL) to contain the complete ODL syntax. You should use the MIDL compiler in
preference to MkTypLib, since MkTypLib is being phased out and will no longer be supported.

For more information about the MIDL compiler, refer to the MIDL Programmer's Guide and Reference in
the Win32 Software Development Kit (SDK).

The following descriptions and references are contained in this chapter:

· Contents of a type library
· Using MIDL and MkTypeLib
· MkTypLib type library creation
· ODL file syntax
· ODL reference

Contents of a Type Library
Type libraries are compound document files (.tlb files) that include information about types and objects
exposed by an ActiveX application. A type library can contain any of the following:

· Information about data types, such as aliases, enumerations, structures, or unions.
· Descriptions of one or more objects, such as a module, interface, IDispatch interface (dispinterface),

or component object class (coclass). Each of these descriptions is commonly referred to as a
typeinfo.

· References to type descriptions from other type libraries.

By including the type library with a product, the information about the objects in the library can be made
available to the users of the applications and programming tools. Type libraries can be shipped in any of
the following forms:

· A resource in a dynamic link library (DLL). This resource should have the type TypeLib and an integer
ID. It must be declared in the resource (.rc) file as follows:
1 typelib mylib1.tlb
2 typelib mylib2.tlb

There can be multiple type library resources in a DLL. Application developers should use the resource
compiler to add the .tlb file to their own DLL. A DLL with one or more type library resources typically
has the file extension .olb (object library).

· A resource in an .exe file. The file can contain multiple type libraries.
· A stand-alone binary file. The .tlb (type library) file output by the MkTypLib utility is a binary file.

Object browsers, compilers, and similar tools access type libraries through the interfaces ITypeLib,
ITypeInfo, and ITypeComp. Type library tools (such as MkTypLib) can be created using the interfaces
ICreateTypeLib and ICreateTypeInfo.

Using MIDL and MkTypeLib
Files parsed by MkTypeLib are .odl files. Files parsed by MIDL are referred to as .idl files, although they
can contain the same syntax elements as .odl files. The MIDL compiler and the MkTypeLib utility both
compile scripts wriitten in the Object Description Language (ODL). However, MkTypLib is obsolete and
you should use the MIDL compiler instead.

Adding ODL to an IDL Definition
The .ODL files provide object definitions that are added to the type descriptions in a type library. The
MkTypeLib .EXE parses files written in the ODL syntax, generates the type libraries, and optionally
creates C++ header files that contain the same definitions.

The top-level element of the ODL syntax is the library statement (or library block). Every other ODL
statement (with the exception of the attributes that can be applied to the library statement) must be
defined in the library block.

The MIDL function generates a type library when it sees a library statement in the same way that
MkTypeLib does. The statements found in the library block follow essentially the same syntax as earlier
versions of the ODL language.

ODL attributes can be applied to an element both inside and outside of the library block. Outside the
block, they typically do nothing, unless the element is referenced from within the block by using it as a
base type, inheriting from it, or referencing it on a line such as this:

library a
{

interface [xyz]];
struct bar;
...

};

If an element defined outside of the block is referenced in the block, its definition is put into the generated
type library.

Anything outside of the library block is an .idl file, and the MIDL compiler processes it as usual. Typically,
this means generating remote stubs for it.

Support for ODL Base Types
There are a number of base types supported by MkTypLib that are not directly supported by MIDL. The
MIDL function gets its definitions for these base types by automatically importing Oleauto.idl, and
Oleidl.idl whenever it encounters a library statement. This means that Oleauto.idl and Oleidl.idl (along
with the imported Unknwn.idl and Wtypes.idl files) must be somewhere in the user's INCLUDE path. The
OLE and Automation DLLs must also be in the system if the user compiles an .idl file that contains a
library statement.

The following table contains the command line options for the MIDL compiler:

Option Description
/tlb <filename> Name of the type library file name

for the output .tlb file. If not
specified, this is the same as the
name of the .odl file with the
extension of .tlb.

/h <filename> Similar to the /header in MIDL, but
also containing definitions related
to the type library. For information
on the /header switch see Chapter
…

/ <system> <system> is win16, win32, mac,
mips, alpha, ppc, or ppc32.

/align <#> Same as the /Zp switch in MIDL. It
sets the alignment for types in the
library. For more information on the
/Zp switch see…

/o <output file> Redirects output.
/nologo Disables the display of the

copyright logo.
/nocpp Same as the /no_cpp switch in

MIDL. For more information on
the /no_cpp switch see…

/mktyplib203 Puts MIDL into MkTypLib-
compatibility mode.

/mktyplib203 Option
The MIDL compiler behaves differently from the MkTypLib utility. The /mktyplib203 option removes most
of these differences and makes MIDL act like MkTypLib version 2.03.

For example, BOOL (a MkTypLib base type) is defined differently in MIDL than it is in MkTypLib.
MkTypLib treats BOOL as a VARIANT_BOOL. However, BOOL is defined in the file Wtypes.idl as a long
data type. If a VARIANT_BOOL is to be placed in the type library, it has to explicitly use VARIANT_BOOL
in the IDL/ODL file. If BOOL is used when VARIANT_BOOL is meant to be used, then the /mktyplib203
option should also be used.

MIDL normally puts globally unique identifier (GUID) predefinitions in its generated header files, and only
puts GUID instantiations in the file generated by the /iid option. With the /mktyplib203 option, MIDL
defines GUIDs in the header files in the way that MkTypLib does. They are defined with a macro that can
be compiled conditionally to generate either a predefined or an instantiated GUID.

With the /mktyplib203 option enabled, it is invalid to put any statements outside of the library block. A
pure ODL syntax must be used; it cannot be mixed and matched in this mode.

MkTypLib is used to require structure, union, and enum to be defined as part of type definitions. For
example:

typedef struct foo { int i; } bar;

In this statement, MkTypLib generates a TKIND_RECORD named "bar." Because the "foo" was not
recorded anywhere in the type library, it can be omitted.

MIDL allows normal C definitions of structure, union, and enum:

struct foo {int i;};
typedef struct foo bar;

- Or -

typedef struct foo {int i;} bar;

This statement generates a TKIND_RECORD named "foo" and (if the type definition is public) a
TKIND_ALIAS named "bar." The "foo" can still be omitted, in which case MIDL generates a name for it.

When the /mktyplib203 option is enabled, the original MkTypLib type definition syntax is required for
structures, unions, and enumerators. The behavior is the same as under MkTypLib (that is, "foo" is not
included in the type library).

Note MkTypLib permits some scoping errors, such as giving enumerators their own scope. These
errors are fixed by MIDL, and cannot be reintroduced, even with the /mktyplib203 switch. Even
though the /mktyplib203 switch enables MIDL to compile most earlier .odl files, there can be a few
exceptions. These are cases where the .odl files were already broken, and MkTypLib did not catch the
errors.

MkTypLib: Type Library Creation Tool
MkTypLib processes scripts written in the Object Description Language (ODL), producing a type library
and an optional C or C++ header file.

MkTypLib uses the ICreateTypeLib and ICreateTypeInfo interfaces to create type libraries. Type libraries
can then be accessed by tools, such as type browsers and compilers that use the ITypeLib and
ITypeInfo interfaces, as shown in the following figure.

{ewc msdncd, EWGraphic, bsd23528 0 /a "SDK_02.WMF"}

Invoking MkTypLib
To invoke MkTypLib, click the Windows® 95 Start button, and then click Run. Enter the following
command line in the Open box:

MkTypLib [options] ODLfile

MkTypLib creates a type library (.tlb) file based on the object description script in the file specified by
ODLfile. It can optionally produce a header (.h) file, which is a stripped version of the input file. This file is
included in C or C++ programs that want to access the types defined in the input file. In the header file,
MkTypLib inserts DEFINE_GUID macros for each element defined in the type library (such as interface,
dispinterface, and so on).

There can be a series of options, each prefixed with a hyphen (-) or a slash (/), as follows:

Option Description
/? or /help Displays command line Help. In this case,

ODLfile does not need to be specified.
/align:alignment Sets the default alignment for types in the

library. An alignment value of 1 indicates natural
alignment; n indicates alignment on byte n.

/cpp_cmd cpppath Specifies cpppath as the command to run the C
preprocessor. By default, MkTypLib invokes CL.

/cpp_opt "options" Specifies options for the C preprocessor. The
default is
/C /E /D__MkTypLib__.

/D define[=value] Defines the name define for the C preprocessor.
The value is its optional value. No space is
allowed between the equal sign (=) and the
value.

/h filename Specifies filename as the name for a stripped
version of the input file. This file can be used as
a C or C++ header file.

/I includedir Specifies includedir as the directory where
include files are located for the C preprocessor.

/nocpp Suppresses invocation of the C preprocessor.
/nologo Disables the display of the copyright banner.
/o outputfile Redirects output (for example, error messages)

to the specified outputfile.
/tlb filename Specifies filename as the name of the

output .tlb file. If not specified, it will be the
same name as the ODLfile, with the
extension .tlb.

/win16 /win32
/mac /mips /alpha
/ppc /ppc32

Specifies the output type library to be produced.
The default is the current operating system.

/w0 Disables warnings.

Although MkTypLib offers minimal error reporting, error messages include accurate line number and
column number information that can be used with text editors to locate the source of errors.

MkTypLib spawns the C preprocessor. The symbol __MKTYPLIB__ is predefined for the preprocessor.

ODL File Syntax
The general syntax for an .odl file is as follows:

[attributes] library libname {definitions};

The attributes associate characteristics with the library, such as its Help file and universally unique
identifier (UUID). Attributes must be enclosed in square brackets.

The definitions consist of the descriptions of the imported libraries, data types, modules, interfaces,
dispinterfaces, and coclasses that are part of the type library. Braces ({}) must surround the definitions.

The following table summarizes the elements that can appear in definitions. Each element is described in
more detail later in this chapter, in the section "ODL Reference."

Purpose Library element Description
Allows
references to
other type
libraries.

importlib (lib1) Specifies an external type
library that contains
definitions that are
referenced in this type
library.

Declares data
types used by
the objects in
this type library.

typedef [attributes]
aliasname

An alias declared using C
syntax. Must have at least
one attribute to be included
in the type library.

typedef [attributes]
enum

An enumeration declared
using the C keywords
typedef and enum.

typedef [attributes]
struct

A structure declared using
the C keywords typedef and
struct.

typedef [attributes]
union

A union declared using the C
keywords typedef and
union.

Describes
functions that
enable querying
the DLL.

[attributes] module Constants and general data
functions whose actions are
not restricted to any
specified class of objects.

Describes
interfaces.

[attributes]
dispinterface

An interface describing the
methods and properties for
an object that must be
accessed through
IDispatch::Invoke.

[attributes]
interface

An interface describing the
methods and properties for
an object that can be
accessed either through
IDispatch::Invoke or
through VTBL entries.

Describes OLE
classes.

[attributes] coclass Specifies a top-level object
with all of its interfaces and
dispinterfaces.

In the library description, modules, interfaces, dispinterfaces, and coclasses follow the same general

syntax:

[attributes] elementname typename {
memberdescriptions

};

The attributes set characteristics for the element. The elementname is a keyword that indicates the kind
of item (module, interface, dispinterface, or coclass), and the typename defines the name of the item. The
memberdescriptions define the members (constants, functions, properties, and methods) of each
element.

Aliases, enumerations, unions, and structures have the following syntax:

typedef [typeattributes] typekind typename {
memberdescriptions

};

For these types, the attributes follow the typedef keyword, and the typekind indicates the data type
(enum, union, or struct). For details, see "Attribute Descriptions" later in this chapter.

Note The square brackets ([])and braces ({ }) in these descriptions are part of the syntax, and are
not descriptive symbols. The semicolon after the closing brace (}) that terminates the library definition
(and all other type definitions) is optional.

ODL File Example
The following example shows the .odl file for the Lines sample file, extracted from Lines.odl:

[
uuid(3C591B20-1F13-101B-B826-00DD01103DE1), // LIBID_Lines.
helpstring("Lines 1.0 Type Library"),
lcid(0x09),
version(1.0)

]
library Lines
{

importlib("stdole.tlb");
#define DISPID_NEWENUM -4

[

uuid(3C591B25-1F13-101B-B826-00DD01103DE1), // IID_Ipoint.
helpstring("Point object."),
oleautomation,
dual

]
interface IPoint : IDispatch
{

[propget, helpstring("Returns and sets x coordinate.")]
HRESULT x([out, retval] int* retval);
[propput, helpstring("Returns and sets x coordinate.")]
HRESULT x([in] int Value);

[propget, helpstring("Returns and sets y coordinate.")]
HRESULT y([out, retval] int* retval);
[propput, helpstring("Returns and sets y coordinate.")]
HRESULT y([in] int Value);

}

// Additional interfaces omitted for brevity.

[
uuid(3C591B27-1F13-101B-B826-00DD01103DE1), //

IID_Ipoints.
helpstring("Points collection."),
oleautomation,
dual

]
interface IPoints : IDispatch
{

[propget, helpstring("Returns number of points in collection.")]
HRESULT Count([out, retval] long* retval);

[propget, id(0),
helpstring("Given an index, returns a point in the collection.")]
HRESULT Item([in] long Index, [out, retval] IPoint** retval);

[propget, restricted, id(DISPID_NEWENUM)] // Must be propget.
HRESULT _NewEnum([out, retval] IUnknown** retval);

}

// Additional interface omitted for brevity.

[
uuid(3C591B22-1F13-101B-B826-00DD01103DE1), //

IID_Iapplication
helpstring("Application object."),
oleautomation,
dual

]
interface IApplication : IDispatch
{

[propget, helpstring("Returns the application of the object.")]
HRESULT Application([out, retval] IApplication** retval);

[propget,
helpstring("Returns the full name of the application.")]
HRESULT FullName([out, retval] BSTR* retval);
[propget, id(0),
helpstring("Returns the name of the application.")]
HRESULT Name([out, retval] BSTR* retval);

[propget, helpstring("Returns the parent of the object.")]
HRESULT Parent([out, retval] IApplication** retval);

[propput]
HRESULT Visible([in] boolean VisibleFlag);
[propget, helpstring
("Sets or returns whether the main window is visible.")]
HRESULT Visible([out, retval] boolean* retval);

[helpstring("Exits the application.")]
HRESULT Quit();

// Additional methods omitted for brevity.

[helpstring("Creates new Point object initialized to (0,0).")]
HRESULT CreatePoint([out, retval] IPoint** retval);

}

[
uuid(3C591B21-1F13-101B-B826-00DD01103DE1), // CLSID_Lines.
helpstring("Lines Class"),
appobject

]
coclass Lines
{

[default] interface IApplication;
interface IDispatch;

}
}

The example describes a library named Lines that imports the standard OLE library Stdole.tlb. The
#define directive defines the constant DISPID_NEWENUM, which is needed for the _NewEnum property

of the IPoints collection.

The example shows declarations for three interfaces in the library: IPoint, IPoints, and IApplication.
Because all three are dual interfaces, their members can be invoked through IDispatch or directly
through VTBLs. In addition, all of their members return HRESULT values and pass their return values as
retval parameters. Therefore, they can support the IErrorInfo interface, through which they can return
detailed error information in whatever way they are invoked.

The IPoint interface has two properties, X and Y, and two pairs of accessor functions to get and set the
properties.

The IPoint interface is a collection of points. It supports three read-only properties, each of which has a
single accessor function. The Count and Item properties return the number of points and the value of a
single point, respectively. The _NewEnum property, required for collection objects, returns an enumerator
object for the collection. This property has the restricted attribute, indicating that it should not be invoked
from a macro language.

The IApplication interface describes the application object. It supports the properties Application,
FullName, Name, Parent, Visible, and Pane. It supports the methods Quit, CreateLine, and
CreatePoint.

Finally, the script defines a coclass named Lines. The appobject attribute makes the members of the
coclass (IApplication and IDispatch) globally accessible in the type library. IApplication is defined as
the default member, indicating that it is the programmability interface intended for use by macro
languages.

Source File Contents
The following sections describe the proper format for comments, constants, identifiers, and other syntactic
items in an .odl file.

Array Definitions
MkTypLib accepts both fixed-size arrays and arrays declared as SAFEARRAY.

Use a C-style syntax for a fixed size array:

type arrname[size];

To describe a SAFEARRAY, use the following syntax:

SAFEARRAY (elementtype) *arrayname

A function returning a SAFEARRAY has the following syntax:

SAFEARRAY (elementtype) myfunction(parameterlist);

Comments
To include comments in an .odl file, use a C-style syntax in either block form (/*...*/) or single-line form (//).
MkTypLib ignores the comments, and does not preserve them in the header (.h) file.

Constants
A constant can be either numeric or a string, depending on the attribute.

Numeric
Numeric input is usually an integer (in either decimal or in hexadecimal, using the standard 0x format), but
can also be a single character constant (for example, \0).

String
A string is delimited by double quotation marks (") and cannot span multiple lines. The backslash
character (\) acts as an escape character. The backslash character followed by any character (even
another backslash) prevents the second character from being interpreted with any special meaning. The
backslash is not included in the text.

For example, to include a double quotation mark (") in the text without causing it to be interpreted as the
closing delimiter, it should be preceded with a backslash (\"). Similarly, a double backslash (\\) should be
used to put a backslash into the text. Some examples of valid strings are:

"commandName"
"This string contains a \"quote\"."
"Here's a pathname: c:\\bin\\binp"

A string can be up to 255 characters long.

File Names
A file name is a string that represents either a full or partial path. Automation expects to find files in
directories that are referenced by the type library registration entries, so partial path names are typically
used. For more information about registration, refer to Chapter 2, "Exposing ActiveX objects."

Forward Declarations
Forward declarations permit forward references to types. Forward references have the following form:

typedef struct mydata;
interface aninterface;
dispinterface fordispatch;
coclass pococlass;

Globally Unique ID (GUID)
A universally unique ID (UUID) is a globally unique ID (GUID). This number is created by running the
Guidgen.exe command line program. Guidgen.exe never produces the same number twice, no matter
how many times it is run or how many different machines it runs on. Every entity that needs to be uniquely
identified (such as an interface) has a globally unique ID.

Identifiers
Identifiers can be up to 255 characters long, and must conform to C-style syntax. MkTypLib is case
sensitive, but it generates type libraries that are case insensitive. It is therefore possible to define a user-
defined type whose name differs from that of a built-in type only by case. User-defined type names (and
member names) that differ only in case refer to the same type or member. Except for property accessor
functions, it is invalid for two members of a type to have the same name, regardless of case.

Intrinsic Data Types
The following data types are recognized by MkTypLib:

Type Description
boolean Data item that can have the value True or

False. The size maps to VARIANT_BOOL.
char 8-bit signed data item.
double 64-bit IEEE floating-point number.
int Signed integer, whose size is system

dependent.
float 32-bit IEEE floating point number.
long 32-bit signed integer.
short 16-bit signed integer.
wchar_t Unicode character accepted only for 32-bit

type libraries.
BSTR Length-prefixed string, as described in

Chapter 5, "Dispatch Interface and API
Functions."

CURRENCY 8-byte, fixed-point number.
DATE 64-bit floating-point fractional number of days

since December 30, 1899.
SCODE Built-in error type that corresponds to

VT_ERROR. An SCODE (used in 16-bit
systems only) does not contain the additional
error information provided by HRESULT.

VARIANT One of the variant data types as described in
Chapter 5, "Dispatch Interface and API
Functions."

IDispatch * Pointer to the IDispatch interface.
IUnknown * Pointer to the IUnknown interface. (Any OLE

interface can be represented by its
IUnknown interface.)

SAFEARRAY(TypeNa
me)

TypeName is any of the above types. Array
of these types.

TypeName* TypeName is any of the above types. Pointer
to a type.

void Allowed only as return type for a function, or
in a function parameter list to indicate no
arguments.

HRESULT Return type used for reporting error
information in interfaces, as described in
Microsoft OLE Programmer's Guide and
Reference.

LPWSTR Unicode string accepted only for 32-bit type
libraries.

LPSTR Zero-terminated string.

Not all of the above types can be marshaled by Automation to another process or thread. The list of types
that can be marshaled are called Automation compatible types, and are listed under the oleautomation
attribute description.

The keyword unsigned can be specified before int, char, short, and long.

String Definitions
Strings can be declared using the LPSTR data type, which indicates a zero-terminated string, and with
the BSTR data type, which indicates a length-prefixed string (as defined in Chapter 5, "Dispatch Interface
and API Functions"). In 32-bit type libraries, Unicode strings can be defined with the LPWSTR data type.

ODL Reference
This section provides reference material on the attributes, statements, and directives that are part of the
Object Description Language (ODL).

Attribute Descriptions
The following sections describe the ODL attributes and the types of objects that they apply to, along with
the equivalent flags set in the object's type information.

appobject
Description

Identifies the Application object.

Allowed on
Coclass.

Comments
Indicates that the members of the class can be accessed without qualification when accessing this type
library.

Flags
TYPEFLAG_FAPPOBJECT

aggregatable
Description

Indicates that the class supports aggregation.

Allowed on
Coclass.

Comments
Indicates that the members of the class can be aggregated.

Flags
TYPEFLAG_FAGGREGATABLE

Example
[uuid(1e196b20-1f3c-1069-996b-00dd010fe676),

aggregatable
]
coclass Form
{

[default] interface IForm;
[default, source] interface IFormEvents;

}

bindable
Description

Indicates that the property supports data binding.

Allowed on
Property.

Comments
Refers to the property as a whole, so it must be specified wherever the property is defined. The attribute
should be specified on both the property get description and the property set description.

Flags
FUNCFLAG_FBINDABLE, VARFLAG_FBINDABLE

control
Description

Indicates that the item represents a control from which a container site will derive additional type libraries
or coclasses.

Allowed on
Type libraries, coclasses.

Comments
This attribute allows type libraries that describe controls to be marked so that they are not be displayed in
type browsers intended for nonvisual objects.

Flags
TYPEFLAG_FCONTROL, LIBFLAG_FCONTROL

custom(<guid>, <value>)
Description

Indicates a custom attribute (one not defined by Automation). This feature enables the independent
definition and use of attributes.

<guid> the standard GUID form

<value>a value that can be put into a variant. (See also the Const directive.)

Allowed on
Library, typeinfo, typlib, variable, function, parameter.

Not allowed on
A member of a coclass (IMPLTYPE).

Representation
Can be retrieved using:

ITypeLib2::GetCustData
ITypeInfo2::GetCustData
ITypeLib2::GetFuncCustData
ITypeLib2::GetVarCustData
ITypeLib2::GetParamCustData

Example
The following example shows how to add a string-valued attribute that gives the programmatic ID
(ProgID) for a class:

[
custom(GUID_PROGID, "DAO.Dynaset")

]
coclass Dynaset
{

[default] interface Dynaset;
[default, source] interface IDynasetEvents;

}

default
Description

Indicates that the interface or dispinterface represents the default programmability interface. Intended for
use by macro languages.

Allowed on
Coclass member.

Comments
A coclass can have two default members at most. One represents the source interface or dispinterface,
and the other represents the sink interface or dispinterface. If the default attribute is not specified for any
member of the coclass or cotype, the first source and sink members that do not have the restricted
attribute will be treated as the defaults.

Flags
IMPLTYPEFLAG_FDEFAULT

defaultbind
Description

Indicates the single, bindable property that best represents the object.

Allowed on
Property.

Comments
Properties that have the defaultbind attribute must also have the bindable attribute. The defaultbind
attribute cannot be specified on more than one property in a dispinterface.

This attribute is used by containers that have a user model that involves binding to an object rather than
binding to a property of an object. An object can support data binding and not have this attribute.

Flags
FUNCFLAG_FDEFAULTBIND, VARFLAG_FDEFAULTBIND

defaultcollelem
Description

Allows for optimization of code.

Allowed on
Type information, property.

Comments
In Visual Basic for Applications (VBA), "foo!bar" is normally syntactic shorthand for foo.defaultprop("bar").
Because such a call is significantly slower than accessing a data member of foo directly, an optimization
has been added in which the compiler looks for a member named "bar" on the type of foo. If such a
member is found and flagged as an accessor function for an element of the default collection, a call is
generated to that member function. To allow vendors to produce object servers that will be optimized in
this way, the member flag should be documented.

Because this optimization searches the type of item that precedes the '!', it will optimize calls of the form
MyForm!bar only if MyForm has a member named "bar," and it will optimize MyForm.Controls!bar only if
the return type of Controls has a member named bar. Even though MyForm!bar and MyForm.Controls!
bar both would normally generate the same calls to the object server, optimizing these two forms requires
that the object server add the bar method in both places.

Use of [defaultcollitem] must be consistent for a property. For example, if it is present on a Get, it must
also be present on a Put.

Flags
FUNCFLAG_FDEFAULTCOLLELEM, VARFLAG_FDEFAULTCOLLELEM

Example
A form has a button on it named Button1. User code can access the button using property syntax or !
syntax, as shown below.

Sub Test()
Dim f As Form1
Dim b1 As Button
Dim b2 As Button

Set f = Form1

Set b1 = f.Button1 ' Property syntax
Set b = f!Button1 ' ! syntax

End Sub

To use the property syntax and the ! syntax properly, see the form in the type information below.

[odl,
dual,
uuid(1e196b20-1f3c-1096-996b-00dd010ef676),
helpstring("This is IForm"),
restricted

]
interface IForm1: IForm
{

[propget, defaultcollelem]
HRESULT Button1([out, retval] Button *Value);

}

defaultvalue(value)
Description

Enables specification of a default value for a typed optional parameter.

Allowed on
Parameter.

Comments
The expression value resolves to a constant that can be described in a variant. The ODL already allows
some expression forms, as when a constant is declared in a module. The same expressions are
supported without modification.

The following example shows some legal parameter descriptions:

interface IFoo
{

void Ex1([defaultvalue(44)] LONG i);
void Ex2([defaultvalue(44)] SHORT i);
void Ex3([defaultvalue("Hello")] BSTR i);

}

The following rules apply:

1. It is invalid to specify a default value for a parameter whose type is a safe array. It is invalid to specify
a default value for any type that cannot go in a variant, including structures and arrays.

2. Optional parameters must follow default value parameters. Optional parameters and default value
parameters must follow mandatory parameters.

3. The default value can be any constant that is represented by a VARIANT data type.

Flags
none

Example
interface QueryDef
{

// Type is now known to be a LONG type (good for browser in VBA and
// for a C/C++ programmer) and also has a default value of
// dbOpenTable (constant).

HRESULT OpenRecordset([in, defaultvalue(dbOpenTable)]
LONG Type,

[out,retval]
Recordset **pprst);
}

defaultvtbl
Description

Enables an object to have two different source interfaces.

The default interface is an interface or dispinterface that is the default source interface. If the interface is
a:

· dual interface, sinks receive events through IDispatch.
· VTBL interface, event sinks receive events through VTBL.
· dispinterface, sinks receive events through IDispatch.
· defaultvtable, a default VTBL interface, which cannot be a dispinterface ¾ it must be a dual, VTBL,

or interface. If the interface is a dual interface, then sinks receive events through the VTBL.

An object can have both a default source and a default VTBL source interface with the same interface ID
(IID or GUID). In this case, a sink should advise using IID_IDISPATCH to receive dispatch events, and
use the specific interface ID to receive VTBL events.

Allowed on
A member of a coclass.

Comments
For normal (non-source) interfaces, an object can support a single interface that satisfies consumers
who want to use IDispatch access as well as VTBL access (a dual interface). Because of the way source
interfaces work, it is not possible dual interface for source interfaces. The object with the source interface
is in control of whether calls are made through IDispatch or through the VTBL. The sink does not provide
any information about how it wants to receive the events. The only action that object-sourcing events can
take would be to use the least common denominator, the IDispatch interface. This effectively reduces a
dual interface to a dispatch interface with regard to sourcing events.

Interface Flag it translates into

default IMPLTYPEFLAG_FDEFAULT

default, source IMPLTYPEFLAG_FDEFAULT

IMPLTYPEFLAG_FSOURCE

defaultvtable, source IMPLTYPEFLAG_FDEFAULT

IMPLTYPEFLAG_FDEFAULTVTABLE

IMPLTYPEFLAG_FSOURCE

Flags
IMPLTYPEFLAG_FDEFAULTVTABLE. If this flag is set, then IMPLTYPEFLAG_FDEFAULT is also set.

Example
[odl,

dual,
uuid(1e196b20-1f3c-1069-996b-00dd010ef676),
restricted

]

interface IForm: IDispatch
{

[propget]
HRESULT Backcolor([out, retval] long *Value);

[propput]
HRESULT Backcolor([in] long Value);

[propget]
HRESULT Name([out, retval] BSTR *Value);

[propput]
HRESULT Name([in] BSTR Value);

}

[odl,
dual,
uuid(1e196b20-1f3c-1069-996b-00dd010ef767),
restricted

]
interface IFormEvents: IDispatch
{

HRESULT Click();
HRESULT Resize();

}

[uuid(1e196b20-1f3c-1069-996b-00dd010fe676)]
coclass Form
{

[default] interface IForm;
[default, source] interface IFormEvents;
[defaultvtable, source] interface IFormEvents;

}

displaybind
Description

Indicates that a property should be displayed as bindable to the user.

Allowed on
Property.

Comments
Properties that have the displaybind attribute must also have the bindable attribute. An object can
support data binding and not have this attribute.

Flags
FUNCFLAG_FDISPLAYBIND, VARFLAG_FDISPLAYBIND

dllname(str)
Description

Defines the name of the DLL that contains the entry points for a module.

Allowed on
Module (required).

Comments
The str argument gives the file name of the DLL.

dual
Description

Identifies an interface that exposes properties and methods through IDispatch and directly through the
VTBL.

Allowed on
Interface.

Comments
The interface must be compatible with Automation and derive from IDispatch. Not allowed on
dispinterfaces.

The dual attribute creates an interface that is both a Dispatch interface and a Component Object Model
(COM) interface. The first seven entries of the VTBL for a dual interface are the seven members of
IDispatch, and the remaining entries are COM entries for direct access to members of the dual interface.
All of the parameters and return types specified for members of a dual interface must be compatible with
Automation types.

All members of a dual interface must pass an HRESULT as the function's return value. Members that
need to return other values should specify the last parameter as [retval, out] indicating an output
parameter that returns the value of the function. In addition, members that need to support multiple
locales should pass an lcid parameter.

A dual interface provides for both the speed of direct VTBL binding and the flexibility of IDispatch binding.
For this reason, dual interfaces are recommended whenever possible.

Note If an application accesses object data by casting the THIS pointer in the interface call, the
VTBL pointers in the object should be checked against the VTBL pointers to ensure that they are
connected to the appropriate proxy.

Specifying dual on an interface implies that the interface is compatible with Automation, and therefore
causes both the TYPEFLAG_FDUAL and TYPEFLAG_FOLEAUTOMATION flags to be set.

Flags
TYPEFLAG_FDUAL, TYPEFLAG_FOLEAUTOMATION

entry(entryid)
Description

Identifies the entry point in the DLL.

Allowed on
Functions in a module (required).

Comments
If entryid is a string, this is a named entry point. If entryid is a number, the entry point is defined by an
ordinal. This attribute provides a way to obtain the address of a function in a module.

helpcontext(numctxt)
Description

Sets the context in the Help file.

Allowed on
Library, interface, dispinterface, struct, enum, union, module, typedef, method, struct member, enum
value, property, coclass, const.

Comments
Retrieved by the GetDocumentation functions in the ITypeLib and ITypeInfo interfaces. The numctxt is
a 32-bit Help context ID in the Help file.

helpfile(filename)
Description

Sets the name of the Help file.

Allowed on
Library.

Comments
Retrieved through the GetDocumentation functions in the ITypeLib and ITypeInfo interfaces.

All types in a library share the same Help file.

helpstring(string)
Description

Sets the Help string.

Allowed on
Library, interface, dispinterface, struct, enum, union, module, typedef, method, struct member, enum
value, property, coclass, const.

Comments
Retrieved through the GetDocumentation functions in the ITypeLib and ITypeInfo interfaces.

helpstringcontext(contextid)
Description

Sets the string context in the Help file.

Allowed on
Type library, type information (TypeInfo), function, and variable level.

Comments
Retrieved by the GetDocumentation2 functions in the ITypeLib2 and ITypeInfo2 interfaces. The
contextid is a 32-bit Help context ID in the Help file.

helpstringdll(dllname)
Description

Sets the name of the DLL to use to perform the doc string lookup (localization).

Allowed on
Type lbrary.

Comments
Retrieved through the GetDocumentation2 functions in the ITypeLib2 and ITypeInfo2 interfaces.

hidden
Description

Indicates that the item exists, but should not be displayed in a user-oriented browser.

Allowed on
Property, method, coclass, dispinterface, interface, library.

Comments
This attribute allows members to be removed from an interface by shielding them from further use, while
maintaining compatibility with existing code.

When specified for a library, the attribute prevents the entire library from being displayed. It is intended for
use by controls. Hosts need to create a new type library that wraps the control with extended properties.

Flags
VARFLAG_FHIDDEN, FUNCFLAG_FHIDDEN, TYPEFLAG_FHIDDEN

id(num)
Description

Identifies the DISPID of the member.

Allowed on
Method or property in an interface or dispinterface.

Comments
The num is a 32-bit integral value in the following format:

Bits Value
0 - 15 Offset. Any value is permissible.
16 - 21 The nesting level of this TypeInfo in the inheritance

heirarchy. For example:
interface mydisp : IDispatch

The nesting level of IUnknown is 0, IDispatch is 1, and
MyDisp is 2.

22 - 25 Reserved. Must be zero.
26 - 28 DISPID value.
29 True if this is the member ID for a FuncDesc; otherwise

False.
30-31 Must be 01.

Negative IDs are reserved for use by Automation.

immediatebind
Description

Allows individual bindable properties on a form to specify this behavior. When this bit is set, all changes
will be notified.

Flags
VARFLAG_FIMMEDIATEBIND
FUNCFLAG_FIMMEDIATEBINDComments

Allows controls to differentiate two different types of bindable properties. One type of bindable property
needs to notify every change to the database (for example, with a check box control where every change
needs to be sent through to the underlying database, even though the control has not lost the focus).
However, controls such as a list box need to have the change of a property communicated to the
database when the control loses focus, because the user may have changed the selection with the arrow
keys before finding the desired setting. If the change notification was sent to the database every time the
user pressed an arrow key, it would give an unacceptable performance.

The bindable and requestedit attribute bits need to be set for this new bit to have an effect.

in
Description

Specifies an input parameter.

Allowed on
Parameter.

Comments
The parameter can be a pointer (such as char*) but the value it refers to is not returned.

lcid
Description

Indicates that the parameter is a locale ID.

Allowed on
Parameter in a member of an interface.

Comments
Only one parameter can have this attribute. The parameter must have the in attribute and not the out
attribute, and its type must be long. The lcid attribute is not allowed on dispinterfaces.

The lcid attribute allows members in th e VTBL to receive an LCID at the time of invocation. By
convention, the lcid parameter is the last parameter not to have the retval attribute. If the member
specifies propertyput or propertyputref, the lcis parameter must precede the parameter that represents
the right side of the property assignment.

ITypeInfo::Invoke passes the LCID of the type information into the lcid parameter. Parameters with this
attibute are not displayed in user-oriented browsers.

lcid(numid)
Description

This attribute identifies the locale for a type library.

Allowed on
Library.

Comments
The numid is a 32-bit locale ID, as used in Win32 National Language Support. The locale ID is typically
entered in hexadecimal format.

licensed
Description

Indicates that the class is licensed.

Allowed on
Coclass.

Flags
TYPEFLAG_FLICENSED

nonbrowsable
Description

Indicates that the property appears in an object browser (which does not show property values), but does
not appear in a properties browser (which does show propery values).

Allowed on
Property.

Flags
VARFLAG_FNONBROWSABLE, FUNCFLAG_FNONBROWSABLE

noncreatable
Description

Indicates that the class does not support creation at the top level (for example, through
ITypeInfo::CreateInstance or CoCreateInstance). An object of such a class is usually obtained through
a method call on another object.

Allowed on
Coclass.

Flags
TYPEFLAG_FCANCREATE

Example
[

uuid(1e196b20-1fc3-1069-996b-00dd010ef671),
helpstring("This is Dynaset"),

 noncreatable
]
coclass Dynaset
{

[default] interface IDynaset;
[default, source] interface IDynasetEvents;

}

nonextensible
Description

Indicates that the IDispatch implementation includes only the properties and methods listed in the
interface description.

Allowed on
Dispinterface, interface.

Comments
The interface must have the dual attribute.

By default, Automation assumes that interfaces can add members at run time, meaning that it assumes
the interfaces are extensible.

Flags
TYPEFLAG_FNONEXTENSIBLE

odl
Description

Identifies an interface as an Object Description Language (ODL) interface.

Allowed on
Interface (required).

Comments
This attribute must appear on all interfaces.

oleautomation
Description

The oleautomation attribute indicates that an interface is compatible with Automation.

Allowed on
Interface.

Comments
Not allowed on dispinterfaces.

The parameters and return types specified for its members must be compatible with Automation, as listed
in the following table:

Type Description
boolean Data item that can have the value True or

False. The size corresponds to
VARIANT_BOOL. Use VT_TRUE,
VT_FALSE.

unsigned char 8-bit unsigned data item.
double 64-bit IEEE floating-point number.
float 32-bit IEEE floating-point number.
int Signed integer, whose size is system

dependent.
long 32-bit signed integer.
short 16-bit signed integer.
BSTR Length-prefixed string, as described in

Chapter 5, "Dispatch Interface and API
Functions."

CURRENCY 8-byte, fixed-point number.
DATE 64-bit, floating-point fractional number of days

since December 30, 1899.
SCODE Built-in error type that corresponds to

VT_ERROR.
typedef enum
myenum

Signed integer, whose size is system
dependent.

interface IDispatch * Pointer to the IDispatch interface
(VT_DISPATCH).

interface IUnknown * Pointer to an interface that does not derive
from IDispatch (VT_UNKNOWN). (Any OLE
interface can be represented by its IUnknown
interface.)

dispinterface
Typename *

Pointer to an interface derived from IDispatch
(VT_DISPATCH).

coclass Typename * Pointer to a coclass name (VT_UNKNOWN).
[oleautomation]
interface Typename *

Pointer to an interface that derives from
IDispatch.

SAFEARRAY(TypeNa
me)

TypeName is any of the above types. Array of
these types.

TypeName* TypeName is any of the above types. Pointer

to a type.

A parameter is compatible with Automation if its type is compatible with an Automation type, a pointer to
an Automation type, or a SAFEARRAY of an Automation type.

A return type is compatible with Automation if its type is an HRESULT or is void. Methods in Automation
must return either HRESULT or void.

A member is compatible with Automation if its return type and all of its parameters are compatible with
Automation.

An interface is compatible with Automation if it derives from IDispatch or IUnknown, if it has the
oleautomation attribute, or if all of its VTBL entries are compatible with Automation. For 32-bit systems,
the calling convention for all methods in the interface must be STDCALL. For 16-bit systems, all methods
must have the CDECL calling convention. Every dispinterface is compatible with
Automation.

Flags
TYPEFLAG_FOLEAUTOMATION

optional
Description

Specifies an optional parameter.

Allowed on
Parameter.

Comments
Valid only if the parameter is of type VARIANT or VARIANT*. All subsequent parameters of the function
must also be optional.

out
Description

Specifies an output parameter.

Allowed on
Parameter.

Comments
The parameter must be a pointer to memory that will receive a result.

propget
Description

Specifies a property-accessor function.

Allowed on
Functions, methods in interfaces, dispinterfaces.

Comments
The property must have the same name as the function. At most, one of propget, propput, and
propputref can be specified for a function.

Flags
INVOKE_PROPERTYGET

propput
Description

Specifies a property-setting function.

Allowed on
Functions, methods in interfaces, dispinterfaces.

Comments
The property must have the same name as the function. Only one propget, propput, and propputref
can be specified.

Flags
INVOKE_PROPERTYPUT

propputref
Description

Specifies a property-setting function that uses a reference instead of a value.

Allowed on
Functions, methods in interfaces, dispinterfaces.

Comments
The property must have the same name as the function. Only one propget, propput, and propputref
can be specified.

Flags
INVOKE_PROPERTYPUTREF

public
Description

Includes an alias declared with the typedef keyword in the type library.

Allowed on
Alias declared with typedef.

Comments
By default, an alias that is declared with typedef, and has no other attributes, is treated as a #define, and
is not included in the type library. Using the public attribute ensures that the alias becomes part of the
type library.

readonly
Description

Prohibits assignment to a variable.

Allowed on
Variable.

Flags
VARFLAG_FREADONLY

replaceable
Description

Tags an interface as having default behaviors.

Allowed on
Coclass, variable.

Comments
The object supports IConnectionPointWithDefault.

Flags
TYPEFLAG_FREPLACEABLE, FUNCFLAG_FREPLACEABLE, VARFLAG_FREPLACEABLE

requestedit
Description

Indicates that the property supports the OnRequestEdit notification.

Allowed on
Property.

Comments
The property supports the OnRequestEdit notification, raised by a property before it is edited. An object
can support data binding and not have this attribute.

Flags
FUNCFLAG_FREQUESTEDIT, VARFLAG_FREQUESTEDIT

restricted
Description

Prevents the item from being used by a macro programmer.

Allowed on
Type library, type information, coclass member, or member of a module or interface.

Comments
This attribute is allowed on a member of a coclass, independent of whether the member is a dispinterface
or interface, and independent of whether the member is a sink or source. A member of a coclass cannot
have both the restricted and default attributes.

Flags
IMPLTYPEFLAG_FRESTRICTED, FUNCFLAG_FRESTRICTED

[odl,
dual,
uuid(1e196b20-1f3c-1069-996b-00dd010ef676),
helpstring("This is IForm"),
restricted

]
interface IForm: IDispatch
{

[propget]
HRESULT Backcolor([out, retval] long *Value);

[propput]
HRESULT Backcolor([in] long Value);

}

[odl,
dual,
uuid(1e196b20-1f3c-1069-996b-00dd010ef767),
helpstring("This is IFormEVents"),
restricted

]
interface IFormEvents: IDispatch
{

HRESULT Click();
}

[uuid(1e196b20-1f3c-1069-996b-00dd010fe676),
helpstring("This is Form")

]
coclass Form
{

[default] interface IForm;
[default, source] interface IFormEvents;

}

retval
Description

Designates the parameter that receives the return value of the member.

Allowed on
Parameters of interface members that describe methods or get properties.

Comments
This attribute can be used only on the last parameter of the member. The parameter must have the out
attribute and must be a pointer type.

Parameters with this attribute are not displayed in user-oriented browsers.

Flags
IDLFLAG_FRETVAL

source
Description

Indicates that a member is a source of events.

Allowed on
Member of a coclass, property, or method.

Comments
For a member of a coclass, this attribute indicates that the member is called rather than implemented.

On a property or method, this attribute indicates that the member returns an object or VARIANT that is a
source of events. The object implements the interface IConnectionPointContainer.

Flags
IMPLTYPEFLAG_FSOURCE, VARFLAG_SOURCE, FUNCFLAG_SOURCE

string
Description

Specifies a string.

Allowed on
Structure, member, parameter, property.

Comments
Included only for compatibility with the Interface Definition Language (IDL). Use LPSTR for a zero-
terminated string.

uidefault
Description

Indicates that the type information member is the default member for display in the user interface.

Allowed on
A member of an interface or dispinterface.

Comments
This attribute is used to mark an event as the default (the first one created) or a property as the default
(the one to select first in the properties browser).

For example, Visual Basic uses this attribute in the following ways:

· When an object is double-clicked at design time, Visual Basic jumps to the event in the default source
interface that is marked as [uidefault]. If there is no such member, then Visual Basic displays the first
one listed in the default source interface.

· When an object is selected at design time, by default, the Properties window in Visual Basic displays
the property in the default interface that is marked as [uidefault]. If there is no such member, then
Visual Basic displays the first one listed in the default interface.

Flags
FUNCFLAG_FUIDEFAULT, VARFLAG_FUIDEFAULT

 [odl,
dual,
uuid(1e196b20-1f3c-1069-996b-00dd010ef676),
restricted

]
interface IForm: IDispatch
{

[propget]
HRESULT Backcolor([out, retval] long *Value);

[propput]
HRESULT Backcolor([in] long Value);

[propget, uidefault]
HRESULT Name([out, retval] BSTR *Value);

[propput, uidefault]
HRESULT Name([in] BSTR Value);

}

[odl,
dual,
uuid(1e196b20-1f3c-1069-996b-00dd010ef767),
restricted

]
interface IFormEvents: IDispatch
{
 [uidefault]

HRESULT Click();

HRESULT Resize();
}

[uuid(1e196b20-1f3c-1069-996b-00dd010fe676)]
coclass Form
{

[default] interface IForm;
[default, source] interface IFormEvents;

}

uuid(uuidval)
Description

Specifies the universally unique ID (UUID) of the item.

Allowed on
Required for library, dispinterface, interface, and coclass. Optional for struct, enum, union, module, and
typedef.

Comments
The uuidval is a 16-byte value using hexadecimal digits in the following format: 12345678-1234-1234-
1234-123456789ABC. This value is returned in the TypeAttr structure retrieved by TypeInfo::GetTypeAttr.

vararg
Description

Indicates a variable number of arguments.

Allowed on
Function.

Comments
Indicates that the last parameter is a safe array of VARIANT type, which contains all of the remaining
parameters.

version(versionval)
Description

Specifies a version number.

Allowed on
Library, struct, module, dispinterface, interface, coclass, enum, union.

Comments
The argument versionval is a real number in the format n.m, where n is a major version number and m is
a minor version number.

ODL Statements and Directives
The following sections describe the statements and directives that make up the Object Description
Language (ODL).

coclass Statement
Describes the globally unique ID (GUID) and the supported interfaces for a Component Object Model
(COM).

Syntax
[attributes]

coclass classname {
[attributes2] [interface | dispinterface] interfacename;

// Code omitted here for brevity.
};

Syntax Elements
attributes

The uuid attribute is required on a coclass. This is the same uuid that is registered as a CLSID in the
system registration database. The helpstring, helpcontext, licensed, version, control, hidden, and
appobject attributes are accepted, but not required, before a coclass definition. For more information
about the attributes accepted before a coclass definition, see "Attribute Descriptions" earlier in this
chapter. The appobject attribute makes the functions and properties of the coclass globally available
in the type library.

classname
Name by which the common object is known in the type library.

attributes2
Optional attributes for the interface or dispinterface. The source, default, and restricted attributes
are accepted on an interface or dispinterface in a coclass.

interfacename
Either an interface declared with the interface keyword, or a dispinterface declared with the
dispinterface keyword.

Comments
The Component Object Model defines a class as an implementation that allows QueryInterface between
a set of interfaces.

Example
[uuid(BFB73347-822A-1068-8849-00DD011087E8), version(1.0), helpstring("A
class"), helpcontext(2481), appobject]
coclass myapp {

[source] interface IMydocfuncs;
dispinterface DMydocfuncs;

};

[uuid 00000000-0000-0000-0000-123456789019]
coclass foo
{

[restricted] interface bar;
interface bar;

}

dispinterface Statement
Defines a set of properties and methods on which IDispatch::Invoke can be called. A dispinterface can
be defined by explicitly listing the set of supported methods and properties (Syntax 1) or by listing a single
interface (Syntax 2).

Syntax 1
[attributes]

dispinterface intfname {
properties:

proplist
methods:

methlist
};

Syntax 2
[attributes]

dispinterface intfname {
interface interfacename

};

Syntax Elements
attributes

The helpstring, helpcontext, hidden, uuid, and version attributes are accepted before
dispinterface. For more information about the attributes accepted before a dispinterface definition,
see "Attribute Descriptions" earlier in this chapter. Attributes (including the brackets) can be omitted,
except for the uuid attribute, which is required.

intfname
The name by which the dispinterface is known in the type library. This name must be unique within
the type library.

interfacename
(Syntax 2) The name of the interface to declare as an IDispatch interface.

proplist
(Syntax 1) An optional list of properties supported by the object, declared in the form of variables. This
is the short form for declaring the property functions in the methods list. See the comments section for
details.

methlist
(Syntax 1) A list comprising a function prototype for each method and property in the dispinterface.
Any number of function definitions can appear in methlist. A function in methlist has the following
form:
[attributes] returntype methname(params);

The following attributes are accepted on a method in a dispinterface: helpstring, helpcontext, string
(for compatibility with the Interface Definition Language), bindable, defaultbind, displaybind,
propget, propput, propputref, and vararg. If vararg is specified, the last parameter must be a safe
array of VARIANT type.
The parameter list is a comma-delimited list, each element of which has the following form:
[attributes] type paramname

The type can be any declared or built-in type, or a pointer to any type. Attributes on parameters are
in, out, optional, and string.
If optional is specified, it must only be specified on the right-most parameters, and the types of those

parameters must be VARIANT.

Comments
Method functions are specified exactly as described in the "module Statement ," except that the entry
attribute is not allowed.

Note Stdole32.tlb (Stdole.tlb on 16-bit systems) must be imported, because a dispinterface inherits
from IDispatch.

Properties can be declared either in the properties or methods lists. Declaring properties in the properties
list does not indicate the type of access the property supports (get, put, or putref). Specify the readonly
attribute for properties that do not support put or putref. If the property functions are declared in the
methods list, functions for one property will all have the same ID.

Using Syntax 1, the properties: and methods: tags are required. The id attribute is also required on each
member. For example:

properties:
[id(0)] int Value; // Default property.

methods:
[id(1)] void Show();

Unlike interface members, dispinterface members cannot use the retval attribute to return a value in
addition to an HRESULT error code. The lcid attribute is also invalid for dispinterfaces because
IDispatch::Invoke passes a locale ID (LCID). However, it is possible to declare an interface again that
uses these attributes.

Using Syntax 2, interfaces that support IDispatch and are declared earlier in an Object Definition
Language (ODL) script can be redeclared as IDispatch interfaces as follows:

dispinterface helloPro {
interface hello;

};

This example declares all of the members of the Hello sample and all of the members that it inherits to
support IDispatch. In this case, if Hello was declared earlier with lcid and retval members that returned
HRESULTs, MkTypLib would remove each lcid parameter and HRESULT return type, and instead mark
the return type as that of the retval parameter.

The properties and methods of a dispinterface are not part of the VTBL of the dispinterface.
Consequently, CreateStdDispatch and DispInvoke cannot be used to implement IDispatch::Invoke.
The dispinterface is used when an application needs to expose existing non-VTBL functions through
Automation. These applications can implement IDispatch::Invoke by examining the dispidMember
parameter and directly calling the corresponding function.

Example
[uuid(BFB73347-822A-1068-8849-00DD011087E8), version(1.0),
helpstring("Useful help string."), helpcontext(2480)]
dispinterface MyDispatchObject {

properties:
[id(1)] int x; // An integer property named x.
[id(2)] BSTR y; // A string property named y.

methods:
[id(3)] void show(); // No arguments, no result.
[id(11)] int computeit(int inarg, double *outarg);

};

[uuid 00000000-0000-0000-0000-123456789012]
dispinterface MyObject
{

properties:
methods:

[id(1), propget, bindable, defaultbind, displaybind]
long x();

[id(1), propput, bindable, defaultbind, displaybind]
void x(long rhs);

}

enum Statement
Defines a C-style enumerated type.

Syntax
typedef [attributes] enum [tag] {

enumlist
} enumname;

Syntax Elements
attributes

The helpstring, helpcontext, hidden, and uuid attributes are accepted before an enum statement.
The helpstring and helpcontext attributes are accepted on an enumeration element. For more
information about the attributes accepted before an enumeration definition, see "Attribute
Descriptions" earlier in this chapter. Attributes (including the brackets) can be omitted. If uuid is
omitted, the enumeration is not uniquely specified in the system.

tag
An optional tag, as with a C enum.

enumlist
List of enumerated elements.

enumname
Name by which the enumeration is known in the type library.

Comments
The enum keyword must be preceded by typedef. The enumeration description must precede other
references to the enumeration in the library. If value is not specified for enumerators, the numbering
progresses, as with enumerations in C. The type of the enum element is int, the system default integer,
which depends on the target type library specification.

Examples
typedef [uuid(DEADF00D-C0DE-B1FF-F001-A100FF001ED),

helpstring("Farm Animals are friendly"), helpcontext(234)]
enum {

[helpstring("Moo")] cows = 1,
pigs = 2

} ANIMALS;

importlib Directive
Makes types that have already been compiled into another type library available to the library currently
being created. All importlib directives must precede the other type descriptions in the library.

Syntax
importlib(filename);

Syntax Element
filename

The location of the type library file when MkTypLib is executed.

Comments
The importlib directive makes any type defined in the imported library accessible from within the library
being compiled. Ambiguity is resolved as the current library is searched for the type. If the type cannot be
found, MkTypLib searches the imported library that is lexically first, and then the next, and so on. To
import a type name in code, the name should be entered as libname.typename, where libname is the
library name as it appeared in the library statement when the library was compiled.

The imported type library should be distributed with the library being compiled.

Example
The following example imports the libraries Stdole.tlb and Mydisp.tlb:

library BrowseHelper
{

importlib("stdole.tlb");
importlib("mydisp.tlb");

// Additional text omitted.
}

interface Statement
Defines an interface, which is a set of function definitions. An interface can inherit from any base
interface.

Syntax
[attributes]

interface interfacename [:baseinterface] {
functionlist

};

Syntax Elements
attributes

The attributes dual, helpstring, helpcontext, hidden, odl, oleautomation, uuid, and version are
accepted before interface. If the interface is a member of a coclass, the attributes source, default,
and restricted are also accepted. For more information about the attributes that can be accepted
before an interface definition, refer to the section "Attribute Descriptions" earlier in this chapter.
The attributes odl and uuid are required on all interface declarations.

interfacename
The name by which the interface is known in the type library.

baseinterface
The name of the interface that is the base class for this interface.

functionlist
List of function prototypes for each function in the interface. Any number of function definitions can
appear in the function list. A function in the function list has the following form:
[attributes] returntype [calling convention] funcname(params);

The following attributes are accepted on a function in an interface: helpstring, helpcontext, string,
propget, propput, propputref, bindable, defaultbind, displaybind, and vararg. If vararg is
specified, the last parameter must be a safe array of VARIANT type. The optional calling convention
can be __pascal/_pascal/pascal, __cdecl/_cdecl/cdecl, or __stdcall/_stdcall/stdcall. The calling
convention specification can include up to two leading underscores.
The parameter list is a comma-delimited list, as follows:
[attributes] type paramname

The type can be any previously declared type, built-in type, a pointer to any type, or a pointer to a
built-in type. Attributes on parameters are in, out, optional, and string.
If optional is used, it must be specified only on the right-most parameters, and the types of those
parameters must be VARIANT.

Comments
Because the functions described by the interface statement are in the VTBL, DispInvoke and
CreateStdDispatch can be used to provide an implementation of IDispatch::Invoke. For this reason,
interface is more commonly used than dispinterface to describe the properties and methods of an
object.

Functions in interfaces are the same as described in "The module Statement ," except that the entry
attribute is not allowed.

Members of interfaces that need to raise exceptions should return an HRESULT and specify a retval
parameter for the actual return value. The retval parameter is always the last parameter in the list.

Examples
The following example defines an interface named Hello with two member functions, HelloProc and
Shutdown:

[uuid(BFB73347-822A-1068-8849-00DD011087E8), version(1.0)]
interface hello : IUnknown
{
void HelloProc([in, string] unsigned char * pszString);
void Shutdown(void);
};

The next example defines a dual interface named IMyInt, which has a pair of accessor functions for the
MyMessage property, and a method that returns a string.

[dual]
interface IMyInt : IDispatch
{

// A property that is a string.
[propget] HRESULT MyMessage([in, lcid] LCID lcid,

[out, retval] BSTR
*pbstrRetVal);

[propput] HRESULT MyMessage([in] BSTR rhs, [in, lcid] DWORD lcid);

// A method returning a string.
HRESULT SayMessage([in] long NumTimes,

 [in, lcid] DWORD lcid,
 [out, retval] BSTR *pbstrRetVal);

}

The members of this interface return error information and function return values through the HRESULT
values and retval parameters, respectively. Tools that access the members can return the HRESULT to
their users, or can simply expose the retval parameter as the return value, and handle the HRESULT
transparently.

A dual interface must derive from IDispatch.

library Statement
Describes a type library. This description contains all of the information in a MkTypLib input file (ODL).

Syntax
 [attributes] library libname {

definitions
};

Syntax Elements
attributes

The helpstring, helpcontext, lcid, restricted, hidden, control, and uuid attributes are accepted
before a library statement. For more information about the attributes accepted before a library
definition, see "Attribute Descriptions" earlier in this chapter. The uuid attribute is required.

libname
The name by which the type library is known.

definitions
Descriptions of any imported libraries, data types, modules, interfaces, dispinterfaces, and coclasses
relevant to the object being exposed.

Comments
The library statement must precede any other type definitions.

Example
[

uuid(F37C8060-4AD5-101B-B826-00DD01103DE1), // LIBID_Hello.
helpstring("Hello 2.0 Type Library"),
lcid(0x0409),
version(2.0)

]
library Hello
{

importlib("stdole.tlb");
[

uuid(F37C8062-4AD5-101B-B826-00DD01103DE1), // IID_Ihello.
helpstring("Application object for the Hello application."),
oleautomation,
dual

]
interface IHello : IDispatch
{

[propget, helpstring("Returns the application of the object.")]
HRESULT Application([in, lcid] long localeID,

[out, retval] IHello** retval)
}

}

module Statement
Defines a group of functions, typically a set of DLL entry points.

Syntax
 [attributes]

module modulename {
elementlist

};

Syntax Elements
attributes

The attributes uuid, version, helpstring, helpcontext, hidden, and dllname are accepted before a
module statement. For more information about the attributes that can be accepted before a module
definition, see "Attribute Descriptions" earlier in this chapter. The dllname attribute is required. If uuid
is omitted, the module is not uniquely specified in the system.

modulename
The name of the module.

elementlist
List of constant definitions and function prototypes for each function in the DLL. Any number of
function definitions can appear in the function list. A function in the function list has the following form:
[attributes] returntype [calling convention] funcname(params);

[attributes] const constname = constval;

Only the attributes helpstring and helpcontext are accepted for a const.
The following attributes are accepted on a function in a module: helpstring, helpcontext, string,
entry, propget, propput, propputref, vararg. If vararg is specified, the last parameter must be a
safe array of VARIANT type.
The optional calling convention can be one of __pascal/_pascal/pascal, __cdecl/_cdecl/cdecl, or
__stdcall/_stdcall/stdcall. The calling convention can include up to two leading underscores.
The parameter list is a comma-delimited list.
[attributes] type paramname

The type can be any previously declared type or built-in type, a pointer to any type, or a pointer to a
built-in type. Attributes on parameters are in, out, and optional.
If optional is specified, it must only be specified on the right-most parameters, and the types of those
parameters must be VARIANT.

Comments
The header file (.h) output for modules is a series of function prototypes. The module keyword and
surrounding brackets are stripped from the header file output, but a comment (\\ module modulename) is
inserted before the prototypes. The keyword extern is inserted before the declarations.

Example
[uuid(D00BED00-CEDE-B1FF-F001-A100FF001ED),

helpstring("This is not GDI.EXE"), helpcontext(190),
dllname("MATH.DLL")]

module somemodule{
[helpstring("Color for the frame")] unsigned long const COLOR_FRAME

= 0xH80000006;

[helpstring("Not a rectangle but a square"), entry(1)] pascal double
square([in] double x);
};

struct Statement
Defines a C-style structure.

Syntax
typedef [attributes]
struct [tag] {

memberlist
} structname;

Syntax Elements
attributes

The attributes helpstring, helpcontext, uuid, hidden, and version are accepted before a struct
statement. The attributes helpstring, helpcontext, and string are accepted on a structure member.
For more information about the attributes accepted before a structure definition, see "Attribute
Descriptions" earlier in this chapter. Attributes (including the brackets) can be omitted. If uuid is
omitted, the structure is not specified uniquely in the system.

tag
An optional tag, as with a C struct.

memberlist
List of structure members defined with C syntax.

structname
Name by which the structure is known in the type library.

Comments
The struct keyword must be preceded with a typedef. The structure description must precede other
references to the structure in the library. Members of a struct can be of any built-in type, or any type
defined lexically as a typedef before the struct. For a description of how strings and arrays can be
entered, see the sections "String Definitions" and "Array Definitions" earlier in this chapter.

Example
typedef [uuid(BFB7334B-822A-1068-8849-00DD011087E8),

helpstring("A task"), helpcontext(1019)]
struct {

DATE startdate;
DATE enddate;
BSTR ownername;
SAFEARRAY (int) subtasks;
int A_C_array[10];

} TASKS;

typedef Statement
Creates an alias for a type.

Syntax
typedef [attributes] basetype aliasname;

Syntax Elements
attributes

Any attribute specifications must follow the typedef keyword. If no attributes and no other type (for
example, enum, struct, or union) are specified, the alias is treated as a #define and does not
appear in the type library. If no other attribute is desired, public can be used to explicitly include the
alias in the type library. The helpstring, helpcontext, and uuid attributes are accepted before a
typedef. For more information, see "Attribute Descriptions" earlier in this chapter. If uuid is omitted,
the typedef is not uniquely specified in the system.

basetype
The type for which the alias is defined.

aliasname
Name by which the type will be known in the type library.

Comments
The typedef keyword must also be used whenever a struct or enum is defined. The name recorded for
the enum or struct is the typedef name, and not the tag for the enumeration. No attributes are required
to make sure the alias appears in the type library.

Enumerations, structures, and unions must be defined with the typedef keyword. The attributes for a type
defined with typedef are enclosed in brackets following the typedef keyword. If a simple alias typedef
has no attributes, it is treated like a #define, and the aliasname does not appear in the library. Any
attribute (public can be used if no others are desired) specified between the typedef keyword and the
rest of a simple alias definition causes the alias to appear explicitly in the type library. The attributes
typically include such items as a Help string and Help context.

Examples
typedef [public] long DWORD;

This example creates a type description for an alias type with the name DWORD.

typedef enum {
TYPE_FUNCTION = 0,
TYPE_PROPERTY = 1,
TYPE_CONSTANT = 2,
TYPE_PARAMETER = 3

} OBJTYPE;

The second example creates a type description for an enumeration named OBJTYPE, which has four
enumerator values.

union Statement
Defines a C-style union.

Syntax
typedef [attributes] union [tag] {

memberlist
} unionname;

Syntax Elements
attributes

The attributes helpstring, helpcontext, uuid, hidden, and version are accepted before a union.
The helpstring, helpcontext, and string attributes are accepted on a union member. For more
information about the attributes accepted before a union definition, see "Attribute Descriptions" earlier
in this chapter. Attributes (including the square brackets) can be omitted. If uuid is omitted, the union
is not uniquely specified in the system.

tag
An optional tag, as with a C union.

memberlist
List of union members defined with C syntax.

unionname
Name by which the union is known in the type library.

Comments
The union keyword must be preceded with a typedef. The union description must precede other
references to the structure in the library. Members of a union can be of any built-in type, or any type
defined lexically as a typedef before the union. For a description of how strings and arrays can be
entered, see the sections "String Definitions" and "Array Definitions" earlier in this chapter.

Example
[uuid(BFB7334C-822A-1068-8849-00DD011087E8), helpstring("A task"),
helpcontext(1019)]
typedef union {

COLOR polycolor;
int cVertices;
boolean filled;
SAFEARRAY (int) subtasks;

} UNIONSHOP;

Type Description Interfaces
Type description interfaces provide a way to read and bind to the descriptions of objects in a type library.
These descriptions are used by ActiveX clients when they browse, create, and manipulate ActiveX
(Automation) objects.

The type description interfaces described in this chapter include:

· ITypeLib ¾Retrieves information about a type library.
· ITypeInfo ¾ Reads the type information within the type library.
· ITypeComp ¾ Creates compilers that use type information.

This chapter also describes functions for loading, registering, and querying type libraries.

Overview of Type Description Interfaces
A type library is a container for type descriptions of one or more objects, and is accessed through the
ITypeLib interface. The ITypeLib interface provides access to information about the type description in a
type library. The descriptions of individual objects are accessed through the ITypeInfo interface.

The following table describes the member functions of each of the type description interfaces:

Category Member function Purpose
ITypeLib FindName Finds occurrences of a type

description in a type library.
GetDocumentation Retrieves the library's

documentation string, name of
the complete Help file name
and path, and the context ID
for the library Help topic.

GetLibAttr Retrieves the structure
containing the library's
attributes.

GetTypeComp Retrieves a pointer to the
ITypeComp for a type library.
This enables a client compiler
to bind to the library's types,
variables, constants, and
global functions.

 GetTypeInfo Retrieves the specified type
description in the library.

GetTypeInfoCount Retrieves the number of type
descriptions in the library.

GetTypeInfoOfGuid Retrieves the type description
corresponding to the specified
GUID.

GetTypeInfoType Retrieves the type of a type
description.

IsName Indicates whether a passed-in
string contains the name of a
type, or a member described in
the library.

ReleaseTLibAttr Releases TLIBATTR, originally
obtained from
ITypeLib::GetLibAttr.

ITypeInfo AddressOfMember Retrieves the addresses of
static functions or variables,
such as those defined in a
DLL.

CreateInstance Creates a new instance of a
type that describes a
component object class
(coclass).

GetContainingTypeLi
b

Retrieves both the type library
that contains a specific type
description and the index of

the type description within the
type library.

GetDllEntry Retrieves a description or
specification of an entry point
for a function in a DLL.

GetDocumentation Retrieves the documentation
string, name of the complete
Help file name and path, and
the context ID for the Help
topic for a specified type
description.

GetFuncDesc Retrieves the FUNCDESC
structure that contains
information about a specified
function.

GetIDsOfNames Maps between member names
and member IDs, and
parameter names and
parameter IDs.

GetImplTypeFlags Retrieves the IMPLTYPE flags
for an interface.

GetMops Retrieves marshaling
information.

GetNames Retrieves the variable with the
specified member ID, or the
name of the function and
parameter names
corresponding to the specified
function ID.

GetRefTypeInfo Retrieves the type descriptions
referenced by a given type
description.

GetRefTypeOfImplTy
pe

Retrieves the type description
of implemented interface types
for a coclass or an inherited
interface.

GetTypeAttr Retrieves a TYPEATTR
structure that contains the
attributes of the type
description.

GetTypeComp Retrieves the ITypeComp
interface for the type
description, which enables a
client compiler to bind to the
type description's members.

GetVarDesc Retrieves a VARDESC
structure that describes the
specified variable.

Invoke Invokes a method or accesses
a property of an object that
implements the interface
described by the type
description.

ReleaseFuncDesc Releases a FUNCDESC
previously returned by
GetFuncDesc.

ReleaseTypeAttr Releases a TYPEATTR
previously returned by
GetTypeAttr.

ReleaseVarDesc Releases a VARDESC
previously returned by
GetVarDesc.

ITypeComp Bind Maps a name to a member of
a type, or binds global
variables and functions
contained in a type library.

BindType Binds to the type descriptions
contained within a type library.

ITypeLib Interface
The data that describes a set of objects is stored in a type library. A type library can be a stand-alone
binary file (.tlb), a resource in a DLL or executable file, or part of a compound document file.

Implemented by Used by Header file name
Oleaut32.dll (32-bit
systems)
Typelib.dll (16-bit
systems)

Tools that need to
access the descriptions
of objects contained in
type libraries.

Oleauto.h
Dispatch.h

The system registry contains a list of all the installed type libraries. Type library organization is illustrated
in the following figure:

{ewc msdncd, EWGraphic, bsd23529 0 /a "SDK_10.WMF"}

The ITypeLib interface provides methods for accessing a library of type descriptions. This interface
supports the following:

· Generalized containment for type information. ITypeLib allows iteration over the type descriptions
contained in the library.

· Global functions and data. A type library can contain descriptions of a set of modules, each of which is
the equivalent of a C or C++ source file that exports data and functions. The type library supports
compiling references to the exported data and functions.

· General information, including a user-readable name for the library and help for the library as a whole.

ITypeLib::FindName
HRESULT ITypeLib::FindName(

 OLECHAR FAR* szNameBuf,
 unsigned long lHashVal,
 ITypeInfo FAR* FAR* rgptinfo,
 MEMBERID FAR* rgmemid,
 unsigned int FAR* pcFound
);

Finds occurrences of a type description in a type library. This may be used to quickly verify that a name
exists in a type library.

Parameters
szNameBuf

The name to search for.
lHashVal

A hash value to speed up the search, computed by the LHashValOfNameSys function. If lHashVal =
0, a value is computed.

rgptinfo

On return, an array of pointers to the type descriptions that contain the name specified in szNameBuf.
Cannot be Null.

rgmemid

An array of the MEMBERIDs of the found items; rgmemid[i] is the MEMBERID that indexes into the
type description specified by rgptinfo[i]. Cannot be Null.

pcFound

On entry, indicates how many instances to look for. For example, *pcFound = 1 can be called to find
the first occurrence. The search stops when one is found.
On exit, indicates the number of instances that were found. If the in and out values of *pcFound are
identical, there may be more type descriptions that contain the name.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.

TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_CANTLOADLIBRAR
Y

The library or .dll file could not be
loaded.

TYPE_E_ELEMENTNOTFOU
ND

The element was not found.

Comments
Passing *pcFound = n indicates that there is enough room in the rgptinfo and rgmemid arrays for n
(ptinfo, memid) pairs. The function returns MEMBERID_NIL in rgmemid[i], if the name in szNameBuf is
the name of the type information in rgptinfo[i].

ITypeLib::GetDocumentation
HRESULT ITypeLib::GetDocumentation(

 int index,
 BSTR FAR* lpbstrName,
 BSTR FAR* lpbstrDocString,
 unsigned long FAR* lpdwHelpContext,
 BSTR FAR* lpbstrHelpFile
);

Retrieves the library's documentation string, the complete Help file name and path, and the context ID for
the library Help topic in the Help file.

Parameters
index

Index of the type description whose documentation is to be returned. I If index is-1, then the
documentation for the library itself is returned.

lpbstrName

Returns a BSTR that contains the name of the specified item. If the caller does not need the item
name, then lpbstrName can be Null.

lpbstrDocString

Returns a BSTR that contains the documentation string for the specified item. If the caller does not
need the documentation string, then lpbstrDocString can be Null.

lpdwHelpContext

Returns the Help context ID associated with the specified item. If the caller does not need the Help
context ID, then lpdwHelpContext can be Null.

lpbstrHelpFile

Returns a BSTR that contains the fully qualified name of the Help file. If the caller does not need the
Help file name, then lpbstrHelpFile can be Null.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is invalid.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_ELEMENTNOTFOUND The element was not found.

Comments
The caller should free the BSTR parameters lpbstrName, lpbstrDocString, and lpbstrHelpFile.

Example
for (i = 0; i < utypeinfoCount; i++)
{

CHECKRESULT(ptlib->GetDocumentation(i, &bstrName,
NULL, NULL,

NULL));
.
.
.

SysFreeString(bstrName);
}

ITypeLib::GetLibAttr
HRESULT ITypeLib::GetLibAttr(

 TLIBATTR FAR* FAR* lplptlibattr
);

Retrieves the structure that contains the library's attributes.

Parameter
lplptlibattr

Pointer to a structure that contains the library's attributes.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an unsupported

format.
TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
Use ITypeLib::ReleaseTLibAttr to free the memory occupied by the TLIBATTR structure.

ITypeLib::GetTypeComp
HRESULT ITypeLib::GetTypeComp(

 ITypeComp FAR* FAR* lplptcomp
);

Enables a client compiler to bind to a library's types, variables, constants, and global functions.

Parameter
lplptcomp

Points to a pointer to the ITypeComp instance for this ITypeLib. A client compiler uses the methods
in the TypeComp interface to bind to types in ITypeLib, as well as to the global functions, variables,
and constants defined in ITypeLib.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_WRONGTYPEKIND Type mismatch.

Comments
The Bind function of the returned TypeComp binds to global functions, variables, constants, enumerated
values, and coclass members. The Bind function also binds the names of the TYPEKIND enumerations
of TKIND_MODULE, TKIND_ENUM, and TKIND_COCLASS. These names shadowany global names
defined within the type information. The members of TKIND_ENUM, TKIND_MODULE, and
TKIND_COCLASS types marked as Application objects can be directly bound to from ITypeComp without
specifying the name of the module.

ITypeComp::Bind and ITypeComp::BindType accept only unqualified names. ITypeLib::GetTypeComp
returns a pointer to the ITypeComp interface, which is then used to bind to global elements in the library.
The names of some types (TKIND_ENUM, TKIND_MODULE, and TKIND_COCLASS) share the name
space with variables, functions, constants, and enumerators.

If a member requires qualification to differentiate it from other items in the name space, GetTypeComp
can be called successively for each qualifier in order to bind to the desired member. This allows
programming language compilers to access members of modules, enumerations, and coclasses, even
though the member can't be bound to with a qualified name.

ITypeLib::GetTypeInfo
HRESULT ITypeLib::GetTypeInfo(

 unsigned int index,
 ITypeInfo FAR* FAR* lplpitinfo
);

Retrieves the specified type description in the library.

Parameters
index

Index of the ITypeInfo interface to be returned.
lplpitinfo

If successful, returns a pointer to the pointer to the ITypeInfo interface.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
TYPE_E_ELEMENTNOTFOU
ND

The index parameter is outside the range
of 0 to GetTypeInfoCount() -1.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is invalid.
TYPE_E_IOERROR The function could not read from the file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_REGISTRYACCESS There was an error accessing the

system registration database.
TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
For dual interfaces, ITypeLib::GetTypeInfo returns only the TKIND_DISPATCH type information. To get
the TKIND_INTERFACE type information, ITypeInfo::GetRefTypeOfImplType can be called on the
TKIND_DISPATCH type information, passing an index of -1. Then, the returned type information handle
can be passed to ITypeInfo::GetRefTypeInfo.

Example
The following example gets the TKIND_INTERFACE type information for a dual interface.

ptlib->GetTypeInfo((unsigned int) dwIndex, &ptypeinfoDisp);
ptypeinfoDisp->GetRefTypeOfImplType(-1, &phreftype);
ptypeinfoDisp->GetRefTypeInfo(phreftype, &ptypeinfoInt);

ITypeLib::GetTypeInfoCount
HRESULT ITypeLib::GetInfoCount(

 unsigned int FAR* pctInfo
);

Parameter
pctInfo

Points to the location that receives the number of type information interfaces provided by the object.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_NOTIMPL Failure.

Comments
Returns the number of type descriptions in the type library.

ITypeLib::GetTypeInfoOfGuid
HRESULT ITypeLib::GetTypeInfoOfGuid(

 REFGUID lpguid,
 ITypeInfo FAR* FAR* lplpitinfo
);

Retrieves the type description that corresponds to the specified globally unique ID (GUID).

Parameters
lpguid

Pointer to the globally unique ID of the type description.
lplpitinfo

Pointer to a pointer to the ITypeInfo interface.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
TYPE_E_ELEMENTNOTFOU
ND

No type description was found in the
library with the specified GUID.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not write to the

file.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_REGISTRYACCESS There was an error accessing the

system registration database.
TYPE_E_INVALIDSTATE The type library could not be opened.

ITypeLib::GetTypeInfoType
HRESULT ITypeLib::GetTypeInfoType(index, ptypekind)
unsigned int index
TYPEKIND FAR* ptypekind

Retrieves the type of a type description.

Parameters
index

The index of the type description within the type library.
ptypekind

A pointer to the TYPEKIND enumeration for the type description.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
TYPE_E_ELEMENTNOTFOU
ND

Index is outside the range of 0 to
GetTypeInfoCount() -1.

ITypeLib::IsName
HRESULT ITypeLib::IsName(

 OLECHAR FAR* szNameBuf,
 unsigned long lHashVal,
 BOOL lpfName
);

Indicates whether a passed-in string contains the name of a type or member described in the library.

Parameter
szNameBuf

The string to test. If IsName() is successful, szNameBuf is modified to match the case (capitalization)
found in the type library.

lHashVal

The hash value of szNameBuf.
lpfName

On return, set to True if szNameBuf was found in the type library; otherwise False.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.

ITypeLib::ReleaseTLibAttr
HRESULT ITypeLib::ReleaseTLibAttr(

 TLIBATTR FAR* lptlibattr
);

Releases the TLIBATTR originally obtained from ITypeLib::GetLibAttr.

Parameter
lptlibattr

Pointer to the TLIBATTR to be freed.

Comments
Releases the specified TLIBATTR. This TLIBATTR was previously obtained with a call to
GetTypeLib::GetLibAttr.

ITypeInfo Interface
This section describes ITypeInfo, an interface typically used for reading information about objects. For
example, an object browser tool can use ITypeInfo to extract information about the characteristics and
capabilities of objects from type libraries.

Implemented by Used by Header file name
Oleaut32.dll (32-bit
systems)
Typelib.dll (16-bit
systems)

Tools that need to
access the descriptions
of objects contained in
type libraries.

Oleauto.h
Dispatch.h

Type information interfaces are intended to describe the parts of the application that can be called by
outside clients, rather than those that might be used internally to build an application.

The ITypeInfo interface provides access to the following:

· The set of function descriptions associated with the type. For interfaces, this contains the set of
member functions in the interface.

· The set of data member descriptions associated with the type. For structures, this contains the set of
fields of the type.

· The general attributes of the type, such as whether it describes a structure, an interface, and so on.

The type description of an IDispatch interface can be used to implement the interface. For more
information, see the description of CreateStdDispatch in Chapter 5, "Dispatch Interface and API
Functions."

An instance of ITypeInfo provides various information about the type of an object, and is used in different
ways. A compiler can use an ITypeInfo to compile references to members of the type. A type interface
browser can use it to find information about each member of the type. An IDispatch implementor can use
it to provide automatic delegation of IDispatch calls to an interface.

Type Descriptions
The information associated with an object described by ITypeInfo can include a set of functions, a set of
data members, and various type attributes. It is essentially the same as the information described by a C+
+ class declaration, which can be used to define both interfaces and structures, as well as any
combination of functions and data members. In addition to interfaces and structure definitions, the
ITypeInfo interface is used to describe other types, including enumerations and aliases. Because the
interface to a C file or library is simply a set of functions and variable declarations, ITypeInfo can also be
used to describe them.

Type information comprises individual type descriptions. Each type description must have one of the
following forms:

Category ODL keyword Description
alias typedef An alias for another type.
enumeration enum An enumeration.
structure struct A structure.
union union A single data item that can have

one of a specified group of
types.

module module Data and functions not
accessed through VTBL entries.

IDispatch interface dispinterface IDispatch properties and
methods accessed through
IDispatch::Invoke.

OLE interface interface OLE member functions
accessed through VTBL entries.

dual interface dual Supports either VTBL or
IDispatch.

component object
class

coclass A component object class.
Specifies an implementation of
one or more OLE interfaces
and one or more IDispatch
interfaces.

Note All bit flags that are not used specifically should be set to zero for future compatibility.

Alias
An alias has TypeKind = TKIND_ALIAS. An alias is an empty set of functions, an empty set of data
members, and a type description (located in the TYPEATTR), which gives the actual type definition
(typedef) of the alias.

Enumeration
An enumeration (enum) has TypeKind = TKIND_ENUM. An enumeration is an empty set of functions and
a set of constant data members.

Structure
A structure (struct) description has TypeKind = TKIND_RECORD. A structure is an empty set of functions
and a set of per-instance data members.

Union
A union description has TypeKind = TKIND_UNION. A union is an empty set of functions and a set of per-
instance data members, each of which has an instance offset of zero.

Module
A module has TypeKind = TKIND_MODULE. A module is a set of static functions and a set of static data
members.

OLE-Compatible Interface
An interface definition has TypeKind = TKIND_INTERFACE. An interface is a set of pure virtual functions
and an empty set of data members. If a type description contains any virtual functions, then the pointer to
the VTBL is the first 4 bytes of the instance.

The type information fully describes the member functions in the VTBL, including parameter names and
types and function return types. It may inherit from no more than one other interface.

With interfaces and dispinterfaces, all members should have different names, except the accessor
functions of properties. For property functions having the same name, the documentation string and Help
context should be set for only one of the functions (because they define the same property conceptually).

IDispatch Interface
These include objects (TypeKind = TKIND_DISPATCH) that support the IDispatch interface with a
specification of the dispatch data members (such as properties) and methods supported through the
object's Invoke implementation. All members of the dispinterface should have different IDs, except for the
accessor functions of properties.

Dual Interface
Dual interfaces (dual) have two different type descriptions for the same interface. The
TKIND_INTERFACE type description describes the interface as a standard OLE Component Object
Model (COM) interface. The TKIND_DISPATCH type decription describes the interface as a standard
dispatch interface. The lcid and retval parameters, and the HRESULT return types are removed, and the
return type of the member is specified to be the same type as the retval parameter.

By default, the TYPEKIND enumeration for a dual interface is TKIND_DISPATCH. Tools that bind to
interfaces should check the type flags for TYPEFLAG_FDUAL. If this flag is set, the TKIND_INTERFACE
type description is available through a call to ITypeInfo::GetRefTypeOfImplType with an index of -1,
followed by a call to ITypeInfo::GetRefTypeInfo.

Component Object Classes
These cloclass objects (TypeKind = TKIND_COCLASS) support a set of implemented interfaces, which
can be of either TKIND_INTERFACE or TKIND_DISPATCH.

ITypeInfo::AddressOfMember
HRESULT ITypeInfo::AddressOfMember(

 MEMBERID memid,
 INVOKEKIND invkind,
 VOID FAR* FAR* lplpvoid
);

Retrieves the addresses of static functions or variables, such as those defined in a DLL.

Parameters
memid

Member ID of the static member whose address is to be retrieved. The member ID is defined by the
dispatch ID (DISPID).

invkind

Specifies whether the member is a property, and if so, what kind.
lplpvoid

On return, points to a pointer to the static member.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_WRONGTYPEKIND Type mismatch.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_ELEMENTNOTFOUND The element was not found.
TYPE_E_DLLFUNCTIONNOTFOUN
D

The function could not be found in the
DLL.

TYPE_E_CANTLOADLIBRARY The type library or DLL could not be
loaded.

Comments
The addresses are valid until the caller releases its reference to the type description. The invkind
parameter can be ignored unless the address of a property function is being requested.

If the type description inherits from another type description, this function is recursive to the base type

description, if necessary, to find the item with the requested member ID.

ITypeInfo::CreateInstance
HRESULT ITypeInfo::CreateInstance(

 IUnknown FAR* punkOuter,
 REFIID riid,
 VOID FAR* FAR* ppvObj
);

Creates a new instance of a type that describes a component object class (coclass).

Parameters
punkOuter

A pointer to the controlling IUnknown. If Null, then a stand-alone instance is created. If valid, then an
aggregate object is created.

riid

An ID for the interface that the caller will use to communicate with the resulting object.
ppvObj

On return, points to a pointer to an instance of the created object.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
TYPE_E_WRONGTYPEKI
ND

Type mismatch.

E_INVALIDARG One or more of the arguments is invalid.
E_NOINTERFACE OLE could not find an implementation of

one or more required interfaces.
TYPE_E_UNSUPFORMATThe type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
Other return codes Additional errors may be returned from

GetActiveObject or CoCreateInstance.

Comments
For types that describe a component object class (coclass), CreateInstance creates a new instance of
the class. Normally, CreateInstance calls CoCreateInstance with the type description's globally unique
identifier (GUID). For an Application object, it first calls GetActiveObject. If the application is active,
GetActiveObject returns the active object; otherwise, if GetActiveObject fails, CreateInstance calls
CoCreateInstance.

ITypeInfo::GetContainingTypeLib
HRESULT ITypeInfo::GetContainingTypeLib(

 ITypeLib FAR* FAR* lplptlib,
 unsigned int FAR* lpindex
);

Retrieves the containing type library and the index of the type description within that type library.

Parameters
lplptlib

On return, points to the containing type library.
lpindex

On return, points to the index of the type description within the containing type library.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_NOINTERFACE OLE could not find an implementation

of one or more required interfaces.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.

ITypeInfo::GetDllEntry
HRESULT ITypeInfo::GetDllEntry(

 MEMBERID memid,
 INVOKEKIND invkind,
 BSTR FAR* lpbstrDllName,
 BSTR FAR* lpbstrName,
 unsigned short FAR* lpwOrdinal
);

Retrieves a description or specification of an entry point for a function in a DLL.

Parameters
memid

ID of the member function whose DLL entry description is to be returned.
invkind

Specifies the kind of member identified by memid. This is important for properties, because one
memid can identify up to three separate functions.

lpbstrDllName

If not Null, the function sets lpbstrDllName to a BSTR that contains the name of the DLL.
lpbstrName

If not Null, the function sets lpbstrName to a BSTR that contains the name of the entry point. If the
entry point is specified by an ordinal, *lpbstrName is set to Null.

lpwOrdinal

If not Null, and if the function is defined by an ordinal, then lpwOrdinal is set to point to the ordinal.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments

is invalid.
E_NOINTERFACE OLE could not find an

implementation of one or more
required interfaces.

TYPE_E_ELEMENTNOTFOUND The element was not found.
TYPE_E_IOERROR The function could not read

from the file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older

format.

TYPE_E_INVALIDSTATE The type library could not be
opened.

TYPE_E_WRONGTYPEKIND Type mismatch.

Comments
The caller passes in a MEMID, which represents the member function whose entry description is desired.
If the function has a DLL entry point, the name of the DLL that contains the function, as well as its name
or ordinal identifier, are placed in the passed-in pointers allocated by the caller. If there is no DLL entry
point for the function, an error is returned.

If the type description inherits from another type description, this function is recursive to the base type
description, if necessary, to find the item with the requested member ID.

The caller should use SysFreeString() to free the BSTRs referenced by lpbstrName and lpbstrDllName.

ITypeInfo::GetDocumentation
HRESULT ITypeInfo::GetDocumentation(

 MEMBERID memid,
 BSTR FAR* lpbstrName,
 BSTR FAR* lpbstrDocString,
 unsigned long FAR* lpdwHelpContext,
 BSTR FAR* lpbstrHelpFile
);

Retrieves the documentation string, the complete Help file name and path, and the context ID for the Help
topic for a specified type description.

Parameters
memid

ID of the member whose documentation is to be returned.
lpbstrName

Pointer to a BSTR allocated by the callee into which the name of the specified item is placed. If the
caller does not need the item name, lpbstrName can be Null.

lpbstrDocString

Pointer to a BSTR into which the documentation string for the specified item is placed. If the caller
does not need the documentation string, lpbstrDocString can be Null.

lpdwHelpContext

Pointer to the Help context associated with the specified item. If the caller does not need the Help
context, the lpdwHelpContext can be Null.

lpbstrHelpFile

Pointer to a BSTR into which the fully qualified name of the Help file is placed. If the caller does not
need the Help file name, lpbstrHelpFile can be Null.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments

is invalid.
TYPE_E_IOERROR The function could not read

from the file.
TYPE_E_ELEMENTNOTFOUND The element was not found.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older

format.
TYPE_E_INVALIDSTATE The type library could not be

opened.
TYPE_E_ELEMENTNOTFOUND The element was not found.

Comments
The function GetDocumentation provides access to the documentation for the member specified by the
memid parameter. If the passed-in memid is MEMBERID_NIL, then the documentation for the type
description is returned.

If the type description inherits from another type description, this function is recursive to the base type
description, if necessary, to find the item with the requested member ID.

The caller should use SysFreeString() to free the BSTRs referenced by lpbstrName, lpbstrDocString,
and lpbstrHelpFile.

Example
CHECKRESULT(ptypeinfo->GetDocumentation(idMember, &bstrName, NULL, NULL,

NULL));
.
.
.
SysFreeString (bstrName);

ITypeInfo::GetFuncDesc
HRESULT ITypeInfo::GetFuncDesc(

 unsigned int index,
 FUNCDESC FAR* FAR* lplpfuncdesc
);

Retrieves the FUNCDESC structure that contains information about a specified function.

Parameters
index

Index of the function whose description is to be returned. The index should be in the range of 0 to 1
less than the number of functions in this type.

lplpfuncdesc

On return, points to a pointer to a FUNCDESC that describes the specified function.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is invalid.
TYPE_E_IOERROR The function could not read from the file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMATThe type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
The function GetFuncDesc provides access to a FUNCDESC structure that describes the function with
the specified index. The FUNCDESC should be freed with ITypeInfo::ReleaseFuncDesc(). The number
of functions in the type is one of the attributes contained in the TYPEATTR structure.

Example
CHECKRESULT(ptypeinfo->GetFuncDesc(i, &pfuncdesc));
idMember = pfuncdesc->elemdescFunc.ID;
CHECKRESULT(ptypeinfo->GetDocumentation(idMember, &bstrName, NULL, NULL,
NULL));
ptypeinfo->ReleaseFuncDesc(pfuncdesc);

ITypeInfo::GetIDsOfNames
HRESULT ITypeInfo::GetIDsOfNames(

 OLECHAR FAR* FAR* rgszNames,
 unsigned int cNames,
 MEMBERID FAR* rgmemid
);

Maps between member names and member IDs, and parameter names and parameter IDs.

Parameters
rgszNames

Passed-in pointer to an array of names to be mapped.
cNames

Count of the names to be mapped.
rgmemid

Caller-allocated array in which name mappings are placed.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEM
ORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
DISP_E_UNKNOWNNAME One or more of the names could not

be found.
DISP_E_UNKNOWNLCID The locale ID could not be found in the

OLE DLLs.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_WRONGTYPEKIND Type mismatch.

Comments
The function GetIDsOfNames maps the name of a member (rgszNames[0]) and its parameters
(rgszNames[1] ...rgszNames[cNames - 1]) to the ID of the member (rgid[0]), and to the IDs of the
specified parameters (rgid[1] ... rgid[cNames - 1]). The IDs of parameters are 0 for the first parameter in
the member function's argument list, 1 for the second, and so on.

If the type description inherits from another type description, this function is recursive to the base type
description, if necessary, to find the item with the requested member ID.

ITypeInfo::GetImplTypeFlags
HRESULT ITypeInfo:: GetImplTypeFlags(

 unsigned int index,
 int* pimpltypeflags
);

Retrieves the IMPLTYPEFLAGS enumeration for one implemented interface or base interface in a type
description.

Parameters
index

Index of the implemented interface or base interface for which to get the flags.
pimpltypeflags

On return, pointer to the IMPLTYPEFLAGS enumeration.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

Comments
The flags are associated with the act of inheritance, and not with the inherited interface.

ITypeInfo::GetMops
HRESULT ITypeInfo::GetMops(

 MEMBERID memid,
 BSTR FAR* lpbstrMops
);

Retrieves marshaling information.

Parameters
memid

The member ID that indicates which marshaling information is needed.
lpbstrMops

On return, contains a pointer to the opcode string used in marshaling the fields of the structure
described by the referenced type description, or returns Null if there is no information to return.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_ELEMENTNOTFOU
ND

The element was not found.

TYPE_E_WRONGTYPEKIND Type mismatch.

Comments
If the passed-in member ID is MEMBERID_NIL, the function returns the opcode string for marshaling the
fields of the structure described by the type description. Otherwise, it returns the opcode string for
marshaling the function specified by the index.

If the type description inherits from another type description, this function recurses on the base type
description, if necessary, to find the item with the requested
member ID.

ITypeInfo::GetNames
HRESULT ITypeInfo::GetNames(

 MEMBERID memid,
 BSTR FAR* rgbstrNames,
 unsigned int cNameMax,
 unsigned int FAR* lpcName
);

Retrieves the variable with the specified member ID (or the name of the property or method and its
parameters) that correspond to the specified function ID.

Parameters
memid

The ID of the member whose name (or names) is to be returned.
rgbstrNames

Pointer to the caller-allocated array. On return, each of these lpcName elements is filled in to point to
a BSTR that contains the name (or names) associated with the member.

cNameMax

Length of the passed-in rgbstrNames array.
lpcName

On return, points to the number that represents the number of names in rgbstrNames array.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_WRONGTYPEKINDType mismatch.
TYPE_E_ELEMENTNOTFOU
ND

The element was not found.

Comments
The caller must release the returned BSTR (Basic string) array.

If the member ID identifies a property that is implemented with property functions, the property name is

returned.

For property get functions, the names of the function and its parameters are always returned.

For property put and put reference functions, the right side of the assignment is unnamed. If cNameMax
is less than is required to return all of the names of the parameters of a function, then only the names of
the first cNameMax - 1 parameters are returned. The names of the parameters are returned in the array
in the same order that they appear elsewhere in the interface (for example, the same order in the
parameter array associated with the FUNCDESC enumeration).

If the type description inherits from another type description, this function is recursive to the base type
description, if necessary, to find the item with the requested member ID.

ITypeInfo::GetRefTypeInfo
HRESULT ITypeInfo::GetRefTypeInfo(hreftype, lplptinfo)
HREFTYPE hreftype
ITypeInfo FAR* FAR* lplptinfo

If a type description references other type descriptions, it retrieves the referenced type descriptions.

Parameters
hreftype

Handle to the referenced type description to be returned.
lplptinfo

Points a pointer to a pointer to the referenced type description.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_WRONGTYPEKIND Type mismatch.
TYPE_E_ELEMENTNOTFOU
ND

The element was not found.

TYPE_E_REGISTRYACCES
S

There was an error accessing the
system registration database.

TYPE_E_LIBNOTREGISTER
ED

The type library was not found in the
system registration database.

Comments
On return, the second parameter contains a pointer to a pointer to a type description that is referenced by
this type description. A type description must have a reference to each type description that occurs as the
type of any of its variables, function parameters, or function return types. For example, if the type of a
data member is a record type, the type description for that data member contains the hreftype of a
referenced type description. To get a pointer to the type description, the reference is passed to
GetRefTypeInfo.

ITypeInfo::GetRefTypeOfImplType
HRESULT ITypeInfo::GetRefTypeOfImplType(

 unsigned int index,
 HREFTYPE FAR* lphreftype
);

If a type description describes a Component Object Model (COM) class, it retrieves the type description of
the implemented interface types. For an interface, GetRefTypeOfImplType returns the type information
for inherited interfaces, if any exist.

Parameters
index

Index of the implemented type whose handle is returned. The valid range is 0 to the cImplTypes field
in the TYPEATTR structure.

lphreftype

On return, points to a handle for the implemented interface (if any). This handle can be passed to
ITypeInfo::GetRefTypeInfo to get the type description.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
TYPE_E_ELEMENTNOTFO
UND

Passed index is outside the range 0 to
1 less than the number of function
descriptions.

E_INVALIDARG One or more of the arguments is
invalid.

TYPE_E_IOERROR The function could not read from the
file.

TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
If the TKIND_DISPATCH type description is for a dual interface, the TKIND_INTERFACE type description
can be obtained by calling GetRefTypeOfImplType with an index of -1, and by passing the returned
lphreftype handle to GetRefTypeInfo to retrieve the type information.

ITypeInfo::GetTypeAttr
HRESULT ITypeInfo::GetTypeAttr(

 TYPEATTR FAR* FAR* lplptypeattr
);

Retrieves a TYPEATTR structure that contains the attributes of the type description.

Parameter
lplptypeattr

On return, points to a pointer to a structure that contains the attributes of this type description.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
To free the TYPEATTR structure, use ITypeInfo::ReleaseTypeAttr.

Example
CHECKRESULT(ptypeinfoCur->GetTypeAttr(&ptypeattrCur));
.
.
.
ptypeinfoCur->ReleaseTypeAttr(ptypeattrCur);

ITypeInfo::GetTypeComp
HRESULT ITypeInfo::GetTypeComp(

 ITypeComp FAR* FAR* lplpcomp
);

Retrieves the ITypeComp interface for the type description, which enables a client compiler to bind to the
type description's members.

Parameter
lplpcomp

On return, points to a pointer to the ITypeComp of the containing type library.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_WRONGTYPEKIND Type mismatch.

Comments
A client compiler can use the ITypeComp interface to bind to members of the type.

ITypeInfo::GetVarDesc
HRESULT ITypeInfo::GetVarDesc(

 unsigned int index,
 VARDESC FAR* FAR* lplpvardesc
);

Retrieves a VARDESC structure that describes the specified variable.

Parameters
index

Index of the variable whose description is to be returned. The index should be in the range of 0 to 1
less than the number of variables in this type.

lplpvardesc

On return, points to a pointer to a VARDESC that describes the specified variable.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
To free the VARDESC structure, use ReleaseVarDesc.

Example
CHECKRESULT(ptypeinfo->GetVarDesc(i, &pvardesc));
idMember = pvardesc->memid;
CHECKRESULT(ptypeinfo->GetDocumentation(idMember, &bstrName, NULL, NULL,

NULL));
ptypeinfo->ReleaseVarDesc(pvardesc);

ITypeInfo::Invoke
HRESULT ITypeInfo::Invoke(

 VOID FAR* lpvInstance,
 MEMBERID memid,
 unsigned short wFlags,
 DISPPARAMS FAR* pdispparams,
 VARIANT FAR* pvargResult,
 EXCEPINFO FAR* pexcepinfo,
 unsigned int FAR* puArgErr
);

Invokes a method, or accesses a property of an object, that implements the interface described by the
type description.

Parameters
lpvInstance

Pointer to an instance of the interface described by this type description.
memid

Identifies the interface member.
wFlags

Flags describing the context of the invoke call, as follows:

Value Description
DISPATCH_METHOD The member is accessed as a method.

If there is ambiguity, both this and the
DISPATCH_PROPERTYGET flag can
be set.

DISPATCH_PROPERTYGE
T

The member is retrieved as a property
or data member.

DISPATCH_PROPERTYPUTThe member is changed as a property
or data member.

DISPATCH_PROPERTYPUT
REF

The member is changed by using a
reference assignment, rather than a
value assignment. This value is only
valid when the property accepts a
reference to an object.

pdispparams

Points to a structure that contains an array of arguments, an array of dispatch IDs (DISPIDs) for
named arguments, and counts of the number of elements in each array.

pvargResult

Should be Null if the caller does not expect any result. Otherwise, it should be a pointer to the location
at which the result is to be stored. If wFlags specifies DISPATCH_PROPERTYPUT or
DISPATCH_PROPERTYPUTREF, pvargResult is ignored.

pexcepinfo

Points to an exception information structure, which is filled in only if DISP_E_EXCEPTION is
returned. If pexcepinfo is Null on input, only an HRESULT error will be returned.

puArgErr

If Invoke returns DISP_E_TYPEMISMATCH, puArgErr indicates the index (within rgvarg) of the
argument with incorrect type. If more than one argument returns an error, puArgErr indicates only the
first argument with an error. Arguments in pdispparams->rgvarg appear in reverse order, so the first
argument is the one having the highest index in the array. Cannot be Null.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_INVALIDARG One or more of the arguments is

invalid.
DISP_E_EXCEPTION The member being invoked has

returned an error HRESULT. If the
member implements IErrorInfo, details
are available in the error object.
Otherwise, the pexcepinfo parameter
contains details.

TYPE_E_IOERROR The function could not read from the
file.

TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_REGISTRYACCES
S

There was an error accessing the
system registration database.

TYPE_E_LIBNOTREGISTE
RED

The type library was not found in the
system registration database.

TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

TYPE_E_ELEMENTNOTFO
UND

The element was not found.

TYPE_E_BADMODULEKIN
D

The module does not support Invoke.

Other return codes Any of the IDispatch::Invoke errors
may also be returned.

Comments
Use the function ITypeInfo::Invoke to access a member of an object or invoke a method that implements
the interface described by this type description. For objects that support the IDispatch interface, you can
use Invoke to implement IDispatch::Invoke.

ITypeInfo::Invoke takes a pointer to an instance of the class. Otherwise, its parameters are the same as
IDispatch::Invoke, except that ITypeInfo::Invoke omits the refiid and lcid parameters. When called,
ITypeInfo::Invoke performs the actions described by the IDispatch::Invoke parameters on the specified
instance.

For VTBL interface members, ITypeInfo::Invoke passes the locale ID (LCID) of the type information into
parameters tagged with the lcid attribute, and the returned value into the retval attribute.

If the type description inherits from another type description, this function recurses on the base type
description to find the item with the requested member ID.

ITypeInfo::ReleaseFuncDesc
VOID ITypeInfo::ReleaseFuncDesc(

 FUNCDESC FAR* lpfuncdesc
);

Releases a FUNCDESC previously returned by GetFuncDesc.

Parameter
lpfuncdesc

Pointer to the FUNCDESC to be freed.

Comments
The function ReleaseFuncDesc releases a FUNCDESC that was returned through
ITypeInfo::GetFuncDesc.

Example
ptypeinfoCur->ReleaseFuncDesc(pfuncdesc);

ITypeInfo::ReleaseTypeAttr
VOID ITypeInfo::ReleaseTypeAttr(

 TYPEATTR FAR* lptypeattr
);

Releases a TYPEATTR previously returned by GetTypeAttr.

Parameter
lptypeattr

Pointer to the TYPEATTR to be freed.

Comments
The function ReleaseTypeAttr releases a TYPEATTR that was returned through
ITypeInfo::GetTypeAttr.

ITypeInfo::ReleaseVarDesc
VOID ITypeInfo::ReleaseVarDesc(

 VARDESC FAR* lpvardesc
);

Releases a VARDESC previously returned by GetVarDesc.

Parameter
lpvardesc

Pointer to the VARDESC to be freed.

Comments
ReleaseVarDesc releases a VARDESC that was returned through ITypeInfo::GetVarDesc.

Example
VARDESC FAR *pvardesc;
CHECKRESULT(ptypeinfo->GetVarDesc(i, &pvardesc));
idMember = pvardesc->memid;
CHECKRESULT(ptypeinfo->GetDocumentation(idMember, &bstrName, NULL, NULL,

NULL));
ptypeinfo->ReleaseVarDesc(pvardesc);

New Automation Interfaces
There are two new interfaces for Automation:

ITypeInfo2::ITypeInfo
ITypeLib2::ITypeLib

Because they inherit from ITypeInfo and ITypeLib, an ITypeInfo can be cast to an ITypeInfo2 instead of
using the calls QueryInterface() and Release().

By adding the the new methods described in the following section, QueryInterface can be called to
ITypeInfo2 and ITypeLib2 in the same way as ITypeInfo and ITypeLib.

Data Access
The following methods can be used to retrieve data efficiently.

ITypeInfo2::GetTypeKind
HRESULT ITypeInfo2::GetTypeKind(TYPEKIND * ptypekind)

The GetTypeKind() method returns the TYPEKIND enumeration without any allocations.

ITypeInfo2::GetTypeFlags
HRESULT ITypeInfo2::GetTypeFlags(DWORD * pdwTypeFlags)

Returns the type flags without any allocations. This returns a DWORD type flag, which expands the type
flags without growing the TYPEATTR (type attribute).

ITypeInfo2::GetFuncIndexOfMemId
ITypeInfo2::GetFuncIndexOfMemId(
MEMID memid,
INVOKEKIND invkind,
UINT * pfuncIndex)

This method allows binding to VBA 5.0 to a specific member, based on a known DISPID when the
member name is not known (for example, when binding to the default member).

ITypeInfo2::GetVarIndexOfMemId
ITypeInfo2::GetVarIndexOfMemId(MEMID memid, UINT * pvarIndex)

Returns the index into the spcified memory identifier.

ITypeLib2::GetLibStatistics
ITypeLib2::GetLibStatistics(DWORD *pcUniqueNames, DWORD * pcchUniqueNames)

Returns statitistics about the type library that are required for efficient sizing of hash tables in VBA's
compiler.

ITypeLib2 Interface
The ITypeLib2 interface inherits from the ITypeLib interface. This allows ITypeLib to cast to an
ITypeLib2 in performance-sensitive cases, rather than performing extra QueryInterface() and Release()
calls.

Example
DECLARE_INTERFACE_(ITypeLib2, ITypeLib)
{
BEGIN_INTERFACE

ITypeLib2::GetCustData
HRESULT GetCustData(

 REFGUID guid,
 VARIANT *pVarVal
);

Gets the custom data.

Parameter
guid

Globally unique ID (GUID) used to identify the data.
pVarVal

Where to put the retrieved data.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeLib2::GetDocumentation2
HRESULT ITypeLib2::GetDocumentation2(

 [in] int index,
 [in] LCID lcid,
 [out] BSTR FAR* lpbstrHelpString,
 [out] unsigned long FAR* lpdwHelpStringContext,
 BSTR FAR* lpbstrHelpStringDll
);

Retrieves the library's documentation string, the complete Help file name and path, the localization
context to use, and the context ID for the library Help topic in the Help file.

Parameters
index

Index of the type description whose documentation is to be returned; if index is
-1, then the documentation for the library is returned.

lcid

Locale identifier.
lpbstrHelpString

Returns a BSTR that contains the name of the specified item. If the caller does not need the item
name, then lpbstrName can be Null.

lpdwHelpStringContext

Returns the Help localization context. If the caller does not need the Help context, then it can be Null.
lpbstrHelpStringDll

Returns a BSTR that contains the fully qualified name of the file containing the DLL used for Help file.
If the caller does not need the file name, then it can be Null.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEMO
RY

Out of memory.

E_INVALIDARG One or more of the arguments is
invalid.

TYPE_E_IOERROR The function could not write to the
file.

TYPE_E_INVDATAREAD The function could not read from the
file.

TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_ELEMENTNOTFOU The element was not found.

ND

Comments
Gets information at the type library level. The caller should free the BSTR parameters.

This function will call _DLLGetDocumentation in the specified DLL to retrieve the desired Help string, if
there is a Help string context for this item. If no Help string context exists or an error occurs, then it will
defer to the GetDocumentation method and return the associated documentation string.

ITypeLib2::GetLibStatistics
HRESULT GetLibStatistics(

 unsigned long* pcUniqueNames,
 unsigned long* pcchUniqueNames
);

Returns statistics about a type library that are required for efficient sizing of hash tables.

Parameter
pcUniqueNames

Returns a pointer to a count of unique names.
pcchUniqueNames

Returns a pointer to a change in the count of unique names.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeLib2::GetHelpStringContext
HRESULT GetHelpStringContext(

 unsigned int index,
 unsigned long *pdwHelpStringContext
);

Gets the context number for the specified Help string.

Parameter
index

Index of the Help string.
pdwHelpStringContext

Help string context number (DWORD).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetTypeKind
HRESULT GetTypeKind(

 TYPEKIND *pTypeKind
);

Returns the TYPEKIND enumeration quickly, without doing any allocations.

Parameter
pTypeKind

Reference to a TYPEKIND enumeration.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetTypeFlags
HRESULT GetTypeFlags(

 unsigned long *pdwTypeFlags
);

Returns the TYPEFLAGS quickly, without doing any allocations. This method returns a DWORD
TYPEFLAG.

Parameter
pdwTypeFlags

The DWORD reference to a TYPEFLAG.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetFuncIndexOfMemId
HRESULT GetFuncIndexOfMemld(

 MEMBERID memid,
 INVOKEKIND invkind,
 unsigned int *pFuncIndex
);

Binds to a specific member based on a known dispatch ID (DISPID), where the member name is not
known (for example, when binding to a default member).

Parameter
memid

Member identifier.
invkind

Invoke kind.
pFuncIndex

Returns an index into the function.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetVarIndexOfMemId
HRESULT GetVarIndexOfMemld(

 MEMBERID memid,
 unsigned int *pVarIndex
);

Binds to a specific member based on a known DISPID, where the member name is not known (for
example, when binding to a default member).

Parameter
memid

Member identifier.
pVarIndex

Returns the index.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetFuncCustData
HRESULT GetFuncCustData(

 unsigned int index,
 REFGUID guid,
 VARIANT *pVarVal
);

Gets the custom data from the specified function.

Parameter
index

The index of the function for which to get the custom data.
guid

The globally unique ID (GUID) used to identify the data.
pVarVal

Where to put the data.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetParamCustData
HRESULT GetParamCustData(

 unsigned int indexFunc,
 unsigned int indexParam,
 REFGUID guid,
 VARIANT *pVarVal
);

Gets the specified custom data parameter.

Parameter
indexFunc

Index of the function for which to get the custom data.
IndexParam

Index of the parameter of this function for which to get the custom data.
guid

Globally unique ID (GUID) used to identify the data.
pVarVal

Where to put the retrieved data.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetVarCustData
HRESULT GetVarCustData(

 unsigned int index,
 REFGUID guid,
 VARIANT *pVarVal
);

Gets the variable for the custom data.

Parameter
index

Index of the variable for which to get the custom data.
guid

Globally unique ID (GUID) used to identify the data.
PVarVal

Where to put the retrieved data.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetImplTypeCustData
HRESULT GetImplTypeCustData(

 unsigned int index,
 REFGUID guid,
 VARIANT *pVarVal
);

Gets the implementation type of the custom data.

Parameters
index

Index of the implementation type for the custom data.
guid

GUID used to identify the data.
pVarVal

Where to put the retrieved data.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeInfo2::GetDocumentation2
HRESULT ITypeInfo2::GetDocumentation2(

 [in] MEMID memid,
 [in] LCID lcid,
 [out] BSTR FAR* lpbstrHelpString,
 [out] unsigned long FAR* lpdwHelpStringContext,
 BSTR FAR* lpbstrHelpStringDll
);

Retrieves the documentation string, the complete Help file name and path, the localization context to use,
and the context ID for the library Help topic in the Help file.

Parameters
memid

Member identifier for the type description.
lcid

Locale identifier (LCID).
lpbstrHelpString

Returns a BSTR that contains the name of the specified item. If the caller does not need the item
name, then lpbstrName can be Null.

lpdwHelpStringContext

Returns the Help localization context. If the caller does not need the Help context, it can be Null.
lpbstrHelpStringDll

Returns a BSTR that contains the fully qualified name of the file containing the DLL used for Help file.
If the caller does not need the file name, it can be Null.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEMO
RY

Out of memory.

E_INVALIDARG One or more of the arguments is
invalid.

TYPE_E_IOERROR The function could not write to the
file.

TYPE_E_INVDATAREAD The function could not read from the
file.

TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_ELEMENTNOTFOU
ND

The element was not found.

Comments
Gets information at the type information level (about the type information and its members). The caller
should free the BSTR parameters.

This function will call _DLLGetDocumentation in the specified DLL to retrieve the desired Help string, if
there is a Help string context for this item. If no Help string context exists or an error occurs, then it will
defer to the GetDocumentation method and return the associated documentation string.

ITypeInfo2::GetHelpStringContext
HRESULT GetHelpStringContext(

 unsigned int index,
 unsigned long *pdwHelpStringContext
);

Gets the context number for the specified Help string.

Parameter
index

Index of the Help string.
pdwHelpStringContext

Help string context number (DWORD).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeComp Interface
The ITypeComp interface provides a fast way to access information that compilers need when binding to
and instantiating structures and interfaces. Binding is the process of mapping names to types and type
members.

Implemented by Used by Header file name
Oleaut32.dll (32-bit
systems)
Typelib.dll (16-bit
systems)

Tools that need to
access the
descriptions of objects
contained in type
libraries.

Oleauto.h
Dispatch.h

ITypeComp::Bind
HRESULT ITypeComp::Bind(

 OLECHAR FAR* szName,
 unsigned long lHashVal,
 unsigned short wFlags,
 ITypeInfo FAR*FAR* lplptinfo,
 DESCKIND FAR* lpdesckind,
 BINDPTR FAR* lpbindptr
);

Maps a name to a member of a type, or binds global variables and functions contained in a type library.

Parameters
szName

Name to be bound.
lHashVal

Hash value for the name computed by LHashValOfNameSys.
wFlags

Flags word containing one or more of the Invoke flags defined in the INVOKEKIND enumeration.
Specifies whether the name was referenced as a method or a property. When binding to a variable,
specify the flag INVOKE_PROPERTYGET. Specify zero to bind to any type of member.

lplptinfo

If a FUNCDESC or VARDESC was returned, then lplptinfo points to a pointer to the type description
that contains the item to which it is bound.

lpdesckind

Pointer to a DESCKIND enumerator that indicates whether the name bound to is a VARDESC,
FUNCDESC, or TYPECOMP. If there was no match, points to DESCKIND_NONE.

lpbindptr

On return, contains a pointer to the bound-to VARDESC, FUNCDESC, or ITypeComp interface.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.

TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_AMBIGUOUSNAM
E

More than one instance of this name
occurs in the type library.

Comments
Use Bind for binding to the variables and methods of a type, or for binding to the global variables and
methods in a type library. The returned DESCKIND pointer lpdesckind indicates whether the name was
bound to a VARDESC, a FUNCDESC, or to an ITypeComp instance. The returned lpbindptr points to the
VARDESC, FUNCDESC, or ITypeComp.

If a data member or method is bound to, then lplptinfo points to the type description that contains the
method or data member.

If Bind binds the name to a nested binding context, it returns a pointer to an ITypeComp instance in
lpbindptr and a Null type description pointer in lplptinfo. For example, if the name of a type description is
passed for a module (TKIND_MODULE), enumeration (TKIND_ENUM), or coclass (TKIND_COCLASS),
Bind returns the ITypeComp instance of the type description for the module, enumeration, or coclass.
This feature supports languages such as Visual Basic that allow references to members of a type
description to be qualified by the name of the type description. For example, a function in a module can
be referenced by modulename.functionname.

The members of TKIND_ENUM, TKIND_MODULE, and TKIND_COCLASS types marked as Application
objects can be bound to directly from ITypeComp, without specifying the name of the module. The
ITypeComp of a coclass defers to the ITypeComp of its default interface.

As with other methods of ITypeComp, ITypeInfo, and ITypeLib, the calling code is responsible for
releasing the returned object instances or structures. If a VARDESC or FUNCDESC is returned, the caller
is responsible for deleting it with the returned type description and releasing the type description instance
itself. Otherwise, if an ITypeComp instance is returned, the caller must release it.

Special rules apply if you call a type library's Bind method, passing it the name of a member of an
Application object class (a class that has the TYPEFLAG_FAPPOBJECT flag set). In this case, Bind
returns DESCKIND_IMPLICITAPPOBJ in lpdesckind, a VARDESC that describes the Application object in
lpbindptr, and the ITypeInfo of the Application object class in lplptinfo. To bind to the object,
ITypeInfo::GetTypeComp must make a call to get the ITypeComp of the Application object class, and
then reinvoke its Bind method with the name initially passed to the type library's ITypeComp.

The caller should use the returned ITypeInfo pointer (lplptinfo) to get the address of the member.

Note The wflags parameter is the same as the wflags parameter in IDispatch::Invoke.

ITypeComp::BindType
HRESULT ITypeComp::BindType(

 OLECHAR FAR* szName,
 unsigned long lHashVal,
 ITypeInfo FAR* FAR* lplptinfo,
 ITypeComp FAR* FAR* lplptcomp
);

Binds to the type descriptions contained within a type library.

Parameters
szName

Name to be bound.
lHashVal

Hash value for the name computed by LHashValOfName.
lplptinfo

On return, contains a pointer to a pointer to an ITypeInfo of the type to which the name was bound.
lplptcomp

Passes a valid pointer, such as the address of an ITypeComp* variable.

Example
TypeComp * ptcomp;

ptemp -> BindType(szName, lhashval, &ptinfo, &ptemp)

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVDATAREAD Invalid data.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_AMBIGUOUSNAMEMore than one instance of this name

occurs in the type library.

Comments
Use the function BindType for binding a type name to the ITypeInfo that describes the type. This function

is invoked on the ITypeComp that is returned by ITypeLib::GetTypeComp to bind to types defined within
that library. It can also be used in the future for binding to nested types.

Overview of Type Compilation and Library Functions
The functions for loading, registering, and querying type libraries are provided by Oleaut32.dll (for 32-bit
systems) and Typelib.dll (for 16-bit systems).

Category Function name Purpose
Library loading LoadTypeLib Loads and registers a type

library.
LoadRegTypeLib Uses registry information to

load a type library.
Library
registration

RegisterTypeLib Adds information about a
type library to the system
registry.

UnRegisterTypeLib Removes type library
information added through
RegisterTypeLib to allow
uninstall procedures.

LoadTypeLibEx Loads a type library and
(optionally) registers it in the
system registry

QueryPathOfRegType
Lib

Retrieves the path of a
registered type library.

Type
compilation

LHashValOfNameSys
LHashValOfName

Computes a hash value for
a name that can then be
passed to
ITypeComp::Bind,
ITypeComp::BindType,
ITypeLib::IsName, or
ITypeLib::FindName.

LHashValOfName
unsigned long LHashValOfName(

 LCID lcid,
 OLECHAR FAR* szName
);

Computes a hash value for a name that can then be passed to ITypeComp::Bind,
ITypeComp::BindType, ITypeLib::FindName, or ITypeLib::IsName.

Parameters
lcid

The locale ID for the string.
szName

String whose hash value is to be computed.

Return Value
A 32-bit hash value that represents the passed-in name.

Comments
This function is equivalent to LHashValOfNameSys. The header file Oleauto.h contains macros that
define LHashValOfName as LHashValOfNameSys, with the target operating system (syskind) based on
the build preprocessor flags.

LHashValOfName computes a 32-bit hash value for a name that can be passed to ITypeComp::Bind,
ITypeComp::BindType, ITypeLib::FindName, or ITypeLib::IsName. The returned hash value is
independent of the case of the characters in szName, as long as the language of the name is one of the
languages supported by the OLE National Language Specification API. Any two strings that match when a
case-insensitive comparison is done using any language produce the same hash value.

LHashValOfNameSys   

unsigned long LHashValOfNameSys(

 SYSKIND syskind,
 LCID lcid,
 OLECHAR FAR* szName
);

Computes a hash value for a name that can then be passed to ITypeComp::Bind,
ITypeComp::BindType, ITypeLib::FindName, or ITypeLib::IsName.

Parameters
syskind

The SYSKIND of the target operating system.
lcid

The locale ID for the string.
szName

String whose hash value is to be computed.

Return Value
A 32-bit hash value that represents the passed-in name.

LoadTypeLib   

HRESULT LoadTypeLib(

 OLECHAR FAR* szFileName,
 ITypeLib FAR* FAR* lplptlib
);

Loads and registers a type library.

Parameters
szFileName

Contains the name of the file from which LoadTypeLib should attempt to load a type library.
lplptlib

On return, contains a pointer to a pointer to the loaded type library.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_UNKNOWNLCID The locale ID could not be found in the

OLE-supported DLLs.
TYPE_E_CANTLOADLIBRAR
Y

The type library or DLL could not be
loaded.

Other return codes All FACILITY_STORAGE errors can
be returned.

Comments
The function LoadTypeLib loads a type library (usually created with MkTypeLib) that is stored in the
specified file. If szFileName specifies only a file name without any path, LoadTypeLib searches for the
file and proceeds as follows:

· If the file is a stand-alone type library implemented by Typelib.dll, the library is loaded directly.
· If the file is a DLL or an executable file, it is loaded. By default, the type library is extracted from the

first resource of type ITypeLib. To load a different type of library resource, append an integer index to
szFileName. For example:
LoadTypeLib("C:\MONTANA\EXE\MFA.EXE\3", lplptlib)

This statement loads the type library resource 3 from the file Mfa.exe file.
· If the file is none of the above, the file name is parsed into a moniker (an object that represents a file-

based link source), and then bound to the moniker. This approach allows LoadTypeLib to be used on
foreign type libraries, including in-memory type libraries. Foreign type libraries cannnot reside in a
DLL or an executable file. For more information on monikers, see the OLE Programmer's Guide and
Reference in the Win32 SDK.

If the type library is already loaded, LoadTypeLib increments the type library's reference count and
returns a pointer to the type library.

For backward compatibility, LoadTypeLib will register the type library if the path is not specified in the
szFileName parameter. LoadTypeLib will not register the type library if the path of the type library is
specified. It is recommended that RegisterTypeLib be used to register a type library.

LoadRegTypeLib   

HRESULT LoadRegTypeLib(

 REFGUID guid,
 unsigned short wVerMajor,
 unsigned short wVerMinor,
 LCID lcid,
 ITypeLib FAR* FAR* lplptlib
);

Uses registry information to load a type library.

Parameters
guid

The globally unique ID of the library being loaded.
wVerMajor

Major version number of the library being loaded.
wVerMinor

Minor version number of the library being loaded.
lcid

National language code of the library being loaded.
lplptlib

On return, points to a pointer to the loaded type library.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not read from the

file.
TYPE_E_INVALIDSTATE The type library could not be opened.
TYPE_E_INVDATAREAD The function could not read from the

file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_UNKNOWNLCID The passed in local ID (LCID) could

not be found in the OLE-supported
DLLs.

TYPE_E_CANTLOADLIBRAR
Y

The type library or DLL could not be
loaded.

Other return codes All FACILITY_STORAGE and system

registry errors can also be returned.

Comments
The function LoadRegTypeLib defers to LoadTypeLib to load the file.

LoadRegTypeLib compares the requested version numbers against those found in the system registry,
and takes one of the following actions:

· If one of the registered libraries exactly matches both the requested major and minor version
numbers, then that type library is loaded.

· If one or more registered type libraries exactly match the requested major version number, and has a
greater minor version number than that requested, the one with the greatest minor version number is
loaded.

· If none of the registered type libraries exactly match the requested major version number (or if none
of those that do exactly match the major version number also have a minor version number greater
than or equal to the requested minor version number), then LoadRegTypeLib returns an error.

RegisterTypeLib   

HRESULT RegisterTypeLib(

 ITypeLib FAR* ptlib,
 OLECHAR FAR* szFullPath,
 OLECHAR FAR* szHelpDir
);

Adds information about a type library to the system registry.

Parameters
ptlib

Pointer to the type library being registered.
szFullPath

Fully qualified path specification for the type library being registered.
szHelpDir

Directory in which the Help file for the library being registered can be found. Can be Null.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is invalid.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_REGISTRYACC
ESS

The system registration database could not
be opened.

TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
The function RegisterTypeLib can be used during application initialization to register the application's
type library correctly.

In addition to filling in a complete registry entry under the type library key, RegisterTypeLib adds entries
for each of the dispinterfaces and Automation-compatible interfaces, including dual interfaces. This
information is required to create instances of these interfaces.

UnRegisterTypeLib
HRESULT UnRegisterTypeLib(

 REFGUID guid,
 unsigned short wVerMajor,
 unsigned short wVerMinor,
 LCID lcid,
 SYSKIND syskind
);

Removes type library information from the system registry. Use this API to allow applicaitons to properly
uninstall themselves. In-process objects typically call this API from DllUnregisterServer.

Parameters
guid

Globally unique identifier.
wVerMajor

Major version number of the type library being removed.
wVerMinor

Minor version number of the type library being removed.
lcid

Locale identifier.
syskind

The target operating system (SYSKIND).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is invalid.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_REGISTRYACC
ESS

The system registration database could
not be opened.

TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
In-process objects typically call this API from DllUnregisterServer.

LoadTypeLibEx
HRESULT LoadTypeLibEx(

 LPCOLESTR szFile,
 REGKIND regkind,
 ITYPELIB pptlib
);

Loads a type library and (optionally) registers it in the system registry.

Parameters
szFile

Specification for the type library file.
regkind

Identifies the kind of registration to perform for the type library (DEFAULT, REGISTER, or NONE).
typedef enum tagREGKIND
{
 REGKIND_DEFAULT,
 REGKIND_REGISTER,
 REGKIND_NONE
} REGKIND;

pptlib

Reference to the type library being loaded.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is invalid.
TYPE_E_IOERROR The function could not write to the file.
TYPE_E_REGISTRYACC
ESS

The system registration database could
not be opened.

TYPE_E_INVALIDSTATE The type library could not be opened.

Comments
Enables programmers to specify whether or not the type library should be loaded.

QueryPathOfRegTypeLib   

HRESULT QueryPathOfRegTypeLib(

 REFGUID guid,
 unsigned short wVerMajor,
 unsigned short wVerMinor,
 LCID lcid,
 LPBSTR lpBstrPathName
);

Retrieves the path of a registered type library.

Parameters
guid

Globally unique ID of the library whose path is to be queried.
wVerMajor

Major version number of the library whose path is to be queried.
wVerMinor

Minor version number of the library whose path is to be queried.
lcid

National language code for the library whose path is to be queried.
lpBstrPathName

Caller-allocated BSTR in which the type library name is returned.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.

Comments
Returns the fully qualified file name that is specified for the type library in the registry. The caller allocates
the BSTR that is passed in, and must free it after use.

Debugging the Type Library and Type Information
It is now much easier to debug type library and type information leaks in the new format of type libraries.
The following information applies to both Win32 and to the Apple Power Macintosh.

· To identify the name of the object, expand the CTypeLib2 or CTypeInfo2 portion of the object variable.
· For type libraries, look for a member variable m_bstrFileName. This is a BSTR (unicode on Win32)

that contains the path name of the loaded type library.
· For type information, look for a member variable m_szDebName. This is the type information name

(in ANSI) that is only present when using the debug version of Automation.

Memory Leak Debugging
If a type information and/or a type library is leaked, and the debug version of Automation is being used,
Automation will display an assert dialog at process termination for each leak that has been detected.

In the older format, the leaks of type libraries only returned the type information and type library name of
the leak. Leaks were also tracked down by using the standard IMalloc leak-detection technique.

In the new format, type information for a type library now comes out of a single IMalloc allocation, so this
technique will not work. The leak asserts for the new format now provide more information. An assert from
the file Leak.cpp defines the following:

Automation has determined that the application has leaked the following:
Typeinfo: <typeinfo name> (iInfo = X) of typelib <typelibname>,
cRefs = Y, g_OAALLOC = Z

The information from this assert is the type information (TypeInfo) name, type library (TypeLib) name, iInfo
(index of this TypeInfo in the TypeLib), cRefs (refcount of the object that leaked), and g_OAAALLOC (the
value of the variable g_OAALLOC at the time this object was first instantiated).

Proceed as follows:

1. Make note of the value of the g_OAALLOC variable.
2. Set a passcount breakpoint at DebOAALLOC(), with this value minus 1.
3. Re-run the scenario that leaked under the debugger. When stopped, the routine creating an instance

of this object for the first time will be displayed (such as ITypeLib::GetTypeInfo() or
ITypeInfo::GetRefTypeInfo()).

4. Trace out of Automation before checking the name (it is not always set before the passcount is
updated), and then watch what happens to this object in order to track down the leak. It's a good idea
to double-check that the name of this object is the same as the one originally reported in the leak to
make sure there wasn't an error in the passcount.

Breakpoints can be added to CTypeInfo2::AddRef() and Release(), and calls can be watched for a
particular type information. Type library leaks are handled in the same way. The text of the message is
slightly different, but it also includes the g_OAALLOC count.

Type Library Performance
The performance of type libraries is critical to the overall performance of many components and
applications produced at Microsoft. Type libraries are central to the Automation technology and to VBA
5.0.

· At Form load time in VBA 5.0, several type libraries and type information are potentially loaded,
depending on the functionality of the form being requested.

· At startup time (host or Visual Basic), the host's type library is loaded as part of the initialization
sequence.

· Whenever an ActiveX object is created using the standard implementation of IDispatch, the type
library that describes the object is loaded to provide the IDispatch implemenation.

· When the type information that interpreted the remoting code is asked to remote an interface across
processes or across machines, the type library and type information that describes the interface must
be loaded.

· When VBA 5.0 compiles an application that accesses objects or DLLs described by a type library,
VBA 5.0 loads the type library and all type information in the type library to bind variable names.

· VBA 5.0 uses the standard implementation of IDispatch on its own classes. VBA 5.0 loads the type
library and type information that describe the classes when the IDispatch pointer to a class that was
created by VBA 5.0 is first handed out.

· When a user brings up the Find dialog on the object browser to find a member that contains a specific
string, the object browser will load all references, type libraries, and all type information in the type
libraries to get all of the available names.

Automation type library performance improvements come from two categories.

1. New file format and in-memory structure that enables the level information of the type library and
each type information to be loaded in a single seek and read from disk with minimal additional
initialization.

2. API-level improvements allow applications to access the data they need more efficiently. This includes
features such as application-specific data and case-senstive identifiers.

VBA 5.0 Custom Data Storage
Custom data can be stored in a type library.

Users can store custom data in the form of (guid, value) pairs for each item in the type library (for
example, the type library, type information, FUNCDESC, VARDESC). There can be any number of (guid,
value) pairs for each item. The stored value can be any simple variant type, as well as arrays (not
objects)of those types. If a GUID is to be stored as the value, it should be stored in ASCII format (as a
BSTR) or in binary format (as an VT_ARRAY | VT_UI1), because GUID is not a simple variant type.

Case-Sensitive Identifiers
To provide support for case-sensitive identifier names in type libraries, the following changes in
Automation have been made:

· The /noi switch for the MkTypLib utility (consistent with the Microsoft Linker). By default, type libraries
are not case sensitive, unless this option is selected. The internal comparisons for MkTypLib are
case-sensitive if this flag is set.

· CreateTypeLib2 takes a flag to control case sensitivity (in addition to creating type libraries in the
new file format).

· A new LIBFLAG_FCASESENSITIVE bit is added to the LIBFLAGS word of the TLIBATTR.

When a host application references a type library with multiple public names that differ only by case, the
conflict is handled by the same code that resolves ambiguities between public names in different type
libraries. The first one is selected.

Changes to Existing Data Structures
The only changed structure is the IDLDESC (now called PARAMDESC). The dwReserved field has been
replaced by an lpVarValue field, which contains a pointer to a VARIANT describing the default value for
this parameter (if the PARAMFLAG_FOPT and PARAMFLAG_FHASDEFAULT bit of wParamFlags has
been set). For more information, refer to Chapter 6, "Data Types, Structures, and Enumerations."

The existing methods that return these data structures (GetLibAttr, GetTypeAttr, GetFuncDesc, and
GetVarDesc) store the data that they return in a single, contiguous memory block allocated out of a local
cache, rather than using IMalloc.

File Formats
The file format and in-memory format for Automation makes use of memory-mapped files for a 32-bit
format and files used by the Apple Macintosh. The on-disk format matches the in-memory format, and
matches the format in which the data is delivered to the user. The on-disk format is arranged into
sections, so that the data that is likely to be read together is stored together.

Creating a New TypeLib
The CreateTypeLib2() API creates a type library in the new file format. The existing CreateTypeLib() API
continues to create a type library in the previous format (using the previous code). When Visual Basic
version 4.0 makes an executable file, the type library that is created and stored as part of the this file is in
the previous file format.

The files MkTyplib.exe and Midl.exe, as well as the VBA 5.0 code, use the new CreateTypeLib2() API.

Type Building Interfaces
The type building interfaces, ICreateTypeInfo and ICreateTypeLib, are used to build tools that automate
the process of generating type descriptions and creating type libraries. The MkTypLib utility and the MIDL
compiler, for example, use these interfaces to create type libraries. For more information about type
libraries, refer to Chapter 8, "Type Libraries and the Object Description Language."

Generally, it is not necessary to write custom implementations of these interfaces. The compilers use the
default implementations that are returned by the CreateTypeLib function. To create tools similar to
MkTypLib, the default implementations can be called.

Implemented by Used by Header file
name

Import
library name

Oleaut32.dll
(32-bit systems)
 Typelib.dll
 (16-bit systems)

Applications
that expose
programmable
objects.

Oleauto.h
Dispatch.h

Oleaut32.lib
Typelib.lib

Overview of Type Building Interfaces
The type building interfaces include the following member functions:

Interface Member function Purpose
ICreateTypeInfo AddFuncDesc Adds a function description

as a type description.
AddImplType Specifies an inherited

interface.
AddRefTypeInfo Adds a type description to

those referenced by the
type description being
created.

AddVarDesc Adds a data member
description as a type
description.

DefineFuncAsDllEn
try

Associates a DLL entry
point with a function that
has a specified index.

ICreateTypeInfo LayOut Assigns VTBL offsets for
virtual functions and
instance offsets for per-
instance data members.

SetAlignment Specifies data alignment
for types of
TKIND_RECORD.

SetDocString Sets the documentation
string displayed by type
browsers.

SetFuncAndParam
Names

Sets the function name
and names of its

parameters.
SetFuncDocString Sets the documentation

string for a function.
SetFuncHelpContex
t

Sets the Help context ID
for a function.

SetGuid Sets the globally unique ID
for the type library.

SetHelpContext Sets the Help context ID of
the type description.

SetImplTypeFlags Sets the attributes for an
implemented or inherited
interface of a type.

SetMops Sets the opcode string for
a type description.

SetSchema Reserved for future use.
SetTypeDescAlias Sets the type description

for which this type
description is an alias, if
TYPEKIND=TKIND_ALIAS
.

SetTypeFlags Sets type flags of the type
description that is being
created.

SetTypeIdlDesc Reserved for future use.
SetVarDocString Sets the documentation

string for a variable.
SetVarHelpContext Sets the Help context ID

for a variable.
SetVarName Sets the name of a

variable.
SetVersion Sets version numbers for

the type description.
ICreateTypeLib CreateTypeInfo Creates a new type

description instance within
the type library.

SaveAllChanges Saves the ICreateTypeLib
instance.

SetDocString Sets the documentation
string for the type library.

SetGuid Sets the globally unique ID
for the type library.

SetHelpContext Sets the Help context ID
for general information
about the type library in
the Help file.

SetHelpFileName Sets the Help file name.
SetLcid Sets the locale ID code

indicating the national
language associated with
the library.

SetLibFlags Sets library flags, such as
LIBFLAG_FRESTRICTED.

SetName Sets the name of the type
library.

SetVersion Sets major and minor
version numbers for the
type library.

ICreateTypeInfo2 The ICreateTypeInfo
instance returned from
ICreateTypeLib can be
accessed through a
QueryInterface() call to
ICreateTypeInfo2.

ICreateTypeLib2 Inherits from
ICreateTypeLib and adds
a method that supports
removing type information
from a library.

Library creation
functions

CreateTypeLib Gives access to a new
object instance that
supports the
ICreateTypeLib interface.

You create an Automation type library by using the ICreateTypeLib and ICreateTypeInfo interfaces.

In the following example, a type library is created (Hello.tlb) by the MIDL compiler (or MkTyplib.exe),
using the following .odl file.

 [
uuid(2F6CA420-C641-101A-B826-00DD01103DE1), // LIBID_Hello
helpstring("Hello 1.0 Type Library"),
lcid(0x0409),
version(1.0)
]
library Hello
{
#ifdef WIN32
importlib("stdole32.tlb");
#else
importlib("stdole.tlb");
#endif

[
uuid(2F6CA422-C641-101A-B826-00DD01103DE1), // IID_IHello
helpstring("Hello Interface")
]
interface IHello : IUnknown
{
[propput] void HelloMessage([in] BSTR Message);
[propget] BSTR HelloMessage(void);
void SayHello(void);
}
[

uuid(2F6CA423-C641-101A-B826-00DD01103DE1), // IID_DHello
helpstring("Hello Dispinterface")
]
dispinterface DHello
{
interface IHello;
}

[
uuid(2F6CA421-C641-101A-B826-00DD01103DE1), // CLSID_Hello.
helpstring("Hello Class")
]
coclass Hello
{
dispinterface DHello;
interface IHello;
}
}

ICreateTypeInfo Interface
The ICreateTypeInfo interface provides the tools for creating and administering the type information
defined through the type description.

ICreateTypeInfo::AddFuncDesc
HRESULT ICreateTypeInfo::AddFuncDesc(index, lpFuncDesc)

unsigned int index
FUNCDESC FAR* lpFuncDesc

Adds a function description to the type description.

Parameters
index

Index of the new FUNCDESC in the type information.
lpFuncDesc

Pointer to a FUNCDESC structure that describes the function. The bstrIDLInfo field in the
FUNCDESC should be set to Null for future compatibility.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

Comments
The index specifies the order of the functions within the type information. The first function has an index of
zero. If an index is specified that exceeds one less than the number of functions in the type information,
an error is returned. Calling this function does not pass ownership of the FUNCDESC structure to
ICreateTypeInfo. Therefore, the caller must still de-allocate the FUNCDESC structure.

The passed-in VTBL field (oVft) of the FUNCDESC is ignored. This attribute is set when
ICreateTypeInfo::LayOut is called.

The function AddFuncDesc uses the passed-in member ID fields within each FUNCDESC for classes
with TYPEKIND = TKIND_DISPATCH or TKIND_INTERFACE. If the member IDs are set to
MEMBERID_NIL, AddFuncDesc assigns member IDs to the functions. Otherwise, the member ID fields
within each FUNCDESC are ignored.

Any HREFTYPE fields in the FUNCDESC structure must have been produced by the same instance of
ITypeInfo for which AddFuncDesc is called.

The get and put accessor functions for the same property must have the same dispatch ID (DISPID).

ICreateTypeInfo::AddImplType
HRESULT ICreateTypeInfo::AddImplType(index, hreftype)

unsigned int index
HREFTYPE hreftype

Specifies an inherited interface, or an interface implemented by a component object class (coclass).

Parameters
index

Index of the implementation class to be added. Specifies the order of the type relative to the other
type.

hreftype

Handle to the referenced type description obtained from the AddRefType description.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

Comments
To specify an inherited interface, use index = 0. For a dispinterface with Syntax 2, call
ICreateTypeInfo::AddImplType twice, once with nindex = 0 for the inherited IDispatch and once with
nindex = 1 for the interface that is being wrapped. For a dual interface, call
ICreateTypeInfo::AddImplType with
nindex = -1 for the TKIND_INTERFACE type information component of the dual interface.

ICreateTypeInfo::AddRefTypeInfo
HRESULT ICreateTypeInfo::AddRefTypeInfo(lptinfo, lphreftype)

ITypeInfo FAR* lptinfo
HREFTYPE FAR* lphreftype

Adds a type description to those referenced by the type description being created.

Parameters
lptinfo

Pointer to the type description to be referenced.
lphreftype

On return, pointer to the handle that this type description associates with the referenced type
information.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

Comments
The second parameter returns a pointer to the handle of the added type information. If AddRefTypeInfo
has been called previously for the same type information, the index that was returned by the previous call
is returned in lphreftype. If the referenced type description is in the type library being created, its type
information can be obtained by calling IUnknown::QueryInterface(IID_ITypeInfo, ...) on the
ICreateTypeInfo interface of that type description.

ICreateTypeInfo::AddVarDesc
HRESULT ICreateTypeInfo::AddVarDesc(index, lpVarDesc)

unsigned int index
VARDESC FAR* lpVarDesc

Adds a variable or data member description to the type description.

Parameters
index

Index of the variable or data member to be added to the type description.
lpVarDesc

Pointer to the variable or data member description to be added.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

Comments
The index specifies the order of the variables. The first variable has an index of zero.
ICreateTypeInfo::AddVarDesc returns an error if the specified index is greater than the number of
variables currently in the type information. Calling this function does not pass ownership of the VARDESC
structure to ICreateTypeInfo. The instance field (oInst) of the VARDESC structure is ignored. This
attribute is set only when ICreateTypeInfo::LayOut is called. Also, the member ID fields within the
VARDESCs are ignored unless the TYPEKIND of the class is TKIND_DISPATCH.

Any HREFTYPE fields in the VARDESC structure must have been produced by the same instance of
ITypeInfo for which AddVarDesc is called.

AddVarDesc ignores the contents of the idldesc field of the ELEMDESC.

ICreateTypeInfo::DefineFuncAsDllEntry
HRESULT ICreateTypeInfo::DefineFuncAsDllEntry(index, szDllName, szProcName)

unsigned int index
OLECHAR FAR* szDllName
OLECHAR FAR* szProcName

Associates a DLL entry point with the function that has the specified index.

Parameters
index

Index of the function.
szDllName

Name of the DLL that contains the entry point.
szProcName

Name of the entry point or an ordinal (if the high word is zero).

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEMO
RY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_ELEMENTNOTFOUN
D

The element cannot be found.

TYPE_E_WRONGTYPEKIND Type mismatch.

Comments
If the high word of szProcName is zero, then the low word must contain the ordinal of the entry point;
otherwise, szProcName points to the zero-terminated name of the entry point.

ICreateTypeInfo::LayOut
HRESULT ICreateTypeInfo::LayOut()

Assigns VTBL offsets for virtual functions and instance offsets for per-instance data members, and
creates the two type descriptions for dual interfaces.

Parameters
None.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEMO
RY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_UNDEFINEDTYPE Bound to unrecognized type.
TYPE_E_INVALIDSTATE The state of the type library is not

valid for this operation.
TYPE_E_WRONGTYPEKIND Type mismatch.
TYPE_E_ELEMENTNOTFOUN
D

The element cannot be found.

TYPE_E_AMBIGUOUSNAME More than one item exists with this
name.

TYPE_E_SIZETOOBIG The type information is too long.
TYPE_E_TYPEMISMATCH Type mismatch.

Comments
LayOut also assigns member ID numbers to the functions and variables, unless the TYPEKIND of the
class is TKIND_DISPATCH. Call LayOut after all members of the type information are defined, and before
the type library is saved.

Use ICreateTypeLib::SaveAllChanges to save the type information after calling LayOut. Other
members of the ICreateTypeInfo interface should not be called after calling LayOut.

Note Different implementations of ICreateTypeInfo or other interfaces that create type information
are free to assign any member ID numbers, provided that all members (including inherited members),
have unique IDs. For examples, see the ICreateTypeInfo2 interface later in this chapter..

ICreateTypeInfo::SetAlignment
HRESULT ICreateTypeInfo::SetAlignment(cbAlignment)

unsigned short cbAlignment

Specifies the data alignment for an item of TYPEKIND=TKIND_RECORD.

Parameter
cbAlignment

Alignment method for the type. A value of 0 indicates alignment on the 64K boundary; 1 indicates no
special alignment. For other values, n indicates alignment on byte n.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEM
ORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

Comments
The alignment is the minimum of the natural alignment (for example, byte data on byte boundaries, word
data on word boundaries, and so on), and the alignment denoted by cbAlignment.

ICreateTypeInfo::SetDocString
HRESULT ICreateTypeInfo::SetDocString(szDoc)

OLECHAR FAR* szDoc

Sets the documentation string displayed by type browsers.

Parameter
szDoc

Pointer to the documentation string.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEM
ORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

Comments
The documentation string is a brief description of the type description being created.

ICreateTypeInfo::SetFuncAndParamNam
es
HRESULT ICreateTypeInfo::SetFuncAndParamNames(index, rgszNames, cNames)

unsigned int index
OLECHAR FAR* FAR* rgszNames
unsigned int cNames

Sets the name of a function and the names of its parameters to the names in the array of pointers
rgszNames.

Parameters
index

Index of the function whose function name and parameter names are to be set.
rgszNames

Array of pointers to names. The first element is the function name. Subsequent elements are names
of parameters.

cNames

Number of elements in the rgszNames array.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_ELEMENTNOTFO
UND

The element cannot be found.

Comments
The function SetFuncAndParamNames needs to be used once for each property. The last parameter for
put and putref accessor functions is unnamed.

ICreateTypeInfo::SetFuncDocString
HRESULT ICreateTypeInfo::SetFuncDocString(index, szDocString)

unsigned int index
OLECHAR FAR* szDocString

Sets the documentation string for the function with the specified index.

Parameters
index

Index of the function.
szDocString

Pointer to the documentation string.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_ELEMENTNOTFO
UND

The element cannot be found.

Comments
The documentation string is a brief description of the function intended for use by tools such as type
browsers. SetFuncDocString only needs to be used once for each property, because all property
accessor functions are identified by one name.

ICreateTypeInfo::SetFuncHelpContext
HRESULT ICreateTypeInfo::SetFuncHelpContext(index, dwHelpContext)

unsigned int index
unsigned long dwHelpContext

Sets the Help context ID for the function with the specified index.

Parameters
index

Index of the function.
dwHelpContext

Help context ID for the Help topic.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_ELEMENTNOTFO
UND

The element cannot be found.

E_INVALIDARG One or more of the arguments is
invalid.

Comments
SetFuncHelpContext only needs to be set once for each property, because all property accessor
functions are identified by one name.

ICreateTypeInfo::SetGuid
HRESULT ICreateTypeInfo::SetGuid(guid)

REFGUID guid

Sets the globally unique ID (GUID) associated with the type description.

Parameter
guid

Globally unique ID to be associated with the type description.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.

Comments
For an interface, this is an interface ID; for a coclass, it is a class ID. For information on GUIDs, see
Chapter 8, "Type Libraries and the Object Description Language.'

ICreateTypeInfo::SetHelpContext
HRESULT ICreateTypeInfo::SetHelpContext(dwHelpContext)

unsigned long dwHelpContext

Sets the Help context ID of the type information.

Parameter
dwHelpContext

Handle to the Help context.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.

ICreateTypeInfo::SetImplTypeFlags
HRESULT ICreateTypeInfo::SetImplTypeFlags(index, impltypeflags)

unsigned int index
int impltypeflags

Sets the attributes for an implemented or inherited interface of a type.

Parameters
index

Index of the interface for which to set type flags.
impltypeflags

IMPLTYPE flags to be set.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.

Comments
SetImplTypeFlags sets the IMPLTYPE flags for the indexed interface. For more information, see the
"IMPLTYPEFLAGS" section in Chapter 9, "Type Description Interfaces."

ICreateTypeInfo::SetMops
HRESULT ICreateTypeInfo::SetMops(index, bstrMops)

unsigned int index
BSTR bstrMops

Sets the marshaling opcode string associated with the type description or the function.

Parameters
index

Index of the member for which to set the opcode string. If index is -1, sets the opcode string for the
type description.

bstrMops

The marshaling opcode string.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.

ICreateTypeInfo::SetTypeDescAlias
HRESULT ICreateTypeInfo::SetTypeDescAlias(lptDescAlias)

TYPEDESC FAR* lptDescAlias

Sets the type description for which this type description is an alias, if TYPEKIND=TKIND_ALIAS.

Parameter
lptDescAlias

Pointer to a type description that describes the type for which this is an alias.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

Comments
To set the type for an alias, call SetTypeDescAlias for a type description whose TYPEKIND is
TKIND_ALIAS.

ICreateTypeInfo::SetTypeFlags
HRESULT ICreateTypeInfo::SetTypeFlags(uTypeFlags)

unsigned int uTypeFlags

Sets type flags of the type description being created.

Parameter
uTypeFlags

Settings for the type flags.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

Comments
Use SetTypeFlags to set the flags for the type description. For details, see the "TYPEFLAGS" section in
Chapter 9, "Type Description Interfaces."

ICreateTypeInfo::SetVarDocString
HRESULT ICreateTypeInfo::SetVarDocString(index, szDocString)

unsigned int index
OLECHAR FAR* szDocString

Sets the documentation string for the variable with the specified index.

Parameters
index

Index of the variable being documented.
szDocString

The documentation string to be set.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_ELEMENTNOTFO
UND

The element was not found.

ICreateTypeInfo::SetVarHelpContext
HRESULT ICreateTypeInfo::SetVarHelpContext(index, dwHelpContext)

unsigned int index
unsigned long dwHelpContext

Sets the Help context ID for the variable with the specified index.

Parameters
index

Index of the variable described by the type description.
dwHelpContext

Handle to the Help context ID for the Help topic on the variable.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_ELEMENTNOTFO
UND

The element cannot be found.

ICreateTypeInfo::SetVarName
HRESULT ICreateTypeInfo::SetVarName(index, szName)

unsigned int index
OLECHAR FAR* szName

Sets the name of a variable.

Parameters
index

Index of the variable whose name is being set.
szName

Name for the variable.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_ELEMENTNOTFO
UND

The element cannot be found.

ICreateTypeInfo::SetVersion
HRESULT ICreateTypeInfo::SetVersion(wMajorVerNum, wMinorVerNum)

unsigned short wMajorVerNum
unsigned short wMinorVerNum

Sets the major and minor version number of the type information.

Parameters
wMajorVerNum

Major version number for the type.
wMinorVerNum

Minor version number for the type.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_ACCESSDENIED Cannot write to the destination.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

Library Creation Functions
The following API and interface methods support the creation and administration of type libraries and type
descriptions.

CreateTypeLib   

HRESULT CreateTypeLib(syskind, szFile, lplpctlib)
SYSKIND syskind
OLECHAR FAR* szFile
ICreateTypeLib FAR* FAR* lplpctlib

Provides access to a new object instance that supports the ICreateTypeLib interface.

Parameters
syskind

The target operating system for which to create a type library.
szFile

The name of the file to create.
lplpctlib

Pointer to an instance supporting the ICreateTypeLib interface.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function could not create the file.
Other return codes All FACILITY_STORAGE errors.

Comments
CreateTypeLib sets its output parameter (lplpctlib) to point to a newly created object that supports the
ICreateTypeLib interface.

ICreateTypeLib Interface
The ICreateTypeLib interface provides the methods for creating and managing the component or file that
contains type information. Type libraries are created from type descriptions using the MkTyplib utility or
the MIDL compiler. These type libraries are accessed through the ITypeLib interface.

ICreateTypeLib::CreateTypeInfo
HRESULT ICreateTypeLib::CreateTypeInfo(szName, tkind, lplpctinfo)

OLECHAR FAR* szName
TYPEKIND tkind
ICreateTypeInfo FAR* FAR* lplpctinfo

Creates a new type description instance within the type library.

Parameters
szName

Name of the new type.
tkind

TYPEKIND of the type description to be created.
lplpctinfo

On return, contains a pointer to the type description.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.
TYPE_E_NAMECONFLICT The provided name is not unique.
TYPE_E_WRONGTYPEKIN
D

Type mismatch.

Comments
use the function CreateTypeInfo to create a new type description instance within the library. An error is
returned if the specified name already appears in the library. Valid tkind values are described in the
"TYPEKIND" section in Chapter 9, "Type Description Interfaces." To get the type information of the type
description that is being created, call IUnknown::QueryInterface(IID_ITypeInfo, ...) on the returned
ICreateTypeInfo. This type information can be used by other type descriptions that reference it by using
ICreateTypeInfo::AddRefTypeInfo.

ICreateTypeLib::SaveAllChanges
HRESULT ICreateTypeLib::SaveAllChanges()

Saves the ICreateTypeLib instance following the layout of type information.

Parameters
None.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function cannot write to the file.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.
Other return codes All FACILITY_STORAGE errors.

Comments
You should not callany other ICreateTypeLib methods after calling SaveAllChanges.

ICreateTypeLib::SetDocString
HRESULT ICreateTypeLib::SetDocString(szDoc)

OLECHAR FAR* szDoc

Sets the documentation string associated with the library.

Parameter
szDoc

A documentation string that briefly describes the type library.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

Comments
The documentation string is a brief description of the library intended for use by type information browsing
tools.

ICreateTypeLib::SetGuid
HRESULT ICreateTypeLib::SetGuid(guid)

REFGUID guid

Sets the universal unique ID (UUID) associated with the type library (Also known as the globally unique
identifier (GUID)).

Parameter
guid

The globally unique ID to be assigned to the library.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

Comments
Universal unique IDs (UUIDs) are described in Chapter 8, "Type Libraries and the Object Description
Language."

ICreateTypeLib::SetHelpContext
HRESULT ICreateTypeLib::SetHelpContext(dwHelpContext)

unsigned long dwHelpContext

Sets the Help context ID for retrieving general Help information for the type library.

Parameter
dwHelpContext

Help context ID to be assigned to the library.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

Comments
Calling SetHelpContext with a Help context of zero is equivalent to not calling it at all, because zero
indicates a null Help context.

ICreateTypeLib::SetHelpFileName
HRESULT ICreateTypeLib::SetHelpFileName(szFileName)

OLECHAR FAR* szFileName

Sets the name of the Help file.

Parameter
szFileName

The name of the Help file for the library.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

Comments
Each type library can reference a single Help file.

The GetDocumentation method of the created ITypeLib returns a fully qualified path for the Help file,
which is formed by appending the name passed into szFileName to the registered Help directory for the
type library. The Help directory is registered under:

\TYPELIB\<guid of library>\<Major.Minor version >\HELPDIR

ICreateTypeLib::SetLibFlags
HRESULT ICreateTypeLib::SetLibFlags(uLibFlags)

unsigned int uLibFlags

Sets library flags, such as LIBFLAG_FRESTRICTED.

Parameter
uLibFlags

The flags to set for the library.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTMEM
ORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

Comments
Valid uLibFlags values are listed in "LIBFLAGS," in Chapter 6, "Data Types, Structures, and
Enumerations."

ICreateTypeLib::SetLcid
HRESULT ICreateTypeLib::SetLcid(lcid)

LCID lcid

Sets the binary Microsoft national language ID associated with the library.

Parameter
lcid

Represents the locale ID for the type library.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

Comments
For more information on national language IDs, see "Supporting Multiple National Languages," in Chapter
2, "Exposing Automation Objects." For additional information for 16-bit systems, refer to Appendix A,
"National Language Support Functions." For 32-bit systems, refer to Windows NT documentation on the
National Language Support (NLS) API.

ICreateTypeLib::SetName
HRESULT ICreateTypeLib::SetName(szName)

OLECHAR FAR* szName

Sets the name of the type library.

Parameter
szName

Name to be assigned to the library.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
STG_E_INSUFFICIENTME
MORY

Out of memory.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

ICreateTypeLib::SetVersion
HRESULT SetVersion(wMajorVerNum, wMinorVerNum)

unsigned short wMajorVerNum
unsigned short wMinorVerNum

Sets the major and minor version numbers of the type library.

Parameters
wMajorVerNum

Major version number for the library.
wMinorVerNum

Minor version number for the library.

Return Value
The return value of the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
TYPE_E_INVALIDSTATE The state of the type library is not valid

for this operation.

CreateTypeLib2 API
The CreateTypeLib2 API creates a type library in the current file format.

The file and in-memory format for this current version of Automation makes use of memory-mapped files
for 32-bit (and files for the Apple Macintosh). The existing CreateTypeLib() API is still available for
creating a type library in the older format.

HRESULT CreateTypeLib2(syskind, lpszFileName, ppctlib)
SYSKIND syskind
LPOLESTR lpszFileName
ICreateTypeLib** ppctlib

ICreateTypeLib2 Interface
ICreateTypeLib2 inherits from ICreateTypeLib, and adds three methods that support removing a type
information from a library. The ICreateTypeInfo instance returned from ICreateTypeLib can be accessed
through a QueryInterface() call to ICreateTypeInfo2.

Example
interface ICreateTypeLib2 : ICreateTypeLib

ICreateTypeLib2::DeleteTypeInfo
HRESULT ICreateTypeLib2::DeleteTypeInfo(szName);

OLECHAR *szName

Deletes a specified type information from the type library.

Parameter
szName

Name of the type information to remove.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeLib2::SetCustData
HRESULT ICreateTypeLib2::SetCustData(rguid, pVarVal)

REFGUID rguid
VARIANT *pVarVal

Sets a value to custom data.

Parameter
rguid

Unique identifier used to identify the data.
pVarVal

The data to store (any variant except an object).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeLib2::SetHelpStringContext
HRESULT ICreateTypeLib2::SetHelpStringContext(dwHelpStringContext)

DWORD *dwHelpStringContext

Sets the Help string context number.

Parameter
DwHelpStringContext

The Help string context number.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeLib2::SetHelpStringDll
HRESULT ICreateTypeLib2::SetHelpStringDll(szFileName)

LPOLESTR szFileName

Sets the DLL name to be used for Help string lookup (for localization purposes).

Parameter
szFileName

The DLL file name.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2 Interface
The ICreateTypeInfo2 interface derives from ICreateTypeInfo, and adds methods for deleting items that
have been added through ICreateTypeInfo.

The ICreateTypeInfo::LayOut method provides a way for the creator of the type information to check for
any errors. A call to QueyInterface() can be made to the ICreateTypeInfo instance at any time for its
ITypeInfo interface. Calling any of the methods in the ITypeInfo interface that require layout information
lays out the type information automatically.

Example
interface ICreateTypeInfo2 : ICreateTypeInfo

ICreateTypeInfo2::DeleteFuncDesc
HRESULT ICreateTypeInfo2::DeleteFuncDesc (index)

unsigned int index

Deletes a function description specified by the index number.

Parameter
index

Index of the function whose description is to be deleted. The index should be in the range of 0 to 1
less than the number of functions in this type.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::DeleteFuncDescByMe
mId
HRESULT ICreateTypeInfo2::DeleteFuncDescByMemId(memid, invkind)

MEMBERID memid
INVOKEKIND invkind

Deletes the function description (FUNCDESC) specified by memid.

Parameters
memid

Member identifier of the FUNCDESC to delete.
invkind

The type of the invocation.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::DeleteVarDesc
HRESULT ICreateTypeInfo2::DeleteVarDesc(index)

unsigned int index

Deletes the specified VARDESC structure.

Parameter
index

Index number of the VARDESC structure.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function cannot read from the file.
TYPE_E_INVDATAREAD The function cannot read from the file.
TYPE_E_UNSUPFORMAT The type library has an old format.
TYPE_E_INVALIDSTATE The type library cannot be opened.

Example
ptypeinfo->DeleteVarDesc(index);

ICreateTypeInfo2::DeleteVarDescByMem
Id
HRESULT ICreateTypeInfo2::DeleteVarDescByMemId(memid)

MEMBERID memid

Deletes the specified VARDESC structure.

Parameter
memid

Member identifier of the VARDESC to be deleted.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.
TYPE_E_IOERROR The function cannot read from the file.
TYPE_E_INVDATAREAD The function cannot read from the file.
TYPE_E_UNSUPFORMAT The type library has an older format.
TYPE_E_INVALIDSTATE The type library cannot be opened.

ICreateTypeInfo2::DeleteImplType
HRESULT ICreateTypeInfo2::DeleteImplType(index)

unsigned int index

Deletes the IMPLTYPE flags for the indexed interface.

Parameter
index

Index of the interface for which to delete the type flags.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::SetCustData
HRESULT ICreateTypeInfo2::SetCustData(rguid, pVarVal)

REFGUID rguid
VARIANT *pVarVal

Sets a value for custom data.

Parameter
rguid

Unique identifier that can be used to identify the data.
pVarVal

The data to store (any variant except an object).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::SetHelpStringContext
HRESULT SetHelpStringContext(pdwHelpStringContext)

DWORD *pdwHelpStringContext

Sets the context number for the specified Help string.

Parameter
pdwHelpStringContext

Pointer to the Help string context number.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG Argument is invalid.

ICreateTypeInfo2::SetFuncCustData
HRESULT SetFuncCustData(index, guid, pVarVal)

unsigned int index,
REFGUID guid
VARIANT *pVarVal

Sets a value for a specified custom function.

Parameter
index

The index of the function for which to set the custom data.
rguid

Unique identifier used to identify the data.
pVarVal

The data to store (any variant except an object).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::SetFuncHelpStringCo
ntext
HRESULT SetFuncHelpStringContext(index, dwHelpStringContext)

unsigned int index,
DWORD dwHelpStringContext

Sets a Help context value for a specified custom function.

Parameter
index

The index of the function for which to set the custom data.
dwHelpStringContext

Help string context for a localized string

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::SetVarCustData
HRESULT SetVarCustData(index, guid, pVarVal)

unsigned int index
REFGUID guid
VARIANT *pVarVal

Sets a custom data variable.

Parameter
index

Index of the variable for which to set the custom data.
guid

Globally unique ID (GUID) used to identify the data.
pVarVal

Data to store (any legal variant except an object).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::SetParamCustData
HRESULT SetParamCustData(indexFunc, indexParam, guid, pVarVal)

unsigned int indexFunc
unsigned int indexParam
REFGUID guid
VARIANT *pVarVal

Sets the specified parameter for the custom data.

Parameter
indexFunc

Index of the function for which to set the custom data.
indexParam

Index of the parameter of the function for which to set the custom data.
guid

Globally unique ID (GUID) used to identify the data.
pvarVal

The data to store (any legal variant except an object).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::SetImplTypeCustData
HRESULT SetImplTypeCustData(index, guid, pVarVal)

unsigned int index
REFGUID guid
VARIANT *pVarVal

Sets the implementation type for custom data.

Parameter
index

Index of the variable for which to set the custom data.
guid

Unique identifier used to identify the data.
pVarVal

Reference to the value of the variable.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ICreateTypeInfo2::SetVarHelpStringCon
text
HRESULT SetVarHelpStringContext(index, dwHelpStringContext)

unsigned int index,
DWORD dwHelpStringContext

Sets a Help context value for a specified variable.

Parameter
index

The index of the variable.
dwHelpStringContext

Help string context for a localized string

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeLib2 Interface
The ITypeLib2 interface inherits from ITypeLib. This allows an ITypeLib to be cast to an ITypeLib2 in
performance-sensitive cases, rather than performing an extra QueryInterface() and Release().

DECLARE_INTERFACE_(ITypeLib2, ITypeLib)
{
BEGIN_INTERFACE

ITypeLib2::GetCustData
HRESULT GetCustData(guid, pVarVal)

REFGUID guid
VARIANT *pVarVal

Gets the custom data.

Parameter
guid

Globally unique ID (GUID) used to identify the data.
pVarVal

The location of where to put the retrieved data.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeLib2::GetLibStatistics
HRESULT GetLibStatistics(pcUniqueNames, pcchUniqueNames)

unsigned long *pcUniqueNames
unsigned long *pcchUniqueNames

Returns type library statistics that are required for efficient sizing of hash tables.

Parameter
pcUniqueNames

Unique name strings
pcchUniqueNames

Character count of return strings

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

ITypeLib2::GetHelpStringContext
HRESULT GetHelpStringContext(index, pdwHelpStringContext)

unsigned int index
unsigned long *pdwHelpStringContext

Gets the context number for the specified Help string.

Parameter
index

Index of the Help string.
pdwHelpStringContext

Help string context number (DWORD).

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more of the arguments is

invalid.

Error Handling Interfaces
Objects that are invoked through VTBL binding need to use the Automation error handling interfaces to
define and return error information. The interfaces include the following:

· ICreateErrorInfo ¾ Sets error information.
· IErrorInfo ¾ Returns information from an error object.
· ISupportErrorInfo ¾ Identifies this object as supporting the IErrorInfo interface.
· Error handling API functions.

This chapter covers the error handling interfaces. The member functions of each interface are listed in the
following table.

Category Member function Purpose
IErrorInfo GetDescription Returns a textual

description of the error.
GetGUID Returns the globally

unique ID for the interface
that defined the error.

GetHelpContext Returns the Help context
ID for the error.

GetHelpFile Returns the path of the
Help file that describes the
error.

GetSource Returns the ProgID for the
class or application that
returned the error.

ICreateErrorInf
o

SetDescription Sets a textual description
of the error.

SetGUID Sets the globally unique ID
for the interface that
defined the error.

SetHelpContext Sets the Help context ID
for the error.

SetHelpFile Sets the path of the Help
file that describes the
error.

SetSource Sets the programmatic
identifier (ProgID) for the
class or application that
returned the error.

ISupportErrorI
nfo

InterfaceSupportsError
Info

Indicates whether an
interface supports the
IErrorInfo interface.

Error handling
functions

CreateErrorInfo Creates a generic error
object.

GetErrorInfo Retrieves and clears the
current error object.

SetErrorInfo Sets the current error

object.

Returning Error Information
To return error information

1. Implement the ISupportErrorInfo interface.
2. To create an instance of the generic error object, call the CreateErrorInfo function.
3. To set its contents, use the ICreateErrorInfo methods.
4. To associate the error object with the current logical thread, call the SetErrorInfo function.

The following figure illustrates this procedure.

{ewc msdncd, EWGraphic, bsd23530 0 /a "SDK_01.WMF"}

The error handling interfaces create and manage an error object, which provides information about the
error. The error object is not the same as the object that encountered the error. It is a separate object
associated with the current thread of execution.

Retrieving Error Information
To retrieve error information

1. Check whether the returned value represents an error that the object is prepared to handle.
2. Call QueryInterface to get a pointer to the ISupportErrorInfo interface. Then, call

InterfaceSupportsErrorInfo to verify that the error was raised by the object that returned it and that
the error object pertains to the current error, and not to a previous call.

3. To get a pointer to the error object, call the GetErrorInfo function.
4. To retrieve information from the error object, use the IErrorInfo methods.

The following figure illustrates this procedure.

{ewc msdncd, EWGraphic, bsd23530 1 /a "SDK_02.WMF"}

If the object is not prepared to handle the error, but needs to propagate the error information further down
the call chain, it should simply pass the return value to its caller. Because the GetErrorInfo function
clears the error information and passes ownership of the error object to the caller, the function should be
called only by the object that handles the error.

IErrorInfo Interface
The IErrorInfo interface provides detailed contextual error information.

Implemented byUsed by Header
filename

Import library
name

Oleaut32.dll
(32-bit systems)
Ole2disp.dll
(16-bit systems)

Applications that
receive rich
information.

Oleauto.h
Dispatch.h

Oleaut32.lib
Oledisp.lib

IErrorInfo::GetDescription
HRESULT IErrorInfo::GetDescription(pbstrDescription)
BSTR *pbstrDescription

Returns a textual description of the error.

Parameter
pbstrDescription

Pointer to a brief string that describes the error.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.

Comments
The text is returned in the language specified by the locale ID (LCID) that was passed to
IDispatch::Invoke for the method that encountered the error.

IErrorInfo::GetGUID
HRESULT IErrorInfo::GetGUID(pguid)
GUID *pguid

Returns the globally unique ID (GUID) of the interface that defined the error.

Parameter
pguid

Pointer to a GUID, or GUID_NULL, if the error was defined by the operating system.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.

Comments
IErrorInfo::GetGUID returns the GUID of the interface that defined the error. If the error was defined by
the system, IErrorInfo::GetGUID returns GUID_NULL.

This GUID does not necessarily represent the source of the error. The source is the class or application
that raised the error. Using the GUID, an application can handle errors in an interface, independent of the
class that implements the interface.

IErrorInfo::GetHelpContext
HRESULT IErrorInfo::GetHelpContext(pdwHelpContext)
DWORD *pdwHelpContext

Returns the Help context ID for the error.

Parameter
pdwHelpContext

Pointer to the Help context ID for the error.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.

Comments
IErrorInfo::GetHelpContext returns the Help context ID for the error. To find the Help file to which it
applies, use IErrorInfo::GetHelpFile.

IErrorInfo::GetHelpFile
HRESULT IErrorInfo::GetHelpFile(pbstrHelpFile)
BSTR *pbstrHelpFile

Returns the path of the Help file that describes the error.

Parameter
pbstrHelpFile

Pointer to a string that contains the fully qualified path of the Help file.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.

Comments
IErrorInfo::GetHelpFile returns the fully qualified path of the Help file that describes the current error.
IErrorInfo::GetHelpContext should be used to find the Help context ID for the error in the Help file.

IErrorInfo::GetSource
HRESULT IErrorInfo::GetSource(pbstrSource)
BSTR *pbstrSource

Returns the language-dependent programmatic ID (ProgID) for the class or application that raised the
error.

Parameter
pbstrSource

Pointer to a string containing a ProgID, in the form progname.objectname.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.

Comments
Use IErrorInfo::GetSource to determine the class or application that is the source of the error. The
language for the returned ProgID depends on the locale ID (LCID) that was passed into the method at the
time of invocation.

ICreateErrorInfo Interface
The ICreateErrorInfo interface returns error information.

Implemented byUsed by Header
filename

Import library
name

Oleaut32.dll
(32-bit systems)
Oledisp.dll
(16-bit systems)

Applications that
return rich error
information.

Oleauto.h
Dispatch.h

Oleaut32.lib
Oledisp.lib

ICreateErrorInfo::SetDescription
HRESULT ICreateErrorInfo::SetDescription(szDescription)

LPCOLESTR *szDescription

Sets the textual description of the error.

Parameter
szDescription

A brief, zero-terminated string that describes the error.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Insufficient memory to complete the

operation.

Comments
The text should be supplied in the language specified by the locale ID (LCID) that was passed to the
method raising the error. For more information, see "LCID Attribute" in Chapter 8, "Type Libraries and the
Object Description Language."

Example
hr = CreateErrorInfo(&pcerrinfo);
if (m_excepinfo.bstrDescription)

pcerrinfo->SetDescription(m_excepinfo.bstrDescription);

ICreateErrorInfo::SetGUID
HRESULT ICreateErrorInfo::SetGUID(rguid)
REFGUID rguid

Sets the globally unique ID (GUID) of the interface that defined the error.

Parameters
rguid

The GUID of the interface that defined the error, or GUID_NULL if the error was defined by the
operating system.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Insufficient memory to complete the

operation.

Comments
ICreateErrorInfo::SetGUID sets the GUID of the interface that defined the error. If the error was defined
by the system, set ICreateErrorInfo::SetGUID to GUID_NULL.

This GUID does not necessarily represent the source of the error, however, the source is the class or
application that raised the error. Using the GUID, applications can handle errors in an interface,
independent of the class that implements the interface.

Example
hr = CreateErrorInfo(&pcerrinfo);
pcerrinfo->SetGUID(IID_IHello);

ICreateErrorInfo::SetHelpContext
HRESULT ICreateErrorInfo::SetHelpContext(dwHelpContext)
DWORD dwHelpContext

Sets the Help context ID for the error.

Parameters
dwHelpContext

The Help context ID for the error.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Insufficient memory to complete the

operation.

Comments
ICreateErrorInfo::SetHelpContext sets the Help context ID for the error. To establish the Help file to
which it applies, use ICreateErrorInfo::SetHelpFile.

Example
hr = CreateErrorInfo(&pcerrinfo);
pcerrinfo->SetHelpContext(dwhelpcontext);

ICreateErrorInfo::SetHelpFile
HRESULT ICreateErrorInfo::SetHelpFile(szHelpFile)
LPCOLESTR szHelpFile

Sets the path of the Help file that describes the error.

Parameter
szHelpFile

The fully qualified path of the Help file that describes the error.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Insufficient memory to complete the

operation.

Comments
ICreateErrorInfo::SetHelpFile sets the fully qualified path of the Help file that describes the current error.
Use ICreateErrorInfo::SetHelpContext to set the Help context ID for the error in the Help file.

Example
hr = CreateErrorInfo(&pcerrinfo);
pcerrinfo->SetHelpFile("C:\myapp\myapp.hlp");

ICreateErrorInfo::SetSource
HRESULT ICreateErrorInfo::SetSource(szSource)
LPCOLESTR szSource

Sets the language-dependent programmatic ID (ProgID) for the class or application that raised the error.

Parameter
szSource

A programmatic ID in the form progname.objectname.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Insufficient memory to complete the

operation.

Comments
ICreateErrorInfo::SetSource should be used to identify the class or application that is the source of the
error. The language for the returned programmatic ID (ProgID) depends on the locale ID (LCID) that was
passed to the method at the time of invocation.

Example
hr = CreateErrorInfo(&pcerrinfo);
if (m_excepinfo.bstrSource)

pcerrinfo->SetSource(m_excepinfo.bstrSource);

ISupportErrorInfo Interface
The ISupportErrorInfo interface ensures that error information can be propagated up the call chain
correctly. Automation objects that use the error handling interfaces must implement ISupportErrorInfo.

Implemented byUsed by Header
filename

Applications that
return error
information.

Applications that
retrieve error
information.

Oleauto.h
(32-bit
systems)
Dispatch.h
(16-bit
systems)

ISupportErrorInfo::InterfaceSupportsErr
orInfo

HRESULT ISupportErrorInfo::InterfaceSupportsErrorInfo(riid)
REFIID riid

Indicates whether or not an interface supports the IErrorInfo interface.

Parameter
riid

Pointer to an interface ID.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Interface supports IErrorInfo.
S_FALSE Interface does not support IErrorInfo.

Comments
Objects that support the IErrorInfo interface must also implement this interface.

Programs that receive an error return value should call QueryInterface to get a pointer to the
ISupportErrorInfo interface, and then call InterfaceSupportsErrorInfo with the riid of the interface that
returned the return value. If InterfaceSupportsErrorInfo returns S_FALSE, then the error object does not
represent an error returned from the caller, but from somewhere else. In this case, the error object can be
considered incorrect and should be discarded.

If ISupportErrorInfo returns S_OK, use the GetErrorInfo function to get a pointer to the error object.

Example
The following example implements the ISupportErrorInfo for the Lines sample. The IErrorInfo
implementation also supports the AddRef, Release, and QueryInterface members inherited from the
IUnknown interface.

CSupportErrorInfo::CSupportErrorInfo(IUnknown FAR* punkObject, REFIID riid)
{

m_punkObject = punkObject;
m_iid = riid;

}

STDMETHODIMP
CSupportErrorInfo::QueryInterface(REFIID iid, void FAR* FAR* ppv)
{

return m_punkObject->QueryInterface(iid, ppv);
}

STDMETHODIMP_(ULONG)
CSupportErrorInfo::AddRef(void)
{

return m_punkObject->AddRef();
}

STDMETHODIMP_(ULONG)
CSupportErrorInfo::Release(void)
{

return m_punkObject->Release();
}

STDMETHODIMP
CSupportErrorInfo::InterfaceSupportsErrorInfo(REFIID riid)
{

return (riid == m_iid) ? NOERROR : ResultFromScode(S_FALSE);
}

Error Handling API Functions
For 32-bit systems, the error handling functions are provided in Oleaut32.dll, the header file is Oleauto.h,
and the import library is Oleaut32.lib. For 16-bit systems, the error handling functions are provided in
Ole2disp.dll, the header file is Dispatch.h, and the import library is Ole2disp.lib.

CreateErrorInfo   

HRESULT CreateErrorInfo(ppcerrinfo)
ICreateErrorInfo **ppcerrinfo

Creates an instance of a generic error object.

Parameter
ppcerrinfo

Pointer to a system-implemented generic error object.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
E_OUTOFMEMORY Could not create the error object.

Comments
This function returns a pointer to a generic error object, which you can use with QueryInterface on
ICreateErrorInfo to set its contents. You can then pass the resulting object to SetErrorInfo(). The
generic error object implements both ICreateErrorInfo and IErrorInfo.

Example
ICreateErrorInfo *pcerrinfo;
HRESULT hr;

hr = CreateErrorInfo(&pcerrinfo);

GetErrorInfo   

HRESULT GetErrorInfo(, dwReserved, pperrinfo)
DWORD dwReserved
IErrorInfo **pperrinfo

Obtains the error information pointer set by the previous call to SetErrorInfo in the current logical thread.

Parameter
dwReserved

Reserved for future use. Must be zero.
pperrinfo

Pointer to a pointer to an error object.

Return Value
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK Success.
S_FALSE There was no error object to return.

Comments
This function returns a pointer to the most recently set IErrorInfo pointer in the current logical thread. It
transfers ownership of the error object to the caller, and clears the error state for the thread.

SetErrorInfo   

HRESULT SetErrorInfo(perrinfo)
DWORD dwReserved
IErrorInfo *perrinfo

Sets the error information object for the current thread of execution.

Parameter
dwReserved

Reserved for future use. Must be zero.
perrinfo

Pointer to an error object.

Return Value
The return value obtained from the returned HRESULT is:

Return value Meaning
S_OK Success.

Comments
This function releases the existing error information object, if one exists, and sets the pointer to perrinfo.
Use this function after creating an error object that associates the object with the current thread of
execution.

If the property or method that calls SetErrorInfo is called by DispInvoke, then DispInvoke will fill the
EXCEPINFO parameter with the values specified in the error information object. DispInvoke will return
DISP_E_EXCEPTION when the property or method returns a failure return value for DispInvoke.

VTBL-binding controllers that do not use IDispatch::Invoke can get the error information object by using
GetErrorInfo. This allows an object that supports a dualinterface to use SetErrorInfo, regardless of
whether the client uses VTBL binding or IDispatch.

Example
ICreateErrorInfo *pcerrinfo;

IErrorInfo *perrinfo;
HRESULT hr;

hr = CreateErrorInfo(&pcerrinfo);
hr = pcerrinfo->QueryInterface(IID_IErrorInfo, (LPVOID FAR*) &perrinfo);
if (SUCCEEDED(hr))

{
SetErrorInfo(0, perrinfo);
perrinfo->Release();

}
pcerrinfo->Release();

National Language Support
Functions

The National Language Support (NLS) functions provide support for applications that use multiple locales
at one time, especially applications that support Automation. Locale information is passed to allow the
application to interpret both the member names and the argument data in the proper locale context. The
information in this appendix applies only to 16-bit Windows systems. On 32-bit Windows systems, an NLS
API is part of the system software.

Implemente
d by

Used by Header
filename

Import library
name

Ole2nls.dll Applications that
support multiple
national
languages

Olenls.h Ole2nls.lib

For Automation, applications need to get locale information and to compare and transform strings into the
proper format for each locale.

A locale is simply user-preference information, represented as a list of values describing the user's
language and sublanguage. National language support incorporates several disparate definitions of a
locale into one coherent model. This model is designed to be general enough at a low level to support
multiple, distinct, high-level functions, such as the ANSI C locale functions.

A code page is the mapping between character glyphs (shapes) and the 1-byte or 2-byte numeric values
that are used to represent them. Microsoft Windows uses one of several code pages, depending on the
installed localized version of Windows. For example, the Russian version uses code page 1251 (Cyrillic),
while the English U.S. and Western European versions use code page 1252 (Multilingual). For historical
reasons, the Windows code page in effect is referred to as the ANSI code page.

Because only one code page is in effect at a time, it is impossible for a computer running English U.S.
Windows to display or print data correctly from the Cyrillic code page. The fonts do not contain the Cyrillic
characters. However, it can still manipulate the characters internally, and they will display correctly again if
moved back to a machine running Russian Windows.

All NLS functions use the locale ID (LCID) to identify which code page a piece of text is assumed to lie in.
For example, when returning locale information (such as month names) for Russian, the returned string
can be meaningfully displayed in the Cyrillic code page only, because other code pages do not contain
the appropriate characters. Similarly, when attempting to change the case of a string with the Russian
locale, the case-mapping rules assume the characters are in the Cyrillic code page.

These functions can be divided into two categories.

· String transformation ¾ NLS functions support uppercasing, lowercasing, generating sort keys (all
locale-dependent), and getting string type information.

· Locale manipulation ¾ NLS functions return information about installed locales for use in string
transformations.

Overview of Functions
The following table lists the NLS functions.

Function Purpose
CompareStringA Compares two strings of the same

locale.
LCMapStringA Transforms the case or sort order of a

string.
GetLocaleInfoA Retrieves locale information from the

user's system.
GetStringTypeA Retrieves locale type information about

each character in a string.
GetSystemDefaultLangID Retrieves the default language ID

(LANGID) from a user's system. (1)

GetSystemDefaultLCID Retrieves the default LCID from a user's
system.

GetUserDefaultLangID Retrieves the default LANGID from a
user's system.

GetUserDefaultLCID Retrieves the default LCID from a user's
system. (1)

1 Because Windows is a single-user system, GetUserDefaultLangID and
GetUserDefaultLCID return the same information as GetSystemDefaultLangID and
GetSystemDefaultLCID.

Localized Member Names
An application may expose a set of objects whose members have names that differ across localized
versions of a product. This poses a problem for programming languages that want to access such
objects, because it means that late binding is sensitive to the locale of the application. The IDispatch and
VTBL interfaces allow software developers a range of solutions that vary in cost of implementation and
quality of national language support. All methods of the IDispatch interface that are potentially sensitive
to language are passed an LCID.

Following are some of the possible approaches a class implementation may take:

· Accept any LCID and use the same member names in all locales. This is acceptable if the interface
will typically be accessed only by advanced users. For example, the member names for OLE
interfaces will never be localized.

· Simply return an error (DISP_E_UNKNOWNLCID) if the caller's LCID doesn't match the localized
version of the class. This would prevent users from being able to write late-bound code which runs on
machines with different localized implementations of the class.

· Recognize the particular version's localized names, as well as one language that is recognized in all
versions. For example, a French version might accept French and English names, where English is
the language supported in all versions. This would constrain users to use English when writing code
that runs in all countries,.

· Accept all LCIDs supported by all versions of the product. This means that the implementation of
GetIDsOfNames would need to interpret the passed array of names based on the given LCID. This is
the preferred solution because users would be able to write code in their national language and run
the code on any localized version of the application.

At the very least, the application must check the LCID before interpreting member names. Also note that
the meaning of parameters passed to a member function may depend on the caller's national language.
For example, a spreadsheet application might interpret the arguments to a SetFormula method
differently, depending on the LCID.

Locale ID (LCID)
The IDispatch interface uses the 32-bit Windows definition of a LCID to identify locales. An LCID is a
DWORD value that contains the LANGID in the lower word and a reserved value in the upper word. The
bits are as follows:

{ewc msdncd, EWGraphic, bsd23531 0 /a "SDK.WMF"}

This LCID has the components necessary to uniquely identify one of the installed system-defined locales.

/*
 * LCID creation/extraction macros:
 * MAKELCID - construct locale ID from language ID and country code.
 */
#define MAKELCID(l) ((DWORD)(((WORD)(l))|(((DWORD)((WORD)(0))) << 16)))

There are two predefined LCID values. LOCALE_SYSTEM_DEFAULT is the system default locale, and
LOCALE_USER_DEFAULT is the current user''s locale. However, when querying the NLS APIs for
information, it is more efficient to query once for the current locale with GetSystemDefaultLCID or
GetUserDefaultLCID, rather than using these constants.

Language ID (LANGID)
A LANGID is a 16-bit value that is the combination of a primary and sublanguage ID. The bits are as
follows:

{ewc msdncd, EWGraphic, bsd23531 1 /a "SDK.WMF"}

Macros are provided for constructing a LANGID and extracting the fields:

LANGID creation/extraction macros include:

· MAKELANGID - construct LANGID from primary LANGID and sublanguage ID.
· PRIMARYLANGID - extract primary language ID from a LANGID.
· SUBLANGID - extract sublanguage ID from a LANGID.
· LANGIDFROMLCID - get the LANGID from an LCID.

#define MAKELANGID(p, s) ((((USHORT)(s)) << 10) | (USHORT)(p))
#define PRIMARYLANGID(lgid) ((USHORT)(lgid) & 0x3ff)
#define SUBLANGID(lgid) ((USHORT)(lgid) >> 10)
#define LANGIDFROMLCID(lcid) ((WORD)(lcid))

The following three combinations of primary and sublanguage IDs have special meanings:

PRIMARYLANGID SUBLANGID Meaning
LANG_NEUTRAL SUBLANG_NEUTRAL Language neutral
LANG_NEUTRAL SUBLANG_SYS_DEFAUL

T
System default
language

LANG_NEUTRAL SUBLANG_DEFAULT User default language

For primary language IDs, the range 0x200 to 0x3ff is user definable. The range 0x000 to 0x1ff is
reserved for system use. The following table lists the primary language IDs supported by Automation:

Language PRIMARYLANGID
Neutral 0x00
Chinese 0x04
Czech 0x05
Danish 0x06
Dutch 0x13
English 0x09
Finnish 0x0b
French 0x0c
German 0x07
Greek 0x08
Hungarian 0x0e
Icelandic 0x0F
Italian 0x10
Japanese 0x11
Korean 0x12
Norwegian 0x14

Polish 0x15
Portuguese 0x16
Russian 0x19
Serbo Croatian 0x1a
Slovak 0x1b
Spanish 0x0a
Swedish 0x1d
Turkish 0x1F

For sublanguage IDs, the range 0x20 to 0x3f is user definable. The range 0x00 to 0x1f is reserved for
system use. The following table lists the sublanguage IDs supported by Automation:

Sublanguage SUBLANGID
Neutral 0x00
Default 0x01
System Default 0x02
Chinese (Simplified) 0x02
Chinese (Traditional) 0x01
Dutch 0x01
Dutch (Belgian) 0x02
English (U.S.) 0x01
English (U.K.) 0x02
English (Australian) 0x03
English (Canadian) 0x04
English (Irish) 0x06
English (New Zealand) 0x05
French 0x01
French (Belgian) 0x02
French (Canadian) 0x03
French (Swiss) 0x04
German 0x01
German (Swiss) 0x02
German (Austrian) 0x03
Greek 0x01
Icelandic 0x01
Italian 0x01
Italian (Swiss) 0x02
Japanese 0x01
Korean 0x01
Norwegian (Bokmal) 0x01
Norwegian (Nynorsk) 0x02
Portuguese 0x02
Portuguese (Brazilian) 0x01
Serbo Croatian (Latin) 0x01
Spanish (Castilian)1 0x01
Spanish (Mexican) 0x02

Spanish (Modern)1 0x03
Turkish 0x01

1 The only difference between Spanish (Castilian) and Spanish (Modern) is the sort ordering.
All of the LCType values are the same.

Locale Constants (LCTYPE)
An LCTYPE is a constant that specifies a particular piece of locale information. For example:

typedef DWORD LCTYPE;

The list of supported LCTYPES follows. All values are null-terminated, variable-length strings. Numeric
values are expressed as strings of decimal digits, unless otherwise noted. The values in the brackets
indicate the maximum number of characters allowed for the string (including the null termination). If no
maximum is indicated, the string may be of variable length.

Constant name Description
LOCALE_ILANGUAGE A LANGID represented in

hexadecimal digits. See the
previous sections. [5]

LOCALE_SLANGUAGE The full localized name of the
language.

LOCALE_SENGLANGUAGE The full English U.S. name of the
language from the ISO Standard
639. This will always be restricted
to characters that can be mapped
into the ASCII 127-character
subset.

LOCALE_SABBREVLANGNAME The abbreviated name of the
language, created by taking the
two-letter language abbreviation,
as found in ISO Standard 639,
and adding a third letter as
appropriate to indicate the
sublanguage.

LOCALE_SNATIVELANGNAME The native name of the language.
LOCALE_ICOUNTRY The country code, based on

international phone codes, also
referred to as IBM country codes.
[6]

LOCALE_SCOUNTRY The full localized name of the
country.

LOCALE_SENGCOUNTRY The full English U.S. name of the
country. This will always be
restricted to characters that can
be mapped into the ASCII 127-
character subset.

LOCALE_SABBREVCTRYNAME The abbreviated name of the
country as found in ISO Standard
3166.

LOCALE_SNATIVECTRYNAME The native name of the country.
LOCALE_IDEFAULTLANGUAGE LANGID for the principal

language spoken in this locale.
This is provided so that partially
specified locales can be
completed with default values. [5]

LOCALE_IDEFAULTCOUNTRY Country code for the principal

country in this locale. This is
provided so that partially
specified locales can be
completed with default values. [6]

LOCALE_IDEFAULTANSICODEPA
GE

The ANSI code page associated
with this locale.
Format: 4 Unicode decimal digits
plus a Unicode null terminator.
[10] [6]

LOCALE_IDEFAULTCODEPAGE The OEM code page associated
with the country. [6]

LOCALE_SLIST Characters used to separate list
items. For example, a comma is
used in many locales.

LOCALE_IMEASURE This value is 0 for the metric
system (S.I.) and 1 for the U.S.
system of measurements. [2]

LOCALE_SDECIMAL Characters used for the decimal
separator.

LOCALE_STHOUSAND Characters used as the separator
between groups of digits left of
the decimal.

LOCALE_SGROUPING Sizes for each group of digits to
the left of the decimal. An explicit
size is required for each group.
Sizes are separated by
semicolons. If the last value is 0,
the preceding value is repeated.
To group thousands, specify 3;0.

LOCALE_IDIGITS The number of fractional digits.
[3]

LOCALE_ILZERO Whether to use leading zeros in
decimal fields. [2] A setting of 0
means use no leading zeros; 1
means use leading zeros.

LOCALE_SNATIVEDIGITS The ten characters that are the
native equivalent of the ASCII 0-
9.

LOCALE_INEGNUMBER Negative number mode. [2]
"0" (1.1)
"1" -1.1
"2" -1.1
"3" 1.1
"4" 1.1

LOCALE_SCURRENCY The string used as the local
monetary symbol.

LOCALE_SINTLSYMBOL Three characters of the
International monetary symbol
specified in ISO 4217, Codes for
the Representation of Currencies
and Funds, followed by the
character separating this string

from the amount.
LOCALE_SMONDECIMALSEP Characters used for the monetary

decimal separators.
LOCALE_SMONTHOUSANDSEP Characters used as monetary

separator between groups of
digits left of the decimal.

LOCALE_SMONGROUPING Sizes for each group of monetary
digits to the left of the decimal. An
explicit size is needed for each
group. Sizes are separated by
semicolons. If the last value is 0,
the preceding value is repeated.
To group thousands, specify 3;0.

LOCALE_ICURRDIGITS Number of fractional digits for the
local monetary format. [3]

LOCALE_IINTLCURRDIGITS Number of fractional digits for the
international monetary format. [3]

LOCALE_ICURRENCY Positive currency mode. [2]
0 Prefix, no separation.
1 Suffix, no separation.
2 Prefix, 1-character separation.
3 Suffix, 1-character separation.

LOCALE_INEGCURR Negative currency mode. [2]
0 ($1.1)
1 -$1.1
2 $-1.1
3 $1.1-
4 $(1.1$)
5 -1.1$
6 1.1-$
7 1.1$-
8 -1.1 $ (space before
$)
9 -$ 1.1 (space after $)
10 1.1 $- (space before
$)

LOCALE_ICALENDARTYPE The type of calendar currently in
use. [2]

1 Gregorian (as in U.S.)
2 Gregorian (always
English strings)
3 Era: Year of the Emperor
(Japan)
4 Era: Year of the Republic
of China

5 Tangun Era (Korea)
LOCALE_IOPTIONALCALENDAR The additional calendar types

available for this LCID. Can be
a null-separated list of all valid
optional calendars. [2]
0 None available

1 Gregorian (as in U.S.)
2 Gregorian (always
English strings)
3 Era: Year of the Emperor
(Japan)
4 Era: Year of the Republic
of China
5 Tangun Era (Korea)

LOCALE_SDATE Characters used for the date
separator.

LOCALE_STIME Characters used for the time
separator.

LOCALE_STIMEFORMAT Time-formatting string. [80]
LOCALE_SSHORTDATE Short Date_Time formatting

strings for this locale.
LOCALE_SLONGDATE Long Date_Time formatting

strings for this locale.
LOCALE_IDATE Short Date format-ordering

specifier. [2]
0 Month - Day - Year
1 Day - Month - Year
2 Year - Month - Day

LOCALE_ILDATE Long Date format ordering
specifier. [2]
0 Month - Day - Year
1 Day - Month - Year
2 Year - Month - Day

LOCALE_ITIME Time format specifier. [2]
0 AM/PM 12-hour format.
1 24-hour format.

LOCALE_ITIMEMARKPOSN Whether the time marker string
(AM|PM) precedes or follows the
time string. (The registry value is
named ITimePrefix for previous
Far East version compatibility.)
0 Suffix (9:15 AM).
1 Prefix (AM 9:15).

LOCALE_ICENTURY Whether to use full 4-digit century.
[2]
0 Two digit.
1 Full century.

LOCALE_ITLZERO Whether to use leading zeros in
time fields. [2]
0 No leading zeros.
1 Leading zeros for hours.

LOCALE_IDAYLZERO Whether to use leading zeros in
day fields. [2]
0 No leading zeros.
1 Leading zeros.

LOCALE_IMONLZERO Whether to use leading zeros in

month fields. [2]
0 No leading zeros.
1 Leading zeros.

LOCALE_S1159 String for the AM designator.
LOCALE_S2359 String for the PM designator.
LOCALE_IFIRSTWEEKOFYEAR Specifies which week of the year

is considered first. [2]
0 Week containing 1/1 is the

first week of the year.
1 First full week following

1/1is the first week of the
year.

2 First week with at least 4
days is the first week of
the year.

LOCALE_IFIRSTDAYOFWEEK Specifies the day considered first
in the week. [2]
0 SDAYNAME1
1 SDAYNAME2
2 SDAYNAME3
3 SDAYNAME4
4 SDAYNAME5
5 SDAYNAME6
6 DAYNAME7

LOCALE_SDAYNAME1 Long name for Monday.
LOCALE_SDAYNAME2 Long name for Tuesday.
LOCALE_SDAYNAME2 Long name for Tuesday.
LOCALE_SDAYNAME3 Long name for Wednesday.
LOCALE_SDAYNAME4 Long name for Thursday.
LOCALE_SDAYNAME5 Long name for Friday.
LOCALE_SDAYNAME6 Long name for Saturday.
LOCALE_SDAYNAME7 Long name for Sunday.
LOCALE_SABBREVDAYNAME1 Abbreviated name for Monday.
LOCALE_SABBREVDAYNAME2 Abbreviated name for Tuesday.
LOCALE_SABBREVDAYNAME3 Abbreviated name for

Wednesday.
LOCALE_SABBREVDAYNAME4 Abbreviated name for Thursday.
LOCALE_SABBREVDAYNAME5 Abbreviated name for Friday.
LOCALE_SABBREVDAYNAME6 Abbreviated name for Saturday.
LOCALE_SABBREVDAYNAME7 Abbreviated name for Sunday.
LOCALE_SMONTHNAME1 Long name for January.
LOCALE_SMONTHNAME2 Long name for February.
LOCALE_SMONTHNAME3 Long name for March.
LOCALE_SMONTHNAME4 Long name for April.
LOCALE_SMONTHNAME5 Long name for May.
LOCALE_SMONTHNAME6 Long name for June.
LOCALE_SMONTHNAME7 Long name for July.
LOCALE_SMONTHNAME8 Long name for August.

LOCALE_SMONTHNAME9 Long name for September.
LOCALE_SMONTHNAME10 Long name for October.
LOCALE_SMONTHNAME11 Long name for November.
LOCALE_SMONTHNAME12 Long name for December.
LOCALE_SMONTHNAME13 Native name for 13th month, if it

exists.
LOCALE_SABBREVMONTHNAME
1

Abbreviated name for January.

LOCALE_SABBREVMONTHNAME
2

Abbreviated name for February.

LOCALE_SABBREVMONTHNAME
3

Abbreviated name for March.

LOCALE_SABBREVMONTHNAME
4

Abbreviated name for April.

LOCALE_SABBREVMONTHNAME
5

Abbreviated name for May.

LOCALE_SABBREVMONTHNAME
6

Abbreviated name for June.

LOCALE_SABBREVMONTHNAME
7

Abbreviated name for July.

LOCALE_SABBREVMONTHNAME
8

Abbreviated name for August.

LOCALE_SABBREVMONTHNAME
9

Abbreviated name for September.

LOCALE_SABBREVMONTHNAME
10

Abbreviated name for October.

LOCALE_SABBREVMONTHNAME
11

Abbreviated name for November.

LOCALE_SABBREVMONTHNAME
12

Abbreviated name for December.

LOCALE_SABBREVMONTHNAME
13

Native abbreviated name for 13th
month, if it exists.

LOCALE_SPOSITIVESIGN String value for the positive sign.
LOCALE_SNEGATIVESIGN String value for the negative sign.
LOCALE_IPOSSIGNPOSN Formatting index for positive

values. [2]
0 Parentheses surround the

amount and the
monetary symbol.

1 The sign string precedes
the amount and the
monetary symbol.

2 The sign string precedes
the amount and the
monetary symbol.

3 The sign string precedes
the amount and the
monetary symbol.

4 The sign string precedes
the amount and the

monetary symbol.
LOCALE_INEGSIGNPOSN Formatting index for negative

values. [2]
0 Parentheses surround the

amount and the
monetary symbol.

1 The sign string precedes
the amount and the
monetary symbol.

2 The sign string precedes
the amount and the
monetary symbol.

3 The sign string precedes
the amount and the
monetary symbol.

4 The sign string precedes
the amount and the
monetary symbol.

LOCALE_IPOSSYMPRECEDES If the monetary symbol precedes,
1. If it succeeds a positive
amount, 0. [2]

LOCALE_IPOSSEPBYSPACE If the monetary symbol is
separated by a space from a
positive amount, 1. Otherwise, 0.
[2]

LOCALE_INEGSYMPRECEDES If the monetary symbol precedes,
1. If it succeeds a negative
amount, 0. [2]

LOCALE_INEGSEPBYSPACE If the monetary symbol is
separated by a space from a
negative amount, 1. Otherwise, 0.
[2]

The following table shows the equivalence between LCTYPE values and the information stored in the
[intl] section of Win.ini. These values are retrieved from Win.ini if information for the current system locale
is queried. Values for LCTYPEs that are not in the following table do not depend on information stored in
Win.ini.

Win.ini settings LCTYPE
sLanguage (1) LOCALE_SABBREVLANGNAME
iCountry LOCALE_ICOUNTRY
sCountry LOCALE_SCOUNTRY
sList LOCALE_SLIST
iMeasure LOCALE_IMEASURE
sDecimal LOCALE_SDECIMAL
sThousand LOCALE_STHOUSAND
iDigits LOCALE_IDIGITS
iLZero LOCALE_ILZERO
sCurrency LOCALE_SCURRENCY
iCurrDigits LOCALE_ICURRDIGITS

iCurrency LOCALE_ICURRENCY
iNegCurr LOCALE_INEGCURR
sDate LOCALE_SDATE
sTime LOCALE_STIME
sShortDate LOCALE_SSHORTDATE
sLongDate LOCALE_SLONGDATE
iDate LOCALE_IDATE
iTime LOCALE_ITIME
iTLZero LOCALE_ITLZERO
s1159 LOCALE_S1159
s2359 LOCALE_S2359

1 Unlike in Win.ini, values returned by LOCALE_SABBREVLANGNAME are always in
uppercase.

CompareStringA
int CompareStringA(

LCID lcid
DWORD dwCmpFlags
LPCSTR lpString1
integer cchCount1
LPCSTR lpString2
integer cchCount2

Compares two character strings of the same locale according to the supplied LCID.

Parameters
lcid

Locale context for the comparison. The strings are assumed to be represented in the default ANSI
code page for this locale.

dwCmpFlags

Flags that indicate the character traits to use or ignore when comparing the two strings. Several flags
can be combined , or none can be used. (In the case of this function, there are no illegal combinations
of flags.) Compare flags include the following.

Value Meaning
NORM_IGNORECASE Ignore case. Default is Off.
NORM_IGNOREKANATYP
E

Ignore Japanese hiragana/katakana
character differences. Default is Off.

NORM_IGNORENONSPA
CE

Ignore nonspacing marks (accents,
diacritics, and vowel marks). Default is
Off.

NORM_IGNORESYMBOL
S

Ignore symbols. Default is Off.

NORM_IGNOREWIDTH Ignore character width. Default is Off.

lpString1 and lpString2

The two strings to be compared.
cchCount1 and cchCount2

The character counts of the two strings. The count does not include the null-terminator (if any). If
either cchCount1 or cchCount2 is -1, the corresponding string is assumed to be null-terminated, and
the length is calculated automatically.

Return Value
Value Meaning
 0 Failure.
 1 lpString1 is less than lpString2.
 2 lpString1 is equal to lpString2.

 3 lpString1 is greater than lpString2.

Comments
When used without any flags, this function uses the same sorting algorithm as lstrcmp in the given locale.
When used with NORM_IGNORECASE, the same algorithm as lstrcmpi is used.

For double-byte character set (DBCS) locales, the flag NORM_IGNORECASE has an effect on all the
wide (two-byte) characters as well as the narrow (one-byte) characters. This includes the wide Greek and
Cyrillic characters.

In Chinese Simplified, the sorting order used to compare the strings is based on the following sequence:
symbols, digit numbers, English letters, and Chinese Simplified characters. The characters within each
group sort in character-code order.

In Chinese Traditional, the sorting order used to compare the strings is based on the number of strokes in
the characters. Symbols, digit numbers, and English characters are considered to have zero strokes. The
sort sequence is symbols, digit numbers, English letters, and Chinese Traditional characters. The
characters within each stroke-number group sort in character-code order.

In Japanese, the sorting order used to compare the strings is based on the Japanese 50-on sorting
sequence. The Kanji ideographic characters sort in character-code order.

In Japanese, the flag NORM_IGNORENONSPACE has an effect on the daku-on, handaku-on, chou-on,
you-on, and soku-on modifiers, and on the repeat kana/kanji characters.

In Korean, the sort order is based on the sequence: symbols, digit numbers, Jaso and Hangeul, Hanja,
and English. Within the Jaso-Hangeul group, each Jaso character is followed by the Hangeuls that start
with that Jaso. Hanja characters are sorted in Hangeul pronunciation order. Where multiple Hanja have
the same Hangeul pronunciation, they are sorted in character-code order.

The NORM_IGNORENONSPACE flag only has an effect for the locales in which accented characters are
sorted in a second pass from main characters. All characters in the string are first compared without
regard to accents and (if the strings are equal) a second pass over the strings to compare accents is
performed. In this case, this flag causes the second pass to not be performed. Some locales sort
accented characters in the first pass, in which case this flag will have no effect.

If the return value is 2, the two strings are equal in the collation sense, though not necessarily identical
(the case might be ignored, and so on).

If the two strings are of different lengths, they are compared up to the length of the shortest one. If they
are equal to that point, the return value will indicate that the longer string is greater.

To maintain the C run-time convention of comparing strings, the value 2 can be subtracted from a non-
zero return value. The meaning of < 0, == 0, and > 0 is then consistent with the C run-time conventions.

LCMapStringA
int LCMapStringA(

 LCID lcid
DWORD dwMapFlags
LPCSTR lpSrcStr
int cchSrc
LPSTR lpDestStr
int cchDest

Transforms the case or sort order of a string.

Parameters
lcid

Locale ID context for mapping. The strings are assumed to be represented in the default ANSI code
page for this locale.

dwMapFlags

Flags that indicate what type of transformation is to occur during mapping. Several flags can be
combined on a single transformation (though some combinations are illegal). Mapping options include
the following.

Name Meaning
LCMAP_LOWERCASE Lowercase.
LCMAP_UPPERCASE Uppercase.
LCMAP_SORTKEY Character sort key.
LCMAP_HALFWIDTH Narrow characters (where applicable).
LCMAP_FULLWIDTH Wide characters (where applicable).
LCMAP_HIRAGANA Hiragana.
LCMAP_KATAKANA Katakana.
NORM_IGNORECASE Ignore case. Default is Off.
NORM_IGNORENONSP
ACE

Ignore nonspacing. Default is Off.

NORM_IGNOREWIDTH Ignore character width. Default is Off.
NORM_IGNOREKANAT
YPE

Ignore Japanese hiragana/katakana
character differences. Default is Off.

NORM_IGNORESYMB
OLS

Ignore symbols. Default is Off.

The latter five options (NORM_IGNORECASE, NORM_IGNORENONSPACE,
NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, and NORM_IGNORESYMBOLS) are
normalization options that can only be used in combination with the LCMAP_SORTKEY conversion
option.
Conversion options can be combined only when they are taken from the following three groups, and
then only when there is no more than one option from each group:
· Casing options (LCMAP_LOWERCASE, LCMAP_UPPERCASE)
· Width options (LCMAP_HALFWIDTH, LCMAP_FULLWIDTH)
· Kana options (LCMAP_HIRAGANA, LCMAP_KATAKANA)

lpSrcStr

Pointer to the supplied string to be mapped.
cchSrc

Character count of the input string buffer. If -1, lpSrcStr is assumed to be null-terminated and the
length is calculated automatically.

lpDestStr

Pointer to the memory buffer that stores the resulting mapped string.
cchDest

Character count of the memory buffer pointed to by lpDestStr. If cchDest is 0, then the return value of
this function is the number of characters required to hold the mapped string. In this case, the
lpDestStr pointer is not referenced.

Return Value
Value Meaning
 0 Failure.
The number of characters written to
lpDestSt

Success.

Comments
LCMapStringA maps one character string to another, performing the specified locale-dependent

translation.

The flag LCMAP_UPPER produces the same result as AnsiUpper in the given locale. The flag
LCMAP_LOWER produces the same result as AnsiLower. This function always maps a single character
to a single character.

The mapped string is null-terminated if the source string is null-terminated.

When used with LCMAP_UPPER and LCMAP_LOWER, the lpSrcStr and lpDestStr may be the same to
produce an in-place mapping. When LCMAP_SORTKEY is used, the lpSrcStr and lpDestStr pointers may
not be the same. In this case, an error will result.

The LCMAP_SORTKEY transforms two strings so that when they are compared with the standard C
library function strcmp (by strict numerical valuation of their characters), the same order will result, as if
the original strings were compared with CompareStringA. When LCMAP_SORTKEY is specified, the
output string is a string (without Nulls, except for the terminator), but the character values will not be
meaningful display values. This is similar behavior to the ANSI C function strxfrm.

GetLocaleInfoA
int GetLocaleInfoA(

LCID lcid
LCTYPE LCType
LPSTR lpLCData
int cchData

Retrieves locale information from the user's system.

Parameters
lcid

The locale ID. The returned string is represented in the default ANSI code page for this locale.
LCType

Flag that indicates the type of information to be returned by the call. See the listing of constant values
defined in this chapter. LOCALE_NOUSEROVERRIDE | LCTYPE indicates that the desired
information will always be retrieved from the locale database, even if the LCID is the current one and
the user has changed some of the values in the Windows 95 Control Panel. If this flag is not
specified, the values in Win.ini take precedence over the database settings when getting values for
the current system default locale.

lpLCData

Pointer to the memory where GetLocaleInfoA will return the requested data. This pointer is not
referenced if cchData is 0.

cchData

Character count of the supplied lpLCData memory buffer. If cchData is 0, the return value is the
number of characters required to hold the string, including the terminating null character. In this case,
lpLCData is not referenced.

Return Value
Value Meaning
 0 Failure.
The number of characters copied,
including the terminating null
character

Success.

Comments
GetLocaleInfoA returns one of the various pieces of information about a locale by querying the stored
locale database or Win.ini. The call also indicates how much memory is necessary to contain the desired
information.

The information returned is always a null-terminated string. No integers are returned by this function and
numeric values are returned as text. (See the format descriptions under LCTYPE).

GetStringTypeA   

BOOL GetStringTypeA(

LCID lcid
DWORD dwInfoType
LPCSTR lpSrcStr
int cchSrc
LPWORD lpCharType

Retrieves locale type information about each character in a string.

Parameters
lcid

Locale context for the mapping. The string is assumed to be represented in the default ANSI code
page for this locale.

dwInfoType

Type of character information to retrieve. The various types are divided into different levels. (See the
Comments section for a list of information included in each type). The options are mutually exclusive.
The following types are supported:
· CT_CTYPE1
· CT_CTYPE2
· CT_CTYPE3

lpSrcStr

String for which character types are requested. If cchSrc is -1, lpSrcStr is assumed to be null-
terminated.

cchSrc

Character count of lpSrcStr. If cchSrc is -1, lpSrcStr is assumed to be null-terminated. This must also
be the character count of lpCharType.

lpCharType

Array of the same length as lpSrcStr (cchSrc). On output, the array contains one word corresponding
to each character in lpSrcStr.

Return Value
Return value Meaning
0 Failure.
1 Success.

Comments
The lpSrcStr and lpCharType pointers cannot be the same. In this case, the error
ERROR_INVALID_PARAMETER results.

The character type bits are divided up into several levels. One level's information can be retrieved by a
single call.

This function supports three character types:

· Ctype 1
· Ctype 2
· Ctype 3

Ctype 1 character types support ANSI C and POSIX character typing functions. A bitwise OR of these
values is returned when dwInfoType is set to CT_CTYPE1. For DBCS locales, the Ctype 1 attributes
apply to both narrow characters and wide characters. The Japanese hiragana and katakana characters,
and the kanji ideograph characters all have the C1_ALPHA attribute.

The following table lists the Ctype 1 character types.

Name Value Meaning
C1_UPPER 0x0001 Uppercase1.
C1_LOWER 0x0002 Lowercase1.
C1_DIGIT 0x0004 Decimal digits.
C1_SPACE 0x0008 Space characters.
C1_PUNCT 0x0010 Punctuation.
C1_CNTRL 0x0020 Control characters.
C1_BLANK 0x0040 Blank characters.
C1_XDIGIT 0x0080 Hexadecimal digits.
C1_ALPHA 0x0100 Any letter.

1 The Windows version 3.1 functions IsCharUpper and IsCharLower do not always produce
correct results for characters in the range 0x80-0x9f, so they may produce different results
than this function for characters in that range. (For example, the German Windows version 3.1
language driver incorrectly reports 0x9a, lowercase s hacek, as uppercase).

Ctype 2 character types support the proper layout of text. For DBCS locales, Ctype 2 applies to both
narrow and wide characters. The directional attributes are assigned so that the BiDi layout algorithm
standardized by Unicode produces the correct results. For more information on the use of these
attributes, see The Unicode Standard: Worldwide Character Encoding from Addison-Wesley publishers.

Name Value Meaning
Strong C2_LEFTTORIGHT 0x1 Left to right.

C2_RIGHTTOLEFT 0x2 Right to left.
Weak C2_EUROPENUMBER 0x3 European

number,
European digit.

C2_EUROPESEPARATOR0x4 European
numeric
separator.

C2_EUROPETERMINATO
R

0x5 European
numeric
terminator.

C2_ARABICNUMBER 0x6 Arabic number.
C2_COMMONSEPARATO
R

0x7 Common
numeric
separator.

Neutral C2_BLOCKSEPARATOR 0x8 Block separator.

C2_SEGMENTSEPARATO
R

0x9 Segment
separator.

C2_WHITESPACE 0xA White space.
C2_OTHERNEUTRAL 0xB Other neutrals.

Not applicable C2_NOTAPPLICABLE 0x0 No implicit
direction (for
example, control
codes).

Ctype 3 character types are general text-processing information. A bitwise OR of these values is returned
when dwInfoType is set to CT_CTYPE3. For DBCS locales, the Ctype 3 attributes apply to both narrow
characters and wide characters. The Japanese hiragana and katakana characters, and the kanji
ideograph characters all have the C3_ALPHA attribute.

Name Value Meaning
C3_NONSPACING 0x1 Nonspacing mark.
C3_DIACRITIC 0x2 Diacritic nonspacing mark.
C3_VOWELMARK 0x4 Vowel nonspacing mark.
C3_SYMBOL 0x8 Symbol.
C3_KATAKANA 0x10 Katakana character.
C3_HIRAGANA 0x20 Hiragana character.
C3_HALFWIDTH 0x40 Narrow character.
C3_FULLWIDTH 0x80 Wide character.
C3_IDEOGRAPH 0x100 Ideograph.
C3_ALPHA 0x8000 Any letter.
C3_NOTAPPLICABLE 0x0 Not applicable.

GetSystemDefaultLangID   

LANGID GetSystemDefaultLangID(

Retrieves the default LANGID from a user's system.

Return Value
Return value Meaning
 0 Failure.
System default LANGID Success.

Comments
Returns the system default LANGID. For information on how this value is determined, see
GetSystemDefaultLCID in the following section..

GetSystemDefaultLCID   

LCID GetSystemDefaultLCID(

Retrieves the default LCID from a user's system.

Return Value
Return value Meaning
 0 Failure.
System default locale ID Success.

Comments
Returns the system default LCID. The return value is determined by examining the values of sLanguage
and iCountry in Win.ini, and comparing the values to those in the stored locale database. If no matching
values are found, or the required values cannot be read from Win.ini, or if the stored locale database
cannot be loaded, the value 0 is returned.

GetUserDefaultLangID   

LANGID GetUserDefaultLangID(

Retrieves the default LANGID from a user's system.

Return Value
Value Meaning
 0 Failure.
User default LANGID Success.

Comments
Returns the user default LANGID. On single-user systems, the value returned from this function is always
the same as that returned from GetSystemDefaultLangID.

GetUserDefaultLCID   

LCID GetUserDefaultLCID(

Retrieves the default LCID from a user's system.

Return Value
Return value Meaning
 0 Failure.
User default locale ID Success.

Comments
Returns the user default LCID. On single-user systems, the value returned by this function is always the
same as that returned from GetSystemDefaultLCID.

File Requirements
The file names shown in bold are required by your application at run time.

32-bit filenames 16-bit filenames Purpose
None Ole2.reg Registers OLE and

Automation. OLE is a
system component on
32-bit systems, therefore,
no .reg file is required.

None Ole2nls.dll
Ole2nls.lib
Olenls.h

Provides functions for
applications that support
multiple national
languages. On 32-bit
systems, NLS features
are provided by the
Win32 NLS API.

Oleprx32.dll Ole2prox.dll Coordinates object
access across processes.

MkTypLib.exe MkTypLib.exe Builds type libraries from
interface descriptions.

Oleaut32.dll
Oleaut32.lib
Oleauto.h

TypeLib.dll
Dispatch.h

Accesses type libraries.

Ole2disp.dll
Ole2disp.lib
Dispatch.h

Provides functions for
creating ActiveX objects
and retrieving active
objects at run time.
Accesses ActiveX objects
by invoking methods and
properties.

Ole32.dll
Ole32.lib
Ole2.h

Ole2.dll
Ole2.lib
Ole2.h

Provides OLE functions
that can be used by OLE
and ActiveX objects or
containers.

Compobj.dll
Compobj.lib
Ole2.h
Compobj.h

Supports COM creation
and access.

Storage.dll
Storage.lib
Ole2.h
Storage.h

Supports access to
subfiles, such as type
libraries, within
compound documents.

Information for Visual Basic
Programmers

Visual Basic provides full support for Automation. The following table lists how Visual Basic statements
translate into OLE APIs.

Visual Basic statement OLE APIs
CreateObject CLSIDFromProgID

CoCreateInstance
QueryInterface to get IDispatch
interface.

GetObject CLSIDFromProgID
CoCreateInstance
QueryInterface for IPersistFile
interface.
Load on IPersistFile interface.
QueryInterface to get IDispatch
interface.

GetObject CreateBindCtx creates the bind
context for the subsequent functions.
MkParseDisplayName returns a
moniker handle for BindMoniker.
BindMoniker returns a pointer to the
IDispatch interface.
Release on moniker handle.
Release on context.

GetObject CLSIDFromProgID
GetActiveObject on class ID.
QueryInterface to get IDispatch
interface.

Dim x As New interface Find CLSID for interface.
CoCreateInstance
QueryInterface

String Comparisons
This appendix describes how Automation compares strings. These comparisons are important when
creating applications that support national language accents and digraphs. The information in this
appendix applies to the following:

· CreateStdDispatch
· DispGetIDsOfNames
· ITypeLib::FindName
· ITypeLib::GetIDsOfNames
· MkTypLib and the MIDL compiler

When comparing strings, Automation components use the following rules:

· Comparisons are sensitive to locale, based on the string's locale ID (LCID). A string must have an
LCID that is supported by the application or type library. For more information about locales and
LCIDs, refer to the section "Supporting Multiple National Languages," in Chapter 2, "Exposing ActiveX
Objects."

· Accent characters are ignored. For example, the string à compares the same as a.
· Case is ignored. For example, the string A compares the same as a.
· Comparisons are sensitive to digraphs. For example, the string Æ is not the same as AE.
· For Japanese, Korean, and Chinese locales, ITypeLib::FindName and ITypeLib::GetIDsOfNames

ignore width and kanatype.

Managing GUIDs
Globally unique identifiers (GUIDs) appear in many places in a typical Automation application. GUID
errors can cause persistent bugs. To help avoid GUID problems, this appendix lists all of the places that
GUIDs appear in a typical Automation application, describes common characteristics of GUID bugs, and
offers some GUID management techniques.

GUIDs are the same as UUIDs (Universally Unique Identifiers). A class identifier (CLSID) is a UUID/GUID
that refers to a class.

The System Registry
The system registry is a central repository that contains information about objects. GUIDs are used to
index that information. You can view the registration information on your system by running Regedit.exe
with the /v option:

regedit /v

Typically, a name is connected with a GUID (for example, Hello.Application maps to a GUID), and the
GUID is connected to all the other relevant aspects of the object (for example, the GUID maps to
Hello.exe).

GUIDs are created with the tool Guidgen.exe. Running Guidgen.exe produces a very large hexidecimal
number that uniquely identifies an object, whether it is a class, interface, library, or some other type of
object.

GUID Locations
GUIDs appear in the following locations:

· .reg files ¾ When an application is created, usually one or more .reg files are created. The .reg files
contain the GUIDs for the classes that an application exposes. These GUIDs are added to the registry
when you run Regedit.exe to register the classes, or when you register type information with
LoadTypeLib.

· The system registry ¾ Contains the GUIDs for classes in multiple locations. This is where OLE and
applications get information about classes.

· .odl files ¾ When objects are described in an Object Description Language (.odl) file, a GUID needs
to be provided for each object. Compiling the .odl file with the MIDL compiler or the MkTypLib utility
places the GUIDs in a type library, which usually exists as a file with a .tlb extension. If a GUID is
changed in an .odl file, you should run MIDL or MkTypLib again.

· .tlb files ¾ Type libraries describe classes, and this information includes the GUIDs for the classes.
The .tlb files can be browsed using the Tlbrowse.exe sample application supplied with OLE.

· .h files ¾ Most application developers will declare class IDs (CLSIDs) for their classes in a header file
by using the DEFINE_GUID macro.

Troubleshooting
The following problems are common with GUIDs.

Problem
GetObject can't seem to create an instance of my application.

Solution
Visual Basic uses the OLE calls listed in Appendix C to find the .exe file that creates an application
instance.

Visual Basic proceeds as follows
1. Looks up the GUID for the object. (For the Hello application, Visual Basic maps the programmatic ID

(ProgID) Hello.Application into a GUID.)
2. Finds the object's server (the Hello.exe for the Hello application).
3. Launches the application.

If an error occurs, check the following:

· Has the .reg file been run?
· Are the entries in the registry correct?
· Do all of the GUIDs match?
· Can the application be launched? The .exe file for the application, listed in the LocalServer entry,

should either be on the path or it should be fully specified. For example:
c:\ole2\sample\hello\hello.bin

Problem

When I use GetObject, the application launches, but the GetObject call fails.

Solution
Normally, when an application is started, a class factory is registered using CoRegisterClassObject.
Some applications register their class factories only when launched with the /Automation switch. If code
was inherited, or a sample was copied, determine whether it checks for this switch. The /Automation
option might appear in the .reg file, the registry, or in the development environment.

Problem
GetTypeInfoOfGuid() fails to get the type information from my type library.

Solution
When GetTypeInfoOfGuid is called, a GUID is provided. If this GUID doesn't match the GUID in the .tlb
file, no type information will be returned. The GUID in the code may be declared in a header file. The
GUID in the .tlb file can be checked by using Browse.exe, which is provided with OLE, or with the Visual
Basic Object Browser.

GUID Management
The problem with managing GUIDs is that they are pervasive, and their length prohibits simple
comparisons.

The single most important technique in managing GUIDs is to keep a central list of all the GUIDs that are
implemented. For example, use the DEFINE_GUID macro or the Guidgen.exe tool with the -n option to
generate the required number of GUIDs, and then enter the resulting strings in the first column of a
spreadsheet. Each time a new GUID is used, enter a description of its purpose in the second column of
the spreadsheet.

Note The DEFINE_GUIDE macro does not generate GUIDs. It defines a 128-bit number to a GUID
with a human-readable name.

A central spreadsheet of GUIDs has several advantages:

· Listing all the GUIDs in one location may prevent accidental reuse of a GUID. (This often happens
when an application is cloned to create another one.)

· The spreadsheet can be used to compare GUIDs. To check the accuracy of a GUID, you can copy it
from the location where it is being used (for example, a .reg file), paste it into the spreadsheet, and
then compare the two cells with the = operator.

· A record of GUID usage can be helpful in case of future problems, and this single source of
information will be available to find the GUID for an object.

A
accessor function

A function that sets or retrieves the value of a property. Most properties have a pair of accessor
functions. Properties that are read-only may have only one accessor function.

ActiveX
Microsoft's brand name for the technologies that enable interoperability using the Component Object
Model (COM). ActiveX technology includes, but is not limited to, OLE.

ActiveX client
Any program or piece of code that accesses the functionality and the content of an ActiveX or OLE
object.

ActiveX component
Physical file that contains classes, which are definitions of objects. For example, a .dll, .exe or .ocx
file.

ActiveX control
A user interface element created using ActiveX technology.

ActiveX object
Objects an application or programming tool exposes to ActiveX clients.

Application object
The top-level object in an application's object hierarchy. The Application object identifies the
application to the system, and typically becomes active when the application starts. Specified by the
appobj attribute in the type library.

Automation
COM-based technology that enables interoperability among ActiveX components, including OLE
components. Formerly referred to as OLE Automation.

Automation controller
An application, programming tool, or scripting language that accesses Automation objects. Visual
Basic is an OLE Automation controller.

Automation object
An instance of a class defined within an application that is exposed for access by other applications
or programming tools by Automation interfaces.

Automation server
An application, type library, or other source that makes Automation objects available for
programming by other applications, programming tools, or scripting languages.

C
class identifier (CLSID)

A universally unique ID (UUID) for an application class that identifies an object. An object registers
its class ID (CLSID) in the system registration database so that it can be loaded and programmed by
other applications.

class factory
An object that implements the IClassFactory interface, which allows it to create other objects of a
specific class.

coclass
Component object model class. A top-level object in the object hierarchy.

collection object
A grouping of exposed objects. A collection object that can address multiple occurrences of an object
as a unit (for example, to draw a set of points).

Component Object Model (COM)
The programming model and binary standard on which OLE is based. COM defines how objects and
their clients interact within processes or across process boundaries.

compound document
A document that contains data of different formats, such as sound clips, spreadsheets, text, and
bitmaps, created by different applications. Compound documents are stored by container
applications.

container application
An OLE-based application that provides storage, a display site, and access to a compound
document object.

D
Dispatch identifier (DISPID)

The number by which a member function, parameter, or data member of an object is known
internally to the IDispatch interface.

dispinterface
An IDispatch interface that responds only to a certain fixed set of names. The properties and
methods of the dispinterface are not in the virtual function table (VTBL) for the object.

dual interface
An interface that supports both IDispatch and VTBL binding.

E
event

An action recognized by an object, such as clicking the mouse or pressing a key, and for which you
can write code to respond. In Automation, an event is a method that is called, rather than
implemented, by an Automation object.

event sink
A function that handles events. The code associated with a Visual Basic form, which contains event
handlers for one or more controls, is an event sink.

event source
A control that experiences events and calls an event handler to dispose of them.

exposed object
See Automation object.

H
HRESULT

A value returned from a function call to an interface, consisting of a severity code, context
information, a facility code, and a status code that describes the result. For 16-bit Windows systems,
the HRESULT is an opaque result handle defined to be zero for a successful return from a function,
and nonzero if error or status information is to be returned. To convert an HRESULT into a more
detailed SCODE (or return value), applications call GetSCode(). See SCODE.

I
ID binding

The ability to bind member names to dispatch IDs (DISPIDs) at compile time (for example, by
obtaining the IDs from a type library). This approach eliminates the need for calls to
IDispatch::GetIDsOfNames, and results in improved performance over late-bound calls. See also
late binding.

in-place activation
The ability to activate an object from within an OLE control and to associate a verb with that
activation (for example, edit, play, change). Sometimes referred to as in-place editing or visual
editing.

in-process server
An object application that runs in the same process space as the Automation controller.

interface
One or more well-defined base classes providing member functions that, when implemented in an
application, provide a specific service. Interfaces may include compiled support functions to simplify
their implementation.

L
late binding

The ability to bind names to IDs at run time, rather than at compile time.

locale identifier (LCID)
A 32-bit value that identifies the human language preferred by a user, region, or application.

M
marshaling

The process of packaging and sending interface parameters across process boundaries.

member function
One of a group of related functions that make up an interface. See also method and property.

method
A member function of an exposed object that performs some action on the object, such as saving it
to disk.

MIDL compiler
The Microsoft Interface Definition Library (MIDL) compiler can be used to generate a type library. For
information about the MIDL compiler, refer to the Microsoft Interface Definition Language
Programmer's Guide and Reference in the Win32 Software Development Kit (SDK) section of the
Microsoft Developer's Network (MSDN).

multiple-document interface (MDI) application
An application that can support multiple documents from one application instance. MDI object
applications can simultaneously service a user and one or more embedding containers. See also
single-document interface (SDI) application.

O
object

A unit of information that resides in a compound document and whose behavior is constant no
matter where it is located or used.

Object Description Language (ODL)
A scripting language used to describe exposed libraries, objects, types, and interfaces. ODL scripts
are compiled into type libraries by the MkTypLib tool.

OLE
 Microsoft's object-based technology for sharing information and services across process and
machine boundaries (object linking and embedding).

Out-of process server
An object application implemented in an executable file that runs in a separate process space from
the Automation controller.

P
programmable object

See Automation object.

property
A data member of an exposed object. Properties are set or returned by means of get and put
accessor functions.

proxy
An interface-specific object that packages parameters for that interface in preparation for a remote
method call. A proxy runs in the address space of the sender and communicates with a
corresponding stub in the receiver's address space. See also stub, marshaling, and unmarshaling.

S
safe array

An array that contains information about the number of dimensions and the bounds of its
dimensions. Safe arrays are passed by IDispatch::Invoke within VARIANTARGs. Their base type is
VT_tag | VT_ARRAY.

SCODE
A DWORD value that is used in 16-bit systems to pass detailed information to the caller of an
interface member or API function. The status codes for OLE interfaces and APIs are defined in
FACILITY_ITF. See HRESULT.

single-document interface (SDI) application
An application that can support only one document at a time. Multiple instances of an SDI
application must be started to service both an embedded object and a user. See also multiple-
document interface (MDI) application.

stub
An interface-specific object that unpackages the parameters for that interface after they are
marshaled across the process boundary, and makes the requested method call. The stub runs in the
address space of the receiver and communicates with a corresponding proxy in the sender's
address space. See proxy, marshaling, and unmarshaling.

type description
The information used to build the type information for one or more aspects of an application's
interface. Type descriptions are written in Object Description Language (ODL), and include both
programmable and nonprogrammable interfaces.

type information
Information that describes the interfaces of an application. Type information is created from type
descriptions using OLE Automation tools, such as MkTypLib or the CreateDispTypeInfo function.
Type information can be accessed through the ITypeInfo interface.

type information element
A unit of information identified by one of these statements in a type description: typedef, enum,
struct, module, interface, dispinterface, or coclass.

type library
A file or component within another file that contains type information about exposed objects. Type
libraries are created from type descriptions using MkTypLib, and can be accessed through the
ITypeLib interface.

U
unmarshaling

The process of unpackaging parameters that have been sent across process boundaries.

V
Value property

The property that defines the default behavior of an object when no other methods or properties are
specified. Indicate the Value property by specifying the default attribute in ODL.

virtual function table (VTBL)
A table of function pointers, such as an implementation of a class in C++. The pointers in the VTBL
point to the members of the interfaces that an object supports.

