
Legal Information
Win32 Multimedia Programmer's Reference
Information in this document is subject to change without notice. Companies, names, and data used in 
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or 
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express 
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual 
property rights covering subject matter in this document. The furnishing of this document does not give 
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as 
expressly provided in any written license agreement from Microsoft.

© 1985 - 1996 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Windows, Win32, and Win32s are registered 
trademarks; and Visual C++ and Windows NT are either registered trademarks or trademarks of Microsoft 
Corporation in the United States and/or other countries. OS/2 is a registered trademark licensed to 
Microsoft Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

 

 



Multimedia Applications
A multimedia application is an application that incorporates sound, video, or both. It delivers information 
more powerfully than printed material or standard sound and video. Unlike printed material, a multimedia 
application contains more than a series of static images or text. Unlike standard sound or video 
presentations, a multimedia application allows the user to navigate through media and interact with 
information quickly and easily. Even when the focus of the application is to help a user produce a printed 
document or perform calculations, the application can use sound, video, or both to enrich the user's 
experience.

Developing multimedia applications can be as simple as adding an existing sound or video recording to 
an application or as complex as building an editing tool for customizing multimedia presentations. 

Practically any computer that uses the Microsoft® Windows® operating system and has a VGA monitor 
and a sound card can exploit multimedia features. Millions of computer users already own equipment like 
this, and many also have compact disc (CD) players. More and more, these computers are becoming the 
final delivery system for information. People are sending electronic mail instead of letters. Instead of 
reaching for a bulky printed encyclopedia, they are enjoying the full-color graphics, sound, and video of a 
CD-based encyclopedia. 

The definition of a multimedia computer has been established by an industry-wide group, the Multimedia 
PC Marketing Council. This council has defined two sets of minimum specifications for multimedia 
computers. For a description of these specifications, see Multimedia PC Specifications. An application 
does not need to take full advantage of all of this hardware to qualify as a multimedia application. 



About Multimedia Applications
An increasing number of applications are using sound and video in new and exciting ways. For example, 
real estate agents have long organized descriptions and photographs of homes in large catalogs. 
Because these catalogs are printed on paper, the presentation of the homes is limited to a picture and 
some text. When the catalog is produced as a multimedia application, the agent can include a guided 
audio and visual tour of the inside and outside of these homes. Having potential buyers view these 
listings is a powerful sales tool and could prevent wasted trips to unsuitable locations.

This real estate application is just one example of what you can do with multimedia. You can use 
multimedia to create applications that play, edit, and capture sounds and images. You can also create 
applications that can control multimedia hardware, such as CD players, joysticks, video-cassette 
recorders, and MIDI (Musical Instrument Digital Interface) devices. 

Many developers use multimedia to improve applications that did not use sound and video when they 
were first designed and written. For example, developers are adding voice-annotation capabilities to 
word-processing applications, and video clips to presentation-graphics applications. 

Some applications integrate multimedia features more completely. Software developers are creating 
hundreds of such applications, such as entertainment programs, computerized reference works, and 
educational programs. Because extensive use of sound or video requires a great deal of data-storage 
space, these applications are often distributed on CDs. 

You can create multimedia applications for anyone who routinely needs fast access to large amounts of 
data. These applications are often written for niche markets; the multimedia real estate catalogue 
discussed earlier is a good example. 



Building a Multimedia Application

Before writing a multimedia application, you should be familiar with programming in the Windows 
environment. 

When using the multimedia services, you must include the appropriate header files in all source-code files 
that call multimedia functions. These header files depend on declarations made in the WINDOWS.H 
header file, so you must first include WINDOWS.H. The multimedia headers files are: DIGITALV.H, 
MCIAVI.H, MMSYSTEM.H, MSACM.H, VCR.H, and VFW.H. To determine which header is needed for a 
multimedia element, use the QuickInfo button in the reference page for the element, or refer to the SDK 
file WIN32API.CSV.

You must also link to the appropriate import library when linking an application that uses multimedia 
interfaces. The import libraries are MSACM32.LIB, WINMM.LIB, and VFW32.lib. Use QuickInfo or 
WIN32API.CSV to determine which import library to use to resolve a call to a multimedia function.



Version Checking

You may need to check the installed version of the multimedia system, particularly if your application 
takes advantage of features that were not available in previous systems. Use the GetVersionEx function 
to check the version.



Multimedia Technologies
This section presents an overview of some of the multimedia technologies.



Multimedia Data Formats

Windows supports three distinct types of multimedia data: MIDI, waveform audio, and video. 

MIDI sounds are stored as a series of instructions. A synthesizer (often part of the computer's sound card) 
interprets the instructions to produce the sound. The MIDI Mapper provides standard patch services for 
device-independent playback of MIDI files. Standard patch services ensure that different MIDI 
synthesizers use the same instrument sounds to reproduce the music in a MIDI file. However, because 
different synthesizers interpret MIDI instructions with greatly varying quality, the sound heard by the user 
cannot be guaranteed. This sound format can store music, and sometimes sound effects, but voice is not 
a practical option. MIDI is easy to edit and the storage requirements are low. Windows MIDI files typically 
have a .MID file extension.

Waveform audio is a digitized recording of a sound. You can typically edit waveform audio using 
insertions and deletions, or you can modify it using filters. This sound format can store voice, music, and 
sound effects exactly as they should be heard by the user. Compared to MIDI sound, however, editing 
waveform audio is difficult and the storage requirements are high. 

Windows supports a tagged file structure called the Resource Interchange File Format (RIFF). There are 
two RIFF file formats currently defined for audio files. 

RIFF type Filename extension Description

RMID .RMI MIDI audio file 

WAVE .WAV Waveform audio file 
 

The multimedia file input and output (I/O) services include functions for working with RIFF files. For 
information about using these functions, see File Input and Output. 

Video is a multiple-track recording that includes waveform audio and moving images. The moving images 
are recorded as a series of still images. Windows video files typically have a .AVI file extension.



Multimedia Playback with One Function Call

You can play waveform-audio files, CDs, video clips, or MIDI files in your application with a call to a single 
function: MCIWndCreate. This function creates window of class type MCIWND_WINDOW_CLASS with a 
button that the user can use to play or stop the playback, a trackbar that displays the current position in 
the file, and, in the case of a video clip, an area in which the video is displayed. The following call to 
MCIWndCreate plays the video clip SAMPLE.AVI:

MCIWndCreate(hwndParent,                      // parent window handle
    g_hinst,                                  // instance handle
    WS_VISIBLE | WS_CHILD | MCIWNDF_SHOWALL,  // window styles
    "sample.avi");                            // filename 
 

Another function, PlaySound, also enables you to implement multimedia playback with a single function 
call. You can use this function to play a waveform-audio file. For example, the following line of code plays 
the sound stored in the file CHIMES.WAV:

PlaySound("chimes.wav", NULL, SND_SYNC); 
 

 

Note    PlaySound cannot play a waveform-audio file larger than will fit in available memory. 

 



Multimedia Audio Services

Multimedia audio services control different types of audio devices, including waveform, MIDI, and auxiliary 
audio devices. Many of the following concepts apply to more than one type of device: 

· Querying audio devices 

· Opening and closing audio device drivers 

· Allocating and preparing audio data blocks 

· Managing audio data blocks 

· Using the MMTIME structure 

· Handling errors with multimedia audio functions 
 



Querying Audio Devices
Before playing or recording audio, you must determine the capabilities of the audio hardware present in 
the system. Audio capability can vary from one multimedia computer to the next; applications should not 
make assumptions about the audio hardware present in a given system. 



Getting the Number of Devices

Use the following functions to determine how many devices of a certain type are available in a given 
system. 

Function Description

auxGetNumDevs Retrieves the number of auxiliary audio 
devices present in the system.

midiInGetNumDevs Retrieves the number of MIDI input devices 
present in the system.

midiOutGetNumDevs Retrieves the number of MIDI output devices 
present in the system.

waveInGetNumDevs Retrieves the number of waveform input 
devices present in the system.

waveOutGetNumDev
s

Retrieves the number of waveform output 
devices present in the system.

 

Audio devices are identified by a device identifier. The device identifier is determined implicitly from the 
number of devices present in a given system. Device identifiers range from zero to one less than the 
number of devices present. For example, if there are two MIDI output devices in a system, valid device 
identifiers are 0 and 1. 



Getting the Capabilities of a Device

After you determine how many devices of a certain type are present in a system, you can inquire about 
the capabilities of each device. Use the following functions to determine the capabilities of audio devices. 

Function Description

auxGetDevCaps Retrieves the capabilities of a given auxiliary 
audio device.

midiInGetDevCaps Retrieves the capabilities of a given MIDI 
input device.

midiOutGetDevCaps Retrieves the capabilities of a given MIDI 
output device.

waveInGetDevCaps Retrieves the capabilities of a given 
waveform input device.

waveOutGetDevCaps Retrieves the capabilities of a given 
waveform output device.

 

Each of these functions takes a pointer to a structure that it fills with information on the capabilities of a 
specified device. The following list shows the structures that correspond to each of the device-inquiry 
functions. 

Function Structure

auxGetDevCaps AUXCAPS

midiInGetDevCaps MIDIINCAPS

midiOutGetDevCaps MIDIOUTCAPS

waveInGetDevCaps WAVEINCAPS

waveOutGetDevCaps WAVEOUTCAPS
 



Opening and Closing Audio Device Drivers
After getting the capabilities of an audio device, you must open the device before you can use it. Audio 
devices aren't guaranteed to be shareable, so a particular device might not be available when you 
request it. If this happens, you should notify the user and allow the user to try to open the device again. 
When you open an audio device, be sure to close it as soon as you finish using it. 

Use the following functions to open and close different types of audio devices. 

Function Description

midiInOpen Opens a specified MIDI input device for recording.

midiInClose Closes a specified MIDI input device.

midiOutOpen Opens a MIDI output device for playback.

midiOutClose Closes a specified MIDI output device.

waveInOpen Opens a waveform input device for recording.

waveInClose Closes a specified waveform input device.

waveOutOpen Opens a waveform output device for playback.

waveOutClose Closes a specified waveform output device.
 



About Device Handles

Each function that opens an audio device takes as parameters a device identifier, a pointer to a memory 
location, and some parameters unique to each type of device. The memory location is filled with a device 
handle. Use this device handle of identify the open audio device when calling other audio functions. 

The distinction between audio-device identifiers and audio-device handles is subtle, but very important. 
Don't confuse the two in your application. The following are differences between device identifiers and 
device handles. 

· Device identifiers are determined implicitly from the number of devices present in a system, which is 
obtained by using the device-numbering functions: auxGetNumDevs, joyGetNumDevs, 
midiInGetNumDevs, midiOutGetNumDevs, mixerGetNumDevs, waveInGetNumDevs, and 
waveOutGetNumDevs. There is a one-to-one correspondence between a device identifier and the 
physical device it represents.

· Device handles are returned when device drivers are opened by using the device-opening functions: 
midiInOpen, midiOutOpen, mixerOpen, waveInOpen, and waveOutOpen. There may be more 
than one for a device. You can think of a device instance as a logical copy of the physical device.

· The device-capabilities and volume functions can take either a device identifier or a device handle. 
These functions are midiInGetDevCaps, midiOutGetDevCaps, midiOutGetVolume, 
midiOutSetVolume, waveInGetDevCaps, waveOutGetDevCaps, waveOutGetVolume, 
waveOutSetVolume. All other functions take device handles. 

 

There are no functions for opening and closing auxiliary audio devices. Auxiliary audio devices don't need 
to be opened and closed like MIDI and waveform devices because there is no continuous data transfer 
associated with them. All auxiliary audio functions take device identifiers to identify devices. 



Allocating and Preparing Audio Data Blocks
Some multimedia audio functions require applications to allocate data blocks to pass to the device drivers 
for playback or recording purposes. Each of these functions uses a structure (or header) to describe its 
data block. The following table identifies these functions and their associated header structures. (The 
MMSYSTEM.H file defines the data structures for these headers.) 

Function Header 
structure

Purpose

waveOutWrite WAVEHDR Waveform playback 

waveInAddBuffer WAVEHDR Waveform recording 

midiOutLongMsg MIDIHDR MIDI system-exclusive 
playback 

midiInAddBuffer MIDIHDR MIDI system-exclusive 
recording 

 

Before you use one of the functions listed above to pass a data block to a device driver, you must allocate 
memory for the data block according to the guidelines discussed in the following topics. 



Allocating Memory for Audio Data Blocks

Before preparing a data block, you must allocate memory for the data block and the header structure that 
describes the data block. 



Preparing Audio Data Blocks

Before you pass an audio data block to a device driver, you must prepare the data block by passing it to a 
header-preparation function. When the device driver is finished with the data block and returns it, you 
must clean up this preparation by passing the data block to a header clean-up function before any 
allocated memory can be freed. 

Windows provides the following functions for preparing and cleaning up audio data blocks. 

Function Description

midiInPrepareHeader Prepares a MIDI-input data block.

midiInUnprepareHeader Cleans up the preparation on a MIDI-
input data block.

midiOutPrepareHeader Prepares a MIDI-output data block.

midiOutUnprepareHeader Cleans up the preparation on a MIDI-
output data block.

waveInPrepareHeader Prepares a waveform-input data block.

waveInUnprepareHeader Cleans up the preparation on a 
waveform-input data block.

waveOutPrepareHeader Prepares a waveform-output data 
block.

waveOutUnprepareHeader Cleans up the preparation on a 
waveform-output data block.

 



Managing Audio Data Blocks
Unless the audio data is small enough to be contained in a single data block, applications must 
continually supply the device driver with data blocks until playback or recording is complete. This is true 
for waveform input and output, and for MIDI system-exclusive input messages. Regular MIDI channel 
messages don't require data blocks for input or output. 

Even if a single data block is used, applications must be able to determine when a device driver is 
finished with the data block so the application can free the memory associated with the data block and 
header structure. There are three ways to determine when a device driver is finished with a data block: 

· Specify a window to receive a message sent by the driver when it is finished with a data block. 

· Specify a callback function to receive a message sent by the driver when it is finished with a data 
block. 

· Poll a bit in the dwFlags member of the WAVEHDR or MIDIHDR data structure sent with each data 
block. 

 

If an application doesn't get a data block to the device driver when needed, there can be an audible gap 
in playback or a loss of incoming recorded information. Use a double-buffering scheme to stay at least 
one data block ahead of the device driver. 

 

Note    To get time-stamped MIDI input data, you must use a callback function. 

 



Using a Window to Process Driver Messages

The easiest type of callback function to use to process driver messages is a window callback. To use a 
window callback, specify the CALLBACK_WINDOW flag in the dwFlags parameter and a window handle 
as the dwCallback parameter of the device-opening function. Driver messages will be sent to the window-
procedure function for the window identified by the handle in dwCallback. 

Messages sent to the window function are specific to the audio device type used. 



Using a Callback Function to Process Audio Driver Messages

You can also write your own callback function to process messages sent by the device driver. To use a 
callback function, specify the CALLBACK_FUNCTION flag in the dwFlags parameter and the address of 
the callback in the dwCallback parameter of the device-opening function. 

Messages sent to a callback function are similar to messages sent to a window, except that they have two 
doubleword parameters instead of one unsigned-integer and one doubleword parameter. 

Callback functions for the multimedia audio services are often called from another thread running 
asynchronously from the application's thread. It is therefore important to use critical sections to protect 
data shared between the callback routine and the rest of the application. For more information about 
critical sections, see Synchronization. 

In 16-bit Windows, there is a limited set of APIs that an audio callback function may call. In 32-bit 
Windows, that strict limitation has been removed. However, it is strongly recommended that a 32-bit audio 
callback function restrain its calls to a similar set of functions. Here is the recommended list: 

EnterCriticalSection ReleaseSemaphore

LeaveCriticalSection SetEvent

midiOutLongMsg timeGetSystemTime

midiOutShortMsg timeGetTime

OutputDebugString timeKillEvent

PostMessage timeSetEvent

PostThreadMessage
 

If your audio callback function does stray from this list, it should be careful not to call APIs that take a long 
time to complete. In particular, calling wave and midi APIs may result in a deadlock. 

If an audio callback shares data with other code, a Critical Section or similar mutual exclusion mechanism 
should be used to protect the integrity of the data. 

Use one of the following techniques to pass instance data from an application to a callback function 
residing in a dynamic link library: 

· Pass the instance data using the dwInstance parameter of the function that opens the device driver. 

· Pass the instance data using the dwUser member of the WAVEHDR and MIDIHDR structures that 
identify an audio data block being sent to a device driver. 

 

If you need more than 32 bits of instance data, pass a pointer to a structure containing the additional 
information. 



Managing Audio Data Blocks by Polling

In addition to using a callback function, you can poll the dwFlags member of a WAVEHDR or MIDIHDR 
structure to determine when an audio device is finished with a data block. There are times when it's better 
to poll dwFlags rather than wait for a window to receive messages from the drivers. For example, 
immediately after you call the waveOutReset function to release pending data blocks, you can poll to be 
sure that the data blocks are indeed done before proceeding to call the waveOutUnprepareHeader 
function and free the memory for the data block. 



Using the MMTIME Structure
Windows uses a structure called MMTIME to represent time. Multimedia audio functions that use 
MMTIME include waveInGetPosition and waveOutGetPosition. The timeGetSystemTime function also 
uses MMTIME to represent system time. 



Setting the Time Format

MMTIME can represent time in one or more different formats including milliseconds, samples, Society of 
Motion Picture and Television Engineers (SMPTE), and MIDI song-pointer formats. The wType member 
specifies the format used to represent time. Before calling a function that uses the MMTIME structure, 
you must set the wType member to indicate your requested time format. Be sure to check wType after 
the call to see if the requested time format is supported. If the requested time format is not supported, the 
time is specified in an alternate time format selected by the device driver and the wType member is 
changed to indicate the selected time format. MMSYSTEM.H defines the following flags for the wType 
member of the MMTIME structure. 

Flag Description

TIME_MS Milliseconds

TIME_SAMPLES Number of waveform audio samples

TIME_BYTES Number of waveform audio bytes

TIME_SMPTE SMPTE time

TIME_MIDI MIDI song-position pointer
 



Getting the System Time

Use the timeGetSystemTime or timeGetTime function to get the system time. System time is defined as 
the time (in milliseconds) since Windows was started. For more information, see Multimedia Timers. 



Handling Errors with Multimedia Audio Functions
Multimedia audio functions return a nonzero error code. A set of functions convert these error codes into a 
textual description of the error. The application must still look at the error value itself to determine how to 
proceed, but textual descriptions of errors can be used in dialog boxes describing errors to users. 

The following functions can be used to get textual descriptions of multimedia audio errors. 

Function Description

midiInGetErrorText Retrieves a textual description of a 
specified MIDI input error.

midiOutGetErrorText Retrieves a textual description of a 
specified MIDI output error.

waveInGetErrorText Retrieves a textual description of a 
specified waveform input error.

waveOutGetErrorText Retrieves a textual description of a 
specified waveform output error.

 

The only multimedia audio functions that don't return error codes are the device-numbering functions. 
These functions return a value of zero if no devices are present in a system, or if any errors are 
encountered by the function. 



The Multimedia Documentation
It is not necessary to read all the multimedia documentation to develop a multimedia application, unless it 
is a very complex multimedia application. The documentation is divided into parts; the parts you need to 
read depend on the type of application you are writing. Each part has overviews for several multimedia 
interfaces. 

The Media Control Interface book discusses how to design applications that use the media control 
interface (MCI) ¾ which offers applications a standard set of commands to use when communicating with 
any multimedia device. The MCIWnd Window Class discusses how to design applications that use an 
interface based on window classes. This interface is useful is you want to add sound or video to an 
application and you do not need to implement complicated editing or recording functionality. MCI is useful 
if you want to implement a customized user interface for your sound or video files but you do not need to 
take full advantage of the capabilities of a particular device. Although many MCI commands are 
appropriate for any multimedia device, some commands exploit the features of a particular device or 
class of devices. You can use this interface to implement a customized user interface and achieve greater 
control over a multimedia device. 

The Multimedia Audio book contains overviews that describe how to design applications that use 
multimedia interfaces. These interfaces are: waveform audio, musical instrument digital interface (MIDI), 
audio compression manager, and audio mixers. These interfaces allow applications to achieve nearly 
complete control over an audio or video presentation. Read these parts if your application needs to take 
full advantage of one or more multimedia devices, if you plan to implement recording or editing features, 
or if you need a custom format for your data.

The Video for Windows book contains overviews that describe video interfaces. The interfaces can be 
used to work with video files, and manage compression and decompression services for these files. The 
AVIFile functions and macros allow you to access waveform audio and audio-video interleaved (AVI) files 
as one or more data streams. The video compression manager provides support for video compression. 
The window class, AVICap, makes it easier to develop an interface for video capture. You use custom file 
and stream handlers to read from or write to a file that is in a nonstandard format. The DrawDib functions 
provide high performance image-drawing capabilities for DIBs.

The Miscellaneous Multimedia Services book discusses other multimedia interfaces. These interfaces 
include joysticks, multimedia timers, the file input and output services for multimedia files.

The Multimedia Reference book contains descriptions of each multimedia element: 

· Multimedia functions

· Multimedia structures

· Multimedia messages

· Multimedia macros

· Multimedia commands

· Multimedia command strings

· Multimedia interfaces

· Multimedia types

· Multimedia constants
 

The Appendix contains several useful references: 

· Multimedia PC Specifications

· Manufacturer and Product Identifiers

· Installable Drivers



  

 



MCIWnd Window Class
MCIWnd is a window class for controlling multimedia devices. A library of functions, messages, and 
macros associated with MCIWnd provides a simple method to add multimedia playback or recording 
capabilities to your applications. 



About the MCIWnd Window Class
The MCIWnd Window class is easy to use. By using a single function, MCIWndCreate your application 
can create a control that plays any device that uses the media control interface (MCI). These devices 
include CD audio, waveform-audio, MIDI, and video devices.

Automating playback is also quick and easy. Using only one function and two macros, an application can 
create an MCIWnd window with the appropriate media device, play the device, and close both the device 
and the window when the content has finished playing. 

 

Note    Some devices play content that is stored in files. Other devices, such as CD audio devices, 
play content that is stored in another medium. For purposes of clarity, this overview refers to both 
circumstances as "playing the device."

 



MCIWnd Window User Interface

MCIWnd provides additional features to adjust the look of the MCIWnd window, customize the behavior of 
your application, and tune playback performance. The following features are included in the MCIWnd 
window:

· A toolbar with Play, Stop, Record and Menu buttons

· A trackbar that controls positioning within the playback content 

· A pop-up menu containing common commands

· A playback area for video and other devices that display images
 

The following illustration shows the initial state of user-controlled video playback. The sample file used is 
CLOCK.AVI.

{ewc msdncd, EWGraphic, bsd23537 0 /a "SDK.BMP"}

The MCIWnd window includes a playback area for video and other devices that display images during 
playback. MCIWnd omits the playback area from waveform-audio devices, MIDI sequencers, and other 
devices that do not write to the display. The following illustration shows the waveform-audio playback 
area.

{ewc msdncd, EWGraphic, bsd23537 1 /a "SDK.BMP"}

The Play button is located in the lower-left corner of the MCIWnd window. It appears when the content is 
stopped. The user can play the content in the following ways:

· To play the content from the current playback position, select the Play button.

· To play the content full-screen from the current playback position, select the Play button while holding 
down the CTRL key.

· To play the content backward from the current playback position, select the Play button while holding 
down the SHIFT key.

 

The Menu button, located next to the Play button, activates a menu that allows the user to open and 
close audio-video interleaved (AVI) files, and to adjust the image size, playback speed, and volume. (The 
user can also activate the menu by clicking the right mouse button whenever the cursor is in the client 
area of the window.) The menu also includes commands to change the configuration of the current 
device, to copy the playback content to the clipboard, and to issue MCI commands.

The trackbar to the right of the Menu button represents the duration of the playback (or recorded) 
content. The slider on the trackbar represents the current playback position within the content. When the 
slider is positioned at the left end of the trackbar, the current playback position is the beginning of the 
content. The user can move to different locations in the content by dragging the slider along the trackbar. 
The Stop button is located in the lower-left corner of the MCIWnd window. It appears when the content is 
played. The following illustration shows video playback in progress.

{ewc msdncd, EWGraphic, bsd23537 2 /a "SDK.BMP"}

The MCIWnd controls can also include a Record button for devices that can record. The Record button 
is marked with a red circle and appears only when the device is capable of recording.

 

Note    The playback window must be aligned on a four-pixel boundary for the best video playback 
performance. Typically, the Microsoft® Windows® operating system aligns the window automatically 
when it is created. If a user moves or stretches the window from its initial position, video playback 



speed might be reduced by half.

 



Multimedia Playback

The MCIWndCreate function provides the means for controlling an MCIWnd window and the device 
associated with it. In general, this function registers the MCIWnd window class and creates an MCIWnd 
window for using MCI services. This section describes how to use MCIWndCreate to perform the 
following tasks:

· Adding user-controlled playback.

· Automating playback.

· Using window styles to change the MCIWnd window.

· Allowing the user to specify devices and files.
 



Adding User-Controlled Playback
You can add user-controlled playback to an existing application by calling the MCIWndCreate function as 
follows:

MCIWndCreate(hwndParent, hInstModule, NULL, "filename.typ"); 
 

The MCIWndCreate parameters identify handles to the parent window and to the module instance 
associated with the MCIWnd window. They also specify window styles and the filename (or device name) 
to associate with the MCIWnd window. 

MCIWndCreate automatically performs the following steps that, for other window classes, you would 
implement in your code yourself:

1. Register the MCIWnd window class.

2. Create the MCIWnd window.

3. Load the specified content.

4. Establish the current playback position at the beginning of the content.

5. Display the device control.

6. Display the playback area of the window, if needed.
 



Automating Playback
You can automate playback in your application by using MCIWndCreate and the MCIWndPlay macro, 
along with either the MCIWndDestroy or the MCIWndClose macro. To automate playback, specify the 
MCIWNDF_NOPLAYBAR and MCIWNDF_NOTIFYMODE styles in the MCIWndCreate dwStyle 
parameter. Specify the MCIWNDF_NOPLAYBAR style to hide the toolbar, and the 
MCIWNDF_NOTIFYMODE style to issue an appropriate notification message when the device stops 
playing.

You can play the device or file specified in MCIWndCreate by using MCIWndPlay. The MCIWndPlay 
macro starts playing the content from its current playback position and continues to its end.

You can destroy or close an MCIWnd window by using the MCIWndDestroy or MCIWndClose macro. 
The MCIWndDestroy macro closes the device or file and destroys the MCIWnd window by invalidating its 
handle. If your application can reuse the MCIWnd window, use MCIWndClose to close the device without 
destroying the window.

Your application can detect when the device stops playing and automatically close the window. To do this, 
specify the MCIWNDF_NOTIFYMODE style for the dwStyle parameter of MCIWndCreate. This causes 
the device to send a MCIWNDM_NOTIFYMODE message whenever it changes modes. Your application 
can trap this message to determine whether the device has stopped playing. When the device stops 
playing, the application closes the window.



Using Window Styles to Change the MCIWnd Window
As with any window, you can change the appearance and behavior of an MCIWnd window by choosing 
from the standard window styles specified with the CreateWindow function. In addition, you can choose 
from several other window styles that are specific to MCIWnd windows. With these styles, your 
application can change these MCIWnd windows in the following ways:

· Change window size.

· Hide or display controls.

· Issue notification messages.

· Display information in the title bar.
 

You can set window styles by specifying them in the MCIWndCreate function, or you can use the 
MCIWndChangeStyles macro to change the style of an existing MCIWnd window. You can also query an 
MCIWnd window for its current styles by using the MCIWndGetStyles macro.

For a list of the MCIWnd-specific window styles, see MCIWndCreate.



Allowing the User to Specify Devices and Files
You can associate a device or file with an existing MCIWnd window by using the MCIWndOpenDialog, 
MCIWndOpen, and MCIWndOpenInterface macros, and the GetOpenFileNamePreview function.

To let a user of your application select a file to play, use MCIWndOpenDialog. This macro displays the 
Open dialog box (shown following) for choosing a file and associates the selected file with the current 
MCIWnd window. 

{ewc msdncd, EWGraphic, bsd23537 3 /a "SDK.BMP"}

You can let a user of your application select a file to associate with an MCIWnd window and preview that 
file by using GetOpenFileNamePreview and MCIWndOpen. The GetOpenFileNamePreview function 
displays the Open dialog box for choosing a file and lets the user preview (play) its contents. When the 
name of an existing file is specified in the dialog box, GetOpenFileNamePreview provides a small 
control to let the user preview the contents of the file. You can associate a specified file, selected with 
GetOpenFileNamePreview or specified in another manner, with an MCIWnd window by using 
MCIWndOpen.

You can also use MCIWndOpen to specify a device to associate with an MCIWnd window. For example, 
you can use a device name, such as "CDAudio".

To associate an MCIWnd window with a file interface or data-stream interface to multimedia data, use the 
MCIWndOpenInterface macro. For more information about file and data-stream interfaces, see AVIFile 
Functions and Macros. 

 

Note    Before associating a new file or device with an MCIWnd window, MCIWndOpenDialog and 
MCIWndOpen close any device currently associated with the window. Your application does not need 
to close any open devices before using these macros.

 



Playback Controls

MCIWnd includes several macros for controlling playback. This section describes how to use these 
macros to perform the following tasks:

· Determining and changing the current position.

· Starting, pausing, and resuming playback.

· Defining playback scope.

· Reversing playback.

· Looping playback.
 



Determining and Changing the Current Position
When a file or device is associated with an MCIWnd window, the playback position is initially set at the 
start of the content, regardless of the media type. During playback, the playback position moves linearly 
through the content and, if playback is uninterrupted, eventually reaches the end of the content. If an 
interruption occurs, the current playback position is the location at which playback was stopped or 
paused.

You can retrieve the locations for the beginning and end of the content by using the MCIWndGetStart 
and MCIWndGetEnd macros. You can determine the length of the content by subtracting the value 
returned by MCIWndGetStart from the value returned by MCIWndGetEnd, or by using the 
MCIWndGetLength macro. You can retrieve the current playback position by using the 
MCIWndGetPosition macro, or you can retrieve the playback position as a null-terminated string by 
using the MCIWndGetPositionString macro.

To change the current playback position, use the MCIWndHome, MCIWndEnd, and MCIWndSeek 
macros. You can move the playback position to the start of the content by using MCIWndHome or to the 
end of the content by using MCIWndEnd. Use MCIWndSeek to move the playback position to any 
location in the content.

You can also step through the content by using the MCIWndStep macro. Beginning from the current 
playback position, this macro moves the playback position forward or backward by a specified increment. 

 

Note    The units used to specify position vary among the different media types and devices. For 
example, the playback position for AVI files used by the MCIAVI device is measured in frames; the 
playback position for CD audio, waveform-audio, and MIDI files is measured in milliseconds. 

Devices for other media types and third-party devices might use other units. For information about 
determining these units, see Playback Enhancements.

 



Starting, Pausing, and Resuming Playback
MCIWndPlay is the most general playback macro. This macro lets you play a file or device from the 
current playback position. Playback continues through the end of the content unless it is interrupted.

You can temporarily interrupt a device that is playing by using the MCIWndPause macro. To resume 
playback from the paused position, use the MCIWndResume macro. Some devices do not support the 
pause and resume commands. These devices usually map MCIWndPause to the MCIWndStop macro, 
which stops playback or recording. You can restart a device that does not support pause or resume by 
using MCIWndPlay, which starts playback from the current playback position.



Defining Playback Scope
MCIWnd provides macros that allow you to define the playback scope. The scope is the portion of the 
playback you want to play. For example, you can play the content from a position other than the beginning 
position by using the MCIWndPlayFrom macro. This macro moves to the specified position, begins 
playback, and continues to the end of the content. Similarly, you can play the content to a specified end 
point by using the MCIWndPlayTo macro. This macro starts at the current playback position and plays 
until it reaches the specified position or the end of the content is reached, whichever comes first. 

Also, you can define both the beginning and ending positions by using the MCIWndPlayFromTo macro. 
This macro moves to the specified starting position and plays until the specified ending position or the 
end of the content is reached. 



Reversing Playback
Some devices support playback in the reverse direction. You can play the content of such a device in the 
reverse direction by using the MCIWndPlayReverse macro. This macro defines the playback scope from 
the current playback position to the beginning of the content. The digital-video device, MCIAVI.DRV, can 
play backward. Devices that cannot play backward, such as CD audio, can issue an error message when 
MCIWndPlayReverse is invoked.



Looping Playback
MCIWnd supports playback as a continuous loop. You can play the content of a file or device repeatedly 
as a loop by using the MCIWndSetRepeat macro in combination with the Play button on the toolbar. The 
video playback device, MCIAVI, supports playback loops. To determine if continuous playback has been 
activated, use the MCIWndGetRepeat macro. 



Multimedia Recording

You can implement recording capabilities in your application by using the user interface built into 
MCIWnd. You can use the MCIWndCreate function and the MCIWndNew macro to provide controls for 
starting and stopping recording and for saving the recorded information. Using MCIWndCreate, you can 
specify window styles to display an MCIWnd window and to include the Record button on the toolbar. 
Using MCIWndNew, you can specify the device type that is being recorded and specify that the 
information is to be captured in a new file.

If your application requires more sophistication, you can automate and customize the recording by using 
the MCIWndRecord macro. For more information, see Customizing the Recording Process.

 

Note    Some devices, such as CD audio and MCIAVI, are used for playback only. Other devices, 
such as waveform-audio devices, can be used for recording. If you specify a device that cannot 
record, MCIWnd omits the Record button from the toolbar.

 



Saving Recorded Content

After completing the recording, you can save the content by using the MCIWndSave or 
MCIWndSaveDialog macro, or by using the GetSaveFileNamePreview function with MCIWndSave. The 
MCIWndSave macro saves data in the file associated with the MCIWnd window. The 
MCIWndSaveDialog macro lets the user specify a filename and save the recorded data in the specified 
file. The GetSaveFileNamePreview function displays the SaveAs dialog box for choosing a file and lets 
the user preview (play) the file. When the name of an existing file is specified in the SaveAs dialog box, 
GetSaveFileNamePreview provides a small control in the dialog box to let the user preview the contents 
of the file. You can save the recorded data in a file selected with GetSaveFileNamePreview by using 
MCIWndSave.



Playback Enhancements

After you have configured your application to play multimedia data using an MCIWnd window, you can 
enhance and adjust the window's appearance and behavior. This section describes how to perform the 
following tasks:

· Specifying time formats

· Adjusting speed, volume, and zoom

· Providing controls for cropping and stretching images

· Using MCIWnd palettes

· Providing status updates

· Using a multiple document interface
 



Specifying Time Formats
Multimedia data types typically can use time to identify significant positions within their content. Common 
time formats are milliseconds, tracks, and frames; other less common time formats, such as SMPTE 
(Society of Motion Picture and Television Engineers) 24, also exist. Time is the format and reference 
system for waveform-audio, MIDI, and CD audio data. Video supports time even though it is recorded as 
a sequence of frames (stream) that is typically played at a specific speed. Several macros are available 
for designating time format. 

You can retrieve the current time format for a file or device by using the MCIWndGetTimeFormat macro. 
You can change the current time format to any other time format supported by a device by using the 
MCIWndSetTimeFormat macro. Or you can the set the time format to milliseconds or frames by using 
the MCIWndUseTime or MCIWndUseFrames macros. 

 

Note    Noncontinuous formats, such as tracks and SMPTE, can cause the toolbar to behave 
erratically. For these time formats, you might want to turn off the toolbar by specifying the 
MCIWNDF_NOPLAYBAR window style when creating an MCIWnd window.

 



Adjusting Speed, Volume, and Zoom
The speed, volume, and zoom macros provide the functionality of the View, Volume, and Speed 
commands on the MCIWnd menu. The macros described in this section are generally used with video 
and other devices that display images during playback. 

Some devices support multiple playback speed changes. You can set the playback speed for these 
devices by using the MCIWndSetSpeed macro. This macro defines the playback speed as 1000. Higher 
values indicate faster speeds. Lower values indicate slower speeds. 

You can retrieve the current playback speed by using the MCIWndGetSpeed macro. This macro uses the 
same values and range as those used by MCIWndSetSpeed.

Some devices support volume changes. You can adjust or set the volume by using the 
MCIWndSetVolume macro. This macro defines the normal volume level as 1000. Higher values indicate 
louder volumes. Lower values indicate quieter volumes. 

You can retrieve the current volume level by using the MCIWndGetVolume macro. This macro uses the 
same numerical values and range as those used by MCIWndSetVolume.

For devices that use a playback window, MCIWnd supports a zoom feature that sets the size of the 
playback image. You can set the playback image size by using the MCIWndSetZoom macro. The macro 
redefines the playback image size while maintaining a constant aspect ratio for the image. The zoom 
value is defined as a percentage of the original image size. Thus, 100 represents the original image size, 
50 indicates the image shown is half its original size, and 200 indicates that the image shown is twice its 
original size.

You can retrieve the current zoom value by using the MCIWndGetZoom macro. This macro uses the 
same values and range as those used by MCIWndSetZoom.

 

Note    The standard MCI CD audio and waveform-audio drivers do not support volume or speed 
changes.

 



Providing Controls for Cropping and Stretching Images
MCIWnd allows you to crop and stretch images of a video clip. To understand these features, you need to 
understand the relationships between frame size, source rectangle, destination rectangle, and playback 
area.

A video clip consists of several frames, each containing one image. The frame size of a video clip is the 
size of the image in the current frame. Typically, a video clip has one frame size because all the images in 
the clip are the same size. 

The source rectangle is a rectangular area that overlays the frames of a video clip. The source rectangle 
defines the portion of each frame that is displayed during playback. When a video clip is loaded with 
MCIWnd, the source rectangle is initialized with the same dimensions and position as the initial frame of 
the video clip.

The destination rectangle is a rectangular area that defines a virtual playback window. The destination 
rectangle receives the image data from the source rectangle for each frame of the video clip. When the 
source and destination rectangle dimensions are different, MCIWnd adjusts the image data horizontally 
and vertically as needed to fill the destination rectangle. When a video clip is loaded with MCIWnd, the 
destination rectangle is initialized with the same dimensions and position as the initial frame of the video 
clip.

The playback area is the portion of an MCIWnd window an application uses to display the video clip. The 
playback area is the client area of an MCIWnd window or the portion of the client area that excludes the 
MCIWnd toolbar. When a video clip is loaded with MCIWnd, the playback area is initialized with the same 
dimensions and position as the initial frame of the video clip. 

You can crop a video clip by using the MCIWndGetSource and MCIWndPutSource macros to alter the 
source rectangle. Cropping an image determines only which portion of the frames are displayed during 
playback; it does not alter the content of the file being played. Before you crop an image, you can retrieve 
the current size of the source rectangle by using MCIWndGetSource. After the new size and location of 
the source rectangle are calculated, you can set the cropping boundaries of the source rectangle by using 
MCIWndPutSource. 

You can stretch a video clip by using the MCIWndGetDest and MCIWndPutDest macros to alter the 
destination rectangle. When you stretch a video clip, you lengthen or shorten the frame size of a video 
clip vertically, horizontally, or in both directions. Before you stretch an image, you can retrieve the current 
size and location of the destination rectangle by using MCIWndGetDest. The MCIWndPutDest macro 
allows you to redefine the destination rectangle. Stretching can distort the image during playback, but it 
does not alter the content of the file being played.

If the size of the destination rectangle becomes larger than the playback area, you can specify which 
portion of the playback area will display the video clip by using MCIWndPutDest.

 

Note    The MCIWndPutDest macro does not change the size of the playback area. To stretch the 
MCIWnd window along with the destination rectangle, you need to know the current size of the 
MCIWnd window and issue new window dimensions based on the destination rectangle. You can 
retrieve the MCIWnd window dimensions by using the GetWindowRect function and resize the 
MCIWnd window by using the SetWindowPos function.

 



Using MCIWnd Palettes
Playing video clips with 8-bit color depth (256-color capacity) requires a palette to define the colors being 
used. Sometimes, the palette included with a video clip is not the most appropriate palette to use during 
playback. In this case, MCIWnd provides three ways to manage palettes for playback:

· Retrieve a handle to the palette associated with an MCIWnd window by using the 
MCIWndGetPalette macro. The palette is not necessarily associated exclusively with the MCIWnd 
window. Other applications can access, and even invalidate, the palette handle. Consequently, your 
application should anticipate the global use of the palette and, when finished with the palette, should 
not free it.

· Specify a new palette to use with the video clip associated with an MCIWnd window by using the 
MCIWndSetPalette macro. 

· Realize the palette associated with an MCIWnd window to the system palette by using the 
MCIWndRealize macro. This macro calls the RealizePalette function with the palette associated with 
the MCIWnd window. If your application message handlers for WM_PALETTECHANGED and 
WM_QUERYNEWPALETTE call only RealizePalette or MCIWndRealize, you must forward these 
messages to MCIWnd if you do not handle them yourself.

 

 

Note    When a video clip with 8-bit color depth is loaded into the MCIWnd window, the palette 
included with that clip replaces the palette associated with the MCIWnd window.

 



Providing Status Updates
MCIWnd uses timers to periodically update information in the window title bar and scroll bar, and to send 
notification messages to the parent window. One timer controls the update period of the active MCIWnd 
window, and a second timer controls the update period for MCIWnd windows that are inactive. Your 
application can use the MCIWnd timer macros to retrieve the current timer settings and to adjust the 
update periods.

You can set the update period used by the active window timer by using the MCIWndSetActiveTimer 
macro. This macro sets the period used by MCIWnd to update the trackbar, to update the playback 
position reported in the window title bar, and to notify the parent window that the media has changed. You 
can retrieve the current update period used by the active window timer by using the 
MCIWndGetActiveTimer macro. The default update period for the active window timer is 500 
milliseconds.

You can set the update period used by the inactive window timer by using the MCIWndSetInactiveTimer 
macro. This macro sets the period used by MCIWnd to update the trackbar, to update the playback 
position reported in the window caption, and to notify the parent window that the media has changed. You 
can retrieve the current update period used by the inactive window timer by using the 
MCIWndGetInactiveTimer macro. The default update period for the inactive window timer is 2000 
milliseconds.

Your application can simultaneously set the update period for both timers by using the 
MCIWndSetTimers macro. The storage for the value of the update period is limited to 16 bits. If a larger 
quantity for either update period is needed, set the timers individually.



Using a Multiple Document Interface
Applications that use a multiple document interface (MDI) might need to specify window styles that are 
not available through the MCIWndCreate function. For these applications, you can register and create an 
MCIWnd window by using the MCIWndRegisterClass function with the CreateWindowEx function. The 
MCIWndRegisterClass function registers the MCIWND_WINDOW_CLASS window class and then 
CreateWindowEx creates an instance of an MCIWnd window.



Error Messages and Notifications

MCIWnd uses MCI to control the devices that play and record multimedia data. In general, MCIWnd 
displays MCI errors in an error dialog box. An MCI error is generated whenever an MCI command fails. 
For example, if your application tries to resume paused playback by using the MCIWndResume macro 
and the current device does not support resume, an error is reported to the user. 

MCIWnd allows you two choices for handling error messages: 

· You can prevent error messages from reaching the user. To prevent the display of MCI error 
messages, specify the MCIWNDF_NOERRORDLG window style when you create an instance of an 
MCIWnd window by using the MCIWndCreate or CreateWindowEx function. 

· You can redirect them to your application for display. To redirect MCI error messages to your 
application, specify the MCIWNDF_NOTIFYERROR window style when you create an instance of an 
MCIWnd window by using MCIWndCreate or CreateWindowEx. 

 

When error notification is enabled, MCIWnd sends each notification message 
(MCIWNDM_NOTIFYERROR) to the main message handler of the parent of the MCIWnd window. Your 
application must have a message handler to process the notification messages it receives.

You can obtain a textual description of the most recent MCI error message by using the 
MCIWndGetError macro. This macro returns the text in an application-defined buffer. If the error string is 
longer than the buffer, MCIWnd truncates the string.

You can route all notifications to another window by using the MCIWndSetOwner macro.



Communicating with MCI Devices

The driver of each MCI device maintains a list of its current settings and capabilities, so it can issue an 
accurate response when it is queried for information. 

When you want to communicate with an MCI device, you can use MCIWnd macros and functions. Many 
of the most common MCI commands and queries are defined as macros. However, if the task you want to 
perform is unavailable as a function or macro, you can send MCI commands directly to the device driver 
by using the MCIWndSendString macro or by using either the message form or string form of the MCI 
commands. Using the MCIWndSendString macro is equivalent to using the mciSendString function as 
follows:

mciSendString(sz, Null, 0, Null) 
 

The parameters of MCIWndSendString include only the window handle and the string form of the 
command. To retrieve the information returned by a string command, use the MCIWndReturnString 
macro.

For more information about MCI, see MCI.

 

Note    You must exclude the device alias from the MCI command when you use 
MCIWndSendString. The MCIWnd library adds this alias when it sends the command to the MCI 
device. 

 



Communication with MCI Devices
It is possible for each MCI device to use one of more of the following as identifiers: 

· a device identifier 

· a device name 

· an alias 

· the filename of the currently loaded content. 
 

MCIWnd provides macros you can use to retrieve this information. You can then use this information to 
communicate through MCI directly with MCI devices associated with MCIWnd windows.

You can retrieve the identifier of the current MCI device by using the MCIWndGetDeviceID macro. The 
MCI device identifier is a numerical value that identifies the instance of the MCI device your application is 
using. Your application can use this identifier when communicating with an MCI device by using the 
mciSendCommand function.

To retrieve the name of the current MCI device, use the MCIWndGetDevice macro. The MCI device 
name is a null-terminated string that identifies the device type associated with an MCIWnd window. Your 
application can use this name when communicating with an MCI device by using mciSendCommand.

You can retrieve the alias of the current MCI device by using the MCIWndGetAlias macro. Your 
application can use this alias when communicating with an MCI device by using the mciSendString 
function.

Finally, you can retrieve the filename used by an MCI device by using the MCIWndGetFileName macro. 
The filename identifies the content currently associated with an MCIWnd window. Your application can 
use this filename when communicating with a MCI device by using mciSendCommand or 
mciSendString.



MCI Device Capabilities
MCIWnd includes the following macros to let you query MCI devices for their capabilities. 

Macro Description

MCIWndCanConfig Determines whether a device has a 
configuration dialog box to support 
multiple configurations, such as the 
MCIAVI device.

MCIWndCanEject Determines whether a device has a 
software-controlled eject function.

MCIWndCanPlay Determines whether a device can play 
the existing content.

MCIWndCanRecord Determines whether a device can record.

MCIWndCanSave Determines whether a device can store 
data.

MCIWndCanWindow Determines whether a device supports 
MCI window commands (such as 
window, put and where).

 

These macros return TRUE if the device supports the specific capability, or FALSE otherwise.



Using the MCIWnd Window Class
This section contains examples demonstrating how to perform the following tasks:

· Creating an MCIWnd window 

· Automating playback for MCIWnd

· Pausing and resuming playback

· Limiting the playback scope

· Recording with MCIWnd controls 

· Customizing the recording process

· Cropping an image

· Stretching an image

· Stretching an image and window
 



Creating an MCIWnd Window

The MCIWndCreate function registers and creates an MCIWnd window. The window can be a parent, 
child, or pop-up window. The following example creates an MCIWnd window as a child window and lets 
the user control playback by providing access to the trackbar and the Play, Stop, and Menu buttons. The 
example specifies a handle of a parent window and specifies NULL for the window styles, so the default 
window styles of WS_CHILD, WS_BORDER, and WS_VISIBLE are used to create the MCIWnd window.

// Global variable and constants 
// extern HINSTANCE g_hinst;       instance handle 
// extern HWND g_hwndMCIWnd;       MCIWnd window handle 
 
case WM_COMMAND: 
    switch (wParam) { 
    case IDM_CREATEMCIWND: 
        g_hwndMCIWnd = MCIWndCreate(hwnd, g_hinst, NULL, 
            "sample.avi"); 
        break;  
    } 
    break; 
 

 

Note    You could also specify NULL for both the parent window handle and the window styles, in 
which case the default window styles would be WS_OVERLAPPED and WS_VISIBLE.

 



Automating Playback for MCIWnd

You can automate playback for MCIWnd by specifying certain window styles in the MCIWndCreate 
function. To play the device, the window needs a parent window to process notification messages, a 
playback area to play AVI files, and notification of device mode changes to identify when playback stops. 
The window does not need a toolbar. You can set these characteristics by specifying the appropriate 
styles in MCIWndCreate.

The following example uses menu commands to create an MCIWnd window to play content from several 
different types of devices. The MCIWndCreate function creates the MCIWnd window, and devices and 
files are loaded by using the MCIWndOpen macro in the device-specific commands. When a device 
finishes playing, you close the device by trapping the MCIWNDM_NOTIFYMODE message and issuing 
the MCIWndClose macro. 

case WM_COMMAND: 
    switch (wParam) 
    { 
        case IDM_CREATEMCIWND: 
            dwMCIWndStyle = WS_CHILD |     // child window
                WS_VISIBLE |               // visible
                MCIWNDF_NOTIFYMODE |       // notifies of mode changes
                MCIWNDF_NOPLAYBAR;          // hides toolbar 
            g_hwndMCIWnd = MCIWndCreate(hwnd, 
                g_hinst, dwMCIWndStyle, NULL); 
            break; 
        case IDM_PLAYCDA: 
            LoadNGoMCIWnd(hwnd, "CDAudio"); 
            break; 
        case IDM_PLAYWAVE: 
            LoadNGoMCIWnd(hwnd, "SoundWave.WAV"); 
            break; 
        case IDM_PLAYMIDI: 
            LoadNGoMCIWnd(hwnd, "MIDIFile.MID"); 
            break; 
        case IDM_PLAYAVI: 
            LoadNGoMCIWnd(hwnd, "AVIFile.AVI"); 
            break; 
        case IDM_EXIT: 
            MCIWndDestroy(g_hwndMCIWnd); 
            DestroyWindow(hwnd); 
            break; 
    } 
    break; 
 
case MCIWNDM_NOTIFYMODE: 
    if (lParam == MCI_MODE_STOP)  // device stopped
    { 
        MessageBox(hwnd,"","Closing Device",MB_OK); 
        MCIWndClose(g_hwndMCIWnd); 
    } 
    break; 

// Handle other messages here. 
 



// LoadNGoMCIWnd - automatically loads and plays a multimedia device 
// 
// hwnd -  handle to the parent window 
// lpstr - pointer to device or filename played by device 
// 
// Global variable 
// extern HINSTANCE g_hwndMCIWnd;  instance handle to MCIWnd window 
 
VOID LoadNGoMCIWnd(HWND hwnd, LPSTR lpstr) 
{ 
    MessageBox(hwnd, lpstr, "Loading Device", MB_OK); 
    MCIWndOpen(g_hwndMCIWnd, lpstr, NULL);   // new device in window 
    MCIWndPlay(g_hwndMCIWnd);                // plays device 
} 
 



Pausing and Resuming Playback

You can interrupt playback of a device or file associated with an MCIWnd window by using the 
MCIWndPause macro. You can then restart playback by using the MCIWndResume macro. If the device 
does not support resume or if an error occurs, you can use the MCIWndPlay macro to restart playback. 

The following example creates an MCIWnd window and plays an AVI file. Pause and resume menu 
commands are available to the user to interrupt and restart playback. 

MCIWnd window styles are changed temporarily by using the MCIWndChangeStyles macro to inhibit an 
MCI error dialog box from being displayed if MCIWndResume fails.

case WM_COMMAND: 
    switch (wParam) 
    { 
        case IDM_CREATEMCIWND:             // creates and plays clip 
            g_hwndMCIWnd = MCIWndCreate(hwnd, 
                g_hinst, 
                WS_CHILD | WS_VISIBLE |    // standard styles
                MCIWNDF_NOPLAYBAR |        // hides toolbar 
                MCIWNDF_NOTIFYMODE,        // notifies of mode changes
                "sample.avi"); 
 
            MCIWndPlay(g_hwndMCIWnd); 
            break;  
        case IDM_PAUSEMCIWND:              // pauses playback 
            MCIWndPause(g_hwndMCIWnd); 
            MessageBox(hwnd, "MCIWnd", "Pausing Playback", MB_OK); 
            break; 
        case IDM_RESUMEMCIWND:        // resumes playback 
            MCIWndChangeStyles(      // hides error dialog messages
                g_hwndMCIWnd,        // MCIWnd window
                MCIWNDF_NOERRORDLG,  // mask of style to change
                MCIWNDF_NOERRORDLG); // suppresses MCI error dialogs 
 
            lResult = MCIWndResume(g_hwndMCIWnd); 
 
            if(lResult){                   // device doesn't resume 
                MessageBox(hwnd, "MCIWnd", 
                    "Resume with Stop and Play", MB_OK); 
                MCIWndStop(g_hwndMCIWnd); 
                MCIWndPlay(g_hwndMCIWnd); 
 
                MCIWndChangeStyles(        // resumes original styles
                    g_hwndMCIWnd, 
                    MCIWNDF_NOERRORDLG, 
                    NULL); 
        } 
        break; 
    } 
    break; 
 
// Handle other messages here. 
 



Limiting the Playback Scope

Controlling playback begins with the MCIWndPlay macro, which plays the content or file associated with 
an MCIWnd window from the current playback position to the end of the content. If you want to limit 
playback to a specific portion of the content or file, you can choose from the other playback MCIWnd 
macros: MCIWndPlayFrom, MCIWndPlayTo, and MCIWndPlayFromTo.

You also need to set an appropriate time format. The time format determines whether the content is 
measured in frames, milliseconds, tracks, or some other units. 

The following example creates an MCIWnd window and provides menu commands to play the last third, 
first third, or middle third of the content. These menu commands use MCIWndPlayFrom, 
MCIWndPlayTo, and MCIWndPlayFromTo to play the content segments. The example also uses the 
MCIWndGetStart and MCIWndGetEnd macros to identify the beginning and end of the content, and it 
uses the MCIWndHome macro to move the playback position to the beginning of the content. 

The MCIWndCreate function uses the WS_CAPTION and MCIWNDF_SHOWALL styles in addition to the 
standard window styles to display the filename, mode, and current playback position in the title bar of the 
MCIWnd window. 

case WM_COMMAND: 
    switch (wParam) 
    { 
        case IDM_CREATEMCIWND: 
            g_hwndMCIWnd = MCIWndCreate(hwnd, 
                g_hinst, 
                WS_CHILD | WS_VISIBLE | WS_CAPTION | 
                MCIWNDF_SHOWALL, 
                "sample.avi"); 
            break;
        case IDM_PLAYFROM:                // plays last third of clip 
            MCIWndUseTime(g_hwndMCIWnd);  // millisecond format 
 
        // Get media start and end positions. 
            lStart = MCIWndGetStart(g_hwndMCIWnd); 
            lEnd = MCIWndGetEnd(g_hwndMCIWnd); 
 
        // Determine playback end position. 
            lPlayStart = 2 * (lEnd - lStart) / 3 + lStart; 
 
            MCIWndPlayFrom(g_hwndMCIWnd, lPlayStart); 
            break; 
        case IDM_PLAYTO:                  // plays first third of clip 
            MCIWndUseTime(g_hwndMCIWnd);  // millisecond format 
 
        // Get media start and end positions. 
            lStart = MCIWndGetStart(g_hwndMCIWnd); 
            lEnd = MCIWndGetEnd(g_hwndMCIWnd); 
 
        // Determine playback start position. 
            lPlayEnd = (lEnd - lStart) / 3 + lStart;
 
            MCIWndHome(g_hwndMCIWnd); 
            MCIWndPlayTo(g_hwndMCIWnd, lPlayEnd); 
            break; 



        case IDM_PLAYSOME:               // plays middle third of clip 
            MCIWndUseTime(g_hwndMCIWnd); // millisecond format 
 
        // Get media start and end positions. 
            lStart = MCIWndGetStart(g_hwndMCIWnd); 
            lEnd = MCIWndGetEnd(g_hwndMCIWnd); 
 
        // Determine playback start and end positions. 
            lPlayStart = (lEnd - lStart) / 3 + lStart;
            lPlayEnd = 2 * (lEnd - lStart) / 3 + lStart; 
 
            MCIWndPlayFromTo(g_hwndMCIWnd, lPlayStart, lPlayEnd); 
            break; 
  
    // Handle other commands here. 
    } 
 



Recording with MCIWnd Controls

The following example records waveform audio using the built-in controls of the MCIWnd window. The 
example creates an MCIWnd window by using the MCIWNDF_RECORD window style with the 
MCIWndCreate function to add a Record button to the toolbar. The MCIWndNew macro indicates a new 
file is associated with the MCIWnd window and that a waveform-audio device will provide its content. A 
second menu command, IDM_SAVEMCIWND, lets the user save the recording and select a filename by 
using the MCIWndSaveDialog macro.

case WM_COMMAND: 
    switch (wParam) { 
    case IDM_CREATEMCIWND: 
        g_hwndMCIWnd = MCIWndCreate(hwnd, g_hinst, 
            WS_VISIBLE | MCIWNDF_RECORD, NULL); 
        MCIWndNew(g_hwndMCIWnd, "waveaudio"); 
        break;  
    case IDM_SAVEMCIWND: 
        MCIWndSaveDialog(g_hwndMCIWnd); 
        break; 
    } 
 



Customizing the Recording Process

You can customize the recording process, taking complete control of most everything ¾ from creating the 
MCIWnd window to saving the recorded information in a file. The following example queries the MCI 
device for recording and saving capabilities, and includes menu commands to record at the beginning or 
end of the content.

The following example uses the MCIWndCreate function to create a new window and allows you to 
specify an existing file to store the recorded data and the MCIWndNew macro to associate a new file with 
the window. Alternatively, you can use the MCIWndOpen or MCIWndOpenDialog macro to specify a file. 

The example uses the MCIWndCanRecord macro to verify that the device can record and the 
MCIWndCanSave macro to verify that the device save information. The example sets the current 
playback position by using the MCIWndHome and MCIWndEnd macros. The example starts recording 
by using the MCIWndRecord macro. After the information is recorded, the example saves it by using the 
MCIWndSaveDialog macro.

case WM_COMMAND: 
    switch (wParam) 
    { 
        case IDM_CREATEMCIWND: 
            g_hwndMCIWnd = MCIWndCreate( hwnd, g_hinst, 
                WS_VISIBLE | WS_CHILD | 
                MCIWNDF_RECORD,                   // add Record button
                NULL ); 
 
            MCIWndNew(g_hwndMCIWnd, "waveaudio"); // new file 
 
            if( MCIWndCanRecord(g_hwndMCIWnd) ) 
            { 
                MessageBox( hwnd, 
                "Press the red button on the toolbar to record.", 
                "MCIWnd Record", 
                MB_OK ); 
            } 
            else 
            { 
                MessageBox( hwnd, 
                    "This device doesn't record.", 
                    "MCIWnd Record", 
                    MB_OK ); 
            } 
            break; 
        case IDM_RECORDATSTART: 
            if( MCIWndCanRecord(g_hwndMCIWnd) ) 
            { 
                MCIWndHome(g_hwndMCIWnd); 
                MCIWndRecord(g_hwndMCIWnd); 
            } 
            else 
            { 
                MessageBox( hwnd, 
                    "This device doesn't record.", 
                    "MCIWnd Record", 
                    MB_OK); 



            } 
            break; 
        case IDM_RECORDATEND: 
            if( MCIWndCanRecord(g_hwndMCIWnd) ) 
            { 
                MCIWndEnd(g_hwndMCIWnd); 
                MCIWndRecord(g_hwndMCIWnd); 
            } 
            else 
            { 
                MessageBox( hwnd, 
                    "This device doesn't record.", 
                    "MCIWnd Record", 
                    MB_OK); 
            } 
            break; 
        case IDM_SAVEMCIWND: 
            if( MCIWndCanSave(g_hwndMCIWnd) ) 
                MCIWndSaveDialog(g_hwndMCIWnd); 
    } 
    break; 
 
    // Handle other messages here. 
 



Cropping an Image

The following example creates an MCIWnd window and loads an AVI file. The window includes a crop 
command in the menu, which crops one-quarter of the height or width from each of the four sides of the 
frame. The example retrieves the current (initial) dimensions of the source rectangle by using the 
MCIWndGetSource macro. The modified source rectangle is half the original height and width and is 
centered in the original frame. The call to the MCIWndPutSource macro redefines the coordinates of the 
source rectangle.

// extern RECT rSource, rDest; 
 
case WM_COMMAND: 
    switch (wParam) 
    { 
        case IDM_CREATEMCIWND: 
            g_hwndMCIWnd = MCIWndCreate( hwnd, 
                g_hinst, 
                WS_CHILD | WS_VISIBLE, 
                "sample.avi" ); 
            break; 
        case IDM_CROPIMAGE:                          // crops image 
            MCIWndGetSource(g_hwndMCIWnd, &rSource); // source rectangle
            rDest.left = rSource.left +              // new boundaries
                ((rSource.right - rSource.left) / 4); 
            rDest.right = rSource.right - 
                ((rSource.right - rSource.left) / 4); 
            rDest.top = rSource.top + 
                ((rSource.bottom - rSource.top) / 4); 
            rDest.bottom = rSource.bottom - 
                ((rSource.bottom - rSource.top) / 4); 
 
            MCIWndPutSource(g_hwndMCIWnd, &rDest);   // new source rectangle 
    } 
    break; 

    // Handle other messages here. 
 



Stretching an Image

The following example stretches the images of a video clip. It increases the dimensions of the destination 
rectangle by using the MCIWndPutDest macro. The size of the playback area remains unchanged, so 
the result is a distorted, magnified image. The examples uses the MCIWndPutDest function to reposition 
the destination rectangle with respect to the playback area, providing a way to view different portions of 
the stretched image.

extern RECT rCurrent, rDest; 
 
case WM_COMMAND: 
   switch (wParam) 
   { 
       case IDM_CREATEMCIWND: 
           g_hwndMCIWnd = MCIWndCreate(hwnd, 
               g_hinst, 
               WS_CHILD | WS_VISIBLE, 
               "sample.avi"); 
           break; 
 
       case  IDM_STRETCHIMAGE:      // stretch destination RECT 3:2, 
           MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // destination RECT 
           rDest.top = rCurrent.top;               // new boundaries 
           rDest.right = rCurrent.right; 
           rDest.left = rCurrent.left + 
               ((rCurrent.left - rCurrent.right) * 3); 
           rDest.bottom = rCurrent.top + 
               ((rCurrent.bottom - rCurrent.top) * 2); 
           MCIWndPutDest(g_hwndMCIWnd, &rDest); // new destination 
           break; 
       case IDM_MOVEDOWN:           // move toward bottom of image 
           MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // destination RECT 
           rCurrent.top -= 100;                    // new boundaries 
           rCurrent.bottom -= 100; 
           MCIWndPutDest(g_hwndMCIWnd, &rCurrent); // new destination
           break; 
       case IDM_MOVEUP:             // move toward top of image 
           MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // destination RECT 
           rCurrent.top += 100;                    // new boundaries 
           rCurrent.bottom += 100; 
           MCIWndPutDest(g_hwndMCIWnd, &rCurrent); // new destination 
           break; 
       case IDM_MOVELEFT:           // move toward left edge of image
           MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // destination RECT 
           rCurrent.right += 100;                  // new boundaries 
           rCurrent.left += 100; 
           MCIWndPutDest(g_hwndMCIWnd, &rCurrent); // new destination 
           break; 
       case  IDM_MOVERIGHT:         // move toward right edge of image
           MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // destination RECT
           rCurrent.right -= 100;                  // new boundaries 
           rCurrent.left -= 100; 
           MCIWndPutDest(g_hwndMCIWnd, &rCurrent); // new destination 
           break; 



   } 
   break; 
 
   // Handle other messages here. 
 



Stretching an Image and Window

The following example stretches the images of a video clip and changes the aspect ratio of the displayed 
frames. The frames displayed in the MCIWnd window are twice the height and three times the width of 
the original frame. The MCIWndGetDest and MCIWndPutDest macros retrieve and redefine the 
destination rectangle coordinates. The GetWindowRect and SetWindowPos functions manage changes 
to the MCIWnd window dimensions.

// extern RECT rCurrent, rDest; 
 
case WM_COMMAND: 
   switch (wParam) 
   { 
       case IDM_CREATEMCIWND: 
           g_hwndMCIWnd = MCIWndCreate(hwnd, 
           g_hinst, 
           WS_CHILD | WS_VISIBLE, 
          "sample.avi"); 
           break; 
 
       case IDM_RESIZEWINDOW: // destination RECT and playback area
           GetWindowRect(g_hwndMCIWnd, &rWin);     // window size 
           MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // destination RECT
           rDest.top = rCurrent.top;               // new boundaries 
           rDest.right = rCurrent.right; 
           rDest.left = rCurrent.left + 
               ((rCurrent.left - rCurrent.right) * 3); 
           rDest.bottom = rCurrent.top + 
               ((rCurrent.bottom - rCurrent.top) * 2); 
           MCIWndPutDest(g_hwndMCIWnd, &rDest); // new RECT
           SetWindowPos(g_hwndMCIWnd,           // window to resize 
               NULL,                          // z-order: don't care 
               0, 0,                          // position: don't care
               rDest.right - rDest.left,      // width 
               (rWin.bottom - rWin.top +           // height (window - 
               (rCurrent.bottom - rCurrent.top) +  //  original RECT +
               (rDest.bottom - rDest.top)),        //  new RECT
               SWP_NOMOVE | SWP_NOZORDER | SWP_NOACTIVATE); 
           break; 
   } 
   break; 
 
   // Handle other messages here. 
 



MCIWnd Reference
This section describes the functions, messages, and macros associated with the MCIWnd window class. 
These elements are grouped as follows.

Window Management
MCIWndChangeStyles
MCIWndCreate
MCIWndGetStyles
MCIWndRegisterClass

File and Device Management
MCIWndClose
MCIWndDestroy
MCIWndEject
MCIWndNew
MCIWndOpen
MCIWndOpenDialog
MCIWndSave
MCIWndSaveDialog

Playback Options
MCIWndGetRepeat
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse
MCIWndPlayTo
MCIWndSetRepeat

Recording
MCIWndRecord

Positioning
MCIWndEnd
MCIWndGetEnd
MCIWndGetLength
MCIWndGetPosition
MCIWndGetPositionString
MCIWndGetStart
MCIWndHome
MCIWndSeek
MCIWndStep

Pause and Resume Playback
MCIWndGetRepeat
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse
MCIWndPlayTo
MCIWndSetRepeat



Performance Tuning
MCIWndGetSpeed
MCIWndGetVolume
MCIWndGetZoom
MCIWndSetSpeed
MCIWndSetVolume
MCIWndSetZoom

Image and Palette Adjustments
MCIWndGetDest
MCIWndGetPalette
MCIWndGetSource
MCIWndPutDest
MCIWndPutSource
MCIWndRealize
MCIWndSetPalette

Event and Error Notification
MCIWndGetError
MCIWNDM_NOTIFYERROR
MCIWNDM_NOTIFYMEDIA
MCIWNDM_NOTIFYMODE
MCIWNDM_NOTIFYPOS
MCIWNDM_NOTIFYSIZE

Time Formats
MCIWndGetTimeFormat
MCIWndSetTimeFormat
MCIWndUseFrames
MCIWndUseTime
MCIWndValidateMedia

Status Updates
MCIWndGetActiveTimer
MCIWndGetInactiveTimer
MCIWndSetActiveTimer
MCIWndSetInactiveTimer
MCIWndSetTimers

Device Capabilities
MCIWndCanConfig
MCIWndCanEject
MCIWndCanPlay
MCIWndCanRecord
MCIWndCanSave
MCIWndCanWindow

MCI Device Settings
MCIWndGetAlias
MCIWndGetDevice
MCIWndGetDeviceID
MCIWndGetFileName
MCIWndGetMode



MCI Command-String Interface
MCIWndReturnString
MCIWndSendString



MCIWnd Functions

The following functions are used with MCIWnd.

GetOpenFileNamePreview
GetSaveFileNamePreview
MCIWndCreate
MCIWndRegisterClass



MCIWnd Messages

The following messages are used with MCIWnd.

MCIWNDM_CAN_CONFIG
MCIWNDM_CAN_EJECT
MCIWNDM_CAN_PLAY
MCIWNDM_CAN_RECORD
MCIWNDM_CAN_SAVE
MCIWNDM_CAN_WINDOW
MCIWNDM_CHANGESTYLES
MCIWNDM_EJECT
MCIWNDM_GETACTIVETIMER
MCIWNDM_GETALIAS
MCIWNDM_GET_DEST
MCIWNDM_GETDEVICE
MCIWNDM_GETDEVICEID
MCIWNDM_GETEND
MCIWNDM_GETERROR
MCIWNDM_GETFILENAME
MCIWNDM_GETINACTIVETIMER
MCIWNDM_GETLENGTH
MCIWNDM_GETMODE
MCIWNDM_GETPALETTE
MCIWNDM_GETPOSITION
MCIWNDM_GETREPEAT
MCIWNDM_GET_SOURCE
MCIWNDM_GETSPEED
MCIWNDM_GETSTART
MCIWNDM_GETSTYLES
MCIWNDM_GETTIMEFORMAT
MCIWNDM_GETVOLUME
MCIWNDM_GETZOOM
MCIWNDM_NEW
MCIWNDM_NOTIFYERROR
MCIWNDM_NOTIFYMEDIA
MCIWNDM_NOTIFYMODE
MCIWNDM_NOTIFYPOS
MCIWNDM_NOTIFYSIZE
MCIWNDM_OPEN
MCIWNDM_OPENINTERFACE
MCIWNDM_PLAYFROM
MCIWNDM_PLAYREVERSE
MCIWNDM_PLAYTO
MCIWNDM_PUT_DEST
MCIWNDM_PUT_SOURCE
MCIWNDM_REALIZE
MCIWNDM_RETURNSTRING
MCIWNDM_SENDSTRING
MCIWNDM_SETACTIVETIMER
MCIWNDM_SETINACTIVETIMER
MCIWNDM_SETOWNER
MCIWNDM_SETPALETTE
MCIWNDM_SETREPEAT
MCIWNDM_SETSPEED



MCIWNDM_SETTIMEFORMAT
MCIWNDM_SETTIMERS
MCIWNDM_SETVOLUME
MCIWNDM_SETZOOM
MCIWNDM_VALIDATEMEDIA



MCIWnd Macros

The following macros are used with MCIWnd.

MCIWndCanConfig
MCIWndCanEject
MCIWndCanPlay
MCIWndCanRecord
MCIWndCanSave
MCIWndCanWindow
MCIWndChangeStyles
MCIWndClose
MCIWndDestroy
MCIWndEject
MCIWndEnd
MCIWndGetActiveTimer
MCIWndGetAlias
MCIWndGetDest
MCIWndGetDevice
MCIWndGetDeviceID
MCIWndGetEnd
MCIWndGetError
MCIWndGetFileName
MCIWndGetInactiveTimer
MCIWndGetLength
MCIWndGetMode
MCIWndGetPalette
MCIWndGetPosition
MCIWndGetPositionString
MCIWndGetRepeat
MCIWndGetSource
MCIWndGetSpeed
MCIWndGetStart
MCIWndGetStyles
MCIWndGetTimeFormat
MCIWndGetVolume
MCIWndGetZoom
MCIWndHome
MCIWndNew
MCIWndOpen
MCIWndOpenDialog
MCIWndOpenInterface
MCIWndPause
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse
MCIWndPlayTo
MCIWndPutDest
MCIWndPutSource
MCIWndRealize
MCIWndRecord
MCIWndResume
MCIWndReturnString
MCIWndSave



MCIWndSaveDialog
MCIWndSeek
MCIWndSendString
MCIWndSetActiveTimer
MCIWndSetInactiveTimer
MCIWndSetOwner
MCIWndSetPalette
MCIWndSetRepeat
MCIWndSetSpeed
MCIWndSetTimeFormat
MCIWndSetTimers
MCIWndSetVolume
MCIWndSetZoom
MCIWndStep
MCIWndStop
MCIWndUseFrames
MCIWndUseTime
MCIWndValidateMedia

 

 



MCI
The Media Control Interface (MCI) provides standard commands for playing multimedia devices and 
recording multimedia resource files. These commands are a generic interface to nearly every kind of 
multimedia device. 



About MCI
MCI provides applications with device-independent capabilities for controlling audio and visual 
peripherals. Your application can use MCI to control any supported multimedia device, including 
waveform-audio devices, MIDI sequencers, CD audio devices, and digital-video (video playback) devices.



MCI Command Strings and Messages

MCI supports command strings and command messages. You can use either strings or messages, or 
both, in your MCI application.

· The command-message interface consists of constants and structures. You use the 
mciSendCommand function to send a message to an MCI device.

· The command-string interface provides a textual version of the command messages. You use the 
mciSendString function to send a string to an MCI device. Command strings duplicate the 
functionality of the command messages. The Microsoft Windows operating system converts the 
command strings to command messages before sending them to the MCI driver for processing.

 

The command messages that retrieve information do so in the form of structures, which are easy to 
interpret in a C application. These structures can contain information on many different aspects of a 
device. The command strings that retrieve information do so in the form of strings, and can only retrieve 
one string at a time. Your application must parse or test each string to interpret it. You might find that the 
command messages are easier to use than the command strings in some cases, but the command 
strings are easy to remember and implement. Some MCI applications use command strings when the 
return value will not be used (other than to verify success) and command messages when retrieving 
information from the device.

When commands are discussed, this overview uses the string form of the command followed by the 
message form in parentheses. 



Command Strings

MCI supports command strings and command messages. This section discusses how to use MCI 
command strings. For information about the command-message interface, see Command Messages. 

You can send a string command by using the mciSendString function, which includes parameters for the 
string command and a buffer for any returned information. 



Sending Command Strings
Windows provides two functions to send command strings to devices and to query devices for error 
information: 

· The mciSendString function sends a command string to an MCI device. 

· The mciGetErrorString function returns the error string corresponding to an error number.
 

The mciSendString function returns zero if successful. If the function fails, the low-order word of the 
return value contains an error code. You can pass this error code to mciGetErrorString to get a text 
description of it. 



Syntax of Command Strings
MCI command strings use a consistent verb-object-modifier syntax. Each command string includes a 
command, a device identifier, and command arguments. Arguments are optional for some commands and 
required for others.

A command string has the following form: 

command device_id arguments

These components contain the following information:

· The command specifies an MCI command, such as open, close, or play.

· The device_id identifies an instance of an MCI driver. The device_id is created when the device is 
opened.

· The arguments specify the flags and variables used by the command. Flags are keywords recognized 
with the MCI command. Variables are numbers or strings that apply to the MCI command or flag. 

For example, the play command uses the arguments "from position" and "to position" to indicate the 
positions at which to start and end play. You can list the flags used with a command in any order. 
When you use a flag that has a variable associated with it, you must supply a value for the variable. 

Unspecified (and optional) command arguments assume a default value.
 

The following example function sends the play command with the "from" and "to" flags.

DWORD PlayFromTo(LPSTR lpstrAlias, DWORD dwFrom, DWORD dwTo) 
{ 
    char achCommandBuff[128]; 

    // Form the command string.
    wsprintf(achCommandBuff, "play %s from %u to %u", 
        lpstrAlias, dwFrom, dwTo); 

    // Send the command string.
    return mciSendString(achCommandBuff, NULL, 0, NULL); 
} 
 



Data Types for Command Variables 
You can use the following data types for the variables in a command string: 

Data type Description

Strings String data types are delimited by leading and 
trailing white spaces and quotation marks. MCI 
removes single quotation marks from a string. To 
put a quotation mark in a string, use a set of two 
quotation marks where you want to embed your 
quotation mark. To use an empty string, use two 
quotation marks delimited by leading and trailing 
white spaces.

Signed long 
integers

Signed long integer data types are delimited by 
leading and trailing white spaces. Unless otherwise 
specified, integers can be positive or negative. If 
you use negative integers, you should not separate 
the minus sign and the first digit with a space.

Rectangles Rectangle data types are an ordered list of four 
signed short values. White space delimits this data 
type and separates each integer in the list. 

 



Command Messages

MCI supports command strings and command messages. This section discusses    how to use MCI 
command messages. For information about the command-string interface, see Command Strings. 

The command-message interface is designed to be used by applications requiring a C-language interface 
to control multimedia devices. It uses a message-passing paradigm to communicate with MCI devices. 
You can send a command by using the mciSendCommand function. 



Sending Command Messages
The Microsoft Windows operating system provides two functions for sending command messages to 
devices and to query devices for error information: mciSendCommand and mciGetErrorString. The 
mciSendCommand function sends a command message to an MCI device. The mciGetErrorString 
function returns the error string corresponding to an error number.

The mciSendCommand function returns zero if successful. If the function fails, the low-order word of the 
return value contains an error code. You can pass this error code to mciGetErrorString to get a text 
description of it. 



Syntax of Command Messages
MCI command messages consist of the following three elements:

· A constant message value

· A structure containing parameters for the command

· A set of flags specifying options for the command and validating fields in the parameter block
 

The following example sends the MCI_PLAY command to the device identified by a device identifier.

mciSendCommand(wDeviceID,            // device identifier 
    MCI_PLAY,                        // command message 
    0,                               // flags 
    (DWORD)(LPVOID) &mciPlayParms);  // parameter block 
 

The device identifier given in the first parameter is retrieved when the device is opened using the 
MCI_OPEN command. The last parameter is the address of an MCI_PLAY_PARMS structure, which 
might contain information about where to begin and end playback. Many MCI command messages use a 
structure to contain parameters of this kind. The first member of each of these structures identifies the 
window that receives an MM_MCINOTIFY message when the operation finishes.



Classifications of MCI Commands

MCI defines four command classifications: system, required, basic, and extended. The following list 
describes these command classifications:

· System commands are handled by MCI directly, rather than by the driver.

· Required commands are handled by the driver. All MCI drivers must support the required commands 
and flags.

· Basic commands (or optional commands) are used by some devices. If a device supports a basic 
command, it must support a defined set of flags for that command.

· Extended commands are specific to a device type or driver. Extended commands include commands, 
like the put (MCI_PUT) and where (MCI_WHERE) commands for the digitalvideo and overlay 
device types, and extensions to existing commands (like the "stretch" flag of the status 
(MCI_STATUS) command for the overlay device type).

 

While system and required commands are the minimum command set for any MCI driver, basic and 
extended commands are not supported by all drivers. Your application can always use system and 
required commands and their flags, but if it needs to use a basic or extended command or flag, it should 
first query the driver by using the capability (MCI_GETDEVCAPS) command. The following sections 
summarize the specific commands in each category.

System Commands
MCI processes the following system commands directly, rather than passing them to MCI devices. 

String Message Description

break MCI_BREAK Sets a break key for an MCI device. 

sysinfo MCI_SYSINFO Returns information about MCI devices. 
 

Required Commands
All MCI devices support the following required commands. 

String Message Description

capability MCI_GETDEVCAPS Obtains the capabilities of a 
device. 

close MCI_CLOSE Closes the device.

info MCI_INFO Obtains textual information from 
a device. 

open MCI_OPEN Initializes the device.

status MCI_STATUS Obtains status information from 
the device. Some of this 
command's flags are not 
required, so it is also a basic 
command.

 

Devices must also support a standard set of command flags for the required commands. 

Basic Commands
The following list summarizes the basic commands. The use of these commands by an MCI device is 
optional.



String Message Description

load MCI_LOAD Loads data from a file. 

pause MCI_PAUSE Stops playing. Playback or recording 
can be resumed at the current 
position.

play MCI_PLAY Starts transmitting output data. 

record MCI_RECORD Starts recording input data. 

resume MCI_RESUME Resumes playing or recording on a 
paused device. 

save MCI_SAVE Saves data to a disk file.

seek MCI_SEEK Seeks forward or backward. 

set MCI_SET Sets the operating state of the device. 

status MCI_STATUS Obtains status information about the 
device. This is also a required 
command; since some of its flags are 
not required, it is also listed here. 
(The optional items support devices 
that use linear media with identifiable 
positions.)

stop MCI_STOP Stops playing.
 

If a driver supports a basic command, it must also support a standard set of flags for the command. 

Extended Commands
Some MCI devices have additional commands, or they add flags to existing commands. While some 
extended commands apply only to a specific device driver, most of them apply to all drivers of a particular 
device type. For example, the command set for the sequencer device type extends the set (MCI_SET) 
command to add time formats that are needed by MIDI sequencers.

You should not assume that the device supports the extended commands or flags. You can use the 
capability (MCI_GETDEVCAPS) command to determine whether a specific feature is supported, and 
your application should be ready to deal with "unsupported command" or "unsupported function" return 
values.

The following extended commands are available with the listed device types. 

String Message Device types Description

configure MCI_CONFIGURE digitalvideo Displays a configuration 
dialog box.

cue MCI_CUE digitalvideo, 
waveaudio

Prepares for playing or 
recording. 

delete MCI_DELETE waveaudio Deletes a data segment 
from the media file. 

escape MCI_ESCAPE videodisc Sends custom 
information to a device. 

freeze MCI_FREEZE overlay Disables video 
acquisition to the frame 
buffer. 

put MCI_PUT digitalvideo, 
overlay

Defines the source, 
destination, and frame 
windows. 



realize MCI_REALIZE digitalvideo Tells the device to select 
and realize its palette 
into a device context of 
the displayed window. 

setaudio MCI_SETAUDIO digitalvideo Sets audio parameters 
for video.

setvideo MCI_SETVIDEO digitalvideo Sets video parameters.

signal MCI_SIGNAL digitalvideo Identifies a specified 
position with a signal.

spin MCI_SPIN videodisc Starts the disc spinning 
or stops the disc from 
spinning. 

step MCI_STEP digitalvideo, 
videodisc

Steps the play one or 
more frames forward or 
reverse. 

unfreeze MCI_UNFREEZE overlay Enables the frame buffer 
to acquire video data. 

update MCI_UPDATE digitalvideo Repaints the current 
frame into the device 
context. 

where MCI_WHERE digitalvideo, 
overlay

Obtains the rectangle 
specifying the source, 
destination, or frame 
area. 

window MCI_WINDOW digitalvideo, 
overlay

Controls the display 
window. 

 



MCI Functions, Macros, and Messages

Most MCI applications use the mciSendString and mciSendCommand functions dozens of times. MCI 
provides some other useful functions that your application will use less frequently.

The device identifier required by most MCI commands is typically retrieved in a call to the open 
(MCI_OPEN) command. If you need a device identifier but do not want to open the device ¾ for example, 
if you want to query the capabilities of the device before taking any other action ¾ you can call the 
mciGetDeviceID function.

The mciGetCreatorTask function allows your application to use a device identifier to retrieve a handle to 
the task that created that identifier.

You can use the mciGetYieldProc and mciSetYieldProc functions to assign and retrieve the address of 
the callback function associated with the "wait" (MCI_WAIT) flag.

The mciGetErrorString function retrieves a string that describes an MCI error value. Each string that 
MCI returns, whether data or an error description, is a maximum of 128 characters. Dialog box fields that 
are smaller than 128 characters will truncate the longer strings returned by MCI. For more information 
about these strings, see Constants: MCIERR Return Values. 

The MCI macros are tools you can use to create and disassemble values that specify time formats. These 
time formats are used in many MCI commands. The formats acted on by the macros are 
hours/minutes/seconds (HMS), minutes/seconds/frames (MSF), and tracks/minutes/seconds/frames 
(TMSF). The following table lists the macros and their descriptions.

Macro Description

MCI_HMS_HOUR Retrieves the hours component from an HMS 
value.

MCI_HMS_MINUTE Retrieves the minutes component from an 
HMS value.

MCI_HMS_SECOND Retrieves the seconds component from an 
HMS value.

MCI_MAKE_HMS Creates an HMS value.

MCI_MAKE_MSF Creates an MSF value.

MCI_MAKE_TMSF Creates a TMSF value.

MCI_MSF_FRAME Retrieves the frames component from an MSF 
value.

MCI_MSF_MINUTE Retrieves the minutes component from an 
MSF value.

MCI_MSF_SECOND Retrieves the seconds component from an 
MSF value.

MCI_TMSF_FRAME Retrieves the frames component from a TMSF 
value.

MCI_TMSF_MINUTE Retrieves the minutes component from a 
TMSF value.

MCI_TMSF_SECOND Retrieves the seconds component from a 
TMSF value.

MCI_TMSF_TRACK Retrieves the tracks component from a TMSF 
value.

 

MCI also provides two messages: MM_MCINOTIFY and MM_MCISIGNAL. The MM_MCINOTIFY 



message notifies an application of the outcome of an MCI command whenever that command specifies 
the "notify" (MCI_NOTIFY) flag. The MM_MCISIGNAL message is specific to digital-video devices; it 
notifies the application when a specified position is reached.



The Wait, Notify, and Test Flags

Most MCI commands include flags that modify the command. The "wait" (MCI_WAIT) and "notify" 
(MCI_NOTIFY) flags are common to every command. The "test" (MCI_TEST) flag is available to digital-
video and VCR devices. This section describes the use of these flags.



The Wait Flag
MCI commands usually return to the user immediately, even if it takes several minutes to complete the 
action initiated by the command. You can use the "wait" (MCI_WAIT) flag to direct the device to wait until 
the requested action is completed before returning control to the application.

For example, the following play command will not return control to the application until the playback 
completes:

mciSendString("play mydevice from 0 to 100 wait", 
    lpszReturnString, lstrlen(lpszReturnString), NULL);
  

 

Note    The user can cancel a wait operation by pressing a break key. By default, this key is 
CTRL+BREAK. Applications can redefine this key by using the break (MCI_BREAK) command. 
(MCI_BREAK uses the MCI_BREAK_PARMS structure.) When a wait operation is canceled, MCI 
attempts to return control to the application without interrupting the command associated with the 
"wait" flag. 

 



The Notify Flag
The "notify" (MCI_NOTIFY) flag directs the device to post an MM_MCINOTIFY message when the device 
completes an action. Your application must have a window procedure to process the MM_MCINOTIFY 
message for notification to have any effect. An MM_MCINOTIFY message indicates that the processing 
of a command has completed, but it does not indicate whether the command was completed successfully, 
failed, or was superseded or aborted.

The application specifies the handle to the destination window for the message when it issues a 
command. In the command-string interface, this handle is the last parameter of the mciSendString 
function. In the command-message interface, the handle is specified in the low-order word of the 
dwCallBack member of the structure sent with the command message. (Every structure associated with 
a command message contains this member.)



The Test Flag
The "test" (MCI_TEST) flag queries the device to determine if it can execute the command. The device 
returns an error if it cannot execute the command. It returns no error if it can handle the command. When 
you specify this flag, MCI returns control to the application without executing the command.

This flag is supported by digital-video and VCR devices for all commands except open (MCI_OPEN) and 
close (MCI_CLOSE).



Command Shortcuts and Variations

You can use several shortcuts when working with MCI commands. These shortcuts enable you to use a 
single identifier to refer to all the devices your application has opened, or to open a device without 
explicitly issuing an open (MCI_OPEN) command.



Using All as a Device Identifier
You can specify "all" (MCI_ALL_DEVICE_ID) as a device identifier for any command that does not return 
information. When you specify "all", MCI sends the command sequentially to all devices opened by the 
current application. 

For example, the close "all" command closes all open devices and the play "all" command starts playing 
all devices opened by the application. Because MCI sequentially sends the commands to the MCI 
devices, there is an interval between when the first and last devices receive the command.

Using "all" is a convenient way to broadcast a command to all your devices, but you should not rely on it 
to synchronize devices; the timing between messages can vary.



Automatically Opening a Device
When you issue a command and specify a device that is not open, MCI tries to open the device before 
implementing the command. The following rules apply to automatically opening devices:

· The automatic open feature works only with the command-string interface. 

· The automatic open feature fails for commands that are specific to custom device drivers. 

· Automatically opened devices do not respond to commands that use "all" as a device name.

· The automatic open feature does not let your application specify the "type" flag. Without the device 
name, MCI determines the device name from the entries in the registry. To use a specific device, you 
can combine the device name with the filename by using the exclamation point, as described in the 
reference material for the open command.

 

If an application uses the automatic open feature to open a device, the application should check the 
return value of every subsequent open command to verify that the device is still open. MCI also 
automatically closes any device that it automatically opens. MCI typically closes a device in the following 
situations:

· The command is completed.

· You abort the command.

· You request notification in a subsequent command.

· MCI detects a failure.
 



MCI Devices

Every MCI multimedia device supports a core set of MCI commands in a way that makes sense for that 
device. For example, the play (MCI_PLAY) command causes the open device to play a file or track, no 
matter what kind of data the device works with. This section discusses MCI devices and how they 
respond to standard MCI commands. 



Device Control
To control an MCI device, you open the device, send the necessary commands to it, and then close the 
device. The commands can be very similar, even for completely different MCI devices. For example, the 
following series of MCI commands plays the sixth track of an audio CD by using the command-string 
interface:

mciSendString("open cdaudio", lpszReturnString,
    lstrlen(lpszReturnString), NULL);
mciSendString("set cdaudio time format tmsf", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
mciSendString("play cdaudio from 6 to 7", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
mciSendString("close cdaudio", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
  

The next example shows a similar series of MCI commands that plays the first 10,000 samples of a 
waveform-audio file:

mciSendString(
    "open c:\mmdata\purplefi.wav type waveaudio alias finch", 
    lpszReturnString, lstrlen(lpszReturnString), NULL);
mciSendString("set finch time format samples", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
mciSendString("play finch from 1 to 10000", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
mciSendString("close finch", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
  

These examples illustrate some interesting facts about MCI commands:

· The same basic commands (open, set, play, and close) are used with CD audio and waveform-
audio devices. The same MCI commands are used with all MCI devices. 

· The open command for the waveform-audio device includes a filename specification. The waveform-
audio device is a compound device (one associated with a data file), while the CD audio device is a 
simple device (one without an associated data file).

· The set command specifies time formats in each case, but the time-format flag for the CD audio 
device specifies tracks/minutes/seconds/frames (TMSF) format, while the time format used with the 
waveform-audio device specifies "samples".

· The variables used with the "from" and "to" flags are appropriate to the respective time format. For 
example, for the CD audio device, the variables specify a range of tracks, but for the waveform-audio 
device, the variables specify a range of samples.

 



Playback and Positioning
A number of MCI commands, such as play (MCI_PLAY), stop (MCI_STOP), pause (MCI_PAUSE), 
resume (MCI_RESUME), and seek (MCI_SEEK), affect the playback or positioning of a multimedia file. If 
an MCI device receives a playback command while another playback command is in progress, it accepts 
the command and either stops or supersedes the previous command. 

Many MCI commands, such as set (MCI_SET), do not affect playback. A notification from one of these 
commands does not interfere with pending playback or position commands as long as the notifications 
are not performed from the same instance of the driver. For example, you can issue a set or status 
(MCI_STATUS) command while a device is performing a seek command without stopping or superseding 
the seek command. 

However, there can be only one pending notification. For example, if an application requests a notification 
for play and follows that request with status "start position notify," the play notification will return 
"superseded" and the notification for the status command will return when it is finished. In this case, 
however, the play command will still succeed, even though the application did not receive the notification.



Device Types
MCI recognizes a basic set of device types. A device type is a set of MCI drivers that share a common 
command set and are used to control similar multimedia devices or data files. Many MCI commands, 
such as open (MCI_OPEN), require you to specify a device type.

The following table lists the defined device types. The current implementation of MCI includes command 
sets for a subset of these devices.

Device type Constant Description

cdaudio MCI_DEVTYPE_CD_AUDIO CD audio player

dat MCI_DEVTYPE_DAT Digital-audio tape 
player

digitalvideo MCI_DEVTYPE_DIGITAL_VIDEO Digital video in a 
window (not GDI-
based)

other MCI_DEVTYPE_OTHER Undefined MCI 
device

overlay MCI_DEVTYPE_OVERLAY Overlay device 
(analog video in a 
window)

scanner MCI_DEVTYPE_SCANNER Image scanner

sequencer MCI_DEVTYPE_SEQUENCER MIDI sequencer

vcr MCI_DEVTYPE_VCR Video-cassette 
recorder or player

videodisc MCI_DEVTYPE_VIDEODISC Videodisc player

waveaudio MCI_DEVTYPE_WAVEFORM_AUDI
O

Audio device that 
plays digitized 
waveform files 

 

In this document, the names of device types are bold. Device-type names are used with the command-
string interface. Device-type constants are used with the command-message interface.



Device Names
For each device type, there might be several MCI drivers that share the command set but operate on 
different data formats. To uniquely identify an MCI driver, MCI uses device names.

Device names are identified either in the [mci] section of the SYSTEM.INI file or in the appropriate part of 
the registry. This information identifies all MCI drivers to Windows. The entries in the [mci] section use the 
following form:

device_name = driver_filename.extension

The following example shows a typical [mci] section from SYSTEM.INI:

[mci]
cdaudio=mcicda.drv 
sequencer=mciseq.drv 
waveaudio=mciwave.drv 
avivideo=mciavi.drv
 

If an MCI driver is installed using a device name that already exists in SYSTEM.INI or the registry, the 
system appends an integer to the device name of the new driver, creating a unique device name. In the 
preceding example, an additional driver installed using the "cdaudio" device name would be assigned the 
device name "cdaudio1".



Driver Support for MCI Commands
MCI drivers provide the functionality for MCI commands. The system software performs some basic data-
management tasks, but all the multimedia playback, presentation, and recording is handled by the 
individual MCI drivers.

Drivers vary in their support for MCI commands and command flags. Because multimedia devices can 
have widely different capabilities, MCI is designed to let individual drivers extend or reduce the command 
sets to match the capabilities of the device. For example, the record (MCI_RECORD) command is part of 
the command set for MIDI sequencers, but the MCISEQ driver included with Windows does not support 
this command. The reference topic for the record command explains that devices of the sequencer 
device type recognize the command; this does not mean that all devices of this type support the 
command. Applications should use the capability (MCI_GETDEVCAPS) command to determine the 
capabilities of a particular device.



Default Behavior of Drivers
In many situations, the MCI command specifications define the default values and behavior for drivers of 
a particular device type. Since multimedia devices can have a wide range of features (and limitations), 
there can be undefined areas of behavior. Also, drivers might handle exceptions differently, based on the 
capabilities of the device.

For example, consider the following commands sent to a waveform-audio driver:

mciSendString("open sound.wav alias sound", lpszReturnString,
    lstrlen(lpszReturnString), NULL);
mciSendString("play sound notify", lpszReturnString,
    lstrlen(lpszReturnString), NULL);
mciSendString("record sound from 0 notify", lpszReturnString,
    lstrlen(lpszReturnString), NULL);
  

The record command returns a "Parameter out of range" value and stops the playback started by the 
previous play command. One might expect the driver to validate the record command before stopping 
playback, but the driver stops the playback first.

 



Working with MCI Devices

This section describes how to perform the following tasks:

· Opening a device

· Retrieving information about a device

· Obtaining MCI system information

· Playing a device

· Recording

· Stopping, pausing, and resuming a device

· Closing a device
 

In addition, this section provides you with shortcuts you can use with MCI commands.



Opening a Device
Before using a device, you must initialize it by using the open (MCI_OPEN) command. This command 
loads the driver into memory (if it isn't already loaded) and retrieves the device identifier you will use to 
identify the device in subsequent MCI commands. You should check the return value of the 
mciSendString or mciSendCommand function before using a new device identifier to ensure that the 
identifier is valid. (You can also retrieve a device identifier by using the mciGetDeviceID function.)

Like all MCI command messages, MCI_OPEN has an associated structure. These structures are 
sometimes called parameter blocks. The default structure for MCI_OPEN is MCI_OPEN_PARMS. Certain 
devices (such as waveform and overlay) have extended structures (such as 
MCI_WAVE_OPEN_PARMS and MCI_OVLY_OPEN_PARMS) to accommodate additional optional 
parameters. Unless you need to use these additional parameters, you can use the MCI_OPEN_PARMS 
structure with any MCI device.

The number of devices you can have open is limited only by the amount of available memory.

Using an Alias
When you open a device, you can use the "alias" flag    to specify a device identifier for the device. This 
flag lets you assign a short device identifier for compound devices with lengthy filenames, and it lets you 
open multiple instances of the same file or device. 

For example, the following command assigns the device identifier "birdcall" to the lengthy filename C:
\NABIRDS\SOUNDS\MOCKMTNG.WAV:

mciSendString(
    "open c:\nabirds\sounds\mockmtng.wav type waveaudio alias birdcall", 
    lpszReturnString, lstrlen(lpszReturnString), NULL);
  

In the command-message interface, you specify an alias by using the lpstrAlias member of the 
MCI_OPEN_PARMS structure.

Specifying a Device Type
When you open a device, you can use the "type" flag to refer to a device type, rather than to a specific 
device driver. The following example opens the waveform-audio file C:\WINDOWS\CHIMES.WAV (using 
the "type" flag to specify the waveaudio device type) and assigns the alias "chimes":

mciSendString(
    "open c:\windows\chimes.wav type waveaudio alias chimes", 
    lpszReturnString, lstrlen(lpszReturnString), NULL);
  

In the command-message interface, the functionality of the "type" flag is supplied by the lpstrDeviceType 
member of the MCI_OPEN_PARMS structure.

Simple and Compound Devices
MCI classifies device drivers as compound or simple. Drivers for compound devices require the name of a 
data file for playback; drivers for simple devices do not. 

Simple devices include cdaudio and videodisc devices. There are two ways to open simple devices:

· Specify a pointer to a null-terminated string containing the device name from the registry or the 
SYSTEM.INI file.

For example, you can open a videodisc device by using the following command:



mciSendString("open videodisc", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
  
In this case, "videodisc" is the device name from the registry or the [mci] section of SYSTEM.INI.

· Specify the actual name of the device driver. Opening a device using the device-driver filename, 
however, makes the application device-specific and can prevent the application from running if the 
system configuration changes. If you use a filename, you do not need to specify the complete path or 
the filename extension; MCI assumes drivers are located in a system directory and have the .DRV 
filename extension. 

 

Compound devices include waveaudio and sequencer devices. The data for a compound device is 
sometimes called a device element. This document, however, generally refers to this data as a file, even 
though in some cases the data might not be stored as a file.

There are three ways to open a compound device: 

· Specify only the device name. This lets you open a compound device without associating a filename. 
Most compound devices process only the capability (MCI_GETDEVCAPS) and close (MCI_CLOSE) 
commands when they are opened this way.

· Specify only the filename. The device name is determined from the associations in the registry.

· Specify the filename and the device name. MCI ignores the entries in the registry and opens the 
specified device name.

 

To associate a data file with a particular device, you can specify the filename and device name. For 
example, the following command opens the waveaudio device with the filename MYVOICE.SND: 

mciSendString("open myvoice.snd type waveaudio", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
  

In the command-string interface, you can also abbreviate the device name specification by using the 
alternative exclamation-point format, as documented with the open command.

Opening a Device Using the Filename Extension
If the open (MCI_OPEN) command specifies only the filename, MCI uses the filename extension to select 
the appropriate device from the list in the registry or the [mci extensions] section of the SYSTEM.INI file. 
The entries in the [mci extensions] section use the following form:

filename_extension=device_name

MCI implicitly uses device_name if the extension is found and if a device name has not been specified in 
the open command.

The following example shows a typical [mci extensions] section:

[mci extensions]
wav=waveaudio
mid=sequencer
rmi=sequencer
  

Using these definitions, MCI opens the waveaudio device if the following command is issued:

mciSendString("open train.wav", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
  



New Data Files
To create a new data file, simply specify a blank filename. MCI does not save a new file until you save it 
by using the save (MCI_SAVE) command. When creating a new file, you must include a device alias with 
the open (MCI_OPEN) command. 

The following example opens a new waveaudio file, starts and stops recording, then saves and closes 
the file:

mciSendString("open new type waveaudio alias capture", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
mciSendString("record capture", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
mciSendString("stop capture", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
mciSendString("save capture orca.wav", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
mciSendString("close capture", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
  

Shareable Devices
The "shareable" (MCI_OPEN_SHAREABLE) flag of the open (MCI_OPEN) command lets multiple 
applications access the same device (or file) and device instance simultaneously. If your application 
opens a device or file as shareable, other applications can also access it by opening it as shareable. The 
shared device or file gives each application the ability to change the parameters governing its operating 
state. Each time a device or file is opened as shareable, MCI returns a unique device identifier, even 
though the identifiers refer to the same instance. 

If your application opens a device or file without specifying that it is shareable, no other application can 
access it until your application closes it. Also, if a device supports only one open instance, the open 
command will fail if you specify the shareable flag. 

If your application opens a device and specifies that it is shareable, your application should not make any 
assumptions about the state of this device. Your application might need to compensate for changes made 
by other applications accessing the device. 

Most compound files are not shareable; however, you can open multiple files, or you can open a single 
file multiple times. If you open a single file multiple times, MCI creates an independent instance for each, 
with each instance having a unique operating status.

If you open multiple instances of a file, you must assign a unique device identifier to each. You can use an 
alias, as described in the following section, to assign a unique name for each file. 



Retrieving Information About a Device
Every device responds to the capability (MCI_GETDEVCAPS), status (MCI_STATUS), and info 
(MCI_INFO) commands. These commands obtain information about the device. For example, the 
following command returns "true" if a cdaudio device can eject the disc:

mciSendString(
    "capability cdaudio can eject", 
    lpszReturnString, lstrlen(lpszReturnString), NULL);
  

The flags listed for the required and basic commands provide a minimum amount of information about a 
device. Many devices supplement the required and basic commands with extended flags to provide 
additional information about the device. 



Obtaining MCI System Information
The sysinfo (MCI_SYSINFO) command obtains system information about MCI devices. MCI handles this 
command without relaying it to any MCI device. For the command-message interface, MCI returns the 
system information in the MCI_SYSINFO_PARMS structure.

You can use the sysinfo (MCI_SYSINFO) command to retrieve information such as the number of MCI 
devices on a system, the number of MCI devices of a particular type, the number of open MCI devices, 
and the names of the devices. This command is often called more than once to retrieve a particular piece 
of information. For example, you might retrieve the number of devices of a particular type in the first call 
and then enumerate the names of the devices in the next. 



Playing a Device
The play (MCI_PLAY) command starts playing a device. Without any flags, this command starts playing 
from the current position and plays until the command is interrupted or until the end of the media or file is 
reached. After playback, the current position is at the end of the media. You can also use the seek 
(MCI_SEEK) command to change the current position.

Most devices that support the play command also support the "from" (MCI_FROM) and "to" (MCI_TO) 
flags. These flags indicate the position at which the device should start and stop playing. For example, the 
following command plays a CD audio disc from the beginning of the first track:

mciSendString("play cdaudio from 0", lpszReturnString, 
    lstrlen(lpszReturnString), NULL);
  

Some device types extend this command to exploit the capabilities of a particular device. For example, 
the play command for the videodisc device type includes the "fast" (MCI_VD_PLAY_FAST) , "slow" 
(MCI_VD_PLAY_SLOW), and "scan" (MCI_VD_PLAY_SCAN) flags.

 

Note    The units assigned to the position value depend on the time format used by the device. Each 
device has a default time format, but you should specify the time format by using the set (MCI_SET) 
command before issuing any commands that use position values.

 

Playing an AVI File
Video files in Windows are made up of at least two interleaved data streams: a video (pictorial) stream 
and an audio stream. You can easily play these audio-video interleaved (AVI) files by using MCI 
commands. The following sections discuss playing AVI files.

Setting Up an MCIAVI Playback Window
Your application can specify the following options to define the playback window for playing an AVI file:

· Use the MCIAVI driver's default pop-up window.

· Specify a parent window and window style that the MCIAVI driver can use to create the playback 
window.

· Specify a playback window for the MCIAVI driver to use for playback.

· Play the AVI file on a full-screen display.
 

If your application does not specify any window options, the MCIAVI driver creates a default window for 
playing the sequence. The driver creates this playback window for the open (MCI_OPEN) command, but 
it does not display the window until your application sends a command to either display the window or 
play the file. This default playback window is a pop-up window with a sizing border, title bar, a thick frame, 
a window menu, and a Minimize button. 

Your application can also specify a parent window handle and a window style when it issues the open 
command. In this case, the MCIAVI driver creates a window based on these specifications instead of the 
default pop-up window. Your application can specify any window style available for the CreateWindow 
function. Styles that require a parent window, such as WS_CHILD, should include a parent window 
handle. 

Your application can also create its own window and supply the handle to the MCIAVI driver by using the 
window (MCI_WINDOW) command. The MCIAVI driver uses this window instead of creating one of its 
own. 



When the MCIAVI driver creates the playback window or obtains a window handle from your application, it 
does not display the window until your application either plays the sequence or sends a command to 
display the window. Your application can use the window command to display the window without playing 
the sequence. For example, the following command displays the window using the command-string 
interface:

mciSendString("window movie state show", lpszReturnString,
    lstrlen(lpszReturnString), NULL);
 

In this example, "movie" is an alias for the digital-video device.

Your application can also play an AVI file full-screen. To play full-screen, modify the play (MCI_PLAY) 
command with the "fullscreen" (MCI_MCIAVI_PLAY_FULLSCREEN) flag. When your application uses 
this flag, the MCIAVI driver uses a 320- by 240-pixel full-screen format for playing the sequence. For 
example, the following command plays the opened file full-screen (using "movie" as an alias): 

mciSendString("play movie fullscreen", lpszReturnString,
    lstrlen(lpszReturnString), NULL);
 

Changing the Playback State for an AVI file
Your application can use the seek (MCI_SEEK) command to move the current position to the beginning, 
the end, or an arbitrary position in an AVI file. There are two seek modes for the MCIAVI driver: exact and 
inexact. Your application can change the seek mode by using the set (MCI_SET) command. When you 
use set "seek exactly on", the MCIAVI driver seeks exactly to the frame your application specifies. This 
might cause a delay if the file is temporally compressed and your application does not specify a key 
frame. When you use set "seek exactly off", the MCIAVI driver seeks to the nearest key frame in a 
temporally compressed file. 

Some MCI commands let your application alter the playback of an AVI file in other ways. For example, an 
AVI file, by default, plays at its normal speed, but your application can increase or decrease this speed by 
using the "speed" flag with the set command. For AVI files, a speed value of 1000 is typical. Thus, to play 
a movie at half its typical speed, your application can use the command set "movie speed 500"; 
alternatively, it can use set "movie speed 2000" to play the sequence at twice its normal speed.

The setaudio (MCI_SETAUDIO) command lets your application control the audio portion of an AVI file. 
Your application can mute audio during playback or, in the case of multiple audio stream files, select the 
audio stream that is played. 

The MCIAVI driver has a dialog box to control some of its playback options. Some of the options available 
to the user include selecting window-oriented or full-screen playback, selecting the seek mode, and 
zooming the image. Your application can have MCIAVI display this dialog box by using the configure 
(MCI_CONFIGURE) command. 

Stream Handlers
The data in an AVI file is treated as a series of streams. An AVI file typically contains an audio and video 
stream, and there might also be a custom stream that contains text or some other custom data. The 
MCIAVI driver can use different handlers for these data streams. For more information about custom AVI 
files, see Custom File and Stream Handlers.



Recording
The general MCI specification supports recording with digital-video, MIDI sequencer, video-cassette 
recorder (VCR), and waveform-audio devices; however, only waveform-audio and VCR devices currently 
implement recording capabilities. You can insert or overwrite recorded information into an existing file or 
record into a new file. To record to an existing file, open a waveform-audio device and file as you would 
normally. To record into a new file, when you open the device specify "new" as the device name if you are 
using the command-string interface. If you are using the command-message interface, specify a zero-
length filename.

When MCI creates a new file for recording, the data format is set to a default format specified by the 
device driver. To use a format other than the default format, you can use the set (MCI_SET) command.

To begin recording, use the record command (or MCI_RECORD and the MCI_RECORD_PARMS 
structure). 

If you record in insert mode to an existing file, you can use the "from" (MCI_FROM) and "to" (MCI_TO) 
flags of the record command to specify starting and ending positions for recording. For example, if you 
record to a file that is 20 seconds long, and you begin recording at 5 seconds and end recording at 10 
seconds, the resulting file will be 25 seconds long. The file will have a 5-second segment inserted 5 
seconds into the original recording.

If you record with overwrite mode to an existing file, you can use the "from" and "to" flags to specify 
starting and ending locations of the section that is overwritten. For example, if you record to a file that is 
20 seconds long, and you begin recording at 5 seconds and end recording at 10 seconds, you still have a 
recording 20 seconds long, but the section beginning at 5 seconds and ending at 10 seconds will have 
been replaced.

If you do not specify an ending location, recording continues until you send a stop (MCI_STOP) 
command, or until the driver runs out of free disk space. If you record to a new file, you can omit the 
"from" flag or set it to zero to start recording at the beginning of a new file. You can specify an ending 
location to terminate recording when recording to a new file. 

The record command is sometimes accurate to within only 1 second of the starting location, such as with 
VCR devices. To record more accurately, you should use the cue (MCI_CUE) command. This command 
is recognized by digital-video, VCR, and waveform-audio devices. For more information about recording 
with VCR devices, see VCR Services.

Saving a Recorded File
When recording is complete, use the save command (or MCI_SAVE and the MCI_SAVE_PARMS 
structure) to save the recording before closing the device. 

 

Note    If you close the device without saving, the recorded data is lost.

 

Checking Input Levels (PCM Only)
To get the level of the input signal before recording on a PCM (Pulse Code Modulation) waveform-audio 
input device, use the status (MCI_STATUS) command. Specify the "level" flag (or the 
MCI_STATUS_ITEM flag and set the dwItem member of the MCI_STATUS_PARMS structure to 
MCI_WAVE_STATUS_LEVEL). The average input signal level is returned. The left-channel value is in the 
high-order word and the right- or mono-channel value is in the low-order word. 

The input level is represented as an unsigned value. For 8-bit samples, this value is in the range 0 
through 127 (0x7F). For 16-bit samples, it is in the range 0 through 32,767 (0x7FFF).



Stopping, Pausing, and Resuming a Device
The stop (MCI_STOP) command suspends the playing or recording of a device. Many devices also 
support the pause (MCI_PAUSE) command. The difference between stop and pause depends on the 
device. Usually pause suspends operation but leaves the device ready to resume playing or recording 
immediately. 

Using the play (MCI_PLAY) or record (MCI_RECORD) command to restart a device resets the locations 
specified with the "to" (MCI_TO) and "from" (MCI_FROM) flags before the device was paused or stopped. 
Without the "from" flag, these commands reset the starting location to the current position. Without the 
"to" flag, they reset the ending location to the end of the media. To continue playing or recording without 
resetting a previously specified stop position, use the play or record command's "to" flag to specify an 
ending position. 

Some devices support the resume (MCI_RESUME) command to restart a paused device. This command 
does not change the "to" and "from" locations specified with the play or record command that preceded 
the pause command. 



Closing a Device
The close (MCI_CLOSE) command releases access to a device or file. MCI frees a device when all tasks 
using a device have closed it. To help MCI manage the devices, your application must close each device 
or file when it is finished using it. 

When you close an external MCI device that uses its own media instead of files (such as CD audio), the 
driver leaves the device in its current mode of operation. Thus, if you close a CD audio device that is 
playing, even though the device driver is released from memory, the CD audio device will continue to play 
until it reaches the end of its content. 

 

Note    Closing an application with open MCI devices can prevent other applications from using those 
devices until Windows is restarted. 

 



MCI Implementations for Specific Devices

The following sections discuss using MCI commands with specific MCI devices:

· MCIAVI

· VCR services



MCIAVI
An AVI file can contain more than two streams ¾ for example, a video sequence, an English soundtrack, 
and a French soundtrack. Your application can use a stream independently of the other streams in the 
file. 

The digitalvideo device type controls video files. For a list of the MCI commands recognized by digital-
video devices, see Digital-Video Command Set.

The MCIAVI driver plays video sequences and other data streams under the control of MCI commands. 
Data streams can contain images, audio, and palettes. The image data can consist of images with either 
color palettes or true-color information. 

Audio is synchronized with the video within one-thirtieth of a second. If audio hardware is not available, 
however, the driver plays only the video stream. The MCIAVI driver can drop video frames, if necessary, 
to play a stream without audio interruption.

Your application can use the MCIWnd window class services instead of the MCI command interface to 
control any MCI driver. This window class handles many of the details of managing the window supporting 
the MCI device and simplifies the programming required to send the MCI commands. Your application 
can use the MCIWnd library services directly to control the MCI device, or it can have MCIWnd display a 
toolbar, scroll bar, and menus that let the user control the device. For more information about the 
MCIWnd window class, see MCIWnd Window Class.



VCR Services
Windows provides VCR services through a device driver that is based on the MCI command set for 
VCRs. This section describes the MCI Video System Control Architecture (VISCA) driver and explains 
how to use it to control a VCR.

The vcr device type controls VCRs. For a list of the MCI commands recognized by VCR devices, see 
VCR Command Set.

The MCI VISCA Driver
The MCI VISCA driver controls Sony VISCA-compatible VCRs, such as the CVD-1000 VDeck. The 
VISCA driver controls the tape transport, channel tuners, and VCR input and output channels.

Searching and Positioning with a VCR
The VISCA driver uses two methods to track videotape movement within the VCR tape transport: 
timecode information and tape counters. Timecode information is timing information that has been 
recorded on the videotape. Most VCRs allow timecodes to be recorded without destroying audio and 
video tracks. Tape counters estimate the amount of videotape that travels past the videotape head to 
obtain a position. 

Both timecode information and tape counters increase as the videotape moves from beginning to end. 
Because of its accuracy, using timecode information to position a videotape is almost always preferable to 
using tape counters. 

The MCI command flags for specifying positioning information are expressed as time dependencies: "time 
format", "duration", "from", "to", and "seek". (Also, the status "position" command returns its time value in 
the current time format.)

The VISCA driver uses the set "time mode" command to select the type of positioning to use with a 
videotape. When the time mode is set to "timecode", the status "position" and set "time format" 
commands use the timecode on the videotape. When the time mode is set to "counter", the status 
"position" and set "time format" commands use counters.

An application can set the time mode to "detect" if it doesn't matter that there might be two sources of 
position information. When in detect mode, the VISCA driver uses timecode information for positioning 
when any of the following conditions occur:

· The timecode information is present when the driver is opened.

· You change a videotape with the set "door open" command and timecode information is present on 
the videotape.

· The set "time mode" command is reissued. 
 

If timecode information cannot be found, the driver uses the tape counters.

To determine the current positioning method, issue the status "time type" command, which returns either 
"timecode" or "counter". You can also identify the current positioning mode by using the status "time 
mode" command, which returns "timecode", "counter", or "detect".

The status "counter" command retrieves the current tape counter value, regardless of the current 
positioning method; however, you can use this counter reading only with the set "counter" command. 

The VISCA driver can retrieve the native timecode format recorded on a videotape by using the status 
"timecode type" and status "frame rate" commands together. For example, if timecode type is "smpte" 
and frame rate is 25, the native timecode format recorded on the videotape is SMPTE 25.



The VISCA driver can also retrieve the counter resolution by using the status "counter resolution" 
command, which returns "seconds" or "frames". The counter format might still be set to SMPTE 30, but 
the return value returns only a frame of 0. If the current time type is counter, then this resolution applies 
also to the value returned by status "position".

Capturing Frames
Frame-capturing commands provide still images for a frame-capture device. A frame-capture device is a 
separate piece of hardware capable of reading and storing the video image. The VISCA driver supports 
the freeze (MCI_FREEZE) command to stabilize a still image for capturing. Also, the unfreeze 
(MCI_UNFREEZE) command can be used to restart the tape transport following a freeze command.

The freeze command provides a high-quality, stabilized, time-base - corrected image for a frame-capture 
device. This command exists because a device might not always deliver its maximum-quality output 
image during playback or while paused; such a video image is not suitable for capturing.

The unfreeze command unlocks the tape transport and resumes the transport mode in effect before the 
freeze command.

When your application needs to record a video image on the VCR, use the freeze "input" command or the 
cue (MCI_CUE) command to record the image. 

Selecting Inputs
The VISCA driver supports three input types: video, audio, and timecode. The video inputs include two 
standard channels (lines 1 and 2), an SVideo channel, an auxiliary channel, and a channel from an 
internal tuner. The audio inputs include two standard channels (lines 1 and 2) and a channel from an 
internal tuner. The timecode input is internal to the VCR.

The normal outputs carry the currently selected inputs when the VCR is recording or when the tape 
transport is stopped, and they carry the contents of the videotape when the tape transport is playing or 
paused. The monitored outputs carry the same information as the normal outputs plus current timecode 
and channel information.

Assuming the appropriate external inputs are connected to your VCR and you have decided what you 
want to record, you can select the inputs to be recorded. For example, to record or view from the "svideo" 
video and the "line 1" audio inputs, you would use the setvideo (MCI_SETVIDEO) and setaudio 
(MCI_SETAUDIO) commands to select these input sources. You can verify these selections by using the 
status (MCI_STATUS) command.

By default, the monitor shows exactly what appears as the output. Sometimes, however, you might want 
to view one source while recording from another. This is a common practice using the tuner. For example, 
you might want to watch channel 4 while you record channel 7. In this case, you have two logical tuner 
inputs. You could set up the VCR by using the following commands:

To review one source while recording from another
1. Use the settuner (MCI_SETTUNER) command to select the channels to watch and record.

2. Use the setvideo command to select the video-recording source.

3. Use the setaudio command to select the audio-recording source.

4. Use the setvideo command to route the channel 4 video input to the monitored output to display it 
on-screen.

5. Use the setaudio command to route the channel 4 audio input to the monitored output to play the 
audio.

6. Verify your selections by using the status command.
 

The VISCA driver also supports a special input type for audio and video called mute. Mute allows the 



selection of "no input," which is useful when recording a blank signal.

Selecting Recording Tracks
Three types of recording tracks exist on a videotape: video, audio, and timecode. You have only one 
video or timecode track, but you can use more than one audio track. When you do so, make track 1 the 
main audio track.

The VISCA driver supports two operating modes: assemble and insert. In assemble mode, all tracks are 
selected to be recorded. In insert mode, tracks can be independently selected for recording. Most VCRs 
are in assemble mode by default. Use the set (MCI_SET) command to change these modes.

Recording and Editing
The record (MCI_RECORD) command provides simple recording and is accurate to approximately 1 
second of the starting position. To record more accurately, or if you expect to edit the video content while 
simultaneously operating multiple decks, you should use the cue (MCI_CUE) command. 

The cue command prepares the device for recording or playing. Use the cue "input" command to prepare 
the device for recording. The cue command is required because an application must know when the 
device is ready to perform the command (and because it can take several minutes to prepare for a play 
(MCI_PLAY) or record command).

The VCR prepares itself for recording or playing by seeking to the in-point, which is the current position or 
the position specified by using the cue "from" command. If the "preroll" flag is specified with the cue 
command, however, the VCR positions itself the preroll distance from the in-point. The "preroll" flag also 
indicates that the VCR uses any applicable editing mode, so it's important that you use "preroll", 
especially when you want the most accurate recording. (Use the capability (MCI_GETDEVCAPS) 
command with the "can preroll" flag to check whether the preroll mode is supported.)

 

Note    When you record using "from" and "to" positions, the "from" position is included in the edit, and 
the "to" position is not. 

 

For more information about recording, see Recording.

Using the Clock While Editing
When editing, you might want to record segments from one VCR to another. You can begin recording at a 
specific time and position on one VCR while another begins playing at the same time and position by 
specifying an action (play or record), a position, and a time for each VCR.

Both VCRs must use the same clock for this type of editing; the clock helps synchronize both devices. 
You can determine if two VCRs share the same clock by using the status (MCI_STATUS) command with 
the "clock id" flag to query each VCR. If the identification numbers returned by the status command are 
the same, the devices use the same clock. As a shared resource, the clock can be connected to multiple 
VCRs. The VISCA driver supports only one shared clock. 

You can also determine clock resolution by using the status "clock increment rate" command. This 
command returns the number of increments the clock supports per second. For example, if the clock is 
updated every millisecond, the command returns 1000 as the clock increment rate. The advantage of 
using the increment rate is that the rate is expressed as an integer; otherwise, the increment would be a 
(single- or double-precision) floating-point value. As an integer, manipulating the increment rate is a 
simple operation and is not susceptible to rounding errors. You can reset the clock by using the set 
(MCI_SET) command with the "clock 0" (zero) flag.

When issuing a play (MCI_PLAY), record (MCI_RECORD), or seek (MCI_SEEK) command, you can 
specify when the command is to be executed. The characteristics of the VCRs being used determine 



when to start each VCR. The timing must account for the amount of preroll each device requires and the 
amount of time needed to complete the MCI commands used to set up the edit session. To do this, 
retrieve the clock time and add a waiting interval of 5 to 10 seconds. (The waiting interval must be long 
enough to let the preroll and any outstanding MCI commands finish executing.)

To ensure that the waiting period is long enough, place the record command last in your application and 
check the time immediately before it. If the interval is too short, restart the play command. Alternatively, 
you could check the time immediately after the last command of the script to verify that there is enough 
time to send and complete all the commands.



Device-Specific Command Sets

The following sections list the commands supported by each device type:

· CD audio command set

· Digital-video command set

· MIDI Sequencer command Set

· VCR command set

· Videodisc command set

· Video-overlay command set

· Waveform-audio command set



CD Audio Command Set
CD audio devices support the following set of commands:

String form Message form

break MCI_BREAK

capability MCI_GETDEVCAPS

close MCI_CLOSE

info MCI_INFO

open MCI_OPEN

pause MCI_PAUSE

play MCI_PLAY

resume MCI_RESUME

seek MCI_SEEK

set MCI_SET

status MCI_STATUS

stop MCI_STOP

sysinfo MCI_SYSINFO
 



Digital-Video Command Set
Digital-video devices (for example, the MCIAVI driver) support the following set of commands: 

String form Message form

break MCI_BREAK

capability MCI_GETDEVCAPS

capture MCI_CAPTURE

close MCI_CLOSE

configure MCI_CONFIGURE

copy MCI_COPY

cue MCI_CUE

cut MCI_CUT

delete MCI_DELETE

freeze MCI_FREEZE

info MCI_INFO

list MCI_LIST

load MCI_LOAD

monitor MCI_MONITOR

open MCI_OPEN

paste MCI_PASTE

pause MCI_PAUSE

play MCI_PLAY

put MCI_PUT

quality MCI_QUALITY

realize MCI_REALIZE

record MCI_RECORD

reserve MCI_RESERVE

restore MCI_RESTORE

resume MCI_RESUME

save MCI_SAVE

seek MCI_SEEK

set MCI_SET

setaudio MCI_SETAUDIO

setvideo MCI_SETVIDEO

signal MCI_SIGNAL

status MCI_STATUS

step MCI_STEP

stop MCI_STOP

sysinfo MCI_SYSINFO

undo MCI_UNDO

unfreeze MCI_UNFREEZE

update MCI_UPDATE

where MCI_WHERE

window MCI_WINDOW
 



MIDI Sequencer Command Set
The MIDI sequencer supports the following set of commands: 

String form Message form

break MCI_BREAK

capability MCI_GETDEVCAPS

close MCI_CLOSE

info MCI_INFO

open MCI_OPEN

pause MCI_PAUSE

play MCI_PLAY

record MCI_RECORD

resume MCI_RESUME

save MCI_SAVE

seek MCI_SEEK

set MCI_SET

status MCI_STATUS

stop MCI_STOP

sysinfo MCI_SYSINFO
 



VCR Command Set
VCRs support the following set of commands:

String form Message form

break MCI_BREAK

capability MCI_GETDEVCAPS

cue MCI_CUE

freeze MCI_FREEZE

index MCI_INDEX

info MCI_INFO

list MCI_LIST

mark MCI_MARK

pause MCI_PAUSE

play MCI_PLAY

record MCI_RECORD

resume MCI_RESUME

seek MCI_SEEK

set MCI_SET

setaudio MCI_SETAUDIO

settimecode MCI_SETTIMECODE

settuner MCI_SETTUNER

setvideo MCI_SETVIDEO

status MCI_STATUS

step MCI_STEP

stop MCI_STOP

sysinfo MCI_SYSINFO

unfreeze MCI_UNFREEZE
 



Videodisc Command Set
Videodisc devices support the following set of commands: 

String form Message form

break MCI_BREAK

capability MCI_GETDEVCAPS

close MCI_CLOSE

escape MCI_ESCAPE

info MCI_INFO

open MCI_OPEN

pause MCI_PAUSE

play MCI_PLAY

resume MCI_RESUME

seek MCI_SEEK

set MCI_SET

spin MCI_SPIN

status MCI_STATUS

step MCI_STEP

stop MCI_STOP

sysinfo MCI_SYSINFO
 



Video-Overlay Command Set
Video-overlay devices support the following set of commands:

String form Message form

break MCI_BREAK

capability MCI_GETDEVCAPS

close MCI_CLOSE

freeze MCI_FREEZE

info MCI_INFO

load MCI_LOAD

open MCI_OPEN

put MCI_PUT

save MCI_SAVE

set MCI_SET

status MCI_STATUS

sysinfo MCI_SYSINFO

unfreeze MCI_UNFREEZE

where MCI_WHERE

window MCI_WINDOW
 



Waveform-Audio Command Set
Waveform-audio devices support the following set of commands:

String form Message form

break MCI_BREAK

capability MCI_GETDEVCAPS

close MCI_CLOSE

cue MCI_CUE

delete MCI_DELETE

info MCI_INFO

open MCI_OPEN

pause MCI_PAUSE

play MCI_PLAY

record MCI_RECORD

resume MCI_RESUME

save MCI_SAVE

seek MCI_SEEK

set MCI_SET

status MCI_STATUS

stop MCI_STOP

sysinfo MCI_SYSINFO
 



Using MCI Command Strings
This section contains examples demonstrating how to use the MCI command-string interface to perform 
the following tasks:

· Sending a command

· Opening multiple AVI files

· Changing the playback state

· Converting strings
 



Sending a Command

The following example function sends the play command with the "from" and "to" flags.

DWORD PlayFromTo(LPSTR lpstrAlias, DWORD dwFrom, DWORD dwTo) 
{ 
    char    achCommandBuff[128]; 
    wsprintf(achCommandBuff, "play %s from %u to %u", 
        lpstrAlias, dwFrom, dwTo); 
    return mciSendString(achCommandBuff, NULL, 0, NULL); 
} 
 



Opening Multiple AVI Files

If your application opens multiple files, it should include routines such as the following simple functions. 
The application would use the "initAVI" function during its initialization and the "termAVI" function during 
its termination. 

// Initialize the MCIAVI driver. This returns TRUE if OK, 
// FALSE on error. 
 
BOOL initAVI(VOID) 
{ 
    // Perform additional initialization before loading first file. 
    return mciSendString("open digitalvideo", NULL, 0, NULL) == 0; 
} 
 
// Close the MCIAVI driver. 
void termAVI(VOID) 
{ 
    mciSendString("close digitalvideo", NULL, 0, NULL); 
} 
 



Changing the Playback State

The following examples show how to use the pause, resume, stop, and seek commands.

// Assume the file was opened with the alias 'movie'. 
 
// Pause play. 
mciSendString("pause movie", NULL, 0, NULL); 
 
// Resume play. 
mciSendString("resume movie", NULL, 0, NULL); 
 
// Stop play. 
mciSendString("stop movie", NULL, 0, NULL); 
 
// Seek to the beginning. 
mciSendString("seek movie to start", NULL, 0, NULL); 
 

The following example shows how to change the seek mode:

// Set seek mode with the string interface. 
// Assume the file was opened with the alias 'movie'. 
 
void SetSeekMode(BOOL fExact) 
{ 
    if (fExact) 
        mciSendString("set movie seek exactly on", NULL, 0, NULL); 
    else 
        mciSendString("set movie seek exactly off", NULL, 0, NULL); 
} 
 



Converting Strings

When you use the string interface, all values passed with the command and all return values are text 
strings, so your application needs conversion routines to translate from variables to strings or back again. 
The following example retrieves the source rectangle and converts the returned string into rectangle 
coordinates.

void GetSourceRect(LPSTR lpstrAlias, LPRECT lprc) 
{ 
    char achRetBuff[128]; 
    char achCommandBuff[128]; 
 
    // Build the command string. 
    wsprintf(achCommandBuff, "where %s source", lpstrAlias); 
    SetRectEmpty(lprc);    // clears the RECT 
 
    // Send the command. 
 
    if (mciSendString(achCommandBuff, achRetBuff, 
        sizeof(achRetBuff), NULL) == 0){ 
 
        // The rectangle is returned as "x y dx dy". 
        // Both x and y are 0 because this is the source 
        // rectangle. Translate the string into the RECT 
        // structure. 
        char *p; 
        p = achRetBuff;           // point to the return string 
        while (*p != ' ') p++;    // go past the x (0) 
        while (*p == ' ') p++;    // go past spaces 
        while (*p != ' ') p++;    // go past the y (0) 
        while (*p == ' ') p++;    // go past spaces 
 
        // Retrieve the width. 
        for ( ; *p != ' '; p++) 
            lprc->right = (10 * lprc->right) + (*p - '0'); 
 
        while (*p == ' ') p++;    // go past spaces 
 
        // Retrieve the height. 
        for ( ; *p != ' '; p++) 
            lprc->bottom = (10 * lprc->bottom) + (*p - '0'); 
    } 
} 
 

 

Note    RECT structures are handled differently in MCI than in other parts of Windows; in MCI, the 
right member contains the width of the rectangle and the bottom member contains its height. In the 
string interface, a rectangle is specified as X1, Y1, X2, and Y2. The coordinates X1 and Y1 specify 
the upper-left corner of the rectangle, and the coordinates X2 and Y2 specify the width and height. 

 



Using MCI Command Messages
This section contains examples demonstrating how to perform the following tasks:

· Closing all MCI devices used by an application

· Opening a simple device by using the device name

· Opening a simple device by using the device-type constant

· Opening a compound device by using the filename

· Verifying the output device

· Handling MCI errors

· Playing a waveform-audio file

· Playing a MIDI file

· Playing a compact disc track

· Playing a movie

· Using the MCI_NOTIFY flag

· Retrieving information about a movie

· Retrieving compact disc track-specific information

· Recording with a waveform-audio device
 



Closing All MCI Devices Used by an Application

The following example closes all of the MCI devices that are opened by an application. 

UINT wDeviceID;
DWORD dwReturn;
  
// Closes all MCI devices opened by this application.
// Waits until devices are closed before returning.

if(dwReturn = mciSendCommand(MCI_ALL_DEVICE_ID, MCI_CLOSE, MCI_WAIT, 
    NULL))
  
    // Error, unable to close all devices.
  
 



Opening a Simple Device by Using the Device Name

The following example opens a CD audio device by specifying the device name. 

UINT wDeviceID;
DWORD dwReturn;
MCI_OPEN_PARMS mciOpenParms;
  
// Opens a CD audio device by specifying the device name.
mciOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand(NULL, MCI_OPEN, MCI_OPEN_TYPE,
    (DWORD)(LPVOID) &mciOpenParms))
  
    // Error, unable to open device.
  
// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDeviceID;
 



Opening a Simple Device by Using the Device-Type Constant

The following example opens a CD audio device by specifying a device-type constant. 

UINT wDeviceID;
DWORD dwReturn;
MCI_OPEN_PARMS mciOpenParms;
 
// Opens a CD audio device by specifying a device-type constant.
mciOpenParms.lpstrDeviceType = (LPCSTR) MCI_DEVTYPE_CD_AUDIO;
if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
    MCI_OPEN_TYPE | MCI_OPEN_TYPE_ID, (DWORD)(LPVOID) &mciOpenParms))
  
    // Error, unable to open device.
  
// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDeviceID;
 



Opening a Compound Device by Using the Filename

The following example opens the waveform-audio device by specifying a waveform-audio file named 
"TIMPANI.WAV". 

UINT wDeviceID;
DWORD dwReturn;
MCI_OPEN_PARMS mciOpenParms;
  
// Opens a waveform-audio device by specifying the device and filename.
mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "timpani.wav";
if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
    MCI_OPEN_TYPE | MCI_OPEN_ELEMENT, (DWORD)(LPVOID) &mciOpenParms))
  
    // Error, unable to open device.
  
// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDeviceID;
 



Verifying the Output Device 

After opening the sequencer, you should check whether the MIDI mapper was available and selected as 
the output device. The following example uses the MCI_STATUS command to verify that the MIDI mapper 
is the output device for the MCI sequencer. 

UINT wDeviceID;      // valid MCI sequencer ID
DWORD dwReturn;
MCI_STATUS_PARMS mciStatusParms;
 
// Make sure the opened device is the MIDI mapper.

mciStatusParms.dwItem = MCI_SEQ_STATUS_PORT;
if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS, MCI_STATUS_ITEM,
    (DWORD)(LPVOID) &mciStatusParms))
{
  
    // Error sending MCI_STATUS command. 
  
    return;
}
if (LOWORD(mciStatusParms.dwReturn) == MIDI_MAPPER)
  
    // The MIDI mapper is the output device. 
  
Else
  
    // The MIDI mapper is not the output device. 
  
 



Handling MCI Errors

You should always check the return value of the mciSendCommand function. If it indicates an error, you 
can use mciGetErrorString to get a textual description of the error. 

The following example passes the MCI error code specified by dwError to mciGetErrorString, and then 
displays the resulting textual error description using the MessageBox function.

// Uses mciGetErrorString to get a textual description of an MCI error.
// Displays the error description using MessageBox.
void showError(DWORD dwError)
{
    char szErrorBuf[MAXERRORLENGTH];
    MessageBeep(MB_ICONEXCLAMATION);
    if(mciGetErrorString(dwError, (LPSTR) szErrorBuf, MAXERRORLENGTH))
        MessageBox(hMainWnd, szErrorBuf, "MCI Error",
        MB_ICONEXCLAMATION);
    else
        MessageBox(hMainWnd, "Unknown Error", "MCI Error",
            MB_ICONEXCLAMATION);
}
  

 

Note    To interpret an mciSendCommand error return value yourself, mask the high-order word (the 
low-order word contains the error code). If you pass the error return value to mciGetErrorString, 
however, you must pass the entire doubleword value.

 



Playing a Waveform-Audio File

The following example opens a waveform-audio device and plays the waveform-audio file specified by the 
lpszWAVEFileName parameter. 

// Plays a specified waveform-audio file using MCI_OPEN and MCI_PLAY. 
// Returns when playback begins. Returns 0L on success, otherwise 
// returns an MCI error code.
DWORD playWAVEFile(HWND hWndNotify, LPSTR lpszWAVEFileName)
{
    UINT wDeviceID;
    DWORD dwReturn;
    MCI_OPEN_PARMS mciOpenParms;
    MCI_PLAY_PARMS mciPlayParms;

    // Open the device by specifying the device and filename.
    // MCI will choose a device capable of playing the specified file.
    mciOpenParms.lpstrDeviceType = "waveaudio";
    mciOpenParms.lpstrElementName = lpszWAVEFileName;
    if (dwReturn = mciSendCommand(0, MCI_OPEN,
       MCI_OPEN_TYPE | MCI_OPEN_ELEMENT, (DWORD)(LPVOID) &mciOpenParms))
    {
        // Failed to open device. Don't close it; just return error.
        return (dwReturn);
    }

    // The device opened successfully; get the device ID.
    wDeviceID = mciOpenParms.wDeviceID;

    // Begin playback. The window procedure function for the parent 
    // window will be notified with an MM_MCINOTIFY message when 
    // playback is complete. At this time, the window procedure closes 
    // the device.
    mciPlayParms.dwCallback = (DWORD) hWndNotify;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY, MCI_NOTIFY, 
        (DWORD)(LPVOID) &mciPlayParms))
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }

    return (0L);
}
 



Playing a MIDI File

The following example opens a MIDI sequencer device, verifies that the MIDI mapper was selected as the 
output port, plays the MIDI file specified by the lpszMIDIFileName parameter, and closes the device after 
playback is complete. 

// Plays a specified MIDI file by using MCI_OPEN and MCI_PLAY. Returns 
// as soon as playback begins. The window procedure function for the 
// specified window will be notified when playback is complete. 
// Returns 0L on success; otherwise, it returns an MCI error code.
DWORD playMIDIFile(HWND hWndNotify, LPSTR lpszMIDIFileName)
{
    UINT wDeviceID;
    DWORD dwReturn;
    MCI_OPEN_PARMS mciOpenParms;
    MCI_PLAY_PARMS mciPlayParms;
    MCI_STATUS_PARMS mciStatusParms;
    MCI_SEQ_SET_PARMS mciSeqSetParms;

    // Open the device by specifying the device and filename.
    // MCI will attempt to choose the MIDI mapper as the output port.
    mciOpenParms.lpstrDeviceType = "sequencer";
    mciOpenParms.lpstrElementName = lpszMIDIFileName;
    if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
        MCI_OPEN_TYPE | MCI_OPEN_ELEMENT,
        (DWORD)(LPVOID) &mciOpenParms))
    {
        // Failed to open device. Don't close it; just return error.
        return (dwReturn);
    }

    // The device opened successfully; get the device ID.
    wDeviceID = mciOpenParms.wDeviceID;

    // Check if the output port is the MIDI mapper.
    mciStatusParms.dwItem = MCI_SEQ_STATUS_PORT;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS, 
        MCI_STATUS_ITEM, (DWORD)(LPVOID) &mciStatusParms))
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }

    // The output port is not the MIDI mapper. 
    // Ask if the user wants to continue.
    if (LOWORD(mciStatusParms.dwReturn) != MIDI_MAPPER)
    {
        if (MessageBox(hMainWnd,
            "The MIDI mapper is not available. Continue?",
            "", MB_YESNO) == IDNO)
        {
            // User does not want to continue. Not an error;
            // just close the device and return.
            mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);



            return (0L);
        }
    }

    // Begin playback. The window procedure function for the parent 
    // window will be notified with an MM_MCINOTIFY message when 
    // playback is complete. At this time, the window procedure closes 
    // the device.
    mciPlayParms.dwCallback = (DWORD) hWndNotify;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY, MCI_NOTIFY, 
        (DWORD)(LPVOID) &mciPlayParms))
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }

    return (0L);
}
 



Playing a Compact Disc Track

The following example opens a CD audio device, plays the track specified by the bTrack parameter, and 
closes the device after playback is complete. 

// Plays a specified audio track using MCI_OPEN, MCI_PLAY. Returns as 
// soon as playback begins. The window procedure function for the 
// specified window will be notified when playback is complete. 
// Returns 0L on success; otherwise, returns an MCI error code.
DWORD playCDTrack(HWND hWndNotify, BYTE bTrack)
{
    UINT wDeviceID;
    DWORD dwReturn;
    MCI_OPEN_PARMS mciOpenParms;
    MCI_SET_PARMS mciSetParms;
    MCI_PLAY_PARMS mciPlayParms;

    // Open the CD audio device by specifying the device name.
    mciOpenParms.lpstrDeviceType = "cdaudio";
    if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
        MCI_OPEN_TYPE, (DWORD)(LPVOID) &mciOpenParms))
    {
        // Failed to open device. Don't close it; just return error.
        return (dwReturn);
    }

    // The device opened successfully; get the device ID.
    wDeviceID = mciOpenParms.wDeviceID;

    // Set the time format to track/minute/second/frame (TMSF).
    mciSetParms.dwTimeFormat = MCI_FORMAT_TMSF;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_SET, 
        MCI_SET_TIME_FORMAT, (DWORD)(LPVOID) &mciSetParms))
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    } 
    // Begin playback from the given track and play until the beginning 
    // of the next track. The window procedure function for the parent 
    // window will be notified with an MM_MCINOTIFY message when 
    // playback is complete. Unless the play command fails, the window 
    // procedure closes the device.
    mciPlayParms.dwFrom = 0L;
    mciPlayParms.dwTo = 0L;
    mciPlayParms.dwFrom = MCI_MAKE_TMSF(bTrack, 0, 0, 0);
    mciPlayParms.dwTo = MCI_MAKE_TMSF(bTrack + 1, 0, 0, 0);
    mciPlayParms.dwCallback = (DWORD) hWndNotify;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY,
        MCI_FROM | MCI_TO | MCI_NOTIFY, (DWORD)(LPVOID) &mciPlayParms))
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }



    return (0L);
}
 

To specify a position relative to a track on a compact disc, you must use the track/minute/second/frame 
(TMSF) time format.



Playing a Movie

The following examples show how to set up and play an audio-video interleaved (AVI) file.



Opening the Playback Window
The following example shows how to use the MCI_OPEN command to set a parent window and create a 
child of that window. 

MCI_DGV_OPEN_PARMS    mciOpen; 
 
mciOpen.lpstrElementName = lpstrFile;  // Set the filename.
mciOpen.dwStyle = WS_CHILD;            // Set the style. 
mciOpen.hWndParent = hWnd;             // Give a window handle. 
 
if (mciSendCommand(0, MCI_OPEN, 
   (DWORD)(MCI_OPEN_ELEMENT|MCI_DGV_OPEN_PARENT|MCI_DGV_OPEN), 
   (DWORD)(LPSTR)&mciOpen) == 0)
{ 
    // Open operation is successful. Continue. 
} 
 



Setting Up the Playback Window
The following example finds the dimensions needed to play an AVI file, creates a window corresponding 
to that size, and plays the file in the window by using the MCIAVI driver. 

HWND hwnd; 
MCI_DGV_RECT_PARMS mciRect; 
 
// Get the movie dimensions with MCI_WHERE. 
 
mciSendCommand(wDeviceID, MCI_WHERE, MCI_DGV_WHERE_SOURCE, 
    (DWORD)(LPSTR)&mciRect); 
 
// Create the playback window. Make it bigger for the border. 
// Note that the right and bottom members of RECT structures in MCI 
// are unusual; rc.right is set to the rectangle's width, and 
// rc.bottom is set to the rectangle's height.
hwndMovie = CreateWindow("mywindow", "Playback", 
    WS_CHILD|WS_BORDER, 0,0, 
    mciRect.rc.right+(2*GetSystemMetric(SM_CXBORDER)),
    mciRect.rc.bottom+(2*GetSystemMetric(SM_CYBORDER)), 
    hwndParent, hInstApp, NULL); 
 
if (hwndMovie){ 
    // Window created OK; make it the playback window. 
 
    MCI_DGV_WINDOW_PARMS mciWindow; 
 
    mciWindow.hWnd = hwndMovie; 
    mciSendCommand(wDeviceID, MCI_WINDOW, MCI_DGV_WINDOW_HWND, 
        (DWORD)(LPSTR)&mciWindow); 
 
} 
 



Playing the AVI File
Before using the mciSendCommand function to send the MCI_PLAY command, your application 
allocates the memory for the structure, initializes the members it will use, and sets the flags 
corresponding to the members used in the structure. (If your application does not set a flag for a structure 
member, MCI drivers ignore the member.) For example, the following example plays a movie from the 
starting position specified by dwFrom to the ending position specified by dwTo. (If either position is zero, 
the example is written so that the position is not used.)

DWORD PlayMovie(WORD wDevID, DWORD dwFrom, DWORD dwTo) 
{ 
    MCI_DGV_PLAY_PARMS mciPlay;    // play parameters 
    DWORD dwFlags = 0; 
 
    // Check dwFrom. If it is != 0 then set parameters and flags. 
    if (dwFrom){ 
        mciPlay.dwFrom = dwFrom; // set parameter 
        dwFlags |= MCI_FROM;     // set flag to validate member 
    } 
 
    // Check dwTo. If it is != 0 then set parameters and flags. 
    if (dwTo){ 
        mciPlay.dwTo = dwTo;    // set parameter 
        dwFlags |= MCI_TO;      // set flag to validate member 
    } 
 
    // Send the MCI_PLAY command and return the result. 
    return mciSendCommand(wDevID, MCI_PLAY, dwFlags, 
       (DWORD)(LPVOID)&mciPlay); 
} 
 



Changing the Current Position

To change the current position in a device element, use the MCI_SEEK command message along with 
the MCI_TO flag and the MCI_SEEK_PARMS structure. If you use the dwTo member to specify a seek 
position with MCI_SEEK, you should query the time format and set it, if necessary. 

In addition to specifying a position with the dwTo member, you can specify the MCI_SEEK_TO_START or 
MCI_SEEK_TO_END flags for the dwParam1 parameter of the mciSendCommand function to find the 
starting and ending positions of the device element. If you use one of these flags, don't specify the 
MCI_TO flag. 



Setting the Time Format

Use the MCI_SET command message along with the MCI_SET_PARMS structure to set the time format 
for an open device. Set the dwTimeFormat member to one of the following constants. 

Constant Time format

MCI_FORMAT_BYTES Bytes (in pulse code modulated 
[PCM] format files)

MCI_FORMAT_MILLISECONDS Milliseconds

MCI_FORMAT_MSF Minute/second/frame

MCI_FORMAT_SAMPLES Samples

MCI_FORMAT_SMPTE_24 SMPTE, 24 frame

MCI_FORMAT_SMPTE_25 SMPTE, 25 frame

MCI_FORMAT_SMPTE_30 SMPTE, 30 frame

MCI_FORMAT_SMPTE_30DROP SMPTE, 30 frame drop

MCI_FORMAT_TMSF Track/minute/second/frame

MCI_SEQ_FORMAT_SONGPTR MIDI song pointer
 

The following example sets the time format to milliseconds on the device specified by the wDeviceID 
variable: 

UINT wDeviceID; 
MCI_SET_PARMS mciSetParms; 

// Set time format to milliseconds. 

mciSetParms.dwTimeFormat = MCI_FORMAT_MILLISECONDS; 
if (mciSendCommand(wDeviceID, MCI_SET, MCI_SET_TIME_FORMAT, 
                   (DWORD) &mciSetParms)) 
    // Error, unable to set time format. 
    return FALSE; 
else 
    // Time format set successfully. 
    return TRUE; 
 



Changing Sequencer Synchronization

To change the synchronization mode of a sequencer device, use the MCI_SET command message with 
the MCI_SEQ_SET_MASTER and MCI_SEQ_SET_SLAVE flags. Two members in the 
MCI_SEQ_SET_PARMS structure, dwMaster and dwSlave, are used to specify the master and slave 
synchronization modes. 

The master synchronization mode controls synchronization information sent by the sequencer to an 
output port. The slave synchronization mode controls where the sequencer gets its timing information to 
play a MIDI file. Following are the constants for the dwMaster member and their corresponding master 
synchronization modes. 

Constant Synchronization mode

MCI_SEQ_MIDI MIDI Synchronization. Send timing information to 
output port using MIDI timing clock messages.

MCI_SEQ_SMPTE SMPTE Synchronization. Send timing 
information to output port using MIDI quarter-
frame messages.

MCI_SEQ_NONE No Synchronization. Send no timing information.
 

Following are the constants for the dwSlave member and their corresponding slave synchronization 
modes. 

Constant Synchronization mode

MCI_SEQ_FILE File Synchronization. Get timing information from 
MIDI file.

MCI_SEQ_MIDI MIDI Synchronization. Get timing information 
from input port using MIDI timing clock 
messages.

MCI_SEQ_SMPTE SMPTE Synchronization. Get timing information 
from input port using MIDI quarter-frame 
messages.

MCI_SEQ_NONE No Synchronization. Get timing information from 
MCI commands only and ignore timing 
information (such as tempo changes) that are in 
the MIDI file.

 

 

Note    Currently, for master synchronization, the MCI MIDI sequencer supports only the No 
Synchronization mode (MCI_SEQ_NONE). For slave synchronization, it supports only the File 
Synchronization mode (MCI_SEQ_FILE) and the No Synchronization mode (MCI_SEQ_NONE). 

 



Using the MCI_NOTIFY Flag

The following example shows how the MCI_NOTIFY flag is used with the MCI_PLAY command. The 
handle to the window procedure that will process the MM_MCINOTIFY message is specified in hwnd.

MCI_DGV_PLAY_PARMS mciPlay; 
DWORD dwFlags; 
 
mciPlay.dwCallback = MAKELONG(hwnd, 0); 
dwFlags = MCI_NOTIFY; 
 
mciSendCommand(wMCIDeviceID, MCI_PLAY, dwFlags, (DWORD)(LPSTR)&mciPlay); 
 



Retrieving Information About a Movie

The following example sets the time format to frames and obtains the current position if the device is 
playing. 

MCI_DGV_SET_PARMS mciSet; 
MCI_DGV_STATUS_PARMS mciStatus; 
 
// Put in frame mode. 
mciSet.dwTimeFormat = MCI_FORMAT_FRAMES; 
mciSendCommand(wDeviceID, MCI_SET, 
    MCI_SET_TIME_FORMAT, 
    (DWORD)(LPSTR)&mciSet); 
 
mciStatus.dwItem = MCI_STATUS_MODE; 
mciSendCommand(wDeviceID, MCI_STATUS, 
    MCI_STATUS_ITEM, 
    (DWORD)(LPSTR)&mciStatus); 
 
// If device is playing, get the position. 
if (mciStatus.dwReturn == MCI_MODE_PLAY){ 
    mciStatus.dwItem = MCI_STATUS_POSITION; 
    mciSendCommand(wDeviceID, MCI_STATUS, MCI_STATUS_ITEM, 
        (DWORD)(LPSTR)&mciStatus); 
 
// Update the position from mciStatus.dwReturn. 
} 
 



Retrieving Compact Disc Track-Specific Information

For CD audio devices, you can get the starting location and length of a track by specifying the 
MCI_TRACK flag and setting the dwTrack member of MCI_STATUS_PARMS to the desired track 
number. To get the starting location of a track, set the dwItem member to MCI_STATUS_POSITION. To 
get the length of a track, set dwItem to MCI_STATUS_LENGTH. For example, the following example 
retrieves the total number of tracks on the compact disc and the starting location of each track. Then, it 
uses the MessageBox function to report the starting locations of the tracks. 

// Uses the MCI_STATUS command to get and display the 
// starting times for the tracks on a compact disc. 
// Returns 0L if successful; otherwise, it returns an 
// MCI error code.
DWORD getCDTrackStartTimes(VOID)
{
    UINT wDeviceID;
    int i, iNumTracks;
    DWORD dwReturn;
    DWORD dwPosition;
    DWORD *pMem;
    char szTempString[64];
    char szTimeString[512] = "\0";  // room for 20 tracks
    MCI_OPEN_PARMS mciOpenParms;
    MCI_SET_PARMS mciSetParms;
    MCI_STATUS_PARMS mciStatusParms;

    // Open the device by specifying the device name.

    mciOpenParms.lpstrDeviceType = "cdaudio";
    if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
        MCI_OPEN_TYPE, (DWORD)(LPVOID) &mciOpenParms))
    {
        // Failed to open device. 
        // Don't close device; just return error.
        return (dwReturn);
    }

    // The device opened successfully; get the device ID.
    wDeviceID = mciOpenParms.wDeviceID;

// Set the time format to minute/second/frame (MSF) format. 
    mciSetParms.dwTimeFormat = MCI_FORMAT_MSF;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_SET, 
        MCI_SET_TIME_FORMAT, 
        (DWORD)(LPVOID) &mciSetParms)) 
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }

    // Get the number of tracks; 
    // limit to number that can be displayed (20).
    mciStatusParms.dwItem = MCI_STATUS_NUMBER_OF_TRACKS;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS, 



        MCI_STATUS_ITEM, (DWORD)(LPVOID) &mciStatusParms)) 
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }
    iNumTracks = mciStatusParms.dwReturn;
    iNumTracks = min(iNumTracks, 20);

    // Allocate memory to hold starting positions.
    pMem = (DWORD *)LocalAlloc(LPTR, 
        iNumTracks * sizeof(DWORD));
    if (pMem == NULL) 
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (-1);
    } 
 
// For each track, get and save the starting location and
// build a string containing starting locations.
    for(i=1; i<=iNumTracks; i++) 
    {
        mciStatusParms.dwItem = MCI_STATUS_POSITION;
        mciStatusParms.dwTrack = i;
        if (dwReturn = mciSendCommand(wDeviceID, 
            MCI_STATUS, MCI_STATUS_ITEM | MCI_TRACK, 
            (DWORD)(LPVOID) &mciStatusParms)) {
            mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
            return (dwReturn);
        }

        pMem[i-1] = mciStatusParms.dwReturn;

        wsprintf(szTempString, 
            "Track %2d - %02d:%02d:%02d\n", i,
            MCI_MSF_MINUTE(pMem[i-1]), 
            MCI_MSF_SECOND(pMem[i-1]), 
            MCI_MSF_FRAME(pMem[i-1]));

        lstrcat(szTimeString, szTempString);
    }

    // Use MessageBox to display starting times.
    MessageBox(hMainWnd, szTimeString, 
        "Track Starting Position", MB_ICONINFORMATION);

    // Free memory and close the device.
    LocalFree((HANDLE) pMem);
    if (dwReturn = mciSendCommand(wDeviceID, 
        MCI_CLOSE, 0, NULL)) {
        return (dwReturn);
    }

    return (0L);
}
 



Recording with a Waveform-Audio Device

The following example opens a waveform-audio device with a new file, records for the specified time, 
plays the recording, and prompts the user to save the recording if desired. 

// Uses the MCI_OPEN, MCI_RECORD, and MCI_SAVE commands to record and
// save a waveform-audio file. Returns 0L if successful; otherwise,
// it returns an MCI error code.
DWORD recordWAVEFile(DWORD dwMilliSeconds)
{
    UINT wDeviceID;
    DWORD dwReturn;
    MCI_OPEN_PARMS mciOpenParms;
    MCI_RECORD_PARMS mciRecordParms;
    MCI_SAVE_PARMS mciSaveParms;
    MCI_PLAY_PARMS mciPlayParms;
 
    // Open a waveform-audio device with a new file for recording.
    mciOpenParms.lpstrDeviceType = "waveaudio";
    mciOpenParms.lpstrElementName = "";
    if (dwReturn = mciSendCommand(0, MCI_OPEN,
        MCI_OPEN_ELEMENT | MCI_OPEN_TYPE, 
        (DWORD)(LPVOID) &mciOpenParms))
    {
        // Failed to open device; don't close it, just return error.
        return (dwReturn);
    }

    // The device opened successfully; get the device ID.
    wDeviceID = mciOpenParms.wDeviceID;

    // Begin recording and record for the specified number of 
    // milliseconds. Wait for recording to complete before continuing. 
    // Assume the default time format for the waveform-audio device 
    // (milliseconds).
    mciRecordParms.dwTo = dwMilliSeconds;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_RECORD, 
        MCI_TO | MCI_WAIT, (DWORD)(LPVOID) &mciRecordParms))
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }

    // Play the recording and query user to save the file.
    mciPlayParms.dwFrom = 0L;
    if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY,
        MCI_FROM | MCI_WAIT, (DWORD)(LPVOID) &mciPlayParms))
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }
    if (MessageBox(hMainWnd, "Do you want to save this recording?",
        "", MB_YESNO) == IDNO)
    {



        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (0L);
    }

    // Save the recording to a file named TEMPFILE.WAV. Wait for
    // the operation to complete before continuing.
    mciSaveParms.lpfilename = "tempfile.wav";
    if (dwReturn = mciSendCommand(wDeviceID, MCI_SAVE,
        MCI_SAVE_FILE | MCI_WAIT, (DWORD)(LPVOID) &mciSaveParms))
    {
        mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
        return (dwReturn);
    }

    return (0L);
}
 



MCI Reference
This section describes the MCI functions, structures, messages, macros, commands, and command 
strings. These elements are grouped as follows.

Notifications
MM_MCINOTIFY
MM_MCISIGNAL

Retrieving Information
mciGetCreatorTask
mciGetDeviceID
mciGetErrorString

Sending Commands
mciSendCommand
mciSendString

Time Formats
MCI_HMS_HOUR
MCI_HMS_MINUTE
MCI_HMS_SECOND
MCI_MAKE_HMS
MCI_MAKE_MSF
MCI_MAKE_TMSF
MCI_MSF_FRAME
MCI_MSF_MINUTE
MCI_MSF_SECOND
MCI_TMSF_FRAME
MCI_TMSF_MINUTE
MCI_TMSF_SECOND
MCI_TMSF_TRACK

Yield Procedures
mciGetYieldProc
mciSetYieldProc

Configuring a Device
break
configure
escape
index
MCI_BREAK
MCI_BREAK_PARMS
MCI_CONFIGURE
MCI_DGV_SET_PARMS
MCI_DGV_SETAUDIO_PARMS
MCI_DGV_SETVIDEO_PARMS
MCI_ESCAPE
MCI_INDEX
MCI_SEQ_SET_PARMS
MCI_SET



MCI_SET_PARMS
MCI_SETAUDIO
MCI_SETTIMECODE
MCI_SETTUNER
MCI_SETVIDEO
MCI_SPIN
MCI_VCR_SET_PARMS
MCI_VCR_SETAUDIO_PARMS
MCI_VCR_SETTUNER_PARMS
MCI_VCR_SETVIDEO_PARMS
MCI_VD_ESCAPE_PARMS
MCI_WAVE_SET_PARMS
set
setaudio
settimecode
settuner
setvideo
spin

Controlling Playback
freeze
load
MCI_DGV_FREEZE_PARMS
MCI_DGV_LOAD_PARMS
MCI_DGV_PAUSE_PARMS
MCI_DGV_PLAY_PARMS
MCI_DGV_RESUME_PARMS
MCI_DGV_STOP_PARMS
MCI_FREEZE
MCI_LOAD
MCI_LOAD_PARMS
MCI_OVLY_LOAD_PARMS
MCI_PAUSE
MCI_PLAY
MCI_PLAY_PARMS
MCI_RESUME
MCI_STOP
MCI_UNFREEZE
MCI_VCR_PLAY_PARMS
MCI_VD_PLAY_PARMS
pause
play
resume
stop
unfreeze

Controlling the Position
cue
mark
MCI_CUE
MCI_DGV_CUE_PARMS
MCI_DGV_SIGNAL_PARMS
MCI_DGV_STEP_PARMS
MCI_MARK
MCI_SEEK



MCI_SEEK_PARMS
MCI_SIGNAL
MCI_STEP
MCI_VCR_CUE_PARMS
MCI_VCR_SEEK_PARMS
MCI_VCR_STEP_PARMS
MCI_VD_STEP_PARMS
seek
signal
step

Editing
copy
cut
delete
MCI_COPY
MCI_CUT
MCI_DELETE
MCI_DGV_COPY_PARMS
MCI_DGV_CUT_PARMS
MCI_DGV_DELETE_PARMS
MCI_DGV_PASTE_PARMS
MCI_PASTE
MCI_UNDO
MCI_WAVE_DELETE_PARMS
paste
undo

Miscellaneous
MCI_GENERIC_PARMS 

Opening and Closing
close
MCI_CLOSE
MCI_DGV_OPEN_PARMS
MCI_OPEN
MCI_OPEN_PARMS
MCI_OVLY_OPEN_PARMS
MCI_WAVE_OPEN_PARMS
open

Realizing a Palette
MCI_REALIZE
realize

Repainting a Frame
MCI_DGV_UPDATE_PARMS
MCI_UPDATE
update

Retrieving Information
capability
info



list
MCI_DGV_INFO_PARMS
MCI_DGV_LIST_PARMS
MCI_DGV_STATUS_PARMS
MCI_GETDEVCAPS
MCI_GETDEVCAPS_PARMS
MCI_INFO
MCI_INFO_PARMS
MCI_LIST
MCI_STATUS
MCI_STATUS_PARMS
MCI_SYSINFO
MCI_SYSINFO_PARMS
MCI_VCR_LIST_PARMS
MCI_VCR_STATUS_PARMS
status
sysinfo

Saving
MCI_DGV_RECORD_PARMS
MCI_DGV_SAVE_PARMS
MCI_OVLY_SAVE_PARMS
MCI_RECORD
MCI_RECORD_PARMS
MCI_SAVE
MCI_SAVE_PARMS
MCI_VCR_RECORD_PARMS
record
save

Video Control
capture
MCI_CAPTURE
MCI_DGV_MONITOR_PARMS
MCI_DGV_QUALITY_PARMS
MCI_DGV_RESERVE_PARMS
MCI_DGV_RESTORE_PARMS
MCI_MONITOR
MCI_QUALITY
MCI_RESERVE
MCI_RESTORE
monitor
quality
reserve
restore

Window or Display Rectangles
MCI_DGV_PUT_PARMS
MCI_DGV_RECT_PARMS
MCI_DGV_WINDOW_PARMS
MCI_OVLY_RECT_PARMS
MCI_OVLY_WINDOW_PARMS
MCI_PUT
MCI_WHERE
MCI_WINDOW



put
where
window



MCI Functions

The following functions are used with MCI.

mciGetCreatorTask
mciGetDeviceID
mciGetErrorString
mciGetYieldProc
mciSendCommand
mciSendString
mciSetYieldProc



MCI Structures

The following structures are used with MCI.

MCI_BREAK_PARMS
MCI_DGV_CAPTURE_PARMS
MCI_DGV_COPY_PARMS
MCI_DGV_CUE_PARMS
MCI_DGV_CUT_PARMS
MCI_DGV_DELETE_PARMS
MCI_DGV_FREEZE_PARMS
MCI_DGV_INFO_PARMS
MCI_DGV_LIST_PARMS
MCI_DGV_LOAD_PARMS
MCI_DGV_MONITOR_PARMS
MCI_DGV_OPEN_PARMS
MCI_DGV_PASTE_PARMS
MCI_DGV_PAUSE_PARMS
MCI_DGV_PLAY_PARMS
MCI_DGV_PUT_PARMS
MCI_DGV_QUALITY_PARMS
MCI_DGV_RECORD_PARMS
MCI_DGV_RECT_PARMS
MCI_DGV_RESERVE_PARMS
MCI_DGV_RESTORE_PARMS
MCI_DGV_RESUME_PARMS
MCI_DGV_SAVE_PARMS
MCI_DGV_SET_PARMS
MCI_DGV_SETAUDIO_PARMS
MCI_DGV_SETVIDEO_PARMS
MCI_DGV_SIGNAL_PARMS
MCI_DGV_STATUS_PARMS
MCI_DGV_STEP_PARMS
MCI_DGV_STOP_PARMS
MCI_DGV_UPDATE_PARMS
MCI_DGV_WINDOW_PARMS
MCI_GENERIC_PARMS
MCI_GETDEVCAPS_PARMS
MCI_INFO_PARMS
MCI_LOAD_PARMS
MCI_OPEN_PARMS
MCI_OVLY_LOAD_PARMS
MCI_OVLY_OPEN_PARMS
MCI_OVLY_RECT_PARMS
MCI_OVLY_SAVE_PARMS
MCI_OVLY_WINDOW_PARMS
MCI_PLAY_PARMS
MCI_RECORD_PARMS
MCI_SAVE_PARMS
MCI_SEEK_PARMS
MCI_SEQ_SET_PARMS
MCI_SET_PARMS
MCI_STATUS_PARMS
MCI_SYSINFO_PARMS
MCI_VCR_CUE_PARMS



MCI_VCR_LIST_PARMS
MCI_VCR_PLAY_PARMS
MCI_VCR_RECORD_PARMS
MCI_VCR_SEEK_PARMS
MCI_VCR_SET_PARMS
MCI_VCR_SETAUDIO_PARMS
MCI_VCR_SETTUNER_PARMS
MCI_VCR_SETVIDEO_PARMS
MCI_VCR_STATUS_PARMS
MCI_VCR_STEP_PARMS
MCI_VD_ESCAPE_PARMS
MCI_VD_PLAY_PARMS
MCI_VD_STEP_PARMS
MCI_WAVE_DELETE_PARMS
MCI_WAVE_OPEN_PARMS
MCI_WAVE_SET_PARMS



MCI Messages

The following messages are used with MCI.

MM_MCINOTIFY
MM_MCISIGNAL



MCI Macros

The following macros are used with MCI.

MCI_HMS_HOUR
MCI_HMS_MINUTE
MCI_HMS_SECOND
MCI_MAKE_HMS
MCI_MAKE_MSF
MCI_MAKE_TMSF
MCI_MSF_FRAME
MCI_MSF_MINUTE
MCI_MSF_SECOND
MCI_TMSF_FRAME
MCI_TMSF_MINUTE
MCI_TMSF_SECOND
MCI_TMSF_TRACK



MCI Commands

The following commands are used with MCI.

MCI_BREAK
MCI_CAPTURE
MCI_CLOSE
MCI_CONFIGURE
MCI_COPY
MCI_CUE
MCI_CUT
MCI_DELETE
MCI_ESCAPE
MCI_FREEZE
MCI_GETDEVCAPS
MCI_INDEX
MCI_INFO
MCI_LIST
MCI_LOAD
MCI_MARK
MCI_MONITOR
MCI_OPEN
MCI_PASTE
MCI_PAUSE
MCI_PLAY
MCI_PUT
MCI_QUALITY
MCI_REALIZE
MCI_RECORD
MCI_RESERVE
MCI_RESTORE
MCI_RESUME
MCI_SAVE
MCI_SEEK
MCI_SET
MCI_SETAUDIO
MCI_SETTIMECODE
MCI_SETTUNER
MCI_SETVIDEO
MCI_SIGNAL
MCI_SPIN
MCI_STATUS
MCI_STEP
MCI_STOP
MCI_SYSINFO
MCI_UNDO
MCI_UNFREEZE
MCI_UPDATE
MCI_WHERE
MCI_WINDOW



MCI Command Strings

The following command strings are used with MCI.

break
capability
capture
close
configure
copy
cue
cut
delete
escape
freeze
index
info
list
load
mark
monitor
open
paste
pause
play
put
quality
realize
record
reserve
restore
resume
save
seek
set
setaudio
settimecode
settuner
setvideo
signal
spin
status
step
stop
sysinfo
undo
unfreeze
update
where
window

 

 



Waveform Audio
This overview explains how to use the waveform and auxiliary audio services of the Microsoft Win32 
application programming interface (API) to add sound to applications.



About Waveform Audio
Adding sound to your application can make it more efficient and more fun to use. You can improve your 
users' efficiency by using sounds to get their attention at critical points, to help them avoid mistakes, or to 
let them know that a time-consuming operation has finished. You can help them have more fun by adding 
music or sound effects.

This overview explains how to do the following things with sound:

· Play waveform audio.

· Use waveform-audio services.

· Record waveform audio.

· Use auxiliary audio devices.

· Use audio clipboard formats.
 

This overview documents several methods for adding sound to your application. The simplest method 
documented here is that of using the PlaySound function. Most of the other waveform-audio API 
elements documented in this overview are relatively low-level. However, the MCI overview documents an 
interface to multimedia programming that offers method of adding sound to your application that is simpler 
and faster than using the waveform-audio sound API.



The PlaySound Function

You can use the PlaySound function to play waveform audio, as long as the sound fits into available 
memory. (The sndPlaySound function offers a subset of the capabilities of PlaySound. To maximize the 
portability of your Win32-based application, use PlaySound, not sndPlaySound.)

The PlaySound function allows you to specify a sound in one of three ways:

· As a system alert, using the alias stored in the WIN.INI file or the registry

· As a filename

· As a resource identifier
 

The PlaySound function allows you to play a sound in a continuous loop, ending only when you call 
PlaySound again, specifying either NULL or the sound identifier of another sound for the pszSound 
parameter. 

You can use PlaySound to play the sound synchronously or asynchronously, and to control the behavior 
of the function in other ways when it must share system resources.

For examples of how to use PlaySound in your Win32-based applications, see Playing WAVE 
Resources.



Waveform-Audio Files
In the Microsoft Windows operating system, most waveform-audio files use the .WAV filename extension.

The following statement plays the C:\SOUNDS\BELLS.WAV file:

PlaySound("C:\\SOUNDS\\BELLS.WAV", NULL, SND_SYNC); 
 

If the specified file does not exist, or if the file does not fit into the available memory, PlaySound plays the 
default system sound. If no default system sound has been defined, PlaySound fails without producing 
any sound. If you do not want the default system sound to play, specify the SND_NODEFAULT flag, as 
shown in the following example:

PlaySound("C:\\SOUNDS\\BELLS.WAV", NULL, SND_SYNC | SND_NODEFAULT); 
 



Looping Sounds
If you specify the SND_LOOP and SND_ASYNC flags for the fdwSound parameter of the PlaySound 
function, the sound will continue to play repeatedly as shown in the following example:

PlaySound("C:\\SOUNDS\\BELLS.WAV", NULL, SND_LOOP | SND_ASYNC); 
 

If you want to loop a sound, you must play it asynchronously; you cannot use the SND_SYNC flag with 
the SND_LOOP flag. A looped sound will continue to play until you call PlaySound to play another sound. 
To stop playing a sound (looped or asynchronous) without playing another sound, use the following 
statement: 

PlaySound(NULL, NULL, 0); 
 



Playing Sounds Specified in the Registry
The PlaySound function will also play sounds referred to by a keyname in the registry. This allows users 
to assign their own sounds to system alerts and warnings, or to user actions, such as a mouse button 
click. Sounds that are associated with system alerts and warnings are called sound events.

To play a sound event, call PlaySound with the pszSound parameter pointing to a string containing the 
name of the registry entry that identifies the sound. For example, to play the sound associated with the 
"MouseClick" entry and to wait for the sound to complete before returning, use the following statement: 

PlaySound("MouseClick", NULL, SND_SYNC); 
 

If the specified registry entry or the waveform-audio file it identifies does not exist, or if the file does not fit 
into the available memory, PlaySound plays the default system sound.

The sound events that are predefined by the system can vary with the platform. The following list gives 
the sound events that are defined for all implementations of the Win32 API:

SystemAsterisk

SystemExclamation

SystemExit

SystemHand

SystemQuestion

SystemStart
 

If an application registers its own sound events, the user can configure the sound event by using the 
standard Control Panel interface. The application should register the sound event by using the standard 
registry functions; for more information, see Registry. The entries belong at the same position in the 
registry hierarchy as the rest of the sound events. This position varies with the Win32 implementation. 
The appropriate data value also varies with the implementation. 

The sndPlaySound function always searches the registry for a keyname matching lpszSound before 
attempting to load a file with this name. The PlaySound function accepts flags that specify the location of 
the sound.



Waveform-Audio Interface

This section documents the waveform-audio interface, which is used by applications that need the 
greatest possible control over audio devices. The functions and structures of this interface are named with 
the prefix "wave".



Devices and Data Types
This section describes working with waveform-audio devices, and includes information on how to open, 
close and query them for their capabilities. It also describes how to keep track of the devices in a system 
by using device handles and device identifiers.

Opening Waveform-Audio Output Devices
Use the waveOutOpen function to open a waveform-audio output device for playback. This function 
opens the device associated with the specified device identifier and returns a handle of the open device 
by writing the handle of a specified memory location. 

Some multimedia computers have multiple waveform-audio output devices. Unless you want to open a 
specific waveform-audio output device in a system, you should use the WAVE_MAPPER flag for the 
device identifier when you open a device. The waveOutOpen function chooses the device in the system 
that is best able to play the specified data format.

Querying Audio Devices
Windows provides the following functions to determine how many devices of a certain type are available 
in a system.

Function Description

auxGetNumDevs Retrieves the number of auxiliary output 
devices present in the system. 

WaveInGetNumDevs Retrieves the number of waveform-audio 
input devices present in the system. 

WaveOutGetNumDev
s 

Retrieves the number of waveform-audio 
output devices present in the system.

 

Audio devices are identified by a device identifier. The device identifier is determined implicitly from the 
number of devices present in a system. Device identifiers range from zero to one less than the number of 
devices present. For example, if there are two waveform-audio output devices in a system, valid device 
identifiers are 0 and 1.

After you determine how many devices of a certain type are present in a system, you can use one of the 
following functions to query the capabilities of each device. 

Function Description

auxGetDevCaps Retrieves the capabilities of a specified auxiliary 
output device.

waveInGetDevCaps Retrieves the capabilities of a specified 
waveform-audio input device.

waveOutGetDevCaps Retrieves the capabilities of a specified 
waveform-audio output device.

 

Each of these functions fills a structure with information about the capabilities of a specified device. The 
following table lists the structures that correspond to each of these functions.

Function Structure

auxGetDevCaps AUXCAPS

waveInGetDevCaps WAVEINCAPS

waveOutGetDevCaps WAVEOUTCAPS
 



Standard formats are listed in the dwFormats member of the WAVEOUTCAPS structure. Waveform-
audio devices can support nonstandard formats. To determine whether a particular format (standard or 
nonstandard) is supported by a device, you can call the waveOutOpen function with the 
WAVE_FORMAT_QUERY flag. This flag does not open the device. You specify the format in question in 
the WAVEFORMATEX structure pointed to by the pwfx parameter passed to waveOutOpen. For 
information about setting up this structure, see Devices and Data Types.

Waveform-audio output devices vary in the capabilities they support. The dwSupport member of the 
WAVEOUTCAPS structure indicates whether a device supports such capabilities as volume and pitch 
changes. 

Device Handles and Device Identifiers
Each function that opens an audio device specifies a device identifier, a pointer to a memory location, and 
some parameters that are unique to each type of device. The memory location is filled with a device 
handle. Use this device handle to identify the open audio device when calling other audio functions.

The difference between identifiers and handles for audio devices is subtle but important:

· Device identifiers are determined implicitly from the number of devices present in a system. This 
number is obtained by using the auxGetNumDevs, waveInGetNumDevs, or waveOutGetNumDevs 
function.

· Device handles are returned when device drivers are opened by using the waveInOpen or 
waveOutOpen function.

 

There are no functions that open or close auxiliary audio devices. Auxiliary audio devices need not be 
opened and closed like waveform-audio devices because there is no continuous data transfer associated 
with them. All auxiliary audio functions use device identifiers to identify devices.

Waveform-Audio Output Data Types
The following data types are defined for waveform-audio output functions.

Type Description

HWAVEOUT Handle to an open waveform-audio output 
device.

WAVEFORMATEX Structure that specifies the data formats 
supported by a particular waveform-audio input 
device. This structure is also usedfor waveform-
audio input devices.

WAVEHDR Structure used as a header for a block of 
waveform-audio input data. This structure is 
also used for waveform-audio input devices.

WAVEOUTCAPS Structure used to query the capabilities of a 
particular waveform-audio output device.

 

Specifying Waveform-Audio Data Formats
When you call the waveOutOpen function to open a device driver for playback or to query whether the 
driver supports a particular data format, use the pwfx parameter to specify a pointer to a 
WAVEFORMATEX structure containing the requested waveform-audio data format. The 
WAVEFORMATEX structure is an extended version of the WAVEFORMAT structure. It contains all the 
members of WAVEFORMAT, and adds two more: a wBitsPerSample member, which contains extra 
information required for the PCM (Pulse Code Modulation) format, and a cbSize member at the end. You 
can append data to the structure following cbSize as long as you fill cbSize with the size of the data. You 



can use the WAVEFORMATEX structure to describe PCM data, although you could also use the 
PCMWAVEFORMAT structure. When the waveform-audio format type is not PCM, you must use 
WAVEFORMATEX instead of WAVEFORMAT.

The outmoded WAVEFORMAT structure does not contain all the information required to describe the 
PCM format. The PCMWAVEFORMAT structure includes a WAVEFORMAT structure along with an 
additional member containing PCM-specific information. The PCMWAVEFORMAT structure has also 
been superseded by the WAVEFORMATEX structure.

There are also two clipboard formats you can use to represent audio data: CF_WAVE and CF_RIFF. Use 
the CF_WAVE format to represent data in one of the standard formats, such as 11 kHz or 22 kHz PCM. 
Use the CF_RIFF format to represent more complex data formats that cannot be represented as standard 
waveform-audio files. 

Writing Waveform-Audio Data
After successfully opening a waveform-audio output device driver, you can begin playing a sound. 
Windows provides the waveOutWrite function for sending data blocks to waveform-audio output devices.

Use the WAVEHDR structure to specify the waveform-audio data block you are sending using 
waveOutWrite. This structure contains a pointer to a locked data block, the length of the data block, and 
some flags. This data block must be prepared before you use it; for information about preparing a data 
block, see Audio Data Blocks.

After you send a data block to an output device by using waveOutWrite, you must wait until the device 
driver is finished with the data block before freeing it. If you are sending multiple data blocks, you must 
monitor the completion of data blocks to know when to send additional blocks. For more information 
about data blocks, see Audio Data Blocks.

PCM Waveform-Audio Data Format
The lpData member of the WAVEHDR structure points to the waveform-audio data samples. For 8-bit 
PCM data, each sample is represented by a single unsigned data byte. For 16-bit PCM data, each 
sample is represented by a 16-bit signed value. The following table summarizes the maximum, minimum, 
and midpoint values for PCM waveform-audio data.

Data format Maximum valueMinimum value Midpoint value

8-bit PCM 255 (0xFF) 0 128 (0x80)

16-bit PCM 32,767 (0x7FFF) - 32,768 
(0x8000)

0

 

PCM Data Packing
The order of the data bytes varies between 8-bit and 16-bit formats and between mono and stereo 
formats. The following list describes data packing for the different PCM waveform-audio data formats.

PCM 
waveform-
audio format

Description

8-bit mono Each sample is 1 byte that corresponds to a single 
audio channel. Sample 1 is followed by samples 2, 3, 
4, and so on. 

8-bit stereo Each sample is 2 bytes. Sample 1 is followed by 
samples 2, 3, 4, and so on. For each sample, the first 
byte is channel 0 (the left channel) and the second 
byte is channel 1 (the right channel).



16-bit mono Each sample is 2 bytes. Sample 1 is followed by 
samples 2, 3, 4, and so on. For each sample, the first 
byte is the low-order byte of channel 0 and the second 
byte is the high-order byte of channel 0.

16-bit stereo Each sample is 4 bytes. Sample 1 is followed by 
samples 2, 3, 4, and so on. For each sample, the first 
byte is the low-order byte of channel 0 (left channel); 
the second byte is the high-order byte of channel 0; 
the third byte is the low-order byte of channel 1 (right 
channel); and the fourth byte is the high-order byte of 
channel 1.

 

Closing Waveform-Audio Output Devices
After waveform-audio playback is complete, call waveOutClose to close the output device. If 
waveOutClose is called while a waveform-audio file is playing, the close operation fails and the function 
returns an error code indicating that the device was not closed. If you do not want to wait for playback to 
end before closing the device, call the waveOutReset function before closing. This ends playback and 
allows the device to be closed. Be sure to use the waveOutUnprepareHeader function to clean up the 
preparation on all data blocks before closing the device. 



Playing Waveform-Audio Files
It's easy to play sounds in your application by using the functions, macros, and messages discussed in 
this overview. The techniques and elements documented here operate only on waveform audio; that is, 
digitized representations of a sound's physical shape. If you want to add music to your application, and 
you do not care about other kinds of sounds, you might want to use MIDI. For a discussion of a simple 
playback MIDI implementation, see the MCIWnd Window Class. For a discussion of the MIDI interface, 
see Musical Instrument Digital Interface (MIDI).

You can use the following functions to play waveform audio in your application in a single function call:

Function Description

MessageBeep Plays the sound that corresponds to a specified 
system-alert level. 

sndPlaySound Plays the sound that corresponds to the system 
sound entered in the registry or the contents of the 
specified filename. 

PlaySound Provides all the functionality of sndPlaySound and 
can directly access resources.

 

The MessageBeep function is a standard part of the Win32 API; because its capabilities are very limited 
and it is documented elsewhere, it is not discussed here.

The functions listed provide the following methods of playing waveform audio:

· Playing waveform-audio files associated with system-alert levels

· Playing waveform-audio files specified by entries in the registry

· Playing in-memory WAVE resources

· Playing waveform-audio files stored on a hard disk or compact disc - read-only memory (CD-ROM)
 

The sndPlaySound and PlaySound functions load an entire waveform-audio file into memory and, in 
effect, limit the size of file they can play. Use sndPlaySound and PlaySound to play waveform-audio 
files that are relatively small ¾ up to about 100K. These two functions also require the sound data to be in 
a format that is playable by one of the installed waveform-audio drivers, including the wave mapper. 

For larger sound files, use the Media Control Interface (MCI) services. For more information, see MCI.

Using Window Messages to Manage Waveform-Audio Playback
The following messages can be sent to a window procedure function for managing waveform-audio 
playback.

Message Description

MM_WOM_CLOSE Sent when the device is closed by using the 
waveOutClose function.

MM_WOM_DONE Sent when the device driver is finished with a 
data block sent by using the waveOutWrite 
function.

MM_WOM_OPEN Sent when the device is opened by using the 
waveOutOpen function.

 

A wParam and lParam parameter is associated with each of these messages. The wParam parameter 
always specifies a handle of the open waveform-audio device. For the MM_WOM_DONE message, 



lParam specifies a pointer to a WAVEHDR structure that identifies the completed data block. The lParam 
parameter is unused for the MM_WOM_CLOSE and MM_WOM_OPEN messages.

The most useful message is probably MM_WOM_DONE. When this message signals that playback of a 
data block is complete, you can clean up and free the data block. Unless you need to allocate memory or 
initialize variables, you probably do not need to process the MM_WOM_OPEN and MM_WOM_CLOSE 
messages.

The callback function for waveform-audio output devices is supplied by the application. For information 
about this callback function, see the waveOutProc function. 

Retrieving the Current Playback Position
You can monitor the current playback position within the file while waveform audio is playing by using the 
waveOutGetPosition function.

For waveform-audio devices, samples are the preferred time format in which to represent the current 
position. Thus, the current position of a waveform-audio device is specified as the number of samples for 
one channel from the beginning of the waveform-audio file. To query the current position of a waveform-
audio device, set the wType member of the MMTIME structure to TIME_SAMPLES and pass this 
structure to waveOutGetPosition.

The MMTIME structure can represent time in one or more different formats, including milliseconds, 
samples, SMPTE (Society of Motion Picture and Television Engineers), and MIDI song pointer formats. 
The wType member specifies the format used to represent time. Before calling a function that uses the 
MMTIME structure, you must set wType to indicate your requested time format. Be sure to check wType 
after the call to see whether the requested time format is supported. If the requested time format is not 
supported, the device driver specifies the time in an alternate time format and changes the wType 
member to the selected time format. 

For more information about the MMTIME structure, see Multimedia Timers.

Stopping, Pausing, and Restarting Playback
You can stop or pause playback while waveform audio is playing. After playback has been paused, you 
can restart it. Windows provides the following functions for controlling waveform-audio playback. 

Function Description

waveOutPause Pauses playback on a waveform-audio output 
device.

waveOutReset Stops playback on a waveform-audio output 
device and marks all pending data blocks as 
done.

WaveOutRestart Resumes playback on a paused waveform-
audio output device.

 

Pausing a waveform-audio device by using waveOutPause might not be instantaneous; the driver may 
finish playing the current block before pausing playback.

Generally, as soon as the first waveform-audio data block is sent by using the waveOutWrite function, 
the waveform-audio device begins playing. If you do not want the sound to start playing immediately, call 
waveOutPause before calling waveOutWrite. Then, when you want to begin playing waveform-audio 
data, call waveOutRestart.

You cannot use waveOutRestart to restart a device that has been stopped with waveOutReset; you 
must use waveOutWrite to send the first data block to resume playback on the device. 



Looping Playback
Looping a sound is controlled by the dwLoops and dwFlags members in the WAVEHDR structures 
passed to the device with the waveOutWrite function. Use the WHDR_BEGINLOOP and 
WHDR_ENDLOOP flags in the dwFlags member to specify the beginning and ending data blocks for 
looping.

To loop a single data block, specify both flags for the same block. To specify the number of loops, use the 
dwLoops member in the WAVEHDR structure for the first block in the loop.

You can call the waveOutBreakLoop function to stop a looping sound. 

Changing the Volume of Waveform-Audio Playback
Windows provides the following functions to query and set the volume level of waveform-audio output 
devices.

Function Description

waveOutGetVolume Retrieves the current volume level of the specified 
waveform-audio output device.

waveOutSetVolume Sets the volume level of the specified waveform-
audio output device.

 

Not all waveform-audio devices support volume changes. Some devices support individual volume control 
on both the left and right channels. For information about how to determine the volume-control 
capabilities of waveform-audio devices, see Devices and Data Types.

Some applications allow the user to control the volume for all audio devices in a system. (Many 
applications of this type use the audio mixer services; for more information, see Audio Mixers.) Unless 
your application is capable of this kind of master volume control, you should open an audio device before 
changing its volume. You should also query the volume level before changing it and restore the volume 
level to its previous level as soon as possible.

Volume is specified in a doubleword value. When the audio format is stereo, the upper 16 bits specify the 
relative volume of the right channel and the lower 16 bits specify the relative volume of the left channel. 
For devices that do not support left- and right-channel volume control, the lower 16 bits specify the 
volume level, and the upper 16 bits are ignored. 

Volume-level values range from 0x0 (silence) to 0xFFFF (maximum volume) and are interpreted 
logarithmically. The perceived volume increase is the same when increasing the volume level from 
0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

Changing Pitch and Playback Rate
Some waveform-audio output devices can vary the pitch and the playback rate of waveform-audio data. 
Not all waveform-audio devices support pitch and playback-rate changes. For information about how to 
determine whether a particular waveform-audio device supports pitch and playback rate changes, see 
Devices and Data Types. 

The differences between changing pitch and playback rate are as follows:

· Changing the playback rate is performed by the device driver and does not require specialized 
hardware. The sample rate is not changed, but the driver interpolates by skipping or synthesizing 
samples. For example, if the playback rate is changed by a factor of two, the driver skips every other 
sample.

· Changing the pitch requires specialized hardware. The playback rate and sample rate are not 
changed.



 

Windows provides the following functions to query and set waveform-audio pitch and playback rates.

Function Description

waveOutGetPitch Retrieves the pitch for the specified 
waveform-audio output device.

waveOutGetPlaybackRate Retrieves the playback rate for the 
specified waveform-audio output device.

waveOutSetPitch Sets the pitch for the specified 
waveform-audio output device.

waveOutSetPlaybackRate Sets the playback rate for the specified 
waveform-audio output device.

 

The pitch and playback rates are changed by a factor specified with a fixed-point number packed into a 
doubleword value. The upper 16 bits specify the integer part of the number; the lower 16 bits specify the 
fractional part. For example, the value 1.5 is represented as 0x00018000L. The value 0.75 is represented 
as 0x0000C000L. A value of 1.0 (0x00010000) means the pitch or playback rate is unchanged.



Recording Waveform Audio
If the MCI waveform-audio recording services do not meet the specifications of your application, you can 
handle waveform-audio recording using the waveform-audio services. For more information, see MCI.

Waveform-Audio Input Data Types
The following data types are defined for waveform-audio input functions:

Type Description

HWAVEIN Handle of an open waveform-audio input device.

WAVEFORMATEX Structure that specifies the data formats 
supported by a particular waveform-audio input 
device. This structure is also used for waveform-
audio output devices.

WAVEHDR Structure used as a header for a block of 
waveform-audio input data. This structure is also 
used for waveform-audio output devices.

WAVEINCAPS Structure used to inquire about the capabilities of 
a particular waveform-audio input device.

 

Querying Waveform-Audio Input Devices
Before recording waveform audio, you should call the waveInGetDevCaps function to determine the 
waveform-audio input capabilities of the system. This function fills a WAVEINCAPS structure with 
information about the capabilities of a specified device. This information includes the manufacturer and 
product identifiers, a product name for the device, and the version number of the device driver. In 
addition, the WAVEINCAPS structure provides information about the standard waveform-audio formats 
that the device supports. 

Opening Waveform-Audio Input Devices
Use the waveInOpen function to open a waveform-audio input device for recording. This function opens 
the device associated with the specified device identifier and returns a handle of the open device by 
writing the handle of a specified memory location.

Some multimedia computers have multiple waveform-audio input devices. Unless you know you want to 
open a specific waveform-audio input device in a system, you should use the WAVE_MAPPER constant 
for the device identifier when you open a device. The waveInOpen function will choose the device in the 
system best able to record in the specified data format.

Managing Waveform-Audio Recording
After you open a waveform-audio input device, you can begin recording waveform-audio data. Waveform-
audio data is recorded into application-supplied buffers specified by a WAVEHDR structure. These data 
blocks must be prepared before they are used; for more information, see Audio Data Blocks.

Windows provides the following functions to manage waveform-audio recording.

Function Description

waveInAddBuffer Sends a buffer to the device driver so it can be filled 
with recorded waveform-audio data.

waveInReset Stops waveform-audio recording and marks all 
pending buffers as done.

waveInStart Starts waveform-audio recording.

waveInStop Stops waveform-audio recording.



 

Use the waveInAddBuffer function to send buffers to the device driver. As the buffers are filled with 
recorded waveform-audio data, the application is notified with a window message, callback message, 
thread message, or event, depending on the flag specified when the device was opened.

Before you begin recording by using waveInStart, you should send at least one buffer to the driver, or 
incoming data could be lost. 

Before closing the device using waveInClose, call waveInReset to mark any pending data blocks as 
being done.

Using Window Messages to Manage Waveform-Audio Recording
The following messages can be sent to a window procedure function for managing waveform-audio 
recording.

Message Description

MM_WIM_CLOSE Sent when the device is closed by using the 
waveInClose function.

MM_WIM_DATA Sent when the device driver is finished with a 
buffer sent by using the waveInAddBuffer 
function.

MM_WIM_OPEN Sent when the device is opened by using the 
waveInOpen function.

 

The lParam parameter of MM_WIM_DATA specifies a pointer to a WAVEHDR structure that identifies the 
buffer. This buffer might not be completely filled with waveform-audio data; recording can stop before the 
buffer is filled. Use the dwBytesRecorded member of the WAVEHDR structure to determine the amount 
of valid data present in the buffer.

The most useful message is probably MM_WIM_DATA. When your application finishes using the data 
block sent by the device driver, you can clean up and free the data block. Unless you need to allocate 
memory or initialize variables, you probably do not need to use the MM_WIM_OPEN and 
MM_WIM_CLOSE messages. 

The callback function for waveform-audio input devices is supplied by the application. For information 
about this callback function, see the waveInProc function. 



Auxiliary Audio Interface

Auxiliary audio devices are audio devices whose output is mixed with the MIDI and waveform-audio 
output devices in a multimedia computer. An example of an auxiliary audio device is the CD audio output 
from a CD-ROM drive.



Querying Auxiliary Audio Devices
Not all multimedia systems have auxiliary audio support. You can use the auxGetNumDevs function to 
determine the number of controllable auxiliary devices present in a system.

To get information about a particular auxiliary audio device, use the auxGetDevCaps function. This 
function fills an AUXCAPS structure with information about the capabilities of a specified device. This 
information includes the manufacturer and product identifiers, a product name for the device, and the 
device-driver version number.



Changing the Volume of Auxiliary Audio-Devices
Windows provides the following functions to query and set the volume for auxiliary audio devices. 

Function Description

auxGetVolume Retrieves the current volume setting of the 
specified auxiliary output device.

auxSetVolume Sets the volume of the specified auxiliary output 
device.

 

Not all auxiliary audio devices support volume changes. Some devices can support individual volume 
changes on both the left and the right channels. 

Volume is specified in a doubleword value, as with the waveform-audio and MIDI volume-control 
functions. When the audio format is stereo, the upper 16 bits specify the relative volume of the right 
channel and the lower 16 bits specify the relative volume of the left channel. For devices that do not 
support left- and right-channel volume control, the lower 16 bits specify the volume level, and the upper 
16 bits are ignored. 

Volume-level values range from 0x0 (silence) to 0xFFFF (maximum volume) and are interpreted 
logarithmically. The perceived volume increase is the same when increasing the volume level from 
0x5000 to 0x6000 as it is from 0x4000 to 0x5000.



Audio Data Blocks

The waveInAddBuffer and waveOutWrite functions require applications to allocate data blocks to pass 
to the device drivers for recording or playback purposes. Both of these functions use the WAVEHDR 
structure to describe its data block. 

Before using one of these functions to pass a data block to a device driver, you must allocate memory for 
the data block and the header structure that describes the data block. The headers can be prepared and 
unprepared by using the following functions.

Function Description

waveInPrepareHeader Prepares a waveform-audio input data 
block.

waveInUnprepareHeader Cleans up the preparation on a 
waveform-audio input data block.

waveOutPrepareHeader Prepares a waveform-audio output data 
block.

waveOutUnprepareHeader Cleans up the preparation on a 
waveform-audio output data block.

 

Before you pass an audio data block to a device driver, you must prepare the data block by passing it to 
either waveInPrepareHeader or waveOutPrepareHeader. When the device driver is finished with the 
data block and returns it, you must clean up this preparation by passing the data block to either 
waveInUnprepareHeader or waveOutUnprepareHeader before any allocated memory can be freed.

Unless the waveform-audio input and output data is small enough to be contained in a single data block, 
applications must continually supply the device driver with data blocks until playback or recording is 
complete. 

Even if a single data block is used, an application must be able to determine when a device driver is 
finished with the data block so the application can free the memory associated with the data block and 
header structure. There are several ways to determine when a device driver is finished with a data block:

· By specifying a callback function to receive a message sent by the driver when it is finished with a 
data block

· By using an event callback

· By specifying a window or thread to receive a message sent by the driver when it is finished with a 
data block

· By polling the WHDR_DONE bit in the dwFlags member of the WAVEHDR structure sent with each 
data block

 

If an application does not get a data block to the device driver when needed, there can be an audible gap 
in playback or a loss of incoming recorded information. This requires at least a double-buffering scheme 
¾ staying at least one data block ahead of the device driver.

The following sections describe ways to determine when a device driver is finished with a data block:

· Using a callback function to process driver messages

· Using an event callback to process driver messages

· Using a window or thread to process driver messages

· Managing data blocks by polling



Using a Callback Function to Process Driver Messages
You can write your own callback function to process messages sent by the device driver. To use a 
callback function, specify the CALLBACK_FUNCTION flag in the fdwOpen parameter and the address of 
the callback in the dwCallback parameter of the waveInOpen or waveOutOpen function.

Messages sent to a callback function are similar to messages sent to a window, except they have two 
DWORD parameters instead of a UINT and a DWORD parameter. For details on these messages, see 
Playing Waveform-Audio Files.

To pass instance data from an application to a callback function, use one of the following techniques:

· Pass the instance data using the dwInstance parameter of the function that opens the device driver.

· Pass the instance data using the dwUser member of the WAVEHDR structure that identifies an audio 
data block being sent to a device driver.

 

If you need more than 32 bits of instance data, pass a pointer to a structure containing the additional 
information. 



Using an Event Callback to Process Driver Messages
To use an event callback, use the CreateEvent function to retrieve the handle of an event. In the call to 
the waveOutOpen function, specify CALLBACK_EVENT for the fdwOpen parameter. After calling the 
waveOutPrepareHeader function but before sending waveform-audio data to the device, create a 
nonsignaled event by calling the ResetEvent function, specifying the event handle retrieved by 
CreateEvent. Then, inside a loop that checks whether the WHDR_DONE bit is set in the dwFlags 
member of the WAVEHDR structure, call the WaitForSingleObject function, specifying as parameters 
the event handle and a time-out value of INFINITE.

Because event callbacks do not receive specific close, done, or open notifications, an application might 
have to check the status of the process it is waiting for after the event occurs. It is possible that a number 
of tasks could have been completed by the time WaitForSingleObject returns.



Using a Window or Thread to Process Driver Messages
To use a window callback function, specify the CALLBACK_WINDOW flag in the fdwOpen parameter and 
a window handle in the low-order word of the dwCallback parameter of the waveInOpen or 
waveOutOpen function. Driver messages will be sent to the window procedure for the window identified 
by the handle in dwCallback.

Similarly, to use a thread callback, specify CALLBACK_THREAD and a thread handle in the call to 
waveInOpen or waveOutOpen. In this case, messages are posted to the specified thread instead of to a 
window.

Messages sent to the window or thread callback are specific to the audio device type used. For more 
information about these messages, see Playing Waveform-Audio Files.



Managing Data Blocks by Polling
In addition to using a callback function, you can poll the dwFlags member of a WAVEHDR structure to 
determine when an audio device is finished with a data block. Sometimes it is better to poll dwFlags than 
to wait for another mechanism to receive messages from the drivers. For example, after you call the 
waveOutReset function to release pending data blocks, you can immediately poll to be sure that the data 
blocks have been released before calling waveOutUnprepareHeader and freeing the memory for the 
data block.

You can use the WHDR_DONE flag to test the dwFlags member. As soon as the WHDR_DONE flag is 
set in the dwFlags member of the WAVEHDR structure, the driver is finished with the data block.



Handling Errors with Audio Functions

The waveform-audio and auxiliary-audio functions return a nonzero value when an error occurs. Windows 
provides functions that convert these error values into textual descriptions of the errors. The application 
must still examine the error values to determine how to proceed, but textual descriptions of errors can be 
used in dialog boxes that describe errors to users.

You can use the following functions to retrieve textual descriptions of audio error values:

Function Description

waveInGetErrorText Retrieves a textual description of a specified 
waveform-audio input error.

waveOutGetErrorText Retrieves a textual description of a specified 
waveform-audio output error.

 

The only audio functions that do not return error values are auxGetNumDevs,    waveInGetNumDevs, 
and waveOutGetNumDevs. These functions return zero if no devices are present in a system or if they 
encounter any errors.



Using Waveform and Auxiliary Audio
This section demonstrates implementing waveform and auxiliary audio in your application. The following 
topics are discussed:

· Playing WAVE resources

· Determining nonstandard format support

· Processing the MM_WOM_DONE message
 



Playing WAVE Resources

You can use the PlaySound function to play a sound that is stored as a resource. Although this is also 
possible using the sndPlaySound function, sndPlaySound requires that you find, load, lock, unlock, and 
free the resource; PlaySound achieves all of this with a single line of code.

PlaySound Example
PlaySound("SoundName", hInst, SND_RESOURCE | SND_ASYNC); 
 

sndPlaySound Example
The SND_MEMORY flag indicates that the lpszSoundName parameter is a pointer to an in-memory 
image of the WAVE file. To include a WAVE file as a resource in an application, add the following entry to 
the application's resource script (.RC) file. 

soundName WAVE c:\sounds\bells.wav 
 

The name soundName is a placeholder for a name that you supply to refer to this WAVE resource. WAVE 
resources are loaded and accessed just like other application-defined Windows resources. The 
PlayResource function in the following example plays a specified WAVE resource. 

BOOL PlayResource(LPSTR lpName) 
{ 
    BOOL bRtn; 
    LPSTR lpRes; 
    HANDLE hResInfo, hRes; 
 
    // Find the WAVE resource. 
 
    hResInfo = FindResource(hInst, lpName, "WAVE"); 
    if (hResInfo == NULL) 
        return FALSE; 
 
    // Load the WAVE resource. 
 
    hRes = LoadResource(hInst, hResInfo); 
    if (hRes == NULL) 
        return FALSE; 
 
    // Lock the WAVE resource and play it. 
 
    lpRes = LockResource(hRes); 
    if (lpRes != NULL) { 
        bRtn = sndPlaySound(lpRes, SND_MEMORY | SND_SYNC | 
            SND_NODEFAULT); 
        UnlockResource(hRes); 
    } 
    else 
        bRtn = 0; 
 
    // Free the WAVE resource and return success or failure. 
 
    FreeResource(hRes); 
    return bRtn; 
} 



 
To play a WAVE resource by using this function, pass to the function a pointer to a string containing the 
name of the resource, as shown in the following example. 

PlayResource("soundName"); 
 



Using the PCMWAVEFORMAT Structure

For PCM audio data, use the PCMWAVEFORMAT structure to specify the data format. The following 
example shows how to set up a PCMWAVEFORMAT structure for 11.025 kilohertz (kHz) 8-bit mono and 
for 44.1 kHz 16-bit stereo. After setting up PCMWAVEFORMAT, the example calls the 
IsFormatSupported function to verify that the PCM waveform output device supports the format. The 
source code for IsFormatSupported is shown in an example in Determining Nonstandard Format Support. 

UINT wReturn; 
PCMWAVEFORMAT pcmWaveFormat; 
 
// Set up PCMWAVEFORMAT for 11 kHz 8-bit mono. 
 
pcmWaveFormat.wf.wFormatTag = WAVE_FORMAT_PCM; 
pcmWaveFormat.wf.nChannels = 1; 
pcmWaveFormat.wf.nSamplesPerSec = 11025L; 
pcmWaveFormat.wf.nAvgBytesPerSec = 11025L; 
pcmWaveFormat.wf.nBlockAlign = 1; 
pcmWaveFormat.wBitsPerSample = 8; 
 
// See if format is supported by any device in system. 
 
wReturn = IsFormatSupported(&pcmWaveFormat, WAVE_MAPPER); 
 
// Report results. 
 
if (wReturn == 0) 
     MessageBox(hMainWnd, "11 kHz 8-bit mono is supported.", 
       "", MB_ICONINFORMATION); 
else if (wReturn == WAVERR_BADFORMAT) 
     MessageBox(hMainWnd, "11 kHz 8-bit mono NOT supported.", 
       "", MB_ICONINFORMATION); 
else 
     MessageBox(hMainWnd, "Error opening waveform device.", 
       "Error", MB_ICONEXCLAMATION); 
 
// Set up PCMWAVEFORMAT for 44.1 kHz 16-bit stereo. 
 
pcmWaveFormat.wf.wFormatTag = WAVE_FORMAT_PCM; 
pcmWaveFormat.wf.nChannels = 2; 
pcmWaveFormat.wf.nSamplesPerSec = 44100L; 
pcmWaveFormat.wf.nAvgBytesPerSec = 176400L; 
pcmWaveFormat.wf.nBlockAlign = 4; 
pcmWaveFormat.wBitsPerSample = 32; 
 
// See if format is supported by any device in the system. 
 
wReturn = IsFormatSupported(&pcmWaveFormat, WAVE_MAPPER); 
 
/ Report results. 
 
if (wReturn == 0) 
    MessageBox(hMainWnd, "44.1 kHz 16-bit stereo is supported.", 
      "", MB_ICONINFORMATION); 



else if (wReturn == WAVERR_BADFORMAT) 
    MessageBox(hMainWnd, "44.1 kHz 16-bit stereo NOT supported.", 
      "", MB_ICONINFORMATION); 
else 
    MessageBox(hMainWnd, "Error opening waveform device.", 
      "Error", MB_ICONEXCLAMATION); 
 



Determining Nonstandard Format Support

To see whether a device supports a particular format (standard or nonstandard), you can call the 
waveOutOpen function with the WAVE_FORMAT_QUERY flag. The following example uses this 
technique to determine whether a waveform-audio device supports a specified format.

// Determines whether the specified waveform-audio output device 
// supports a specified waveform-audio format. Returns 
// MMSYSERR_NOERROR if the format is supported, WAVEERR_BADFORMAT if 
// the format is not supported, and one of the other MMSYSERR_ error 
// codes if there are other errors encountered in opening the 
// specified waveform-audio device. 
 
MMRESULT IsFormatSupported(LPWAVEFORMATEX pwfx, UINT uDeviceID) 
{ 
    return (waveOutOpen( 
        NULL,                 // ptr can be NULL for query 
        uDeviceID,            // the device identifier 
        pwfx,                 // defines requested format 
        NULL,                 // no callback 
        NULL,                 // no instance data 
        WAVE_FORMAT_QUERY));  // query only, do not open device 
} 
 

This technique for determining nonstandard format support also applies to waveform-audio input devices. 
The only difference is that the waveInOpen function is used in place of waveOutOpen to query for format 
support. 

To determine whether a particular waveform-audio data format is supported by any of the waveform-audio 
devices in a system, use the technique illustrated in the previous example, but specify the 
WAVE_MAPPER constant for the uDeviceID parameter. 



Example of Writing Waveform Data

The following example illustrates the steps required to allocate and set up a WAVEHDR structure and 
write a block of data to a waveform output device. 

 
// Global variables. 

HANDLE hData  = NULL;  // handle of waveform data memory 
HPSTR  lpData = NULL;  // pointer to waveform data memory 
 
void WriteWaveData(void) 
{ 
    HWAVEOUT    hWaveOut; 
    HGLOBAL     hWaveHdr; 
    LPWAVEHDR   lpWaveHdr; 
    HMMIO       hmmio; 
    UINT        wResult; 
    HANDLE      hFormat; 
    WAVEFORMAT  *pFormat; 
    DWORD       dwDataSize; 

    // Open a waveform device for output using window callback. 

    if (waveOutOpen((LPHWAVEOUT)&hWaveOut, WAVE_MAPPER, 
                    (LPWAVEFORMAT)pFormat, 
                    (LONG)hwndApp, 0L, CALLBACK_WINDOW)) 
    { 
        MessageBox(hwndApp, 
                   "Failed to open waveform output device.", 
                   NULL, MB_OK | MB_ICONEXCLAMATION); 
        LocalUnlock(hFormat); 
        LocalFree(hFormat); 
        mmioClose(hmmio, 0); 
        return; 
    } 
 
    // Allocate and lock memory for the waveform data. 
 
    hData = GlobalAlloc(GMEM_MOVEABLE | GMEM_SHARE, dwDataSize ); 
    if (!hData) 
    { 
        MessageBox(hwndApp, "Out of memory.", 
                   NULL, MB_OK | MB_ICONEXCLAMATION); 
        mmioClose(hmmio, 0); 
        return; 
    } 
    if ((lpData = GlobalLock(hData)) == NULL) 
    { 
        MessageBox(hwndApp, "Failed to lock memory for data chunk.", 
                   NULL, MB_OK | MB_ICONEXCLAMATION); 
        GlobalFree(hData); 
        mmioClose(hmmio, 0); 
        return; 



    } 
 
    // Read the waveform data subchunk. 
 
    if(mmioRead(hmmio, (HPSTR) lpData, dwDataSize) != (LRESULT)dwDataSize) 
    { 
        MessageBox(hwndApp, "Failed to read data chunk.", 
                   NULL, MB_OK | MB_ICONEXCLAMATION); 
        GlobalUnlock(hData); 
        GlobalFree(hData); 
        mmioClose(hmmio, 0); 
        return; 
    } 
 
    // Allocate and lock memory for the header. 

    hWaveHdr = GlobalAlloc(GMEM_MOVEABLE | GMEM_SHARE, 
        (DWORD) sizeof(WAVEHDR)); 
    if (hWaveHdr == NULL) 
    { 
        GlobalUnlock(hData); 
        GlobalFree(hData); 
        MessageBox(hwndApp, "Not enough memory for header.", 
            NULL, MB_OK | MB_ICONEXCLAMATION); 
        return; 
    } 
 
    lpWaveHdr = (LPWAVEHDR) GlobalLock(hWaveHdr); 
    if (lpWaveHdr == NULL) 
    { 
        GlobalUnlock(hData); 
        GlobalFree(hData); 
        MessageBox(hwndApp, 
            "Failed to lock memory for header.", 
            NULL, MB_OK | MB_ICONEXCLAMATION); 
        return; 
    } 
 
    // After allocation, set up and prepare header. 
 
    lpWaveHdr->lpData = lpData; 
    lpWaveHdr->dwBufferLength = dwDataSize; 
    lpWaveHdr->dwFlags = 0L; 
    lpWaveHdr->dwLoops = 0L; 
    waveOutPrepareHeader(hWaveOut, lpWaveHdr, sizeof(WAVEHDR)); 
 
    // Now the data block can be sent to the output device. The 
    // waveOutWrite function returns immediately and waveform 
    // data is sent to the output device in the background. 
 
    wResult = waveOutWrite(hWaveOut, lpWaveHdr, sizeof(WAVEHDR)); 
    if (wResult != 0) 
    { 
        waveOutUnprepareHeader(hWaveOut, lpWaveHdr, 
                               sizeof(WAVEHDR)); 



        GlobalUnlock( hData); 
        GlobalFree(hData); 
        MessageBox(hwndApp, "Failed to write block to device", 
                   NULL, MB_OK | MB_ICONEXCLAMATION); 
        return; 
    } 
} 
 



Processing the MM_WOM_DONE Message

The following example shows how to process the MM_WOM_DONE message. This example assumes 
the application does not play multiple data blocks, so it can close the output device after playing a single 
data block.

// WndProc--Main window procedure. 
LRESULT FAR PASCAL WndProc(HWND hWnd, UINT msg, WPARAM wParam, 
    LPARAM lParam) 
{ 
switch (msg) 
{ 
    case MM_WOM_DONE: 
 
    // A waveform-audio data block has been played and 
    // can now be freed. 
    waveOutUnprepareHeader((HWAVEOUT) wParam, 
        (LPWAVEHDR) lParam, sizeof(WAVEHDR) ); 
  
    // Free hData memory. 
  
    waveOutClose((HWAVEOUT) wParam); 
    break; 
    } 
    return DefWindowProc(hWnd, msg, wParam, lParam); 
} 
 



Waveform Audio Reference
This section describes the functions, structures, and messages associated with waveform audio. These 
elements are grouped as follows.

Auxiliary Devices
AUXCAPS
auxGetDevCaps
auxGetNumDevs
auxGetVolume
auxOutMessage
auxSetVolume 

Easy Playback
PlaySound
sndPlaySound 

Errors
waveInGetErrorText
waveOutGetErrorText 

Opening and Closing
PCMWAVEFORMAT
MM_WIM_CLOSE
MM_WIM_OPEN
MM_WOM_CLOSE
MM_WOM_OPEN
WAVEFORMAT
WAVEFORMATEX
waveInClose
waveInProc
waveInOpen
waveOutClose
waveOutProc
waveOutOpen
WIM_CLOSE
WIM_OPEN
WOM_CLOSE
WOM_OPEN

Pitch
waveOutGetPitch
waveOutSetPitch 

Playback Rate
waveOutGetPlaybackRate
waveOutSetPlaybackRate 

Playback Progress
MM_WOM_DONE
waveOutBreakLoop
waveOutPause



waveOutReset
waveOutRestart
WOM_DONE 

Playing
MM_WOM_DONE
WAVEHDR
waveOutPrepareHeader
waveOutUnprepareHeader
waveOutWrite
WOM_DONE 

Querying a Device
WAVEINCAPS
waveInGetDevCaps
waveInGetNumDevs
WAVEOUTCAPS
waveOutGetDevCaps
waveOutGetNumDevs 

Recording
MM_WIM_DATA
waveInAddBuffer
waveInPrepareHeader
waveInReset
waveInStart
waveInStop
waveInUnprepareHeader
WIM_DATA 

Retrieving Device Identifiers
waveInGetID
waveOutGetID 

Retrieving the Current Position
waveInGetPosition
waveOutGetPosition 

Sending Custom Messages
waveInMessage
waveOutMessage 

Volume
waveOutGetVolume
waveOutSetVolume 



Waveform Functions

The following functions are used with waveform audio.

auxGetDevCaps
auxGetNumDevs
auxGetVolume
auxOutMessage
auxSetVolume
PlaySound
sndPlaySound
waveInAddBuffer
waveInClose
waveInGetDevCaps
waveInGetErrorText
waveInGetID
waveInGetNumDevs
waveInGetPosition
waveInMessage
waveInOpen
waveInPrepareHeader
waveInProc
waveInReset
waveInStart
waveInStop
waveInUnprepareHeader
waveOutBreakLoop
waveOutClose
waveOutGetDevCaps
waveOutGetErrorText
waveOutGetID
waveOutGetNumDevs
waveOutGetPitch
waveOutGetPlaybackRate
waveOutGetPosition
waveOutGetVolume
waveOutMessage
waveOutOpen
waveOutPause
waveOutPrepareHeader
waveOutProc
waveOutReset
waveOutRestart
waveOutSetPitch
waveOutSetPlaybackRate
waveOutSetVolume
waveOutUnprepareHeader
waveOutWrite



Waveform Structures

PCMWAVEFORMAT
WAVEFILTER
WAVEFORMAT
WAVEFORMATEX
WAVEHDR
WAVEINCAPS
WAVEOUTCAPS



Waveform Messages

MM_WIM_CLOSE
MM_WIM_DATA
MM_WIM_OPEN
MM_WOM_CLOSE
MM_WOM_DONE
MM_WOM_OPEN
WIM_CLOSE
WIM_DATA
WIM_OPEN
WOM_CLOSE
WOM_DONE
WOM_OPEN

 

 



Musical Instrument Digital Interface 
(MIDI)

The Musical Instrument Digital Interface (MIDI) is a protocol and set of commands for storing and 
transmitting information about music. MIDI output devices interpret this information and use it to 
synthesize music.



About MIDI
The Microsoft Win32 application programming interface (API) provides the following methods for 
applications to work with MIDI data: 

· The Media Control Interface (MCI). Although the simplest way to play a MIDI file is to use the 
MCIWnd window class, you can also use MCI commands to create a customized interface to a MIDI 
device. For more information about the MCIWnd window class, see MCIWnd Window Class. For 
more information about MCI, see MCI, or Media Control Interface (MCI).

· Stream buffers. This format allows an application to manipulate buffers of time-stamped MIDI data for 
playback. Stream buffers are useful to applications that require more precise control over output than 
MCI offers.

· MIDI services. Applications that need the most precise control of MIDI data typically use these low-
level services.

 

This overview discusses each of these methods and provides an overview of the the MIDI Mapper. 



The MIDI Mapper

The MIDI Mapper's standard patch services provide device-independent MIDI file playback for 
applications. The MIDI Mapper can be used with the MCI MIDI sequencer or with low-level MIDI output 
services. 



MIDI Notational Conventions
Unless stated otherwise, all references to MIDI channel numbers use the logical channel numbers 1 
through 16. These logical channel numbers correspond to the physical channel numbers 0 through 15 
that are actually part of the MIDI message. All references to MIDI program-change and key values use 
the physical values 0 through 127. All numbers are decimal unless preceded by 0x prefix, in which case 
they are hexadecimal. 

In the discussion of the MIDI Mapper, the term source refers to the input side of the MIDI Mapper. The 
term destination refers to the output side of the MIDI Mapper. For example, a source channel is the MIDI 
channel of a message sent to the MIDI Mapper, and a destination channel is the MIDI channel of a 
message sent from the MIDI Mapper to an output device. 



The MIDI Mapper and Windows
The MIDI Mapper is part of the system software. The following illustration shows how the MIDI Mapper 
relates to other elements of the audio services. 

{ewc msdncd, EWGraphic, bsd23538 0 /a "SDK_A01.WMF"}

From the viewpoint of an application, the MIDI Mapper looks like another MIDI output device. The MIDI 
Mapper receives messages sent to it by the low-level MIDI output functions midiOutShortMsg and 
midiOutLongMsg. The MIDI Mapper modifies these messages and redirects them to a MIDI output 
device according to the current MIDI setup map. The current MIDI setup map is selected by the user by 
means of the MIDI Control Panel option. Only the user can select the current setup map; applications 
cannot change the current setup map. 



The MIDI Mapper Architecture
The MIDI Mapper uses a MIDI setup map to determine how to translate and redirect the messages it 
receives. A MIDI setup map consists of the following types of maps. 

· Channel map 

· Patch map 

· Key map 
 

The following illustration shows the roles of channel, patch, and key maps in a MIDI setup map. 

{ewc msdncd, EWGraphic, bsd23538 1 /a "SDK_A02.WMF"}



The Channel Map
The channel map affects all MIDI channel messages. MIDI channel messages include note-on, note-off, 
polyphonic-key-aftertouch, control-change, program-change, channel-aftertouch, and pitch-bend-change 
messages. The MIDI Mapper uses a single channel map with an entry for each of the 16 MIDI channels. 
Each channel-map entry specifies the following: 

· A destination channel for the MIDI message 

· A destination output device for the MIDI message 

· An optional patch map specifying other possible modifications for the MIDI message 
 

The destination channel is set to one of the 16 MIDI channels. MIDI messages are modified to reflect 
each new channel assignment. For example, if the destination channel entry for MIDI channel 4 is set to 
6, all MIDI messages sent to channel 4 will be mapped to channel 6, as shown in the following illustration. 

{ewc msdncd, EWGraphic, bsd23538 2 /a "SDK_A05.WMF"}

In this example, the MIDI status byte 0x93 is mapped to 0x95. The low-order of a MIDI status byte 
specifies the channel number. Source channels are set to either active or inactive. Messages sent to 
inactive source channels are ignored, so an inactive channel is in effect muted or turned off. 

The destination output device is set to one of the available MIDI output devices. A MIDI output device can 
be an internal synthesizer or a physical MIDI output port. 

MIDI system messages are MIDI messages (with status bytes) from 0xF0 to 0xFF. There is no channel 
associated with MIDI system messages, so they cannot be mapped. MIDI system messages are sent to 
all MIDI output devices listed in a channel map. 



Patch Maps
Each channel map entry can have an associated patch map. Patch maps affect MIDI program-change 
and volume-controller messages. Program-change messages tell a synthesizer to change the instrument 
sound (patch) for a specified channel. Volume-controller messages set the volume for a channel. 

A patch map has a translation table with an entry for each of the 128 program-change values. Each patch 
map specifies the following: 

· A destination program-change value 

· A volume scalar 

· An optional key map 
 

When program-change messages are received by the MIDI Mapper, the destination program-change 
value is substituted for the program-change value in the message. For example, if the destination 
program-change value for program-change 16 is 18, the MIDI Mapper modifies the MIDI program-change 
message as shown in the following illustration. 

{ewc msdncd, EWGraphic, bsd23538 3 /a "SDK_A03.WMF"}



The Volume Scalar
The purpose of the volume scalar is to allow adjustments between the relative output levels of different 
patches on a synthesizer. For example, if the bass patch on a synthesizer is too loud compared with its 
piano patch, you can change the setup map to scale the bass volume down or the piano volume up. 

The volume scalar specifies a percentage value for changing all MIDI main-volume controller messages 
that follow an associated program-change message. For example, if the volume scalar value is 50%, the 
MIDI Mapper modifies MIDI main-volume controller messages as shown in the following illustration: 

{ewc msdncd, EWGraphic, bsd23538 4 /a "SDK_A04.WMF"}



Key Maps
Each entry in the patch-map translation table can have an associated key map. Key maps affect note-on, 
note-off, and polyphonic-key-aftertouch messages. A key map has a translation table with an entry for 
each of the 128 MIDI key values. For example, if the entry for key value 60 is 72, the MIDI Mapper 
modifies MIDI note-on messages as shown in the following illustration. 

{ewc msdncd, EWGraphic, bsd23538 5 /a "SDK_A06.WMF"}

Key maps are useful with synthesizers that have key-based percussion instruments with a particular 
percussion sound assigned to each key. Key maps are usually assigned to the first patch in the patch 
maps on the percussion channels (10 and 16). 



Summary of Maps and MIDI Messages
Following are the status bytes for MIDI messages and the map types that affect each message. 

MIDI status Description Map types

0x80-0x8F Note off Channel maps, key maps 

0x90-0x9F Note on Channel maps, key maps 

0xA0-0xAF Polyphonic-key 
aftertouch

Channel maps, key maps 

0xB0-0xBF Control change Channel maps, patch maps 

0xC0-0xCF Program change Channel maps, patch maps 

0xD0-0xDF Channel aftertouch Channel maps 

0xE0-0xEF Pitch-bend change Channel maps 

0xF0-0xFF System Not mapped 
 

· The high-order four bits represent the status value. The low-order four bits represent the channel 
information. 

· Patch maps affect only controller 7 (main volume). 

· System messages are sent to all devices listed in a channel map. 
 



Media Control Interface (MCI)

The MCI MIDI sequencer is the MCI system component that plays MIDI files. Applications can play MIDI 
files easily using MCI, but MCI imposes the following restrictions on MIDI capabilities:

· MCI supports MIDI output only. 

· MCI does not allow close synchronization between MIDI events and other real-time events (such as 
video).

 

If you need accurate MIDI synchronization, you must use the stream buffers or the MIDI services. If you 
need MIDI input capabilities, you must use the MIDI services.

The MCI MIDI sequencer plays standard MIDI files and resource interchange file format (RIFF) MIDI files, 
known as RMID files. Standard MIDI files conform to the Standard MIDI Files 1.0 specification. Because 
RMID files are standard MIDI files with a RIFF header, information about standard MIDI files also applies 
to RMID files. For more information about RIFF files, see File Input and Output.

Although there are currently three kinds of standard MIDI files, the MCI sequencer plays only two of them: 
Format 0 and Format 1 MIDI files.

For more information about controlling multimedia devices (including sequencers) using MCI commands, 
see MCI.



Stream Buffers

Applications can use stream buffers to send streams of MIDI events to a device. Each stream buffer is a 
block of memory pointed to by a MIDIHDR structure. This block of memory contains data for one or more 
MIDI events, each of which is defined by a MIDIEVENT structure. An application controls the buffer by 
calling the stream-manipulation functions, such as midiStreamOpen, midiStreamOut, and 
midiStreamClose.



Stream Buffer Format
The lpData member of the MIDIHDR structure points to a stream buffer, and the dwBufferLength 
member specifies the actual size of this buffer. The dwBytesRecorded member of MIDIHDR specifies 
the number of bytes in the buffer that are actually used by the MIDI events; this value must be less than 
or equal to the value specified by dwBufferLength.

Each of the MIDI events in the stream buffer is specified by a MIDIEVENT structure, which contains the 
time for the event, a stream identifier, an event code, and, when appropriate, parameters for the event. 
Each of these MIDIEVENT structures must begin on a doubleword boundary. If necessary, pad bytes 
must be added to the end of the structure to ensure that the next one starts on a doubleword boundary.



Timing Information
Timing information for a MIDI event is stored in the dwDeltaTime member of the MIDIEVENT structure. 
Time is given in ticks, as defined in the Standard MIDI Files 1.0 specification. The length of a tick is 
defined by the time format and possibly the tempo associated with the stream. For more information 
about streams, see MIDI Streams. 

A tick is expressed either as microseconds per quarter note or as ticks of SMPTE (Society of Motion 
Picture and Television Engineers) time. Applications that send MIDI messages individually or use 
unprocessed MIDI messages use quarter note time and tempo information to determine the duration of a 
tick. Applications that preprocess MIDI messages can store the elapsed time as a count of the SMPTE 
units being used. 

Quarter note time is indicated with a zero in the high-word bit (bit 15) of the time-division word. The 
remainder of the word contains the ticks per quarter note. A tempo associated with a stream of MIDI data 
is kept in units (microseconds per quarter note) consistent with the Standard MIDI Files 1.0 specification. 
For example, a quarter note in 4/4 time that uses a tempo of 500,000 microseconds per quarter note 
plays at the rate of 120 beats per minute.

SMPTE time division formats completely specify the length of a tick without the need for tempo 
information. In using SMPTE time formats, MIDI sequences can be synchronized with other SMPTE 
events, such as video or striped audio. SMPTE time is indicated with a 1 in the high-order bit (bit 15) of 
the time-division word. The rest of the most-significant byte specifies the SMPTE format in use as 
negative values. The supported SMPTE formats and their corresponding values (in parentheses) are 24 
(-24), 25 (-25), 30 (-30), and 30 drop (-29). The low byte of the time-division word specifies the number of 
ticks per SMPTE frame.



Event Types
The dwEvent member of the MIDIEVENT structure describes the MIDI event that is to take place. Short 
events fit entirely into this member. Long events require one or more doubleword values in addition to the 
dwEvent member to store the event descriptions. 

The high byte of the dwEvent member contains information about whether the event is long or short and 
about whether a callback is generated along with the event. In addition, this byte is used to describe the 
event type. The remaining 24 bits of the dwEvent member are used either to contain the event 
parameters (for short messages) or to contain the length of the event parameters (for long messages). To 
extract information from the dwEvent member, use the MEVT_EVENTTYPE and MEVT_EVENTPARM 
macros.

For a description of the predefined event types, see the reference material for the MIDIEVENT structure.



MIDI Streams
MIDI events occur in the context of a stream of MIDI data. Although an application can use several 
streams to define musical data, the MIDI mapper does not recognize multiple streams. Most applications 
that use streams use a single MIDI stream.

The following functions work with streams:

midiStreamClose Closes a MIDI stream.

midiStreamOpen Opens a MIDI stream and retrieves a 
handle.

midiStreamOut Plays or queues a stream (buffer) of MIDI 
data to a MIDI output device.

midiStreamPause Pauses playback of a specified MIDI 
stream.

midiStreamPosition Retrieves the current position in a MIDI 
stream.

midiStreamProperty Sets and retrieves stream properties.

midiStreamRestart Restarts playback of a paused MIDI 
stream.

midiStreamStop Turns off all notes on all MIDI channels 
for the specified MIDI stream.

 



MIDI Services

Most applications will be able to use the MCI MIDI sequencer or stream buffers (and the midiStreamOut 
function) to implement all the MIDI functionality they need. Serious MIDI developers ¾ those producing 
MIDI authoring or sequencing tools ¾ can use either a combination of the stream capabilities and the 
MIDI services or use only the MIDI services. This section presents general information about using the 
MIDI services. 



Querying MIDI Devices
Before playing or recording MIDI data, you must determine the capabilities of the MIDI hardware present 
in the system. MIDI capability can vary from one multimedia computer to the next; applications should not 
make assumptions about the hardware present in a given system.

Windows provides the following functions to determine how many MIDI devices are available for input or 
output in a given system: 

midiInGetNumDevs Retrieves the number of MIDI input 
devices present in the system. 

midiOutGetNumDevs Retrieves the number of MIDI output 
devices present in the system.

 

Like other audio devices, MIDI devices are identified by a device identifier, which is determined implicitly 
from the number of devices present in a given system. Device identifiers range from zero to the number of 
devices present, minus one. For example, if there are two MIDI output devices in a system, valid device 
identifiers are 0 and 1.

After you determine how many MIDI input or output devices are present in a system, you can inquire 
about the capabilities of each device. Windows provides the following functions to determine the 
capabilities of audio devices: 

midiInGetDevCaps Retrieves the capabilities of a given 
MIDI input device and places this 
information in the MIDIINCAPS 
structure.

midiOutGetDevCaps Retrieves the capabilities of a given 
MIDI output device and places this 
information in the MIDIOUTCAPS 
structure.

 

Each of these functions has a parameter specifying the address of a structure that the function fills with 
information about the capabilities of a specified device.



Opening and Closing Device Drivers
You must open a MIDI device before using it, and you should close the device as soon as you finish using 
it. Windows provides the following functions to open and close different types of MIDI devices:

midiInClose Closes a specified MIDI input device.

midiInOpen Opens a specified MIDI input device for 
recording.

midiOutClose Closes a specified MIDI output device.

midiOutOpen Opens a MIDI output device for playback.
 

Each function that opens a MIDI device takes as parameters a device identifier, an address of a memory 
location, and some parameters unique to MIDI devices. The memory location is filled with a device 
handle, which is used to identify the open audio device in calls to other audio functions.

Many MIDI functions can accept either a device handle or a device identifier. Although you can use a 
device handle wherever you would use a device identifier, you cannot always use a device identifier when 
a handle is called for.

 

Note    MIDI devices are not necessarily shareable, so a particular device may not be available when 
a user requests it. If this happens, the application should notify the user and allow the user to try to 
open the device again. 

 



Allocating and Preparing MIDI Data Blocks
The midiOutLongMsg, midiInAddBuffer, and midiStreamOut functions require that applications to 
allocate data blocks to pass to the device drivers for playback or recording purposes. Each of these 
functions uses a MIDIHDR structure to describe its data block.

Before you use one of these functions to pass a data block to a device driver, you must allocate memory 
for the buffer and the header structure that describes the data block. 

Windows provides the following functions for preparing and cleaning up MIDI data blocks:

midiInPrepareHeader Prepares a MIDI input data block.

midiInUnprepareHeader Cleans up the preparation of a MIDI 
input data block.

midiOutPrepareHeader Prepares a MIDI output data block.

midiOutUnprepareHeader Cleans up the preparation of a MIDI 
output data block.

 

Before you pass a MIDI data block to a device driver, you must prepare the buffer by passing it to the 
midiInPrepareHeader or midiOutPrepareHeader function. When the device driver is finished with the 
buffer and returns it, you must clean up this preparation by passing the buffer to the 
midiInUnprepareHeader or midiOutUnprepareHeader function before any allocated memory can be 
freed.



Managing MIDI Data Blocks
Applications that use data blocks for passing system-exclusive messages (using the midiOutLongMsg 
and midiInAddBuffer functions) and stream buffers (using the midiStreamOut function) must continually 
supply the device driver with data blocks until playback or recording is complete. 

Even if a single data block is used, an application must be able to determine when a device driver is 
finished with the data block so it can free the memory associated with the data block and header 
structure. Three methods can be used to determine when a device driver is finished with a data block:

· Specify a callback function to receive a message sent by the driver when it is finished with a data 
block. To get time-stamped MIDI input data, you must use a callback function.

· Use an event callback (for output only).

· Use a window or thread callback to receive a message sent by the driver when it is finished with a 
data block.

 

If an application does not get a data block to the device driver when it is needed, an audible gap in 
playback or a loss of incoming recorded information can occur. At a minimum, an application should use a 
double-buffering scheme to stay at least one data block ahead of the device driver.

Using a Callback Function to Process Driver Messages
You can write your own callback function to process messages sent by the device driver. To use a 
callback function, specify the CALLBACK_FUNCTION flag in the dwFlags parameter and the address of 
the callback function in the dwCallback parameter of the midiInOpen or midiOutOpen function.

Messages sent to a callback function are similar to messages sent to a window, except they have two 
doubleword parameters instead of an unsigned integer parameter and a doubleword parameter. For more 
information about these messages, see Sending System-Exclusive Messages and Managing MIDI 
Recording.

Use one of the following techniques to pass instance data from an application to a callback function:

· Use the dwCallbackInstance parameter of the function that opens the device driver.

· Use the dwUser member of the MIDIHDR structure that identifies a data block being sent to a MIDI 
device driver.

 

If you need more than 32 bits of instance data, pass an address of a structure containing the additional 
information. 

Using an Event Callback to Process Driver Messages
To use an event callback, use the CreateEvent function to retrieve the handle of an event and specify 
CALLBACK_EVENT in the call to the midiOutOpen function.

An event callback is set by anything that might cause a function callback. Unlike callback functions and 
window or thread callbacks, event callbacks do not receive specific close, done, or open notifications. 
Therefore, an application may have to check the status of the process it is waiting for after the event 
occurs.

For more information about event callbacks, see Using an Event Callback to Manage Buffered Playback.

Using a Window or Thread Callback to Process Driver Messages
To use a window callback, specify the CALLBACK_WINDOW flag in the dwFlags parameter and a 
window handle in the low-order word of the dwCallback parameter of the midiInOpen or midiOutOpen 



function. Driver messages will be sent to the window procedure function for the window identified by the 
handle in dwCallback.

Similarly, to use a thread callback, specify the CALLBACK_THREAD flag and a thread identifier in the call 
to midiInOpen or midiOutOpen. In this case, messages will be posted to the specified thread instead of 
to a window.

Messages sent to a window or thread callback are specific to the MIDI device used. For more information 
about these messages, see Sending System-Exclusive Messages and Managing MIDI Recording.



Requesting Time Formats
Windows uses the MMTIME structure to represent time in one or more different formats, including 
milliseconds, samples, SMPTE, and MIDI song pointer formats. The wType member specifies the time 
format. 

The midiStreamPosition function uses the MMTIME structure. Before calling this function, you must set 
the wType member to indicate your requested time format. To see if the requested time format is 
supported, check wType after the call. If the requested time format is not supported, the time is specified 
in an alternate time format selected by the device driver and the wType member is changed to indicate 
the selected time format. 

For more information about the MMTIME structure, see Multimedia Timers.



Handling Errors with MIDI Functions
MIDI audio functions return a nonzero error code. For MIDI-associated errors, the midiInGetErrorText 
and midiOutGetErrorText functions retrieve textual descriptions for the error codes. The application must 
still look at the error value itself to determine how to proceed, but it can use the error descriptions in 
dialog boxes to inform users of the error conditions.

The only MIDI functions that do not return error codes are the midiInGetNumDevs and 
midiOutGetNumDevs functions. These functions return a value of zero if no devices are present in a 
system or if any errors are encountered by the function.



Playing MIDI Files

You should use the MCI MIDI sequencer to play MIDI files whenever you can. If the sequencer services 
do not meet the needs of your application, you can manage MIDI playback by using stream buffers or the 
MIDI services.



MIDI Output Data Types
Windows defines the following data types for MIDI output functions:

HMIDIOUT Handle of a MIDI output device.

MIDIHDR Header for a block of MIDI system-exclusive or 
stream data. 

MIDIOUTCAPS Structure used to inquire about the capabilities of 
a particular MIDI output device.

 



Querying MIDI Output Devices
Before playing a MIDI file, you should use the midiOutGetDevCaps function to determine the capabilities 
of the MIDI output device that is present in the system. This function takes an address of a 
MIDIOUTCAPS structure, which it fills with information about the capabilities of the given device. This 
information includes the manufacturer and product identifiers, a product name for the device, and the 
version number of the device driver (specified in the wMid, wPid, szPname, and vDriverVersion 
members, respectively). 

MIDI output devices can be either internal synthesizers or external MIDI output ports. The wTechnology 
member of the MIDIOUTCAPS structure specifies the technology of the device.

If the device is an internal synthesizer, additional device information is available in the wVoices, wNotes, 
and wChannelMask members. The wVoices member specifies the number of voices that the device 
supports. Each voice can have a different sound or timbre. Voices are organized into MIDI channels. The 
wNotes member specifies the polyphony of the device ¾ that is, the maximum number of notes that can 
be played simultaneously. The wChannelMask member is a bit representation of the MIDI channels that 
the device responds to. For example, if the device responds to the first eight MIDI channels, 
wChannelMask is 0x00FF. If the device is an external output port, wVoices and wNotes are unused, and 
wChannelMask is set to 0xFFFF.

The dwSupport member of the MIDIOUTCAPS structure indicates whether the device driver supports 
volume changes, patch caching, and streaming. Volume changes are supported only by internal 
synthesizer devices. External MIDI output ports do not support volume changes. For information about 
changing volume, see Changing Internal MIDI Synthesizer Volume.



Opening MIDI Output Devices
To open a MIDI output device for playback, use the midiOutOpen function. This function opens the 
device associated with the specified device identifier and returns a handle of the open device by writing 
the handle to a specified memory location. 

One of the parameters of midiOutOpen is a doubleword value. This value specifies a window or thread 
handle, an event handle, or the address of a callback function that is used to monitor the progress of the 
playback of MIDI system-exclusive data and stream buffers. Monitoring enables the application to 
determine when to send additional data blocks and when to free data blocks that have been sent. For 
more information about these methods, see Managing MIDI Data Blocks.



Sending MIDI Messages with Stream Buffers
When your application works with stream buffers, it uses the midiStreamOut function to send all (short 
and long) MIDI messages to the device. To specify stream data blocks, use the MIDIHDR and 
MIDIEVENT structures. The MIDIHDR structure contains an address of a locked data block, the data-
block length, and some assorted flags. The data is stored in the form of MIDIEVENT structures. The 
system imposes a size limit of 64K on stream buffers.

After you use midiStreamOut to send a stream buffer of data, you must wait until the device driver is 
finished with the data block before freeing it. If you are sending multiple data blocks, you must monitor the 
completion of each data block so you know when to send additional blocks. For information about 
different techniques for monitoring data-block completion, see Managing MIDI Data Blocks.



Sending Individual MIDI Messages
You can work with individual MIDI messages by using the following functions:

midiOutLongMsg Sends a buffer of MIDI data to the specified 
MIDI output device. Use this function to 
send system-exclusive messages to a MIDI 
device.

midiOutReset Turns off all notes on all channels for a 
specified MIDI output device. Any pending 
system-exclusive buffers and stream 
buffers are marked as done and returned 
to the application.

midiOutShortMsg Sends a MIDI message to a specified MIDI 
output device.

 

To send any MIDI message (except for system-exclusive messages), use midiOutShortMsg. 



Sending System-Exclusive Messages
MIDI system-exclusive messages are the only MIDI messages that will not fit into a single doubleword 
value. System-exclusive messages can be any length. Windows provides the midiOutLongMsg function 
for sending system-exclusive messages to MIDI output devices. To specify MIDI system-exclusive data 
blocks, use the MIDIHDR structure. 

After you send a system-exclusive data block using midiOutLongMsg, you must wait until the device 
driver is finished with the data block before freeing it. If you are sending multiple data blocks, you must 
monitor the completion of each data block so you know when to send additional blocks. For information 
about different techniques for monitoring data-block completion, see Managing MIDI Data Blocks.

 

Note    Any MIDI status byte other than a system-real-time message will terminate a system-exclusive 
message. If you are using multiple data blocks to send a single system-exclusive message, do not 
send any MIDI messages other than system-real-time messages between data blocks. 

 



Using a Window or Thread to Manage Buffered Playback
The following messages can be sent to a window or thread for managing playback of MIDI system-
exclusive messages or stream buffers:

MM_MOM_CLOSE Sent when the device is closed by using the 
midiOutClose function.

MM_MOM_DONE Sent when the device driver is finished with a 
data block sent by using the 
midiOutLongMsg or midiStreamOut 
function.

MM_MOM_OPEN Sent when the device is opened by using the 
midiOutOpen function.

 

A wParam parameter and an lParam parameter are associated with each of these messages. The 
wParam parameter always specifies the handle of an open MIDI device. For MM_MOM_DONE, lParam 
specifies an address of a MIDIHDR structure identifying the completed data block. The lParam parameter 
is unused for MM_MOM_CLOSE and MM_MOM_OPEN.

The most useful message is probably MM_MOM_DONE. Unless you need to allocate memory or initialize 
variables, you probably do not need to process MM_MOM_OPEN and MM_MOM_CLOSE. When 
playback of a data block is complete, you can clean up and free the data block.



Using a Callback Function to Manage Buffered Playback
You can define your own callback function to manage buffered playback of MIDI output devices. The 
callback function is documented as MidiOutProc.

The following messages can be sent to the wMsg parameter of the MidiOutProc callback function.

MOM_CLOSE Sent when the device is closed by using the 
midiOutClose function.

MOM_DONE Sent when the device driver is finished with a data 
block sent by using the midiOutLongMsg or 
midiStreamOut function.

MOM_OPEN Sent when the device is opened by using the 
midiOutOpen function.

 

These messages are similar to those sent to window procedure functions, but the parameters are 
different. A handle of the open MIDI device is passed as a parameter to the callback function, along with 
the doubleword of instance data passed by using midiOutOpen.

After the driver is finished with a data block, you can clean up and free the data block. Because of the 
suggested restrictions on callback functions, it is better not to do this from within the callback function. 



Using an Event Callback to Manage Buffered Playback
To use an event callback, use the CreateEvent function to retrieve the handle of an event. In a call to the 
midiOutOpen function, specify CALLBACK_EVENT for the dwFlags parameter. After using the 
midiOutPrepareHeader function but before sending MIDI events to the device, create a nonsignaled 
event by calling the ResetEvent function, specifying the event handle retrieved by CreateEvent. Then, 
inside a loop that checks whether the MHDR_DONE bit is set in the dwFlags member of the MIDIHDR 
structure, use the WaitForSingleObject function, specifying the event handle and a time-out value of 
INFINITE as parameters. 

An event callback is set by anything that might cause a function callback. 

Because event callbacks do not receive specific close, done, or open notifications, an application may 
need to check the status of the process it is waiting for after the event occurs. It is possible that a number 
of tasks could be completed by the time WaitForSingleObject returns.



Resetting MIDI Output
The midiOutReset function turns off all notes on all MIDI channels for a specified MIDI device. Then, the 
function marks any pending system-exclusive buffers as done and returns them to the application. This 
function can be useful in an application that uses MIDI output to provide the user with the ability to reset 
MIDI output.

 

Note    Terminating a system-exclusive message without sending an EOX (end-of-exclusive) byte can 
cause problems for the receiving device. The midiOutReset function does not send an EOX byte 
when it terminates a system-exclusive message, because applications are responsible for doing this.

 



Changing Internal MIDI Synthesizer Volume
Windows provides the following functions to retrieve and set the volume level of internal MIDI synthesizer 
devices:

midiOutGetVolume Retrieves the volume level of the specified 
internal MIDI synthesizer device.

midiOutSetVolume Sets the volume level of the specified internal 
MIDI synthesizer device.

 

Not all MIDI output devices support volume changes. Some devices can support individual volume 
changes on both the left and right channels. For information on how to determine if a particular device 
supports volume changes, see Querying MIDI Output Devices.

Unless your application is designed to be a master volume-control application (provides the user with 
volume control for all audio devices in a system), you should open an audio device before changing its 
volume. You should also check the volume level before changing it and restore the volume level to its 
previous level as soon as possible.

Volume is specified as a doubleword value. The upper 16 bits specify the relative volume of the right 
channel, and the lower 16 bits specify the relative volume of the left channel.

For devices that do not support individual volume changes on both the left and right channels, the lower 
16 bits specify the volume level and the upper 16 bits are ignored. Values for the volume level range from 
0x0 (silence) to 0xFFFF (maximum volume) and are interpreted logarithmically. The perceived volume 
increase is the same when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 
0x5000.



Preloading Patches with Internal MIDI Synthesizers
Some internal MIDI synthesizer devices cannot keep all of their patches loaded simultaneously. These 
devices must preload their patch data. 

Windows provides the following functions to request that a synthesizer preload and cache specified 
patches:

midiOutCachePatches Requests that an internal MIDI 
synthesizer device preload and cache 
specified melodic patches.

midiOutCacheDrumPatche
s

Requests that an internal MIDI 
synthesizer device preload and cache 
specified key-based percussion 
patches.

 

For information on how to determine if a particular device supports preloading patches, see Querying 
MIDI Output Devices.



Recording MIDI Audio

To record MIDI audio data, you must use the MIDI input functions. MCI does not provide a device handler 
for recording MIDI audio.



MIDI Input Data Types
Windows defines the following data types for the MIDI input functions:

HMIDIIN Handle of a MIDI input device.

MIDIHDR Header for a stream buffer or a block of MIDI 
system-exclusive data. For input applications, this 
structure records only system-exclusive data 
(streaming is not supported for MIDI input).

MIDIINCAPS Structure used to inquire about the capabilities of a 
MIDI input device.

 



Querying MIDI Input Devices
Before recording MIDI audio, you should use the midiInGetDevCaps function to determine the 
capabilities of the MIDI input device that is present in the system. This function takes an address of a 
MIDIINCAPS structure, which it fills with information about the capabilities of the given device. This 
information includes the manufacturer and product identifiers, a product name for the device, and the 
version number of the device driver.



Opening MIDI Input Devices
To open a MIDI input device for recording, use the midiInOpen function. This function opens the device 
associated with the specified device identifier and returns a handle of the open device by writing the 
handle to a specified memory location. 

If you use the MIDI_IO_STATUS flag with midiInOpen, the system uses the MIM_MOREDATA message 
to alert your application's callback function when it is not processing MIDI data fast enough to keep up 
with the input device driver. (The MM_MIM_MOREDATA message does the same job with window 
callbacks. However, for performance reasons, most applications will use callback functions instead of 
window callbacks.) If your application processes MIDI data in a separate thread, boosting the thread's 
priority can have a significant impact on the application's ability to keep up with the data flow.



Managing MIDI Recording
After you open a MIDI device, you can begin recording MIDI data. Windows provides the following 
functions for managing MIDI recording:

midiInAddBuffe
r

Sends a buffer to the device driver so it can be filled 
with recorded system-exclusive MIDI data.

midiInReset Stops MIDI recording and marks all pending buffers 
as done.

midiInStart Starts MIDI recording and resets the time stamp to 
zero.

    midiInStop Stops MIDI recording.
 

To send buffers to the device driver for recording system-exclusive messages, use midiInAddBuffer. The 
application is notified as the buffers are filled with system-exclusive recorded data. For more information 
about the notification techniques, see Managing MIDI Data Blocks. 

The midiInStart function begins the recording process. When recording system-exclusive messages, 
send at least one buffer to the driver before starting recording. To stop recording, use midiInStop. Before 
closing the device by using the midiInClose function, mark any pending data blocks as being done by 
calling midiInReset. 

Applications that require time-stamped data use a callback function to receive MIDI data. If your timing 
requirements are not strict, you can use a window or thread callback. However, you cannot use an event 
callback to receive MIDI data.

To record system-exclusive messages with applications that do not use stream buffers, you must supply 
the device driver with buffers. These buffers are specified by using a MIDIHDR structure. 



Managing MIDI Thru
You can connect a MIDI input device directly to a MIDI output device so that when the input device 
receives an MIM_DATA message, the system sends a message with the same MIDI event data to the 
output device driver. To connect a MIDI output device to a MIDI input device, use the midiConnect 
function. 

To achieve the best possible performance with multiple outputs, an application can choose to supply a 
special form of MIDI output driver, called a thru driver. Although the system allows only one MIDI output 
device to be connected to a MIDI input device, multiple MIDI output devices can be connected to a thru 
driver. An application on such a system could connect the MIDI input device to this thru device and 
connect the MIDI thru device to as many MIDI output devices as needed. For more information about thru 
drivers, see the Windows device-driver documentation.

Using Messages to Manage MIDI Recording
The following messages can be sent to a window or thread callback procedure for managing MIDI 
recording:

MM_MIM_CLOSE Sent when a MIDI input device is closed by 
using the midiInClose function. 

MM_MIM_DATA Sent when a complete MIDI message is 
received. (This message is used for all MIDI 
messages except system-exclusive 
messages.)

MM_MIM_ERROR Sent when an invalid MIDI message is 
received. (This message is used for all MIDI 
messages except system-exclusive 
messages.)

MM_MIM_LONGDAT
A

Sent when either a complete MIDI system-
exclusive message is received or when a 
buffer has been filled with system-exclusive 
data. 

MM_MIM_LONGERR
OR

Sent when an invalid MIDI system-exclusive 
message is received.

MM_MIM_MOREDAT
A

Sent when an application is not processing 
MIM_DATA messages fast enough to keep up 
with the input device driver. 

MM_MIM_OPEN Sent when a MIDI input device is opened by 
using the midiInOpen function. 

 

A wParam parameter and an lParam parameter are associated with each of these messages. The 
wParam parameter always specifies the handle of an open MIDI device. The lParam parameter is unused 
for the MM_MIM_CLOSE and MM_MIM_OPEN messages.

For the MM_MIM_LONGDATA message, lpMidiHdr specifies an address of a MIDIHDR structure that 
identifies the buffer for system-exclusive messages. The buffer may not be completely filled, because the 
size of the system-exclusive messages is usually not known before being recorded and because buffers 
whose total size can contain the largest expected message must be allocated. To determine the amount 
of valid data present in the buffer, use the dwBytesRecorded member of the MIDIHDR structure. 

Using a Callback Function to Manage MIDI Recording
You can define your own callback function to manage recording for MIDI input devices. The callback 
function is documented as MidiInProc.



The following messages can be sent to the wMsg parameter of the MidiInProc callback function:

MIM_CLOSE Sent when the device is closed by using the 
midiInClose function. 

MIM_DATA Sent when a complete MIDI message is received 
(this message is used for all MIDI messages 
except system-exclusive messages).

MIM_ERROR Sent when an invalid MIDI message is received 
(this message is used for all MIDI messages 
except system-exclusive messages).

MIM_LONGDATA Sent when either a complete MIDI system-
exclusive message is received or when a buffer 
has been filled with system-exclusive data.

MIM_LONGERRO
R

Sent when an invalid MIDI system-exclusive 
message is received.

MIM_MOREDATA Sent when an application is not processing 
MIM_DATA messages fast enough to keep up 
with the input device driver. 

MIM_OPEN Sent when the MIDI input device is opened by 
using the midiInOpen function. 

 

These messages are similar to those sent to window procedure functions, but the parameters are 
different. A handle of the open MIDI device is passed as a parameter to the callback function, along with 
the doubleword of instance data that was passed by using midiInOpen.

For the MIM_LONGDATA message, lpMidiHdr specifies an address of a MIDIHDR structure that identifies 
the buffer for system-exclusive messages. The buffer might not be completely filled. To determine the 
amount of valid data present in the buffer, use the dwBytesRecorded member of the MIDIHDR structure.

After the device driver is finished with a data block, you can clean up and free the data block. 



Receiving Time-Stamped MIDI Messages
Because of the delay between when the device driver receives a MIDI message and the time the 
application receives the message, MIDI input device drivers time stamp the MIDI message with the time 
that the message was received. MIDI time stamps, which are defined as the time the first byte of the 
message was received, are specified in milliseconds. The midiInStart function resets the time stamps for 
a device to zero. 

As stated previously, to receive time stamps with MIDI input, you must use a callback function. The 
dwParam2 parameter of the callback function specifies the time stamp for data associated with the 
MIM_DATA and MIM_LONGDATA messages.



Receiving Running-Status Messages
The Standard MIDI Files 1.0 specification allows the use of running status when a message has the same 
status byte as the previous message. When running status is used, the status byte of subsequent 
messages can be omitted. All MIDI input device drivers are required to expand messages using running 
status into complete messages, so that you always receive complete MIDI messages from a MIDI input 
device driver. 



Processing MIDI Data from Two MIDI Sources

The MIDI subsystem can route MIDI messages from two data sources to a single MIDI output device for 
concurrent playback. For example, one source can be background music or a bass line that has been 
pre-recorded and stored in a file. The second source can be live data from a MIDI instrument, such as a 
keyboard or guitar. 

Both data sources send MIDI data to a single MIDI device that is identified with one handle. Send one 
data stream by using the midiStreamOut function and one or more stream buffers. This data stream 
typically contains prerecorded data that is packed into the buffer.

Send the second data stream (typically from a MIDI instrument) asynchronously by using the 
midiOutShortMsg function. The running status of a stream buffer will not be adversely affected by the 
asynchronous calls made by the second data stream.

Each short message sent with midiOutShortMsg must be a complete MIDI message, with a status byte 
and the appropriate number of data bytes. If the status byte is omitted, midiOutShortMsg returns an 
error. (However, there is no running status with stream output.)



Creating MIDI Files

The Musical Instrument Digital Interface (MIDI) specifications are published by and are copyrighted 
material of the MIDI Manufacturers Association (MMA). The following list describes the specifications 
which are of the greatest general interest:

MIDI Detailed Specification
The MIDI Detailed Specification explains the MIDI hardware and software protocols. This is useful to 
those developing multimedia applications which implement MIDI support by using MIDI functions to 
record, edit, and/or play MIDI data.

Standard MIDI Files 1.0
The Standard MIDI Files specification defines a way to interchange time-stamped MIDI data between 
different applications on the same or different hardware platforms. This is useful to developers writing 
applications that read and parse disk files containing MIDI data and/or write MIDI data files to disk.

General MIDI System - Level 1
The General MIDI (GM) specification defines a minimum MIDI configuration of a "General MIDI System". 
This system consists of a specific class of MIDI playback devices and is of interest to multimedia 
developers who author MIDI files.    Most PC sound cards and MIDI synthesizers manufactured today are 
compatible with the GM specification. MIDI files which are authored to the GM specification should 
generally sound as they were intended to sound, no matter which GM-compatible device they are played 
on.

For current information, contact the MMA at the address or phone numbers listed here.

MIDI Manufacturers Association
PO Box 3173
La Habra, CA 90632-3173
Phone: (310) 947-8689
Fax: (310) 947-4569

To enable MIDI files to be a viable format for representing music in multimedia computing, Windows 
follows the General MIDI System Level 1 specification. We also provide some additional MIDI authoring 
guidelines:

· Authoring Guidelines for MIDI Files

· Standard MIDI Patch Assignments

· Standard MIDI Key Assignments
 



Authoring Guidelines for MIDI Files
Follow these guidelines to author device-independent MIDI files for Windows: 

· Use the standard MIDI patch assignments and key assignments. 

· Always send a program-change message to a channel to select a patch before sending other 
messages to that channel. For the two percussion channels (10 and 16), select program number 0. 

· Always follow a MIDI program-change message with a MIDI main-volume controller message 
(controller number 7) to set the relative volume of the patch. 

· Use a value of 80 (0x50) for the main-volume controller for normal listening levels. For quieter or 
louder levels, you can use lower or higher values. 

· Use only the following MIDI messages: note-on with velocity, note-off, program change, pitch bend, 
main volume (controller 7), and damper pedal (controller 64). Internal synthesizers are required to 
respond to these messages and most MIDI musical instruments respond to them as well. 

 



Standard MIDI Patch Assignments
The standard MIDI patch assignments for authoring MIDI files for use with Windows are based on the 
MIDI Manufacturers Association (MMA) General MIDI Mode specification. Following are the standard 
MIDI patch assignments. 

Piano Chromatic 
Percussion

Organ 

0 Acoustic grand piano 8 Celesta 16 Hammond organ 

1 Bright acoustic piano 9 Glockenspiel 17 Percussive organ 

2 Electric grand piano 10 Music box 18 Rock organ 

3 Honky-tonk piano 11 Vibraphone 19 Church organ 

4 Rhodes piano 12 Marimba 20 Reed organ 

5 Chorused piano 13 Xylophone 21 Accordion 

6 Harpsichord 14 Tubular bells 22 Harmonica 

7 Clavinet 15 Dulcimer 23 Tango accordion 

Guitar Bass Strings 

24 Acoustic guitar (nylon)32 Acoustic bass 40 Violin 

25 Acoustic guitar (steel) 33 Electric bass 
(finger)

41 Viola 

26 Electric guitar (jazz) 34 Electric bass (pick) 42 Cello 

27 Electric guitar (clean) 35 Fretless bass 43 Contrabass 

28 Electric guitar (muted) 36 Slap bass 1 44 Tremolo strings 

29 Overdriven guitar 37 Slap bass 2 45 Pizzicato strings 

30 Distortion guitar 38 Synth bass 1 46 Orchestral harp 

31 Guitar harmonics 39 Synth bass 2 47 Timpani 

Ensemble Brass Reed 

48 String ensemble 1 56 Trumpet 64 Soprano sax 

49 String ensemble 2 57 Trombone 65 Alto sax 

50 Synth. strings 1 58 Tuba 66 Tenor sax 

51 Synth. strings 2 59 Muted trumpet 67 Baritone sax 

52 Choir Aahs 60 French horn 68 Oboe 

53 Voice Oohs 61 Brass section 69 English horn 

54 Synth voice 62 Synth. brass 1 70 Bassoon 

55 Orchestra hit 63 Synth. brass 2 71 Clarinet 

Pipe Synth Lead Synth Pad 

72 Piccolo 80 Lead 1 (square) 88 Pad 1 (new age) 

73 Flute 81 Lead 2 (sawtooth) 89 Pad 2 (warm) 

74 Recorder 82 Lead 3 (calliope 
lead)

90 Pad 3 (polysynth) 

75 Pan flute 83 Lead 4 (chiff lead) 91 Pad 4 (choir) 

76 Bottle blow 84 Lead 5 (charang) 92 Pad 5 (bowed) 

77 Shakuhachi 85 Lead 6 (voice) 93 Pad 6 (metallic) 

78 Whistle 86 Lead 7 (fifths) 94 Pad 7 (halo) 



79 Ocarina 87 Lead 8 (brass + 
lead)

95 Pad 8 (sweep) 

Sound Effects

120 Guitar fret noise

121 Breath noise

122 Seashore

123 Bird tweet

124 Telephone ring

125 Helicopter

126 Applause

127 Gunshot
 



Standard MIDI Key Assignments
The standard MIDI key assignments for percussion instruments are based on the MMA General MIDI 
Mode specification. The following illustration shows the standard key assignments for MIDI files authored 
for Windows. 

{ewc msdncd, EWGraphic, bsd23538 6 /a "SDK_A01.WMF"}



Using MIDI
This section contains examples demonstrating how to perform the following tasks:

· Using the MCI MIDI sequencer

· Using midiOutShortMsg to send individual MIDI messages
 



Using the MCI MIDI Sequencer

Like all MCI devices, the MCI MIDI sequencer responds to standard MCI commands. This section 
discusses how to retrieve a sequence division type and how to retrieve and set a tempo. For more 
information about MCI, see MCI.



Retrieving the Sequence Division Type
The division type of a MIDI sequence determines the amount of time between MIDI events in the 
sequence. To determine the division type of a sequence, use the MCI_STATUS command and set the 
dwItem member of the MCI_STATUS_PARMS structure to MCI_SEQ_STATUS_DIVTYPE .

If the MCI_STATUS command is successful, the dwReturn member of the MCI_STATUS_PARMS 
structure will contain one of the following values to indicate the division type.

Value Division type

MCI_SEQ_DIV_PPQN PPQN (parts-per-quarter note)

MCI_SEQ_DIV_SMPTE_24 SMPTE, 24 fps (frames per 
second)

MCI_SEQ_DIV_SMPTE_25 SMPTE, 25 fps

MCI_SEQ_DIV_SMPTE_30 SMPTE, 30 fps

MCI_SEQ_DIV_SMPTE_30DROP SMPTE, 30 fps drop frame
 

You must know the division type of a sequence to change or query its tempo. You cannot change the 
division type of a sequence by using the MCI sequencer.



Querying and Setting the Tempo
To retrieve the tempo of a sequence, use the MCI_STATUS command and set the dwItem member of the 
MCI_STATUS_PARMS structure to MCI_SEQ_STATUS_TEMPO. If the MCI_STATUS command is 
successful, the dwReturn member of the MCI_STATUS_PARMS structure contains the current tempo. 

To change tempo, use the MCI_SET command with the MCI_SEQ_SET_PARMS structure, specifying the 
MCI_SEQ_SET_TEMPO flag and setting the dwTempo member of the structure to the desired tempo. 

The way tempo is represented depends on the division type of the sequence. If the division type is PPQN, 
the tempo is represented in beats per minute. If the division type is one of the SMPTE division types, the 
tempo is represented in frames per second. For information about determining the division type of a 
sequence, see Retrieving the Sequence Division Type.



Using midiOutShortMsg to Send Individual MIDI Messages

The following example uses the midiOutShortMsg function to send a specified MIDI event to a given 
MIDI output device:

UINT sendMIDIEvent(HMIDIOUT hmo, BYTE bStatus, BYTE bData1, 
    BYTE bData2) 
{ 
    union { 
        DWORD dwData; 
        BYTE bData[4]; 
    } u; 
 
    // Construct the MIDI message. 
 
    u.bData[0] = bStatus;  // MIDI status byte 
    u.bData[1] = bData1;   // first MIDI data byte 
    u.bData[2] = bData2;   // second MIDI data byte 
    u.bData[3] = 0; 
 
    // Send the message. 
    return midiOutShortMsg(hmo, u.dwData); 
} 

 

Note    MIDI output drivers are not required to verify data before sending it to an output port. 
Applications must ensure that only valid data is sent.

 



MIDI Reference
This section describes the functions, macros, messages, and structures associated with the Musical 
Instrument Digital Interface (MIDI). These elements are grouped as follows.

Allocating and Managing Buffers
MIDIHDR
midiInAddBuffer
midiInPrepareHeader
midiInUnprepareHeader
midiOutPrepareHeader
midiOutUnprepareHeader

Callback Functions
MidiInProc
MidiOutProc

Device Capabilities
MIDIINCAPS
midiInGetDevCaps
midiInGetID
midiInGetNumDevs
MIDIOUTCAPS
midiOutGetDevCaps
midiOutGetID
midiOutGetNumDevs
MIDISTRMBUFFVER

Error Processing
midiInGetErrorText
midiOutGetErrorText
MIM_ERROR
MIM_LONGERROR
MM_MIM_ERROR
MM_MIM_LONGERROR

Managing MIDI Streams
midiStreamClose
midiStreamOpen
midiStreamOut
midiStreamPause
midiStreamPosition
midiStreamProperty
midiStreamRestart
midiStreamStop

Opening and Closing Devices
midiInClose
midiInOpen
midiOutClose
midiOutOpen
MIM_CLOSE



MIM_OPEN
MM_MIM_CLOSE
MM_MIM_OPEN
MM_MOM_CLOSE
MM_MOM_OPEN
MOM_CLOSE
MOM_OPEN

Output Devices
KEYARRAY
midiOutCacheDrumPatches
midiOutCachePatches
midiOutGetVolume
midiOutSetVolume
PATCHARRAY

Playing a Message or Messages
MEVT_EVENTPARM
MEVT_EVENTTYPE
MIDIEVENT
midiOutLongMsg
midiOutReset
midiOutShortMsg
midiStreamOut
midiStreamPause
midiStreamRestart
midiStreamStop
MM_MOM_DONE
MM_MOM_POSITIONCB
MOM_DONE
MOM_POSITIONCB

Recording
midiConnect
midiDisconnect
midiInReset
midiInStart
midiInStop
MIDIPROPTEMPO
MIDIPROPTIMEDIV
MIM_DATA
MIM_LONGDATA
MIM_MOREDATA
MM_MIM_DATA
MM_MIM_MOREDATA
MM_MIM_LONGDATA

Sending Messages to Devices
midiInMessage
midiOutMessage



MIDI Functions

The following functions are used with MIDI.

midiConnect
midiDisconnect
midiInAddBuffer
midiInClose
midiInGetDevCaps
midiInGetErrorText
midiInGetID
midiInGetNumDevs
midiInMessage
midiInOpen
midiInPrepareHeader
midiInProc
midiInReset
midiInStart
midiInStop
midiInUnprepareHeader
midiOutCacheDrumPatches
midiOutCachePatches
midiOutClose
midiOutGetDevCaps
midiOutGetErrorText
midiOutGetID
midiOutGetNumDevs
midiOutGetVolume
midiOutLongMsg
midiOutMessage
midiOutOpen
midiOutPrepareHeader
MidiOutProc
midiOutReset
midiOutSetVolume
midiOutShortMsg
midiOutUnprepareHeader
midiStreamClose
midiStreamOpen
midiStreamOut
midiStreamPause
midiStreamPosition
midiStreamProperty
midiStreamRestart
midiStreamStop



MIDI Structures

The following structures are used with MIDI.

MIDIEVENT
MIDIHDR
MIDIINCAPS
MIDIOUTCAPS
MIDIPROPTEMPO
MIDIPROPTIMEDIV
MIDISTRMBUFFVER



MIDI Messages

The following messages are used with MIDI.

MIM_CLOSE
MIM_DATA
MIM_ERROR
MIM_LONGDATA
MIM_LONGERROR
MIM_MOREDATA
MIM_OPEN
MM_MIM_CLOSE
MM_MIM_DATA
MM_MIM_ERROR
MM_MIM_LONGDATA
MM_MIM_LONGERROR
MM_MIM_MOREDATA
MM_MIM_OPEN
MM_MOM_CLOSE
MM_MOM_DONE
MM_MOM_OPEN
MM_MOM_POSITIONCB
MOM_CLOSE
MOM_DONE
MOM_OPEN
MOM_POSITIONCB



MIDI Macros

The following macros are used with MIDI.

MEVT_EVENTPARM
MEVT_EVENTTYPE



MIDI Types

The following types are used with MIDI.

KEYARRAY
PATCHARRAY

 

 



Audio Compression Manager
This overview describes the services available in the audio compression manager (ACM) and explains 
the programming techniques used to access these services. 



About the Audio Compression Manager
The audio compression manager adds system-level support for the following services:

· Transparent run-time audio compression and decompression

· Waveform-audio data format selection

· Waveform-audio data filter selection

· Waveform-audio data format conversion

· Waveform-audio data filtering
 



Mapping Waveform-Audio Devices

The Microsoft® Win32® application programming interface (API) provides a set of standard functions for 
audio devices. These functions issue calls to device drivers that manage hardware devices. The system 
uses a module called a "mapper" to manage installed devices. The mapper uses special hooks in the 
driver interface to intercept calls and to act as an intermediary between the system and the drivers 
installed in the system. The mapper is responsible for matching an application's requests for access to a 
device with the available devices and for finding a device that meets the current application's audio 
requirements. The system provides mappers for standard driver types: waveform-audio, MIDI (Musical 
Instrument Digital Interface), and auxiliary devices.

The ACM is an extension of the basic multimedia system and is installed as a mapper. This means the 
ACM uses the driver-interface mapper hooks for waveform-audio devices. Using these hooks allows the 
ACM to decode or encode waveform-audio data before passing it to or from a waveform-audio device 
driver. The difference between the ACM and the standard system mapper is that the ACM can search for 
a waveform-audio device that supports a specified format or find a combination of a waveform-audio 
device and an ACM compressor or decompressor that supports a specified format. 

When an application requests that the system open a waveform-audio device for input or output, the 
request specifies the format and device. When the specified device is the mapper, the mapper must find a 
device that supports the specified format. The mapper implemented in the ACM searches for an installed 
waveform-audio device that supports the specified format. If the ACM cannot find such a device, it 
searches for a waveform-audio device and a compressor or decompressor that together support the 
format. Specifically, the ACM searches for a compressor or decompressor that converts the specified 
format into a format that is supported by an installed waveform-audio device. After the ACM finds a device 
that supports the converted format, it can honor requests to play or record the format originally requested, 
even though no installed waveform-audio device directly supports that format. 

In addition to format conversion, the ACM also offers services to support compression, decompression, 
filtering, format selection, and filter selection. It provides a standard API that it supports by calling its own 
drivers. 



How the Audio Compression Manager Works

The ACM uses existing driver interface hooks to override the default mapping algorithm for waveform-
audio devices. This allows the ACM to intercept device-open calls. After a call has been intercepted, the 
ACM can perform a variety of tasks to process the audio data, such as inserting an external compressor 
or decompressor into the sequence. 

The ACM manages the following types of drivers:

· Compressor and decompressor (codec) drivers

· Format converter drivers

· Filter drivers
 

Compressors and decompressors change one format type to another. For example, a compressor or 
decompressor can change a PCM (Pulse Code Modulation) file to an ADPCM (Adaptive Differential Pulse 
Code Modulation) file. Format converters change the format, but not the data type. For example, a 
converter can change 44-kHz, 16-bit data to 44-kHz, 8-bit data. Filters do not change the data format at 
all, but they change the waveform-audio data in some manner. For example, a filter could combine a data 
stream and an echo of itself. A single ACM driver, or a filter tag or format tag within a driver, might also 
support combinations of the preceding types.

For waveform-audio output, the ACM passes each buffer of data to the converter as it arrives. The 
converter decompresses the data and returns the decompressed data to the ACM in a "shadow" buffer. 
The ACM then passes the decompressed shadow buffer to the waveform-audio driver. The ACM allocates 
the shadow buffers whenever it receives a prepare message. 

For waveform-audio input, the ACM passes empty shadow buffers to the driver. It uses a background task 
to receive a notification after the driver has filled the shadow buffer. The ACM then passes the buffers to 
the driver for compression. After compression is finished, the driver passes the data to the application.



Audio Compression Manager Functions and Structures

The ACM functions fall into several categories. Naming conventions for the functions make it easy to 
identify these categories. Function names (with two exceptions) are of the form acmGroupFunction, 
where Group designates the ACM category (such as "Driver," "Format," "FormatTag," "Filter," "FilterTag," 
or "Stream"), and Function describes the action performed by the function.

The functions in the filter and format groups are very similar. Almost every function that acts on filters has 
a parallel function that acts on formats.

In the format group, some functions use waveform-audio format tags (the wFormatTag member of a 
WAVEFORMATEX structure) while others require full waveform-audio formats (the full WAVEFORMATEX 
structure). (For reference information about the WAVEFORMATEX structure, see Error.)

In the filter group, some functions use waveform-audio filter tags (the dwFilterTag member of a 
WAVEFILTER structure), while others require full waveform-audio filters (the full WAVEFILTER structure). 

The functions in the stream group represent the many steps involved in a conversion: opening a 
conversion instance, preparing for the conversion, performing the conversion, cleaning up after the 
conversion is complete, and closing the conversion instance.



Functions Called by the System

The system calls three different kinds of application-defined functions. Callback functions are functions in 
your application that the system calls in response to a request made by an application. Hook procedures 
help an application handle the customization of dialog boxes. A driver procedure is an application's 
implementation of its own codec, converter, or filter. 

The callback functions have the following names:

· acmDriverEnumCallback

· acmFilterEnumCallback

· acmFilterTagEnumCallback

· acmFormatEnumCallback

· acmFormatTagEnumCallback

· acmStreamConvertCallback
 

Most of the enumeration functions in the ACM use callback functions. For example, when you call an 
enumeration function, the ACM enumerates the items by repeatedly calling the application through the 
callback function.

Some functions cannot be called from within these callback functions. Functions that cannot be called 
manipulate internal ACM structures that are used by the enumeration functions. The following functions 
should not be called from within a callback function: 

· acmDriverAdd

· acmDriverPriority

· acmDriverRemove
 

The system calls the following functions to help an application handle the customization of dialog boxes:

· acmFilterChooseHookProc

· acmFormatChooseHookProc
 

The following function is specified as a prototype that allows an application to use a customized codec, 
converter, or filter. A function conforming to this prototype may be passed as an argument to the 
acmDriverAdd function. 

· acmDriverProc
 



Using the Audio Compression Manager
This section contains examples demonstrating how to perform the following tasks:

· Retrieving a string that describes a filter

· Producing a dialog box for selecting a filter

· Producing a dialog box for selecting a specific type of format

· Producing a dialog box for selecting restricted formats

· Producing a dialog box for selecting a format for saving

· Producing a dialog box for selecting a format for recording

· Converting data from one format to another

· Multistep format conversion

· Finding a specific format

· Finding a specific driver

· Adding drivers within an application

· Generating a nonstandard format
 



Retrieving a String That Describes a Filter

An application often needs to display a string that describes the current format. This task can be 
accomplished easily with the acmFilterTagDetails and acmFilterDetail  s   functions. These functions must 
be called with the appropriate filter or filter tag. The following example shows how to use these functions.

BOOL GetFilterDescription 
( 
    LPWAVEFILTER  pwfltr, 
    LPTSTR        pszFilterTag, 
    LPTSTR        pszFilter 
) 
{ 
    MMRESULT      mmr; 
 
    // Retrieve the name for the filter tag of the specified filter. 
    if (NULL != pszFilterTag) { 
        ACMFILTERTAGDETAILS aftd; 
 
        // Initialize all unused members of the ACMFILTERTAGDETAILS 
        // structure to zero. 
        memset(&aftd, 0, sizeof(aftd)); 
 
        // Fill in the required members of the ACMFILTERTAGDETAILS 
        // structure for the ACM_FILTERTAGDETAILSF_FILTERTAG query. 
        aftd.cbStruct = sizeof(aftd); 
        aftd.dwFilterTag = pwfltr->dwFilterTag; 
 
        // Ask the ACM to find the first available driver that 
        // supports the specified filter tag. 
        mmr = acmFilterTagDetails(NULL, &aftd, 
            ACM_FILTERTAGDETAILSF_FILTERTAG); 
        if (MMSYSERR_NOERROR != mmr) { 
            // No ACM driver is available that supports the 
            // specified filter tag. 
            return (FALSE); 
        } 
 
        // Copy the filter tag name into the calling application's 
        // buffer. 
        lstrcpy(pszFilterTag, aftd.szFilterTag); 
    } 
 
    // Retrieve the description of the attributes for the specified 
    // filter. 
    if (NULL != pszFilter) { 
        ACMFILTERDETAILS afd; 
 
        // Initialize all unused members of the ACMFILTERDETAILS 
        // structure to zero. 
        memset(&afd, 0, sizeof(afd)); 
 
        // Fill in the required members of the ACMFILTERDETAILS 
        // structure for the ACM_FILTERDETAILSF_FILTER query. 



        afd.cbStruct    = sizeof(afd); 
        afd.dwFilterTag = pwfltr->dwFilterTag; 
        afd.pwfltr      = pwfltr; 
        afd.cbwfltr     = pwfltr->cbStruct; 
 
        // Ask the ACM to find the first available driver that 
        // supports the specified filter. 
        mmr = acmFilterDetails(NULL, &afd, ACM_FILTERDETAILSF_FILTER); 
        if (MMSYSERR_NOERROR != mmr) { 
            // No ACM driver is available that supports the 
            // specified filter. 
            return (FALSE); 
        } 
 
        // Copy the filter attributes description into the calling 
        // application's buffer. 
        lstrcpy(pszFilter, afd.szFilter); 
    } 
 
    return (TRUE); 
} 
 



Producing a Dialog Box for Selecting a Filter

An application can allow users to select an arbitrary filter operation and apply it to waveform-audio data. 
In the following example, the application allocates a buffer to hold the filter and then uses the 
acmFilterChoose function to select the filter. The functions in this example must be called with the 
appropriate filter or filter tag. 

MMRESULT        mmr; 
ACMFILTERCHOOSE afc; 
PWAVEFILTER     pwfltr; 
DWORD           cbwfltr; 
 
// Determine the maximum size required for any valid filter 
// for which the ACM has a driver installed and enabled. 
mmr = acmMetrics(NULL, ACM_METRIC_MAX_SIZE_FILTER, &cbwfltr); 
if (MMSYSERR_NOERROR != mmr) { 
 
    // The ACM probably has no drivers installed and 
    // enabled for filter operations. 
    return (mmr); 
} 
 
// Dynamically allocate a structure large enough to hold the 
// maximum sized filter enabled in the system. 
pwfltr = (PWAVEFILTER)LocalAlloc(LPTR, (UINT)cbwfltr); 
if (NULL == pwfltr) { 
    return (MMSYSERR_NOMEM); 
} 
 
// Initialize the ACMFILTERCHOOSE members. 
memset(&afc, 0, sizeof(afc)); 
 
afc.cbStruct    = sizeof(afc); 
afc.fdwStyle    = 0L;               // no special style flags 
afc.hwndOwner   = hwnd;             // hwnd of parent window 
afc.pwfltr      = pwfltr;           // wfltr to receive selection 
afc.cbwfltr     = cbwfltr;          // size of wfltr buffer 
afc.pszTitle    = TEXT("Any Filter Selection"); 
 
// Call the ACM to bring up the filter-selection dialog box. 
mmr = acmFilterChoose(&afc); 
if (MMSYSERR_NOERROR == mmr) { 
    // The user selected a valid filter. The pwfltr buffer, 
    // allocated above, contains the complete filter description. 
} 
 
// Clean up and exit. 
LocalFree((HLOCAL)pwfltr); 
return (mmr); 
 



Producing a Dialog Box for Selecting a Specific Type of Format

You might want an application to allow the user to select a format from a restricted list of formats in a 
dialog box. Restrictions might limit the number of channels, the sampling rate, the waveform-audio format 
tag, or the number of bits per sample. In all of these cases, you can generate the list by using the 
acmFormatChoose function, setting the fdwEnum and pwfxEnum members of the 
ACMFORMATCHOOSE structure. The following example illustrates this process.

MMRESULT            mmr; 
ACMFORMATCHOOSE     afc; 
WAVEFORMATEX        wfxSelection; 
WAVEFORMATEX        wfxEnum; 
 
// Initialize the ACMFORMATCHOOSE members. 
memset(&afc, 0, sizeof(afc)); 
 
afc.cbStruct    = sizeof(afc); 
afc.fdwStyle    = 0L;               // no special style flags 
afc.hwndOwner   = hwnd;             // hwnd of parent window 
afc.pwfx        = &wfxSelection;    // wfx to receive selection 
afc.cbwfx       = sizeof(wfxSelection); 
afc.pszTitle    = TEXT("16 Bit PCM Selection"); 
 
//  Request that all 16-bit PCM formats be displayed for the user 
//  to select from. 
memset(&wfxEnum, 0, sizeof(wfxEnum)); 
wfxEnum.wFormatTag = WAVE_FORMAT_PCM; 
wfxEnum.wBitsPerSample = 16; 
afc.fdwEnum = ACM_FORMATENUMF_WFORMATTAG | 
    ACM_FORMATENUMF_WBITSPERSAMPLE; 
afc.pwfxEnum = &wfxEnum; 
mmr = acmFormatChoose(&afc); 
if ((MMSYSERR_NOERROR != mmr) && (ACMERR_CANCELED != mmr)) 
{ 
    // There was a fatal error in bringing up the list 
    // dialog box (probably invalid input parameters). 
} 
 



Producing a Dialog Box for Selecting Restricted Formats

You might want to use the dialog box created by the acmFormatChoose function, but limit or control the 
formats in the dialog box. You can do this by using the ACMFORMATCHOOSE_STYLEF_ENABLEHOOK 
flag to hook the dialog procedure. The application can then filter the formats by responding to the 
MM_ACM_FORMATCHOOSE message in the message procedure for the dialog box. 



Producing a Dialog Box for Selecting a Format for Saving

You might want an application to save existing waveform-audio data in another format. For example, a 
waveform-audio editor could save a waveform-audio file as a compressed file. To list only the suggested 
destination formats for a specified source format in the dialog box created by the acmFormatChoose 
function, specify the source format in the pwfxEnum member and the 
ACM_FORMATENUMF_SUGGEST flag in the fdwEnum member of the ACMFORMATCHOOSE 
structure.

Similarly, to list valid destination formats for a specified format, use the 
ACM_FORMATENUMF_CONVERT flag instead of the ACM_FORMATENUMF_SUGGEST flag.



Producing a Dialog Box for Selecting a Format for Recording

An application can allow the user to select a format for which an installed waveform-audio device 
provides native support. For example, you might want a waveform-audio editor to record new waveform-
audio data without using an ACM compressor or decompressor to provide a translation layer. To do this, 
use the acmFormatChoose function, specifying the ACM_FORMATENUMF_HARDWARE and 
ACM_FORMATENUMF_INPUT flags in the fdwEnum member of the ACMFORMATCHOOSE structure.



Converting Data from One Format to Another

The ACM uses stream functions to support data format conversion. Converters in the ACM change the 
format, but not the data type. For example, a converter module can change 44-kHz, 16-bit data to 44-kHz, 
8-bit data. 

The following ACM functions support data format conversion. They are listed in the order in which you 
would typically use them.

· The acmStreamOpen function opens a conversion stream.

· The acmStreamSize function calculates the appropriate size of the source or destination buffer. 

· The acmStreamPrepareHeader function prepares source and destination buffers to be used in a 
conversion.

· The acmStreamConvert function converts data in a source buffer into the destination format, writing 
the converted data into the destination buffer.

· The acmStreamUnprepareHeader function cleans up the source and destination buffers prepared 
by acmStreamPrepareHeader. You must call this function before freeing the source and destination 
buffers.

· The acmStreamClose function closes a conversion stream.
 

When converting data, first identify the source format, then choose the destination format. The easiest 
way to do this is by using the acmFormatChoose function, which displays a format-selection dialog box 
and returns the user's format choice.

When you know the source and destination formats, you can use acmStreamOpen to open a conversion 
stream. Then you can use the acmStreamSize function to determine the appropriate buffer sizes. 

The next step is to prepare the buffers to be used in the conversion by using acmStreamPrepareHeader. 

To perform the conversion, use acmStreamConvert until all the buffers have been processed. When the 
conversion is complete, use acmStreamUnprepareHeader to clean up the buffers and then use 
acmStreamClose to close the conversion stream. 



Multistep Format Conversion

Sometimes the ACM cannot convert data from one format to another in a single step. For example, an 
application might need to convert 16-bit, 44-kHz stereo data to 11-kHz mono ADPCM. If the compressor 
or decompressor cannot do this conversion directly, the application might attempt it in two steps. This 
usually means making one conversion between two PCM formats, then another conversion to the final 
format type.

To convert in two steps, use the acmFormatSuggest function to find a PCM format that matches the 
ADPCM format. Then use two conversion streams to perform the conversion. For example, perform one 
conversion from 16-bit, 44-kHz stereo PCM to 16-bit, 11-kHz mono, then convert from 16-bit, 11-kHz 
mono to 11-kHz mono ADPCM.

Multistep conversion also happens when either the source or the destination format is not PCM. If the 
source format is not PCM, it should be changed to a PCM format before conversion. If the destination 
format is not PCM, the source must be converted to an intermediate PCM format and then converted to 
the final destination format.

The most straightforward conversions occur when the source and destination formats are both PCM 
formats. When either the source or destination format is not PCM, the conversion might require an 
additional step. If both source and destination formats are not PCM, the conversion will usually require 
more than one step, and, in some instances, conversion might not be possible. 



Finding a Specific Format

An application might have only a partial specification for a format when it needs the full specification. For 
example, the specification might stipulate an 11-kHz mono, 4-bit ADPCM format, but not the average 
bytes per second. The application can get the full format without user intervention by using the 
acmFormatEnum function and specifying flags in the fdwEnum parameter.



Finding a Specific Driver

You might want your application to send a message directly to a specific driver or to identify certain 
drivers from the list. For example, you might want your application to identify those drivers that support 
filters and then query each driver to determine which filter tags it supports. You can use the 
acmDriverEnum function to obtain a handle to the desired driver or drivers; this handle can then be used 
to communicate with that driver.

Note that when an application installs a local driver for its own use, the acmDriverAdd function returns a 
driver handle, which can be used to communicate with the driver. It is not necessary to use 
acmDriverEnum in this case.



Adding Drivers Within an Application

If you need your application to implement its own compression routines internally, the application can add 
drivers to the ACM by calling the acmDriverAdd function. The application implements the driver by 
providing a function that conforms to the acmDriverProc prototype. After the application has added the 
driver, the application can use the driver through the ACM as it would use any other driver.

The ACM treats drivers as either global or local. An application specifies whether a driver should be 
added as global or local when it calls acmDriverAdd. There are two differences between global and local 
drivers:

· Drivers added as global drivers are not shared with other applications. 

· An application can directly alter the priority of a global driver (but not a local driver) by calling the 
acmDriverPriority function. The ACM conducts a prioritized search when seeking an appropriate 
driver to provide an implementation of a function call. The ACM always gives local drivers higher 
priority than global drivers. The most recently added local driver has highest priority.

 



Generating a Nonstandard Format

Sometimes an application needs a nonstandard format. For example, an application might need a 16-kHz 
ADPCM-format file. Because 16 kHz is nonstandard, the enumeration functions will not generate this 
format. In fact, short of custom coding the format algorithms into the application, there is no reliable way 
to generate a nonstandard format. It is sometimes possible, however, to generate an analogous format by 
setting up a valid PCM format with all the required information and then using the acmFormatSuggest 
function. Because compressors and decompressors try to suggest a format that is closest to the desired 
format, the number of channels and frequency are usually preserved.



Audio Compression Manager Reference
This section describes the functions, structures, and messages associated with the ACM. These elements 
are grouped as follows.

Drivers
acmDriverAdd
acmDriverClose
ACMDRIVERDETAILS
acmDriverEnum
acmDriverEnumCallback
acmDriverID
acmDriverMessage
acmDriverOpen
acmDriverPriority
acmDriverProc
acmDriverRemove 

Filters
ACMFILTERCHOOSE
acmFilterChooseHookProc
ACMFILTERDETAILS
acmFilterEnum
acmFilterEnumCallback
ACMFILTERTAGDETAILS
acmFilterTagEnum
acmFilterTagEnumCallback

Formats
ACMFORMATCHOOSE
acmFormatChooseHookProc
ACMFORMATDETAILS
acmFormatEnum
acmFormatEnumCallback
acmFormatSuggest
ACMFORMATTAGDETAILS
acmFormatTagEnum
acmFormatTagEnumCallback 

Messages
MM_ACM_FILTERCHOOSE
MM_ACM_FORMATCHOOSE 

Streams
acmStreamClose
acmStreamConvert
acmStreamConvertCallback
ACMSTREAMHEADER
acmStreamMessage
acmStreamOpen
acmStreamPrepareHeader
acmStreamReset
acmStreamSize
acmStreamUnprepareHeader 

Miscellaneous



acmGetVersion
acmMetrics 



Audio Compression Functions

The following functions are used with audio compression.

acmDriverAdd
acmDriverClose
acmDriverDetails
acmDriverEnum
acmDriverEnumCallback
acmDriverID
acmDriverMessage
acmDriverOpen
acmDriverPriority
acmDriverProc
acmDriverRemove
acmFilterChoose
acmFilterChooseHookProc
acmFilterDetails
acmFilterEnum
acmFilterEnumCallback
acmFilterTagDetails
acmFilterTagEnum
acmFilterTagEnumCallback
acmFormatChoose
acmFormatChooseHookProc
acmFormatDetails
acmFormatEnum
acmFormatEnumCallback
acmFormatSuggest
acmFormatTagDetails
acmFormatTagEnum
acmFormatTagEnumCallback
acmGetVersion
acmMetrics
acmStreamClose
acmStreamConvert
acmStreamConvertCallback
acmStreamMessage
acmStreamOpen
acmStreamPrepareHeader
acmStreamReset
acmStreamSize
acmStreamUnprepareHeader



Audio Compression Structures

The following structures are used with audio compression.

ACMDRIVERDETAILS
ACMFILTERCHOOSE
ACMFILTERDETAILS
ACMFILTERTAGDETAILS
ACMFORMATCHOOSE
ACMFORMATDETAILS
ACMFORMATTAGDETAILS
ACMSTREAMHEADER



Audio Compression Messages

The following messages are used with audio compression.

MM_ACM_FILTERCHOOSE
MM_ACM_FORMATCHOOSE

 

 



Audio Mixers
This overview presents general information about using audio mixer services. 



About Audio Mixers
Audio mixer services control the routing of audio lines to a destination device for playing or recording. 
These services can also control volume and other effects. Many of the techniques required to use these 
services are similar to those for audio devices discussed in other multimedia overviews. 



Mixer Architecture

The basic element of the mixer architecture is an audio line. An audio line consists of one or more 
channels of data originating from a single source or a system resource. For example, a stereo audio line 
has two data channels, but it is considered a single audio line because it originates from a single source. 

The mixer architecture provides routing services to manage audio lines on a computer. You can use the 
routing services if you have adequate hardware devices and software drivers installed. The mixer 
architecture allows several audio source lines to map to a single destination audio line. 

Each audio line can have mixer controls associated with it. A mixer control can perform any number of 
functions (such as control volume), depending on the characteristics of the associated audio line. 



Control Types

The mixer services include the following classes of standard controls to associate with audio lines: 

· Audio mixer custom controls

· Faders

· Lists

· Meters

· Numbers

· Sliders

· Switches

· Time controls
 



Audio Mixer Custom Controls
Custom controls are the most generic of the mixer controls. These controls allow a mixer driver to define 
the control's characteristics, and by implication, the visual representation of the control.



Faders
The fader controls are typically vertical controls that can be adjusted up or down. These controls have a 
linear scale and use the MIXERCONTROLDETAILS_UNSIGNED structure to retrieve and set control 
details. The following table describes the types of faders.

Control Description

Fader General fade control. The range of acceptable values is 
0 through 65,535.

Volume General volume fade control. The range of acceptable 
values is 0 through 65,535. For information about 
changing this range, see the documentation for your 
mixer device. 

Bass Bass volume fade control. The range of acceptable 
values is 0 through 65,535. The limits of the bass 
frequency band are hardware specific. For information 
about band limits, see the documentation for your mixer 
device. 

Treble Treble volume fade control. The range of acceptable 
values is 0 through 65,535. The limits of the treble 
frequency band are hardware specific. For information 
about the band limits, see the documentation for your 
mixer device.

Equalizer Graphic equalizer control. The range of acceptable 
values for one band of the equalizer is 0 through 
65,535. The number of equalizer bands and their limits 
are hardware specific. For information about the 
equalizer, see the documentation for your mixer device. 
You can use the 
MIXERCONTROLDETAILS_LISTTEXT structure to 
retrieve text labels for the equalizer.

 



Lists
The list controls provide single-select or multiple-select states for complex audio lines. These controls use 
the MIXERCONTROLDETAILS_BOOLEAN structure to retrieve and set control properties. The 
MIXERCONTROLDETAILS_LISTTEXT structure is also used to retrieve all text descriptions of a 
multiple-item control. The following table describes the types of list controls. 

Control Description

Single-select Restricts the control selection to one item at a time. 
Unlike the multiplexer control, this control can be 
used to control more than audio source lines. For 
example, you could use this control to select a low-
pass filter from a list of filters supported by a mixer 
device.

Multiplexer 
(MUX)

Restricts the line selection to one source line at a 
time.

Multiple-select Allows the user to select multiple items from a list 
simultaneously. Unlike the mixer control, the 
multiple-select control can be used to control more 
than audio source lines.

Mixer Allows the user to select source lines from a list 
simultaneously.

 



Meters
The meter controls measure data passing through an audio line. These controls use the 
MIXERCONTROLDETAILS_BOOLEAN, MIXERCONTROLDETAILS_SIGNED, and 
MIXERCONTROLDETAILS_UNSIGNED structures to retrieve and set control properties. The following 
table describes the types of meters. 

Control Description

Boolean Measures whether an integer value is FALSE/OFF (zero) 
or TRUE/ON (nonzero).

Peak Measures the deflection from 0 in both the positive and 
negative directions. The range of integer values for the 
peak meter is - 32,768 through 32,767.

Signed Measures integer values in the range of - 231 through 
(231 -    1). The mixer driver defines the limits of this 
meter.

Unsigned Measures integer values in the range of 0 through (232 -  
1). The mixer driver defines the limits of this meter.

 



Numbers
The number controls allow the user to enter numerical data associated with a line. The numerical data is 
expressed as signed integers, unsigned integers, or integer decibel values. These controls use the 
MIXERCONTROLDETAILS_SIGNED and MIXERCONTROLDETAILS_UNSIGNED structures to retrieve 
and set control properties. The following table describes the types of number controls.

Control Description

Signed Allows integer values entered in the range of    - 
231 through (231 -    1). 

Unsigned Allows integer values entered in the range of 0 
through (232 -    1). 

Decibel Allows integer decibel values to be entered, in 
tenths of decibels. The range of values for this 
control is - 32,768 through 32,767.

Percent Allows values to be entered as percentages.
 



Sliders
The slider controls are typically horizontal controls that can be adjusted to the left or right. These controls 
use the MIXERCONTROLDETAILS_SIGNED structure to retrieve and set control properties. The 
following table describes the types of sliders.

Control Description

Slider Has a range of    - 32,768 through 32,767. The 
mixer driver defines the limits of this control.

Pan Has a range of -32,768 through 32,767. The 
mixer driver defines the limits of this control, with 
0 as the midrange value. 

QSound Pan Provides expanded sound control through 
QSound. This control has a range of -15 through 
15.

 



Switches
The switch controls are two-state switches. These controls use the 
MIXERCONTROLDETAILS_BOOLEAN structure to retrieve and set control properties. The following 
table describes the types of switches.

Control Description

Boolean The generic switch. It can be set to TRUE or 
FALSE.

Button Set to TRUE for all buttons that the driver should 
handle as though they had been pressed. If the 
value is FALSE, no action is taken.

On/Off An alternative switch that is represented by a 
graphic other than the one used for the Boolean 
switch. It can be set to ON or OFF.

Mute Mutes an audio line (suppressing the data flow of 
the line) or allows the audio data to play. This 
switch is frequently used to help control the lines 
feeding into the mixer.

Mono Switches between mono and stereo output for a 
stereo audio line. Set to OFF to play stereo data 
as separate channels. Set to ON to combine data 
from both channels into a mono audio line.

Loudness Boosts low-volume bass for an audio line. Set to 
ON to boost low-volume bass. Set to OFF to set 
volume levels to normal. The amount of boost is 
hardware specific. For more information, see the 
documentation for your mixer device.

Stereo Enhanced Increases stereo separation. Set to ON to 
increase stereo separation. Set to OFF for no 
enhancement.

 



Time Controls
The time controls allow the user to enter timing-related data, such as an echo delay or reverberation. The 
time data is expressed as positive integers. Types of time controls include the following:

Control Description

Microsecond Supports timing data expressed in microseconds. 
The range of acceptable values is 0 through (232 
-1).

Millisecond Supports timing data expressed in milliseconds. The 
range of acceptable values is 0 through (232 -1).

 



Mixer Device Queries

The mixer services provide functions for determining the number of mixer devices present in the system 
and the capabilities of the devices. You can also use a mixer services function to determine the device 
identifier for a mixer device.

You can use the mixerGetNumDevs function to determine how many mixer devices are present in the 
system. Mixer devices are identified by a device identifier. Device identifiers are determined implicitly from 
the number of devices present in a given system. They range from zero through one less than the number 
of devices present. 

Before using a mixer device, you must determine its capabilities. Audio capabilities can vary from one 
multimedia computer to another, so applications need to work with a variety of audio hardware.

You can use the mixerGetDevCaps function to determine the capabilities of mixer devices. This function 
fills a MIXERCAPS structure with information about the capabilities of a specified device.

The mixerGetID function retrieves the audio mixer device identifier associated with a specified device 
handle. For example, you could use this function to retrieve the device identifier for an audio mixer and 
then use the device identifier to adjust the volume or to display another control. 



Opening and Closing Mixer Devices

When you want to use a mixer device, you can either simply begin using it or you can explicitly open the 
device before using it. Explicitly opening a mixer device offers two main benefits:

· It guarantees the continued existence of that mixer device.

· It lets you receive notification of audio line and control changes.
 

You can use the mixerOpen function to explicitly open a mixer device. This function takes as parameters 
a device identifier, a pointer to a memory location, and other values unique to each type of device. The 
memory location is filled with a device handle. Use this device handle to identify the open mixer device 
when calling other audio mixer functions. As long as a handle of a mixer device exists, the device 
continues to exist in the system. If a configuration change occurs to the mixer device and it hasn't been 
explicitly opened, your application might suddenly be unable to access it.

 

Note    The difference between device identifiers and device handles is important. Device handles are 
returned when you open a device driver by using mixerOpen. Device identifiers are determined 
implicitly from the number of devices present in a system; this number is obtained by using the 
mixerGetNumDevs function. 

 

You can use the mixerClose function to close a mixer device. You should close the device after you finish 
using it.



Window Callback Services

The mixer services provide window callback services so that your application can process messages from 
mixer drivers. To use these services, specify the CALLBACK_WINDOW flag in the fdwOpen parameter 
and a window handle in the dwCallback parameter of the mixerOpen function. Driver messages are sent 
to the window procedure function for the window identified by the handle in dwCallback. The messages 
are specific to the audio device type. 



Audio Line and Control Queries

The mixer services provide functions for determining information about audio lines, audio-line controls, 
and control details. The services also provide functions for setting control details. 

You can use the mixerGetLineInfo function to retrieve information about a specified audio line. This 
function fills the MIXERLINE structure for a specified source audio line, destination audio line, or line 
identifier. The structure includes the destination line number, the number of channels in the audio line, as 
well as a short and a long name for the audio line.

The mixerGetLineControls function retrieves general information about one or more controls associated 
with an audio line. This function fills the MIXERLINECONTROLS structure with information about the 
specified control or controls. You can use mixerGetLineControls to retrieve control properties for one of 
the following:

· All controls for a specified source line

· A specified control for a specified source line

· The first control of a specific class for a specified source line
 

The mixerGetControlDetails function retrieves properties of a single control associated with an audio 
line. This function fills the MIXERCONTROLDETAILS structure with the current values for a control.

The mixerSetControlDetails function uses the contents of the MIXERCONTROLDETAILS structure to 
set the properties of the specified control. You must ensure that all members of this structure are filled 
before you call mixerSetControlDetails.



Audio Mixer Reference
This section describes the functions, structures, and messages associated with audio mixers. These 
elements are grouped as follows.

Querying Devices
MIXERCAPS
mixerGetDevCaps
mixerGetNumDevs

Opening and Closing
mixerClose
mixerOpen

Retrieving Mixer Identifiers
mixerGetID

Retrieving Line Controls
MIXERCONTROL
mixerGetLineControls
MIXERLINECONTROLS

Changing Control Attributes
MIXERCONTROLDETAILS
MIXERCONTROLDETAILS_BOOLEAN
MIXERCONTROLDETAILS_LISTTEXT
MIXERCONTROLDETAILS_SIGNED
MIXERCONTROLDETAILS_UNSIGNED
mixerGetControlDetails
mixerSetControlDetails

Retrieving Line Information
mixerGetLineInfo
MIXERLINE
MM_MIXM_CONTROL_CHANGE
MM_MIXM_LINE_CHANGE

Sending User-Defined Messages
mixerMessage



Audio Mixer Functions

The following functions are used with audio mixers.

mixerClose
mixerGetControlDetails
mixerGetDevCaps
mixerGetID
mixerGetLineControls
mixerGetLineInfo
mixerGetNumDevs
mixerMessage
mixerOpen
mixerSetControlDetails



Audio Mixer Structures

The following structures are used with audio mixers.

MIXERCAPS
MIXERCONTROL
MIXERCONTROLDETAILS
MIXERCONTROLDETAILS_BOOLEAN
MIXERCONTROLDETAILS_LISTTEXT
MIXERCONTROLDETAILS_SIGNED
MIXERCONTROLDETAILS_UNSIGNED
MIXERLINE
MIXERLINECONTROLS



Audio Mixer Messages

The following messages are used with audio mixers.

MM_MIXM_CONTROL_CHANGE
MM_MIXM_LINE_CHANGE

 

 



AVIFile Functions and Macros 
AVIFile functions and macros provide access to time-based files that use the resource information file 
format (RIFF), such as waveform-audio and audio-video interleaved (AVI) files. These functions and 
macros manage RIFF files, making it unnecessary for you to manage and navigate through the RIFF 
architecture.



About AVIFile Functions and Macros
The AVIFile functions and macros handle the information in time-based files as one or more data streams 
instead of tagged blocks of data called chunks. Data streams refer to the components of a time-based 
file. An AVI file can contain several different types of data, such as a video sequence, an English 
soundtrack, and a French soundtrack. Using AVIFile, an application can access each of these 
components separately.

 

Note    Although the AVIFile functions and macros work with any RIFF file, this overview demonstrates 
their use with AVI files only. AVI files are typically the time-based files used with the AVIFile macros 
and functions.

 

AVIFile functions and macros are contained in a dynamic-link library. To initialize the library, use the 
AVIFileInit function. After you initialize the library, you can use any of the AVIFile functions or macros. To 
release the library, use the AVIFileExit function. AVIFile maintains a reference count of the applications 
that are using the library, but not those that have released it. Your applications should balance each use 
of AVIFileInit with a call to AVIFileExit to completely release the library after each application finishes 
using it.



Function Data Types and Return Values

The AVIFile functions and macros use file and stream handlers implemented with OLE technology. The 
standard data type of an OLE function is STDAPI, and the function returns an HRESULT value (zero for 
success or an error otherwise). If a function returns a value other than an HRESULT, the type of the 
function's prototype has a slightly different syntax that embeds the return value type in parentheses 
following STDAPI_. For example, a function that returns a LONG data value uses STDAPI_(LONG) in 
the prototype statement.



AVIFile Operations

This section describes the AVIFile file input and output (I/O) operations. 

· Opening and Closing Files

· Reading from a File

· Writing to a File

· Using the Clipboard with AVI Files
 



Opening and Closing Files
An application must open an AVI file before reading or writing. To open an AVI file, use the AVIFileOpen 
function. AVIFileOpen returns the address of an AVI file interface that contains the handle of the open file 
and increments the reference count of the file. 

The AVIFileOpen function supports the OF flags used with the OpenFile function. If an application writes 
to an existing file, it must include the OF_WRITE flag in AVIFileOpen. Similarly, if your application creates 
and writes to a new file, you must include the OF_CREATE and OF_WRITE flags in AVIFileOpen.

When you open a file using AVIFileOpen, you can use a default file handler or you can specify a custom 
file handler to read and write to the file and its data streams. In either case, AVIFile searches the registry 
for the correct file handler to use. You must ensure custom file handlers are in the registry before an 
application can access them.

You can increment the reference count of a file by using the AVIFileAddRef function. For example, you 
might want to do this when passing a handle of the file interface to another application, or when you want 
to keep a file open while using a function that would normally close the file. 

You can close a file by using the AVIFileRelease function. The AVIFileRelease function decrements the 
reference count of an AVI file, saves changes made to the file, and when the reference count reaches 
zero, closes the file. Your applications should balance the reference count by including a call to 
AVIFileRelease for each use of AVIFileOpen and AVIFileAddRef.

 

Note    An application can open a file with one or more program threads. However, for the best 
possible performance, only one thread should access the file at any one time.

 



Reading from a File
You can retrieve information about an open file by using the AVIFileInfo function. This function fills the 
AVIFILEINFO structure with such information as the maximum data rate, the number of streams in the 
file, whether the file uses an index, and whether the file is copyrighted. 

To retrieve supplementary information in an AVI file, use the AVIFileReadData function. Supplementary 
information is applicable to the entire file and is not included in the normal file headers. For example, the 
name of the company or person who holds the copyrights of a file could be supplementary information. 
Supplementary information does not adhere to a specific format; it can be file specific. AVIFileReadData 
returns the supplementary information in an application-supplied buffer.



Writing to a File
You can write supplementary information to a file that has been opened with write privileges by using the 
AVIFileWriteData function. This function copies the information from an application-supplied buffer and 
places it in one or more chunks in the file. The "INFO" chunk is a common RIFF chunk type in which the 
function stores supplementary information. For a description of RIFF files and their data chunks, see File 
Input and Output. 



Using the Clipboard with AVI Files
The clipboard provides convenient, temporary storage that an application can use to copy or transfer AVI 
files. AVIFile includes clipboard functions that you can use with disk or memory files. 

You can copy a file to the clipboard by using the AVIPutFileOnClipboard function. To write a file that is 
on the clipboard to memory or disk, use the AVIGetFromClipboard function. 

You can clear a file from the clipboard by using the AVIClearClipboard function. This function does not 
clear other types of information, such as text, from the clipboard. If you use clipboard functions in your 
application, clear the clipboard with AVIClearClipboard before closing the application or closing the file 
on the clipboard. You can call AVIClearClipboard in your application whether or not 
AVIPutFileOnClipboard has been used.

 

Note    If your application copies a file to the clipboard and the file contains stream data that might 
change, you can create a memory file of cloned streams by using the AVIMakeFileFromStreams 
function. You can then place the file on the clipboard and then release the original file without 
invalidating it.

 



Stream Operations

Most of the features of AVIFile focus on data streams. This section describes the functions and macros 
that deal with streams and stream data.

· Opening and Closing Streams

· Reading from a Stream

· Working with Compressed Video Data in a Stream

· Creating a File from Existing Streams

· Writing Streams to a File

· Positioning in Streams

· Creating Temporary Streams

· Editing Streams
 



Opening and Closing Streams
Opening data streams is similar to opening files. You can open a stream by using the AVIFileGetStream 
function. This function creates a stream interface, places a handle of the stream in the interface, and 
returns a pointer to the interface. AVIFileGetStream also maintains a reference count of the applications 
that have opened a stream, but not of those that have closed it. 

If you want to access a single stream in a file, you can open the file and the stream by using the 
AVIStreamOpenFromFile function. This function combines the operations and function arguments of the 
AVIFileOpen and AVIFileGetStream functions. 

To access more than one stream in a file, use AVIFileOpen once followed by multiple calls to 
AVIFileGetStream.

You can increment the reference count of a stream by using the AVIStreamAddRef function to keep a 
stream open when using a function that would normally close the stream. 

You can close a stream by using the AVIStreamRelease function. This function decrements the reference 
count of the stream and closes it when the reference count reaches zero. Your applications should 
balance the reference count by including a call to AVIStreamRelease for each use of the 
AVIFileGetStream, AVIFileCreateStream, AVIStreamAddRef, or AVIStreamOpenFromFile function. 
When you release a stream that has been opened by using AVIStreamOpenFromFile, AVIFile closes the 
file containing the stream. If your application releases a file that has open data streams, AVIFile will not 
close the streams until all of the streams are released.



Reading from a Stream
You can retrieve information about an open stream by using the AVIStreamInfo function. This function 
fills the AVISTREAMINFO structure with information such as the type of data in the stream, the 
compression method used when writing stream data, the suggested buffer size, the playback rate, and a 
text description of the stream. 

Some members of the AVISTREAMINFO structure are also present in the AVIFILEINFO structure. The 
information in the AVIFILEINFO structure applies to the entire file. The information in the 
AVISTREAMINFO structure is specific to the accessed stream and has precedence over the information 
in the AVIFILEINFO structure.

If a stream has supplementary information associated with it, you can retrieve this information by using 
the AVIStreamReadData function. This function returns the information in an application-supplied buffer. 
Supplementary stream information might include configuration settings for the compression and 
decompression methods used on a stream. You can obtain the required buffer size by using the 
AVIStreamDataSize macro.

You can retrieve formatting information about a stream by using the AVIStreamReadFormat function. 
This function returns a stream-specific structure in an application-supplied buffer. For a video stream, the 
buffer contains formatting information in a BITMAPINFO structure. For an audio stream, the buffer 
contains formatting information in a WAVEFORMATEX or PCMWAVEFORMAT structure. For other 
stream types, the stream handler returns information specific to the stream. You can determine the 
required buffer size by using AVIStreamReadFormat and specifying a NULL buffer address or by using 
the AVIStreamFormatSize macro.

You can retrieve the multimedia content in a stream by using the AVIStreamRead function. This function 
copies raw data from the stream into an application-supplied buffer. For video streams, this function 
retrieves the bitmapped images that make up the frame content. For audio streams, this function retrieves 
waveform-audio samples that make up the sound content. You can determine the required buffer size by 
using AVIStreamRead and specifying a NULL buffer address or by using the AVIStreamSampleSize 
macro.

Some AVI stream handlers introduce delays associated with software and hardware initialization or 
coordination. You can inform these handlers to prepare for data streaming by using the 
AVIStreamBeginStreaming function. This function lets the stream handler allocate and initialize the 
resources it needs. To inform these handlers when streaming has ended, use the 
AVIStreamEndStreaming function. This function lets the stream handler deallocate the resources it 
allocated for AVIStreamBeginStreaming.

The AVIStreamRead function does not provide decompression services. For information about 
compressing and decompressing audio streams, see Audio Compression Manager. For information about 
compressing and decompressing video streams, see Video Compression Manager. For information about 
compressing and decompressing individual frames in a video stream, see Working with Compressed 
Video Data in a Stream.



Working with Compressed Video Data in a Stream
AVIFile provides several ways for you to access compressed video streams. 

If you want to display one or more frames of a compressed video stream, you can retrieve the frames by 
using the AVIStreamRead function and forwarding the compressed frame data to DrawDib functions to 
display them. DrawDib functions can display images of several image depths and automatically dither 
images for displays that cannot handle certain types of device-independent bitmaps (DIBs). These 
functions work with uncompressed and compressed images. For more information about DrawDib 
functions, see DrawDib Functions. 

AVIFile provides functions for decompressing a single video frame. To allocate resources, use the 
AVIStreamGetFrameOpen function. This function creates a buffer for the decompressed data.

You can decompress a single video frame by using the AVIStreamGetFrame function. This function 
decompresses the frame and retrieves a complete frame of image data, returning the address of the DIB 
in the BITMAPINFOHEADER structure. Your application can display the DIB by using standard drawing 
functions or by using the DrawDib functions.

If your application makes successive calls to AVIStreamGetFrame, the function overwrites its buffer with 
each retrieved frame.

When you finish using AVIStreamGetFrame and the decompressed DIB is in its buffer, you can release 
the allocated resources by using the AVIStreamGetFrameClose function.

For more information about decompressing images, see Video Compression Manager. 



Creating a File from Existing Streams
One way to create a file that contains data streams is to combine existing streams into a new file. The 
streams that provide data for the new file can reside in memory or in one or more files.

You can build a file from several streams by using the AVISave function. This function creates a file and 
writes the data streams specified in its calling sequence to the file. The calling sequence for AVISave 
uses a variable number of arguments that include interfaces for the streams combined in the new file. 

You can also combine data streams in a new file by using the AVISaveV function. This function provides 
the same functionality as AVISave, but when you use AVISaveV, your application specifies the data 
streams as an array, not as a variable number of arguments.

You can create a dialog box in which the user can select compression settings for the new file by using 
the AVISaveOptions function. The dialog box displays the current compression settings and lets the user 
edit them. Compression setting changes are stored in an AVICOMPRESSOPTIONS structure. 

You can also include a callback function with AVISave and AVISaveV that your application can use to 
display the progress of writing the file and, if needed, let the user cancel the save operation. You can 
include the address of the callback function in the calling sequence of AVISave or AVISaveV.

You can let the user select a filename for the new file by using the GetSaveFileNamePreview function. 
This function displays the Save As dialog box in which the user can preview the first stream (normally the 
video stream) of an AVI file. 

You can create a file interface pointer (and a virtual file) for a group of streams by using the 
AVIMakeFileFromStreams function. Other AVIFile functions can use the file interface pointer returned by 
this function to access the streams in the virtual file. After you finish using the virtual file, delete the file 
interface pointer by using the AVIFileRelease function.

 

Note    To minimize image and audio degradation, avoid compressing an AVI file more than once. 
Combine uncompressed pieces of video in your editing system and then compress the final product. 
For information about compression options, see Video Compression Manager. 

 



Writing Streams to a File
You can also create a file containing data streams by writing a new data stream to a file. 

You can create a new stream in a new or existing file by using the AVIFileCreateStream function. This 
function defines a new stream according to the characteristics described in an AVISTREAMINFO 
structure, creates a stream interface for the new stream, increments the reference count of the stream, 
and returns the address of the stream-interface pointer.

Before you write the content of the stream, you must specify the stream format. You can set the stream 
format by using the AVIStreamSetFormat function. When setting the format of a video stream, you must 
supply this function with a BITMAPINFO structure containing the appropriate information. When setting 
the format of an audio stream, you must supply a WAVEFORMAT or WAVEFORMATEX structure 
containing the appropriate information. The information you need to supply to the function for other 
stream types depends on the stream type and the stream handler.

You can write the multimedia content in a stream by using the AVIStreamWrite function. This function 
copies raw data from an application-supplied buffer into the specified stream. The default AVI file handler 
appends information to the end of a stream. The default WAVE handler can write waveform-audio data 
within a stream as well as at the end of a stream.

You can write supplementary information about the file or stream that is not included in the 
AVIFileCreateStream or AVIStreamSetFormat function by using the AVIFileWriteData and 
AVIStreamWriteData functions. You can record data that is applicable to the entire file, such as copyright 
information and modification history, by using AVIFileWriteData. You can record stream-specific 
information, such as compression and decompression settings, by using AVIStreamWriteData. The 
supplementary information is stored in separate chunks within the file.

You can close the stream after you finish writing to the new stream by using the AVIStreamRelease 
function. This function clears buffers used in recording the stream data, and it completes and closes any 
incomplete data chunks in the file.



Positioning in Streams
AVIFile provides several ways to locate and move to a position in a data stream. The functions and 
macros in this section let your application find the starting position, length, and key frames (containing a 
complete image in the sample) within a stream. The functions and macros also associate time with 
positions in a stream by calculating the elapsed time needed to play a stream from its beginning to any 
point in a stream.

Finding the Starting Position
You can retrieve the sample number of the first frame in a video stream by using the AVIStreamStart 
function. (The frames of a movie might start at sample 0 or 1, depending on the preference of the author.) 
You can also obtain this information by using the AVIStreamInfo function. This function stores the sample 
number in the dwStart member of the AVISTREAMINFO structure. You can retrieve the starting time of a 
stream's first sample by using the AVIStreamStartTime macro.

You can retrieve the stream length by using the AVIStreamLength function. This function returns the 
number of samples in the stream. You can also obtain this information by using the AVIStreamInfo 
function. This function stores the stream length in the dwLength member of the AVISTREAMINFO 
structure. To retrieve the length of a stream in milliseconds, use the AVIStreamLengthTime macro.

In a video stream, each sample generally corresponds to a frame of video. There might, however, be 
samples for which no video data is present. If you call the AVIStreamRead function specifying one of 
those positions, it returns a data length of 0 bytes. You can find samples that contain data by using the 
AVIStreamFindSample function and specifying the FIND_ANY flag.

In an audio stream, each sample corresponds to one data block of audio data. For example, if the audio 
data has a 22 kHz ADPCM (Adaptive Differential Pulse Code Modulation) format, each sample for 
AVIStreamLength corresponds to a block of 256 bytes of compressed audio data. This block of audio 
data contains approximately 500 audio samples when uncompressed. The functions and macros of 
AVIFile, however, treat each 256-byte block as a single sample.

 

Note    Valid positions within a stream range from the beginning to the end of the stream, which is the 
sum of the stream starting point and its length. The position represented by the sum of the starting 
position and the length corresponds to a time after the last data has been rendered; it does not 
contain any data. You can retrieve the sample number that represents the end of the stream by using 
the AVIStreamEnd macro. You can retrieve the time value in milliseconds that represents the end of 
the stream by using the AVIStreamEndTime macro. 

 

Finding Sample and Key Frames
You can search for different types of samples in a stream by using the AVIStreamFindSample function. 
This function searches backward or forward through a stream for a sample of the appropriate type, 
beginning with the sample number you specify. You can search for different types of samples in a stream 
by specifying a flag in the AVIStreamFindSample calling sequence. Specify the FIND_ANY flag to locate 
nonempty samples or to skip samples that lack data. Specify the FIND_KEY flag to search for key frames 
that contain the data to render a complete image without needing to reference previous frames. Specify 
the FIND_FORMAT flag to search for changes to the format. AVIStreamFindSample is used mainly with 
video streams. 

Several macros that use AVIFile functions supplement the stream search features. The following list 
provides a brief description of each macro. The macros that search for a specific position or type of data 
require a starting location to be specified in the stream. 

Macro Description



AVIStreamIsKeyFrame Indicates whether a sample in a 
specified stream is a key frame.

AVIStreamNearestKeyFrame Locates the key frame at or 
preceding a specified position in a 
stream.

AVIStreamNearestKeyFrameTi
me

Determines the time corresponding 
to the beginning of the key frame 
nearest (at or preceding) a 
specified time in a stream.

AVIStreamNearestSample Locates the nearest nonempty 
sample at or preceding a specified 
position in a stream.

AVIStreamNearestSampleTime Determines the time corresponding 
to the beginning of a sample that is 
nearest to a specified time in a 
stream.

AVIStreamNextKeyFrame Locates the next key frame 
following a specified position in a 
stream. 

AVIStreamNextKeyFrameTime Returns the time of the next key 
frame in a stream, starting at a 
given time.

AVIStreamNextSample Locates the next nonempty sample 
from a specified position in a 
stream. 

AVIStreamNextSampleTime Returns the time that a sample 
changes to the next sample in the 
stream. 

AVIStreamPrevKeyFrame Locates the key frame that 
precedes a specified position in a 
stream.

AVIStreamPrevKeyFrameTime Returns the time of the previous 
key frame in the stream, starting at 
a given time.

AVIStreamPrevSample Locates the nonempty sample that 
precedes a specified position in a 
stream.

AVIStreamPrevSampleTime Determines the time at which the 
previous sample replaces its 
predecessor in the stream.

AVIStreamSampleToSample Returns the sample in a stream 
that occurs at the same time as a 
sample that occurs in a second 
stream.

 

Switching Between Samples and Time
You can determine the elapsed time from the beginning of a stream to a sample using the 
AVIStreamSampleToTime function. This function converts the sample number to a time value expressed 
in milliseconds. For a video frame (which spans several milliseconds), this value represents the time the 
sample begins to play since playback began and assumes the video clip plays at normal speed. For an 
audio sample (which has several samples in a millisecond), the time value corresponds to the time at 



which the sample begins to play and assumes the audio stream plays at normal speed.

Conversely, you can find the sample number associated with a time value by using the 
AVIStreamTimeToSample function. This function converts the millisecond value to a sample number and 
assumes the video clip plays at normal speed. 

Because AVIStreamSampleToTime returns the time at which a frame begins to play, the relationship 
between AVIStreamSampleToTime and AVIStreamTimeToSample is not truly inverse. They determine 
the position in a file more acurately than they determine time. For example, two consecutive audio 
samples might both play in the same millisecond. Using AVIStreamSampleToTime to convert the sample 
numbers would result in identical time values. If you convert the time value back to a sample number by 
using AVIStreamTimeToSample, a single sample would be referenced.



Creating Temporary Streams
Temporary streams can be beneficial in several ways. You can use a temporary stream as a work stream, 
for example, when changing the stream format. Or you can create a temporary stream to hold portions of 
other streams that have been copied.

You can create a stream in memory that is not associated with any file by using the AVIStreamCreate 
function. This function returns the address of the interface to the new stream in a specified location and is 
used internally by other functions that create temporary streams. 

You can create a compressed stream from an uncompressed stream by using the 
AVIMakeCompressedStream function. You identify the stream to compress, the compression method 
and compression options, and the handler for the new stream. 

When you finish using a stream created with AVIStreamCreate or AVIMakeCompressedStream, close 
the stream by using the AVIStreamRelease function. AVIStreamRelease frees the resources the 
temporary stream used.



Editing Streams
You can create a stream that you can edit by using the CreateEditableStream function. This function 
initializes the environment for editing a stream. This includes creating an interface to the new stream, and 
internal edit tables that track changes made to the stream. CreateEditableStream returns a stream 
pointer to an editable stream that is required by other stream-editing functions. The editable stream 
pointer can also be used by other AVIFile functions that accept stream pointers.

You can cut one or more samples from an editable stream by using the EditStreamCut function. To 
remove samples from the editable stream, this function adds an entry to the edit table. The function then 
places a copy of the cut samples in a new temporary stream whose interface pointer is returned in a 
variable. 

You can copy one or more samples from an editable stream into a temporary stream by using the 
EditStreamCopy function. EditStreamCopy places copies of the samples in a new temporary stream 
whose interface pointer is returned in a variable.

You can copy one or more samples from a stream and paste them into an editable stream by using the 
EditStreamPaste function. To insert the samples at the specified position, this function adds an entry in 
the edit table of the target editable stream.

You can duplicate an editable stream by using the EditStreamClone function. This function returns a 
pointer to the stream interface of the new stream. You can copy these streams to the clipboard or use 
them to maintain a trail of edits made to a stream. 

You can change several of the characteristics of an editable stream by using the EditStreamSetInfo 
function. This function updates the priority setting, language, scale and rate, starting time, quality setting, 
destination rectangle dimensions and coordinates, and the textual description of the stream. These items 
are stored in the AVISTREAMINFO structure associated with the editable stream.

You can also change the textual description of an editable stream by using the EditStreamSetName 
function. This function updates the szName member of the AVISTREAMINFO structure associated with 
the editable stream.

The editing functions work on streams. You need to cut and paste each stream individually, and then use 
the AVIMakeFileFromStreams function to create a new file pointer.

 

Note    The edit tables in an editable stream maintain all the changes for a stream. The source stream 
is never changed. 

 



Using AVIFile Functions and Macros
This section contains examples demonstrating how to perform the following tasks: 

· Opening an AVI file

· Opening streams in an AVI file and closing the file

· Reading streams from an AVI file

· Reading from one stream and writing to another

· Using the editing functions and putting a file on the clipboard
 



Opening an AVI File

The following example initializes the AVIFile library using the AVIFileInit function and opens an AVI file 
using the AVIFileOpen function. The function uses a default file handler.

// LoadAVIFile - loads AVIFile and opens an AVI file. 
// 
// szfile - filename 
// hwnd - window handle 
// 
VOID LoadAVIFile(LPCSTR szFile, HWND hwnd) 
{ 
    LONG hr; 
    PAVIFILE pfile; 
 
    AVIFileInit();          // opens AVIFile library 
 
    hr = AVIFileOpen(&pfile, szFile, OF_SHARE_DENY_WRITE, 0L); 
    if (hr != 0){ 
        ErrMsg("Unable to open %s", szFile); 
        return; 
    } 
 
// 
// Place functions here that interact with the open file. 
// 
 
    AVIFileRelease(pfile);  // closes the file 
    AVIFileExit();          // releases AVIFile library 
} 
 



Opening Streams in an AVI File and Closing the File

The following example opens all the streams in an AVI file using the AVIFileGetStream function. If an 
error is encountered, the file is closed.

// InsertAVIFile - opens the streams in an AVI file. 
// 
// pfile - file-interface pointer from AVIFileOpen 
// 
// Global variables 
// gcpavi - count of the number of streams in an AVI file 
// gapavi[] = array of stream-interface pointers 
 
void InsertAVIFile(PAVIFILE pfile, HWND hwnd, LPSTR lpszFile) 
{ 
    int    i; 
    gcpavi = 0; 
 
    // Open the streams until a stream is not available. 
    for (i = gcpavi; i < MAXNUMSTREAMS; i++) { 
        gapavi[i] = NULL; 
        if (AVIFileGetStream(pfile, &gapavi[i], 0L, i - gcpavi) 
            != AVIERR_OK) 
        break; 
 
    if (gapavi[i] == NULL) 
        break; 
    } 
    // Display error message-stream not found. 
    if (gcpavi == i) 
    { 
        ErrMsg("Unable to open %s", lpszFile); 
        if (pfile) // If file is open, close it 
        AVIFileRelease(pfile); 
        return; 
    } 
    else { 
        gcpavi = i - 1; 
    } 
 
//  . 
//  . Place functions to process data here. 
//  . 
} 
 



Reading Streams from an AVI File

The following subroutine obtains stream information from an AVI file and determines the stream type from 
the AVISTREAMINFO structure returned by the AVIStreamInfo function.

// StreamTypes - opens the streams in an AVI file and determines 
// stream types. 
// 
// Global variables 
// gcpavi - count of streams in an AVI file 
// gapavi[] = array of stream-interface pointers 
 
void StreamTypes(HWND hwnd) 
{ 
    AVISTREAMINFO     avis; 
    LONG    r, lHeight = 0; 
    WORD    w; 
    int     i; 
    RECT    rc; 
 
// Walk through all streams. 
    for (i = 0; i < gcpavi; i++) { 
        AVIStreamInfo(gapavi[i], &avis, sizeof(avis)); 
 
        if (avis.fccType == streamtypeVIDEO) { 
 
        // Place video-processing functions here. 
 
        } 
        else if (avis.fccType == streamtypeAUDIO) { 
 
        // Place audio-processing functions here. 
 
        } 
        else if (avis.fccType == streamtypeTEXT) { 
 
        // Place text-processing functions here. 
 
        } 
    } 
} 
 



Reading from One Stream and Writing to Another

The following example reads data from a stream, compresses it into a new stream, and writes the 
compressed data into a stream of a new file.

// SaveSmall - copies a stream of data from one file, compresses 
// the stream, and writes the compressed stream to a new file. 
// 
// ps stream interface pointer 
// lpFilename - new AVI file to build 
// 
 
void SaveSmall(PAVISTREAM ps, LPSTR lpFilename) 
{ 
    PAVIFILE         pf; 
    PAVISTREAM       psSmall; 
    HRESULT          hr; 
    AVISTREAMINFO    strhdr; 
    BITMAPINFOHEADER bi; 
    BITMAPINFOHEADER biNew; 
    LONG             lStreamSize; 
    LPVOID           lpOld; 
    LPVOID           lpNew; 
 
    // Determine the size of the format data using 
    // AVIStreamFormatSize. 
    AVIStreamFormatSize(ps, 0, &lStreamSize); 
    if (lStreamSize > sizeof(bi)) // Format too large? 
        return; 
 
    lStreamSize = sizeof(bi); 
    hr = AVIStreamReadFormat(ps, 0, &bi, &lStreamSize); // Read format 
    if (bi.biCompression != BI_RGB) // Wrong compression format? 
        return; 
 
    hr = AVIStreamInfo(ps, &strhdr, sizeof(strhdr)); 
 
    // Create new AVI file using AVIFileOpen. 
    hr = AVIFileOpen(&pf, lpFilename, OF_WRITE | OF_CREATE, NULL); 
    if (hr != 0) 
        return; 
 
    // Set parameters for the new stream. 
    biNew = bi; 
    biNew.biWidth /= 2; 
    biNew.biHeight /= 2; 
    biNew.biSizeImage = ((((UINT)biNew.biBitCount * biNew.biWidth 
                        + 31)&~31) / 8) * biNew.biHeight; 
    SetRect(&strhdr.rcFrame, 0, 0, (int) biNew.biWidth, 
            (int) biNew.biHeight); 
 
    // Create a stream using AVIFileCreateStream. 
    hr = AVIFileCreateStream(pf, &psSmall, &strhdr); 
    if (hr != 0) {            //Stream created OK? If not, close file. 



        AVIFileRelease(pf); 
        return; 
    } 
 
    // Set format of new stream using AVIStreamSetFormat. 
    hr = AVIStreamSetFormat(psSmall, 0, &biNew, sizeof(biNew)); 
    if (hr != 0) { 
        AVIStreamRelease(psSmall); 
        AVIFileRelease(pf); 
        return; 
    } 
 
    // Allocate memory for the bitmaps. 
    lpOld = GlobalAllocPtr(GMEM_MOVEABLE, bi.biSizeImage); 
    lpNew = GlobalAllocPtr(GMEM_MOVEABLE, biNew.biSizeImage); 
 
    // Read the stream data using AVIStreamRead. 
    for (lStreamSize = AVIStreamStart(ps); lStreamSize <
        AVIStreamEnd(ps); lStreamSize++) { 
        hr = AVIStreamRead(ps, lStreamSize, 1, lpOld, bi.biSizeImage,
            NULL, NULL); 
        // 
        // Place error check here. 
        // 
 
        // Compress the data. 
        CompressDIB(&bi, lpOld, &biNew, lpNew); 
 
        // Save the compressed data using AVIStreamWrite. 
        hr = AVIStreamWrite(psSmall, lStreamSize, 1, lpNew,
            biNew.biSizeImage, AVIIF_KEYFRAME, NULL, NULL); 
    } 
 
     // Close the stream and file. 
    AVIStreamRelease(psSmall); 
    AVIFileRelease(pf); 
} 
 



Using the Editing Functions and Putting a File on the Clipboard

The following example cuts, copies, or deletes segments from an array of streams. The cut and copied 
streams are merged into a new file and placed on the clipboard. The functions used include 
EditStreamClone, EditStreamCopy, and EditStreamCut.

// Global variables 
// gcpavi - count of streams in an AVI file 
// gapavi[] - array of stream-interface pointers, used as data source 
// gapaviSel[] - stream-interface pointers of edited streams 
// galSelStart[] - edit starting point in each stream 
// galSelLen[] - length of edit to make in each stream 
// gapaviTemp[] - array of stream-interface pointers put on clipboard 
// 
// Comment: 
//     The editable streams in gapaviSel have been 
//     initialized with CreateEditableStream. 
// 
 
case MENU_CUT: 
case MENU_COPY: 
case MENU_DELETE: 
{ 
    PAVIFILE pf; 
    int      i; 
 
    // Walk list of selections and make streams out of each section. 
    gcpaviSel = 0;  // index counter for destination streams 
    for (i = 0; i < gcpavi; i++) { 
        if (galSelStart[i] != -1) { 
            if (wParam == MENU_COPY) 
                EditStreamCopy(gapavi[i], &galSelStart[i], 
                &galSelLen[i], &gapaviSel[gcpaviSel++]); 
            else { 
                EditStreamCut(gapavi[i], &galSelStart[i], 
                &galSelLen[i], &gapaviSel[gcpaviSel++]); 
            } 
        } 
    } 
 
. 
. 
. 
    // Put on the clipboard if segment is not deleted. 
    if (gcpaviSel && wParam != MENU_DELETE) { 
        PAVISTREAM   gapaviTemp[MAXNUMSTREAMS]; 
        int i; 
 
        // Clone the edited streams, so that if the user does 
        // more editing, the clipboard won't change. 
        for (i = 0; i < gcpaviSel; i++) { 
            gapaviTemp[i] = NULL; 
            EditStreamClone(gapaviSel[i], &gapaviTemp[i]); 
            // 



            // Place error check here. 
            // 
        } 
 
        // Create a file from the streams and put on clipboard. 
        AVIMakeFileFromStreams(&pf, gcpaviSel, gapaviTemp); 
        AVIPutFileOnClipboard(pf); 
 
        // Release clone streams. 
        for (i = 0; i < gcpaviSel; i++) { 
            AVIStreamRelease(gapaviTemp[i]); 
        } 
 
        // Release file put on clipboard. 
        AVIFileRelease(pf); 
    } 
 
    // Release streams created. 
    for (i = 0; i < gcpaviSel; i++) 
        AVIStreamRelease(gapaviSel[i]); 
} 
 



AVIFile Reference
This section describes the functions, structures, and macros for applications using the AVIFile services. 
These elements are grouped as follows:

AVIFile Library Operations
AVIFileInit
AVIFileExit

Opening and Closing AVI Files
AVIFileOpen
AVIFileAddRef
AVIFileRelease
GetOpenFileNamePreview

Reading from a File
AVIFileInfo
AVIFILEINFO
AVIFileReadData

Writing to a File
AVIFileWriteData

Using the Clipboard
AVIPutFileOnClipboard
AVIGetFromClipboard
AVIClearClipboard

Opening and Closing Streams
AVIFileGetStream
AVIStreamOpenFromFile
AVIStreamAddRef
AVIStreamRelease

Reading Stream Information
AVISTREAMINFO
AVIStreamReadData
AVIStreamDataSize
AVIStreamReadFormat
AVIStreamFormatSize
AVIStreamRead
AVIStreamSampleSize
AVIStreamBeginStreaming
AVIStreamEndStreaming

Decompressing Video Data in a Stream
AVIStreamGetFrameOpen
AVIStreamGetFrame
AVIStreamGetFrameClose

Creating a File from Existing Streams



AVISave
AVISaveV
AVISaveOptions
GetSaveFileNamePreview
AVIMakeFileFromStreams

Writing Individual Streams
AVIFileCreateStream
AVIStreamSetFormat
AVIStreamWrite
AVIFileWriteData
AVIStreamWriteData
AVIStreamRelease

Finding the Starting Position in a Stream
AVIStreamStart
AVIStreamStartTime
AVIStreamLength
AVIStreamLengthTime
AVIStreamFindSample
AVIStreamEnd
AVIStreamEndTime

Finding Sample and Key Frames
AVIStreamFindSample
AVIStreamIsKeyFrame
AVIStreamNearestKeyFrame
AVIStreamNearestKeyFrameTime
AVIStreamNearestSample
AVIStreamNearestSampleTime
AVIStreamNextKeyFrame
AVIStreamNextKeyFrameTime
AVIStreamNextSample
AVIStreamNextSampleTime
AVIStreamPrevKeyFrame
AVIStreamPrevKeyFrameTime
AVIStreamPrevSample
AVIStreamPrevSampleTime
AVIStreamSampleToSample

Switching Between Samples and Time
AVIStreamSampleToTime
AVIStreamTimeToSample

Creating Temporary Streams
AVIStreamCreate
AVIMakeCompressedStream
AVIStreamRelease

Editing AVI Streams
CreateEditableStream
EditStreamCut
EditStreamCopy



EditStreamPaste
EditStreamClone
EditStreamSetInfo
EditStreamSetName



AVIFile Functions

The following functions are used with AVIFile.

AVIBuildFilter
AVIClearClipboard
AVIFileAddRef
AVIFileCreateStream
AVIFileEndRecord
AVIFileExit
AVIFileGetStream
AVIFileInfo
AVIFileInit
AVIFileOpen
AVIFileReadData
AVIFileRelease
AVIFileWriteData
AVIGetFromClipboard
AVIMakeCompressedStream
AVIMakeFileFromStreams
AVIMakeStreamFromClipboard
AVIPutFileOnClipboard
AVISave
AVISaveOptions
AVISaveOptionsFree
AVISaveV
AVIStreamAddRef
AVIStreamBeginStreaming
AVIStreamCreate
AVIStreamEndStreaming
AVIStreamFindSample
AVIStreamGetFrame
AVIStreamGetFrameClose
AVIStreamGetFrameOpen
AVIStreamInfo
AVIStreamLength
AVIStreamOpenFromFile
AVIStreamRead
AVIStreamReadData
AVIStreamReadFormat
AVIStreamRelease
AVIStreamSampleToTime
AVIStreamSetFormat
AVIStreamStart
AVIStreamTimeToSample
AVIStreamWrite
AVIStreamWriteData
CreateEditableStream
EditStreamClone
EditStreamCopy
EditStreamCut
EditStreamPaste
EditStreamSetInfo
EditStreamSetName



AVIFile Structures

The following structures are used with AVIFile.

AVICOMPRESSOPTIONS
AVIFILEINFO
AVISTREAMINFO



AVIFile Macros

The following macros are used with AVIFile.

AVIStreamDataSize
AVIStreamEnd
AVIStreamEndTime
AVIStreamFormatSize
AVIStreamIsKeyFrame
AVIStreamLengthTime
AVIStreamNearestKeyFrame
AVIStreamNearestKeyFrameTime
AVIStreamNearestSample
AVIStreamNearestSampleTime
AVIStreamNextKeyFrame
AVIStreamNextKeyFrameTime
AVIStreamNextSample
AVIStreamNextSampleTime
AVIStreamPrevKeyFrame
AVIStreamPrevKeyFrameTime
AVIStreamPrevSample
AVIStreamPrevSampleTime
AVIStreamSampleSize
AVIStreamSampleToSample
AVIStreamStartTime

 

 



Video Compression Manager
The video compression manager (VCM) provides access to the interface used by installable compressors 
to handle real-time data. Applications can use installable compressors to perform the following tasks:

· Compress and decompress video data.

· Send a renderer compressed video data and have it draw it to the display.

· Compress, decompress, or draw data with application-defined renderers.

· Use renderers to handle text and custom data.
 



About the Video Compression Manager
Typically, installable compressors operate with video-image data stored in audio-video interleaved (AVI) 
files. This overview explains the programming techniques used to access installable compressors through 
VCM and covers the following topics:

· VCM and the Video for Windows architecture

· Compressing and decompressing image data from your application

· Using VCM renderers to draw data from your application

· VCM functions and structures
 

Before you read this overview, you should be familiar with the Microsoft Win32 graphic services. In 
particular, bitmaps and bitmap-related structures, such as BITMAPINFO and BITMAPINFOHEADER, are 
used extensively by VCM. For additional information about the BITMAPINFO and BITMAPINFOHEADER 
structures, see Bitmaps. 

 

Note    The audio compression manager (ACM) provides system-level support for audio compression 
and decompression drivers. For a description of the audio compression services, see Audio 
Compression Manager. 

 



VCM Architecture

VCM is an intermediary between an application and compression and decompression drivers. The 
compression and decompression drivers compress and decompress individual frames of data. 

When an application makes a call to VCM, VCM translates the call into a message. The message is sent 
by using the ICSendMessage function to the appropriate compressor or decompressor, which 
compresses or decompresses the data. VCM receives the return value from the compression or 
decompression driver and then returns control to the application.

If a macro is defined for a message, the macro expands to an ICSendMessage function call supplying 
appropriate parameters for that message. If a macro is defined for a message, your application should 
use it rather than the message. In this overview, these macros follow messages in parentheses.



System Entries for Compressors, Decompressors, and Renderers

The system uses entries in the registry to find VCM drivers. These entries are in the form of two four-
character codes separated by a period. The first four-character code is defined by the system and can be 
one of the following: 

Four-character codeDescription

"VIDC" Identifies compressors and decompressors.

"VIDS" Identifies video-stream renderers.

"TXTS" Identifies text-stream renderers.

"AUDS" Identifies audio-stream handlers.
 

Custom renderers can define their own four-character codes.

The second four-character code is defined by the driver. Typically, the second four-character code 
corresponds to the type of data the driver can handle.

When opening a VCM driver, an application specifies the type of driver and the type of data handler it 
needs. Typically, this information comes from the stream header. The system tries to open the specified 
data handler, but if it fails, the system searches the registry for a driver that has the required handler.

When searching for the driver, the system tries to match the four-character codes specified for the driver 
type and data handler with those specified in the driver entry. For example, if an application specifies the 
compressor MSSQ, the system searches the registry for the driver entry VIDC.MSSQ. If it cannot find a 
match, it opens each driver corresponding to the driver type and locates one that can handle the type of 
data your application specifies. In the previous example, if the system could not find VIDC.MSSQ, it 
would open all drivers with the "VIDC" four-character code and locate one that can handle the data.



VCM Services

In general, an application uses VCM to perform the following tasks:

· Locate, open, or install a compressor or decompressor.

· Configure or obtain configuration information about the compressor or decompressor.

· Use a series of functions to compress, decompress, or draw the data.
 

The functions and macros of the DrawDib library perform these tasks implicitly and might provide the 
most convenient way to use VCM. For more information about the DrawDib library, see DrawDib. 

The following sections describe tasks you can perform by using VCM:

· Compressor and decompressor basics

· User-selected compressors

· Compressor and decompressor installation and removal

· Compressor and decompressor configuration

· Getting information about compressors and decompressors

· Single-image compression

· Sequence compression

· Image-data compression

· Single-image decompression

· Image-data decompression

· Monitoring the progress of compressors and decompressors

· Hardware drawing capabilities 



Compressor and Decompressor Basics
To open and locate a compressor, you can use the ICLocate and ICOpen functions. You can use 
ICLocate to find a compressor of a specific type and to obtain a handle of it for use in other VCM 
functions. To open a compressor, you can use ICOpen. Your application uses the handle returned by this 
function to identify the opened compressor when it uses other VCM functions.

To open and locate a decompressor, applications can use the ICDecompressOpen and ICDrawOpen 
macros. These macros use ICLocate for operation.

When your application hass finished using a compressor or decompressor, it must close it to free any 
resources used for compression or decompression. Your application can use the ICClose function to 
close the compressor or decompressor.

Also, your application can enumerate the compressors or decompressors on a system by using the 
ICInfo function.

 

Note    The stream header in an AVI file contains information about the stream type and the specific 
handler for that stream. Within the stream header, the fccType and fccHandler members identify the 
stream type and the stream handler specified for the stream.

 



User-Selected Compressors
When compressing data, your application can use the ICCompressorChoose function to create a dialog 
box in which the user can select the compressor. You can specify flags for this function to allow the user 
to specify the key-frame frequency and the movie-data rate, or to display a preview window. 

The compressor selected by the user is automatically opened and its handle is returned in the hic 
member of the COMPVARS structure specified in ICCompressorChoose. 

If you use ICCompressorChoose, use the ICCompressorFree function to close the compressor and 
free any resources associated with the COMPVARS structure.



Compressor and Decompressor Installation and Removal
An application can use compressors and decompressors that are already installed on a system running 
the Microsoft Windows operating system. An application can also install compressors and decompressors 
for general or special uses. Most applications will not need to install or remove compressors or 
decompressors because they are usually installed by a setup program. An application might, however, 
install a compressor directly or install a function as a compressor. 

An application can install a compressor or decompressor (or a function used as a compressor or 
decompressor) by using the ICInstall function. This function creates an entry in the registry identifying the 
compressor or decompressor. Your application or another application can search the registry to determine 
if the system contains a compressor or decompressor suitable for its data. Use ICInstall to install all 
compression and decompression drivers. 

An application can locate and open an installed compressor or decompressor by using the ICLocate and 
ICOpen functions. When an application finishes using a compressor or decompressor, it closes it by using 
the ICClose function. 

An application can remove the registry entry for an installed compressor or decompressor by using the 
ICRemove function. This function removes the registry entry of a compressor or decompressor that is not 
currently loaded in memory. 

An application can restrict the use of a compressor or decompressor by installing, opening, closing, and 
removing it. 

Alternatively, to use a function internally as a compressor or decompressor without installing it in the 
registry, an application can use the ICOpenFunction function. This function requires the calling 
application to have the address of the function to be used as a compressor or decompressor. When the 
application finishes using the function, it must close it by using ICClose. Because the function was not 
installed, the application does not need to remove the function from the registry.

The internal structure of a function used as a compressor or decompressor should be the same as the 
DriverProc entry-point function used by installable drivers. For more information about the DriverProc 
entry-point function, see Installable Drivers. 

 

Note    An application installing a function as a compressor or decompressor must remove the 
function before the application is closed so other applications do not try to use the function. When 
removing a function, the application must identify it with the four-character code used to install it.

 



Compressor and Decompressor Configuration
Your application can configure the compressor or decompressor automatically, or it can allow the user to 
configure them. If it is practical, allow the user to configure the compressor or decompressor; this frees 
you from considering all the options for the compressor or decompressor. 

The user can configure the compressor or decompressor by using a configuration dialog box. You can 
send the ICM_CONFIGURE message to VCM (or use the ICQueryConfigure macro) to determine if a 
compressor or decompressor can display a configuration dialog box. If so, send the ICM_CONFIGURE 
message (or use the ICConfigure macro) to display it. 

Your application can send the ICM_GETSTATE and ICM_SETSTATE messages (or use the 
ICGetStateSize, ICGetState, and ICSetState macros) to get and set the status for a compressor or 
decompressor. If your application creates or modifies the status, it must obtain the layout of the 
compressor or decompressor data before restoring its status. Alternatively, if your application obtains the 
status from a compressor or decompressor and uses it to restore the status in a subsequent session, it 
must ensure that it restores only status information obtained from the compressor or decompressor it is 
currently using. 



Getting Information About Compressors and Decompressors
To get general information about a compressor or decompressor, your application can use the ICGetInfo 
function. This function fills an ICINFO structure with information about the compressor or decompressor. 
Your application must allocate the memory for the ICINFO structure and pass a pointer to it in ICGetInfo. 
Unless your application searches for a particular compressor or decompressor, the flags in the ICINFO 
structure provide the most useful information about the capabilities of a compressor or decompressor. 

To get the default key-frame rate and default quality value of a compressor or decompressor, your 
application can send the ICM_GETDEFAULTKEYFRAMERATE and ICM_GETDEFAULTQUALITY 
messages (or use the ICGetDefaultKeyFrameRate and ICGetDefaultQuality macros).

To determine the best display format of a compressor or decompressor, your application can use the 
ICGetDisplayFormat function.

To determine if a compressor or decompressor can display an About dialog box, send the ICM_ABOUT 
message (or use the ICQueryAbout macro). You can also display the About dialog box of a compressor 
or decompressor by sending the ICM_ABOUT message and changing the value of the wParam 
parameter (or by using the ICAbout macro). 



Single-Image Compression
You can use the ICImageCompress function to compress a single image. This function returns a handle 
of the compressed device-independent bitmap (DIB). The compressed DIB is packed using the CF_DIB 
format.



Sequence Compression
Your application can use the ICSeqCompressFrame, ICSeqCompressFrameStart, and 
ICSeqCompressFrameEnd functions to compress a sequence of frames. These functions use the data 
stored in the COMPVARS structure. Applications use the ICCompressorChoose function to allow the 
user to select a compressor, open it, and set the compression parameters in the COMPVARS structure; 
however, applications can set the parameters in the structure manually.

Before an application can begin compressing a sequence of frames, it must use 
ICSeqCompressFrameStart to allocate the necessary resources. After the resources are allocated, the 
application can use ICSeqCompressFrame to compress each frame individually. The frame rate and 
key-frame frequency used in compressing the sequence are specified in members of the COMPVARS 
structure. The return value for ICSeqCompressFrame points to the compressed data. 

When an application finishes compressing a sequence, it can use ICSeqCompressFrameEnd to free 
system resources allocated for ICSeqCompressFrameStart. To free the resources allocated for the 
COMPVARS structure, the application can use the ICCompressorFree function.



Image-Data Compression
Your application can use a series of ICCompress functions and macros to compress data. The functions 
and macros can help you perform the following tasks:

· Determine the compression format to use for a specified input format.

· Prepare the compressor.

· Compress the data.

· End compression.
 

Your application can increase control over the compression process by using the ICCompress functions 
and macros. This group of functions and macros handles individual frames, rather than the sequence as a 
whole. For example, your application can identify the frames to compress as key frames by using the 
ICCompress function.

A compressor receives data in one format, compresses the data, and returns a compressed version of the 
data using a specified format. The typical input format specifies DIBs using the BITMAPINFO structure. 
The typical output format specifies compressed DIBs, also using the BITMAPINFO structure.

 

Note    To minimize image and audio degradation during playback, avoid compressing an AVI file 
more than once. Combine uncompressed pieces of video in your editing system and then compress 
the final product.

 

Compressor and Compression Format Selection
If you want to compress data and your application requires a specific output format, send the 
ICM_COMPRESS_QUERY message (or use the ICCompressQuery macro) to query the compressor to 
determine if it supports the input and output formats.

If the output format is not important to your application, you need only find a compressor that can handle 
the input format. To determine if a compressor can handle the input format, you can send 
ICM_COMPRESS_QUERY, specifying NULL for the lParam parameter. This message does not return the 
output format to your application. Your application can determine the buffer size needed for the data 
specifying the compression format by sending the ICM_COMPRESS_GET_FORMAT message (or use 
the ICCompressGetFormatSize macro). You can also retrieve the format data by sending 
ICM_COMPRESS_GET_FORMAT (or the ICCompressGetFormat macro).

If you want to determine the largest buffer that the compressor could require for compression, send the 
ICM_COMPRESS_GET_SIZE message (or use the ICCompressGetSize macro). You can use the 
number of bytes returned by the ICSendMessage function to allocate a buffer for subsequent image 
compressions.

Compressor Initialization
After your application selects a compressor that can handle the input and output formats it needs, you 
can initialize the compressor by using the ICM_COMPRESS_BEGIN message (or use the 
ICCompressBegin macro). This message requires the compressor handle and the input and output 
formats. 

Data Compression
You can use the ICCompress function to compress a frame. Your application must use this function 
repeatedly until all the frames in a sequence are compressed. Your application must also track and 
increment the number of each frame compressed with ICCompress. The compressor uses this value to 



check if frames are sent out of order during fast temporal compression (storing differences between 
successive frames). If your application recompresses a frame, it should use the same frame number as 
when the frame was first compressed. If your application compresses a still-frame image, it can specify a 
frame number of zero.

Your application can use the ICCOMPRESS_KEYFRAME flag to make the frame compressed by 
ICCompress a key frame. 

When VCM returns control to your application after compressing a frame, VCM stores the compressed 
data in the structures referenced by the lpbiOutput and lpData parameters. If your application needs to 
move the compressed data, it can find its size in the biSizeImage member of the BITMAPINFO structure 
specified in lpbiOutput.

 

Note    Your application must allocate the structures and buffers that store the uncompressed and 
compressed data. If the compressor supports temporal compression, your application must also 
allocate a structure and buffer to hold the format and data for the previous frame of information.

 

Ending Compression
After your application has compressed the data, it can use the ICCompressEnd macro to notify the 
compressor that it has finished. If you want to restart compression after using this function, your 
application must reinitialize the compressor by sending the ICM_COMPRESS_BEGIN message (or use 
the ICCompressBegin macro).



Single-Image Decompression
You can use the ICImageDecompress function to decompress a single image. This function returns a 
handle of the decompressed DIB. The decompressed DIB is stored in the CF_DIB format.



Image-Data Decompression
Your application uses a series of ICDecompressEx functions to control the decompressor. The functions 
can help you perform the following tasks:

· Select a decompressor.

· Prepare the decompressor.

· Decompress the data.

· End decompression.
 

Your application handles decompression similarly to the way it handles compression, except that the input 
format is a compressed format and the output format is a displayable format. The input format for 
decompression is usually obtained from the stream header. After determining the input format, your 
application can use the ICLocate or ICOpen functions to find a decompressor that can handle it. 

The ICDecompressEx functions and macros are a superset of the ICDecompress function group and 
provide more capabilities. The functionality of ICDecompressEx, ICDecompressExBegin, 
ICDecompressExEnd, and ICDecompressExQuery replaces that of the ICDecompress, 
ICDecompressBegin, ICDecompressEnd, and ICDecompressQuery functions. Use the 
ICDecompressEx functions and macros in place of the ICDecompress equivalents.

Decompressor and Decompression Format Selection
If you want to decompress data and your application requires a specific output format, you can use the 
ICDecompressExQuery function to query the decompressor to determine if it supports the input and 
output formats.

If the output format is not important in your application, you need only find a decompressor that can 
handle the input format. To determine if a decompressor can handle the input format, use 
ICDecompressExQuery and specify NULL for the lpbiDst parameter. Your application can determine the 
buffer size needed for the data specifying the decompression format by sending the 
ICM_DECOMPRESS_GET_FORMAT message (or use the ICDecompressGetFormatSize macro). You 
can also send ICM_DECOMPRESS_GET_FORMAT (or the ICDecompressGetFormat macro) to 
retrieve the format data. The decompressor returns its suggested format in a BITMAPINFO structure. 
This format typically preserves the most information during decompression. Your application should 
ensure that the decompressor returns successfully before it decompresses the information.

Because your application allocates the memory required for decompression, it needs to determine the 
maximum memory the decompressor can require for the output format. The 
ICM_DECOMPRESS_GET_FORMAT message obtains the number of bytes the decompressor uses for 
the default format. 

If your application defines its own format by using ICDecompressExQuery, it must also obtain a palette 
for the bitmap; ICDecompressExQuery does not provide palette definitions. (Most applications use 
standard formats and do not need to obtain a palette.) Your application can obtain the palette by sending 
the ICM_DECOMPRESS_GET_PALETTE message (or use the ICDecompressGetPalette macro).

Decompressor Initialization
After your application selects a decompressor that can handle the input and output formats it needs, you 
can initialize the decompressor by using the ICDecompressExBegin function. This function requires the 
decompressor handle and the input and output formats. 

Data Decompression
You can use the ICDecompressEx function to decompress a frame. Your application must use this 
function repeatedly until all the frames in a sequence are decompressed. 



If your video stream lags behind other components (such as audio) during playback, your application can 
specify the ICDECOMPRESS_HURRYUP flag to speed decompression. To do this, a decompressor 
might extract only the information it needs to decompress the next frame and not fully decompress the 
current frame. Therefore, your application should not try to draw the decompressed data when it uses this 
flag. 

After your application has decompressed the data, it can send the ICM_DECOMPRESSEX_END 
message (or use the ICDecompressExEnd macro) to notify the decompressor that it has finished. If you 
want to restart decompression after using this function, your application must reinitialize the 
decompressor by using ICDecompressExBegin.



Monitoring the Progress of Compressors and Decompressors
Your application can monitor the progress of a lengthy operation performed by a compressor or 
decompressor by sending it the address of a callback function. You can use the ICSetStatusProc 
function to send the address to the compressor or decompressor. When the compressor or decompressor 
receives this address, it sends status messages to the function. These messages indicate whether the 
operation is starting, stopping, yielding, or proceeding. 



Hardware Drawing Capabilities
Some renderers can draw directly to video hardware as they decompress video frames. These renderers 
return the VIDCF_DRAW flag in response to the ICGetInfo function. When using this type of renderer, 
your application does not have to handle the decompressed data. It lets the renderer retain the 
decompressed data for drawing. 

If your application uses a renderer with drawing capabilities, it must handle the following tasks:

· Select a renderer.

· Specify image formats.

· Initialize the renderer.

· Draw the data.

· Control drawing parameters.
 

Renderer Selection
The ICDrawOpen macro opens a renderer that can draw images with the specified format. It returns a 
handle of a renderer if it is successful, or zero otherwise. This macro uses the ICLocate function to open 
the renderer. 

Specifying Image Formats
Because your application does not need to draw the decompressed data, it does not require a specific 
output format. It must, however, ensure that the renderer can draw using the input format by using the 
ICM_DRAW_QUERY message (or use the ICDrawQuery macro). This message cannot determine if a 
renderer can draw a bitmap. If your application must determine if the renderer can draw the bitmap, use 
this message with the ICDrawBegin function.

Your application can have a renderer suggest an input format by using the ICDrawSuggestFormat 
function. This function is used when a renderer separates the drawing capabilities from the 
decompressing capabilities. Most applications using the drawing functions will not need to determine the 
output format.

Renderer Initialization
The ICDrawBegin function initializes a renderer and tells it the drawing destination. This function can also 
perform the following tasks: 

· Determine whether the renderer supports a specific input format.

· Specify whether the drawing operation occupies a window or the entire screen.

· Specify the part of the image to display using the source rectangle.

· Define the playback rate of the image sequence.
 

Some renderers buffer the compressed data to operate more efficiently. Your application can send the 
ICM_GETBUFFERSWANTED message (or use the ICGetBuffersWanted macro) to determine the 
number of buffers the renderer requests. Your application should preload these buffers and send them to 
the renderer before drawing.

Drawing the Data
You can use the ICDraw function to decompress the data for drawing. The renderer, however, does not 
start drawing data until your application sends the ICM_DRAW_START message (or uses the 
ICDrawStart macro). When your application calls this function, the renderer begins to draw the frames at 
the rate specified by the dwRate parameter divided by the dwScale parameter; these parameters were 



supplied when the application initialized the renderer by using the ICDrawBegin function. Drawing 
continues until your application sends the ICM_DRAW_STOP message (or uses the ICDrawStop macro).

 

Note    If a renderer buffers the data before drawing, your application should not use the ICDrawStart 
macro until it has sent the number of frames the renderer returned for the ICGetBuffersWanted 
macro.

 

The lTime parameter of ICDraw specifies the time to draw a frame. The renderer divides this integer by 
the time scale specified with ICDrawBegin to obtain the actual time. Times for ICDraw functions are 
relative to ICDrawStart. ICDrawStart sets the clock to zero. For example, if your application specifies 
1000 for the time scale and 75 for lTime, the renderer draws the frame 75 milliseconds into the sequence.

Controlling Drawing Parameters
You can monitor the clock of a renderer by sending the ICM_DRAW_GETTIME message (or use the 
ICDrawGetTime macro), and you can set the clock of a renderer that can draw data by sending the 
ICM_DRAW_SETTIME message (or use the ICDrawSetTime macro). 

To change the current position while a renderer is drawing, your application can send the 
ICM_DRAW_WINDOW message (or use the ICDrawWindow macro) for repositioning the window. 
Applications typically use this message whenever the window changes.

If the playback window gets a realize-palette message, your application must send the 
ICM_DRAW_REALIZE message (or use the ICDrawRealize macro) to have the renderer realize the 
palette again for playback. Applications can change the palette by sending the 
ICM_DRAW_CHANGEPALETTE message (or use the ICDrawChangePalette macro) and obtain the 
current palette by sending the ICM_DRAW_GET_PALETTE message.

Some renderers must be specifically instructed to display frames passed to them. Sending the 
ICM_DRAW_RENDERBUFFER message (or use the ICDrawRenderBuffer macro) causes these 
renderers to draw the frame.



Using the Video Compression Manager
This section contains examples demonstrating how to perform the following tasks:

· Locating and opening compressors and decompressors

· Installing compressors and decompressors

· Configuring compressors and decompressors

· Obtaining information about compressors and decompressors

· Determining a compressor's output format

· Compressing data

· Determining a decompressor's output format

· Decompressing data

· Determining if a driver can handle the input format

· Preparing to draw data

· Drawing data

· Monitoring compressor and decompressor progress
 



Locating and Opening Compressors and Decompressors

The following example uses the ICLocate function to find a compressor that can compress an 8-bits-per-
pixel bitmap.

BITMAPINFOHEADER bih; 
HIC              hIC 
 
// Initialize the bitmap structure. 
bih.biSize = sizeof(BITMAPINFOHEADER); 
bih.biWidth = bih.biHeight = 0; 
bih.biPlanes = 1; 
bih.biCompression = BI_RGB;      // standard RGB bitmap 
bih.biBitcount = 8;              // 8 bits-per-pixel format 
bih.biSizeImage = 0; 
bih.biXPelsPerMeter = bih.biYPelsPerMeter = 0; 
bih.biClrUsed = bih.biClrImportant = 256; 
 
hIC = ICLocate (ICTYPE_VIDEO, 0L, (LPBITMAPINFOHEADER) &bih, 
    NULL, ICMODE_COMPRESS); 
 

The following example enumerates the decompressors in the system to find one that can handle the 
format of its images. This example uses ICTYPE_VIDEO (which is equivalent to the "VIDC" four-
character code) and the ICDecompressQuery macro to determine if a compressor or decompressor 
supports the image format.

for (i=0; ICInfo(fccType, i, &icinfo); i++) 
{ 
    hic = ICOpen(icinfo.fccType, icinfo.fccHandler, ICMODE_QUERY); 
    if (hic) 
    { 
        // Skip this compressor if it can't handle the format. 
        if (fccType == ICTYPE_VIDEO && pvIn != NULL && 
            ICDecompressQuery(hic, pvIn, NULL) != ICERR_OK) 
        { 
            ICClose(hic); 
            continue; 
        } 
 
        // Find out the compressor name. 
        ICGetInfo(hic, &icinfo, sizeof(icinfo)); 
 
        // Add it to the combo box. 
        n = ComboBox_AddString(hwndC,icinfo.szDescription); 
        ComboBox_SetItemData(hwndC, n, hic); 
    } 
} 
 

The following example attempts to locate a specific compressor to compress the 8-bit RGB format to an 
8-bit RLE format.

BITMAPINFOHEADER    bihIn, bihOut; 
HIC                 hIC 
 
// Initialize the bitmap structure. 



biSize = bihOut.biSize = sizeof(BITMAPINFOHEADER); 
bihIn.biWidth = bihIn.biHeight = bihOut.biWidth = bihOut.biHeight = 0; 
bihIn.biPlanes = bihOut.biPlanes= 1; 
bihIn.biCompression = BI_RGB;        // standard RGB bitmap for input 
bihOut.biCompression = BI_RLE8;      // 8-bit RLE for output format 
bihIn.biBitcount = bihOut.biBitCount = 8;  // 8 bits-per-pixel format 
bihIn.biSizeImage = bihOut.biSizeImage = 0; 
bihIn.biXPelsPerMeter = bih.biYPelsPerMeter = 
    bihOut.biXPelsPerMeter = bihOut.biYPelsPerMeter = 0; 
bihIn.biClrUsed = bih.biClrImportant = 
    bihOut.biClrUsed = bihOut.biClrImportant = 256; 

hIC = ICLocate (ICTYPE_VIDEO, 0L, 
    (LPBITMAPINFOHEADER)&bihIn, 
    (LPBITMAPINFOHEADER)&bihOut, ICMODE_COMPRESS); 
 



Installing Compressors and Decompressors

The following example shows how an application can install a function as a compressor or decompressor 
using the ICInstall function. 

// This function looks like a DriverProc entry point. 

LRESULT MyCodecFunction(DWORD dwID, HDRVR hDriver, 
    UINT uiMessage, LPARAM lParam1, LPARAM lParam2); 
 
// This function installs the MyCodecFunction as a compressor. 

result = ICInstall ( ICTYPE_VIDEO, mmioFOURCC('s','a','m','p'), 
    (LPARAM)(FARPROC)&MyCodecFunction, NULL, ICINSTALL_FUNCTION); 
 



Configuring Compressors and Decompressors

The following example uses the ICQueryConfigure macro to demonstrate how to test whether a 
compressor supports the configuration dialog box and to display it if it does.

// If the compressor handles a configuration dialog box, display it 
// using our application window as the parent window. 

if (ICQueryConfigure(hIC)) ICConfigure(hIC, hwndApp); 
 

The following example shows how to obtain the state data using the ICGetState macro.

dwStateSize = ICGetStateSize(hIC);    // gets size of buffer required 
h = GlobalAlloc(GHND, dwStateSize);   // allocates buffer 
ICGetState(hIC, (LPVOID)lpData, dwStateSize);  // gets the state data 
 
// Store the state data as required. 
 

The following example shows how to restore state data using the ICSetState macro. State data restored 
by applications should not contain any changes to the state data obtained from a driver.

ICSetState(hIC, (LPVOID)lpData, dwStateSize); // sets new state data 
 



Obtaining Information About Compressors and Decompressors

The following example uses the ICGetInfo function to obtain information about a compressor or 
decompressor.

ICINFO ICInfo; 
ICGetInfo(hIC, &ICInfo, sizeof(ICInfo)); 
 

The following example uses the ICGetDefaultKeyFrameRate and ICGetDefaultQuality macros to obtain 
the default values.

DWORD dwKeyFrameRate, dwQuality; 
dwKeyFrameRate = ICGetDefaultKeyFrameRate(hIC); 
dwQuality = ICGetDefaultQuality(hIC); 
 

The following example uses the ICQueryAbout and ICAbout macros to display an About dialog box for 
the compressor or decompressor, if the dialog box exists.

// If the compressor has an About dialog box, display it.
 
if ( ICQueryAbout(hIC)) ICAbout(hIC, hwndApp); 
 



Determining a Compressor's Output Format

The following example uses the ICCompressGetFormat size macro to determine the buffer size needed 
for the data specifying the compression format, allocates a buffer of the appropriate size using the 
GlobalAlloc function, and retrieves the compression format information using the 
ICCompressGetFormat macro.

LPBITMAPINFOHEADER lpbiIn, lpbiOut; 
 
// *lpbiIn must be initialized to the input format. 
 
dwFormatSize = ICCompressGetFormatSize(hIC, lpbiIn); 
h = GlobalAlloc(GHND, dwFormatSize); 
lpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h); 
ICCompressGetFormat(hIC, lpbiIn, lpbiOut); 
 

The following example uses the ICCompressQuery macro to determine whether a compressor can 
handle the input and output formats.

LPBITMAPINFOHEADER lpbiIn, lpbiOut; 
 
// Both *lpbiIn and *lpbiOut must be initialized to the respective
// formats. 

if (ICCompressQuery(hIC, lpbiIn, lpbiOut) == ICERR_OK)
{ 
 
    // Format is supported; use the compressor. 
 
} 
 

The following example uses the ICCompressGetSize macro to determine the buffer size, and it allocates 
a buffer of that size using GlobalAlloc.

// Find the worst-case buffer size. 
dwCompressBufferSize = ICCompressGetSize(hIC, lpbiIn, lpbiOut); 
 
// Allocate a buffer and get lpOutput to point to it. 
h = GlobalAlloc(GHND, dwCompressBufferSize); 
lpOutput = (LPVOID)GlobalLock(h); 
 



Compressing Data

The following example compresses image data for use in an AVI file. It assumes the compressor does not 
support the VIDCF_CRUNCH or VIDCF_TEMPORAL flags, but it does support VIDCF_QUALITY. The 
example uses the ICCompressBegin macro, the ICCompress function, and the ICCompressEnd 
macro.

DWORD dwCkID; 
DWORD dwCompFlags; 
DWORD dwQuality; 
LONG  lNumFrames, lFrameNum; 
// Assume dwNumFrames is initialized to the total number of frames. 
// Assume dwQuality holds the proper quality value (0-10000). 
// Assume lpbiOut, lpOut, lpbiIn, and lpIn are initialized properly. 
 
// If OK to start, compress each frame. 
if (ICCompressBegin(hIC, lpbiIn, lpbiOut) == ICERR_OK)
{ 
    for ( lFrameNum = 0; lFrameNum < lNumFrames; lFrameNum++)
    { 
        if (ICCompress(hIC, 0, lpbiOut, lpOut, lpbiIn, lpIn, 
            &dwCkID, &dwCompFlags, lFrameNum, 
            0, dwQuality, NULL, NULL) == ICERR_OK)
        { 
            // Write compressed data to the AVI file. 
  
            // Set lpIn to the next frame in the sequence. 
  
        } 
        else 
        { 
            // Handle compressor error. 
        } 
    } 
    ICCompressEnd(hIC);    // terminate compression 
} 
else 
{ 
    // Handle the error identifying the unsupported format. 
} 
 



Determining a Decompressor's Output Format

The following example determines the buffer size needed for the data specifying the decompression 
format using the ICDecompressGetFormatSize macro, allocates a buffer of the appropriate size using 
the GlobalAlloc function, and retrieves the decompression format information using the 
ICDecompressGetFormat macro. 

LPBITMAPINFOHEADER lpbiIn, lpbiOut; 
 
// Assume *lpbiIn points to the input (compressed) format. 
dwFormatSize = ICDecompressGetFormatSize(hIC, lpbiIn); 
h = GlobalAlloc(GHND, dwFormatSize); 
lpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h); 
ICDecompressGetFormat(hIC, lpbiIn, lpbiOut); 
 

The following example shows how an application can use the ICDecompressQuery macro to determine 
if a decompressor can handle the input and output formats.

LPBITMAPINFOHEADER lpbiIn, lpbiOut; 
// Assume *lpbiIn & *lpbiOut are initialized to the respective 
// formats. 
if (ICDecompressQuery(hIC, lpbiIn, lpbiOut) == ICERR_OK)
{ 
  
    // Format is supported - use the decompressor. 
  
} 
 

The following code fragment shows how to get the palette information using the 
ICDecompressGetPalette macro.

ICDecompressGetPalette(hIC, lpbiIn, lpbiOut); 
 
// Move up to the palette. 
lpPalette = (LPBYTE)lpbiOut + lpbi->biSize; 
 



Decompressing Data

The following example shows how an application can initialize a decompressor using the 
ICDecompressBegin macro, decompress a frame sequence using the ICDecompress function, and 
terminate decompression using the ICDecompressEnd macro.

LPBITMAPINFOHEADER lbpiIn, lpbiOut; 
LPVOID             lpIn, lpOut; 
LONG               lNumFrames, lFrameNum; 
 
// Assume lpbiIn and lpbiOut are initialized to the input and output 
// format and lpIn and lpOut are pointing to the buffers. 
if (ICDecompressBegin(hIC, lpbiIn, lpbiOut) == ICERR_OK)
{ 
    for (lFrameNum = 0; lFrameNum < lNumFrames, lFrameNum++)
    { 
        if (ICDecompress(hIC, 0, lpbiIn, lpIn, lpbiOut, 
            lpOut) == ICERR_OK) 
        { 
            // Frame decompressed OK so we can process it as required. 
        } 
        else 
        { 
            // Handle the decompression error that occurred. 
        } 
    } 
    ICDecompressEnd(hIC); 
} 
else 
{ 
    // Handle the error identifying an unsupported format. 
} 
 



Determining If a Driver Can Handle the Input Format

The following example shows how to check the input format with the ICDrawQuery macro.

// lpbiIn points to BITMAPINFOHEADER structure indicating the input 
// format. 

if (ICDrawQuery(hIC, lpbiIn) == ICERR_OK) 
{ 
    // Driver recognizes the input format. 
} 
else 
{ 
    // Need a different decompressor. 
} 
 



Preparing to Draw Data 

The following example shows the initialization sequence that instructs the decompressor to draw full-
screen. It uses the ICDrawBegin and ICDrawEnd macros.

// Assume lpbiIn has the input format, dwRate has the data rate. 

if (ICDrawBegin(hIC, ICDRAW_QUERY | ICDRAW_FULLSCREEN, NULL, NULL, 
    NULL, 0, 0, 0, 0, lpbiIn, 0, 0, 0, 0, dwRate, 
    dwScale) == ICERR_OK) 
{ 
    // Decompressor supports this drawing so set up to draw. 
    ICDrawBegin(hIC, ICDRAW_FULLSCREEN, hPal, NULL, NULL, 0, 0, 0, 
        0, lpbiIn, 0, 0, lbpi->biWidth, lpbi->biHeight, dwRate, 
        dwScale); 
    . 
    . // Start decompressing and drawing frames. 
    . 
 
    // Drawing done. Terminate procedure. 
    ICDrawEnd(hIC); 
} 
else 
{ 
  
    // Use another renderer to draw data on the screen; 
    // ICDraw does not support the format. 
} 
 



Drawing Data

The following example uses the ICDraw function and the ICDrawStart, ICDrawStop, ICDrawFlush, and 
ICDrawEnd macros to draw data on the screen.

DWORD    dwNumBuffers; 
 
// Find out how many buffers need filling before drawing starts.

ICGetBuffersWanted(hIC, &dwNumBuffers); 
for (dw = 0; dw < dwNumBuffers; dw++)
{ 
    ICDraw(hIC, 0, lpFormat, lpData, cbData, dw); // fill the pipeline
  
    // Point lpFormat and lpData to next format and buffer.
  
} 
ICDrawStart(hIC);  // starts the clock 
dw = 0; 
while (fPlaying) 
{ 
    ICDraw(hIC, 0, lpFormat, lpData, chData, dw); // fill more buffers 
  
    // Point lpFormat and lpData to next format and buffer,
    // update dw.
} 
 
ICDrawStop(hIC);   // stops drawing and decompressing when done 
ICDrawFlush(hIC);  // flushes any existing buffers 
ICDrawEnd(hIC);    // ends decompression 
 



Monitoring Compressor and Decompressor Progress

The following example shows how the ICSetStatusProc function is used to inform the compressor or 
decompressor of the callback function address:

ICSetStatusProc(compvars.hic, 0, (LPARAM) (UINT) hwndApp, 
    &PreviewStatusProc); 
 

The following example shows the callback function installed by the previous fragment:

LONG CALLBACK export PreviewStatusProc(LPARAM lParam, 
    UINT message, LONG l) 
{ 
    switch (message) 
    { 
        MSG msg; 
        case ICSTATUS_START: 
  
        // Create and display status dialog box. 
  
            break; 
        case ICSTATUS_STATUS: 
            ProSetBarPos((int) l); // sets status bar positions 
 
        // Watch for abort message 
            while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) 
            { 
                if (msg.message == WM_KEYDOWN && msg.wParam == 
                    VK_ESCAPE) 
                    return 1; 
                if (msg.message == WM_SYSCOMMAND && 
                    (msg.wParam & 0xFFF0) == SC_CLOSE) 
                    return 1; 
 
                TranslateMessage(&msg); 
                DispatchMessage(&msg); 
            } 
            break; 
        case ICSTATUS_END: 
  
        // Close and destroy status dialog box. 
  
            break; 
        case ICSTATUS_YIELD: 
  
  
  
            break; 
    } 
    return 0; 
} 
 



Video Compression Manager Reference
This section describes the functions, structures, messages, and macros, associated with VCM. These 
elements are grouped as follows. 

Compressor Installation and Removal
ICInstall
ICLocate
ICOPEN
ICClose
ICRemove
ICOpenFunction 

Locating and Opening a Compressor
ICLocate
ICOPEN
ICDecompressOpen
ICDrawOpen
ICINFO
ICClose 

Selecting Compressors
ICCompressorChoose
ICCompressorFree
COMPVARS

Configuring Compressors
ICM_CONFIGURE
ICM_GETSTATE
ICM_SETSTATE
ICSendMessage

Compressor Information
ICGetInfo
ICINFO
ICM_GETDEFAULTKEYFRAMERATE
ICGetDisplayFormat
ICM_GETDEFAULTQUALITY
ICM_ABOUT

Single Image Compression
ICImageCompress

Sequence Compression
ICSeqCompressFrame
ICSeqCompressFrameStart
ICSeqCompressFrameEnd

COMPVARS
ICCompressorChoose 



Image Data Compression
ICCOMPRESS
ICM_COMPRESS_GET_FORMAT
ICM_COMPRESS_QUERY
ICM_COMPRESS_GET_SIZE
ICM_COMPRESS_BEGIN
ICM_COMPRESS_END 

Compressor Monitoring
ICSETSTATUSPROC 

Decompressing Single Images
ICImageDecompress 

Decompressing Image Data
ICDECOMPRESSEX
ICDecompressExBegin
ICM_DECOMPRESSEX_END
ICM_DECOMPRESS_GET_FORMAT
ICM_DECOMPRESS_GET_PALETTE
ICDecompressExQuery
ICDECOMPRESS
ICM_DECOMPRESS_BEGIN
ICM_DECOMPRESS_END
ICM_DECOMPRESS_QUERY 

Using Hardware-Drawing Capabilities
ICGetInfo
ICDRAWBEGIN
ICM_DRAW_END
ICM_DRAW_FLUSH
ICM_DRAW_QUERY
ICDrawSuggestFormat
ICM_DRAW_START
ICM_DRAW_STOP
ICM_GETBUFFERSWANTED
ICM_DRAW_REALIZE
ICDrawOpen
ICDRAW
ICM_DRAW_GETTIME
ICM_DRAW_SETTIME
ICM_DRAW_WINDOW
ICM_DRAW_REALIZE
ICM_DRAW_CHANGEPALETTE
ICM_DRAW_RENDERBUFFER 



Video Compression Functions

The following functions are used with video compression.

ICClose
ICCompress
ICCompressorChoose
ICCompressorFree
ICDecompress
ICDecompressEx
ICDecompressExBegin
ICDecompressExQuery
ICDraw
ICDrawBegin
ICDrawSuggestFormat
ICGetDisplayFormat
ICGetInfo
ICImageCompress
ICImageDecompress
ICInfo
ICInstall
ICLocate
ICOpen
ICOpenFunction
ICRemove
ICSendMessage
ICSeqCompressFrame
ICSeqCompressFrameEnd
ICSeqCompressFrameStart
ICSetStatusProc
MyStatusProc



Video Compression Structures

The following structures are used with video compression.

COMPVARS
ICCOMPRESS
ICCOMPRESSFRAMES
ICDECOMPRESS
ICDECOMPRESSEX
ICDRAW
ICDRAWBEGIN
ICDRAWSUGGEST
ICINFO
ICOPEN
ICSETSTATUSPROC



Video Compression Messages

The following messages are used with video compression.

ICM_ABOUT
ICM_COMPRESS
ICM_COMPRESS_BEGIN
ICM_COMPRESS_END
ICM_COMPRESS_FRAMES_INFO
ICM_COMPRESS_GET_FORMAT
ICM_COMPRESS_GET_SIZE
ICM_COMPRESS_QUERY
ICM_CONFIGURE
ICM_DECOMPRESS
ICM_DECOMPRESS_BEGIN
ICM_DECOMPRESS_END
ICM_DECOMPRESS_GET_FORMAT
ICM_DECOMPRESS_GET_PALETTE
ICM_DECOMPRESS_QUERY
ICM_DECOMPRESS_SET_PALETTE
ICM_DECOMPRESSEX
ICM_DECOMPRESSEX_BEGIN
ICM_DECOMPRESSEX_END
ICM_DECOMPRESSEX_QUERY
ICM_DRAW
ICM_DRAW_BEGIN
ICM_DRAW_CHANGEPALETTE
ICM_DRAW_END
ICM_DRAW_FLUSH
ICM_DRAW_GET_PALETTE
ICM_DRAW_GETTIME
ICM_DRAW_QUERY
ICM_DRAW_REALIZE
ICM_DRAW_RENDERBUFFER
ICM_DRAW_SETTIME
ICM_DRAW_START
ICM_DRAW_START_PLAY
ICM_DRAW_STOP
ICM_DRAW_STOP_PLAY
ICM_DRAW_SUGGESTFORMAT
ICM_DRAW_WINDOW
ICM_GET
ICM_GETBUFFERSWANTED
ICM_GETDEFAULTKEYFRAMERATE
ICM_GETDEFAULTQUALITY
ICM_GETINFO
ICM_GETQUALITY
ICM_GETSTATE
ICM_SET_STATUS_PROC
ICM_SETQUALITY
ICM_SETSTATE



Video Compression Macros

The following macros are used with video compression.

ICAbout
ICCompressBegin
ICCompressEnd
ICCompressGetFormat
ICCompressGetFormatSize
ICCompressGetSize
ICCompressQuery
ICConfigure
ICDecompressBegin
ICDecompressEnd
ICDecompressExEnd
ICDecompressGetFormat
ICDecompressGetFormatSize
ICDecompressGetPalette
ICDecompressOpen
ICDecompressQuery
ICDecompressSetPalette
ICDrawChangePalette
ICDrawEnd
ICDrawFlush
ICDrawGetTime
ICDrawOpen
ICDrawQuery
ICDrawRealize
ICDrawRenderBuffer
ICDrawSetTime
ICDrawStart
ICDrawStartPlay
ICDrawStop
ICDrawStopPlay
ICDrawWindow
ICGetBuffersWanted
ICGetDefaultKeyFrameRate
ICGetDefaultQuality
ICGetState
ICGetStateSize
ICQueryAbout
ICQueryConfigure
ICSetState

 

 



Video Capture
You can easily incorporate video capture capabilities into your application by using the AVICap window 
class. AVICap provides applications with a simple, message-based interface to access video and 
waveform-audio acquisition hardware and to control the process of streaming video capture to disk.



About Video Capture
AVICap supports streaming video capture and single-frame capture in real-time. In addition, AVICap 
provides control of video sources that are Media Control Interface (MCI) devices so the user can control 
(through an application) the start and stop positions of a video source, and augment the capture operation 
to include step frame capture.

The windows you create by using the AVICap window class can perform the following tasks:

· Capture audio and video streams to an audo-video interleaved (AVI) file.

· Connect and disconnect video and audio input devices dynamically.

· View a live incoming video signal by using the overlay or preview methods.

· Specify a file to use when capturing and copy the contents of the capture file to another file.

· Set the capture rate.

· Display dialog boxes that control the video source and format.

· Create, save, and load palettes.

· Copy images and palettes to the clipboard.

· Capture and save a single image as a device-independent bitmap (DIB).
 



Video Capture: A Minimal Approach

Video capture digitizes a stream of video and audio data, and stores it on a hard disk or some other type 
of persistent storage device. This section describes how to add a simple form of video capture to an 
application using three statements of code. It also describes how to end or abort a capture session by 
sending messages to the capture window.

An AVICap capture window handles the details of streaming audio and video capture to AVI files. This 
frees your application from involvement in the AVI file format, video and audio buffer management, and 
the low-level access of video and audio device drivers. AVICap provides a flexible interface for 
applications. You can add video capture to your application, using only the following lines of code:

hWndC = capCreateCaptureWindow ( "My Own Capture Window", 
    WS_CHILD | WS_VISIBLE , 0, 0, 160, 120, hwndParent, nID);

SendMessage (hWndC, WM_CAP_DRIVER_CONNECT, 0 /* wIndex */, 0L);

SendMessage (hWndC, WM_CAP_SEQUENCE, 0, 0L);
 

A macro interface is also available that provides an alternative to using the SendMessage function and 
improves the readability of an application. The following example uses the macro interface to add video 
capture to an application.

hWndC = capCreateCaptureWindow ( "My Own Capture Window", 
    WS_CHILD | WS_VISIBLE , 0, 0, 160, 120, hwndParent, nID);

capDriverConnect (hWndC, 0);

capCaptureSequence (hWndC); 
 

After your application creates a capture window of the AVICap window class and connects it to a video 
driver, the capture window is ready to capture data. At this point, your application can simply send the 
WM_CAP_SEQUENCE message (or the capCaptureSequence macro) to begin capturing.

Using default settings, WM_CAP_SEQUENCE initiates the capture of video and audio input to a file 
named CAPTURE.AVI. Capture continues until one of the following events occurs:

· The user presses the ESC key or a mouse button.

· Your application stops or aborts capture operation.

· The disk becomes full.
 

In an application, you can stop streaming captured data to a file by sending the WM_CAP_STOP (or the 
capCaptureStop macro) message to a capture window. You can also abort the capture operation by 
sending the WM_CAP_ABORT message (or the capCaptureAbort macro) to a capture window.



Basic Capture Options

By modifying one or more of the capture parameters defined in the CAPTUREPARMS structure, you can 
perform the following tasks: 

· Change the frame capture rate.

· Specify keyboard or mouse control for ending a capture session.

· Specify a duration for a capture session.
 



Capture Rate
The capture rate is the number of frames that are captured each second of a capture session. You can 
retrieve the current capture rate by using the WM_CAP_GET_SEQUENCE_SETUP message (or the 
capCaptureGetSetup macro). The current capture rate is stored in the dwRequestMicroSecPerFrame 
member of the CAPTUREPARMS structure. You can set the capture rate by specifying the number of 
microseconds between successive frames as the value of this member, then sending the updated 
CAPTUREPARMS structure to the capture window by using the WM_CAP_SET_SEQUENCE_SETUP 
message (or the capCaptureSetSetup macro). The default value of dwRequestMicroSecPerFrame is 
66667, which corresponds to 15 frames per second.



Keys Ending Capture
You can allow the user to abort a capture session by pressing a key or keystroke combination from the 
keyboard, or by pressing the right or left mouse button. If the user aborts a real-time capture session, the 
contents of the capture file are discarded. If the user aborts a step-frame capture session, the contents of 
the capture file up to the point of aborting the capture are saved. 

You can retrieve the settings for aborting a capture session by using the 
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The current 
keystroke setting is stored in the vKeyAbort member of the CAPTUREPARMS structure; the current 
mouse settings are stored in the fAbortLeftMouse and fAbortRightMouse members. You can set a new 
key or keystroke combination by specifying the keycode or keycode combination (as in a CTRL or SHIFT 
key combination) as the value of vKeyAbort, or set the left or right mouse button as the abort key by 
specifying the fAbortLeftMouse or fAbortRightMouse member. After you set these members, send the 
updated CAPTUREPARMS structure to the capture window by using the 
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default value 
of vKeyAbort is VK_ESCAPE. You must call the RegisterHotKey function before specifying a keystroke 
that can abort a capture session. The default values of fAbortLeftMouse and fAbortRightMouse are 
TRUE.



Time Limit
You can limit the duration of a capture operation by using the fLimitEnabled and wTimeLimit members 
of the CAPTUREPARMS structure. The fLimitEnabled member indicates whether the capture operation 
is to be timed, while wTimeLimit specifies the maximum duration of the capture operation.

You can retrieve the values for fLimitEnabled and wTimeLimit by using the 
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). You can enable a 
timer for the capture operation by specifying TRUE as the value of fLimitEnabled, or you can set the 
duration of the capture operation by specifying a value, in seconds, for wTimeLimit. After you set these 
members, send the updated CAPTUREPARMS structure to the capture window by using the 
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default value 
of fLimitEnabled is FALSE.



Capture Windows

Capture windows are conceptually similar to standard controls (such as buttons, list boxes, or scroll bars). 
Typically, capture windows use the WS_CHILD and WS_VISIBLE window styles. 



Creating an AVICap Capture Window
You can create a capture window of the AVICap window class by using the capCreateCaptureWindow 
function. This function returns a window handle that identifies the capture window and is used by an 
application to send subsequent messages to the window.

You can create one or more capture windows in an application and connect each capture window to a 
different capture device. 



Connecting a Capture Window to a Capture Driver
You can dynamically connect or disconnect a capture window to a capture driver. You can connect or 
associate a capture window with a capture driver by using the WM_CAP_DRIVER_CONNECT message 
(or the capDriverConnect macro). After a capture window and capture driver are connected, you can 
send device-specific messages to the capture driver associated with a capture window.

If you have more than one capture device installed on a system, you can connect a capture window to a 
particular video capture device driver by specifying an integer for the wParam parameter of the 
WM_CAP_DRIVER_CONNECT message. The integer is an index that identifies a video capture driver 
listed in the registry or in the [drivers] section of the SYSTEM.INI file. Use zero for the first index entry. 

You can retrieve the name and version of an installed capture driver by using the the 
capGetDriverDescription function. Your application can use this function to enumerate the installed 
capture devices and drivers, so the user can select a capture device to connect to a capture window. 

You can retrieve the name of the capture device driver connected to a capture window by using the 
WM_CAP_DRIVER_GET_NAME message (or the capDriverGetName macro). To retrieve the version of 
an installed capture driver, use the WM_CAP_DRIVER_GET_VERSION message (or the 
capDriverGetVersion macro). 

You can disconnect a capture window from a capture driver by using the 
WM_CAP_DRIVER_DISCONNECT message (or the capDriverDisconnect macro). 

When an capture window is destroyed, any connected video capture device drivers are automatically 
disconnected.



Parent-Child Window Interaction
Some system-level messages, such as WM_PALETTECHANGED and WM_QUERYNEWPALETTE, are 
sent only to top-level and overlapped windows. If a capture window is a child window, its parent must 
forward these messages.

Similarly, if the parent window changes size, it might need to send notification messages to the capture 
window. Conversely, if the dimensions of the captured video change, the capture window might need to 
send notification messages to the parent window. The simplest way to manage this is to always keep the 
capture window dimensions equal to the size of the captured video stream, notifying the parent whenever 
these dimensions change.



Capture Window Status
You can retrieve the current status of a capture window by using the WM_CAP_GET_STATUS message 
(or the capGetStatus macro). This message retrieves a copy of the CAPSTATUS structure with the 
current values of its members. The CAPSTATUS structure contains information regarding the dimensions 
of the image, scroll position, and whether overlay or preview of the image is enabled. Because the 
information represented in CAPSTATUS is dynamic, your application should refresh the contents of the 
structure whenever the size or format of the captured video stream might have changed (such as after 
displaying the video format of the capture driver). 

Changing the dimensions of the capture window has no effect on the dimensions of the actual captured 
video stream. The format dialog box displayed by the video capture device driver controls the dimensions 
of the captured video stream.



Capture and Audio Drivers

A capture driver and the underlying hardware can dictate several aspects of video capture, including 
acceptable video sources, display options, formats, and compression options. An audio driver specifies 
the audio format and an optional compression option used with captured audio data.



Capture Driver Capabilities
You can retrieve the hardware capabilities of the currently connected capture driver by using the 
WM_CAP_DRIVER_GET_CAPS message (or the capDriverGetCaps macro). This message returns the 
capabilities of the capture driver and underlying hardware in the CAPDRIVERCAPS structure. 



Video Dialog Boxes
Each capture driver can provide up to four dialog boxes to control aspects of the video digitization and 
capture process, and to define compression attributes used in reducing the size of the video data. The 
contents of these dialog boxes are defined by the video capture driver.

The Video Source dialog box controls the selection of video input channels and parameters affecting the 
video image being digitized in the frame buffer. This dialog box enumerates the types of signals that 
connect the video source to the capture card (typically SVHS and composite inputs), and provides 
controls to change hue, contrast, or saturation. If the dialog box is supported by a video capture driver, 
you can display and update it by using the WM_CAP_DLG_VIDEOSOURCE message (or the 
capDlgVideoSource macro).

The Video Format dialog box controls selection of the digitized video frame dimensions and image-depth, 
and compression options of the captured video. If the dialog box is supported by a video capture driver, 
you can display and update it by using the WM_CAP_DLG_VIDEOFORMAT message (or the 
capDlgVideoFormat macro).

The Video Display dialog box controls the appearance of the video on the monitor during capture. The 
controls in this dialog box have no effect on the digitized video data, but they might affect the presentation 
of the digitized signal. For example, capture devices that support overlay might allow altering hue and 
saturation, key color, or alignment of the overlay. If the dialog box is supported by a video capture driver, 
you can display and update it by using the WM_CAP_DLG_VIDEODISPLAY message (or the 
capDlgVideoDisplay macro).

The Video Compression dialog box controls the post-capture video compression attributes. If the dialog 
box is supported by a video capture driver, you can display and update it by using the 
WM_CAP_DLG_VIDEOCOMPRESSION message (or the capDlgVideoCompression macro).



Preview and Overlay Modes
A capture driver can implement two methods for viewing an incoming video stream: preview mode and 
overlay mode. If a capture driver implements both methods, the user can choose which method to use. 

Preview mode transfers digitized frames from the capture hardware to system memory and then displays 
the digitized frames in the capture window by using graphics device interface (GDI) functions. 
Applications might decrease the preview rate when the parent window loses focus, and increase the 
preview rate when the parent window gains focus. This action improves general system responsiveness 
because the preview operation is processor intensive.

There are three messages to control the preview operation. 

· Use the WM_CAP_SET_PREVIEW message to enable or disable preview mode by sending the (or 
the capPreview macro) to a capture window. 

· Use the WM_CAP_SET_PREVIEWRATE message (or the capPreviewRate macro) to set the rate at 
which frames are displayed in preview mode 

· Use the WM_CAP_SET_SCALE message (or the capPreviewScale macro) to enable or disable 
scaling of the preview video. 

 

When preview and scaling are both enabled, the captured video frame is stretched to the dimensions of 
the capture window. Enabling preview mode automatically disables overlay mode.

Overlay mode is a hardware function that displays the contents of the capture buffer on the monitor 
without using CPU resources. You can enable and disable overlay mode by sending the 
WM_CAP_SET_OVERLAY message (or the capOverlay macro) to a capture window. Enabling overlay 
mode automatically disables preview mode.

You can also set the scroll position of the video frame within the client area of the capture window for 
preview mode or overlay mode by sending the WM_CAP_SET_SCROLL message (or the 
capSetScrollPos macro) to a capture window.



Video Format
You can retrieve the structure that specifies the video format or the size of that structure by sending the 
WM_CAP_GET_VIDEOFORMAT message (or the capGetVideoFormat and capGetVideoFormatSize 
macros) to a capture window. You can set the format of captured video data by sending the 
WM_CAP_SET_VIDEOFORMAT message (or the capSetVideoFormat macro) to a capture window.



Video Capture Settings
The CAPTUREPARMS structure contains the control parameters for streaming video capture. This 
structure controls several aspects of the capture process, and allows you to perform the following tasks:

· Specify the frame rate.

· Specify the number of allocated video buffers.

· Disable and enable audio capture.

· Specify the time interval for the capture.

· Specify whether an MCI device (VCR or videodisc) is used during capture.

· Specify keyboard or mouse control for ending streaming.

· Specify the type of video averaging applied during capture.
 

You can retrieve the current capture settings within the CAPTUREPARMS structure by sending the 
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro) to a capture 
window. You can set one or more current capture settings by updating the appropriate members of the 
CAPTUREPARMS structure and then sending the WM_CAP_SET_SEQUENCE_SETUP message (or 
the capCaptureSetSetup macro) and CAPTUREPARMS to a capture window. 



Audio Format
You can retrieve the current capture format for audio data or the size of the audio format structure by 
sending the WM_CAP_GET_AUDIOFORMAT message (or the capGetAudioFormat and 
capGetAudioFormatSize macros) to a capture window. The default audio capture format is mono, 8-bit, 
11 kHz PCM (Pulse Code Modulation). When you retrieve the format by using 
WM_CAP_GET_AUDIOFORMAT, always use the WAVEFORMATEX structure.

You can set the capture format for audio data by sending the WM_CAP_SET_AUDIOFORMAT message 
(or the capSetAudioFormat macro) to a capture window. When setting the audio format, you can pass a 
pointer to a WAVEFORMAT, WAVEFORMATEX, or PCMWAVEFORMAT structure, depending on the 
specified audio format. 



Capture File and Buffers

This section describes tips and options for using the capture file and for specifying buffers for the capture 
operation.

· Capture Filename

· Saving Captured Data to a New File

· Disk Space Preallocation for the Capture File

· Index Size

· Video and Audio Chunk Granularity

· Video Buffers

· Audio Buffers
 



Capture Filename
AVICap, by default, routes video and audio stream data from a capture window to a file named 
CAPTURE.AVI in the root directory of the current drive. You can specify an alternate filename by sending 
the WM_CAP_FILE_SET_CAPTURE_FILE message (or the capFileSetCaptureFile macro) to a capture 
window. This message specifies the filename; it does not create, allocate, or open the file. You can 
retrieve the current capture filename by sending the WM_CAP_FILE_GET_CAPTURE_FILE message (or 
the capFileGetCaptureFile macro) to a capture window.



Saving Captured Data to a New File
If the user wants to save captured data, the application should save the contents of the capture file to 
another file by using the WM_CAP_FILE_SAVEAS message (or the capFileSaveAs macro). This 
message does not change the name or contents of the capture file. Your application must specify a name 
for the new file because the capture file retains its original filename. 

Typically, a capture file is preallocated for the largest capture segment anticipated, and only a portion of it 
might be used to capture data. This message copies only the portion of the capture file containing the 
capture data.



Disk Space Preallocation for the Capture File
Preallocating disk space for the capture file builds a file of a specified size on the disk before the start of a 
capture operation. Preallocating a capture file reduces the processing required while capture is in 
progress and results in fewer dropped frames. You can preallocate a capture file by using the 
WM_CAP_FILE_ALLOCATE message (or the capFileAlloc macro). 

Typically, your application should preallocate enough disk space to contain the largest capture file 
anticipated. Preallocating disk space does not restrict the size of the captured file. The file size is 
automatically enlarged if the captured data exceeds the allocated space. Subsequent write operations to 
the capture file reuse the portions of disk space allocated for the file, preserving the size and 
fragmentation of the file. 

You can also improve capture performance by defragmenting the capture file. To defragment the file, use 
a defragmentation utility such as Disk Defragmenter. If you use a defragmented capture file and later 
enlarge it, you should defragment the enlarged file. Enlarging a defragmented capture file can fragment 
the expanded portion of the file and reduce performance in the capture operation.

You might also improve performance by using an uncompressed disk for video capture. Compressing 
data during capture can limit capture throughput to the disk. 

An application can reserve a permanent capture file to eliminate the time required to preallocate and 
defragment a file each time it is started. Because a capture file can require considerable disk space, and 
preallocating a capture file removes all data from an existing capture file, an application should let the 
user decide if the file is permanent or temporary. 



Index Size
Each AVI file uses an index of a specified size to locate video and audio data chunks within the file. An 
entry in the index locates one video frame or waveform-audio buffer. Consequently, the value of the index 
size indirectly sets the upper limit on the number of frames that can be captured in a file. 

You can retrieve the current index size by using the WM_CAP_GET_SEQUENCE_SETUP message (or 
the capCaptureGetSetup macro). The current index size is stored in the dwIndexSize member of the 
CAPTUREPARMS structure. You can specify a new index size as the value of dwIndexSize and then 
send the updated CAPTUREPARMS structure to the capture window by using the 
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default index 
size is 34,952 entries (allowing 32K frames and a proportional number of audio buffers).



Video and Audio Chunk Granularity
The chunk granularity is a logical block size for an AVI file that is used for writing and retrieving audio and 
video data chunks. When writing audio and video chunks to disk, AVICap adds filler chunks (RIFF "JUNK" 
chunks) as necessary to fill each logical block of data. 

You can retrieve the current chunk granularity setting by using the WM_CAP_GET_SEQUENCE_SETUP 
message (or the capCaptureGetSetup macro). The current chunk granularity is stored in the 
wChunkGranularity member of the CAPTUREPARMS structure. You can specify a new chunk 
granularity as the value of wChunkGranularity and then send the updated CAPTUREPARMS structure 
to the capture window by using the WM_CAP_SET_SEQUENCE_SETUP message (or the 
capCaptureSetSetup macro). You can also specify zero for this member to set the chunk granularity to 
the sector size of the disk.



Video Buffers
The buffers used with video capture reside in the memory heap. The number of buffers used in a capture 
operation can vary and depend on the value of the wNumVideoRequested member of the 
CAPTUREPARMS structure and available system memory.

You can retrieve the current value of requested video buffers by using the 
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The current 
requested number of video buffers is stored in the wNumVideoRequested member of the 
CAPTUREPARMS structure. You can request the placement and number of buffers by updating this 
member, and then sending the updated CAPTUREPARMS structure to the capture window by using the 
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). 



Audio Buffers
You can control the audio portion of a capture operation in three ways:

· Include or exclude audio from the capture operation.

· Request a specific number of audio buffers.

· Request that audio buffers be a specific size.
 

You can retrieve the settings for audio buffers by using the WM_CAP_GET_SEQUENCE_SETUP 
message (or the capCaptureGetSetup macro). The fCaptureAudio member of the CAPTUREPARMS 
structure specifies whether audio is included or excluded from the capture operation. The current 
requested number of audio buffers is stored in the wNumAudioRequested member, and the current 
audio buffer size is stored in the dwAudioBufferSize member. You can specify whether to include audio 
capture, specify the size and number of audio buffers by updating these members, and send the updated 
CAPTUREPARMS structure to the capture window by using the WM_CAP_SET_SEQUENCE_SETUP 
message (or the capCaptureSetSetup macro). 

By default, audio is included in the capture operation, and four audio buffers are allocated. The default 
value of fCaptureAudio is TRUE. The default buffer size (the value of dwAudioBufferSize) can contain 
0.5 seconds of audio data or 10K, whichever is greater.



Capture Variations

In addition to streaming capture based on a constant time interval, AVICap supports the following types of 
capture:

· Manual frame capture (programmable control frames that are captured)

· Still-image capture

· Capture without using disk storage

· Streaming capture from an MCI device (real-time and step-frame)
 



Manual Frame Capture
If you want to individually specify the frames to capture in a video stream, you can control the sequence 
by using the WM_CAP_SINGLE_FRAME_OPEN, WM_CAP_SINGLE_FRAME, and 
WM_CAP_SINGLE_FRAME_CLOSE messages (or the capCaptureSingleFrameOpen, 
capCaptureSingleFrame, and capCaptureSingleFrameClose macros). Typically, these messages are 
used to create animation by appending individual frames to the capture file. 
WM_CAP_SINGLE_FRAME_OPEN opens a file for a manually driven capture operation. 
WM_CAP_SINGLE_FRAME captures an individual frame and appends it to the capture file. 
WM_CAP_SINGLE_FRAME_CLOSE closes the file used for manual frame capture. 

 

Note    This capture method does not support simultaneous audio capture with video capture.

 



Still-Image Capture
If you want to capture a single frame as a still image, you can use the 
WM_CAP_GRAB_FRAME_NOSTOP or WM_CAP_GRAB_FRAME message (or the 
capGrabFrameNoStop or capGrabFrame macro) to capture the digitized image in an internal frame 
buffer. You can freeze the display on the captured image by using WM_CAP_GRAB_FRAME. Otherwise, 
use WM_CAP_GRAB_FRAME_NOSTOP.

Once captured, you can copy the image for use by other applications. You can copy an image from the 
frame buffer to the clipboard by using the WM_CAP_EDIT_COPY message (or the capEditCopy macro). 
You can also copy the image from the frame buffer to a device-independent bitmap (DIB) by using the 
WM_CAP_FILE_SAVEDIB message (or the capFileSaveDIB macro).

Your application can also use the two single-frame capture messages to edit a sequence frame by frame, 
or to create a time-lapse photography sequence. 



Capture Without Using Disk Storage
You can use capture services without writing the data to a disk file by using the 
WM_CAP_SEQUENCE_NOFILE message (or the capCaptureSequenceNoFile macro). This message 
is useful only in conjunction with callback functions that allow your application to use the video and audio 
data directly. For example, videoconferencing applications might use this message to obtain streaming 
video frames. The callback functions would transfer the captured images to the remote computer.



Streaming Capture from an MCI Device
MCI devices augment the capture operation in real-time capture and step-frame capture. You can specify 
the MCI device, such as a videodisc or video-cassette recorder (VCR), acting as the video source for your 
capture operation by using the WM_CAP_SET_MCI_DEVICE message (or the capSetMCIDeviceName 
macro) and specifying the name of the device. You can also retrieve the device name currently set by 
using the WM_CAP_GET_MCI_DEVICE message (or the capGetMCIDeviceName macro).

In real-time capture, the capture window synchronizes the capture operation and compensates for delays 
associated with positioning the MCI video source and initializing the resources (such as capture buffers) 
required for capturing data. The capture window expects a valid MCI video device to be installed in the 
system for capturing data this way. 

Specifications for controlling an MCI device are stored in the members of the CAPTUREPARMS 
structure. MCI-compatible video sources include VCRs and laserdiscs. If the fMCIControl member of this 
structure is set to TRUE, the capture window coordinates MCI operation. The capture window uses the 
parameters specified in the dwMCIStartTime and dwMCIStopTime members to obtain the starting and 
stopping positions, in milliseconds, of the sequence. If the value of fMCIControl is FALSE, the video 
source is not treated as an MCI device and the contents of dwMCIStartTime and dwMCIStopTime are 
ignored.

You can use Media Player to quickly verify that an MCI video device is properly connected to the system. 
Playing a device with Media Player verifies that the MCI configuration for the device is correct. If an image 
appears on the video display, the video source is connected properly to the capture hardware. 

In step-frame capture, the capture window synchronizes the capture operation and compensates for the 
delays associated with positioning the MCI video source and initializing the resources required for 
capturing data. In addition, the capture window ensures that no frames are dropped; it steps through the 
video frames individually, ensuring that the frame is captured and stored before capturing the next frame 
in the video stream. 

Specifications for controlling step-frame capture are stored in the members of the CAPTUREPARMS 
structure. Step-frame capture uses the following members in addition to the members used for real-time 
capture: fStepMCIDevice, fStepCaptureAt2x, and wStepCaptureAverageFrames. If the 
fStepMCIDevice member is set to TRUE, the capture window coordinates step-frame capture. The 
capture window uses the parameters specified in the dwMCIStartTime and dwMCIStopTime members 
for the starting and stopping positions, in milliseconds, of the sequence. The capture window uses 
fStepCaptureAt2x to determine if the capture hardware should capture video frames at twice the normal 
resolution and uses wStepCaptureAverageFrames to specify the number of times each frame in the 
capture operation is sampled.

If fStepMCIDevice is FALSE, real-time capture is used instead of step-frame capture and the contents of 
fStepCaptureAt2x, and wStepCaptureAverageFrames are ignored.

If a step-frame capture is specified and fStepCaptureAt2x is set to TRUE, the capture hardware captures 
at twice the specified resolution. (The resolutions of both the height and width are doubled.) The software 
interpolates the pixels in the higher resolution image to produce the image at the specified resolution. This 
form of averaging can improve the edge definition of images in a frame. You can enable this option if the 
hardware does not support hardware-based decimation and you are capturing in the RGB format. 

 

Note    If your hardware supports hardware-based decimation, it can capture samples at a higher rate 
than specified and use these additional samples to obtain color definitions that are more consistent 
with the original image. The additional samples are discarded after they are used, and the hardware 
passes samples to the capture driver at the specified rate.

 



If a step-frame capture is specified, the wStepCaptureAverageFrames member specifies the number of 
times a frame is sampled when creating a frame based on the average sample. This averaging technique 
reduces the random digitization noise appearing in a frame. A typical value for the number of averages is 
5.

For more information about MCI, see MCI.



Advanced Capture Options

This section describes other options you can include in a capture operation. 

· Measuring Video Quality

· User-Initiated Capture

· Working with Palettes

· Embedding Information Chunks in an AVI File

· User Data Messages
 



Measuring Video Quality
One way to measure video quality is to limit the number of captured frames dropped during the capture 
operation. When streaming capture has finished, the quality value is compared with the ratio of dropped 
frames to total frames. If the percentage of dropped frames is greater than the value of the 
wPercentDropForError member of the CAPTUREPARMS structure, AVICap sends an error message to 
the error callback function if it is installed. 

You can retrieve the current limit of dropped frames (expressed as a percentage) by using the 
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). You can set a 
new limit by specifying a percentage as the value of the wPercentDropForError member of the 
CAPTUREPARMS structure, and then sending the updated structure to the capture window by using the 
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default value 
of wPercentDropForError is 10 percent.



User-Initiated Capture
You can retrieve the current value of the user-initiated capture flag by using the 
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The value of the 
flag is stored in the fMakeUserHitOKToCapture member of the CAPTUREPARMS structure. You can 
provide the user with precise control over when to start a capture session by setting this member to 
TRUE. AVICap displays a dialog box after allocating all video and audio buffers for a capture session. 
This lets the user eliminate capture delays because of software initialization. If your application uses a 
small number of video buffers, this dialog box is probably unnecessary. The default value is FALSE.



Working with Palettes
Initially, if the video capture format requires a palette, the capture window uses the palette supplied by the 
capture driver. This palette might consist of gray-scale values for black-and-white reproduction, or a broad 
selection of color values. You can retrieve an existing palette to replace the default palette by using the 
WM_CAP_PAL_PASTE or WM_CAP_PAL_OPEN message (or the capPalettePaste or capPaletteOpen 
macro). Alternatively, you can create a custom palette to replace the default palette by using the 
WM_CAP_PAL_AUTOCREATE or WM_CAP_PAL_MANUALCREATE message (or the capPaletteAuto 
or capPaletteManual macro). After you replace the default palette, the capture window and driver use the 
replacement palette until you create or open another palette.

The WM_CAP_PAL_AUTOCREATE or WM_CAP_PAL_MANUALCREATE message creates an 
optimized palette based on the current video input. This custom palette gives a video sequence the best 
color fidelity because it is based on colors that exist in the sequence. The capture window creates a 
three-dimensional histogram of the colors it samples. It reduces the number of colors by examining the 
absolute error between adjacent colors and consolidating those with the smallest error value. 

When sending WM_CAP_PAL_AUTOCREATE, you must specify the number of frames for AVICap to 
sample, and specify the size of the color palette. When specifying the number of frames, include enough 
frames to ensure that all colors in the sequence are sampled. 

You can sample the current frame by using WM_CAP_PAL_MANUALCREATE. By using this message 
with several manually selected frames, you can create a palette that contains the colors you want to 
appear in the palette. 

A palette can contain up to 256 colors. If you merge palettes or if the video sequence is to be displayed 
simultaneously with other video or images, you should use a smaller color selection so that colors from 
each image or video clip can coexist.

You save a new palette by using the WM_CAP_PAL_SAVE message (or the capPaletteSave macro) and 
later retrieve it by using the WM_CAP_PAL_OPEN message. You can save a palette for post-processing 
of the palette or for use in another application. 

You can paste a palette from the clipboard into the capture window by using the WM_CAP_PAL_PASTE 
message. The capture window passes the palette to the capture driver. Other applications can copy 
palettes to the clipboard. You can also copy a palette to the clipboard by using the 
WM_CAP_EDIT_COPY message (or the capEditCopy macro). This message copies the video frame 
buffer, including the palette, onto the clipboard.



Embedding Information Chunks in an AVI File
You can insert information chunks, such as text or custom data, in an AVI file by using the 
WM_CAP_FILE_SET_INFOCHUNK message (or the capFileSetInfoChunk macro). You can also use 
this message to clear information chunks from an AVI file.



User Data Messages
You can associate data with a capture window by using the WM_CAP_GET_USER_DATA and 
WM_CAP_SET_USER_DATA messages (or the capGetUserData and capSetUserData macros). You 
can retrieve a LONG data value by using the WM_CAP_GET_USER_DATA message and set a LONG 
data value by using the WM_CAP_SET_USER_DATA message.



AVICap Callback Functions

Your application can register callback functions with a capture window to have it notify your application 
when the status changes, when errors occur, when video frame and audio buffers become available, and 
to yield during streaming capture. The following messages set the callback function.

Message Description
WM_CAP_SET_CALLBACK_CAPCONT
ROL

Specifies the callback function in 
the application called to give 
precise control over capture 
start and end. You can also use 
the 
capSetCallbackOnCapControl 
macro to send this message.

WM_CAP_SET_CALLBACK_ERROR Specifies the callback function in 
the application called when an 
error occurs. You can also use 
the capSetCallbackOnError 
macro to send this message.

WM_CAP_SET_CALLBACK_FRAME Specifies the callback function in 
the application called when 
preview frames are captured. 
You can also use the 
capSetCallbackOnFrame 
macro to send this message.

WM_CAP_SET_CALLBACK_STATUS Specifies the callback function in 
the application called when the 
status changes. You can also 
use the 
capSetCallbackOnStatus 
macro to send this message.

WM_CAP_SET_CALLBACK_VIDEOSTR
EAM

Specifies the callback function in 
the application called during 
streaming capture when a new 
video buffer becomes available. 
You can also use the 
capSetCallbackOnVideoStrea
m macro to send this message.

WM_CAP_SET_CALLBACK_WAVESTR
EAM

Specifies the callback function in 
the application called during 
streaming capture when a new 
audio buffer becomes available. 
You can also use the 
capSetCallbackOnWaveStrea
m macro to send this message.

WM_CAP_SET_CALLBACK_YIELD Specifies the callback function in 
the application called when 
yielding during streaming 
capture. You can also use the 
capSetCallbackOnYield macro 
to send this message.

 

The following topics describe the different callback functions, the notifications sent to the functions, and 



their uses.



Precise Capture Control
A capture window can provide the capture-control callback function with precise control over the moments 
that streaming capture begin and end. The first message sent from the capture driver to the callback 
procedure sets the nState parameter to CONTROLCALLBACK_PREROLL after allocating all buffers and 
all other capture preparations are complete. This message gives the application the ability to preroll the 
video sources. (The callback function specifies nState as its second parameter.) The callback function 
then returns at the exact moment recording is to begin. A return value of TRUE from the callback function 
continues capture. A return value of FALSE aborts capture. Once capture begins, the callback function is 
called frequently with nState set to CONTROLCALLBACK_CAPTURING to allow the application to end 
capture by returning false.



Error
A capture window uses error notification messages to notify your application of AVICap errors, such as 
running out of disk space, attempting to write to a read-only file, failing to access hardware, or dropping 
too many frames. The content of an error notification includes a message identifier and a formatted text 
string ready for display. Your application can use the message identifier to filter the notifications and limit 
the messages to present to the user. A message identifier of zero indicates a new operation is starting 
and the callback function should clear any displayed error message.



Frame
A capture window uses frame callback notification messages to notify your application when a new video 
frame is available. The capture window enables these callback notifications only if the preview rate is 
nonzero and streaming capture is not in progress.



Status Callback Functions
A capture window can send messages to the status callback function while capturing video to disk or 
during other lengthy operations to notify your application of the progress of an operation. The status 
information includes a message identifier and a formatted text string ready for display. Your application 
can use the message identifier to filter the notifications and limit the messages to present to the user. 
During capture operations, the first message sent to the callback function is always IDS_CAP_BEGIN 
and the last is always IDS_CAP_END. A message identifier of zero indicates a new operation is starting 
and the callback function should clear the current status.



Videostream
Applications can use videostream callback functions during streaming capture to process a captured 
video frame. The capture window calls a videostream callback function just before writing each captured 
frame to the disk.



Wavestream
Applications use the wavestream callback functions during streaming capture to process audio buffers. 
The capture window calls a wavestream callback function just before writing each audio buffer to the disk.



Yield Callback Functions
Applications can use yield callback functions during streaming capture. (A yield callback function typically 
consists of a message loop that calls PeekMessage, TranslateMessage, and DispatchMessage.) The 
capture window calls the yield callback function at least once for every captured video frame, but the 
exact rate depends on the frame rate and the overhead of the capture driver and disk.



Disabling Callback Functions
You can permanently or temporarily disable any of the callback functions by specifying NULL in place of 
the callback function when sending the appropriate message to set a callback function.



Using Video Capture
This section contains examples demonstrating how to perform the following tasks: 

· Creating a capture window

· Connecting to a capture driver

· Enumerating installed capture drivers

· Obtaining the capabilities of a capture driver

· Obtaining the status of a capture window

· Displaying dialog boxes to set video characteristics

· Obtaining and setting the video format

· Previewing video

· Enabling video overlay

· Naming the capture file

· Formatting audio capture

· Changing a video capture setting

· Capturing data

· Adding an information chunk

· Adding callback functions to an application

· Creating a status callback function

· Creating an error callback function

· Creating a frame callback function
 



Creating a Capture Window

The following example creates a capture window by using the capCreateCaptureWindow function.

hWndC = capCreateCaptureWindow (
    (LPSTR) "My Capture Window", // window name if pop-up 
    WS_CHILD | WS_VISIBLE,       // window style 
    0, 0, 160, 120,              // window position and dimensions
    (HWND) hwndParent, 
    (int) nID /* child ID */); 
 



Connecting to a Capture Driver

The following example connects the capture window with the handle hWndC to the MSVIDEO driver and 
then disconnects them using the capDriverDisconnect macro:

fOK = SendMessage (hWndC, WM_CAP_DRIVER_CONNECT, 0, 0L); 
// 
// Or, use the macro to connect to the MSVIDEO driver: 
// fOK = capDriverConnect(hWndC, 0); 
// 
// Place code to set up and capture video here. 
// 
capDriverDisconnect (hWndC); 
 



Enumerating Installed Capture Drivers

The following example uses the capGetDriverDescription function to obtain the names and versions of 
the installed capture drivers.

char szDeviceName[80];
char szDeviceVersion[80];
 
for (wIndex = 0; wIndex < 10; wIndex++) 
{
    if (capGetDriverDescription (wIndex, szDeviceName, 
        sizeof (szDeviceName), szDeviceVersion, 
        sizeof (szDeviceVersion)) 
    {
        // Append name to list of installed capture drivers
        // and then let the user select a driver to use.
    }
} 
 



Obtaining the Capabilities of a Capture Driver

The WM_CAP_DRIVER_GET_CAPS message returns the capabilities of the capture driver and 
underlying hardware in the CAPDRIVERCAPS structure. Each time an application connects a new 
capture driver to the capture window, it should update the CAPDRIVERCAPS structure. The following 
example uses the capDriverGetCaps macro to obtain the capture driver capabilities.

CAPDRIVERCAPS CapDrvCaps; 

SendMessage (hWndC, WM_CAP_DRIVER_GET_CAPS, 
    sizeof (CAPDRIVERCAPS), (LONG) (LPVOID) &CapDrvCaps); 

// Or, use the macro to retrieve the driver capabilities. 
// capDriverGetCaps(hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS)); 
 



Obtaining the Status of a Capture Window

The following example uses the SetWindowPos function to set the size of the capture window to the 
overall dimensions of the incoming video stream based on information returned by the capGetStatus 
macro in the CAPSTATUS structure.

CAPSTATUS CapStatus;
 
capGetStatus(hWndC, &CapStatus, sizeof (CAPSTATUS)); 

SetWindowPos(hWndC, NULL, 0, 0, CapStatus.uiImageWidth, 
    CapStatus.uiImageHeight, SWP_NOZORDER | SWP_NOMOVE); 
 



Displaying Dialog Boxes to Set Video Characteristics

Each capture driver can provide up to three different dialog boxes used to control aspects of the video 
digitization and capture process. The following example demonstrates how to display these dialog boxes. 
Before displaying each dialog box, the example calls the capDriverGetCaps macro and checks the 
CAPDRIVERCAPS structure returned to see if the capture driver can display it. 

CAPDRIVERCAPS CapDrvCaps; 

capDriverGetCaps(hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS)); 
 
// Video source dialog box. 
if (CapDriverCaps.fHasDlgVideoSource)
    capDlgVideoSource(hWndC); 
 
// Video format dialog box. 
if (CapDriverCaps.fHasDlgVideoFormat) 
{
    capDlgVideoFormat(hWndC); 

    // Are there new image dimensions?
    capGetStatus(hWndC, &CapStatus, sizeof (CAPSTATUS));

    // If so, notify the parent of a size change.
} 
 
// Video display dialog box. 
if (CapDriverCaps.fHasDlgVideoDisplay)
    capDlgVideoDisplay(hWndC); 
 



Obtaining and Setting the Video Format

The BITMAPINFO structure is of variable length to accommodate standard and compressed data 
formats. Because this structure is of variable length, applications must always query the size of the 
structure and allocate memory before retrieving the current video format. The following example uses the 
capGetVideoFormatSize macro to retrieve the buffer size and then calls the capGetVideoFormat macro 
to retrieve the current video format. 

LPBITMAPINFO lpbi;
DWORD dwSize;
 
dwSize = capGetVideoFormatSize(hWndC);
lpbi = GlobalAllocPtr (GHND, dwSize);
capGetVideoFormat(hWndC, lpbi, dwSize); 

// Access the video format and then free the allocated memory.
 

Applications can use the capSetVideoFormat macro (or the WM_CAP_SET_VIDEOFORMAT message) 
to send a BITMAPINFO header structure to the capture window. Because video formats are device 
specific, your application should check the return value to determine if the format was accepted.



Previewing Video

The following example uses the capPreviewRate macro to set the frame display rate for preview mode to 
66 milliseconds per frame and then uses the capPreview macro to place the capture window in preview 
mode.

capPreviewRate(hWndC, 66);     // rate, in milliseconds
capPreview(hWndC, TRUE);       // starts preview 

// Preview

capPreview(hWnd, FALSE);        // disables preview 
 



Enabling Video Overlay

The following example uses the capDriverGetCaps macro to determine whether a capture driver has 
overlay capabilities; if it does, the macro enables the overlay.

CAPDRIVERCAPS CapDrvCaps; 

capDriverGetCaps(hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS)); 

if (CapDrvCaps.fHasOverlay) 
    capOverlay(hWndC, TRUE);
 



Naming the Capture File

The following example uses the capFileSetCaptureFile macro to specify an alternate filename 
(MYCAP.AVI) for the capture file and the capFileAlloc macro to preallocate a file of 5 MB.

char szCaptureFile[] = "MYCAP.AVI";
 
capFileSetCaptureFile( hWndC, szCaptureFile); 
capFileAlloc( hWndC, (1024L * 1024L * 5)); 
 



Formatting Audio Capture

The following example uses capSetAudioFormat to set the audio format to 11-kHz PCM 8-bit, stereo.

WAVEFORMATEX wfex;
 
wfex.wFormatTag = WAVE_FORMAT_PCM;
wfex.nChannels = 2;                // Use stereo
wfex.nSamplesPerSec = 11025;
wfex.nAvgBytesPerSec = 22050;
wfex.nBlockAlign = 2;
wfex.wBitsPerSample = 8;
wfex.cbSize = 0;

capSetAudioFormat(hWndC, &wfex, sizeof(WAVEFORMATEX)); 
 



Changing a Video Capture Setting

The following example uses the capCaptureGetSetup and capCaptureSetSetup macros to change the 
capture rate from the default value (15 frames per second) to 10 frames per second.

CAPTUREPARMS CaptureParms;
float FramesPerSec = 10.0;
 
capCaptureGetSetup(hWndC, &CaptureParms, sizeof(CAPTUREPARMS));

CaptureParms.dwRequestMicroSecPerFrame = (DWORD) (1.0e6 / 
    FramesPerSec);
capCaptureSetSetup(hWndC, &CaptureParms, sizeof (CAPTUREPARMS)); 
 



Capturing Data

The following example uses the capCaptureSequence macro to start video capture and the 
capFileSaveAs macro to copy the captured data from the capture file to the file NEWFILE.AVI.

char szNewName[] = "NEWFILE.AVI";
 
// Set up the capture operation.

capCaptureSequence(hWndC); 

// Capture.

capFileSaveAs(hWndC, szNewName); 
 



Adding an Information Chunk

If you need to include other information in your application in addition to audio and video, you can create 
information chunks and insert them into a capture file. Information chunks can contain several types of 
information, including the details of a copyright notice, identification of the video source, or external timing 
information. The following example stores external timing information ¾ a SMPTE (Society of Motion 
Picture and Television Engineers) timecode ¾ in an information chunk and adds the chunk to a capture 
file using the capFileSetInfoChunk macro.

//  This example assumes the application controls 
//  the video source for preroll and postroll. 
CAPINFOCHUNK cic;
// . 
// . 
// . 
cic.fccInfoID = infotypeSMPTE_TIME;
cic.lpData = "00:20:30:12"; 
cic.cbData = strlen (cic.lpData) + 1;
capFileSetInfoChunk (hwndC, &cic); 
 



Adding Callback Functions to an Application

An application can register callback functions with the capture window so that it notifies the application in 
the following circumstances: 

· The status changes 

· Errors occur 

· Video frame and audio buffers become available 

· The application should yield during streaming capture 
 

The following example creates a capture window and registers status, error, video stream, and frame 
callback functions in the message-processing loop of an application. It also includes a sample statement 
for disabling a callback function. Subsequent examples show simple status, error, and frame callback 
functions.

case WM_CREATE: 
{ 
    char    achDeviceName[80] ; 
    char    achDeviceVersion[100] ; 
    char    achBuffer[100] ; 
    WORD    wDriverCount = 0 ; 
    WORD    wIndex ; 
    WORD    wError ; 
    HMENU   hMenu ; 
 
    // Create a capture window using the capCreateCaptureWindow macro.
    ghWndCap = capCreateCaptureWindow((LPSTR)"Capture Window", 
        WS_CHILD | WS_VISIBLE, 0, 0, 160, 120, (HWND) hWnd, (int) 0); 
 
    // Register the error callback function using the 
    // capSetCallbackOnError macro. 
    capSetCallbackOnError(ghWndCap, fpErrorCallback); 
 
    // Register the status callback function using the 
    // capSetCallbackOnStatus macro. 
    capSetCallbackOnStatus(ghWndCap, fpStatusCallback); 
 
    // Register the video-stream callback function using the
    // capSetCallbackOnVideoStream macro. 
    capSetCallbackOnVideoStream(ghWndCap, fpVideoCallback); 
 
    // Register the frame callback function using the
    // capSetCallbackOnFrame macro. 
    capSetCallbackOnFrame(ghWndCap, fpFrameCallback); 
 
    // Connect to a capture driver 

    break; 
} 
case WM_CLOSE: 
{ 
// Use the capSetCallbackOnFrame macro to 
// disable the frame callback. Similar calls exist for the other 



// callback functions.

    capSetCallbackOnFrame(hWndC, NULL); 

    break; 
} 
 



Creating a Status Callback Function

The following example is a simple status callback function. Register this callback by using the 
capSetCallbackOnStatus macro. 

// StatusCallbackProc: status callback function 
// hWnd:               capture window handle 
// nID:                status code for the current status 
// lpStatusText:       status text string for the current status 
// 
LRESULT PASCAL StatusCallbackProc(HWND hWnd, int nID, 
    LPSTR lpStatusText) 
{ 
    if (!ghWndMain) 
        return FALSE; 
 
    if (nID == 0) {           // Clear old status messages. 
        SetWindowText(ghWndMain, (LPSTR) gachAppName); 
        return (LRESULT) TRUE; 
    } 
    // Show the status ID and status text... 
    wsprintf(gachBuffer, "Status# %d: %s", nID, lpStatusText); 
 
    SetWindowText(ghWndMain, (LPSTR)gachBuffer); 
    return (LRESULT) TRUE; 
} 
 



Creating an Error Callback Function

The following example is a simple error callback function. Register this callback by using the 
capSetCallbackOnError macro.

// ErrorCallbackProc: error callback function 
// hWnd:              capture window handle 
// nErrID:            error code for the encountered error 
// lpErrorText:       error text string for the encountered error 
// 
LRESULT PASCAL ErrorCallbackProc(HWND hWnd, int nErrID,
    LPSTR lpErrorText) 
{ 
 
    if (!ghWndMain) 
        return FALSE; 
 
    if (nErrID == 0)            // Starting a new major function. 
        return TRUE;            // Clear out old errors. 
 
    // Show the error identifier and text. 
    wsprintf(gachBuffer, "Error# %d", nErrID); 
 
    MessageBox(hWnd, lpErrorText, gachBuffer, 
        MB_OK | MB_ICONEXCLAMATION); 
 
    return (LRESULT) TRUE; 
} 
 



Creating a Frame Callback Function

The following example is a simple frame callback function. Register this callback by using the 
capSetCallbackOnFrame macro. 

// FrameCallbackProc: frame callback function 
// hWnd:              capture window handle 
// lpVHdr:            pointer to struct containing captured 
//                    frame information 
// 
LRESULT PASCAL FrameCallbackProc(HWND hWnd, LPVIDEOHDR lpVHdr) 
{ 
    if (!ghWndMain) 
        return FALSE; 
 
    wsprintf(gachBuffer, "Preview frame# %ld ", gdwFrameNum++); 
    SetWindowText(ghWndMain, (LPSTR)gachBuffer); 
    return (LRESULT) TRUE ; 
} 
 



Video Capture Reference
This section describes the functions, structures, messages, and macros associated with the AVICap 
window class. These elements are grouped as follows.

Basic Capture Operations
capCreateCaptureWindow
WM_CAP_ABORT
WM_CAP_DRIVER_CONNECT
WM_CAP_SEQUENCE
WM_CAP_STOP

Capture Windows
CAPSTATUS
capGetDriverDescription
WM_CAP_DRIVER_CONNECT
WM_CAP_DRIVER_DISCONNECT
WM_CAP_GET_STATUS

Capture Drivers
CAPDRIVERCAPS
WM_CAP_DRIVER_GET_CAPS
WM_CAP_DRIVER_GET_NAME
WM_CAP_DRIVER_GET_VERSION
WM_CAP_GET_AUDIOFORMAT
WM_CAP_GET_VIDEOFORMAT
WM_CAP_SET_AUDIOFORMAT
WM_CAP_SET_VIDEOFORMAT

Capture Driver Preview and Overlay Modes
WM_CAP_SET_OVERLAY
WM_CAP_SET_PREVIEW
WM_CAP_SET_PREVIEWRATE
WM_CAP_SET_SCALE
WM_CAP_SET_SCROLL

Capture Driver Video Dialog Boxes
WM_CAP_DLG_VIDEOCOMPRESSION
WM_CAP_DLG_VIDEODISPLAY
WM_CAP_DLG_VIDEOFORMAT
WM_CAP_DLG_VIDEOSOURCE

Audio Format
WM_CAP_GET_AUDIOFORMAT
WM_CAP_SET_AUDIOFORMAT

Video Capture Settings
CAPTUREPARMS
WM_CAP_GET_SEQUENCE_SETUP
WM_CAP_SET_SEQUENCE_SETUP

Capture File and Buffers



CAPTUREPARMS
WM_CAP_FILE_ALLOCATE
WM_CAP_FILE_GET_CAPTURE_FILE
WM_CAP_FILE_SAVEAS
WM_CAP_FILE_SET_CAPTURE_FILE

Directly Using Capture Data
WM_CAP_SEQUENCE_NOFILE

Capture from MCI Device 
WM_CAP_SET_MCI_DEVICE

Manual Frame Capture
WM_CAP_SINGLE_FRAME
WM_CAP_SINGLE_FRAME_CLOSE
WM_CAP_SINGLE_FRAME_OPEN

Still-Image Capture
WM_CAP_EDIT_COPY
WM_CAP_FILE_SAVEDIB
WM_CAP_GRAB_FRAME
WM_CAP_GRAB_FRAME_NOSTOP

Advanced Capture Options
WM_CAP_FILE_SET_INFOCHUNK
WM_CAP_GET_USER_DATA
WM_CAP_SET_USER_DATA

Working with Palettes
WM_CAP_EDIT_COPY
WM_CAP_PAL_AUTOCREATE
WM_CAP_PAL_MANUALCREATE
WM_CAP_PAL_OPEN
WM_CAP_PAL_PASTE
WM_CAP_PAL_SAVE

Yielding to Other Applications
WM_CAP_GET_SEQUENCE_SETUP
WM_CAP_SET_CALLBACK_YIELD
WM_CAP_SET_SEQUENCE_SETUP

AVICap Callback Functions
capControlCallback
capErrorCallback
capStatusCallback
capVideoStreamCallback
capWaveStreamCallback
capYieldCallback
WM_CAP_SET_CALLBACK_CAPCONTROL
WM_CAP_SET_CALLBACK_ERROR
WM_CAP_SET_CALLBACK_FRAME
WM_CAP_SET_CALLBACK_STATUS



WM_CAP_SET_CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM
WM_CAP_SET_CALLBACK_YIELD



Video Capture Functions

The following functions are used with video capture.

capControlCallback
capCreateCaptureWindow
capErrorCallback
capGetDriverDescription
capStatusCallback
capVideoStreamCallback
capWaveStreamCallback
capYieldCallback



Video Capture Structures

The following structures are used with video capture.

CAPDRIVERCAPS
CAPINFOCHUNK
CAPSTATUS
CAPTUREPARMS



Video Capture Messages

The following messages are used with video capture.

WM_CAP_ABORT
WM_CAP_DLG_VIDEOCOMPRESSION
WM_CAP_DLG_VIDEODISPLAY
WM_CAP_DLG_VIDEOFORMAT
WM_CAP_DLG_VIDEOSOURCE
WM_CAP_DRIVER_CONNECT
WM_CAP_DRIVER_DISCONNECT
WM_CAP_DRIVER_GET_CAPS
WM_CAP_DRIVER_GET_NAME
WM_CAP_DRIVER_GET_VERSION
WM_CAP_EDIT_COPY
WM_CAP_FILE_ALLOCATE
WM_CAP_FILE_GET_CAPTURE_FILE
WM_CAP_FILE_SAVEAS
WM_CAP_FILE_SAVEDIB
WM_CAP_FILE_SET_CAPTURE_FILE
WM_CAP_FILE_SET_INFOCHUNK
WM_CAP_GET_AUDIOFORMAT
WM_CAP_GET_MCI_DEVICE
WM_CAP_GET_SEQUENCE_SETUP
WM_CAP_GET_STATUS
WM_CAP_GET_USER_DATA
WM_CAP_GET_VIDEOFORMAT
WM_CAP_GRAB_FRAME
WM_CAP_GRAB_FRAME_NOSTOP
WM_CAP_PAL_AUTOCREATE
WM_CAP_PAL_MANUALCREATE
WM_CAP_PAL_OPEN
WM_CAP_PAL_PASTE
WM_CAP_PAL_SAVE
WM_CAP_SEQUENCE
WM_CAP_SEQUENCE_NOFILE
WM_CAP_SET_AUDIOFORMAT
WM_CAP_SET_CALLBACK_CAPCONTROL
WM_CAP_SET_CALLBACK_ERROR
WM_CAP_SET_CALLBACK_FRAME
WM_CAP_SET_CALLBACK_STATUS
WM_CAP_SET_CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM
WM_CAP_SET_CALLBACK_YIELD
WM_CAP_SET_MCI_DEVICE
WM_CAP_SET_OVERLAY
WM_CAP_SET_PREVIEW
WM_CAP_SET_PREVIEWRATE
WM_CAP_SET_SCALE
WM_CAP_SET_SCROLL
WM_CAP_SET_SEQUENCE_SETUP
WM_CAP_SET_USER_DATA
WM_CAP_SET_VIDEOFORMAT
WM_CAP_SINGLE_FRAME
WM_CAP_SINGLE_FRAME_CLOSE



WM_CAP_SINGLE_FRAME_OPEN
WM_CAP_STOP



Video Capture Macros

The following macros are used with video capture.

capCaptureAbort
capCaptureGetSetup
capCaptureSequence
capCaptureSequenceNoFile
capCaptureSetSetup
capCaptureSingleFrame
capCaptureSingleFrameClose
capCaptureSingleFrameOpen
capCaptureStop
capDlgVideoCompression
capDlgVideoDisplay
capDlgVideoFormat
capDlgVideoSource
capDriverConnect
capDriverDisconnect
capDriverGetCaps
capDriverGetName
capDriverGetVersion
capEditCopy
capFileAlloc
capFileGetCaptureFile
capFileSaveAs
capFileSaveDIB
capFileSetCaptureFile
capFileSetInfoChunk
capGetAudioFormat
capGetAudioFormatSize
capGetMCIDeviceName
capGetStatus
capGetUserData
capGetVideoFormat
capGetVideoFormatSize
capGrabFrame
capGrabFrameNoStop
capOverlay
capPaletteAuto
capPaletteManual
capPaletteOpen
capPalettePaste
capPaletteSave
capPreview
capPreviewRate
capPreviewScale
capSetAudioFormat
capSetCallbackOnCapControl
capSetCallbackOnError
capSetCallbackOnFrame
capSetCallbackOnStatus
capSetCallbackOnVideoStream
capSetCallbackOnWaveStream
capSetCallbackOnYield



capSetMCIDeviceName
capSetScrollPos
capSetUserData
capSetVideoFormat

 

 



Custom File and Stream Handlers
File and stream handlers are drivers that provide consistent interfaces to an application that controls 
multimedia data. The file and stream handlers included in the operating system use video and waveform-
audio data stored in audio-video interleaved (AVI) and waveform-audio files. 

You can write handlers to allow your application to write or access multimedia data from another source, 
such as a file using a proprietary format, an AVI file that has been expanded to contain additional data 
streams, or a handler that generates its own multimedia data. If you have a custom file format for AVI data 
that you would like to use with the AVIFile functions and macros, you need to write a custom handler.



About Custom File and Stream Handlers
Your application can use a custom file handler to read from a file or write to a file that is in a nonstandard 
format. To do this, your application simply uses the name of your file handler when opening the file or 
allocating the file interface. The AVIFile library then uses the functions from your file handler instead of 
those from another file handler. The nonstandard format appears as standard AVI data to your application 
or to any other application using your custom file handler.

Similarly, your application can use a custom stream handler to read a stream that is in a nonstandard 
format. A stream ¾ whether it constitutes audio, video, MIDI, text, or custom data ¾ is a component of an 
AVI file. For example, an AVI file that contains a video sequence, an English soundtrack, and a French 
soundtrack consists of three streams. Your application can specify the streams in an AVI file to process 
and direct each of those streams to a handler that can optimally process the appropriate type of 
multimedia data.

 

Note    You must place custom stream and file handlers in one or more DLLs, separated from main 
application files.

 



Handler Architecture

The internal function of a file or stream handler is defined by the handler itself. To an application, a file 
handler typically appears as a module to read and write AVI files. Similarly, a stream handler appears as a 
module to read and write a specific type of data stream. The consistent stream interface makes the 
source and destination of the stream unimportant to the application that uses the handler.

A file handler provides access to a data source consisting of one or more data streams. File handlers 
typically provide access to disk files containing one or more data streams, and the internal functions of 
the file handler read and write the multimedia data. However, file handlers can work with any data source, 
such as a digital transmission channel containing several intermingled data streams. 

In contrast, a stream handler processes one type of data and appears as a data stream to an application. 
A stream handler can provide data that it manufactures, or it can retrieve data from a file or an external 
source. It supplies its data in a format that your application can use. 



C++ and OLE Programming Concepts

The file and stream handlers included with Windows use an object-oriented design to promote a standard 
interface and to share functionality. These handlers are written in C++ and use the OLE Component 
Object Model. 

You can develop custom handlers using the C or C++ development systems; however, using C++ is 
strongly recommended, because it provides an easier and more straightforward approach to implement a 
handler. Using C++, you can explicitly define data as objects, and you can associate the functions that 
manipulate the data with the member functions of an object. 

This section identifies and briefly summarizes the important concepts of C++ and the OLE Component 
Object Model that apply to designing and implementing file and stream handlers. There are many books 
written about C++ programming that you can reference for more information. For more information on 
OLE, please see the OLE Programmer's Reference.



Classes, Objects, and Interfaces
In the C++ programming language, a class consists of properties (or member data) and methods (or 
member functions). The properties are data elements, such as those contained in a structure. The 
methods are used for a variety of purposes, such as initialization, assignment, operations, and data 
access. You use a class declaration in the same way that you use a structure declaration. Memory is 
allocated for a class when you define a class object. Each class object has a data area for its properties 
and a table of pointers to the methods it supports.

In OLE, an object consists of data and methods, as it does in C++. However, an OLE object adheres to 
stricter rules. The data is strictly internal. An object only exposes interfaces. An interface is a set of related 
methods for an object. Each object can support multiple interfaces. All OLE interfaces support the 
IUnknown interface.



The Scope Resolution Operator in C++
Two colons (::) are used in C+ + as a scope resolution operator. This operator gives you more freedom in 
naming your variables by letting you distinguish between variables with the same name. For example, 
MyFile::Read refers to the Read method of the MyFile class of objects, as opposed to YourFile::Read, 
which refers to a Read method in the YourFile class.



Virtual Function Tables
A virtual function table is an array of pointers to the methods an object supports. If you're using C, an 
object appears as a structure whose first member is a pointer to the virtual function table (lpVtbl); that is, 
the first member points to an array containing function pointers. The methods all take a pointer to the 
function table as the first parameter. Thus, the following example calls the Read method of a pStream 
object:

pStream->lpVtbl->Read(pStream, parameters) 
 

In C+ +, the pointer to the virtual function table, the this pointer, is implicit. The following is equivalent to 
the previous example when using C+ +:

pStream->Read(parameters) 
 



The OLE Component Object Model 
The objects used by the AVIFile library are all part of the OLE Component Object Model. Primarily, this 
means they share certain methods that make them easier to work with, and the values they return are 
common to most OLE interface methods.

The OLE Component Object Model of the file and stream handlers uses the OLE IClassFactory interface 
to create instances of their object class. As component objects, they implement the the IUnknown 
interface, which consists of the QueryInterface, Release, and AddRef methods. The IUnknown 
interface lets an application obtain pointers to other interfaces supported by the same object. 

You can determine if an object supports a specific interface by using the QueryInterface method. If an 
object supports a specified interface, QueryInterface returns a pointer to that interface.

You can increment and decrement the reference count associated with an object by using the AddRef 
and Release methods. The reference count lets multiple clients access an object. When an object is used 
by the first application, its reference count is set to 1. Applications subsequently use the AddRef method 
to increment the count to let the object keep track of the number of times it is accessed. 

When an application is done using an object, it calls the Release method to decrement the reference 
count. When the reference count is zero, the object is no longer needed and Release frees any resources 
it uses and destroys the object. Because an object uses internal resources transparent to the application, 
the object is responsible for freeing them. For example, a file handler might need to close open disk files 
and free buffer memory when released.

Most OLE interface methods return result handles that are defined by using the HRESULT data type. This 
data type is made of a severity code, contextual information, a facility code, and a status code. A return 
result handle that indicates success has the value zero. A nonzero value indicates failure and the status 
code member of the return result handle provides a basis for additional interpretation. For additional 
information about OLE return result handles, see the OLE Programmer's Reference.



IAVIStream and IAVIFile Interfaces

The IAVIStream and IAVIFile interfaces contain the methods used by file and stream handlers. The 
PAVISTREAM data type is a pointer to an AVI stream object (through the IAVIStream interface) and the 
PAVIFILE data type is a pointer to an AVI file object (through the IAVIFile interface). 

To create an object pointer in C, first allocate space for a structure that is large enough to contain the 
pointer to the virtual function table and the other data members. Create a virtual function table for the 
methods for your type of stream, then set the pointer to the virtual function table to the address of the 
virtual function table. 



File and Stream Handler Installation

The AVIFile library uses installed stream and file handlers for reading and writing AVI files and streams. A 
handler is installed when it resides in the Windows SYSTEM directory and the registry contains the 
following information needed to describe and identify a handler:

· The 16-byte class identifier for the handler

· A brief description of the handler

· The name of the file containing the handler

· The file extension that a file handler can process

· File-access and other properties associated with a file handler

· Four-character codes identifying stream types that a stream handler can process
 

The AVIFile library queries the registry for handlers that are external to an application when opening files 
and accessing streams. The result of a successful query returns the filename of a handler that can 
process the file or stream type specified in the query. The registry lists each handler by creating three 
entries that have the following form:

[HKEY_CLASSES_ROOT\Clsid\{00010023-0000-0000-C000-000000000046}] 
@="Wave File reader/writer" 
[HKEY_CLASSES_ROOT\Clsid\{00010023-0000-0000-C000- 
000000000046}\InprocServer32] 
@="wavefile.dll" 
"ThreadingModel"="Apartment" 
[HKEY_CLASSES_ROOT\Clsid\{00010023-0000-0000-C000- 
000000000046}\AVIFile] 
@="3" 
 

These entries consist of the following parts.

Part Description

HKEY_CLASSES_ROOT Identifies the root entry 
of the registry.

Clsid Identifies this entry as 
a class identifier.

{00010023-0000-0000-C000-000000000046} Specifies an interface 
identifier (IID) or class 
identifier. This value is 
a unique 16-byte 
identifier. (The 
identifier might also be 
referred to as a GUID 
or a UUID in other 
manuals.) 

Wave File reader/writer Specifies a string to 
describe the handler. 
This string can be 
displayed in dialog 
boxes for selecting 
stream and file 
handlers. 

InProcServer32 Specifies the file (in 



this example, 
WAVEFILE.DLL) that 
can be loaded to 
handle this class.

AVIFile Specifies the 
properties of a file 
handler. In this 
example, the handler 
can read and write to 
an AVI file.

 

A file handler can have one or more of its properties stored in the registry. The following constants identify 
the properties currently associated with a file.

Constant Description

AVIFILEHANDLER_CANACCEPTNONRG
B

Indicates that a file handler 
can process image data other 
than RGB.

AVIFILEHANDLER_CANREAD Indicates that a file handler 
can open a file with read 
access.

AVIFILEHANDLER_CANWRITE Indicates that a file handler 
can open a file with write 
access.

 

When creating a file or stream handler, you can obtain a new identifier by running UUIDGEN.EXE. Always 
use UUIDGEN.EXE to create a new identifier. The 16-byte hexadecimal number created by this 
executable will uniquely identify your handler.

The AVIFile library uses additional entries in the registry to identify a class identifier based on the file 
extension that a file handler can process or a four-character code that a file or stream handler can 
process. For example, the following entries associate a class identifier with the file extension .WAV and 
the four-character code "WAVE":

[HKEY_CLASSES_ROOT\AVIFile\Extensions\WAV] 
@="{00010023-0000-0000-C000-000000000046}" 
[HKEY_CLASSES_ROOT\AVIFile\RIFFHandlers\WAVE] 
@="{00010023-0000-0000-C000-000000000046}" 
 

These entries consist of the following parts.

Part Description

HKEY_CLASSES_ROOT Identifies the root 
entry of the registry.

AVIFile Identifies this entry 
as an entry used by 
AVIFile.

Extensions Specifies the file 
extension (in this 
example, .WAV) 
that a file handler 
can process.

RIFFHandlers Specifies the four-



character code (in 
this example, 
"WAVE") a file or 
stream handler can 
process.

{00010023-0000-0000-C000-000000000046} Specifies an 
interface identifier 
(IID) or class 
identifier.

 

If you distribute your stream or file handler without a setup application to install it in the user's system, you 
must include a .REG file so the user can install the handler. The user will use the registry editor to create 
registry entries for your stream or file handler.

The following example shows the contents of a typical .REG file. The first entry in the following example is 
the descriptive string for the handler. The second entry identifies the file containing the handler. The third 
entry identifies the properties of the file handler (in this case, read-only access to files). The fourth entry 
associates the type of file the handler processes (in this case, files with a .JPG filename extension) with 
the class identifier. 

[HKEY_CLASSES_ROOT\Clsid\{5C2B8200-E2C8-1068-B1CA-6066188C6002}] 
@="JFIF (JPEG) Files" 
[HKEY_CLASSES_ROOT\Clsid\{5C2B8200-E2C8-1068-B1CA-6066188C6002}]
\InprocServer32] 
@="jfiffile.dll" 
[HKEY_CLASSES_ROOT\AVIFile\Extensions\JPG] 
@="{5C2B8200-E2C8-1068-B1CA-6066188C6002}" 
 

When creating this file, save it with a .REG extension to identify it as an update file for the registry. Also, 
substitute a unique IID for the 16-byte code used in the example.

Users can update the registry on their system by using the following procedure:

1. Click the Start menu (or run Program Manager and click the File menu), then click Run.

2. In the Run dialog box, type the following command and press ENTER:

regedit -s filename.reg 
 



Using Custom File and Stream Handlers
· Creating a file or stream handler

· Creating a virtual function table for a stream handler

· Creating an object pointer

· Obtaining the address of a virtual function table

· Creating a file-handler instance in a DLL

· Determining which interface an object supports

· Incrementing the handler reference count

· Deleting an object
 



Creating a File or Stream Handler

In an application written in the C programming language, a file or stream handler usually creates a 
function for each method. Your application accesses these functions through an array of function pointers 
the stream handler creates. An IAVIStreamVtbl structure contains the array of function pointers. A stream 
handler can assign any name it wants to functions it creates for the methods. The position of the function 
pointer in the structure implies the correspondence of the function to the method. For example, the first 
function pointer in the structure corresponds to the QueryInterface method. Your stream handler must 
provide all the functions of an interface.



Creating a Virtual Function Table for a Stream Handler

The following example (written in C) shows how an application (AVIBall) creates the virtual function table 
used to reference its services. 

HRESULT STDMETHODCALLTYPE AVIBallQueryInterface (PAVISTREAM ps, 
    REFIID riid, LPVOID FAR* ppvObj); 
HRESULT STDMETHODCALLTYPE AVIBallCreate (PAVISTREAM ps, 
    LONG lParam1, LONG lParam2); 
ULONG STDMETHODCALLTYPE AVIBallAddRef (PAVISTREAM ps); 
ULONG STDMETHODCALLTYPE AVIBallRelease (PAVISTREAM ps); 
HRESULT STDMETHODCALLTYPE AVIBallInfo (PAVISTREAM ps, 
    AVIStreamHeader FAR * psi, LONG lSize); 
LONG STDMETHODCALLTYPE AVIBallFindSample (PAVISTREAM ps, 
    LONG lPos, LONG lFlags); 
HRESULT STDMETHODCALLTYPE AVIBallReadFormat (PAVISTREAM ps, 
    LONG lPos, LPVOID lpFormat, LONG FAR *lpcbFormat); 
HRESULT STDMETHODCALLTYPE AVIBallSetFormat (PAVISTREAM ps, 
    LONG lPos, LPVOID lpFormat, LONG cbFormat); 
HRESULT STDMETHODCALLTYPE AVIBallRead (PAVISTREAM ps, 
    LONG lStart, LONG lSamples, LPVOID lpBuffer, LONG cbBuffer, 
    LONG FAR * plBytes,LONG FAR * plSamples); 
HRESULT STDMETHODCALLTYPE AVIBallWrite (PAVISTREAM ps, LONG lStart, 
    LONG lSamples, LPVOID lpBuffer, LONG cbBuffer, DWORD dwFlags); 
HRESULT STDMETHODCALLTYPE AVIBallDelete (PAVISTREAM ps, 
    LONG lStart, LONG lSamples); 
HRESULT STDMETHODCALLTYPE AVIBallReadData (PAVISTREAM ps, 
    DWORD fcc, LPVOID lp,LONG FAR *lpcb); 
HRESULT STDMETHODCALLTYPE AVIBallWriteData (PAVISTREAM ps, 
    DWORD fcc, LPVOID lp,LONG cb); 
 
IAVIStreamVtbl AVIBallHandler = { 
    AVIBallQueryInterface,  // Function pointer for ::QueryInterface 
    AVIBallAddRef,          // Function pointer for ::AddRef 
    AVIBallRelease,         // Function pointer for ::Release 
    AVIBallCreate,          // Function pointer for ::Create 
    AVIBallInfo,            // Function pointer for ::Info 
    AVIBallFindSample,      // Function pointer for ::FindSample 
    AVIBallReadFormat,      // Function pointer for ::ReadFormat 
    AVIBallSetFormat,       // Function pointer for ::SetFormat 
    AVIBallRead,            // Function pointer for ::Read 
    AVIBallWrite,           // Function pointer for ::Write 
    AVIBallDelete,          // Function pointer for ::Delete 
    AVIBallReadData,        // Function pointer for ::ReadData 
    AVIBallWriteData        // Function pointer for ::WriteData 
}; 
 

File handlers use a similar procedure, except they use a different definition for the virtual function table. 



Creating an Object Pointer 

AVIBall uses the following structure as its object pointer. The first member of this structure points to the 
virtual function table that AVIBall uses to access its functions. Applications can cast this structure to the 
PAVISTREAM data type. Methods that use the PAVISTREAM data type use only the pointer to the virtual 
function table. The members following the pointer to the virtual function table are used internally by 
AVIBall.

typedef struct 
{ 
    IAVIStreamVtbl FAR * lpvtbl; 
 
    // Ball instance data. 
    ULONG   ulRefCount; 
    DWORD   fccType;  // is this audio/video? 
    int   width;    // size, in pixels, of each frame 
    int   height; 
    int   length;   // length, in frames 
    int   size; 
    COLORREF  color;    // ball color 
} AVIBALL, FAR * PAVIBALL; 
 



Obtaining the Address of a Virtual Function Table

In an application written in the C programming language, you can retrieve the address of the 
IAVIStreamVtbl structure by using the NewBall function. This function returns the address of a structure 
containing a pointer to IAVIStreamVtbl. Information following the IAVIStreamVtbl pointer specifies data 
used internally by AVIBall. Your stream handler can append its own information after the IAVIStreamVtbl 
pointer. This information is returned in subsequent calls to your stream handler.

PAVISTREAM WINAPI NewBall(VOID) 
{ 
    PAVIBALL pball; 
    pball = (PAVIBALL) GlobalAllocPtr(GHND, sizeof(AVIBALL)); 
    if (!pball) 
        return 0; 
    pball->lpvtbl = &AVIBallHandler; 
    pball->lpvtbl->Create((PAVISTREAM) pball, 0, 0); 
    return (PAVISTREAM) pball; 
} 



Creating a File-Handler Instance in a DLL

When an application specifies your file-handler DLL or stream handler, the system looks it up in the 
registry by its class identifier and loaded. The system then calls the DllGetClassObject function of the 
DLL to create an instance of the file or stream handler. The following example (written in C++) shows how 
a file handler creates an instance. 

// Main DLL entry point. 
STDAPI DllGetClassObject(const CLSID FAR& rclsid, 
    const IID FAR& riid, void FAR* FAR* ppv) 
{ 
    HRESULT hresult; 
    hresult = CAVIFileCF::Create(rclsid, riid, ppv); 
    return hresult; 
} 
HRESULT CAVIFileCF::Create(const CLSID FAR& rclsid, 
    const IID FAR& riid, void FAR* FAR* ppv) 
{ 
// The following is the class factory creation and not an 
// actual PAVIFile. 
    CAVIFileCF FAR* pAVIFileCF; 
    IUnknown FAR*pUnknown; 
    HRESULT hresult; 
 
// Create the instance. 
    pAVIFileCF = new FAR CAVIFileCF(rclsid, &pUnknown); 
    if (pAVIFileCF == NULL) 
        return ResultFromScode(E_OUTOFMEMORY); 
 
// Set the interface pointer. 
    hresult = pUnknown->QueryInterface(riid, ppv); 
    if (FAILED(GetScode(hresult))) 
        delete pAVIFileCF; 
    return hresult; 
} 
 



Determining Which Interface an Object Supports

The QueryInterface method lets an application query an object to determine which interfaces it supports. 
The sample application sets the ppv pointer to the current interface.

STDMETHODIMP CAVIFileCF::QueryInterface( 
    const IID FAR& iid, 
    void FAR* FAR* ppv) 
{ 
    if (iid == IID_IUnknown) 
        *ppv = this;                     // set the interface pointer 
                                         // to this instance 
    else if (iid == IID_IClassFactory) 
        *ppv = this;                     // second chance to set the 
                                         // interface pointer to this 
                                         // instance 
    else 
        return ResultFromScode(E_NOINTERFACE); 
    AddRef();  //Increment the reference count 
    return NULL; 
} 
 



Incrementing the Handler Reference Count

The AddRef method increments the stream-hander or file-handler reference count.

STDMETHODIMP_(ULONG) CAVIFileCF::AddRef() 
{ 
    return ++m_refs; 
} 
 



Deleting an Object

The Release method deletes the object when its reference count is zero.

STDMETHODIMP_(ULONG) CAVIFileCF::Release() 
{ 
    if (!--m_refs) 
    { 
        delete this;   // If O, delete this instance. 
        return 0; 
    } 
    return m_refs; 
} 
 



Custom File and Stream Handler Reference
The following functions and interfaces are used with custom file and stream handlers.



Custom File and Stream Handler Functions

The following function is used with custom file and stream handlers.

DllGetClassObject



Custom File and Stream Handler Interfaces

The following interfaces and member functions are used with custom file and stream handlers.

IAVIEditStream
IAVIEditStream::Clone
IAVIEditStream::Copy
IAVIEditStream::Cut
IAVIEditStream::Paste
IAVIEditStream::SetInfo
IAVIFile
IAVIFile::CreateStream
IAVIFile::EndRecord
IAVIFile::GetStream
IAVIFile::Info
IAVIFile::Open
IAVIFile::ReadData
IAVIFile::WriteData
IAVIStream
IAVIStream::Create
IAVIStream::Delete
IAVIStream::FindSample
IAVIStream::Info
IAVIStream::Read
IAVIStream::ReadData
IAVIStream::ReadFormat
IAVIStream::SetFormat
IAVIStream::Write
IAVIStream::WriteData
IAVIStreaming
IAVIStreaming::Begin
IAVIStreaming::End
IGetFrame
IGetFrame::Begin
IGetFrame::End
IGetFrame::GetFrame
IGetFrame::SetFormat
IUnknown
IUnknown::QueryInterface
IUnknown::AddRef
IUnknown::Release

 

 



DrawDib
The DrawDib functions provide high performance image-drawing capabilities for device-independent 
bitmaps (DIBs). DrawDib functions support DIBs of 8-bit, 16-bit, 24-bit, and 32-bit image depths.

DrawDib functions write directly to video memory. They do not rely on functions of the graphics device 
interface (GDI). 



About the DrawDib Functions
Collectively, the DrawDib functions are similar to the StretchDIBits function in that they provide image-
stretching and dithering capabilities. However, the DrawDib functions support image decompression, 
data-streaming, and a greater number of display adapters. 

You will find it beneficial to use the DrawDib functions in some circumstances. Still, StretchDIBits is more 
diverse than the DrawDib functions and should be used when the DrawDib functions cannot provide the 
desired functionality. The following list describes factors to consider when deciding whether to use the 
DrawDib functions or StretchDIBits.

· Color table information format. DrawDib functions display images that use the DIB_RGB_COLORS 
format for their color table. If images in your application store color table information with the 
DIB_PAL_COLORS or DIB_PAL_INDICES format, you must use StretchDIBits to display them. 

· Transfer mode. DrawDib functions require that your application use the SRCCOPY transfer mode. If 
your application uses StretchDIBits with a transfer mode other than SRCCOPY, you should continue 
to use StretchDIBits. Similarly, if you need to use other raster operations in your application, such as 
an XOR, use StretchDIBits.

· Quality of video and animation playback. You can use the DrawDib functions for data-streaming 
applications, such as those that play video clips and animated sequences. The DrawDib functions 
outperform StretchDIBits in that they provide higher-quality images and improve motion during 
playback. 

· Display adapters. DrawDib functions support a greater number of display adapters than 
StretchDIBits supports. The DrawDib functions support VGA color adapters that provide 16-color 
palettes using 4-bit image depth, SVGA adapters that provide 256-color palettes using 8-bit image 
depth, and true-color display adapters that provide thousands of colors using 16-bit, 24-bit, and 32-bit 
image depths. 

The DrawDib functions also improve the speed and quality of displaying images on display adapters 
with more limited capabilities. For example, when using an 8-bit display adapter, the DrawDib 
functions efficiently dither true-color images to 256 colors. They also dither 8-bit images when using 
4-bit display adapters.

· Image-stretching. Like StretchDIBits, the DrawDib functions use source and destination rectangles 
to control the portion of an image that is displayed. You can crop unwanted portions of an image or 
stretch an image by varying the position and size of the source and destination rectangles. If a display 
driver does not support image-stretching, the DrawDib functions provide more efficient stretching 
capabilities than StretchDIBits. 

· Compressed images. The DrawDib functions support several compression and decompression 
methods, including run-length encoding, JPEG, Cinepak, 411 YUV, and Indeo.

 



DrawDib Operations

You can access the entire group of DrawDib functions by using the DrawDibOpen function. This function 
loads the dynamic-link library (DLL), allocates memory resources, creates a DrawDib device context 
(DC), and maintains a reference count of the number of DCs that are initialized. DrawDibOpen also 
returns a handle of the new DC that you use with the other DrawDib functions.

You can release a DrawDib DC when you finish using it by using the DrawDibClose function. 
DrawDibClose also decrements the reference count of the applications accessing the DLL. The call to 
DrawDibClose should be the last DrawDib function in your application.

You can create as many DrawDib DCs as you want. You can use multiple DrawDib DCs to draw several 
bitmaps simultaneously. You can also create multiple DrawDib DCs, each with unique characteristics, so 
your application can choose and then use the DC with the most appropriate settings. For example, you 
can create two DrawDib DCs in an application: one that displays an image at its normal resolution, and 
the other that displays an enlarged portion of the image.

To run efficiently, DrawDib functions require information about the display adapter and its driver. The 
display profile is obtained by running a series of tests on the display adapter the first time the DLL 
containing the DrawDib functions is accessed. The DrawDib functions use this information for all 
applications. You can repeat these tests when necessary by using the DrawDibProfileDisplay function.

 

Note    Retrieving and storing the display profile is typically a one-time occurrence. If, however, the 
profile information is deleted or another display driver is installed in the system, DrawDib reruns the 
tests.

 



Image Rendering

After you create a DrawDib DC, you can draw a DIB to the screen by using the DrawDibDraw function. 
DrawDibDraw dithers true-color bitmaps when displaying them with 8-bit display adapters.

DrawDibDraw also supports video compressors transparently when displaying compressed bitmaps. You 
can access the buffer that contains the decompressed image by using the DrawDibGetBuffer function. 
DrawDibGetBuffer returns NULL when drawing an uncompressed bitmap. You should prepare your 
application to handle compressed and uncompressed bitmaps.

You can refresh an image or a portion of an image displayed by your application by using the 
DrawDibUpdate macro.



Sequences of Images
You can display a sequence of bitmaps with the same dimensions and formats by using the 
DrawDibDraw function with the DrawDibBegin function. DrawDibBegin improves the efficiency of 
DrawDibDraw by preparing the DrawDib DC for drawing. 

 

Note    If your application does not use DrawDibBegin, DrawDibDraw implicitly executes it prior to 
drawing. If your application uses DrawDibBegin prior to DrawDibDraw, DrawDibDraw does not 
have to process the function and wait for it to complete.

 

The DrawDibBegin function provides DrawDibDraw with the DrawDib DC, the DC handle, the address 
of the BITMAPINFOHEADER structure, and the source and destination rectangle dimensions. When you 
display a sequence of bitmaps, DrawDibDraw checks the values of these items for each image in the 
sequence. If DrawDibDraw detects changes to any of these items, it implicitly calls DrawDibBegin again 
to adjust the DrawDib DC settings. 

After using DrawDibBegin, you can draw the image sequence by using DrawDibDraw and specifying 
one or more flags as appropriate. Specify the DDF_SAME_HDC flag as long as the DC handle has not 
changed. Specify the DDF_SAME_DRAW flag when the following parameters for DrawDibDraw have not 
changed: the address of the BITMAPINFOHEADER structure and the source and destination rectangle 
dimensions.

You can update the flags set with DrawDibBegin by using the DrawDibEnd function followed by another 
call to DrawDibBegin. Then use DrawDibEnd to clear the DrawDib DC of its current flags and settings. 
The subsequent call to DrawDibBegin reinitializes the DrawDib DC with the appropriate flags and 
settings. Alternatively, you can update the flags for a DrawDib DC by using DrawDibBegin without 
DrawDibEnd. To do this, you must change at least one of the following settings concurrently with the 
flags: the address of the BITMAPINFOHEADER structure, or the source or destination rectangle 
dimensions. 

You can increase the efficiency of DrawDibDraw for data-streaming operations that use compressed 
images, such as playing a video clip, by using the DrawDibStart and DrawDibStop functions. The 
DrawDibStart function prepares the DrawDib DC to receive a stream of images by sending a message to 
the video compression manager (VCM). When streaming has ended, DrawDibStop sends a message to 
VCM indicating that it can release resources it allocated for the data-streaming operation. For more 
information about VCM, see Video Compression Manager.

 

Note    You must specify the width and height of the source and destination rectangles in your 
application. However, you do not need to specify the origins of the rectangles. Your application can 
redefine the origins in DrawDibDraw to use different portions of the image or to update different 
portions of the display.

 



Palettes
The DrawDib functions require that an application respond to two palette-oriented messages: 
WM_QUERYNEWPALETTE and WM_PALETTECHANGED. If your application is not palette-aware, you 
will need to add a handler for each of these messages. For more information about processing the 
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages, see Adding Palette Message 
Handlers.

You can realize the current DrawDib palette to the DC by using the DrawDibRealize function. You should 
realize the palette in response to the WM_QUERYNEWPALETTE or WM_PALETTECHANGED message, 
or when you prepare to display an image sequence by using the DrawDibDraw function.

You can draw an image mapped to another palette by using the DrawDibSetPalette function. This 
function forces the DrawDib DC to use the specified palette, which can affect the image quality. For 
example, an application that is palette-aware might have realized a palette and needs to prevent DrawDib 
from realizing its own palette. The application can use DrawDibSetPalette to notify DrawDib of the 
palette to use. 

You can obtain a handle of the current foreground palette by using the DrawDibGetPalette function. If 
your application uses the current foreground palette, it does not have exclusive use of the palette and 
another application can invalidate the palette handle. Your application should not free the palette when 
you finish using it. Freeing the palette could invalidate the palette handle for another application. 

You can prepare DrawDib to receive new color values for its palette by using the DrawDibChangePalette 
function. In the code following DrawDibChangePalette, you assign new values for the palette color table. 
If the DDF_ANIMATE flag is not set in the DrawDib DC when you call DrawDibChangePalette, you can 
enact the palette changes by using DrawDibRealize to realize the palette. You can then use 
DrawDibDraw to redraw the image. If the DDF_ANIMATE flag is set in the DrawDib DC, you can animate 
the palette and the colors of the displayed bitmap by using DrawDibDraw or DrawDibRealize. You can 
update the DDF_ANIMATE flag by using the DrawDibEnd and DrawDibBegin functions.

 

Note    If you free the DrawDib palette while it is selected by a DC, a graphics device interface (GDI) 
error can result when the DC uses the palette. Instead, your application should use 
DrawDibSetPalette to change the DrawDib DC to use the default palette or another palette.

The DrawDibEnd, DrawDibClose, and DrawDibBegin functions can free the DrawDib palette. 
However, these functions should be used only when the palette has not been selected by the DC. The 
DrawDibDraw function can also free the palette when it uses the same DrawDib DC, but specifies 
different drawing parameters (lpbi, dxDst, dyDst, dxSrc, or dySrc) or a different format. 

 



Timing
As part of debugging an application, you can obtain information about the amount of time required to 
complete repetitive DrawDib operations. The DrawDibTime function returns timing information for the 
following operations:

· Drawing a bitmap

· Decompressing a bitmap

· Dithering a bitmap

· Stretching a bitmap

· Transferring a bitmap by using the BitBlt function

· Transferring a bitmap by using the StretchDIBits function
 

After retrieving a set of values, DrawDibTime resets the count and value for each operation.

The DrawDibTime function is available only in the debug version of the DrawDib functions. 



Using DrawDib
This section contains examples demonstrating how to perform the following tasks:

· Adding palette message handlers

· Drawing a display context

· Animating a palette
 



Adding Palette Message Handlers

The following example illustrates simple message handlers for the WM_PALETTECHANGED and 
WM_QUERYNEWPALETTE messages. The example uses the DrawDibRealize function to process the 
WM_QUERYNEWPALETTE message.

Your application should respond to the WM_QUERYNEWPALETTE message by invalidating the 
destination window to let the DrawDibDraw function redraw an image. You should respond to the 
WM_PALETTECHANGED message by using the DrawDibRealize function to realize the palette.

case WM_PALETTECHANGED: 
if ((HWND)wParam == hwnd) 

break; 
case WM_QUERYNEWPALETTE: 

hdc = GetDC(hwnd); 
f = DrawDibRealize(hdd, hdc, FALSE) > 0; 
ReleaseDC(hwnd, hdc); 
if (f) 

InvalidateRect(hwnd, NULL, TRUE); 
break; 

 



Drawing a Display Context

The following example prepares a DrawDib DC by using the DrawDibRealize function prior to displaying 
several images in a bitmap sequence.

hdc = GetDC(hwnd); 
DrawDibBegin(hdd, hdc, dxDest, dyDest, lpbi, dxSrc, dySrc, NULL); 
DrawDibRealize(hdd, hdc, fBackground); 
DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, lpBits, 
    xSrc, ySrc, dxSrc, dySrc, DDF_SAME_DRAW|DDF_SAME_HDC); 
DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, lpBits, 
    xSrc, ySrc, dxSrc, dySrc, DDF_SAME_DRAW|DDF_SAME_HDC); 
DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, lpBits, 
    xSrc, ySrc, dxSrc, dySrc, DDF_SAME_DRAW|DDF_SAME_HDC); 
ReleaseDC(hwnd, hdc); 
 



Animating a Palette

The following example animates a palette by using the DrawDibRealize, DrawDibChangePalette, and 
DrawDibDraw functions.

You can change the colors of a bitmap by using the DrawDibBegin function in combination with 
DrawDibChangePalette. First, to allow palette changes, specify the DDF_ANIMATE flag in the call to 
DrawDibBegin. Second, set the color table values from the palette entries by using 
DrawDibChangePalette.

For example, if lppe is an address of the PALETTEENTRY array containing the new colors, and lpbi is the 
LPBITMAPINFOHEADER structure used in DrawDibBegin or DrawDibDraw, the following fragment 
updates the DIB color table.

hdc = GetDC(hwnd); 
DrawDibBegin(hdd, ....., DDF_ANIMATE); 
DrawDibRealize(hdd, hdc, fBackground); 
DrawDibDraw(hdd, hdc, ...., DDF_SAME_DRAW|DDF_SAME_HDC); 
 
// Call to change color. 
DrawDibChangePalette(hDD, iStart, iLen, lppe); 
. 
. 
. 
ReleaseDC(hwnd, hdc); 
 



DrawDib Reference
This section describes the DrawDib functions and associated structures. These elements are grouped as 
follows: 

DrawDib Library Operations
DrawDibOpen
DrawDibClose
DrawDibProfileDisplay

Image Rendering
DrawDibDraw
DrawDibGetBuffer
DrawDibUpdate

Sequences of Images
DrawDibBegin
DrawDibEnd
DrawDibStart
DrawDibStop

Palettes
DrawDibRealize
DrawDibSetPalette
DrawDibGetPalette
DrawDibChangePalette

Timing DrawDib
DRAWDIBTIME



DrawDib Functions

An application uses DrawDib functions to create and manage a DrawDib DC, display and update images 
on-screen, manipulate palettes, and to close the DrawDib DC when it's no longer needed. The DrawDib 
functions also include a timing function and a test function to determine display characteristics.

The following functions are used with DrawDib.

DrawDibBegin
DrawDibChangePalette
DrawDibClose
DrawDibDraw
DrawDibEnd
DrawDibGetBuffer
DrawDibGetPalette
DrawDibOpen
DrawDibProfileDisplay
DrawDibRealize
DrawDibSetPalette
DrawDibStart
DrawDibStop
DrawDibTime



DrawDib Structures

The following structure is used with DrawDib.

DRAWDIBTIME



DrawDib Macros

The following macro is used with DrawDib.

DrawDibUpdate

 

 



Multimedia Timers
The multimedia timer services allow an application to schedule periodic timer events ¾ that is, the 
application can request and receive timer messages at application-specified intervals. 



About Multimedia Timers
Multimedia timer services allow applications to schedule timer events with the greatest resolution (or 
accuracy) possible for the hardware platform. These multimedia timer services allow you to schedule 
timer events at a higher resolution than other timer services.

These timer services are useful for applications that demand high-resolution timing. For example, a MIDI 
sequencer requires a high-resolution timer because it must maintain the pace of MIDI events within a 
resolution of 1 millisecond.

Applications that do not use high-resolution timing should use the SetTimer function instead of 
multimedia timer services. The timer services provided by SetTimer post WM_TIMER messages to a 
message queue, while the multimedia timer services call a callback function. Applications that want a 
waitable timer should use the CreateWaitableTimer function. 



Obtaining the System Time

Typically, before an application begins using the multimedia timer services, it retrieves the current system 
time. The system time is the time, in milliseconds, since the Microsoft Windows operating system was 
started. You can use the timeGetTime or timeGetSystemTime function to retrieve the system time. 
These two functions are very similar: timeGetTime returns the system time, and timeGetSystemTime 
fills an MMTIME structure with the system time.



Timer Resolution

To determine the minimum and maximum timer resolutions supported by the timer services, use the 
timeGetDevCaps function. This function fills the wPeriodMin and wPeriodMax members of the 
TIMECAPS structure with the minimum and maximum resolutions. This range can vary across computers 
and Windows platforms. 

After you determine the minimum and maximum available timer resolutions, you must establish the 
minimum resolution you want your application to use. Use the timeBeginPeriod and timeEndPeriod 
functions to set and clear this resolution. You must match each call to timeBeginPeriod with a call to 
timeEndPeriod, specifying the same minimum resolution in both calls. An application can make multiple 
timeBeginPeriod calls, as long as each call is matched with a call to timeEndPeriod.

In both timeBeginPeriod and timeEndPeriod, the uPeriod parameter indicates the minimum timer 
resolution, in milliseconds. You can specify any timer resolution value within the range supported by the 
timer. 



Timer Event Operations

After you have established your application's timer resolution, you can start timer events by using the 
timeSetEvent function. This function returns a timer identifier that can be used to stop or identify timer 
events. One of the function's parameters is the address of a TimeProc callback function that is called 
when the timer event takes place.

There are two types of timer events: single and periodic. A single timer event occurs once, after a 
specified number of milliseconds. A periodic timer event occurs every time a specified number of 
milliseconds elapses. The interval between periodic events is called an event delay. Periodic timer events 
with an event delay of 10 milliseconds or less consume a significant portion of CPU resources.

The relationship between the resolution of a timer event and the length of the event delay is important in 
timer events. For example, if you specify a resolution of 5 and an event delay of 100, the timer services 
notify the callback function after an interval ranging from 95 to 105 milliseconds.

You can cancel an active timer event at any time by using the timeKillEvent function. Be sure to cancel 
any outstanding timers before freeing the memory containing the callback function. 

 

Note    The multimedia timer runs in its own thread. 

 



Using Multimedia Timers
This section contains examples demonstrating how to perform the following tasks:

· Obtaining and setting timer resolution

· Starting a single timer event

· Writing a timer callback function

· Canceling a timer event
 



Obtaining and Setting Timer Resolution

The following example calls the timeGetDevCaps function to determine the minimum and maximum 
timer resolutions supported by the timer services. Before it sets up any timer events, the example 
establishes the minimum timer resolution by using the timeBeginPeriod function.

#define TARGET_RESOLUTION 1         // 1-millisecond target resolution
 
TIMECAPS tc;
UINT     wTimerRes;
 
if (timeGetDevCaps(&tc, sizeof(TIMECAPS)) != TIMERR_NOERROR) 
{
    // Error; application can't continue.
}

wTimerRes = min(max(tc.wPeriodMin, TARGET_RESOLUTION), tc.wPeriodMax);
timeBeginPeriod(wTimerRes); 



Starting a Single Timer Event

To start a single timer event, an application must call the timeSetEvent function, specifying the amount of 
time before the callback occurs, the resolution, the address of the callback function (see TimeProc), and 
the user data to supply with the callback function. An application can use a function like the following to 
start a single timer event. 

UINT SetTimerCallback(NPSEQ npSeq,  // sequencer data
    UINT msInterval)                // event interval
{ 
    npSeq->wTimerID = timeSetEvent(
        msInterval,                    // delay
        wTimerRes,                     // resolution (global variable)
        OneShotCallback,               // callback function
        (DWORD)npSeq,                  // user data
        TIME_ONESHOT );                // single timer event
    if(! npSeq->wTimerID)
        return ERR_TIMER;
    else
        return ERR_NOERROR;
} 

For an example of the callback function OneShotCallback, see Writing a Timer Callback Function.



Writing a Timer Callback Function

The following callback function, OneShotTimer, invalidates the identifier for the single timer event and 
calls a timer routine to handle the application-specific tasks. For more information, see TimeProc.

void CALLBACK OneShotTimer(UINT wTimerID, UINT msg, 
    DWORD dwUser, DWORD dw1, DWORD dw2) 
{ 
    NPSEQ npSeq;             // pointer to sequencer data 
    npSeq = (NPSEQ)dwUser;
    npSeq->wTimerID = 0;     // invalidate timer ID (no longer in use)
    TimerRoutine(npSeq);     // handle tasks 
} 



Canceling a Timer Event

The application must cancel any outstanding timers by calling the timeKillEvent function before it frees 
the memory that contains the callback function. To cancel a timer event, it might call the following 
function. 

void DestroyTimer(NPSEQ npSeq)
{
    if(npSeq->wTimerID) {                // is timer event pending?
        timeKillEvent(npSeq->wTimerID);  // cancel the event
        npSeq->wTimerID = 0;
    }
} 



Multimedia Timer Reference
This section describes the functions and structures associated with multimedia timer services. These 
elements are grouped as follows.

Retrieving the System Time
MMTIME
timeGetSystemTime
timeGetTime

Retrieving Timer Information
TIMECAPS
timeGetDevCaps

Time Events
timeKillEvent
TimeProc
timeSetEvent

Time Periods
timeBeginPeriod
timeEndPeriod



Multimedia Timer Functions

The following functions are used with multimedia timers.

timeBeginPeriod
timeEndPeriod
timeGetDevCaps
timeGetSystemTime
timeGetTime
timeKillEvent
TimeProc
timeSetEvent



Multimedia Timer Structures

The following structures are used with multimedia timers.

MMTIME
TIMECAPS

 

 



File Input and Output
The multimedia file I/O services provide more functionality than the standard operating system services, 
including support for buffered I/O, resource interchange file format (RIFF) files, memory files, and custom 
storage systems. In addition, the multimedia file I/O services are optimized for applications sensitive to 
performance. 



About File Input and Output
Most multimedia applications require file input and output (I/O) ¾ that is, the ability to create, read, and 
write disk files. Multimedia file I/O services provide buffered and unbuffered file I/O and support for RIFF 
files. The services are extensible with custom I/O procedures that can be shared among applications.

Most applications need only the basic file I/O services and the RIFF file I/O services. Applications 
sensitive to file I/O performance, such as applications that stream data from compact disc    in real time, 
can optimize performance by using services to directly access the file I/O buffer. Applications that access 
custom storage systems, such as file archives and databases, can provide their own I/O procedure that 
reads and writes elements of the storage system. 



File Input and Output Services

This section describes procedures for using the following multimedia file I/O services:

· Basic services

· Buffered services

· Resource interchange file format services

· Custom services
 



Basic Services
Using the basic I/O services is similar to using the run-time file I/O services of the C run-time library. Files 
must be opened before they can be read or written. After reading or writing, the file must be closed. You 
can also change the current read or write location within an open file.

Before you begin any I/O operations to a file, you must open the file by using the mmioOpen function. 
This function returns a file handle of type HMMIO. You can use this file handle to identify the open file 
when calling other file I/O functions.

 

Note    An HMMIO file handle is not a standard file handle. Do not use HMMIO file handles with 
Win32 or C run-time file I/O functions.

 

When you use mmioOpen to open a file, you use a flag to specify whether you are opening it for reading, 
writing, or both. You can also specify flags that enable you to create or delete a file. Use the mmioClose 
function to close a file when you are finished reading or writing to it.

You can read and write files by using the mmioRead and mmioWrite functions respectively. The next 
read or write operation occurs at the current file position or file pointer in a file. The current file position is 
advanced each time a file is read or written.

You can also change the current file position by using the mmioSeek function. You should ensure that 
you specify a valid location in a file. If you specify an invalid location, such as past the end of the file, 
mmioSeek may not return an error, but subsequent I/O operations could fail.

There are flags you can use with the mmioOpen function for operations beyond basic file I/O. By 
specifying an MMIOINFO structure, for example, you can open memory files, specify a custom I/O 
procedure, or supply a buffer for buffered I/O.



Buffered Services
Most of the overhead in file I/O occurs when accessing the media device. If you are reading or writing 
many small blocks of information, the device can spend a lot of time moving to the physical location on 
the media for each read or write operation. In this case, you can achieve better performance by using 
buffered file I/O services. With buffered I/O, the file I/O manager maintains an intermediate buffer larger 
than the blocks of information you are reading or writing. It accesses the device only when the buffer must 
be filled from or written to the disk. 

Before you set up and use buffered file I/O, you must decide whether you want the file I/O manager or the 
application to allocate the buffer. It is simpler to let the file I/O manager allocate the buffer. However, you 
can let the application allocate the buffer if you want to directly access the buffer or open a memory file. 
For more information about using memory files, see Performing Memory File I/O. For an example of 
directly accessing an I/O buffer, see Accessing a File I/O Buffer

A buffer allocated by the file I/O manager is called an internal I/O buffer. To open a file for buffered I/O 
using an internal buffer, specify the MMIO_ALLOCBUF flag when you open the file with the mmioOpen 
function. The following illustration shows the initial state of the file I/O buffer after a file is opened for a 
buffered read operation. The buffering is transparent ¾ you read and seek as if you were using 
unbuffered I/O. The mmioOpen function has set pchNext and pchEndRead to point to the beginning of 
the file I/O buffer.

{ewc msdncd, EWGraphic, bsd23539 0 /a "SDK.BMP"}

The following illustration shows the initial state of the file I/O buffer after a file is opened for a buffered 
write operation. The mmioOpen function has set pchNext to point to the beginning of the file I/O buffer 
and pchEndWrite to point to the end of the buffer.

{ewc msdncd, EWGraphic, bsd23539 1 /a "SDK.BMP"}

The default size of the internal I/O buffer is 8K. If this size is not adequate, you can use the 
mmioSetBuffer function to change the buffer size. You can also use this function to enable buffering on a 
file opened for unbuffered I/O, or to supply your own buffer for use as a memory file.

You can force the contents of an I/O buffer to be written to disk by using the mmioFlush function. 
However, when you close a file by using the mmioClose function, you do not have to call mmioFlush to 
flush an I/O buffer ¾ the mmioClose function automatically flushes it. If you run out of disk space, 
mmioFlush could fail, even if the preceding calls to the mmioWrite function were successful. Similarly, 
mmioClose could fail when it is flushing its I/O buffer.

Applications that are performance-sensitive,    such as those that stream data in real time from a CD-
ROM, can optimize file I/O performance by directly accessing the I/O buffer. You should be careful if you 
choose to do this, because you bypass some of the safeguards and error checking provided by the file 
I/O manager. 

The multimedia file I/O manager uses the MMIOINFO structure to maintain state information about an 
open file. You use three members in this structure to read and write the I/O buffer: pchNext, 
pchEndRead, and pchEndWrite. The pchNext member points to the next location in the buffer to read 
or write. You must increment this member as you read and write the buffer. The pchEndRead member 
identifies the last valid character you can read from the buffer. Likewise, this member identifies the last 
location in the buffer you can write. More precisely, both pchEndRead and pchEndWrite point to the 
memory location that follows the last valid data in the buffer. Use the mmioGetInfo and mmioSetInfo 
functions to retrieve and set state information about the file I/O buffer. The following illustration shows the 
state of the I/O buffer after the application calls mmioAdvance during a read operation. The 
mmioAdvance function fills the buffer and sets the pchEndRead pointer to the end of the buffer.

{ewc msdncd, EWGraphic, bsd23539 2 /a "SDK.BMP"}



In the following illustration, the application reads from the I/O buffer at the location specified by pchNext, 
and advances the pointer.

{ewc msdncd, EWGraphic, bsd23539 3 /a "SDK.BMP"}

Similarly, for a write operation, the application writes to the I/O buffer and advances the pchNext pointer.

{ewc msdncd, EWGraphic, bsd23539 4 /a "SDK.BMP"}

After the application fills the buffer, it calls mmioAdvance to flush the buffer to disk. The mmioAdvance 
function resets pchNext to point to the beginning of the buffer, as shown following.

{ewc msdncd, EWGraphic, bsd23539 5 /a "SDK.BMP"}

When you reach the end of the I/O buffer, you must advance the buffer to fill it from the disk, if you are 
reading, or flush it to the disk, if you are writing. Use the mmioAdvance function to advance an I/O buffer. 
To fill an I/O buffer from disk, use mmioAdvance with the MMIO_READ flag. If there is not enough data 
remaining in the file to fill the buffer, the pchEndRead member of the MMIOINFO structure points to the 
location following the last valid byte in the buffer. To flush a buffer to disk, set the MMIO_DIRTY flag in the 
dwFlags member of the MMIOINFO structure and then call mmioAdvance with the MMIO_WRITE flag. 

For example, during a read operation, the mmioAdvance function sets pchEndRead to point to the end 
of valid data in the buffer, as shown following.

{ewc msdncd, EWGraphic, bsd23539 6 /a "SDK.BMP"}

Similarly, during a write operation, the application calls mmioAdvance to flush the buffer and advance 
pchNext to the end of valid data in the buffer, as shown following.

{ewc msdncd, EWGraphic, bsd23539 7 /a "SDK.BMP"}



Resource Interchange File Format Services
The preferred format for multimedia files is resource interchange file format (RIFF). The RIFF file I/O 
functions work with the basic buffered and unbuffered file I/O services. You can open, read, and write 
RIFF files in the same way as other file types. For detailed information about RIFF, see AVIFile Functions 
and Macros.

RIFF files use four-character codes to identify file elements. These codes are 32-bit quantities 
representing a sequence of one to four ASCII alphanumeric characters, padded on the right with space 
characters. The data type for four-character codes is FOURCC. Use the mmioFOURCC macro to convert 
four characters into a four-character code. To convert a null-terminated string into a four-character code, 
use the mmioStringToFOURCC function.

The basic building block of a RIFF file is a chunk. A chunk is a logical unit of multimedia data, such as a 
single frame in a video clip. Each chunk contains the following fields:

· A four-character code specifying the chunk identifier

· A doubleword value specifying the size of the data member in the chunk

· A data field
 

The following illustration shows a "RIFF" chunk that contains two subchunks.

{ewc msdncd, EWGraphic, bsd23539 8 /a "SDK.BMP"}

A chunk contained in another chunk is a subchunk. The only chunks allowed to contain subchunks are 
those with a chunk identifier of "RIFF" or "LIST". A chunk that contains another chunk is called a parent 
chunk. The first chunk in a RIFF file must be a "RIFF" chunk. All other chunks in the file are subchunks of 
the "RIFF" chunk.

"RIFF" chunks include an additional field in the first four bytes of the data field. This additional field 
provides the form type of the field. The form type is a four-character code identifying the format of the 
data stored in the file. For example, Microsoft waveform-audio files have a form type of "WAVE". 

"LIST" chunks also include an additional field in the first four bytes of the data field. This additional field 
contains the list type of the field. The list type is a four-character code identifying the contents of the list. 
For example, a "LIST" chunk with a list type of "INFO" can contain "ICOP" and "ICRD" chunks providing 
copyright and creation date information. The following illustration shows a "RIFF" chunk that contains a 
"LIST" chunk and one other subchunk (the "LIST" chunk contains two subchunks).

{ewc msdncd, EWGraphic, bsd23539 9 /a "SDK.BMP"}

Multimedia file I/O services include two functions you can use to navigate among chunks in a RIFF file: 
mmioAscend and mmioDescend. You can use these functions as high-level seek functions. When you 
descend into a chunk, the file position is set to the data field of the chunk (8 bytes from the beginning of 
the chunk). For "RIFF" and "LIST" chunks, the file position is set to the location following the form type or 
list type (12 bytes from the beginning of the chunk). When you ascend out of a chunk, the file position is 
set to the location following the end of the chunk. 

To create a new chunk, use the mmioCreateChunk function to write a chunk header at the current 
position in an open file. The mmioAscend, mmioDescend, and mmioCreateChunk functions use the 
MMCKINFO structure to specify and retrieve information about "RIFF" chunks. 



Custom Services
Multimedia file I/O services use I/O procedures to handle the physical input and output associated with 
reading and writing to different types of storage systems, such as file-archival systems and database-
storage systems. Predefined I/O procedures exist for the standard file systems and for memory files, but 
you can supply a custom I/O procedure for accessing a unique storage system by using the 
mmioInstallIOProc function. 

To open a file by using a custom I/O procedure, use the mmioOpen function. Include a plus sign (+) or 
the CFSEPCHAR constant in the filename to separate the name of the physical file from the name of the 
element of the file you want to open. The following example opens a file element named "element" from a 
file named FILENAME.ARC:

mmioOpen("filename.arc+element", NULL, MMIO_READ); 
  

When the file I/O manager encounters a plus sign in a filename, it examines the filename extension to 
determine which I/O procedure to associate with the file. In the previous example, the file I/O manager 
would attempt to use the I/O procedure associated with the .ARC filename extension; this I/O procedure 
would have been installed by using mmioInstallIOProc. If no I/O procedure is installed, mmioOpen 
returns an error.

I/O procedures must respond to the following messages: 

MMIOM_CLOSE
MMIOM_OPEN 
MMIOM_READ 
MMIOM_WRITE 
MMIOM_SEEK 
MMIOM_RENAME 
MMIOM_WRITEFLUSH 

You can also create custom messages and send them to your I/O procedure by using the 
mmioSendMessage function. If you define your own messages, make sure they are defined at or above 
the value defined by the MMIOM_USER constant. 

In addition to processing messages, an I/O procedure must maintain the lDiskOffset member of the 
MMIOINFO structure (pointed to by the lpmmioinfo parameter of the mmioOpen function). The 
lDiskOffset member must always contain the file offset to the location that the next MMIOM_READ or 
MMIOM_WRITE message will access. The offset is specified in bytes and is relative to the beginning of 
the file. The I/O procedure can use the adwInfo member to maintain any required state information. The 
I/O procedure should not modify any other members in the MMIOINFO structure.



Using File Input and Output
This section contains examples demonstrating how to perform the following tasks:

· Opening a file with   mmioOpen  

· Creating and deleting a file.

· Seeking to a new position in a file.

· Changing the I/O buffer size.

· Accessing a file I/O buffer.

· Generating four-character codes.

· Creating a RIFF chunk.

· Searching for a RIFF chunk.

· Searching for a subchunk.

· Performing file I/O on RIFF files.

· Performing memory file I/O.

· Installing custom I/O procedures.

· Sharing an I/O procedure with other applications.
 



Opening a File with mmioOpen

To open a file for basic I/O operations, set the lpmmioinfo parameter of the mmioOpen function to NULL. 
The following example opens a file named "C:\SAMPLES\SAMPLE1.TXT" for reading, and checks the 
return value for error.

HMMIO hFile; 
 
if ((hFile = mmioOpen("C:\\SAMPLES\\SAMPLE1.TXT", NULL, 
    MMIO_READ)) != NULL) 
    // File opened successfully. 
else 
    // File cannot be opened. 
 

Use the dwFlags parameter of mmioOpen to specify flags for opening a file. 



Creating and Deleting a File

To create a file, set the dwOpenFlags parameter of the mmioOpen function to MMIO_CREATE. The 
following example creates a file and opens it for reading and writing.

HMMIO hFile; 
 
hFile = mmioOpen("NEWFILE.TXT", NULL, MMIO_CREATE | MMIO_READWRITE); 
if (hFile != NULL) 
    // File created successfully. 
else 
    // File cannot be created. 
 

If the file you are creating already exists, it will be truncated to zero length.

To delete a file, set the dwOpenFlags parameter of the mmioOpen function to MMIO_DELETE. After you 
delete a file, it cannot be recovered by any standard means. If your application is deleting a file at the 
request of a user, query the user before deleting the file to make sure the user wants to delete it.



Seeking to a New Position in a File

The following example moves to the beginning of an open file using the mmioSeek function.

mmioSeek(hFile, 0L, SEEK_SET); 
  

The following example moves to the end of an open file.

mmioSeek(hFile, 0L, SEEK_END); 
  

The following example moves to a position 10 bytes from the end of an open file.

mmioSeek(hFile, -10L, SEEK_END); 
  



Changing the I/O Buffer Size

The following example opens a file named SAMPLE.TXT for unbuffered I/O, and then enables buffered 
I/O with an internal 16K buffer using the mmioSetBuffer function.

HMMIO hFile; 
 
if ((hFile = mmioOpen("SAMPLE.TXT", NULL, MMIO_READ)) != NULL) 
{ 
    // File opened successfully; request an I/O buffer. 
    if (mmioSetBuffer(hFile, NULL, 16384L, 0)) 
        // Buffer cannot be allocated. 
    else 
        // Buffer allocated successfully. 
} 
else 
    // File cannot be opened. 



Accessing a File I/O Buffer

The following example accesses an I/O buffer directly to read data from a waveform-audio file.

HMMIO    hmmio; 
MMIOINFO mmioinfo; 
DWORD    dwDataSize; 
DWORD    dwCount; 
HPSTR    hptr; 

// Get information about the file I/O buffer. 
if (mmioGetInfo(hmmio, &mmioinfo, 0)) 
{ 
    Error("Failed to get I/O buffer info."); 
    . 
    . 
    . 
    mmioClose(hmmio, 0); 
    return; 
} 
 
// Read the entire file by directly reading the file I/O buffer. 
// When the end of the I/O buffer is reached, advance the buffer. 

for (dwCount = dwDataSize, hptr = lpData; dwCount  0; dwCount--) 
{ 
    // Check to see if the I/O buffer must be advanced. 
    if (mmioinfo.pchNext == mmioinfo.pchEndRead) 
    { 
        if(mmioAdvance(hmmio, &mmioinfo, MMIO_READ)) 
        { 
            Error("Failed to advance buffer."); 
            . 
            . 
            . 
            mmioClose(hmmio, 0); 
            return; 
        } 
    } 
 
    // Get a character from the buffer. 
    *hptr++ = *mmioinfo.pchNext++; 
} 
 
// End direct buffer access and close the file. 
mmioSetInfo(hmmio, &mmioinfo, 0); 
mmioClose(hmmio, 0); 
 

When you finish accessing a file I/O buffer, call the mmioSetInfo function, passing an address of the 
MMIOINFO structure filled by the mmioGetInfo function. If you wrote to the buffer, set the MMIO_DIRTY 
flag in the dwFlags member of the MMIOINFO structure before calling mmioSetInfo. Otherwise, the 
buffer will not be flushed to disk.



Generating Four-Character Codes

You can use the mmioFOURCC macro or the mmioStringToFOURCC function to generate four-
character codes. The following example uses mmioFOURCC to generate a four-character code for 
"WAVE".

FOURCC fourccID; 
. 
. 
. 
fourccID = mmioFOURCC('W', 'A', 'V', 'E'); 
 

The following example uses mmioStringToFOURCC to generate a four-character code for "WAVE".

FOURCC fourccID; 
. 
. 
. 
fourccID = mmioStringToFOURCC("WAVE", 0); 
 

The second parameter in mmioStringToFOURCC specifies flags for converting the string to a four-
character code. If you specify the MMIO_TOUPPER flag, mmioStringToFOURCC converts all alphabetic 
characters in the string to uppercase. This is useful when you need to specify a four-character code to 
identify a custom I/O procedure because four-character codes identifying file-extension names must be all 
uppercase. 



Creating a RIFF Chunk

The following example uses the mmioCreateChunk function to create a chunk with a chunk identifier of 
"RIFF" and a form type of "RDIB".

HMMIO    hmmio; 
MMCKINFO mmckinfo; 
. 
. 
. 
mmckinfo.fccType = mmioFOURCC('R', 'D', 'I', 'B'); 
mmioCreateChunk(hmmio, &mmckinfo, MMIO_CREATERIFF); 
 

If you are creating a "RIFF" or "LIST" chunk, you must specify the form type or list type in the fccType 
member of the MMCKINFO structure. In the previous example, "RDIB" is the form type.

If you know the size of the data field in a new chunk, you can set the cksize member of the MMCKINFO 
structure when you create the chunk. This value will be written to the data size field in the new chunk. If 
this value is not correct when you call mmioAscend to mark the end of the chunk, it will be automatically 
rewritten to reflect the correct size of the data field.

After you create a chunk by using the mmioCreateChunk function, the file position is set to the data field 
of the chunk (8 bytes from the beginning of the chunk). If the chunk is a "RIFF" or "LIST" chunk, the file 
position is set to the location following the form type or list type (12 bytes from the beginning of the 
chunk). 



Searching for a RIFF Chunk

The following example uses the mmioDescend function to search for a "RIFF" chunk with a form type of 
"WAVE" to verify that the file that has just been opened is a waveform-audio file.

HMMIO    hmmio; 
MMCKINFO mmckinfoParent; 
MMCKINFO mmckinfoSubchunk; 
. 
. 
. 
// Locate a "RIFF" chunk with a "WAVE" form type to make 
// sure the file is a waveform-audio file. 
mmckinfoParent.fccType = mmioFOURCC('W', 'A', 'V', 'E'); 
if (mmioDescend(hmmio, (LPMMCKINFO) &mmckinfoParent, NULL, 
    MMIO_FINDRIFF)) 
    // The file is not a waveform-audio file. 
else 
    // The file is a waveform-audio file 
 



Searching for a Subchunk

The following example uses the mmioDescend function to search for the "FMT" chunk in the "RIFF" 
chunk of the previous example.

// Find the format chunk (form type "FMT"); it should be 
// a subchunk of the "RIFF" parent chunk. 
mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' '); 
if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent, 
    MMIO_FINDCHUNK)) 
    // Error, cannot find the "FMT" chunk. 
else 
    // "FMT" chunk found. 
 

To search for a subchunk (that is, any chunk other than a "RIFF" or "LIST" chunk), identify its parent 
chunk in the lpckParent parameter of the mmioDescend function.

If you do not specify a parent chunk, the current file position should be at the beginning of a chunk before 
you call the mmioDescend function. If you do specify a parent chunk, the current file position can be 
anywhere in that chunk.

If the search for a subchunk fails, the current file position is undefined. You can use the mmioSeek 
function and the dwDataOffset member of the MMCKINFO structure describing the parent chunk to seek 
back to the beginning of the parent chunk, as in the following example:

mmioSeek(hmmio, mmckinfoParent.dwDataOffset + 4, SEEK_SET); 
  

Because dwDataOffset specifies the offset to the beginning of the data portion of the chunk, you must 
seek 4 bytes past dwDataOffset to set the file position after the form type.



Performing File I/O on RIFF Files

The following example shows how to open a RIFF file for buffered I/O, as well as how to descend, 
ascend, and read "RIFF" chunks.

// ReversePlay--Plays a waveform-audio file backward. 
void ReversePlay() 
{ 
    char        szFileName[128];    // filename of file to open 
    HMMIO       hmmio;              // file handle for open file 
    MMCKINFO    mmckinfoParent;     // parent chunk information 
    MMCKINFO    mmckinfoSubchunk;   // subchunk information structure 
    DWORD       dwFmtSize;          // size of "FMT" chunk 
    DWORD       dwDataSize;         // size of "DATA" chunk 
    WAVEFORMAT  *pFormat;           // address of "FMT" chunk 
    HPSTR       lpData;             // address of "DATA" chunk 
 
    // Get the filename from the edit control. 
    . 
    . 
    . 
    // Open the file for reading with buffered I/O 
    // by using the default internal buffer 
    if(!(hmmio = mmioOpen(szFileName, NULL, 
        MMIO_READ | MMIO_ALLOCBUF))) 
    { 
        Error("Failed to open file."); 
        return; 
    } 
 
    // Locate a "RIFF" chunk with a "WAVE" form type to make 
    // sure the file is a waveform-audio file. 
    mmckinfoParent.fccType = mmioFOURCC('W', 'A', 'V', 'E'); 
    if (mmioDescend(hmmio, (LPMMCKINFO) &mmckinfoParent, NULL, 
        MMIO_FINDRIFF)) 
    { 
        Error("This is not a waveform-audio file."); 
        mmioClose(hmmio, 0); 
        return; 
    } 
    // Find the "FMT" chunk (form type "FMT"); it must be 
    // a subchunk of the "RIFF" chunk. 
    mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' '); 
    if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent, 
        MMIO_FINDCHUNK)) 
    { 
        Error("Waveform-audio file has no "FMT" chunk."); 
        mmioClose(hmmio, 0); 
        return; 
    } 
 
    // Get the size of the "FMT" chunk. Allocate 
    // and lock memory for it. 
    dwFmtSize = mmckinfoSubchunk.cksize; 



    . 
    . 
    . 
    // Read the "FMT" chunk. 
    if (mmioRead(hmmio, (HPSTR) pFormat, dwFmtSize) != dwFmtSize){ 
        Error("Failed to read format chunk."); 
        . 
        . 
        . 
        mmioClose(hmmio, 0); 
        return; 
    } 
 
    // Ascend out of the "FMT" subchunk. 
    mmioAscend(hmmio, &mmckinfoSubchunk 0); 
 
    // Find the data subchunk. The current file position should be at 
    // the beginning of the data chunk; however, you should not make 
    // this assumption. Use mmioDescend to locate the data chunk. 
    mmckinfoSubchunk.ckid = mmioFOURCC('d', 'a', 't', 'a'); 
    if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent, 
        MMIO_FINDCHUNK)) 
    { 
        Error("Waveform-audio file has no data chunk."); 
        . 
        . 
        . 
        mmioClose(hmmio, 0); 
        return; 
    } 
 
    // Get the size of the data subchunk. 
    dwDataSize = mmckinfoSubchunk.cksize; 
    if (dwDataSize == 0L){ 
        Error("The data chunk contains no data."); 
        . 
        . 
        . 
        mmioClose(hmmio, 0); 
        return; 
    } 
 
    // Open a waveform-audio output device. 
    . 
    . 
    . 
 
    // Allocate and lock memory for the waveform-audio data. 
    . 
    . 
    . 
 
    // Read the waveform-audio data subchunk. 
    if(mmioRead(hmmio, (HPSTR) lpData, dwDataSize) != dwDataSize){ 
        Error("Failed to read data chunk."); 



        . 
        . 
        . 
        mmioClose(hmmio, 0); 
        return; 
    } 
 
    // Close the file. 
    mmioClose(hmmio, 0); 
 
    // Reverse the sound and play it. 
    . 
    . 
    . 
} 
 



Performing Memory File I/O

The multimedia file I/O services let you treat a block of memory as a file. This can be useful if you already 
have a file image in memory. Memory files let you reduce the number of special-case conditions in your 
code because, for I/O purposes, you can treat memory files as if they were disk-based files. You can also 
use memory files with the clipboard.

As with I/O buffers, memory files can use memory allocated by the application or by the file I/O manager. 
In addition, memory files can be either expandable or nonexpandable. When the file I/O manager reaches 
the end of an expandable memory file, it expands the memory file by a predefined increment.

To open a memory file, use the mmioOpen function with the szFilename parameter set to NULL and the 
MMIO_READWRITE flag set in the dwOpenFlags parameter. Set the lpmmioinfo parameter to point to an 
MMIOINFO structure that has been set up as follows: 

1. Set the pIOProc member to NULL.

2. Set the fccIOProc member to FOURCC_MEM.

3. Set the pchBuffer member to point to the memory block. To request that the file I/O manager allocate 
the memory block, set pchBuffer to NULL.

4. Set the cchBuffer member to the initial size of the memory block.

5. Set the adwInfo member to the minimum expansion size of the memory block. For a nonexpandable 
memory file, set adwInfo to NULL.

6. Set all other members to zero.
 

There are no restrictions on allocating memory for use as a nonexpandable memory file. 



Installing Custom I/O Procedures

To install an I/O procedure associated with the .ARC filename extension, use the mmioInstallIOProc 
function as follows:

mmioInstallIOProc (mmioFOURCC('A', 'R', 'C', ' '), 
    (LPMMIOPROC)lpmmioproc, MMIO_INSTALLPROC); 
 

When you install an I/O procedure using mmioInstallIOProc, the procedure remains installed until you 
remove it. The I/O procedure is used for any file you open as long as the file has the appropriate filename 
extension. 

You can also temporarily install an I/O procedure by using the mmioOpen function. In this case, the I/O 
procedure is used only with a file opened by using mmioOpen and is removed when the file is closed by 
using the mmioClose function. To specify an I/O procedure when you open a file by using mmioOpen, 
use the lpmmioinfo parameter to reference an MMIOINFO structure as follows:

1. Set the fccIOProc member to NULL.

2. Set the pIOProc member to the procedure-instance address of the I/O procedure.

3. Set all other members to zero (unless you are opening a memory file, or directly reading or writing to 
the file I/O buffer).

 

Be sure to remove any I/O procedures you have installed before you exit your application.



Sharing an I/O Procedure with Other Applications

If you want to share an I/O procedure with other applications, you need to write a dynamic-link library 
(DLL) for your application. You can share the I/O procedure by doing one of the following:

· Include the code for the I/O procedure in the DLL.

· Create a function in the DLL that calls the mmioInstallIOProc function to install the I/O procedure.

· Export this function in the module-definitions file of the DLL.
 

To use the shared I/O procedure, an application must first call the function in the DLL to install the I/O 
procedure. 



File Input and Output Reference
This section describes the functions, macros, messages, and structures associated with multimedia file 
input and output. These elements are grouped as follows.

Basic I/O
mmioClose
mmioOpen
mmioRead
mmioRename
mmioSeek
mmioWrite

Buffered I/O
mmioAdvance
mmioFlush
mmioGetInfo
MMIOINFO
mmioSetBuffer
mmioSetInfo

RIFF I/O
mmioAscend
MMCKINFO
mmioCreateChunk
mmioDescend
mmioFOURCC
mmioStringToFOURCC

Custom I/O Procedures
IOProc
mmioInstallIOProc
MMIOM_CLOSE
MMIOM_OPEN
MMIOM_READ
MMIOM_RENAME
MMIOM_SEEK
MMIOM_WRITE
MMIOM_WRITEFLUSH
mmioSendMessage



Multimedia File I/O Functions

The following functions are used with multimedia file I/O.

IOProc
mmioAdvance
mmioAscend
mmioClose
mmioCreateChunk
mmioDescend
mmioFlush
mmioGetInfo
mmioInstallIOProc
mmioOpen
mmioRead
mmioRename
mmioSeek
mmioSendMessage
mmioSetBuffer
mmioSetInfo
mmioStringToFOURCC
mmioWrite



Multimedia File I/O Structures

The following structures are used with multimedia file I/O.

MMCKINFO
MMIOINFO



Multimedia File I/O Messages

The following messages are used with multimedia file I/O.

MMIOM_CLOSE
MMIOM_OPEN
MMIOM_READ
MMIOM_RENAME
MMIOM_SEEK
MMIOM_WRITE
MMIOM_WRITEFLUSH

 

 



Joysticks
This overview describes the functions and messages that support joysticks, as well as other ancillary 
input devices that track positions within an absolute coordinate system, such as a touch screen, digitizing 
tablet, and light pen. Extended capabilities also provide support for rudder pedals, flight yokes, and other 
devices that use up to six axes of movement, a point-of-view hat, and 32 buttons.



About Joysticks
The joystick is an ancillary input device for applications that provide alternatives to using the keyboard 
and mouse. The joystick provides positional information within a coordinate system that has absolute 
maximum and minimum values in each axis of movement. 

Joystick services are loaded when the operating system is started. The joystick services can 
simultaneously monitor two joysticks, each with two- or three-axis movement. Each joystick can have up 
to four buttons. You can use the joystick functions to determine the capabilities of the joysticks and 
joystick driver. Also, you can process a joystick's positional and button information by querying the joystick 
directly or by capturing the joystick and processing messages from it. The latter method is simpler 
because your application does not have to manually query the joystick or track the time to generate 
queries at regular intervals.



Joystick Capabilities

Joysticks can support two- or three-axis movement and up to four buttons. Joysticks also support different 
ranges of motion and polling frequencies. The range of motion is the distance a joystick handle can move 
from its resting position to the position farthest from its resting position. The polling frequency is the time 
interval between joystick queries.

Joystick drivers can support either one or two joysticks. You can determine the number of joysticks 
supported by a joystick driver by using the joyGetNumDevs function. This function returns an unsigned 
integer that contains the number of supported joysticks or zero if there is no joystick support. The return 
value does not indicate the number of joysticks attached to the system. 

You can determine if a joystick is attached to the system by using the joyGetPos function. This function 
returns JOYERR_NOERROR if the specified device is attached. Otherwise , it returns 
JOYERR_UNPLUGGED. 

Each joystick has several capabilities that are available to your application. You can retrieve the 
capabilities of a joystick by using the joyGetDevCaps function. This function fills a JOYCAPS structure 
with joystick capabilities such as the minimum and maximum values for its coordinate system, the number 
of buttons on the joystick, and the minimum and maximum polling frequencies. 



Joystick Position

You can query a joystick for position and button information by using the joyGetPos function. For 
example, an application can query the joystick for baseline position values. The Joystick Control Panel 
property sheet uses this technique when calibrating the joystick.

You can also query a joystick or other device that has extended capabilities by using the joyGetPosEx 
function. 



Joystick Notifications

You can capture direct joystick messages to be sent to a function by using the joySetCapture function. 
Only one application at a time can capture messages from a joystick, but you can query the joystick from 
another application by using the joyGetPos or joyGetPosEx function. 

 

Note    A joystick message can fail to reach the application that captured the joystick if a second 
application uses joyGetPos or joyGetPosEx to query the joystick at approximately the same time 
that the message is sent. In this case, the second application could intercept the message.

 

If you want to capture messages from two joysticks attached to the system, use joySetCapture twice, 
once for each joystick. Your window receives separate and distinct messages for each device.

You can release a captured joystick by using the joyReleaseCapture function. If an application does not 
release the joystick before ending, the joystick is automatically released shortly after the capture window 
is destroyed.

You cannot capture an unplugged joystick. The joySetCapture function returns JOYERR_UNPLUGGED 
if the specified device is unplugged. 



Time-Based Notifications
You can notify the operating system to send joystick messages to an application at regular time intervals 
by setting the fChanged parameter of joySetCapture to FALSE and by specifying the interval length 
between successive messages. To do this, assign the uPeriod parameter a value between the minimum 
and maximum polling frequencies for the joystick. You can determine this range by using the 
joyGetDevCaps function, which fills the wPeriodMin and wPeriodMax members in the JOYCAPS 
structure. If the uPeriod value is outside the range of valid polling frequencies for the joystick, the joystick 
driver uses the minimum or maximum polling frequency, whichever is closer to the uPeriod value.

 

Note    Windows sets up a timer event with each call to joySetCapture.

 



Event-Based Notifications
You can notify Windows to send joystick messages to an application whenever the position of a joystick 
axis changes by a value greater than the movement threshold of the device. The movement threshold is 
the distance the joystick must be moved before a WM_JOYMOVE message is sent to a window that has 
captured the device. The threshold is initially zero. You can set the movement threshold by using the 
joySetThreshold function. You can retrieve the minimum polling frequency of the joystick by using the 
joyGetDevCaps function.



Joystick Notification Messages
Joystick messages notify your application that a joystick has changed position or that one of its buttons 
has changed states. Messages beginning with MM_JOY1 are sent to the function if your application 
requests input from the joystick using the identifier JOYSTICKID1, and MM_JOY2 messages are sent if 
your application requests input from the joystick using the identifier JOYSTICKID2. 

The messages in the following table identify the status of the joystick buttons:

Message Description

MM_JOY1BUTTONDOWN A button on joystick JOYSTICKID1 has 
been pressed.

MM_JOY1BUTTONUP A button on joystick JOYSTICKID1 has 
been released.

MM_JOY1MOVE Joystick JOYSTICKID1 changed position in 
the x- or y-direction.

MM_JOY1ZMOVE Joystick JOYSTICKID1 changed position in 
the z-direction.

MM_JOY2BUTTONDOWN A button on joystick JOYSTICKID2 has 
been pressed.

MM_JOY2BUTTONUP A button on joystick JOYSTICKID2 has 
been released.

MM_JOY2MOVE Joystick JOYSTICKID2 changed position in 
the x- or y-direction

MM_JOY2ZMOVE Joystick JOYSTICKID2 changed position in 
the z-direction.

 

All messages report nonexistent buttons as released.



Using Joysticks
This section contains examples demonstrating how to perform the following tasks:

· Getting the driver capabilities

· Capturing joystick input

· Processing joystick messages
 

The examples are taken from a simple joystick application that retrieves position and button-state 
information from the joystick services, plays waveform-audio resources, and paints bullet holes on the 
screen when a user presses the joystick buttons.



Getting the Driver Capabilities

The following example uses joyGetNumDevs and joyGetPos to determine whether the joystick services 
are available and if a joystick is attached to one of the ports. 

JOYINFO joyinfo; 
UINT wNumDevs, wDeviceID; 
BOOL bDev1Attached, bDev2Attached; 
 
    if((wNumDevs = joyGetNumDevs()) == 0) 
        return ERR_NODRIVER; 
    bDev1Attached = joyGetPos(JOYSTICKID1,&joyinfo) != JOYERR_UNPLUGGED; 
    bDev2Attached = wNumDevs == 2 && joyGetPos(JOYSTICKID2,&joyinfo) != 
        JOYERR_UNPLUGGED; 
    if(bDev1Attached || bDev2Attached)   // decide which joystick to use 
        wDeviceID = bDev1Attached ? JOYSTICKID1 : JOYSTICKID2; 
    else 
        return ERR_NODEVICE; 
 



Capturing Joystick Input

Most of the code controlling the joystick is in the main window function. In the following portion of the 
message handler, the application calls joySetCapture to capture input from the joystick JOYSTICKID1. 

case WM_CREATE: 
    if(joySetCapture(hWnd, JOYSTICKID1, NULL, FALSE)) 
    { 
        MessageBeep(MB_ICONEXCLAMATION); 
        MessageBox(hWnd, "Couldn't capture the joystick.", NULL, 
            MB_OK | MB_ICONEXCLAMATION); 
        PostMessage(hWnd,WM_CLOSE,0,0L); 
    } 
    break; 
 



Processing Joystick Messages

The following example illustrates how an application could respond to joystick movements and changes in 
the button states. When the joystick changes position, the application moves the cursor and, if either 
button is pressed, draws a bullet hole on the desktop. When a joystick button is pressed, the application 
draws a hole on the desktop and plays a sound continuously until a button is released. The messages to 
watch are MM_JOY1MOVE, MM_JOY1BUTTONDOWN, and MM_JOY1BUTTONUP.

case MM_JOY1MOVE :                     // changed position 
    if((UINT) wParam & (JOY_BUTTON1 | JOY_BUTTON2)) 
        DrawFire(hWnd); 
    DrawSight(lParam);                 // calculates new cursor position 
    break; 
case MM_JOY1BUTTONDOWN :               // button is down 
    if((UINT) wParam & JOY_BUTTON1) 
    { 
        PlaySound(lpButton1, SND_LOOP | SND_ASYNC | SND_MEMORY); 
        DrawFire(hWnd); 
    } 
    else if((UINT) wParam & JOY_BUTTON2) 
    { 
        PlaySound(lpButton2, SND_ASYNC | SND_MEMORY |  SND_LOOP); 
        DrawFire(hWnd); 
    } 
    break; 
case MM_JOY1BUTTONUP :                 // button is up 
    sndPlaySound(NULL, 0);             // stops the sound 
    break; 
 



Joystick Reference
This section describes the functions, structures, and messages associated with joysticks. The elements 
are grouped as follows:

Device Capabilities
joyGetDevCaps
joyGetNumDevs
JOYCAPS

Querying a Joystick
joyGetPos
joyGetPosEx
JOYINFO
JOYINFOEX

Capturing a Joystick
joyGetThreshold
joyReleaseCapture
joySetCapture
joySetThreshold
MM_JOY1BUTTONDOWN
MM_JOY1BUTTONUP
MM_JOY1MOVE
MM_JOY1ZMOVE
MM_JOY2BUTTONDOWN
MM_JOY2BUTTONUP
MM_JOY2MOVE
MM_JOY2ZMOVE



Multimedia Joystick Functions

An application uses the joystick functions to query a joystick driver and to prepare an application to 
receive notification messages from a joystick driver.

The following functions are used with multimedia joysticks.

joyGetDevCaps
joyGetNumDevs
joyGetPos
joyGetPosEx
joyGetThreshold
joyReleaseCapture
joySetCapture
joySetThreshold



Multimedia Joystick Structures

The following structures are used with multimedia joysticks.

JOYCAPS
JOYINFO
JOYINFOEX



Multimedia Joystick Messages

The following messages are used with multimedia joysticks.

MM_JOY1BUTTONDOWN
MM_JOY1BUTTONUP
MM_JOY1MOVE
MM_JOY1ZMOVE
MM_JOY2BUTTONDOWN
MM_JOY2BUTTONUP
MM_JOY2MOVE
MM_JOY2ZMOVE

 

 



acmDriverAdd      

  

The acmDriverAdd function adds a driver to the list of available ACM drivers. The driver type and 
location are dependent on the flags used to add ACM drivers. After a driver is successfully added, the 
driver entry function will receive ACM driver messages.

MMRESULT acmDriverAdd(

        LPHACMDRIVERID phadid,
        HINSTANCE hinstModule,
        LPARAM lParam,
        DWORD dwPriority,
        DWORD fdwAdd
      );
 

Parameters
phadid

Address that is filled with a handle identifying the installed driver. This handle is used to identify the 
driver in calls to other ACM functions.

hinstModule

Handle of the instance of the module whose executable or dynamic-link library (DLL) contains the 
driver entry function.

lParam

Driver function address or a notification window handle, depending on the fdwAdd flags.

dwPriority

Window message to send for notification broadcasts. This parameter is used only with the 
ACM_DRIVERADDF_NOTIFYHWND flag. All other flags require this member to be set to zero.

fdwAdd

Flags for adding ACM drivers. The following values are defined:

ACM_DRIVERADDF_FUNCTION

The lParam parameter is a driver function address conforming to the acmDriverProc prototype. 
The function may reside in either an executable or DLL file. 

ACM_DRIVERADDF_GLOBAL

Provided for compatibility with 16-bit applications. For the Win32 API, ACM drivers added by the 
acmDriverAdd function can be used only by the application that added the driver. This is true 
whether or not ACM_DRIVERADDF_GLOBAL is specified. For more information, see Adding 
Drivers Within an Application.

ACM_DRIVERADDF_LOCAL

The ACM automatically gives a local driver higher priority than a global driver when searching for a 
driver to satisfy a function call. For more information, see Adding Drivers Within an Application.

ACM_DRIVERADDF_NOTIFYHWND

The lParam parameter is a handle of a notification window that receives messages when changes 



to global driver priorities and states are made. The window message to receive is defined by the 
application and must be passed in dwPriority. The wParam and lParam parameters passed with 
the window message are reserved for future use and should be ignored. 
ACM_DRIVERADDF_GLOBAL cannot be specified in conjunction with this flag. For more 
information about driver priorities, see the description for the acmDriverPriority function. 

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOMEM The system is unable to allocate 
resources.

 

See Also
acmDriverProc, acmDriverPriority



acmDriverClose      

  

The acmDriverClose function closes a previously opened ACM driver instance. If the function is 
successful, the handle is invalidated.

MMRESULT acmDriverClose(

        HACMDRIVER had,
        DWORD fdwClose
      );
 

Parameters
had

Handle of the open driver instance to be closed.

fdwClose

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The driver is in use and cannot 
be closed.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.
 



acmDriverDetails      

  

The acmDriverDetails function queries a specified ACM driver to determine its capabilities.

MMRESULT acmDriverDetails(

        HACMDRIVERID hadid,
        LPACMDRIVERDETAILS padd,
        DWORD fdwDetails
      );
 

Parameters
hadid

Handle of the driver identifier of an installed ACM driver. Disabled drivers can be queried for details.

padd

Address of an ACMDRIVERDETAILS structure that will receive the driver details. The cbStruct 
member must be initialized to the size, in bytes, of the structure.

fdwDetails

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

See Also
ACMDRIVERDETAILS



acmDriverEnum      

  

The acmDriverEnum function enumerates the available ACM drivers, continuing until there are no more 
drivers or the callback function returns FALSE.

MMRESULT acmDriverEnum(

        ACMDRIVERENUMCB fnCallback,
        DWORD dwInstance,
        DWORD fdwEnum
      );
 

Parameters
fnCallback

Procedure instance address of the application-defined callback function. 

dwInstance

A 32-bit application-defined value that is passed to the callback function along with ACM driver 
information.

fdwEnum

Flags for enumerating ACM drivers. The following values are defined:

ACM_DRIVERENUMF_DISABLED

Disabled ACM drivers should be included in the enumeration. Drivers can be disabled by the user 
through the Control Panel or by an application using the acmDriverPriority function. If a driver is 
disabled, the fdwSupport parameter to the callback function will have the 
ACMDRIVERDETAILS_SUPPORTF_DISABLED flag set.

ACM_DRIVERENUMF_NOLOCAL

Only global drivers should be included in the enumeration.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

Remarks
The acmDriverEnum function will return MMSYSERR_NOERROR (zero) if no ACM drivers are installed. 
Moreover, the callback function will not be called.

See Also
acmDriverPriority



acmDriverEnumCallback      

  

The acmDriverEnumCallback function specifies a callback function used with the acmDriverEnum 
function. The acmDriverEnumCallback name is a placeholder for an application-defined function name.

BOOL ACMDRIVERENUMCB acmDriverEnumCallback(

        HACMDRIVERID hadid,
        DWORD dwInstance,
        DWORD fdwSupport
      );
 

Parameters
hadid

Handle of an ACM driver identifier.

dwInstance

Application-defined value specified in acmDriverEnum.

fdwSupport

Driver-support flags specific to the driver specified by hadid. These flags are identical to the 
fdwSupport flags of the ACMDRIVERDETAILS structure. This parameter can be a combination of 
the following values:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags. For example, if a driver supports 
compression from WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag. For example, if a 
driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_DISABLED

Driver has been disabled. An application must specify the ACM_DRIVERENUMF_DISABLED flag 
with acmDriverEnum to include disabled drivers in the enumeration.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For 
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

 

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks
The acmDriverEnum function will return MMSYSERR_NOERROR (zero) if no ACM drivers are installed. 



Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd, 
acmDriverRemove, and acmDriverPriority.

See Also
ACMDRIVERDETAILS, acmDriverEnum, acmDriverAdd, acmDriverRemove, and acmDriverPriority



acmDriverID      

  

The acmDriverID function returns the handle of an ACM driver identifier associated with an open ACM 
driver instance or stream handle.

MMRESULT acmDriverID(

        HACMOBJ hao,
        LPHACMDRIVERID phadid,
        DWORD fdwDriverID
      );
 

Parameters
hao

Handle of the open driver instance or stream handle. This is the handle of an ACM object, such 
HACMDRIVER or HACMSTREAM.

phadid

Address that is filled with a handle identifying the installed driver that is associated with hao.

fdwDriverID

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 



acmDriverMessage      

  

The acmDriverMessage function sends a user-defined message to a given ACM driver instance.

LRESULT acmDriverMessage(

        HACMDRIVER had,
        UINT uMsg,
        LPARAM lParam1,
        LPARAM lParam2
      );
 

Parameters
had

Handle of the ACM driver instance to which the message will be sent.

uMsg

Message that the ACM driver must process. This message must be in the ACMDM_USER message 
range (above or equal to ACMDM_USER and less than ACMDM_RESERVED_LOW). The exceptions 
to this restriction are the ACMDM_DRIVER_ABOUT, DRV_QUERYCONFIGURE, and 
DRV_CONFIGURE messages.

lParam1 and lParam2

Message parameters.
 

Return Values
The return value is specific to the user-defined ACM driver message specified by the uMsg parameter. 
However, possible error values include the following: 

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM The uMsg parameter is not in the 
ACMDM_USER range.

MMSYSERR_NOTSUPPORTE
D

The ACM driver did not process 
the message.

 

Remarks
To display a custom About dialog box from an ACM driver, an application must send the 
ACMDM_DRIVER_ABOUT message to the driver. The lParam1 parameter should be the handle of the 
owner window for the custom About dialog box, and lParam2 must be set to zero. If the driver does not 
support a custom About dialog box, MMSYSERR_NOTSUPPORTED will be returned and it is the 
application's responsibility to display its own dialog box. For example, the Control Panel Sound Mapper 
option will display a default About dialog box based on the ACMDRIVERDETAILS structure when an 
ACM driver returns MMSYSERR_NOTSUPPORTED. An application can query a driver for custom About 
dialog box support without the dialog box being displayed by setting lParam1 to - 1L. If the driver supports 
a custom About dialog box, MMSYSERR_NOERROR will be returned. Otherwise, the return value is 
MMSYSERR_NOTSUPPORTED.

User-defined messages must be sent only to an ACM driver that specifically supports the messages. The 



caller should verify that the ACM driver is the correct driver by retrieving the driver details and checking 
the wMid, wPid, and vdwDriver members of the ACMDRIVERDETAILS structure.

Never send user-defined messages to an unknown ACM driver.

See Also
DRV_QUERYCONFIGURE, DRV_CONFIGURE, ACMDRIVERDETAILS



acmDriverOpen      

  

The acmDriverOpen function opens the specified ACM driver and returns a driver instance handle that 
can be used to communicate with the driver.

MMRESULT acmDriverOpen(

        LPHACMDRIVER phad,
        HACMDRIVERID hadid,
        DWORD fdwOpen
      );
 

Parameters
phad

Address that will receive the new driver instance handle that can be used to communicate with the 
driver.

hadid

Handle of the driver identifier of an installed and enabled ACM driver.

fdwOpen

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOMEM The system is unable to allocate 
resources.

MMSYSERR_NOTENABLED The driver is not enabled.
 



acmDriverPriority      

  

The acmDriverPriority function modifies the priority and state of an ACM driver.

MMRESULT acmDriverPriority(

        HACMDRIVERID hadid,
        DWORD dwPriority,
        DWORD fdwPriority
      );
 

Parameters
hadid

Handle of the driver identifier of an installed ACM driver. If the ACM_DRIVERPRIORITYF_BEGIN and 
ACM_DRIVERPRIORITYF_END flags are specified, this parameter must be NULL. 

dwPriority

New priority for a global ACM driver identifier. A zero value specifies that the priority of the driver 
identifier should remain unchanged. A value of 1 specifies that the driver should be placed as the 
highest search priority driver. A value of - 1 specifies that the driver should be placed as the lowest 
search priority driver. Priorities are used only for global drivers.

fdwPriority

Flags for setting priorities of ACM drivers. The following values are defined:

ACM_DRIVERPRIORITYF_BEGIN

Change notification broadcasts should be deferred. An application must reenable notification 
broadcasts as soon as possible with the ACM_DRIVERPRIORITYF_END flag. Note that hadid 
must be NULL, dwPriority must be zero, and only the ACM_DRIVERPRIORITYF_BEGIN flag can 
be set.

ACM_DRIVERPRIORITYF_DISABLE

ACM driver should be disabled if it is currently enabled. Disabling a disabled driver does nothing.

ACM_DRIVERPRIORITYF_ENABLE

ACM driver should be enabled if it is currently disabled. Enabling an enabled driver does nothing.

ACM_DRIVERPRIORITYF_END

Calling task wants to reenable change notification broadcasts. An application must call 
acmDriverPriority with ACM_DRIVERPRIORITYF_END for each successful call with the 
ACM_DRIVERPRIORITYF_BEGIN flag. Note that hadid must be NULL, dwPriority must be zero, 
and only the ACM_DRIVERPRIORITYF_END flag can be set.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

MMSYSERR_ALLOCATED The deferred broadcast lock is 
owned by a different task.

MMSYSERR_INVALFLAG At least one flag is invalid.



MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOTSUPPORTE
D

The requested operation is not 
supported for the specified driver. 
For example, local and notify 
driver identifiers do not support 
priorities (but can be enabled and 
disabled). If an application 
specifies a nonzero value for 
dwPriority for local and notify 
driver identifiers, this error will be 
returned.

 

Remarks
All driver identifiers can be enabled and disabled, including global, local and notification driver identifiers.

If more than one global driver identifier needs to be enabled, disabled or shifted in priority, an application 
should defer change notification broadcasts by using the ACM_DRIVERPRIORITYF_BEGIN flag. A single 
change notification will be broadcast when the ACM_DRIVERPRIORITYF_END flag is specified.

An application can use the    function with the acmMetrics ACM_METRIC_DRIVER_PRIORITY metric 
index to retrieve the current priority of a global driver. Drivers are always enumerated from highest to 
lowest priority by the acmDriverEnum function.

All enabled driver identifiers will receive change notifications. An application can register a notification 
message by using the acmDriverAdd function in conjunction with the 
ACM_DRIVERADDF_NOTIFYHWND flag. Changes to nonglobal driver identifiers will not be broadcast.

Priorities are simply used for the search order when an application does not specify a driver. Boosting the 
priority of a driver will have no effect on the performance of a driver.

See Also
acmMetrics, acmDriverEnum, acmDriverAdd



acmDriverProc      

  

The acmDriverProc function specifies a callback function used with the ACM driver. The acmDriverProc 
name is a placeholder for an application-defined function name. The actual name must be exported by 
including it in the module-definition file of the executable or DLL file.

LRESULT CALLBACK acmDriverProc(

        DWORD dwID,
        HDRIVER hdrvr,
        UINT uMsg,
        LPARAM lParam1,
        LPARAM lParam2
      );
 

Parameters
dwID

Identifier of the installable ACM driver.

hdrvr

Handle of the installable ACM driver. This parameter is a unique handle the ACM assigns to the 
driver.

uMsg

ACM driver message.

lParam1 and lParam2

Message parameters.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Applications should not call any system-defined functions from inside a callback function, except for 
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent, midiOutShortMsg, 
midiOutLongMsg, and OutputDebugStr.

See Also
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent, midiOutShortMsg, 
midiOutLongMsg



acmDriverRemove      

  

The acmDriverRemove function removes an ACM driver from the list of available ACM drivers. The 
driver will be removed for the calling application only. If the driver is globally installed, other applications 
will still be able to use it.

MMRESULT acmDriverRemove(

        HACMDRIVERID hadid,
        DWORD fdwRemove
      );
 

Parameters
hadid

Handle of the driver identifier to be removed.

fdwRemove

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

ACMERR_BUSY The driver is in use and cannot 
be removed.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.
 



acmFilterChoose      

  

The acmFilterChoose function creates an ACM-defined dialog box that enables the user to select a 
waveform-audio filter.

MMRESULT acmFilterChoose(

        LPACMFILTERCHOOSE pafltrc
      );
 

Parameters
pafltrc

Address of an ACMFILTERCHOOSE structure that contains information used to initialize the dialog 
box. When acmFilterChoose returns, this structure contains information about the user's filter 
selection.

The pwfltr member of this structure must contain a valid pointer to a memory location that will contain 
the returned filter header structure. The cbwfltr member must be filled in with the size, in bytes, of 
this memory buffer.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

ACMERR_CANCELED The user chose the Cancel button 
or the Close command on the 
System menu to close the dialog 
box.

ACMERR_NOTPOSSIBLE The buffer identified by the pwfltr 
member of the 
ACMFILTERCHOOSE structure 
is too small to contain the 
selected filter.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NODRIVER A suitable driver is not available 
to provide valid filter selections.

 

See Also
ACMFILTERCHOOSE 



acmFilterChooseHookProc      

  

The acmFilterChooseHookProc function specifies a user-defined function that hooks the 
acmFilterChoose dialog box.

UINT ACMFILTERCHOOSEHOOKPROC acmFilterChooseHookProc(

        HWND hwnd,
        UINT uMsg,
        WPARAM wParam,
        LPARAM lParam
      );
 

Parameters
hwnd

Window handle for the dialog box.

uMsg

Window message.

wParam and lParam

Message parameters.
 

Remarks
To customize the dialog box selections, a hook function can optionally process the 
MM_ACM_FILTERCHOOSE message.

You should use this function the same way as you use the Common Dialog hook functions for 
customizing common dialog boxes. 

See Also
acmFilterChoose, MM_ACM_FILTERCHOOSE



acmFilterDetails      

  

The acmFilterDetails function queries the ACM for details about a filter with a specific waveform-audio 
filter tag.

MMRESULT acmFilterDetails(

        HACMDRIVER had,
        LPACMFILTERDETAILS pafd,
        DWORD fdwDetails
      );
 

Parameters
had

Handle of the ACM driver to query for waveform-audio filter details for a filter tag. If this parameter is 
NULL, the ACM uses the details from the first suitable ACM driver.

pafd

Address of the ACMFILTERDETAILS structure that is to receive the filter details for the given filter 
tag.

fdwDetails

Flags for getting the details. The following values are defined:

ACM_FILTERDETAILSF_FILTER

A WAVEFILTER structure pointed to by the pwfltr member of the ACMFILTERDETAILS structure 
was given and the remaining details should be returned. The dwFilterTag member of the 
ACMFILTERDETAILS structure must be initialized to the same filter tag pwfltr specifies. This 
query type can be used to get a string description of an arbitrary filter structure. If an application 
specifies an ACM driver handle for had, details on the filter will be returned for that driver. If an 
application specifies NULL for had, the ACM finds the first acceptable driver to return the details.

ACM_FILTERDETAILSF_INDEX

A filter index for the filter tag was given in the dwFilterIndex member of the ACMFILTERDETAILS 
structure. The filter details will be returned in the structure defined by pafd. The index ranges from 
zero to one less than the cStandardFilters member returned in the ACMFILTERTAGDETAILS 
structure for a filter tag. An application must specify a driver handle for had when retrieving filter 
details with this flag. For information about what members should be initialized before calling this 
function, see the ACMFILTERDETAILS structure.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

ACMERR_NOTPOSSIBLE The details requested are not 
available.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 



See Also
WAVEFILTER, ACMFILTERTAGDETAILS 



acmFilterEnum      

  

The acmFilterEnum function enumerates waveform-audio filters available for a given filter tag from an 
ACM driver. This function continues enumerating until there are no more suitable filters for the filter tag or 
the callback function returns FALSE.

MMRESULT acmFilterEnum(

        HACMDRIVER had,
        LPACMFILTERDETAILS pafd,
        ACMFILTERENUMCB fnCallback,
        DWORD dwInstance,
        DWORD fdwEnum
      );
 

Parameters
had

Handle of the ACM driver to query for waveform-audio filter details. If this parameter is NULL, the 
ACM uses the details from the first suitable ACM driver.

pafd

Address of the ACMFILTERDETAILS structure that contains the filter details when it is passed to the 
function specified by fnCallback. When your application calls acmFilterEnum, the cbStruct, pwfltr, 
and cbwfltr members of this structure must be initialized. The dwFilterTag member must also be 
initialized to either WAVE_FILTER_UNKNOWN or a valid filter tag.

fnCallback

Procedure-instance address of the application-defined callback function. 

dwInstance

A 32-bit, application-defined value that is passed to the callback function along with ACM filter details.

fdwEnum

Flags for enumerating the filters for a given filter tag. The following values are defined:

ACM_FILTERENUMF_DWFILTERTAG

The dwFilterTag member of the WAVEFILTER structure pointed to by the pwfltr member of the 
ACMFILTERDETAILS structure is valid. The enumerator will enumerate only a filter that conforms 
to this attribute. The dwFilterTag member of the ACMFILTERDETAILS structure must be equal to 
the dwFilterTag member of the WAVEFILTER structure.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

ACMERR_NOTPOSSIBLE The details for the filter cannot be 
returned.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.



MMSYSERR_INVALPARAM At least one parameter is invalid.
 

Remarks
The acmFilterEnum function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are 
installed. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd, 
acmDriverRemove, and acmDriverPriority.

See Also
WAVEFILTER, ACMFILTERDETAILS, acmDriverAdd, acmDriverRemove, acmDriverPriority



acmFilterEnumCallback      

  

The acmFilterEnumCallback function specifies a callback function used with the acmFilterEnum 
function. The acmFilterEnumCallback name is a placeholder for an application-defined function name.

BOOL ACMFILTERENUMCB acmFilterEnumCallback(

        HACMDRIVERID hadid,
        LPACMFILTERDETAILS pafd,
        DWORD dwInstance,
        DWORD fdwSupport
      );
 

Parameters
hadid

Handle of the ACM driver identifier.

pafd

Address of an ACMFILTERDETAILS structure that contains the enumerated filter details for a filter 
tag.

dwInstance

Application-defined value specified in acmFilterEnum.

fdwSupport

Driver-support flags specific to the driver identified by hadid for the specified filter. These flags are 
identical to the fdwSupport flags of the ACMDRIVERDETAILS structure, but they are specific to the 
filter that is being enumerated. This parameter can be a combination of the following values and 
identifies which operations the driver supports for the filter tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter. For 
example, if a driver supports compression from WAVE_FORMAT_PCM to 
WAVE_FORMAT_ADPCM with the specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the 
specified filter. For example, if a driver supports resampling of WAVE_FORMAT_PCM with the 
specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For 
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both with the specified filter through a waveform-audio 
device. An application should use the acmMetrics function with the 



ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT 
metric indices to get the waveform-audio device identifiers associated with the supporting ACM 
driver.

 

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks
The acmFilterEnum function will return MMSYSERR_NOERROR (zero) if no filters are to be 
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd, 
acmDriverRemove, and acmDriverPriority.

See Also
acmFilterEnum, ACMFILTERDETAILS, acmMetrics, acmDriverAdd, acmDriverRemove, 
acmDriverPriority



acmFilterTagDetails      

  

The acmFilterTagDetails function queries the ACM for details about a specific waveform-audio filter tag.

MMRESULT acmFilterTagDetails(

        HACMDRIVER had,
        LPACMFILTERTAGDETAILS paftd,
        DWORD fdwDetails
      );
 

Parameters
had

Handle of the ACM driver to query for waveform-audio filter tag details. If this parameter is NULL, the 
ACM uses the details from the first suitable ACM driver. An application must specify a valid 
HACMDRIVER or HACMDRIVERID identifier when using the ACM_FILTERTAGDETAILSF_INDEX 
query type. Driver identifiers for disabled drivers are not allowed.

paftd

Address of the ACMFILTERTAGDETAILS structure that is to receive the filter tag details.

fdwDetails

Flags for getting the details. The following values are defined:

ACM_FILTERTAGDETAILSF_FILTERTAG

A filter tag was given in the dwFilterTag member of the ACMFILTERTAGDETAILS structure. The 
filter tag details will be returned in the structure pointed to by paftd. If an application specifies an 
ACM driver handle for had, details on the filter tag will be returned for that driver. If an application 
specifies NULL for had, the ACM finds the first acceptable driver to return the details.

ACM_FILTERTAGDETAILSF_INDEX

A filter tag index was given in the dwFilterTagIndex member of the ACMFILTERTAGDETAILS 
structure. The filter tag and details will be returned in the structure pointed to by paftd. The index 
ranges from zero to one less than the cFilterTags member returned in the ACMDRIVERDETAILS 
structure for an ACM driver. An application must specify a driver handle for had when retrieving 
filter tag details with this flag.

ACM_FILTERTAGDETAILSF_LARGESTSIZE

Details on the filter tag with the largest filter size, in bytes, are to be returned. The dwFilterTag 
member must either be WAVE_FILTER_UNKNOWN or the filter tag to find the largest size for. If an 
application specifies an ACM driver handle for had, details on the largest filter tag will be returned 
for that driver. If an application specifies NULL for had, the ACM finds an acceptable driver with the 
largest filter tag requested to return the details.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

ACMERR_NOTPOSSIBLE The details requested are not 
available.



MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

See Also
ACMDRIVERDETAILS



acmFilterTagEnum      

  

The acmFilterTagEnum function enumerates waveform-audio filter tags available from an ACM driver. 
This function continues enumerating until there are no more suitable filter tags or the callback function 
returns FALSE.

MMRESULT acmFilterTagEnum(

        HACMDRIVER had,
        LPACMFILTERTAGDETAILS paftd,
        ACMFILTERTAGENUMCB fnCallback,
        DWORD dwInstance,
        DWORD fdwEnum
      );
 

Parameters
had

Handle of the ACM driver to query for waveform-audio filter tag details. If this parameter is NULL, the 
ACM uses the details from the first suitable ACM driver.

paftd

Address of the ACMFILTERTAGDETAILS structure that contains the filter tag details when it is 
passed to the fnCallback function. When your application calls acmFilterTagEnum, the cbStruct 
member of this structure must be initialized.

fnCallback

Procedure instance address of the application-defined callback function. 

dwInstance

A 32-bit application-defined value that is passed to the callback function along with ACM filter tag 
details.

fdwEnum

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

Remarks
This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed. 
Moreover, the callback function will not be called.

See Also



ACMFILTERTAGDETAILS 



acmFilterTagEnumCallback      

  

The acmFilterTagEnumCallback function specifies a callback function used with the 
acmFilterTagEnum function. The acmFilterTagEnumCallback function name is a placeholder for an 
application-defined function name.

BOOL ACMFILTERTAGENUMCB acmFilterTagEnumCallback(

        HACMDRIVERID hadid,
        LPACMFILTERTAGDETAILS paftd,
        DWORD dwInstance,
        DWORD fdwSupport
      );
 

Parameters
hadid

Handle of the ACM driver identifier.

paftd

Address of an ACMFILTERTAGDETAILS structure that contains the enumerated filter tag details.

dwInstance

Application-defined value specified in acmFilterTagEnum.

fdwSupport

Driver-support flags specific to the driver identifier hadid. These flags are identical to the fdwSupport 
flags of the ACMDRIVERDETAILS structure. This parameter can be a combination of the following 
values and identifies which operations the driver supports with the filter tag:

ACMSDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter tag. 
For example, if a driver supports compression from WAVE_FORMAT_PCM to 
WAVE_FORMAT_ADPCM with the specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the 
specified filter tag. For example, if a driver supports resampling of WAVE_FORMAT_PCM with the 
specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For 
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both with the specified filter tag through a waveform-
audio device. An application should use the acmMetrics function with the 
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT 



metric indices to get the waveform-audio device identifiers associated with the supporting ACM 
driver.

 

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks
The acmFilterTagEnum function will return MMSYSERR_NOERROR (zero) if no filter tags are to be 
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd, 
acmDriverRemove, and acmDriverPriority.

See Also
acmFilterTagEnum, ACMDRIVERDETAILS, acmMetrics, acmDriverAdd, acmDriverRemove, 
acmDriverPriority



acmFormatChoose      

  

The acmFormatChoose function creates an ACM-defined dialog box that enables the user to select a 
waveform-audio format.

MMRESULT acmFormatChoose(

        LPACMFORMATCHOOSE pfmtc
      );
 

Parameters
pfmtc

Address of an ACMFORMATCHOOSE structure that contains information used to initialize the dialog 
box. When this function returns, this structure contains information about the user's format selection.

The pwfx member of this structure must contain a valid pointer to a memory location that will contain 
the returned format header structure. Moreover, the cbwfx member must be filled in with the size, in 
bytes, of this memory buffer.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible return values include the 
following:

ACMERR_CANCELED The user chose the Cancel button 
or the Close command on the 
System menu to close the dialog 
box.

ACMERR_NOTPOSSIBLE The buffer identified by the pwfx 
member of the 
ACMFORMATCHOOSE structure 
is too small to contain the 
selected format.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NODRIVER A suitable driver is not available 
to provide valid format selections.

 

See Also
ACMFORMATCHOOSE



acmFormatChooseHookProc      

  

The acmFormatChooseHookProc function specifies a user-defined function that hooks the 
acmFormatChoose dialog box. The acmFormatChooseHookProc name is a placeholder for an 
application-defined name.

UINT ACMFORMATCHOOSEHOOKPROC acmFormatChooseHookProc(

        HWND hwnd,
        UINT uMsg,
        WPARAM wParam,
        LPARAM lParam
      );
 

Parameters
hwnd

Window handle for the dialog box.

uMsg

Window message.

wParam and lParam

Message parameters.
 

Remarks
If the hook function processes one of the WM_CTLCOLOR messages, this function must return a handle 
of the brush that should be used to paint the control background.

A hook function can optionally process the MM_ACM_FORMATCHOOSE message.

You should use this function the same way as you use the Common Dialog hook functions for 
customizing common dialog boxes. 

See Also
acmFormatChoose, MM_ACM_FORMATCHOOSE 



acmFormatDetails      

  

The acmFormatDetails function queries the ACM for format details for a specific waveform-audio format 
tag.

MMRESULT acmFormatDetails(

        HACMDRIVER had,
        LPACMFORMATDETAILS pafd,
        DWORD fdwDetails
      );
 

Parameters
had

Handle of the ACM driver to query for waveform-audio format details for a format tag. If this parameter 
is NULL, the ACM uses the details from the first suitable ACM driver.

pafd

Address of an ACMFORMATDETAILS structure to contain the format details for the given format tag.

fdwDetails

Flags for getting the waveform-audio format tag details. The following values are defined:

ACM_FORMATDETAILSF_FORMAT

A WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS 
structure was given and the remaining details should be returned. The dwFormatTag member of 
the ACMFORMATDETAILS structure must be initialized to the same format tag as pwfx specifies. 
This query type can be used to get a string description of an arbitrary format structure. If an 
application specifies an ACM driver handle for had, details on the format will be returned for that 
driver. If an application specifies NULL for had, the ACM finds the first acceptable driver to return 
the details.

ACM_FORMATDETAILSF_INDEX

A format index for the format tag was given in the dwFormatIndex member of the 
ACMFORMATDETAILS structure. The format details will be returned in the structure defined by 
pafd. The index ranges from zero to one less than the cStandardFormats member returned in the 
ACMFORMATTAGDETAILS structure for a format tag. An application must specify a driver handle 
for had when retrieving format details with this flag. For information about which members should 
be initialized before calling this function, see the ACMFORMATDETAILS structure.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

ACMERR_NOTPOSSIBLE The details requested are not 
available.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 



See Also
WAVEFORMATEX, ACMFORMATTAGDETAILS



acmFormatEnum      

  

The acmFormatEnum function enumerates waveform-audio formats available for a given format tag from 
an ACM driver. This function continues enumerating until there are no more suitable formats for the format 
tag or the callback function returns FALSE.

MMRESULT acmFormatEnum(

        HACMDRIVER had,
        LPACMFORMATDETAILS pafd,
        ACMFORMATENUMCB fnCallback,
        DWORD dwInstance,
        DWORD fdwEnum
      );
 

Parameters
had

Handle of the ACM driver to query for waveform-audio format details. If this parameter is NULL, the 
ACM uses the details from the first suitable ACM driver.

pafd

Address of an ACMFORMATDETAILS structure to contain the format details passed to the 
fnCallback function. This structure must have the cbStruct, pwfx, and cbwfx members of the 
ACMFORMATDETAILS structure initialized. The dwFormatTag member must also be initialized to 
either WAVE_FORMAT_UNKNOWN or a valid format tag.

fnCallback

Procedure instance address of the application-defined callback function. 

dwInstance

A 32-bit application-defined value that is passed to the callback function along with ACM format 
details.

fdwEnum

Flags for enumerating the formats for a given format tag. The following values are defined:

ACM_FORMATENUMF_CONVERT

The WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS 
structure is valid. The enumerator will only enumerate destination formats that can be converted 
from the given pwfx format.

ACM_FORMATENUMF_HARDWARE

The enumerator should only enumerate formats that are supported as native input or output 
formats on one or more of the installed waveform-audio devices. This flag provides a way for an 
application to choose only formats native to an installed waveform-audio device. This flag must be 
used with one or both of the ACM_FORMATENUMF_INPUT and 
ACM_FORMATENUMF_OUTPUT flags. Specifying both ACM_FORMATENUMF_INPUT and 
ACM_FORMATENUMF_OUTPUT will enumerate only formats that can be opened for input or 
output. This is true regardless of whether this flag is specified.

ACM_FORMATENUMF_INPUT



Enumerator should enumerate only formats that are supported for input (recording).

ACM_FORMATENUMF_NCHANNELS

The nChannels member of the WAVEFORMATEX structure pointed to by the pwfx member of the 
ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a format that 
conforms to this attribute.

ACM_FORMATENUMF_NSAMPLESPERSEC

The nSamplesPerSec member of the WAVEFORMATEX structure pointed to by the pwfx 
member of the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a 
format that conforms to this attribute.

ACM_FORMATENUMF_OUTPUT

Enumerator should enumerate only formats that are supported for output (playback).

ACM_FORMATENUMF_SUGGEST

The WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS 
structure is valid. The enumerator will enumerate all suggested destination formats for the given 
pwfx format. This mechanism can be used instead of the acmFormatSuggest function to allow an 
application to choose the best suggested format for conversion. The dwFormatIndex member will 
always be set to zero on return.

ACM_FORMATENUMF_WBITSPERSAMPLE

The wBitsPerSample member of the WAVEFORMATEX structure pointed to by the pwfx member 
of the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a format that 
conforms to this attribute.

ACM_FORMATENUMF_WFORMATTAG

The wFormatTag member of the WAVEFORMATEX structure pointed to by the pwfx member of 
the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a format that 
conforms to this attribute. The dwFormatTag member of the ACMFORMATDETAILS structure 
must be equal to the wFormatTag member.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

ACMERR_NOTPOSSIBLE The details for the format cannot 
be returned.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

Remarks
This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed. 
Moreover, the callback function will not be called.

See Also
acmFormatSuggest, WAVEFORMATEX, ACMFORMATDETAILS



acmFormatEnumCallback      

  

The acmFormatEnumCallback function specifies a callback function used with the acmFormatEnum 
function. The acmFormatEnumCallback name is a placeholder for the application-defined function 
name.

BOOL ACMFORMATENUMCB acmFormatEnumCallback(

        HACMDRIVERID hadid,
        LPACMFORMATDETAILS pafd,
        DWORD dwInstance,
        DWORD fdwSupport
      );
 

Parameters
hadid

Handle of the ACM driver identifier.

pafd

Address of an ACMFORMATDETAILS structure that contains the enumerated format details for a 
format tag.

dwInstance

Application-defined value specified in the acmFormatEnum function.

fdwSupport

Driver support flags specific to the driver identified by hadid for the specified format. These flags are 
identical to the fdwSupport flags of the ACMDRIVERDETAILS structure, but they are specific to the 
format that is being enumerated. This parameter can be a combination of the following values and 
indicates which operations the driver supports for the format tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags for the specified format. For example, 
if a driver supports compression from WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM with 
the specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the 
specified format. For example, if a driver supports resampling of WAVE_FORMAT_PCM to the 
specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes) with 
the specified format. For example, if a driver supports volume or echo operations on 
WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE



Driver supports hardware input, output, or both of the specified format tags through a waveform-
audio device. An application should use the acmMetrics function with the 
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT 
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM 
driver.

 

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks
The acmFormatEnum function will return MMSYSERR_NOERROR (zero) if no formats are to be 
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd, 
acmDriverRemove, and acmDriverPriority.

See Also
acmFormatEnum, ACMFORMATDETAILS, ACMDRIVERDETAILS, acmMetrics, acmDriverAdd, 
acmDriverRemove, acmDriverPriority



acmFormatSuggest      

  

The acmFormatSuggest function queries the ACM or a specified ACM driver to suggest a destination 
format for the supplied source format. For example, an application can use this function to determine one 
or more valid PCM formats to which a compressed format can be decompressed.

MMRESULT acmFormatSuggest(

        HACMDRIVER had,
        LPWAVEFORMATEX pwfxSrc,
        LPWAVEFORMATEX pwfxDst,
        DWORD cbwfxDst,
        DWORD fdwSuggest
      );
 

Parameters
had

Handle of an open instance of a driver to query for a suggested destination format. If this parameter is 
NULL, the ACM attempts to find the best driver to suggest a destination format.

pwfxSrc

Address of a WAVEFORMATEX structure that identifies the source format for which a destination 
format will be suggested by the ACM or specified driver.

pwfxDst

Address of a WAVEFORMATEX structure that will receive the suggested destination format for the 
pwfxSrc format. Depending on the fdwSuggest parameter, some members of the structure pointed to 
by pwfxDst may require initialization.

cbwfxDst

Size, in bytes, available for the destination format. The acmMetrics and acmFormatTagDetails 
functions can be used to determine the maximum size required for any format available for the 
specified driver (or for all installed ACM drivers).

fdwSuggest

Flags for matching the desired destination format. The following values are defined:

ACM_FORMATSUGGESTF_NCHANNELS

The nChannels member of the structure pointed to by pwfxDst is valid. The ACM will query 
acceptable installed drivers that can suggest a destination format matching nChannels or fail.

ACM_FORMATSUGGESTF_NSAMPLESPERSEC

The nSamplesPerSec member of the structure pointed to by pwfxDst is valid. The ACM will query 
acceptable installed drivers that can suggest a destination format matching nSamplesPerSec or 
fail.

ACM_FORMATSUGGESTF_WBITSPERSAMPLE

The wBitsPerSample member of the structure pointed to by pwfxDst is valid. The ACM will query 
acceptable installed drivers that can suggest a destination format matching wBitsPerSample or 
fail.



ACM_FORMATSUGGESTF_WFORMATTAG

The wFormatTag member of the structure pointed to by pwfxDst is valid. The ACM will query 
acceptable installed drivers that can suggest a destination format matching wFormatTag or fail.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

See Also
WAVEFORMATEX, acmMetrics, acmFormatTagDetails 



acmFormatTagDetails      

  

The acmFormatTagDetails function queries the ACM for details on a specific waveform-audio format tag.

MMRESULT acmFormatTagDetails(

        HACMDRIVER had,
        LPACMFORMATTAGDETAILS paftd,
        DWORD fdwDetails
      );
 

Parameters
had

Handle of the ACM driver to query for waveform-audio format tag details. If this parameter is NULL, 
the ACM uses the details from the first suitable ACM driver. An application must specify a valid handle 
or driver identifier when using the ACM_FORMATTAGDETAILSF_INDEX query type. Driver identifiers 
for disabled drivers are not allowed.

paftd

Address of the ACMFORMATTAGDETAILS structure that is to receive the format tag details.

fdwDetails

Flags for getting the details. The following values are defined:

ACM_FORMATTAGDETAILSF_FORMATTAG

A format tag was given in the dwFormatTag member of the ACMFORMATTAGDETAILS structure. 
The format tag details will be returned in the structure pointed to by paftd. If an application 
specifies an ACM driver handle for had, details on the format tag will be returned for that driver. If 
an application specifies NULL for had, the ACM finds the first acceptable driver to return the 
details.

ACM_FORMATTAGDETAILSF_INDEX

A format tag index was given in the dwFormatTagIndex member of the 
ACMFORMATTAGDETAILS structure. The format tag and details will be returned in the structure 
defined by paftd. The index ranges from zero to one less than the cFormatTags member returned 
in the ACMDRIVERDETAILS structure for an ACM driver. An application must specify a driver 
handle for had when retrieving format tag details with this flag.

ACM_FORMATTAGDETAILSF_LARGESTSIZE

Details on the format tag with the largest format size, in bytes, are to be returned. The 
dwFormatTag member of the ACMFORMATTAGDETAILS structure must either be 
WAVE_FORMAT_UNKNOWN or the format tag to find the largest size for. If an application 
specifies an ACM driver handle for had, details on the largest format tag will be returned for that 
driver. If an application specifies NULL for had, the ACM finds an acceptable driver with the largest 
format tag requested to return the details.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The details requested are not 



available.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

See Also
ACMFORMATTAGDETAILS, ACMDRIVERDETAILS 



acmFormatTagEnum      

  

The acmFormatTagEnum function enumerates waveform-audio format tags available from an ACM 
driver. This function continues enumerating until there are no more suitable format tags or the callback 
function returns FALSE.

MMRESULT acmFormatTagEnum(

        HACMDRIVER had,
        LPACMFORMATTAGDETAILS paftd,
        ACMFORMATTAGENUMCB fnCallback,
        DWORD dwInstance,
        DWORD fdwEnum
      );
 

Parameters
had

Handle of the ACM driver to query for waveform-audio format tag details. If this parameter is NULL, 
the ACM uses the details from the first suitable ACM driver.

paftd

Address of the ACMFORMATTAGDETAILS structure that is to receive the format tag details passed 
to the function specified in fnCallback. This structure must have the cbStruct member of the 
ACMFORMATTAGDETAILS structure initialized.

fnCallback

Procedure instance address of the application-defined callback function.

dwInstance

A 32-bit application-defined value that is passed to the callback function along with ACM format tag 
details.

fdwEnum

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

Remarks
This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed. 
Moreover, the callback function will not be called.

See Also



ACMFORMATTAGDETAILS



acmFormatTagEnumCallback      

  

The acmFormatTagEnumCallback function specifies a callback function used with the 
acmFormatTagEnum function. The acmFormatTagEnumCallback name is a placeholder for an 
application-defined function name.

BOOL ACMFORMATTAGENUMCB acmFormatTagEnumCallback(

        HACMDRIVERID hadid,
        LPACMFORMATTAGDETAILS paftd,
        DWORD dwInstance,
        DWORD fdwSupport
      );
 

Parameters
hadid

Handle of the ACM driver identifier.

paftd

Address of an ACMFORMATTAGDETAILS structure that contains the enumerated format tag details.

dwInstance

Application-defined value specified in the acmFormatTagEnum function.

fdwSupport

Driver-support flags specific to the format tag. These flags are identical to the fdwSupport flags of 
the ACMDRIVERDETAILS structure. This parameter can be a combination of the following values 
and indicates which operations the driver supports with the format tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags where one of the tags is the specified 
format tag. For example, if a driver supports compression from WAVE_FORMAT_PCM to 
WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the specified format tag. For example, 
if a driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For 
example, if a driver supports volume or echo operations on the specified format tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both of the specified format tag through a waveform-
audio device. An application should use acmMetrics with the 
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT 
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM 



driver.
 

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks
The acmFormatTagEnum function will return MMSYSERR_NOERROR (zero) if no format tags are to be 
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd, 
acmDriverRemove, and acmDriverPriority.

See Also
acmFormatTagEnum, ACMFORMATTAGDETAILS, ACMDRIVERDETAILS, acmMetrics, 
acmDriverAdd, acmDriverRemove, acmDriverPriority



acmGetVersion      

  

The acmGetVersion function returns the version number of the ACM.

DWORD acmGetVersion(VOID); 

Parameters
This function takes no parameters.

Return Values
The version number is returned as a hexadecimal number of the form 0xAABBCCCC, where AA is the 
major version number, BB is the minor version number, and CCCC is the build number.

Remarks
Win32 applications must verify that the ACM version is at least 0x03320000 (version 3.50) or greater 
before attempting to use any other ACM functions. The build number (CCCC) is always zero for the retail 
(non-debug) version of the ACM.

To display the ACM version for a user, an application should use the following format (note that the values 
should be printed as unsigned decimals):

{ 
    DWORD   dw; 
    TCHAR   ach[10]; 
 
    dw = acmGetVersion(); 
    wsprintf(ach, "%u.%.02u", HIWORD(dw) >> 8, HIWORD(dw) & 0x00FF); 
} 

 



acmMetrics      

  

The acmMetrics function returns various metrics for the ACM or related ACM objects.

MMRESULT acmMetrics(

        HACMOBJ hao,
        UINT uMetric,
        LPVOID pMetric
      );
 

Parameters
hao

Handle of the ACM object to query for the metric specified in uMetric. For some queries, this 
parameter can be NULL.

uMetric

Metric index to be returned in pMetric.

ACM_METRIC_COUNT_CODECS

Returned value is the number of global ACM compressor or decompressor drivers in the system. 
The hao parameter must be NULL for this metric index. The pMetric parameter must point to a 
buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_CONVERTERS

Returned value is the number of global ACM converter drivers in the system. The hao parameter 
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to 
a doubleword value.

ACM_METRIC_COUNT_DISABLED

Returned value is the total number of global disabled ACM drivers (of all support types) in the 
system. The hao parameter must be NULL for this metric index. The pMetric parameter must point 
to a buffer of a size equal to a doubleword value. The sum of the 
ACM_METRIC_COUNT_DRIVERS and ACM_METRIC_COUNT_DISABLED metric indices is the 
total number of globally installed ACM drivers.

ACM_METRIC_COUNT_DRIVERS

Returned value is the total number of enabled global ACM drivers (of all support types) in the 
system. The hao parameter must be NULL for this metric index. The pMetric parameter must point 
to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_FILTERS

Returned value is the number of global ACM filter drivers in the system. The hao parameter must 
be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to a 
doubleword value.

ACM_METRIC_COUNT_HARDWARE

Returned value is the number of global ACM hardware drivers in the system. The hao parameter 
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to 
a doubleword value.



ACM_METRIC_COUNT_LOCAL_CODECS

Returned value is the number of local ACM compressor drivers, ACM decompressor drivers, or 
both for the calling task. The hao parameter must be NULL for this metric index. The pMetric 
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_CONVERTERS

Returned value is the number of local ACM converter drivers for the calling task. The hao 
parameter must be NULL for this metric index. The pMetric parameter must point to a buffer of a 
size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_DISABLED

Returned value is the total number of local disabled ACM drivers, of all support types, for the 
calling task. The hao parameter must be NULL for this metric index. The pMetric parameter must 
point to a buffer of a size equal to a doubleword value. The sum of the 
ACM_METRIC_COUNT_LOCAL_DRIVERS and ACM_METRIC_COUNT_LOCAL_DISABLED 
metric indices is the total number of locally installed ACM drivers.

ACM_METRIC_COUNT_LOCAL_DRIVERS

Returned value is the total number of enabled local ACM drivers (of all support types) for the 
calling task. The hao parameter must be NULL for this metric index. The pMetric parameter must 
point to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_FILTERS

Returned value is the number of local ACM filter drivers for the calling task. The hao parameter 
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to 
a doubleword value.

ACM_METRIC_DRIVER_PRIORITY

Returned value is the current priority for the specified driver. The hao parameter must be a valid 
ACM driver identifier of the HACMDRIVERID data type. The pMetric parameter must point to a 
buffer of a size equal to a doubleword value.

ACM_METRIC_DRIVER_SUPPORT

Returned value is the fdwSupport flags for the specified driver. The hao parameter must be a valid 
ACM driver identifier of the HACMDRIVERID data type. The pMetric parameter must point to a 
buffer of a size equal to a doubleword value.

ACM_METRIC_HARDWARE_WAVE_INPUT

Returned value is the waveform-audio input device identifier associated with the specified driver. 
The hao parameter must be a valid ACM driver identifier of the HACMDRIVERID data type that 
supports the ACMDRIVERDETAILS_SUPPORTF_HARDWARE flag. If no waveform-audio input 
device is associated with the driver, MMSYSERR_NOTSUPPORTED is returned. The pMetric 
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_HARDWARE_WAVE_OUTPUT

Returned value is the waveform-audio output device identifier associated with the specified driver. 
The hao parameter must be a valid ACM driver identifier of the HACMDRIVERID data type that 
supports the ACMDRIVERDETAILS_SUPPORTF_HARDWARE flag. If no waveform-audio output 
device is associated with the driver, MMSYSERR_NOTSUPPORTED is returned. The pMetric 
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_MAX_SIZE_FILTER

Returned value is the size of the largest WAVEFILTER structure. If hao is NULL, the return value is 
the largest WAVEFILTER structure in the system. If hao identifies an open instance of an ACM 



driver of the HACMDRIVER data type or an ACM driver identifier of the HACMDRIVERID data 
type, the largest WAVEFILTER structure for that driver is returned. The pMetric parameter must 
point to a buffer of a size equal to a doubleword value. This metric is not allowed for an ACM 
stream handle of the HACMSTREAM data type.

ACM_METRIC_MAX_SIZE_FORMAT

Returned value is the size of the largest WAVEFORMATEX structure. If hao is NULL, the return 
value is the largest WAVEFORMATEX structure in the system. If hao identifies an open instance of 
an ACM driver of the HACMDRIVER data type or an ACM driver identifier of the HACMDRIVERID 
data type, the largest WAVEFORMATEX structure for that driver is returned. The pMetric 
parameter must point to a buffer of a size equal to a doubleword value. This metric is not allowed 
for an ACM stream handle of the HACMSTREAM data type.

pMetric

Address of the buffer to receive the metric details. The exact definition depends on the uMetric index.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The index specified in uMetric 
cannot be returned for the 
specified hao.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOTSUPPORTE
D

The index specified in uMetric is 
not supported.

 

See Also
WAVEFILTER, WAVEFORMATEX 



acmStreamClose      

  

The acmStreamClose function closes an ACM conversion stream. If the function is successful, the 
handle is invalidated.

MMRESULT acmStreamClose(

        HACMSTREAM has,
        DWORD fdwClose
      );
 

Parameters
has

Handle of the open conversion stream to be closed.

fdwClose

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The conversion stream cannot be 
closed because an asynchronous 
conversion is still in progress.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.
 



acmStreamConvert      

  

The acmStreamConvert function requests the ACM to perform a conversion on the specified conversion 
stream. A conversion may be synchronous or asynchronous, depending on how the stream was opened.

MMRESULT acmStreamConvert(

        HACMSTREAM has,
        LPACMSTREAMHEADER pash,
        DWORD fdwConvert
      );
 

Parameters
has

Handle of the open conversion stream.

pash

Address of a stream header that describes source and destination buffers for a conversion. This 
header must have been prepared previously by using the acmStreamPrepareHeader function.

fdwConvert

Flags for doing the conversion. The following values are defined:

ACM_STREAMCONVERTF_BLOCKALIGN

Only integral numbers of blocks will be converted. Converted data will end on block-aligned 
boundaries. An application should use this flag for all conversions on a stream until there is not 
enough source data to convert to a block-aligned destination. In this case, the last conversion 
should be specified without this flag.

ACM_STREAMCONVERTF_END

ACM conversion stream should begin returning pending instance data. For example, if a 
conversion stream holds instance data, such as the end of an echo filter operation, this flag will 
cause the stream to start returning this remaining data with optional source data. This flag can be 
specified with the ACM_STREAMCONVERTF_START flag.

ACM_STREAMCONVERTF_START

ACM conversion stream should reinitialize its instance data. For example, if a conversion stream 
holds instance data, such as delta or predictor information, this flag will restore the stream to 
starting defaults. This flag can be specified with the ACM_STREAMCONVERTF_END flag.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The stream header specified in 
pash is currently in use and 
cannot be reused.

ACMERR_UNPREPARED The stream header specified in 
pash is currently not prepared by 
the acmStreamPrepareHeader 



function.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

Remarks
You must use the acmStreamPrepareHeader function to prepare the source and destination buffers 
before they are passed to acmStreamConvert. 

If an asynchronous conversion request is successfully queued by the ACM or driver and the conversion is 
later determined to be impossible, the ACMSTREAMHEADER structure is posted back to the 
application's callback function with the cbDstLengthUsed member set to zero.

See Also
acmStreamPrepareHeader, ACMSTREAMHEADER



acmStreamConvertCallback      

  

The acmStreamConvertCallback function specifies an application-provided callback function to be used 
when the acmStreamOpen function specifies the CALLBACK_FUNCTION flag. The 
acmStreamConvertCallback name is a placeholder for an application-defined function name.

void CALLBACK acmStreamConvertCallback(

        HACMSTREAM has,
        UINT uMsg,
        DWORD dwInstance,
        LPARAM lParam1,
        LPARAM lParam2
      );
 

Parameters
has

Handle of the ACM conversion stream associated with the callback function.

uMsg

ACM conversion stream message. The following values are defined:

MM_ACM_CLOSE

ACM has successfully closed the conversion stream identified by has. The handle specified by has 
is no longer valid after receiving this message.

MM_ACM_DONE

ACM has successfully converted the buffer identified by lParam1 (which is a pointer to the 
ACMSTREAMHEADER structure) for the stream handle identified by has.

MM_ACM_OPEN

ACM has successfully opened the conversion stream identified by has.

dwInstance

User-instance data given as the dwInstance parameter of the acmStreamOpen function.

lParam1 and lParam2

Message parameters.
 

Return Values
This function does not return a value.

Remarks
The following functions should not be called from within the callback function: acmDriverAdd, 
acmDriverRemove, and acmDriverPriority.

See Also
acmStreamOpen, ACMSTREAMHEADER, acmDriverAdd, acmDriverRemove, acmDriverPriority



acmStreamMessage      

  

The acmStreamMessage function sends a driver-specific message to an ACM driver. 

MMRESULT ACMAPI acmStreamMessage(

        HACMSTREAM has,
        UINT uMsg,
        LPARAM lParam1,
        LPARAM lParam2
      );
 

Parameters
has

Handle of an open conversion stream. 

uMsg

Message to send.

lParam1 and lParam2

Message parameters.
 

Return Values
Returns the value returned by the ACM device driver.



acmStreamOpen      

  

The acmStreamOpen function opens an ACM conversion stream. Conversion streams are used to 
convert data from one specified audio format to another.

MMRESULT acmStreamOpen(

        LPHACMSTREAM phas,
        HACMDRIVER had,
        LPWAVEFORMATEX pwfxSrc,
        LPWAVEFORMATEX pwfxDst,
        LPWAVEFILTER pwfltr,
        DWORD dwCallback,
        DWORD dwInstance,
        DWORD fdwOpen
      );
 

Parameters
phas

Address of a handle that will receive the new stream handle that can be used to perform conversions. 
This handle is used to identify the stream in calls to other ACM stream conversion functions. If the 
ACM_STREAMOPENF_QUERY flag is specified, this parameter should be NULL.

had

Handle of an ACM driver. If this handle is specified, it identifies a specific driver to be used for a 
conversion stream. If this parameter is NULL, all suitable installed ACM drivers are queried until a 
match is found.

pwfxSrc

Address of a WAVEFORMATEX structure that identifies the desired source format for the conversion.

pwfxDst

Address of a WAVEFORMATEX structure that identifies the desired destination format for the 
conversion.

pwfltr

Address of a WAVEFILTER structure that identifies the desired filtering operation to perform on the 
conversion stream. If no filtering operation is desired, this parameter can be NULL. If a filter is 
specified, the source (pwfxSrc) and destination (pwfxDst) formats must be the same.

dwCallback

Address of a callback function, a handle of a window, or a handle of an event. A callback function will 
be called only if the conversion stream is opened with the ACM_STREAMOPENF_ASYNC flag. A 
callback function is notified when the conversion stream is opened or closed and after each buffer is 
converted. If the conversion stream is opened without the ACM_STREAMOPENF_ASYNC flag, this 
parameter should be set to zero.

dwInstance

User-instance data passed to the callback function specified by the dwCallback parameter. This 
parameter is not used with window and event callbacks. If the conversion stream is opened without 



the ACM_STREAMOPENF_ASYNC flag, this parameter should be set to zero.

fdwOpen

Flags for opening the conversion stream. The following values are defined:

ACM_STREAMOPENF_ASYNC

Stream conversion should be performed asynchronously. If this flag is specified, the application 
can use a callback function to be notified when the conversion stream is opened and closed and 
after each buffer is converted. In addition to using a callback function, an application can examine 
the fdwStatus member of the ACMSTREAMHEADER structure for the 
ACMSTREAMHEADER_STATUSF_DONE flag.

ACM_STREAMOPENF_NONREALTIME

ACM will not consider time constraints when converting the data. By default, the driver will attempt 
to convert the data in real time. For some formats, specifying this flag might improve the audio 
quality or other characteristics.

ACM_STREAMOPENF_QUERY

ACM will be queried to determine whether it supports the given conversion. A conversion stream 
will not be opened, and no handle will be returned in the phas parameter.

CALLBACK_EVENT

The dwCallback parameter is a handle of an event.

CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address. The function prototype must conform 
to the acmStreamConvertCallback prototype.

CALLBACK_WINDOW

The dwCallback parameter is a window handle.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The requested operation cannot 
be performed.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOMEM The system is unable to allocate 
resources.

 

Remarks
If an ACM driver cannot perform real-time conversions and the ACM_STREAMOPENF_NONREALTIME 
flag is not specified for the fdwOpen parameter, the open operation will fail returning an 
ACMERR_NOTPOSSIBLE error code. An application can use the ACM_STREAMOPENF_QUERY flag to 
determine if real-time conversions are supported for input.

If an application uses a window to receive callback information, the MM_ACM_OPEN, 
MM_ACM_CLOSE, and MM_ACM_DONE messages are sent to the window procedure function to 
indicate the progress of the conversion stream. In this case, the wParam parameter identifies the 
HACMSTREAM handle. The lParam parameter identifies the ACMSTREAMHEADER structure for 



MM_ACM_DONE, but it is not used for MM_ACM_OPEN and MM_ACM_CLOSE.

If an application uses a function to receive callback information, the MM_ACM_OPEN, 
MM_ACM_CLOSE, and MM_ACM_DONE messages are sent to the function to indicate the progress of 
waveform-audio output. The callback function must reside in a dynamic-link library (DLL). 

If an application uses an event for callback notification, the event is signaled to indicate the progress of 
the conversion stream. The event will be signaled when a stream is opened, after each buffer is 
converted, and when the stream is closed.

See Also
WAVEFORMATEX, WAVEFILTER, ACMSTREAMHEADER, acmStreamConvertCallback 



acmStreamPrepareHeader      

  

The acmStreamPrepareHeader function prepares an ACMSTREAMHEADER structure for an ACM 
stream conversion. This function must be called for every stream header before it can be used in a 
conversion stream. An application needs to prepare a stream header only once for the life of a given 
stream. The stream header can be reused as long as the sizes of the source and destination buffers do 
not exceed the sizes used when the stream header was originally prepared.

MMRESULT acmStreamPrepareHeader(

        HACMSTREAM has,
        LPACMSTREAMHEADER pash,
        DWORD fdwPrepare
      );
 

Parameters
has

Handle of the conversion steam.

pash

Address of an ACMSTREAMHEADER structure that identifies the source and destination buffers to 
be prepared.

fdwPrepare

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOMEM The system is unable to allocate 
resources.

 

Remarks
Preparing a stream header that has already been prepared has no effect, and the function returns zero. 
Nevertheless, you should ensure your application does not prepare a stream header multiple times.

See Also
ACMSTREAMHEADER



acmStreamReset      

  

The acmStreamReset function stops conversions for a given ACM stream. All pending buffers are 
marked as done and returned to the application.

MMRESULT acmStreamReset(

        HACMSTREAM has,
        DWORD fdwReset
      );
 

Parameters
has

Handle of the conversion stream.

fdwReset

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.
 

Remarks
Resetting an ACM conversion stream is necessary only for asynchronous conversion streams. Resetting 
a synchronous conversion stream will succeed, but no action will be taken.



acmStreamSize      

  

The acmStreamSize function returns a recommended size for a source or destination buffer on an ACM 
stream.

MMRESULT acmStreamSize(

        HACMSTREAM has,
        DWORD cbInput,
        LPDWORD pdwOutputBytes,
        DWORD fdwSize
      );
 

Parameters
has

Handle of the conversion stream.

cbInput

Size, in bytes, of the source or destination buffer. The fdwSize flags specify what the input parameter 
defines. This parameter must be nonzero.

pdwOutputBytes

Address of a variable that contains the size, in bytes, of the source or destination buffer. The fdwSize 
flags specify what the output parameter defines. If the acmStreamSize function succeeds, this 
location will always be filled with a nonzero value.

fdwSize

Flags for the stream size query. The following values are defined:

ACM_STREAMSIZEF_DESTINATION

The cbInput parameter contains the size of the destination buffer. The pdwOutputBytes parameter 
will receive the recommended source buffer size, in bytes.

ACM_STREAMSIZEF_SOURCE

The cbInput parameter contains the size of the source buffer. The pdwOutputBytes parameter will 
receive the recommended destination buffer size, in bytes.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The requested operation cannot 
be performed.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

Remarks



An application can use this function to determine suggested buffer sizes for either source or destination 
buffers. The buffer sizes returned might be only an estimation of the actual sizes required for conversion. 
Because actual conversion sizes cannot always be determined without performing the conversion, the 
sizes returned will usually be overestimated.

In the event of an error, the location pointed to by pdwOutputBytes will receive zero. This assumes that 
the pointer specified by pdwOutputBytes is valid.



acmStreamUnprepareHeader      

  

The acmStreamUnprepareHeader function cleans up the preparation performed by the 
acmStreamPrepareHeader function for an ACM stream. This function must be called after the ACM is 
finished with the given buffers. An application must call this function before freeing the source and 
destination buffers.

MMRESULT acmStreamUnprepareHeader(

        HACMSTREAM has,
        LPACMSTREAMHEADER pash,
        DWORD fdwUnprepare
      );
 

Parameters
has

Handle of the conversion steam.

pash

Address of an ACMSTREAMHEADER structure that identifies the source and destination buffers to 
be unprepared.

fdwUnprepare

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The stream header specified in 
pash is currently in use and 
cannot be unprepared.

ACMERR_UNPREPARED The stream header specified in 
pash is currently not prepared by 
the acmStreamPrepareHeader 
function.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.
 

Remarks
Unpreparing a stream header that has already been unprepared is an error. An application must specify 
the source and destination buffer lengths (cbSrcLength and cbDstLength, respectively) that were used 
during a call to the corresponding acmStreamPrepareHeader. Failing to reset these member values will 
cause acmStreamUnprepareHeader to fail with an MMSYSERR_INVALPARAM error.

The ACM can recover from some errors. The ACM will return a nonzero error, yet the stream header will 
be properly unprepared. To determine whether the stream header was actually unprepared, an application 



can examine the ACMSTREAMHEADER_STATUSF_PREPARED flag. If acmStreamUnprepareHeader 
returns success, the header will always be unprepared.

See Also
acmStreamPrepareHeader, ACMSTREAMHEADER



auxGetDevCaps      

  

The auxGetDevCaps function retrieves the capabilities of a given auxiliary output device.

MMRESULT auxGetDevCaps(

        UINT uDeviceID,
        LPAUXCAPS lpCaps,
        UINT cbCaps
      );
 

Parameters
uDeviceID

Identifier of the auxiliary output device to be queried. Specify a valid device identifier (see the 
following comments section), or use the following constant:

AUX_MAPPER

Auxiliary audio mapper. The function returns an error if no auxiliary audio mapper is installed.

lpCaps

Address of an AUXCAPS structure to be filled with information about the capabilities of the device.

cbCaps

Size, in bytes, of the AUXCAPS structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_BADDEVICEIDSpecified device identifier is out of 
range.

 

Remarks
The device identifier in uDeviceID varies from zero to one less than the number of devices present. 
AUX_MAPPER may also be used. Use the auxGetNumDevs function to determine the number of 
auxiliary output devices present in the system.

See Also
AUXCAPS, auxGetNumDevs



auxGetNumDevs      

  

The auxGetNumDevs function retrieves the number of auxiliary output devices present in the system.

UINT auxGetNumDevs(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns the number of device. A return value of zero means that no devices are present or that an error 
occurred.



auxGetVolume      

  

The auxGetVolume function retrieves the current volume setting of the specified auxiliary output device.

MMRESULT auxGetVolume(

        UINT uDeviceID,
        LPDWORD lpdwVolume
      );
 

Parameters
uDeviceID

Identifier of the auxiliary output device to be queried.

lpdwVolume

Address of a variable to be filled with the current volume setting. The low-order word of this location 
contains the left channel volume setting, and the high-order word contains the right channel setting. A 
value of 0xFFFF represents full volume, and a value of 0x0000 is silence.

If a device does not support both left and right volume control, the low-order word of the specified 
location contains the volume level.

The full 16-bit setting(s) set with the auxSetVolume function are returned, regardless of whether the 
device supports the full 16 bits of volume-level control.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_BADDEVICEID Specified device identifier is out 
of range.

 

Remarks
Not all devices support volume control. To determine whether a device supports volume control, use the 
AUXCAPS_VOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by the 
auxGetDevCaps function).

To determine whether a device supports volume control on both the left and right channels, use the 
AUXCAPS_LRVOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by 
auxGetDevCaps).

See Also
auxSetVolume, AUXCAPS, auxGetDevCaps



auxOutMessage      

  

The auxOutMessage function sends a message to the given auxiliary output device. This function also 
performs error checking on the device identifier passed as part of the message.

DWORD auxOutMessage(

        UINT uDeviceID,
        UINT uMsg,
        DWORD dwParam1,
        DWORD dwParam2
      );
 

Parameters
uDeviceID

Identifier of the auxiliary output device to receive the message.

uMsg

Message to send.

dwParam1 and dwParam2

Message parameters.
 

Return Values
Returns the message return value.



auxSetVolume      

  

The auxSetVolume function sets the volume of the specified auxiliary output device.

MMRESULT auxSetVolume(

        UINT uDeviceID,
        DWORD dwVolume
      );
 

Parameters
uDeviceID

Identifier of the auxiliary output device to be queried. Device identifiers are determined implicitly from 
the number of devices present in the system. Device identifier values range from zero to one less 
than the number of devices present. Use the auxGetNumDevs function to determine the number of 
auxiliary devices in the system.

dwVolume

Specifies the new volume setting. The low-order word specifies the left-channel volume setting, and 
the high-order word specifies the right-channel setting. A value of 0xFFFF represents full volume, and 
a value of 0x0000 is silence.

If a device does not support both left and right volume control, the low-order word of dwVolume 
specifies the volume level, and the high-order word is ignored.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_BADDEVICEID Specified device identifier is out 
of range.

 

Remarks
Not all devices support volume control. To determine whether the device supports volume control, use the 
AUXCAPS_VOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by the 
auxGetDevCaps function).

To determine whether the device supports volume control on both the left and right channels, use the 
AUXCAPS_LRVOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by 
auxGetDevCaps).

Most devices do not support the full 16 bits of volume-level control and will use only the high-order bits of 
the requested volume setting. For example, for a device that supports 4 bits of volume control, requested 
volume level values of 0x4000, 0x4FFF, and 0x43BE will produce the same physical volume setting, 
0x4000. The auxGetVolume function will return the full 16-bit setting set with auxSetVolume.

Volume settings are interpreted logarithmically. This means the perceived volume increase is the same 
when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.



See Also
AUXCAPS, auxGetDevCaps, auxGetVolume 



AVIBuildFilter      

  

The AVIBuildFilter function builds a filter specification that is subsequently used by the 
GetOpenFileName or GetSaveFileName function.

STDAPI AVIBuildFilter(

        LPTSTR lpszFilter,
        LONG cbFilter,
        BOOL fSaving
      );
 

Parameters
lpszFilter

Address of the buffer containing the filter string.

cbFilter

Size, in bytes, of buffer pointed to by lpszFilter.

fSaving

Flag that indicates whether the filter should include read or write formats. Specify TRUE to include 
write formats or FALSE to include read formats.

 

Return Values
Returns AVIERR_OK if successful or an error otherwise. Possible error values include the following:

AVIERR_BUFFERTOOSMALL The buffer size cbFilter was 
smaller than the generated filter 
specification.

AVIERR_MEMORY There was not enough memory to 
complete the read operation.

 

Remarks
This function accesses the registry for all filter types that the AVIFile library can use to open, read, or write 
multimedia files. It does not search the hard disk for filter DLLs and formats.

See Also
GetOpenFileName, GetSaveFileName



AVIClearClipboard      

  

The AVIClearClipboard function removes an AVI file from the clipboard.

STDAPI AVIClearClipboard(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns zero if successful or an error otherwise. 



AVIFileAddRef      

  

The AVIFileAddRef function increments the reference count of an AVI file.

STDAPI_(ULONG) AVIFileAddRef(

        PAVIFILE pfile
      );
 

Parameters
pfile

Handle of an open AVI file.

Return Values
Returns the updated reference count for the file interface.



AVIFileCreateStream      

  

The AVIFileCreateStream function creates a new stream in an existing file and creates an interface to 
the new stream. 

STDAPI AVIFileCreateStream(

        PAVIFILE pfile,
        PAVISTREAM * ppavi,
        AVISTREAMINFO * psi
      );
 

Parameters
pfile

Handle of an open AVI file.

ppavi

Address of the new stream interface.

psi

Address of a structure containing information about the new stream, including the stream type and its 
sample rate.

 

Return Values
Returns zero if successful or an error otherwise. Unless the file has been opened with write permission, 
this function returns AVIERR_READONLY.

Remarks
This function starts a reference count for the new stream.



AVIFileEndRecord      

  

The AVIFileEndRecord function marks the end of a record when writing an interleaved file that uses a 
1:1 interleave factor of video to audio data. (Each frame of video is interspersed with an equivalent 
amount of audio data.)

STDAPI AVIFileEndRecord(

        PAVIFILE pfile
      );
 

Parameters
pfile

Handle of an open AVI file.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
The AVISave function uses this function internally. In general, applications should not need to use this 
function.

See Also
AVISave



AVIFileExit      

  

The AVIFileExit function exits the AVIFile library and decrements the reference count for the library.

This function supercedes the obsolete AVIStreamExit function.

STDAPI_(VOID) AVIFileExit(VOID); 

Parameters
This function takes no parameters.

Return Values
This function does not return a value.



AVIFileGetStream      

  

The AVIFileGetStream function returns the address of a stream interface that is associated with a 
specified AVI file.

STDAPI AVIFileGetStream(

        PAVIFILE pfile,
        PAVISTREAM * ppavi,
        DWORD fccType,
        LONG lParam
      );
 

Parameters
pfile

Handle of an open AVI file.

ppavi

Address of the new stream interface.

fccType

Four-character code indicating the type of stream to open. Zero indicates any stream can be opened. 
The following definitions apply to the data commonly found in AVI streams:

streamtypeAUDIO Indicates an audio stream.

streamtypeMIDI Indicates a MIDI stream.

streamtypeTEXT Indicates a text stream.

streamtypeVIDEO Indicates a video stream.
 

lParam

Count of the stream type. Identifies which occurrence of the specified stream type to access. 
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

AVIERR_NODATA The file does not contain a stream 
corresponding to the values of fccType 
and lParam.

AVIERR_MEMORY Not enough memory.
 



AVIFileInfo      

  

The AVIFileInfo function obtains information about an AVI file.

STDAPI AVIFileInfo(

        PAVIFILE pfile,
        AVIFILEINFO * pfi,
        LONG lSize
      );
 

Parameters
pfile

Handle of an open AVI file.

pfi

Address of the structure used to return file information. Typically, this parameter points to an 
AVIFILEINFO structure.

lSize

Size, in bytes, of the structure.
 

Return Values
Returns zero if successful or an error otherwise. 

See Also
AVIFILEINFO 



AVIFileInit      

  

The AVIFileInit function initializes the AVIFile library. 

The AVIFile library maintains a count of the number of times it is initialized, but not the number of times it 
was released. Use the AVIFileExit function to release the AVIFile library and decrement the reference 
count. Call AVIFileInit before using any other AVIFile functions.

This function supercedes the obsolete AVIStreamInit function.

STDAPI_(VOID) AVIFileInit(VOID); 

Parameters
This function takes no parameters.

Return Values
This function does not return a value.

See Also
AVIFileExit



AVIFileOpen      

  

The AVIFileOpen function opens an AVI file and returns the address of a file interface used to access it. 
The AVIFile library maintains a count of the number of times a file is opened, but not the number of times 
it was released. Use the AVIFileRelease function to release the file and decrement the count. 

STDAPI AVIFileOpen(

        PAVIFILE * ppfile,
        LPCTSTR szFile,
        UINT mode,
        CLSID * pclsidHandler
      );
 

Parameters
ppfile

Address to contain the new file interface pointer.

szFile

Null-terminated string containing the name of the file to open.

mode

Access mode to use when opening the file. The default access mode is OF_READ. The following 
access modes can be specified with AVIFileOpen:

OF_CREATE

Creates a new file. If the file already exists, it is truncated to zero length.

OF_SHARE_DENY_NONE

Opens the file nonexclusively. Other processes can open the file with read or write access. 
AVIFileOpen fails if another process has opened the file in compatibility mode.

OF_SHARE_DENY_READ

Opens the file nonexclusively. Other processes can open the file with write access. AVIFileOpen 
fails if another process has opened the file in compatibility mode or has read access to it.

OF_SHARE_DENY_WRITE

Opens the file nonexclusively. Other processes can open the file with read access. AVIFileOpen 
fails if another process has opened the file in compatibility mode or has write access to it.

OF_SHARE_EXCLUSIVE

Opens the file and denies other processes any access to it. AVIFileOpen fails if any other process 
has opened the file.

OF_READ

Opens the file for reading.

OF_READWRITE

Opens the file for reading and writing.

OF_WRITE



Opens the file for writing.

pclsidHandler

Address of a class identifier of the standard or custom handler you want to use. If the value is NULL, 
the system chooses a handler from the registry based on the file extension or the RIFF type specified 
in the file. 

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

AVIERR_BADFORMAT The file couldn't be read, indicating a 
corrupt file or an unrecognized format.

AVIERR_MEMORY The file could not be opened because 
of insufficient memory.

AVIERR_FILEREAD A disk error occurred while reading 
the file.

AVIERR_FILEOPEN A disk error occurred while opening 
the file.

REGDB_E_CLASSNOTRE
G

According to the registry, the type of 
file specified in AVIFileOpen does not 
have a handler to process it. 

 

See Also
AVIFileRelease



AVIFileReadData      

  

The AVIFileReadData function reads optional header data that applies to the entire file, such as author or 
copyright information. 

STDAPI AVIFileReadData(

        PAVIFILE pfile,
        DWORD ckid,
        LPVOID lpData,
        LONG * lpcbData
      );
 

Parameters
pfile

Handle of an open AVI file.

ckid

RIFF chunk identifier (four-character code) of the data.

lpData

Address of the buffer used to return the data read.

lpcbData

Address of a location indicating the size of the memory block referenced by lpData. If the data is read 
successfully, the value is changed to indicate the amount of data read.

 

Return Values
Returns zero if successful or an error otherwise. The return value AVIERR_NODATA indicates that data 
with the requested chunk identifier does not exist.

Remarks
The optional header information is custom and does not have a set format.



AVIFileRelease      

  

The AVIFileRelease function decrements the reference count of an AVI file interface handle and closes 
the file if the count reaches zero.

This function supercedes the obsolete AVIFileClose function.

STDAPI_(ULONG) AVIFileRelease(

        PAVIFILE pfile
      );
 

Parameters
pfile

Handle of an open AVI file.
 

Return Values
Returns the reference count of the file. This return value should be used only for debugging purposes.



AVIFileWriteData      

  

The AVIFileWriteData function writes supplementary data (other than normal header, format, and stream 
data) to the file.

STDAPI AVIFileWriteData(

        PAVIFILE pfile,
        DWORD ckid,
        LPVOID lpData,
        LONG cbData
      );
 

Parameters
pfile

Handle of an open AVI file.

ckid

RIFF chunk identifier (four-character code) of the data.

lpData

Address of the buffer used to write the data.

cbData

Size, in bytes, of the memory block referenced by lpData.
 

Return Values
Returns zero if successful or an error otherwise. In an application has read-only access to the file, the 
error code AVIERR_READONLY is returned.

Remarks
Use the AVIStreamWriteData function to write data that applies to an individual stream.

See Also
AVIStreamWriteData



AVIGetFromClipboard      

  

The AVIGetFromClipboard function copies an AVI file from the clipboard.

STDAPI AVIGetFromClipboard(

        PAVIFILE * lppf
      );
 

Parameters
lppf

Address of the location used to return the handle created for the AVI file.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
If the clipboard does not contain an AVI file, AVIGetFromClipboard also can copy data with the CF_DIB 
or CF_WAVE clipboard flags to an AVI file. In this case, the function creates an AVI file with one DIB 
stream and one waveform-audio stream, and fills each stream with the data from the clipboard.



AVIMakeCompressedStream      

  

The AVIMakeCompressedStream function creates a compressed stream from an uncompressed stream 
and a compression filter, and returns the address of a pointer to the compressed stream. This function 
supports audio and video compression.

STDAPI AVIMakeCompressedStream(

        PAVISTREAM * ppsCompressed,
        PAVISTREAM psSource,
        AVICOMPRESSOPTIONS * lpOptions,
        CLSID * pclsidHandler
      );
 

Parameters
ppsCompressed

Address to contain the compressed stream pointer.

psSource

Address of the stream to be compressed.

lpOptions

Address of a structure that identifies the type of compression to use and the options to apply. You can 
specify video compression by identifying an appropriate handler in the AVICOMPRESSOPTIONS 
structure. For audio compression, specify the compressed data format.

pclsidHandler

Address of a class identifier used to create the stream.
 

Return Values
Returns AVIERR_OK if successful or an error otherwise. Possible error values include the following:

AVIERR_NOCOMPRESSOR A suitable compressor cannot be 
found.

AVIERR_MEMORY There is not enough memory to 
complete the operation.

AVIERR_UNSUPPORTED Compression is not supported for 
this type of data. This error might 
be returned if you try to compress 
data that is not audio or video.

 

Remarks
Applications can read from or write to the compressed stream.

See Also
AVICOMPRESSOPTIONS



AVIMakeFileFromStreams      

  

The AVIMakeFileFromStreams function constructs an AVIFile interface pointer from separate streams. 

STDAPI AVIMakeFileFromStreams(

        PAVIFILE * ppfile,
        int nStreams,
        PAVISTREAM * papStreams
      );
 

Parameters
ppfile

Address to contain the new file interface pointer.

nStreams

Count of the number of streams in the array of stream interface pointers referenced by papStreams.

papStreams

Address of an array of stream interface pointers.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
Use the AVIFileRelease function to close the file. 

Other functions can use the AVIFile interface created by this function to copy and edit the streams 
associated with the interface. For example, you can retrieve a specific stream by using 
AVIFileGetStream with the file interface pointer. 

See Also
AVIFileRelease, AVIFileGetStream



AVIMakeStreamFromClipboard      

  

The AVIMakeStreamFromClipboard function creates an editable stream from stream data on the 
clipboard.

SDTAPI AVIMakeStreamFromClipboard(

        UINT cfFormat,
        HANDLE hGlobal,
        PAVISTREAM * ppstream
      );
 

Parameters
cfFormat

Clipboard flag.

hGlobal

Handle of stream data on the clipboard.

ppstream

Handle of the created stream.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
When an application finishes using the editable stream, it must release the stream to free the resources 
associated with it.



AVIPutFileOnClipboard      

  

The AVIPutFileOnClipboard function copies an AVI file to the clipboard.

STDAPI AVIPutFileOnClipboard(

        PAVIFILE pf
      );
 

Parameters
pf

Handle of an open AVI file.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
This function also copies data with the CF_DIB, CF_PALETTE, and CF_WAVE clipboard flags onto the 
clipboard using the first frame of the first video stream of the file as a DIB and using the audio stream as 
CF_WAVE.



AVISave      

  

The AVISave function builds a file by combining data streams from other files or from memory. 

HRESULT AVISave(

        LPCTSTR szFile,
        CLSID * pclsidHandler,
        AVISAVECALLBACK lpfnCallback,
        int nStreams,
        PAVISTREAM pavi,
        LPAVICOMPRESSOPTIONS lpOptions,
        . . .
      );
 

Parameters
szFile

Null-terminated string containing the name of the file to save.

pclsidHandler

Address of the file handler used to write the file. The file is created by calling the AVIFileOpen 
function using this handler. If a handler is not specified, a default is selected from the registry based 
on the file extension.

lpfnCallback

Address of a callback function for the save operation.

nStreams

Number of streams saved in the file.

pavi

Address of an AVI stream. This parameter is paired with lpOptions. The parameter pair can be 
repeated as a variable number of arguments.

lpOptions

Address of an application-defined AVICOMPRESSOPTIONS structure containing the compression 
options for the stream referenced by pavi. This parameter is paired with pavi. The parameter pair can 
be repeated as a variable number of arguments.

 

Return Values
Returns AVIERR_OK if successful or an error otherwise. 

Remarks
This function creates a file, copies stream data into the file, closes the file, and releases the resources 
used by the new file. The last two parameters of this function identify a stream to save in the file and 
define the compression options of that stream. When saving more than one stream in an AVI file, repeat 
these two stream-specific parameters for each stream in the file. 

A callback function (referenced by using lpfnCallback) can display status information and let the user 



cancel the save operation. The callback function uses the following format:

LONG PASCAL SaveCallback(int nPercent) 
 

The nPercent parameter specifies the percentage of the file saved.

The callback function should return AVIERR_OK if the operation should continue and 
AVIERR_USERABORT if the user wishes to abort the save operation.

See Also
AVIFileOpen, AVICOMPRESSOPTIONS



AVISaveOptions      

  

The AVISaveOptions function retrieves the save options for a file and returns them in a buffer.

BOOL AVISaveOptions(

        HWND hwnd,
        UINT uiFlags,
        int nStreams,
        PAVISTREAM * ppavi,
        LPAVICOMPRESSOPTIONS * plpOptions
      );
 

Parameters
hwnd

Handle of the parent window for the Compression Options dialog box.

uiFlags

Flags for displaying the Compression Options dialog box. The following flags are defined:

ICMF_CHOOSE_KEYFRAME

Displays a Key Frame Every dialog box for the video options. This is the same flag used in the 
ICCompressorChoose function.

ICMF_CHOOSE_DATARATE

Displays a Data Rate dialog box for the video options. This is the same flag used in 
ICCompressorChoose.

ICMF_CHOOSE_PREVIEW

Displays a Preview button for the video options. This button previews the compression by using a 
frame from the stream. This is the same flag used in ICCompressorChoose.

nStreams

Number of streams that have their options set by the dialog box.

ppavi

Address of an array of stream interface pointers. The nStreams parameter indicates the number of 
pointers in the array.

plpOptions

Address of an array of pointers to AVICOMPRESSOPTIONS structures. These structures hold the 
compression options set by the dialog box. The nStreams parameter indicates the number of pointers 
in the array.

 

Return Values
Returns TRUE if the user pressed OK, FALSE for CANCEL, or an error otherwise.

Remarks



This function presents a standard Compression Options dialog box using hwnd as the parent window 
handle. When the user is finished selecting the compression options for each stream, the options are 
returned in the AVICOMPRESSOPTIONS structure in the array referenced by plpOptions. The calling 
application must pass the interface pointers for the streams in the array referenced by ppavi.

An application must allocate memory for the AVICOMPRESSOPTIONS structures and the array of 
pointers to these structures.

See Also
ICCompressorChoose, AVICOMPRESSOPTIONS



AVISaveOptionsFree      

  

The AVISaveOptionsFree function frees the resources allocated by the AVISaveOptions function.

LONG AVISaveOptionsFree(

        int nStreams,
        LPAVICOMPRESSOPTIONS *plpOptions
      );
 

Parameters
nStreams

Count of the AVICOMPRESSOPTIONS structures referenced in plpOptions.

plpOptions

Address of an array of pointers to AVICOMPRESSOPTIONS structures. These structures hold the 
compression options set by the dialog box. The resources allocated by AVISaveOptions for each of 
these structures will be freed.

 

Return Values
Returns AVIERR_OK.

See Also
AVISaveOptions, AVICOMPRESSOPTIONS



AVISaveV      

  

The AVISaveV function builds a file by combining data streams from other files or from memory. 

STDAPI AVISaveV(

        LPCTSTR szFile,
        CLSID * pclsidHandler,
        AVISAVECALLBACK lpfnCallback,
        int nStreams,
        PAVISTREAM * ppavi,
        LPAVICOMPRESSOPTIONS * plpOptions
      );
 

Parameters
szFile

Null-terminated string containing the name of the file to save.

pclsidHandler

Address of the file handler used to write the file. The file is created by calling the AVIFileOpen 
function using this handler. If a handler is not specified, a default is selected from the registry based 
on the file extension.

lpfnCallback

Address of a callback function used to display status information and to let the user cancel the save 
operation.

nStreams

Number of streams to save.

ppavi

Address of an array of pointers to the AVISTREAM function structures. The array uses one pointer for 
each stream.

plpOptions

Address of an array of pointers to AVICOMPRESSOPTIONS structures. The array uses one pointer 
for each stream.

 

Return Values
Returns AVIERR_OK if successful or an error otherwise. 

Remarks
This function is equivalent to the AVISave function except the streams are passed in an array instead of 
as a variable number of arguments.

This function creates a file, copies stream data into the file, closes the file, and releases the resources 
used by the new file. The last two parameters of this function are arrays that identify the streams to save 
in the file and define the compression options of those streams. 



An application must allocate memory for the AVICOMPRESSOPTIONS structures and the array of 
pointers to these structures.

See Also
AVIFileOpen, AVICOMPRESSOPTIONS, AVISave 



AVIStreamAddRef      

  

The AVIStreamAddRef function increments the reference count of an AVI stream.

STDAPI_(LONG) AVIStreamAddRef(

        PAVISTREAM pavi
      );
 

Parameters
pavi

Handle of an open AVI stream.
 

Return Values
Returns the current reference count of the stream. This value should be used only for debugging 
purposes.



AVIStreamBeginStreaming      

  

The AVIStreamBeginStreaming function specifies the parameters used in streaming and lets a stream 
handler prepare for streaming.

STDAPI AVIStreamBeginStreaming(

        PAVISTREAM pavi,
        LONG lStart,
        LONG lEnd,
        LONG lRate
      );
 

Parameters
pavi

Address of a stream.

lStart

Starting frame for streaming.

lEnd

Ending frame for streaming.

lRate

Speed at which the file is read relative to its natural speed.    Specify 1000 for the normal speed. 
Values less than 1000 indicate a slower-than-normal speed; values greater than 1000 indicate a 
faster-than-normal speed.

 

Return Values
Returns zero if successful or an error otherwise. 



AVIStreamCreate      

  

The AVIStreamCreate function creates a stream not associated with any file.

STDAPI AVIStreamCreate(

        PAVISTREAM * ppavi,
        LONG lParam1,
        LONG lParam2,
        CLSID * pclsidHandler
      );
 

Parameters
ppavi

Address to contain the new stream interface.

lParam1

Stream-handler specific information.

lParam2

Stream-handler specific information.

pclsidHandler

Address of the class identifier used for the stream.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
You should not need to call this function. Some functions, such as CreateEditableStream and 
AVIMakeCompressedStream, use it internally. 

See Also
CreateEditableStream, AVIMakeCompressedStream



AVIStreamEndStreaming      

  

The AVIStreamEndStreaming function ends streaming.

STDAPI AVIStreamEndStreaming(

        PAVISTREAM pavi
      );
 

Parameters
pavi

Address of a stream.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
Many stream implementations ignore this function.



AVIStreamFindSample      

  

The AVIStreamFindSample function returns the position of a sample (key frame, nonempty frame, or a 
frame containing a format change) relative to the specified position.

This function supercedes the obsolete AVIStreamFindKeyFrame function.

STDAPI_(LONG) AVIStreamFindSample(

        PAVISTREAM pavi,
        LONG lPos,
        LONG lFlags
      );
 

Parameters
pavi

Handle of an open stream.

lPos

Starting frame for the search.

lFlags

Flags that designate the type of frame to locate, the direction in the stream to search, and the type of 
return information. The following flags are defined:

FIND_ANY

Finds a nonempty frame. This flag supercedes the SEARCH_ANY flag.

FIND_KEY

Finds a key frame. This flag supercedes the SEARCH_KEY flag.

FIND_FORMAT

Finds a format change.

FIND_NEXT

Finds nearest sample, frame, or format change searching forward. The current sample is included 
in the search. Use this flag with the FIND_ANY, FIND_KEY, or FIND_FORMAT flag. This flag 
supercedes the SEARCH_FORWARD flag.

FIND_PREV

Finds nearest sample, frame, or format change searching backward. The current sample is 
included in the search. Use this flag with the FIND_ANY, FIND_KEY, or FIND_FORMAT flag. This 
flag supercedes the SEARCH_NEAREST and SEARCH_BACKWARD flags.

FIND_FROM_START

Finds first sample, frame, or format change beginning from the start of the stream. Use this flag 
with the FIND_ANY, FIND_KEY, or FIND_FORMAT flag.

 

Return Values



Returns the position of the frame found or -1 if the search is unsuccessful.

Remarks
The FIND_KEY, FIND_ANY, and FIND_FORMAT flags are mutually exclusive, as are the FIND_NEXT 
and FIND_PREV flags.



AVIStreamGetFrame      

  

The AVIStreamGetFrame function returns the address of a decompressed video frame.

STDAPI_(LPVOID) AVIStreamGetFrame(

        PGETFRAME pgf,
        LONG lPos
      );
 

Parameters
pgf

Address of a GetFrame object.

lPos

Position, in samples, within the stream of the desired frame. 
 

Return Values
Returns a pointer to the frame data if successful or NULL otherwise. The frame data is returned as a 
packed DIB.

Remarks
The returned frame is valid only until the next call to this function or the AVIStreamGetFrameClose 
function.

See Also
AVIStreamGetFrameClose



AVIStreamGetFrameClose      

  

The AVIStreamGetFrameClose function releases resources used to decompress video frames.

STDAPI AVIStreamGetFrameClose(

        PGETFRAME pget
      );
 

Parameters
pget

Handle returned from the AVIStreamGetFrameOpen function. After calling this function, the handle is 
invalid.

 

Return Values
Returns zero if successful or an error otherwise. 

See Also
AVIStreamGetFrameOpen



AVIStreamGetFrameOpen      

  

The AVIStreamGetFrameOpen function prepares to decompress video frames from the specified video 
stream.

STDAPI_(PGETFRAME) AVIStreamGetFrameOpen(

        PAVISTREAM pavi,
        LPBITMAPINFOHEADER lpbiWanted
      );
 

Parameters
pavi

Address of the video stream used as the video source.

lpbiWanted

Address of a structure that defines the desired video format. Specify NULL to use a default format. 
You can also specify AVIGETFRAMEF_BESTDISPLAYFMT to decode the frames to the best format 
for your display.

 

Return Values
Returns a GetFrame object that can be used with the AVIStreamGetFrame function. If the system 
cannot find a decompressor that can decompress the stream to the given format, or to any RGB format, 
the function returns NULL.

See Also
AVIStreamGetFrame 



AVIStreamInfo      

  

The AVIStreamInfo function obtains stream header information.

STDAPI AVIStreamInfo(

        PAVISTREAM pavi,
        AVISTREAMINFO * psi,
        LONG lSize
      );
 

Parameters
pavi

Handle of an open stream.

psi

Address of a structure to contain the stream information.

lSize

Size, in bytes, of the structure used for psi.
 

Return Values
Returns zero if successful or an error otherwise. 



AVIStreamLength      

  

The AVIStreamLength function returns the length of the stream.

STDAPI_(LONG) AVIStreamLength(

        PAVISTREAM pavi
      );
 

Parameters
pavi

Handle of an open stream.
 

Return Values
Returns the stream's length, in samples, if successful or -1 otherwise. 



AVIStreamOpenFromFile      

  

The AVIStreamOpenFromFile function opens a single stream from a file.

STDAPI AVIStreamOpenFromFile(

        PAVISTREAM * ppavi,
        LPCTSTR szFile,
        DWORD fccType,
        LONG lParam,
        UINT mode,
        CLSID * pclsidHandler
      );
 

Parameters
ppavi

Address to contain the new stream handle.

szFile

Null-terminated string containing the name of the file to open.

fccType

Four-character code indicating the type of stream to be opened. Zero indicates that any stream can 
be opened. The following definitions apply to the data commonly found in AVI streams:

streamtypeAUDIO Indicates an audio stream.

streamtypeMIDI Indicates a MIDI stream.

streamtypeTEXT Indicates a text stream.

streamtypeVIDEO Indicates a video stream.
 

lParam

Stream of the type specified in fccType to access. This parameter is zero-based; use zero to specify 
the first occurrence.

mode

Access mode to use when opening the file. This function can open only existing streams, so the 
OF_CREATE mode flag cannot be used. For more information about the available flags for the mode 
parameter, see the OpenFile function.

pclsidHandler

Address of a class identifier of the handler you want to use. If the value is NULL, the system chooses 
one from the registry based on the file extension or the file RIFF type.

 

Return Values
Returns zero if successful or an error otherwise. 

Remarks



This function calls the AVIFileOpen, AVIFileGetStream, and AVIFileRelease functions.

See Also
OpenFile, AVIFileOpen, AVIFileGetStream, AVIFileRelease



AVIStreamRead      

  

The AVIStreamRead function reads audio, video or other data from a stream according to the stream 
type.

STDAPI AVIStreamRead(

        PAVISTREAM pavi,
        LONG lStart,
        LONG lSamples,
        LPVOID lpBuffer,
        LONG cbBuffer,
        LONG * plBytes,
        LONG * plSamples
      );
 

Parameters
pavi

Handle of an open stream.

lStart

First sample to read.

lSamples

Number of samples to read. You can also specify the value AVISTREAMREAD_CONVENIENT to let 
the stream handler determine the number of samples to read. 

lpBuffer

Address of a buffer to contain the data.

cbBuffer

Size, in bytes, of the buffer pointed to by lpBuffer.

plBytes

Address to contain the number of bytes of data written in the buffer referenced by lpBuffer. This value 
can be NULL.

plSamples

Address to contain the number of samples written in the buffer referenced by lpBuffer. This value can 
be NULL.

 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

AVIERR_BUFFERTOOSMALL The buffer size cbBuffer was 
smaller than a single sample of 
data.

AVIERR_MEMORY There was not enough memory to 
complete the read operation.



AVIERR_FILEREAD A disk error occurred while 
reading the file.

 

Remarks
If lpBuffer is NULL, this function does not read any data; it returns information about the size of data that 
would be read.



AVIStreamReadData      

  

The AVIStreamReadData function reads optional header data from a stream.

STDAPI AVIStreamReadData(

        PAVISTREAM pavi,
        DWORD ckid,
        LPVOID lpData,
        LONG * lpcbData
      );
 

Parameters
pavi

Handle of an open stream.

ckid

Four-character code identifying the data.

lpData

Address of the buffer to contain the optional header data.

lpcbData

Address of the location that specifies the buffer size used for lpData. If the read is successful, AVIFile 
changes this value to indicate the amount of data written into the buffer for lpData.

 

Return Values
Returns zero if successful or an error otherwise. The return value AVIERR_NODATA indicates the system 
could not find any data with the specified chunk identifier.

Remarks
This function retrieves only optional header information from the stream. This information is custom and 
does not have a set format.



AVIStreamReadFormat      

  

The AVIStreamReadFormat function reads the stream format data.

STDAPI AVIStreamReadFormat(

        PAVISTREAM pavi,
        LONG lPos,
        LPVOID lpFormat,
        LONG * lpcbFormat
      );
 

Parameters
pavi

Handle of an open stream.

lPos

Position in the stream used to obtain the format data.

lpFormat

Address of a buffer to contain the format data.

lpcbFormat

Address of a location indicating the size of the memory block referenced by lpFormat. On return, the 
value is changed to indicate the amount of data read. If lpFormat is NULL, this parameter can be 
used to obtain the amount of memory needed to return the format.

 

Return Values
Returns zero if successful or an error otherwise. 



AVIStreamRelease      

  

The AVIStreamRelease function decrements the reference count of an AVI stream interface handle, and 
closes the stream if the count reaches zero.

This function supercedes the obsolete AVIStreamClose function.

STDAPI_(LONG) AVIStreamRelease(

        PAVISTREAM pavi
      );
 

Parameters
pavi

Handle of an open stream.
 

Return Values
Returns the current reference count of the stream. This value should be used only for debugging 
purposes.



AVIStreamSampleToTime      

  

The AVIStreamSampleToTime function converts a stream position from samples to milliseconds. 

STDAPI_(LONG) AVIStreamSampleToTime(

        PAVISTREAM pavi,
        LONG lSample
      );
 

Parameters
pavi

Handle of an open stream.

lSample

Position information. A sample can correspond to blocks of audio, a video frame, or other format, 
depending on the stream type.

 

Return Values
Returns the converted time if successful or - 1 otherwise. 



AVIStreamSetFormat      

  

The AVIStreamSetFormat function sets the format of a stream at the specified position.

STDAPI AVIStreamSetFormat(

        PAVISTREAM pavi,
        LONG lPos,
        LPVOID lpFormat,
        LONG cbFormat
      );
 

Parameters
pavi

Handle of an open stream.

lPos

Position in the stream to receive the format.

lpFormat

Address of a structure containing the new format.

cbFormat

Size, in bytes, of the block of memory referenced by lpFormat.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
The handler for writing AVI files does not accept format changes. Besides setting the initial format for a 
stream, only changes in the palette of a video stream are allowed in an AVI file. The palette change must 
occur after any frames already written to the AVI file. Other handlers might impose different restrictions.



AVIStreamStart      

  

The AVIStreamStart function returns the starting sample number for the stream.

STDAPI_(LONG) AVIStreamStart(

        PAVISTREAM pavi
      );
 

Parameters
pavi

Handle of an open stream.
 

Return Values
Returns the number if successful or - 1 otherwise. 



AVIStreamTimeToSample      

  

The AVIStreamTimeToSample function converts from milliseconds to samples.

STDAPI_(LONG) AVIStreamTimeToSample(

        PAVISTREAM pavi,
        LONG lTime
      );
 

Parameters
pavi

Handle of an open stream.

lTime

Time, expressed in milliseconds.
 

Return Values
Returns the converted time if successful or - 1 otherwise. 

Remarks
Samples typically correspond to audio samples or video frames. Other stream types might support 
different formats than these.



AVIStreamWrite      

  

The AVIStreamWrite function writes data to a stream.

STDAPI AVIStreamWrite(

        PAVISTREAM pavi,
        LONG lStart,
        LONG lSamples,
        LPVOID lpBuffer,
        LONG cbBuffer,
        DWORD dwFlags,
        LONG * plSampWritten,
        LONG * plBytesWritten
      );
 

Parameters
pavi

Handle of an open stream.

lStart

First sample to write.

lSamples

Number of samples to write.

lpBuffer

Address of a buffer containing the data to write.

cbBuffer

Size of the buffer referenced by lpBuffer.

dwFlags

Flag associated with this data. The following flag is defined:

AVIIF_KEYFRAME

Indicates this data does not rely on preceding data in the file.

plSampWritten

Address to contain the number of samples written. This can be set to NULL.

plBytesWritten

Address to contain the number of bytes written. This can be set to NULL.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks



The default AVI file handler supports writing only at the end of a stream. The "WAVE" file handler supports 
writing anywhere.

This function overwrites existing data, rather than inserting new data.



AVIStreamWriteData      

  

The AVIStreamWriteData function writes optional header information to the stream.

STDAPI AVIStreamWriteData(

        PAVISTREAM pavi,
        DWORD ckid,
        LPVOID lpData,
        LONG cbData
      );
 

Parameters
pavi

Handle of an open stream.

ckid

Four-character code identifying the data.

lpData

Address of a buffer containing the data to write.

cbData

Number of bytes of data to write into the stream.
 

Return Values
Returns zero if successful or an error otherwise. The return value AVIERR_READONLY indicates the file 
was opened without write access.

Remarks
Use the AVIStreamWrite function to write the multimedia content of the stream. Use AVIFileWriteData to 
write data that applies to an entire file.

See Also
AVIStreamWrite, AVIFileWriteData



capCreateCaptureWindow      

  

The capCreateCaptureWindow function creates a capture window.

HWND VFWAPI capCreateCaptureWindow(

        LPCSTR lpszWindowName,
        DWORD dwStyle,
        int x,
        int y,
        int nWidth,
        int nHeight,
        HWND hWnd,
        int nID
      );
 

Parameters
lpszWindowName

Null-terminated string containing the name used for the capture window.

dwStyle

Window styles used for the capture window. Window styles are described with the CreateWindowEx 
function.

x and y

The x- and y-coordinates of the upper left corner of the capture window.

nWidth and nHeight

Width and height of the capture window.

hWnd

Handle of the parent window.

nID

Window identifier.
 

Return Values
Returns a handle of the capture window if successful or NULL otherwise.

See Also
CreateWindowEx



capControlCallback      

The capControlCallback function is the callback function used for precision control to begin and end 
streaming capture. The capControlCallback callback function is a placeholder for the application-
supplied function name.

LRESULT CALLBACK capControlCallback(

        HWND hWnd,
        int nState
      );
 

Parameters
hWnd

Handle of the capture window associated with the callback function.

nState

Current state of the capture operation. The CONTROLCALLBACK_PREROLL value is sent initially to 
enable prerolling of the video sources and to return control to the capture application at the exact 
moment recording is to begin. The CONTROLCALLBACK_CAPTURING value is sent once per 
captured frame to indicate that streaming capture is in progress and to enable the application to end 
capture.

 

Return Values
When nState is set to CONTROLCALLBACK_PREROLL, this callback function must return TRUE to start 
capture or FALSE to abort it. When nState is set to CONTROLCALLBACK_CAPTURING, this callback 
function must return TRUE to continue capture or FALSE to end it.

Remarks
The first message sent to the callback procedure sets the nState parameter to 
CONTROLCALLBACK_PREROLL after allocating all buffers and all other capture preparations are 
complete. 



capGetDriverDescription      

  

The capGetDriverDescription function retrieves the version description of the capture driver.

BOOL VFWAPI capGetDriverDescription(

        WORD wDriverIndex,
        LPSTR lpszName,
        INT cbName,
        LPSTR lpszVer,
        INT cbVer
      );
 

Parameters
wDriverIndex

Index of the capture driver. The index can range from 0 through 9.

Plug-and-Play capture drivers are enumerated first, followed by capture drivers listed in the registry, 
which are then followed by capture drivers listed in SYSTEM.INI.

lpszName

Address of a buffer containing a null-terminated string corresponding to the capture driver name.

cbName

Length, in bytes, of the buffer pointed to by lpszName.

lpszVer

Address of a buffer containing a null-terminated string corresponding to the description of the capture 
driver.

cbVer

Length, in bytes, of the buffer pointed to by lpszVer.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
If the information description is longer than its buffer, the description is truncated. The returned string is 
always null-terminated. If a buffer size is zero, its corresponding description is not copied.



capErrorCallback      

  

The capErrorCallback function is the error callback function used with video capture. The 
capErrorCallback error callback function is a placeholder for the application-supplied function name.

LRESULT CALLBACK capErrorCallback(

        HWND hWnd,
        int nID,
        LPCSTR lpsz
      );
 

Parameters
hWnd

Handle of the capture window associated with the callback function.

nID

Error identification number.

lpsz

Address of a textual description of the returned error.
 

Remarks
A message identifier of zero indicates a new operation is starting and the callback function should clear 
the current error.



capStatusCallback      

  

The capStatusCallback function is the status callback function used with video capture. The 
capStatusCallback status callback function is a placeholder for the application-supplied function name.

LRESULT CALLBACK capStatusCallback(

        HWND hWnd,
        int nID,
        LPCSTR lpsz
      );
 

Parameters
hWnd

Handle of the capture window associated with the callback function.

nID

Message identification number.

lpsz

Address of a textual description of the returned status.
 

Remarks
During capture operations, the first message sent to the callback function is always IDS_CAP_BEGIN 
and the last is always IDS_CAP_END. A message identifier of zero indicates a new operation is starting 
and the callback function should clear the current status.



capVideoStreamCallback      

  

The capVideoStreamCallback function is the callback function used with streaming capture to optionally 
process a frame of captured video. The capVideoStreamCallback callback function is a placeholder for 
the application-supplied function name.

LRESULT CALLBACK capVideoStreamCallback(

        HWND hWnd,
        LPVIDEOHDR lpVHdr
      );
 

Parameters
hWnd

Handle of the capture window associated with the callback function.

lpVHdr

Address of a VIDEOHDR structure containing information about the captured frame.
 

Remarks
The capture window calls a videostream callback function when a video buffer is marked done by the 
capture driver. When capturing to disk, this will preceed the disk write operation.



capWaveStreamCallback      

  

The capWaveStreamCallback function is the callback function used with streaming capture to optionally 
process buffers of audio data. The capWaveStreamCallback callback function is a placeholder for the 
application-supplied function name.

LRESULT CALLBACK capWaveStreamCallback(

        HWND hWnd,
        LPWAVEHDR lpWHdr
      );
 

Parameters
hWnd

Handle of the capture window associated with the callback function.

lpWHdr

Address of a WAVEHDR structure containing information about the captured audio data.
 

Remarks
The capture window calls a wavestream callback function when an audio buffer is marked done by the 
waveform-audio driver. When capturing to disk, this will preceed the disk write operation.

See Also
WAVEHDR



capYieldCallback      

  

The capYieldCallback function is the yield callback function used with video capture. The 
capYieldCallback yield callback function is a placeholder for the application-supplied function name.

LRESULT CALLBACK capYieldCallback(

        HWND hWnd
      );
 

Parameters
hWnd

Handle of the capture window associated with the callback function.
 

Remarks
The capture window calls the yield callback function at least once for every captured video frame, but the 
exact rate depends on the frame rate and the overhead of the capture driver and disk.



CreateEditableStream      

  

The CreateEditableStream function creates an editable stream. Use this function before using other 
stream editing functions.

STDAPI CreateEditableStream(

        PAVISTREAM * ppsEditable,
              PAVISTREAM psSource
      );
 

Parameters
ppsEditable

Address to contain the new stream handle.

psSource

Handle of the stream supplying data for the new stream. Specify NULL to create an empty editable 
string that you can copy and paste data into.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The stream pointer returned in ppsEditable must be used as the source stream in the other stream editing 
functions.

Internally, this function creates tables to keep track of changes to a stream. The original stream is never 
changed by the stream editing functions. The stream pointer created by this function can be used in any 
AVIFile function that accepts stream pointers. You can use this function on the same stream multiple 
times. A copy of a stream is not affected by changes in another copy.



DllGetClassObject      

  

The DllGetClassObject function is the entry point used by C+ + file and stream handlers to create an 
instance of the handler. 

STDAPI DllGetClassObject(

        const CLSID & rclsid,
        const IID & riid,
        void ** ppv) 
  

Parameters
rclsid

Class identifier of the file or stream handler.

riid

Interface identifier of the file or stream handler.

ppv

Address returned for the object of the interface query. If the interface specified in riid is not supported 
by the object, S_FALSE is returned and the ppvObj parameter used in the IUnknown interface must 
be set to NULL.

 

Return Values
Returns a handle of an instance of the file or stream handler.

Remarks
DllGetClassObject is the only export function your DLL needs. The OLE component object DLL calls this 
function to obtain an instance of the stream- or file-handler interface. 

Your file or stream handler should ensure that the system requests the correct class identifier before 
creating an instance of it. 

See Also
IUnknown



DrawDibBegin      

  

The DrawDib function changes parameters of a DrawDib DC or initializes a new DrawDib DC.

BOOL DrawDibBegin(

        HDRAWDIB hdd,
        HDC hdc,
        int dxDest,
        int dyDest,
        LPBITMAPINFOHEADER lpbi,
        int dxSrc,
        int dySrc,
        UINT wFlags
      );
 

Parameters
hdd

Handle of a DrawDib DC.

hdc

Handle of a DC for drawing. This parameter is optional.

dxDest and dyDest

Width and height, in MM_TEXT client units, of the destination rectangle.

lpbi

Address of a BITMAPINFOHEADER structure containing the image format. The color table for the 
DIB follows the image format and the biHeight member must be a positive value.

dxSrc and dySrc

Width and height, in pixels, of the source rectangle.

wFlags

Applicable flags for the function. The following values are defined:

DDF_ANIMATE

Allows palette animation. If this value is present, DrawDib reserves as many entries as possible by 
setting PC_RESERVED in the palPalEntry members of the LOGPALETTE structure, and the 
palette can be animated by using the DrawDibChangePalette function. If your application uses 
the DrawDibBegin function with the DrawDibDraw function, set this value with DrawDibBegin 
rather than DrawDibDraw.

DDF_BACKGROUNDPAL

Realizes the palette used for drawing as a background task, leaving the current palette used for 
the display unchanged. (This value is mutually exclusive of DDF_SAME_HDC.)

DDF_BUFFER

Causes DrawDib to try to use an off-screen buffer so DDF_UPDATE can be used. This disables 
decompression and drawing directly to the screen. If DrawDib is unable to create an off-screen 



buffer, it will decompress or draw directly to the screen. For more information, see the 
DDF_UPDATE and DDF_DONTDRAW values described for DrawDibDraw.

DDF_DONTDRAW

Current image is not drawn, but is decompressed. DDF_UPDATE can be used later to draw the 
image. This flag supercedes the DDF_PREROLL flag.

DDF_FULLSCREEN

Not supported.

DDF_HALFTONE

Always dithers the DIB to a standard palette regardless of the palette of the DIB. If your application 
uses DrawDibBegin with DrawDibDraw, set this value with DrawDibBegin rather than 
DrawDibDraw.

DDF_JUSTDRAWIT

Draws the image by using GDI. Prohibits DrawDib functions from decompressing, stretching, or 
dithering the image. This strips DrawDib of capabilities that differentiate it from the StretchDIBits 
function.

DDF_SAME_DRAW

Use the current drawing parameters for DrawDibDraw. Use this value only if lpbi, dxDest, dyDest, 
dxSrc, and dySrc have not changed since using DrawDibDraw or DrawDibBegin. This flag 
supercedes the DDF_SAME_DIB and DDF_SAME_SIZE flags.

DDF_SAME_HDC

Use the current DC handle and the palette currently associated with the DC.

DDF_UPDATE

Last buffered bitmap needs to be redrawn. If drawing fails with this value, a buffered image is not 
available and a new image needs to be specified before the display can be updated.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This function prepares to draw a DIB specified by lpbi to the DC. The image is stretched to the size 
specified by dxDest and dyDest. If dxDest and dyDest are set to - 1, the DIB is drawn to a 1:1 scale 
without stretching.

You can update the flags of a DrawDib DC by reissuing DrawDibBegin, specifying the new flags, and 
changing at least one of the following settings: dxDest, dyDest, lpbi, dxSrc, or dySrc.

If the parameters of DrawDibBegin have not changed, subsequent calls to the function have no effect.

See Also
BITMAPINFOHEADER, LOGPALETTE, DrawDibChangePalette, DrawDibDraw, StretchDIBits 



DrawDibChangePalette      

  

The DrawDibChangePalette function sets the palette entries used for drawing DIBs.

BOOL DrawDibChangePalette(

        HDRAWDIB hdd,
        int iStart,
        int iLen,
        LPPALETTEENTRY lppe
      );
 

Parameters
hdd

Handle of a DrawDib DC.

iStart

Starting palette entry number.

iLen

Number of palette entries.

lppe

Address of an array of palette entries.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This function changes the physical palette only if the current DrawDib palette is realized by calling the 
DrawDibRealize function.

If the color table is not changed, the next call to the DrawDibDraw function that does not specify 
DDF_SAME_DRAW calls the DrawDibBegin function implicitly.

See Also
DrawDibRealize, DrawDibDraw, DrawDibBegin



DrawDibClose      

  

The DrawDibClose function closes a DrawDib DC and frees the resources DrawDib allocated for it.

BOOL DrawDibClose(

        HDRAWDIB hdd
      );
 

Parameters
hdd

Handle of a DrawDib DC.
 

Return Values
Returns TRUE if successful or FALSE otherwise.



DrawDibDraw      

  

The DrawDibDraw function draws a DIB to the screen.

BOOL DrawDibDraw(

        HDRAWDIB hdd,
        HDC hdc,
        int xDst,
        int yDst,
        int dxDst,
        int dyDst,
        LPBITMAPINFOHEADER lpbi,
        LPVOID lpBits,
        int xSrc,
        int ySrc,
        int dxSrc,
        int dySrc,
        UINT wFlags
      );
 

Parameters
hdd

Handle of a DrawDib DC.

hdc

Handle of the DC.

xDst and yDst

The x- and y-coordinates, in MM_TEXT client coordinates, of the upper left corner of the destination 
rectangle.

dxDst and dyDst

Width and height, in MM_TEXT client coordinates, of the destination rectangle. If dxDst is - 1, the 
width of the bitmap is used. If dyDst is - 1, the height of the bitmap is used.

lpbi

Address of the BITMAPINFOHEADER structure containing the image format. The color table for the 
DIB within BITMAPINFOHEADER follows the format and the biHeight member must be a positive 
value; DrawDibDraw will not draw inverted DIBs.

lpBits

Address of the buffer that contains the bitmap bits.

xSrc and ySrc

The x- and y-coordinates, in pixels, of the upper left corner of the source rectangle. The coordinates 
(0,0) represent the upper left corner of the bitmap.

dxSrc and dySrc

Width and height, in pixels, of the source rectangle.



wFlags

Applicable flags for drawing. The following values are defined:

DDF_BACKGROUNDPAL

Realizes the palette used for drawing in the background, leaving the actual palette used for display 
unchanged. This value is valid only if DDF_SAME_HDC is not set.

DDF_DONTDRAW

Current image is decompressed but not drawn. This flag supercedes the DDF_PREROLL flag.

DDF_FULLSCREEN

Not supported.

DDF_HALFTONE

Always dithers the DIB to a standard palette regardless of the palette of the DIB. If your application 
uses the DrawDibBegin function, set this value in DrawDibBegin rather than in DrawDibDraw.

DDF_HURRYUP

Data does not have to be drawn (that is, it can be dropped) and DDF_UPDATE will not be used to 
recall this information. DrawDib checks this value only if it is required to build the next frame; 
otherwise, the value is ignored.

This value is usually used to synchronize video and audio. When synchronizing data, applications 
should send the image with this value in case the driver needs to buffer the frame to decompress 
subsequent frames.

DDF_NOTKEYFRAME

DIB data is not a key frame.

DDF_SAME_HDC

Use the current DC handle and the palette currently associated with the DC.

DDF_SAME_DRAW

Use the current drawing parameters for DrawDibDraw. Use this value only if lpbi, dxDst, dyDst, 
dxSrc, and dySrc have not changed since using DrawDibDraw or DrawDibBegin. DrawDibDraw 
typically checks the parameters, and if they have changed, DrawDibBegin prepares the DrawDib 
DC for drawing. This flag supercedes the DDF_SAME_DIB and DDF_SAME_SIZE flags.

DDF_UPDATE

Last buffered bitmap is to be redrawn. If drawing fails with this value, a buffered image is not 
available and a new image needs to be specified before the display can be updated.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
DDF_DONTDRAW causes DrawDibDraw to decompress but not display an image. A subsequent call to 
DrawDibDraw specifying DDF_UPDATE displays the image. 

If the DrawDib DC does not have an off-screen buffer specified, specifying DDF_DONTDRAW causes the 
frame to be drawn to the screen immediately. Subsequent calls to DrawDibDraw specifying 
DDF_UPDATE fail. 

Although they are set at different times, DDF_UPDATE and DDF_DONTDRAW can be used together to 



create composite images off-screen. When the off-screen image is complete, you can display the image 
by calling DrawDibDraw.

See Also
BITMAPINFOHEADER, DrawDibBegin



DrawDibEnd      

  

The DrawDibEnd function clears the flags and other settings of a DrawDib DC that are set by the 
DrawDibBegin or DrawDibDraw functions.

BOOL DrawDibEnd(

        HDRAWDIB hdd
      );
 

Parameters
hdd

Handle of the DrawDib DC to free.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
DrawDibBegin, DrawDibDraw



DrawDibGetBuffer      

  

The DrawDibGetBuffer function retrieves the location of the buffer used by DrawDib for decompression.

LPVOID DrawDibGetBuffer(

        HDRAWDIB hdd,
        LPBITMAPINFOHEADER lpbi,
        DWORD dwSize,
        DWORD dwFlags
      );
 

Parameters
hdd

Handle of a DrawDib DC.

lpbi

Address of a BITMAPINFO structure. This structure is made up of a BITMAPINFOHEADER structure 
and a 256-entry table defining the colors used by the bitmap.

dwSize

Size, in bytes, of the BITMAPINFO structure pointed to by lpbi

dwFlags

Reserved; must be zero.
 

Return Values
Returns the address of the buffer or NULL if no buffer is used. if lpbr is not NULL, it is filled with a copy of 
the BITMAPINFO structure describing the buffer.

See Also
BITMAPINFO, BITMAPINFOHEADER 



DrawDibGetPalette      

  

The DrawDibGetPalette function retrieves the palette used by a DrawDib DC. 

HPALETTE DrawDibGetPalette(

        HDRAWDIB hdd
      );
 

Parameters
hdd

Handle of a DrawDib DC.
 

Return Values
Returns a handle to the palette if successful or NULL otherwise.

Remarks
This function assumes the DrawDib DC contains a valid palette entry, implying that a call to this function 
must follow calls to the DrawDibDraw or DrawDibBegin functions.

You should rarely need to call this function because you can realize the correct palette in response to a 
window message by using the DrawDibRealize function.

See Also
DrawDibDraw, DrawDibBegin, DrawDibRealize



DrawDibOpen      

  

The DrawDibOpen function opens the DrawDib library for use and creates a DrawDib DC for drawing.

HDRAWDIB DrawDibOpen(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns a handle to a DrawDib DC if successful or NULL otherwise.

Remarks
When drawing multiple DIBs simultaneously, create a DrawDib DC for each of the images that will be 
simultaneously on-screen.



DrawDibProfileDisplay      

  

The DrawDibProfileDisplay function determines settings for the display system when using DrawDib 
functions.

BOOL DrawDibProfileDisplay(

        LPBITMAPINFOHEADER lpbi
      );
 

Parameters
lpbi

Address of a BITMAPINFOHEADER structure that contains bitmap information. You can also specify 
NULL to verify that the profile information is current. If the profile information is not current, DrawDib 
will rerun the profile tests to obtain a current set of information. When you call 
DrawDibProfileDisplay with this parameter set to NULL, the return value is meaningless.

 

Return Values
Returns a value that indicates the fastest drawing and stretching capabilities of the display system. This 
value can be zero if the bitmap format is not supported or one or more of the following values:

PD_CAN_DRAW_DIB DrawDib can draw images using 
this format. Stretching might or 
might not also be supported.

PD_CAN_STRETCHDIB DrawDib can stretch and draw 
images using this format.

PD_STRETCHDIB_1_1_OK StretchDIBits draws unstretched 
images using this format faster 
than an alternative method.

PD_STRETCHDIB_1_2_OK StretchDIBits draws stretched 
images (in a 1:2 ratio) using this 
format faster than an alternative 
method.

PD_STRETCHDIB_1_N_OK StretchDIBits draws stretched 
images (in a 1:N ratio) using this 
format faster than an alternative 
method.

 

See Also
BITMAPINFOHEADER, StretchDIBits



DrawDibRealize      

  

The DrawDibRealize function realizes the palette of the DrawDib DC for use with the specified DC.

UINT DrawDibRealize(

        HDRAWDIB hdd,
        HDC hdc,
        BOOL fBackground
      );
 

Parameters
hdd

Handle of a DrawDib DC.

hdc

Handle of the DC containing the palette.

fBackground

Background palette flag. If this value is nonzero, the palette is a background palette. If this value is 
zero and the DC is attached to a window, the logical palette becomes the foreground palette when the 
window has the input focus. (A DC is attached to a window when the window class style is 
CS_OWNDC or when the DC is obtained by using the GetDC function.)

 

Return Values
Returns the number of entries in the logical palette mapped to different values in the system palette. If an 
error occurs or no colors were updated, it returns zero.

Remarks
To select the palette of the DrawDib DC as a background palette, use the DrawDibDraw function and 
specify the DDF_BACKGROUNDPAL flag.

See Also
GetDC, DrawDibDraw



DrawDibSetPalette      

  

The DrawDibSetPalette function sets the palette used for drawing DIBs.

BOOL DrawDibSetPalette(

        HDRAWDIB hdd,
        HPALETTE hpal
      );
 

Parameters
hdd

Handle of a DrawDib DC.

hpal

Handle of the palette. Specify NULL to use the default palette.
 

Return Values
Returns TRUE if successful or FALSE otherwise.



DrawDibStart      

  

The DrawDibStart function prepares a DrawDib DC for streaming playback.

BOOL DrawDibStart(

        HDRAWDIB hdd,
        LONG rate
      );
 

Parameters
hdd

Handle of a DrawDib DC.

rate

Playback rate, in microseconds per frame.
 

Return Values
Returns TRUE if successful or FALSE otherwise.



DrawDibStop      

  

The DrawDibStop function frees the resources used by a DrawDib DC for streaming playback.

BOOL DrawDibStop(

        HDRAWDIB hdd
      );
 

Parameters
hdd

Handle of a DrawDib DC.
 

Return Values
Returns TRUE if successful or FALSE otherwise.



DrawDibTime      

  

The DrawDibTime function retrieves timing information about the drawing operation and is used during 
debug operations.

BOOL DrawDibTime(

        HDRAWDIB hdd,
        LPDRAWDIBTIME lpddtime
      );
 

Parameters
hdd

Handle of a DrawDib DC.

lpddtime

Address of a DRAWDIBTIME structure.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This function is present only in the debug version of the Win32 Software Development Kit libraries.

See Also
DRAWDIBTIME



EditStreamClone      

  

The EditStreamClone function creates a duplicate editable stream.

STDAPI EditStreamClone(

        PAVISTREAM pavi,
        PAVISTREAM * ppResult
      );
 

Parameters
pavi

Handle of an editable stream that will be copied.

ppResult

Address to contain the new stream handle. 
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The editable stream that is being cloned must have been created by the CreateEditableStream function 
or one of the stream editing functions.

The new stream can be treated as any other AVI stream.

See Also
CreateEditableStream



EditStreamCopy      

  

The EditStreamCopy function copies an editable stream (or a portion of it) into a temporary stream.

STDAPI EditStreamCopy(

        PAVISTREAM pavi,
        LONG * plStart,
        LONG * plLength,
        PAVISTREAM * ppResult
      );
 

Parameters
pavi

Handle of the stream being copied.

plStart

Starting position within the stream being copied. The starting position is returned.

plLength

Amount of data to copy from the stream referenced by pavi. The length of the copied data is returned.

ppResult

Address to contain the handle created for the new stream.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The stream that is copied must be created by the CreateEditableStream function or one of the stream 
editing functions.

The temporary stream can be treated as any other AVI stream.

See Also
CreateEditableStream



EditStreamCut      

  

The EditStreamCut function deletes all or part of an editable stream and creates a temporary editable 
stream from the deleted portion of the stream.

STDAPI EditStreamCut(

        PAVISTREAM pavi,
        LONG * plStart,
        LONG * plLength,
        PAVISTREAM * ppResult
      );
 

Parameters
pavi

Handle of the stream being edited.

plStart

Starting position of the data to cut from the stream referenced by pavi.

plLength

Amount of data to cut from the stream referenced by pavi.

ppResult

Address of the handle created for the new stream.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The stream being edited must have been created by the CreateEditableStream function or one of the 
stream editing functions.

The temporary stream is an editable stream and can be treated as any other AVI stream. An application 
must release the temporary stream to free the resources associated with it.

See Also
CreateEditableStream



EditStreamPaste      

  

The EditStreamPaste function copies a stream (or a portion of it) from one stream and pastes it within 
another stream at a specified location. 

STDAPI EditStreamPaste(

        PAVISTREAM pavi,
        LONG * plPos,
        LONG * plLength,
        PAVISTREAM pstream,
        LONG lStart,
        LONG lLength
      );
 

Parameters
pavi

Handle of an editable stream that will receive the copied stream data. 

plPos

Starting position to paste the data within the destination stream (referenced by pavi).

plLength

Address to contain the amount of data pasted in the stream.

pstream

Handle of a stream supplying the data to paste. This stream does not need to be an editable stream.

lStart

Starting position of the data to copy within the source stream.

lLength

Amount of data to copy from the source stream. If lLength is -1, the entire stream referenced by 
pstream is pasted in the other stream. 

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The stream referenced by pavi must have been created by the CreateEditableStream function or one of 
the stream editing functions.

This function inserts data into the specified stream as a continuous block of data. It opens the specified 
data stream at the insertion point, pastes the specified stream segment at the insertion point, and 
appends the stream segment that trails the insertion point to the end of pasted segment.

See Also
CreateEditableStream



EditStreamSetInfo      

  

The EditStreamSetInfo function changes characteristics of an editable stream.

SDTAPI EditStreamSetInfo(

        PAVISTREAM pavi,
        AVISTREAMINFO * lpInfo,
        LONG cbInfo
      );
 

Parameters
pavi

Handle of an open stream.

lpInfo

Address of an AVISTREAMINFO structure containing new information.

cbInfo

Size, in bytes, of the structure pointed to by lpInfo.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
You must supply information for the entire AVISTREAMINFO structure, including the members you will 
not use. You can use the AVIStreamInfo function to initialize the structure and then update selected 
members with your data.

This function does not change the following members:

dwCaps
dwEditCount
dwFlags
dwInitialFrames
dwLength
dwSampleSize
dwSuggestedBufferSize
fccHandler
fccType

The function changes the following members: 

dwRate
dwQuality
dwScale
dwStart
rcFrame
szName



wLanguage
wPriority

Seee Also
AVISTREAMINFO, AVIStreamInfo



EditStreamSetName      

  

The EditStreamSetName function assigns a descriptive string to a stream.

SDTAPI EditStreamSetName(

        PAVISTREAM pavi,
        LPCSTR lpszName
      );
 

Parameters
pavi

Handle of an open stream.

lpszName

Null-terminated string containing the description of the stream.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
This function updates the szName member of the AVISTREAMINFO structure.

See Also
AVISTREAMINFO



GetOpenFileNamePreview      

  

The GetOpenFileNamePreview function selects a file by using the Open dialog box. The dialog box also 
allows the user to preview the currently specified AVI file. This function augments the capability found in 
the GetOpenFileName function.

BOOL GetOpenFileNamePreview(

        LPOPENFILENAME lpofn
      );
 

Parameters
lpofn

Address of an OPENFILENAME structure used to initialize the dialog box. On return, the structure 
contains information about the user's file selection.

 

Return Values
Returns a handle to the selected file.

See Also
GetOpenFileName, OPENFILENAME



GetSaveFileNamePreview      

  

The GetSaveFileNamePreviewfunction selects a file by using the SaveAs dialog box. The dialog box 
also allows the user to preview the currently specified file. This function augments the capability found in 
the GetSaveFileName function.

BOOL GetSaveFileNamePreview(

        LPOPENFILENAME lpofn
      );
 

Parameters
lpofn

Address of an OPENFILENAME structure used to initialize the dialog box. On return, the structure 
contains information about the user's file selection.

 

Return Values
Returns a handle to the selected file.

See Also
GetSaveFileName, OPENFILENAME



ICClose      

  

The ICClose function closes a compressor or decompressor.

LRESULT ICClose(

        HIC hic
      );
 

Parameters
hic

Handle of a compressor or decompressor.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.



ICCompress      

  

The ICCompress function compresses a single video image.

DWORD ICCompress(

        HIC hic,
        DWORD dwFlags,
        LPBITMAPINFOHEADER lpbiOutput,
        LPVOID lpData,
        LPBITMAPINFOHEADER lpbiInput,
        LPVOID lpBits,
        LPDWORD lpckid,
        LPDWORD lpdwFlags,
        LONG lFrameNum,
        DWORD dwFrameSize,
        DWORD dwQuality,
        LPBITMAPINFOHEADER lpbiPrev,
        LPVOID lpPrev
      );
 

Parameters
hic

Handle of the compressor to use.

dwFlags

Compression flag. The following value is defined:

ICCOMPRESS_KEYFRAME

Compressor should make this frame a key frame.

lpbiOutput

Address of a BITMAPINFO structure containing the output format.

lpData

Address of an output buffer large enough to contain a compressed frame.

lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpBits

Address of the input buffer.

lpckid

Reserved; do not use.

lpdwFlags

Address of the return flags used in the AVI index. The following value is defined:

AVIIF_KEYFRAME



Current frame is a key frame.

lFrameNum

Frame number.

dwFrameSize

Requested frame size, in bytes. Specify a nonzero value if the compressor supports a suggested 
frame size, as indicated by the presence of the VIDCF_CRUNCH flag returned by the ICGetInfo 
function. If this flag is not set or a data rate for the frame is not specified, specify zero for this 
parameter.

A compressor might have to sacrifice image quality or make some other trade-off to obtain the size 
goal specified in this parameter.

dwQuality

Requested quality value for the frame. Specify a nonzero value if the compressor supports a 
suggested quality value, as indicated by the presence of the VIDCF_QUALITY flag returned by 
ICGetInfo. Otherwise, specify zero for this parameter.

lpbiPrev

Address of a BITMAPINFO structure containing the format of the previous frame. 

lpPrev

Address of the uncompressed image of the previous frame. This parameter is not used for fast 
temporal compression. Specify NULL for this parameter when compressing a key frame, if the 
compressor does not support temporal compression, or if the compressor does not require an 
external buffer to store the format and data of the previous image.

 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
You can obtain the required by size of the output buffer by sending the ICM_COMPRESS_GET_SIZE 
message (or by using the ICCompressGetSize macro).

The compressor sets the contents of lpdwFlags to AVIIF_KEYFRAME when it creates a key frame. If your 
application creates AVI files, it should save the information returned for lpckid and lpdwFlags in the file. 

Compressors use lpbiPrev and lpPrev to perform temporal compression and require an external buffer to 
store the format and data of the previous frame. Specify NULL for lpbiPrev and lpPrev when compressing 
a key frame, when performing fast compression, or if the compressor has its own buffer to store the 
format and data of the previous image. Specify non-NULL values for these parameters if ICGetInfo 
returns the VIDCF_TEMPORAL flag, the compressor is performing normal compression, and the frame to 
compress is not a key frame. 

See Also
ICGetInfo, BITMAPINFO, ICM_COMPRESS_GET_SIZE 



ICCompressorChoose      

  

The ICCompressorChoose function displays a dialog box in which a user can select a compressor. This 
function can display all registered compressors or list only the compressors that support a specific format. 

BOOL ICCompressorChoose(

        HWND hwnd,
        UINT uiFlags,
        LPVOID pvIn,
        LPVOID lpData,
        PCOMPVARS pc,
        LPSTR lpszTitle
      );
 

Parameters
hwnd

Handle of a parent window for the dialog box.

uiFlags

Applicable flags. The following values are defined: 

ICMF_CHOOSE_ALLCOMPRESSORS

All compressors should appear in the selection list. If this flag is not specified, only the 
compressors that can handle the input format appear in the selection list.

ICMF_CHOOSE_DATARATE

Displays a check box and edit box to enter the data rate for the movie.

ICMF_CHOOSE_KEYFRAME

Displays a check box and edit box to enter the frequency of key frames.

ICMF_CHOOSE_PREVIEW

Displays a button to expand the dialog box to include a preview window. The preview window 
shows how frames of your movie will appear when compressed with the current settings.

pvIn

Uncompressed data input format. Only compressors that support the specified data input format are 
included in the compressor list. This parameter is optional.

lpData

Address of an AVI stream interface to use in the preview window. You must specify a video stream. 
This parameter is optional.

pc

Address of a COMPVARS structure. The information returned initializes the structure for use with 
other functions.

lpszTitle

Address of a null-terminated string containing a title for the dialog box. This parameter is optional.



 

Return Values
Returns TRUE if the user chooses a compressor and presses OK. Returns FALSE on error or if the user 
presses CANCEL.

Remarks
Before using this function, set the cbSize member of the COMPVARS structure to the size of the 
structure. Initialize the rest of the structure to zeros unless you want to specify some valid defaults for the 
dialog box. If specifying defaults, set the dwFlags member to ICMF_COMPVARS_VALID and initialize 
the other members of the structure. For more information about initializing the structure, see the    
ICSeqCompressFrameStart function and COMPVARS.

See Also
COMPVARS, ICSeqCompressFrameStart



ICCompressorFree      

  

The ICCompressorFree function frees the resources in the COMPVARS structure used by other VCM 
functions.

void ICCompressorFree(

        PCOMPVARS pc
      );
 

Parameters
pc

Address of the COMPVARS structure containing the resources to be freed.
 

Return Values
This function does not return a value.

Remarks
Use this function to release the resources in the COMPVARS structure after using the 
ICCompressorChoose, ICSeqCompressFrameStart, ICSeqCompressFrame, and 
ICSeqCompressFrameEnd functions.

See Also
COMPVARS, ICCompressorChoose, ICSeqCompressFrameStart, ICSeqCompressFrame,    
ICSeqCompressFrameEnd



ICDecompress      

  

The ICDecompress function decompresses a single video frame.

DWORD ICDecompress(

        HIC hic,
        DWORD dwFlags,
        LPBITMAPINFOHEADER lpbiFormat,
        LPVOID lpData,
        LPBITMAPINFOHEADER lpbi,
        LPVOID lpBits
      );
 

Parameters
hic

Handle of the decompressor to use.

dwFlags

Applicable decompression flags. The following values are defined:

ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer 
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME

Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME

Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL

Current frame precedes the point in the movie where playback starts and, therefore, will not be 
drawn.

ICDECOMPRESS_UPDATE

Screen is being updated or refreshed.

lpbiFormat

Address of a BITMAPINFO structure containing the format of the compressed data.

lpData

Address of the input data.

lpbi

Address of a BITMAPINFO structure containing the output format.

lpBits

Address of a buffer that is large enough to contain the decompressed data. 
 



Return Values
Returns ICERR_OK if successful or an error otherwise.

See Also
BITMAPINFO



ICDecompressEx      

  

The ICDecompressEx function decompresses a single video frame.

DWORD ICDecompressEx(

        HIC hic,
        DWORD dwFlags,
        LPBITMAPINFOHEADER lpbiSrc,
        LPVOID lpSrc,
        int xSrc,
        int ySrc,
        int dxSrc,
        int dySrc,
        LPBITMAPINFOHEADER lpbiDst,
        LPVOID lpDst,
        int xDst,
        int yDst,
        int dxDst,
        int dyDst
      );
 

Parameters
hic

Handle of the decompressor.

dwFlags

Decompression flags. The following values are defined:

ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer 
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME

Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME

Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL

Current frame precedes the point in the movie where playback starts and, therefore, will not be 
drawn.

ICDECOMPRESS_UPDATE

Screen is being updated or refreshed.

lpbiSrc

Address of a BITMAPINFOHEADER structure containing the format of the compressed data.

lpSrc



Address of the input data.

xSrc, ySrc

The x- and y- coordinates of the source rectangle for the DIB specified by lpbiSrc.

dxSrc, dySrc

Width and height of the source rectangle.

lpbiDst

Address of a BITMAPINFOHEADER structure containing the output format.

lpDst

Address of a buffer that is large enough to contain the decompressed data.

xDst, yDst

The x- and y-coordinates of the destination rectangle for the DIB specified by lpbiDst.

dxDst, dyDst

Width and height of the destination rectangle.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
Typically, applications use the ICDECOMPRESS_PREROLL flag to seek to a key frame in a compressed 
stream. The flag is sent with the key frame and with subsequent frames required to decompress the 
desired frame. 

See Also
BITMAPINFOHEADER 



ICDecompressExBegin      

  

The ICDecompressExBegin function prepares a decompressor for decompressing data.

DWORD ICDecompressExBegin(

        HIC hic,
        DWORD dwFlags,
        LPBITMAPINFOHEADER lpbiSrc,
        LPVOID lpSrc,
        int xSrc,
        int ySrc,
        int dxSrc,
        int dySrc,
        LPBITMAPINFOHEADER lpbiDst,
        LPVOID lpDst,
        int xDst,
        int yDst,
        int dxDst,
        int dyDst
      );
 

Parameters
hic

Handle of the decompressor to use.

dwFlags

Decompression flags. The following values are defined:

ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer 
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME

Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME

Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL

Current frame precedes the point in the movie where playback starts and, therefore, will not be 
drawn.

ICDECOMPRESS_UPDATE

Screen is being updated or refreshed.

lpbiSrc

Address of a BITMAPINFOHEADER structure containing the format of the compressed data.

lpSrc



Address of the input data.

xSrc, ySrc

The x- and y-coordinates of the source rectangle for the DIB specified by lpbiSrc.

dxSrc, dySrc

Width and height of the source rectangle.

lpbiDst

Address of a BITMAPINFOHEADER structure containing the output format.

lpDst

Address of a buffer that is large enough to contain the decompressed data.

xDst, yDst

The x- and y-coordinates of the destination rectangle for the DIB specified by lpbiDst.

dxDst, dyDst

Width and height of the destination rectangle.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

See Also
BITMAPINFOHEADER 



ICDecompressExQuery      

  

The ICDecompressExQuery function determines if a decompressor can decompress data with a specific 
format.

DWORD ICDecompressExQuery(

        HIC hic,
        DWORD dwFlags,
        LPBITMAPINFOHEADER lpbiSrc,
        LPVOID lpSrc,
        int xSrc,
        int ySrc,
        int dxSrc,
        int dySrc,
        LPBITMAPINFOHEADER lpbiDst,
        LPVOID lpDst,
        int xDst,
        int yDst,
        int dxDst,
        int dyDst
      );
 

Parameters
hic

Handle of the decompressor to use.

dwFlags

Reserved; do not use. 

lpbiSrc

Address of a BITMAPINFOHEADER structure containing the format of the compressed data to 
decompress.

lpSrc

Reserved; must be NULL.

xSrc, ySrc

The x- and y-coordinates of the source rectangle for the DIB specified by lpbiSrc.

dxSrc, dySrc

Width and height of the source rectangle.

lpbiDst

Address of a BITMAPINFOHEADER structure containing the output format. If the value of this 
parameter is NULL, the function determines whether the input format is supported and this parameter 
is ignored.

lpDst

Address of a buffer that is large enough to contain the decompressed data.



xDst, yDst

The x- and y-coordinates of the destination rectangle for the DIB specified by lpbiDst.

dxDst, dyDst

Width and height of the destination rectangle.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

See Also
BITMAPINFOHEADER 



ICDraw      

  

The ICDraw function decompresses an image for drawing.

DWORD ICDraw(

        HIC hic,
        DWORD dwFlags,
        LPVOID lpFormat,
        LPVOID lpData,
        DWORD cbData,
        LONG lTime
      );
 

Parameters
hic

Handle of an decompressor.

dwFlags

Decompression flags. The following values are defined: 

ICDRAW_HURRYUP

Data is buffered and not drawn to the screen. Use this flag for fastest decompression. 

ICDRAW_NOTKEYFRAME

Current frame is not a key frame.

ICDRAW_NULLFRAME

Current frame does not contain any data and the previous frame should be redrawn.

ICDRAW_PREROLL

Current frame of video occurs before playback should start. For example, if playback will begin on 
frame 10, and frame 0 is the nearest previous key frame, frames 0 through 9 are sent to the driver 
with the ICDRAW_PREROLL flag set. The driver needs this data to display frame 10 properly.

ICDRAW_UPDATE

Updates the screen based on previously received data. Set lpData to NULL when this flag is used.

lpFormat

Address of a BITMAPINFOHEADER structure containing the input format of the data.

lpData

Address of the input data.

cbData

Size of the input data, in bytes.

lTime

Time, in samples, to draw this frame. The units for video data are frames. For a definition of the 
playback rate, see the dwRate and dwScale members of the ICDRAWBEGIN structure.



 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
You can initiate drawing the frames by sending the ICM_DRAW_START message (or by using the 
ICDrawStart macro). The application should be sure to buffer the required number of frames before 
drawing is started. Send the KM_GETBUFFERSWANTED message (or use the ICGetBuffersWanted 
macro) to obtain this value.

See Also
BITMAPINFOHEADER, ICDRAWBEGIN, ICM_DRAW_START



ICDrawBegin      

  

The ICDrawBegin function initializes the renderer and prepares the drawing destination for drawing. 

DWORD ICDrawBegin(

        HIC hic,
        DWORD dwFlags,
        HPALETTE hpal,
        HWND hwnd,
        HDC hdc,
        int xDst,
        int yDst,
        int dxDst,
        int dyDst,
        LPBITMAPINFOHEADER lpbi,
        int xSrc,
        int ySrc,
        int dxSrc,
        int dySrc,
        DWORD dwRate,
        DWORD dwScale
      );
 

Parameters
hic

Handle of the decompressor to use.

dwFlags

Decompression flags. The following values are defined:

ICDRAW_ANIMATE

Application can animate the palette.

ICDRAW_CONTINUE

Drawing is a continuation of the previous frame.

ICDRAW_FULLSCREEN

Draws the decompressed data on the full screen.

ICDRAW_HDC

Draws the decompressed data to a window or a DC.

ICDRAW_MEMORYDC

DC is off-screen.

ICDRAW_QUERY

Determines if the decompressor can decompress the data. The driver does not decompress the 
data.

ICDRAW_UPDATING



Current frame is being updated rather than played.

hpal

Handle of the palette used for drawing.

hwnd

Handle of the window used for drawing.

hdc

DC used for drawing.

xDst, yDst

The x- and y-coordinates of the upper right corner of the destination rectangle.

dxDst, dyDst

Width and height of the destination rectangle.

lpbi

Address of a BITMAPINFO structure containing the format of the input data to be decompressed.

xSrc, ySrc

The x- and y-coordinates of the upper right corner of the source rectangle.

dxSrc, dySrc

Width and height of the source rectangle.

dwRate

Frame rate numerator. The frame rate, in frames per second, is obtained by dividing dwRate by 
dwScale.

dwScale

Frame rate denominator. The frame rate, in frames per second, is obtained by dividing dwRate by 
dwScale. 

 

Return Values
Returns ICERR_OK if the renderer can decompress the data or ICERR_UNSUPPORTED otherwise.

Remarks
The ICDRAW_HDC and ICDRAW_FULLSCREEN flags are mutually exclusive. If an application sets the 
ICDRAW_HDC flag in dwFlags, the decompressor uses hwnd, hdc, and the parameters defining the 
destination rectangle (xDst, yDst, dxDst, and dyDst). Your application should set these parameters to the 
size of the destination rectangle. Specify destination rectangle values relative to the current window or 
DC.

If an application sets the ICDRAW_FULLSCREEN flag in dwFlags, the hwnd and hdc parameters are not 
used and should be set to NULL. Also, the destination rectangle is not used and its parameters can be set 
to zero.

The source rectangle is relative to the full video frame. The portion of the video frame specified by the 
source rectangle is stretched or shrunk to fit the destination rectangle.

The dwRate and dwScale parameters specify the decompression rate. The integer value specified for 
dwRate divided by the integer value specified for dwScale defines the frame rate in frames per second. 
This value is used by the renderer when it is responsible for timing frames during playback. 



See Also
BITMAPINFO



ICDrawSuggestFormat      

  

The ICDrawSuggestFormat function notifies the drawing handler to suggest the input data format.

DWORD ICDrawSuggestFormat(

        HIC hic,
        LPBITMAPINFOHEADER lpbiIn,
        LPBITMAPINFOHEADER lpbiOut,
        int dxSrc,
        int dySrc,
        int dxDst,
        int dyDst,
        HIC hicDecompressor
      );
 

Parameters
hic

Handle of the driver to use.

lpbiIn

Address of a structure containing the format of the compressed data. For bitmaps, this is a 
BITMAPINFOHEADER structure.

lpbiOut

Address of a structure to return the suggested format. The drawing handler can receive and draw 
data from this format. For bitmaps, this is a BITMAPINFOHEADER structure.

dxSrc, dySrc

Width and height of the source rectangle.

dxDst, dyDst

Width and height of the destination rectangle.

hicDecompressor

Decompressor that can use the format of data in lpbiIn.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
Applications can use this function to determine alternative input formats that a drawing handler can 
decompress and if the drawing handler can stretch data. If the drawing handler cannot stretch data as 
requested, the application might have to stretch the data.

If the drawing handler cannot decompress a format provided by an application, use the ICDecompress, 
ICDecompressEx, ICDecompressExBegin, ICDecompressExQuery, and ICDecompressOpen 
functions to obtain alternate formats.



See Also
BITMAPINFOHEADER, ICDecompress, ICDecompressEx, ICDecompressExBegin, 
ICDecompressExQuery, ICDecompressOpen



ICGetDisplayFormat      

  

The ICGetDisplayFormat function determines the best format available for displaying a compressed 
image. The function also opens a compressor if a handle of an open compressor is not specified.

HIC ICGetDisplayFormat(

        HIC hic,
        LPBITMAPINFOHEADER lpbiIn,
        LPBITMAPINFOHEADER lpbiOut,
        int BitDepth,
        int dx,
        int dy
      );
 

Parameters
hic

Handle of the compressor to use. Specify NULL to have VCM select and open an appropriate 
compressor.

lpbiIn

Address of BITMAPINFOHEADER structure containing the compressed format.

lpbiOut

Address of a buffer to return the decompressed format. The buffer should be large enough for a 
BITMAPINFOHEADER structure and 256 color entries.

BitDepth

Preferred bit depth, if nonzero.

dx, dy

Width and height multipliers to stretch the image. If this parameter is zero, that dimension is not 
stretched.

 

Return Values
Returns a handle to a decompressor if successful or zero otherwise.

See Also
BITMAPINFOHEADER 



ICGetInfo      

  

The ICGetInfo function obtains information about a compressor.

LRESULT ICGetInfo(

        HIC hic,
        ICINFO * lpicinfo,
        DWORD cb
      );
 

Parameters
hic

Handle of a compressor.

lpicinfo

Address of the ICINFO structure to return information about the compressor.

cb

Size, in bytes, of the structure pointed to by lpicinfo.
 

Return Values
Returns the number of bytes copied into the structure or zero if an error occurs.

See Also
ICINFO



ICImageCompress      

  

The ICImageCompress function compresses an image to a given size. This function does not require 
initialization functions.

HANDLE ICImageCompress(

        HIC hic,
        UINT uiFlags,
        LPBITMAPINFO lpbiIn,
        LPVOID lpBits,
        LPBITMAPINFO lpbiOut,
        LONG lQuality,
        LONG * plSize
      );
 

Parameters
hic

Handle of a compressor opened with the ICOpen function. Specify NULL to have VCM select an 
appropriate compressor for the compression format. An application can have the user select the 
compressor by using the ICCompressorChoose function, which opens the selected compressor and 
returns a handle of the compressor in this parameter.

uiFlags

Reserved; must be zero.

lpbiIn

Address of the BITMAPINFO structure containing the input data format.

lpBits

Address of input data bits to compress. The data bits exclude header and format information.

lpbiOut

Address of the BITMAPINFO structure containing the compressed output format. Specify NULL to 
have the compressor use an appropriate format.

lQuality

Quality value used by the compressor. Values range from 0 to 10,000.

plSize

Maximum size desired for the compressed image. The compressor might not be able to compress the 
data to fit within this size. When the function returns, this parameter points to the size of the 
compressed image. Image sizes are specified in bytes.

 

Return Values
Returns a handle to a compressed DIB. The image data follows the format header.

Remarks
To obtain the format information from the LPBITMAPINFOHEADER structure, use the GlobalLock 



function to lock the data. Use the GlobalFree function to free the DIB when you are finished.

See Also
ICOpen, ICCompressorChoose, BITMAPINFO, GlobalLock, GlobalFree



ICImageDecompress      

  

The ICImageDecompress function decompresses an image without using initialization functions.

HANDLE ICImageDecompress(

        HIC hic,
        UINT uiFlags,
        LPBITMAPINFO lpbiIn,
        LPVOID lpBits,
        LPBITMAPINFO lpbiOut
      );
 

Parameters
hic

Handle of a decompressor opened with the ICOpen function. Specify NULL to have VCM select an 
appropriate decompressor for the compressed image. 

uiFlags

Reserved; must be zero.

lpbiIn

Compressed input data format.

lpBits

Address of input data bits to compress. The data bits exclude header and format information.

lpbiOut

Decompressed output format. Specify NULL to let decompressor use an appropriate format.
 

Return Values
Returns a handle to an uncompressed DIB in the CF_DIB format if successful or NULL otherwise. Image 
data follows the format header.

Remarks
To obtain the format information from the LPBITMAPINFOHEADER structure, use the GlobalLock 
function to lock the data. Use the GlobalFree function to free the DIB when you are finished.

See Also
ICOpen, GlobalLock, GlobalFree



ICInfo      

  

The ICInfo function retrieves information about specific installed compressors or enumerates the installed 
compressors.

BOOL ICInfo(

        DWORD fccType,
        DWORD fccHandler,
        ICINFO * lpicinfo
      );
 

Parameters
fccType

Four-character code indicating the type of compressor. Specify zero to match all compressor types.

fccHandler

Four-character code identifying a specific compressor or a number between zero and the number of 
installed compressors of the type specified by fccType.

lpicinfo

Address of a ICINFO structure to return information about the compressor.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
To enumerate the compressors or decompressors, specify an integer for fccHandler. This function returns 
information for integers between zero and the number of installed compressors or decompressors of the 
type specified for fccType. 

See Also
ICINFO



ICInstall      

  

The ICInstall function installs a new compressor or decompressor.

BOOL ICInstall(

        DWORD fccType,
        DWORD fccHandler,
        LPARAM lParam,
        LPSTR szDesc,
        UINT wFlags
      );
 

Parameters
fccType

Four-character code indicating the type of data used by the compressor or decompressor. Specify 
"VIDC" for a video compressor or decompressor.

fccHandler

Four-character code identifying a specific compressor or decompressor.

lParam

Address of a null-terminated string containing the name of the compressor or decompressor, or the 
address of a function used for compression or decompression. The contents of this parameter are 
defined by the flags set for wFlags.

szDesc

Reserved; do not use.

wFlags

Flags defining the contents of lParam. The following values are defined:

ICINSTALL_DRIVER

The lParam parameter contains the address of a 
null-terminated string that names the compressor to install.

ICINSTALL_FUNCTION

The lParam parameter contains the address of a compressor function. This function should be 
structured like the DriverProc entry point function used by compressors.

 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
Applications must open an installed compressor or decompressor before using it.

If your application installs a function as a compressor or decompressor, it should remove the function with 
the ICRemove function before it terminates. This prevents other applications from trying to access the 
function when it is not available.



See Also
DriverProc, ICRemove



ICLocate      

  

The ICLocate function finds a compressor or decompressor that can handle images with the specified 
formats, or finds a driver that can decompress an image with a specified format directly to hardware.

HIC ICLocate(

        DWORD fccType,
        DWORD fccHandler,
        LPBITMAPINFOHEADER lpbiIn,
        LPBITMAPINFOHEADER lpbiOut,
        WORD wFlags
      );
 

Parameters
fccType

Four-character code indicating the type of compressor or decompressor to open. For video streams, 
the value of this parameter is "VIDC".

fccHandler

Preferred handler of the specified type. Typically, the handler type is stored in the stream header in an 
AVI file. Specify NULL if your application can use any handler type or it does not know the handler 
type to use.

lpbiIn

Address of a BITMAPINFOHEADER structure defining the input format. A compressor handle is not 
returned unless it supports this format.

lpbiOut

Address of a BITMAPINFOHEADER structure defining an optional decompressed format. You can 
also specify zero to use the default output format associated with the input format.

If this parameter is nonzero, a compressor handle is not returned unless it can create this output 
format.

wFlags

Flags that describe the search criteria for a compressor or decompressor. The following values are 
defined:

ICMODE_COMPRESS

Finds a compressor that can compress an image with a format defined by lpbiIn to the format 
defined by lpbiOut.

ICMODE_DECOMPRESS

Finds a decompressor that can decompress an image with a format defined by lpbiIn to the format 
defined by lpbiOut.

ICMODE_DRAW

Finds a decompressor that can decompress an image with a format defined by lpbiIn and draw it 
directly to hardware.

ICMODE_FASTCOMPRESS



Has the same meaning as ICMODE_COMPRESS except the compressor is used for a real-time 
operation and emphasizes speed over quality.

ICMODE_FASTDECOMPRESS

Has the same meaning as ICMODE_DECOMPRESS except the decompressor is used for a real-
time operation and emphasizes speed over quality.

 

Return Values
Returns a handle to a compressor or decompressor if successful or zero otherwise.

See Also
BITMAPINFOHEADER



ICOpen      

  

The ICOpen function opens a compressor or decompressor.

HIC ICOpen(

        DWORD fccType,
        DWORD fccHandler,
        UINT wMode
      );
 

Parameters
fccType

Four-character code indicating the type of compressor or decompressor to open. For video streams, 
the value of this parameter is "VIDC". 

fccHandler

Preferred handler of the specified type. Typically, the handler type is stored in the stream header in an 
AVI file.

wMode

Flag defining the use of the compressor or decompressor. The following values are defined:

ICMODE_COMPRESS

Compressor will perform normal compression.

ICMODE_DECOMPRESS

Decompressor will perform normal decompression.

ICMODE_DRAW

Decompressor will decompress and draw the data directly to hardware.

ICMODE_FASTCOMPRESS

Compressor will perform fast (real-time) compression.

ICMODE_FASTDECOMPRESS

Decompressor will perform fast (real-time) decompression.

ICMODE_QUERY

Queries the compressor or decompressor for information.
 

Return Values
Returns a handle to a compressor or decompressor if successful or zero otherwise.



ICOpenFunction      

  

The ICOpenFunction function opens a compressor or decompressor defined as a function.

HIC ICOpenFunction(

        DWORD fccType,
        DWORD fccHandler,
        UINT wMode,
        FARPROC lpfnHandler
      );
 

Parameters
fccType

Type of compressor to open. For video, the value of this parameter is ICTYPE_VIDEO.

fccHandler

Preferred handler of the specified type. Typically, this comes from the stream header in an AVI file.

wMode

Flag to define the use of the compressor or decompressor. The following values are defined:

ICMODE_COMPRESS

Compressor will perform normal compression.

ICMODE_DECOMPRESS

Decompressor will perform normal decompression.

ICMODE_DRAW

Decompressor will decompress and draw the data directly to hardware.

ICMODE_FASTCOMPRESS

Compressor will perform fast (real-time) compression.

ICMODE_FASTDECOMPRESS

Decompressor will perform fast (real-time) decompression.

ICMODE_QUERY

Queries the compressor or decompressor for information.

lpfnHandler

Address of the function used as the compressor or decompressor.
 

Return Values
Returns a handle to a compressor or decompressor if successful or zero otherwise.



ICRemove      

  

The ICRemove function removes an installed compressor.

BOOL ICRemove(

        DWORD fccType,
        DWORD fccHandler,
        UINT wFlags
      );
 

Parameters
fccType

Four-character code indicating the type of data used by the compressor or decompressor. Specify 
"VIDC" for a video compressor or decompressor.

fccHandler

Four-character code identifying a specific compressor or a number between zero and the number of 
installed compressors of the type specified by fccType.

wFlags

Reserved; do not use.
 

Return Values
Returns TRUE if successful or FALSE otherwise.



ICSendMessage      

  

The ICSendMessage function sends a message to a compressor.

LRESULT ICSendMessage(

        HIC hic,
        UINT wMsg,
        DWORD dw1,
        DWORD dw2
      );
 

Parameters
hic

Handle of the compressor to receive the message.

wMsg

Message to send.

dw1

Additional message-specific information.

dw2

Additional message-specific information.
 

Return Values
Returns a message-specific result.



ICSeqCompressFrame      

  

The ICSeqCompressFrame function compresses one frame in a sequence of frames.

LPVOID ICSeqCompressFrame(

        PCOMPVARS pc,
        UINT uiFlags,
        LPVOID lpBits,
        BOOL * pfKey,
        LONG * plSize
      );
 

Parameters
pc

Address of a COMPVARS structure initialized with information about the compression.

uiFlags

Reserved; must be zero. 

lpBits

Address of the data bits to compress. (The data bits exclude header or format information.)

pfKey

Returns whether or not the frame was compressed into a key frame.

plSize

Maximum size desired for the compressed image. The compressor might not be able to compress the 
data to fit within this size. When the function returns, the parameter points to the size of the 
compressed image. Images sizes are specified in bytes.

 

Return Values
Returns the address of the compressed bits if successful or NULL otherwise.

Remarks
This function uses a COMPVARS structure to provide settings for the specified compressor and 
intersperses key frames at the rate specified by the ICSeqCompressorFrameStart function. You can 
specify values for the data rate for the sequence and the key-frame frequency by using the appropriate 
members of COMPVARS.

Use this function instead of the ICCompress function to compress a video sequence. 

You can allow the user to specify a compressor and initialize a COMPVARS structure by using the 
ICCompressorChoose function. Or, you can initialize a COMPVARS structure manually.

Use the ICSeqCompressFrameStart, ICSeqCompressFrame, and ICSeqCompressFrameEnd 
functions to compress a sequence of frames to a specified data rate and number of key frames. Use 
ICSeqCompressFrame once for each frame to be compressed. 



When finished with compression, use the ICCompressorFree function to release the resources specified 
by COMPVARS.

See Also
COMPVARS, ICCompress, ICCompressorChoose, ICSeqCompressFrameStart, 
ICSeqCompressFrameEnd, ICCompressorFree 



ICSeqCompressFrameEnd      

  

The ICSeqCompressFrameEnd function ends sequence compression that was initiated by using the 
ICSeqCompressFrameStart and ICSeqCompressFrame functions.

void ICSeqCompressFrameEnd(

        PCOMPVARS pc
      );
 

Parameters
pc

Address of a COMPVARS structure used during sequence compression.
 

Return Values
This function does not return a value.

Remarks
When finished with compression, use the ICCompressorFree function to release the resources specified 
by COMPVARS.

See Also
ICSeqCompressFrameStart, ICSeqCompressFrame, COMPVARS, ICCompressorFree



ICSeqCompressFrameStart      

  

The ICSeqCompressFrameStart function initializes resources for compressing a sequence of frames 
using the ICSeqCompressFrame function. 

BOOL ICSeqCompressFrameStart(

        PCOMPVARS pc,
        LPBITMAPINFO lpbiIn
      );
 

Parameters
pc

Address of a COMPVARS structure initialized with information for compression.

lpbiIn

Format of the data to be compressed.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This function uses a COMPVARS structure to provide settings for the specified compressor and 
intersperses key frames at the rate specified by the lKey member of COMPVARS. You can specify values 
for the data rate for the sequence and the key-frame frequency by using the appropriate members of 
COMPVARS.

Use the ICSeqCompressFrameStart, ICSeqCompressFrame, and ICSeqCompressFrameEnd 
functions to compress a sequence of frames to a specified data rate and number of key frames. 

When finished with compression, use the ICCompressorFree function to release the resources specified 
in COMPVARS.

COMPVARS needs to be initialized before you use this function. You can initialize the structure manually 
or you can allow the user to specify a compressor and initialize a COMPVARS structure by using the 
ICCompressorChoose function.

See Also
ICSeqCompressFrame, ICSeqCompressFrameEnd, ICCompressorFree, ICCompressorChoose, 
COMPVARS 



ICSetStatusProc      

  

The ICSetStatusProc function sends the address of a status callback function to a compressor. The 
compressor calls this function during lengthy operations.

DWORD ICSetStatusProc(

        HIC hic,
        DWORD dwFlags,
        LONG lParam,
        LONG (CALLBACK * ()) fpfnStatus
      );
 

Parameters
hic

Handle of the compressor.

dwFlags

Applicable flags. Set to zero.

lParam

Constant specified with the status callback address.

fpfnStatus

Address of the status callback function. Specify NULL to indicate no status callbacks should be sent.
 

Return Values
Returns ICERR_OK if successful or FALSE otherwise.



IOProc      

  

The IOProc function accesses a unique storage system, such as a database or file archive. You can 
install or remove this callback function by using the mmioInstallIOProc function. 

IOProc is a placeholder for the application-defined function name. The actual name must be exported by 
including it in a EXPORTS statement in the application's module-definition file.

LRESULT PASCAL IOProc(

        LPSTR lpmmioinfo,
        UINT wMsg,
        LPARAM lParam1,
        LPARAM lParam2
      );
 

Parameters
lpmmioinfo

Address of an MMIOINFO structure containing information about the open file. The I/O procedure 
must maintain the lDiskOffset member in this structure to indicate the file offset to the next read or 
write location. The I/O procedure can use the adwInfo member to store state information. The I/O 
procedure should not modify any other members of the MMIOINFO structure.

wMsg

Message indicating the requested I/O operation. Messages that can be received include 
MMIOM_OPEN, MMIOM_CLOSE, MMIOM_READ, MMIOM_WRITE, and MMIOM_SEEK.

lParam1 and lParam2

Parameters for the message.
 

Return Values
Returns a value that corresponds to the message specified by wMsg. If the I/O procedure does not 
recognize a message, it should return zero.

Remarks
The four-character code specified by the fccIOProc member of the MMIOINFO structure associated with 
a file identifies a filename extension for a custom storage system. When an application calls the 
mmioOpen function with a filename such as EXAMPLE.XYZ! ABC, the I/O procedure associated with the 
four-character code "XYZ" is called to open the ABC element of the file EXAMPLE.XYZ.

The mmioInstallIOProc function maintains a separate list of installed I/O procedures for each Windows 
application. Therefore, different applications can use the same I/O procedure identifier for different I/O 
procedures without conflict. 

If an application calls mmioInstallIOProc more than once to register the same I/O procedure, it must call 
this function to remove the procedure once for each time it installed the procedure.

The mmioInstallIOProc function does not prevent an application from installing two different I/O 
procedures with the same identifier, or installing an I/O procedure with one of the predefined identifiers 



(DOS or MEM). The most recently installed procedure takes precedence, and the most recently installed 
procedure is the first one to be removed.

When searching for a specified I/O procedure, local procedures are searched first, then global 
procedures.

See Also
mmioInstallIOProc, MMIOINFO, MMIOM_OPEN, MMIOM_CLOSE, MMIOM_READ, MMIOM_WRITE, 
MMIOM_SEEK, mmioOpen, ABC 



joyGetDevCaps      

  

The joyGetDevCaps function queries a joystick to determine its capabilities.

MMRESULT joyGetDevCaps(

        UINT uJoyID,
        LPJOYCAPS pjc,
        UINT cbjc
      );
 

Parameters
uJoyID

Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be queried.

pjc

Address of a JOYCAPS structure to contain the capabilities of the joystick.

cbjc

Size, in bytes, of the JOYCAPS structure.
 

Return Values
Returns JOYERR_NOERROR if successful or one of the following error values:

Remarks
Use the joyGetNumDevs function to determine the number of joystick devices supported by the driver.

MMSYSERR_NODRIVER The joystick driver is not present.

MMSYSERR_INVALPARAM An invalid parameter was passed.
 

See Also
JOYCAPS, joyGetNumDevs



joyGetNumDevs      

  

The joyGetNumDevs function queries the joystick driver for the number of joysticks it supports.

UINT joyGetNumDevs(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns the number of joysticks supported by the joystick driver or zero if no driver is present.

Remarks
Use the joyGetPos function to determine whether a given joystick is physically attached to the system. If 
the specified joystick is not connected, joyGetPos returns a JOYERR_UNPLUGGED error value.

See Also
joyGetPos



joyGetPos      

  

The joyGetPos function queries a joystick for its position and button status.

MMRESULT joyGetPos(

        UINT uJoyID,
        LPJOYINFO pji
      );
 

Parameters
uJoyID

Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be queried.

pji

Address of a JOYINFO structure that contains the position and button status of the joystick.
 

Return Values
Returns JOYERR_NOERROR if successful or one of the following error values:

MMSYSERR_NODRIVER The joystick driver is not present.

MMSYSERR_INVALPARAMAn invalid parameter was passed.

JOYERR_UNPLUGGED The specified joystick is not connected 
to the system.

 

Remarks
For devices that have four to six axes of movement, a point-of-view control, or more than four buttons, 
use the joyGetPosEx function.

See Also
JOYINFO, joyGetPosEx



joyGetPosEx      

  

The joyGetPosEx function queries a joystick for its position and button status.

MMRESULT joyGetPosEx(

        UINT uJoyID,
        LPJOYINFOEX pji
      );
 

Parameters
uJoyID

Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be queried.

pji

Address of a JOYINFOEX structure that contains extended position information and button status of 
the joystick.

 

Return Values
Returns JOYERR_NOERROR if successful or one of the following error values:

MMSYSERR_NODRIVER The joystick driver is not present.

MMSYSERR_INVALPARAM An invalid parameter was passed.

MMSYSERR_BADDEVICEID The specified joystick identifier is 
invalid. 

JOYERR_UNPLUGGED The specified joystick is not connected 
to the system.

 

Remarks
This function provides access to extended devices such as rudder pedals, point-of-view hats, devices 
with a large number of buttons, and coordinate systems using up to six axes. For joystick devices that use 
three axes or fewer and have fewer than four buttons, use the joyGetPos function.

See Also
JOYINFOEX, joyGetPos



joyGetThreshold      

  

The joyGetThreshold function queries a joystick for its current movement threshold.

MMRESULT joyGetThreshold(

        UINT uJoyID,
        LPUINT puThreshold
      );
 

Parameters
uJoyID

Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be queried.

puThreshold

Address of a variable that contains the movement threshold value.
 

Return Values
Returns JOYERR_NOERROR if successful or one of the following error values:

MMSYSERR_NODRIVER The joystick driver is not present.

MMSYSERR_INVALPARA
M

An invalid parameter was passed.

 

Remarks
The movement threshold is the distance the joystick must be moved before a WM_JOYMOVE message 
is sent to a window that has captured the device. The threshold is initially zero.



joyReleaseCapture      

  

The joyReleaseCapture function releases the specified captured joystick.

MMRESULT joyReleaseCapture(

        UINT uJoyID
      );
 

Parameters
uJoyID

Identifier of the joystick (JOYSTICKID1 or JOYSTICK2) to be released.
 

Return Values
Returns JOYERR_NOERROR if successful or one of the following error values:

MMSYSERR_NODRIVER The joystick driver is not present.

JOYERR_PARMS The specified joystick device identifier 
uJoyID is invalid.

 



joySetCapture      

  

The joySetCature function captures a joystick by causing its messages to be sent to the specified 
window.

MMRESULT joySetCapture(

        HWND hwnd,
        UINT uJoyID,
        UINT uPeriod,
        BOOL fChanged
      );
 

Parameters
hwnd

Handle of the window to receive the joystick messages.

uJoyID

Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be captured.

uPeriod

Polling frequency, in milliseconds.

fChanged

Change position flag. Specify TRUE for this parameter to send messages only when the position 
changes by a value greater than the joystick movement threshold. Otherwise, messages are sent at 
the polling frequency specified in uPeriod.

 

Return Values
Returns JOYERR_NOERROR if successful or one of the following error values:

MMSYSERR_NODRIVER The joystick driver is not present.

JOYERR_NOCANDO Cannot capture joystick input because a 
required service (such as a Windows 
timer) is unavailable.

JOYERR_UNPLUGGED The specified joystick is not connected to 
the system.

 

Remarks
This function fails if the specified joystick is currently captured. Call the joyReleaseCapture function to 
release the captured joystick, or destroy the window to release the joystick automatically.

See Also
joyReleaseCapture



joySetThreshold      

  

The joySetThreshold function sets the movement threshold of a joystick.

MMRESULT joySetThreshold(

        UINT uJoyID,
        UINT uThreshold
      );
 

Parameters
uJoyID

Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2).

uThreshold

New movement threshold.
 

Return Values
Returns JOYERR_NOERROR if successful or one of the following error values:

MMSYSERR_NODRIVER The joystick driver is not present.

JOYERR_PARMS The specified joystick device identifier 
uJoyID is invalid.

 

Remarks
The movement threshold is the distance the joystick must be moved before a WM_JOYMOVE message 
is sent to a window that has captured the device. The threshold is initially zero.



mciGetCreatorTask      

  

The mciGetCreatorTask function retrieves a handle to the creator task for the specified device. 

HANDLE mciGetCreatorTask(

      MCIDEVICEID IDDevice
      );
 

Parameters
IDDevice

Device for which the creator task is returned. 
 

Return Values
Returns the handle of the creator task responsible for opening the device if successful. If the device 
identifier is invalid, the return value is NULL.



mciGetDeviceID      

  

The mciGetDeviceID function retrieves the device identifier corresponding to the name of an open 
device. 

MCIDEVICEID mciGetDeviceID(

        LPCTSTR lpszDevice
      );
 

Parameters
lpszDevice

Address of a null-terminated string that specifies the device name or the alias name by which the 
device is known. 

 

Return Values
Returns the device identifier assigned to the device when it was opened if successful. The identifier is 
used in the mciSendCommand function. If the device name is not known, if the device is not open, or if 
there was not enough memory to complete the operation, the return value is zero. 

Remarks
Each file for a compound device has a unique device identifier. The identifier of the "all" device is 
MCI_ALL_DEVICE_ID. 

See Also
mciSendCommand



mciGetErrorString      

  

The mciGetErrorString function retrieves a string that describes the specified MCI error code. 

BOOL mciGetErrorString(

        DWORD fdwError,
        LPTSTR lpszErrorText,
        UINT cchErrorText
      );
 

Parameters
fdwError

Error code returned by the mciSendCommand or mciSendString function. 

lpszErrorText

Address of a buffer that receives a null-terminated string describing the specified error. 

cchErrorText

Length of the buffer, in characters, pointed to by the lpszErrorText parameter. 
 

Return Values
Returns TRUE if successful or FALSE if the error code is not known.

Remarks
Each string that MCI returns, whether data or an error description, can be a maximum of 128 characters. 

See Also
mciSendCommand, mciSendString



mciGetYieldProc      

  

The mciGetYieldProc function retrieves the address of the callback function associated with the "wait" 
(MCI_WAIT) flag. The callback function is called periodically while an MCI device waits for a command 
specified with the "wait" flag to finish. 

YIELDPROC mciGetYieldProc(

        MCIDEVICEID IDDevice,
        LPDWORD lpdwYieldData
      );
 

Parameters
IDDevice

MCI device being monitored (the device performing an MCI command). 

lpdwYieldData

Address of a buffer containing yield data to be passed to the callback function. This parameter can be 
NULL if there is no yield data. 

 

Return Values
Returns the address of the current yield callback function if successful or NULL if the device identifier is 
invalid.



mciSendCommand      

  

The mciSendCommand function sends a command message to the specified MCI device. 

MCIERROR mciSendCommand(

        MCIDEVICEID IDDevice,
        UINT uMsg,
        DWORD fdwCommand,
        DWORD dwParam
      );
 

Parameters
IDDevice

Device identifier of the MCI device that is to receive the command message. This parameter is not 
used with the MCI_OPEN command message. 

uMsg

Command message.    For information about command messages, see Command Messages.

fdwCommand

Flags for the command message. 

dwParam

Address of a structure that contains parameters for the command message. 
 

Return Values
Returns zero if successful or an error otherwise. The low-order word of the returned doubleword value 
contains the error return value. If the error is device-specific, the high-order word of the return value is the 
driver identifier; otherwise, the high-order word is zero. For a list of possible return values, see Constants: 
MCIERR Return Values.

To retrieve a text description of mciSendCommand return values, pass the return value to the 
mciGetErrorString function. 

Remarks
Error values that are returned when a device is being opened are listed with the MCI_OPEN command 
message. In addition to the MCI_OPEN error return values, this function can return the values listed in 
Constants: MCIERR Return Values.

Use MCI_OPEN to obtain the device identifier specified by the IDDevice parameter. 

See Also
MCI_OPEN, mciGetErrorString



mciSendString      

  

The mciSendString function sends a command string to an MCI device. The device that the command is 
sent to is specified in the command string. 

MCIERROR mciSendString(

        LPCTSTR lpszCommand,
        LPTSTR lpszReturnString,
        UINT cchReturn,
        HANDLE hwndCallback
      );
 

Parameters
lpszCommand

Address of a null-terminated string that specifies an MCI command string. For more information about 
the command strings, see Command Strings.

lpszReturnString

Address of a buffer that receives return information. If no return information is needed, this parameter 
can be NULL. 

cchReturn

Size, in characters, of the return buffer specified by the lpszReturnString parameter. 

hwndCallback

Handle of a callback window if the "notify" flag was specified in the command string. 
 

Return Values
Returns zero if successful or an error otherwise. The low-order word of the returned doubleword value 
contains the error return value. If the error is device-specific, the high-order word of the return value is the 
driver identifier; otherwise, the high-order word is zero. For a list of possible error values, see Constants: 
MCIERR Return Values.

To retrieve a text description of mciSendString return values, pass the return value to the 
mciGetErrorString function. 

See Also
mciGetErrorString



mciSetYieldProc      

  

The mciSetYieldProc function sets the address of a procedure to be called periodically when an MCI 
device is waiting for a command to finish because the "wait" (MCI_WAIT) flag was specified. 

UINT mciSetYieldProc(

        MCIDEVICEID IDDevice,
        YIELDPROC yp,
        DWORD dwYieldData
      );
 

Parameters
IDDevice

Identifier of the device to assign a procedure to. 

yp

Address of the procedure to call when yielding for the specified device. If this parameter is NULL, the 
function disables any existing yield procedure. 

dwYieldData

Data to be sent to the yield procedure when it is called for the specified device. 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This function overrides any previous yield procedure for this device. 



MCIWndCreate      

  

The MCIWndCreate function registers the MCIWnd window class and creates an MCIWnd window for 
using MCI services. MCIWndCreate can also open an MCI device or file (such as an AVI file) and 
associate it with the MCIWnd window. 

HWND MCIWndCreate(

        HWND hwndParent,
        HINSTANCE hInstance,
        DWORD dwStyle,
        LPSTR szFile
      );
 

Parameters
hwndParent

Handle of the parent window.

hInstance

Handle of the module instance to associate with the MCIWnd window.

dwStyle

Flags defining the window style. In addition to specifying the window styles used with the 
CreateWindowEx function, you can specify the following styles to use with MCIWnd windows:

MCIWNDF_NOAUTOSIZEWINDOW

Will not change the dimensions of an MCIWnd window when the image size changes.

MCIWNDF_NOAUTOSIZEMOVIE

Will not change the dimensions of the destination rectangle when an MCIWnd window size 
changes. 

MCIWNDF_NOERRORDLG

Inhibits display of MCI errors to users.

MCIWNDF_NOMENU

Hides the Menu button from view on the toolbar and prohibits users from accessing its pop-up 
menu.

MCIWNDF_NOOPEN

Hides the open and close commands from the MCIWnd menu and prohibits users from accessing 
these choices in the pop-up menu.

MCIWNDF_NOPLAYBAR

Hides the toolbar from view and prohibits users from accessing it.

MCIWNDF_NOTIFYANSI

Causes MCIWnd to use an ANSI string instead of a Unicode string when notifying the parent 
window of device mode changes. This flag is used in combination with MCIWNDF_NOTIFYMODE 
and is exclusive to Windows NT.



MCIWNDF_NOTIFYMODE

Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYMODE message 
whenever the device changes operating modes. The lParam parameter of this message identifies 
the new mode, such as MCI_MODE_STOP.

MCIWNDF_NOTIFYPOS

Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYPOS message whenever 
a change in the playback or record position within the content occurs. The lParam parameter of 
this message contains the new position in the content.

MCIWNDF_NOTIFYMEDIA

Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYMEDIA message 
whenever a new device is used or a data file is opened or closed. The lParam parameter of this 
message contains a pointer to the new filename.

MCIWNDF_NOTIFYSIZE

Causes MCIWnd to notify the parent window when the MCIWnd window size changes.

MCIWNDF_NOTIFYERROR

Causes MCIWnd to notify the parent window when an MCI error occurs.

MCIWNDF_NOTIFYALL

Causes all MCIWNDF window notification styles to be used.

MCIWNDF_RECORD

Adds a Record button to the toolbar and adds a new file command to the menu if the MCI device 
has recording capability. 

MCIWNDF_SHOWALL

Causes all MCIWNDF_SHOW styles to be used.

MCIWNDF_SHOWMODE

Displays the current mode of the MCI device in the window title bar. For a list of device modes, see 
the MCIWndGetMode macro.

MCIWNDF_SHOWNAME

Displays the name of the open MCI device or data file in the MCIWnd window title bar.

MCIWNDF_SHOWPOS

Displays the current position within the content of the MCI device in the window title bar.

szFile

Null-terminated string indicating the name of an MCI device or data file to open.
 

Return Values
Returns the handle to an MCI window if successful or zero otherwise.

Remarks
Default window styles for a child window are WS_CHILD, WS_BORDER, and WS_VISIBLE. 
MCIWndCreate assumes a child window when a non-NULL handle of a parent window is specified.

Default window styles for a parent window are WS_OVERLAPPEDWINDOW and WS_VISIBLE. 



MCIWndCreate assumes a parent window when a NULL handle of a parent window is specified.

Use the window handle returned by this function for the window handle in the MCIWnd macros. If your 
application uses this function, it does not need to use the MCIWndRegisterClass function.

See Also
CreateWindowEx, MCIWNDM_NOTIFYMODE, MCIWNDM_NOTIFYPOS, MCIWNDM_NOTIFYMEDIA, 
MCIWndGetMode, MCIWndRegisterClass



MCIWndRegisterClass      

  

The MCIWndRegisterClass function registers the MCI window class MCIWND_WINDOW_CLASS.

BOOL MCIWndRegisterClass(

        HINSTANCE hInstance
      );
 

Parameters
hInstance

Handle of the device instance.
 

Return Values
Returns zero if successful.

Remarks
After registering the MCI window class, use the CreateWindow or CreateWindowEx functions to create 
an MCIWnd window. If your application uses this function, it does not need to use the MCIWndCreate 
function.

See Also
CreateWindow, CreateWindowEx, MCIWndCreate



midiConnect      

  

The midiConnect function connects a MIDI input device to a MIDI thru or output device, or connects a 
MIDI thru device to a MIDI output device. 

MMRESULT midiConnect(

        HMIDI hMidi,
        HMIDIOUT hmo,
        LPVOID pReserved
      );
 

Parameters
hMidi

Handle of a MIDI input device or a MIDI thru device. (For thru devices, this handle must have been 
returned by a call to the midiOutOpen function.)

hmo

Handle of the MIDI output or thru device.

pReserved

Reserved; must be NULL.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_NOTREADY Specified input device is already 
connected to an output device. 

MMSYSERR_INVALHANDLE Specified device handle is invalid.
 

Remarks
After calling this function, the MIDI input device receives event data in an MIM_DATA message whenever 
a message with the same event data is sent to the output device driver.

A thru driver is a special form of MIDI output driver. The system will allow only one MIDI output device to 
be connected to a MIDI input device, but multiple MIDI output devices can be connected to a MIDI thru 
device. Whenever the given MIDI input device receives event data in an MIM_DATA message, a message 
with the same event data is sent to the given output device driver (or through the thru driver to the output 
drivers).

See Also
midiOutOpen, MIM_DATA



midiDisconnect      

  

The midiDisconnect function disconnects a MIDI input device from a MIDI thru or output device, or 
disconnects a MIDI thru device from a MIDI output device. 

MMRESULT midiDisconnect(

        HMIDI hMidi,
        HMIDIOUT hmo,
        LPVOID pReserved
      );
 

Parameters
hMidi

Handle of a MIDI input device or a MIDI thru device.

hmo

Handle of the MIDI output device to be disconnected.

pReserved

Reserved; must be NULL.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDL
E

Specified device handle is invalid.

 

Remarks
MIDI input, output, and thru devices can be connected by using the midiConnect function. Thereafter, 
whenever the MIDI input device receives event data in an MIM_DATA message, a message with the 
same event data is sent to the output device driver (or through the thru driver to the output drivers).

See Also
midiConnect, MIM_DATA



midiInAddBuffer      

  

The midiInAddBuffer function sends an input buffer to a specified opened MIDI input device. This 
function is used for system-exclusive messages.

MMRESULT midiInAddBuffer(

        HMIDIIN hMidiIn,
        LPMIDIHDR lpMidiInHdr,
        UINT cbMidiInHdr
      );
 

Parameters
hMidiIn

Handle of the MIDI input device.

lpMidiInHdr

Address of a MIDIHDR structure that identifies the buffer.

cbMidiInHdr

Size, in bytes, of the MIDIHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_STILLPLAYING The buffer pointed to by lpMidiInHdr is 
still in the queue.

MIDIERR_UNPREPARED The buffer pointed to by lpMidiInHdr 
has not been prepared.

MMSYSERR_INVALHANDLE The specified device handle is invalid.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 

Remarks
When the buffer is filled, it is sent back to the application.

The buffer must be prepared by using the midiInPrepareHeader function before it is passed to the 
midiInAddBuffer function. 

See Also
MIDIHDR, midiInPrepareHeader 



midiInClose      

  

The midiInClose function closes the specified MIDI input device.

MMRESULT midiInClose(

        HMIDIIN hMidiIn
      );
 

Parameters
hMidiIn

Handle of the MIDI input device. If the function is successful, the handle is no longer valid after the 
call to this function.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_STILLPLAYING Buffers are still in the queue.

MMSYSERR_INVALHANDLE The specified device handle is invalid.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 

Remarks
If there are input buffers that have been sent by using the midiInAddBuffer function and have not been 
returned to the application, the close operation will fail. To return all pending buffers through the callback 
function, use the midiInReset function.

See Also
midiInAddBuffer, midiInReset



midiInGetDevCaps      

  

The midiInGetDevCaps function determines the capabilities of a specified MIDI input device.

MMRESULT midiInGetDevCaps(

        UINT uDeviceID,
        LPMIDIINCAPS lpMidiInCaps,
        UINT cbMidiInCaps
      );
 

Parameters
uDeviceID

Identifier of the MIDI input device. The device identifier varies from zero to one less than the number 
of devices present. This parameter can also be a properly cast device handle.

lpMidiInCaps

Address of a MIDIINCAPS structure that is filled with information about the capabilities of the device.

cbMidiInCaps

Size, in bytes, of the MIDIINCAPS structure. Only cbMidiInCaps bytes (or less) of information is 
copied to the location pointed to by lpMidiInCaps. If cbMidiInCaps is zero, nothing is copied, and the 
function returns MMSYSERR_NOERROR.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_BADDEVICEID The specified device identifier is out of 
range.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

MMSYSERR_NODRIVER The driver is not installed.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 

Remarks
To determine the number of MIDI input devices present on the system, use the midiInGetNumDevs 
function.

See Also
MIDIINCAPS, midiInGetNumDevs



midiInGetErrorText      

  

The midiInGetErrorText function retrieves a textual description for an error identified by the specified 
error code.

MMRESULT midiInGetErrorText(

        MMRESULT wError,
        LPSTR lpText,
        UINT cchText
      );
 

Parameters
wError

Error code.

lpText

Address of the buffer to be filled with the textual error description.

cchText

Length, in characters, of the buffer pointed to by lpText.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_BADERRNU
M

The specified error number is out of 
range.

MMSYSERR_INVALPARAMThe specified pointer or structure is 
invalid.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 

Remarks
If the textual error description is longer than the specified buffer, the description is truncated. The returned 
error string is always null-terminated. If cchText is zero, nothing is copied, and the function returns zero. 
All error descriptions are less than MAXERRORLENGTH characters long.



midiInGetID      

  

The midiInGetID function gets the device identifier for the given MIDI input device.

This function is supported for backward compatibility. New applications can cast a handle of the device 
rather than retrieving the device identifier.

MMRESULT midiInGetID(

        HMIDIIN hmi,
        LPUINT puDeviceID
      );
 

Parameters
hmi

Handle of the MIDI input device.

puDeviceID

Address of a variable to be filled with the device identifier.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The hwi parameter specifies an invalid 
handle.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock memory.
 



midiInGetNumDevs      

  

The midiInGetNumDevs function retrieves the number of MIDI input devices in the system.

UINT midiInGetNumDevs(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns the number of MIDI input devices present in the system. A return value of zero means that there 
are no devices (not that there is no error).



midiInMessage      

  

The midiInMessage function sends a message to the MIDI device driver. 

DWORD midiInMessage(

        HMIDIIN hMidiIn,
        UINT msg,
        DWORD dw1,
        DWORD dw2
      );
 

Parameters
hMidiIn

Handle of the MIDI device.

msg

Message to send.

dw1 and dw2

Message parameters.
 

Return Values
Returns the value returned by the audio device driver.

Remarks
This function is used only for driver-specific messages that are not supported by the MIDI API.

 



midiInOpen      

  

The midiInOpen function opens a specified MIDI input device.

MMRESULT midiInOpen(

        LPHMIDIIN lphMidiIn,
        UINT uDeviceID,
        DWORD dwCallback,
        DWORD dwCallbackInstance,
        DWORD dwFlags
      );
 

Parameters
lphMidiIn

Address of an HMIDIIN handle. This location is filled with a handle identifying the opened MIDI input 
device. The handle is used to identify the device in calls to other MIDI input functions.

uDeviceID

Identifier of the MIDI input device to be opened.

dwCallback

Address of a callback function, a thread identifier, or a handle of a window called with information 
about incoming MIDI messages. For more information on the callback function, see MidiInProc.

dwCallbackInstance

User instance data passed to the callback function. This parameter is not used with window callback 
functions or threads.

dwFlags

Callback flag for opening the device and, optionally, a status flag that helps regulate rapid data 
transfers. It can be the following values:

CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address.

CALLBACK_NULL

There is no callback mechanism. This value is the default setting.

CALLBACK_THREAD

The dwCallback parameter is a thread identifier.

CALLBACK_WINDOW

The dwCallback parameter is a window handle.

MIDI_IO_STATUS

When this parameter also specifies CALLBACK_FUNCTION, MIM_MOREDATA messages are 
sent to the callback function as well as MIM_DATA messages. Or, if this parameter also specifies 
CALLBACK_WINDOW, MM_MIM_MOREDATA messages are sent to the window as well as 
MM_MIM_DATA messages. This flag does not affect event or thread callbacks.



Most applications that use a callback mechanism will specify CALLBACK_FUNCTION for this 
parameter. 

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_ALLOCATED The specified resource is already 
allocated.

MMSYSERR_BADDEVICEID The specified device identifier is out 
of range.

MMSYSERR_INVALFLAG The flags specified by dwFlags are 
invalid.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 

Remarks
To determine the number of MIDI input devices present in the system, use the midiInGetNumDevs 
function. The device identifier specified by wDeviceID varies from zero to one less than the number of 
devices present. 

If a window or thread is chosen to receive callback information, the following messages are sent to the 
window procedure or thread to indicate the progress of MIDI input: MM_MIM_OPEN, MM_MIM_CLOSE, 
MM_MIM_DATA, MM_MIM_LONGDATA, MM_MIM_ERROR, MM_MIM_LONGERROR, and 
MM_MIM_MOREDATA.

If a function is chosen to receive callback information, the following messages are sent to the function to 
indicate the progress of MIDI input: MIM_OPEN, MIM_CLOSE, MIM_DATA, MIM_LONGDATA, 
MIM_ERROR, MIM_LONGERROR, and MIM_MOREDATA. 

See Also
MIM_MOREDATA, MIM_DATA, MM_MIM_MOREDATA, MM_MIM_DATA, midiInGetNumDevs, 
MidiInProc, MM_MIM_OPEN, MM_MIM_CLOSE, MM_MIM_LONGDATA, MM_MIM_ERROR, 
MM_MIM_LONGERROR, MIM_OPEN, MIM_CLOSE, MIM_DATA, MIM_LONGDATA, MIM_ERROR, 
MIM_LONGERROR, MIM_MOREDATA



midiInPrepareHeader      

  

The midiInPrepareHeader function prepares a buffer for MIDI input.

MMRESULT midiInPrepareHeader(

        HMIDIIN hMidiIn,
        LPMIDIHDR lpMidiInHdr,
        UINT cbMidiInHdr
      );
 

Parameters
hMidiIn

Handle of the MIDI input device.

lpMidiInHdr

Address of a MIDIHDR structure that identifies the buffer to be prepared.

cbMidiInHdr

Size, in bytes, of the MIDIHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is invalid.

MMSYSERR_INVALPARAM The specified address is invalid.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 

Remarks
Preparing a header that has already been prepared has no effect, and the function returns zero.

Before using this function, you must set the lpData, dwBufferLength, and dwFlags members of the 
MIDIHDR structure. The dwFlags member must be set to zero.

See Also
MIDIHDR



MidiInProc      

  

The MidiInProc function is the callback function for handling incoming MIDI messages. MidiInProc is a 
placeholder for the application-supplied function name. The address of this function can be specified in 
the callback-address parameter of the midiInOpen function.

void CALLBACK MidiInProc(

        HMIDIIN hMidiIn,
        UINT wMsg,
        DWORD dwInstance,
        DWORD dwParam1,
        DWORD dwParam2
      );
 

Parameters
hMidiIn

Handle of the MIDI input device.

wMsg

MIDI input message.

dwInstance

Instance data supplied with the midiInOpen function.

dwParam1

Message parameters.

dwParam2

Message parameters.
 

Return Values
This function does not return a value.

Remarks
Applications should not call any system-defined functions from inside a callback function, except for 
EnterCriticalSection, LeaveCriticalSection, midiOutLongMsg, midiOutShortMsg, 
OutputDebugString, PostMessage, PostThreadMessage, SetEvent, timeGetSystemTime, 
timeGetTime, timeKillEvent, and timeSetEvent. 

See Also
EnterCriticalSection, LeaveCriticalSection, midiInOpen, midiOutLongMsg, midiOutShortMsg, 
OutputDebugString, PostMessage, PostThreadMessage, SetEvent, timeGetSystemTime, 
timeGetTime, timeKillEvent, timeSetEvent, 



midiInReset      

  

The midiInReset function stops input on a given MIDI input device.

MMRESULT midiInReset(

        HMIDIIN hMidiIn
      );
 

Parameters
hMidiIn

Handle of the MIDI input device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is invalid.
 

Remarks
This function returns all pending input buffers to the callback function and sets the MHDR_DONE flag in 
the dwFlags member of the MIDIHDR structure.

See Also
MIDIHDR



midiInStart      

  

The midiInStart function starts MIDI input on the specified MIDI input device.

MMRESULT midiInStart(

        HMIDIIN hMidiIn
      );
 

Parameters
hMidiIn

Handle of the MIDI input device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDL
E

The specified device handle is invalid.

 

Remarks
This function resets the time stamp to zero; time stamp values for subsequently received messages are 
relative to the time that this function was called.

All messages except system-exclusive messages are sent directly to the client when they are received. 
System-exclusive messages are placed in the buffers supplied by the midiInAddBuffer function. If there 
are no buffers in the queue, the system-exclusive data is thrown away without notification to the client and 
input continues. Buffers are returned to the client when they are full, when a complete system-exclusive 
message has been received, or when the midiInReset function is used. The dwBytesRecorded member 
of the MIDIHDR structure will contain the actual length of data received.

Calling this function when input is already started has no effect, and the function returns zero.

See Also
midiInAddBuffer, midiInReset, MIDIHDR



midiInStop      

  

The midiInStop function stops MIDI input on the specified MIDI input device.

MMRESULT midiInStop(

        HMIDIIN hMidiIn
      );
 

Parameters
hMidiIn

Handle of the MIDI input device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is invalid.
 

Remarks
If there are any system-exclusive messages or stream buffers in the queue, the current buffer is marked 
as done (the dwBytesRecorded member of the MIDIHDR structure will contain the actual length of data), 
but any empty buffers in the queue remain there and are not marked as done. 

Calling this function when input is not started has no effect, and the function returns zero.

See Also
MIDIHDR 



midiInUnprepareHeader      

  

The midiInUnprepareHeader function cleans up the preparation performed by the 
midiInPrepareHeader function. 

MMRESULT midiInUnprepareHeader(

        HMIDIIN hMidiIn,
        LPMIDIHDR lpMidiInHdr,
        UINT cbMidiInHdr
      );
 

Parameters
hMidiIn

Handle of the MIDI input device.

lpMidiInHdr

Address of a MIDIHDR structure identifying the buffer to be cleaned up.

cbMidiInHdr

Size of the MIDIHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_STILLPLAYING The buffer pointed to by lpMidiInHdr is 
still in the queue.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

MMSYSERR_INVALHANDLE The specified device handle is invalid.
 

Remarks
This function is complementary to midiInPrepareHeader. You must use this function before freeing the 
buffer. After passing a buffer to the device driver by using the midiInAddBuffer function, you must wait 
until the driver is finished with the buffer before using midiInUnprepareHeader. Unpreparing a buffer that 
has not been prepared has no effect, and the function returns MMSYSERR_NOERROR.

See Also
midiInPrepareHeader, MIDIHDR, midiInAddBuffer



midiOutCacheDrumPatches      

  

The midiOutCacheDrumPatches function requests that an internal MIDI synthesizer device preload and 
cache a specified set of key-based percussion patches. 

MMRESULT midiOutCacheDrumPatches(

        HMIDIOUT hmo,
        UINT wPatch,
        WORD * lpKeyArray,
        UINT wFlags
      );
 

Parameters
hmo

Handle of the opened MIDI output device. This device should be an internal MIDI synthesizer. This 
parameter can also be the handle of a MIDI stream, cast to HMIDIOUT.

wPatch

Drum patch number that should be used. This parameter should be set to zero to cache the default 
drum patch.

lpKeyArray

Address of a KEYARRAY array indicating the key numbers of the specified percussion patches to be 
cached or uncached.

wFlags

Options for the cache operation. It can be one of the following flags:

MIDI_CACHE_ALL

Caches all of the specified patches. If they cannot all be cached, it caches none, clears the 
KEYARRAY array, and returns MMSYSERR_NOMEM.

MIDI_CACHE_BESTFIT

Caches all of the specified patches. If they cannot all be cached, it caches as many patches as 
possible, changes the KEYARRAY array to reflect which patches were cached, and returns 
MMSYSERR_NOMEM.

MIDI_CACHE_QUERY

Changes the KEYARRAY array to indicate which patches are currently cached.

MIDI_UNCACHE

Uncaches the specified patches and clears the KEYARRAY array.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALFLAG The flag specified by wFlags 



is invalid.

MMSYSERR_INVALHANDLE The specified device handle 
is invalid.

MMSYSERR_INVALPARAM The array pointed to by the 
lpKeyArray array is invalid.

MMSYSERR_NOMEM The device does not have 
enough memory to cache all 
of the requested patches.

MMSYSERR_NOTSUPPORTED The specified device does 
not support patch caching.

 

Remarks
Some synthesizers are not capable of keeping all percussion patches loaded simultaneously. Caching 
patches ensures that the specified patches are available.

Each element of the KEYARRAY array represents one of the 128 key-based percussion patches and has 
bits set for each of the 16 MIDI channels that use the particular patch. The least-significant bit represents 
physical channel 0, and the most-significant bit represents physical channel 15. For example, if the patch 
on key number 60 is used by physical channels 9 and 15, element 60 would be set to 0x8200.

This function applies only to internal MIDI synthesizer devices. Not all internal synthesizers support patch 
caching. To see if a device supports patch caching, use the MIDICAPS_CACHE flag to test the 
dwSupport member of the MIDIOUTCAPS structure filled by the midiOutGetDevCaps function.

See Also
KEYARRAY, MIDIOUTCAPS, midiOutGetDevCaps



midiOutCachePatches      

  

The midiOutCachePatches function requests that an internal MIDI synthesizer device preload and 
cache a specified set of patches. 

MMRESULT midiOutCachePatches(

        HMIDIOUT hmo,
        UINT wBank,
        WORD * lpPatchArray,
        UINT wFlags
      );
 

Parameters
hmo

Handle of the opened MIDI output device. This device must be an internal MIDI synthesizer. This 
parameter can also be the handle of a MIDI stream, cast to HMIDIOUT.

wBank

Bank of patches that should be used. This parameter should be set to zero to cache the default patch 
bank.

lpPatchArray

Address of a PATCHARRAY array indicating the patches to be cached or uncached.

wFlags

Options for the cache operation. It can be one of the following flags:

MIDI_CACHE_ALL

Caches all of the specified patches. If they cannot all be cached, it caches none, clears the 
PATCHARRAY array, and returns MMSYSERR_NOMEM.

MIDI_CACHE_BESTFIT

Caches all of the specified patches. If they cannot all be cached, it caches as many patches as 
possible, changes the PATCHARRAY array to reflect which patches were cached, and returns 
MMSYSERR_NOMEM.

MIDI_CACHE_QUERY

Changes the PATCHARRAY array to indicate which patches are currently cached.

MIDI_UNCACHE

Uncaches the specified patches and clears the PATCHARRAY array.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALFLAG The flag specified by wFlags is 
invalid.



MMSYSERR_INVALHANDLE The specified device handle is invalid.

MMSYSERR_INVALPARAM The array pointed to by lpPatchArray 
is invalid.

MMSYSERR_NOMEM The device does not have enough 
memory to cache all of the requested 
patches.

MMSYSERR_NOTSUPPORTED The specified device does not 
support patch caching.

 

Remarks
Some synthesizers are not capable of keeping all patches loaded simultaneously and must load data 
from disk when they receive MIDI program change messages. Caching patches ensures that the 
specified patches are immediately available.

Each element of the PATCHARRAY array represents one of the 128 patches and has bits set for each of 
the 16 MIDI channels that use the particular patch. The least-significant bit represents physical channel 0, 
and the most-significant bit represents physical channel 15 (0x0F). For example, if patch 0 is used by 
physical channels 0 and 8, element 0 would be set to 0x0101.

This function applies only to internal MIDI synthesizer devices. Not all internal synthesizers support patch 
caching. To see if a device supports patch caching, use the MIDICAPS_CACHE flag to test the 
dwSupport member of the MIDIOUTCAPS structure filled by the midiOutGetDevCaps function.

See Also
PATCHARRAY, MIDIOUTCAPS, midiOutGetDevCaps



midiOutClose      

  

The midiOutClose function closes the specified MIDI output device.

MMRESULT midiOutClose(

        HMIDIOUT hmo
      );
 

Parameters
hmo

Handle of the MIDI output device. If the function is successful, the handle is no longer valid after the 
call to this function.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_STILLPLAYING Buffers are still in the queue.

MMSYSERR_INVALHANDLE The specified device handle is invalid.

MMSYSERR_NOMEM The system is unable to load mapper 
string description.

 

Remarks
If there are output buffers that have been sent by using the midiOutLongMsg function and have not been 
returned to the application, the close operation will fail. To mark all pending buffers as being done, use the 
midiOutReset function.

See Also
midiOutLongMsg, midiOutReset



midiOutGetDevCaps      

  

The midiOutGetDevCaps function queries a specified MIDI output device to determine its capabilities.

MMRESULT midiOutGetDevCaps(

        UINT uDeviceID,
        LPMIDIOUTCAPS lpMidiOutCaps,
        UINT cbMidiOutCaps
      );
 

Parameters
uDeviceID

Identifier of the MIDI output device. The device identifier specified by this parameter varies from zero 
to one less than the number of devices present. The MIDI_MAPPER constant is also a valid device 
identifier.

This parameter can also be a properly cast device handle.

lpMidiOutCaps

Address of a MIDIOUTCAPS structure. This structure is filled with information about the capabilities 
of the device.

cbMidiOutCaps

Size, in bytes, of the MIDIOUTCAPS structure. Only cbMidiOutCaps bytes (or less) of information is 
copied to the location pointed to by lpMidiOutCaps. If cbMidiOutCaps is zero, nothing is copied, and 
the function returns MMSYSERR_NOERROR.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_BADDEVICEID The specified device identifier is out 
of range.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

MMSYSERR_NODRIVER The driver is not installed.

MMSYSERR_NOMEM The system is unable to load mapper 
string description.

 

Remarks
To determine the number of MIDI output devices present in the system, use the midiOutGetNumDevs 
function.

See Also
MIDIOUTCAPS, midiOutGetNumDevs



midiOutGetErrorText      

  

The midiOutGetErrorText function retrieves a textual description for an error identified by the specified 
error code.

UINT midiOutGetErrorText(

        MMRESULT mmrError,
        LPSTR lpText,
        UINT cchText
      );
 

Parameters
mmrError

Error code.

lpText

Address of a buffer to be filled with the textual error description.

cchText

Length, in characters, of the buffer pointed to by lpText.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_BADERRNUM The specified error number is out of 
range.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

 

Remarks
If the textual error description is longer than the specified buffer, the description is truncated. The returned 
error string is always null-terminated. If cchText is zero, nothing is copied, and the function returns 
MMSYSERR_NOERROR. All error descriptions are less than MAXERRORLENGTH characters long.



midiOutGetID      

  

The midiOutGetID function retrieves the device identifier for the given MIDI output device.

This function is supported for backward compatibility. New applications can cast a handle of the device 
rather than retrieving the device identifier.

MMRESULT midiOutGetID(

        HMIDIOUT hmo,
        LPUINT puDeviceID
      );
 

Parameters
hmo

Handle of the MIDI output device.

puDeviceID

Address of a variable to be filled with the device identifier.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The hwo parameter specifies an 
invalid handle.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock memory.
 



midiOutGetNumDevs      

  

The midiOutGetNumDevs function retrieves the number of MIDI output devices present in the system. 

UINT midiOutGetNumDevs(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns the number of MIDI output devices. A return value of zero means that there are no devices (not 
that there is no error).



midiOutGetVolume      

  

The midiOutGetVolume function retrieves the current volume setting of a MIDI output device.

MMRESULT midiOutGetVolume(

        HMIDIOUT hmo,
        LPDWORD lpdwVolume
      );
 

Parameters
hmo

Handle of an open MIDI output device. This parameter can also contain the handle of a MIDI stream, 
as long as it is cast to HMIDIOUT. This parameter can also be a device identifier.

lpdwVolume

Address of the location to contain the current volume setting. The low-order word of this location 
contains the left-channel volume setting, and the high-order word contains the right-channel setting. A 
value of 0xFFFF represents full volume, and a value of 0x0000 is silence.

If a device does not support both left and right volume control, the low-order word of the specified 
location contains the mono volume level.

Any value set by using the midiOutSetVolume function is returned, regardless of whether the device 
supports that value.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is 
invalid.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

MMSYSERR_NOTSUPPORTED The function is not supported.
 

Remarks
If a device identifier is used, then the result of the midiOutGetVolume call and the information returned in 
lpdwVolume applies to all instances of the device. If a device handle is used, then the result and 
information returned applies only to the instance of the device referenced by the device handle.

Not all devices support volume control. You can determine whether a device supports volume control by 
querying the device by using the midiOutGetDevCaps function and specifying the MIDICAPS_VOLUME 
flag.

You can also determine whether the device supports volume control on both the left and right channels by 
querying the device by using the midiOutGetDevCaps function and specifying the 



MIDICAPS_LRVOLUME flag.

See Also
midiOutSetVolume, midiOutGetDevCaps



midiOutLongMsg      

  

The midiOutLongMsg function sends a system-exclusive MIDI message to the specified MIDI output 
device.

MMRESULT midiOutLongMsg(

        HMIDIOUT hmo,
        LPMIDIHDR lpMidiOutHdr,
        UINT cbMidiOutHdr
      );
 

Parameters
hmo

Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to 
HMIDIOUT.

lpMidiOutHdr

Address of a MIDIHDR structure that identifies the MIDI buffer.

cbMidiOutHdr

Size, in bytes, of the MIDIHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_NOTREADY The hardware is busy with other data.

MIDIERR_UNPREPARED The buffer pointed to by lpMidiOutHdr 
has not been prepared.

MMSYSERR_INVALHANDLE The specified device handle is invalid.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

 

Remarks
Before the buffer is passed to midiOutLongMsg, it must be prepared by using the 
midiOutPrepareHeader function. The MIDI output device driver determines whether the data is sent 
synchronously or asynchronously.

See Also
MIDIHDR, midiOutPrepareHeader



midiOutMessage      

  

The midiOutMessage function sends a message to the MIDI device drivers. This function is used only for 
driver-specific messages that are not supported by the MIDI API.

DWORD midiOutMessage(

        HMIDIOUT hmo,
        UINT msg,
        DWORD dw1,
        DWORD dw2
      );
 

Parameters
hmo

Handle of the MIDI device.    This parameter can also be the handle of a MIDI stream cast to 
HMIDIOUT.

msg

Message to send.

dw1 and dw2

Message parameters.
 

Return Values
Returns the value returned by the audio device driver.



midiOutOpen      

  

The midiOutOpen function opens a MIDI output device for playback.

UINT midiOutOpen(

        LPHMIDIOUT lphmo,
        UINT uDeviceID,
        DWORD dwCallback,
        DWORD dwCallbackInstance,
        DWORD dwFlags
      );
 

Parameters
lphmo

Address of an HMIDIOUT handle. This location is filled with a handle identifying the opened MIDI 
output device. The handle is used to identify the device in calls to other MIDI output functions.

uDeviceID

Identifier of the MIDI output device that is to be opened.

dwCallback

Address of a callback function, an event handle, a thread identifier, or a handle of a window or thread 
called during MIDI playback to process messages related to the progress of the playback. If no 
callback is desired, specify NULL for this parameter. For more information on the callback function, 
see MidiOutProc.

dwCallbackInstance

User instance data passed to the callback. This parameter is not used with window callbacks or 
threads.

dwFlags

Callback flag for opening the device. It can be the following values:

CALLBACK_EVENT

The dwCallback parameter is an event handle. This callback mechanism is for output only.

CALLBACK_FUNCTION

The dwCallback parameter is a callback function address.

CALLBACK_NULL

There is no callback mechanism. This value is the default setting.

CALLBACK_THREAD

The dwCallback parameter is a thread identifier.

CALLBACK_WINDOW

The dwCallback parameter is a window handle.
 



Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_NODEVICE No MIDI port was found. This error 
occurs only when the mapper is 
opened.

MMSYSERR_ALLOCATED The specified resource is already 
allocated.

MMSYSERR_BADDEVICEI
D

The specified device identifier is out 
of range.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 

Remarks
To determine the number of MIDI output devices present in the system, use the midiOutGetNumDevs 
function. The device identifier specified by wDeviceID varies from zero to one less than the number of 
devices present. MIDI_MAPPER can also be used as the device identifier.

If a window or thread is chosen to receive callback information, the following messages are sent to the 
window procedure or thread to indicate the progress of MIDI output: MM_MOM_OPEN, 
MM_MOM_CLOSE, and MM_MOM_DONE.

If a function is chosen to receive callback information, the following messages are sent to the function to 
indicate the progress of MIDI output: MOM_OPEN, MOM_CLOSE, and MOM_DONE. 

See Also
midiOutGetNumDevs, MidiOutProc, MM_MOM_OPEN, MM_MOM_CLOSE, MM_MOM_DONE



midiOutPrepareHeader      

  

The midiOutPrepareHeader function prepares a MIDI system-exclusive or stream buffer for output.

MMRESULT midiOutPrepareHeader(

        HMIDIOUT hmo,
        LPMIDIHDR lpMidiOutHdr,
        UINT cbMidiOutHdr
      );
 

Parameters
hmo

Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to 
HMIDIOUT.

lpMidiOutHdr

Address of a MIDIHDR structure that identifies the buffer to be prepared.

cbMidiOutHdr

Size, in bytes, of the MIDIHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is invalid.

MMSYSERR_INVALPARAM The specified address is invalid or the 
given stream buffer is greater than 
64K.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 

Remarks
A stream buffer cannot be larger than 64K.

Preparing a header that has already been prepared has no effect, and the function returns 
MMSYSERR_NOERROR.

Before using this function, you must set the lpData, dwBufferLength, and dwFlags members of the 
MIDIHDR structure. The dwFlags member must be set to zero.

See Also
MIDIHDR



MidiOutProc      

  

The MidiOutProc function is the callback function for handling outgoing MIDI messages. MidiOutProc is 
a placeholder for the application-supplied function name. The address of the function can be specified in 
the callback-address parameter of the midiOutOpen function.

void CALLBACK MidiOutProc(

        HMIDIOUT hmo,
        UINT wMsg,
        DWORD dwInstance,
        DWORD dwParam1,
        DWORD dwParam2
      );
 

Parameters
hmo

Handle of the MIDI device associated with the callback function.

wMsg

MIDI output message.

dwInstance

Instance data supplied by using the midiOutOpen function.

dwParam1

Message parameters.

dwParam2

Message parameters.
 

Return Values
This function does not return a value.

Remarks
Applications should not call any system-defined functions from inside a callback function, except for 
EnterCriticalSection, LeaveCriticalSection, midiOutLongMsg, midiOutShortMsg, 
OutputDebugString, PostMessage, PostThreadMessage, SetEvent, timeGetSystemTime, 
timeGetTime, timeKillEvent, and timeSetEvent. Calling other wave functions will cause deadlock.

See Also
EnterCriticalSection, LeaveCriticalSection, midiOutLongMsg, midiOutOpen, midiOutShortMsg, 
OutputDebugString, PostMessage, PostThreadMessage, SetEvent, timeGetSystemTime, 
timeGetTime, timeKillEvent, timeSetEvent, 



midiOutReset      

  

The midiOutReset function turns off all notes on all MIDI channels for the specified MIDI output device.

MMRESULT midiOutReset(

        HMIDIOUT hmo
      );
 

Parameters
hmo

Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to 
HMIDIOUT.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLEThe specified device handle is invalid.
 

Remarks
Any pending system-exclusive or stream output buffers are returned to the callback function and the 
MHDR_DONE flag is set in the dwFlags member of the MIDIHDR structure.

Terminating a system-exclusive message without sending an EOX (end-of-exclusive) byte might cause 
problems for the receiving device. The midiOutReset function does not send an EOX byte when it 
terminates a system-exclusive message ¾ applications are responsible for doing this.

To turn off all notes, a note-off message for each note in each channel is sent. In addition, the sustain 
controller is turned off for each channel.

See Also
MIDIHDR



midiOutSetVolume      

  

The midiOutSetVolume function sets the volume of a MIDI output device.

MMRESULT midiOutSetVolume(

        HMIDIOUT hmo,
        DWORD dwVolume
      );
 

Parameters
hmo

Handle of an open MIDI output device. This parameter can also contain the handle of a MIDI stream, 
as long as it is cast to HMIDIOUT. This parameter can also be a device identifier.

dwVolume

New volume setting. The low-order word contains the left-channel volume setting, and the high-order 
word contains the right-channel setting. A value of 0xFFFF represents full volume, and a value of 
0x0000 is silence.

If a device does not support both left and right volume control, the low-order word of dwVolume 
specifies the mono volume level, and the high-order word is ignored.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is 
invalid.

MMSYSERR_NOMEM The system is unable to allocate 
or lock memory.

MMSYSERR_NOTSUPPORTE
D

The function is not supported.

 

Remarks
If a device identifier is used, then the result of the midiOutSetVolume call applies to all instances of the 
device. If a device handle is used, then the result applies only to the instance of the device referenced by 
the device handle.

Not all devices support volume changes. You can determine whether a device supports it by querying the 
device using the midiOutGetDevCaps function and the MIDICAPS_VOLUME flag.

You can also determine whether the device supports volume control on both the left and right channels by 
querying the device using the midiOutGetDevCaps function and the MIDICAPS_LRVOLUME flag.

Devices that do not support a full 16 bits of volume-level control use the high-order bits of the requested 
volume setting. For example, a device that supports 4 bits of volume control produces the same volume 
setting for the following volume-level values: 0x4000, 0x43be, and 0x4fff. The midiOutGetVolume 
function returns the full 16-bit value, as set by midiOutSetVolume, irrespective of the device's 



capabilities.

Volume settings are interpreted logarithmically. This means that the perceived increase in volume is the 
same when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

See Also
midiOutGetDevCaps, midiOutGetVolume



midiOutShortMsg      

  

The midiOutShortMsg function sends a short MIDI message to the specified MIDI output device. 

MMRESULT midiOutShortMsg(

        HMIDIOUT hmo,
        DWORD dwMsg
      );
 

Parameters
hmo

Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to 
HMIDIOUT.

dwMsg

MIDI message. The message is packed into a doubleword value with the first byte of the message in 
the low-order byte. The message is packed into this parameter as follows:

High 
word

High-order byteNot used.

Low-order byte Contains a second byte of MIDI data 
(when needed).

Low 
word

High-order byteContains the first byte of MIDI data 
(when needed).

Low-order byte Contains the MIDI status.
 

The two MIDI data bytes are optional, depending on the MIDI status byte. When a series of messages 
have the same status byte, the status byte can be omitted from messages after the first one in the 
series, creating a running status. Pack a message for running status as follows:

High 
word

High-order 
byte

Not used.

Low-order byte Not used.

Low 
word

High-order 
byte

Contains a second byte of MIDI data 
(when needed).

Low-order byte Contains the first byte of MIDI data.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_BADOPENMODE The application sent a message 
without a status byte to a stream 
handle.

MIDIERR_NOTREADY The hardware is busy with other data.

MMSYSERR_INVALHANDL
E

The specified device handle is invalid.



 

Remarks
This function is used to send any MIDI message except for system-exclusive or stream messages.

This function might not return until the message has been sent to the output device. You can send short 
messages while streams are playing on the same device (although you cannot use a running status in 
this case).



midiOutUnprepareHeader      

  

The midiOutUnprepareHeader function cleans up the preparation performed by the 
midiOutPrepareHeader function. 

MMRESULT midiOutUnprepareHeader(

        HMIDIOUT hmo,
        LPMIDIHDR lpMidiOutHdr,
        UINT cbMidiOutHdr
      );
 

Parameters
hmo

Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to 
HMIDIOUT.

lpMidiOutHdr

Address of a MIDIHDR structure identifying the buffer to be cleaned up.

cbMidiOutHdr

Size, in bytes, of the MIDIHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIDIERR_STILLPLAYING The buffer pointed to by lpMidiOutHdr 
is still in the queue.

MMSYSERR_INVALHANDLE The specified device handle is invalid.

MMSYSERR_INVALPARAM The specified pointer or structure is 
invalid.

 

Remarks
This function is complementary to the midiOutPrepareHeader function. You must call 
midiOutUnprepareHeader before freeing the buffer. After passing a buffer to the device driver with the 
midiOutLongMsg function, you must wait until the device driver is finished with the buffer before calling 
midiOutUnprepareHeader.

Unpreparing a buffer that has not been prepared has no effect, and the function returns 
MMSYSERR_NOERROR.

See Also
midiOutPrepareHeader, MIDIHDR, midiOutLongMsg



midiStreamClose      

  

The midiStreamClose function closes an open MIDI stream.

MMRESULT midiStreamClose(

        HMIDISTRM hStream
      );
 

Parameters
hStream

Handle of a MIDI stream, as retrieved by using the midiStreamOpen function.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is invalid.
 

See Also
midiStreamOpen



midiStreamOpen      

  

The midiStreamOpen function opens a MIDI stream for output. By default, the device is opened in 
paused mode. The stream handle retrieved by this function must be used in all subsequent references to 
the stream.

MMRESULT midiStreamOpen(

        LPHMIDISTRM lphStream,
        LPUINT puDeviceID,
        DWORD cMidi,
        DWORD dwCallback,
        DWORD dwInstance,
        DWORD fdwOpen
      );
 

Parameters
lphStream

Address of a variable to contain the stream handle when the function returns.

puDeviceID

Address of a device identifier. The device is opened on behalf of the stream and closed again when 
the stream is closed.

cMidi

Reserved; must be 1.

dwCallback

Address of a callback function, an event handle, a thread identifier, or a handle of a window or thread 
called during MIDI playback to process messages related to the progress of the playback. If no 
callback mechanism is desired, specify NULL for this parameter.

dwInstance

Application-specific instance data that is returned to the application with every callback function.

fdwOpen

Callback flag for opening the device. One of the following callback flags must be specified:

CALLBACK_EVENT

The dwCallback parameter is an event handle. This callback mechanism is for output only.

CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address.

CALLBACK_NULL

There is no callback mechanism. This is the default setting.

CALLBACK_THREAD

The dwCallback parameter is a thread identifier.

CALLBACK_WINDOW



The dwCallback parameter is a window handle.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_BADDEVICEID The specified device identifier is out of 
range.

MMSYSERR_INVALPARAM The given handle or flags parameter is 
invalid.

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

 



midiStreamOut      

  

The midiStreamOut function plays or queues a stream (buffer) of MIDI data to a MIDI output device.

MMRESULT midiStreamOut(

        HMIDISTRM hMidiStream,
        LPMIDIHDR lpMidiHdr,
        UINT cbMidiHdr
      );
 

Parameters
hMidiStream

Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen 
function. This handle identifies the output device.

lpMidiHdr

Address of a MIDIHDR structure that identifies the MIDI buffer.

cbMidiHdr

Size, in bytes, of the MIDIHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_NOMEM The system is unable to allocate or 
lock memory.

MIDIERR_STILLPLAYING The output buffer pointed to by 
lpMidiHdr is still playing or is queued 
from a previous call to 
midiStreamOut.

MIDIERR_UNPREPARED The header pointed to by lpMidiHdr 
has not been prepared.

MMSYSERR_INVALHANDLEThe specified device handle is invalid.

MMSYSERR_INVALPARAM The pointer specified by lpMidiHdr is 
invalid.

 

Remarks
Because the midiStreamOpen function opens the output device in paused mode, you must call the 
midiStreamRestart function before you can use midiStreamOut to start the playback. 

For the current implementation of this function, the buffer must be smaller than 64K.

The buffer pointed to by the MIDIHDR structure contains one or more MIDI events, each of which is 
defined by a MIDIEVENT structure. 



See Also
midiStreamOpen, MIDIHDR, MIDIEVENT



midiStreamPause      

  

The midiStreamPause function pauses playback of a specified MIDI stream. 

MMRESULT midiStreamPause(

        HMIDISTRM hms
      );
 

Parameters
hms

Handle of a MIDI stream. This handle must have been returned by a call to the MIDIEVENTfunction. 
This handle identifies the output device.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLEThe specified device handle is invalid.
 

Remarks
The current playback position is saved when playback is paused. To resume playback from the current 
position, use the midiStreamRestart function.

Calling this function when the output is already paused has no effect, and the function returns 
MMSYSERR_NOERROR.

See Also
MIDIEVENT, midiStreamRestart



midiStreamPosition      

  

The midiStreamPosition function retrieves the current position in a MIDI stream.

MMRESULT midiStreamPosition(

        HMIDISTRM hms,
        LPMMTIME pmmt,
        UINT cbmmt
      );
 

Parameters
hms

Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen 
function. This handle identifies the output device.

pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_INVALPARAM Specified pointer or structure is 
invalid.

 

Remarks
Before calling midiStreamPosition, set the wType member of the MMTIME structure to indicate the time 
format you desire. After calling midiStreamPosition, check the wType member to determine if the 
desired time format is supported. If the desired format is not supported, wType will specify an alternative 
format.

The position is set to zero when the device is opened or reset.

See Also
midiStreamOpen, MMTIME



midiStreamProperty      

  

The midiStreamProperty function sets or retrieves properties of a MIDI data stream associated with a 
MIDI output device.

MMRESULT midiStreamProperty(

        HMIDISTRM hm,
        LPBYTE lppropdata,
        DWORD dwProperty
      );
 

Parameters
hm

Handle of the MIDI device that the property is associated with.

lppropdata

Address of the property data.

dwProperty

Flags that specify the action to perform and identify the appropriate property of the MIDI data stream. 
The midiStreamProperty function requires setting two flags in each use. One flag (either 
MIDIPROP_GET or MIDIPROP_SET) specifies an action, and the other identifies a specific property 
to examine or edit:

MIDIPROP_GET

Retrieves the current setting of the given property.

MIDIPROP_SET

Sets the given property.

MIDIPROP_TEMPO

Retrieves the tempo property. The lppropdata parameter points to a MIDIPROPTEMPO structure. 
The current tempo value can be retrieved at any time. Output devices set the tempo by inserting 
MEVT_TEMPO events into the MIDI data.

MIDIPROP_TIMEDIV

Specifies the time division property. You can get or set this property. The lppropdata parameter 
points to a MIDIPROPTIMEDIV structure. This property can be set only when the device is 
stopped.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDL
E

The specified handle is not a stream 
handle.

MMSYSERR_INVALPARAM The given handle or flags parameter is 
invalid.



 

Remarks
These properties are the default properties defined by the system. Driver writers can implement and 
document their own properties.

See Also
MIDIPROPTEMPO, MIDIPROPTIMEDIV 



midiStreamRestart      

  

The midiStreamRestart function restarts a paused MIDI stream.

MMRESULT midiStreamRestart(

        HMIDISTRM hms
      );
 

Parameters
hms

Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen 
function. This handle identifies the output device.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is invalid.
 

Remarks
Calling this function when the output is not paused has no effect, and the function returns 
MMSYSERR_NOERROR.

See Also
midiStreamOpen



midiStreamStop      

  

The midiStreamStop function turns off all notes on all MIDI channels for the specified MIDI output 
device. 

MMRESULT midiStreamStop(

        HMIDISTRM hms
      );
 

Parameters
hms

Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen 
function. This handle identifies the output device.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is invalid.
 

Remarks
When you call this function, any pending system-exclusive or stream output buffers are returned to the 
callback mechanism and the MHDR_DONE bit is set in the dwFlags member of the MIDIHDR structure.

While the midiOutReset function turns off all notes, midiStreamStop turns off only those notes that have 
been turned on by a MIDI note-on message.

See Also
midiStreamOpen, MIDIHDR, midiOutReset



mixerClose      

  

The mixerClose function closes the specified mixer device. 

MMRESULT mixerClose(

        HMIXER hmx
      );
 

Parameters
hmx

Handle of the mixer device. This handle must have been returned successfully by the mixerOpen 
function. If mixerClose is successful, hmx is no longer valid.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE Specified device handle is invalid.
 

See Also
mixerOpen



mixerGetControlDetails      

  

The mixerGetControlDetails function retrieves details about a single control associated with an audio 
line.

MMRESULT mixerGetControlDetails(

        HMIXEROBJ hmxobj,
        LPMIXERCONTROLDETAILS pmxcd,
        DWORD fdwDetails
      );
 

Parameters
hmxobj

Handle of the mixer device object being queried.

pmxcd

Address of a MIXERCONTROLDETAILS structure, which is filled with state information about the 
control. 

fdwDetails

Flags for retrieving control details. The following values are defined:

MIXER_GETCONTROLDETAILSF_LISTTEXT

The paDetails member of the MIXERCONTROLDETAILS structure points to one or more 
MIXERCONTROLDETAILS_LISTTEXT structures to receive text labels for multiple-item controls. 
An application must get all list text items for a multiple-item control at once. This flag cannot be 
used with MIXERCONTROL_CONTROLTYPE_CUSTOM controls.

MIXER_GETCONTROLDETAILSF_VALUE

Current values for a control are retrieved. The paDetails member of the 
MIXERCONTROLDETAILS structure points to one or more details structures appropriate for the 
control class. 

MIXER_OBJECTF_AUX

The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the 
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN

The hmxobj parameter is the handle of a MIDI (Musical Instrument Digital Interface) input device. 
This handle must have been returned by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT

The hmxobj parameter is the handle of a MIDI output device. This handle must have been returned 
by the midiOutOpen function.

MIXER_OBJECTF_HMIXER

The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is 
optional.

MIXER_OBJECTF_HWAVEIN



The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT

The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen function.

MIXER_OBJECTF_MIDIIN

The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range of 
zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT

The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range 
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER

The hmxobj parameter is the identifier of a mixer device in the range of zero to one less than the 
number of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN

The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to one 
less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT

The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to 
one less than the number of devices returned by the waveOutGetNumDevs function.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIXERR_INVALCONTROL The control reference is invalid.

MMSYSERR_BADDEVICEID The hmxobj parameter specifies an 
invalid device identifier.

MMSYSERR_INVALFLAG One or more flags are invalid.

MMSYSERR_INVALHANDLE The hmxobj parameter specifies an 
invalid handle.

MMSYSERR_INVALPARAM One or more parameters are 
invalid.

MMSYSERR_NODRIVER No mixer device is available for the 
object specified by hmxobj.

 

Remarks
All members of the MIXERCONTROLDETAILS structure must be initialized before calling this function. 

See Also
MIXERCONTROLDETAILS, MIXERCONTROLDETAILS_LISTTEXT, auxGetNumDevs, midiInOpen, 
midiOutOpen, mixerOpen, waveInOpen, waveOutOpen, midiInGetNumDevs, midiOutGetNumDevs, 
mixerGetNumDevs, waveInGetNumDevs, waveOutGetNumDevs 



mixerGetDevCaps      

  

The mixerGetDevCaps function queries a specified mixer device to determine its capabilities.

MMRESULT mixerGetDevCaps(

        UINT uMxId,
        LPMIXERCAPS pmxcaps,
        UINT cbmxcaps
      );
 

Parameters
uMxId

Identifier or handle of an open mixer device.

pmxcaps

Address of a MIXERCAPS structure that receives information about the capabilities of the device.

cbmxcaps

Size, in bytes, of the MIXERCAPS structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_BADDEVICEID The specified device identifier is out of 
range.

MMSYSERR_INVALHANDLE The mixer device handle is invalid.

MMSYSERR_INVALPARAM One or more parameters are invalid.
 

Remarks
Use the mixerGetNumDevs function to determine the number of mixer devices present in the system. 
The device identifier specified by uMxId varies from zero to one less than the number of mixer devices 
present.

Only the number of bytes (or less) of information specified in cbmxcaps is copied to the location pointed 
to by pmxcaps. If cbmxcaps is zero, nothing is copied, and the function returns successfully.

This function also accepts a mixer device handle returned by the mixerOpen function as the uMxId 
parameter. The application should cast the HMIXER handle to a UINT.

See Also
MIXERCAPS, mixerGetNumDevs, mixerOpen



mixerGetID      

  

The mixerGetID function retrieves the device identifier for a mixer device associated with a specified 
device handle.

MMRESULT mixerGetID(

        HMIXEROBJ hmxobj,
        UINT * puMxId,
        DWORD fdwId
      );
 

Parameters
hmxobj

Handle of the audio mixer object to map to a mixer device identifier.

puMxId

Address of a variable that receives the mixer device identifier. If no mixer device is available for the 
hmxobj object, the value - 1 is placed in this location and the MMSYSERR_NODRIVER error value is 
returned.

fdwId

Flags for mapping the mixer object hmxobj. The following values are defined:

MIXER_OBJECTF_AUX

The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the 
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN

The hmxobj parameter is the handle of a MIDI input device. This handle must have been returned 
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT

The hmxobj parameter is the handle of a MIDI output device. This handle must have been returned 
by the midiOutOpen function.

MIXER_OBJECTF_HMIXER

The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is 
optional.

MIXER_OBJECTF_HWAVEIN

The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT

The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen function.

MIXER_OBJECTF_MIDIIN

The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range of 
zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT



The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range 
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER

The hmxobj parameter is the identifier of a mixer device in the range of zero to one less than the 
number of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN

The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to one 
less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT

The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to 
one less than the number of devices returned by the waveOutGetNumDevs function.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_BADDEVICEID The hmxobj parameter specifies an 
invalid device identifier.

MMSYSERR_INVALFLAG One or more flags are invalid.

MMSYSERR_INVALHANDLE The hmxobj parameter specifies an 
invalid handle.

MMSYSERR_INVALPARAM One or more parameters are invalid.

MMSYSERR_NODRIVER No audio mixer device is available for 
the object specified by hmxobj. The 
location referenced by puMxId also 
contains the value -1.

 

See Also
auxGetNumDevs, midiInOpen, midiOutOpen, mixerOpen, waveInOpen, waveOutOpen, 
midiInGetNumDevs, midiOutGetNumDevs, mixerGetNumDevs,    waveInGetNumDevs, 
waveOutGetNumDevs 



mixerGetLineControls      

  

The mixerGetLineControls function retrieves one or more controls associated with an audio line.

MMRESULT mixerGetLineControls(

        HMIXEROBJ hmxobj,
        LPMIXERLINECONTROLS pmxlc,
        DWORD fdwControls
      );
 

Parameters
hmxobj

Handle of the mixer device object that is being queried.

pmxlc

Address of a MIXERLINECONTROLS structure. This structure is used to reference one or more 
MIXERCONTROL structures to be filled with information about the controls associated with an audio 
line. The cbStruct member of the MIXERLINECONTROLS structure must always be initialized to be 
the size, in bytes, of the MIXERLINECONTROLS structure.

fdwControls

Flags for retrieving information about one or more controls associated with an audio line. The 
following values are defined:

MIXER_GETLINECONTROLSF_ALL

The pmxlc parameter references a list of MIXERCONTROL structures that will receive information 
on all controls associated with the audio line identified by the dwLineID member of the 
MIXERLINECONTROLS structure. The cControls member must be initialized to the number of 
controls associated with the line. This number is retrieved from the cControls member of the 
MIXERLINE structure returned by the mixerGetLineInfo function. The cbmxctrl member must be 
initialized to the size, in bytes, of a single MIXERCONTROL structure. The pamxctrl member must 
point to the first MIXERCONTROL structure to be filled. The dwControlID and dwControlType 
members are ignored for this query.

MIXER_GETLINECONTROLSF_ONEBYID

The pmxlc parameter references a single MIXERCONTROL structure that will receive information 
on the control identified by the dwControlID member of the MIXERLINECONTROLS structure. 
The cControls member must be initialized to 1. The cbmxctrl member must be initialized to the 
size, in bytes, of a single MIXERCONTROL structure. The pamxctrl member must point to a 
MIXERCONTROL structure to be filled. The dwLineID and dwControlType members are ignored 
for this query. This query is usually used to refresh a control after receiving a 
MM_MIXM_CONTROL_CHANGE control change notification message by the user-defined 
callback (see mixerOpen).

MIXER_GETLINECONTROLSF_ONEBYTYPE

The mixerGetLineControls function retrieves information about the first control of a specific class 
for the audio line that is being queried. The pmxlc parameter references a single MIXERCONTROL 
structure that will receive information about the specific control. The audio line is identified by the 
dwLineID member. The control class is specified in the dwControlType member of the 



MIXERLINECONTROLS structure.

The dwControlID member is ignored for this query. This query can be used by an application to 
get information on a single control associated with a line. For example, you might want your 
application to use a peak meter only from a waveform-audio output line.

MIXER_OBJECTF_AUX

The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the 
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN

The hmxobj parameter is the handle of a MIDI input device. This handle must have been returned 
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT

The hmxobj parameter is the handle of a MIDI output device. This handle must have been returned 
by the midiOutOpen function.

MIXER_OBJECTF_HMIXER

The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is 
optional.

MIXER_OBJECTF_HWAVEIN

The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT

The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen function.

MIXER_OBJECTF_MIDIIN

The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range of 
zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT

The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range 
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER

The hmxobj parameter is the identifier of a mixer device in the range of zero to one less than the 
number of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN

The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to one 
less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT

The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to 
one less than the number of devices returned by the waveOutGetNumDevs function.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIXERR_INVALCONTROL The control reference is invalid.

MIXERR_INVALLINE The audio line reference is invalid.



MMSYSERR_BADDEVICEI
D

The hmxobj parameter specifies an 
invalid device identifier.

MMSYSERR_INVALFLAG One or more flags are invalid.

MMSYSERR_INVALHANDL
E

The hmxobj parameter specifies an 
invalid handle.

MMSYSERR_INVALPARAM One or more parameters are invalid.

MMSYSERR_NODRIVER No mixer device is available for the 
object specified by hmxobj.

 

See Also
MIXERLINECONTROLS, MIXERCONTROL, MIXERLINE, mixerGetLineInfo, 
MM_MIXM_CONTROL_CHANGE, mixerOpen, auxGetNumDevs, midiInOpen, midiOutOpen, 
waveInOpen, waveOutOpen, midiInGetNumDevs, midiOutGetNumDevs, mixerGetNumDevs, 
waveInGetNumDevs, waveOutGetNumDevs 



mixerGetLineInfo      

  

The mixerGetLineInfo function retrieves information about a specific line of a mixer device.

MMRESULT mixerGetLineInfo(

        HMIXEROBJ hmxobj,
        LPMIXERLINE pmxl,
        DWORD fdwInfo
      );
 

Parameters
hmxobj

Handle of the mixer device object that controls the specific audio line.

pmxl

Address of a MIXERLINE structure. This structure is filled with information about the audio line for the 
mixer device. The cbStruct member must always be initialized to be the size, in bytes, of the 
MIXERLINE structure.

fdwInfo

Flags for retrieving information about an audio line. The following values are defined:

MIXER_GETLINEINFOF_COMPONENTTYPE

The pmxl parameter will receive information about the first audio line of the type specified in the 
dwComponentType member of the MIXERLINE structure. This flag is used to retrieve information 
about an audio line of a specific component type. Remaining structure members except cbStruct 
require no further initialization.

MIXER_GETLINEINFOF_DESTINATION

The pmxl parameter will receive information about the destination audio line specified by the 
dwDestination member of the MIXERLINE structure. This index ranges from zero to one less than 
the value in the cDestinations member of the MIXERCAPS structure. All remaining structure 
members except cbStruct require no further initialization.

MIXER_GETLINEINFOF_LINEID

The pmxl parameter will receive information about the audio line specified by the dwLineID 
member of the MIXERLINE structure. This is usually used to retrieve updated information about 
the state of an audio line. All remaining structure members except cbStruct require no further 
initialization.

MIXER_GETLINEINFOF_SOURCE

The pmxl parameter will receive information about the source audio line specified by the 
dwDestination and dwSource members of the MIXERLINE structure. The index specified by 
dwDestination ranges from zero to one less than the value in the cDestinations member of the 
MIXERCAPS structure. The index specified by dwSource ranges from zero to one less than the 
value in the cConnections member of the MIXERLINE structure returned for the audio line stored 
in the dwDestination member. All remaining structure members except cbStruct require no 
further initialization.

MIXER_GETLINEINFOF_TARGETTYPE



The pmxl parameter will receive information about the audio line that is for the dwType member of 
the Target structure, which is a member of the MIXERLINE structure. This flag is used to retrieve 
information about an audio line that handles the target type (for example, 
MIXERLINE_TARGETTYPE_WAVEOUT). An application must initialize the dwType, wMid, wPid, 
vDriverVersion and szPname members of the MIXERLINE structure before calling 
mixerGetLineInfo. All of these values can be retrieved from the device capabilities structures for 
all media devices. Remaining structure members except cbStruct require no further initialization.

MIXER_OBJECTF_AUX

The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the 
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN

The hmxobj parameter is the handle of a MIDI input device. This handle must have been returned 
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT

The hmxobj parameter is the handle of a MIDI output device. This handle must have been returned 
by the midiOutOpen function.

MIXER_OBJECTF_HMIXER

The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is 
optional.

MIXER_OBJECTF_HWAVEIN

The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT

The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen function.

MIXER_OBJECTF_MIDIIN

The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range of 
zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT

The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range 
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER

The hmxobj parameter is a mixer device identifier in the range of zero to one less than the number 
of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN

The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to one 
less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT

The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to 
one less than the number of devices returned by the waveOutGetNumDevs function.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 



MIXERR_INVALLINE The audio line reference is invalid.

MMSYSERR_BADDEVICEID The hmxobj parameter specifies an 
invalid device identifier.

MMSYSERR_INVALFLAG One or more flags are invalid.

MMSYSERR_INVALHANDLE The hmxobj parameter specifies an 
invalid handle.

MMSYSERR_INVALPARAM One or more parameters are 
invalid.

MMSYSERR_NODRIVER No mixer device is available for the 
object specified by hmxobj.

 

See Also
MIXERLINE, MIXERCAPS, auxGetNumDevs, midiInOpen, midiOutOpen, mixerOpen, waveInOpen, 
waveOutOpen, midiInGetNumDevs, midiOutGetNumDevs, mixerGetNumDevs, 
waveInGetNumDevs, waveOutGetNumDevs 



mixerGetNumDevs      

  

The mixerGetNumDevs function retrieves the number of mixer devices present in the system.

UINT mixerGetNumDevs(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns the number of mixer devices or zero if no mixer devices are available.



mixerMessage      

  

The mixerMessage function sends a custom mixer driver message directly to a mixer driver.

DWORD mixerMessage(

        HMIXER hmx,
        UINT uMsg,
        DWORD dwParam1,
        DWORD dwParam2
      );
 

Parameters
hmx

Handle of an open instance of a mixer device. This handle is returned by the mixerOpen function.

uMsg

Custom mixer driver message to send to the mixer driver. This message must be above or equal to 
the MXDM_USER constant.

dwParam1 and dwParam2

Arguments associated with the message being sent.
 

Return Values
Returns a value that is specific to the custom mixer driver message. Possible error values include the 
following: 

MMSYSERR_INVALHANDLE The specified device handle is 
invalid.

MMSYSERR_INVALPARAM The uMsg parameter specified in 
the MXDM_USER message is 
invalid.

MMSYSERR_NOTSUPPORTE
D

The mixer device did not process 
the message.

 

Remarks
User-defined messages must be sent only to a mixer driver that supports the messages. The application 
should verify that the mixer driver is the driver that supports the message by retrieving the mixer 
capabilities and checking the wMid, wPid, vDriverVersion, and szPname members of the MIXERCAPS 
structure.

See Also
mixerOpen, MIXERCAPS



mixerOpen      

  

The mixerOpen function opens a specified mixer device and ensures that the device will not be removed 
until the application closes the handle.

MMRESULT mixerOpen(

        LPHMIXER phmx,
        UINT uMxId,
        DWORD dwCallback,
        DWORD dwInstance,
        DWORD fdwOpen
      );
 

Parameters
phmx

Address of a variable that will receive a handle identifying the opened mixer device. Use this handle 
to identify the device when calling other audio mixer functions. This parameter cannot be NULL.

uMxId

Identifier of the mixer device to open. Use a valid device identifier or any HMIXEROBJ (see the 
mixerGetID function for a description of mixer object handles). A "mapper" for audio mixer devices 
does not currently exist, so a mixer device identifier of - 1 is not valid.

dwCallback

Handle of a window called when the state of an audio line and/or control associated with the device 
being opened is changed. Specify zero for this parameter if no callback mechanism is to be used.

dwInstance

User instance data passed to the callback function. This parameter is not used with window callback 
functions.

fdwOpen

Flags for opening the device. The following values are defined:

CALLBACK_WINDOW

The dwCallback parameter is assumed to be a window handle.

MIXER_OBJECTF_AUX

The uMxId parameter is an auxiliary device identifier in the range of zero to one less than the 
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN

The uMxId parameter is the handle of a MIDI input device. This handle must have been returned 
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT

The uMxId parameter is the handle of a MIDI output device. This handle must have been returned 
by the midiOutOpen function.

MIXER_OBJECTF_HMIXER



The uMxId parameter is a mixer device handle returned by the mixerOpen function. This flag is 
optional.

MIXER_OBJECTF_HWAVEIN

The uMxId parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT

The uMxId parameter is a waveform-audio output handle returned by the waveOutOpen function.

MIXER_OBJECTF_MIDIIN

The uMxId parameter is the identifier of a MIDI input device. This identifier must be in the range of 
zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT

The uMxId parameter is the identifier of a MIDI output device. This identifier must be in the range 
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER

The uMxId parameter is a mixer device identifier in the range of zero to one less than the number 
of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN

The uMxId parameter is the identifier of a waveform-audio input device in the range of zero to one 
less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT

The uMxId parameter is the identifier of a waveform-audio output device in the range of zero to one 
less than the number of devices returned by the waveOutGetNumDevs function.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMSYSERR_ALLOCATED The specified resource is already 
allocated by the maximum number 
of clients possible.

MMSYSERR_BADDEVICEID The uMxId parameter specifies an 
invalid device identifier.

MMSYSERR_INVALFLAG One or more flags are invalid.

MMSYSERR_INVALHANDLE The uMxId parameter specifies an 
invalid handle.

MMSYSERR_INVALPARAM One or more parameters are invalid.

MMSYSERR_NODRIVER No mixer device is available for the 
object specified by uMxId. Note that 
the location referenced by uMxId will 
also contain the value    - 1.

MMSYSERR_NOMEM Unable to allocate resources.
 

Remarks
Use the mixerGetNumDevs function to determine the number of audio mixer devices present in the 
system. The device identifier specified by uMxId varies from zero to one less than the number of devices 



present.

If a window is chosen to receive callback information, the MM_MIXM_LINE_CHANGE and 
MM_MIXM_CONTROL_CHANGE messages are sent to the window procedure function to indicate when 
an audio line or control state changes. For both messages, the wParam parameter is the handle of the 
mixer device. The lParam parameter is the line identifier for MM_MIXM_LINE_CHANGE or the control 
identifier for MM_MIXM_CONTROL_CHANGE that changed state.

To query for audio mixer support or a media device, use the mixerGetID function.

See Also
mixerGetID, auxGetNumDevs, midiInOpen, midiOutOpen, waveInOpen, waveOutOpen, 
midiInGetNumDevs, midiOutGetNumDevs, mixerGetNumDevs, waveInGetNumDevs, 
waveOutGetNumDevs, MM_MIXM_LINE_CHANGE, MM_MIXM_CONTROL_CHANGE



mixerSetControlDetails      

  

The mixerSetControlDetails function sets properties of a single control associated with an audio line.

MMRESULT mixerSetControlDetails(

        HMIXEROBJ hmxobj,
        LPMIXERCONTROLDETAILS pmxcd,
        DWORD fdwDetails
      );
 

Parameters
hmxobj

Handle of the mixer device object for which properties are being set.

pmxcd

Address of a MIXERCONTROLDETAILS structure. This structure is used to reference control detail 
structures that contain the desired state for the control. 

fdwDetails

Flags for setting properties for a control. The following values are defined:

MIXER_OBJECTF_AUX

The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the 
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN

The hmxobj parameter is the handle of a MIDI input device. This handle must have been returned 
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT

The hmxobj parameter is the handle of a MIDI output device. This handle must have been returned 
by the midiOutOpen function.

MIXER_OBJECTF_HMIXER

The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is 
optional.

MIXER_OBJECTF_HWAVEIN

The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT

The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen function.

MIXER_OBJECTF_MIDIIN

The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range of 
zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT

The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range 



of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER

The hmxobj parameter is a mixer device identifier in the range of zero to one less than the number 
of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN

The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to one 
less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT

The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to 
one less than the number of devices returned by the waveOutGetNumDevs function.

MIXER_SETCONTROLDETAILSF_CUSTOM

A custom dialog box for the specified custom mixer control is displayed. The mixer device gathers 
the required information from the user and returns the data in the specified buffer. The handle for 
the owning window is specified in the hwndOwner member of the MIXERCONTROLDETAILS 
structure. (This handle can be set to NULL.) The application can then save the data from the dialog 
box and use it later to reset the control to the same state by using the 
MIXER_SETCONTROLDETAILSF_VALUE flag.

MIXER_SETCONTROLDETAILSF_VALUE

The current value(s) for a control are set. The paDetails member of the 
MIXERCONTROLDETAILS structure points to one or more mixer-control details structures of the 
appropriate class for the control.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MIXERR_INVALCONTROL The control reference is invalid.

MMSYSERR_BADDEVICEIDThe hmxobj parameter specifies an 
invalid device identifier.

MMSYSERR_INVALFLAG One or more flags are invalid.

MMSYSERR_INVALHANDL
E

The hmxobj parameter specifies an 
invalid handle.

MMSYSERR_INVALPARAM One or more parameters are invalid.

MMSYSERR_NODRIVER No mixer device is available for the 
object specified by hmxobj.

 

Remarks
All members of the MIXERCONTROLDETAILS structure must be initialized before calling 
mixerSetControlDetails. 

If an application needs to retrieve only the current state of a custom mixer control and not display a dialog 
box, then mixerGetControlDetails can be used with the MIXER_GETCONTROLDETAILSF_VALUE flag.

See Also
MIXERCONTROLDETAILS, auxGetNumDevs, midiInOpen, midiOutOpen, mixerOpen, waveInOpen, 
waveOutOpen, midiInGetNumDevs, midiOutGetNumDevs, mixerGetNumDevs, 



waveInGetNumDevs, waveOutGetNumDevs, mixerGetControlDetails



mmioAdvance      

  

The mmioAdvance function advances the I/O buffer of a file set up for direct I/O buffer access with the 
mmioGetInfo function. 

MMRESULT mmioAdvance(

        HMMIO hmmio,
        LPMMIOINFO lpmmioinfo,
        UINT wFlags
      );
 

Parameters
hmmio

File handle of a file opened by using the mmioOpen function.

lpmmioinfo

Address of the MMIOINFO structure obtained by using the mmioGetInfo function. This structure is 
used to set the current file information, and then it is updated after the buffer is advanced. This 
parameter is optional.

wFlags

Flags for the operation. It can be one of the following:

MMIO_READ

Buffer is filled from the file.

MMIO_WRITE

Buffer is written to the file.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMIOERR_CANNOTEXPAN
D

The specified memory file cannot 
be expanded, probably because 
the adwInfo member of the 
MMIOINFO structure was set to 
zero in the initial call to the 
mmioOpen function.

MMIOERR_CANNOTREAD An error occurred while refilling the 
buffer.

MMIOERR_CANNOTWRITE The contents of the buffer could not 
be written to disk.

MMIOERR_OUTOFMEMORY There was not enough memory to 
expand a memory file for further 
writing.

MMIOERR_UNBUFFERED The specified file is not opened for 



buffered I/O.
 

Remarks
If the file is opened for reading, the I/O buffer is filled from the disk. If the file is opened for writing and the 
MMIO_DIRTY flag is set in the dwFlags member of the MMIOINFO structure, the buffer is written to disk. 
The pchNext, pchEndRead, and pchEndWrite members of the MMIOINFO structure are updated to 
reflect the new state of the I/O buffer.

If the specified file is opened for writing or for both reading and writing, the I/O buffer is flushed to disk 
before the next buffer is read. If the I/O buffer cannot be written to disk because the disk is full, 
mmioAdvance returns MMIOERR_CANNOTWRITE.

If the specified file is open only for writing, the MMIO_WRITE flag must be specified.

If you have written to the I/O buffer, you must set the MMIO_DIRTY flag in the dwFlags member of the 
MMIOINFO structure before calling mmioAdvance. Otherwise, the buffer will not be written to disk.

If the end of file is reached, mmioAdvance still returns successfully even though no more data can be 
read. To check for the end of the file, check if the pchNext and pchEndRead members of the MMIOINFO 
structure are equal after calling mmioAdvance.

See Also
mmioGetInfo, mmioOpen, MMIOINFO



mmioAscend      

  

The mmioAscend function ascends out of a chunk in a RIFF file descended into with the mmioDescend 
function or created with the mmioCreateChunk function.

MMRESULT mmioAscend(

        HMMIO hmmio,
        LPMMCKINFO lpck,
        UINT wFlags
      );
 

Parameters
hmmio

File handle of an open RIFF file.

lpck

Address of an application-defined MMCKINFO structure previously filled by the mmioDescend or 
mmioCreateChunk function.

wFlags

Reserved; must be zero.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMIOERR_CANNOTSEEK There was an error while seeking to the 
end of the chunk.

MMIOERR_CANNOTWRITEThe contents of the buffer could not be 
written to disk.

 

Remarks
If the chunk was descended into by using mmioDescend, mmioAscend seeks to the location following 
the end of the chunk (past the extra pad byte, if any).

If the chunk was created and descended into by using mmioCreateChunk, or if the MMIO_DIRTY flag is 
set in the dwFlags member of the MMCKINFO structure referenced by lpck, the current file position is 
assumed to be the end of the data portion of the chunk. If the chunk size is not the same as the value 
stored in the cksize member of the MMCKINFO structure when mmioCreateChunk was called, 
mmioAscend corrects the chunk size in the file before ascending from the chunk. If the chunk size is 
odd, mmioAscend writes a null pad byte at the end of the chunk. After ascending from the chunk, the 
current file position is the location following the end of the chunk (past the extra pad byte, if any).

See Also
mmioDescend, mmioCreateChunk, MMCKINFO



mmioClose      

  

The mmioClose function closes a file that was opened by using the mmioOpen function.

MMRESULT mmioClose(

        HMMIO hmmio,
        UINT wFlags
      );
 

Parameters
hmmio

File handle of the file to close.

wFlags

Flags for the close operation. The following value is defined:

MMIO_FHOPEN

If the file was opened by passing a file handle whose type is not HMMIO, using this flag tells the 
mmioClose function to close the multimedia file handle, but not the standard file handle.

 

Return Values
Returns zero if successful or an error otherwise. The error value can originate from the mmioFlush 
function or from the I/O procedure. Possible error values include the following: 

MMIOERR_CANNOTWRITE The contents of the buffer could not be 
written to disk.

 

See Also
mmioOpen, mmioFlush



mmioCreateChunk      

  

The mmioCreateChunk function creates a chunk in a RIFF file that was opened by using the mmioOpen 
function. The new chunk is created at the current file position. After the new chunk is created, the current 
file position is the beginning of the data portion of the new chunk.

MMRESULT mmioCreateChunk(

        HMMIO hmmio,
        LPMMCKINFO lpck,
        UINT wFlags
      );
 

Parameters
hmmio

File handle of an open RIFF file.

lpck

Address an application-defined MMCKINFO structure containing information about the chunk to be 
created. 

wFlags

Flags identifying what type of chunk to create. The following values are defined:

MMIO_CREATELIST

"LIST" chunk.

MMIO_CREATERIFF

"RIFF" chunk.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMIOERR_CANNOTSEEK Unable to determine offset of the 
data portion of the chunk.

MMIOERR_CANNOTWRITE Unable to write the chunk header.
 

Remarks
This function cannot insert a chunk into the middle of a file. If an application attempts to create a chunk 
somewhere other than at the end of a file, mmioCreateChunk overwrites existing information in the file.

The MMCKINFO structure pointed to by the lpck parameter should be set up as follows:

· The ckid member specifies the chunk identifier. If wFlags includes MMIO_CREATERIFF or 
MMIO_CREATELIST, this member will be filled by mmioCreateChunk.

· The cksize member specifies the size of the data portion of the chunk, including the form type or list 
type (if any). If this value is not correct when the mmioAscend function is called to mark the end of 



the chunk, mmioAscend corrects the chunk size.

· The fccType member specifies the form type or list type if the chunk is a "RIFF" or "LIST" chunk. If 
the chunk is not a "RIFF" or "LIST" chunk, this member does not need to be filled in.

· The dwDataOffset member does not need to be filled in. The mmioCreateChunk function fills this 
member with the file offset of the data portion of the chunk.

· The dwFlags member does not need to be filled in. The mmioCreateChunk function sets the 
MMIO_DIRTY flag in dwFlags.

 

See Also
mmioOpen, MMCKINFO, mmioAscend 



mmioDescend      

  

The mmioDescend function descends into a chunk of a RIFF file that was opened by using the 
mmioOpen function. It can also search for a given chunk.

MMRESULT mmioDescend(

        HMMIO hmmio,
        LPMMCKINFO lpck,
        LPMMCKINFO lpckParent,
        UINT wFlags
      );
 

Parameters
hmmio

File handle of an open RIFF file.

lpck

Address an application-defined MMCKINFO structure.

lpckParent

Address of an optional application-defined MMCKINFO structure identifying the parent of the chunk 
being searched for. If this parameter is not NULL, mmioDescend assumes the MMCKINFO structure 
it refers to was filled when mmioDescend was called to descend into the parent chunk, and 
mmioDescend searches for a chunk within the parent chunk. Set this parameter to NULL if no parent 
chunk is being specified.

wFlags

Search flags. If no flags are specified, mmioDescend descends into the chunk beginning at the 
current file position. The following values are defined:

MMIO_FINDCHUNK

Searches for a chunk with the specified chunk identifier.

MMIO_FINDLIST

Searches for a chunk with the chunk identifier "LIST" and with the specified form type.

MMIO_FINDRIFF

Searches for a chunk with the chunk identifier "RIFF" and with the specified form type.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following: 

MMIOERR_CHUNKNOTFOUND The end of the file (or the end of the 
parent chunk, if given) was reached 
before the desired chunk was 
found.

 



Remarks
A "RIFF" chunk consists of a four-byte chunk identifier (type FOURCC), followed by a four-byte chunk 
size (type DWORD), followed by the data portion of the chunk, followed by a null pad byte if the size of 
the data portion is odd. If the chunk identifier is "RIFF" or "LIST", the first four bytes of the data portion of 
the chunk are a form type or list type (type FOURCC).

If you use mmioDescend to search for a chunk, make sure the file position is at the beginning of a chunk 
before calling the function. The search begins at the current file position and continues to the end of the 
file. If a parent chunk is specified, the file position should be somewhere within the parent chunk before 
calling mmioDescend. In this case, the search begins at the current file position and continues to the end 
of the parent chunk.

If mmioDescend is unsuccessful in searching for a chunk, the current file position is undefined. If 
mmioDescend is successful, the current file position is changed. If the chunk is a "RIFF" or "LIST" chunk, 
the new file position will be just after the form type or list type (12 bytes from the beginning of the chunk). 
For other chunks, the new file position will be the start of the data portion of the chunk (8 bytes from the 
beginning of the chunk).

The mmioDescend function fills the MMCKINFO structure pointed to by the lpck parameter with the 
following information:

· The ckid member is the chunk. If the MMIO_FINDCHUNK, MMIO_FINDRIFF, or MMIO_FINDLIST 
flag is specified for wFlags, the MMCKINFO structure is also used to pass parameters to 
mmioDescend. In this case, the ckid member specifies the four-character code of the chunk 
identifier, form type, or list type to search for.

· The cksize member is the size, in bytes, of the data portion of the chunk. The size includes the form 
type or list type (if any), but does not include the 8-byte chunk header or the pad byte at the end of 
the data (if any).

· The fccType member is the form type if ckid is "RIFF", or the list type if ckid is "LIST". Otherwise, it 
is NULL.

· The dwDataOffset member is the file offset of the beginning of the data portion of the chunk. If the 
chunk is a "RIFF" chunk or a "LIST" chunk, this member is the offset of the form type or list type.

· The dwFlags member contains other information about the chunk. Currently, this information is not 
used and is set to zero.

 

See Also
mmioOpen, MMCKINFO



mmioFlush      

  

The mmioFlush function writes the I/O buffer of a file to disk if the buffer has been written to.

MMRESULT mmioFlush(

        HMMIO hmmio,
        UINT fuFlush
      );
 

Parameters
hmmio

File handle of a file opened by using the mmioOpen function.

fuFlush

Flag determining how the flush is carried out. It can be zero or the following:

MMIO_EMPTYBUF Empties the buffer after writing it to the disk.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following: 

MMIOERR_CANNOTWRITE The contents of the buffer could not 
be written to disk.

 

Remarks
Closing a file with the mmioClose function automatically flushes its buffer.

If there is insufficient disk space to write the buffer, mmioFlush fails, even if the preceding calls of the 
mmioWrite function were successful.

See Also
mmioOpen, mmioClose, mmioWrite



mmioGetInfo      

  

The mmioGetinfo function retrieves information about a file opened by using the mmioOpen function. 
This information allows the application to directly access the I/O buffer, if the file is opened for buffered 
I/O.

MMRESULT mmioGetInfo(

        HMMIO hmmio,
        LPMMIOINFO lpmmioinfo,
        UINT wFlags
      );
 

Parameters
hmmio

File handle of the file.

lpmmioinfo

Address an MMIOINFO structure that mmioGetInfo fills with information about the file. 

wFlags

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
To directly access the I/O buffer of a file opened for buffered I/O, use the following members of the 
MMIOINFO structure filled by mmioGetInfo:

· The pchNext member points to the next byte in the buffer that can be read or written. When you read 
or write, increment pchNext by the number of bytes read or written.

· The pchEndRead member points to 1 byte past the last valid byte in the buffer that can be read.

· The pchEndWrite member points to 1 byte past the last location in the buffer that can be written.
 

After you read or write to the buffer and modify pchNext, do not call any multimedia file I/O functions 
except mmioAdvance until you call the mmioSetInfo function. Call mmioSetInfo when you are finished 
directly accessing the buffer.

When you reach the end of the buffer specified by the pchEndRead or pchEndWrite member, call 
mmioAdvance to fill the buffer from the disk or write the buffer to the disk. The mmioAdvance function 
updates the pchNext, pchEndRead, and pchEndWrite members in the MMIOINFO structure for the file.

Before calling mmioAdvance or mmioSetInfo to flush a buffer to disk, set the MMIO_DIRTY flag in the 
dwFlags member of the MMIOINFO structure for the file. Otherwise, the buffer will not be written to disk.

Do not decrement pchNext or modify any members in the MMIOINFO structure other than pchNext and 
dwFlags. Do not set any flags in dwFlags except MMIO_DIRTY.



See Also
mmioOpen, MMIOINFO, mmioAdvance, mmioSetInfo 



mmioInstallIOProc      

  

The mmioInstallIOProc function installs or removes a custom I/O procedure. This function also locates 
an installed I/O procedure, using its corresponding four-character code.

LPMMIOPROC mmioInstallIOProc(

        FOURCC fccIOProc,
        LPMMIOPROC pIOProc,
        DWORD dwFlags
      );
 

Parameters
fccIOProc

Four-character code identifying the I/O procedure to install, remove, or locate. All characters in this 
code should be uppercase.

pIOProc

Address of the I/O procedure to install. To remove or locate an I/O procedure, set this parameter to 
NULL. For more information about the I/O procedure, see MMIOProc.

dwFlags

Flag indicating whether the I/O procedure is being installed, removed, or located. The following values 
are defined:

MMIO_FINDPROC

Searches for the specified I/O procedure.

MMIO_GLOBALPROC

This flag is a modifier to the MMIO_INSTALLPROC flag and indicates the I/O procedure should be 
installed for global use. This flag is ignored if MMIO_FINDPROC or MMIO_REMOVEPROC is 
specified.

MMIO_INSTALLPROC

Installs the specified I/O procedure.

MMIO_REMOVEPROC

Removes the specified I/O procedure.
 

Return Values
Returns the address of the I/O procedure installed, removed, or located. Returns NULL if there is an error.

See Also
MMIOProc



mmioOpen      

  

The mmioOpen function opens a file for unbuffered or buffered I/O. The file can be a standard file, a 
memory file, or an element of a custom storage system. The handle returned by mmioOpen is not a 
standard file handle; do not use it with any file I/O functions other than multimedia file I/O functions.

HMMIO mmioOpen(

        LPSTR szFilename,
        LPMMIOINFO lpmmioinfo,
        DWORD dwOpenFlags
      );
 

Parameters
szFilename

Address of a string containing the filename of the file to open. If no I/O procedure is specified to open 
the file, the filename determines how the file is opened, as follows:

· If the filename does not contain a plus sign (+), it is assumed to be the name of a standard    file 
(that is, a file whose type is not HMMIO).

· If the filename is of the form EXAMPLE.EXT+ABC, the extension EXT is assumed to identify an 
installed I/O procedure which is called to perform I/O on the file. For more information, see 
mmioInstallIOProc.

· If the filename is NULL and no I/O procedure is given, the adwInfo member of the MMIOINFO 
structure is assumed to be the standard (non-HMMIO) file handle of a currently open file.

The filename should not be longer than 128 bytes, including the terminating NULL character.

When opening a memory file, set szFilename to NULL.

lpmmioinfo

Address of an MMIOINFO structure containing extra parameters used by mmioOpen. Unless you are 
opening a memory file, specifying the size of a buffer for buffered I/O, or specifying an uninstalled I/O 
procedure to open a file, this parameter should be NULL. If this parameter is not NULL, all unused 
members of the MMIOINFO structure it references must be set to zero, including the reserved 
members.

dwOpenFlags

Flags for the open operation. The MMIO_READ, MMIO_WRITE, and MMIO_READWRITE flags are 
mutually exclusive ¾ only one should be specified. The MMIO_COMPAT, MMIO_EXCLUSIVE, 
MMIO_DENYWRITE, MMIO_DENYREAD, and MMIO_DENYNONE flags are file-sharing flags. The 
following values are defined:

MMIO_ALLOCBUF

Opens a file for buffered I/O. To allocate a buffer larger or smaller than the default buffer size (8K, 
defined as MMIO_DEFAULTBUFFER), set the cchBuffer member of the MMIOINFO structure to 
the desired buffer size. If cchBuffer is zero, the default buffer size is used. If you are providing 
your own I/O buffer, this flag should not be used.

MMIO_COMPAT

Opens the file with compatibility mode, allowing any process on a given machine to open the file 
any number of times. If the file has been opened with any of the other sharing modes, mmioOpen 



fails.

MMIO_CREATE

Creates a new file. If the file already exists, it is truncated to zero length. For memory files, this flag 
indicates the end of the file is initially at the start of the buffer.

MMIO_DELETE

Deletes a file. If this flag is specified, szFilename should not be NULL. The return value is TRUE 
(cast to HMMIO) if the file was deleted successfully or FALSE otherwise. Do not call the 
mmioClose function for a file that has been deleted. If this flag is specified, all other flags that 
open files are ignored.

MMIO_DENYNONE

Opens the file without denying other processes read or write access to the file. If the file has been 
opened in compatibility mode by any other process, mmioOpen fails.

MMIO_DENYREAD

Opens the file and denies other processes read access to the file. If the file has been opened in 
compatibility mode or for read access by any other process, mmioOpen fails.

MMIO_DENYWRITE

Opens the file and denies other processes write access to the file. If the file has been opened in 
compatibility mode or for write access by any other process, mmioOpen fails.

MMIO_EXCLUSIVE

Opens the file and denies other processes read and write access to the file. If the file has been 
opened in any other mode for read or write access, even by the current process, mmioOpen fails.

MMIO_EXIST

Determines whether the specified file exists and creates a fully qualified filename from the path 
specified in szFilename. The filename is placed back into szFilename. The return value is TRUE 
(cast to HMMIO) if the qualification was successful and the file exists or FALSE otherwise. The file 
is not opened, and the function does not return a valid multimedia file I/O file handle, so do not 
attempt to close the file.

MMIO_GETTEMP

Creates a temporary filename, optionally using the parameters passed in szFilename. For 
example, you can specify "C:F" to create a temporary file residing on drive C, starting with letter 
"F". The resulting filename is placed in the buffer pointed to by szFilename. The return value is 
MMSYSERR_NOERROR (cast to HMMIO) if the temporary filename was created successfully or 
MMIOERR_FILENOTFOUND otherwise. The file is not opened, and the function does not return a 
valid multimedia file I/O file handle, so do not attempt to close the file. This flag overrides all other 
flags.

MMIO_PARSE

Creates a fully qualified filename from the path specified in szFilename. The filename is placed 
back into szFilename. The return value is TRUE (cast to HMMIO) if the qualification was successful 
or FALSE otherwise. The file is not opened, and the function does not return a valid multimedia file 
I/O file handle, so do not attempt to close the file. If this flag is specified, all flags that open files are 
ignored.

MMIO_READ

Opens the file for reading only. This is the default if MMIO_WRITE and MMIO_READWRITE are 
not specified.

MMIO_READWRITE



Opens the file for reading and writing.

MMIO_WRITE

Opens the file for writing only. 
 

Return Values
Returns a handle of the opened file. If the file cannot be opened, the return value is NULL. If lpmmioinfo is 
not NULL, the wErrorRet member of the MMIOINFO structure will contain one of the following error 
values:

MMIOERR_ACCESSDENIED The file is protected and cannot 
be opened.

MMIOERR_INVALIDFILE Another failure condition 
occurred. This is the default error 
for an open-file failure.

MMIOERR_NETWORKERROR The network is not responding to 
the request to open a remote file.

MMIOERR_PATHNOTFOUND The directory specification is 
incorrect.

MMIOERR_SHARINGVIOLATION The file is being used by another 
application and is unavailable.

MMIOERR_TOOMANYOPENFILE
S

The number of files 
simultaneously open is at a 
maximum level. The system has 
run out of available file handles.

 

Remarks
If lpmmioinfo references an MMIOINFO structure, set up the members of that structure as described 
below. All unused members must be set to zero, including reserved members.

· To request that a file be opened with an installed I/O procedure, set fccIOProc to the four-character 
code of the I/O procedure, and set pIOProc to NULL.

· To request that a file be opened with an uninstalled I/O procedure, set IOProc to point to the I/O 
procedure, and set fccIOProc to NULL.

· To request that mmioOpen determine which I/O procedure to use to open the file based on the 
filename contained in szFilename, set fccIOProc and pIOProc to NULL. This is the default behavior 
if no MMIOINFO structure is specified.

· To open a memory file using an internally allocated and managed buffer, set pchBuffer to NULL, 
fccIOProc to FOURCC_MEM, cchBuffer to the initial size of the buffer, and adwInfo to the 
incremental expansion size of the buffer. This memory file will automatically be expanded in 
increments of the number of bytes specified in adwInfo when necessary. Specify the MMIO_CREATE 
flag for the dwOpenFlags parameter to initially set the end of the file to be the beginning of the buffer.

· To open a memory file using an application-supplied buffer, set pchBuffer to point to the memory 
buffer, fccIOProc to FOURCC_MEM, cchBuffer to the size of the buffer, and adwInfo to the 
incremental expansion size of the buffer. The expansion size in adwInfo should be nonzero only if 
pchBuffer is a pointer obtained by calling the GlobalAlloc and GlobalLock functions; in this case, 
the GlobalReAlloc function will be called to expand the buffer. In other words, if pchBuffer points to 
a local or global array or a block of memory in the local heap, adwInfo must be zero. Specify the 
MMIO_CREATE flag for the dwOpenFlags parameter to initially set the end of the file to be the 
beginning of the buffer. Otherwise, the entire block of memory is considered readable.

· To use a currently open standard file handle (that is, a file handle that does not have the HMMIO 



type) with multimedia file I/O services, set fccIOProc to FOURCC_DOS, pchBuffer to NULL, and 
adwInfo to the standard file handle. Offsets within the file will be relative to the beginning of the file 
and are not related to the position in the standard file at the time mmioOpen is called; the initial 
multimedia file I/O offset will be the same as the offset in the standard file when mmioOpen is called. 
To close the multimedia file I/O file handle without closing the standard file handle, pass the 
MMIO_FHOPEN flag to mmioClose.

 

You must call mmioClose to close a file opened by using mmioOpen. Open files are not automatically 
closed when an application exits.

See Also
ABC, mmioInstallIOProc, MMIOINFO, mmioClose, IOProc, GlobalAlloc, GlobalLock, GlobalReAlloc 



MMIOProc    

The MMIOProc function is a custom input/output (I/O) procedure installed by the mmioInstallIOProc 
function. MMIOProc is a placeholder for the application-defined function name. The address of this 
function can be specified in the callback-address parameter of mmioInstallIOProc.

LRESULT MMIOProc(

        LPSTR lpmmioinfo,
        UINT uMsg,
        LONG lParam1,
        LONG lParam2 
      );
 

Parameters
lpmmioinfo

Points to an MMIOINFO structure containing information about the open file. 

The I/O procedure must maintain the lDiskOffset member in this structure to indicate the file offset to 
the next read or write location. The I/O procedure can use the adwInfo[] member to store state 
information. The I/O procedure should not modify any other members of the MMIOINFO structure. 

uMsg

Specifies a message indicating the requested I/O operation. Messages that can be received include 
MMIOM_OPEN, MMIOM_CLOSE, MMIOM_READ, MMIOM_SEEK, MMIOM_WRITE, and 
MMIOM_WRITEFLUSH. 

lParam1

Specifies an application-defined parameter for the message. 

lParam2

Specifies an application-defined parameter for the message. 
 

Return Values
The return value depends on the message specified by uMsg. If the I/O procedure does not recognize a 
message, it should return zero. 

Remarks
The four-character code specified by the fccMMIOProc member in the MMIOINFO structure associated 
with a file identifies a filename extension for a custom storage system. When an application calls 
mmioOpen with a filename such as "one.xyz+two", the I/O procedure associated with the four-character 
code "XYZ" is called to open the "two" element of the file "one.xyz". 

The mmioInstallIOProc function maintains a separate list of installed I/O procedures for each Windows-
based application. Therefore, different applications can use the same I/O procedure identifier for different 
I/O procedures without conflict. However, installing an I/O procedure globally enables any process to use 
the procedure. 

If an application calls mmioInstallIOProc more than once to register the same I/O procedure, then it 
must call mmioInstallIOProc to remove the procedure once for each time it installed the procedure. 

mmioInstallIOProc will not prevent an application from installing two different I/O procedures with the 
same identifier, or installing an I/O procedure with one of the predefined identifiers ("DOS ", "MEM "). The 



most recently installed procedure takes precedence, and the most recently installed procedure is the first 
one to be removed. 

When searching for a specified I/O procedure, local procedures are searched first, then global 
procedures. 

See Also
MMIOINFO, mmioInstallIOProc, MMIOM_OPEN, MMIOM_CLOSE, MMIOM_READ, MMIOM_SEEK, 
MMIOM_WRITE, MMIOM_WRITEFLUSH, mmioOpen 



mmioRead      

  

The mmioRead function reads a specified number of bytes from a file opened by using the mmioOpen 
function.

LONG mmioRead(

        HMMIO hmmio,
        HPSTR pch,
        LONG cch
      );
 

Parameters
hmmio

File handle of the file to be read.

pch

Address of a buffer to contain the data read from the file.

cch

Number of bytes to read from the file.
 

Return Values
Returns the number of bytes actually read. If the end of the file has been reached and no more bytes can 
be read, the return value is 0. If there is an error reading from the file, the return value is - 1.

See Also
mmioOpen 



mmioRename      

  

The mmioRename function renames the specified file.

MMRESULT mmioRename(

        LPCSTR szFilename,
        LPCSTR szNewFilename,
        const LPMMIOINFO lpmmioinfo,
        DWORD dwRenameFlags
      );
 

Parameters
szFilename

Address of a string containing the filename of the file to rename.

szNewFileName

Address of a string containing the new filename.

lpmmioinfo

Address of an MMIOINFO structure containing extra parameters used by mmioRename. If this 
parameter is not NULL, all unused members of the MMIOINFO structure it references must be set to 
zero, including the reserved members.

dwRenameFlags

Flags for the rename operation. This parameter should be set to zero.
 

Return Values
Returns zero if the file was renamed. Otherwise, returns an error code returned from mmioRename or 
from the I/O procedure.

See Also
MMIOINFO 



mmioSeek      

  

The mmioSeek function changes the current file position in a file opened by using the mmioOpen 
function. 

LONG mmioSeek(

        HMMIO hmmio,
        LONG lOffset,
        int iOrigin
      );
 

Parameters
hmmio

File handle of the file to seek in.

lOffset

Offset to change the file position.

iOrigin

Flags indicating how the offset specified by lOffset is interpreted. The following values are defined:

SEEK_CUR

Seeks to lOffset bytes from the current file position.

SEEK_END

Seeks to lOffset bytes from the end of the file.

SEEK_SET

Seeks to lOffset bytes from the beginning of the file.
 

Return Values
Returns the new file position, in bytes, relative to the beginning of the file. If there is an error, the return 
value is - 1.

Remarks
Seeking to an invalid location in the file, such as past the end of the file, might not cause mmioSeek to 
return an error, but it might cause subsequent I/O operations on the file to fail.

To locate the end of a file, call mmioSeek with lOffset set to zero and iOrigin set to SEEK_END.

See Also
mmioOpen



mmioSendMessage      

  

The mmioSendMessage function sends a message to the I/O procedure associated with the specified 
file.

LRESULT mmioSendMessage(

        HMMIO hmmio,
        UINT wMsg,
        LPARAM lParam1,
        LPARAM lParam2
      );
 

Parameters
hmmio

File handle for a file opened by using the mmioOpen function.

wMsg

Message to send to the I/O procedure.

lParam1 and lParam2

Parameters for the message.
 

Return Values
Returns a value that corresponds to the message. If the I/O procedure does not recognize the message, 
the return value should be zero.

Remarks
Use this function to send custom user-defined messages. Do not use it to send the MMIOM_OPEN, 
MMIOM_CLOSE, MMIOM_READ, MMIOM_WRITE, MMIOM_WRITEFLUSH, or MMIOM_SEEK 
messages. Define custom messages to be greater than or equal to the MMIOM_USER constant.

See Also
mmioOpen, MMIOM_OPEN, MMIOM_CLOSE, MMIOM_READ, MMIOM_WRITE, 
MMIOM_WRITEFLUSH, MMIOM_SEEK



mmioSetBuffer      

  

The mmioSetBuffer function enables or disables buffered I/O, or changes the buffer or buffer size for a 
file opened by using the mmioOpen function.

MMRESULT mmioSetBuffer(

        HMMIO hmmio,
        LPSTR pchBuffer,
        LONG cchBuffer,
        UINT wFlags
      );
 

Parameters
hmmio

File handle of the file.

pchBuffer

Address of an application-defined buffer to use for buffered I/O. If this parameter is NULL, 
mmioSetBuffer allocates an internal buffer for buffered I/O.

cchBuffer

Size, in characters, of the application-defined buffer, or the size of the buffer for mmioSetBuffer to 
allocate.

wFlags

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. If an error occurs, the file handle remains valid. The 
following values are defined:

MMIOERR_CANNOTWRIT
E

The contents of the old buffer could 
not be written to disk, so the operation 
was aborted.

MMIOERR_OUTOFMEMO
RY

The new buffer could not be 
allocated, probably due to a lack of 
available memory.

 

Remarks
To enable buffering using an internal buffer, set pchBuffer to NULL and cchBuffer to the desired buffer 
size.

To supply your own buffer, set pchBuffer to point to the buffer, and set cchBuffer to the size of the buffer.

To disable buffered I/O, set pchBuffer to NULL and cchBuffer to zero.

If buffered I/O is already enabled using an internal buffer, you can reallocate the buffer to a different size 



by setting pchBuffer to NULL and cchBuffer to the new buffer size. The contents of the buffer can be 
changed after resizing.

See Also
mmioOpen



mmioSetInfo      

  

The mmioSetInfo function updates the information retrieved by the mmioGetInfo function about a file 
opened by using the mmioOpen function. Use this function to terminate direct buffer access of a file 
opened for buffered I/O.

MMRESULT mmioSetInfo(

        HMMIO hmmio,
        LPMMIOINFO lpmmioinfo,
        UINT wFlags
      );
 

Parameters
hmmio

File handle of the file.

lpmmioinfo

Address of an MMIOINFO structure filled with information by the mmioGetInfo function.

wFlags

Reserved; must be zero.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
If you have written to the file I/O buffer, set the MMIO_DIRTY flag in the dwFlags member of the 
MMIOINFO structure before calling mmioSetInfo to terminate direct buffer access. Otherwise, the buffer 
will not get flushed to disk.

See Also
mmioGetInfo, mmioOpen, MMIOINFO 



mmioStringToFOURCC      

  

The mmioStringToFOURCC function converts a null-terminated string to a four-character code.

FOURCC mmioStringToFOURCC(

        LPCSTR sz,
        UINT wFlags
      );
 

Parameters
sz

Address of a null-terminated string to convert to a four-character code.

wFlags

Flags for the conversion. The following value is defined:

MMIO_TOUPPER

Converts all characters to uppercase.
 

Return Values
Returns the four-character code created from the given string.

Remarks
This function copies the string to a four-character code and pads it with space characters or truncates it if 
necessary. It does not check whether the code it returns is valid.



mmioWrite      

  

The mmioWrite function writes a specified number of bytes to a file opened by using the mmioOpen 
function.

LONG mmioWrite(

        HMMIO hmmio,
        char _huge* pch,
        LONG cch
      );
 

Parameters
hmmio

File handle of the file.

pch

Address of the buffer to be written to the file.

cch

Number of bytes to write to the file.
 

Return Values
Returns the number of bytes actually written. If there is an error writing to the file, the return value is -1.

Remarks
The current file position is incremented by the number of bytes written.

See Also
mmioOpen



MyStatusProc      

  

The MyStatusProc function describes an application-defined status callback function used by the 
ICM_SET_STATUS_PROC message and the ICSetStatusProc function.

LONG MyStatusProc(

        LPARAM lParam,
        UINT Message
      );
 

Parameters
lParam

Constant specified with the status callback address.

Message

Status flag. It can be one of the following values:

ICSTATUS_END

A lengthy operation is finishing.

ICSTATUS_START

A lengthy operation is starting.

ICSTATUS_STATUS

Operation is proceeding, and is lParam percent done.

ICSTATUS_YIELD

A lengthy operation is proceeding. This value has the same meaning as ICSTATUS_STATUS but 
does not indicate a value for percentage done.

 

Return Values
Returns zero if processing should continue or a nonzero value if it should end.

See Also
ICM_SET_STATUS_PROC, ICSetStatusProc 



PlaySound      

  

The PlaySound function plays a sound specified by the given filename, resource, or system event. (A 
system event may be associated with a sound in the registry or in the WIN.INI file.) 

BOOL PlaySound(

        LPCSTR pszSound,
        HMODULE hmod,
        DWORD fdwSound
      );
 

Parameters
pszSound

A string that specifies the sound to play. If this parameter is NULL, any currently playing waveform 
sound is stopped. To stop a non-waveform sound, specify SND_PURGE in the fdwSound parameter.

Three flags in fdwSound (SND_ALIAS, SND_FILENAME, and SND_RESOURCE) determine whether 
the name is interpreted as an alias for a system event, a filename, or a resource identifier. If none of 
these flags are specified, PlaySound searches the registry or the WIN.INI file for an association with 
the specified sound name. If an association is found, the sound event is played. If no association is 
found in the registry, the name is interpreted as a filename.

hmod

Handle of the executable file that contains the resource to be loaded. This parameter must be NULL 
unless SND_RESOURCE is specified in fdwSound.

fdwSound

Flags for playing the sound. The following values are defined:

SND_APPLICATION

The sound is played using an application-specific association.

SND_ALIAS

The pszSound parameter is a system-event alias in the registry or the WIN.INI file. Do not use with 
either SND_FILENAME or SND_RESOURCE.

SND_ALIAS_ID

The pszSound parameter is a predefined sound identifier.

SND_ASYNC

The sound is played asynchronously and PlaySound returns immediately after beginning the 
sound. To terminate an asynchronously played waveform sound, call PlaySound with pszSound 
set to NULL.

SND_FILENAME

The pszSound parameter is a filename.

SND_LOOP

The sound plays repeatedly until PlaySound is called again with the pszSound parameter set to 
NULL. You must also specify the SND_ASYNC flag to indicate an asynchronous sound event.



SND_MEMORY

A sound event's file is loaded in RAM. The parameter specified by pszSound must point to an 
image of a sound in memory.

SND_NODEFAULT

No default sound event is used. If the sound cannot be found, PlaySound returns silently without 
playing the default sound.

SND_NOSTOP

The specified sound event will yield to another sound event that is already playing. If a sound 
cannot be played because the resource needed to generate that sound is busy playing another 
sound, the function immediately returns FALSE without playing the requested sound.

If this flag is not specified, PlaySound attempts to stop the currently playing sound so that the 
device can be used to play the new sound.

SND_NOWAIT

If the driver is busy, return immediately without playing the sound.

SND_PURGE

Sounds are to be stopped for the calling task. If pszSound is not NULL, all instances of the 
specified sound are stopped. If pszSound is NULL, all sounds that are playing on behalf of the 
calling task are stopped.

You must also specify the instance handle to stop SND_RESOURCE events.

SND_RESOURCE

The pszSound parameter is a resource identifier; hmod must identify the instance that contains the 
resource.

SND_SYNC

Synchronous playback of a sound event. PlaySound returns after the sound event completes.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The sound specified by pszSound must fit into available physical memory and be playable by an installed 
waveform-audio device driver. PlaySound searches the following directories for sound files: the current 
directory; the Windows directory; the Windows system directory; directories listed in the PATH 
environment variable; and the list of directories mapped in a network. For more information about the 
directory search order, see the documentation for the OpenFile function.

If it cannot find the specified sound, PlaySound uses the default system event sound entry instead. If the 
function can find neither the system default entry nor the default sound, it makes no sound and returns 
FALSE.



sndPlaySound      

  

The sndPlaySound function plays a waveform sound specified either by a filename or by an entry in the 
registry or the WIN.INI file. This function offers a subset of the functionality of the PlaySound function; 
sndPlaySound is being maintained for backward compatibility.

BOOL sndPlaySound(

        LPCSTR lpszSound,
        UINT fuSound
      );
 

Parameters
lpszSound

A string that specifies the sound to play. This parameter can be either an entry in the registry or in 
WIN.INI that identifies a system sound, or it can be the name of a waveform-audio file. (If the function 
does not find the entry, the parameter is treated as a filename.) If this parameter is NULL, any 
currently playing sound is stopped.

fuSound

Flags for playing the sound. The following values are defined:

SND_ASYNC

The sound is played asynchronously and the function returns immediately after beginning the 
sound. To terminate an asynchronously played sound, call sndPlaySound with lpszSoundName 
set to NULL.

SND_LOOP

The sound plays repeatedly until sndPlaySound is called again with the lpszSoundName 
parameter set to NULL. You must also specify the SND_ASYNC flag to loop sounds.

SND_MEMORY

The parameter specified by lpszSoundName points to an image of a waveform sound in memory.

SND_NODEFAULT

If the sound cannot be found, the function returns silently without playing the default sound.

SND_NOSTOP

If a sound is currently playing, the function immediately returns FALSE, without playing the 
requested sound.

SND_SYNC

The sound is played synchronously and the function does not return until the sound ends.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks



If the specified sound cannot be found, sndPlaySound plays the system default sound. If there is no 
system default entry in the registry or WIN.INI file, or if the default sound cannot be found, the function 
makes no sound and returns FALSE.

The specified sound must fit in available physical memory and be playable by an installed waveform-
audio device driver. If sndPlaySound does not find the sound in the current directory, the function 
searches for it using the standard directory-search order.

See Also
PlaySound 



timeBeginPeriod      

  

The timeBeginPeriod function sets the minimum timer resolution for an application or device driver. 

MMRESULT timeBeginPeriod(

        UINT uPeriod
      );
 

Parameters
uPeriod

Minimum timer resolution, in milliseconds, for the application or device driver.
 

Return Values
Returns TIMERR_NOERROR if successful or TIMERR_NOCANDO if the resolution specified in uPeriod 
is out of range. 

Remarks
Call this function immediately before using timer services, and call the timeEndPeriod function 
immediately after you are finished using the timer services.

You must match each call to timeBeginPeriod with a call to timeEndPeriod, specifying the same 
minimum resolution in both calls. An application can make multiple timeBeginPeriod calls as long as 
each call is matched with a call to timeEndPeriod.

See Also
timeEndPeriod



timeEndPeriod      

  

The timeEndPeriod function clears a previously set minimum timer resolution. 

MMRESULT timeEndPeriod(

        UINT uPeriod
      );
 

Parameters
uPeriod

Minimum timer resolution specified in the previous call to the timeBeginPeriod function.
 

Return Values
Returns TIMERR_NOERROR if successful or TIMERR_NOCANDO if the resolution specified in uPeriod 
is out of range. 

Remarks
Call this function immediately after you are finished using timer services.

You must match each call to timeBeginPeriod with a call to timeEndPeriod, specifying the same 
minimum resolution in both calls. An application can make multiple timeBeginPeriod calls as long as 
each call is matched with a call to timeEndPeriod.

See Also
timeBeginPeriod



timeGetDevCaps      

  

The timeGetDevCaps function queries the timer device to determine its resolution.

MMRESULT timeGetDevCaps(

        LPTIMECAPS ptc,
        UINT cbtc
      );
 

Parameters
ptc

Address of a TIMECAPS structure. This structure is filled with information about the resolution of the 
timer device.

cbtc

Size, in bytes, of the TIMECAPS structure.
 

Return Values
Returns TIMERR_NOERROR if successful or TIMERR_STRUCT if it fails to return the timer device 
capabilities. 

See Also
TIMECAPS



timeGetSystemTime      

  

The timeGetSystemTime function retrieves the system time, in milliseconds. The system time is the time 
elapsed since Windows was started. This function works very much like the timeGetTime function. See 
timeGetTime for details of these functions' operation.

MMRESULT timeGetSystemTime(

        LPMMTIME pmmt,
        UINT cbmmt
      );
 

Parameters
pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.
 

Return Values
Returns TIMERR_NOERROR. The system time is returned in the ms member of the MMTIME structure.

See Also
timeGetTime, MMTIME



timeGetTime      

  

The timeGetTime function retrieves the system time, in milliseconds. The system time is the time elapsed 
since Windows was started.

DWORD timeGetTime(VOID); 

Parameters
This function does not take parameters.

Return Values
Returns the system time, in milliseconds.

Remarks
The only difference between this function and the timeGetSystemTime function is that 
timeGetSystemTime uses the MMTIME structure to return the system time. The timeGetTime function 
has less overhead than timeGetSystemTime.

Note that the value returned by the timeGetTime function is a DWORD value. The return value wraps 
around to 0 every 2^32 milliseconds, which is about 49.71 days.This can cause problems in code that 
directly uses the timeGetTime return value in computations, particularly where the value is used to 
control code execution. You should always use the difference between two timeGetTime return values in 
computations. 

Windows NT: The default precision of the timeGetTime function can be five milliseconds or more, 
depending on the machine. You can use the timeBeginPeriod and timeEndPeriod functions to increase 
the precision of timeGetTime. If you do so, the minimum difference between successive values returned 
by timeGetTime can be as large as the minimum period value set using timeBeginPeriod and 
timeEndPeriod. Use the QueryPerformanceCounter and QueryPerformanceFrequency functions to 
measure short time intervals at a high resolution, 

Windows 95: The default precision of the timeGetTime function is 1 millisecond. In other words, the 
timeGetTime function can return successive values that differ by just 1 millisecond. This is true no matter 
what calls have been made to the timeBeginPeriod and timeEndPeriod functions. 

See Also
timeGetSystemTime, MMTIME, timeGetTime, timeBeginPeriod, timeEndPeriod, 
QueryPerformanceCounter, QueryPerformanceFrequency 



timeKillEvent      

  

The timeKillEvent function cancels a specified timer event.

MMRESULT timeKillEvent(

        UINT uTimerID
      );
 

Parameters
uTimerID

Identifier of the timer event to cancel. This identifier was returned by the timeSetEvent function when 
the timer event was set up.

 

Return Values
Returns TIMERR_NOERROR if successful or MMSYSERR_INVALPARAM if the specified timer event 
does not exist.

See Also
timeSetEvent



TimeProc      

  

The TimeProc function callback function that is called once upon the expiration of a single event or 
periodically upon the expiration of periodic events.

void CALLBACK TimeProc(

        UINT uID,
        UINT uMsg,
        DWORD dwUser,
        DWORD dw1,
        DWORD dw2
      );
 

TimeProc is a placeholder for the application-defined function name. 

Parameters
uID

Identifier of the timer event. This identifier was returned by the timeSetEvent function when the timer 
event was set up.

uMsg

Reserved; do not use.

dwUser

User instance data supplied to the dwUser parameter of timeSetEvent.

dw1 and dw2

Reserved; do not use.
 

Return Values
This function does not return a value.

Remarks
Applications should not call any system-defined functions from inside a callback function, except for 
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent, midiOutShortMsg, 
midiOutLongMsg, and OutputDebugString.

See Also
timeSetEvent, PostMessage, timeGetSystemTime, timeGetTime, timeKillEvent, midiOutShortMsg, 
midiOutLongMsg, OutputDebugString



timeSetEvent      

  

The timeSetEvent function starts a specified timer event. The multimedia timer runs in its own thread. 
After the event is activated, it calls the specified callback function.

MMRESULT timeSetEvent(

        UINT uDelay,
        UINT uResolution,
        LPTIMECALLBACK lpTimeProc,
        DWORD dwUser,
        UINT fuEvent
      );
 

Parameters
uDelay

Event delay, in milliseconds. If this value is not in the range of the minimum and maximum event 
delays supported by the timer, the function returns an error.

uResolution

Resolution of the timer event, in milliseconds. The resolution increases with smaller values; a 
resolution of 0 indicates periodic events should occur with the greatest possible accuracy. To reduce 
system overhead, however, you should use the maximum value appropriate for your application.

lpTimeProc

Address of a callback function that is called once upon expiration of a single event or periodically 
upon expiration of periodic events.

dwUser

User-supplied callback data.

fuEvent

Timer event type. The following values are defined:

TIME_ONESHOT

Event occurs once, after uDelay milliseconds.

TIME_PERIODIC

Event occurs every uDelay milliseconds.
 

Return Values
Returns an identifier for the timer event if successful or an error otherwise. This function returns NULL if it 
fails and the timer event was not created. (This identifier is also passed to the callback function.)

Remarks
Each call to timeSetEvent for periodic timer events must be matched with a call to the timeKillEvent 
function.



See Also
timeKillEvent



waveInAddBuffer      

  

The waveInAddBuffer function sends an input buffer to the given waveform-audio input device. When 
the buffer is filled, the application is notified.

MMRESULT waveInAddBuffer(

        HWAVEIN hwi,
        LPWAVEHDR pwh,
        UINT cbwh
      );
 

Parameters
hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer.

cbwh

Size, in bytes, of the WAVEHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

WAVERR_UNPREPARED The buffer pointed to by the pwh 
parameter hasn't been prepared.

 

Remarks
When the buffer is filled, the WHDR_DONE bit is set in the dwFlags member of the WAVEHDR structure. 

The buffer must be prepared with the waveInPrepareHeader function before it is passed to this function. 

See Also
WAVEHDR, waveInPrepareHeader



waveInClose      

  

The waveInClose function closes the given waveform-audio input device.

MMRESULT waveInClose(

        HWAVEIN hwi
      );
 

Parameters
hwi

Handle of the waveform-audio input device. If the function succeeds, the handle is no longer valid 
after this call.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

WAVERR_STILLPLAYING There are still buffers in the 
queue.

 

Remarks
If there are input buffers that have been sent with the waveInAddBuffer function and that haven't been 
returned to the application, the close operation will fail. Call the waveInReset function to mark all pending 
buffers as done.

See Also
waveInAddBuffer, waveInReset



waveInGetDevCaps      

  

The waveInGetDevCaps function retrieves the capabilities of a given waveform-audio input device.

MMRESULT waveInGetDevCaps(

        UINT uDeviceID,
        LPWAVEINCAPS pwic,
        UINT cbwic
      );
 

Parameters
uDeviceID

Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an 
open waveform-audio input device.

pwic

Address of a WAVEINCAPS structure to be filled with information about the capabilities of the device.

cbwic

Size, in bytes, of the WAVEINCAPS structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_BADDEVICEID Specified device identifier is out 
of range.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
Use this function to determine the number of waveform-audio input devices present in the system. If the 
value specified by the uDeviceID parameter is a device identifier, it can vary from zero to one less than 
the number of devices present. The WAVE_MAPPER constant can also be used as a device identifier. 
Only cbwic bytes (or less) of information is copied to the location pointed to by pwic. If cbwic is zero, 
nothing is copied and the function returns zero.

See Also
WAVEINCAPS



waveInGetErrorText      

  

The waveInGetErrorText function retrieves a textual description of the error identified by the given error 
number.

MMRESULT waveInGetErrorText(

        MMRESULT mmrError,
        LPSTR pszText,
        UINT cchText
      );
 

Parameters
mmrError

Error number.

pszText

Address of the buffer to be filled with the textual error description.

cchText

Size, in characters, of the buffer pointed to by pszText.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_BADERRNUM Specified error number is out of 
range.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
If the textual error description is longer than the specified buffer, the description is truncated. The returned 
error string is always null-terminated. If cchText is zero, nothing is copied and the function returns zero. All 
error descriptions are less than MAXERRORLENGTH characters long.



waveInGetID      

  

The waveInGetID function gets the device identifier for the given waveform-audio input device.

This function is supported for backward compatibility. New applications can cast a handle of the device 
rather than retrieving the device identifier.

MMRESULT waveInGetID(

        HWAVEIN hwi,
        LPUINT puDeviceID
      );
 

Parameters
hwi

Handle of the waveform-audio input device.

puDeviceID

Address of a variable to be filled with the device identifier.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDL
E

The hwi parameter specifies an invalid 
handle.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock memory.
 



waveInGetNumDevs      

  

The waveInGetNumDevs function returns the number of waveform-audio input devices present in the 
system.

UINT waveInGetNumDevs(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns the number of devices. A return value of zero means that no devices are present or that an error 
occurred.



waveInGetPosition      

  

The waveInGetPosition function retrieves the current input position of the given waveform-audio input 
device.

MMRESULT waveInGetPosition(

        HWAVEIN hwi,
        LPMMTIME pmmt,
        UINT cbmmt
      );
 

Parameters
hwi

Handle of the waveform-audio input device.

pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
Before calling this function, set the wType member of the MMTIME structure to indicate the time format 
you want. After calling this function, check wType to determine whether the desired time format is 
supported. If the format is not supported, the member will specify an alternative format.

The position is set to zero when the device is opened or reset.

See Also
MMTIME



waveInMessage      

  

The waveInMessage function sends messages to the waveform-audio input device drivers.

DWORD waveInMessage(

        HWAVEIN hwi,
        UINT uMsg,
        DWORD dwParam1,
        DWORD dwParam2
      );
 

Parameters
hwi

Handle of the waveform-audio input device.

uMsg

Message to send.

dwParam1 and dwParam2

Message parameters.
 

Return Values
Returns the value returned from the driver.



waveInOpen      

  

The waveInOpen function opens the given waveform-audio input device for recording.

MMRESULT waveInOpen(

        LPHWAVEIN phwi,
        UINT uDeviceID,
        LPWAVEFORMATEX pwfx,
        DWORD dwCallback,
        DWORD dwCallbackInstance,
        DWORD fdwOpen
      );
 

Parameters
phwi

Address filled with a handle identifying the open waveform-audio input device. Use this handle to 
identify the device when calling other waveform-audio input functions. This parameter can be NULL if 
WAVE_FORMAT_QUERY is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio input device to open. It can be either a device identifier or a handle of 
an open waveform-audio input device.You can use the following flag instead of a device identifier:

WAVE_MAPPER

The function selects a waveform-audio input device capable of recording in the specified format.

pwfx

Address of a WAVEFORMATEX structure that identifies the desired format for recording waveform-
audio data. You can free this structure immediately after waveInOpen returns.

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a 
thread to be called during waveform-audio recording to process messages related to the progress of 
recording. If no callback function is required, this value can be zero. For more information on the 
callback function, see waveInProc.

dwCallbackInstance

User-instance data passed to the callback mechanism. This parameter is not used with the window 
callback mechanism.

fdwOpen

Flags for opening the device. The following values are defined:

CALLBACK_EVENT

The dwCallback parameter is an event handle.

CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address.

CALLBACK_NULL



No callback mechanism. This is the default setting.

CALLBACK_THREAD

The dwCallback parameter is a thread identifier.

CALLBACK_WINDOW

The dwCallback parameter is a window handle.

WAVE_FORMAT_DIRECT

If this flag is specified, the ACM driver does not perform conversions on the audio data. 

WAVE_FORMAT_QUERY

The function queries the device to determine whether it supports the given format, but it does not 
open the device.

WAVE_MAPPED

The uDeviceID parameter specifies a waveform-audio device to be mapped to by the wave 
mapper.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_ALLOCATED Specified resource is already 
allocated.

MMSYSERR_BADDEVICEID Specified device identifier is out 
of range.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

WAVERR_BADFORMAT Attempted to open with an 
unsupported waveform-audio 
format.

 

Remarks
Use the waveInGetNumDevs function to determine the number of waveform-audio input devices present 
on the system. The device identifier specified by uDeviceID varies from zero to one less than the number 
of devices present. The WAVE_MAPPER constant can also be used as a device identifier.

If you choose to have a window or thread receive callback information, the following messages are sent 
to the window procedure or thread to indicate the progress of waveform-audio input: MM_WIM_OPEN, 
MM_WIM_CLOSE, and MM_WIM_DATA.

If you choose to have a function receive callback information, the following messages are sent to the 
function to indicate the progress of waveform-audio input: WIM_OPEN, WIM_CLOSE, and WIM_DATA. 

See Also
WAVEFORMATEX, waveInGetNumDevs, waveInProc, MM_WIM_OPEN, MM_WIM_CLOSE, 
MM_WIM_DATA



waveInPrepareHeader      

  

The waveInPrepareHeader function prepares a buffer for waveform-audio input.

MMRESULT waveInPrepareHeader(

        HWAVEIN hwi,
        LPWAVEHDR pwh,
        UINT cbwh
      );
 

Parameters
hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
The lpData, dwBufferLength, and dwFlags members of the WAVEHDR structure must be set before 
calling this function (dwFlags must be zero).

See Also
 WAVEHDR 



waveInProc      

  

The waveInProc function is the callback function used with the waveform-audio input device. This 
function is a placeholder for the application-defined function name. The address of this function can be 
specified in the callback-address parameter of the waveInOpen function.

void CALLBACK waveInProc(

        HWAVEIN hwi,
        UINT uMsg,
        DWORD dwInstance,
        DWORD dwParam1,
        DWORD dwParam2
      );
 

Parameters
hwi

Handle of the waveform-audio device associated with the callback function.

uMsg

Waveform-audio input message. It can be one of the following messages:

WIM_CLOSE

Sent when the device is closed using the waveInClose function.

WIM_DATA

Sent when the device driver is finished with a data block sent using the waveInAddBuffer 
function.

WIM_OPEN

Sent when the device is opened using the waveInOpen function.

dwInstance

User instance data specified with waveInOpen.

dwParam1

Message parameters.

dwParam2

Message parameters.
 

Return Values
This function does not return a value.

Remarks
Applications should not call any system-defined functions from inside a callback function, except for 
EnterCriticalSection, LeaveCriticalSection, midiOutLongMsg, midiOutShortMsg, 
OutputDebugString, PostMessage, PostThreadMessage, SetEvent, timeGetSystemTime, 



timeGetTime, timeKillEvent, and timeSetEvent. Calling other wave functions will cause deadlock.

See Also
EnterCriticalSection, LeaveCriticalSection, midiOutLongMsg, midiOutShortMsg, 
OutputDebugString, PostMessage, PostThreadMessage, SetEvent, timeGetSystemTime, 
timeGetTime, timeKillEvent, timeSetEvent, waveInAddBuffer, waveInClose, waveInOpen, 
WIM_DATA, WIM_CLOSE, WIM_OPEN 



waveInReset      

  

The waveInReset function stops input on the given waveform-audio input device and resets the current 
position to zero. All pending buffers are marked as done and returned to the application.

MMRESULT waveInReset(

        HWAVEIN hwi
      );
 

Parameters
hwi

Handle of the waveform-audio input device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 



waveInStart      

  

The waveInStart function starts input on the given waveform-audio input device.

MMRESULT waveInStart(

        HWAVEIN hwi
      );
 

Parameters
hwi

Handle of the waveform-audio input device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
Buffers are returned to the application when full or when the waveInReset function is called (the 
dwBytesRecorded member in the header will contain the length of data). If there are no buffers in the 
queue, the data is thrown away without notifying the application, and input continues.

Calling this function when input is already started has no effect, and the function returns zero.

See Also
waveInReset



waveInStop      

  

The waveInStop function stops waveform-audio input.

MMRESULT waveInStop(

        HWAVEIN hwi
      );
 

Parameters
hwi

Handle of the waveform-audio input device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
If there are any buffers in the queue, the current buffer will be marked as done (the dwBytesRecorded 
member in the header will contain the length of data), but any empty buffers in the queue will remain 
there. 

Calling this function when input is not started has no effect, and the function returns zero.



waveInUnprepareHeader      

  

The waveInUnprepareHeader function cleans up the preparation performed by the 
waveInPrepareHeader function. This function must be called after the device driver fills a buffer and 
returns it to the application. You must call this function before freeing the buffer.

MMRESULT waveInUnprepareHeader(

        HWAVEIN hwi,
        LPWAVEHDR pwh,
        UINT cbwh
      );
 

Parameters
hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure identifying the buffer to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

WAVERR_STILLPLAYING The buffer pointed to by the pwh 
parameter is still in the queue.

 

Remarks
This function complements the waveInPrepareHeader function. 

You must call this function before freeing the buffer. After passing a buffer to the device driver with the 
waveInAddBuffer function, you must wait until the driver is finished with the buffer before calling 
waveInUnprepareHeader. Unpreparing a buffer that has not been prepared has no effect, and the 
function returns zero.

See Also
waveInPrepareHeader, WAVEHDR, waveInAddBuffer



waveOutBreakLoop      

  

The waveOutBreakLoop function breaks a loop on the given waveform-audio output device and allows 
playback to continue with the next block in the driver list.

MMRESULT waveOutBreakLoop(

        HWAVEOUT hwo
      );
 

Parameters
hwo

Handle of the waveform-audio output device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
The blocks making up the loop are played to the end before the loop is terminated.

Calling this function when nothing is playing or looping has no effect, and the function returns zero.



waveOutClose      

  

The waveOutClose function closes the given waveform-audio output device.

MMRESULT waveOutClose(

        HWAVEOUT hwo
      );
 

Parameters
hwo

Handle of the waveform-audio output device. If the function succeeds, the handle is no longer valid 
after this call.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

WAVERR_STILLPLAYING There are still buffers in the 
queue.

 

Remarks
If the device is still playing a waveform-audio file, the close operation fails. Use the waveOutReset 
function to terminate playback before calling waveOutClose.

See Also
waveOutReset



waveOutGetDevCaps      

  

The waveOutGetDevCaps function retrieves the capabilities of a given waveform-audio output device.

MMRESULT waveOutGetDevCaps(

        UINT uDeviceID,
        LPWAVEOUTCAPS pwoc,
        UINT cbwoc
      );
 

Parameters
uDeviceID

Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an 
open waveform-audio output device.

pwoc

Address of a WAVEOUTCAPS structure to be filled with information about the capabilities of the 
device. 

cbwoc

Size, in bytes, of the WAVEOUTCAPS structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_BADDEVICEID Specified device identifier is out 
of range.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
Use the waveOutGetNumDevs function to determine the number of waveform-audio output devices 
present in the system. If the value specified by the uDeviceID parameter is a device identifier, it can vary 
from zero to one less than the number of devices present. The WAVE_MAPPER constant can also be 
used as a device identifier. Only cbwoc bytes (or less) of information is copied to the location pointed to 
by pwoc. If cbwoc is zero, nothing is copied and the function returns zero.

See Also
WAVEOUTCAPS, waveOutGetNumDevs



waveOutGetErrorText      

  

The waveOutGetErrorText function retrieves a textual description of the error identified by the given 
error number.

MMRESULT waveOutGetErrorText(

        MMRESULT mmrError,
        LPSTR pszText,
        UINT cchText
      );
 

Parameters
mmrError

Error number.

pszText

Address of a buffer to be filled with the textual error description.

cchText

Size, in characters, of the buffer pointed to by pszText.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_BADERRNUM Specified error number is out of 
range.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
If the textual error description is longer than the specified buffer, the description is truncated. The returned 
error string is always null-terminated. If cchText is zero, nothing is copied and the function returns zero. All 
error descriptions are less than MAXERRORLENGTH characters long.



waveOutGetID      

  

The waveOutGetID function retrieves the device identifier for the given waveform-audio output device.

This function is supported for backward compatibility. New applications can cast a handle of the device 
rather than retrieving the device identifier.

MMRESULT waveOutGetID(

        HWAVEOUT hwo,
        LPUINT puDeviceID
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

puDeviceID

Address of a variable to be filled with the device identifier.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDL
E

The hwo parameter specifies an 
invalid handle.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock memory.
 



waveOutGetNumDevs      

  

The waveOutGetNumDevs function retrieves the number of waveform-audio output devices present in 
the system.

UINT waveOutGetNumDevs(VOID); 

Parameters
This function takes no parameters.

Return Values
Returns the number of devices. A return value of zero means that no devices are present or that an error 
occurred.



waveOutGetPitch      

  

The waveOutGetPitch function retrieves the current pitch setting for the specified waveform-audio output 
device.

MMRESULT waveOutGetPitch(

        HWAVEOUT hwo,
        LPDWORD pdwPitch
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

pdwPitch

Address of a variable to be filled with the current pitch multiplier setting. The pitch multiplier indicates 
the current change in pitch from the original authored setting. The pitch multiplier must be a positive 
value.

The pitch multiplier is specified as a fixed-point value. The high-order word of the variable contains 
the signed integer part of the number, and the low-order word contains the fractional part. A value of 
0x8000 in the low-order word represents one-half, and 0x4000 represents one-quarter. For example, 
the value 0x00010000 specifies a multiplier of 1.0 (no pitch change), and a value of 0x000F8000 
specifies a multiplier of 15.5.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Function isn't supported.

 

Remarks
Changing the pitch does not change the playback rate, sample rate, or playback time. Not all devices 
support pitch changes. To determine whether the device supports pitch control, use the 
WAVECAPS_PITCH flag to test the dwSupport member of the WAVEOUTCAPS structure (filled by the 
waveOutGetDevCaps function).

See Also
WAVEOUTCAPS, waveOutGetDevCaps



waveOutGetPlaybackRate      

  

The waveOutGetPlaybackRate function retrieves the current playback rate for the specified waveform-
audio output device.

MMRESULT waveOutGetPlaybackRate(

        HWAVEOUT hwo,
        LPDWORD pdwRate
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

pdwRate

Address of a variable to be filled with the current playback rate. The playback rate setting is a 
multiplier indicating the current change in playback rate from the original authored setting. The 
playback rate multiplier must be a positive value.

The rate is specified as a fixed-point value. The high-order word of the variable contains the signed 
integer part of the number, and the low-order word contains the fractional part. A value of 0x8000 in 
the low-order word represents one-half, and 0x4000 represents one-quarter. For example, the value 
0x00010000 specifies a multiplier of 1.0 (no playback rate change), and a value of 0x000F8000 
specifies a multiplier of 15.5.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Function isn't supported.

 

Remarks
Changing the playback rate does not change the sample rate but does change the playback time. Not all 
devices support playback rate changes. To determine whether a device supports playback rate changes, 
use the WAVECAPS_PLAYBACKRATE flag to test the dwSupport member of the WAVEOUTCAPS 
structure (filled by the waveOutGetDevCaps function).

See Also
WAVEOUTCAPS, waveOutGetDevCaps



waveOutGetPosition      

  

The waveOutGetPosition function retrieves the current playback position of the given waveform-audio 
output device.

MMRESULT waveOutGetPosition(

        HWAVEOUT hwo,
        LPMMTIME pmmt,
        UINT cbmmt
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
Before calling this function, set the wType member of the MMTIME structure to indicate the time format 
you want. After calling this function, check wType to determine whether the time format is supported. If 
the format is not supported, wType will specify an alternative format.

The position is set to zero when the device is opened or reset.

See Also
MMTIME 



waveOutGetVolume      

  

The waveOutGetVolume function retrieves the current volume level of the specified waveform-audio 
output device.

MMRESULT waveOutGetVolume(

        HWAVEOUT hwo,
        LPDWORD pdwVolume
      );
 

Parameters
hwo

Handle of an open waveform-audio output device. This parameter can also be a device identifier.

pdwVolume

Address of a variable to be filled with the current volume setting. The low-order word of this location 
contains the left-channel volume setting, and the high-order word contains the right-channel setting. A 
value of 0xFFFF represents full volume, and a value of 0x0000 is silence.

If a device does not support both left and right volume control, the low-order word of the specified 
location contains the mono volume level.

The full 16-bit setting(s) set with the waveOutSetVolume function is returned, regardless of whether 
the device supports the full 16 bits of volume-level control.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Function isn't supported.

 

Remarks
If a device identifier is used, then the result of the waveOutGetVolume call and the information returned 
in pdwVolume applies to all instances of the device. If a device handle is used, then the result and 
information returned applies only to the instance of the device referenced by the device handle.

Not all devices support volume changes. To determine whether the device supports volume control, use 
the WAVECAPS_VOLUME flag to test the dwSupport member of the WAVEOUTCAPS structure (filled 
by the waveOutGetDevCaps function).

To determine whether the device supports left- and right-channel volume control, use the 
WAVECAPS_LRVOLUME flag to test the dwSupport member of the WAVEOUTCAPS structure (filled by 
waveOutGetDevCaps).



Volume settings are interpreted logarithmically. This means the perceived increase in volume is the same 
when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

See Also
waveOutSetVolume, WAVEOUTCAPS, waveOutGetDevCaps



waveOutMessage      

  

The waveOutMessage function sends messages to the waveform-audio output device drivers.

DWORD waveOutMessage(

        HWAVEOUT hwo,
        UINT uMsg,
        DWORD dwParam1,
        DWORD dwParam2
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

uMsg

Message to send.

dwParam1 and dwParam2

Message parameters.
 

Return Values
Returns the value returned from the driver.



waveOutOpen      

  

The waveOutOpen function opens the given waveform-audio output device for playback.

MMRESULT waveOutOpen(

        LPHWAVEOUT phwo,
        UINT uDeviceID,
        LPWAVEFORMATEX pwfx,
        DWORD dwCallback,
        DWORD dwCallbackInstance,
        DWORD fdwOpen
      );
 

Parameters
phwo

Address filled with a handle identifying the open waveform-audio output device. Use the handle to 
identify the device when calling other waveform-audio output functions. This parameter might be 
NULL if the WAVE_FORMAT_QUERY flag is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio output device to open. It can be either a device identifier or a handle 
of an open waveform-audio input device.You can use the following flag instead of a device identifier:

WAVE_MAPPER

The function selects a waveform-audio output device capable of playing the given format.

pwfx

Address of a WAVEFORMATEX structure that identifies the format of the waveform-audio data to be 
sent to the device. You can free this structure immediately after passing it to waveOutOpen.

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a 
thread to be called during waveform-audio playback to process messages related to the progress of 
the playback. If no callback function is required, this value can be zero. For more information on the 
callback function, see waveOutProc.

dwCallbackInstance

User-instance data passed to the callback mechanism. This parameter is not used with the window 
callback mechanism.

fdwOpen

Flags for opening the device. The following values are defined:

CALLBACK_EVENT

The dwCallback parameter is an event handle.

CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address.

CALLBACK_NULL



No callback mechanism. This is the default setting.

CALLBACK_THREAD

The dwCallback parameter is a thread identifier.

CALLBACK_WINDOW

The dwCallback parameter is a window handle.

WAVE_ALLOWSYNC

If this flag is specified, a synchronous waveform-audio device can be opened. If this flag is not 
specified while opening a synchronous driver, the device will fail to open.

WAVE_FORMAT_DIRECT

If this flag is specified, the ACM driver does not perform conversions on the audio data. 

WAVE_FORMAT_QUERY

If this flag is specified, waveOutOpen queries the device to determine if it supports the given 
format, but the device is not actually opened.

WAVE_MAPPED

If this flag is specified, the uDeviceID parameter specifies a waveform-audio device to be mapped 
to by the wave mapper.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_ALLOCATED Specified resource is already 
allocated.

MMSYSERR_BADDEVICEID Specified device identifier is out 
of range.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

WAVERR_BADFORMAT Attempted to open with an 
unsupported waveform-audio 
format.

WAVERR_SYNC The device is synchronous but 
waveOutOpen was called 
without using the 
WAVE_ALLOWSYNC flag.

 

Remarks
Use the waveOutGetNumDevs function to determine the number of waveform-audio output devices 
present in the system. If the value specified by the uDeviceID parameter is a device identifier, it can vary 
from zero to one less than the number of devices present. The WAVE_MAPPER constant can also be 
used as a device identifier.

The structure pointed to by pwfx can be extended to include type-specific information for certain data 
formats. For example, for PCM data, an extra UINT is added to specify the number of bits per sample. 
Use the PCMWAVEFORMAT structure in this case. For all other waveform-audio formats, use the 
WAVEFORMATEX structure to specify the length of the additional data.



If you choose to have a window or thread receive callback information, the following messages are sent 
to the window procedure function to indicate the progress of waveform-audio output: MM_WOM_OPEN, 
MM_WOM_CLOSE, and MM_WOM_DONE.

If you choose to have a function receive callback information, the following messages are sent to the 
function to indicate the progress of waveform-audio output: WOM_OPEN, WOM_CLOSE, and 
WOM_DONE. 

See Also
WAVEFORMATEX, waveOutGetNumDevs, waveOutProc, PCMWAVEFORMAT, MM_WOM_OPEN, 
MM_WOM_CLOSE, MM_WOM_DONE



waveOutPause      

  

The waveOutPause function pauses playback on the given waveform-audio output device. The current 
position is saved. Use the waveOutRestart function to resume playback from the current position.

MMRESULT waveOutPause(

        HWAVEOUT hwo
      );
 

Parameters
hwo

Handle of the waveform-audio output device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Specified device is synchronous 
and does not support pausing.

 

Remarks
Calling this function when the output is already paused has no effect, and the function returns zero.

See Also
waveOutRestart



waveOutPrepareHeader      

  

The waveOutPrepareHeader function prepares a waveform-audio data block for playback.

MMRESULT waveOutPrepareHeader(

        HWAVEOUT hwo,
        LPWAVEHDR pwh,
        UINT cbwh
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

 

Remarks
The lpData, dwBufferLength, and dwFlags members of the WAVEHDR structure must be set before 
calling this function (dwFlags must be zero).

The dwFlags, dwBufferLength, and dwLoops members of the WAVEHDR structure can change 
between calls to this function and the waveOutWrite function. (The only flags that can change in this 
interval for the dwFlags member are WHDR_BEGINLOOP and WHDR_ENDLOOP.) If you change the 
size specified by dwBufferLength before the call to waveOutWrite, the new value must be less than the 
prepared value.

Preparing a header that has already been prepared has no effect, and the function returns zero.

See Also
WAVEHDR, waveOutWrite 



waveOutProc      

  

The waveOutProc function is the callback function used with the waveform-audio output device. The 
waveOutProc function is a placeholder for the application-defined function name. The address of this 
function can be specified in the callback-address parameter of the waveOutOpen function.

void CALLBACK waveOutProc(

        HWAVEOUT hwo,
        UINT uMsg,
        DWORD dwInstance,
        DWORD dwParam1,
        DWORD dwParam2
      );
 

Parameters
hwo

Handle of the waveform-audio device associated with the callback.

uMsg

Waveform-audio output message. It can be one of the following values:

WOM_CLOSE

Sent when the device is closed using the waveOutClose function.

WOM_DONE

Sent when the device driver is finished with a data block sent using the waveOutWrite function.

WOM_OPEN

Sent when the device is opened using the waveOutOpen function.

dwInstance

User-instance data specified with waveOutOpen.

dwParam1

Message parameters.

dwParam2

Message parameters.
 

Return Values
This function does not return a value.

Remarks
Applications should not call any system-defined functions from inside a callback function, except for 
EnterCriticalSection, LeaveCriticalSection, midiOutLongMsg, midiOutShortMsg, 
OutputDebugString, PostMessage, PostThreadMessage, SetEvent, timeGetSystemTime, 
timeGetTime, timeKillEvent, and timeSetEvent. Calling other wave functions will cause deadlock.



See Also
EnterCriticalSection, LeaveCriticalSection, midiOutLongMsg, midiOutShortMsg, 
OutputDebugString, PostMessage, PostThreadMessage, SetEvent, timeGetSystemTime, 
timeGetTime, timeKillEvent, timeSetEvent, waveOutClose, waveOutOpen, waveOutWrite, 
WOM_CLOSE, WOM_DONE, WOM_OPEN 



waveOutReset      

  

The waveOutReset function stops playback on the given waveform-audio output device and resets the 
current position to zero. All pending playback buffers are marked as done and returned to the application.

MMRESULT waveOutReset(

        HWAVEOUT hwo
      );
 

Parameters
hwo

Handle of the waveform-audio output device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Specified device is synchronous 
and does not support pausing.

 



waveOutRestart      

  

The waveOutRestart function resumes playback on a paused waveform-audio output device.

MMRESULT waveOutRestart(

        HWAVEOUT hwo
      );
 

Parameters
hwo

Handle of the waveform-audio output device.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Specified device is synchronous 
and does not support pausing.

 

Remarks
Calling this function when the output is not paused has no effect, and the function returns zero.



waveOutSetPitch      

  

The waveOutSetPitch function sets the pitch for the specified waveform-audio output device.

MMRESULT waveOutSetPitch(

        HWAVEOUT hwo,
        DWORD dwPitch
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

dwPitch

New pitch multiplier setting. This setting indicates the current change in pitch from the original 
authored setting. The pitch multiplier must be a positive value.

The pitch multiplier is specified as a fixed-point value. The high-order word contains the signed 
integer part of the number, and the low-order word contains the fractional part. A value of 0x8000 in 
the low-order word represents one-half, and 0x4000 represents one-quarter. For example, the value 
0x00010000 specifies a multiplier of 1.0 (no pitch change), and a value of 0x000F8000 specifies a 
multiplier of 15.5.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Function isn't supported.

 

Remarks
Changing the pitch does not change the playback rate or the sample rate, nor does it change the 
playback time. Not all devices support pitch changes. To determine whether the device supports pitch 
control, use the WAVECAPS_PITCH flag to test the dwSupport member of the WAVEOUTCAPS 
structure (filled by the waveOutGetDevCaps function).

See Also
WAVEOUTCAPS, waveOutGetDevCaps



waveOutSetPlaybackRate      

  

The waveOutSetPlaybackRate function sets the playback rate for the specified waveform-audio output 
device.

MMRESULT waveOutSetPlaybackRate(

        HWAVEOUT hwo,
        DWORD dwRate
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

dwRate

New playback rate setting. This setting is a multiplier indicating the current change in playback rate 
from the original authored setting. The playback rate multiplier must be a positive value.

The rate is specified as a fixed-point value. The high-order word contains the signed integer part of 
the number, and the low-order word contains the fractional part. A value of 0x8000 in the low-order 
word represents one-half, and 0x4000 represents one-quarter. For example, the value 0x00010000 
specifies a multiplier of 1.0 (no playback rate change), and a value of 0x000F8000 specifies a 
multiplier of 15.5.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Function isn't supported.

 

Remarks
Changing the playback rate does not change the sample rate but does change the playback time. Not all 
devices support playback rate changes. To determine whether a device supports playback rate changes, 
use the WAVECAPS_PLAYBACKRATE flag to test the dwSupport member of the WAVEOUTCAPS 
structure (filled by the waveOutGetDevCaps function).

See Also
WAVEOUTCAPS, waveOutGetDevCaps



waveOutSetVolume      

  

The waveOutSetVolume function sets the volume level of the specified waveform-audio    output device.

MMRESULT waveOutSetVolume(

        HWAVEOUT hwo,
        DWORD dwVolume
      );
 

Parameters
hwo

Handle of an open waveform-audio output device. This parameter can also be a device identifier.

dwVolume

New volume setting. The low-order word contains the left-channel volume setting, and the high-order 
word contains the right-channel setting. A value of 0xFFFF represents full volume, and a value of 
0x0000 is silence.

If a device does not support both left and right volume control, the low-order word of dwVolume 
specifies the volume level, and the high-order word is ignored.

 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

MMSYSERR_NOTSUPPORTE
D

Function is not supported.

 

Remarks
If a device identifier is used, then the result of the waveOutSetVolume call applies to all instances of the 
device. If a device handle is used, then the result applies only to the instance of the device referenced by 
the device handle.

Not all devices support volume changes. To determine whether the device supports volume control, use 
the WAVECAPS_VOLUME flag to test the dwSupport member of the WAVEOUTCAPS structure (filled 
by the waveOutGetDevCaps function). To determine whether the device supports volume control on both 
the left and right channels, use the WAVECAPS_LRVOLUME flag.

Most devices do not support the full 16 bits of volume-level control and will not use the high-order bits of 
the requested volume setting. For example, for a device that supports 4 bits of volume control, requested 
volume level values of 0x4000, 0x4FFF, and 0x43BE all produce the same physical volume setting: 
0x4000. The waveOutGetVolume function returns the full 16-bit setting set with waveOutSetVolume.

Volume settings are interpreted logarithmically. This means the perceived increase in volume is the same 



when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

See Also
WAVEOUTCAPS, waveOutGetDevCaps, waveOutGetVolume



waveOutUnprepareHeader      

  

The waveOutUnprepareHeader function cleans up the preparation performed by the 
waveOutPrepareHeader function. This function must be called after the device driver is finished with a 
data block. You must call this function before freeing the buffer.

MMRESULT waveOutUnprepareHeader(

        HWAVEOUT hwo,
        LPWAVEHDR pwh,
        UINT cbwh
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure identifying the data block to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

WAVERR_STILLPLAYING The data block pointed to by the 
pwh parameter is still in the 
queue.

 

Remarks
This function complements waveOutPrepareHeader. You must call this function before freeing the buffer. 
After passing a buffer to the device driver with the waveOutWrite function, you must wait until the driver 
is finished with the buffer before calling waveOutUnprepareHeader.

Unpreparing a buffer that has not been prepared has no effect, and the function returns zero.

See Also
waveOutPrepareHeader, WAVEHDR, waveOutWrite



waveOutWrite      

  

The waveOutWrite function sends a data block to the given waveform-audio output device.

MMRESULT waveOutWrite(

        HWAVEOUT hwo,
        LPWAVEHDR pwh,
        UINT cbwh
      );
 

Parameters
hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure containing information about the data block.

cbwh

Size, in bytes, of the WAVEHDR structure.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMSYSERR_INVALHANDLE Specified device handle is invalid.

MMSYSERR_NODRIVER No device driver is present.

MMSYSERR_NOMEM Unable to allocate or lock 
memory.

WAVERR_UNPREPARED The data block pointed to by the 
pwh parameter hasn't been 
prepared.

 

Remarks
When the buffer is finished, the WHDR_DONE bit is set in the dwFlags member of the WAVEHDR 
structure. 

The buffer must be prepared with the waveOutPrepareHeader function before it is passed to 
waveOutWrite. Unless the device is paused by calling the waveOutPause function, playback begins 
when the first data block is sent to the device.

See Also
WAVEHDR, waveOutPrepareHeader, waveOutPause 

 



 



ACMDRIVERDETAILS      

  

The ACMDRIVERDETAILS structure describes the features of an ACM driver.

typedef struct { 
    DWORD  cbStruct; 
    FOURCC fccType; 
    FOURCC fccComp; 
    WORD   wMid; 
    WORD   wPid; 
    DWORD  vdwACM; 
    DWORD  vdwDriver; 
    DWORD  fdwSupport; 
    DWORD  cFormatTags; 
    DWORD  cFilterTags; 
    HICON  hicon; 
    char  szShortName[ACMDRIVERDETAILS_SHORTNAME_CHARS]; 
    char  szLongName[ACMDRIVERDETAILS_LONGNAME_CHARS]; 
    char  szCopyright[ACMDRIVERDETAILS_COPYRIGHT_CHARS]; 
    char  szLicensing[ACMDRIVERDETAILS_LICENSING_CHARS]; 
    char  szFeatures[ACMDRIVERDETAILS_FEATURES_CHARS]; 
} ACMDRIVERDETAILS; 
 

Members
cbStruct

Size, in bytes, of the valid information contained in the ACMDRIVERDETAILS structure. An 
application should initialize this member to the size, in bytes, of the desired information. The size 
specified in this member must be large enough to contain the cbStruct member of the 
ACMDRIVERDETAILS structure. When the acmDriverDetails function returns, this member contains 
the actual size of the information returned. The returned information will never exceed the requested 
size.

fccType

Type of the driver. For ACM drivers, set this member to 
ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC.

fccComp

Subtype of the driver. This member is currently set to 
ACMDRIVERDETAILS_FCCCOMP_UNDEFINED (zero).

wMid

Manufacturer identifier. Manufacturer identifiers are defined in Manufacturer and Product Identifiers.

wPid

Product identifier. Product identifiers are defined in Manufacturer and Product Identifiers.

vdwACM

Version of the ACM for which this driver was compiled. The version number is a hexadecimal number 
in the format 0xAABBCCCC, where AA is the major version number, BB is the minor version number, 
and CCCC is the build number. The version parts (major, minor, and build) should be displayed as 



decimal numbers.

vdwDriver

Version of the driver. The version number is a hexadecimal number in the format 0xAABBCCCC, 
where AA is the major version number, BB is the minor version number, and CCCC is the build 
number. The version parts (major, minor, and build) should be displayed as decimal numbers.

fdwSupport

Support flags for the driver. The following values are defined:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags. For example, if a driver supports 
compression from WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag. For example, if a 
driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_DISABLED

Driver has been disabled. This flag is set by the ACM for a driver when it has been disabled for any 
of a number of reasons. Disabled drivers cannot be opened and can be used only under very 
limited circumstances.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For 
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both through a waveform-audio device. An application 
should use the acmMetrics function with the ACM_METRIC_HARDWARE_WAVE_INPUT and 
ACM_METRIC_HARDWARE_WAVE_OUTPUT metric indexes to get the waveform-audio device 
identifiers associated with the supporting ACM driver.

ACMDRIVERDETAILS_SUPPORTF_LOCAL

The driver has been installed locally with respect to the current task.

cFormatTags

Number of unique format tags supported by this driver.

cFilterTags

Number of unique filter tags supported by this driver.

hicon

Handle of a custom icon for this driver. An application can use this icon for referencing the driver 
visually. This member can be NULL.

szShortName

Null-terminated string that describes the name of the driver. This string is intended to be displayed in 
small spaces.

szLongName

Null-terminated string that describes the full name of the driver. This string is intended to be displayed 



in large (descriptive) spaces.

szCopyright

Null-terminated string that provides copyright information for the driver.

szLicensing

Null-terminated string that provides special licensing information for the driver.

szFeatures

Null-terminated string that provides special feature information for the driver.
 

See Also
acmDriverDetails, acmMetrics



ACMFILTERCHOOSE      

  

The ACMFILTERCHOOSE structure contains information the ACM uses to initialize the system-defined 
waveform-audio filter selection dialog box. After the user closes the dialog box, the system returns 
information about the user's selection in this structure.

typedef struct { 
    DWORD                   cbStruct; 
    DWORD                   fdwStyle; 
    HWND                    hwndOwner; 
    LPWAVEFILTER            pwfltr; 
    DWORD                   cbwfltr; 
    LPCSTR                  pszTitle; 
    char szFilterTag[ACMFILTERTAGDETAILS_FILTERTAG_CHARS]; 
    char szFilter[ACMFILTERDETAILS_FILTER_CHARS]; 
    LPSTR                   pszName; 
    DWORD                   cchName; 
    DWORD                   fdwEnum; 
    LPWAVEFILTER            pwfltrEnum; 
    HINSTANCE               hInstance; 
    LPCSTR                  pszTemplateName; 
    LPARAM                  lCustData; 
    ACMFILTERCHOOSEHOOKPROC pfnHook; 
} ACMFILTERCHOOSE; 
 

Members
cbStruct

Size, in bytes, of the ACMFILTERCHOOSE structure. This member must be initialized before an 
application calls the acmFilterChoose function. The size specified in this member must be large 
enough to contain the base ACMFILTERCHOOSE structure.

fdwStyle

Optional style flags for the acmFilterChoose function. This member must be initialized to a valid 
combination of the following flags before an application calls the acmFilterChoose function. The 
following values are defined:

ACMFILTERCHOOSE_STYLEF_CONTEXTHELP

Context-sensitive help will be available in the dialog box. To use this feature, an application must 
register the ACMHELPMSGCONTEXTMENU and ACMHELPMSGCONTEXTHELP constants, 
using the RegisterWindowMessage function. When the user invokes help, the registered 
message will be posted to the owning window. The message will contain the wParam and lParam 
parameters from the original WM_CONTEXTMENU or WM_CONTEXTHELP message.

ACMFILTERCHOOSE_STYLEF_ENABLEHOOK

Enables the hook function specified in the pfnHook member. An application can use hook 
functions for a variety of customizations, including answering the MM_ACM_FILTERCHOOSE 
message.

ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATE

Causes the ACM to create the dialog box template identified by the hInstance and 



pszTemplateName members.

ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATEHANDLE

The hInstance member identifies a data block that contains a preloaded dialog box template. If 
this flag is specified, the ACM ignores the pszTemplateName member.

ACMFILTERCHOOSE_STYLEF_INITTOFILTERSTRUCT

The buffer pointed to by pwfltr contains a valid WAVEFILTER structure that the dialog box will use 
as the initial selection.

ACMFILTERCHOOSE_STYLEF_SHOWHELP

A help button will appear in the dialog box. To use a custom Help file, an application must register 
the ACMHELPMSGSTRING value with the RegisterWindowMessage function. When the user 
presses the help button, the registered message is posted to the owner.

hwndOwner

Handle of the window that owns the dialog box. This member can be any valid window handle or 
NULL if the dialog box has no owner. This member must be initialized before calling the 
acmFilterChoose function.

pwfltr

Address of a WAVEFILTER structure. If the ACMFILTERCHOOSE_STYLEF_INITTOFILTERSTRUCT 
flag is specified in the fdwStyle member, this structure must be initialized to a valid filter. When the 
acmFilterChoose function returns, this buffer contains the selected filter. If the user cancels the 
dialog box, no changes will be made to this buffer.

cbwfltr

Size, in bytes, of the buffer pointed to by the pwfltr member. The acmFilterChoose function returns 
ACMERR_NOTPOSSIBLE if the buffer is too small to contain the filter information; the ACM also 
copies the required size into this member. An application can use the acmMetrics and 
acmFilterTagDetails functions to determine the largest size required for this buffer.

pszTitle

Address of a string to be placed in the title bar of the dialog box. If this member is NULL, the ACM 
uses the default title (that is, "Filter Selection").

szFilterTag

Buffer containing a null-terminated string describing the filter tag of the filter selection when the 
acmFilterChoose function returns. This string is equivalent to the szFilterTag member of the 
ACMFILTERTAGDETAILS structure returned by acmFilterTagDetails. If the user cancels the dialog 
box, this member will contain a null-terminated string.

szFilter

Buffer containing a null-terminated string describing the filter attributes of the filter selection when the 
acmFilterChoose function returns. This string is equivalent to the szFilter member of the 
ACMFILTERDETAILS structure returned by acmFilterDetails. If the user cancels the dialog box, this 
member will contain a null-terminated string.

pszName

Address of a string for a user-defined filter name. If this is a non-null-terminated string, the ACM 
attempts to match the name with a previously saved user-defined filter name. If a match is found, the 
dialog box is initialized to that filter. If a match is not found or this member is a null-terminated string, 
this member is ignored for input. When the acmFilterChoose function returns, this buffer contains a 
null-terminated string describing the user-defined filter. If the filter name is untitled (that is, the user 
has not given a name for the filter), this member will be a null-terminated string on return. If the user 



cancels the dialog box, no changes will be made to this buffer.

If the ACMFILTERCHOOSE_STYLEF_INITTOFILTERSTRUCT flag is specified by the fdwStyle 
member, the pszName member is ignored as an input member.

cchName

Size, in characters, of the buffer identified by the pszName member. This buffer should be at least 
128 characters long. If pszName is NULL, this member is ignored.

fdwEnum

Optional flags for restricting the type of filters listed in the dialog box. These flags are identical to the 
fdwEnum flags for the acmFilterEnum function. If pwfltrEnum is NULL, this member should be zero.

ACM_FILTERENUMF_DWFILTERTAG

The dwFilterTag member of the WAVEFILTER structure pointed to by the pwfltrEnum member is 
valid. The enumerator will only enumerate a filter that conforms to this attribute.

pwfltrEnum

Address of a WAVEFILTER structure that will be used to restrict the filters listed in the dialog box. The 
fdwEnum member defines which members of this structure should be used for the enumeration 
restrictions. The cbStruct member of this WAVEFILTER structure must be initialized to the size of the 
WAVEFILTER structure. If no special restrictions are desired, this member can be NULL.

hInstance

Handle of a data block that contains a dialog box template specified by the pszTemplateName 
member. This member is used only if the fdwStyle member specifies the 
ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATE or 
ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATEHANDLE flag; otherwise, this member should 
be NULL on input.

pszTemplateName

Address of a null-terminated string that specifies the name of the resource file for the dialog box 
template that is to be substituted for the dialog box template in the ACM. An application can use the 
MAKEINTRESOURCE macro for numbered dialog box resources. This member is used only if the 
fdwStyle member specifies the ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATE flag; 
otherwise, this member should be NULL on input.

lCustData

Application-defined data that the ACM passes to the hook function identified by the pfnHook member. 
The system passes the data in the lParam parameter of the WM_INITDIALOG message.

pfnHook

Address of a hook function that processes messages intended for the dialog box. An application must 
specify the ACMFILTERCHOOSE_STYLEF_ENABLEHOOK flag in the fdwStyle member to enable 
the hook; otherwise, this member should be NULL. The hook function should return FALSE to pass a 
message to the standard dialog box procedure or TRUE to discard the message.

 

See Also
acmFilterChoose, acmFilterDetails, acmFilterEnum, ACMFILTERDETAILS, acmFilterTagDetails, 
ACMFILTERTAGDETAILS, acmMetrics, MAKEINTRESOURCE, MM_ACM_FILTERCHOOSE, 
RegisterWindowMessage, WAVEFILTER, WM_INITDIALOG 



ACMFILTERDETAILS      

  

The ACMFILTERDETAILS structure details a waveform-audio filter for a specific filter tag for an ACM 
driver.

typedef struct { 
    DWORD        cbStruct; 
    DWORD        dwFilterIndex; 
    DWORD        dwFilterTag; 
    DWORD        fdwSupport; 
    LPWAVEFILTER pwfltr; 
    DWORD        cbwfltr; 
    char        szFilter[ACMFILTERDETAILS_FILTER_CHARS]; 
} ACMFILTERDETAILS; 
 

Members
cbStruct

Size, in bytes, of the ACMFILTERDETAILS structure. This member must be initialized before calling 
the acmFilterDetails or acmFilterEnum functions. The size specified in this member must be large 
enough to contain the base ACMFILTERDETAILS structure. When the acmFilterDetails function 
returns, this member contains the actual size of the information returned. The returned information will 
never exceed the requested size.

dwFilterIndex

Index of the filter about which details will be retrieved. The index ranges from zero to one less than 
the number of standard filters supported by an ACM driver for a filter tag. The number of standard 
filters supported by a driver for a filter tag is contained in the cStandardFilters member of the 
ACMFILTERTAGDETAILS structure. The dwFilterIndex member is used only when querying 
standard filter details about a driver by index; otherwise, this member should be zero. Also, this 
member will be set to zero by the ACM when an application queries for details on a filter; in other 
words, this member is used only for input and is never returned by the ACM or an ACM driver.

dwFilterTag

Waveform-audio filter tag that the ACMFILTERDETAILS structure describes. This member is used as 
an input for the ACM_FILTERDETAILSF_INDEX query flag. For the 
ACM_FILTERDETAILSF_FORMAT query flag, this member must be initialized to the same filter tag 
as the pwfltr member specifies. If the acmFilterDetails function is successful, this member is always 
returned. This member should be set to WAVE_FILTER_UNKNOWN for all other query flags.

fdwSupport

Driver-support flags specific to the specified filter. These flags are identical to the fdwSupport flags of 
the ACMDRIVERDETAILS structure, but they are specific to the filter that is being queried. This 
member can be a combination of the following values and identifies which operations the driver 
supports for the filter tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter. For 
example, if a driver supports compression from WAVE_FORMAT_PCM to 



WAVE_FORMAT_ADPCM with the specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the 
specified filter. For example, if a driver supports resampling of WAVE_FORMAT_PCM with the 
specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For 
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both with the specified filter through a waveform-audio 
device. An application should use the acmMetrics function with the 
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT 
metric indexes to retrieve the waveform-audio device identifiers associated with the supporting 
ACM driver.

pwfltr

Address of a WAVEFILTER structure that will receive the filter details. This structure requires no 
initialization by the application unless the ACM_FILTERDETAILSF_FILTER flag is specified with the 
acmFilterDetails function. In this case, the dwFilterTag member of the WAVEFILTER structure must 
be equal to the dwFilterTag member of the ACMFILTERDETAILS structure.

cbwfltr

Size, in bytes, available for pwfltr to receive the filter details. The acmMetrics and 
acmFilterTagDetails functions can be used to determine the maximum size required for any filter 
available for the specified driver (or for all installed ACM drivers).

szFilter

String that describes the filter for the dwFilterTag type. If the acmFilterDetails function is successful, 
this string is always returned. 

 

See Also
acmFilterDetails, ACMDRIVERDETAILS, acmFilterEnum, acmFilterTagDetails, 
ACMFILTERTAGDETAILS, acmMetrics, WAVEFILTER 



ACMFILTERTAGDETAILS      

  

The ACMFILTERTAGDETAILS structure details a waveform-audio filter tag for an ACM filter driver.

typedef struct { 
    DWORD cbStruct; 
    DWORD dwFilterTagIndex; 
    DWORD dwFilterTag; 
    DWORD cbFilterSize; 
    DWORD fdwSupport; 
    DWORD cStandardFilters; 
    char szFilterTag[ACMFILTERTAGDETAILS_FILTERTAG_CHARS]; 
} ACMFILTERTAGDETAILS; 
 

Members
cbStruct

Size, in bytes, of the ACMFILTERTAGDETAILS structure. This member must be initialized before an 
application calls the acmFilterTagDetails or acmFilterTagEnum function. The size specified in this 
member must be large enough to contain the base ACMFILTERTAGDETAILS structure. When the 
acmFilterTagDetails function returns, this member contains the actual size of the information 
returned. The returned information will never exceed the requested size.

dwFilterTagIndex

Index of the filter tag to retrieve details for. The index ranges from zero to one less than the number of 
filter tags supported by an ACM driver. The number of filter tags supported by a driver is contained in 
the cFilterTags member of the ACMDRIVERDETAILS structure. The dwFilterTagIndex member is 
used only when querying filter tag details about a driver by index; otherwise, this member should be 
zero.

dwFilterTag

Waveform-audio filter tag that the ACMFILTERTAGDETAILS structure describes. This member is 
used as an input for the ACM_FILTERTAGDETAILSF_FILTERTAG and 
ACM_FILTERTAGDETAILSF_LARGESTSIZE query flags. This member is always returned if the 
acmFilterTagDetails function is successful. This member should be set to 
WAVE_FILTER_UNKNOWN for all other query flags.

cbFilterSize

Largest total size, in bytes, of a waveform-audio filter of the dwFilterTag type. For example, this 
member will be 40 for WAVE_FILTER_ECHO and 36 for WAVE_FILTER_VOLUME.

fdwSupport

Driver-support flags specific to the filter tag. These flags are identical to the fdwSupport flags of the 
ACMDRIVERDETAILS structure. This member can be a combination of the following values and 
identifies which operations the driver supports with the filter tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter tag. 



For example, if a driver supports compression from WAVE_FORMAT_PCM to 
WAVE_FORMAT_ADPCM with the specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the 
specified filter tag. For example, if a driver supports resampling of WAVE_FORMAT_PCM with the 
specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For 
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both with the specified filter tag through a waveform-
audio device. An application should use the acmMetrics function with the 
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT 
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM 
driver.

cStandardFilters

Number of standard filters of the dwFilterTag type (that is, the combination of all filter characteristics). 
This value cannot specify all filters supported by the driver.

szFilterTag

String that describes the dwFilterTag type. This string is always returned if the acmFilterTagDetails 
function is successful.

 

See Also
ACMDRIVERDETAILS, acmFilterTagDetails, acmFilterTagEnum 



ACMFORMATCHOOSE      

  

The ACMFORMATCHOOSE structure contains information the ACM uses to initialize the system-defined 
waveform-audio format selection dialog box. After the user closes the dialog box, the system returns 
information about the user's selection in this structure.

typedef struct { 
    DWORD                   cbStruct; 
    DWORD                   fdwStyle; 
    HWND                    hwndOwner; 
    LPWAVEFORMATEX          pwfx; 
    DWORD                   cbwfx; 
    LPCSTR                  pszTitle; 
    char szFormatTag[ACMFORMATTAGDETAILS_FORMATTAG_CHARS]; 
    char szFormat[ACMFORMATDETAILS_FORMAT_CHARS]; 
    LPSTR                   pszName; 
    DWORD                   cchName; 
    DWORD                   fdwEnum; 
    LPWAVEFORMATEX          pwfxEnum; 
    HINSTANCE               hInstance; 
    LPCSTR                  pszTemplateName; 
    LPARAM                  lCustData; 
    ACMFORMATCHOOSEHOOKPROC pfnHook; 
} ACMFORMATCHOOSE; 
 

Members
cbStruct

Size, in bytes, of the ACMFORMATCHOOSE structure. This member must be initialized before an 
application calls the acmFormatChoose function. The size specified in this member must be large 
enough to contain the base ACMFORMATCHOOSE structure.

fdwStyle

Optional style flags for the acmFormatChoose function. This member must be initialized to a valid 
combination of the following flags before an application calls the acmFormatChoose function:

ACMFORMATCHOOSE_STYLEF_CONTEXTHELP

Context-sensitive help will be available in the dialog box. To use this feature, an application must 
register the ACMHELPMSGCONTEXTMENU and ACMHELPMSGCONTEXTHELP constants, 
using the RegisterWindowMessage function. When the user invokes help, the registered 
message will be posted to the owning window. The message will contain the wParam and lParam 
parameters from the original WM_CONTEXTMENU or WM_CONTEXTHELP message.

ACMFORMATCHOOSE_STYLEF_ENABLEHOOK

Enables the hook function pointed to by the pfnHook member. An application can use hook 
functions for a variety of customizations, including answering the MM_ACM_FORMATCHOOSE 
message.

ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATE

Causes the ACM to create the dialog box template identified by hInstance and 
pszTemplateName.



ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATEHANDLE

The hInstance member identifies a data block that contains a preloaded dialog box template. If 
this flag is specified, the ACM ignores the pszTemplateName member.

ACMFORMATCHOOSE_STYLEF_INITTOWFXSTRUCT

The buffer pointed to by pwfx contains a valid WAVEFORMATEX structure that the dialog box will 
use as the initial selection.

ACMFORMATCHOOSE_STYLEF_SHOWHELP

A help button will appear in the dialog box. To use a custom Help file, an application must register 
the ACMHELPMSGSTRING constant with the RegisterWindowMessage function. When the user 
presses the help button, the registered message will be posted to the owner.

hwndOwner

Handle of the window that owns the dialog box. This member can be any valid window handle, or 
NULL if the dialog box has no owner. This member must be initialized before calling the 
acmFormatChoose function.

pwfx

Address of a WAVEFORMATEX structure. If the 
ACMFORMATCHOOSE_STYLEF_INITTOWFXSTRUCT flag is specified in the fdwStyle member, 
this structure must be initialized to a valid format. When the acmFormatChoose function returns, this 
buffer contains the selected format. If the user cancels the dialog box, no changes will be made to this 
buffer.

cbwfx

Size, in bytes, of the buffer pointed to by pwfx. If the buffer is too small to contain the format 
information, the acmFormatChoose function returns ACMERR_NOTPOSSIBLE. Also, the ACM 
copies the required size into this member. An application can use the acmMetrics and 
acmFormatTagDetails functions to determine the largest size required for this buffer.

pszTitle

Address of a string to be placed in the title bar of the dialog box. If this member is NULL, the ACM 
uses the default title (that is, "Sound Selection").

szFormatTag

Buffer containing a null-terminated string describing the format tag of the format selection when the 
acmFormatChoose function returns. This string is equivalent to the szFormatTag member of the 
ACMFORMATTAGDETAILS structure returned by the acmFormatTagDetails function. If the user 
cancels the dialog box, this member will contain a null-terminated string.

szFormat

Buffer containing a null-terminated string describing the format attributes of the format selection when 
the acmFormatChoose function returns. This string is equivalent to the szFormat member of the 
ACMFORMATDETAILS structure returned by the acmFormatDetails function. If the user cancels the 
dialog box, this member will contain a null-terminated string.

pszName

Address of a string for a user-defined format name. If this is a non-null-terminated string, the ACM will 
attempt to match the name with a previously saved user-defined format name. If a match is found, the 
dialog box is initialized to that format. If a match is not found or this member is a null-terminated 
string, this member is ignored on input. When the acmFormatChoose function returns, this buffer 
contains a null-terminated string describing the user-defined format. If the format name is untitled 
(that is, the user has not given a name for the format), this member will be a null-terminated string on 



return. If the user cancels the dialog box, no changes will be made to this buffer.

If the ACMFORMATCHOOSE_STYLEF_INITTOWFXSTRUCT flag is specified in the fdwStyle 
member, the pszName member is ignored for input. 

cchName

Size, in characters, of the buffer identified by the pszName member. This buffer should be at least 
128 characters long. If the pszName member is NULL, this member is ignored.

fdwEnum

Optional flags for restricting the type of formats listed in the dialog box. These flags are identical to 
the fdwEnum flags for the acmFormatEnum function. If pwfxEnum is NULL, this member should be 
zero. The following values are defined:

ACM_FORMATENUMF_CONVERT

The WAVEFORMATEX structure pointed to by the pwfxEnum member is valid. The enumerator 
will enumerate only destination formats that can be converted from the given pwfxEnum format.

ACM_FORMATENUMF_HARDWARE

The enumerator should enumerate only formats that are supported in hardware by one or more of 
the installed waveform-audio devices. This flag provides a way for an application to choose only 
formats native to an installed waveform-audio device.

ACM_FORMATENUMF_INPUT

The enumerator should enumerate only formats that are supported for input (recording).

ACM_FORMATENUMF_NCHANNELS

The nChannels member of the WAVEFORMATEX structure pointed to by the pwfxEnum member 
is valid. The enumerator will enumerate only a format that conforms to this attribute.

ACM_FORMATENUMF_NSAMPLESPERSEC

The nSamplesPerSec member of the WAVEFORMATEX structure pointed to by the pwfxEnum 
member is valid. The enumerator will enumerate only a format that conforms to this attribute.

ACM_FORMATENUMF_OUTPUT

The enumerator should enumerate only formats that are supported for output (playback).

ACM_FORMATENUMF_SUGGEST

The WAVEFORMATEX structure pointed to by the pwfxEnum member is valid. The enumerator 
will enumerate all suggested destination formats for the given pwfxEnum format.

ACM_FORMATENUMF_WBITSPERSAMPLE

The wBitsPerSample member of the WAVEFORMATEX structure pointed to by the pwfxEnum 
member is valid. The enumerator will enumerate only a format that conforms to this attribute.

ACM_FORMATENUMF_WFORMATTAG

The wFormatTag member of the WAVEFORMATEX structure pointed to by the pwfxEnum 
member is valid. The enumerator will enumerate only a format that conforms to this attribute.

pwfxEnum

Address of a WAVEFORMATEX structure that will be used to restrict the formats listed in the dialog 
box. The fdwEnum member defines the members of the structure pointed to by pwfxEnum that 
should be used for the enumeration restrictions. If no special restrictions are desired, this member 
can be NULL. For other requirements associated with the pwfxEnum member, see the description for 
the acmFormatEnum function.



hInstance

Handle of a data block that contains a dialog box template specified by the pszTemplateName 
member. This member is used only if the fdwStyle member specifies the 
ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATE or 
ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATEHANDLE flag; otherwise, this member should 
be NULL on input.

pszTemplateName

Address of a null-terminated string that specifies the name of the resource file for the dialog box 
template that is to be substituted for the dialog box template in the ACM. An application can use the 
MAKEINTRESOURCE macro for numbered dialog box resources. This member is used only if the 
fdwStyle member specifies the ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATE flag; 
otherwise, this member should be NULL on input.

lCustData

Application-defined data that the ACM passes to the hook function identified by the pfnHook member. 
The system passes the data in the lParam parameter of the WM_INITDIALOG message.

pfnHook

Address of a hook function that processes messages intended for the dialog box. An application must 
specify the ACMFORMATCHOOSE_STYLEF_ENABLEHOOK flag in the fdwStyle member to enable 
the hook; otherwise, this member should be NULL. The hook function should return FALSE to pass a 
message to the standard dialog box procedure or TRUE to discard the message.

 

See Also
acmFormatChoose, acmFormatDetails, ACMFORMATDETAILS, acmFormatEnum, 
acmFormatTagDetails, ACMFORMATTAGDETAILS, acmMetrics, MAKEINTRESOURCE, 
MM_ACM_FORMATCHOOSE, RegisterWindowMessage, WAVEFORMATEX, WM_INITDIALOG 



ACMFORMATDETAILS      

  

The ACMFORMATDETAILS structure details a waveform-audio format for a specific format tag for an 
ACM driver.

typedef struct { 
    DWORD          cbStruct; 
    DWORD          dwFormatIndex; 
    DWORD          dwFormatTag; 
    DWORD          fdwSupport; 
    LPWAVEFORMATEX pwfx; 
    DWORD          cbwfx; 
    char szFormat[ACMFORMATDETAILS_FORMAT_CHARS]; 
} ACMFORMATDETAILS; 
 

Members
cbStruct

Size, in bytes, of the ACMFORMATDETAILS structure. This member must be initialized before an 
application calls the acmFormatDetails or acmFormatEnum function. The size specified by this 
member must be large enough to contain the base ACMFORMATDETAILS structure. When the 
acmFormatDetails function returns, this member contains the actual size of the information returned. 
The returned information will never exceed the requested size.

dwFormatIndex

Index of the format to retrieve details for. The index ranges from zero to one less than the number of 
standard formats supported by an ACM driver for a format tag. The number of standard formats 
supported by a driver for a format tag is contained in the cStandardFormats member of the 
ACMFORMATTAGDETAILS structure. The dwFormatIndex member is used only when an 
application queries standard format details about a driver by index; otherwise, this member should be 
zero. Also, this member will be set to zero by the ACM when an application queries for details on a 
format; in other words, this member is used only for input and is never returned by the ACM or an 
ACM driver.

dwFormatTag

Waveform-audio format tag that the ACMFORMATDETAILS structure describes. This member is 
used for input for the ACM_FORMATDETAILSF_INDEX query flag. For the 
ACM_FORMATDETAILSF_FORMAT query flag, this member must be initialized to the same format 
tag as the pwfx member specifies. If a call to the acmFormatDetails function is successful, this 
member is always returned. This member should be set to WAVE_FORMAT_UNKNOWN for all other 
query flags.

fdwSupport

Driver-support flags specific to the specified format. These flags are identical to the fdwSupport flags 
of the ACMDRIVERDETAILS structure. This member can be a combination of the following values 
and indicates which operations the driver supports for the format tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified format tag.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags for the specified format. For example, 



if a driver supports compression from WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM with 
the specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the 
specified format. For example, if a driver supports resampling of WAVE_FORMAT_PCM to the 
specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (which modifies data without changing any format attributes) with the 
specified format. For example, if a driver supports volume or echo operations on 
WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input and/or output of the specified format through a waveform-audio 
device. An application should use acmMetrics with the 
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT 
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM 
driver.

pwfx

Address of a WAVEFORMATEX structure that will receive the format details. This structure requires 
no initialization by the application unless the ACM_FORMATDETAILSF_FORMAT flag is specified in 
the acmFormatDetails function. In this case, the wFormatTag member of the WAVEFORMATEX 
structure must be equal to the dwFormatTag of the ACMFORMATDETAILS structure.

cbwfx

Size, in bytes, available for pwfx to receive the format details. The acmMetrics and 
acmFormatTagDetails functions can be used to determine the maximum size required for any format 
available for the specified driver (or for all installed ACM drivers).

szFormat

String that describes the format for the dwFormatTag type. If the acmFormatDetails function is 
successful, this string is always returned.

 

See Also
ACMDRIVERDETAILS, acmFormatDetails, acmFormatEnum, acmFormatTagDetails, 
ACMFORMATTAGDETAILS, acmMetrics, WAVEFORMATEX 



ACMFORMATTAGDETAILS      

  

The ACMFORMATTAGDETAILS structure details a waveform-audio format tag for an ACM driver.

typedef struct { 
    DWORD cbStruct; 
    DWORD dwFormatTagIndex; 
    DWORD dwFormatTag; 
    DWORD cbFormatSize; 
    DWORD fdwSupport; 
    DWORD cStandardFormats; 
    char szFormatTag[ACMFORMATTAGDETAILS_FORMATTAG_CHARS]; 
} ACMFORMATTAGDETAILS; 
 

Members
cbStruct

Size, in bytes, of the ACMFORMATTAGDETAILS structure. This member must be initialized before 
an application calls the acmFormatTagDetails or acmFormatTagEnum function. The size specified 
by this member must be large enough to contain the base ACMFORMATTAGDETAILS structure. 
When the acmFormatTagDetails function returns, this member contains the actual size of the 
information returned. The returned information will never exceed the requested size.

dwFormatTagIndex

Index of the format tag for which details will be retrieved. The index ranges from zero to one less than 
the number of format tags supported by an ACM driver. The number of format tags supported by a 
driver is contained in the cFormatTags member of the ACMDRIVERDETAILS structure. The 
dwFormatTagIndex member is used only when querying format tag details on a driver by index; 
otherwise, this member should be zero.

dwFormatTag

Waveform-audio format tag that the ACMFORMATTAGDETAILS structure describes. This member is 
used for input for the ACM_FORMATTAGDETAILSF_FORMATTAG and 
ACM_FORMATTAGDETAILSF_LARGESTSIZE query flags. If the acmFormatTagDetails function is 
successful, this member is always returned. This member should be set to 
WAVE_FORMAT_UNKNOWN for all other query flags.

cbFormatSize

Largest total size, in bytes, of a waveform-audio format of the dwFormatTag type. For example, this 
member will be 16 for WAVE_FORMAT_PCM and 50 for WAVE_FORMAT_ADPCM.

fdwSupport

Driver-support flags specific to the format tag. These flags are identical to the fdwSupport flags of 
the ACMDRIVERDETAILS structure. This member may be some combination of the following values 
and refer to what operations the driver supports with the format tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified format tag.

ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags where one of the tags is the specified 



format tag. For example, if a driver supports compression from WAVE_FORMAT_PCM to 
WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the specified format tag. For example, 
if a driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For 
example, if a driver supports volume or echo operations on the specified format tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both of the specified format tag through a waveform-
audio device. An application should use the acmMetrics function with the 
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT 
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM 
driver.

cStandardFormats

Number of standard formats of the dwFormatTag type; that is, the combination of all sample rates, 
bits per sample, channels, and so on. This value can specify all formats supported by the driver, but 
not necessarily.

szFormatTag

String that describes the dwFormatTag type. If the acmFormatTagDetails function is successful, this 
string is always returned.

 

See Also
ACMDRIVERDETAILS, acmFormatTagDetails, acmFormatTagEnum, acmMetrics



ACMSTREAMHEADER      

  

The ACMSTREAMHEADER structure defines the header used to identify an ACM conversion source and 
destination buffer pair for a conversion stream.

typedef struct { 
    DWORD  cbStruct; 
    DWORD  fdwStatus; 
    DWORD  dwUser; 
    LPBYTE pbSrc; 
    DWORD  cbSrcLength; 
    DWORD  cbSrcLengthUsed; 
    DWORD  dwSrcUser; 
    LPBYTE pbDst; 
    DWORD  cbDstLength; 
    DWORD  cbDstLengthUsed; 
    DWORD  dwDstUser; 
    DWORD  dwReservedDriver[10]; 
} ACMSTREAMHEADER; 
 

Members
cbStruct

Size, in bytes, of the ACMSTREAMHEADER structure. This member must be initialized before the 
application calls any ACM stream functions using this structure. The size specified in this member 
must be large enough to contain the base ACMSTREAMHEADER structure.

fdwStatus

Flags giving information about the conversion buffers. This member must be initialized to zero before 
the application calls the acmStreamPrepareHeader function and should not be modified by the 
application while the stream header remains prepared.

ACMSTREAMHEADER_STATUSF_DONE

Set by the ACM or driver to indicate that it is finished with the conversion and is returning the 
buffers to the application.

ACMSTREAMHEADER_STATUSF_INQUEUE

Set by the ACM or driver to indicate that the buffers are queued for conversion.

ACMSTREAMHEADER_STATUSF_PREPARED

Set by the ACM to indicate that the buffers have been prepared by using the 
acmStreamPrepareHeader function.

dwUser

User data. This can be any instance data specified by the application.

pbSrc

Address of the source buffer. This pointer must always refer to the same location while the stream 
header remains prepared. If an application needs to change the source location, it must unprepare 
the header and reprepare it with the alternate location.

cbSrcLength



Length, in bytes, of the source buffer pointed to by pbSrc. When the header is prepared, this member 
must specify the maximum size that will be used in the source buffer. Conversions can be performed 
on source lengths less than or equal to the original prepared size. However, this member must be 
reset to the original size when an application unprepares the header.

cbSrcLengthUsed

Amount of data, in bytes, used for the conversion. This member is not valid until the conversion is 
complete. This value can be less than or equal to cbSrcLength. An application must use the 
cbSrcLengthUsed member when advancing to the next piece of source data for the conversion 
stream.

dwSrcUser

User data. This can be any instance data specified by the application.

pbDst

Address of the destination buffer. This pointer must always refer to the same location while the stream 
header remains prepared. If an application needs to change the destination location, it must 
unprepare the header and reprepare it with the alternate location.

cbDstLength

Length, in bytes, of the destination buffer pointed to by pbDst. When the header is prepared, this 
member must specify the maximum size that will be used in the destination buffer.

cbDstLengthUsed

Amount of data, in bytes, returned by a conversion. This member is not valid until the conversion is 
complete. This value can be less than or equal to cbDstLength. An application must use the 
cbDstLengthUsed member when advancing to the next destination location for the conversion 
stream.

dwDstUser

User data. This can be any instance data specified by the application.

dwReservedDriver

Reserved; do not use. This member requires no initialization by the application and should never be 
modified while the header remains prepared.

 

Remarks
Before an ACMSTREAMHEADER structure can be used for a conversion, it must be prepared by using 
the acmStreamPrepareHeader function. When an application is finished with an ACMSTREAMHEADER 
structure, it must call the acmStreamUnprepareHeader function before freeing the source and 
destination buffers.

See Also
acmStreamPrepareHeader, acmStreamUnprepareHeader 



AUXCAPS    

The AUXCAPS structure describes the capabilities of an auxiliary output device.

typedef struct { 
    WORD      wMid; 
    WORD      wPid; 
    MMVERSION vDriverVersion; 
    CHAR      szPname[MAXPNAMELEN]; 
    WORD      wTechnology; 
    WORD      wReserved1; 
    DWORD     dwSupport; 
} AUXCAPS; 
 

Members
wMid

Manufacturer identifier for the device driver for the auxiliary audio device. Manufacturer identifiers 
are defined in Manufacturer and Product Identifiers.

wPid

Product identifier for the auxiliary audio device. Currently, no product identifiers are defined for 
auxiliary audio devices. 

vDriverVersion

Version number of the device driver for the auxiliary audio device.    The high-order byte is the major 
version number, and the low-order byte is the minor version number.

szPname

Product name in a null-terminated string.

wTechnology

Type of the auxiliary audio output:

AUXCAPS_AUXIN

Audio output from auxiliary input jacks.

AUXCAPS_CDAUDIO

Audio output from an internal CD-ROM drive.

wReserved1

Padding.

dwSupport

Describes optional functionality supported by the auxiliary audio device.

AUXCAPS_LRVOLUME

Supports separate left and right volume control.

AUXCAPS_VOLUME

Supports volume control.

If a device supports volume changes, the AUXCAPS_VOLUME flag will be set. If a device supports 
separate volume changes on the left and right channels, both AUXCAPS_VOLUME and the 
AUXCAPS_LRVOLUME will be set.



 



AVICOMPRESSOPTIONS      

  

The AVICOMPRESSOPTIONS structure contains information about a stream and how it is compressed 
and saved. This structure passes data to the AVIMakeCompressedStream function (or the AVISave 
function, which uses AVIMakeCompressedStream).

typedef struct { 
    DWORD  fccType; 
    DWORD  fccHandler; 
    DWORD  dwKeyFrameEvery; 
    DWORD  dwQuality; 
    DWORD  dwBytesPerSecond; 
    DWORD  dwFlags; 
    LPVOID lpFormat; 
    DWORD  cbFormat; 
    LPVOID lpParms; 
    DWORD  cbParms; 
    DWORD  dwInterleaveEvery; 
} AVICOMPRESSOPTIONS; 
 

Members
fccType

Four-character code indicating the stream type. The following constants have been defined for the 
data commonly found in AVI streams:

streamtypeAUDIO Indicates an audio stream.

streamtypeMIDI Indicates a MIDI stream.

streamtypeTEXT Indicates a text stream.

streamtypeVIDEO Indicates a video stream.
 

fccHandler

Four-character code for the compressor handler that will compress this video stream when it is saved 
(for example, mmioFOURCC('M','S','V','C')). This member is not used for audio streams.

dwKeyFrameEvery

Maximum period between video key frames. This member is used only if the 
AVICOMPRESSF_KEYFRAMES flag is set; otherwise every video frame is a key frame.

dwQuality

Quality value passed to a video compressor. This member is not used for an audio compressor.

dwBytesPerSecond

Video compressor data rate. This member is used only if the AVICOMPRESSF_DATARATE flag is 
set.

dwFlags

Flags used for compression. The following values are defined:

AVICOMPRESSF_DATARATE



Compresses this video stream using the data rate specified in dwBytesPerSecond.

AVICOMPRESSF_INTERLEAVE

Interleaves this stream every dwInterleaveEvery frames with respect to the first stream.

AVICOMPRESSF_KEYFRAMES

Saves this video stream with key frames at least every dwKeyFrameEvery frames. By default, 
every frame will be a key frame.

AVICOMPRESSF_VALID

Uses the data in this structure to set the default compression values for AVISaveOptions. If an 
empty structure is passed and this flag is not set, some defaults will be chosen.

lpFormat

Address of a structure defining the data format. For an audio stream, this is an LPWAVEFORMAT 
structure.

cbFormat

Size, in bytes, of the data referenced by lpFormat.

lpParms

Video-compressor-specific data; used internally.

cbParms

Size, in bytes, of the data referenced by lpParms

dwInterleaveEvery

Interleave factor for interspersing stream data with data from the first stream. Used only if the 
AVICOMPRESSF_INTERLEAVE flag is set.

 

See Also
AVIMakeCompressedStream, AVISave, AVISaveOptions, mmioFOURCC



AVIFILEINFO      

  

The AVIFILEINFO structure contains global information for an entire AVI file. 

typedef struct { 
    DWORD dwMaxBytesPerSec; 
    DWORD dwFlags; 
    DWORD dwCaps; 
    DWORD dwStreams; 
    DWORD dwSuggestedBufferSize; 
    DWORD dwWidth; 
    DWORD dwHeight; 
    DWORD dwScale; 
    DWORD dwRate; 
    DWORD dwLength; 
    DWORD dwEditCount; 
    char  szFileType[64]; 
} AVIFILEINFO; 
 

Members
dwMaxBytesPerSec

Approximate maximum data rate of the AVI file.

dwFlags

Applicable flags. The following flags are defined:

AVIFILEINFO_HASINDEX

The AVI file has an index at the end of the file. For good performance, all AVI files should contain 
an index.

AVIFILEINFO_MUSTUSEINDEX

The file index contains the playback order for the chunks in the file. Use the index rather than the 
physical ordering of the chunks when playing back the data. This could be used for creating a list 
of frames for editing.

AVIFILEINFO_ISINTERLEAVED

The AVI file is interleaved.

AVIFILEINFO_WASCAPTUREFILE

The AVI file is a specially allocated file used for capturing real-time video. Applications should warn 
the user before writing over a file with this flag set because the user probably defragmented this 
file.

AVIFILEINFO_COPYRIGHTED

The AVI file contains copyrighted data and software. When this flag is used, software should not 
permit the data to be duplicated.

dwCaps

Capability flags. The following flags are defined:

AVIFILECAPS_CANREAD



An application can open the AVI file with with the read privilege.

AVIFILECAPS_CANWRITE

An application can open the AVI file with the write privilege.

AVIFILECAPS_ALLKEYFRAMES

Every frame in the AVI file is a key frame.

AVIFILECAPS_NOCOMPRESSION

The AVI file does not use a compression method.

dwStreams

Number of streams in the file. For example, a file with audio and video has at least two streams.

dwSuggestedBufferSize

Suggested buffer size, in bytes, for reading the file. Generally, this size should be large enough to 
contain the largest chunk in the file. For an interleaved file, this size should be large enough to read 
an entire record, not just a chunk.

If the buffer size is too small or is set to zero, the playback software will have to reallocate memory 
during playback, reducing performance.

dwWidth

Width, in pixels, of the AVI file.

dwHeight

Height, in pixels, of the AVI file.

dwScale

Time scale applicable for the entire file. Dividing dwRate by dwScale gives the number of samples 
per second. 

Any stream can define its own time scale to supersede the file time scale.

dwLength

Length of the AVI file. The units are defined by dwRate and dwScale.

dwEditCount

Number of streams that have been added to or deleted from the AVI file.

szFileType

Null-terminated string containing descriptive information for the file type.
 



AVISTREAMINFO      

  

The AVISTREAMINFO structure contains information for a single stream. 

typedef struct { 
    DWORD fccType; 
    DWORD fccHandler; 
    DWORD dwFlags; 
    DWORD dwCaps; 
    WORD  wPriority; 
    WORD  wLanguage; 
    DWORD dwScale; 
    DWORD dwRate; 
    DWORD dwStart; 
    DWORD dwLength; 
    DWORD dwInitialFrames; 
    DWORD dwSuggestedBufferSize; 
    DWORD dwQuality; 
    DWORD dwSampleSize; 
    RECT  rcFrame; 
    DWORD dwEditCount; 
    DWORD dwFormatChangeCount; 
    char  szName[64]; 
} AVISTREAMINFO; 
 

Members
fccType

Four-character code indicating the stream type. The following constants have been defined for the 
data commonly found in AVI streams:

streamtypeAUDIO Indicates an audio stream.

streamtypeMIDI Indicates a MIDI stream.

streamtypeTEXT Indicates a text stream.

streamtypeVIDEO Indicates a video stream.
 

fccHandler

Four-character code of the compressor handler that will compress this video stream when it is saved 
(for example, mmioFOURCC('M','S','V','C')). This member is not used for audio streams.

dwFlags

Applicable flags for the stream. The bits in the high-order word of these flags are specific to the type 
of data contained in the stream. The following flags are defined:

AVISTREAMINFO_DISABLED

Indicates this stream should be rendered when explicitly enabled by the user.

AVISTREAMINFO_FORMATCHANGES

Indicates this video stream contains palette changes. This flag warns the playback software that it 
will need to animate the palette.



dwCaps

Capability flags; currently unused.

wPriority

Priority of the stream.

wLanguage

Language of the stream.

dwScale

Time scale applicable for the stream. Dividing dwRate by dwScale gives the playback rate in number 
of samples per second.

For video streams, this rate should be the frame rate. For audio streams, this rate should correspond 
to the audio block size (the nBlockAlign member of the WAVEFORMAT or PCMWAVEFORMAT 
structure), which for PCM (Pulse Code Modulation) audio reduces to the sample rate.

dwRate

See dwScale.

dwStart

Sample number of the first frame of the AVI file. The units are defined by dwRate and dwScale. 
Normally, this is zero, but it can specify a delay time for a stream that does not start concurrently with 
the file. 

The 1.0 release of the AVI tools does not support a nonzero starting time.

dwLength

Length of this stream. The units are defined by dwRate and dwScale.

dwInitialFrames

Audio skew. This member specifies how much to skew the audio data ahead of the video frames in 
interleaved files. Typically, this is about 0.75 seconds.

dwSuggestedBufferSize

Recommended buffer size, in bytes, for the stream. Typically, this member contains a value 
corresponding to the largest chunk in the stream. Using the correct buffer size makes playback more 
efficient. Use zero if you do not know the correct buffer size.

dwQuality

Quality indicator of the video data in the stream. Quality is represented as a number between 0 and 
10,000. For compressed data, this typically represents the value of the quality parameter passed to 
the compression software. If set to    - 1, drivers use the default quality value.

dwSampleSize

Size, in bytes, of a single data sample. If the value of this member is zero, the samples can vary in 
size and each data sample (such as a video frame) must be in a separate chunk. A nonzero value 
indicates that multiple samples of data can be grouped into a single chunk within the file.

For video streams, this number is typically zero, although it can be nonzero if all video frames are the 
same size. For audio streams, this number should be the same as the nBlockAlign member of the 
WAVEFORMAT or WAVEFORMATEX structure describing the audio.

rcFrame

Dimensions of the video destination rectangle. The values represent the coordinates of upper left 
corner, the height, and the width of the rectangle.



dwEditCount

Number of times the stream has been edited. The stream handler maintains this count.

dwFormatChangeCount

Number of times the stream format has changed. The stream handler maintains this count.

szName

Null-terminated string containing a description of the stream.
 

See Also
mmioFOURCC, PCMWAVEFORMAT, WAVEFORMAT, WAVEFORMATEX 



CAPDRIVERCAPS      

  

The CAPDRIVERCAPS structure defines the capabilities of the capture driver.

An application should use the WM_CAP_DRIVER_GET_CAPS message or capDriverGetCaps macro to 
place a copy of the driver capabilities in a CAPDRIVERCAPS structure whenever the application 
connects a capture window to a capture driver.

typedef struct { 
    UINT   wDeviceIndex; 
    BOOL   fHasOverlay; 
    BOOL   fHasDlgVideoSource; 
    BOOL   fHasDlgVideoFormat; 
    BOOL   fHasDlgVideoDisplay; 
    BOOL   fCaptureInitialized; 
    BOOL   fDriverSuppliesPalettes; 
    HANDLE hVideoIn; 
    HANDLE hVideoOut; 
    HANDLE hVideoExtIn; 
    HANDLE hVideoExtOut; 
} CAPDRIVERCAPS; 
 

Members
wDeviceIndex

Index of the capture driver. An index value can range from 0 to 9.

fHasOverlay

Video-overlay flag. The value of this member is TRUE if the device supports video overlay.

fHasDlgVideoSource

Video source dialog flag. The value of this member is TRUE if the device supports a dialog box for 
selecting and controlling the video source. 

fHasDlgVideoFormat

Video format dialog flag. The value of this member is TRUE if the device supports a dialog box for 
selecting the video format. 

fHasDlgVideoDisplay

Video display dialog flag. The value of this member is TRUE if the device supports a dialog box for 
controlling the redisplay of video from the capture frame buffer. 

fCaptureInitialized

Capture initialization flag. The value of this member is TRUE if a capture device has been 
successfully connected.

fDriverSuppliesPalettes

Driver palette flag. The value of this member is TRUE if the driver can create palettes.

hVideoIn

Not used in Win32 applications.



hVideoOut

Not used in Win32 applications.

hVideoExtIn

Not used in Win32 applications.

hVideoExtOut

Not used in Win32 applications.
 



CAPINFOCHUNK      

  

The CAPINFOCHUNK structure contains parameters that can be used to define an information chunk 
within an AVI capture file. The WM_CAP_FILE_SET_INFOCHUNK message or capSetInfoChunk macro 
is used to send a CAPINFOCHUNK structure to a capture window.

typedef struct { 
    FOURCC fccInfoID; 
    LPVOID lpData; 
    LONG   cbData; 
} CAPINFOCHUNK; 
 

Members
fccInfoID

Four-character code that identifies the representation of the chunk data. If this value is NULL and 
lpData is NULL, all accumulated information chunks are deleted.

lpData

Address of the data. If this value is NULL, all fccInfoID information chunks are deleted.

cbData

Size, in bytes, of the data pointed to by lpData. If lpData specifies a 
null-terminated string, use the string length incremented by one to save the NULL with the string.

 

See Also
WM_CAP_FILE_SET_INFOCHUNK 



CAPSTATUS      

  

The CAPSTATUS structure defines the current state of the capture window.

typedef struct { 
    UINT     uiImageWidth; 
    UINT     uiImageHeight; 
    BOOL     fLiveWindow; 
    BOOL     fOverlayWindow; 
    BOOL     fScale; 
    POINT    ptScroll; 
    BOOL     fUsingDefaultPalette; 
    BOOL     fAudioHardware; 
    BOOL     fCapFileExists; 
    DWORD    dwCurrentVideoFrame; 
    DWORD    dwCurrentVideoFramesDropped; 
    DWORD    dwCurrentWaveSamples; 
    DWORD    dwCurrentTimeElapsedMS; 
    HPALETTE hPalCurrent; 
    BOOL     fCapturingNow; 
    DWORD    dwReturn; 
    UINT     wNumVideoAllocated; 
    UINT     wNumAudioAllocated; 
} CAPSTATUS; 
 

Members
uiImageWidth

Image width, in pixels.

uiImageHeight

Image height, in pixels

fLiveWindow

Live window flag. The value of this member is TRUE if the window is displaying video using the 
preview method.

fOverlayWindow

Overlay window flag. The value of this member is TRUE if the window is displaying video using 
hardware overlay.

fScale

Input scaling flag. The value of this member is TRUE if the window is scaling the input video to the 
client area when displaying video using preview. This parameter has no effect when displaying video 
using overlay.

ptScroll

The x- and y-offset of the pixel displayed in the upper left corner of the client area of the window.

fUsingDefaultPalette

Default palette flag. The value of this member is TRUE if the capture driver is using its default palette.



fAudioHardware

Audio hardware flag. The value of this member is TRUE if the system has waveform-audio hardware 
installed.

fCapFileExists

Capture file flag. The value of this member is TRUE if a valid capture file has been generated.

dwCurrentVideoFrame

Number of frames processed during the current (or most recent) streaming capture. This count 
includes dropped frames.

dwCurrentVideoFramesDropped

Number of frames dropped during the current (or most recent) streaming capture. Dropped frames 
occur when the capture rate exceeds the rate at which frames can be saved to file. In this case, the 
capture driver has no buffers available for storing data. Dropping frames does not affect 
synchronization because the previous frame is displayed in place of the dropped frame.

dwCurrentWaveSamples

Number of waveform-audio samples processed during the current (or most recent) streaming capture.

dwCurrentTimeElapsedMS

Time, in milliseconds, since the start of the current (or most recent) streaming capture.

hPalCurrent

Handle of current palette.

fCapturingNow

Capturing flag. The value of this member is TRUE when capturing is in progress.

dwReturn

Error return values. Use this member if your application does not support an error callback function.

wNumVideoAllocated

Number of video buffers allocated. This value might be less than the number specified in the 
wNumVideoRequested member of the CAPTUREPARMS structure.

wNumAudioAllocated

Number of audio buffers allocated. This value might be less than the number specified in the 
wNumAudioRequested member of the CAPTUREPARMS structure.

 

Remarks
Because the state of a capture window changes in response to various messages, an application should 
update the information in this structure whenever it needs to enable menu items, determine the actual 
state of the capture window, or call the video format dialog box. If the application yields during streaming 
capture, this structure returns the progress of the capture in the dwCurrentVideoFrame, 
dwCurrentVideoFramesDropped, dwCurrentWaveSamples, and dwCurrentTimeElapsedMS 
members. Use the WM_CAP_GET_STATUS message or capGetStatus macro to update the contents of 
this structure.

See Also
CAPTUREPARMS, WM_CAP_GET_STATUS 



CAPTUREPARMS      

  

The CAPTUREPARMS structure contains parameters that control the streaming video capture process. 
This structure is used to get and set parameters that affect the capture rate, the number of buffers to use 
while capturing, and how capture is terminated.

typedef struct { 
    DWORD dwRequestMicroSecPerFrame; 
    BOOL  fMakeUserHitOKToCapture; 
    UINT  wPercentDropForError; 
    BOOL  fYield; 
    DWORD dwIndexSize; 
    UINT  wChunkGranularity; 
    BOOL  fUsingDOSMemory; 
    UINT  wNumVideoRequested; 
    BOOL  fCaptureAudio; 
    UINT  wNumAudioRequested; 
    UINT  vKeyAbort; 
    BOOL  fAbortLeftMouse; 
    BOOL  fAbortRightMouse; 
    BOOL  fLimitEnabled; 
    UINT  wTimeLimit; 
    BOOL  fMCIControl; 
    BOOL  fStepMCIDevice; 
    DWORD dwMCIStartTime; 
    DWORD dwMCIStopTime; 
    BOOL  fStepCaptureAt2x; 
    UINT  wStepCaptureAverageFrames; 
    DWORD dwAudioBufferSize; 
    BOOL  fDisableWriteCache; 
    UINT  AVStreamMaster; 
} CAPTUREPARMS; 
 

Members
dwRequestMicroSecPerFrame

Requested frame rate, in microseconds. The default value is 66667, which corresponds to 15 frames 
per second.

fMakeUserHitOKToCapture

User-initiated capture flag. If this member is TRUE, AVICap displays a dialog box prompting the user 
to initiate capture. The default value is FALSE.

wPercentDropForError

Maximum allowable percentage of dropped frames during capture. Values range from 0 to 100. The 
default value is 10.

fYield

Yield flag. If this member is TRUE, the capture window spawns a separate background thread to 
perform step and streaming capture. The default value is FALSE.

Applications that set this flag must handle potential reentry issues because the controls in the 



application are not disabled while capture is in progress.

dwIndexSize

Maximum number of index entries in an AVI file. Values range from 1800 to 324,000. If set to 0, a 
default value of 34,952 (32K frames plus a proportional number of audio buffers) is used.

Each video frame or buffer of waveform-audio data uses one index entry. The value of this entry 
establishes a limit for the number of frames or audio buffers that can be captured.

wChunkGranularity

Logical block size, in bytes, of an AVI file. The value 0 indicates the current sector size is used as the 
granularity.

fUsingDOSMemory

Not used in Win32 applications.

wNumVideoRequested

Maximum number of video buffers to allocate. The memory area to place the buffers is specified with 
fUsingDOSMemory. The actual number of buffers allocated might be lower if memory is unavailable.

fCaptureAudio

Capture audio flag. If this member is TRUE, audio is captured during streaming capture. This is the 
default value if audio hardware is installed.

wNumAudioRequested

Maximum number of audio buffers to allocate. The maximum number of buffers is 10.

vKeyAbort

Virtual keycode used to terminate streaming capture. The default value is VK_ESCAPE. You must call 
the RegisterHotKey function before specifying a keystroke that can abort a capture session.

You can combine keycodes that include CTRL and SHIFT keystrokes by using the logical OR operator 
with the keycodes for CTRL (0x8000) and SHIFT (0x4000).

fAbortLeftMouse

Abort flag for left mouse button. If this member is TRUE, streaming capture stops if the left mouse 
button is pressed. The default value is TRUE.

fAbortRightMouse

Abort flag for right mouse button. If this member is TRUE, streaming capture stops if the right mouse 
button is pressed. The default value is TRUE.

fLimitEnabled

Time limit enabled flag. If this member is TRUE, streaming capture stops after the number of seconds 
in wTimeLimit has elapsed. The default value is FALSE.

wTimeLimit

Time limit for capture, in seconds. This parameter is used only if fLimitEnabled is TRUE.

fMCIControl

MCI device capture flag. If this member is TRUE, AVICap controls an 
MCI-compatible video source during streaming capture. MCI-compatible video sources include VCRs 
and laserdiscs.

fStepMCIDevice

MCI device step capture flag. If this member is TRUE, step capture using an MCI device as a video 



source is enabled. If it is FALSE, real-time capture using an MCI device is enabled. (If fMCIControl is 
FALSE, this member is ignored.)

dwMCIStartTime

Starting position, in milliseconds, of the MCI device for the capture sequence. (If fMCIControl is 
FALSE, this member is ignored.)

dwMCIStopTime

Stopping position, in milliseconds, of the MCI device for the capture sequence. When this position in 
the content is reached, capture ends and the MCI device stops. (If fMCIControl is FALSE, this 
member is ignored.)

fStepCaptureAt2x

Double-resolution step capture flag. If this member is TRUE, the capture hardware captures at twice 
the specified resolution. (The resolution for the height and width is doubled.) 

Enable this option if the hardware does not support hardware-based decimation and you are 
capturing in the RGB format.

wStepCaptureAverageFrames

Number of times a frame is sampled when creating a frame based on the average sample. A typical 
value for the number of averages is 5.

dwAudioBufferSize

Audio buffer size. If the default value of zero is used, the size of each buffer will be the maximum of 
0.5 seconds of audio or 10K bytes.

fDisableWriteCache

Not used in Win32 applications.

AVStreamMaster

Indicates whether the audio stream controls the clock when writing an AVI file. If this member is set to 
AVSTREAMMASTER_AUDIO, the audio stream is considered the master stream and the video 
stream duration is forced to match the audio duration. If this member is set to 
AVSTREAMMASTER_NONE, the durations of audio and video streams can differ.

 

Remarks
The WM_CAP_GET_SEQUENCE_SETUP message or capCaptureGetSetup macro is used to retrieve 
the current capture parameters. The WM_CAP_SET_SEQUENCE_SETUP message or 
capCaptureSetSetup macro is used to set the capture parameters.

The WM_CAP_GET_SEQUENCE_SETUP message or capCaptureGetSetup macro is used to retrieve 
the current capture parameters. The WM_CAP_SET_SEQUENCE_SETUP message or 
capCaptureSetSetup macro is used to set the capture parameters.

See Also
capCaptureGetSetup, capCaptureSetSetup, RegisterHotKey, WM_CAP_GET_SEQUENCE_SETUP, 
WM_CAP_SET_SEQUENCE_SETUP



COMPVARS      

  

The COMPVARS structure describes compressor settings for functions such as ICCompressorChoose, 
ICSeqCompressFrame, and ICCompressorFree.

typedef struct { 
    LONG         cbSize; 
    DWORD        dwFlags; 
    HIC          hic; 
    DWORD        fccType; 
    DWORD        fccHandler; 
    LPBITMAPINFO lpbiIn; 
    LPBITMAPINFO lpbiOut; 
    LPVOID       lpBitsOut; 
    LPVOID       lpBitsPrev; 
    LONG         lFrame; 
    LONG         lKey; 
    LONG         lDataRate; 
    LONG         lQ; 
    LONG         lKeyCount; 
    LPVOID       lpState; 
    LONG         cbState; 
} COMPVARS; 
 

Members
cbSize

Size, in bytes, of this structure. This member must be set to validate the structure before calling any 
function using this structure.

dwFlags

Applicable flags. The following value is defined:

ICMF_COMPVARS_VALID

Data in this structure is valid and has been manually entered. Set this flag before you call any 
function if you fill this structure manually. Do not set this flag if you let ICCompressorChoose 
initialize this structure.

hic

Handle of the compressor to use. You can open a compressor and obtain a handle of it by using the 
ICOpen function. You can also choose a compressor by using ICCompressorChoose. 
ICCompressorChoose opens the chosen compressor and returns the handle of the compressor in 
this member. You can close the compressor by using ICCompressorFree.

fccType

Type of compressor used. Currently only ICTYPE_VIDEO (VIDC) is supported. This member can be 
set to zero.

fccHandler

Four-character code of the compressor. Specify NULL to indicate the data is not to be recompressed. 
Specify "DIB" to indicate the data is an uncompressed, full frame. You can use this member to specify 



which compressor is selected by default when the dialog box is displayed.

lpbiIn

Reserved; do not use.

lpbiOut

Address of a BITMAPINFO structure containing the image output format. You can specify a specific 
format to use or you can specify NULL to use the default compressor associated with the input 
format. You can also set the image output format by using ICCompressorChoose.

lpBitsOut

Reserved; do not use.

lpBitsPrev

Reserved; do not use.

lFrame

Reserved; do not use.

lKey

Key-frame rate. Specify an integer to indicate the frequency that key frames are to occur in the 
compressed sequence or zero to not use key frames. You can also let ICCompressorChoose set the 
key-frame rate selected in the dialog box. The ICSeqCompressFrameStart function uses the value 
of this member for making key frames.

lDataRate

Data rate, in kilobytes per second. ICCompressorChoose copies the selected data rate from the 
dialog box to this member. 

lQ

Quality setting. Specify a quality setting of 1 to 10,000 or specify ICQUALITY_DEFAULT to use the 
default quality setting. You can also let ICCompressorChoose set the quality value selected in the 
dialog box. ICSeqCompressFrameStart uses the value of this member as its quality setting.

lKeyCount

Reserved; do not use.

lpState

Reserved; do not use.

cbState

Reserved; do not use.
 

Remarks
You can let ICCompressorChoose fill the contents of this structure or you can do it manually. If you 
manually fill the structure, you must provide information for the following members: cbSize, hic, lpbiOut, 
lKey, and lQ. Also, you must set the ICMF_COMPVARS_VALID flag in the dwFlags member.

See Also
BITMAPINFO, ICCompressorChoose, ICCompressorFree, ICSeqCompressFrame, 
ICSeqCompressFrameStart 



DRAWDIBTIME      

  

The DRAWDIBTIME structure contains elapsed timing information for performing a set of DrawDib 
operations. The DrawDibTime function resets the count and the elapsed time value for each operation 
each time it is called.

typedef struct { 
    LONG timeCount; 
    LONG timeDraw; 
    LONG timeDecompress; 
    LONG timeDither; 
    LONG timeStretch; 
    LONG timeBlt; 
    LONG timeSetDIBits; 
}   DRAWDIBTIME, *LPDRAWDIBTIME; 
 

Members
timeCount

Number of times the following operations have been performed since DrawDibTime was last called: 

· Draw a bitmap on the screen.

· Decompress a bitmap.

· Dither a bitmap.

· Stretch a bitmap.

· Transfer bitmap data by using the BitBlt function.

· Transfer bitmap data by using the SetDIBits function.

timeDraw

Time to draw bitmaps.

timeDecompress

Time to decompress bitmaps.

timeDither

Time to dither bitmaps.

timeStretch

Time to stretch bitmaps.

timeBlt

Time to transfer bitmaps by using the BitBlt function. 

timeSetDIBits

Time to transfer bitmaps by using the SetDIBits function.
 

See Also
BitBlt, DrawDibTime, SetDIBits 



ICCOMPRESS      

  

The ICCOMPRESS structure contains compression parameters used with the ICM_COMPRESS 
message.

typedef struct { 
    DWORD              dwFlags; 
    LPBITMAPINFOHEADER lpbiOutput; 
    LPVOID             lpOutput; 
    LPBITMAPINFOHEADER lpbiInput; 
    LPVOID             lpInput; 
    LPDWORD            lpckid; 
    LPDWORD            lpdwFlags; 
    LONG               lFrameNum; 
    DWORD              dwFrameSize; 
    DWORD              dwQuality; 
    LPBITMAPINFOHEADER lpbiPrev; 
    LPVOID             lpPrev; 
} ICCOMPRESS; 
 

Members
dwFlags

Flags used for compression. The following value is defined:

ICCOMPRESS_KEYFRAME

Input data should be treated as a key frame.

lpbiOutput

Address of a BITMAPINFOHEADER structure containing the output (compressed) format. The 
biSizeImage member must contain the size of the compressed data.

lpOutput

Address of the buffer where the driver should write the compressed data.

lpbiInput

Address of a BITMAPINFOHEADER structure containing the input (uncompressed) format.

lpInput

Address of the buffer containing input data.

lpckid

Address to contain the chunk identifier for data in the AVI file. If the value of this member is not NULL, 
the driver should specify a two-character code for the chunk identifier corresponding to the chunk 
identifier used in the AVI file.

lpdwFlags

Address to contain flags for the AVI index. If the returned frame is a key frame, the driver should set 
the AVIIF_KEYFRAME flag.

lFrameNum



Number of the frame to compress.

dwFrameSize

Desired maximum size, in bytes, for compressing this frame. The size value is used for compression 
methods that can make tradeoffs between compressed image size and image quality. Specify zero for 
this member to use the default setting.

dwQuality

Quality setting.

lpbiPrev

Address of a BITMAPINFOHEADER structure containing the format of the previous frame, which is 
typically the same as the input format. 

lpPrev

Address of the buffer containing input data of the previous frame.
 

Remarks
Drivers that perform temporal compression use data from the previous frame (found in the lpbiPrev and 
lpPrev members) to prune redundant data from the current frame.

See Also
BITMAPINFOHEADER, ICM_COMPRESS 



ICCOMPRESSFRAMES      

  

The ICCOMPRESSFRAMES structure contains compression parameters used with the 
ICM_COMPRESS_FRAMES_INFO message.

typedef struct { 
    DWORD              dwFlags; 
    LPBITMAPINFOHEADER lpbiOutput; 
    LPARAM             lOutput; 
    LPBITMAPINFOHEADER lpbiInput; 
    LPARAM             lInput; 
    LONG               lStartFrame; 
    LONG               lFrameCount;
    LONG               lQuality; 
    LONG               lDataRate; 
    LONG               lKeyRate; 
    DWORD              dwRate; 
    DWORD              dwScale; 
    DWORD              dwOverheadPerFrame; 
    DWORD              dwReserved2; 
    LONG (CALLBACK* GetData) (LPARAM lInput, LONG lFrame, 
        LPVOID lpBits, LONG len); 
    LONG (CALLBACK* PutData) (LPARAM lInput, LONG lFrame, 
        LPVOID lpBits, LONG len); 
} ICCOMPRESSFRAMES; 
 

Members
dwFlags

Applicable flags. The following value is defined: 

ICDECOMPRESSFRAMES_PADDING

Padding is used with the frame.

lpbiOutput

Address of a BITMAPINFOHEADER structure containing the output format.

lOutput

Reserved; do not use.

lpbiInput

Address of a BITMAPINFOHEADER structure containing the input format.

lInput

Reserved; do not use.

lStartFrame

Number of the first frame to compress.

lFrameCount

Number of frames to compress.



lQuality

Quality setting.

lDataRate

Maximum data rate, in bytes per second.

lKeyRate

Maximum number of frames between consecutive key frames.

dwRate

Compression rate in an integer format. To obtain the rate in frames per second, divide this value by 
the value in dwScale.

dwScale

Value used to scale dwRate to frames per second.

dwOverheadPerFrame

Reserved; do not use.

dwReserved2

Reserved; do not use.

GetData

Reserved; do not use.

PutData

Reserved; do not use.
 

See Also
BITMAPINFOHEADER, ICM_COMPRESS_FRAMES_INFO 



ICDECOMPRESS      

  

The ICDECOMPRESS structure contains decompression parameters used with the ICM_DECOMPRESS 
message.

typedef struct { 
    DWORD              dwFlags; 
    LPBITMAPINFOHEADER lpbiInput; 
    LPVOID             lpInput; 
    LPBITMAPINFOHEADER lpbiOutput; 
    LPVOID             lpOutput; 
    DWORD              ckid; 
} ICDECOMPRESS; 
 

Members
dwFlags

Applicable flags. The following values are defined: 

ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer 
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME

Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME

Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL

Current frame precedes the point in the movie where playback starts and, therefore, will not be 
drawn.

ICDECOMPRESS_UPDATE

Screen is being updated or refreshed.

lpbiInput

Address of a BITMAPINFOHEADER structure containing the input format.

lpInput

Address of a buffer containing the input data.

lpbiOutput

Address of a BITMAPINFOHEADER structure containing the output format.

lpOutput

Address of a buffer where the driver should write the decompressed image.

ckid

Chunk identifier from the AVI file.
 



See Also
BITMAPINFOHEADER, ICM_DECOMPRESS 



ICDECOMPRESSEX      

  

The ICDECOMPRESSEX structure contains decompression parameters used with the 
ICM_DECOMPRESSEX message

typedef struct { 
    DWORD              dwFlags; 
    LPBITMAPINFOHEADER lpbiSrc; 
    LPVOID             lpSrc; 
    LPBITMAPINFOHEADER lpbiDst; 
    LPVOID             lpDst; 
    int                xDst; 
    int                yDst; 
    int                dxDst; 
    int                dyDst; 
    int                xSrc; 
    int                ySrc; 
    int                dxSrc; 
    int                dySrc; 
} ICDECOMPRESSEX; 
 

Members
dwFlags

Applicable flags. The following values are defined:

ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer 
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME

Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME

Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL

Current frame precedes the point in the movie where playback starts and, therefore, will not be 
drawn.

ICDECOMPRESS_UPDATE

Screen is being updated or refreshed.

lpbiSrc

Address of a BITMAPINFOHEADER structure containing the input format.

lpSrc

Address of a buffer containing the input data.

lpbiDst

Address of a BITMAPINFOHEADER structure containing the output format.



lpDst

Address of a buffer where the driver should write the decompressed image.

xDst, yDst

The x- and y-coordinates of the destination rectangle within the DIB specified by lpbiDst.

dxDst, dyDst

Width and height of the destination rectangle.

xSrc, ySrc

The x- and y-coordinates of the source rectangle within the DIB specified by lpbiSrc.

dxSrc, dySrc

Width and height of the source rectangle.
 

See Also
BITMAPINFOHEADER, ICM_DECOMPRESSEX 



ICDRAW      

  

The ICDRAW structure contains parameters for drawing video data to the screen. This structure is used 
with the ICM_DRAW message.

typedef struct { 
    DWORD  dwFlags; 
    LPVOID lpFormat; 
    LPVOID lpData; 
    DWORD  cbData; 
    LONG   lTime; 
} ICDRAW; 
 

Members
dwFlags

Flags from the AVI file index. The following values are defined:

ICDRAW_HURRYUP

Data is buffered and not drawn to the screen. Use this flag for fastest decompression.

ICDRAW_NOTKEYFRAME

Current frame is not a key frame.

ICDRAW_NULLFRAME

Current frame does not contain any data, and the previous frame should be redrawn.

ICDRAW_PREROLL

Current frame of video occurs before playback should start. For example, if playback will begin on 
frame 10, and frame 0 is the nearest previous key frame, frames 0 through 9 are sent to the driver 
with this flag set. The driver needs this data to display frame 10 properly.

ICDRAW_UPDATE

Updates the screen based on data previously received. In this case, lpData should be ignored.

lpFormat

Address of a structure containing the data format. For video streams, this is a BITMAPINFOHEADER 
structure.

lpData

Address of the data to render.

cbData

Number of data bytes to render.

lTime

Time, in samples, when this data should be drawn. For video data this is normally a frame number.
 

See Also
BITMAPINFOHEADER, ICM_DRAW 



ICDRAWBEGIN      

  

The ICDRAWBEGIN structure contains decompression parameters used with the ICM_DRAW_BEGIN 
message.

typedef struct { 
    DWORD              dwFlags; 
    HPALETTE           hpal; 
    HWND               hwnd; 
    HDC                hdc; 
    int                xDst; 
    int                yDst; 
    int                dxDst; 
    int                dyDst; 
    LPBITMAPINFOHEADER lpbi; 
    int                xSrc; 
    int                ySrc; 
    int                dxSrc; 
    int                dySrc; 
    DWORD              dwRate; 
    DWORD              dwScale; 
} ICDRAWBEGIN; 
 

Members
dwFlags

Applicable flags. The following values are defined:

ICDRAW_ANIMATE

Application can animate the palette.

ICDRAW_BUFFER

Buffers this data off-screen; it will need to be updated.

ICDRAW_CONTINUE

Drawing is a continuation of the previous frame.

ICDRAW_FULLSCREEN

Draws the decompressed data on the full screen.

ICDRAW_HDC

Draws the decompressed data to a window or a DC.

ICDRAW_MEMORYDC

DC is off-screen.

ICDRAW_QUERY

Determines if the decompressor can handle the decompression. The driver does not actually 
decompress the data.

ICDRAW_RENDER



Renders but does not draw the data.

ICDRAW_UPDATING

Current frame is being updated rather than played.

hpal

Handle of the palette used for drawing.

hwnd

Handle of the window used for drawing.

hdc

Handle of the DC used for drawing. Specify NULL to use a DC associated with the specified window.

xDst, yDst

The x- and y-coordinates of the destination rectangle.

dxDst, dyDst

Width and height of the destination rectangle.

lpbi

Address of a BITMAPINFOHEADER structure containing the input format.

xSrc, ySrc

The x- and y-coordinates of the source rectangle.

dxSrc, dySrc

Width and height of the source rectangle.

dwRate

Decompression rate in an integer format. To obtain the rate in frames per second, divide this value by 
the value in dwScale.

dwScale

Value used to scale dwRate to frames per second.
 

See Also
BITMAPINFOHEADER, ICM_DRAW_BEGIN 



ICDRAWSUGGEST      

  

The ICDRAWSUGGEST structure contains compression parameters used with the 
ICM_DRAW_SUGGESTFORMAT message to suggest an appropriate input format.

typedef struct { 
    LPBITMAPINFOHEADER lpbiIn; 
    LPBITMAPINFOHEADER lpbiSuggest; 
    int                dxSrc; 
    int                dySrc; 
    int                dxDst; 
    int                dyDst; 
    HIC                hicDecompressor; 
} ICDRAWSUGGEST; 
 

Members
lpbiIn

Address of the structure containing the compressed input format.

lpbiSuggest

Address of a buffer to return a compatible input format for the renderer.

dxSrc, dySrc

Width and height of the source rectangle.

dxDst, dyDst

Width and height of the destination rectangle.

hicDecompressor

Handle of a decompressor that supports the format of data described in lpbiIn.
 

See Also
ICM_DRAW_SUGGESTFORMAT 



ICINFO      

  

The ICINFO structure contains compression parameters supplied by a video compression driver. The 
driver fills or updates the structure when it receives the ICM_GETINFO message.

typedef struct { 
    DWORD dwSize; 
    DWORD fccType; 
    DWORD fccHandler; 
    DWORD dwFlags; 
    DWORD dwVersion; 
    DWORD dwVersionICM; 
    WCHAR szName[16]; 
    WCHAR szDescription[128]; 
    WCHAR szDriver[128]; 
} ICINFO; 
 

Members
dwSize

Size, in bytes, of the ICINFO structure.

fccType

Four-character code indicating the type of stream being compressed or decompressed. Specify 
"VIDC" for video streams.

fccHandler

A four-character code identifying a specific compressor.

dwFlags

Applicable flags. Zero or more of the following flags can be set:

VIDCF_COMPRESSFRAMES

Driver is requesting to compress all frames. For information about compressing all frames, see the 
ICM_COMPRESS_FRAMES_INFO message.

VIDCF_CRUNCH

Driver supports compressing to a frame size.

VIDCF_DRAW

Driver supports drawing.

VIDCF_FASTTEMPORALC

Driver can perform temporal compression and maintains its own copy of the current frame. When 
compressing a stream of frame data, the driver doesn't need image data from the previous frame.

VIDCF_FASTTEMPORALD

Driver can perform temporal decompression and maintains its own copy of the current frame. 
When decompressing a stream of frame data, the driver doesn't need image data from the 
previous frame.

VIDCF_QUALITY



Driver supports quality values.

VIDCF_TEMPORAL

Driver supports inter-frame compression.

dwVersion

Version number of the driver.

dwVersionICM

Version of VCM supported by the driver. This member should be set to ICVERSION.

szName

Short version of the compressor name. The name in the null-terminated string should be suitable for 
use in list boxes.

szDescription

Long version of the compressor name. 

szDriver

Name of the module containing VCM compression driver. Normally, a driver does not need to fill this 
out.

 

See Also
ICM_COMPRESS_FRAMES_INFO, ICM_GETINFO 



ICOPEN      

  

The ICOPEN structure contains information about the data stream being compressed or decompressed, 
the version number of the driver, and how the driver is used. 

typedef struct { 
    DWORD    dwSize; 
    DWORD    fccType; 
    DWORD    fccHandler; 
    DWORD    dwVersion; 
    DWORD    dwFlags; 
    LPRESULT dwError; 
    LPVOID   pV1Reserved; 
    LPVOID   pV2Reserved; 
    DWORD    dnDevNode; 
} ICOPEN; 
 

Members
dwSize

Size, in bytes, of the structure.

fccType

Four-character code indicating the type of stream being compressed or decompressed. Specify 
"VIDC" for video streams.

fccHandler

Four-character code identifying a specific compressor.

dwVersion

Version of the installable driver interface used to open the driver.

dwFlags

Applicable flags indicating why the driver is opened. The following values are defined:

ICMODE_COMPRESS

Driver is opened to compress data.

ICMODE_DECOMPRESS

Driver is opened to decompress data.

ICMODE_DRAW

Device driver is opened to decompress data directly to hardware.

ICMODE_QUERY

Driver is opened for informational purposes, rather than for compression.

dwFlags

Error return values.

pV1Reserved



Reserved; do not use.

pV2Reserved

Reserved; do not use.

dnDevNode

Device node for plug and play devices.
 

Remarks
This structure is passed to video capture drivers when they are opened. This allows a single installable 
driver to function as either an installable compressor or a video capture device. By examining the fccType 
member of the ICOPEN structure, the driver can determine its function. For example, a fccType value of 
"VIDC" indicates that it is opened as an installable video compressor.



ICSETSTATUSPROC      

  

The ICSETSTATUSPROC structure contains status information used with the ICM_SET_STATUS_PROC 
message.

typedef struct { 
    DWORD  dwFlags; 
    LPARAM lParam; 
    LONG   (CALLBACK * ()) fpfnStatus; 
} ICSETSTATUSPROC; 
 

Members
dwFlags

Reserved; set to zero.

lParam

Parameter that contains a constant to pass to the status procedure.

fpfnStatus

Address of the status function. Specify NULL if status messages should not be sent. For more 
information about the callback function, see the MyStatusProc function.

 

See Also
ICM_SET_STATUS_PROC, MyStatusProc 



JOYCAPS      

  

The JOYCAPS structure contains information about the joystick capabilities.

typedef struct { 
    WORD wMid; 
    WORD wPid; 
    CHAR szPname[MAXPNAMELEN]; 
    UINT wXmin; 
    UINT wXmax; 
    UINT wYmin; 
    UINT wYmax; 
    UINT wZmin; 
    UINT wZmax; 
    UINT wNumButtons; 
    UINT wPeriodMin; 
    UINT wPeriodMax; 
    UINT wRmin; 
    UINT wRmax; 
    UINT wUmin; 
    UINT wUmax; 
    UINT wVmin; 
    UINT wVmax; 
    UINT wCaps; 
    UINT wMaxAxes; 
    UINT wNumAxes; 
    UINT wMaxButtons; 
    CHAR szRegKey[MAXPNAMELEN]; 
    CHAR szOEMVxD[MAX_JOYSTICKOEMVXDNAME]; 
} JOYCAPS; 
 

Members
wMid

Manufacturer identifier. Manufacturer identifiers are defined in Manufacturer and Product Identifiers.

wPid

Product identifier. Product identifiers are defined in Manufacturer and Product Identifiers.

szPname

Null-terminated string containing the joystick product name.

wXMin

Minimum X-coordinate.

wXMax

Maximum X-coordinate.

wYMin

Minimum Y-coordinate.

wYMax



Maximum Y-coordinate.

wZMin

Minimum Z-coordinate.

wZMax

Maximum Z-coordinate.

wNumButtons

Number of joystick buttons.

wPeriodMin

Smallest polling frequency supported when captured by the joySetCapture function.

wPeriodMax

Largest polling frequency supported when captured by joySetCapture.

wRmin and wRmax

Minimum rudder value. The rudder is a fourth axis of movement.

wRmax

Maximum rudder value. The rudder is a fourth axis of movement.

wUmin

Minimum u-coordinate (fifth axis) values.

wUmax

Maximum u-coordinate (fifth axis) values.

wVmin and wVmax

Minimum v-coordinate (sixth axis) values.

wVmax

Maximum v-coordinate (sixth axis) values.

wCaps

Joystick capabilities The following flags define individual capabilities that a joystick might have:

JOYCAPS_HASZ Joystick has z-coordinate 
information.

JOYCAPS_HASR Joystick has rudder (fourth axis) 
information.

JOYCAPS_HASU Joystick has u-coordinate (fifth 
axis) information.

JOYCAPS_HASV Joystick has v-coordinate (sixth 
axis) information.

JOYCAPS_HASPOV Joystick has point-of-view 
information.

JOYCAPS_POV4DIR Joystick point-of-view supports 
discrete values (centered, 
forward, backward, left, and 
right).

JOYCAPS_POVCTS Joystick point-of-view supports 
continuous degree bearings.



 

wMaxAxes

Maximum number of axes supported by the joystick.

wNumAxes

Number of axes currently in use by the joystick.

wMaxButtons

Maximum number of buttons supported by the joystick.

szRegKey

Null-terminated string containing the registry key for the joystick.

szOEMVxD

Null-terminated string identifying the joystick driver OEM.
 

See Also
joySetCapture



JOYINFO      

  

The JOYINFO structure contains information about the joystick position and button state.

typedef struct { 
    UINT wXpos; 
    UINT wYpos; 
    UINT wZpos; 
    UINT wButtons; 
} JOYINFO; 
 

Members
wXpos

Current X-coordinate.

wYpos

Current Y-coordinate.

wZpos

Current Z-coordinate.

wButtons

Current state of joystick buttons described by one or more of the following values:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 



JOYINFOEX      

  

The JOYINFOEX structure contains extended information about the joystick position, point-of-view 
position, and button state.

typedef struct joyinfoex_tag { 
    DWORD dwSize; 
    DWORD dwFlags; 
    DWORD dwXpos; 
    DWORD dwYpos; 
    DWORD dwZpos; 
    DWORD dwRpos; 
    DWORD dwUpos; 
    DWORD dwVpos; 
    DWORD dwButtons; 
    DWORD dwButtonNumber; 
    DWORD dwPOV; 
    DWORD dwReserved1; 
    DWORD dwReserved2; 
} JOYINFOEX; 
 

Members
dwSize

Size, in bytes, of this structure.

dwFlags

Flags indicating the valid information returned in this structure. Members that do not contain valid 
information are set to zero. The following flags are defined:

JOY_RETURNALL Equivalent to setting all of the 
JOY_RETURN bits except 
JOY_RETURNRAWDATA.

JOY_RETURNBUTTONS The dwButtons member 
contains valid information about 
the state of each joystick button.

JOY_RETURNCENTERED Centers the joystick neutral 
position to the middle value of 
each axis of movement.

JOY_RETURNPOV The dwPOV member contains 
valid information about the point-
of-view control, expressed in 
discrete units.

JOY_RETURNPOVCTS The dwPOV member contains 
valid information about the point-
of-view control expressed in 
continuous, one-hundredth 
degree units.

JOY_RETURNR The dwRpos member contains 
valid rudder pedal data. This 
information represents another 



(fourth) axis.

JOY_RETURNRAWDATA Data stored in this structure is 
uncalibrated joystick readings.

JOY_RETURNU The dwUpos member contains 
valid data for a fifth axis of the 
joystick, if such an axis is 
available, or returns zero 
otherwise.

JOY_RETURNV The dwVpos member contains 
valid data for a sixth axis of the 
joystick, if such an axis is 
available, or returns zero 
otherwise.

JOY_RETURNX The dwXpos member contains 
valid data for the x-coordinate of 
the joystick.

JOY_RETURNY The dwYpos member contains 
valid data for the y-coordinate of 
the joystick.

JOY_RETURNZ The dwZpos member contains 
valid data for the z-coordinate of 
the joystick.

JOY_USEDEADZONE Expands the range for the neutral 
position of the joystick and calls 
this range the dead zone. The 
joystick driver returns a constant 
value for all positions in the dead 
zone.

 

The following flags provide data to calibrate a joystick and are intended for custom calibration 
applications.

JOY_CAL_READ3 Read the x-, y-, and z-
coordinates and store the raw 
values in dwXpos, dwYpos, and 
dwZpos.

JOY_CAL_READ4 Read the rudder information and 
the x-, y-, and z-coordinates and 
store the raw values in dwXpos, 
dwYpos, dwZpos, and dwRpos.

JOY_CAL_READ5 Read the rudder information and 
the x-, y-, z-, and u-coordinates 
and store the raw values in 
dwXpos, dwYpos, dwZpos, 
dwRpos, and dwUpos.

JOY_CAL_READ6 Read the raw v-axis data if a 
joystick mini driver is present that 
will provide the data. Returns 
zero otherwise.

JOY_CAL_READALWAYS Read the joystick port even if the 
driver does not detect a device.

JOY_CAL_READRONLY Read the rudder information if a 
joystick mini-driver is present that 



will provide the data and store the 
raw value in dwRpos. Return 
zero otherwise.

JOY_CAL_READXONLY Read the x-coordinate and store 
the raw (uncalibrated) value in 
dwXpos.

JOY_CAL_READXYONLY Reads the x- and y-coordinates 
and place the raw values in 
dwXpos and dwYpos.

JOY_CAL_READYONLY Reads the y-coordinate and store 
the raw value in dwYpos.

JOY_CAL_READZONLY Read the z-coordinate and store 
the raw value in dwZpos.

JOY_CAL_READUONLY Read the u-coordinate if a 
joystick mini-driver is present that 
will provide the data and store the 
raw value in dwUpos. Return 
zero otherwise.

JOY_CAL_READVONLY Read the v-coordinate if a joystick 
mini-driver is present that will 
provide the data and store the 
raw value in dwVpos. Return 
zero otherwise.

 

dwXpos

Current X-coordinate.

dwYpos

Current Y-coordinate.

dwZpos

Current Z-coordinate.

dwRpos

Current position of the rudder or fourth joystick axis.

dwUpos

Current fifth axis position.

dwVpos

Current sixth axis position.

dwButtons

Current state of the 32 joystick buttons. The value of this member can be set to any combination of 
JOY_BUTTONn flags, where n is a value in the range of 1 through 32 corresponding to the button 
that is pressed.

dwButtonNumber

Current button number that is pressed.

dwPOV

Current position of the point-of-view control. Values for this member are in the range 0 through 



35,900. These values represent the angle, in degrees, of each view multiplied by 100. 

dwReserved1

Reserved; do not use.

dwReserved2

Reserved; do not use.
 

Remarks
The value of the dwSize member is also used to identify the version number for the structure when it's 
passed to the joyGetPosEx function.

Most devices with a point-of-view control have only five positions. When the JOY_RETURNPOV flag is 
set, these positions are reported by using the following constants:

Point-of-view flags Description

JOY_POVBACKWARD Point-of-view hat is pressed 
backward. The value 18,000 
represents an orientation of 180.00 
degrees (to the rear).

JOY_POVCENTERED Point-of-view hat is in the neutral 
position. The value -1 means the 
point-of-view hat has no angle to 
report.

JOY_POVFORWARD Point-of-view hat is pressed 
forward. The value 0 represents an 
orientation of 0.00 degrees 
(straight ahead).

JOY_POVLEFT Point-of-view hat is being pressed 
to the left. The value 27,000 
represents an orientation of 270.00 
degrees (90.00 degrees to the left).

JOY_POVRIGHT Point-of-view hat is pressed to the 
right. The value 9,000 represents 
an orientation of 90.00 degrees (to 
the right).

 

The default Windows 95 joystick driver currently supports these five discrete directions. If an application 
can accept only the defined point-of-view values, it must use the JOY_RETURNPOV flag. If an 
application can accept other degree readings, it should use the JOY_RETURNPOVCTS flag to obtain 
continuous data if it is available. The JOY_RETURNPOVCTS flag also supports the JOY_POV constants 
used with the JOY_RETURNPOV flag.

See Also
joyGetPosEx 



MCI_BREAK_PARMS      

  

The MCI_BREAK_PARMS structure contains virtual-key code and window information for the 
MCI_BREAK command. 

typedef struct {
    DWORD dwCallback; 
    int   nVirtKey; 
    HWND  hwndBreak; 
} MCI_BREAK_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

nVirtKey

Virtual-key code for break key.

hwndBreak

Handle of the window that must be the current window for break detection.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. The following flags are defined:

MCI_BREAK_HWND

Validates the hwndBreak member specifying the window that must have focus to enable break 
detection.

MCI_BREAK_KEY

Validates the nVirtKey member specifying the virtual-key code to be used for the break key.

MCI_BREAK_OFF

Disables any existing break key.
 

See Also
MCI_BREAK, mciSendCommand 



MCI_DGV_CAPTURE_PARMS      

  

The MCI_DGV_CAPTURE_PARMS structure contains parameters for the MCI_CAPTURE command for 
digital-video devices. 

typedef struct  {
    DWORD dwCallback; 
    LPSTR lpstrFileName; 
    RECT  rc; 
} MCI_DGV_CAPTURE_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrFileName

Address of a null-terminated string specifying the destination path and filename for the file that 
receives the captured data. 

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
mciSendCommand, RECT 



MCI_DGV_CUE_PARMS      

  

The MCI_DGV_CUE_PARMS structure contains parameters for the MCI_CUE command for digital-video 
devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwTo; 
} MCI_DGV_CUE_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTo

Cue position.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_CUE, mciSendCommand 



MCI_DGV_COPY_PARMS      

  

The MCI_DGV_COPY_PARMS structure contains parameters for the MCI_COPY command for digital-
video devices.

typedef struct  {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
    RECT  rc; 
    DWORD dwAudioStream; 
    DWORD dwVideoStream; 
} MCI_DGV_COPY_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Starting position for copy.

dwTo

Ending position for copy.

rc

Rectangle describing area to be copied. RECT structures are handled differently in MCI than in other 
parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains its 
height.

dwAudioStream

Audio stream.

dwVideoStream

Video stream.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_COPY, mciSendCommand, RECT 



MCI_DGV_CUT_PARMS      

  

The MCI_DGV_CUT_PARMS structure contains parameters for the MCI_CUT command for digital-video 
devices.

typedef struct  {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
    RECT  rc; 
    DWORD dwAudioStream; 
    DWORD dwVideoStream; 
} MCI_DGV_CUT_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Starting position for cut.

dwTo

Ending position for cut.

rc

Rectangle describing area to be cut. RECT structures are handled differently in MCI than in other 
parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains its 
height.

dwAudioStream

Audio stream.

dwVideoStream

Video stream.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_CUT, mciSendCommand, RECT 



MCI_DGV_DELETE_PARMS      

  

The MCI_DGV_DELETE_PARMS structure contains parameters for the MCI_DELETE command for 
digital-video devices.

typedef struct  {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
    RECT  rc; 
    DWORD dwAudioStream; 
} MCI_DGV_DELETE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Starting position for delete.

dwTo

Ending position for delete.

rc

Rectangle describing area to delete. RECT structures are handled differently in MCI than in other 
parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains its 
height.

dwAudioStream

Audio stream.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_DELETE, mciSendCommand, RECT 



MCI_DGV_FREEZE_PARMS      

  

The MCI_DGV_FREEZE_PARMS structure contains parameters for the MCI_FREEZE and 
MCI_UNFREEZE commands for digital-video devices.

typedef struct  {
    DWORD dwCallback; 
    RECT  rc; 
} MCI_DGV_FREEZE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_FREEZE, MCI_UNFREEZE, mciSendCommand, RECT 



MCI_DGV_INFO_PARMS      

  

The MCI_DGV_INFO_PARMS structure contains parameters for the MCI_INFO command for digital-
video devices. 

typedef struct {
    DWORD  dwCallback; 
    LPSTR  lpstrReturn; 
    DWORD  dwRetSize; 
    DWORD  dwItem; 
} MCI_DGV_INFO_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrReturn

Address of buffer for return string.

dwRetSize

Size, in bytes, of return buffer.

dwItem

Constant describing information to return.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_INFO, mciSendCommand 



MCI_DGV_LIST_PARMS      

  

The MCI_DGV_LIST_PARMS structure contains the information for the MCI_LIST command for digital-
video devices.

typedef struct  {
    DWORD dwCallback; 
    LPSTR lpstrReturn; 
    DWORD dwLength; 
    DWORD dwNumber; 
    DWORD dwItem; 
    LPSTR lpstrAlgorithm; 
} MCI_DGV_LIST_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrReturn

Buffer for return string.

dwLength

Length, in bytes, of buffer.

dwNumber

Index of item in list.

dwItem

Type of list item.

lpstrAlgorithm

String containing algorithm name.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_LIST, mciSendCommand 



MCI_DGV_LOAD_PARMS      

  

The MCI_DGV_LOAD_PARMS structure contains the information for the MCI_LOAD command for 
digital-video devices.

typedef struct  {
    DWORD dwCallback; 
    LPSTR lpfilename; 
} MCI_DGV_LOAD_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpfilename

String naming file to load.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_LOAD, mciSendCommand 



MCI_DGV_MONITOR_PARMS      

  

The MCI_DGV_MONITOR_PARMS structure contains parameters for the MCI_MONITOR command.

typedef struct  {
    DWORD dwCallback;
    DWORD dwSource; 
    DWORD dwMethod; 
} MCI_DGV_MONITOR_PARMS;
  

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwSource

One of the following flags for the monitor source:

MCI_DGV_MONITOR_FILE

The workspace is the presentation source. (This is the default source.) If this flag is used during 
recording, the recording pauses. If the MCI_MONITOR command changes the presentation 
source, recording or playing stops and the current position is the value returned by the 
MCI_STATUS command for the start position.

MCI_DGV_MONITOR_INPUT

The external input is the presentation source. Playback is paused before the input is selected. If 
the MCI_SETVIDEO command has been enabled using the MCI_SET_ON flag, this flag displays a 
default hidden window. Device drivers might limit what other device instances can do while 
monitoring input.

dwMethod

One of the following constants for the type of monitoring:

MCI_DGV_METHOD_DIRECT

The device should be configured for optimum display quality during monitoring. Direct monitoring 
might be incompatible with motion-video recording. 

MCI_DGV_METHOD_POST

The device should show the external input after compression. Post monitoring supports motion-
video recording. 

MCI_DGV_METHOD_PRE

The device should show the external input prior to compression.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_MONITOR, MCI_SETVIDEO, MCI_STATUS, mciSendCommand 



MCI_DGV_OPEN_PARMS      

  

The MCI_DGV_OPEN_PARMS structure contains information for the MCI_OPEN command for digital-
video devices. 

typedef struct {
    DWORD dwCallback; 
    UINT  wDeviceID; 
    LPSTR lpstrDeviceType; 
    LPSTR lpstrElementName; 
    LPSTR lpstrAlias; 
    DWORD dwStyle; 
    HWND  hWndParent; 
} MCI_DGV_OPEN_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

wDevice ID

Device ID returned to user.

lpstrDeviceType

Name or constant ID of device type.

lpstrElementName

Optional device alias.

lpstrAlias

Optional device alias.

dwStyle

Window style.

hWndParent

Handle of parent window.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
mciSendCommand, MCI_OPEN 



MCI_DGV_PASTE_PARMS      

  

The MCI_DGV_PASTE_PARMS structure contains parameters for the MCI_PASTE command for digital-
video devices.

typedef struct  {
    DWORD dwCallback; 
    DWORD dwTo; 
    RECT  rc; 
    DWORD dwAudioStream; 
    DWORD dwVideoStream; 
} MCI_DGV_PASTE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTo

Starting position for paste.

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

dwAudioStream

Audio stream.

dwVideoStream

Video stream.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
mciSendCommand, MCI_PASTE, RECT 



MCI_DGV_PAUSE_PARMS      

  

The MCI_DGV_PAUSE_PARMS structure contains information for the MCI_PAUSE command. 

typedef struct {
    DWORD dwCallback; 
} MCI_DGV_PAUSE_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
mciSendCommand, MCI_PAUSE 



MCI_DGV_PLAY_PARMS      

  

The MCI_DGV_PLAY_PARMS structure contains parameters for the MCI_PLAY command for digital-
video devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
} MCI_DGV_PLAY_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to play from.

dwTo

Position to play to.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
mciSendCommand 



MCI_DGV_PUT_PARMS      

  

The MCI_DGV_PUT_PARMS structure contains parameters for the MCI_PUT command for digital-video 
devices. 

typedef struct {
    DWORD dwCallback; 
    RECT  rc; 
} MCI_DGV_PUT_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_PUT, mciSendCommand, RECT 



MCI_DGV_QUALITY_PARMS      

  

The MCI_DGV_QUALITY_PARMS structure contains parameters for the MCI_QUALITY command for 
digital-video devices.

typedef struct  {
    DWORD dwCallback; 
    DWORD dwItem; 
    LPSTR lpstrName; 
    DWORD lpstrAlgorithm; 
    DWORD dwHandle; 
} MCI_DGV_QUALITY_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwItem

One of the following constants indicating the type of algorithm:

MCI_QUALITY_ITEM_AUDIO

Definitions are for an audio compression algorithm. 

MCI_QUALITY_ITEM_STILL

Definitions are for a still video compression algorithm. 

MCI_QUALITY_ITEM_VIDEO

Definitions are for a video compression algorithm.

lpstrName

String naming description.

lpstrAlgorithm

String naming algorithm.

dwHandle

Handle of a structure containing information describing the quality attributes.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_QUALITY, mciSendCommand 



MCI_DGV_RECORD_PARMS      

  

The MCI_DGV_RECORD_PARMS structure contains parameters for the MCI_RECORD command for 
digital-video devices.

typedef struct  {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
    RECT  rc; 
    DWORD dwAudioStream; 
    DWORD dwVideoStream; 
} MCI_DGV_RECORD_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to record from.

dwTo

Position to record to.

rc

The region of the frame buffer used as the source for the pixels compressed and saved. RECT 
structures are handled differently in MCI than in other parts of Windows; in MCI, rc.right contains the 
width of the rectangle and rc.bottom contains its height.

dwAudioStream

Audio stream.

dwVideoStream

Video stream.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_RECORD, RECT, mciSendCommand 



MCI_DGV_RECT_PARMS      

  

The MCI_DGV_RECT_PARMS structure contains parameters for the MCI_FREEZE, MCI_PUT, 
MCI_UNFREEZE, and MCI_WHERE commands for digital-video devices. 

typedef struct {
    DWORD dwCallback; 
    RECT  rc; 
} MCI_DGV_RECT_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

 

Remarks
The MCI_DGV_UNFREEZE_PARMS and MCI_DGV_WHERE_PARMS structures are identical to the 
MCI_DGV_RECT_PARMS structure.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_FREEZE, MCI_PUT, MCI_UNFREEZE, MCI_WHERE, mciSendCommand, RECT 



MCI_DGV_RESERVE_PARMS      

  

The MCI_DGV_RESERVE_PARMS structure contains information for the MCI_RESERVE command for 
digital-video devices.

typedef struct  {
    DWORD dwCallback; 
    LPSTR lpstrPath; 
    DWORD dwSize; 
} MCI_DGV_RESERVE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrPath

Address of a null-terminated string containing the location of a temporary file. The buffer contains only 
the drive and directory path of the file used to hold recorded data; the filename is specified by the 
device driver. 

dwSize

Size of reserved disk space.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_RESERVE, mciSendCommand 



MCI_DGV_RESTORE_PARMS      

  

The MCI_DGV_RESTORE_PARMS structure contains information for the MCI_RESTORE command for 
digital-video devices.

typedef struct  {
    DWORD dwCallback; 
    DWORD lpstrFileName; 
    RECT  rc; 
} MCI_DGV_RESTORE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrFileName

Address of a null-terminated string containing the filename from which the frame buffer information 
will be restored.

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_RESTORE, mciSendCommand, RECT 



MCI_DGV_RESUME_PARMS      

  

The MCI_DGV_RESUME_PARMS structure contains information for the MCI_RESUME command.

typedef struct  {
    DWORD dwCallback; 
} MCI_DGV_RESUME_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_RESUME, mciSendCommand 



MCI_DGV_SAVE_PARMS      

  

The MCI_DGV_SAVE_PARMS structure contains information for the MCI_SAVE command for digital-
video devices.

typedef struct  {
    DWORD dwCallback; 
    DWORD lpstrFileName; 
    RECT  rc; 
} MCI_DGV_SAVE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrFileName

String for filename to save.

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_SAVE, mciSendCommand, RECT 



MCI_DGV_SET_PARMS      

  

The MCI_DGV_SET_PARMS structure contains parameters for the MCI_SET command for digital-video 
devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwTimeFormat; 
    DWORD dwAudio; 
    DWORD dwFileFormat; 
    DWORD dwSpeed; 
} MCI_DGV_SET_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTimeFormat

Time format of device.

dwAudio

Channel for audio output.

dwFileFormat

File format.

dwSpeed

Playback speed.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SET, mciSendCommand 



MCI_DGV_SETAUDIO_PARMS      

  

The MCI_DGV_SETAUDIO_PARMS structure contains parameters for the MCI_SETAUDIO command for 
digital-video devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwItem; 
    DWORD dwValue; 
    DWORD dwOver; 
    LPSTR lpstrAlgorithm; 
    LPSTR lpstrQuality; 
} MCI_DGV_SETAUDIO_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwItem

Constant indicating the target adjustment. For a list of possible values, see the MCI_SETAUDIO 
command.

dwValue

Adjustment level.

dwOver

Transmission length.

lpstrAlgorithm

Address of a null-terminated string containing the name of the audio-compression algorithm.

lpstrQuality

Address of a null-terminated string containing a descriptor of the audio-compression algorithm.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SETAUDIO, mciSendCommand 



MCI_DGV_SETVIDEO_PARMS      

  

The MCI_DGV_SETVIDEO_PARMS structure contains parameters for the MCI_SETVIDEO command for 
digital-video devices. 

typedef struct {
    DWORD  dwCallback; 
    DWORD  dwItem; 
    DWORD  dwValue; 
    DWORD  dwOver; 
    LPSTR  lpstrQuality; 
    LPSTR  lpstrAlgorithm; 
    DWORD  dwSourceNumber; 
} MCI_DGV_SETVIDEO_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwItem

Constant indicating the target adjustment.

dwValue

Adjustment level.

dwOver

Transmission length.

lpstrQuality

Address of a null-terminated string containing a descriptor of the video-compression algorithm.

lpstrAlgorithm

Address of a null-terminated string containing the name of the video-compression algorithm.

dwSourceNumber

Index of input source.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SETVIDEO, mciSendCommand 



MCI_DGV_SIGNAL_PARMS      

  

The MCI_DGV_SIGNAL_PARMS structure contains parameters for the MCI_SIGNAL command for 
digital-video devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwPosition; 
    DWORD dwPeriod; 
    DWORD dwUserParm; 
} MCI_DGV_SIGNAL_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwPosition

Position to be marked.

dwPeriod

Interval of the position marks.

dwUseParm

User value associated with signals.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SIGNAL, mciSendCommand 



MCI_DGV_STATUS_PARMS      

  

The MCI_DGV_STATUS_PARMS structure contains parameters for the MCI_STATUS command for 
digital-video devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwReturn; 
    DWORD dwItem; 
    DWORD dwTrack; 
    LPSTR lpstrDrive; 
    DWORD dwReference; 
} MCI_DGV_STATUS_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn

Buffer for return information.

dwItem

Identifies capability being queried.

dwTrack

Length or number of tracks.

lpstrDrive

Specifies the approximate amount of disk space that can be obtained by the MCI_RESERVE 
command.

dwReference

Specifies the approximate location of the nearest previous intraframe-encoded image.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_RESERVE, MCI_STATUS, mciSendCommand 



MCI_DGV_STEP_PARMS      

  

The MCI_DGV_STEP_PARMS structure contains parameters for the MCI_STEP command for digital-
video devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwFrames; 
} MCI_DGV_STEP_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrames

Number of frames to step.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_STEP, mciSendCommand 



MCI_DGV_STOP_PARMS      

  

The MCI_DGV_STOP_PARMS structure contains information for the MCI_STOP command for digital-
video devices. 

typedef struct {
    DWORD dwCallback;
} MCI_DGV_STOP_PARMS; 
 

dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_STOP, mciSendCommand 



MCI_DGV_UPDATE_PARMS      

  

The MCI_DGV_UPDATE_PARMS structure contains parameters for the MCI_UPDATE command. 

typedef struct {
    DWORD dwCallback; 
    RECT  rc; 
    HDC   hDC; 
} MCI_DGV_UPDATE_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

hDC

Handle to display context.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_UPDATE, mciSendCommand, RECT 



MCI_DGV_WINDOW_PARMS      

  

The MCI_DGV_WINDOW_PARMS structure contains parameters for MCI_WINDOW command for 
digital-video devices. 

typedef struct {
    DWORD dwCallback; 
    WORD  hWnd; 
    WORD  nCmdShow; 
    LPSTR lpstrText; 
} MCI_DGV_WINDOW_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

hWnd

Handle to the display window. If this member is MCI_DGV_WINDOW_HWND, the system uses a 
default window.

nCmdShow

Window-display command.

lpstrText

Window caption.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members

See Also
MCI_WINDOW, mciSendCommand 



MCI_GENERIC_PARMS      

  

The MCI_GENERIC_PARMS structure contains the handle of the window that receives notification 
messages. This structure is used for MCI command messages that have empty parameter lists. 

typedef struct {
    DWORD dwCallback; 
} MCI_GENERIC_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.
 

Remarks
The MCI_CLOSE_PARMS and MCI_REALIZE_PARMS structures are identical to the 
MCI_GENERIC_PARMS structure.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
mciSendCommand 



MCI_GETDEVCAPS_PARMS      

  

The MCI_GETDEVCAPS_PARMS structure contains device-capability information for the 
MCI_GETDEVCAPS command. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwReturn; 
    DWORD dwItem; 
} MCI_GETDEVCAPS_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn

Contains information on exit.

dwItem

Capability being queried. This member can be one of the constants listed in the reference material for 
the MCI_GETDEVCAPS command.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_GETDEVCAPS, mciSendCommand 



MCI_INFO_PARMS      

  

The MCI_INFO_PARMS structure contains information for the MCI_INFO command. 

typedef struct {
    DWORD dwCallback; 
    LPSTR lpstrReturn; 
    DWORD dwRetSize; 
} MCI_INFO_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrReturn

Buffer for return string.

dwRetSize

Size, in bytes, of return string.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_INFO, mciSendCommand 



MCI_LOAD_PARMS      

  

The MCI_LOAD_PARMS structure contains the filename to load for the MCI_LOAD command. 

typedef struct {
    DWORD   dwCallback; 
    LPCSTR  lpfilename; 
} MCI_LOAD_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpfilename

Name of file to load.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_LOAD, mciSendCommand 



MCI_OPEN_PARMS      

  

The MCI_OPEN_PARMS structure contains information for the MCI_OPEN command. 

typedef struct {
    DWORD        dwCallback; 
    MCIDEVICEID  wDeviceID; 
    LPCSTR       lpstrDeviceType; 
    LPCSTR       lpstrElementName; 
    LPCSTR       lpstrAlias; 
} MCI_OPEN_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

wDeviceID

Identifier returned to application.

lpstrDeviceType

Name or constant identifier of the device type. (The name of the device is typically obtained from the 
registry or SYSTEM.INI file.) If this member is a constant, it can be one of the values listed in 
Constants: Device Types.

lpstrElementName

Device element (often a path).

lpstrAlias

Optional device alias.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_OPEN, mciSendCommand 



MCI_OVLY_LOAD_PARMS      

  

The MCI_OVLY_LOAD_PARMS structure contains information for the MCI_LOAD command for video-
overlay devices. 

typedef struct {
    DWORD  dwCallback; 
    LPCSTR lpfilename; 
    RECT   rc; 
} MCI_OVLY_LOAD_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpfilename

Name of file to load.

rc

Identifies the area of the video buffer to update. RECT structures are handled differently in MCI than 
in other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_LOAD, mciSendCommand, RECT 



MCI_OVLY_OPEN_PARMS      

  

The MCI_OVLY_OPEN_PARMS structure contains information for the MCI_OPEN command for video-
overlay devices. 

typedef struct {
    DWORD  dwCallback; 
    MCIDEVICEID wDeviceID; 
    LPCSTR lpstrDeviceType; 
    LPCSTR lpstrElementName; 
    LPCSTR lpstrAlias; 
    DWORD  dwStyle; 
    DWORD  hWndParent; 
} MCI_OVLY_OPEN_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

wDeviceID

Identifier returned to application.

lpstrDeviceType

Name or constant identifier of the device type. (The name of the device is typically obtained from the 
registry or SYSTEM.INI file.) If this member is a constant, it can be one of the values listed in 
Constants: Device Types.

lpstrElementName

Device element name (usually a path).

lpstrAlias

Optional device alias.

dwStyle

Window style.

hWndParent

Handle of parent window.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

You can use the MCI_OPEN_PARMS structure in place of MCI_OVLY_OPEN_PARMS if you are not 
using the extended data members. 

See Also
MCI_OPEN, MCI_OPEN_PARMS, mciSendCommand 



MCI_OVLY_RECT_PARMS      

  

The MCI_OVLY_RECT_PARMS structure contains positioning information for the MCI_PUT and 
MCI_WHERE commands for video-overlay devices. 

typedef struct {
    DWORD dwCallback; 
    RECT  rc; 
} MCI_OVLY_RECT_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc

Rectangle containing positioning information. RECT structures are handled differently in MCI than in 
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains 
its height.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_PUT, MCI_WHERE, mciSendCommand, RECT 



MCI_OVLY_SAVE_PARMS      

  

The MCI_OVLY_SAVE_PARMS structure contains information for the MCI_SAVE command for video-
overlay devices. 

typedef struct {
    DWORD  dwCallback; 
    LPCSTR lpfilename; 
    RECT   rc; 
} MCI_OVLY_SAVE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpfilename

Name of file to save.

rc

Rectangle indicating the area of the video buffer to save. RECT structures are handled differently in 
MCI than in other parts of Windows; in MCI, rc.right contains the width of the rectangle and 
rc.bottom contains its height.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_SAVE, mciSendCommand, RECT 



MCI_OVLY_WINDOW_PARMS      

  

The MCI_OVLY_WINDOW_PARMS structure contains window-display information for the MCI_WINDOW 
command for video-overlay devices. 

typedef struct {
    DWORD  dwCallback; 
    HWND   hWnd; 
    UINT   nCmdShow; 
    LPCSTR lpstrText; 
} MCI_OVLY_WINDOW_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

hWnd

Handle of display window.

nCmdShow

Window-display command.

lpstrText

Window caption.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_WINDOW, mciSendCommand 



MCI_PLAY_PARMS      

  

The MCI_PLAY_PARMS structure contains positioning information for the MCI_PLAY command. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
} MCI_PLAY_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to play from.

dwTo

Position to play to.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_PLAY, mciSendCommand 



MCI_RECORD_PARMS      

  

The MCI_RECORD_PARMS structure contains positioning information for the MCI_RECORD command. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
} MCI_RECORD_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to play from.

dwTo

Position to play to.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_RECORD, mciSendCommand 



MCI_SAVE_PARMS      

  

The MCI_SAVE_PARMS structure contains the filename information for the MCI_SAVE command. 

typedef struct {
    DWORD  dwCallback; 
    LPCSTR lpfilename; 
} MCI_SAVE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpfilename

Name of file to save.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_SAVE, mciSendCommand 



MCI_SEEK_PARMS      

  

The MCI_SEEK_PARMS structure contains positioning information for the MCI_SEEK command. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwTo; 
} MCI_SEEK_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTo

Position to seek to.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_SEEK, mciSendCommand 



MCI_SEQ_SET_PARMS      

  

The MCI_SEQ_SET_PARMS structure contains information for the MCI_SET command for MIDI 
sequencer devices.

typedef struct {
    DWORD dwCallback; 
    DWORD dwTimeFormat; 
    DWORD dwAudio; 
    DWORD dwTempo; 
    DWORD dwPort; 
    DWORD dwSlave; 
    DWORD dwMaster; 
    DWORD dwOffset; 
} MCI_SEQ_SET_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTimeFormat

Sequencer's time format.

dwAudio

Audio output channel.

dwTempo

Tempo.

dwSlave

Type of synchronization used by the sequencer for slave operation.

dwMaster

Type of synchronization used by the sequencer for master operation.

dwOffset

Data offset.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_SET, mciSendCommand 



MCI_SET_PARMS      

  

The MCI_SET_PARMS structure contains information for the MCI_SET command. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwTimeFormat; 
    DWORD dwAudio; 
} MCI_SET_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTimeFormat

Time format for device.

dwAudio

Audio output channel.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_SET, mciSendCommand 



MCI_STATUS_PARMS      

  

The MCI_STATUS_PARMS structure contains information for the MCI_STATUS command. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwReturn; 
    DWORD dwItem; 
    DWORD dwTrack; 
} MCI_STATUS_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn

Contains information on return.

dwItem

Capability being queried.

dwTrack

Length or number of tracks.
 

Remarks
The MCI_STATUS_ITEM flag must be set in the fdwCommand parameter of the mciSendCommand 
function to validate the dwItem member, which should contain one of the constants indicating what status 
information is being requested.

See Also
MCI_STATUS, mciSendCommand 



MCI_SYSINFO_PARMS      

  

The MCI_SYSINFO_PARMS structure contains information for the MCI_SYSINFO command. 

typedef struct {
    DWORD dwCallback; 
    LPSTR lpstrReturn; 
    DWORD dwRetSize; 
    DWORD dwNumber; 
    UINT  wDeviceType; 
} MCI_SYSINFO_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrReturn

Address of a user-supplied buffer for the return string. It is also used to return a doubleword value 
when the MCI_SYSINFO_QUANTITY flag is used.

dwRetSize

Size, in bytes, of return buffer.

dwNumber

Number indicating the device position in the MCI device table or in the list of open devices if the 
MCI_SYSINFO_OPEN flag is set.

wDeviceType

Type of device. This member can be one of the values listed in Constants: Device Types.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SYSINFO, mciSendCommand 



MCI_VCR_CUE_PARMS      

  

The MCI_VCR_CUE_PARMS structure contains parameters for the MCI_CUE command for video-
cassette recorders.

typedef struct tagMCI_VCR_CUE_PARMS {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
} MCI_VCR_CUE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to cue from.

dwTo

Position to cue to.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_CUE, mciSendCommand 



MCI_VCR_LIST_PARMS      

  

The MCI_VCR_LIST_PARMS structure contains parameters for the MCI_LIST command for video-
cassette recorders.

typedef struct tagMCI_VCR_LIST_PARMS {
    DWORD dwCallback; 
    DWORD dwReturn; 
    DWORD dwNumber; 
} MCI_VCR_LIST_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn

Buffer for returned information.

dwNumber

Number of VCR's video or audio inputs.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_LIST, mciSendCommand 



MCI_VCR_PLAY_PARMS      

  

The MCI_VCR_PLAY_PARMS structure contains parameters for the MCI_PLAY command for video-
cassette recorders.

typedef struct tagMCI_VCR_PLAY_PARMS {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
    DWORD dwAt; 
} MCI_VCR_PLAY_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to play from.

dwTo

Position to play to.

dwAt

Time value that affects the MCI_PLAY or MCI_CUE command. For MCI_PLAY, this is the time when 
playback begins. For MCI_CUE, this is the time when the cued device reaches the position given in 
dwFrom.

 

Remarks
Positions are specified in the current time format.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_CUE, MCI_PLAY, mciSendCommand 



MCI_VCR_RECORD_PARMS      

  

The MCI_VCR_RECORD_PARMS structure contains parameters for the MCI_RECORD command for 
video-cassette recorders.

typedef struct tagMCI_VCR_RECORD_PARMS {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
    DWORD dwAt; 
} MCI_VCR_RECORD_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to play from.

dwTo

Position to play to.

dwAt

Time value that affects the MCI_RECORD or MCI_CUE command. For MCI_RECORD, this is the 
time when recording begins. For MCI_CUE, this is the time when the cued device reaches the 
position given in dwFrom.

 

Remarks
Positions are specified in the current time format.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_CUE, MCI_RECORD, mciSendCommand 



MCI_VCR_SEEK_PARMS      

  

The MCI_VCR_SEEK_PARMS structure contains parameters for the MCI_SEEK command for video-
cassette recorders.

typedef struct tagMCI_VCR_SEEK_PARMS {
    DWORD dwCallback; 
    DWORD dwTo; 
    DWORD dwMark; 
    DWORD dwAt; 
} MCI_VCR_SEEK_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTo

Position to seek to.

dwMark

Numbered mark to seek for.

dwAt

Time when seek begins.
 

Remarks
Positions are specified in the current time format.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SEEK, mciSendCommand 



MCI_VCR_SET_PARMS      

  

The MCI_VCR_SET_PARMS structure contains parameters for the MCI_SET command for video-
cassette recorders.

typedef struct tagMCI_VCR_SET_PARMS {
    DWORD dwCallback; 
    DWORD dwTimeFormat; 
    DWORD dwAudio; 
    DWORD dwTimeMode; 
    DWORD dwRecordFormat; 
    DWORD dwCounterFormat; 
    DWORD dwIndex; 
    DWORD dwTracking; 
    DWORD dwSpeed; 
    DWORD dwLength; 
    DWORD dwCounter; 
    DWORD dwClock; 
    DWORD dwPauseTimeout; 
    DWORD dwPrerollDuration; 
    DWORD dwPostrollDuration; 
} MCI_VCR_SET_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTimeFormat

Current time format.

dwAudio

Not used.

dwTimeMode

Constant that specifies the timing source used by the device. The timing source is either a timecode 
recorded on videotape, or the counters in the device that sense videotape movement.

dwRecordFormat

Recording rate.

dwCounterFormat

Format of a new counter time value.

dwIndex

Contents of on-screen display.

dwTracking

Speed adjustment used when tracking the VCR playback rate.

dwSpeed



Playback speed used by the device as an integer. Normal playback speed is 1000, double speed is 
2000, and half speed is 500.

dwLength

Videotape length when the length is undetectable by the device.

dwCounter

New counter value.

dwClock

New clock time.

dwPauseTimeout

New timeout value for pause command.

dwPrerollDuration

Videotape length needed to stabilize the VCR output.

dwPostrollDuration

Videotape length needed to brake the VCR transport when a MCI_STOP or MCI_PAUSE command is 
issued.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_PAUSE, MCI_SET, MCI_STOP, mciSendCommand 



MCI_VCR_SETAUDIO_PARMS      

  

The MCI_VCR_SETAUDIO_PARMS structure contains parameters for the MCI_SETAUDIO command for 
video-cassette recorders.

typedef struct tagMCI_VCR_SETAUDIO_PARMS {
    DWORD dwCallback; 
    DWORD dwTrack; 
    DWORD dwTo; 
    DWORD dwNumber; 
} MCI_VCR_SETAUDIO_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTrack

Audio track.

dwTo

Type of input or monitored input.

dwNumber

Audio input (of the type specified in the dwTo member) to use.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SETAUDIO, mciSendCommand 



MCI_VCR_SETTUNER_PARMS      

  

The MCI_VCR_SETTUNER_PARMS structure contains parameters for the MCI_SETTUNER command 
for video-cassette recorders.

typedef struct tagMCI_VCR_SETTUNER_PARMS {
    DWORD dwCallback; 
    DWORD dwChannel; 
    DWORD dwNumber; 
} MCI_VCR_SETTUNER_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwChannel

New channel number.

dwNumber

Logical tuner that the MCI_SETTUNER command affects.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SETTUNER, mciSendCommand 



MCI_VCR_SETVIDEO_PARMS      

  

The MCI_VCR_SETVIDEO_PARMS structure contains parameters for the MCI_SETVIDEO command for 
video-cassette recorders.

typedef struct tagMCI_VCR_SETVIDEO_PARMS {
    DWORD dwCallback; 
    DWORD dwTrack; 
    DWORD dwTo; 
    DWORD dwNumber; 
} MCI_VCR_SETVIDEO_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTrack

Affected track.

dwTo

Type of input or monitored input.

dwNumber

Video input (of the type specified in the dwTo member) to use.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_SETVIDEO, mciSendCommand 



MCI_VCR_STATUS_PARMS      

  

The MCI_VCR_STATUS_PARMS structure contains parameters for the MCI_STATUS command for 
video-cassette recorders.

typedef struct tagMCI_VCR_STATUS_PARMS {
    DWORD dwCallback; 
    DWORD dwReturn; 
    DWORD dwItem; 
    DWORD dwTrack; 
    DWORD dwNumber; 
} MCI_VCR_STATUS_PARMS; 
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn

Value returned by the MCI_STATUS command. The return value varies according to the inquiry of the 
command. For more information, see the description of the MCI_STATUS command.

dwItem

Type of information requested.

dwTrack

Audio or video track that will store information during the next recording. This member is used to 
return information when the MCI_STATUS command inquires about the video or audio recording 
status.

dwNumber

Logical tuner that the current channel is associated with. This member is used to return information 
when the MCI_STATUS command inquires about the current channel number.

 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members.

See Also
MCI_STATUS, mciSendCommand 



MCI_VCR_STEP_PARMS      

  

The MCI_VCR_STEP_PARMS structure contains parameters for the MCI_STEP command for video-
cassette recorders.

typedef struct tagMCI_VCR_STEP_PARMS {
    DWORD dwCallback; 
    DWORD dwFrames; 
} MCI_VCR_STEP_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrames

Number of frames to jump (the length of a single step) as the MCI_STEP command steps forward or 
backward through the content.

 

Remarks
When assigning data to the members in this structure, set the corresponding flags in the fdwCommand 
parameter of mciSendCommand to validate the members.

See Also
MCI_STEP, mciSendCommand 



MCI_VD_ESCAPE_PARMS      

  

The MCI_VD_ESCAPE_PARMS structure contains the command sent to a device for the MCI_ESCAPE 
command for videodisc devices. 

typedef struct {
    DWORD  dwCallback; 
    LPCSTR lpstrCommand; 
} MCI_VD_ESCAPE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrCommand

Command to send to device.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_ESCAPE, mciSendCommand 



MCI_VD_PLAY_PARMS      

  

The MCI_VD_PLAY_PARMS structure contains position and speed information for the MCI_PLAY 
command for videodisc devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
    DWORD dwSpeed; 
} MCI_VD_PLAY_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to play from.

dwTo

Position to play to.

dwSpeed

Playback speed in frames per second.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

You can use the MCI_PLAY_PARMS structure instead of MCI_VD_PLAY_PARMS if you are not using 
the extended data members. 

See Also
MCI_PLAY, MCI_PLAY_PARMS, mciSendCommand 



MCI_VD_STEP_PARMS      

  

The MCI_VD_STEP_PARMS structure contains information for the MCI_STEP command for videodisc 
devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwFrames; 
} MCI_VD_STEP_PARMS;
 

dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrames

Number of frames to step.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_STEP, mciSendCommand 



MCI_WAVE_DELETE_PARMS      

  

The MCI_WAVE_DELETE_PARMS structure contains position information for the MCI_DELETE 
command for waveform-audio devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwFrom; 
    DWORD dwTo; 
} MCI_WAVE_DELETE_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom

Position to delete from.

dwTo

Position to delete to.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_DELETE, mciSendCommand 



MCI_WAVE_OPEN_PARMS      

  

The MCI_WAVE_OPEN_PARMS structure contains information for MCI_OPEN command for waveform-
audio devices. 

typedef struct {
    DWORD  dwCallback; 
    MCIDEVICEID   wDeviceID; 
    LPCSTR lpstrDeviceType; 
    LPCSTR lpstrElementName; 
    LPCSTR lpstrAlias; 
    DWORD  dwBufferSeconds; 
} MCI_WAVE_OPEN_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

wDeviceID

Indentifier returned to application.

lpstrDeviceType

Name or constant identifier of the device type. (The name of the device is typically obtained from the 
registry or SYSTEM.INI file.) This member can be one of the values listed in Constants: Device 
Types.

lpstrElementName

Device element name (usually a path).

lpstrAlias

Optional device alias.

dwBufferSeconds

Buffer length, in seconds.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

You can use the MCI_OPEN_PARMS structure instead of MCI_WAVE_OPEN_PARMS if you are not 
using the extended data members.

See Also
MCI_OPEN, mciSendCommand, MCI_OPEN_PARMS 



MCI_WAVE_SET_PARMS      

  

The MCI_WAVE_SET_PARMS structure contains information for the MCI_SET command for waveform-
audio devices. 

typedef struct {
    DWORD dwCallback; 
    DWORD dwTimeFormat; 
    DWORD dwAudio; 
    UINT  wInput; 
    UINT  wOutput; 
    WORD  wFormatTag; 
    WORD  wReserved2; 
    WORD  nChannels; 
    WORD  wReserved3; 
    DWORD nSamplesPerSec; 
    DWORD nAvgBytesPerSec; 
    WORD  nBlockAlign; 
    WORD  wReserved4; 
    WORD  wBitsPerSample; 
    WORD  wReserved5; 
} MCI_WAVE_SET_PARMS;
 

Members
dwCallback

The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTimeFormat

Device's time format.

dwAudio

Channel number for audio output. Typically used when turning a channel on or off.

wInput

Audio input channel.

wOutput

Output device to use. For example, this value could be 2 if a system had two installed sound cards.

wFormatTag

Format of the waveform-audio data. This member can be one of the following:

WAVE_FORMAT_ADPCM

Microsoft Corporation

WAVE_FORMAT_ALAW

Microsoft Corporation

WAVE_FORMAT_ANTEX_ADPCME

Antex Electronics Corporation



WAVE_FORMAT_APTX

Audio Processing Technology

WAVE_FORMAT_AUDIOFILE_AF10

Audiofile

WAVE_FORMAT_AUDIOFILE_AF36

Audiofile

WAVE_FORMAT_CONTROL_RES_CR10

Control Resources Corporation

WAVE_FORMAT_CONTROL_RES_VQLPC

Control Resources Corporation

WAVE_FORMAT_CREATIVE_ADPCM

Creative Labs, Inc.

WAVE_FORMAT_CREATIVE_FASTSPEECH10

Creative Labs, Inc.

WAVE_FORMAT__CREATIVE__FASTSPEECH8

Creative Labs, Inc.

WAVE_FORMAT_DIALOGIC_OKI_ADPCM

Dialogic Corporation

WAVE_FORMAT_DIGIADPCM

DSP Solutions, Inc.

WAVE_FORMAT_DIGIFIX

DSP Solutions, Inc.

WAVE_FORMAT_DIGIREAL

DSP Solutions, Inc.

WAVE_FORMAT_DIGISTD

DSP Solutions, Inc.

WAVE_FORMAT_DOLBY_AC2

Dolby Laboratories, Inc.

WAVE_FORMAT_DSPGROUP_TRUESPEECH

DSP Group, Inc.

WAVE_FORMAT_DVI_ADPCM

Intel Corporation

WAVE_FORMAT_ECHOSC1

Echo Speech Corporation

WAVE_FORMAT_FM_TOWNS_SND

Fujitsu, Ltd.



WAVE_FORMAT_G721_ADPCM

Antex Electronics Corporation

WAVE_FORMAT_G723_ADPCM

Antex Electronics Corporation

WAVE_FORMAT_GSM610

Microsoft Corporation

WAVE_FORMAT_IBM_CVSD

International Business Machines

WAVE_FORMAT_IMA_ADPCM

Intel Corporation

WAVE_FORMAT_MEDIASPACE_ADPCM

VideoLogic, Inc.

WAVE_FORMAT_MPEG

Microsoft Corporation

WAVE_FORMAT_MULAW

Microsoft Corporation

WAVE_FORMAT_NMS_VBXADPCM

Natural MicroSystems Corporation

WAVE_FORMAT_OKI_ADPCM

OKI

WAVE_FORMAT_OLIADPCM

Ing C. Olivetti & C., S.p.A.

WAVE_FORMAT_OLICELP

Ing C. Olivetti & C., S.p.A.

WAVE_FORMAT_OLIGSM

Ing C. Olivetti & C., S.p.A.

WAVE_FORMAT_OLIOPR

Ing C. Olivetti & C., S.p.A.

WAVE_FORMAT_OLISBC

Ing C. Olivetti & C., S.p.A.

WAVE_FORMAT_SIERRA_ADPCM

Sierra Semiconductor Corporation

WAVE_FORMAT_SONARC

Speech Compression

WAVE_FORMAT_UNKNOWN

Microsoft Corporation



WAVE_FORMAT_YAMAHA_ADPCM

Yamaha Corporation of America

wReserved2

Reserved.

nChannels

Mono (1) or stereo (2).

wReserved3

Reserved.

nSamplesPerSec

Samples per second.

nAvgBytesPerSec

Sample rate in bytes per second.

nBlockAlign

Block alignment of the data.

wReserved4

Reserved.

wBitsPerSample

Bits per sample.

wReserved5

Reserved.
 

Remarks
When assigning data to the members of this structure, set the corresponding flags in the fdwCommand 
parameter of the mciSendCommand function to validate the members. 

See Also
MCI_SET, mciSendCommand 



MIDIEVENT      

  

The MIDIEVENT structure describes a MIDI event in a stream buffer.

typedef struct { 
    DWORD dwDeltaTime; 
    DWORD dwStreamID; 
    DWORD dwEvent; 
    DWORD dwParms[]; 
} MIDIEVENT; 
 

Members
dwDeltaTime

Time, in MIDI ticks, between the previous event and the current event. The length of a tick is defined 
by the time format and possibly the tempo associated with the stream. (The definition is identical to 
the specification for a tick in a standard MIDI file.)

dwStreamID

Reserved; must be zero.

dwEvent

Event code and event parameters or length. To parse this information, use the MEVT_EVENTTYPE 
and MEVT_EVENTPARM macros.

The high byte of this member contains one or more of the following flags and an event code:

MEVT_F_CALLBACK

The system generates a callback when the event is about to be executed.

MEVT_F_LONG

The event is a long event. The low 24 bits of dwEvent contain the length of the event parameters.

MEVT_F_SHORT

The event is a short event. The event parameters are contained in the low 24 bits of dwEvent.

Either MEVT_F_LONG or MEVT_F_SHORT must be specified, but MEVT_F_CALLBACK is optional.

The remainder of the high byte contains one of the following event codes:

MEVT_COMMENT

Long event. The event data will be ignored. This event is intended to store commentary information 
about the stream that might be useful to authoring programs or sequencers if the stream data were 
to be stored in a file in stream format. In a buffer of this data, the zero byte identifies the comment 
class and subsequent bytes contain the comment data. 

MEVT_LONGMSG

Long event. The event data is transmitted verbatim. The event data is assumed to be system-
exclusive data; that is, running status will be cleared when the event is executed and running 
status from any previous events will not be applied to any channel events in the event data. Using 
this event to send a group of channel messages at the same time is not recommended; a set of 
MEVT_SHORTMSG events with zero delta times should be used instead.

MEVT_NOP



Short event. This event is a placeholder; it does nothing. The low 24 bits are ignored. This event 
will still generate a callback if MEVT_F_CALLBACK is set in dwEvent.

MEVT_SHORTMSG

Short event. The data in the low 24 bits of dwEvent is a MIDI short message. (For a description of 
how a short message is packed into a doubleword value, see the midiOutShortMsg function.)

MEVT_TEMPO

Short event. The data in the low 24 bits of dwEvent contain the new tempo for following events. 
The tempo is specified in the same format as it is for the tempo change meta-event in a MIDI file ¾ 
that is, in microseconds per quarter note. (This event will have no affect if the time format specified 
for the stream is SMPTE time.)

MEVT_VERSION

Long event. The event data must contain a MIDISTRMBUFFVER structure.
 

dwParms

Parameters for the event, if dwEvent specifies MEVT_F_LONG and the length of the buffer. This 
parameter data must be padded with zeros so that an integral number of doubleword values are 
stored. For example, if the event data is five bytes long, three pad bytes must follow the data for a 
total of eight bytes. In this case, the low 24 bits of dwEvent would contain the value 5.

 

See Also
MEVT_EVENTTYPE, MEVT_EVENTPARM, midiOutShortMsg, MIDISTRMBUFFVER 



MIDIHDR      

  

The MIDIHDR structure defines the header used to identify a MIDI system-exclusive or stream buffer.

typedef struct { 
    LPSTR  lpData; 
    DWORD  dwBufferLength; 
    DWORD  dwBytesRecorded; 
    DWORD  dwUser; 
    DWORD  dwFlags; 
    struct midihdr_tag far * lpNext; 
    DWORD  reserved; 
    DWORD  dwOffset; 
    DWORD  dwReserved[4]; 
} MIDIHDR; 
 

Members
lpData

Address of MIDI data.

dwBufferLength

Size of the buffer.

dwBytesRecorded

Actual amount of data in the buffer. This value should be less than or equal to the value given in the 
dwBufferLength member.

dwUser

Custom user data.

dwFlags

Flags giving information about the buffer.

MHDR_DONE

Set by the device driver to indicate that it is finished with the buffer and is returning it to the 
application.

MHDR_INQUEUE

Set by Windows to indicate that the buffer is queued for playback.

MHDR_ISSTRM

Set to indicate that the buffer is a stream buffer.

MHDR_PREPARED

Set by Windows to indicate that the buffer has been prepared by using the midiInPrepareHeader 
or midiOutPrepareHeader function.

midihdr_tag

Reserved; do not use.

reserved



Reserved; do not use.

dwOffset

Offset into the buffer when a callback is performed. (This callback is generated because the 
MEVT_F_CALLBACK flag is set in the dwEvent member of the MIDIEVENT structure.) This offset 
enables an application to determine which event caused the callback.

dwReserved

Reserved; do not use.
 

See Also
MIDIEVENT, midiInPrepareHeader, midiOutPrepareHeader 



MIDIINCAPS      

  

The MIDIINCAPS structure describes the capabilities of a MIDI input device.

typedef struct { 
    WORD      wMid; 
    WORD      wPid; 
    MMVERSION vDriverVersion; 
    CHAR      szPname[MAXPNAMELEN]; 
    DWORD     dwSupport; 
} MIDIINCAPS; 
 

Members
wMid

Manufacturer identifier of the device driver for the MIDI input device. Manufacturer identifiers are 
defined in Manufacturer and Product Identifiers.

wPid

Product identifier of the MIDI input device. Product identifiers are defined in Manufacturer and Product 
Identifiers.

vDriverVersion

Version number of the device driver for the MIDI input device. The high-order byte is the major 
version number, and the low-order byte is the minor version number.

szPname

Product name in a null-terminated string.

dwSupport

Reserved; must be zero.
 



MIDIOUTCAPS      

  

The MIDIOUTCAPS structure describes the capabilities of a MIDI output device.

typedef struct { 
    WORD      wMid; 
    WORD      wPid; 
    MMVERSION vDriverVersion; 
    CHAR      szPname[MAXPNAMELEN]; 
    WORD      wTechnology; 
    WORD      wVoices; 
    WORD      wNotes; 
    WORD      wChannelMask; 
    DWORD     dwSupport; 
} MIDIOUTCAPS; 
 

Members
wMid

Manufacturer identifier of the device driver for the MIDI output device. Manufacturer identifiers are 
defined in Manufacturer and Product Identifiers.

wPid

Product identifier of the MIDI output device. Product identifiers are defined in Manufacturer and 
Product Identifiers.

vDriverVersion

Version number of the device driver for the MIDI output device. The high-order byte is the major 
version number, and the low-order byte is the minor version number.

szPname

Product name in a null-terminated string.

wTechnology

Flags describing the type of the MIDI output device. It can be one of the following:

MOD_FMSYNTH

The device is an FM synthesizer.

MOD_MAPPER

The device is the Microsoft MIDI mapper.

MOD_MIDIPORT

The device is a MIDI hardware port.

MOD_SQSYNTH

The device is a square wave synthesizer.

MOD_SYNTH

The device is a synthesizer.
 



wVoices

Number of voices supported by an internal synthesizer device. If the device is a port, this member is 
not meaningful and is set to 0.

wNotes

Maximum number of simultaneous notes that can be played by an internal synthesizer device. If the 
device is a port, this member is not meaningful and is set to 0.

wChannelMask

Channels that an internal synthesizer device responds to, where the least significant bit refers to 
channel 0 and the most significant bit to channel 15. Port devices that transmit on all channels set this 
member to 0xFFFF.

dwSupport

Optional functionality supported by the device. It can be one or more of the following:

MIDICAPS_CACHE

Supports patch caching.

MIDICAPS_LRVOLUME

Supports separate left and right volume control.

MIDICAPS_STREAM

Provides direct support for the midiStreamOut function.

MIDICAPS_VOLUME

Supports volume control.
 

If a device supports volume changes, the MIDICAPS_VOLUME flag will be set for the dwSupport 
member. If a device supports separate volume changes on the left and right channels, both the 
MIDICAPS_VOLUME and the MIDICAPS_LRVOLUME flags will be set for this member.

 

See Also
midiStreamOut



MIDIPROPTEMPO      

  

The MIDIPROPTEMPO structure contains the tempo property for a stream. 

typedef struct { 
    DWORD cbStruct; 
    DWORD dwTempo; 
} MIDIPROPTEMPO; 
 

Members
cbStruct

Length, in bytes, of this structure. This member must be filled in for both the MIDIPROP_SET and 
MIDIPROP_GET operations of the midiStreamProperty function.

dwTempo

Tempo of the stream, in microseconds per quarter note. The tempo is honored only if the time division 
for the stream is specified in quarter note format. This member is set in a MIDIPROP_SET operation 
and is filled on return from a MIDIPROP_GET operation.

 

Remarks
The tempo property is read or written by the midiStreamProperty function.

See Also
midiStreamProperty 



MIDIPROPTIMEDIV      

  

The MIDIPROPTIMEDIV structure contains the time division property for a stream. 

typedef struct { 
    DWORD cbStruct; 
    DWORD dwTimeDiv; 
} MIDIPROPTIMEDIV; 
 

Members
cbStruct

Length, in bytes, of this structure. This member must be filled in for both the MIDIPROP_SET and 
MIDIPROP_GET operations of the midiStreamProperty function.

dwTimeDiv

Time division for this stream, in the format specified in the Standard MIDI Files 1.0 specification. The 
low 16 bits of this doubleword value contain the time division. This member is set in a 
MIDIPROP_SET operation and is filled on return from a MIDIPROP_GET operation.

 

Remarks
The time division property is read or written by the midiStreamProperty function.

See Also
midiStreamProperty 



MIDISTRMBUFFVER      

  

The MIDISTRMBUFFVER structure contains version information for a long MIDI event of the 
MEVT_VERSION type.

typedef struct { 
    DWORD dwVersion; 
    DWORD dwMid; 
    DWORD dwOEMVersion; 
} MIDISTRMBUFFVER; 
 

Members
dwVersion

Version of the stream. The high 16 bits contain the major version, and the low 16 bits contain the 
minor version. The version number for the first implementation of MIDI streams should be 1.0.

dwMid

Manufacturer identifier. Manufacturer identifiers are defined in Manufacturer and Product Identifiers.

dwOEMVersion

OEM version of the stream. Original equipment manufacturers can use this field to version-stamp any 
custom events they have specified. If a custom event is specified, it must be the first event sent after 
the stream is opened.

 



MIXERCAPS      

  

The MIXERCAPS structure describes the capabilities of a mixer device.

typedef struct { 
    WORD    wMid; 
    WORD    wPid; 
    MMVERSION vDriverVersion; 
    CHAR    szPname[MAXPNAMELEN]; 
    DWORD   fdwSupport; 
    DWORD   cDestinations; 
} MIXERCAPS; 
 

Members
wMid

A manufacturer identifier for the mixer device driver. Manufacturer identifiers are defined in 
Manufacturer and Product Identifiers.

wPid

A product identifier for the mixer device driver. Product identifiers are defined in Manufacturer and 
Product Identifiers.

vDriverVersion

Version number of the mixer device driver. The high-order byte is the major version number, and the 
low-order byte is the minor version number.

szPname

Name of the product. If the mixer device driver supports multiple cards, this string must uniquely and 
easily identify (potentially to a user) the specific card. 

fdwSupport

Various support information for the mixer device driver. No extended support bits are currently 
defined.

cDestinations

The number of audio line destinations available through the mixer device. All mixer devices must 
support at least one destination line, so this member cannot be zero. Destination indexes used in the 
dwDestination member of the MIXERLINE structure range from zero to the value specified in the 
cDestinations member minus one.

 

See Also
MIXERLINE



MIXERCONTROL      

  

The MIXERCONTROL structure describes the state and metrics of a single control for an audio line.

typedef struct { 
    DWORD cbStruct; 
    DWORD dwControlID; 
    DWORD dwControlType; 
    DWORD fdwControl; 
    DWORD cMultipleItems; 
    CHAR  szShortName[MIXER_SHORT_NAME_CHARS]; 
    CHAR  szName[MIXER_LONG_NAME_CHARS]; 
    union { 
        struct { 
            LONG lMinimum; 
            LONG lMaximum; 
        }; 
        struct { 
            DWORD dwMinimum; 
            DWORD dwMaximum; 
        }; 
        DWORD dwReserved[6]; 
    } Bounds; 
    union { 
        DWORD cSteps; 
        DWORD cbCustomData; 
        DWORD dwReserved[6]; 
    } Metrics; 
} MIXERCONTROL, *PMIXERCONTROL, FAR *LPMIXERCONTROL; 
 

Members
cbStruct

Size, in bytes, of the MIXERCONTROL structure. 

dwControlID

Audio mixer-defined identifier that uniquely refers to the control described by the MIXERCONTROL 
structure. This identifier can be in any format supported by the mixer device. An application should 
use this identifier only as an abstract handle. No two controls for a single mixer device can ever have 
the same control identifier.

dwControlType

Class of the control for which the identifier is specified in dwControlID. An application must use this 
information to display the appropriate control for input from the user. An application can also display 
tailored graphics based on the control class or search for a particular control class on a specific line. If 
an application does not know about a control class, this control must be ignored. There are eight 
control class classifications, each with one or more standard control types:

MIXERCONTROL_CT_CLASS_CUSTOM

MIXERCONTROL_CONTROLTYPE_CUSTOM

MIXERCONTROL_CT_CLASS_FADER



MIXERCONTROL_CONTROLTYPE_BASS
MIXERCONTROL_CONTROLTYPE_EQUALIZER
MIXERCONTROL_CONTROLTYPE_FADER
MIXERCONTROL_CONTROLTYPE_TREBLE
MIXERCONTROL_CONTROLTYPE_VOLUME

MIXERCONTROL_CT_CLASS_LIST 

MIXERCONTROL_CONTROLTYPE_MIXER
MIXERCONTROL_CONTROLTYPE_MULTIPLESELECT
MIXERCONTROL_CONTROLTYPE_MUX
MIXERCONTROL_CONTROLTYPE_SINGLESELECT

MIXERCONTROL_CT_CLASS_METER

MIXERCONTROL_CONTROLTYPE_BOOLEANMETER
MIXERCONTROL_CONTROLTYPE_PEAKMETER
MIXERCONTROL_CONTROLTYPE_SIGNEDMETER
MIXERCONTROL_CONTROLTYPE_UNSIGNEDMETER

MIXERCONTROL_CT_CLASS_NUMBER

MIXERCONTROL_CONTROLTYPE_DECIBELS
MIXERCONTROL_CONTROLTYPE_PERCENT
MIXERCONTROL_CONTROLTYPE_SIGNED
MIXERCONTROL_CONTROLTYPE_UNSIGNED

MIXERCONTROL_CT_CLASS_SLIDER

MIXERCONTROL_CONTROLTYPE_PAN
MIXERCONTROL_CONTROLTYPE_QSOUNDPAN
MIXERCONTROL_CONTROLTYPE_SLIDER

MIXERCONTROL_CT_CLASS_SWITCH

MIXERCONTROL_CONTROLTYPE_BOOLEAN
MIXERCONTROL_CONTROLTYPE_BUTTON
MIXERCONTROL_CONTROLTYPE_LOUDNESS
MIXERCONTROL_CONTROLTYPE_MONO
MIXERCONTROL_CONTROLTYPE_MUTE
MIXERCONTROL_CONTROLTYPE_ONOFF
MIXERCONTROL_CONTROLTYPE_STEREOENH

MIXERCONTROL_CT_CLASS_TIME 

MIXERCONTROL_CONTROLTYPE_MICROTIME
MIXERCONTROL_CONTROLTYPE_MILLITIME

fdwControl

Status and support flags for the audio line control. The following values are defined:

MIXERCONTROL_CONTROLF_DISABLED

The control is disabled, perhaps due to other settings for the mixer hardware, and cannot be used. 
An application can read current settings from a disabled control, but it cannot apply settings.

MIXERCONTROL_CONTROLF_MULTIPLE

The control has two or more settings per channel. An equalizer, for example, requires this flag 
because each frequency band can be set to a different value. An equalizer that affects both 
channels of a stereo line in a uniform fashion will also specify the 
MIXERCONTROL_CONTROLF_UNIFORM flag.

MIXERCONTROL_CONTROLF_UNIFORM



The control acts on all channels of a multichannel line in a uniform fashion. For example, a control 
that mutes both channels of a stereo line would set this flag. Most 
MIXERCONTROL_CONTROLTYPE_MUX and MIXERCONTROL_CONTROLTYPE_MIXER 
controls also specify the MIXERCONTROL_CONTROLF_UNIFORM flag.

cMultipleItems

Number of items per channel that make up a MIXERCONTROL_CONTROLF_MULTIPLE control. 
This number is always two or greater for multiple-item controls. If the control is not a multiple-item 
control, do not use this member; it will be zero.

szShortName

Short string that describes the audio line control specified by dwControlID. This description should 
be appropriate to use as a concise label for the control.

szName

String that describes the audio line control specified by dwControlID. This description should be 
appropriate to use as a complete description for the control.

Bounds

Union of boundary types.

lMinimum

Minimum signed value for a control that has a signed boundary nature. This member cannot be used 
in conjunction with dwMinimun.

lMaximum

Maximum signed value for a control that has a signed boundary nature. This member cannot be used 
in conjunction with dwMaximun.

dwMinimum

Minimum unsigned value for a control that has an unsigned boundary nature. This member cannot be 
used in conjunction with lMinimun.

dwMaximum

Maximum unsigned value for a control that has an unsigned boundary nature. This member cannot 
be used in conjunction with lMaximum.

Metrics

Union of boundary metrics.

cSteps

Number of discrete ranges within the union specified for a control specified by the Bounds member. 
This member overlaps with the other members of the Metrics structure member and cannot be used 
in conjunction with those members.

cbCustomData

Size, in bytes, required to contain the state of a custom control class. This member is appropriate only 
for the MIXERCONTROL_CONTROLTYPE_CUSTOM control class. 

To determine if the dwMinimum, dwMaximum, lMinimum, lMaximum, cSteps, and cbCustomData 
members are appropriate for a control class, see Control Types.

The calling application does not need to initialize any members of this structure because the 
MIXERCONTROL structure is passed to the mixerGetLineControls function as a receiving buffer 
that is referenced and described by the MIXERLINECONTROLS structure. When 
mixerGetLineControls returns, the cbStruct member contains the actual size of the information 



returned by the mixer device. The returned information will not exceed the requested size, nor will it 
be smaller than the MIXERCONTROL structure.

dwReserved

Reserved; do not use.
 

See Also
mixerGetLineControls, MIXERLINECONTROLS 



MIXERCONTROLDETAILS      

  

The MIXERCONTROLDETAILS structure refers to control-detail structures, retrieving or setting state 
information of an audio mixer control. All members of this structure must be initialized before calling the 
mixerGetControlDetails and mixerSetControlDetails functions.

typedef struct { 
    DWORD cbStruct; 
    DWORD dwControlID; 
    DWORD cChannels; 
    union { 
        HWND  hwndOwner; 
        DWORD cMultipleItems; 
    }; 
    DWORD  cbDetails; 
    LPVOID paDetails; 
} MIXERCONTROLDETAILS; 
 

Members
cbStruct

Size, in bytes, of the MIXERCONTROLDETAILS structure. The size must be large enough to contain 
the base MIXERCONTROLDETAILS structure. When mixerGetControlDetails returns, this member 
contains the actual size of the information returned. The returned information will not exceed the 
requested size, nor will it be smaller than the base MIXERCONTROLDETAILS structure.

dwControlID

Control identifier on which to get or set properties. 

cChannels

Number of channels on which to get or set control properties. The following values are defined:

0

Use this value when the control is a MIXERCONTROL_CONTROLTYPE_CUSTOM control.

1

Use this value when the control is a MIXERCONTROL_CONTROLF_UNIFORM control or when 
an application needs to get and set all channels as if they were uniform.

MIXERLINE.cChannels

Use this value when the properties for the control are expected on all channels for a line.

An application cannot specify a value that falls between 1 and the number of channels for the audio 
line. For example, specifying 2 or 3 for a four-channel line is not valid. This member cannot be 0 for 
noncustom control types.

hwndOwner

Handle of the window that owns a custom dialog box for a mixer control. This member is used when 
the MIXER_SETCONTROLDETAILSF_CUSTOM flag is specified in the mixerSetControlDetails 
function.

cMultipleItems



Number of multiple items per channel on which to get or set properties. The following values are 
defined:

0

Use this value for all controls except for a MIXERCONTROL_CONTROLF_MULTIPLE or a 
MIXERCONTROL_CONTROLTYPE_CUSTOM control.

MIXERCONTROL cMultipleItems member.

Use this value when the control class is MIXERCONTROL_CONTROLF_MULTIPLE.

MIXERCONTROLDETAILS hwndOwner member.

Use this value when the control is a MIXERCONTROL_CONTROLTYPE_CUSTOM control and the 
MIXER_SETCONTROLDETAILSF_CUSTOM flag is specified for the mixerSetControlDetails 
function. In this case, the hwndOwner member overlaps with cMultipleItems, providing the value 
of the window handle.

When using a MIXERCONTROL_CONTROLTYPE_CUSTOM control without the 
MIXERCONTROL_CONTROLTYPE_CUSTOM flag, specify zero for this member.

An application cannot specify any value other than the value specified in the cMultipleItems member 
of the MIXERCONTROL structure for a MIXERCONTROL_CONTROLF_MULTIPLE control.

cbDetails

Size, in bytes, of one of the following details structures being used:

MIXERCONTROLDETAILS_BOOLEAN

Boolean value for an audio line control.

MIXERCONTROLDETAILS_LISTTEXT

List text buffer for an audio line control. For information about the appropriate details structure for a 
specific control, see Control Types.

MIXERCONTROLDETAILS_SIGNED

Signed value for an audio line control.

MIXERCONTROLDETAILS_UNSIGNED

Unsigned value for an audio line control.

If the control is a MIXERCONTROL_CONTROLTYPE_CUSTOM control, this member must be equal 
to the cbCustomData member of the MIXERCONTROL structure.

paDetails

Address of an array of one or more structures in which properties for the specified control are 
retrieved or set. For MIXERCONTROL_CONTROLF_MULTIPLE controls, the size of this buffer 
should be the product of the cChannels, cMultipleItems and cbDetails members of the 
MIXERCONTROLDETAILS structure. For controls other than 
MIXERCONTROL_CONTROLF_MULTIPLE types, the size of this buffer is the product of the 
cChannels and cbDetails members of the MIXERCONTROLDETAILS structure.

For controls that are MIXERCONTROL_CONTROLF_MULTIPLE types, the array can be treated as a 
two-dimensional array that is channel major. That is, all multiple items for the left channel are given, 
then all multiple items for the right channel, and so on.

For controls other than MIXERCONTROL_CONTROLF_MULTIPLE types, each element index is 
equivalent to the zero-based channel that it affects. That is, paDetails[0] is for the left channel and 
paDetails[1] is for the right channel.

If the control is a MIXERCONTROL_CONTROLTYPE_CUSTOM control, this member must point to a 
buffer that is at least large enough to contain the size, in bytes, specified by the cbCustomData 
member of the MIXERCONTROL structure.



 

See Also
MIXERCONTROL, mixerGetControlDetails, mixerSetControlDetails



MIXERCONTROLDETAILS_BOOLEAN      

  

The MIXERCONTROLDETAILS_BOOLEAN structure retrieves and sets Boolean control properties for 
an audio mixer control. 

typedef struct { 
    LONG fValue; 
} MIXERCONTROLDETAILS_BOOLEAN; 
 

Members
fValue

Boolean value for a single item or channel. This value is assumed to be zero for a FALSE state (such 
as off or disabled), and nonzero for a TRUE state (such as on or enabled).

 

Remarks
The following standard control types use this structure for retrieving and setting properties.

Meter controls:

MIXERCONTROL_CONTROLTYPE_BOOLEANMETER

Switch controls:

MIXERCONTROL_CONTROLTYPE_BOOLEAN
MIXERCONTROL_CONTROLTYPE_BUTTON
MIXERCONTROL_CONTROLTYPE_LOUDNESS
MIXERCONTROL_CONTROLTYPE_MONO
MIXERCONTROL_CONTROLTYPE_MUTE
MIXERCONTROL_CONTROLTYPE_ONOFF
MIXERCONTROL_CONTROLTYPE_STEREOENH

List controls:

MIXERCONTROL_CONTROLTYPE_MIXER
MIXERCONTROL_CONTROLTYPE_MULTIPLESELECT
MIXERCONTROL_CONTROLTYPE_MUX
MIXERCONTROL_CONTROLTYPE_SINGLESELECT

 



MIXERCONTROLDETAILS_LISTTEXT      

  

The MIXERCONTROLDETAILS_LISTTEXT structure retrieves list text, label text, and/or band-range 
information for multiple-item controls. This structure is used when the 
MIXER_GETCONTROLDETAILSF_LISTTEXT flag is specified in the mixerGetControlDetails function.

typedef struct { 
    DWORD dwParam1; 
    DWORD dwParam2; 
    CHAR  szName[MIXER_LONG_NAME_CHARS]; 
} MIXERCONTROLDETAILS_LISTTEXT; 
 

Members
dwParam1 and dwParam2

Control class-specific values. The following control types are listed with their corresponding values:

EQUALIZER

MIXERCONTROL.Bounds dwMinimum member.

MIXER and MUX

MIXERLINE dwLineID member.

MULTIPLESELECT and SINGLESELECT

Undefined; must be zero

szName

Name describing a single item in a multiple-item control. This text can be used as a label or item text, 
depending on the control class.

 

Remarks
The following standard control types use this structure for retrieving the item text descriptions on multiple-
item controls:

Fader control:

MIXERCONTROL_CONTROLTYPE_EQUALIZER

List controls:

MIXERCONTROL_CONTROLTYPE_MIXER
MIXERCONTROL_CONTROLTYPE_MULTIPLESELECT
MIXERCONTROL_CONTROLTYPE_MUX
MIXERCONTROL_CONTROLTYPE_SINGLESELECT

 

See Also
mixerGetControlDetails 



MIXERCONTROLDETAILS_SIGNED      

  

The MIXERCONTROLDETAILS_SIGNED structure retrieves and sets signed type control properties for 
an audio mixer control. 

typedef struct { 
    LONG lValue; 
} MIXERCONTROLDETAILS_SIGNED; 
 

Members
lValue

Signed integer value for a single item or channel. This value must be inclusively within the bounds 
given in the Bounds member of this structure for signed integer controls.

 

Remarks
The following standard control types use this structure for retrieving and setting properties:

Meter controls:

MIXERCONTROL_CONTROLTYPE_PEAKMETER
MIXERCONTROL_CONTROLTYPE_SIGNEDMETER

Member controls:

MIXERCONTROL_CONTROLTYPE_SIGNED

Number controls:

MIXERCONTROL_CONTROLTYPE_DECIBELS

Slider controls:

MIXERCONTROL_CONTROLTYPE_PAN
MIXERCONTROL_CONTROLTYPE_QSOUNDPAN
MIXERCONTROL_CONTROLTYPE_SLIDER

 



MIXERCONTROLDETAILS_UNSIGNED      

  

The MIXERCONTROLDETAILS_UNSIGNED structure retrieves and sets unsigned type control 
properties for an audio mixer control. 

typedef struct { 
    DWORD dwValue; 
} MIXERCONTROLDETAILS_UNSIGNED; 
 

Members
dwValue

Unsigned integer value for a single item or channel. This value must be inclusively within the bounds 
given in the Bounds structure member of the MIXERCONTROL structure for unsigned integer 
controls.

 

Remarks
The following standard control types use this structure for retrieving and setting properties:

Meter control:

MIXERCONTROL_CONTROLTYPE_UNSIGNEDMETER

Number control:

MIXERCONTROL_CONTROLTYPE_UNSIGNED

Fader controls:

MIXERCONTROL_CONTROLTYPE_BASS
MIXERCONTROL_CONTROLTYPE_EQUALIZER
MIXERCONTROL_CONTROLTYPE_FADER
MIXERCONTROL_CONTROLTYPE_TREBLE
MIXERCONTROL_CONTROLTYPE_VOLUME

Time controls:

MIXERCONTROL_CONTROLTYPE_MICROTIME
MIXERCONTROL_CONTROLTYPE_MILLITIME
MIXERCONTROL_CONTROLTYPE_PERCENT

 

See Also
MIXERCONTROL 



MIXERLINE      

  

The MIXERLINE structure describes the state and metrics of an audio line.

typedef struct { 
    DWORD cbStruct; 
    DWORD dwDestination; 
    DWORD dwSource; 
    DWORD dwLineID; 
    DWORD fdwLine; 
    DWORD dwUser; 
    DWORD dwComponentType; 
    DWORD cChannels; 
    DWORD cConnections; 
    DWORD cControls; 
    CHAR  szShortName[MIXER_SHORT_NAME_CHARS]; 
    CHAR  szName[MIXER_LONG_NAME_CHARS]; 
    struct { 
        DWORD     dwType; 
        DWORD     dwDeviceID; 
        WORD      wMid; 
        WORD      wPid; 
        MMVERSION vDriverVersion; 
        CHAR      szPname[MAXPNAMELEN]; 
    } Target; 
} MIXERLINE; 
 

Members
cbStruct

Size, in bytes, of the MIXERLINE structure. This member must be initialized before calling the 
mixerGetLineInfo function. The size specified in this member must be large enough to contain the 
MIXERLINE structure. When mixerGetLineInfo returns, this member contains the actual size of the 
information returned. The returned information will not exceed the requested size.

dwDestination

Destination line index. This member ranges from zero to one less than the value specified in the 
cDestinations member of the MIXERCAPS structure retrieved by the mixerGetDevCaps function. 
When the mixerGetLineInfo function is called with the MIXER_GETLINEINFOF_DESTINATION flag, 
properties for the destination line are returned. (The dwSource member must be set to zero in this 
case.) When called with the MIXER_GETLINEINFOF_SOURCE flag, the properties for the source 
given by the dwSource member that is associated with the dwDestination member are returned.

dwSource

Index for the audio source line associated with the dwDestination member. That is, this member 
specifies the nth audio source line associated with the specified audio destination line. This member 
is not used for destination lines and must be set to zero when 
MIXER_GETLINEINFOF_DESTINATION is specified in the mixerGetLineInfo function. When the 
MIXER_GETLINEINFOF_SOURCE flag is specified, this member ranges from zero to one less than 
the value specified in the cConnections member for the audio destination line given in the 
dwDestination member.



dwLineID

An identifier defined by the mixer device that uniquely refers to the audio line described by the 
MIXERLINE structure. This identifier is unique for each mixer device and can be in any format. An 
application should use this identifier only as an abstract handle. 

fdwLine

Status and support flags for the audio line. This member is always returned to the application and 
requires no initialization.

MIXERLINE_LINEF_ACTIVE

Audio line is active. An active line indicates that a signal is probably passing through the line. 

MIXERLINE_LINEF_DISCONNECTED

Audio line is disconnected. A disconnected line's associated controls can still be modified, but the 
changes have no effect until the line is connected. 

MIXERLINE_LINEF_SOURCE

Audio line is an audio source line associated with a single audio destination line. If this flag is not 
set, this line is an audio destination line associated with zero or more audio source lines.

If an application is not using a waveform-audio output device, the audio line associated with that 
device would not be active (that is, the MIXERLINE_LINEF_ACTIVE flag would not be set). If the 
waveform-audio output device is opened, then the audio line is considered active and the 
MIXERLINE_LINEF_ACTIVE flag will be set. A paused or starved waveform-audio output device is 
still considered active. In other words, if the waveform-audio output device is opened by an 
application regardless of whether data is being played, the associated audio line is considered active. 
If a line cannot be strictly defined as active, the mixer device will always set the 
MIXERLINE_LINEF_ACTIVE flag. 

dwUser

Instance data defined by the audio device for the line. This member is intended for custom mixer 
applications designed specifically for the mixer device returning this information. Other applications 
should ignore this data.

dwComponentType

Component type for this audio line. An application can use this information to display tailored graphics 
or to search for a particular component. If an application does not use component types, this member 
should be ignored. This member can be one of the following values:

MIXERLINE_COMPONENTTYPE_DST_DIGITAL

Audio line is a digital destination (for example, digital input to a DAT or CD audio device).

MIXERLINE_COMPONENTTYPE_DST_HEADPHONES

Audio line is an adjustable (gain and/or attenuation) destination intended to drive headphones. 
Most audio cards use the same audio destination line for speakers and headphones, in which case 
the mixer device simply uses the MIXERLINE_COMPONENTTYPE_DST_SPEAKERS type.

MIXERLINE_COMPONENTTYPE_DST_LINE

Audio line is a line level destination (for example, line level input from a CD audio device) that will 
be the final recording source for the analog-to-digital converter (ADC). Because most audio cards 
for personal computers provide some sort of gain for the recording audio source line, the mixer 
device will use the MIXERLINE_COMPONENTTYPE_DST_WAVEIN type.

MIXERLINE_COMPONENTTYPE_DST_MONITOR

Audio line is a destination used for a monitor.



MIXERLINE_COMPONENTTYPE_DST_SPEAKERS

Audio line is an adjustable (gain and/or attenuation) destination intended to drive speakers. This is 
the typical component type for the audio output of audio cards for personal computers.

MIXERLINE_COMPONENTTYPE_DST_TELEPHONE

Audio line is a destination that will be routed to a telephone line.

MIXERLINE_COMPONENTTYPE_DST_UNDEFINED

Audio line is a destination that cannot be defined by one of the standard component types. A mixer 
device is required to use this component type for line component types that have not been defined 
by Microsoft Corporation.

MIXERLINE_COMPONENTTYPE_DST_VOICEIN

Audio line is a destination that will be the final recording source for voice input. This component 
type is exactly like MIXERLINE_COMPONENTTYPE_DST_WAVEIN but is intended specifically for 
settings used during voice recording/recognition. Support for this line is optional for a mixer device. 
Many mixer devices provide only MIXERLINE_COMPONENTTYPE_DST_WAVEIN.

MIXERLINE_COMPONENTTYPE_DST_WAVEIN

Audio line is a destination that will be the final recording source for the waveform-audio input 
(ADC). This line typically provides some sort of gain or attenuation. This is the typical component 
type for the recording line of most audio cards for personal computers.

MIXERLINE_COMPONENTTYPE_SRC_ANALOG

Audio line is an analog source (for example, analog output from a video-cassette tape).

MIXERLINE_COMPONENTTYPE_SRC_AUXILIARY

Audio line is a source originating from the auxiliary audio line. This line type is intended as a 
source with gain or attenuation that can be routed to the 
MIXERLINE_COMPONENTTYPE_DST_SPEAKERS destination and/or recorded from the 
MIXERLINE_COMPONENTTYPE_DST_WAVEIN destination.

MIXERLINE_COMPONENTTYPE_SRC_COMPACTDISC

Audio line is a source originating from the output of an internal audio CD. This component type is 
provided for audio cards that provide an audio source line intended to be connected to an audio 
CD (or CD-ROM playing an audio CD).

MIXERLINE_COMPONENTTYPE_SRC_DIGITAL

Audio line is a digital source (for example, digital output from a DAT or audio CD).

MIXERLINE_COMPONENTTYPE_SRC_LINE

Audio line is a line-level source (for example, line-level input from an external stereo) that can be 
used as an optional recording source. Because most audio cards for personal computers provide 
some sort of gain for the recording source line, the mixer device will use the 
MIXERLINE_COMPONENTTYPE_SRC_AUXILIARY type.

MIXERLINE_COMPONENTTYPE_SRC_MICROPHONE

Audio line is a microphone recording source. Most audio cards for personal computers provide at 
least two types of recording sources: an auxiliary audio line and microphone input. A microphone 
audio line typically provides some sort of gain. Audio cards that use a single input for use with a 
microphone or auxiliary audio line should use the 
MIXERLINE_COMPONENTTYPE_SRC_MICROPHONE component type.

MIXERLINE_COMPONENTTYPE_SRC_PCSPEAKER



Audio line is a source originating from personal computer speaker. Several audio cards for 
personal computers provide the ability to mix what would typically be played on the internal 
speaker with the output of an audio card. Some audio cards support the ability to use this output as 
a recording source.

MIXERLINE_COMPONENTTYPE_SRC_SYNTHESIZER

Audio line is a source originating from the output of an internal synthesizer. Most audio cards for 
personal computers provide some sort of MIDI synthesizer (for example, an Adlib®-compatible or 
OPL/3 FM synthesizer).

MIXERLINE_COMPONENTTYPE_SRC_TELEPHONE

Audio line is a source originating from an incoming telephone line.

MIXERLINE_COMPONENTTYPE_SRC_UNDEFINED

Audio line is a source that cannot be defined by one of the standard component types. A mixer 
device is required to use this component type for line component types that have not been defined 
by Microsoft Corporation.

MIXERLINE_COMPONENTTYPE_SRC_WAVEOUT

Audio line is a source originating from the waveform-audio output digital-to-analog converter 
(DAC). Most audio cards for personal computers provide this component type as a source to the 
MIXERLINE_COMPONENTTYPE_DST_SPEAKERS destination. Some cards also allow this 
source to be routed to the MIXERLINE_COMPONENTTYPE_DST_WAVEIN destination.

cChannels

Maximum number of separate channels that can be manipulated independently for the audio line. The 
minimum value for this field is 1 because a line must have at least one channel. Most modern audio 
cards for personal computers are stereo devices; for them, the value of this member is 2.

Channel 1 is assumed to be the left channel; channel 2 is assumed to be the right channel. A 
multichannel line might have one or more uniform controls (controls that affect all channels of a line 
uniformly) associated with it. 

cConnections

Number of connections that are associated with the audio line. This member is used only for audio 
destination lines and specifies the number of audio source lines that are associated with it. This 
member is always zero for source lines and for destination lines that do not have any audio source 
lines associated with them.

cControls

Number of controls associated with the audio line. This value can be zero. If no controls are 
associated with the line, the line is likely to be a source that might be selected in a 
MIXERCONTROL_CONTROLTYPE_MUX or MIXERCONTROL_CONTROLTYPE_MIXER but allows 
no manipulation of the signal. 

szShortName

Short string that describes the audio mixer line specified in the dwLineID member. This description 
should be appropriate as a concise label for the line.

szName

String that describes the audio mixer line specified in the dwLineID member. This description should 
be appropriate as a complete description for the line.

Target

Target media information.

dwType



Target media device type associated with the audio line described in the MIXERLINE structure. An 
application must ignore target information for media device types it does not use. The following values 
are defined:

MIXERLINE_TARGETTYPE_AUX

The audio line described by the MIXERLINE structure is strictly bound to the auxiliary device 
detailed in the remaining members of the Target structure member of the MIXERLINE structure.

MIXERLINE_TARGETTYPE_MIDIIN

The audio line described by the MIXERLINE structure is strictly bound to the MIDI input device 
detailed in the remaining members of the Target structure member of the MIXERLINE structure.

MIXERLINE_TARGETTYPE_MIDIOUT

The audio line described by the MIXERLINE structure is strictly bound to the MIDI output device 
detailed in the remaining members of the Target structure member of the MIXERLINE structure.

MIXERLINE_TARGETTYPE_UNDEFINED

The audio line described by the MIXERLINE structure is not strictly bound to a defined media type. 
All remaining Target structure members of the MIXERLINE structure should be ignored. An 
application cannot use the MIXERLINE_TARGETTYPE_UNDEFINED target type when calling the 
mixerGetLineInfo function with the MIXER_GETLINEINFOF_TARGETTYPE flag.

MIXERLINE_TARGETTYPE_WAVEIN

The audio line described by the MIXERLINE structure is strictly bound to the waveform-audio input 
device detailed in the remaining members of the Target structure member of the MIXERLINE 
structure.

MIXERLINE_TARGETTYPE_WAVEOUT

The audio line described by the MIXERLINE structure is strictly bound to the waveform-audio 
output device detailed in the remaining members of the Target structure member of the 
MIXERLINE structure.

dwDeviceID

Current device identifier of the target media device when the dwType member is a target type other 
than MIXERLINE_TARGETTYPE_UNDEFINED. This identifier is identical to the current media device 
index of the associated media device. When calling the mixerGetLineInfo function with the 
MIXER_GETLINEINFOF_TARGETTYPE flag, this member is ignored on input and will be returned to 
the caller by the audio mixer manager.

wMid

Manufacturer identifier of the target media device when the dwType member is a target type other 
than MIXERLINE_TARGETTYPE_UNDEFINED. This identifier is identical to the wMid member of the 
device-capabilities structure for the associated media. Manufacturer identifiers are defined in 
Manufacturer and Product Identifiers.

wPid

Product identifier of the target media device when the dwType member is a target type other than 
MIXERLINE_TARGETTYPE_UNDEFINED. This identifier is identical to the wPid member of the 
device-capabilities structure for the associated media. Product identifiers are defined in Manufacturer 
and Product Identifiers.

vDriverVersion

Driver version of the target media device when the dwType member is a target type other than 
MIXERLINE_TARGETTYPE_UNDEFINED. This version is identical to the vDriverVersion member of 
the device-capabilities structure for the associated media.



szPname

Product name of the target media device when the dwType member is a target type other than 
MIXERLINE_TARGETTYPE_UNDEFINED. This name is identical to the szPname member of the 
device-capabilities structure for the associated media.

 

See Also
MIXERCAPS, mixerGetDevCaps, mixerGetLineInfo 



MIXERLINECONTROLS      

  

The MIXERLINECONTROLS structure contains information about the controls of an audio line.

typedef struct { 
    DWORD cbStruct; 
    DWORD dwLineID; 
    union { 
        DWORD dwControlID; 
        DWORD dwControlType; 
    }; 
    DWORD          cControls; 
    DWORD          cbmxctrl; 
    LPMIXERCONTROL pamxctrl; 
} MIXERLINECONTROLS; 
 

Members
cbStruct

Size, in bytes, of the MIXERLINECONTROLS structure. This member must be initialized before 
calling the mixerGetLineControls function. The size specified in this member must be large enough 
to contain the MIXERLINECONTROLS structure. When mixerGetLineControls returns, this member 
contains the actual size of the information returned. The returned information will not exceed the 
requested size, nor will it be smaller than the MIXERLINECONTROLS structure.

dwLineID

Line identifier for which controls are being queried. This member is not used if the 
MIXER_GETLINECONTROLSF_ONEBYID flag is specified for the mixerGetLineControls function, 
but the mixer device still returns this member in this case. The dwControlID and dwControlType 
members are not used when MIXER_GETLINECONTROLSF_ALL is specified.

dwControlID

Control identifier of the desired control. This member is used with the 
MIXER_GETLINECONTROLSF_ONEBYID flag for the mixerGetLineControls function to retrieve 
the control information of the specified control. Note that the dwLineID member of the 
MIXERLINECONTROLS structure will be returned by the mixer device and is not required as an input 
parameter. This member overlaps with the dwControlType member and cannot be used in 
conjunction with the MIXER_GETLINECONTROLSF_ONEBYTYPE query type.

dwControlType

Class of the desired control. This member is used with the 
MIXER_GETLINECONTROLSF_ONEBYTYPE flag for the mixerGetLineControls function to 
retrieve the first control of the specified class on the line specified by the dwLineID member of the 
MIXERLINECONTROLS structure. This member overlaps with the dwControlID member and cannot 
be used in conjunction with the MIXER_GETLINECONTROLSF_ONEBYID query type.

cControls

Number of MIXERCONTROL structure elements to retrieve. This member must be initialized by the 
application before calling the mixerGetLineControls function. This member can be 1 only if 
MIXER_GETLINECONTROLSF_ONEBYID or MIXER_GETLINECONTROLSF_ONEBYTYPE is 
specified or the value returned in the cControls member of the MIXERLINE structure returned for an 
audio line. This member cannot be zero. If an audio line specifies that it has no controls, 



mixerGetLineControls should not be called.

cbmxctrl

Size, in bytes, of a single MIXERCONTROL structure. The size specified in this member must be at 
least large enough to contain the base MIXERCONTROL structure. The total size, in bytes, required 
for the buffer pointed to by the pamxctrl member is the product of the cbmxctrl and cControls 
members of the MIXERLINECONTROLS structure.

pamxctrl

Address of one or more MIXERCONTROL structures to receive the properties of the requested audio 
line controls. This member cannot be NULL and must be initialized before calling the 
mixerGetLineControls function. Each element of the array of controls must be at least large enough 
to contain a base MIXERCONTROL structure. The cbmxctrl member must specify the size, in bytes, 
of each element in this array. No initialization of the buffer pointed to by this member is required by 
the application. All members are filled in by the mixer device (including the cbStruct member of each 
MIXERCONTROL structure) upon returning successfully.

 

See Also
MIXERCONTROL, MIXERLINE, mixerGetLineControls 



MMCKINFO      

  

The MMCKINFO structure contains information about a chunk in a RIFF file.

typedef struct { 
    FOURCC ckid; 
    DWORD  cksize; 
    FOURCC fccType; 
    DWORD  dwDataOffset; 
    DWORD  dwFlags; 
} MMCKINFO; 
 

Members
ckid

Chunk identifier.

cksize

Size, in bytes, of the data member of the chunk. The size of the data member does not include the 4-
byte chunk identifier, the 4-byte chunk size, or the optional pad byte at the end of the data member.

fccType

Form type for "RIFF" chunks or the list type for "LIST" chunks.

dwDataOffset

File offset of the beginning of the chunk's data member, relative to the beginning of the file.

dwFlags

Flags specifying additional information about the chunk. It can be zero or the following flag:

MMIO_DIRTY

The length of the chunk might have changed and should be updated by the mmioAscend function. 
This flag is set when a chunk is created by using the mmioCreateChunk function.

 

See Also
mmioAscend, mmioCreateChunk 



MMIOINFO      

  

The MMIOINFO structure contains the current state of a file opened by using the mmioOpen function.

typedef struct { 
    DWORD      dwFlags; 
    FOURCC     fccIOProc; 
    LPMMIOPROC pIOProc; 
    UINT       wErrorRet; 
    HTASK      hTask; 
    LONG       cchBuffer; 
    HPSTR      pchBuffer; 
    HPSTR      pchNext; 
    HPSTR      pchEndRead; 
    HPSTR      pchEndWrite; 
    LONG       lBufOffset; 
    LONG       lDiskOffset; 
    DWORD      adwInfo[4]; 
    DWORD      dwReserved1; 
    DWORD      dwReserved2; 
    HMMIO      hmmio; 
} MMIOINFO; 
 

Members
dwFlags

Flags specifying how a file was opened. The following values are defined:

MMIO_ALLOCBUF

File's I/O buffer was allocated by the mmioOpen or mmioSetBuffer function.

MMIO_CREATE

The mmioOpen function was directed to create the file (or truncate it to zero length if it already 
existed).

MMIO_DIRTY

The I/O buffer has been modified.

MMIO_EXIST

Checks for the existence of the file.

MMIO_GETTEMP

A temporary name was retrieved by the mmioOpen function.

MMIO_PARSE

The new file's path is returned.

The following values may be set when the file is opened in share mode (identified by using the 
MMIO_SHAREMODE bit mask):

MMIO_COMPAT

File was opened with compatibility mode, allowing any process on a given machine to open the file 



any number of times.

MMIO_DENYNONE

Other processes are not denied read or write access to the file.

MMIO_DENYREAD

Other processes are denied read access to the file.

MMIO_DENYWRITE

Other processes are denied write access to the file.

MMIO_EXCLUSIVE

Other processes are denied read and write access to the file.

The following values may be set when the file is opened in read/write mode (identified by using the 
MMIO_RWMODE bit mask):

MMIO_READ

File was opened only for reading.

MMIO_READWRITE

File was opened for reading and writing.

MMIO_WRITE

File was opened only for writing.

fccIOProc

Four-character code identifying the file's I/O procedure. If the I/O procedure is not an installed I/O 
procedure, this member is NULL.

pIOProc

Address of file's IO procedure.

wErrorRet

Extended error value from the mmioOpen function if it returns NULL. This member is not used to 
return extended error information from any other functions. 

hTask

Handle of a local I/O procedure. Media Control Interface (MCI) devices that perform file I/O in the 
background and need an I/O procedure can locate a local I/O procedure with this handle.

cchBuffer

Size, in bytes, of the file's I/O buffer. If the file does not have an I/O buffer, this member is zero.

pchBuffer

Address of the file's I/O buffer. If the file is unbuffered, this member is NULL.

pchNext

Address of the next location in the I/O buffer to be read or written. If no more bytes can be read 
without calling the mmioAdvance or mmioRead function, this member points to the pchEndRead 
member. If no more bytes can be written without calling the mmioAdvance or mmioWrite function, 
this member points to the pchEndWrite member.

pchEndRead

Address of the location that is 1 byte past the last location in the buffer that can be read.



pchEndWrite

Address of the location that is 1 byte past the last location in the buffer that can be written.

lBufOffset

Reserved.

lDiskOffset

Current file position, which is an offset, in bytes, from the beginning of the file. I/O procedures are 
responsible for maintaining this member.

adwInfo

State information maintained by the I/O procedure. I/O procedures can also use these members to 
transfer information from the application to the I/O procedure when the application opens a file.

dwReserved1

Reserved.

dwReserved2

Reserved.

hmmio

Handle of the open file, as returned by the mmioOpen function. I/O procedures can use this handle 
when calling other multimedia file I/O functions.

 

See Also
mmioAdvance, mmioOpen, mmioRead, mmioSetBuffer, mmioWrite 



MMTIME      

  

The MMTIME structure contains timing information for different types of multimedia data.

typedef struct mmtime_tag { 
    UINT wType; 
    union { 
        DWORD ms; 
        DWORD sample; 
        DWORD cb; 
        DWORD ticks; 
        struct { 
            BYTE hour; 
            BYTE min; 
            BYTE sec; 
            BYTE frame; 
            BYTE fps; 
            BYTE dummy; 
            BYTE pad[2] 
        } smpte; 
        struct { 
            DWORD songptrpos; 
        } midi; 
    } u; 
} MMTIME;
 

Members
wType

Time format. It can be one of the following values:

TIME_BYTES Current byte offset from beginning of the file.

TIME_MIDI MIDI time.

TIME_MS Time in milliseconds.

TIME_SAMPLES Number of waveform-audio samples.

TIME_SMPTE SMPTE (Society of Motion Picture and Television 
Engineers) time.

TIME_TICKS Ticks within a MIDI stream.
 

ms

Number of milliseconds. Used when wType is TIME_MS.

sample

Number of samples. Used when wType is TIME_SAMPLES.

cb

Byte count. Used when wType is TIME_BYTES.

ticks



Ticks in MIDI stream. Used when wType is TIME_TICKS.

smpte

SMPTE time structure. Used when wType is TIME_SMPTE.

songptrpos

Song pointer position.

midi

MIDI time structure. Used when wType is TIME_MIDI.

hour

Hours.

min

Minutes.

sec

Seconds.

frame

Frames.

fps

Frames per second (24, 25, 29 (30 drop), or 30). 

dummy

Dummy byte for alignment.

pad

Padding.
 



PCMWAVEFORMAT      

  

The PCMWAVEFORMAT structure describes the data format for PCM waveform-audio data. This 
structure has been superseded by the WAVEFORMATEX structure.

typedef struct { 
    WAVEFORMAT wf; 
    WORD       wBitsPerSample; 
} PCMWAVEFORMAT; 
 

Members
wf

A WAVEFORMAT structure containing general information about the format of the data.

wBitsPerSample

Number of bits per sample.
 

See Also
WAVEFORMAT, WAVEFORMATEX 



TIMECAPS      

  

The TIMERCAPS structure contains information about the resolution of the timer.

typedef struct { 
    UINT wPeriodMin; 
    UINT wPeriodMax; 
} TIMECAPS; 
 

Members
wPeriodMin

Minimum supported resolution.

wPeriodMax

Maximum supported resolution.
 



WAVEFILTER      

  

The WAVEFILTER structure defines a filter for waveform-audio data. Only filter information common to all 
waveform-audio data filters is included in this structure. For filters that require additional information, this 
structure is included as the first member in another structure along with the additional information.

typedef struct { 
    DWORD cbStruct; 
    DWORD dwFilterTag; 
    DWORD fdwFilter; 
    DWORD dwReserved[5]; 
} WAVEFILTER; 
 

Members
cbStruct

Size, in bytes, of the WAVEFILTER structure. The size specified in this member must be large 
enough to contain the base WAVEFILTER structure.

dwFilterTag

Waveform-audio filter type. Filter tags are registered with Microsoft Corporation for various filter 
algorithms. 

fdwFilter

Flags for the dwFilterTag member. The flags defined for this member are universal to all filters. 
Currently, no flags are defined.

dwReserved

Reserved for system use; should not be examined or modified by an application.
 



WAVEFORMAT      

  

The WAVEFORMAT structure describes the format of waveform-audio data. Only format information 
common to all waveform-audio data formats is included in this structure. This structure has been 
superseded by the WAVEFORMATEX structure.

typedef struct { 
    WORD  wFormatTag; 
    WORD  nChannels; 
    DWORD nSamplesPerSec; 
    DWORD nAvgBytesPerSec; 
    WORD  nBlockAlign; 
} WAVEFORMAT; 
 

Members
wFormatTag

Format type. The following type is defined:

WAVE_FORMAT_PCM

Waveform-audio data is PCM.

nChannels

Number of channels in the waveform-audio data. Mono data uses one channel and stereo data uses 
two channels.

nSamplesPerSec

Sample rate, in samples per second.

nAvgBytesPerSec

Required average data transfer rate, in bytes per second. For example, 16-bit stereo at 44.1 kHz has 
an average data rate of 176,400 bytes per second (2 channels    ¾    2 bytes per sample per channel    
¾    44,100 samples per second).

nBlockAlign

Block alignment, in bytes. The block alignment is the minimum atomic unit of data. For PCM data, the 
block alignment is the number of bytes used by a single sample, including data for both channels if 
the data is stereo. For example, the block alignment for 16-bit stereo PCM is 4 bytes (2 channels    ¾  
2 bytes per sample). 

 

Remarks
For formats that require additional information, this structure is included as a member in another structure 
along with the additional information.

See Also
WAVEFORMATEX 



WAVEFORMATEX      

  

The WAVEFORMATEX structure defines the format of waveform-audio data. Only format information 
common to all waveform-audio data formats is included in this structure. For formats that require 
additional information, this structure is included as the first member in another structure, along with the 
additional information.

typedef struct { 
    WORD  wFormatTag; 
    WORD  nChannels; 
    DWORD nSamplesPerSec; 
    DWORD nAvgBytesPerSec; 
    WORD  nBlockAlign; 
    WORD  wBitsPerSample; 
    WORD  cbSize; 
} WAVEFORMATEX; 
 

Members
wFormatTag

Waveform-audio format type. Format tags are registered with Microsoft Corporation for many 
compression algorithms. A complete list of format tags can be found in the MMREG.H header file.

nChannels

Number of channels in the waveform-audio data. Monaural data uses one channel and stereo data 
uses two channels.

nSamplesPerSec

Sample rate, in samples per second (hertz), that each channel should be played or recorded. If 
wFormatTag is WAVE_FORMAT_PCM, then common values for nSamplesPerSec are 8.0 kHz, 
11.025 kHz, 22.05 kHz, and 44.1 kHz. For non-PCM formats, this member must be computed 
according to the manufacturer's specification of the format tag.

nAvgBytesPerSec

Required average data-transfer rate, in bytes per second, for the format tag. If wFormatTag is 
WAVE_FORMAT_PCM, nAvgBytesPerSec should be equal to the product of nSamplesPerSec and 
nBlockAlign. For non-PCM formats, this member must be computed according to the manufacturer's 
specification of the format tag.

Playback and record software can estimate buffer sizes by using the nAvgBytesPerSec member.

nBlockAlign

Block alignment, in bytes. The block alignment is the minimum atomic unit of data for the 
wFormatTag format type. If wFormatTag is WAVE_FORMAT_PCM, nBlockAlign should be equal to 
the product of nChannels and wBitsPerSample divided by 8 (bits per byte). For non-PCM formats, 
this member must be computed according to the manufacturer's specification of the format tag.

Playback and record software must process a multiple of nBlockAlign bytes of data at a time. Data 
written and read from a device must always start at the beginning of a block. For example, it is illegal 
to start playback of PCM data in the middle of a sample (that is, on a non-block-aligned boundary).

wBitsPerSample

Bits per sample for the wFormatTag format type. If wFormatTag is WAVE_FORMAT_PCM, then 



wBitsPerSample should be equal to 8 or 16. For non-PCM formats, this member must be set 
according to the manufacturer's specification of the format tag. Note that some compression schemes 
cannot define a value for wBitsPerSample, so this member can be zero.

cbSize

Size, in bytes, of extra format information appended to the end of the WAVEFORMATEX structure. 
This information can be used by non-PCM formats to store extra attributes for the wFormatTag. If no 
extra information is required by the wFormatTag, this member must be set to zero. Note that for 
WAVE_FORMAT_PCM formats (and only WAVE_FORMAT_PCM formats), this member is ignored.

 

Remarks
An example of a format that uses extra information is the Microsoft Adaptive Delta Pulse Code Modulation 
(MS-ADPCM) format. The wFormatTag for MS-ADPCM is WAVE_FORMAT_ADPCM. The cbSize 
member will typically be set to 32. The extra information stored for WAVE_FORMAT_ADPCM is 
coefficient pairs required for encoding and decoding the waveform-audio data.



WAVEHDR      

  

The WAVEHDR structure defines the header used to identify a waveform-audio buffer.

typedef struct { 
    LPSTR  lpData; 
    DWORD  dwBufferLength; 
    DWORD  dwBytesRecorded; 
    DWORD  dwUser; 
    DWORD  dwFlags; 
    DWORD  dwLoops; 
    struct wavehdr_tag * lpNext; 
    DWORD  reserved; 
} WAVEHDR; 
 

Members
lpData

Address of the waveform buffer.

dwBufferLength

Length, in bytes, of the buffer.

dwBytesRecorded

When the header is used in input, this member specifies how much data is in the buffer.

dwUser

User data.

dwFlags

Flags supplying information about the buffer. The following values are defined:

WHDR_BEGINLOOP

This buffer is the first buffer in a loop.    This flag is used only with output buffers.

WHDR_DONE

Set by the device driver to indicate that it is finished with the buffer and is returning it to the 
application.

WHDR_ENDLOOP

This buffer is the last buffer in a loop.    This flag is used only with output buffers.

WHDR_INQUEUE

Set by Windows to indicate that the buffer is queued for playback.

WHDR_PREPARED

Set by Windows to indicate that the buffer has been prepared with the waveInPrepareHeader or 
waveOutPrepareHeader function.

dwLoops

Number of times to play the loop. This member is used only with output buffers.



wavehdr_tag

Reserved.

reserved

Reserved.
 

Remarks
Use the WHDR_BEGINLOOP and WHDR_ENDLOOP flags in the dwFlags member to specify the 
beginning and ending data blocks for looping. To loop on a single block, specify both flags for the same 
block. Use the dwLoops member in the WAVEHDR structure for the first block in the loop to specify the 
number of times to play the loop.

The lpData, dwBufferLength, and dwFlags members must be set before calling the 
waveInPrepareHeader or waveOutPrepareHeader function. (For either function, the dwFlags member 
must be set to zero.)

See Also
waveInPrepareHeader, waveOutPrepareHeader 



WAVEINCAPS      

  

The WAVEINCAPS structure describes the capabilities of a waveform-audio input device.

typedef struct { 
    WORD      wMid; 
    WORD      wPid; 
    MMVERSION vDriverVersion; 
    CHAR      szPname[MAXPNAMELEN]; 
    DWORD     dwFormats; 
    WORD      wChannels; 
    WORD      wReserved1; 
} WAVEINCAPS; 
 

Members
wMid

Manufacturer identifier for the device driver for the waveform-audio input device. Manufacturer 
identifiers are defined in Manufacturer and Product Identifiers.

wPid

Product identifier for the waveform-audio input device. Product identifiers are defined in Manufacturer 
and Product Identifiers.

vDriverVersion

Version number of the device driver for the waveform-audio input device. The high-order byte is the 
major version number, and the low-order byte is the minor version number.

szPname

Product name in a null-terminated string.

dwFormats

Standard formats that are supported. Can be a combination of the following:

WAVE_FORMAT_1M08 11.025 kHz, mono, 8-bit

WAVE_FORMAT_1M16 11.025 kHz, mono, 16-bit

WAVE_FORMAT_1S08 11.025 kHz, stereo, 8-bit

WAVE_FORMAT_1S16 11.025 kHz, stereo, 16-bit

WAVE_FORMAT_2M08 22.05 kHz, mono, 8-bit

WAVE_FORMAT_2M16 22.05 kHz, mono, 16-bit

WAVE_FORMAT_2S08 22.05 kHz, stereo, 8-bit

WAVE_FORMAT_2S16 22.05 kHz, stereo, 16-bit

WAVE_FORMAT_4M08 44.1 kHz, mono, 8-bit

WAVE_FORMAT_4M16 44.1 kHz, mono, 16-bit

WAVE_FORMAT_4S08 44.1 kHz, stereo, 8-bit

WAVE_FORMAT_4S16 44.1 kHz, stereo, 16-bit
 

wChannels



Number specifying whether the device supports mono (1) or stereo (2) input.

wReserved1

Padding.
 



WAVEOUTCAPS      

  

The WAVEOUTCAPS structure describes the capabilities of a waveform-audio output device.

typedef struct { 
    WORD      wMid; 
    WORD      wPid; 
    MMVERSION vDriverVersion; 
    CHAR      szPname[MAXPNAMELEN]; 
    DWORD     dwFormats; 
    WORD      wChannels; 
    WORD      wReserved1; 
    DWORD     dwSupport; 
} WAVEOUTCAPS; 
 

Members
wMid

Manufacturer identifier for the device driver for the device. Manufacturer identifiers are defined in 
Manufacturer and Product Identifiers.

wPid

Product identifier for the device. Product identifiers are defined in Manufacturer and Product 
Identifiers.

vDriverVersion

Version number of the device driver for the device. The high-order byte is the major version number, 
and the low-order byte is the minor version number.

szPname

Product name in a null-terminated string.

dwFormats

Standard formats that are supported. Can be a combination of the following:

WAVE_FORMAT_1M08 11.025 kHz, mono, 8-bit

WAVE_FORMAT_1M16 11.025 kHz, mono, 16-bit

WAVE_FORMAT_1S08 11.025 kHz, stereo, 8-bit

WAVE_FORMAT_1S16 11.025 kHz, stereo, 16-bit

WAVE_FORMAT_2M08 22.05 kHz, mono, 8-bit

WAVE_FORMAT_2M16 22.05 kHz, mono, 16-bit

WAVE_FORMAT_2S08 22.05 kHz, stereo, 8-bit

WAVE_FORMAT_2S16 22.05 kHz, stereo, 16-bit

WAVE_FORMAT_4M08 44.1 kHz, mono, 8-bit

WAVE_FORMAT_4M16 44.1 kHz, mono, 16-bit

WAVE_FORMAT_4S08 44.1 kHz, stereo, 8-bit

WAVE_FORMAT_4S16 44.1 kHz, stereo, 16-bit
 

wChannels



Number specifying whether the device supports mono (1) or stereo (2) output.

wReserved1

Packing.

dwSupport

Optional functionality supported by the device. The following values are defined:

WAVECAPS_LRVOLUME Supports separate left and right 
volume control.

WAVECAPS_PITCH Supports pitch control.

WAVECAPS_PLAYBACKR
ATE

Supports playback rate control.

WAVECAPS_SYNC The driver is synchronous and will 
block while playing a buffer.

WAVECAPS_VOLUME Supports volume control.

WAVECAPS_SAMPLEACC
URATE

Returns sample-accurate position 
information.

 

Remarks
If a device supports volume changes, the WAVECAPS_VOLUME flag will be set for the dwSupport 
member. If a device supports separate volume changes on the left and right channels, both the 
WAVECAPS_VOLUME and the WAVECAPS_LRVOLUME flags will be set for this member.

 

 



ICM_ABOUT      

  

The ICM_ABOUT message notifies a video compression driver to display its About dialog box or queries 
a video compression driver to determine if it has an About dialog box. You can send this message 
explicitly or by using the ICAbout macro.

ICM_ABOUT 
wParam = (DWORD) (UINT) hwnd; 
lParam = 0; 
 

Parameters
hwnd

Handle of the parent window of the displayed dialog box.

You can also determine if a driver has an About dialog box by specifying -1 in this parameter, as in the 
ICQueryAbout macro. The driver returns ICERR_OK if it has an About dialog box or 
ICERR_UNSUPPORTED otherwise.

 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.

See Also
ICAbout, ICQueryAbout



ICM_COMPRESS      

  

The ICM_COMPRESS message notifies a video compression driver to compress a frame of data into an 
application-defined buffer. 

ICM_COMPRESS 
wParam = (DWORD) (LPVOID) &icc; 
lParam = sizeof(ICCOMPRESS); 
 

Parameters
icc

Address of an ICCOMPRESS structure. The following members of this structure specify the 
compression parameters: lpbiInput, lpInput, lpbiOutput, lpOutput, lpbiPrev, lpPrev, lpckid, 
lpdwFlags, dwFrameSize, and dwQuality.

The driver should also use the biSizeImage member of the BITMAPINFOHEADER structure 
associated with lpbiOutput of ICCOMPRESS to return the size of the compressed frame.

lParam

Size, in bytes, of ICCOMPRESS.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

See Also
BITMAPINFOHEADER, ICCOMPRESS



ICM_COMPRESS_BEGIN      

  

The ICM_COMPRESS_BEGIN message notifies a video compression driver to prepare to compress 
data. You can send this message explicitly or by using the ICCompressBegin macro.

ICM_COMPRESS_BEGIN 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = (DWORD) (LPVOID) lpbiOutput; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format.
 

Return Values
Returns ICERR_OK if the driver supports the specified compression or ICERR_BADFORMAT if the input 
or output format is not supported.

Remarks
The driver should allocate and initialize any tables or memory that it needs for compressing the data 
formats when it receives the ICM_COMPRESS message.

VCM saves the settings of the most recent ICM_COMPRESS_BEGIN message. The 
ICM_COMPRESS_BEGIN and ICM_COMPRESS_END messages do not nest. If your driver receives 
ICM_COMPRESS_BEGIN before compression is stopped with ICM_COMPRESS_END, it should restart 
compression with new parameters. 

See Also
BITMAPINFO, ICM_COMPRESS, ICM_COMPRESS_END, ICCompressBegin



ICM_COMPRESS_END      

  

The ICM_COMPRESS_END message notifies a video compression driver to end compression and free 
resources allocated for compression. You can send this message explicitly or by using the 
ICCompressEnd macro.

ICM_COMPRESS_END 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
VCM saves the settings of the most recent ICM_COMPRESS_BEGIN message. 
ICM_COMPRESS_BEGIN and ICM_COMPRESS_END do not nest. If your driver receives 
ICM_COMPRESS_BEGIN before compression is stopped with ICM_COMPRESS_END, it should restart 
compression with new parameters.

See Also
ICCompressEnd, ICM_COMPRESS_BEGIN



ICM_COMPRESS_FRAMES_INFO      

  

The ICM_COMPRESS_FRAMES_INFO message notifies a compression driver to set the parameters for 
the pending compression. 

ICM_COMPRESS_FRAMES_INFO 
wParam = (DWORD) (LPVOID) &icf; 
lParam = sizeof(ICCOMPRESSFRAMES); 
 

Parameters
icf

Address of an ICCOMPRESSFRAMES structure. The GetData and PutData members of this 
structure are not used with this message.

lParam

Size, in bytes, of ICCOMPRESSFRAMES.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
A compressor can use this message to determine how much space to allocate for each frame while 
compressing.

See Also
ICCOMPRESSFRAMES



ICM_COMPRESS_GET_FORMAT      

  

The ICM_COMPRESS_GET_FORMAT message requests the output format of the compressed data from 
a video compression driver. You can send this message explicitly or by using the ICCompressGetFormat 
macro.

ICM_COMPRESS_GET_FORMAT 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = (DWORD) (LPVOID) lpbiOutput; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure to contain the output format. You can specify zero for this 
parameter to request only the size of the output format, as in the ICCompressGetFormatSize macro.

 

Return Values
If lpbiOutput is zero, returns the size of the structure. 

If lpbiOutput is nonzero, returns ICERR_OK if successful or an error otherwise.

Remarks
If lpbiOutput is nonzero, the driver should fill the BITMAPINFO structure with the default output format 
corresponding to the input format specified for lpbiInput. If the compressor can produce several formats, 
the default format should be the one that preserves the greatest amount of information.

See Also
BITMAPINFO, ICCompressGetFormat, ICCompressGetFormatSize



ICM_COMPRESS_GET_SIZE      

  

The ICM_COMPRESS_GET_SIZE message requests that the video compression driver supply the 
maximum size of one frame of data when compressed into the specified output format. You can send this 
message explicitly or by using the ICCompressGetSize macro.

ICM_COMPRESS_GET_SIZE 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = (DWORD) (LPVOID) lpbiOutput; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format.
 

Return Values
Returns the maximum number of bytes a single compressed frame can occupy.

Remarks
Typically, applications send this message to determine how large a buffer to allocate for the compressed 
frame.

The driver should calculate the size of the largest possible frame based on the input and output formats.

See Also
BITMAPINFO, ICCompressGetSize



ICM_COMPRESS_QUERY      

  

The ICM_COMPRESS_QUERY message queries a video compression driver to determine if it supports a 
specific input format or if it can compress a specific input format to a specific output format. You can send 
this message explicitly or by using the ICCompressQuery macro.

ICM_COMPRESS_QUERY 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = (DWORD) (LPVOID) lpbiOutput; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format. You can specify zero for this 
parameter to indicate any output format is acceptable.

 

Return Values
Returns ICERR_OK if the specified compression is supported or ICERR_BADFORMAT otherwise.

Remarks
When a driver receives this message, it should examine the BITMAPINFO structure associated with 
lpbiInput to determine if it can compress the input format.

See Also
BITMAPINFO, ICCompressQuery



ICM_CONFIGURE      

  

The ICM_CONFIGURE message notifies a video compression driver to display its configuration dialog 
box or queries a video compression driver to determine if it has a configuration dialog box. You can send 
this message explicitly or by using the ICConfigure macro.

ICM_CONFIGURE 
wParam = (DWORD) (UINT) hwnd; 
lParam = 0; 
 

Parameters
hwnd

Handle of the parent window of the displayed dialog box.

You can determine if a driver has a configuration dialog box by specifying 
 - 1 in this parameter, as in the ICQueryConfigure macro. 

 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.

Remarks
This message is different from the DRV_CONFIGURE message used for hardware configuration. The 
dialog box for this message should let the user set and edit the internal state referenced by the 
ICM_GETSTATE and ICM_SETSTATE messages. For example, this dialog box can let the user change 
parameters affecting the quality level and other similar compression options.

See Also
DRV_CONFIGURE, ICConfigure, ICM_GETSTATE, ICM_SETSTATE, ICQueryConfigure 



ICM_DECOMPRESS      

  

The ICM_DECOMPRESS message notifies a video decompression driver to decompress a frame of data 
into an application-defined buffer.

ICM_DECOMPRESS 
wParam = (DWORD) (LPVOID) &icd; 
lParam = sizeof(ICDECOMPRESS); 
 

Parameters
icd

Address of an ICDECOMPRESS structure.

lParam

Size, in bytes, of ICDECOMPRESS.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
If you want the driver to decompress data directly to the screen, send the ICM_DRAW message.

The driver returns an error if this message is received before the ICM_DECOMPRESS_BEGIN message.

See Also
ICDECOMPRESS, ICM_DECOMPRESS_BEGIN, ICM_DRAW 



ICM_DECOMPRESS_BEGIN      

  

The ICM_DECOMPRESS_BEGIN message notifies a video decompression driver to prepare to 
decompress data. You can send this message explicitly or by using the ICDecompressBegin macro. 

ICM_DECOMPRESS_BEGIN 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = (DWORD) (LPVOID) lpbiOutput; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format.
 

Return Values
Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT otherwise.

Remarks
When the driver receives this message, it should allocate buffers and do any time-consuming operations 
so that it can process ICM_DECOMPRESS messages efficiently.

If you want the driver to decompress data directly to the screen, send the ICM_DRAW message.

The ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END messages do not nest. If your driver 
receives ICM_DECOMPRESSd_BEGIN before decompression is stopped with 
ICM_DECOMPRESS_END, it should restart decompression with new parameters.

See Also
BITMAPINFO, ICM_DECOMPRESS, ICDecompressBegin, ICM_DECOMPRESS_END, ICM_DRAW 



ICM_DECOMPRESS_END      

  

The ICM_DECOMPRESS_END message notifies a video decompression driver to end decompression 
and free resources allocated for decompression. You can send this message explicitly or by using the 
ICDecompressEnd macro.

ICM_DECOMPRESS_END 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
The driver should free any resources allocated for the ICM_DECOMPRESS_BEGIN message.

ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END do not nest. If your driver receives 
ICM_DECOMPRESS_BEGIN before decompression is stopped with ICM_DECOMPRESS_END, it 
should restart decompression with new parameters.

See Also
ICDecompressEnd, ICM_DECOMPRESS_BEGIN



ICM_DECOMPRESS_GET_FORMAT      

  

The ICM_DECOMPRESS_GET_FORMAT message requests the output format of the decompressed 
data from a video decompression driver. You can send this message explicitly or by using the 
ICDecompressGetFormat macro.

ICM_DECOMPRESS_GET_FORMAT 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = (DWORD) (LPVOID) lpbiOutput; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure to contain the output format. You can specify zero to request 
only the size of the output format, as in the ICDecompressGetFormatSize macro.

 

Return Values
If lpbiOutput is zero, returns the size of the structure. 

If lpbiOutput is nonzero, returns ICERR_OK if successful or an error otherwise.

Remarks
If lpbiOutput is nonzero, the driver should fill the BITMAPINFO structure with the default output format 
corresponding to the input format specified for lpbiInput. If the compressor can produce several formats, 
the default format should be the one that preserves the greatest amount of information.

See Also
BITMAPINFO, ICDecompressGetFormat, ICDecompressGetFormatSize



ICM_DECOMPRESS_GET_PALETTE      

  

The ICM_DECOMPRESS_GET_PALETTE message requests that the video decompression driver supply 
the color table of the output BITMAPINFOHEADER structure. You can send this message explicitly or by 
using the ICDecompressGetPalette macro.

ICM_DECOMPRESS_GET_PALETTE 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = (DWORD) (LPVOID) lpbiOutput; 
 

Parameters
lpbiInput

Address of a BITMAPINFOHEADER structure containing the input format.

lpbiOutput

Address of a BITMAPINFOHEADER structure to contain the color table. The space reserved for the 
color table is always at least 256 colors. You can specify zero for this parameter to return only the size 
of the color table.

 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
If lpbiOutput is nonzero, the driver sets the biClrUsed member of BITMAPINFOHEADER to the number 
of colors in the color table. The driver fills the bmiColors members of BITMAPINFO with the actual 
colors.

The driver should support this message only if it uses a palette other than the one specified in the input 
format.

See Also
BITMAPINFO, BITMAPINFOHEADER, ICDecompressGetPalette



ICM_DECOMPRESS_QUERY      

  

The ICM_DECOMPRESS_QUERY message queries a video decompression driver to determine if it 
supports a specific input format or if it can decompress a specific input format to a specific output format. 
You can send this message explicitly or by using the ICDecompressQuery macro.

ICM_DECOMPRESS_QUERY 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = (DWORD) (LPVOID) lpbiOutput; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format. You can specify zero for this 
parameter to indicate any output format is acceptable.

 

Return Values
Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT otherwise.

See Also
BITMAPINFO, ICDecompressQuery



ICM_DECOMPRESS_SET_PALETTE      

  

The ICM_DECOMPRESS_SET_PALETTE message specifies a palette for a video decompression driver 
to use if it is decompressing to a format that uses a palette. You can send this message explicitly or by 
using the ICDecompressSetPalette macro.

ICM_DECOMPRESS_SET_PALETTE 
wParam = (DWORD) (LPVOID) lpbiPalette; 
lParam = 0; 
 

Parameters
lpbiPalette

Address of a BITMAPINFOHEADER structure whose color table contains the colors that should be 
used if possible. You can specify zero to use the default set of output colors.

 

Return Values
Returns ICERR_OK if the decompression driver can precisely decompress images to the suggested 
palette using the set of colors as they are arranged in the palette. Returns ICERR_UNSUPPORTED 
otherwise.

Remarks
This message should not affect decompression already in progress; rather, colors passed using this 
message should be returned in response to future ICM_DECOMPRESS_GET_FORMAT and 
ICM_DECOMPRESS_GET_PALETTE messages. Colors are sent back to the decompression driver in a 
future ICM_DECOMPRESS_BEGIN message.

This message is used primarily when a driver decompresses images to the screen and another 
application that uses a palette is in the foreground, forcing the decompression driver to adapt to a foreign 
set of colors.

See Also
BITMAPINFOHEADER, ICDecompressSetPalette, ICM_DECOMPRESS_BEGIN, 
ICM_DECOMPRESS_GET_FORMAT, ICM_DECOMPRESS_GET_PALETTE 



ICM_DECOMPRESSEX      

  

The ICM_DECOMPRESSEX message notifies a video compression driver to decompress a frame of data 
directly to the screen, decompress to an upside-down DIB, or decompress images described with source 
and destination rectangles.

ICM_DECOMPRESSEX 
wParam = (DWORD) (LPVOID) &icdex; 
lParam = sizeof(ICDECOMPRESSEX); 
 

Parameters
icdex

Address of an ICDECOMPRESSEX structure.

lParam

Size, in bytes, of ICDECOMPRESSEX.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
This message is similar to ICM_DECOMPRESS except that it uses the ICDECOMPRESSEX structure to 
define its decompression information.

If you want the driver to decompress data directly to the screen, send the ICM_DRAW message.

The driver returns an error if this message is received before the ICM_DECOMPRESSEX_BEGIN 
message.

See Also
ICDECOMPRESSEX, ICM_DECOMPRESS, ICM_DECOMPRESSEX_BEGIN, ICM_DRAW 



ICM_DECOMPRESSEX_BEGIN      

  

The ICM_DECOMPRESSEX_BEGIN message notifies a video compression driver to prepare to 
decompress data. 

ICM_DECOMPRESSEX_BEGIN 
wParam = (DWORD) (LPVOID) &icdex; 
lParam = sizeof(ICDECOMPRESSEX); 
 

Parameters
icdex

Address of a ICDECOMPRESSEX structure containing the input and output formats.

lParam

Size, in bytes, of ICDECOMPRESSEX.
 

Return Values
Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT otherwise.

Remarks
When the driver receives this message, it should allocate buffers and do any time-consuming operations 
so that it can process ICM_DECOMPRESSEX messages efficiently.

If you want the driver to decompress data directly to the screen, send the ICM_DRAW_BEGIN message.

The ICM_DECOMPRESSEX_BEGIN and ICM_DECOMPRESSEX_END messages do not nest. If your 
driver receives ICM_DECOMPRESSEX_BEGIN before decompression is stopped with 
ICM_DECOMPRESSEX_END, it should restart decompression with new parameters.

See Also
ICDECOMPRESSEX, ICM_DECOMPRESSEX, ICM_DECOMPRESSEX_END, ICM_DRAW_BEGIN 



ICM_DECOMPRESSEX_END      

  

The ICM_DECOMPRESSEX_END message notifies a video decompression driver to end decompression 
and free resources allocated for decompression. You can send this message explicitly or by using the 
ICDecompressExEnd macro.

ICM_DECOMPRESSEX_END 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
The driver frees any resources allocated for the ICM_DECOMPRESSEX_BEGIN message.

ICM_DECOMPRESSEX_BEGIN and ICM_DECOMPRESSEX_END do not nest. If your driver receives 
ICM_DECOMPRESSEX_BEGIN before decompression is stopped with ICM_DECOMPRESSEX_END, it 
should restart decompression with new parameters.

See Also
ICDecompressExEnd, ICM_DECOMPRESSEX_BEGIN 



ICM_DECOMPRESSEX_QUERY      

  

The ICM_DECOMPRESSEX_QUERY message queries a video compression driver to determine if it 
supports a specific input format or if it can decompress a specific input format to a specific output format. 

ICM_DECOMPRESSEX_QUERY 
wParam = (DWORD) (LPVOID) &icdex; 
lParam = sizeof(ICDECOMPRESSEX); 
 

Parameters
icdex

Address of a ICDECOMPRESSEX structure containing the input format.

lParam

Size, in bytes, of ICDECOMPRESSEX.
 

Return Values
Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT otherwise.

See Also
ICDECOMPRESSEX



ICM_DRAW      

  

The ICM_DRAW message notifies a rendering driver to decompress a frame of data and draw it to the 
screen. 

ICM_DRAW 
wParam = (DWORD) (LPVOID) &icdraw; 
lParam = sizeof(ICDRAW); 
 

Parameters
wParam

Address of an ICDRAW structure.

lParam

Size, in bytes, of ICDRAW.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
If the ICDRAW_UPDATE flag is set in the dwFlags member of ICDRAW, the area of the screen used for 
drawing is invalid and needs to be updated. The extent of updating depends on the contents of the lpData 
member.

If lpData is NULL, the driver should update the entire destination rectangle with the current image. If the 
driver maintains a copy of the image in an off-screen buffer, it can fail this message. If lpData is not 
NULL, the driver should draw the data and make sure the entire destination is updated. 

If the ICDRAW_HURRYUP flag is set in dwFlags, the calling application wants the driver to proceed as 
quickly as possible, possibly not even updating the screen.

If the ICDRAW_PREROLL flag is set in dwFlags, this video frame is preliminary information and should 
not be displayed if possible. For example, if play is to start from frame 10, and frame 0 is the nearest 
previous key frame, frames 0 through 9 will have ICDRAW_PREROLL set.

If you want the driver to decompress data into a buffer, send the ICM_DECOMPRESS message.

See Also
ICDRAW, ICM_DECOMPRESS



ICM_DRAW_BEGIN      

  

The ICM_DRAW_BEGIN message notifies a rendering driver to prepare to draw data. 

ICM_DRAW_BEGIN 
wParam = (DWORD) (LPVOID) &icdrwBgn; 
lParam = sizeof(ICDRAW); 
 

Parameters
icdrwBgn

Address of an ICDRAWBEGIN structure containing the input format.

lParam

Size, in bytes, of ICDRAWBEGIN.
 

Return Values
Returns ICERR_OK if the driver supports drawing the data to the screen in the specified manner and 
format, or an error code otherwise. Possible error values include the following:

ICERR_BADFORMAT Input or output format is not supported.

ICERR_NOTSUPPORTE
D

Driver does not draw directly to the 
screen or does not support this 
message.

 

Remarks
If you want the driver to decompress data into a buffer, send the ICM_DECOMPRESS_BEGIN message.

The ICM_DRAW_BEGIN and ICM_DRAW_END messages do not nest. If your driver receives 
ICM_DRAW_BEGIN before decompression is stopped with ICM_DRAW_END, it should restart 
decompression with new parameters.

See Also
ICDRAWBEGIN, ICM_DECOMPRESS_BEGIN, ICM_DRAW_END



ICM_DRAW_CHANGEPALETTE      

  

The ICM_DRAW_CHANGEPALETTE message notifies a rendering driver that the movie palette is 
changing. You can send this message explicitly or by using the ICDrawChangePalette macro.

ICM_DRAW_CHANGEPALETTE 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = 0; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the new format and optional color table.
 

Return Values
Returns ICERR_OK if successful or FALSE otherwise.

Remarks
This message should be supported by installable rendering handlers that draw DIBs with an internal 
structure that includes a palette.

See Also
BITMAPINFO, ICDrawChangePalette



ICM_DRAW_END      

  

The ICM_DRAW_END message notifies a rendering driver to decompress the current image to the 
screen and to release resources allocated for decompression and drawing. You can send this message 
explicitly or by using the ICDrawEnd macro.

ICM_DRAW_END 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
The ICM_DRAW_BEGIN and ICM_DRAW_END messages do not nest. If your driver receives 
ICM_DRAW_BEGIN before decompression is stopped with ICM_DRAW_END, it should restart 
decompression with new parameters.

See Also
ICDrawEnd, ICM_DRAW_BEGIN



ICM_DRAW_FLUSH      

  

The ICM_DRAW_FLUSH message notifies a rendering driver to render the contents of any image buffers 
that are waiting to be drawn. You can send this message explicitly or by using the ICDrawFlush macro.

ICM_DRAW_FLUSH 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
This message is used only by hardware that performs its own asynchronous decompression, timing, and 
drawing.

See Also
ICDrawFlush



ICM_DRAW_GET_PALETTE      

  

The ICM_DRAW_GET_PALETTE message requests a rendering driver to return a palette. 

ICM_DRAW_GET_PALETTE 
wParam = 0; 
lParam = 0; 
 

Return Values
The driver should return one of the following: a handle of the palette being used, NULL if it doesn't have a 
handle to return, or ICERR_UNSUPPORTED if it doesn't support palettes.



ICM_DRAW_GETTIME      

  

The ICM_DRAW_GETTIME message requests a rendering driver that controls the timing of drawing 
frames to return the current value of its internal clock. You can send this message explicitly or by using 
the ICDrawGetTime macro.

ICM_DRAW_GETTIME 
wParam = (DWORD) (LPVOID) lplTime; 
lParam = 0; 
 

Parameters
lplTime

Address to contain the current time. The return value should be specified in samples. 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
This message is generally supported by hardware that performs its own asynchronous decompression, 
timing, and drawing. The message can also be sent if the hardware is being used as the synchronization 
master.

See Also
ICDrawGetTime



ICM_DRAW_QUERY      

  

The ICM_DRAW_QUERY message queries a rendering driver to determine if it can render data in a 
specific format. You can send this message explicitly or by using the ICDrawQuery macro.

ICM_DRAW_QUERY 
wParam = (DWORD) (LPVOID) lpbiInput; 
lParam = 0; 
 

Parameters
lpbiInput

Address of a BITMAPINFO structure containing the input format.
 

Return Values
Returns ICERR_OK if the driver can render data in the specified format or ICERR_BADFORMAT 
otherwise.

Remarks
This message differs from the ICM_DRAW_BEGIN message in that it queries the driver in a general 
sense. ICM_DRAW_BEGIN determines if the driver can draw the data using the specified format under 
specific conditions, such as stretching the image.

See Also
BITMAPINFO, ICDrawQuery, ICM_DRAW_BEGIN



ICM_DRAW_REALIZE      

  

The ICM_DRAW_REALIZE message notifies a rendering driver to realize its drawing palette while 
drawing. You can send this message explicitly or by using the ICDrawRealize macro.

ICM_DRAW_REALIZE 
wParam = (DWORD) (UINT) (HDC) hdc; 
lParam = (DWORD) (BOOL) fBackground; 
 

Parameters
hdc

Handle of the DC used to realize the palette.

fBackground

Background flag. Specify TRUE to realize the palette as a background task or FALSE to realize the 
palette in the foreground.

 

Return Values
Returns ICERR_OK if the drawing palette is realized or ICERR_UNSUPPORTED if the palette associated 
with the decompressed data is realized.

Remarks
Drivers need to respond to this message only if the drawing palette is different from the decompressed 
palette.

See Also
ICDrawRealize



ICM_DRAW_RENDERBUFFER      

  

The ICM_DRAW_RENDERBUFFER message notifies a rendering driver to draw the frames that have 
been passed to it. You can send this message explicitly or by using the ICDrawRenderBuffer macro.

ICM_DRAW_RENDERBUFFER 
wParam = 0; 
lParam = 0; 
 

Return Values
This message does not return a value.

Remarks
Use this message with hardware that performs its own asynchronous decompression, timing, and 
drawing.

This message is typically used to perform a seek operation when the driver must be specifically instructed 
to display each video frame passed to it rather than playing a sequence of video frames.

See Also
ICDrawRenderBuffer



ICM_DRAW_SETTIME      

  

The ICM_DRAW_SETTIME provides synchronization information to a rendering driver that handles the 
timing of drawing frames. The synchronization information is the sample number of the frame to draw. You 
can send this message explicitly or by using the ICDrawSetTime macro.

ICM_DRAW_SETTIME 
wParam = (DWORD) lpTime; 
lParam = 0; 
 

Parameters
lpTime

Sample number of the frame to render. 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
Typically, the driver compares the specified value with the frame number associated with the time of its 
internal clock and attempts to synchronize the two if the difference is significant.

Use this message when the hardware performs its own asynchronous decompression, timing, and 
drawing, and the hardware relies on an external synchronization signal (the hardware is not being used 
as the synchronization master).

See Also
ICDrawSetTime



ICM_DRAW_START      

  

The ICM_DRAW_START message notifies a rendering driver to start its internal clock for the timing of 
drawing frames. You can send this message explicitly or by using the ICDrawStart macro.

ICM_DRAW_START 
wParam = 0; 
lParam = 0; 
 

Return Values
This message does not return a value.

Remarks
This message is used by hardware that performs its own asynchronous decompression, timing, and 
drawing.

When the driver receives this message, it should start rendering data at the rate specified with the 
ICM_DRAW_BEGIN message.

The ICM_DRAW_START and ICM_DRAW_STOP messages do not nest. If your driver receives 
ICM_DRAW_START before rendering is stopped with ICM_DRAW_STOP, it should restart rendering with 
new parameters.

See Also
ICDrawStart, ICM_DRAW_BEGIN, ICM_DRAW_STOP 



ICM_DRAW_START_PLAY      

  

The ICM_DRAW_START_PLAY message provides the start and end times of a play operation to a 
rendering driver. You can send this message explicitly or by using the ICDrawStartPlay macro.

ICM_DRAW_START_PLAY 
wParam = (DWORD) lFrom; 
lParam = (DWORD) lTo; 
 

Parameters
lFrom

Start time.

lTo

End time.
 

Return Values
This message does not return a value.

Remarks
This message precedes any frame data sent to the rendering driver.

Units for lFrom and lTo are specified with the ICM_DRAW_BEGIN message. For video data this is 
normally a frame number. For more information about the playback rate, see the dwRate and dwScale 
members of the ICDRAWBEGIN structure.

If the end time is less than the start time, the playback direction is reversed.

See Also
ICDRAWBEGIN, ICDrawStartPlay, ICM_DRAW_BEGIN 



ICM_DRAW_STOP      

  

The ICM_DRAW_STOP message notifies a rendering driver to stop its internal clock for the timing of 
drawing frames. You can send this message explicitly or by using the ICDrawStop macro.

ICM_DRAW_STOP 
wParam = 0; 
lParam = 0; 
 

Return Values
This message does not return a value.

Remarks
This message is used by hardware that performs its own asynchronous decompression, timing, and 
drawing.

See Also
ICDrawStop



ICM_DRAW_STOP_PLAY      

  

The ICM_DRAW_STOP_PLAY message notifies a rendering driver when a play operation is complete. 
You can send this message explicitly or by using the ICDrawStopPlay macro.

ICM_DRAW_STOP_PLAY 
wParam = 0; 
lParam = 0; 
 

Return Values
This message does not return a value.

Remarks
Use this message when the play operation is complete. Use the ICM_DRAW_STOP message to end 
timing.

See Also
ICDrawStopPlay, ICM_DRAW_STOP



ICM_DRAW_SUGGESTFORMAT      

  

The ICM_DRAW_SUGGESTFORMAT message queries a rendering driver to suggest a decompressed 
format that it can draw.

ICM_DRAW_SUGGESTFORMAT 
wParam = (DWORD) (LPVOID) &icdrwSuggest; 
lParam = sizeof(ICDRAWSUGGEST); 
 

Parameters
icdrwSuggest

Address of an ICDRAWSUGGEST structure.

lParam

Size, in bytes, of ICDRAWSUGGEST.
 

Return Values
Returns ICERR_OK if successful. If the lpbiSuggest member of the ICDRAWSUGGEST structure is 
NULL, this message returns the amount of memory required to contain the suggested format.

Remarks
The driver should examine the format specified in the lpbiIn member of the ICDRAWSUGGEST structure 
and use the lpbiSuggest member to return a format it can draw. The output format should preserve as 
much data as possible from the input format.

Optionally, the driver can use the installable compressor handle passed in the hicDecompressor 
member of ICDRAWSUGGEST to make more complex selections. For example, if the input format is 24-
bit JPEG data, a renderer could query the decompressor to find out if it can decompress to a YUV format 
(which might be drawn more efficiently) before selecting the format to suggest.

See Also
ICDRAWSUGGEST



ICM_DRAW_WINDOW      

  

The ICM_DRAW_WINDOW message notifies a rendering driver that the window specified for the 
ICM_DRAW_BEGIN message needs to be redrawn. The window has moved or become temporarily 
obscured. You can send this message explicitly or by using the ICDrawWindow macro.

ICM_DRAW_WINDOW 
wParam = (DWORD) (LPVOID) prc; 
lParam = 0; 
 

Parameters
prc

Address of the destination rectangle in screen coordinates. If this parameter points to an empty 
rectangle, drawing should be turned off.

 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
This message is supported by hardware that performs its own asynchronous decompression, timing, and 
drawing.

Video-overlay drivers use this message to draw when the window is obscured or moved. When a window 
specified for ICM_DRAW_BEGIN is completely hidden by other windows, the destination rectangle is 
empty. Drivers should turn off video-overlay hardware when this condition occurs.

See Also
ICDrawWindow, ICM_DRAW_BEGIN 



ICM_GET      

  

The ICM_GET message retrieves an application-defined doubleword from a video compression driver. 

ICM_GET 
wParam = (DWORD) (LPVOID) pv; 
lParam = (DWORD) cb; 
 

Parameters
pv

Address of a block of memory to be filled with the current state. You can also specify NULL to 
determine the amount of memory required by the state information.

cb

Size, in bytes, of the block of memory.
 

Return Values
Returns the amount of memory, in bytes, required to store the status information.

Remarks
The structure used to represent state information is driver specific and is defined by the driver.



ICM_GETBUFFERSWANTED      

  

The ICM_GETBUFFERSWANTED message queries a driver for the number of buffers to allocate. You 
can send this message explicitly or by using the ICGetBuffersWanted macro.

ICM_GETBUFFERSWANTED 
wParam = (DWORD) (LPVOID) lpdwBuffers; 
lParam = 0; 
 

Parameters
lpdwBuffers

Address to contain the number of samples the driver needs to efficiently render the data. 
 

Return Values
Returns ICERR_OK if successful or ICERR_UNSUPPORTED otherwise.

Remarks
This message is used by drivers that use hardware to render data and want to ensure a minimal time lag 
caused by waiting for buffers to arrive. For example, if a driver controls a video decompression board that 
can hold 10 frames of video, it could return 10 for this message. This instructs applications to try to stay 
10 frames ahead of the frame it currently needs.

See Also
ICGetBuffersWanted



ICM_GETDEFAULTKEYFRAMERATE      

  

The ICM_GETDEFAULTKEYFRAMERATE message queries a video compression driver for its default (or 
preferred) key-frame spacing. You can send this message explicitly or by using the 
ICGetDefaultKeyFrameRate macro.

ICM_GETDEFAULTKEYFRAMERATE 
wParam = (DWORD) (LPVOID) &dwICValue; 
lParam = 0; 
 

Parameters
dwICValue

Address to contain the preferred key-frame spacing.
 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise. 

See Also
ICGetDefaultKeyFrameRate



ICM_GETDEFAULTQUALITY      

  

The ICM_GETDEFAULTQUALITY message queries a video compression driver to provide its default 
quality setting. You can send this message explicitly or by using the ICGetDefaultQuality macro.

ICM_GETDEFAULTQUALITY 
wParam = (DWORD) (LPVOID) &dwICValue; 
lParam = 0; 
 

Parameters
dwICValue

Address to contain the default quality value. Quality values range from 0 to 10,000.
 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.

See Also
ICGetDefaultQuality



ICM_GETINFO      

  

The ICM_GETINFO message queries a video compression driver to return a description of itself in an 
ICINFO structure.

ICM_GETINFO 
wParam = (DWORD) (LPVOID) lpicinfo; 
lParam = sizeof(icinfo); 
 

Parameters
lpicinfo

Address of an ICINFO structure to contain information.

lParam

Size, in bytes, of ICINFO.
 

Return Values
Returns the size, in bytes, of ICINFO or zero if an error occurs..

Remarks
Typically, applications send this message to display a list of the installed compressors.

The driver should fill all members of the ICINFO structure except szDriver.

See Also
ICINFO



ICM_GETQUALITY      

  

The ICM_GETQUALITY message queries a video compression driver to return its current quality setting. 

ICM_GETQUALITY 
wParam = (DWORD) (LPVOID) &dwICValue; 
lParam = 0; 
 

Parameters
dwICValue

Address to contain the current quality value. Quality values range from 0 to 10,000.
 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.



ICM_GETSTATE      

  

The ICM_GETSTATE message queries a video compression driver to return its current configuration in a 
block of memory or to determine the amount of memory required to retrieve the configuration information. 
You can send this message explicitly or by using the ICGetState macro.

ICM_GETSTATE 
wParam = (DWORD) (LPVOID) pv; 
lParam = (DWORD) cb; 
 

Parameters
pv

Address of a block of memory to contain the current configuration information. You can specify NULL 
for this parameter to determine the amount of memory required for the configuration information, as in 
ICGetStateSize.

cb

Size, in bytes, of the block of memory.
 

Return Values
If pv is NULL, returns the amount of memory, in bytes, required for configuration information. 

If pv is not NULL, returns ICERR_OK if successful or an error otherwise.

Remarks
The structure used to represent configuration information is driver specific and is defined by the driver.

See Also
ICGetState, ICGetStateSize



ICM_SET_STATUS_PROC      

  

The ICM_SET_STATUS_PROC message provides a status callback function with the status of a lengthy 
operation. 

ICM_SET_STATUS_PROC 
wParam = (DWORD) (LPVOID) icsetstatusProc; 
lParam = sizeof(icsetstatusProc); 
 

Parameters
icsetstatusProc

Address of an ICSETSTATUSPROC structure.

lParam

Size, in bytes, of ICSETSTATUSPROC.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
Support of this message is optional but strongly recommended if compression or decompression takes 
longer than approximately one-tenth of a second.

An application can send this message periodically to a status callback function during lengthy operations.

See Also
ICSETSTATUSPROC



ICM_SETQUALITY      

  

The ICM_SETQUALITY message provides a video compression driver with a quality level to use during 
compression. 

ICM_SETQUALITY 
wParam = (DWORD) (LPVOID) &dwICValue; 
lParam = 0; 
 

Parameters
dwICValue

New quality value. Quality values range from 0 to 10,000.
 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.



ICM_SETSTATE      

  

The ICM_SETSTATE message notifies a video compression driver to set the state of the compressor. You 
can send this message explicitly or by using the ICSetState macro.

ICM_SETSTATE 
wParam = (DWORD) (LPVOID) pv; 
lParam = (DWORD) cb; 
 

Parameters
pv

Address of a block of memory containing configuration data. You can specify NULL for this parameter 
to reset the compressor to its default state.

cb

Size, in bytes, of the block of memory.
 

Return Values
Returns the number of bytes used by the compressor if successful or zero otherwise.

Remarks
The information used by this message is private and specific to a given compressor. Client applications 
should use this message only to restore information previously obtained with the ICM_GETSTATE 
message and should use the ICM_CONFIGURE message to adjust the configuration of a video 
compression driver.

See Also
ICM_CONFIGURE, ICM_GETSTATE, ICSetState



MCIWNDM_CAN_CONFIG      

  

The MCIWNDM_CAN_CONFIG message determines if an MCI device can display a configuration dialog 
box. You can send this message explicitly or by using the MCIWndCanConfig macro. 

MCIWNDM_CAN_CONFIG 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns TRUE if the device supports configuration or FALSE otherwise.

See Also
MCIWndCanConfig



MCIWNDM_CAN_EJECT      

  

The MCIWNDM_CAN_EJECT message determines if an MCI device can eject its media. You can send 
this message explicitly or by using the MCIWndCanEject macro. 

MCIWNDM_CAN_EJECT 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns TRUE if the device can eject its media or FALSE otherwise.

See Also
MCIWndCanEject



MCIWNDM_CAN_PLAY      

  

The MCIWNDM_CAN_PLAY message determines if an MCI device can play a data file or content of 
some other kind. You can send this message explicitly or by using the MCIWndCanPlay macro. 

MCIWNDM_CAN_PLAY 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns TRUE if the device supports playing the data or FALSE otherwise.

See Also
MCIWndCanPlay



MCIWNDM_CAN_RECORD      

  

The MCIWNDM_CAN_RECORD message determines if an MCI device supports recording. You can send 
this message explicitly or by using the MCIWndCanRecord macro. 

MCIWNDM_CAN_RECORD 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns TRUE if the device supports recording or FALSE otherwise.

See Also
MCIWndCanRecord



MCIWNDM_CAN_SAVE      

  

The MCIWNDM_CAN_SAVE message determines if an MCI device can save data. You can send this 
message explicitly or by using the MCIWndCanSave macro. 

MCIWNDM_CAN_SAVE 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns TRUE if the device supports saving or FALSE otherwise.

See Also
MCIWndCanSave



MCIWNDM_CAN_WINDOW      

  

The MCIWNDM_CAN_WINDOW message determines if an MCI device supports window-oriented MCI 
commands. You can send this message explicitly or by using the MCIWndCanWindow macro. 

MCIWNDM_CAN_WINDOW 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns TRUE if the device supports window-oriented MCI commands or FALSE otherwise.

See Also
MCIWndCanWindow



MCIWNDM_CHANGESTYLES      

  

The MCIWNDM_CHANGESTYLES message changes the styles used by the MCIWnd window. You can 
send this message explicitly or by using the MCIWndChangeStyles macro. 

MCIWNDM_CHANGESTYLES 
wParam = (WPARAM) (UINT) mask; 
lParam = (LPARAM) (LONG) value; 
 

Parameters
mask

Mask that identifies the styles that can change. This mask is the bitwise OR operator of all styles that 
will be permitted to change.

value

New style settings for the window. Specify zero for this parameter to turn off all styles identified in the 
mask. For a list of the available styles, see the MCIWndCreate function.

 

Return Values
Returns zero.

See Also
MCIWndCreate, MCIWndChangeStyles



MCIWNDM_EJECT      

  

The MCIWNDM_EJECT message sends a command to an MCI device to eject its media. You can send 
this message explicitly or by using the MCIWndEject macro. 

MCIWNDM_EJECT 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndEject



MCIWNDM_GETACTIVETIMER      

  

The MCIWNDM_GET_ACTIVETIMER message retrieves the update period used when the MCIWnd 
window is the active window. You can send this message explicitly or by using the 
MCIWndGetActiveTimer macro. 

MCIWNDM_GETACTIVETIMER 
wParam = 0; 
lParam = 0L; 
 

Return Values
Returns the update period in milliseconds. The default is 500 milliseconds.

See Also
MCIWndGetActiveTimer



MCIWNDM_GETALIAS      

  

The MCIWNDM_GETALIAS message retrieves the alias used to open an MCI device or file with the 
mciSendString function. You can send this message explicitly or by using the MCIWndGetAlias macro. 

MCIWNDM_GETALIAS 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns the device alias.

See Also
mciSendString, MCIWndGetAlias



MCIWNDM_GET_DEST      

  

The MCIWNDM_GET_DEST message retrieves the coordinates of the destination rectangle used for 
zooming or stretching the images of an AVI file during playback. You can send this message explicitly or 
by using the MCIWndGetDest macro. 

MCIWNDM_GET_DEST 
wParam = 0; 
lParam = (LPARAM) (LPRECT) prc; 
 

Parameters
prc

Address of a RECT structure to return the coordinates of the destination rectangle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndGetDest, RECT



MCIWNDM_GETDEVICE      

  

The MCIWNDM_GETDEVICE message retrieves the name of the currently open MCI device. You can 
send this message explicitly or by using the MCIWndGetDevice macro.

MCIWNDM_GETDEVICE 
wParam = (WPARAM) (UINT) len; 
lParam = (LPARAM) (LPVOID) lp; 
 

Parameters
len

Size, in bytes, of the buffer.

lp

Address of an application-defined buffer to return the device name.
 

Return Values
Returns zero if successful or a nonzero value otherwise.

Remarks
If the null-terminated string containing the device name is longer than the buffer, MCIWnd truncates it.

See Also
MCIWndGetDevice



MCIWNDM_GETDEVICEID      

  

The MCIWNDM_GETDEVICEID message retrieves the identifier of the currently open MCI device to use 
with the mciSendCommand function. You can send this message explicitly or by using the 
MCIWndGetDeviceID macro. 

MCIWNDM_GETDEVICEID 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns the device identifier.

See Also
mciSendCommand, MCIWndGetDeviceID



MCIWNDM_GETEND      

  

The MCIWNDM_GETEND message retrieves the location of the end of the content of an MCI device or 
file. You can send this message explicitly or by using the MCIWndGetEnd macro. 

MCIWNDM_GETEND 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns the location in the current time format.

See Also
MCIWndGetEnd



MCIWNDM_GETERROR      

  

The MCIWNDM_GETERROR message retrieves the last MCI error encountered. You can send this 
message explicitly or by using the MCIWndGetError macro.

MCIWNDM_GETERROR 
wParam = (WPARAM) (UINT) len; 
lParam = (LPARAM) (LPVOID) lp; 
 

Parameters
len

Size, in bytes, of the error buffer.

lp

Address of an application-defined buffer used to return the error string.
 

Return Values
Returns the integer error value if successful.

Remarks
If lp is a valid pointer, a null-terminated string corresponding to the error is returned in its buffer. If the 
error string is longer than the buffer, MCIWnd truncates it.

See Also
MCIWndGetError



MCIWNDM_GETFILENAME      

  

The MCIWNDM_GETFILENAME message retrieves the filename currently used by an MCI device. You 
can send this message explicitly or by using the MCIWndGetFileName macro. 

MCIWNDM_GETFILENAME 
wParam = (WPARAM) (UINT) len; 
lParam = (LPARAM) (LPVOID) lp; 
 

Parameters
len

Size, in bytes, of the buffer.

lp

Address of an application-defined buffer to return the filename.
 

Return Values
Returns zero if successful or 1 otherwise.

Remarks
If the null-terminated string containing the filename is longer than the buffer, MCIWnd truncates the 
filename.

See Also
MCIWndGetFileName



MCIWNDM_GETINACTIVETIMER      

  

The MCIWNDM_GETINACTIVETIMER message retrieves the update period used when the MCIWnd 
window is the inactive window. You can send this message explicitly or by using the 
MCIWndGetInactiveTimer macro. 

MCIWNDM_GETINACTIVETIMER 
wParam = 0; 
lParam = 0L; 
 

Return Values
Returns the update period, in milliseconds. The default value is 2000 milliseconds.

See Also
MCIWndGetInactiveTimer



MCIWNDM_GETLENGTH      

  

The MCIWNDM_GETLENGTH message retrieves the length of the content or file currently used by an 
MCI device. You can send this message explicitly or by using the MCIWndGetLength macro. 

MCIWNDM_GETLENGTH 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns the length. The units for the length depend on the current time format.

See Also
MCIWndGetLength



MCIWNDM_GETMODE      

  

The MCIWNDM_GETMODE message retrieves the current operating mode of an MCI device. MCI 
devices have several operating modes, which are designated by constants. You can send this message 
explicitly or by using the MCIWndGetMode macro. 

MCIWNDM_GETMODE 
wParam = (WPARAM) (UINT) len; 
lParam = (LPARAM) (LPSTR) lp; 
 

Parameters
len

Size, in bytes, of the buffer.

lp

Address of the application-defined buffer used to return the mode.
 

Return Values
Returns an integer corresponding to the MCI constant defining the mode.

Remarks
If the null-terminated string describing the mode is longer than the buffer, it is truncated.

Not all devices can operate in every mode. For example, the MCIAVI device is a playback device; it 
doesn't support the recording mode. The following modes can be retrieved by using 
MCIWNDM_GETMODE: 

Operating mode MCI constant

not ready MCI_MODE_NOT_READY

open MCI_MODE_OPEN

paused MCI_MODE_PAUSE

playing MCI_MODE_PLAY

recording MCI_MODE_RECORD

seeking MCI_MODE_SEEK

stopped MCI_MODE_STOP
 

See Also
MCIWndGetMode



MCIWNDM_GETPALETTE      

  

The MCIWNDM_GETPALETTE message retrieves a handle of the palette used by an MCI device. You 
can send this message explicitly or by using the MCIWndGetPalette macro. 

MCIWNDM_GETPALETTE 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns the handle of the palette if successful.

See Also
MCIWndGetPalette



MCIWNDM_GETPOSITION      

  

The MCIWNDM_GETPOSITION message retrieves the numerical value of the current position within the 
content of the MCI device. This macro also provides the current position in string form in an application-
defined buffer. You can send this message explicitly or by using the MCIWndGetPosition or 
MCIWndGetPositionString macro. 

MCIWNDM_GETPOSITION 
wParam = (WPARAM) (UINT) len; 
lParam = (LPARAM) (LPTSTR) lp; 
 

Parameters
len

Size, in bytes, of the buffer. If the null-terminated string is longer than the buffer, it is truncated. Use 
zero to inhibit retrieval of the position as a string.

lp

Address of an application-defined buffer used to return the position. Use zero to inhibit retrieval of the 
position as a string. 

If the device supports tracks, the string position information is returned in the form TT:MM:SS:FF 
where TT corresponds to tracks, MM and SS correspond to minutes and seconds, and FF 
corresponds to frames.

 

Return Values
Returns an integer corresponding to the current position. The units for the position value depend on the 
current time format.

See Also
MCIWndGetPosition, MCIWndGetPositionString



MCIWNDM_GETREPEAT      

  

The MCIWNDM_GETREPEAT message determines if continuous playback has been activated. You can 
send this message explicitly or by using the MCIWndGetRepeat macro. 

MCIWNDM_GETREPEAT 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns TRUE if continuous playback is activated or FALSE otherwise.

See Also
MCIWndGetRepeat



MCIWNDM_GET_SOURCE      

  

The MCIWNDM_GET_SOURCE message retrieves the coordinates of the source rectangle used for 
cropping the images of an AVI file during playback. You can send this message explicitly or by using the 
MCIWndGetSource macro. 

MCIWNDM_GET_SOURCE 
wParam = 0; 
lParam = (LPARAM) (LPRECT) prc; 
 

Parameters
prc

Address of a RECT structure to contain the coordinates of the source rectangle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndGetSource, RECT



MCIWNDM_GETSPEED      

  

The MCIWNDM_GETSPEED message retrieves the playback speed of an MCI device. You can send this 
message explicitly or by using the MCIWndGetSpeed macro.

MCIWNDM_GETSPEED 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns the playback speed if successful. The value for normal speed is 1000. Larger values indicate 
faster speeds, smaller values indicate slower speeds.

See Also
MCIWndGetSpeed



MCIWNDM_GETSTART      

  

The MCIWNDM_GETSTART message retrieves the location of the beginning of the content of an MCI 
device or file. You can send this message explicitly or by using the MCIWndGetStart macro.

MCIWNDM_GETSTART 
wParam = 0; 
lParam = 0; 
 

Remarks
Typically, the return value is zero; but some devices use a nonzero starting location. Seeking to this 
location sets the device to the start of the media.

Return Values
Returns the location in the current time format.

See Also
MCIWndGetStart



MCIWNDM_GETSTYLES      

  

The MCIWNDM_GETSTYLES message retrieves the flags specifying the current MCIWnd window styles 
used by a window. You can send this message explicitly or by using the MCIWndGetStyles macro. 

MCIWNDM_GETSTYLES 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns a value representing the current styles of the MCIWnd window. The return value is the bitwise 
OR operator of the MCIWnd window styles (MCIWNDF flags).

See Also
MCIWndGetStyles



MCIWNDM_GETTIMEFORMAT      

  

The MCIWNDM_GETTIMEFORMAT message retrieves the current time format of an MCI device in two 
forms: as a numerical value and as a string. You can send this message explicitly or by using the 
MCIWndGetTimeFormat macro. 

MCIWNDM_GETTIMEFORMAT 
wParam = (WPARAM) (UINT) len; 
lParam = (LPARAM) (LPSTR) lp; 
 

Parameters
len

Size, in bytes, of the buffer.

lp

Address of a buffer to contain the null-terminated string form of the time format.
 

Return Values
Returns an integer corresponding to the MCI constant defining the time format.

Remarks
If the time format string is longer than the return buffer, MCIWnd truncates the string.

An MCI device can support one or more of the following time formats:

Time format MCI constant

Bytes MCI_FORMAT_BYTES

Frames MCI_FORMAT_FRAMES

Hours, minutes, seconds MCI_FORMAT_HMS

Milliseconds MCI_FORMAT_MILLISECONDS

Minutes, seconds, frames MCI_FORMAT_MSF

Samples MCI_FORMAT_SAMPLES

SMPTE 24 MCI_FORMAT_SMPTE_24

SMPTE 25 MCI_FORMAT_SMPTE_25

SMPTE 30 drop MCI_FORMAT_SMPTE_30DROP

SMPTE 30 (non-drop) MCI_FORMAT_SMPTE_30

Tracks, minutes, seconds, frames MCI_FORMAT_TMSF
 

See Also
MCIWndGetTimeFormat



MCIWNDM_GETVOLUME      

  

The MCIWNDM_GETVOLUME message retrieves the current volume setting of an MCI device. You can 
send this message explicitly or by using the MCIWndGetVolume macro. 

MCIWNDM_GETVOLUME 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns the current volume setting. The default value is 1000. Higher values indicate louder volumes, 
lower values indicate quieter volumes.

See Also
MCIWndGetVolume



MCIWNDM_GETZOOM      

  

The MCIWNDM_GETZOOM message retrieves the current zoom value used by an MCI device. You can 
send this message explicitly or by using the MCIWndGetZoom macro.

MCIWNDM_GETZOOM 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns the most recent values used with MCIWNDM_SETZOOM.

Remarks
A return value of 100 indicates the image is not zoomed. A value of 200 indicates the image is enlarged to 
twice its original size. A value of 50 indicates the image is reduced to half its original size.

See Also
MCIWndGetZoom, MCIWNDM_SETZOOM



MCIWNDM_NEW      

  

The MCIWNDM_NEW message creates a new file for the current MCI device. You can send this 
message explicitly or by using the MCIWndNew macro. 

MCIWNDM_NEW 
wParam = 0; 
lParam = (LPARAM) (LPVOID) lp; 
 

Parameters
lp

Address of a buffer containing the name of the MCI device that will use the file.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndNew



MCIWNDM_NOTIFYERROR      

  

The MCIWNDM_NOTIFYERROR message notifies the parent window of an application that an MCI error 
occurred. 

MCIWNDM_NOTIFYERROR 
wParam = (WPARAM) (HWND) hwnd; 
lParam = (LPARAM) (LONG) errorCode; 
 

Parameters
hwnd

Handle of the MCIWnd window.

errorCode

Numerical code for the MCI error.
 

Remarks
You can enable MCI error notification by specifying the MCIWNDF_NOTIFYERROR window style.



MCIWNDM_NOTIFYMEDIA      

  

The MCIWNDM_NOTIFYMEDIA message notifies the parent window of an application that the media has 
changed.

MCIWNDM_NOTIFYMEDIA 
wParam = (WPARAM) (HWND) hwnd; 
lParam = (LPARAM) (LPSTR) lp; 
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of a null-terminated string containing the new filename. If the media is closing, it specifies a 
null string.

 

Remarks
You can enable notification of media changes by specifying the MCIWNDF_NOTIFYMEDIA window style.



MCIWNDM_NOTIFYMODE      

  

The MCIWNDM_NOTIFYMODE message notifies the parent window of an application that the operating 
mode of the MCI device has changed. 

MCIWNDM_NOTIFYMODE 
wParam = (WPARAM) (HWND) hwnd; 
lParam = (LPARAM) (LONG) mode; 
 

Parameters
hwnd

Handle of the MCIWnd window.

mode

Integer corresponding to the MCI mode.
 

Remarks
You can enable notification of mode changes of an MCI device by specifying the 
MCIWNDF_NOTIFYMODE window style.



MCIWNDM_NOTIFYPOS      

  

The MCIWNDM_NOTIFYPOS message notifies the parent window of an application that the window 
position has changed. 

MCIWNDM_NOTIFYPOS 
wParam = (WPARAM) (HWND) hwnd; 
lParam = (LPARAM) (LONG) pos; 
 

Parameters
hwnd

Handle of the MCIWnd window.

pos

Describes the new position.
 

Remarks
You can enable notification of changes in the position of an MCIWnd window by specifying the 
MCIWNDF_NOTIFYPOS window style.



MCIWNDM_NOTIFYSIZE      

  

The MCIWNDM_NOTIFYSIZE message notifies the parent window of an application that the window size 
has changed. 

MCIWNDM_NOTIFYSIZE 
wParam = (WPARAM) (HWND) hwnd; 
lParam = 0; 
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Remarks
You can enable notification of changes in the size of an MCIWnd window by specifying the 
MCIWNDF_NOTIFYSIZE window style.



MCIWNDM_OPEN      

  

The MCIWNDM_OPEN message opens an MCI device and associates it with an MCIWnd window. For 
MCI devices that use data files, this macro can also open a specified data file, name a new file to be 
created, or display a dialog box to let the user select a file to open. You can send this message explicitly 
or by using the MCIWndOpen macro. 

MCIWNDM_OPEN 
wParam = (WPARAM) (UINT) wFlags; 
lParam = (LPARAM) (LPVOID) szFile; 
 

Parameters
wFlags

Flags associated with the device or file to open. The MCIWNDOPENF_NEW flag specifies a new file 
is to be created with the name specified in szFile.

szFile

Address of a null-terminated string identifying the filename or MCI device name to open. Specify -1 
for this parameter to display the Open dialog box.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndOpen



MCIWNDM_OPENINTERFACE      

  

The MCIWNDM_OPENINTERFACE message attaches the data stream or file associated with the 
specified interface to an MCIWnd window. You can send this message explicitly or by using the 
MCIWndOpenInterface macro. 

MCIWNDM_OPENINTERFACE 
wParam = 0; 
lParam = (LPARAM) (LPUNKNOWN) pUnk; 
 

Parameters
pUnk

Address of an IAVI interface that points to a file or a data stream in a file. 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndOpenInterface



MCIWNDM_PLAYFROM      

  

The MCIWNDM_PLAYFROM message plays the content of an MCI device from the specified location to 
the end of the content or until another command stops playback. You can send this message explicitly or 
by using the MCIWndPlayFrom macro. 

MCIWNDM_PLAYFROM 
wParam = 0; 
lParam = (LPARAM) (LONG) lPos; 
 

Parameters
lPos

Starting location. The units for the starting location depend on the current time format.

Return Values
Returns zero if successful or an error otherwise.

Remarks
You can also specify both a starting and ending location for playback by using the MCIWndPlayFromTo 
macro. 

See Also
MCIWndPlayFrom, MCIWndPlayFromTo



MCIWNDM_PLAYTO      

  

The MCIWNDM_PLAYTO message plays the content of an MCI device from the current position to the 
specified ending location or until another command stops playback. If the specified ending location is 
beyond the end of the content, playback stops at the end of the content. You can send this message 
explicitly or by using the MCIWndPlayTo macro. 

MCIWNDM_PLAYTO 
wParam = 0; 
lParam = (LPARAM) (LONG) lEnd; 
 

Parameters
lEnd

Ending location. The units for the ending location depend on the current time format.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
This macro is defined using the MCIWndSeek and MCIWndPlayTo macros, which in turn use the 
MCI_SEEK command and the MCIWNDM_PLAYTO message.

You can also specify both a starting and ending location for playback by using the MCIWndPlayFromTo 
macro. 

See Also
MCI_SEEK, MCIWndPlayFromTo, MCIWndPlayTo, MCIWndSeek 



MCIWNDM_PLAYREVERSE      

  

The MCIWNDM_PLAYREVERSE message plays the current content in the reverse direction, beginning 
at the current position and ending at the beginning of the content or until another command stops 
playback. You can send this message explicitly or by using the MCIWndPlayReverse macro. 

MCIWNDM_PLAYREVERSE 
wParam = 0; 
lParam = 0; 
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndPlayReverse



MCIWNDM_PUT_DEST      

  

The MCIWNDM_PUT_DEST message redefines the coordinates of the destination rectangle used for 
zooming or stretching the images of an AVI file during playback. You can send this message explicitly or 
by using the MCIWndPutDest macro. 

MCIWNDM_PUT_DEST 
wParam = 0; 
lParam = (LPARAM) (LPRECT) prc; 
 

Parameters
prc

Address of a RECT structure containing the coordinates of the destination rectangle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndPutDest, RECT



MCIWNDM_PUT_SOURCE      

  

The MCIWNDM_PUT_SOURCE message redefines the coordinates of the source rectangle used for 
cropping the images of an AVI file during playback. You can send this message explicitly or by using the 
MCIWndPutSource macro. 

MCIWNDM_PUT_SOURCE 
wParam = 0; 
lParam = (LPARAM) (LPRECT) prc; 
 

Parameters
prc

Address of a RECT structure containing the coordinates of the source rectangle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndPutSource, RECT



MCIWNDM_REALIZE      

  

The MCIWNDM_REALIZE message realizes the palette currently used by the MCI device in an MCIWnd 
window. This macro is defined with the MCIWNDM_REALIZE message. You can send this message 
explicitly or by using the MCIWndRealize macro.

MCIWNDM_REALIZE 
wParam = (WPARAM) (BOOL) fBkgnd; 
lParam = 0; 
 

Parameters
fBkgnd

Background flag. Specify TRUE for this parameter if the window is a background application.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
MCIWNDM_REALIZE uses the palette of the MCI device and calls the RealizePalette function. If your 
application explicitly handles the WM_PALETTECHANGED and WM_QUERYNEWPALETTE messages, 
you should use this message in your application instead of using RealizePalette. If the body of one of 
these message handlers contains only RealizePalette, forward the message to the MCIWnd window, 
which will automatically realize the palette.

See Also
MCIWndRealize, RealizePalette, WM_PALETTECHANGED, WM_QUERYNEWPALETTE



MCIWNDM_RETURNSTRING      

  

The MCIWNDM_RETURNSTRING message retrieves the reply to the most recent MCI string command 
sent to an MCI device. Information in the reply is supplied as a null-terminated string. You can send this 
message explicitly or by using the MCIWndReturnString macro. 

MCIWNDM_RETURNSTRING 
wParam = (WPARAM) (UINT) len; 
lParam = (LPARAM) (LPVOID) lp; 
 

Parameters
len

Size, in bytes, of the buffer.

lp

Address of an application-defined buffer to contain the null-terminated string.
 

Return Values
Returns an integer corresponding to the MCI string.

Remarks
If the null-terminated string is longer than the buffer, the string is truncated.

See Also
MCIWndReturnString



MCIWNDM_SENDSTRING      

  

The MCIWNDM_SENDSTRING message sends an MCI command in string form to the device associated 
with the MCIWnd window. You can send this message explicitly or by using the MCIWndSendString 
macro. 

MCIWNDM_SENDSTRING 
wParam = 0; 
lParam = (LPARAM) (LPSTR) sz; 
 

Parameters
sz

String command to send to the MCI device.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The message handler for MCIWNDM_SENDSTRING appends a device alias to the MCI command you 
send to the device. Therefore, you should not use any alias in an MCI command that you issue with 
MCIWNDM_SENDSTRING.

See Also
MCIWndSendString



MCIWNDM_SETACTIVETIMER      

  

The MCIWNDM_SETACTIVETIMER message sets the update period used by MCIWnd to update the 
trackbar in the MCIWnd window, update position information displayed in the window title bar, and send 
notification messages to the parent window when the MCIWnd window is active. You can send this 
message explicitly or by using the MCIWndSetActiveTimer macro. 

MCIWNDM_SETACTIVETIMER 
wParam = (WPARAM) (UINT) active; 
lParam = 0L; 
 

Parameters
active

Update period, in milliseconds. The default is 500 milliseconds.
 

Return Values
This message does not return a value.

See Also
MCIWndSetActiveTimer



MCIWNDM_SETINACTIVETIMER      

  

The MCIWNDM_SETINACTIVETIMER message sets the update period used by MCIWnd to update the 
trackbar in the MCIWnd window, update position information displayed in the window title bar, and send 
notification messages to the parent window when the MCIWnd window is inactive. You can send this 
message explicitly or by using the MCIWndSetInactiveTimer macro. 

MCIWNDM_SETINACTIVETIMER 
wParam = (WPARAM) (UINT) inactive; 
lParam = 0; 
 

Parameters
inactive

Update period, in milliseconds. The default is 2000 milliseconds.
 

Return Values
This message does not return a value.

See Also
MCIWndSetInactiveTimer



MCIWNDM_SETOWNER      

  

The MCIWNDM_SETOWNER message sets the window to receive notification messages associated with 
the MCIWnd window. You can send this message explicitly or by using the MCIWndSetOwner macro. 

MCIWNDM_SETOWNER 
wParam = (WPARAM) hwndP; 
lParam = 0; 
 

Parameters
hwndP

Handle of the window to receive the notification messages.
 

Return Values
Returns zero.

See Also
MCIWndSetOwner



MCIWNDM_SETPALETTE      

  

The MCIWNDM_SETPALETTE message sends a palette handle to the MCI device associated with the 
MCIWnd window. You can send this message explicitly or by using the MCIWndSetPalette macro. 

MCIWNDM_SETPALETTE 
wParam = (WPARAM) (HPALETTE) hpal; 
lParam = 0; 
 

Parameters
hpal

Palette handle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndSetPalette



MCIWNDM_SETREPEAT      

  

The MCIWNDM_SETREPEAT message sets the repeat flag associated with continuous playback. The 
MCIWNDM_SETREPEAT message works in conjunction with the MCI_PLAY command to provide a 
continuous playback loop. You can send this message explicitly or by using the MCIWndSetRepeat 
macro.

MCIWNDM_SETREPEAT 
wParam = 0; 
lParam = (LPARAM) (BOOL) f; 
 

Parameters
f

New state of the repeat flag. Specify TRUE to turn on continuous playback.
 

Return Values
Returns zero.

Remarks
Currently, MCIAVI is the only device that supports continuous playback.

See Also
MCI_PLAY, MCIWndSetRepeat



MCIWNDM_SETSPEED      

  

The MCIWNDM_SETSPEED message sets the playback speed of an MCI device. You can send this 
message explicitly or by using the MCIWndSetSpeed macro. 

MCIWNDM_SETSPEED 
wParam = 0; 
lParam = (LPARAM) (UINT) iSpeed; 
 

Parameters
iSpeed

Playback speed. Specify 1000 for normal speed, larger values for faster speeds, and smaller values 
for slower speeds.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndSetSpeed



MCIWNDM_SETTIMEFORMAT      

  

The MCIWNDM_SETTIMEFORMAT message sets the time format of an MCI device. You can send this 
message explicitly or by using the MCIWndSetTimeFormat macro. 

MCIWNDM_SETTIMEFORMAT 
wParam = 0; 
lParam = (LPARAM) (LPSTR) lp; 
 

Parameters
lp

Address of a buffer containing the null-terminated string indicating the time format. Specify "frames" to 
set the time format to frames, or "ms" to set the time format to milliseconds.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
An application can specify time formats other than frames or milliseconds as long as the formats are 
supported by the MCI device. Noncontinuous formats, such as tracks and SMPTE, can cause the 
trackbar to behave erratically. For these time formats, you might want to turn off the toolbar by using the 
MCIWndChangeStyles macro and specifying the MCIWNDF_NOPLAYBAR window style.

If you want to set the time format to frames or milliseconds, you can also use the MCIWndUseFrames or 
MCIWndUseTime macro. For a list of time formats, see the MCIWndGetTimeFormat macro.

See Also
MCIWndChangeStyles, MCIWndGetTimeFormat, MCIWndSetTimeFormat, MCIWndUseFrames, 
MCIWndUseTime 



MCIWNDM_SETTIMERS      

  

The MCIWNDM_SETTIMERS message sets the update periods used by MCIWnd to update the trackbar 
in the MCIWnd window, update the position information displayed in the window title bar, and send 
notification messages to the parent window. You can send this message explicitly or by using the 
MCIWndSetTimers macro. 

MCIWNDM_SETTIMERS 
wParam = (WPARAM) (UINT) active; 
lParam = (LPARAM) (UINT) inactive; 
 

Parameters
active

Update period used by MCIWnd when it is the active window. The default value is 500 milliseconds. 
Storage for this value is limited to 16 bits.

inactive

Update period used by MCIWnd when it is the inactive window. The default value is 2000 
milliseconds. Storage for this value is limited to 16 bits.

 

Return Values
This message does not return a value.

See Also
MCIWndSetTimers



MCIWNDM_SETVOLUME      

  

The MCIWNDM_SETVOLUME message sets the volume level of an MCI device. You can send this 
message explicitly or by using the MCIWndSetVolume macro. 

MCIWNDM_SETVOLUME 
wParam = 0; 
lParam = (LPARAM) (UINT) iVol; 
 

Parameters
iVol

New volume level. Specify 1000 for normal volume level. Specify a higher value for a louder volume 
or a lower value for a quieter volume.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWndSetVolume



MCIWNDM_SETZOOM      

  

The MCIWNDM_SETZOOM message resizes a video image according to a zoom factor. This marco 
adjusts the size of an MCIWnd window while maintaining a constant aspect ratio. You can send this 
message explicitly or by using the MCIWndSetZoom macro. 

MCIWNDM_SETZOOM 
wParam = 0; 
lParam = (LPARAM) (UINT) iZoom; 
 

Parameters
iZoom

Zoom factor expressed as a percentage of the original image. Specify 100 to display the image at its 
authored size, 200 to display the image at twice its normal size, or 50 to display the image at half its 
normal size.

 

Return Values
This message does not return a value.

See Also
MCIWndSetZoom



MCIWNDM_VALIDATEMEDIA      

  

The MCIWNDM_VALIDATEMEDIA message updates the starting and ending locations of the content, the 
current position in the content, and the trackbar according to the current time format. You can send this 
message explicitly or by using the MCIWndValidateMedia macro. 

MCIWNDM_VALIDATEMEDIA 
wParam = 0; 
lParam = 0; 
 

Return Values
This message does not return a value.

Remarks
Typically, you should not need to use this macro; however, if your application changes the time format of a 
device without using MCIWnd; the starting and ending locations of the content, as well as the trackbar, 
continue to use the old format. You can use this macro to update these values. 

See Also
MCIWndValidateMedia



MIM_CLOSE      

  

The MIM_CLOSE message is sent to a MIDI input callback function when a MIDI input device is closed. 

MIM_CLOSE 
dwParam1 = reserved 
dwParam2 = reserved 
 

Parameters
dwParam1

Reserved; do not use.

dwParam2

Reserved; do not use.
 

Return Values
This message does not return a value.

Remarks
The device handle is no longer valid after this message has been sent.



MIM_DATA      

  

The MIM_DATA message is sent to a MIDI input callback function when a MIDI message is received by a 
MIDI input device.

MIM_DATA 
dwParam1 = dwMidiMessage 
dwParam2 = dwTimestamp 
 

Parameters
dwMidiMessage

MIDI message that was received. The message is packed into a doubleword value as follows:

High 
word

High-order 
byte

Not used.

Low-order byteContains a second byte of MIDI data 
(when needed).

Low 
word

High-order 
byte

Contains the first byte of MIDI data (when 
needed).

Low-order byteContains the MIDI status.
 

The two MIDI data bytes are optional, depending on the MIDI status byte. 

dwTimestamp

Time that the message was received by the input device driver. The time stamp is specified in 
milliseconds, beginning at zero when the midiInStart function was called.

 

Return Values
This message does not return a value.

Remarks
MIDI messages received from a MIDI input port have running status disabled; each message is expanded 
to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received.

See Also
midiInStart



MIM_ERROR      

  

The MIM_ERROR message is sent to a MIDI input callback function when an invalid MIDI message is 
received.

MIM_ERROR 
dwParam1 = dwMidiMessage 
dwParam2 = dwTimestamp 
 

Parameters
dwMidiMessage

Invalid MIDI message that was received. The message is packed into a doubleword value with the 
first byte of the message in the low-order byte.

dwTimestamp

Time that the message was received by the input device driver. The time stamp is specified in 
milliseconds, beginning at zero when the midiInStart function was called.

 

Return Values
This message does not return a value.

See Also
midiInStart



MIM_LONGDATA      

  

The MIM_LONGDATA message is sent to a MIDI input callback function when a system-exclusive buffer 
has been filled with data and is being returned to the application.

MIM_LONGDATA 
dwParam1 = (DWORD) lpMidiHdr 
dwParam2 = dwTimestamp 
 

Parameters
lpMidiHdr

Address of a MIDIHDR structure identifying the input buffer.

dwTimestamp

Time that the data was received by the input device driver. The time stamp is specified in 
milliseconds, beginning at zero when the midiInStart function was called.

 

Return Values
This message does not return a value.

Remarks
The returned buffer might not be full. To determine the number of bytes recorded into the returned buffer, 
use the dwBytesRecorded member of the MIDIHDR structure specified by lpMidiHdr.

See Also
midiInStart, MIDIHDR



MIM_LONGERROR      

  

The MIM_LONGERROR message is sent to a MIDI input callback function when an invalid or incomplete 
MIDI system-exclusive message is received.

MIM_LONGERROR 
dwParam1 = (DWORD) lpMidiHdr 
dwParam2 = dwTimestamp 
 

Parameters
lpMidiHdr

Address of a MIDIHDR structure identifying the buffer containing the invalid message.

dwTimestamp

Time that the data was received by the input device driver. The time stamp is specified in 
milliseconds, beginning at zero when the midiInStart function was called.

 

Return Values
This message does not return a value.

Remarks
The returned buffer might not be full. To determine the number of bytes recorded into the returned buffer, 
use the dwBytesRecorded member of the MIDIHDR structure specified by lpMidiHdr.

See Also
midiInStart, MIDIHDR



MIM_MOREDATA      

  

The MIM_MOREDATA message is sent to a MIDI input callback function when a MIDI message is 
received by a MIDI input device but the application is not processing MIM_DATA messages fast enough 
to keep up with the input device driver. The callback function receives this message only when the 
application specifies MIDI_IO_STATUS in the call to the midiInOpen function.

MIM_MOREDATA 
dwParam1 = dwMidiMessage 
dwParam2 = dwTimestamp 
 

Parameters
dwMidiMessage

Specifies the MIDI message that was received. The message is packed into a doubleword value as 
follows:

High 
word

High-order 
byte

Not used.

Low-order byteContains a second byte of MIDI data 
(when needed).

Low 
word

High-order 
byte

Contains the first byte of MIDI data (when 
needed).

Low-order byteContains the MIDI status.
 

The two MIDI data bytes are optional, depending on the MIDI status byte. 

dwTimestamp

Specifies the time that the message was received by the input device driver. The time stamp is 
specified in milliseconds, beginning at 0 when the midiInStart function was called.

 

Return Values
This message does not return a value.

Remarks
An application should do only a minimal amount of processing of MIM_MOREDATA messages. (In 
particular, applications should not call the PostMessage function while processing MIM_MOREDATA.) 
Instead, the application should place the event data into a buffer and then return.

When an application receives an MIM_DATA message after a series of MIM_MOREDATA messages, it 
has caught up with incoming MIDI events and can safely call time-intensive functions.

MIDI messages received from a MIDI input port have running status disabled; each message is expanded 
to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received.

See Also
midiInOpen, MIM_DATA, PostMessage



MIM_OPEN      

  

The MIM_OPEN message is sent to a MIDI input callback function when a MIDI input device is opened.

MIM_OPEN 
dwParam1 = reserved 
dwParam2 = reserved 
 

Parameters
dwParam1

Reserved; do not use.

dwParam2

Reserved; do not use.
 

Return Values
This message does not return a value.



MM_ACM_FILTERCHOOSE      

  

The MM_ACM_FILTERCHOOSE message notifies an acmFilterChoose dialog box hook function before 
adding an element to one of the three drop-down list boxes. This message allows an application to further 
customize the selections available through the user interface.

MM_ACM_FILTERCHOOSE 
wParam = (WPARAM) wDropDown 
lParam = (LONG) lCustom 
 

Parameters
wDropDown

Drop-down list box being initialized and a verify or add operation.

FILTERCHOOSE_CUSTOM_VERIFY

The lParam parameter is a pointer to a WAVEFILTER structure to be added to the custom Name 
drop-down list box.

FILTERCHOOSE_FILTER_ADD

The lParam parameter is a pointer to a buffer that will accept a WAVEFILTER structure to be 
added to the Filter drop-down list box. The application must copy the filter structure to be added 
into this buffer.

FILTERCHOOSE_FILTER_VERIFY

The lParam parameter is a pointer to a WAVEFILTER structure to be added to the Filter drop-down 
list box.

FILTERCHOOSE_FILTERTAG_ADD

The lParam parameter is a pointer to a DWORD that will accept a waveform-audio filter tag to be 
added to the Filter Tag drop-down list box.

FILTERCHOOSE_FILTERTAG_VERIFY

The lParam parameter is a waveform-audio filter tag to be listed in the Filter Tag drop-down list 
box.

lCustom

Value defined by the listbox specified in the wParam parameter.
 

Return Values
Returns TRUE if an application handles this message or FALSE otherwise. 

Remarks
If the application processes the FILTERCHOOSE_FILTER_ADD operation, the size of the memory buffer 
supplied in lParam will be determined from the acmMetrics function.

If the application processes a verify operation, the application must precede the return value with 
SetWindowLong(hwnd, DWL_MSGRESULT, (LONG) FALSE) to prevent the dialog box from listing this 
selection or with SetWindowLong(hwnd, DWL_MSGRESULT, (LONG)TRUE) to allow the dialog box to 
list this selection. If processing an add operation, the application must precede the return with 



SetWindowLong(hwnd, DWL_MSGRESULT, (LONG)FALSE) to indicate that no more additions are 
required or with SetWindowLong(hwnd, DWL_MSGRESULT, (LONG)TRUE) if more additions are 
required.

See Also
acmFilterChoose, acmMetrics, SetWindowLong, WAVEFILTER



MM_ACM_FORMATCHOOSE      

  

The MM_ACM_FORMATCHOOSE message notifies an acmFormatChoose dialog hook function before 
adding an element to one of the three drop-down list boxes. This message allows an application to further 
customize the selections available through the user interface.

MM_ACM_FORMATCHOOSE 
wParam = (WPARAM) wDropDown 
lParam = (LONG) lCustom 
 

Parameters
wDropDown

Drop-down listbox being initialized and a verify or add operation.

FORMATCHOOSE_CUSTOM_VERIFY

The lParam parameter is a pointer to a WAVEFORMATEX structure to be added to the custom 
Name drop-down list box.

FORMATCHOOSE_FORMAT_ADD

The lParam parameter is a pointer to a buffer that will accept a WAVEFORMATEX structure to be 
added to the Format drop-down list box. The application must copy the format structure to be 
added into this buffer.

FORMATCHOOSE_FORMAT_VERIFY

The lParam parameter is a pointer to a WAVEFORMATEX structure to be added to the Format 
drop-down list box.

FORMATCHOOSE_FORMATTAG_ADD

The lParam parameter is a pointer to a variable that will accept a waveform-audio format tag to be 
added to the Format Tag drop-down list box.

FORMATCHOOSE_FORMATTAG_VERIFY

The lParam parameter is a waveform-audio format tag to be listed in the Format Tag drop-down list 
box.

lCustom

Value defined by the listbox specified in the wParam parameter.
 

Return Values
Returns TRUE if an application handles this message or FALSE otherwise. 

Remarks
If the application processes the FILTERCHOOSE_FORMAT_ADD operation, the size of the memory 
buffer supplied in lParam will be determined from the acmMetrics function.

If your application is processing a verify operation, it can prevent the dialog box from listing this selection 
by calling the SetWindowLong function with nIndex set to DWL_MSGRESULT and lNewLong set to 
FALSE (cast to a LONG data type). To allow the dialog box to list this selection, call this function with 
lNewLong set to TRUE. 



If your application is processing an add operation, it can indicate that no more additions are required by 
calling the SetWindowLong function with nIndex set to DWL_MSGRESULT and lNewLong set to FALSE 
(cast to a LONG data type). To indicate more additions are required, call this function with lNewLong set 
to TRUE.

See Also
acmFormatChoose, acmMetrics, SetWindowLong, WAVEFORMATEX



MM_JOY1BUTTONDOWN      

  

The MM_JOY1BUTTONDOWN message notifies the window that has captured joystick JOYSTICKID1 
that a button has been pressed.

MM_JOY1BUTTONDOWN 
fwButtons = wParam; 
xPos = LOWORD(lParam); 
yPos = HIWORD(lParam); 
 

Parameters
fwButtons

Identifies the button that has changed state and the buttons that are pressed. It can be one of the 
following:

JOY_BUTTON1CHG First joystick button has changed state.

JOY_BUTTON2CHG Second joystick button has changed state.

JOY_BUTTON3CHG Third joystick button has changed state.

JOY_BUTTON4CHG Fourth joystick button has changed state.
 

and one or more of the following:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 

xPos 

The x-coordinate of the joystick relative to the upper left corner of the client area.

yPos

The y-coordinate of the joystick relative to the upper left corner of the client area.
 



MM_JOY1BUTTONUP      

  

The MM_JOY1BUTTONUP message notifies the window that has captured joystick JOYSTICKID1 that a 
button has been released.

MM_JOY1BUTTONUP 
fwButton = wParam; 
xPos = LOWORD(lParam); 
yPos = HIWORD(lParam); 
 

Parameters
fwButtons

Identifies the button that has changed state and the buttons that are pressed. It can be one of the 
following:

JOY_BUTTON1CHG First joystick button has changed state.

JOY_BUTTON2CHG Second joystick button has changed state.

JOY_BUTTON3CHG Third joystick button has changed state.

JOY_BUTTON4CHG Fourth joystick button has changed state.
 

and one or more of the following:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 

xPos

The x-coordinates of the joystick relative to the upper left corner of the client area.

yPos

The y-coordinate of the joystick relative to the upper left corner of the client area.
 



MM_JOY1MOVE      

  

The MM_JOY1MOVE message notifies the window that has captured joystick JOYSTICKID1 that the 
joystick position has changed.

MM_JOY1MOVE 
fwButtons = wParam; 
xPos = LOWORD(lParam); 
yPos = HIWORD(lParam); 
 

Parameters
fwButtons

Identifies the buttons that are pressed. It can be one or more of the following values:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 

xPos

The x-coordinates of the joystick relative to the upper left corner of the client area.

yPos

The y-coordinate of the joystick relative to the upper left corner of the client area.
 



MM_JOY1ZMOVE      

  

The MM_JOY1ZMOVE message notifies the window that has captured joystick JOYSTICKID1 that the 
joystick position on the z-axis has changed.

MM_JOY1ZMOVE 
fwButtons = wParam; 
zPos = LOWORD(lParam); 
 

Parameters
fwButtons

Identifies the buttons that are pressed. It can be one or more of the following values:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 

zPos

The z-coordinate of the joystick.
 



MM_JOY2BUTTONDOWN      

  

The MM_JOY2BUTTONDOWN message notifies the window that has captured joystick JOYSTICKID2 
that a button has been pressed.

MM_JOY2BUTTONDOWN 
fwButtons = wParam; 
xPos = LOWORD(lParam); 
yPos = HIWORD(lParam); 
 

Parameters
fwButtons

Identifies the button that has changed state and the buttons that are pressed. It can be one of the 
following:

JOY_BUTTON1CHG First joystick button has changed state.

JOY_BUTTON2CHG Second joystick button has changed state.

JOY_BUTTON3CHG Third joystick button has changed state.

JOY_BUTTON4CHG Fourth joystick button has changed state.
 

and one or more of the following:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 

xPos

The x-coordinates of the joystick relative to the upper left corner of the client area.

yPos

The y-coordinate of the joystick relative to the upper left corner of the client area.
 



MM_JOY2BUTTONUP      

  

The MM_JOY2BUTTONUP message notifies the window that has captured joystick JOYSTICKID2 that a 
button has been released.

MM_JOY2BUTTONUP 
fwButton = wParam; 
xPos = LOWORD(lParam); 
yPos = HIWORD(lParam); 
 

Parameters
fwButtons

Identifies the button that has changed state and the buttons that are pressed. It can be one of the 
following:

JOY_BUTTON1CHG First joystick button has changed state.

JOY_BUTTON2CHG Second joystick button has changed state.

JOY_BUTTON3CHG Third joystick button has changed state.

JOY_BUTTON4CHG Fourth joystick button has changed state.
 

and one or more of the following:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 

xPos

The x-coordinates of the joystick relative to the upper left corner of the client area.

yPos

The y-coordinate of the joystick relative to the upper left corner of the client area.
 



MM_JOY2MOVE      

  

The MM_JOY2MOVE message notifies the window that has captured joystick JOYSTICKID2 that the 
joystick position has changed.

MM_JOY2MOVE 
fwButtons = wParam; 
xPos = LOWORD(lParam); 
yPos = HIWORD(lParam); 
 

Parameters
fwButtons

Identifies the buttons that are pressed. It can be one or more of the following values:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 

xPos

The x-coordinates of the joystick relative to the upper left corner of the client area.

yPos

The y-coordinate of the joystick relative to the upper left corner of the client area.
 



MM_JOY2ZMOVE      

  

The MM_JOY2ZMOVE message notifies the window that has captured joystick JOYSTICKID2 that the 
joystick position on the z-axis has changed.

MM_JOY2ZMOVE 
fwButtons = wParam; 
zPos = LOWORD(lParam); 
 

Parameters
fwButtons

Identifies the buttons that are pressed. It can be one or more of the following values:

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.
 

zPos

The z-coordinate of the joystick.
 



MM_MCINOTIFY      

  

The MM_MCINOTIFY message notifies an application that an MCI device has completed an operation. 
MCI devices send this message only when the MCI_NOTIFY flag is used.

MM_MCINOTIFY 
wParam = (WPARAM) wFlags 
lParam = (LONG) lDevID
 

Parameters
wFlags

Reason for the notification. The following values are defined:

MCI_NOTIFY_ABORTED

The device received a command that prevented the current conditions for initiating the callback 
function from being met. If a new command interrupts the current command and it also requests 
notification, the device sends this message only and not MCI_NOTIFY_SUPERCEDED.

MCI_NOTIFY_FAILURE

A device error occurred while the device was executing the command.

MCI_NOTIFY_SUCCESSFUL

The conditions initiating the callback function have been met.

MCI_NOTIFY_SUPERSEDED

The device received another command with the "notify" flag set and the current conditions for 
initiating the callback function have been superseded.

lDevID

Identifier of the device initiating the callback function.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
For more information about the MCI_NOTIFY flag, see The Notify Flag.

A device returns the MCI_NOTIFY_SUCCESSFUL flag with MM_MCINOTIFY when the action for a 
command finishes. For example, a CD audio device uses this flag for notification for the play 
(MCI_PLAY) command when the device finishes playing. The play command is successful only when it 
reaches the specified end position or reaches the end of the media. Similarly, the seek (MCI_SEEK) and 
record (MCI_RECORD) commands do not return MCI_NOTIFY_SUCCESSFUL until they reach the 
specified end position or reach the end of the media.

A device returns the MCI_NOTIFY_ABORTED flag with MM_MCINOTIFY only when it receives a 
command that prevents it from meeting the notification conditions. For example, the play command would 
not abort notification for a previous play command provided that the new command does not change the 
play direction or change the ending position. The seek and record commands behave similarly. MCI also 
does not send MCI_NOTIFY_ABORTED when playback or recording is paused with the pause 



(MCI_PAUSE) command. Sending the resume (MCI_RESUME) command allows them to continue to 
meet the callback conditions. 

When your application requests notification for a command, check the error return of the mciSendString 
or mciSendCommand functions. If these functions encounter an error and return a nonzero value, MCI 
will not set notification for the command.

See Also
MCI_PAUSE, MCI_PLAY, MCI_RECORD, MCI_RESUME, MCI_SEEK, mciSendString, 
mciSendCommand, pause, play, record, resume, seek



MM_MCISIGNAL      

  

The MM_MCISIGNAL message is sent to a window to notify an application that an MCI device has 
reached a position defined in a previous signal (MCI_SIGNAL) command.

MM_MCISIGNAL 
wParam = (WPARAM) wID 
lParam = (LONG) lUserParm 
 

Parameters
wID

Identifier of the device initiating the signal message.

lUserParm

Value passed in the dwUserParm member of the MCI_DGV_SIGNAL_PARAMS structure when the 
signal command has defined this callback function. Alternatively, it might contain the position value.

 

See Also
signal, MCI_SIGNAL



MM_MIM_CLOSE      

  

The MM_MIM_CLOSE message is sent to a window when a MIDI input device is closed. 

MM_MIM_CLOSE 
wParam = (WPARAM) hInput 
lParam = reserved 
 

Parameters
hInput

Handle of the MIDI input device that was closed.

lParam

Reserved; do not use.
 

Return Values
This message does not return a value.

Remarks
The device handle is no longer valid after this message has been sent.



MM_MIM_DATA      

  

The MM_MIM_DATA message is sent to a window when a complete MIDI message is received by a MIDI 
input device.

MM_MIM_DATA 
wParam = (WPARAM) hInput 
lParam = (LPARAM) (DWORD) lMidiMessage 
 

Parameters
hInput

Handle of the MIDI input device that received the MIDI message.

lMidiMessage

MIDI message that was received. The message is packed into a doubleword value as follows:

High 
word

High-order byteNot used.

Low-order byte Contains a second byte of MIDI data 
(when needed).

Low 
word

High-order byteContains the first byte of MIDI data 
(when needed).

Low-order byte Contains the MIDI status.
 

The two MIDI data bytes are optional, depending on the MIDI status byte. 
 

Return Values
This message does not return a value.

Remarks
MIDI messages received from a MIDI input port have running status disabled; each message is expanded 
to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received. No time stamp is available 
with this message. For time-stamped input data, you must use the messages that are sent to callback 
functions.



MM_MIM_ERROR      

  

The MM_MIM_ERROR message is sent to a window when an invalid MIDI message is received.

MM_MIM_ERROR 
wParam = (WPARAM) hInput 
lParam = (LPARAM) (DWORD) lMidiMessage 
 

Parameters
hInput

Handle of the MIDI input device that received the invalid message.

lMidiMessage

Invalid MIDI message. The message is packed into a doubleword value with the first byte of the 
message in the low-order byte.

 

Return Values
This message does not return a value.



MM_MIM_LONGDATA      

  

The MM_MIM_LONGDATA message is sent to a window when either a complete MIDI system-exclusive 
message is received or when a buffer has been filled with system-exclusive data.

MM_MIM_LONGDATA 
wParam = (WPARAM) hInput 
lParam = (LPARAM) lpMidiHdr 
 

Parameters
hInput

Handle of the MIDI input device that received the data.

lpMidiHdr

Address of a MIDIHDR structure identifying the buffer.
 

Return Values
This message does not return a value.

Remarks
The returned buffer might not be full. To determine the number of bytes recorded into the returned buffer, 
use the dwBytesRecorded member of the MIDIHDR structure pointed to by lpMidiHdr.

No time stamp is available with this message. For time-stamped input data, you must use the messages 
that are sent to callback functions.

See Also
MIDIHDR



MM_MIM_LONGERROR      

  

The MM_MIM_LONGERROR message is sent to a window when an invalid or incomplete MIDI system-
exclusive message is received.

MM_MIM_LONGERROR 
wParam = (WPARAM) hInput 
lParam = (LPARAM) lpMidiHdr 
 

Parameters
hInput

Handle of the MIDI input device that received the invalid message.

lpMidiHdr

Address of a MIDIHDR structure identifying the buffer containing the invalid message.
 

Return Values
This message does not return a value.

Remarks
The returned buffer might not be full. To determine the number of bytes recorded into the returned buffer, 
use the dwBytesRecorded member of the MIDIHDR structure specified by lpMidiHdr. 

See Also
MIDIHDR



MM_MIM_MOREDATA      

  

The MM_MIM_MOREDATA message is sent to a callback window when a MIDI message is received by a 
MIDI input device but the application is not processing MIM_DATA messages fast enough to keep up with 
the input device driver. The window receives this message only when the application specifies 
MIDI_IO_STATUS in the call to the midiInOpen function.

MM_MIM_MOREDATA 
wParam = (WPARAM) hInput 
lParam = (LPARAM) (DWORD) lMidiMessage 
 

Parameters
hInput

Handle of the MIDI input device that received the MIDI message.

lMidiMessage

Specifies the MIDI message that was received. The message is packed into a doubleword value as 
follows:

High 
word

High-order byteNot used.

Low-order byte Contains a second byte of MIDI data 
(when needed).

Low 
word

High-order byteContains the first byte of MIDI data 
(when needed).

Low-order byte Contains the MIDI status.
 

The two MIDI data bytes are optional, depending on the MIDI status byte. 
 

Return Values
This message does not return a value.

Remarks
If your application will receive MIDI data faster than it can process it, you should not use a window 
callback mechanism. To maximize speed, use a callback function, and use the MIM_MOREDATA 
message instead of MM_MIM_MOREDATA.

An application should do only a minimal amount of processing of MM_MIM_MOREDATA messages. (In 
particular, applications should not call the PostMessage function while processing 
MM_MIM_MOREDATA.) Instead, the application should place the event data into a buffer and then 
return.

When an application receives an MM_MIM_DATA message after a series of MM_MIM_MOREDATA 
messages, it has caught up with incoming MIDI events and can safely call time-intensive functions.

MIDI messages received from a MIDI input port have running status disabled; each message is expanded 
to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received. No time stamp is available 



with this message. For time-stamped input data, you must use the messages that are sent to callback 
functions.

See Also
midiInOpen, MIM_DATA, MIM_MOREDATA, MM_MIM_DATA, PostMessage



MM_MIM_OPEN      

  

The MM_MIM_OPEN message is sent to a window when a MIDI input device is opened.

MM_MIM_OPEN 
wParam = (WPARAM) hInput 
lParam = reserved 
 

Parameters
hInput

Handle of the MIDI input device that was opened.

lParam

Reserved; do not use.
 

Return Values
This message does not return a value.



MM_MIXM_CONTROL_CHANGE      

  

The MM_MIXM_CONTROL_CHANGE message is sent by a mixer device to notify an application that the 
state of a control associated with an audio line has changed. The application should refresh its display 
and cached values for the specified control.

MM_MIXM_CONTROL_CHANGE 
wParam = (WPARAM) hMixer 
lParam = (LPARAM) dwControlID 
 

Parameters
hMixer

Handle of the mixer device (HMIXER) that sent the notification message.

dwControlID

Control identifier for the mixer control that has changed state. This identifier is the same as the 
dwControlID member of the MIXERCONTROL structure returned by the mixerGetLineControls 
function.

 

Remarks
An application must open a mixer device and specify a callback window to receive the 
MM_MIXM_CONTROL_CHANGE message.

See Also
mixerGetLineControls, MIXERCONTROL



MM_MIXM_LINE_CHANGE      

  

The MM_MIXM_LINE_CHANGE message is sent by a mixer device to notify an application that the state 
of an audio line on the specified device has changed. The application should refresh its display and 
cached values for the specified audio line.

MM_MIXM_LINE_CHANGE 
wParam = (WPARAM) hMixer 
lParam = (LPARAM) dwLineID 
 

Parameters
hMixer

Handle of the mixer device that sent the notification message.

dwLineID

Line identifier for the audio line that has changed state. This identifier is the same as the dwLineID 
member of the MIXERLINE structure returned by the mixerGetLineInfo function.

 

Remarks
An application must open a mixer device and specify a callback window to receive the 
MM_MIXM_LINE_CHANGE message.

See Also
mixerGetLineInfo, MIXERLINE



MM_MOM_CLOSE      

  

The MM_MOM_CLOSE message is sent to a window when a MIDI output device is closed. 

MM_MOM_CLOSE 
wParam = (WPARAM) hOutput 
lParam = reserved 
 

Parameters
hOutput

Handle of the MIDI output device.

lParam

Reserved; do not use.
 

Return Values
This message does not return a value.

Remarks
The device handle is no longer valid after this message has been sent.



MM_MOM_DONE      

  

The MM_MOM_DONE message is sent to a window when the specified MIDI system-exclusive or stream 
buffer has been played and is being returned to the application.

MM_MOM_DONE 
wParam = (WPARAM) hOutput 
lParam = (LPARAM) lpMidiHdr 
 

Parameters
hOutput

Handle of the MIDI output device that played the buffer.

lpMidiHdr

Address of a MIDIHDR structure identifying the buffer.
 

Return Values
This message does not return a value.

See Also
MIDIHDR



MM_MOM_OPEN      

  

The MM_MOM_OPEN message is sent to a window when a MIDI output device is opened.

MM_MOM_OPEN 
wParam = (WPARAM) hOutput 
lParam = reserved 
 

Parameters
hOutput

Handle of the MIDI output device.

lParam

Reserved; do not use.
 

Return Values
This message does not return a value.



MM_MOM_POSITIONCB      

  

The MM_MOM_POSITIONCB message is sent to a window when an MEVT_F_CALLBACK event is 
reached in the MIDI output stream.

MM_MOM_POSITIONCB 
wParam = (WPARAM) lpMidiHdr 
lParam = reserved 
 

Parameters
lpMidiHdr

Address of a MIDIHDR structure that identifies the event that caused the callback. The dwOffset 
member gives the offset of the event.

lParam

Reserved; do not use.
 

Return Values
This message does not return a value.

Remarks
Playback of the stream buffer continues even while the callback function is executing. Any events after 
the MEVT_F_CALLBACK event in the buffer will be scheduled and sent on time regardless of how much 
time is spent in the callback function.

If position callbacks are being generated more quickly than your application can process them, the 
dwOffset member of the MIDIHDR structure might refer to an event your application has not yet 
processed.

See Also
MIDIHDR



MMIOM_CLOSE      

  

The MMIOM_CLOSE message is sent to an I/O procedure by the mmioClose function to request that a 
file be closed.

MMIOM_CLOSE 
lParam1 = (LPARAM) lCloseFlags 
lParam2 = reserved 
 

Parameters
lCloseFlags

Flags contained in the wFlags parameter of mmioClose.
 

Return Values
Returns zero if the file is successfully closed or an error otherwise.

See Also
mmioClose



MMIOM_OPEN      

  

The MMIOM_OPEN message is sent to an I/O procedure by the mmioOpen function to request that a file 
be opened or deleted.

MMIOM_OPEN 
lParam1 = (LPARAM) lpszFileName 
lParam2 = reserved 
 

Parameters
lpszFileName 

Null-terminated string containing the name of the file to open.

lParam2

Reserved.
 

Return Values
Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the 
following:

MMIOM_CANNOTOPEN The file could not be opened.

MMIOM_OUTOFMEMORY Not enough memory to perform the 
operation.

 

Remarks
The dwFlags member of the MMIOINFO structure contains flags passed to the mmioOpen function.

The lDiskOffset member of the MMIOINFO structure is initialized to zero. If this value is incorrect, the I/O 
procedure must correct it.

If the application passed an MMIOINFO structure to mmioOpen, the return value is returned in the 
wErrorRet member.

See Also
MMIOINFO, mmioOpen



MMIOM_READ      

  

The MMIOM_READ message is sent to an I/O procedure by the mmioRead function to request that a 
specified number of bytes be read from an open file.

MMIOM_READ 
lParam1 = (LPARAM) lBuffer 
lParam2 = (LPARAM) cbRead 
 

Parameters
lBuffer

Address of the buffer to be filled with data read from the file.

cbRead

Number of bytes to read from file.
 

Return Values
Returns the number of bytes actually read from the file. If no more bytes can be read, the return value is 
0. If there is an error, the return value is - 1.

Remarks
The I/O procedure is responsible for updating the lDiskOffset member of the MMIOINFO structure to 
reflect the new file position after the read operation.

See Also
mmioRead, MMIOINFO



MMIOM_RENAME      

  

The MMIOM_RENAME message is sent to an I/O procedure by the mmioRename function to request 
that the specified file be renamed.

MMIOM_RENAME 
lParam1 = (LPARAM) lpszOldFilename 
lParam2 = (LPARAM) lpszNewFilename 
 

Parameters
lpszOldFilename

Address of a string containing the filename of the file to rename.

lpszNewFilename

Address of a string containing the new filename.
 

Return Values
If the file is renamed successfully, the return value is zero. If the specified file was not found, the return 
value is MMIOERR_FILENOTFOUND.

See Also
mmioRename



MMIOM_SEEK      

  

The MMIOM_SEEK message is sent to an I/O procedure by the mmioSeek function to request that the 
current file position be moved.

MMIOM_SEEK 
lParam1 = (LPARAM) lNewFilePos 
lParam2 = (LPARAM) lChangeFlag 
 

Parameters
lNewFilePos

New file position. The meaning of this value is dependent on the flag specified in lChangeFlag.

lChangeFlag

Flag specifying how the file position is changed. The following values are defined:

SEEK_CUR

Move the file position to be lNewFilePos bytes from the current position. NewFilePos can be 
positive or negative.

SEEK_END

Move the file position to be lNewFilePos bytes from the end of the file.

SEEK_SET

Move the file position to be lNewFilePos bytes from the beginning of the file.
 

Return Values
Returns the new file position. If there is an error, the return value is - 1.

Remarks
The I/O procedure is responsible for maintaining the current file position in the lDiskOffset member of the 
MMIOINFO structure.

See Also
mmioSeek, MMIOINFO



MMIOM_WRITE      

  

The MMIOM_WRITE message is sent to an I/O procedure by the mmioWrite function to request that 
data be written to an open file.

MMIOM_WRITE 
lParam1 = (LPARAM) lpBuffer 
lParam2 = (LPARAM) cbWrite 
 

Parameters
lpBuffer

Address of a buffer containing the data to write to the file.

cbWrite

Number of bytes to write to file.
 

Return Values
Returns the number of bytes actually written to the file. If there is an error, the return value is - 1.

Remarks
The I/O procedure is responsible for updating the lDiskOffset member of the MMIOINFO structure to 
reflect the new file position after the write operation.

See Also
mmioWrite, MMIOINFO



MMIOM_WRITEFLUSH      

  

The MMIOM_WRITEFLUSH message is sent to an I/O procedure by the mmioWrite function to request 
that data be written to an open file and that any internal buffers used by the I/O procedure be flushed to 
disk.

MMIOM_WRITEFLUSH 
lParam1 = (LPARAM) lpBuffer 
lParam2 = (LPARAM) cbWrite 
 

Parameters
lpBuffer

Address of a buffer containing the data to write to the file.

cbWrite

Number of bytes to write to file.l
 

Return Values
Returns the number of bytes actually written to the file. If there is an error, the return value is - 1.

Remarks
The I/O procedure is responsible for updating the lDiskOffset member of the MMIOINFO structure to 
reflect the new file position after the write operation.

This message is equivalent to the MMIOM_WRITE message except that it requests that the I/O 
procedure flush its internal buffers, if any. Unless an I/O procedure performs internal buffering, this 
message can be handled exactly like the MMIOM_WRITE message.

See Also
mmioWrite, MMIOINFO, MMIOM_WRITE



MM_WIM_CLOSE      

  

The MM_WIM_CLOSE message is sent to a window when a waveform-audio input device is closed. The 
device handle is no longer valid after this message has been sent.

MM_WIM_CLOSE 
wParam = (WPARAM) hInputDev 
lParam = reserved 
 

Parameters
hInputDev

Handle of the waveform-audio input device that was closed.

lParam

Reserved; must be zero.
 

Return Values
This message does not return a value.



MM_WIM_DATA      

  

The MM_WIM_DATA message is sent to a window when waveform-audio data is present in the input 
buffer and the buffer is being returned to the application. The message can be sent either when the buffer 
is full or after the waveInReset function is called.

MM_WIM_DATA 
wParam = (WPARAM) hInputDev 
lParam = (LONG) lpwvhdr 
 

Parameters
hInputDev

Handle of the waveform-audio input device that received the data.

lpwvhdr

Address of a WAVEHDR structure that identifies the buffer containing the data.
 

Return Values
This message does not return a value.

Remarks
The returned buffer might not be full. Use the dwBytesRecorded member of the WAVEHDR structure 
specified by lParam to determine the number of bytes recorded into the returned buffer.

See Also
waveInReset, WAVEHDR



MM_WIM_OPEN      

  

The MM_WIM_OPEN message is sent to a window when a waveform-audio input device is opened.

MM_WIM_OPEN 
wParam = (WPARAM) hInputDev 
lParam = reserved 
 

Parameters
hInputDev

Handle of the device that was opened.

lParam

Reserved; must be zero.
 

Return Values
This message does not return a value.



MM_WOM_CLOSE      

  

The MM_WOM_CLOSE message is sent to a window when a waveform-audio output device is closed. 
The device handle is no longer valid after this message has been sent.

MM_WOM_CLOSE 
wParam = (WPARAM) hOutputDev 
lParam = reserved 
 

Parameters
hOutputDev

Handle of the device that was closed.

lParam

Reserved; must be zero.
 

Return Values
This message does not return a value.



MM_WOM_DONE      

  

The MM_WOM_DONE message is sent to a window when the given output buffer is being returned to the 
application. Buffers are returned to the application when they have been played, or as the result of a call 
to the waveOutReset function.

MM_WOM_DONE 
wParam = (WPARAM) hOutputDev 
lParam = (LONG) lpwvhdr 
 

Parameters
hOutputDev

Handle of the waveform-audio output device that played the buffer.

lpwvhdr

Address of a WAVEHDR structure identifying the buffer.
 

Return Values
This message does not return a value.

See Also
waveOutReset, WAVEHDR



MM_WOM_OPEN      

  

The MM_WOM_OPEN message is sent to a window when the given waveform-audio output device is 
opened.

MM_WOM_OPEN 
wParam = (WPARAM) hOutputDev 
lParam = reserved 
 

Parameters
hOutputDev

Handle of the device that was opened.

lParam

Reserved; must be zero.
 

Return Values
This message does not return a value.



MOM_CLOSE      

  

The MOM_CLOSE message is sent to a MIDI output callback function when a MIDI output device is 
closed. 

MOM_CLOSE 
dwParam1 = reserved 
dwParam2 = reserved 
 

Parameters
dwParam1

Reserved; do not use.

dwParam2

Reserved; do not use.
 

Return Values
This message does not return a value.

Remarks
The device handle is no longer valid after this message has been sent.



MOM_DONE      

  

The MOM_DONE message is sent to a MIDI output callback function when the specified system-
exclusive or stream buffer has been played and is being returned to the application.

MOM_DONE 
dwParam1 = (DWORD) lpMidiHdr 
dwParam2 = reserved 
 

Parameters
lpMidiHdr

Address of a MIDIHDR structure identifying the buffer.

dwParam2

Reserved; do not use.
 

Return Values
This message does not return a value.

See Also
MIDIHDR



MOM_OPEN      

  

The MOM_OPEN message is sent to a MIDI output callback function when a MIDI output device is 
opened.

MOM_OPEN 
dwParam1 = reserved 
dwParam2 = reserved 
 

Parameters
dwParam1

Reserved; do not use.

dwParam2

Reserved; do not use.
 

Return Values
This message does not return a value.



MOM_POSITIONCB      

  

The MOM_POSITION message is sent to a window when a MEVT_F_CALLBACK event is reached in the 
MIDI output stream.

MOM_POSITIONCB 
dwParam1 = (DWORD) hOutput 
dwParam2 = (DWORD) lpMidiHdr 
 

Parameters
hOutput

Handle of the MIDI output device.

lpMidiHdr

Address of a MIDIHDR structure that identifies the event that caused the callback function. The 
dwOffset member gives the offset of the event.

 

Return Values
This message does not return a value.

Remarks
Playback of the stream buffer continues even while the callback function is executing. Any events after 
the MEVT_F_CALLBACK event in the buffer will be scheduled and sent on time regardless of how much 
time is spent in the callback function.

If position callbacks are being generated more quickly than your application can process them, the 
dwOffset member of the MIDIHDR structure might refer to an event your application has not yet 
processed.

See Also
MIDIHDR



WIM_CLOSE      

  

The WIM_CLOSE message is sent to the given waveform-audio input callback function when a 
waveform-audio input device is closed. The device handle is no longer valid after this message has been 
sent.

WIM_CLOSE 
dwParam1 = reserved 
dwParam2 = reserved 
 

Parameters
dwParam1

Reserved; must be zero.

dwParam2

Reserved; must be zero.
 

Return Values
This message does not return a value.



WIM_DATA      

  

The WIM_DATA message is sent to the given waveform-audio input callback function when waveform-
audio data is present in the input buffer and the buffer is being returned to the application. The message 
can be sent when the buffer is full or after the waveInReset function is called.

WIM_DATA 
dwParam1 = (DWORD) lpwvhdr 
dwParam2 = reserved 
 

Parameters
dwParam1

Address of a WAVEHDR structure that identifies the buffer containing the data.

dwParam2

Reserved; must be zero.
 

Return Values
This message does not return a value.

Remarks
The returned buffer might not be full. Use the dwBytesRecorded member of the WAVEHDR structure 
specified by lpwvhdr to determine the number of bytes recorded into the returned buffer.

See Also
WAVEHDR, waveInReset



WIM_OPEN      

  

The WIM_OPEN message is sent to a waveform-audio input callback function when a waveform-audio 
input device is opened.

WIM_OPEN 
dwParam1 = reserved 
dwParam2 = reserved 
 

Parameters
dwParam1

Reserved; must be zero.

dwParam2

Reserved; must be zero.
 

Return Values
This message does not return a value.



WM_CAP_ABORT      

  

The WM_CAP_ABORT message stops the capture operation. In the case of step capture, the image data 
collected up to the point of the WM_CAP_ABORT message will be retained in the capture file, but audio 
will not be captured. You can send this message explicitly or by using the capCaptureAbort macro.

WM_CAP_ABORT 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The capture operation must yield to use this message. 

Use the WM_CAP_STOP message to halt step capture at the current position, and then capture audio.

See Also
capCaptureAbort, WM_CAP_STOP



WM_CAP_DLG_VIDEOCOMPRESSION      

  

The WM_CAP_DLG_VIDEOCOMPRESSION message displays a dialog box in which the user can select 
a compressor to use during the capture process. The list of available compressors can vary with the video 
format selected in the capture driver's Video Format dialog box. You can send this message explicitly or 
by using the capDlgVideoCompression macro.

WM_CAP_DLG_VIDEOCOMPRESSION 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
Use this message with capture drivers that provide frames only in the BI_RGB format. This message is 
most useful in the step capture operation to combine capture and compression in a single operation. 
Compressing frames with a software compressor as part of a real-time capture operation is most likely too 
time-consuming to perform.

Compression does not affect the frames copied to the clipboard.

See Also
capDlgVideoCompression



WM_CAP_DLG_VIDEODISPLAY      

  

The WM_CAP_DLG_VIDEODISPLAY message displays a dialog box in which the user can set or adjust 
the video output. This dialog box might contain controls that affect the hue, contrast, and brightness of the 
displayed image, as well as key color alignment. You can send this message explicitly or by using the 
capDlgVideoDisplay macro.

WM_CAP_DLG_VIDEODISPLAY 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The controls in this dialog box do not affect digitized video data; they affect only the output or redisplay of 
the video signal.

The Video Display dialog box is unique for each capture driver. Some capture drivers might not support a 
Video Display dialog box. Applications can determine if the capture driver supports this message by 
checking the fHasDlgVideoDisplay member of the CAPDRIVERCAPS structure.

See Also
capDlgVideoDisplay, CAPDRIVERCAPS



WM_CAP_DLG_VIDEOFORMAT      

  

The WM_CAP_DLG_VIDEOFORMAT message displays a dialog box in which the user can select the 
video format. The Video Format dialog box might be used to select image dimensions, bit depth, and 
hardware compression options. You can send this message explicitly or by using the 
capDlgVideoFormat macro.

WM_CAP_DLG_VIDEOFORMAT 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
After this message returns, applications might need to update the CAPSTATUS structure because the 
user might have changed the image dimensions.

The Video Format dialog box is unique for each capture driver. Some capture drivers might not support a 
Video Format dialog box. Applications can determine if the capture driver supports this message by 
checking the fHasDlgVideoFormat member of CAPDRIVERCAPS.

See Also
capDlgVideoFormat, CAPDRIVERCAPS, CAPSTATUS



WM_CAP_DLG_VIDEOSOURCE      

  

The WM_CAP_DLG_VIDEOSOURCE message displays a dialog box in which the user can control the 
video source. The Video Source dialog box might contain controls that select input sources; alter the hue, 
contrast, brightness of the image; and modify the video quality before digitizing the images into the frame 
buffer. You can send this message explicitly or by using the capDlgVideoSource macro.

WM_CAP_DLG_VIDEOSOURCE 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The Video Source dialog box is unique for each capture driver. Some capture drivers might not support a 
Video Source dialog box. Applications can determine if the capture driver supports this message by 
checking the fHasDlgVideoSource member of the CAPDRIVERCAPS structure.

See Also
capDlgVideoSource, CAPDRIVERCAPS



WM_CAP_DRIVER_CONNECT      

  

The WM_CAP_DRIVER_CONNECT message connects a capture window to a capture driver. You can 
send this message explicitly or by using the capDriverConnect macro.

WM_CAP_DRIVER_CONNECT 
wParam = (WPARAM) (iIndex); 
lParam = 0L; 
 

Parameters
iIndex

Index of the capture driver. The index can range from 0 through 9.
 

Return Values
Returns TRUE if successful or FALSE if the specified capture driver cannot be connected to the capture 
window.

Remarks
Connecting a capture driver to a capture window automatically disconnects any previously connected 
capture driver.

See Also
capDriverConnect



WM_CAP_DRIVER_DISCONNECT      

  

The WM_CAP_DRIVER_DISCONNECT message disconnects a capture driver from a capture window. 
You can send this message explicitly or by using the capDriverDisconnect macro.

WM_CAP_DRIVER_DISCONNECT 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

See Also
capDriverDisconnect



WM_CAP_DRIVER_GET_CAPS      

  

The WM_CAP_DRIVER_GET_CAPS message returns the hardware capabilities of the capture driver 
currently connected to a    capture window. You can send this message explicitly or by using the 
capDriverGetCaps macro.

WM_CAP_DRIVER_GET_CAPS 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPCAPDRIVERCAPS) (psCaps); 
 

Parameters
wSize

Size, in bytes, of the structure referenced by s.

psCaps

Address of the CAPDRIVERCAPS structure to contain the hardware capabilities.
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The capabilities returned in CAPDRIVERCAPS are constant for a given capture driver. Applications need 
to retrieve this information once when the capture driver is first connected to a capture window.

See Also
CAPDRIVERCAPS, capDriverGetCaps



WM_CAP_DRIVER_GET_NAME      

  

The WM_CAP_DRIVER_GET_NAME message returns the name of the capture driver connected to the 
capture window. You can send this message explicitly or by using the capDriverGetName macro.

WM_CAP_DRIVER_GET_NAME 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
wSize

Size, in bytes, of the buffer referenced by szName.

szName

Address of an application-defined buffer used to return the device name as a null-terminated string.
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The name is a text string retrieved from the driver's resource area. Applications should allocate 
approximately 80 bytes for this string. If the driver does not contain a name resource, the full path name 
of the driver listed in the registry or in the SYSTEM.INI file is returned.

See Also
capDriverGetName



WM_CAP_DRIVER_GET_VERSION      

  

The WM_CAP_DRIVER_GET_VERSION message returns the version information of the capture driver 
connected to a capture window. You can send this message explicitly or by using the 
capDriverGetVersion macro.

WM_CAP_DRIVER_GET_VERSION 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPSTR) (szVer); 
 

Parameters
wSize

Size, in bytes, of the application-defined buffer referenced by szVer.

szVer

Address of an application-defined buffer used to return the version information as a null-terminated 
string.

 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The version information is a text string retrieved from the driver's resource area. Applications should 
allocate approximately 40 bytes for this string. If version information is not available, a NULL string is 
returned.

See Also
capDriverGetVersion



WM_CAP_EDIT_COPY      

  

The WM_CAP_EDIT_COPY message copies the contents of the video frame buffer and associated 
palette to the clipboard. You can send this message explicitly or by using the capEditCopy macro.

WM_CAP_EDIT_COPY 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
capEditCopy



WM_CAP_FILE_ALLOCATE      

  

The WM_CAP_FILE_ALLOCATE message creates (preallocates) a capture file of a specified size. You 
can send this message explicitly or by using the capFileAlloc macro.

WM_CAP_FILE_ALLOCATE 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (DWORD) (dwSize); 
 

Parameters
dwSize

Size, in bytes, to create the capture file.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

Remarks
You can improve streaming capture performance significantly by preallocating a capture file large enough 
to store an entire video clip and by defragmenting the capture file before capturing the clip. 

See Also
capFileAlloc, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_FILE_GET_CAPTURE_FILE      

  

The WM_CAP_FILE_GET_CAPTURE_FILE message returns the name of the current capture file. You 
can send this message explicitly or by using the capFileGetCaptureFile macro.

WM_CAP_FILE_GET_CAPTURE_FILE 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
wSize

Size, in bytes, of the application-defined buffer referenced by szName.

szName

Address of an application-defined buffer used to return the name of the capture file as a null-
terminated string.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The default capture filename is C:\CAPTURE.AVI.

See Also
capFileGetCaptureFile



WM_CAP_FILE_SAVEAS      

  

The WM_CAP_FILE_SAVEAS message copies the contents of the capture file to another file. You can 
send this message explicitly or by using the capFileSaveAs macro.

WM_CAP_FILE_SAVEAS 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
szName

Address of the null-terminated string that contains the name of the destination file used to copy the 
file.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

Remarks
This message does not change the name or contents of the current capture file.

If the copy operation is unsuccessful due to a disk full error, the destination file is automatically deleted.

Typically, a capture file is preallocated for the largest capture segment anticipated and only a portion of it 
might be used to capture data. This message copies only the portion of the file containing the capture 
data. 

See Also
capFileSaveAs, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_FILE_SAVEDIB      

  

The WM_CAP_FILE_SAVEDIB message copies the current frame to a DIB file. You can send this 
message explicitly or by using the capFileSaveDIB macro.

WM_CAP_FILE_SAVEDIB 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
szName

Address of the null-terminated string that contains the name of the destination DIB file.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

Remarks
If the capture driver supplies frames in a compressed format, this call attempts to decompress the frame 
before writing the file.

See Also
capFileSaveDIB, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_FILE_SET_CAPTURE_FILE      

  

The WM_CAP_FILE_SET_CAPTURE_FILE message names the file used for video capture. You can 
send this message explicitly or by using the capFileSetCaptureFile macro.

WM_CAP_FILE_SET_CAPTURE_FILE 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
szName

Address of the null-terminated string that contains the name of the capture file to use.
 

Return Values
Returns TRUE if successful or FALSE if the filename is invalid, or if streaming or single-frame capture is 
in progress.

Remarks
This message stores the filename in an internal structure. It does not create, allocate, or open the 
specified file. The default capture filename is C:\CAPTURE.AVI.

See Also
capFileSetCaptureFile



WM_CAP_FILE_SET_INFOCHUNK      

  

The WM_CAP_FILE_SET_INFOCHUNK message sets and clears information chunks. Information 
chunks can be inserted in an AVI file during capture to embed text strings or custom data. You can send 
this message explicitly or by using the capFileSetInfoChunk macro.

WM_CAP_FILE_SET_INFOCHUNK 
wParam = (WPARAM)0; 
lParam = (LPARAM) (LPCAPINFOCHUNK) (lpInfoChunk); 
 

Parameters
lpInfoChunk

Address of a CAPINFOCHUNK structure defining the information chunk to be created or deleted.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

Remarks
Multiple registered information chunks can be added to an AVI file. After an information chunk is set, it 
continues to be added to subsequent capture files until either the entry is cleared or all information chunk 
entries are cleared. To clear a single entry, specify the information chunk in the fccInfoID member and 
NULL in the lpData member of the CAPINFOCHUNK structure. To clear all entries, specify NULL in 
fccInfoID.

See Also
capFileSetInfoChunk, CAPINFOCHUNK, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_GET_AUDIOFORMAT      

  

The WM_CAP_GET_AUDIOFORMAT message obtains the audio format or the size of the audio format. 
You can send this message explicitly or by using the capGetAudioFormat and 
capGetAudioFormatSize macros.

WM_CAP_GET_AUDIOFORMAT 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPWAVEFORMATEX) (psAudioFormat); 
 

Parameters
wSize

Size, in bytes, of the structure referenced by s.

psAudioFormat

Address of a WAVEFORMATEX structure, or NULL. If the value is NULL, the size, in bytes, required 
to hold the WAVEFORMATEX structure is returned.

 

Return Values
Returns the size, in bytes, of the audio format.

Remarks
Because compressed audio formats vary in size requirements applications must first retrieve the size, 
then allocate memory, and finally request the audio format data.

See Also
capGetAudioFormat, capGetAudioFormatSize, WAVEFORMATEX



WM_CAP_GET_MCI_DEVICE      

  

The WM_CAP_GET_MCI_DEVICE message retrieves the name of an MCI device previously set with the 
WM_CAP_SET_MCI_DEVICE message. You can send this message explicitly or by using the 
capGetMCIDeviceName macro.

WM_CAP_GET_MCI_DEVICE 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
wSize

Length, in bytes, of the buffer referenced by szName .

szName

Address of a null-terminated string that contains the MCI device name.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
capGetMCIDeviceName, WM_CAP_SET_MCI_DEVICE



WM_CAP_GET_SEQUENCE_SETUP      

  

The WM_CAP_GET_SEQUENCE_SETUP message retrieves the current settings of the streaming 
capture parameters. You can send this message explicitly or by using the capCaptureGetSetup macro.

WM_CAP_GET_SEQUENCE_SETUP 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPCAPTUREPARMS) (s); 
 

Parameters
wSize

Size, in bytes, of the structure referenced by s.

s

Address of a CAPTUREPARMS structure.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about the parameters used to control streaming capture, see the CAPTUREPARMS 
structure.

See Also
capCaptureGetSetup, CAPTUREPARMS



WM_CAP_GET_STATUS      

  

The WM_CAP_GET_STATUS message retrieves the status of the capture window. You can send this 
message explicitly or by using the capGetStatus macro.

WM_CAP_GET_STATUS 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPCAPSTATUS) (s); 
 

Parameters
wSize

Size, in bytes, of the structure referenced by s.

s

Address of a CAPSTATUS structure.
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The CAPSTATUS structure contains the current state of the capture window. Since this state is dynamic 
and changes in response to various messages, the application should initialize this structure after sending 
the WM_CAP_DLG_VIDEOFORMAT message (or using the capDlgVideoFormat macro) and whenever 
it needs to enable menu items or determine the actual state of the window.

See Also
capGetStatus, CAPSTATUS, WM_CAP_DLG_VIDEOFORMAT



WM_CAP_GET_USER_DATA      

  

The WM_CAP_GET_USER_DATA message retrieves a LONG data value associated with a capture 
window. You can send this message explicitly or by using the capGetUserData macro.

WM_CAP_GET_USER_DATA 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns a value previously saved by using the WM_CAP_SET_USER_DATAmessage.

See Also
capGetUserData, WM_CAP_SET_USER_DATA



WM_CAP_GET_VIDEOFORMAT      

  

The WM_CAP_GET_VIDEOFORMAT message retrieves a copy of the video format in use or the size 
required for the video format. You can send this message explicitly or by using the capGetVideoFormat 
and capGetVideoFormatSize macros.

WM_CAP_GET_VIDEOFORMAT 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (psVideoFormat); 
 

Parameters
wSize

Size, in bytes, of the structure referenced by s.

psVideoFormat

Address of a BITMAPINFO structure. You can also specify NULL to retrieve the number of bytes 
needed by BITMAPINFO.

 

Return Values
Returns the size, in bytes, of the video format or zero if the capture window is not connected to a capture 
driver. For video formats that require a palette, the current palette is also returned.

Remarks
Because compressed video formats vary in size requirements applications must first retrieve the size, 
then allocate memory, and finally request the video format data.

See Also
BITMAPINFO, capGetVideoFormat, capGetVideoFormatSize



WM_CAP_GRAB_FRAME      

  

The WM_CAP_GRAB_FRAME message retrieves and displays a single frame from the capture driver. 
After capture, overlay and preview are disabled. You can send this message explicitly or by using the 
capGrabFrame macro.

WM_CAP_GRAB_FRAME 
wParam = (WPARAM)0; 
lParam = (LPARAM)0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about installing callback functions, see the WM_CAP_SET_CALLBACK_ERROR and 
WM_CAP_SET_CALLBACK_FRAME messages.

See Also
capGrabFrame, WM_CAP_SET_CALLBACK_ERROR, WM_CAP_SET_CALLBACK_FRAME



WM_CAP_GRAB_FRAME_NOSTOP      

  

The WM_CAP_GRAB_FRAME_NOSTOP message fills the frame buffer with a single uncompressed 
frame from the capture device and displays it. Unlike with the WM_CAP_GRAB_FRAME message, the 
state of overlay or preview is not altered by this message. You can send this message explicitly or by 
using the capGrabFrameNoStop macro.

WM_CAP_GRAB_FRAME_NOSTOP 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about installing callback functions, see the WM_CAP_SET_CALLBACK_ERROR and 
WM_CAP_SET_CALLBACK_FRAME messages.

See Also
capGrabFrameNoStop, WM_CAP_GRAB_FRAME, WM_CAP_SET_CALLBACK_ERROR, 
WM_CAP_SET_CALLBACK_FRAME



WM_CAP_PAL_AUTOCREATE      

  

The WM_CAP_PAL_AUTOCREATE message requests that the capture driver sample video frames and 
automatically create a new palette. You can send this message explicitly or by using the capPaletteAuto 
macro.

WM_CAP_PAL_AUTOCREATE 
wParam = (WPARAM) (iFrames); 
lParam = (LPARAM) (DWORD) (iColors); 
 

Parameters
iFrames

Number of frames to sample.

iColors

Number of colors in the palette. The maximum value for this parameter is 256.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

Remarks
The sampled video sequence should include all the colors you want in the palette. To obtain the best 
palette, you might have to sample the whole sequence rather than a portion of it.

See Also
capPaletteAuto, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_PAL_MANUALCREATE      

  

The WM_CAP_PAL_MANUALCREATE message requests that the capture driver manually sample video 
frames and create a new palette. You can send this message explicitly or by using the capPaletteManual 
macro.

WM_CAP_PAL_MANUALCREATE 
wParam = (WPARAM) (fGrab); 
lParam = (LPARAM) (DWORD) (iColors); 
 

Parameters
fGrab

Palette histogram flag. Set this parameter to TRUE for each frame included in creating the optimal 
palette. After the last frame has been collected, set this parameter to FALSE to calculate the optimal 
palette and send it to the capture driver.

iColors

Number of colors in the palette. The maximum value for this parameter is 256. This value is used only 
during collection of the first frame in a sequence.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

See Also
capPaletteManual, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_PAL_OPEN      

  

The WM_CAP_PAL_OPEN message loads a new palette from a palette file and passes it to a capture 
driver. Palette files typically use the filename extension .PAL. A capture driver uses a palette when 
required by the specified digitized image format. You can send this message explicitly or by using the 
capPaletteOpen macro.

WM_CAP_PAL_OPEN 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
szName

Address of a null-terminated string containing the palette filename.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

See Also
capPaletteOpen, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_PAL_PASTE      

  

The WM_CAP_ message copies the palette from the clipboard and passes it to a capture driver. You can 
send this message explicitly or by using the capPalettePaste macro.

WM_CAP_PAL_PASTE 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

Remarks
A capture driver uses a palette when required by the specified digitized video format.

See Also
capPalettePaste, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_PAL_SAVE      

  

The WM_CAP_PAL_SAVE message saves the current palette to a palette file. Palette files typically use 
the filename extension .PAL. You can send this message explicitly or by using the capPaletteSave 
macro.

WM_CAP_PAL_SAVE 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
szName

Address of a null-terminated string containing the palette filename.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

See Also
capPaletteSave, WM_CAP_SET_CALLBACK_ERROR



WM_CAP_SEQUENCE      

  

The WM_CAP_SEQUENCE message initiates streaming video and audio capture to a file. You can send 
this message explicitly or by using the capCaptureSequence macro.

WM_CAP_SEQUENCE 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the WM_CAP_SET_CALLBACK_ERROR 
message, the error callback function is called.

Remarks
If you want to alter the parameters controlling streaming capture, use the 
WM_CAP_SET_SEQUENCE_SETUP message prior to starting the capture.

By default, the capture window does not allow other applications to continue running during capture. To 
override this, either set the fYield member of the CAPTUREPARMS structure to TRUE, or install a yield 
callback function.

During streaming capture, the capture window can optionally issue notifications to your application of 
specific types of conditions. To install callback procedures for these notifications, use the following 
messages:

WM_CAP_SET_CALLBACK_ERROR
WM_CAP_SET_CALLBACK_STATUS
WM_CAP_SET_CALLBACK_YIELD
WM_CAP_SET_CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM

See Also
capCaptureSequence, CAPTUREPARMS, WM_CAP_SET_CALLBACK_ERROR, 
WM_CAP_SET_CALLBACK_STATUS, WM_CAP_SET_CALLBACK_YIELD, 
WM_CAP_SET_CALLBACK_VIDEOSTREAM, WM_CAP_SET_CALLBACK_WAVESTREAM, 
WM_CAP_SET_SEQUENCE_SETUP



WM_CAP_SEQUENCE_NOFILE      

  

The WM_CAP_SEQUENCE_NOFILE message initiates streaming video capture without writing data to a 
file. You can send this message explicitly or by using the capCaptureSequenceNoFile macro.

WM_CAP_SEQUENCE_NOFILE 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This message is useful in conjunction with video stream or waveform-audio stream callback functions that 
let your application use the video and audio data directly.

 

If you want to alter the parameters controlling streaming capture, use the 
WM_CAP_SET_SEQUENCE_SETUP message prior to starting the capture.

By default, the capture window does not allow other applications to continue running during capture. To 
override this, either set the fYield member of the CAPTUREPARMS structure to TRUE, or install a yield 
callback function.

During streaming capture, the capture window can optionally issue notifications to your application of 
specific types of conditions. To install callback procedures for these notifications, use the following 
messages:

WM_CAP_SET_CALLBACK_ERROR
WM_CAP_SET_CALLBACK_STATUS
WM_CAP_SET_CALLBACK_YIELD
WM_CAP_SET_CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM

See Also
capCaptureSequenceNoFile, CAPTUREPARMS, WM_CAP_SET_CALLBACK_ERROR, 
WM_CAP_SET_CALLBACK_STATUS, WM_CAP_SET_CALLBACK_YIELD, 
WM_CAP_SET_CALLBACK_VIDEOSTREAM, WM_CAP_SET_CALLBACK_WAVESTREAM, 
WM_CAP_SET_SEQUENCE_SETUP



WM_CAP_SET_AUDIOFORMAT      

  

The WM_CAP_SET_AUDIOFORMAT message sets the audio format to use when performing streaming 
or step capture. You can send this message explicitly or by using the capSetAudioFormat macro.

WM_CAP_SET_AUDIOFORMAT 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPWAVEFORMATEX) (psAudioFormat); 
 

Parameters
wSize

Size, in bytes, of the structure referenced by s.

psAudioFormat

Address of a WAVEFORMATEX or PCMWAVEFORMAT structure that defines the audio format.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
capSetAudioFormat, PCMWAVEFORMAT, WAVEFORMATEX



WM_CAP_SET_CALLBACK_CAPCONTROL    

  

  

The WM_CAP_SET_CALLBACK_CAPCONTROL message sets a callback function in the application 
giving it precise recording control. You can send this message explicitly or by using the 
capSetCallbackOnCapControl macro.

WM_CAP_SET_CALLBACK_CAPCONTROL 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (fpProc); 
 

Parameters
fpProc

Address of the callback function. Specify NULL for this parameter to disable a previously installed 
callback function. 

 

Return Values
Returns TRUE if successful or FALSE if a streaming capture or a single-frame capture session is in 
progress.

Remarks
A single callback function is used to give the application precise control over the moments that streaming 
capture begins and completes. The capture window first calls the procedure with nState set to 
CONTROLCALLBACK_PREROLL after all buffers have been allocated and all other capture preparations 
have finished. This gives the application the ability to preroll video sources, returning from the callback 
function at the exact moment recording is to begin. A return value of TRUE from the callback function 
continues capture, and a return value of FALSE aborts capture. After capture begins, this callback 
function will be called frequently with nState set to CONTROLCALLBACK_CAPTURING to allow the 
application to end capture by returning FALSE.

See Also
capSetCallbackOnCapControl



WM_CAP_SET_CALLBACK_ERROR      

  

The WM_CAP_SET_CALLBACK_ERROR message sets an error callback function in the client 
application. AVICap calls this procedure when errors occur. You can send this message explicitly or by 
using the capSetCallbackOnError macro.

WM_CAP_SET_CALLBACK_ERROR 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (fpProc); 
 

Parameters
fpProc

Address of the error callback function. Specify NULL for this parameter to disable a previously 
installed error callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
Applications can optionally set an error callback function. If set, AVICap calls the error procedure in the 
following situations:

· The disk is full.

· A capture window cannot be connected with a capture driver.

· A waveform-audio device cannot be opened.

· The number of frames dropped during capture exceeds the specified percentage.

· The frames cannot be captured due to vertical synchronization interrupt problems.
 

See Also
capSetCallbackOnError



WM_CAP_SET_CALLBACK_FRAME      

  

The WM_CAP_SET_CALLBACK_FRAME message sets a preview callback function in the application. 
AVICap calls this procedure when the capture window captures preview frames. You can send this 
message explicitly or by using the capSetCallbackOnFrame macro.

WM_CAP_SET_CALLBACK_FRAME 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (fpProc); 
 

Parameters
fpProc

Address of the preview callback function. Specify NULL for this parameter to disable a previously 
installed callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
The capture window calls the callback function before displaying preview frames. This allows an 
application to modify the frame if desired. This callback function is not used during streaming video 
capture.

See Also
capSetCallbackOnFrame



WM_CAP_SET_CALLBACK_STATUS      

  

The WM_CAP_SET_CALLBACK_STATUS message sets a status callback function in the application. 
AVICap calls this procedure whenever the capture window status changes. You can send this message 
explicitly or by using the capSetCallbackOnStatus macro.

WM_CAP_SET_CALLBACK_STATUS 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (fpProc); 
 

Parameters
fpProc

Address of the status callback function. Specify NULL for this parameter to disable a previously 
installed status callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture sesion is in 
progress.

Remarks
Applications can optionally set a status callback function. If set, AVICap calls this procedure in the 
following situations:

· A capture session is completed.

· A capture driver successfully connected to a capture window.

· An optimal palette is created.

· The number of captured frames is reported.
 

See Also
capSetCallbackOnStatus



WM_CAP_SET_CALLBACK_VIDEOSTREAM    

  

  

The WM_CAP_SET_CALLBACK_VIDEOSTREAM message sets a callback function in the application. 
AVICap calls this procedure during streaming capture when a video buffer is filled. You can send this 
message explicitly or by using the capSetCallbackOnVideoStream macro.

WM_CAP_SET_CALLBACK_VIDEOSTREAM 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (fpProc); 
 

Parameters
fpProc

Address of the video-stream callback function. Specify NULL for this parameter to disable a 
previously installed video-stream callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
The capture window calls the callback function before writing the captured frame to disk. This allows 
applications to modify the frame if desired.

If a video stream callback function is used for streaming capture, the procedure must be installed before 
starting the capture session and it must remain enabled for the duration of the session. It can be disabled 
after streaming capture ends.

See Also
capSetCallbackOnVideoStream



WM_CAP_SET_CALLBACK_WAVESTREAM    

  

  

The WM_CAP_SET_CALLBACK_WAVESTREAM message sets a callback function in the application. 
AVICap calls this procedure during streaming capture when a new audio buffer becomes available. You 
can send this message explicitly or by using the capSetCallbackOnWaveStream macro.

WM_CAP_SET_CALLBACK_WAVESTREAM 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (fpProc); 
 

Parameters
fpProc

Address of the wave stream callback function. Specify NULL for this parameter to disable a previously 
installed wave stream callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
The capture window calls the procedure before writing the audio buffer to disk. This allows applications to 
modify the audio buffer if desired.

If a wave stream callback function is used, it must be installed before starting the capture session and it 
must remain enabled for the duration of the session. It can be disabled after streaming capture ends.

See Also
capSetCallbackOnWaveStream



WM_CAP_SET_CALLBACK_YIELD      

  

The WM_CAP_SET_CALLBACK_YIELD message sets a callback function in the application. AVICap 
calls this procedure when the capture window yields during streaming capture. You can send this 
message explicitly or by using the capSetCallbackOnYield macro.

WM_CAP_SET_CALLBACK_YIELD 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (fpProc); 
 

Parameters
fpProc

Address of the yield callback function. Specify NULL for this parameter to disable a previously 
installed yield callback function.

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
Applications can optionally set a yield callback function. The yield callback function is called at least once 
for each video frame captured during streaming capture. If a yield callback function is installed, it will be 
called regardless of the state of the fYield member of the CAPTUREPARMS structure.

If the yield callback function is used, it must be installed before starting the capture session and it must 
remain enabled for the duration of the session. It can be disabled after streaming capture ends.

Applications typically perform some type of message processing in the callback function consisting of a 
PeekMessage, TranslateMessage, DispatchMessage loop, as in the message loop of a WinMain 
function. The yield callback function must also filter and remove messages that can cause reentrancy 
problems.

An application typically returns TRUE in the yield procedure to continue streaming capture. If a yield 
callback function returns FALSE, the capture window stops the capture process.

See Also
capSetCallbackOnYield, CAPTUREPARMS, DispatchMessage PeekMessage, TranslateMessage



WM_CAP_SET_MCI_DEVICE      

  

The WM_CAP_SET_MCI_DEVICE message specifies the name of the MCI video device to be used to 
capture data. You can send this message explicitly or by using the capSetMCIDeviceName macro.

WM_CAP_SET_MCI_DEVICE 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPVOID) (LPSTR) (szName); 
 

Parameters
szName

Address of a null-terminated string containing the name of the device.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This message stores the MCI device name in an internal structure. It does not open or access the device. 
The default device name is NULL.

See Also
capSetMCIDeviceName



WM_CAP_SET_OVERLAY      

  

The WM_CAP_SET_OVERLAY message enables or disables overlay mode. In overlay mode, video is 
displayed using hardware overlay. You can send this message explicitly or by using the capOverlay 
macro.

WM_CAP_SET_OVERLAY 
wParam = (WPARAM) (BOOL) (f); 
lParam = 0L; 
 

Parameters
f

Overlay flag. Specify TRUE for this parameter to enable overlay mode or FALSE to disable it.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
Using an overlay does not require CPU resources. 

The fHasOverlay member of the CAPDRIVERCAPS structure indicates whether the device is capable of 
overlay. The fOverlayWindow member of the CAPSTATUS structure indicates whether overlay mode is 
currently enabled. 

Enabling overlay mode automatically disables preview mode.

See Also
CAPDRIVERCAPS, capOverlay, CAPSTATUS



WM_CAP_SET_PREVIEW      

  

The WM_CAP_SET_PREVIEW message enables or disables preview mode. In preview mode, frames 
are transferred from the capture hardware to system memory and then displayed in the capture window 
using GDI functions. You can send this message explicitly or by using the capPreview macro.

WM_CAP_SET_PREVIEW 
wParam = (WPARAM) (BOOL) (f); 
lParam = 0L; 
 

Parameters
f

Preview flag. Specify TRUE for this parameter to enable preview mode or FALSE to disable it.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The preview mode uses substantial CPU resources. Applications can disable preview or lower the 
preview rate when another application has the focus. The fLiveWindow member of the CAPSTATUS 
structure indicates if preview mode is currently enabled. 

Enabling preview mode automatically disables overlay mode.

See Also
capPreview, CAPSTATUS



WM_CAP_SET_PREVIEWRATE      

  

The WM_CAP_SET_PREVIEWRATE message sets the frame display rate in preview mode. You can 
send this message explicitly or by using the capPreviewRate macro.

WM_CAP_SET_PREVIEWRATE 
wParam = (WPARAM) (wMS); 
lParam = 0L; 
 

Parameters
wMS

Rate, in milliseconds, at which new frames are captured and displayed.
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The preview mode uses substantial CPU resources. Applications can disable preview or lower the 
preview rate when another application has the focus. During streaming video capture, the previewing task 
is lower priority than writing frames to disk, and preview frames are displayed only if no other buffers are 
available for writing.

See Also
capPreviewRate



WM_CAP_SET_SCALE      

  

The WM_CAP_SET_SCALE message enables or disables scaling of the preview video images. If scaling 
is enabled, the captured video frame is stretched to the dimensions of the capture window. You can send 
this message explicitly or by using the capPreviewScale macro.

WM_CAP_SET_SCALE 
wParam = (WPARAM) (BOOL)f; 
lParam = 0L; 
 

Parameters
f

Preview scaling flag. Specify TRUE for this parameter to stretch preview frames to the size of the 
capture window or FALSE to display them at their natural size.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
Scaling preview images controls the immediate presentation of captured frames within the capture 
window. It has no effect on the size of the frames saved to file.

Scaling has no effect when using overlay to display video in the frame buffer.

See Also
capPreviewScale



WM_CAP_SET_SCROLL      

  

The WM_CAP_SET_SCROLL message defines the portion of the video frame to display in the capture 
window. This message sets the upper left corner of the client area of the capture window to the 
coordinates of a specified pixel within the video frame. You can send this message explicitly or by using 
the capSetScrollPos macro. 

WM_CAP_SET_SCROLL 
wParam = (WPARAM) 0; 
lParam = (LPARAM) (LPPOINT) (lpP); 
 

Parameters
lpP

Address to contain the desired scroll position.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The scroll position affects the image in both preview and overlay modes.

See Also
capSetScrollPos



WM_CAP_SET_SEQUENCE_SETUP      

  

The WM_CAP_SET_SEQUENCE_SETUP message sets the configuration parameters used with 
streaming capture. You can send this message explicitly or by using the capCaptureSetSetup macro. 

WM_CAP_SET_SEQUENCE_SETUP 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (LPCAPTUREPARMS) (psCapParms); 
 

Parameters
wSize

Size, in bytes, of the structure referenced by s.

psCapParms

Address of a CAPTUREPARMS structure.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about the parameters used to control streaming capture, see the CAPTUREPARMS 
structure.

See Also
capCaptureSetSetup, CAPTUREPARMS



WM_CAP_SET_USER_DATA      

  

The WM_CAP_SET_USER_DATA message associates a LONG data value with a capture window. You 
can send this message explicitly or by using the capSetUserData macro.

WM_CAP_SET_USER_DATA 
wParam = (WPARAM) 0; 
lParam = (LPARAM)lUser; 
 

Parameters
lUser

Data value to associate with a capture window.
 

Return Values
Returns TRUE if successful or FALSE if streaming capture is in progress.

Remarks
Typically this message is used to point to a block of data associated with a capture window.

See Also
capSetUserData



WM_CAP_SET_VIDEOFORMAT      

  

The WM_CAP_SET_VIDEOFORMAT message sets the format of captured video data. You can send this 
message explicitly or by using the capSetVideoFormat macro.

WM_CAP_SET_VIDEOFORMAT 
wParam = (WPARAM) (wSize); 
lParam = (LPARAM) (LPVOID) (psVideoFormat); 
 

Parameters
wSize

Size, in bytes, of the structure referenced by s.

psVideoFormat

Address of a BITMAPINFO structure.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
Because video formats are device-specific, applications should check the return value from this function 
to determine if the format is accepted by the driver.

See Also
BITMAPINFO, capSetVideoFormat



WM_CAP_SINGLE_FRAME      

  

The WM_CAP_SINGLE_FRAME message appends a single frame to a capture file that was opened 
using the WM_CAP_SINGLE_FRAME_OPEN message. You can send this message explicitly or by using 
the capCaptureSingleFrame macro.

WM_CAP_SINGLE_FRAME 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
capCaptureSingleFrame, WM_CAP_SINGLE_FRAME_OPEN



WM_CAP_SINGLE_FRAME_CLOSE      

  

The WM_CAP_SINGLE_FRAME_CLOSE message closes the capture file opened by the 
WM_CAP_SINGLE_FRAME_OPEN message. You can send this message explicitly or by using the 
capCaptureSingleFrameClose macro.

WM_CAP_SINGLE_FRAME_CLOSE 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about installing callback functions, see the WM_CAP_SET_CALLBACK_ERROR and 
WM_CAP_SET_CALLBACK_FRAME messages.

See Also
capCaptureSingleFrameClose, WM_CAP_SET_CALLBACK_ERROR, 
WM_CAP_SET_CALLBACK_FRAME, WM_CAP_SINGLE_FRAME_OPEN 



WM_CAP_SINGLE_FRAME_OPEN      

  

The WM_CAP_SINGLE_FRAME_OPEN message opens the capture file for single-frame capturing. Any 
previous information in the capture file is overwritten. You can send this message explicitly or by using the 
capCaptureSingleFrameOpen macro.

WM_CAP_SINGLE_FRAME_OPEN 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about installing callback functions, see the WM_CAP_SET_CALLBACK_ERROR and 
WM_CAP_SET_CALLBACK_FRAME messages.

See Also
capCaptureSingleFrameOpen, WM_CAP_SET_CALLBACK_ERROR, 
WM_CAP_SET_CALLBACK_FRAME



WM_CAP_STOP      

  

The WM_CAP_STOP message stops the capture operation. You can send this message explicitly or by 
using the capCaptureStop macro.

In step frame capture, the image data that was collected before this message was sent is retained in the 
capture file. An equivalent duration of audio data is also retained in the capture file if audio capture was 
enabled.

WM_CAP_STOP 
wParam = (WPARAM) 0; 
lParam = 0L; 
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The capture operation must yield to use this message. Use the WM_CAP_ABORT message to abandon 
the current capture operation.

See Also
capCaptureStop, WM_CAP_ABORT



WOM_CLOSE      

  

The WOM_CLOSE message is sent to a waveform-audio output callback function when a waveform-
audio output device is closed. The device handle is no longer valid after this message has been sent.

WOM_CLOSE 
dwParam1 = reserved 
dwParam2 = reserved 
 

Parameters
dwParam1

Reserved; must be zero.

dwParam2

Reserved; must be zero.
 

Return Values
This message does not return a value.



WOM_DONE      

  

The WOM_DONE message is sent to a waveform-audio output callback function when the given output 
buffer is being returned to the application. Buffers are returned to the application when they have been 
played, or as the result of a call to the waveOutReset function.

WOM_DONE 
dwParam1 = (DWORD) lpwvhdr 
dwParam2 = reserved 
 

Parameters
dwParam1

Address of a WAVEHDR structure identifying the buffer.

dwParam2

Reserved; must be zero.
 

Return Values
This message does not return a value.

See Also
WAVEHDR, waveOutReset 



WOM_OPEN      

  

The WOM_OPEN message is sent to a waveform-audio output callback function when a waveform-audio 
output device is opened.

WOM_OPEN 
dwParam1 = reserved 
dwParam2 = reserved 
 

Parameters
dwParam1

Reserved; must be zero.

dwParam2

Reserved; must be zero.
 

Return Values
This message does not return a value.

 

 



AVIStreamDataSize      

  

The AVIStreamDataSize macro determines the buffer size, in bytes, needed to retrieve optional header 
data for a specified stream. 

AVIStreamDataSize(

        pavi,
        fcc,
        plSize
      );
 

Parameters
pavi

Handle of an open stream. 

fcc

Four-character code specifying the stream type.

plSize

Address to contain the buffer size for the optional header data.
 

Return Values
Returns zero if successful or an error otherwise. The return value AVIERR_NODATA indicates the system 
could not find any data with the specified four-character code.

Remarks
The AVIStreamDataSize macro is defined as follows:

#define AVIStreamDataSize(pavi, fcc, plSize) \ 
    AVIStreamReadData(pavi, fcc, NULL, plSize) 
 



AVIStreamEnd      

  

The AVIStreamEnd macro calculates the sample associated with the end of a stream.

AVIStreamEnd(

        pavi
      );
 

Parameters
pavi

Handle of an open stream. 
 

Return Values
Returns the sample number associated with the end of a stream, or, if an error occurs, one less than the 
first sample or one less than the stream length.

Remarks
The sample number returned is not a valid sample number for reading data. It represents the end of the 
file. (The end of the file is equal to the start of the file plus its length.)

The AVIStreamEnd macro is defined as follows:

#define AVIStreamEnd(pavi) \ 
    (AVIStreamStart(pavi) + AVIStreamLength(pavi)) 
 



AVIStreamEndTime      

  

The AVIStreamEndTime macro returns the time representing the end of the stream.

AVIStreamEndTime(

        pavi
      );
 

Parameters
pavi

Handle of an open stream. 
 

Return Value
Returns the time if successful or    - 1 otherwise. 

Remarks
The AVIStreamEndTime macro is defined as follows:

#define AVIStreamEndTime(pavi) \ 
    AVIStreamSampleToTime(pavi, AVIStreamEnd(pavi)) 
 



AVIStreamFormatSize      

  

The AVIStreamFormatSize macro determines the buffer size, in bytes, needed to store format 
information for a sample in a stream.

AVIStreamFormatSize(

        pavi,
        lPos,
        plSize
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Position of a sample in the stream. 

plSize

Address to contain the buffer size.
 

Return Values
Returns zero if successful or an error otherwise. 

Remarks
The AVIStreamFormatSize macro is defined as follows:

#define AVIStreamFormatSize(pavi, lPos, plSize) \ 
    AVIStreamReadFormat(pavi, lPos, NULL, plSize) 
 



AVIStreamIsKeyFrame      

  

The AVIStreamIsKeyFrame macro indicates whether a sample in a specified stream is a key frame. 

AVIStreamIsKeyFrame(

        pavi,
        lPos
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Position to search in the stream. 
 

Return Values
Returns TRUE if the sample is a key frame or FALSE otherwise. 

Remarks
The AVIStreamIsKeyFrame macro is defined as follows:

#define AVIStreamIsKeyFrame(pavi, lPos) \ 
    (AVIStreamNearestKeyFrame(pavi, lPos) == 1) 
 



AVIStreamLengthTime      

  

The AVIStreamLengthTime macro returns the length of a stream in time.

AVIStreamLengthTime(

        pavi
      );
 

Parameters
pavi

Handle of an open stream. 
 

Return Values
Returns the time if successful or      - 1 otherwise. 

Remarks
The AVIStreamLengthTime macro is defined as follows:

#define AVIStreamLengthTime(pavi) \ 
    AVIStreamSampleToTime(pavi, AVIStreamLength(pavi)) 
 



AVIStreamNearestKeyFrame      

  

The AVIStreamNearestKeyFrame macro locates the key frame at or preceding a specified position in a 
stream. 

AVIStreamNearestKeyFrame(

        pavi,
        lPos
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Starting position to search in the stream. 
 

Return Values
Returns the position of the key frame if successful or    - 1 otherwise. 

Remarks
The AVIStreamNearestKeyFrame macro is defined as follows:

#define AVIStreamNearestKeyFrame(pavi, lPos) \ 
    AVIStreamFindSample(pavi, lPos , FIND_PREV | FIND_KEY) 
 



AVIStreamNearestKeyFrameTime      

  

The AVIStreamNearestKeyFrameTime macro determines the time corresponding to the beginning of the 
key frame nearest (at or preceding) a specified time in a stream. 

AVIStreamNearestKeyFrameTime(

        pavi,
       lTime
      );
 

Parameters
pavi

Handle of an open stream. 

lTime

Starting time, in milliseconds, to search in the stream. 
 

Return Values
Returns the time of the nearest key frame if successful or    - 1 otherwise. 

Remarks
The AVIStreamNearestKeyFrameTime macro is defined as follows:

#define AVIStreamNearestKeyFrameTime(pavi, lTime) \ 
    AVIStreamSampleToTime(pavi, AVIStreamNearestKeyFrame(pavi, 
    AVIStreamTimeToSample(pavi, lTime))) 
 



AVIStreamNearestSample      

  

The AVIStreamNearestSample macro locates the nearest nonempty sample at or preceding a specified 
position in a stream. 

AVIStreamNearestSample(

        pavi,
        lPos
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Starting position to search in the stream. 
 

Return Values
Returns the sample position if successful or -1 otherwise. 

Remarks
The AVIStreamNearestSample macro is defined as follows:

#define AVIStreamNearestSample(pavi, lPos) \ 
    AVIStreamFindSample(pavi, lPos, FIND_PREV | FIND_ANY) 
 



AVIStreamNearestSampleTime      

  

The AVIStreamNearestSampleTime macro determines the time corresponding to the beginning of a 
sample that is nearest to a specified time in a stream. 

AVIStreamNearestSampleTime(

        pavi,
        lTime
      );
 

Parameters
pavi

Handle of an open stream. 

lTime

Starting time, in milliseconds, to search in the stream. 
 

Return Values
Returns the time of the nearest sample if successful or - 1 otherwise. 

Remarks
The AVIStreamNearestSampleTime macro is defined as follows:

#define AVIStreamNearestSampleTime(pavi, lTime) \ 
    AVIStreamSampleToTime(pavi, AVIStreamNearestSample(pavi, 
    AVIStreamTimeToSample(pavi, lTime))) 
 



AVIStreamNextKeyFrame      

  

The AVIStreamNextKeyFrame macro locates the next key frame following a specified position in a 
stream. 

AVIStreamNextKeyFrame(

        pavi,
        lPos
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Starting position to search in the stream. 
 

Return Values
Returns the position of the key frame if successful or    - 1 otherwise. 

Remarks
The search performed by this macro does not include the frame at the specified position.

The AVIStreamNextKeyFrame macro is defined as follows:

#define AVIStreamNextKeyFrame(pavi, lPos) \ 
    AVIStreamFindSample(pavi, lPos + 1, FIND_NEXT | FIND_KEY) 
 



AVIStreamNextKeyFrameTime      

  

The AVIStreamNextKeyFrameTime macro returns the time of the next key frame in the stream, starting 
at a given time.

AVIStreamNextKeyFrameTime(

        pavi,
        time
      );
 

Parameters
pavi

Handle of an open stream. 

time

Position in the stream to begin searching.
 

Return Values
Returns the time if successful or    - 1 otherwise. 

Remarks
The search performed by this macro includes the frame that corresponds to the specified time.

The AVIStreamNextKeyFrameTime macro is defined as follows:

#define AVIStreamNextKeyFrameTime(pavi, time) \ 
    AVIStreamSampleToTime(pavi, \ 
    AVIStreamNextKeyFrame(pavi, \ 
    AVIStreamTimeToSample(pavi, time))) 
 



AVIStreamNextSample      

  

The AVIStreamNextSample macro locates the next nonempty sample from a specified position in a 
stream. 

AVIStreamNextSample(

        pavi,
        lPos
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Starting position to search in the stream. 
 

Return Values
Returns the sample position if successful or    - 1 otherwise. 

Remarks
The sample position returned does not include the sample specified by lPos.

The AVIStreamNextSample macro is defined as follows:

#define AVIStreamNextSample(pavi, lPos) \ 
    AVIStreamFindSample(pavi, lPos + 1, FIND_NEXT | FIND_ANY) 
 



AVIStreamNextSampleTime      

  

The AVIStreamNextSampleTime macro returns the time that a sample changes to the next sample in 
the stream. This macro finds the the next interesting time in a stream.

AVIStreamNextSampleTime(

        pavi,
        time
      );
 

Parameters
pavi

Handle of an open stream.

time

Position information of the sample in the stream.
 

Return Values
Returns the time if successful or - 1 otherwise. 

Remarks
The AVIStreamNextSampleTime macro is defined as follows:

#define AVIStreamNextSampleTime(pavi, time) \ 
    AVIStreamSampleToTime(pavi, \ 
    AVIStreamNextSample(pavi, \ 
    AVIStreamTimeToSample(pavi, t))) 
 



AVIStreamPrevKeyFrame      

  

The AVIStreamPrevKeyFrame macro locates the key frame that precedes a specified position in a 
stream. 

AVIStreamPrevKeyFrame(

        pavi,
        lPos
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Starting position to search in the stream. 
 

Return Values
Returns the position of the key frame if successful or - 1 otherwise. 

Remarks
The search performed by this macro does not include the frame at the specified position.

The AVIStreamPrevKeyFrame macro is defined as follows:

#define AVIStreamPrevKeyFrame(pavi, lPos) \ 
    AVIStreamFindSample(pavi, lPos - 1, FIND_PREV | FIND_KEY) 
 



AVIStreamPrevKeyFrameTime      

  

The AVIStreamPrevKeyFrameTime macro returns the time of the previous key frame in the stream, 
starting at a given time.

AVIStreamPrevKeyFrameTime(

        pavi,
        time
      );
 

Parameters
pavi

Handle of an open stream. 

time

Position in the stream to begin searching.
 

Return Values
Returns the time if successful or - 1 otherwise. 

Remarks
The search performed by this macro includes the frame that corresponds to the specified time.

The AVIStreamPrevKeyFrameTime macro is defined as follows:

#define AVIStreamPrevKeyFrameTime(pavi, time) \ 
    AVIStreamSampleToTime(pavi, AVIStreamPrevKeyFrame(pavi, 
    AVIStreamTimeToSample(pavi, time))) 
 



AVIStreamPrevSample      

  

The AVIStreamPrevSample macro locates the nearest nonempty sample that precedes a specified 
position in a stream. 

AVIStreamPrevSample(

        pavi,
        lPos
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Starting position to search in the stream. 
 

Return Values
Returns the sample position if successful or - 1 otherwise. 

Remarks
The sample position returned does not include the sample specified by lPos.

The AVIStreamPrevSample macro is defined as follows:

#define AVIStreamPrevSample(pavi, lPos) \ 
    AVIStreamFindSample(pavi, lPos - 1, FIND_PREV | FIND_ANY) 
 



AVIStreamPrevSampleTime      

  

The AVIStreamPrevSampleTime macro determines the time of the nearest nonempty sample that 
precedes a specified time in a stream.

AVIStreamPrevSampleTime(

        pavi,
        time
      );
 

Parameters
pavi

Handle of an open stream.

time

Position information of the sample in the stream.
 

Return Values
Returns the time if successful or - 1 otherwise. 

Remarks
The AVIStreamPrevSampleTime macro is defined as follows:

#define AVIStreamPrevSampleTime(pavi, time) \ 
    AVIStreamSampleToTime(pavi, \ 
    AVIStreamPrevSample(pavi, \ 
    AVIStreamTimeToSample(pavi, t))) 
 



AVIStreamSampleSize      

  

The AVIStreamRelease macro determines the size of the buffer needed to store one sample of 
information from a stream. The size corresponds to the sample at the position specified by lPos.

AVIStreamSampleSize(

        pavi,
        lPos,
        plSize
      );
 

Parameters
pavi

Handle of an open stream. 

lPos

Position of a sample in the stream. 

plSize

Address to contain the buffer size.
 

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

AVIERR_BUFFERTOOSMALL The buffer size was smaller than 
a single sample of data.

AVIERR_MEMORY There was not enough memory to 
complete the read operation.

AVIERR_FILEREAD A disk error occurred while 
reading the file.

 

Remarks
The AVIStreamSampleSize macro is defined as follows:

#define AVIStreamSampleSize(pavi, lPos, plSize) \ 
    AVIStreamRead(pavi, lPos, 1, NULL, 0, plSize, NULL) 
 



AVIStreamSampleToSample      

  

The AVIStreamSampleToSample macro returns the sample in a stream that occurs at the same time as 
a sample that occurs in a second stream.

AVIStreamSampleToSample(

        pavi1,
        pavi2,
        lSample
      );
 

Parameters
pavi1

Handle of an open stream that contains the sample that is returned.

pavi2

Handle of a second stream that contains the reference sample.

lSample

Position information of the sample in the stream referenced by pavi2.
 

Return Values
Returns the sample if successful or - 1 otherwise. 

Remarks
The AVIStreamSampleToSample macro is defined as follows:

#define AVIStreamSampleToSample(pavi1, pavi2, lsample) \ 
    AVIStreamTimeToSample(pavi1, AVIStreamSampleToTime \ 
    (pavi2, lsample)) 



AVIStreamStartTime      

  

The AVIStreamStartTime macro returns the starting time of a stream's first sample.

AVIStreamStartTime(

        pavi
      );
 

Parameters
pavi

Handle of an open stream. 
 

Return Values
Returns the time if successful or - 1 otherwise. 

Remarks
The AVIStreamStartTime macro is defined as follows:

#define AVIStreamStartTime(pavi) \ 
    AVIStreamSampleToTime(pavi, AVIStreamStart(pavi)) 
 



capCaptureAbort      

  

The capCaptureAbort macro stops the capture operation. You can use this macro or explictly send the 
WM_CAP_ABORT message.

BOOL capCaptureAbort(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The capture operation must yield to use this macro. 

In the case of step capture, the image data collected up to the point of the capCaptureAbort macro will 
be retained in the capture file, but audio will not be captured.

Use the capCaptureStop macro to halt step capture at the current position, and then capture audio.

See Also
capCaptureStop, WM_CAP_ABORT



capCaptureGetSetup      

  

The capCaptureGetSetup macro retrieves the current settings of the streaming capture parameters. You 
can use this macro or explictly send the WM_CAP_GET_SEQUENCE_SETUP message.

BOOL capCaptureGetSetup(

        hwnd,
        s,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

wSize

Size, in bytes, of the structure referenced by s.

s

Address of a CAPTUREPARMS structure.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about the parameters used to control streaming capture, see the CAPTUREPARMS 
structure.

See Also
CAPTUREPARMS, WM_CAP_GET_SEQUENCE_SETUP



capCaptureSequence      

  

The capCaptureSequence macro initiates streaming video and audio capture to a file. You can use this 
macro or explicitly send the WM_CAP_SEQUENCE message.

BOOL capCaptureSequence(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

Remarks
If you want to alter the parameters controlling streaming capture, use the capCaptureSetSetup macro 
prior to starting the capture.

By default, the capture window does not allow other applications to continue running during capture. To 
override this, either set the fYield member of the CAPTUREPARMS structure to TRUE, or install a yield 
callback function.

During streaming capture, the capture window can optionally issue notifications to your application of 
specific types of conditions. To install callback procedures for these notifications, use the following 
macros:

capSetCallbackOnError
capSetCallbackOnStatus
capSetCallbackOnVideoStream
capSetCallbackOnWaveStream
capSetCallbackOnYield

See Also
capCaptureSetSetup, capSetCallbackOnError, capSetCallbackOnStatus, 
capSetCallbackOnVideoStream, capSetCallbackOnWaveStream, capSetCallbackOnYield, 
CAPTUREPARMS, WM_CAP_SEQUENCE



capCaptureSequenceNoFile      

  

The capCaptureSequenceNoFile macro initiates streaming video capture without writing data to a file. 
You can use this macro or explicitly send the WM_CAP_SEQUENCE_NOFILE message.

BOOL capCaptureSequenceNoFile(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This message is useful in conjunction with video stream or waveform-audio stream callback functions that 
let your application use the video and audio data directly.

 

If you want to alter the parameters controlling streaming capture, use the capCaptureSetSetup macro 
prior to starting the capture.

By default, the capture window does not allow other applications to continue running during capture. To 
override this, either set the fYield member of the CAPTUREPARMS structure to TRUE, or install a yield 
callback function.

During streaming capture, the capture window can optionally issue notifications to your application of 
specific types of conditions. To install callback procedures for these notifications, use the following 
macros:

capSetCallbackOnError
capSetCallbackOnStatus
capSetCallbackOnVideoStream
capSetCallbackOnWaveStream
capSetCallbackOnYield

See Also
capCaptureSetSetup, capSetCallbackOnError, capSetCallbackOnStatus, 
capSetCallbackOnVideoStream, capSetCallbackOnWaveStream, capSetCallbackOnYield, 
CAPTUREPARMS, WM_CAP_SEQUENCE_NOFILE



capCaptureSetSetup      

  

The capCaptureSetSetup macro sets the configuration parameters used with streaming capture. You 
can use this macro or explicitly send the WM_CAP_SET_SEQUENCE_SETUP message.

BOOL capCaptureSetSetup(

        hwnd,
        psCapParms,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

psCapParms

Address of a CAPTUREPARMS structure.

wSize

Size, in bytes, of the structure referenced by s.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about the parameters used to control streaming capture, see the CAPTUREPARMS 
structure.

See Also
CAPTUREPARMS, WM_CAP_SET_SEQUENCE_SETUP



capCaptureSingleFrame      

  

The capCaptureSingleFrame macro appends a single frame to a capture file that was opened using the 
capCaptureSingleFrameOpen macro. You can use this macro or explicitly send the 
WM_CAP_SINGLE_FRAME message.

BOOL capCaptureSingleFrame(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
capCaptureSingleFrameOpen WM_CAP_SINGLE_FRAME



capCaptureSingleFrameClose      

  

The capCaptureSingleFrameClose macro closes the capture file opened by the 
capCaptureSingleFrameOpen macro. You can use this macro or explicitly send the 
WM_CAP_SINGLE_FRAME_CLOSE message.

BOOL capCaptureSingleFrameClose(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about installing callback functions, see the capSetCallbackOnErrror and 
capSetCallbackOnFrame macros.

See Also
capCaptureSingleFrameOpen, capSetCallbackOnError, capSetCallbackOnFrame, 
WM_CAP_SINGLE_FRAME_CLOSE



capCaptureSingleFrameOpen      

  

The capCaptureSingleFrameOpen macro opens the capture file for single-frame capturing. Any 
previous information in the capture file is overwritten. You can use this macro or explicitly send the 
WM_CAP_SINGLE_FRAME_OPEN message.

BOOL capCaptureSingleFrameOpen(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about installing callback functions, see the capSetCallbackOnError and 
capSetCallbackOnFrame macros.

See Also
capSetCallbackOnError, capSetCallbackOnFrame, WM_CAP_SINGLE_FRAME_OPEN



capCaptureStop      

  

The capCaptureStop macro stops the capture operation. You can use this macro or explicitly send the 
WM_CAP_STOP message.

In step frame capture, the image data that was collected before this message was sent is retained in the 
capture file. An equivalent duration of audio data is also retained in the capture file if audio capture was 
enabled.

BOOL capCaptureStop(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The capture operation must yield to use this message. Use the capCaptureAbort macro to abandon the 
current capture operation.

See Also
capCaptureAbort, WM_CAP_STOP



capDlgVideoCompression      

  

The capDlgVideoCompresion macro displays a dialog box in which the user can select a compressor to 
use during the capture process. The list of available compressors can vary with the video format selected 
in the capture driver's Video Format dialog box. You can use this macro or explicitly send the 
WM_CAP_DLG_VIDEOCOMPRESSION message.

BOOL capDlgVideoCompression(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
Use this message with capture drivers that provide frames only in the BI_RGB format. This message is 
most useful in the step capture operation to combine capture and compression in a single operation. 
Compressing frames with a software compressor as part of a real-time capture operation is most likely too 
time-consuming to perform.

Compression does not affect the frames copied to the clipboard.

See Also
WM_CAP_DLG_VIDEOCOMPRESSION



capDlgVideoDisplay      

  

The capDlgVideoDisplay macro displays a dialog box in which the user can set or adjust the video 
output. This dialog box might contain controls that affect the hue, contrast, and brightness of the 
displayed image, as well as key color alignment. You can use this macro or explicitly send the 
WM_CAP_DLG_VIDEODISPLAY message.

BOOL capDlgVideoDisplay(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The controls in this dialog box do not affect digitized video data; they affect only the output or redisplay of 
the video signal.

The Video Display dialog box is unique for each capture driver. Some capture drivers might not support a 
Video Display dialog box. Applications can determine if the capture driver supports this message by 
checking the fHasDlgVideoDisplay member of the CAPDRIVERCAPS structure.

See Also
CAPDRIVERCAPS, WM_CAP_DLG_VIDEODISPLAY



capDlgVideoFormat      

  

The capDlgVideoFormat macro displays a dialog box in which the user can select the video format. The 
Video Format dialog box might be used to select image dimensions, bit depth, and hardware compression 
options. You can use this macro or explicitly send the WM_CAP_DLG_VIDEOFORMAT message.

BOOL capDlgVideoFormat(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
After this message returns, applications might need to update the CAPSTATUS structure because the 
user might have changed the image dimensions.

The Video Format dialog box is unique for each capture driver. Some capture drivers might not support a 
Video Format dialog box. Applications can determine if the capture driver supports this message by 
checking the fHasDlgVideoFormat member of CAPDRIVERCAPS.

See Also
CAPDRIVERCAPS, CAPSTATUS, WM_CAP_DLG_VIDEOFORMAT



capDlgVideoSource      

The capDlgVideoSource macro displays a dialog box in which the user can control the video source. 
The Video Source dialog box might contain controls that select input sources; alter the hue, contrast, 
brightness of the image; and modify the video quality before digitizing the images into the frame buffer. 
You can use this macro or explicitly send the WM_CAP_DLG_VIDEOSOURCE message.

BOOL capDlgVideoSource(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The Video Source dialog box is unique for each capture driver. Some capture drivers might not support a 
Video Source dialog box. Applications can determine if the capture driver supports this message by 
checking the fHasDlgVideoSource member of the CAPDRIVERCAPS structure.

See Also
CAPDRIVERCAPS, WM_CAP_DLG_VIDEOSOURCE



capDriverConnect      

  

The capDriverConnect macro connects a capture window to a capture driver. You can use this macro or 
explicitly send the WM_CAP_DRIVER_CONNECT message.

BOOL capDriverConnect(

        hwnd,
        iIndex
      );
 

Parameters
iIndex

Index of the capture driver. The index can range from 0 through 9.

hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE if the specified capture driver cannot be connected to the capture 
window.

Remarks
Connecting a capture driver to a capture window automatically disconnects any previously connected 
capture driver.

See Also
WM_CAP_DRIVER_CONNECT



capDriverDisconnect      

  

The capDriverDisconnect macro disconnects a capture driver from a capture window. You can use this 
macro or explicitly send the WM_CAP_DRIVER_DISCONNECT message.

BOOL capDriverDisconnect(

        hwnd
      );
 

Parameters
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

See Also
WM_CAP_DRIVER_DISCONNECT



capDriverGetCaps      

  

The capDriverGetCaps macro returns the hardware capabilities of the capture driver currently connected 
to a    capture window. You can use this macro or explicitly send the WM_CAP_DRIVER_GET_CAPS 
message.

capDriverGetCaps(

        hwnd,
        psCaps,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

wSize

Size, in bytes, of the structure referenced by s.

psCaps

Address of the CAPDRIVERCAPS structure to contain the hardware capabilities.
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The capabilities returned in CAPDRIVERCAPS are constant for a given capture driver. Applications need 
to retrieve this information once when the capture driver is first connected to a capture window.

See Also
CAPDRIVERCAPS, WM_CAP_DRIVER_GET_CAPS



capDriverGetName      

  

The capDriverGetName macro returns the name of the capture driver connected to the capture window. 
You can use this macro or explicitly call the WM_CAP_DRIVER_GET_NAME message.

BOOL capDriverGetName(

        hwnd,
        szName,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

wSize

Size, in bytes, of the buffer referenced by szName.

szName

Address of an application-defined buffer used to return the device name as a null-terminated string.
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The name is a text string retrieved from the driver's resource area. Applications should allocate 
approximately 80 bytes for this string. If the driver does not contain a name resource, the full path name 
of the driver listed in the registry or in the SYSTEM.INI file is returned.

See Also
WM_CAP_DRIVER_GET_NAME



capDriverGetVersion      

  

The capDriverGetVersion macro returns the version information of the capture driver connected to a 
capture window. You can use this macro or explicitly send the WM_CAP_DRIVER_GET_VERSION 
message.

BOOL capDriverGetVersion(

        hwnd,
        szVer,
        wSize
      );
 

Parameters
wSize

Size, in bytes, of the application-defined buffer referenced by szVer.

szVer

Address of an application-defined buffer used to return the version information as a null-terminated 
string.

 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The version information is a text string retrieved from the driver's resource area. Applications should 
allocate approximately 40 bytes for this string. If version information is not available, a NULL string is 
returned.

See Also
WM_CAP_DRIVER_GET_VERSION



capEditCopy      

  

The capEditCopy macro copies the contents of the video frame buffer and associated palette to the 
clipboard. You can use this macro or explicitly send the WM_CAP_EDIT_COPY message.

BOOL capEditCopy(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
WM_CAP_EDIT_COPY



capFileAlloc      

  

The capFileAlloc macro creates (preallocates) a capture file of a specified size. You can use this macro 
or explicitly send the WM_CAP_FILE_ALLOCATE message.

BOOL capFileAlloc(

        hwnd,
        dwSize
      );
 

Parameters
hwnd

Handle of a capture window.

dwSize

Size, in bytes, to create the capture file.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

Remarks
You can improve streaming capture performance significantly by preallocating a capture file large enough 
to store an entire video clip and by defragmenting the capture file before capturing the clip. 

See Also
capSetCallbackOnError, WM_CAP_FILE_ALLOCATE



capFileGetCaptureFile      

  

The capFileGetCaptureFile macro returns the name of the current capture file. You can use this macro 
or explicitly call the WM_CAP_FILE_GET_CAPTURE_FILE message.

BOOL capFileGetCaptureFile(

        hwnd,
        szName,
        wSize
      );
 

Parameters
wSize

Size, in bytes, of the application-defined buffer referenced by szName.

szName

Address of an application-defined buffer used to return the name of the capture file as a null-
terminated string.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The default capture filename is C:\CAPTURE.AVI.

See Also
WM_CAP_FILE_GET_CAPTURE_FILE



capFileSaveAs      

  

The capFileSaveAs macro copies the contents of the capture file to another file. You can use this macro 
or explicitly call the WM_CAP_FILE_SAVEAS message.

BOOL capFileSaveAs(

        hwnd,
        szName
      );
 

Parameters
hwnd

Handle of a capture window.

szName

Address of the null-terminated string that contains the name of the destination file used to copy the 
file.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

Remarks
This message does not change the name or contents of the current capture file.

If the copy operation is unsuccessful due to a disk full error, the destination file is automatically deleted.

Typically, a capture file is preallocated for the largest capture segment anticipated and only a portion of it 
might be used to capture data. This message copies only the portion of the file containing the capture 
data. 

See Also
capSetCallbackOnError, WM_CAP_FILE_SAVEAS



capFileSaveDIB      

The capFileSaveDIB macro copies the current frame to a DIB file. You can use this macro or explicitly 
call the WM_CAP_FILE_SAVEDIB message.

BOOL capFileSaveDIB(

        hwnd,
        szName
      );
 

Parameters
hwnd

Handle of a capture window.

szName

Address of the null-terminated string that contains the name of the destination DIB file.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

Remarks
If the capture driver supplies frames in a compressed format, this call attempts to decompress the frame 
before writing the file.

See Also
capSetCallbackOnError, WM_CAP_FILE_SAVEDIB



capFileSetCaptureFile      

  

The capFileSetCaptureFile macro names the file used for video capture. You can use this macro or 
explicitly call the WM_CAP_FILE_SET_CAPTURE_FILE message.

BOOL capFileSetCaptureFile(

        hwnd,
        szName
      );
 

Parameters
hwnd

Handle of a capture window.

szName

Address of the null-terminated string that contains the name of the capture file to use.
 

Return Values
Returns TRUE if successful or FALSE if the filename is invalid or if streaming or single-frame capture is in 
progress.

Remarks
This message stores the filename in an internal structure. It does not create, allocate, or open the 
specified file. The default capture filename is C:\CAPTURE.AVI.

See Also
WM_CAP_FILE_SET_CAPTURE_FILE



capFileSetInfoChunk      

  

The capFileSetInfoChunk macro sets and clears information chunks. Information chunks can be inserted 
in an AVI file during capture to embed text strings or custom data. You can use this macro or explicitly call 
the WM_CAP_FILE_SET_INFOCHUNK message.

BOOL capFileSetInfoChunk(

        hwnd,
        lpInfoChunk
      );
 

Parameters
hwnd

Handle of a capture window.

lpInfoChunk

Address of a CAPINFOCHUNK structure defining the information chunk to be created or deleted.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

Remarks
Multiple registered information chunks can be added to an AVI file. After an information chunk is set, it 
continues to be added to subsequent capture files until either the entry is cleared or all information chunk 
entries are cleared. To clear a single entry, specify the information chunk in the fccInfoID member and 
NULL in the lpData member of the CAPINFOCHUNK structure. To clear all entries, specify NULL in 
fccInfoID.

See Also
CAPINFOCHUNK, capSetCallbackOnError, WM_CAP_FILE_SET_INFOCHUNK



capGetAudioFormat      

  

The capGetAudioFormat macro obtains the audio format. You can use this macro or explicitly call the 
WM_CAP_GET_AUDIOFORMAT message.

DWORD capGetAudioFormat(

        hwnd,
        psAudioFormat,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

psAudioFormat

Address of a WAVEFORMATEX structure, or NULL. If the value is NULL, the size, in bytes, required 
to hold the WAVEFORMATEX structure is returned.

wSize

Size, in bytes, of the structure referenced by s.
 

Return Values
Returns the size, in bytes, of the audio format.

Remarks
Because compressed audio formats vary in size requirements applications must first retrieve the size, 
then allocate memory, and finally request the audio format data.

See Also
WAVEFORMATEX, WM_CAP_GET_AUDIOFORMAT



capGetAudioFormatSize      

  

The capGetAudioFormatSize macro obtains the size of the audio format. You can use this macro or 
explicitly call the WM_CAP_GET_AUDIOFORMAT message.

DWORD capGetAudioFormatSize(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns the size, in bytes, of the audio format.

Remarks
Because compressed audio formats vary in size requirements applications must first retrieve the size, 
then allocate memory, and finally request the audio format data.

See Also
WM_CAP_GET_AUDIOFORMAT



capGetMCIDeviceName      

  

The capGetMCIDeviceName macro retrieves the name of an MCI device previously set with the 
capSetMCIDeviceName macro. You can use this macro or explicitly call the 
WM_CAP_GET_MCI_DEVICE message.

BOOL capGetMCIDeviceName(

        hwnd,
        szName,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

wSize

Length, in bytes, of the buffer referenced by szName .

szName

Address of a null-terminated string that contains the MCI device name.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
capSetMCIDeviceName, WM_CAP_GET_MCI_DEVICE



capGetStatus      

  

The capGetStatus macro retrieves the status of the capture window. You can use this macro or explicitly 
call the WM_CAP_GET_STATUS message.

BOOL capGetStatus(

        hwnd,
        s,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

wSize

Size, in bytes, of the structure referenced by s.

s

Address of a CAPSTATUS structure.
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The CAPSTATUS structure contains the current state of the capture window. Since this state is dynamic 
and changes in response to various messages, the application should initialize this structure after sending 
the capDlgVideoFormat macro and whenever it needs to enable menu items or determine the actual 
state of the window.

See Also
capDlgVideoFormat, CAPSTATUS, WM_CAP_GET_STATUS



capGetUserData      

  

The capGetUserData macro retrieves a LONG data value associated with a capture window. You can 
use this macro or explicitly call the WM_CAP_GET_USER_DATA message.

BOOL capGetUserData(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns the value previously saved by using the capSetUserData macro.

See Also
WM_CAP_GET_USER_DATA



capGetVideoFormat      

  

The capGetVideoFormat macro retrieves a copy of the video format in use. You can use this macro or 
explicitly call the WM_CAP_GET_VIDEOFORMAT message.

DWORD capGetVideoFormat(

        hwnd,
        psVideoFormat,
        wSize
      );
 

hwnd

Handle of a capture window.

psVideoFormat

Address of a BITMAPINFO structure. You can also specify NULL to retrieve the number of bytes 
needed by BITMAPINFO.

wSize

Size, in bytes, of the structure referenced by s.
 

Return Values
Returns the size, in bytes, of the video format or zero if the capture window is not connected to a capture 
driver. For video formats that require a palette, the current palette is also returned.

Remarks
Because compressed video formats vary in size requirements applications must first retrieve the size, 
then allocate memory, and finally request the video format data.

See Also
BITMAPINFO, WM_CAP_GET_VIDEOFORMAT



capGetVideoFormatSize      

The capGetVideoFormatSize macro retrieves the size required for the video format. You can use this 
macro or explicitly call the WM_CAP_GET_VIDEOFORMAT message.

DWORD capGetVideoFormatSize(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns the size, in bytes, of the video format or zero if the capture window is not connected to a capture 
driver. For video formats that require a palette, the current palette is also returned.

Remarks
Because compressed video formats vary in size requirements applications must first retrieve the size, 
then allocate memory, and finally request the video format data.

See Also
WM_CAP_GET_VIDEOFORMAT



capGrabFrame      

  

The capGrabFrame macro retrieves and displays a single frame from the capture driver. After capture, 
overlay and preview are disabled. You can use this macro or explicitly call the WM_CAP_GRAB_FRAME 
message.

BOOL capGrabFrame(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about installing callback functions, see the capSetCallbackOnError and 
capSetCallbackOnFrame macros.

See Also
capSetCallbackOnError, capSetCallbackOnFrame, WM_CAP_GRAB_FRAME



capGrabFrameNoStop      

  

The capGrabFrameNoStop macro fills the frame buffer with a single uncompressed frame from the 
capture device and displays it. Unlike with the capGrabFrame macro, the state of overlay or preview is 
not altered by this message. You can use this macro or explicitly call the 
WM_CAP_GRAB_FRAME_NOSTOP message.

BOOL capGrabFrameNoStop(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
For information about installing callback functions, see the capSetCallbackOnError and 
capSetCallbackOnFrame macros.

See Also
capSetCallbackOnError, capSetCallbackOnFrame, WM_CAP_GRAB_FRAME_NOSTOP



capOverlay      

  

The capOverlay macro enables or disables overlay mode. In overlay mode, video is displayed using 
hardware overlay. You can use this macro or explicitly call the WM_CAP_SET_OVERLAY message.

BOOL capOverlay(

        hwnd,
        f
      );
 

Parameters
hwnd

Handle of a capture window.

f

Overlay flag. Specify TRUE for this parameter to enable overlay mode or FALSE to disable it.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
Using an overlay does not require CPU resources. 

The fHasOverlay member of the CAPDRIVERCAPS structure indicates whether the device is capable of 
overlay. The fOverlayWindow member of the CAPSTATUS structure indicates whether overlay mode is 
currently enabled. 

Enabling overlay mode automatically disables preview mode.

See Also
CAPDRIVERCAPS, CAPSTATUS, WM_CAP_SET_OVERLAY



capPaletteAuto      

  

The capPaletteAuto macro requests that the capture driver sample video frames and automatically 
create a new palette. You can use this macro or explicitly call the WM_CAP_PAL_AUTOCREATE 
message.

BOOL capPaletteAuto(

        hwnd,
        iFrames,
        iColors
      );
 

Parameters
hwnd

Handle of a capture window.

iFrames

Number of frames to sample.

iColors

Number of colors in the palette. The maximum value for this parameter is 256.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

Remarks
The sampled video sequence should include all the colors you want in the palette. To obtain the best 
palette, you might have to sample the whole sequence rather than a portion of it.

See Also
capSetCallbackOnError, WM_CAP_PAL_AUTOCREATE



capPaletteManual      

  

The capPaletteManual macro requests that the capture driver manually sample video frames and create 
a new palette. You can use this macro or explicitly call the WM_CAP_PAL_MANUALCREATE message.

BOOL capPaletteManual(

        hwnd,
        fGrab,
        iColors
      );
 

Parameters
hwnd

Handle of a capture window.

fGrab

Palette histogram flag. Set this parameter to TRUE for each frame included in creating the optimal 
palette. After the last frame has been collected, set this parameter to FALSE to calculate the optimal 
palette and send it to the capture driver.

iColors

Number of colors in the palette. The maximum value for this parameter is 256. This value is used only 
during collection of the first frame in a sequence.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

See Also
capSetCallbackOnError, WM_CAP_PAL_MANUALCREATE



capPaletteOpen      

  

The capPaletteOpen macro loads a new palette from a palette file and passes it to a capture driver. 
Palette files typically use the filename extension .PAL. A capture driver uses a palette when required by 
the specified digitized image format. You can use this macro or explicitly call the WM_CAP_PAL_OPEN 
message.

BOOL capPaletteOpen(

        hwnd,
        szName
      );
 

Parameters
hwnd

Handle of a capture window.

szName

Address of a null-terminated string containing the palette filename.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

See Also
capSetCallbackOnError, WM_CAP_PAL_OPEN



capPalettePaste      

  

The capPalettePaste macro copies the palette from the clipboard and passes it to a capture driver. You 
can use this macro or explicitly call the WM_CAP_PAL_PASTE message.

BOOL capPalettePaste(

        hwnd
      );
 

Parameters
hwnd

Handle of a capture window.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

Remarks
A capture driver uses a palette when required by the specified digitized video format.

See Also
capSetCallbackOnError, WM_CAP_PAL_PASTE



capPaletteSave      

  

The capPaletteSave macro saves the current palette to a palette file. Palette files typically use the 
filename extension .PAL. You can use this macro or explicitly send the WM_CAP_PAL_SAVE message.

BOOL capPaletteSave(

        hwnd,
        szName
      );
 

Parameters
hwnd

Handle of a capture window.

szName

Address of a null-terminated string containing the palette filename.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

If an error occurs and an error callback function is set using the capSetCallbackOnError macro, the error 
callback function is called.

See Also
capSetCallbackOnError, WM_CAP_PAL_SAVE



capPreview      

  

The capPreview macro enables or disables preview mode. In preview mode, frames are transferred from 
the capture hardware to system memory and then displayed in the capture window using GDI functions. 
You can use this macro or explicitly call the WM_CAP_SET_PREVIEW message.

BOOL capPreview(

        hwnd,
        f
      );
 

Parameters
hwnd

Handle of a capture window.

f

Preview flag. Specify TRUE for this parameter to enable preview mode or FALSE to disable it.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The preview mode uses substantial CPU resources. Applications can disable preview or lower the 
preview rate when another application has the focus. The fLiveWindow member of the CAPSTATUS 
structure indicates if preview mode is currently enabled. 

Enabling preview mode automatically disables overlay mode.

See Also
CAPSTATUS, WM_CAP_SET_PREVIEW



capPreviewRate      

  

The capPreviewRate macro sets the frame display rate in preview mode. You can use this macro or 
explicitly call the WM_CAP_SET_PREVIEWRATE message.

BOOL capPreviewRate(

        hwnd,
        wMS
      );
 

Parameters
hwnd

Handle of a capture window.

wMS

Rate, in milliseconds, at which new frames are captured and displayed.
 

Return Values
Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

Remarks
The preview mode uses substantial CPU resources. Applications can disable preview or lower the 
preview rate when another application has the focus. During streaming video capture, the previewing task 
is lower priority than writing frames to disk, and preview frames are displayed only if no other buffers are 
available for writing.

See Also
WM_CAP_SET_PREVIEWRATE



capPreviewScale      

  

The capPreviewScale macro enables or disables scaling of the preview video images. If scaling is 
enabled, the captured video frame is stretched to the dimensions of the capture window. You can use this 
macro or explicitly call the WM_CAP_SET_SCALE message.

BOOL capPreviewScale(

        hwnd,
        f
      );
 

Parameters
hwnd

Handle of a capture window.

f

Preview scaling flag. Specify TRUE for this parameter to stretch preview frames to the size of the 
capture window or FALSE to display them at their natural size.

 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
Scaling preview images controls the immediate presentation of captured frames within the capture 
window. It has no effect on the size of the frames saved to file.

Scaling has no effect when using overlay to display video in the frame buffer.

See Also
WM_CAP_SET_SCALE



capSetAudioFormat      

  

The capSetAudioFormat macro sets the audio format to use when performing streaming or step capture. 
You can use this macro or explicitly call the WM_CAP_SET_AUDIOFORMAT message.

BOOL capSetAudioFormat(

        hwnd,
        psAudioFormat,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

wSize

Size, in bytes, of the structure referenced by s.

psAudioFormat

Address of a WAVEFORMATEX or PCMWAVEFORMAT structure that defines the audio format.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

See Also
PCMWAVEFORMAT, WAVEFORMATEX, WM_CAP_SET_AUDIOFORMAT



capSetCallbackOnCapControl      

  

The capSetCallbackOnCapControl macro sets a callback function in the application giving it precise 
recording control. You can use this macro or explicitly call the 
WM_CAP_SET_CALLBACK_CAPCONTROL message.

BOOL capSetCallbackOnCapControl(

        hwnd,
        fpProc
      );
 

Parameters
hwnd

Handle of a capture window.

fpProc

Address of the callback function. Specify NULL for this parameter to disable a previously installed 
callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
A single callback function is used to give the application precise control over the moments that streaming 
capture begins and completes. The capture window first calls the procedure with nState set to 
CONTROLCALLBACK_PREROLL after all buffers have been allocated and all other capture preparations 
have finished. This gives the application the ability to preroll video sources, returning from the callback 
function at the exact moment recording is to begin. A return value of TRUE from the callback function 
continues capture, and a return value of FALSE aborts capture. After capture begins, this callback 
function will be called frequently with nState set to CONTROLCALLBACK_CAPTURING to allow the 
application to end capture by returning FALSE.

See Also
WM_CAP_SET_CALLBACK_CAPCONTROL



capSetCallbackOnError      

  

The capSetCallbackOnError macro sets an error callback function in the client application. AVICap calls 
this procedure when errors occur. You can use this macro or explicitly call the 
WM_CAP_SET_CALLBACK_ERROR message.

BOOL capSetCallbackOnError(

        hwnd,
        fpProc
      );
 

Parameters
hwnd

Handle of a capture window.

fpProc

Address of the error callback function. Specify NULL for this parameter to disable a previously 
installed error callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
Applications can optionally set an error callback function. If set, AVICap calls the error procedure in the 
following situations:

· The disk is full.

· A capture window cannot be connected with a capture driver.

· A waveform-audio device cannot be opened.

· The number of frames dropped during capture exceeds the specified percentage.

· The frames cannot be captured due to vertical synchronization interrupt problems.
 

See Also
WM_CAP_SET_CALLBACK_ERROR



capSetCallbackOnFrame      

  

The capSetCallbackOnFrame macro sets a preview callback function in the application. AVICap calls 
this procedure when the capture window captures preview frames. You can use this macro or explicitly 
call the WM_CAP_SET_CALLBACK_FRAME message.

BOOL capSetCallbackOnFrame(

        hwnd,
        fpProc
      );
 

Parameters
hwnd

Handle of a capture window.

fpProc

Address of the preview callback function. Specify NULL for this parameter to disable a previously 
installed callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
The capture window calls the callback function before displaying preview frames. This allows an 
application to modify the frame if desired. This callback function is not used during streaming video 
capture.

See Also
WM_CAP_SET_CALLBACK_FRAME



capSetCallbackOnStatus      

  

The capSetCallbackOnStatus macro sets a status callback function in the application. AVICap calls this 
procedure whenever the capture window status changes. You can use this macro or explicitly call the 
WM_CAP_SET_CALLBACK_STATUS message.

BOOL capSetCallbackOnStatus(

        hwnd,
        fpProc
      );
 

Parameters
hwnd

Handle of a capture window.

fpProc

Address of the status callback function. Specify NULL for this parameter to disable a previously 
installed status callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
Applications can optionally set a status callback function. If set, AVICap calls this procedure in the 
following situations:

· A capture session is completed.

· A capture driver successfully connected to a capture window.

· An optimal palette is created.

· The number of captured frames is reported.
 

See Also
WM_CAP_SET_CALLBACK_STATUS



capSetCallbackOnVideoStream      

  

The capSetCallbackOnVideoStream macro sets a callback function in the application. AVICap calls this 
procedure during streaming capture when a video buffer is filled. You can use this macro or explicitly call 
the WM_CAP_SET_CALLBACK_VIDEOSTREAM message.

BOOL capSetCallbackOnVideoStream(

        hwnd,
        fpProc
      );
 

Parameters
hwnd

Handle of a capture window.

fpProc

Address of the video-stream callback function. Specify NULL for this parameter to disable a 
previously installed video-stream callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
The capture window calls the callback function before writing the captured frame to disk. This allows 
applications to modify the frame if desired.

If a video stream callback function is used for streaming capture, the procedure must be installed before 
starting the capture session and it must remain enabled for the duration of the session. It can be disabled 
after streaming capture ends.

See Also
WM_CAP_SET_CALLBACK_VIDEOSTREAM



capSetCallbackOnWaveStream      

  

The capSetCallbackOnWaveStream macro sets a callback function in the application. AVICap calls this 
procedure during streaming capture when a new audio buffer becomes available. You can use this macro 
or explicitly call the WM_CAP_SET_CALLBACK_WAVESTREAM message.

BOOL capSetCallbackOnWaveStream(

        hwnd,
        fpProc
      );
 

Parameters
hwnd

Handle of a capture window.

fpProc

Address of the wave stream callback function. Specify NULL for this parameter to disable a previously 
installed wave stream callback function. 

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
The capture window calls the procedure before writing the audio buffer to disk. This allows applications to 
modify the audio buffer if desired.

If a wave stream callback function is used, it must be installed before starting the capture session and it 
must remain enabled for the duration of the session. It can be disabled after streaming capture ends.

See Also
WM_CAP_SET_CALLBACK_WAVESTREAM



capSetCallbackOnYield      

  

The capSetCallbackOnYield macro sets a callback function in the application. AVICap calls this 
procedure when the capture window yields during streaming capture. You can use this macro or explicitly 
call the WM_CAP_SET_CALLBACK_YIELD message.

BOOL capSetCallbackOnYield(

        hwnd,
        fpProc
      );
 

Parameters
hwnd

Handle of a capture window.

fpProc

Address of the yield callback function. Specify NULL for this parameter to disable a previously 
installed yield callback function.

 

Return Values
Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in 
progress.

Remarks
Applications can optionally set a yield callback function. The yield callback function is called at least once 
for each video frame captured during streaming capture. If a yield callback function is installed, it will be 
called regardless of the state of the fYield member of the CAPTUREPARMS structure.

If the yield callback function is used, it must be installed before starting the capture session and it must 
remain enabled for the duration of the session. It can be disabled after streaming capture ends.

Applications typically perform some type of message processing in the callback function consisting of a 
PeekMessage, TranslateMessage, DispatchMessage loop, as in the message loop of a WinMain 
function. The yield callback function must also filter and remove messages that can cause reentrancy 
problems.

An application typically returns TRUE in the yield procedure to continue streaming capture. If a yield 
callback function returns FALSE, the capture window stops the capture process.

See Also
CAPTUREPARMS, DispatchMessage, PeekMessage, TranslateMessage, 
WM_CAP_SET_CALLBACK_YIELD, WinMain



capSetMCIDeviceName      

  

The capSetMCIDeviceName macro specifies the name of the MCI video device to be used to capture 
data. You can use this macro or explicitly call the WM_CAP_SET_MCI_DEVICE message.

BOOL capSetMCIDeviceName(

        hwnd,
        szName
      );
 

Parameters
hwnd

Handle of a capture window.

szName

Address of a null-terminated string containing the name of the device.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This message stores the MCI device name in an internal structure. It does not open or access the device. 
The default device name is NULL.

See Also
WM_CAP_SET_MCI_DEVICE



capSetScrollPos      

  

The capSetScrollPos macro defines the portion of the video frame to display in the capture window. This 
message sets the upper left corner of the client area of the capture window to the coordinates of a 
specified pixel within the video frame. You can use this macro or explicitly call the 
WM_CAP_SET_SCROLL message.

BOOL capSetScrollPos(

        hwnd,
        lpP
      );
 

Parameters
hwnd

Handle of a capture window.

lpP

Address to contain the desired scroll position.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The scroll position affects the image in both preview and overlay modes.

See Also
WM_CAP_SET_SCROLL



capSetUserData      

  

The capSetUserData macro associates a LONG data value with a capture window. You can use this 
macro or explicitly call the WM_CAP_SET_USER_DATA message.

BOOL capSetUserData(

        hwnd,
        lUser
      );
 

Parameters
hwnd

Handle of a capture window.

lUser

Data value to associate with a capture window.
 

Return Values
Returns TRUE if successful or FALSE if streaming capture is in progress.

Remarks
Typically this message is used to point to a block of data associated with a capture window.

See Also
WM_CAP_SET_USER_DATA



capSetVideoFormat      

  

The capSetVideoFormat macro sets the format of captured video data. You can use this macro or 
explicitly call the WM_CAP_SET_VIDEOFORMAT message.

BOOL capSetVideoFormat(

        hwnd,
        psVideoFormat,
        wSize
      );
 

Parameters
hwnd

Handle of a capture window.

psVideoFormat

Address of a BITMAPINFO structure.

wSize

Size, in bytes, of the structure referenced by s.
 

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
Because video formats are device-specific, applications should check the return value from this function 
to determine if the format is accepted by the driver.

See Also
BITMAPINFO, WM_CAP_SET_VIDEOFORMAT



DrawDibUpdate      

  

The DrawDibUpdate macro draws the last frame in the DrawDib off-screen buffer.

BOOL DrawDibUpdate(

        HDRAWDIB hdd,
        HDC hdc,
        int xDst,
        int yDst
      );
 

Parameters
hdd

Handle of a DrawDib DC.

hdc

Handle of the DC.

xDst and yDst

The x- and y-coordinates, in MM_TEXT client coordinates, of the upper left corner of the destination 
rectangle.

 

Return Value
Returns TRUE if successful or FALSE otherwise.

Remarks
The DrawDibUpdate macro is defined as follows:

#define DrawDibUpdate( hdd, hdc, x, y) \ 
    DrawDibDraw( hdd, hdc, x, y, 0, 0, NULL, NULL, 0, 0, \ 
    0, 0, DDF_UPDATE) 
 

This macro can be used to refresh an image or a portion of an image displayed by your application.



ICAbout      

  

The ICAbout macro notifies a video compression driver to display its About dialog box. You can use this 
macro or explicitly call the ICM_ABOUT message.

DWORD ICAbout(

        hic,
        hwnd
      );
 

hic

Handle of the compressor.

hwnd

Handle of the parent window of the displayed dialog box.

You can also determine if a driver has an About dialog box by specifying -1 in this parameter, as in the 
ICQueryAbout macro. The driver returns ICERR_OK if it has an About dialog box or 
ICERR_UNSUPPORTED otherwise.

 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.

See Also
ICM_ABOUT, ICQueryAbout



ICCompressBegin      

  

The ICCompressBegin macro notifies a video compression driver to prepare to compress data. You can 
use this macro or explicitly call the ICM_COMPRESS_BEGIN message.

DWORD ICCompressBegin(

        hic,
        lpbiInput,
        lpbiOutput
      );
 

Parameters
hic

Handle of a compressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format.
 

Return Values
Returns ICERR_OK if the specified compression is supported or ICERR_BADFORMAT if the input or 
output format is not supported.

Remarks
The driver should allocate and initialize any tables or memory that it needs for compressing the data 
formats when it receives the ICM_COMPRESS message.

VCM saves the settings of the most recent ICCompressBegin macro. The ICCompressBegin and 
ICCompressEnd messages do not nest. If your driver receives ICM_COMPRESS_BEGIN before 
compression is stopped with ICM_COMPRESS_END, it should restart compression with new parameters. 

See Also
BITMAPINFO, ICCompressEnd, ICM_COMPRESS_BEGIN



ICCompressEnd      

  

The ICCompressEnd macro notifies a video compression driver to end compression and free resources 
allocated for compression. You can use this macro or explicitly call the ICM_COMPRESS_END message.

DWORD ICCompressEnd(

        hic
      );
 

Parameters
hic

Handle of the compressor.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
VCM saves the settings of the most recent ICCompressBegin macro. ICCompressBegin and 
ICCompressEnd do not nest. If your driver receives the ICM_COMPRESS_BEGIN message before 
compression is stopped with the ICM_COMPRESS_END message, it should restart compression with 
new parameters.

See Also
ICCompressBegin, ICM_COMPRESS_END



ICCompressGetFormat      

  

The ICCompressGetFormat macro requests the output format of the compressed data from a video 
compression driver. You can use this macro or explicitly call the ICM_COMPRESS_GET_FORMAT 
message.

DWORD ICCompressGetFormat(

        hic,
        lpbiInput,
        lpbiOutput
      );
 

hic

Handle of the compressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure to contain the output format. You can specify zero for this 
parameter to request only the size of the output format, as in the ICCompressGetFormatSize macro.

 

Return Values
If lpbiOutput is zero, returns the size of the structure. 

If lpbiOutput is nonzero, returns ICERR_OK if successful or an error otherwise.

Remarks
If lpbiOutput is nonzero, the driver should fill the BITMAPINFO structure with the default output format 
corresponding to the input format specified for lpbiInput. If the compressor can produce several formats, 
the default format should be the one that preserves the greatest amount of information.

See Also
BITMAPINFO, ICCompressGetFormatSize, ICM_COMPRESS_GET_FORMAT



ICCompressGetFormatSize      

  

The ICCompressGetFormatSize macro requests the size of the output format of the compressed data 
from a video compression driver. You can use this macro or explicitly call the 
ICM_COMPRESS_GET_FORMAT message.

DWORD ICCompressGetFormatSize(

        hic,
        lpbiInput
      );
 

Parameters
hic

Handle of the compressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.
 

Return Values
Returns the size of the structure. 

See Also
BITMAPINFO, ICM_COMPRESS_GET_FORMAT



ICCompressGetSize      

  

The ICCompressGetSize macro requests that the video compression driver supply the maximum size of 
one frame of data when compressed into the specified output format. You can use this macro or explicitly 
call the ICM_COMPRESS_GET_SIZE message.

DWORD ICCompressGetSize(

        hic,
        lpbiInput,
        lpbiOutput
      );
 

Parameters
hic

Handle of a compressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format.
 

Return Values
Returns the maximum number of bytes a single compressed frame can occupy.

Remarks
Typically, applications send this message to determine how large a buffer to allocate for the compressed 
frame.

The driver should calculate the size of the largest possible frame based on the input and output formats.

See Also
BITMAPINFO, ICM_COMPRESS_GET_SIZE



ICCompressQuery      

  

The ICCompressQuery macro queries a video compression driver to determine if it supports a specific 
input format or if it can compress a specific input format to a specific output format. You can use this 
macro or explicitly call the ICM_COMPRESS_QUERY message.

DWORD ICCompressQuery(

        hic,
        lpbiInput,
        lpbiOutput
      );
 

Parameters
hic

Handle of a compressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format. You can specify zero for this 
parameter to indicate any output format is acceptable.

 

Return Values
Returns ICERR_OK if the specified compression is supported or ICERR_BADFORMAT otherwise.

Remarks
When a driver receives this message, it should examine the BITMAPINFO structure associated with 
lpbiInput to determine if it can compress the input format.

See Also
BITMAPINFO, ICM_COMPRESS_QUERY



ICConfigure      

  

The ICConfigure macro notifies a video compression driver to display its configuration dialog box. You 
can use this macro or explicitly send the ICM_CONFIGURE message.

DWORD ICConfigure(

        hic,
        hwnd
      );
 

Parameters
hic

Handle of the compressor.

hwnd

Handle of the parent window of the displayed dialog box.

You can determine if a driver has a configuration dialog box by specifying    - 1 in this parameter, as in 
the ICQueryConfigure macro. 

 

Return Values
Returns ICERR_OK if the driver supports this macro or ICERR_UNSUPPORTED otherwise.

Remarks
The ICM_CONFIGURE message is different from the DRV_CONFIGURE message used for hardware 
configuration. The dialog box for this message should let the user set and edit the internal state 
referenced by the ICGetState and ICSetState macros. For example, this dialog box can let the user 
change parameters affecting the quality level and other similar compression options.

See Also
DRV_CONFIGURE ICM_CONFIGURE, ICGetState, ICQueryConfigure, ICSetState



ICDecompressBegin      

  

The ICDecompressBegin macro notifies a video decompression driver to prepare to decompress data. 
You can use this macro or explicitly call the ICM_DECOMPRESS_BEGIN message.

DWORD ICDecompressBegin(

        hic,
        lpbiInput,
        lpbiOutput
      );
 

Parameters
hic

Handle of a decompressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format.
 

Return Values
Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT otherwise.

Remarks
When the driver receives this message, it should allocate buffers and do any time-consuming operations 
so that it can process ICM_DECOMPRESS messages efficiently.

The ICDecompressBegin and ICDecompressEnd macros do not nest. If your driver receives 
ICM_DECOMPRESS_BEGIN before decompression is stopped with ICM_DECOMPRESS_END, it 
should restart decompression with new parameters.

See Also
BITMAPINFO, ICDecompressEnd, ICM_DECOMPRESS, ICM_DECOMPRESS_BEGIN, 
ICM_DECOMPRESS_END



ICDecompressEnd      

  

The ICDecompressEnd macro notifies a video decompression driver to end decompression and free 
resources allocated for decompression. You can use this macro or explicitly call the 
ICM_DECOMPRESS_END message.

DWORD ICDecompressEnd(

        hic
      );
 

Parameters
hic

Handle of a decompressor.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
The driver should free any resources allocated for the ICM_DECOMPRESS_BEGIN message.

The ICDecompressBegin and ICDecompressEnd macros do not nest. If your driver receives 
ICM_DECOMPRESS_BEGIN before decompression is stopped with ICM_DECOMPRESS_END, it 
should restart decompression with new parameters.

See Also
ICDecompressBegin, ICM_DECOMPRESS, ICM_DECOMPRESS_BEGIN, ICM_DECOMPRESS_END



ICDecompressExEnd      

  

The ICDecompressExEnd macro notifies a video decompression driver to end decompression and free 
resources allocated for decompression. You can use this macro or explicitly call the 
ICM_DECOMPRESSEX_END message.

DWORD ICDecompressExEnd(

        hic
      );
 

Parameters
hic

Handle of a decompressor.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
The driver frees any resources allocated for the ICM_DECOMPRESSEX_BEGIN message.

ICM_DECOMPRESSEX_BEGIN and ICM_DECOMPRESSEX_END do not nest. If your driver receives 
ICM_DECOMPRESSEX_BEGIN before decompression is stopped with ICM_DECOMPRESSEX_END, it 
should restart decompression with new parameters.

See Also
ICM_DECOMPRESSEX_END



ICDecompressGetFormat      

  

The ICDecompressGetFormat macro requests the output format of the decompressed data from a video 
decompression driver. You can use this macro or explicitly call the ICM_DECOMPRESS_GET_FORMAT 
message.

DWORD ICDecompressGetFormat(

        hic,
        lpbiInput,
        lpbiOutput
      );
 

hic

Handle of a decompressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure to contain the output format. You can specify zero to request 
only the size of the output format, as in the ICDecompressGetFormatSize macro.

 

Return Values
If lpbiOutput is zero, returns the size of the structure. 

If lpbiOutput is nonzero, returns ICERR_OK if successful or an error otherwise.

Remarks
If lpbiOutput is nonzero, the driver should fill the BITMAPINFO structure with the default output format 
corresponding to the input format specified for lpbiInput. If the compressor can produce several formats, 
the default format should be the one that preserves the greatest amount of information.

See Also
BITMAPINFO, ICDecompressGetFormatSize, ICM_DECOMPRESS_GET_FORMAT



ICDecompressGetFormatSize      

  

The ICDecompressGetFormatSize macro requests the size of the output format of the decompressed 
data from a video decompression driver. You can use this macro or explicitly call the 
ICM_DECOMPRESS_GET_FORMAT message.

DWORD ICDecompressGetFormatSize(

        hic,
        lpbiInput
      );
 

Parameters
hic

Handle of a decompressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.
 

Return Values
Returns the size of the structure. 

See Also
BITMAPINFO, ICM_DECOMPRESS_GET_FORMAT



ICDecompressGetPalette      

  

The ICDecompressGetPalette macro requests that the video decompression driver supply the color 
table of the output BITMAPINFOHEADER structure. You can use this macro or explicitly call the 
ICM_DECOMPRESS_GET_PALETTE message.

DWORD ICDecompressGetPalette(

        hic,
        lpbiInput,
        lpbiOutput
      );
 

Parameters
hic

Handle of a decompressor.

lpbiInput

Address of a BITMAPINFOHEADER structure containing the input format.

lpbiOutput

Address of a BITMAPINFOHEADER structure to contain the color table. The space reserved for the 
color table is always at least 256 colors. You can specify zero for this parameter to return only the size 
of the color table.

 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
If lpbiOutput is nonzero, the driver sets the biClrUsed member of BITMAPINFOHEADER to the number 
of colors in the color table. The driver fills the bmiColors members of BITMAPINFO with the actual 
colors.

The driver should support this message only if it uses a palette other than the one specified in the input 
format.

See Also
BITMAPINFO, BITMAPINFOHEADER, ICM_DECOMPRESS_GET_PALETTE



ICDecompressOpen      

  

The ICDecompressOpen macro opens a decompressor that is compatible with the specified formats.

HIC ICDecompressOpen(

        DWORD fccType,
        DWORD fccHandler,
        LPBITMAPINFOHEADER lpbiIn,
        LPBITMAPINFOHEADER lpbiOut
      );
 

Parameters
fccType

Four-character code indicating the type of compressor to open. For video streams, the value of this 
parameter is "VIDC" or ICTYPE_VIDEO.

fccHandler

Four-character code indicating the preferred stream handler to use. Typically, this information is 
stored in the stream header in an AVI file.

lpbiIn

Address of a structure defining the input format. A decompressor handle is not returned unless it can 
decompress this format. For bitmaps, this parameter refers to a BITMAPINFOHEADER structure.

lpbiOut

Address of a structure defining an optional decompression format. You can also specify zero to use 
the default output format associated with the input format.

If this parameter is nonzero, a compressor handle is not returned unless it can create this output 
format. For bitmaps, this parameter refers to a BITMAPINFOHEADER structure.

 

Return Values
Returns a handle of a decompressor if successful or zero otherwise.

Remarks
The ICDecompressOpen macro is defined as follows:

#define ICDecompressOpen(fccType, fccHandler, lpbiIn, lpbiOut) \ 
    ICLocate(fccType, fccHandler, lpbiIn, lpbiOut, ICMODE_DECOMPRESS); 
 

See Also
BITMAPINFOHEADER



ICDecompressQuery      

  

The ICDecompressQuery macro queries a video decompression driver to determine if it supports a 
specific input format or if it can decompress a specific input format to a specific output format. You can 
use this macro or explicitly call the ICM_DECOMPRESS_QUERY message.

DWORD ICDecompressQuery(

        hic,
        lpbiInput,
        lpbiOutput
      );
 

Parameters
hic

Handle of a decompressor.

lpbiInput

Address of a BITMAPINFO structure containing the input format.

lpbiOutput

Address of a BITMAPINFO structure containing the output format. You can specify zero for this 
parameter to indicate any output format is acceptable.

 

Return Values
Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT otherwise.

See Also
ICM_DECOMPRESS_QUERY 



ICDecompressSetPalette      

  

The ICDecompressSetPalette macro specifies a palette for a video decompression driver to use if it is 
decompressing to a format that uses a palette. You can use this macro or explicitly call the 
ICM_DECOMPRESS_SET_PALETTE message.

ICDecompressSetPalette(

        hic,
        lpbiPalette
      );
 

Parameters
lpbiPalette

Address of a BITMAPINFOHEADER structure whose color table contains the colors that should be 
used if possible. You can specify zero to use the default set of output colors.

 

Return Values
Returns ICERR_OK if the decompression driver can precisely decompress images to the suggested 
palette using the set of colors as they are arranged in the palette. Returns ICERR_UNSUPPORTED 
otherwise.

Remarks
This macro should not affect decompression already in progress; rather, colors passed using this 
message should be returned in response to future ICDecompressGetFormat and 
ICDecompressGetPalette macros. Colors are sent back to the decompression driver in a future 
ICDecompressBegin macro.

This macro is used primarily when a driver decompresses images to the screen and another application 
that uses a palette is in the foreground, forcing the decompression driver to adapt to a foreign set of 
colors.

See Also
BITMAPINFOHEADER, ICDecompressGetFormat, ICDecompressGetPalette, 
ICM_DECOMPRESS_SET_PALETTE



ICDrawChangePalette      

  

The ICDrawChangePalette macro notifies a rendering driver that the movie palette is changing. You can 
use this macro or explicitly call the ICM_DRAW_CHANGEPALETTE message.

DWORD ICDrawChangePalette(

        hic,
        lpbiInput
      );
 

Parameters
hic

Handle of a rendering driver.

lpbiInput

Address of a BITMAPINFO structure containing the new format and optional color table.
 

Return Values
Returns ICERR_OK if successful or FALSE otherwise.

Remarks
This message should be supported by installable rendering handlers that draw DIBs with an internal 
structure that includes a palette.

See Also
BITMAPINFO, ICM_DRAW_CHANGEPALETTE



ICDrawEnd      

  

The ICDrawEnd macro notifies a rendering driver to decompress the current image to the screen and to 
release resources allocated for decompression and drawing. You can use this macro or explicitly call the 
ICM_DRAW_END message.

DWORD ICDrawEnd(

        hic
      );
 

Parameters
hic

Handle of a driver.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
The ICM_DRAW_BEGIN and ICM_DRAW_END messages do not nest. If your driver receives 
ICM_DRAW_BEGIN before decompression is stopped with ICM_DRAW_END, it should restart 
decompression with new parameters.

See Also
ICM_DRAW_BEGIN, ICM_DRAW_END



ICDrawFlush      

  

The ICDrawFlush macro notifies a rendering driver to render the contents of any image buffers that are 
waiting to be drawn. You can use this macro or explicitly call the ICM_DRAW_FLUSH message.

DWORD ICDrawFlush(

        hic
      );
 

Parameters
hic

Handle of a driver.
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
This message is used only by hardware that performs its own asynchronous decompression, timing, and 
drawing.

See Also
ICM_DRAW_FLUSH



ICDrawGetTime      

  

The ICDrawGetTime macro requests a rendering driver that controls the timing of drawing frames to 
return the current value of its internal clock. You can use this macro or explicitly call the 
ICM_DRAW_GETTIME message.

DWORD ICDrawGetTime(

        hic,
        lplTime
      );
 

Parameters
hic

Handle of a driver.

lplTime

Address to contain the current time. The return value should be specified in samples. 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
This message is generally supported by hardware that performs its own asynchronous decompression, 
timing, and drawing. The message can also be sent if the hardware is being used as the synchronization 
master.

See Also
ICM_DRAW_GETTIME



ICDrawOpen      

  

The ICDrawOpen macro opens a driver that can draw images with the specified format.

HIC ICDrawOpen(

        DWORD fccType,
        DWORD fccHandler,
        LPBITMAPINFOHEADER lpbiIn
      );
 

Parameters
fccType

Four-character code indicating the type of driver to open. For video streams, the value of this 
parameter is "VIDC" or ICTYPE_VIDEO.

fccHandler

Four-character code indicating the preferred stream handler to use. Typically, this information is 
stored in the stream header in an AVI file.

lpbiIn

Address of the structure defining the input format. A driver handle will not be returned unless it can 
decompress this format. For images, this parameter refers to a BITMAPINFOHEADER structure.

 

Return Values
Returns a handle of a driver if successful or zero otherwise.

Remarks
The ICDrawOpen macro is defined as follows:

#define ICDrawOpen(fccType, fccHandler, lpbiIn) \
    ICLocate(fccType, fccHandler, lpbiIn, NULL, ICMODE_DRAW); 
 

See Also
BITMAPINFOHEADER



ICDrawQuery      

  

The ICDrawQuery macro queries a rendering driver to determine if it can render data in a specific format. 
You can use this macro or explicitly call the ICM_DRAW_QUERY message.

DWORD ICDrawQuery(

        hic,
        lpbiInput
      );
 

Parameters
hic

Handle of a driver.

lpbiInput

Address of a BITMAPINFO structure containing the input format.
 

Return Values
Returns ICERR_OK if the driver can render data in the specified format or ICERR_BADFORMAT 
otherwise.

Remarks
This macro differs from the ICDrawBegin macro in that it queries the driver in a general sense. 
ICDrawBegin determines if the driver can draw the data using the specified format under specific 
conditions, such as stretching the image.

See Also
BITMAPINFO, ICDrawBegin, ICM_DRAW_QUERY



ICDrawRealize      

  

The ICDrawRealize macro notifies a rendering driver to realize its drawing palette while drawing. You can 
use this macro or explicitly call the ICM_DRAW_REALIZE message.

DWORD ICDrawRealize(

        hic,
        hdc,
        fBackground
      );
 

Parameters
hic

Handle of a driver.

hdc

Handle of the DC used to realize the palette.

fBackground

Background flag. Specify TRUE to realize the palette as a background task or FALSE to realize the 
palette in the foreground.

 

Return Values
Returns ICERR_OK if the drawing palette is realized or ICERR_UNSUPPORTED if the palette associated 
with the decompressed data is realized.

Remarks
Drivers need to respond to this message only if the drawing palette is different from the decompressed 
palette.

See Also
ICM_DRAW_REALIZE



ICDrawRenderBuffer      

  

The ICDrawRenderBuffer macro notifies a rendering driver to draw the frames that have been passed to 
it. You can use this macro or explicitly call the ICM_DRAW_RENDERBUFFER message.

DWORD ICDrawRenderBuffer(

        hic
      );
 

Parameters
hic

Handle of a driver.
 

Return Values
This macro does not return a value.

Remarks
Use this message with hardware that performs its own asynchronous decompression, timing, and 
drawing.

This message is typically used to perform a seek operation when the driver must be specifically instructed 
to display each video frame passed to it rather than playing a sequence of video frames.

See Also
ICM_DRAW_RENDERBUFFER



ICDrawSetTime      

  

The ICDrawSetTime macro provides synchronization information to a rendering driver that handles the 
timing of drawing frames. The synchronization information is the sample number of the frame to draw. You 
can use this macro or explicitly call the ICM_DRAW_SETTIME message.

DWORD ICDrawSetTime(

        hic,
        lpTime
      );
 

Parameters
hic

Handle of a driver.

lpTime

Sample number of the frame to render. 
 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
Typically, the driver compares the specified value with the frame number associated with the time of its 
internal clock and attempts to synchronize the two if the difference is significant.

Use this message when the hardware performs its own asynchronous decompression, timing, and 
drawing, and the hardware relies on an external synchronization signal (the hardware is not being used 
as the synchronization master).

See Also
ICM_DRAW_SETTIME



ICDrawStart      

  

The ICDrawStart macro notifies a rendering driver to start its internal clock for the timing of drawing 
frames. You can use this macro or explicitly call the ICM_DRAW_START message.

DWORD ICDrawStart(

        hic
      );
 

Parameters
hic

Handle of a driver.
 

Return Values
This macro does not return a value.

Remarks
This message is used by hardware that performs its own asynchronous decompression, timing, and 
drawing.

When the driver receives this message, it should start rendering data at the rate specified with the 
ICM_DRAW_BEGIN message.

The ICDrawStart and ICDrawStop macros do not nest. If your driver receives ICDrawStart before 
rendering is stopped with ICDrawStop, it should restart rendering with new parameters.

See Also
ICDrawStop, ICM_DRAW_START



ICDrawStartPlay      

  

The ICDrawStartPlay macro provides the start and end times of a play operation to a rendering driver. 
You can use this macro or explicitly call the ICM_DRAW_START_PLAY message.

ICDrawStartPlay(

        hic,
        lFrom,
        lTo
      );
 

Parameters
lFrom

Start time.

lTo

End time.
 

Return Values
This macro does not return a value.

Remarks
This message precedes any frame data sent to the rendering driver.

Units for lFrom and lTo are specified with the ICM_DRAW_BEGIN message. For video data this is 
normally a frame number. For more information about the playback rate, see the dwRate and dwScale 
members of the ICDRAWBEGIN structure.

If the end time is less than the start time, the playback direction is reversed.

See Also
ICDRAWBEGIN, ICM_DRAW_START_PLAY



ICDrawStop      

  

The ICDrawStop macro notifies a rendering driver to stop its internal clock for the timing of drawing 
frames. You can use this macro or explicitly call the ICM_DRAW_STOP message.

DWORD ICDrawStop(

        hic
      );
 

Parameters
hic

Handle of a driver.
 

Return Values
This macro does not return a value.

Remarks
This macro is used by hardware that performs its own asynchronous decompression, timing, and drawing.

See Also
ICM_DRAW_STOP



ICDrawStopPlay      

  

The ICDrawStopPlay macro notifies a rendering driver when a play operation is complete. You can use 
this macro or explicitly call the ICM_DRAW_STOP_PLAY message.

ICDrawStopPlay(

        hic
      );
 

Parameters
hic

Handle of a driver.
 

Return Values
This macro does not return a value.

Remarks
Use this message when the play operation is complete. Use the ICDrawStop macro to end timing.

See Also
ICM_DRAW_STOP_PLAY



ICDrawWindow      

  

The ICDrawWindow macro notifies a rendering driver that the window specified for the 
ICM_DRAW_BEGIN message needs to be redrawn. The window has moved or become temporarily 
obscured. You can use this macro or explicitly call the ICM_DRAW_WINDOW message.

DWORD ICDrawWindow(

        hic,
        prc
      );
 

Parameters
hic

Handle of a driver.

prc

Address of the destination rectangle in screen coordinates. If this parameter points to an empty 
rectangle, drawing should be turned off.

 

Return Values
Returns ICERR_OK if successful or an error otherwise.

Remarks
This message is supported by hardware that performs its own asynchronous decompression, timing, and 
drawing.

Video-overlay drivers use this message to draw when the window is obscured or moved. When a window 
specified for ICM_DRAW_BEGIN is completely hidden by other windows, the destination rectangle is 
empty. Drivers should turn off video-overlay hardware when this condition occurs.

See Also
ICM_DRAW_BEGIN, ICM_DRAW_WINDOW



ICGetBuffersWanted      

  

The ICGetBuffersWanted macro queries a driver for the number of buffers to allocate. You can use this 
macro or explicitly call the ICM_GETBUFFERSWANTED message.

DWORD ICGetBuffersWanted(

        hic,
        lpdwBuffers
      );
 

Parameters
hic

Handle of a driver.

lpdwBuffers

Address to contain the number of samples the driver needs to efficiently render the data. 
 

Return Values
Returns ICERR_OK if successful or ICERR_UNSUPPORTED otherwise.

Remarks
This message is used by drivers that use hardware to render data and want to ensure a minimal time lag 
caused by waiting for buffers to arrive. For example, if a driver controls a video decompression board that 
can hold 10 frames of video, it could return 10 for this message. This instructs applications to try to stay 
10 frames ahead of the frame it currently needs.

See Also
ICM_GETBUFFERSWANTED



ICGetDefaultKeyFrameRate      

  

The ICGetDefaultKeyFrameRate macro queries a video compression driver for its default (or preferred) 
key-frame spacing. You can use this macro or explicitly call the ICM_GETDEFAULTKEYFRAMERATE 
message.

DWORD ICGetDefaultKeyFrameRate(

        hic
      );
 

Parameters
hic

Handle of a compressor.

wParam

Address to contain the preferred key-frame spacing.
 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise. 

Remarks
The ICGetDefaultKeyFrameRate macro returns the default key frame rate.

See Also
ICM_GETDEFAULTKEYFRAMERATE



ICGetDefaultQuality      

  

The ICGetDefaultQuality macro queries a video compression driver to provide its default quality setting. 
You can use this macro or explicitly call the ICM_GETDEFAULTQUALITY message.

DWORD ICGetDefaultQuality(

        hic
      );
 

Parameters
hic

Handle of a compressor.

wParam

Address to contain the default quality value. Quality values range from 0 to 10,000.
 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise. 

Remarks
The ICGetDefaultQuality macro returns the default quality value.

See Also
ICM_GETDEFAULTQUALITY



ICGetState      

  

The ICGetState macro queries a video compression driver to return its current configuration in a block of 
memory. You can use this macro or explicitly call the ICM_GETSTATE message.

DWORD ICGetState(

        hic,
        pv,
        cb
      );
 

hic

Handle of the compressor.

pv

Address of a block of memory to contain the current configuration information. You can specify NULL 
for this parameter to determine the amount of memory required for the configuration information, as in 
ICGetStateSize.

cb

Size, in bytes, of the block of memory.
 

Return Values
If pv is NULL, returns the amount of memory, in bytes, required for configuration information. 

If pv is not NULL, returns ICERR_OK if successful or an error otherwise.

Remarks
The ICGetStateSize macro returns the number of bytes used by the state data.

The structure used to represent configuration information is driver specific and is defined by the driver.

Use ICGetStateSize before calling the ICGetState macro to determine the size of buffer to allocate for 
the call.

See Also
ICGetStateSize, ICM_GETSTATE



ICGetStateSize      

  

The ICGetStateSize macro queries a video compression driver to determine the amount of memory 
required to retrieve the configuration information. You can use this macro or explicitly call the 
ICM_GETSTATE message.

DWORD ICGetStateSize(

        hic
      );
 

Parameters
hic

Handle of the compressor.
 

Return Values
Returns the amount of memory, in bytes, required by the state information. 

Remarks
The structure used to represent configuration information is driver specific and is defined by the driver.

Use ICGetStateSize before calling the ICGetState macro to determine the size of buffer to allocate for 
the call.

See Also
ICGetState, ICM_GETSTATE



ICQueryAbout      

  

The ICQueryAbout macro queries a video compression driver to determine if it has an About dialog box. 
You can use this macro or explicitly call the ICM_ABOUT message.

DWORD ICQueryAbout(

        hic
      );
 

Parameters
hic

Handle of the compressor.
 

Return Values
Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.

See Also
ICM_ABOUT



ICQueryConfigure      

  

The ICQueryConfigure macro queries a video compression driver to determine if it has a configuration 
dialog box. You can use this macro or explicitly send the ICM_CONFIGURE message.

DWORD ICQueryConfigure(

        hic
      );
 

hic

Handle of the compressor.
 

Return Values
Returns ICERR_OK if the driver supports this macro or ICERR_UNSUPPORTED otherwise.

Remarks
This message is different from the DRV_CONFIGURE message used for hardware configuration. The 
dialog box for this message should let the user set and edit the internal state referenced by the 
ICM_GETSTATE and ICM_SETSTATE messages. For example, this dialog box can let the user change 
parameters affecting the quality level and other similar compression options.

See Also
ICM_CONFIGURE, ICM_GETSTATE, ICM_SETSTATE, DRV_CONFIGURE



ICSetState      

  

The ICSetState macro notifies a video compression driver to set the state of the compressor. You can use 
this macro or explicitly call the ICM_SETSTATE message.

DWORD ICSetState(

        hic,
        pv,
        cb
      );
 

Parameters
hic

Handle of the compressor.

pv

Address of a block of memory containing configuration data. You can specify NULL for this parameter 
to reset the compressor to its default state.

cb

Size, in bytes, of the block of memory.
 

Return Values
Returns the number of bytes used by the compressor if successful or zero otherwise. 

Remarks
The information used by this message is private and specific to a given compressor. Client applications 
should use this message only to restore information previously obtained with the ICGetState and 
ICConfigure macros and should use the ICConfigure macro to adjust the configuration of a video 
compression driver.

See Also
ICConfigure, ICGetState, ICM_SETSTATE



MCI_HMS_HOUR      

  

The MCI_HMS_HOUR macro retrieves the hours component from a parameter containing packed 
hours/minutes/seconds (HMS) information. 

BYTE MCI_HMS_HOUR(

        DWORD dwHMS
      );
 

Parameters
dwHMS

Time in HMS format. 
 

Return Values
Returns the hours component of the specified HMS information.

Remarks
Time in HMS format is expressed as a doubleword value with the least significant byte containing hours, 
the next least significant byte containing minutes, and the next least significant byte containing seconds. 
The most significant byte is unused. 

The MCI_HMS_HOUR macro is defined as follows:

#define MCI_HMS_HOUR(hms) ((BYTE)(hms)) 
 



MCI_HMS_MINUTE      

  

The MCI_HMS_MINUTE macro retrieves the minutes component from a parameter containing packed 
hours/minutes/seconds (HMS) information. 

BYTE MCI_HMS_MINUTE(

        DWORD dwHMS
      );
 

Parameters
dwHMS

Time in HMS format. 
 

Return Values
Returns the minutes component of the specified HMS information.

Remarks
Time in HMS format is expressed as a doubleword value with the least significant byte containing hours, 
the next least significant byte containing minutes, and the next least significant byte containing seconds. 
The most significant byte is unused. 

The MCI_HMS_MINUTE macro is defined as follows:

#define MCI_HMS_MINUTE(hms) ((BYTE)(((WORD)(hms)) >> 8)) 
 



MCI_HMS_SECOND      

  

The MCI_HMS_SECOND macro retrieves the seconds component from a parameter containing packed 
hours/minutes/seconds (HMS) information. 

BYTE MCI_HMS_SECOND(

        DWORD dwHMS
      );
 

Parameters
dwHMS

Time in HMS format. 
 

Return Values
Returns the seconds component of the specified HMS information.

Remarks
Time in HMS format is expressed as a doubleword value with the least significant byte containing hours, 
the next least significant byte containing minutes, and the next least significant byte containing seconds. 
The most significant byte is unused. 

The MCI_HMS_SECOND macro is defined as follows:

#define MCI_HMS_SECOND(hms) ((BYTE)((hms) >> 16)) 
 



MCI_MAKE_HMS      

  

The MCI_MAKE_HMS macro creates a time value in packed hours/minutes/seconds (HMS) format from 
the given hours, minutes, and seconds values. 

DWORD MCI_MAKE_HMS(

        BYTE hours,
        BYTE minutes,
        BYTE seconds
      );
 

Parameters
hours, minutes, and seconds

Number of hours, minutes, and seconds. 
 

Return Values
Returns the time in packed HMS format.

Remarks
Time in HMS format is expressed as a doubleword value with the least significant byte containing hours, 
the next least significant byte containing minutes, and the next least significant byte containing seconds. 
The most significant byte is unused.

The MCI_MAKE_HMS macro is defined as follows:

#define MCI_MAKE_HMS(h, m, s) ((DWORD)(((BYTE)(h) | \ 
                              ((WORD)(m) << 8)) | \ 
                              (((DWORD)(BYTE)(s)) << 16))) 
 



MCI_MAKE_MSF      

  

The MCI_MAKE_MSF macro creates a time value in packed minutes/seconds/frames (MSF) format from 
the given minutes, seconds, and frame values. 

DWORD MCI_MAKE_MSF(

        BYTE minutes,
        BYTE seconds,
        BYTE frames
      );
 

Parameters
minutes, seconds, and frames

Number of minutes, seconds, and frames. 
 

Return Values
Returns the time in packed MSF format.

Remarks
Time in MSF format is expressed as a doubleword value with the least significant byte containing 
minutes, the next least significant byte containing seconds, and the next least significant byte containing 
frames. The most significant byte is unused. 

The MCI_MAKE_MSF macro is defined as follows:

#define MCI_MAKE_MSF(m, s, f) ((DWORD)(((BYTE)(m) | \ 
                              ((WORD)(s) << 8)) | \ 
                              (((DWORD)(BYTE)(f)) << 16))) 
 



MCI_MAKE_TMSF      

  

The MCI_MAKE_TMSF macro creates a time value in packed tracks/minutes/seconds/frames (TMSF) 
format from the given tracks, minutes, seconds, and frames values. 

DWORD MCI_MAKE_TMSF(

        BYTE tracks,
        BYTE minutes,
        BYTE seconds,
        BYTE frames
      );
 

Parameters
tracks, minutes, seconds, and frames

Number of tracks, minutes, seconds, and frames. 
 

Return Values
Returns the time in packed TMSF format.

Remarks
Time in TMSF format is expressed as a doubleword value with the least significant byte containing tracks, 
the next least significant byte containing minutes, the next least significant byte containing seconds, and 
the most significant byte containing frames. 

The MCI_MAKE_TMSF macro is defined as follows:

#define MCI_MAKE_TMSF(t, m, s, f) ((DWORD)(((BYTE)(t) | \ 
                                  ((WORD)(m) << 8)) | \ 
                                  (((DWORD)(BYTE)(s) | \ 
                                  ((WORD)(f) << 8)) << 16))) 
 



MCI_MSF_FRAME      

  

The MCI_MSF_FRAME macro creates the frames component from a parameter containing packed 
minutes/seconds/frames (MSF) information. 

BYTE MCI_MSF_FRAME(

        DWORD dwMSF
      );
 

Parameters
dwMSF

Time in MSF format. 
 

Return Values
Returns the frames component of the specified MSF information.

Remarks
Time in MSF format is expressed as a doubleword value with the least significant byte containing 
minutes, the next least significant byte containing seconds, and the next least significant byte containing 
frames. The most significant byte is unused. 

The MCI_MSF_FRAME macro is defined as follows:

#define MCI_MSF_FRAME(msf) ((BYTE)((msf) >> 16)) 
 



MCI_MSF_MINUTE      

  

The MCI_MSF_MINUTE macro retrieves the minutes component from a parameter containing packed 
minutes/seconds/frames (MSF) information. 

BYTE MCI_MSF_MINUTE(

        DWORD dwMSF
      );
 

Parameters
dwMSF

Time in MSF format. 
 

Return Values
Returns the minutes component of the specified MSF information.

Remarks
Time in MSF format is expressed as a doubleword value with the least significant byte containing 
minutes, the next least significant byte containing seconds, and the next least significant byte containing 
frames. The most significant byte is unused. 

The MCI_MSF_MINUTE macro is defined as follows:

#define MCI_MSF_MINUTE(msf) ((BYTE)(msf)) 
 



MCI_MSF_SECOND      

  

The MCI_MSF_SECOND macro retrieves the seconds component from a parameter containing packed 
minutes/seconds/frames (MSF) information. 

BYTE MCI_MSF_SECOND(

        DWORD dwMSF
      );
 

Parameters
dwMSF

Time in MSF format. 
 

Return Values
Returns the seconds component of the specified MSF information.

Remarks
Time in MSF format is expressed as a doubleword value with the least significant byte containing 
minutes, the next least significant byte containing seconds, and the next least significant byte containing 
frames. The most significant byte is unused. 

The MCI_MSF_SECOND macro is defined as follows:

#define MCI_MSF_SECOND(msf) ((BYTE)(((WORD)(msf)) >> 8)) 
 



MCI_TMSF_FRAME      

  

The MCI_TMSF_FRAME macro retrieves the frames component from a parameter containing packed 
tracks/minutes/seconds/frames (TMSF) information. 

BYTE MCI_TMSF_FRAME(

        DWORD dwTMSF
      );
 

Parameters
dwTMSF

Time in TMSF format. 
 

Return Values
Returns the frames component of the specified TMSF information.

Remarks
Time in TMSF format is expressed as a doubleword value with the least significant byte containing tracks, 
the next least significant byte containing minutes, the next least significant byte containing seconds, and 
the most significant byte containing frames. 

The MCI_TMSF_FRAME macro is defined as follows:

#define MCI_TMSF_FRAME(tmsf) ((BYTE)((tmsf) >> 24)) 
 



MCI_TMSF_MINUTE      

  

The MCI_TMSF_MINUTE macro retrieves the minutes component from a parameter containing packed 
tracks/minutes/seconds/frames (TMSF) information. 

BYTE MCI_TMSF_MINUTE(

        DWORD dwTMSF
      );
 

Parameters
dwTMSF

Time in TMSF format. 
 

Return Values
Returns the minutes component of the specified TMSF information.

Remarks
Time in TMSF format is expressed as a doubleword value with the least significant byte containing tracks, 
the next least significant byte containing minutes, the next least significant byte containing seconds, and 
the most significant byte containing frames. 

The MCI_TMSF_MINUTE macro is defined as follows:

#define MCI_TMSF_MINUTE(tmsf) ((BYTE)(((WORD)(tmsf)) >> 8)) 
 



MCI_TMSF_SECOND      

  

The MCI_TMSF_SECOND macro retrieves the seconds component from a parameter containing packed 
tracks/minutes/seconds/frames (TMSF) information. 

BYTE MCI_TMSF_SECOND(

        DWORD dwTMSF
      );
 

Parameters
dwTMSF

Time in TMSF format. 
 

Return Values
Returns the seconds component of the specified TMSF information.

Remarks
Time in TMSF format is expressed as a doubleword value with the least significant byte containing tracks, 
the next least significant byte containing minutes, the next least significant byte containing seconds, and 
the most significant byte containing frames. 

The MCI_TMSF_SECOND macro is defined as follows:

#define MCI_TMSF_SECOND(tmsf) ((BYTE)((tmsf) >> 16)) 
 



MCI_TMSF_TRACK      

  

The MCI_TMSF_TRACK macro retrieves the tracks component from a parameter containing packed 
tracks/minutes/seconds/frames (TMSF) information. 

BYTE MCI_TMSF_TRACK(

        DWORD dwTMSF
      );
 

Parameters
dwTMSF

Time in TMSF format. 
 

Return Values
Returns the tracks component of the specified TMSF information.

Remarks
Time in TMSF format is expressed as a doubleword value with the least significant byte containing tracks, 
the next least significant byte containing minutes, the next least significant byte containing seconds, and 
the most significant byte containing frames. 

The MCI_TMSF_TRACK macro is defined as follows:

#define MCI_TMSF_TRACK(tmsf) ((BYTE)(tmsf)) 



MCIWndCanConfig      

  

The MCIWndCanConfig macro determines if an MCI device can display a configuration dialog box. You 
can use this macro or explicitly send the MCIWNDM_CAN_CONFIG message.

BOOL MCIWndCanConfig(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns TRUE if the device supports configuration or FALSE otherwise.

See Also
MCIWNDM_CAN_CONFIG



MCIWndCanEject      

  

The MCIWndCanEject macro determines if an MCI device can eject its media. You can use this macro or 
explicitly send the MCIWNDM_CAN_EJECT message.

BOOL MCIWndCanEject(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns TRUE if the device can eject its media or FALSE otherwise.

See Also
MCIWNDM_CAN_EJECT



MCIWndCanPlay      

  

The MCIWndCanPlay macro determines if an MCI device can play a data file or content of some other 
kind. You can use this macro or explicitly send the MCIWNDM_CAN_PLAY message. 

BOOL MCIWndCanPlay(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns TRUE if the device supports playing the data or FALSE otherwise.

See Also
MCIWNDM_CAN_PLAY



MCIWndCanRecord      

  

The MCIWndCanRecord macro determines if an MCI device supports recording. You can use this macro 
or explicitly send the MCIWNDM_CAN_RECORD message. 

BOOL MCIWndCanRecord(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns TRUE if the device supports recording or FALSE otherwise.

See Also
MCIWNDM_CAN_RECORD



MCIWndCanSave      

  

The MCIWndCanSave macro determines if an MCI device can save data. You can use this macro or 
explicitly send the MCIWNDM_CAN_SAVE message. 

BOOL MCIWndCanSave(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns TRUE if the device supports saving data or FALSE otherwise.

See Also
MCIWNDM_CAN_SAVE



MCIWndCanWindow      

  

The MCIWndCanWindow macro determines if an MCI device supports window-oriented MCI commands. 
You can use this macro or explicitly send the MCIWNDM_CAN_WINDOW message. 

BOOL MCIWndCanWindow(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns TRUE if the device supports window-oriented MCI commands or FALSE otherwise.

See Also
MCIWNDM_CAN_WINDOW



MCIWndChangeStyles      

  

The MCIWndChangeStyles macro changes the styles used by the MCIWnd window. You can use this 
macro or explicitly send the MCIWNDM_CHANGESTYLES message. 

LONG MCIWndChangeStyles(

        hwnd,
        mask,
        value
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

mask

Mask that identifies the styles that can change. This mask is the bitwise OR operator of all styles that 
will be permitted to change.

value

New style settings for the window. Specify zero for this parameter to turn off all styles identified in the 
mask. For a list of the available styles, see the MCIWndCreate function.

 

Return Values
Returns zero.

Remarks
For an example of using MCIWndChangeStyles, see Pausing and Resuming Playback.

See Also
MCIWNDM_CHANGESTYLES



MCIWndClose      

  

The MCIWndClose macro closes an MCI device or file associated with an MCIWnd window. Although the 
MCI device closes, the MCIWnd window is still open and can be associated with another MCI device. You 
can use this macro or explicitly send the MCI_CLOSE command. 

LONG MCIWndClose(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero.

See Also
MCI_CLOSE



MCIWndDestroy      

  

The MCIWndDestroy macro closes an MCI device or file associated with an MCIWnd window and 
destroys the window. You can use this macro or explicitly send the WM_CLOSE message. 

VOID MCIWndDestroy(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
This macro does not return a value.

See Also
WM_CLOSE



MCIWndEject      

  

The MCIWndEject macro sends a command to an MCI device to eject its media. You can use this macro 
or explicitly send the MCIWNDM_EJECT message. 

LONG MCIWndEject(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_EJECT



MCIWndEnd      

  

The MCIWndEnd macro moves the current position to the end of the content. You can use this macro or 
explicitly send the MCI_SEEK message.

LONG MCIWndEnd(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_SEEK



MCIWndGetActiveTimer      

  

The MCIWndGetActiveTimer macro retrieves the update period used when the MCIWnd window is the 
active window. You can use this macro or explicitly send the MCIWNDM_GETACTIVETIMER message. 

UINT MCIWndGetActiveTimer(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

Return Values
Returns the update period in milliseconds. The default is 500 milliseconds..

See Also
MCIWNDM_GETACTIVETIMER



MCIWndGetAlias      

  

The MCIWndGetAlias macro retrieves the alias used to open an MCI device or file with the 
mciSendString function. You can use this macro or explicitly send the MCIWNDM_GETALIAS message. 

UINT MCIWndGetAlias(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns the device alias.

See Also
mciSendString, MCIWNDM_GETALIAS



MCIWndGetDest      

  

The MCIWndGetDest macro retrieves the coordinates of the destination rectangle used for zooming or 
stretching the images of an AVI file during playback. You can use this macro or explicitly send the 
MCIWNDM_GET_DEST message. 

LONG MCIWndGetDest(

        hwnd,
        prc
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

prc

Address of a RECT structure to return the coordinates of the destination rectangle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_GET_DEST



MCIWndGetDevice      

  

The MCIWndGetDevice macro retrieves the name of the current MCI device. You can use this macro or 
explicitly send the MCIWNDM_GETDEVICE message. 

LONG MCIWndGetDevice(

        hwnd,
        lp,
        len
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of an application-defined buffer to return the device name.

len

Size, in bytes, of the buffer.
 

Return Values
Returns zero if successful or a nonzero value otherwise.

Remarks
If the null-terminated string containing the device name is longer than the buffer, MCIWnd truncates it.

See Also
MCIWNDM_GETDEVICE



MCIWndGetDeviceID      

  

The MCIWndGetDeviceID macro retrieves the identifier of the current MCI device to use with the 
mciSendCommand function. You can use this macro or explicitly send the MCIWNDM_GETDEVICEID 
message. 

UINT MCIWndGetDeviceID(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns the device identifier.

See Also
mciSendCommand, MCIWNDM_GETDEVICEID



MCIWndGetEnd      

  

The MCIWndGetEnd macro retrieves the location of the end of the content of an MCI device or file. You 
can use this macro or explicitly send the MCIWNDM_GETEND message. 

LONG MCIWndGetEnd(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns the location in the current time format.

See Also
MCIWNDM_GETEND



MCIWndGetError      

  

The MCIWndGetError macro retrieves the last MCI error encountered. You can use this macro or 
explicitly send the MCIWNDM_GETERROR message.

LONG MCIWndGetError(

        hwnd,
        lp,
        len
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of an application-defined buffer used to return the error string.

len

Size, in bytes, of the error buffer.
 

Return Values
Returns the integer error value if successful.

Remarks
If lp is a valid pointer, a null-terminated string corresponding to the error is returned in its buffer. If the 
error string is longer than the buffer, MCIWnd truncates it.

See Also
MCIWNDM_GETERROR



MCIWndGetFileName      

  

The MCIWndGetFileName macro retrieves the filename used by an MCI device. You can use this macro 
or explicitly send the MCIWNDM_GETFILENAME message. 

LONG MCIWndGetFileName(

        hwnd,
        lp,
        len
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of an application-defined buffer to return the filename.

len

Size, in bytes, of the buffer.
 

Return Values
Returns zero if successful or 1 otherwise.

Remarks
If the null-terminated string containing the filename is longer than the buffer, MCIWnd truncates the 
filename.

See Also
MCIWNDM_GETFILENAME



MCIWndGetInactiveTimer      

  

The MCIWndGetInactiveTimer macro retrieves the update period used when the MCIWnd window is the 
inactive window. You can use this macro or explicitly send the MCIWNDM_GETINACTIVETIMER 
message. 

UINT MCIWndGetInactiveTimer(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns the update period, in milliseconds. The default value is 2000 milliseconds.

See Also
MCIWNDM_GETINACTIVETIMER



MCIWndGetLength      

  

The MCIWndGetLength macro retrieves the length of the content or file currently used by an MCI device. 
You can use this macro or explicitly send the MCIWNDM_GETLENGTH message. 

LONG MCIWndGetLength(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

Return Values
Returns the length. The units for the length depend on the current time format.

Remarks
This value added to the value returned for the MCIWndGetStart macro equals the end of the content.

 

See Also
MCIWndGetStart, MCIWNDM_GETLENGTH



MCIWndGetMode      

  

The MCIWndGetMode macro retrieves the current operating mode of an MCI device. MCI devices have 
several operating modes, which are designated by constants. You can use this macro or explicitly send 
the MCIWNDM_GETMODE message. 

LONG MCIWndGetMode(

        hwnd,
        lp,
        len
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of the application-defined buffer used to return the mode.

len

Size, in bytes, of the buffer.

Return Values
Returns an integer corresponding to the MCI constant defining the mode.

Remarks
If the null-terminated string describing the mode is longer than the buffer, it is truncated.

Not all devices can operate in every mode. For example, the MCIAVI device is a playback device; it 
doesn't support the recording mode. The following modes can be retrieved by using 
MCIWNDM_GETMODE: 

Operating mode MCI constant

not ready MCI_MODE_NOT_READY

open MCI_MODE_OPEN

paused MCI_MODE_PAUSE

playing MCI_MODE_PLAY

recording MCI_MODE_RECORD

seeking MCI_MODE_SEEK

stopped MCI_MODE_STOP
 

See Also
MCIWNDM_GETMODE



MCIWndGetPalette      

  

The MCIWndGetPalette macro retrieves a handle of the palette used by an MCI device. You can use this 
macro or explicitly send the MCIWNDM_GETPALETTE message. 

HPALETTE MCIWndGetPalette(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns the handle of the palette if successful.

See Also
MCIWNDM_GETPALETTE



MCIWndGetPosition      

  

The MCIWndGetPosition macro retrieves the numerical value of the current position within the content of 
the MCI device. You can use this macro or explicitly send the MCIWNDM_GETPOSITION message. 

LONG MCIWndGetPosition(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns an integer corresponding to the current position. The units for the position value depend on the 
current time format.

See Also
MCIWNDM_GETPOSITION



MCIWndGetPositionString      

  

The MCIWndGetPositionString macro retrieves the numerical value of the current position within the 
content of the MCI device. This macro also provides the current position in string form in an application-
defined buffer. You can use this macro or explicitly send the MCIWNDM_GETPOSITION message. 

LONG MCIWndGetPositionString(

        hwnd,
        lp,
        len
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of an application-defined buffer used to return the position. Use zero to inhibit retrieval of the 
position as a string. 

If the device supports tracks, the string position information is returned in the form TT:MM:SS:FF 
where TT corresponds to tracks, MM and SS correspond to minutes and seconds, and FF 
corresponds to frames.

len

Size, in bytes, of the buffer. If the null-terminated string is longer than the buffer, it is truncated. Use 
zero to inhibit retrieval of the position as a string.

 

Return Values
Returns an integer corresponding to the current position. The units for the position value depend on the 
current time format.

See Also
MCIWNDM_GETPOSITION



MCIWndGetRepeat      

  

The MCIWndGetRepeat macro determines if continuous playback has been activated. You can use this 
macro or explicitly send the MCIWNDM_GETREPEAT message. 

BOOL MCIWndGetRepeat(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns TRUE if continuous playback is activated or FALSE otherwise.

See Also
MCIWNDM_GETREPEAT



MCIWndGetSource      

  

The MCIWndGetSource macro retrieves the coordinates of the source rectangle used for cropping the 
images of an AVI file during playback. You can use this macro or explicitly send the 
MCIWNDM_GET_SOURCE message. 

LONG MCIWndGetSource(

        hwnd,
        prc
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

prc

Address of a RECT structure to contain the coordinates of the source rectangle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_GET_SOURCE, RECT



MCIWndGetSpeed      

  

The MCIWndGetSpeed macro retrieves the playback speed of an MCI device. You can use this macro or 
explicitly send the MCIWNDM_GETSPEED message. 

LONG MCIWndGetSpeed(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns the playback speed if successful. The value for normal speed is 1000. Larger values indicate 
faster speeds; smaller values indicate slower speeds.

See Also
MCIWNDM_GETSPEED



MCIWndGetStart      

  

The MCIWndGetStart macro retrieves the location of the beginning of the content of an MCI device or 
file. You can use this macro or explicitly send the MCIWNDM_GETSTART message. 

LONG MCIWndGetStart(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

Return Values
Returns the location in the current time format.

Typically, the return value is zero; but some devices use a nonzero starting location. Seeking to this 
location sets the device to the start of the media.

See Also
MCIWNDM_GETSTART



MCIWndGetStyles      

  

The MCIWndGetStyles macro retrieves the flags specifying the current MCIWnd window styles used by 
a window. You can use this macro or explicitly send the MCIWNDM_GETSTYLES message. 

UINT MCIWndGetStyles(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns a value representing the current styles of the MCIWnd window. The return value is the bitwise 
OR operator of the MCIWnd window styles (MCIWNDF flags).

See Also
MCIWNDM_GETSTYLES



MCIWndGetTimeFormat      

  

The MCIWndGetTimeFormat macro retrieves the current time format of an MCI device in two forms: as a 
numerical value and as a string. You can use this macro or explicitly send the 
MCIWNDM_GETTIMEFORMAT message. 

LONG MCIWndGetTimeFormat(

        hwnd,
        lp,
        len
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of a buffer to contain the null-terminated string form of the time format.

len

Size, in bytes, of the buffer.

Return Values
Returns an integer corresponding to the MCI constant defining the time format.

Remarks
If the time format string is longer than the return buffer, MCIWnd truncates the string.

An MCI device can support one or more of the following time formats:

Time format MCI constant

Bytes MCI_FORMAT_BYTES

Frames MCI_FORMAT_FRAMES

Hours, minutes, seconds MCI_FORMAT_HMS

Milliseconds MCI_FORMAT_MILLISECONDS

Minutes, seconds, frames MCI_FORMAT_MSF

Samples MCI_FORMAT_SAMPLES

SMPTE 24 MCI_FORMAT_SMPTE_24

SMPTE 25 MCI_FORMAT_SMPTE_25

SMPTE 30 drop MCI_FORMAT_SMPTE_30DROP

SMPTE 30 (non-drop) MCI_FORMAT_SMPTE_30

Tracks, minutes, seconds, frames MCI_FORMAT_TMSF
 

See Also
MCIWNDM_GETTIMEFORMAT



MCIWndGetVolume      

  

The MCIWndGetVolume macro retrieves the current volume setting of an MCI device. You can use this 
macro or explicitly send the MCIWNDM_GETVOLUME message. 

LONG MCIWndGetVolume(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns the current volume setting. The default value is 1000. Higher values indicate louder volumes; 
lower values indicate quieter volumes.

See Also
MCIWNDM_GETVOLUME



MCIWndGetZoom      

  

The MCIWndGetZoom macro retrieves the current zoom value used by an MCI device. You can use this 
macro or explicitly send the MCIWNDM_GETZOOM message. 

UINT MCIWndGetZoom(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns the most recent values used with MCIWndSetZoom.

A return value of 100 indicates the image is not zoomed. A value of 200 indicates the image is enlarged to 
twice its original size. A value of 50 indicates the image is reduced to half its original size.

 

See Also
MCIWNDM_GETZOOM, MCIWndSetZoom



MCIWndHome      

  

The MCIWndHome macro moves the current position to the beginning of the content. You can use this 
macro or explicitly send the MCI_SEEK command. 

LONG MCIWndHome(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_SEEK



MCIWndNew      

  

The MCIWndNew macro creates a new file for the current MCI device. You can use this macro or 
explicitly send the MCIWNDM_NEW message. 

LONG MCIWndNew(

        hwnd,
        lp
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of a buffer containing the name of the MCI device that will use the file.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_NEW



MCIWndOpen      

  

The MCIWndOpen macro opens an MCI device and associates it with an MCIWnd window. For MCI 
devices that use data files, this macro can also open a specified data file, name a new file to be created, 
or display a dialog box to let the user select a file to open. You can use this macro or explicitly send the 
MCIWNDM_OPEN message. 

LONG MCIWndOpen(

        hwnd,
        szFile,
        wFlags
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

szFile

Address of a null-terminated string identifying the filename or MCI device name to open. Specify -1 for 
this parameter to display the Open dialog box.

wFlags

Flags associated with the device or file to open. The MCIWNDOPENF_NEW flag specifies a new file 
is to be created with the name specified in szFile.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_OPEN



MCIWndOpenDialog      

  

The MCIWndOpenDialog macro opens a user-specified data file and corresponding type of MCI device, 
and associates them with an MCIWnd window. This macro displays the Open dialog box for the user to 
select the data file to associate with an MCI window. You can use this macro or explicitly send the 
MCIWNDM_OPEN message. 

LONG MCIWndOpenDialog(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_OPEN



MCIWndOpenInterface      

  

The MCIWndOpenInterface macro attaches the data stream or file associated with the specified 
interface to an MCIWnd window. You can use this macro or explicitly send the 
MCIWNDM_OPENINTERFACE message. 

MCIWndOpenInterface(

        hwnd,
        pUnk
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

pUnk

Address of an IAVI interface that points to a file or a data stream in a file. 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_OPENINTERFACE



MCIWndPause      

  

The MCIWndPause macro sends a command to an MCI device to pause playing or recording. 

LONG MCIWndPause(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.



MCIWndPlay      

  

The MCIWndPlay macro sends a command to an MCI device to start playing from the current position in 
the content. You can use this macro or explicitly send the MCI_PLAY command. 

LONG MCIWndPlay(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_PLAY



MCIWndPlayFrom      

  

The MCIWndPlayFrom macro plays the content of an MCI device from the specified location to the end 
of the content or until another command stops playback. You can use this macro or explicitly send the 
MCIWNDM_PLAYFROM message. 

LONG MCIWndPlayFrom(

        hwnd,
        lPos
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lPos

Starting location. The units for the starting location depend on the current time format.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
You can also specify both a starting and ending location for playback by using the MCIWndPlayFromTo 
macro. 

See Also
MCIWNDM_PLAYFROM, MCIWndPlayFromTo 



MCIWndPlayFromTo      

  

The MCIWndPlayFromTo macro plays a portion of content between specified starting and ending 
locations. This macro seeks to the specified point to begin playback, then plays the content to the 
specified ending location. This macro is defined using the MCIWndSeek and MCIWndPlayTo macros, 
which in turn use the MCI_SEEK command and the MCIWNDM_PLAYTO message. 

LONG MCIWndPlayFromTo(

        hwnd,
        lStart,
        lEnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lStart

Position to seek; it is also the starting location.

lEnd

Ending location.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The units for the seek position depend on the current time format.

See Also
MCI_SEEK, MCIWNDM_PLAYTO, MCIWndPlayTo, MCIWndSeek 



MCIWndPlayReverse      

  

The MCIWndPlayReverse macro plays the current content in the reverse direction, beginning at the 
current position and ending at the beginning of the content or until another command stops playback. You 
can use this macro or explicitly send the MCIWNDM_PLAYREVERSE message. 

LONG MCIWndPlayReverse(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_PLAYREVERSE



MCIWndPlayTo      

  

The MCIWndPlayTo macro plays the content of an MCI device from the current position to the specified 
ending location or until another command stops playback. If the specified ending location is beyond the 
end of the content, playback stops at the end of the content. You can use this macro or explicitly send the 
MCIWNDM_PLAYTO message. 

LONG MCIWndPlayTo(

        hwnd,
        lPos
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lPos

Ending location. The units for the ending location depend on the current time format.

Return Values
Returns zero if successful or an error otherwise.

Remarks
You can also specify both a starting and ending location for playback by using the MCIWndPlayFromTo 
macro. 

See Also
MCIWNDM_PLAYTO, MCIWndPlayFromTo



MCIWndPutDest      

  

The MCIWndPutDest macro redefines the coordinates of the destination rectangle used for zooming or 
stretching the images of an AVI file during playback. You can use this macro or explicitly send the 
MCIWNDM_PUT_DEST message. 

LONG MCIWndPutDest(

        hwnd,
        prc
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

prc

Address of a RECT structure containing the coordinates of the destination rectangle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_PUT_DEST



MCIWndPutSource      

  

The MCIWndPutSource macro redefines the coordinates of the source rectangle used for cropping the 
images of an AVI file during playback. You can use this macro or explicitly send the 
MCIWNDM_PUT_SOURCE message. 

LONG MCIWndPutSource(

        hwnd,
        prc
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

prc

Address of a RECT structure containing the coordinates of the source rectangle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_PUT_SOURCE



MCIWndRealize      

  

The MCIWndRealize macro controls how an MCI window realized in the foreground or background. This 
macro also causes the palette for the MCI window to be realized in the process. You can use this macro 
or explicitly send the MCIWNDM_REALIZE message. 

LONG MCIWndRealize(

        hwnd,
        fBkgnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

fBkgnd

Background flag. Specify TRUE for this parameter for the window to be realized in the background or 
FALSE if the window can be realized in the foreground. 

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
A common use for MCIWndRealize is to coordinate palette ownership between an MCI control and the 
application that contains it. The application can have the MCI window realize in the background and 
realize its own palette in the foreground. 

If your application contains an MCI control, but does not need to realize its palette, you can use this 
macro to handle the WM_PALETTECHANGED and WM_QUERYNEWPALETTE messages, instead of 
using RealizePalette. However, it is usually easier to call the SendMessage function to forward the 
message to the MCIWnd window, which will automatically realize the palette.

See Also
MCIWNDM_REALIZE, RealizePalette, SendMessage, WM_PALETTECHANGED, 
WM_QUERYNEWPALETTE



MCIWndRecord      

  

The MCIWndRecord macro begins recording content using the MCI device. The recording process 
begins at the current position in the content and will overwrite existing data for the duration of the 
recording. 

LONG MCIWndRecord(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The function that an MCI device performs during recording depends on the characteristics of the device. 
An MCI device that uses files, such as a waveform-audio device, sends data to the file during recording. 
An MCI device that does not use files, such as a video-cassette recorder, receives and externally records 
data on another medium.



MCIWndResume      

  

The MCIWndResume macro resumes playback or recording content from the paused mode. This macro 
restarts playback or recording from the current position in the content. You can use this macro or explicitly 
send the MCI_RESUME command. 

LONG MCIWndResume(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_RESUME



MCIWndReturnString      

  

The MCIWndReturnString macro retrieves the reply to the most recent MCI string command sent to an 
MCI device. Information in the reply is supplied as a null-terminated string. You can use this macro or 
explicitly send the MCIWNDM_RETURNSTRING message. 

LONG MCIWndReturnString(

        hwnd,
        lp,
        len
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of an application-defined buffer to contain the null-terminated string.

len

Size, in bytes, of the buffer.
 

Return Values
Returns an integer corresponding to the MCI string.

Remarks
If the null-terminated string is longer than the buffer, the string is truncated.

See Also
MCIWNDM_RETURNSTRING



MCIWndSave      

  

The MCIWndSave macro saves the content currently used by an MCI device. This macro can save the 
content to a specified data file or display the Save dialog box to let the user select a filename to store the 
content. You can use this macro or explicitly send the MCI_SAVE command. 

LONG MCIWndSave(

        hwnd,
        szFile
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

szFile

Null-terminated string containing the name and path of the destination file. Specify    - 1 for this 
parameter to display the Save dialog box.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_SAVE



MCIWndSaveDialog      

  

The MCIWndSaveDialog macro saves the content currently used by an MCI device. This macro displays 
the Save dialog box to let the user select a filename to store the content. You can use this macro or 
explicitly send the MCI_SAVE command. 

LONG MCIWndSaveDialog(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_SAVE



MCIWndSeek      

  

The MCIWndSeek macro moves the playback position to the specified location in the content. You can 
use this macro or explicitly use the MCI_SEEK command.

LONG MCIWndSeek(

        hwnd,
        lPos
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lPos

Position to seek. You can specify a position using the current time format, the MCIWND_START 
constant to designate the beginning of the content, or the MCIWND_END constant to designate the 
end of the content.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_SEEK



MCIWndSendString      

  

The MCIWndSendString macro sends an MCI command in string form to the device associated with the 
MCIWnd window. You can use this macro or explicitly send the MCIWNDM_SENDSTRING message. 

LONG MCIWndSendString(

        hwnd,
        sz
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

sz

String command to send to the MCI device.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The message handler for MCIWndSendString (and MCIWNDM_SENDSTRING) appends a device alias 
to the MCI command you send to the device. Therefore, you should not use any alias in an MCI 
command that you issue with MCIWndSendString.

See Also
MCIWNDM_SENDSTRING



MCIWndSetActiveTimer      

  

The MCIWndSetActiveTimer macro sets the update period used by MCIWnd to update the trackbar in 
the MCIWnd window, update position information displayed in the window title bar, and send notification 
messages to the parent window when the MCIWnd window is active. You can use this macro or explicitly 
send the MCIWNDM_SETACTIVETIMER message. 

VOID MCIWndSetActiveTimer(

        hwnd,
        active
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

active

Update period, in milliseconds. The default is 500 milliseconds.
 

Return Values
This macro does not return a value.

See Also
MCIWNDM_SETACTIVETIMER



MCIWndSetInactiveTimer      

  

The MCIWndSetInactiveTimer macro sets the update period used by MCIWnd to update the trackbar in 
the MCIWnd window, update position information displayed in the window title bar, and send notification 
messages to the parent window when the MCIWnd window is inactive. You can use this macro or 
explicitly send the MCIWNDM_SETINACTIVETIMER message. 

VOID MCIWndSetInactiveTimer(

        hwnd,
        inactive
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

inactive

Update period, in milliseconds. The default is 2000 milliseconds.
 

Return Values
This macro does not return a value.

See Also
MCIWNDM_SETINACTIVETIMER



MCIWndSetOwner      

  

The MCIWndSetOwner macro sets the window to receive notification messages associated with the 
MCIWnd window. You can use this macro or explicitly send the MCIWNDM_SETOWNER message. 

LONG MCIWndSetOwner(

        hwnd,
        hwndP
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

hwndP

Handle of the window to receive the notification messages.
 

Return Values
Returns zero.

See Also
MCIWNDM_SETOWNER



MCIWndSetPalette      

  

The MCIWndSetPalette macro sends a palette handle to the MCI device associated with the MCIWnd 
window. You can use this macro or explicitly send the MCIWNDM_SETPALETTE message. 

MCIWndSetPalette(

        hwnd,
        hpal
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

hpal

Palette handle.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_SETPALETTE



MCIWndSetRepeat      

  

The MCIWndSetRepeat macro sets the repeat flag associated with continuous playback. You can use 
this macro or explicitly send the MCIWNDM_SETREPEAT message. 

VOID MCIWndSetRepeat(

        hwnd,
        f
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

f

New state of the repeat flag. Specify TRUE to turn on continuous playback.
 

Return Values
Returns zero.

Remarks
The MCIWndSetRepeat macro only affects playback that the user initiates by hitting the play button on 
the toolbar. It will not affect playback started with the MCIWndPlay macro.

Currently, MCIAVI is the only device that supports continuous playback.

See Also
MCIWNDM_SETREPEAT, MCIWndPlay 



MCIWndSetSpeed      

  

The MCIWndSetSpeed macro sets the playback speed of an MCI device. You can use this macro or 
explicitly send the MCIWNDM_SETSPEED message. 

LONG MCIWndSetSpeed(

        hwnd,
        iSpeed
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

iSpeed

Playback speed. Specify 1000 for normal speed, larger values for faster speeds, and smaller values 
for slower speeds.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_SETSPEED



MCIWndSetTimeFormat      

  

The MCIWndSetTimeFormat macro sets the time format of an MCI device. You can use this macro or 
explicitly send the MCIWNDM_SETTIMEFORMAT message. 

LONG MCIWndSetTimeFormat(

        hwnd,
        lp
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

lp

Address of a buffer containing the null-terminated string indicating the time format. Specify "frames" to 
set the time format to frames, or "ms" to set the time format to milliseconds.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
An application can specify time formats other than frames or milliseconds as long as the formats are 
supported by the MCI device. Noncontinuous formats, such as tracks and SMPTE, can cause the 
trackbar to behave erratically. For these time formats, you might want to turn off the toolbar by using the 
MCIWndChangeStyles macro and specifying the MCIWNDF_NOPLAYBAR window style.

If you want to set the time format to frames or milliseconds, you can also use the MCIWndUseFrames or 
MCIWndUseTime macro. For a list of time formats, see the MCIWndGetTimeFormat macro.

See Also
MCIWndChangeStyles, MCIWndGetTimeFormat, MCIWNDM_SETTIMEFORMAT, 
MCIWndUseFrames, MCIWndUseTime



MCIWndSetTimers      

  

The MCIWndSetTimers macro sets the update periods used by MCIWnd to update the trackbar in the 
MCIWnd window, update the position information displayed in the window title bar, and send notification 
messages to the parent window. You can use this macro or explicitly send the MCIWNDM_SETTIMERS 
message. 

VOID MCIWndSetTimers(

        hwnd,
        active,
        inactive
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

active

Update period used by MCIWnd when it is the active window. The default value is 500 milliseconds. 
Storage for this value is limited to 16 bits.

inactive

Update period used by MCIWnd when it is the inactive window. The default value is 2000 
milliseconds. Storage for this value is limited to 16 bits.

 

Return Values
This macro does not return a value.

See Also
MCIWNDM_SETTIMERS



MCIWndSetVolume      

  

The MCIWndSetVolume macro sets the volume level of an MCI device. You can use this macro or 
explicitly send the MCIWNDM_SETVOLUME message. 

LONG MCIWndSetVolume(

        hwnd,
        iVol
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

iVol

New volume level. Specify 1000 for normal volume level. Specify a higher value for a louder volume 
or a lower value for a quieter volume.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_SETVOLUME



MCIWndSetZoom      

  

The MCIWndSetZoom macro resizes a video image according to a zoom factor. This marco adjusts the 
size of an MCIWnd window while maintaining a constant aspect ratio. You can use this macro or explicitly 
send the MCIWNDM_SETZOOM message. 

VOID MCIWndSetZoom(

        hwnd,
        iZoom
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

iZoom

Zoom factor expressed as a percentage of the original image. Specify 100 to display the image at its 
authored size, 200 to display the image at twice its normal size, or 50 to display the image at half its 
normal size.

 

Return Values
This macro does not return a value.

See Also
MCIWNDM_SETZOOM



MCIWndStep      

  

The MCIWndStep macro moves the current position in the content forward or backward by a specified 
increment. You can use this macro or explicitly send the MCI_STEP command. 

LONG MCIWndStep(

        hwnd,
        n
      );
 

Parameters
hwnd

Handle of the MCIWnd window.

n

Step value. Negative values step the device through the content in reverse. The units for the step 
value depend on the current time format.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_STEP



MCIWndStop      

  

The MCIWndStop macro stops playing or recording the content of the MCI device associated with the 
MCIWnd window. You can use this macro or explicitly send the MCI_STOP command. 

LONG MCIWndStop(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_STOP



MCIWndUseFrames      

  

The MCIWndUseFrames macro sets the time format of an MCI device to frames. You can use this macro 
or explicitly send the MCIWNDM_SETTIMEFORMAT message.

LONG MCIWndUseFrames(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_SETTIMEFORMAT



MCIWndUseTime      

  

The MCIWndUseTime macro sets the time format of an MCI device to milliseconds. You can use this 
macro or explicitly send the MCIWNDM_SETTIMEFORMAT message. 

LONG MCIWndUseTime(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCIWNDM_SETTIMEFORMAT



MCIWndValidateMedia      

  

The MCIWndValidateMedia macro updates the starting and ending locations of the content, the current 
position in the content, and the trackbar according to the current time format. You can use this macro or 
explicitly send the MCIWNDM_VALIDATEMEDIA message. 

VOID MCIWndValidateMedia(

        hwnd
      );
 

Parameters
hwnd

Handle of the MCIWnd window.
 

Return Values
This macro does not return a value.

Remarks
Typically, you should not need to use this macro; however, if your application changes the time format of a 
device without using MCIWnd; the starting and ending locations of the content, as well as the trackbar, 
continue to use the old format. You can use this macro to update these values. 

See Also
MCIWNDM_VALIDATEMEDIA



MEVT_EVENTPARM      

  

The MEVT_EVENTPARM macro retrieves the event parameters or length from the value specified in the 
dwEvent member of a MIDIEVENT structure.

DWORD MEVT_EVENTPARM(

        DWORD dwEvent
      );
 

Parameters
dwEvent

Code for the MIDI event and the event parameters or length, as specified in the dwEvent member of 
the MIDIEVENT structure. 

 

Remarks
The MEVT_EVENTPARM macro is defined as follows:

#define MEVT_EVENTPARM(x) ((DWORD) ((x)&0x00FFFFFFL)) 
 

See Also
MIDIEVENT



MEVT_EVENTTYPE      

  

The MEVT_EVENTTYPE macro retrieves the event type from the value specified in the dwEvent 
member of a MIDIEVENT structure.

BYTE MEVT_EVENTTYPE(

        DWORD dwEvent
      );
 

Parameters
dwEvent

Code for the MIDI event and the event parameters or length, as specified in the dwEvent member of 
the MIDIEVENT structure. 

 

Remarks
The MEVT_EVENTTYPE macro is defined as follows:

#define MEVT_EVENTTYPE(x) ((BYTE) (((x)>>24)&0xFF)) 
 

See Also
MIDIEVENT



mmioFOURCC    

The mmioFOURCC macro converts four characters into a four-character code.

FOURCC mmioFOURCC(

        CHAR ch0,
        CHAR ch1,
        CHAR ch2,
        CHAR ch3
      );
 

Parameters
ch0, ch1, ch2, and ch3

First, second, third, and fourth characters of the four-character code. 
 

Return Values
Returns the four-character code created from the given characters.

Remarks
This macro does not check whether the four-character code it returns is valid.

The mmioFOURCC macro is defined as follows:

#define mmioFOURCC(ch0, ch1, ch2, ch3) \ 
    MAKEFOURCC(ch0, ch1, ch2, ch3); 
 

The MAKEFOURCC macro, in turn, is defined as follows:

#define MAKEFOURCC(ch0, ch1, ch2, ch3)  \ 
    ((DWORD)(BYTE)(ch0) | ((DWORD)(BYTE)(ch1) << 8) |  \ 
    ((DWORD)(BYTE)(ch2) << 16) | ((DWORD)(BYTE)(ch3) << 24 )); 



sndAlias
The sndAlias macro creates an alias identifier from two characters, for use with the PlaySound function.

DWORD sndAlias(

        ch0,
        ch1
      );
 

Parameters
ch0 and ch1

Characters describing the sound alias.
 

Return Values
Returns an alias identifier corresponding to the two supplied characters.

Remarks
This macro is defined as follows:

sndAlias(ch0, ch1)    (SND_ALIAS_START + (DWORD)(BYTE)(ch0) | 
    ((DWORD)(BYTE)(ch1) << 8)) 

See Also
PlaySound 

 

 



MCI_BREAK      

  

The MCI_BREAK command sets a break key for an MCI device. MCI supports this command directly 
rather than passing it to the device. Any MCI application can use this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_BREAK, 
    DWORD dwFlags, (DWORD) (LPMCI_BREAK_PARMS) lpBreak);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and video-cassette recorder (VCR) devices, MCI_TEST. 
For information about these flags, see The Wait, Notify, and Test Flags.

lpBreak

Address of an MCI_BREAK_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
You might have to press the break key multiple times to interrupt a wait operation. Pressing the break key 
after a device wait is canceled can send the break to an application. If an application has an action 
defined for the virtual-key code, then it can inadvertently respond to the break. For example, an 
application using VK_CANCEL for an accelerator key can respond to the default CTRL+BREAK key if it is 
pressed after a wait is canceled.

The following additional flags apply to all devices:

MCI_BREAK_HWND

The hwndBreak member of the structure identified by lpBreak contains a window handle that must 
be the current window in order to enable break detection for that MCI device. This is usually the 
application's main window. If omitted, MCI does not check the window handle of the current window.

MCI_BREAK_KEY

The nVirtKey member of the structure identified by lpBreak specifies the virtual-key code used for the 
break key. By default, MCI assigns CTRL+BREAK as the break key. This flag is required if 
MCI_BREAK_OFF is not specified.

MCI_BREAK_OFF

Disables any existing break key for the indicated device.
 

See Also
MCI_BREAK_PARMS



MCI_CAPTURE      

  

The MCI_CAPTURE command captures the contents of the frame buffer and stores it in a specified file. 
Digital-video devices recognize this command.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CAPTURE, 
    DWORD dwFlags, (DWORD) (LPMCI_DGV_CAPTURE_PARMS) lpCapture);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpCapture

Address of an MCI_DGV_CAPTURE_PARMSstructure. 
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to digital-video devices:

MCI_DGV_CAPTURE_AS

The lpstrFileName member of the structure identified by lpCapture contains an address of a buffer 
specifying the destination path and filename. (This flag is required.)

MCI_DGV_CAPTURE_AT

The rc member of the structure identified by lpCapture contains a valid rectangle. The rectangle 
specifies the rectangular region within the frame buffer that is cropped and saved to disk. If omitted, 
the cropped region defaults to the rectangle specified or defaulted on a previous MCI_PUT command 
that specifies the source area for this instance of the device driver.

 

See Also
MCI_DGV_CAPTURE_PARMS, MCI_PUT



MCI_CLOSE      

  

The MCI_CLOSE command releases access to a device or file. All devices recognize this command.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CLOSE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpClose);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see The Wait, Notify, and Test Flags.

lpClose

Address of an MCI_GENERIC_PARMS structure. (You can also use an MCI_CLOSE_PARMS    
structure. For more information, see the comments for MCI_GENERIC_PARMS.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Exiting an application without closing any MCI devices it has opened can leave the device inaccessible. 
Your application should explicitly close each device or file when it is finished with it. MCI unloads the 
device when all instances of the device or all associated files are closed.

See Also
MCI_GENERIC_PARMS



MCI_CONFIGURE      

  

The MCI_CONFIGURE command displays a dialog box for setting the operating options. Digital-video 
devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CONFIGURE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpConfigure);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpConfigure

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_GENERIC_PARMS



MCI_COPY      

  

The MCI_COPY command copies data to the clipboard. Digital-video devices recognize this command.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_COPY, 
    DWORD dwFlags, (DWORD) (LPMCI_DGV_COPY_PARMS) lpCopy);
  

Parameters
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpCopy

Address of an MCI_DGV_COPY_PARMS structure. 
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to digital-video devices:

MCI_DGV_COPY_AT

A rectangle is included in the rc member of the structure identified by lpCopy. The rectangle specifies 
the portion of each frame to copy. If the flag is omitted, MCI_COPY copies the entire frame.

MCI_DGV_COPY_AUDIO_STREAM

An audio-stream number is included in the dwAudioStream member of the structure identified by 
lpCopy. If you use this flag and also want to copy video, you must also use the 
MCI_DGV_COPY_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and video 
streams is copied.)

MCI_DGV_COPY_VIDEO_STREAM

A video-stream number is included in the dwVideoStream member of the structure identified by 
lpCopy. If you use this flag and also want to copy audio, you must also use the 
MCI_DGV_COPY_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and video 
streams is copied.)

MCI_FROM

A starting location is included in the dwFrom member of the structure identified by lpCopy. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the MCI_SET 
command.

MCI_TO

An ending location is included in the dwTo member of the structure identified by lpCopy. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the MCI_SET 
command. 

 

See Also



MCI_DGV_COPY_PARMS, MCI_SET



MCI_CUE      

  

The MCI_CUE command cues a device so that playback or recording begins with minimum delay.Digital-
video, VCR, and waveform-audio devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CUE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpCue);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpCue

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags are used with the digitalvideo device type:

MCI_DGV_CUE_INPUT

A digital-video instance should prepare for recording. If the application has not reserved disk space, 
the device reserves the disk space using its default parameters. The application can omit this flag if 
the current presentation source is already the external input. (This flag has no effect on selecting the 
presentation source.)

MCI_DGV_CUE_NOSHOW

A digital-video instance should prepare for playing the frame specified with the command without 
displaying it. When this flag is specified, the display continues to show the image in the frame buffer 
even though its corresponding frame is not the current position. For example, if the frame buffer 
contains the image from frame 7, the device continues to show frame 7 when this flag is used to cue 
the device to any other position. A subsequent cue command without this flag and without the 
MCI_TO flag displays the current frame.

MCI_DGV_CUE_OUTPUT

A digital-video instance should prepare for playing. If the workspace is paused, no positioning occurs. 
If the workspace is stopped, the position might change to a previous key-frame image. The 
application can omit this flag if the current presentation source is already the workspace.

MCI_TO

A workspace position is included in the dwTo member of the structure identified by lpCue. The units 
assigned to position values are specified using the MCI_SET_TIME_FORMAT flag of the MCI_SET 
command. This is equivalent to seeking to a position, except the device is paused after the command.



 

For digitalvideo devices, the lpCue parameter points to an MCI_DGV_CUE_PARMS structure.

The following additional flags are used with the vcr device type:

MCI_FROM

The dwFrom member of the structure pointed to by lpCue contains the starting location specified in 
the current time format.

MCI_TO

The dwTo member of the structure pointed to by lpCue contains the ending (pausing) location 
specified in the current time format.

MCI_VCR_CUE_INPUT

Prepare for recording.

MCI_VCR_CUE_OUTPUT

Prepare for playing. If neither MCI_VCR_CUE_INPUT nor MCI_VCR_CUE_OUTPUT is specified, 
MCI_VCR_CUE_OUTPUT is assumed.

MCI_VCR_CUE_PREROLL

Cue the device to the current position, or the dwFrom position, minus the preroll duration. This will 
allow the device to prepare itself before entering record or playback mode. 

MCI_VCR_CUE_REVERSE

The direction of the next play or record command is reverse.
 

When cueing for playback by using the MCI_CUE command with the MCI_VCR_CUE_OUTPUT flag, you 
can cancel MCI_CUE by issuing the MCI_PLAY command with MCI_FROM, MCI_TO, or 
MCI_VCR_PLAY_REVERSE. 

When cueing for recording by using MCI_CUE with the MCI_VCR_CUE_INPUT flag, you can cancel 
MCI_CUE by issuing the MCI_RECORD command with MCI_FROM, MCI_TO, or 
MCI_VCR_RECORD_INITIALIZE.

For vcr devices, the lpCue parameter points to an MCI_VCR_CUE_PARMS structure.

The following additional flags are used with the waveaudio device type:

MCI_WAVE_INPUT

A waveform-audio input device should be cued.

MCI_WAVE_OUTPUT

A waveform-audio output device should be cued. This is the default flag if a flag is not specified.
 

See Also
MCI_DGV_CUE_PARMS, MCI_GENERIC_PARMS, MCI_PLAY, I_RECORD, MCI_SET, 
MCI_VCR_CUE_PARMS 



MCI_CUT      

  

The MCI_CUT command removes data from the file and copies it to the clipboard. Digital-video devices 
recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CUT, 
    DWORD dwFlags, (DWORD) (LPMCI_DGV_CUT_PARMS) lpCut);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpCut

Address of an MCI_DGV_CUT_PARMS structure. 
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to digital-video devices:

MCI_DGV_CUT_AT

A rectangle is included in the rc member of the structure identified by lpCut. The rectangle specifies 
the portion of each frame to cut. If the flag is omitted, MCI_CUT cuts the entire frame.

MCI_DGV_CUT_AUDIO_STREAM

An audio-stream number is included in the dwAudioStream member of the structure identified by 
lpCut. If you use this flag and also want to cut video, you must also use the 
MCI_DGV_CUT_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and video 
streams is cut.)

MCI_DGV_CUT_VIDEO_STREAM

A video-stream number is included in the dwVideoStream member of the structure identified by 
lpCut. If you use this flag and also want to cut audio, you must also use the 
MCI_DGV_CUT_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and video 
streams is cut.)

MCI_FROM

A starting location is included in the dwFrom member of the structure identified by lpCut. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the MCI_SET 
command.

MCI_TO

An ending location is included in the dwTo member of the structure identified by lpCut. The units 



assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET. 
 

See Also
MCI_DGV_CUT_PARMS, MCI_SET 



MCI_DELETE      

  

The MCI_DELETE command removes data from the file. Digital-video and waveform-audio devices 
recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_DELETE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpDelete);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags, 
see The Wait, Notify, and Test Flags.

lpDelete

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following flags apply to the digitalvideo device type:

MCI_DGV_DELETE_AT

A rectangle is included in the rc member of the structure identified by lpDelete. The rectangle 
specifies the portion of each frame to delete. When this flag is used, the frame is retained in the 
workspace and the area specified by the rectangle becomes black. If the flag is omitted, 
MCI_DELETE defaults to the entire frame and removes the frame from the workspace.

MCI_DGV_DELETE_AUDIO_STREAM

An audio-stream number is included in the dwAudioStream member of the structure identified by 
lpDelete. If you use this flag and also want to delete video, you must also use the 
MCI_DGV_DELETE_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and video 
streams is deleted.)

MCI_DGV_DELETE_VIDEO_STREAM

A video-stream number is included in the dwVideoStream member of the structure identified by 
lpDelete. If you use this flag and also want to delete audio, you must also use the 
MCI_DGV_DELETE_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and video 
streams is deleted.)

MCI_FROM

A starting location is included in the dwFrom member of the structure identified by lpDelete. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the MCI_SET 
command.



MCI_TO

An ending location is included in the dwTo member of the structure identified by lpDelete. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET. 

 

For digital-video devices, the lpDelete parameter points to an MCI_DGV_DELETE_PARMS structure.

The following flags apply to the waveaudio device type:

MCI_FROM

A starting location is included in the dwFrom member of the structure identified by lpDelete. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET. 

MCI_TO

An ending location is included in the dwTo member of the structure identified by lpDelete. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET. 

 

For waveform-audio devices, the lpDelete parameter points to an MCI_WAVE_DELETE_PARMS 
structure.

See Also
MCI_DGV_DELETE_PARMS, MCI_GENERIC_PARMS, MCI_SET, MCI_WAVE_DELETE_PARMS 



MCI_ESCAPE      

  

The MCI_ESCAPE command sends a string directly to the device. Videodisc devices recognize this 
command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_ESCAPE, 
    DWORD dwFlags, (DWORD) (LPMCI_VD_ESCAPE_PARMS) lpEscape);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see The Wait, Notify, and Test Flags.

lpEscape

Address of an MCI_VD_ESCAPE_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The data sent with MCI_ESCAPE is device-dependent and is usually passed directly to the hardware 
associated with the device.

The following additional flag applies to videodisc devices:

MCI_VD_ESCAPE_STRING

A command string is specified in the lpstrCommand member of the structure identified by lpEscape. 
This flag is required.

 

See Also
MCI_VD_ESCAPE_PARMS 



MCI_FREEZE      

  

The MCI_FREEZE command freezes motion on the display. Digital-video, video-overlay, and VCR 
devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_FREEZE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpFreeze);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpFreeze

Address of an MCI_GENERIC_PARMS structure. (Devices with additional parameters might replace 
this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags are used by the digitalvideo device type:

MCI_DGV_FREEZE_AT

The rc member of the structure identified by lpFreeze contains a valid rectangle. The rectangle 
specifies a region within the frame buffer that will have the lock mask bit for each pixel turned on. The 
specified pixels will not be updated until their lock mask bit is turned off. If this flag is not specified, the 
rectangle defaults to the entire frame buffer. This flag is supported only if the MCI_GETDEVCAPS 
command returns TRUE for the MCI_DGV_GETDEVCAPS_CAN_LOCK flag.

MCI_DGV_FREEZE_OUTSIDE

The area outside the region specified for the MCI_DGV_FREEZE_AT flag is frozen.
 

For digital-video devices, the lpFreeze parameter points to an MCI_DGV_FREEZE_PARMS structure.

The following additional flags are used by the vcr device type:

MCI_VCR_FREEZE_FIELD

Freeze only one member of the current frame.

MCI_VCR_FREEZE_FRAME

Freeze both fields of the current frame.

MCI_VCR_FREEZE_INPUT



Freeze the current frame on the screen (used for recording).

MCI_VCR_FREEZE_OUTPUT

Freeze the current frame from the VCR (used with frame capture).
 

For VCR devices, the lpFreeze parameter points to an MCI_GENERIC_PARMS structure.

The following additional flag is used by the overlay device type:

MCI_OVLY_RECT

The rc member of the structure identified by lpFreeze contains a valid rectangle. If this flag is not 
specified, the device driver will freeze the entire frame.

 

For video-overlay devices, the lpFreeze parameter points to an MCI_OVLY_RECT_PARMS structure.

See Also
MCI_DGV_FREEZE_PARMS, MCI_GENERIC_PARMS, MCI_GETDEVCAPS 



MCI_GETDEVCAPS      

  

The MCI_GETDEVCAPS command retrieves static information about a device. All devices recognize this 
command. The parameters and flags available for this command depend on the selected device. 
Information is returned in the dwReturn member of the structure identified by lpCapsParms. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_GETDEVCAPS, 
    DWORD dwFlags, (DWORD) (LPMCI_GETDEVCAPS_PARMS) lpCapsParms);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpCapsParms

Address of an MCI_GETDEVCAPS_PARMS structure. 
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional standard and command-specific flags apply to all devices supporting 
MCI_GETDEVCAPS:

MCI_GETDEVCAPS_COMPOUND_DEVICE 

The dwReturn member is set to TRUE if the device uses data storage that must be explicitly opened 
and closed; it is set to FALSE otherwise.

MCI_GETDEVCAPS_DEVICE_TYPE 

The dwReturn member is set to one of the values listed in Constants: Device Types.

MCI_GETDEVCAPS_HAS_AUDIO 

The dwReturn member is set to TRUE if the device has audio output; it is set to FALSE otherwise.

MCI_GETDEVCAPS_HAS_VIDEO 

The dwReturn member is set to TRUE if the device has video output; it is set to FALSE otherwise. 
For example, the member is set to TRUE for devices that support the videodisc command set.

MCI_GETDEVCAPS_ITEM

Specifies that the dwItem member of the MCI_GETDEVCAPS_PARMS structure contains one of the 
following constants:

MCI_GETDEVCAPS_CAN_EJECT 

The dwReturn member is set to TRUE if the device can eject the media; otherwise, it is set to 
FALSE.



MCI_GETDEVCAPS_CAN_PLAY 

The dwReturn member is set to TRUE if the device can play the media; otherwise, it is set to 
FALSE. If a device specifies TRUE, it implies the device supports the MCI_PAUSE and MCI_STOP 
commands as well as the MCI_PLAY command.

MCI_GETDEVCAPS_CAN_RECORD 

The dwReturn member is set to TRUE if the device supports recording; otherwise, it is set to 
FALSE. If a device specifies TRUE, it implies the device supports the MCI_PAUSE and MCI_STOP 
commands as well as the MCI_RECORD command.

MCI_GETDEVCAPS_CAN_SAVE 

The dwReturn member is set to TRUE if the device can save a file; otherwise, it is set to FALSE.

MCI_GETDEVCAPS_USES_FILES 

The dwReturn member is set to TRUE if the device requires a filename; it is set to FALSE otherwise. 
Only compound devices use files.

 

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the 
digitalvideo device type:

MCI_DGV_GETDEVCAPS_CAN_FREEZE

The dwReturn member is set to TRUE if the device can freeze frames; otherwise, it is set to FALSE.

MCI_DGV_GETDEVCAPS_CAN_LOCK

The dwReturn member is set to TRUE if the device can lock; otherwise, it is set to FALSE.

MCI_DGV_GETDEVCAPS_CAN_REVERSE

The dwReturn member is set to TRUE if the device can play in reverse; otherwise, it is set to FALSE.

MCI_DGV_GETDEVCAPS_CAN_STR_IN

The dwReturn member is set to TRUE if the device can stretch input; otherwise, it is set to FALSE. 

MCI_DGV_GETDEVCAPS_CAN_STRETCH

The dwReturn member is set to TRUE if the device can stretch an image; otherwise, it is set to 
FALSE.

MCI_DGV_GETDEVCAPS_CAN_TEST

The dwReturn member is set to TRUE if the device can perform tests; otherwise, it is set to FALSE.

MCI_DGV_GETDEVCAPS_HAS_STILL

The dwReturn member is set to TRUE if the device can display still images; otherwise, it is set to 
FALSE.

MCI_DGV_GETDEVCAPS_MAX_WINDOWS

The dwReturn member is set to the maximum number of windows that the device can handle 
simultaneously.

MCI_DGV_GETDEVCAPS_MAXIMUM_RATE

The dwReturn member is set to the maximum play rate for the device, in frames per second.

MCI_DGV_GETDEVCAPS_MINIMUM_RATE

The dwReturn member is set to the minimum play rate for the device, in frames per second.

MCI_DGV_GETDEVCAPS_PALETTES



The dwReturn member is set to TRUE if the device can return a palette handle; otherwise, it is set to 
FALSE.

 

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the vcr 
device type:

MCI_GETDEVCAPS_CLOCK_INCREMENT_RATE

The dwReturn member is set to the number of increments per second.

MCI_VCR_GETDEVCAPS_CAN_DETECT_LENGTH

The dwReturn member is set to TRUE if the device is capable of detecting the length of the media; 
otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_FREEZE

The dwReturn member is set to TRUE if the device is capable of freezing the output image; 
otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_MONITOR_SOURCES

The dwReturn member is set to TRUE if the device is capable of monitoring sources; otherwise, it is 
set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_PREROLL

The dwReturn member is set to TRUE if the device is capable of preroll; otherwise, it is set to 
FALSE.

MCI_VCR_GETDEVCAPS_CAN_PREVIEW

The dwReturn member is set to TRUE if the device is capable of previews; otherwise, it is set to 
FALSE.

MCI_VCR_GETDEVCAPS_CAN_REVERSE

The dwReturn member is set to TRUE if the device is capable of playing in reverse; otherwise, it is 
set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_TEST

The dwReturn member is set to TRUE if the device is capable of testing; otherwise, it is set to 
FALSE.

MCI_VCR_GETDEVCAPS_HAS_CLOCK

The dwReturn member is set to TRUE if the device supports an external clock; otherwise, it is set to 
FALSE.

MCI_VCR_GETDEVCAPS_HAS_TIMECODE

The dwReturn member is set to TRUE if device has timecode capability or if this capability is 
unknown; otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_NUMBER_OF_MARKS

The dwReturn member is set to the number of marks (99).

MCI_VCR_GETDEVCAPS_SEEK_ACCURACY

The dwReturn member is set to the seek accuracy of the device.
 

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the 
overlay device type:



MCI_OVLY_GETDEVCAPS_CAN_FREEZE 

The dwReturn member is set to TRUE if the device can freeze the image; otherwise, it is set to 
FALSE.

MCI_OVLY_GETDEVCAPS_CAN_STRETCH 

The dwReturn member is set to TRUE if the device can stretch the image to fill the frame; otherwise, 
it is set to FALSE.

MCI_OVLY_GETDEVCAPS_MAX_WINDOWS 

The dwReturn member is set to the maximum number of windows that the device can handle 
simultaneously.

 

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the 
videodisc device type:

MCI_VD_GETDEVCAPS_CAN_REVERSE 

The dwReturn member is set to TRUE if the videodisc player can play in reverse; otherwise, it is set 
to FALSE. Some players can play CLV discs in reverse as well as CAV discs.

MCI_VD_GETDEVCAPS_CAV

When combined with other items, specifies that the return information applies to CAV format 
videodiscs. This is the default if no videodisc is inserted.

MCI_VD_GETDEVCAPS_CLV 

When combined with other items, specifies that the return information applies to CLV format 
videodiscs.

MCI_VD_GETDEVCAPS_FAST_RATE 

The dwReturn member is set to the standard fast play rate in frames per second.

MCI_VD_GETDEVCAPS_NORMAL_RATE 

The dwReturn member is set to the normal play rate in frames per second.

MCI_VD_GETDEVCAPS_SLOW_RATE 

The dwReturn member is set to the standard slow play rate in frames per second.
 

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the 
waveaudio device type:

MCI_WAVE_GETDEVCAPS_INPUT

The dwReturn member is set to the total number of waveform input (recording) devices.

MCI_WAVE_GETDEVCAPS_OUTPUT

The dwReturn member is set to the total number of waveform output (playback) devices.
 

See Also
MCI_GETDEVCAPS_PARMS, MCI_PAUSE, MCI_PLAY, MCI_RECORD, MCI_STOP 



MCI_INDEX      

  

The MCI_INDEX command turns the on-screen display on or off. VCR devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_INDEX, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpIndex);
 

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpIndex

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The information presented in the on-screen display is controlled by the MCI_VCR_SET_INDEX flag in the 
MCI_SET command. 

The following additional flags apply to VCR devices:

MCI_SET_OFF

Turns on-screen display off.

MCI_SET_ON

Turns on-screen display on.
 

See Also
MCI_GENERIC_PARMS, MCI_SET



MCI_INFO      

  

The MCI_INFO command retrieves string information from a device. All devices recognize this command. 
Information is returned in the lpstrReturn member of the structure identified by lpInfo. The dwRetSize 
member specifies the buffer length for the returned data. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_INFO, 
    DWORD dwFlags, (DWORD) (LPMCI_INFO_PARMS) lpInfo);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpInfo

Address of an MCI_INFO_PARMS structure. (Devices with extended command sets might replace 
this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional standard and command-specific flag applies to all devices supporting MCI_INFO:

MCI_INFO_PRODUCT

Obtains a description of the hardware associated with a device. Devices should supply a description 
that identifies both the driver and the hardware used.

 

The following additional flags apply to the cdaudio device type:

MCI_INFO_MEDIA_IDENTITY 

Produces a unique identifier for the audio CD currently loaded in the player being queried. This flag 
returns a string of 16 hexadecimal digits. 

MCI_INFO_MEDIA_UPC 

Produces the Universal Product Code (UPC) that is encoded on an audio CD. The UPC is a string of 
digits. It might not be available for all CDs. 

 

The following additional flags apply to the digitalvideo device type:

MCI_DGV_INFO_ITEM

A constant indicating the information desired is included in the dwItem member of the structure 
identified by lpInfo. The following constants are defined for digital-video devices:



MCI_DGV_INFO_AUDIO_ALG

Returns the name for the current audio compression algorithm.

MCI_DGV_INFO_AUDIO_QUALITY

Returns the name for the current audio quality descriptor.

MCI_DGV_INFO_STILL_ALG

Returns the name for the current still image compression algorithm.

MCI_DGV_INFO_STILL_QUALITY

Returns the name for the current still image quality descriptor.

MCI_DGV_INFO_USAGE

Returns a string describing usage restrictions that might be imposed by the owner of the visual or 
audible data in the workspace.

MCI_DGV_INFO_VIDEO_ALG

Returns the name for the current video compression algorithm.

MCI_DGV_INFO_VIDEO_QUALITY

Returns the name for the current video quality descriptor.

MCI_INFO_VERSION

Returns the release level of the device driver and hardware. Device driver developers must 
document the syntax of the returned string.

MCI_DGV_INFO_TEXT

Obtains the window caption.

MCI_INFO_FILE

Obtains the path and filename of the last file specified with the MCI_OPEN or MCI_LOAD command. 
If a file has not been specified, the device returns a null-terminated string. This flag is supported only 
by devices that return TRUE to the MCI_GETDEVCAPS_USES_FILES flag of the 
MCI_GETDEVCAPS command.

 

For digital-video devices, lpInfo points to an MCI_DGV_INFO_PARMS structure.

The following additional flags apply to the sequencer device type:

MCI_INFO_COPYRIGHT

Obtains the MIDI file copyright notice from the copyright meta event.

MCI_INFO_FILE

Obtains the filename of the current file. This flag is supported only by devices that return TRUE when 
you call the MCI_GETDEVCAPS command with the MCI_GETDEVCAPS_USES_FILES flag.

MCI_INFO_NAME

Obtains the sequence name from the sequence/track name meta event.
 

The following additional flag applies to the vcr device type:

MCI_VCR_INFO_VERSION



Sets lpstrReturn member of the MCI_INFO_PARMS structure to point to the version number. Also 
sets the dwRetSize member equal to the length of the string pointed to.

 

The following additional flags apply to the overlay device type:

MCI_INFO_FILE

Obtains the filename of the current file. This flag is supported only by devices that return TRUE to the 
MCI_GETDEVCAPS_USES_FILES flag of the MCI_GETDEVCAPS command.

MCI_OVLY_INFO_TEXT

Obtains the caption of the window associated with the video-overlay device.
 

The following additional flags apply to the waveaudio device type:

MCI_INFO_FILE

Obtains the filename of the current file. This flag is supported by devices that return TRUE when you 
call the MCI_GETDEVCAPS command with the MCI_GETDEVCAPS_USES_FILES flag.

MCI_WAVE_INPUT

Obtains the product name of the current input.

MCI_WAVE_OUTPUT

Obtains the product name of the current output and its value is device specific.
 

See Also
MCI_DGV_INFO_PARMS, MCI_GETDEVCAPS, MCI_INFO_PARMS, MCI_LOAD, I_OPEN 



MCI_LIST      

  

The MCI_LIST command obtains information about the number and types of inputs available to the 
device. Digital-video and VCR devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_LIST, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpList);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpList

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to the digitalvideo device type:

MCI_DGV_LIST_ALG

The lpstrAlgorithm member of the structure identified by lpList contains an address of a buffer 
containing the name of an algorithm. The name is used to retrieve the types of quality descriptors 
associated with an algorithm.

MCI_DGV_LIST_COUNT

Returns the number of options of the specified type.

MCI_DGV_LIST_ITEM

A constant indicating the list type is included in the dwItem member of the structure identified by 
lpList. This flag is required. Use one of the following constants to indicate the list type:

MCI_DGV_LIST_AUDIO_ALG

The command should retrieve names of audio algorithms. 

MCI_DGV_LIST_AUDIO_QUALITY

The command should retrieve audio quality levels. The levels returned are associated with the 
algorithm referenced by the lpstrAlgorithm member of the structure identified by lpList. If that 
member is specified using the string "current", then the qualities associated with the current 
algorithm are returned. 

MCI_DGV_LIST_AUDIO_STREAM



The command should retrieve names of audio streams. 

MCI_DGV_LIST_STILL_AL

The command should retrieve names of still algorithms. 

MCI_DGV_LIST_STILL_QUALITY

The command should retrieve quality levels. The levels returned are associated with the algorithm 
referenced by the lpstrAlgorithm member of the structure identified by lpList. If that member is 
specified using the string "current", then the qualities associated with the current algorithm are 
returned. 

MCI_DGV_LIST_VIDEO_ALG

The command should retrieve names of video algorithms. 

MCI_DGV_LIST_VIDEO_QUALITY

The command should retrieve video quality levels. The levels returned are associated with the 
algorithm referenced by the lpstrAlgorithm member of the structure identified by lpList. If that 
member is specified using the string "current", then the qualities associated with the current 
algorithm are returned. 

MCI_DGV_LIST_VIDEO_SOURCE

The command should return information about the video sources. When used with 
MCI_DGV_LIST_COUNT, the command returns the number of video sources. When used with 
MCI_DGV_LIST_NUMBER, the command returns the type of a video source. MCI defines the 
following types:

MCI_DGV_SETVIDEO_SRC_GENERIC 
MCI_DGV_SETVIDEO_SRC_NTSC 
MCI_DGV_SETVIDEO_SRC_PAL 
MCI_DGV_SETVIDEO_SRC_RGB 
MCI_DGV_SETVIDEO_SRC_SECAM 
MCI_DGV_SETVIDEO_SRC_SVIDEO 

There might be more than one source of each type returned. The generic source type is used 
when more then one type of signal is allowed for that connector. 

MCI_DGV_LIST_VIDEO_STREAM

The command should retrieve names of video streams.

MCI_DGV_LIST_NUMBER

An index is specified in the dwNumber member of the structure identified by lpList. The index must 
be an integer between 1 and the value returned for the MCI_DGV_LIST_COUNT flag.

 

For digital-video devices, lpList points to an MCI_DGV_LIST_PARMS structure.

The following additional flags apply to the vcr device type:

MCI_VCR_LIST_AUDIO_SOURCE

List audio inputs or types.

MCI_VCR_LIST_COUNT

Sets the dwReturn member of the structure identified by lpList to the total number of video or audio 
inputs.

MCI_VCR_LIST_NUMBER



Sets the dwReturn member of the structure identified by lpList to the type of the video or audio input 
specified by the dwNumber member.

MCI_VCR_LIST_VIDEO_SOURCE

List video inputs or types.
 

For VCR devices, lpList points to an MCI_VCR_LIST_PARMS structure.

See Also
MCI_DGV_LIST_PARMS, MCI_GENERIC_PARMS, MCI_VCR_LIST_PARMS 



MCI_LOAD      

  

The MCI_LOAD command loads a file. Digital-video and video-overlay devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_LOAD, 
    DWORD dwFlags, (DWORD) (LPMCI_LOAD_PARMS) lpLoad);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags, 
see The Wait, Notify, and Test Flags.

lpLoad

Address of an MCI_LOAD_PARMS structure. (Devices with additional parameters might replace this 
structure with a device-specific structure. For digital-video devices, the lpLoad parameter points to an 
MCI_DGV_LOAD_PARMS structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flag applies to all devices supporting MCI_LOAD:

MCI_LOAD_FILE

The lpfilename member of the structure identified by lpLoad contains an address of a buffer 
containing the filename. 

 

The following additional flag is used with the overlay device type:

MCI_OVLY_RECT

The rc member of the structure identified by lpLoad contains a valid display rectangle that identifies 
the area of the video buffer to update. 

 

For video-overlay devices, the lpLoad parameter points to an MCI_OVLY_LOAD_PARMS structure. 

See Also
MCI_DGV_LOAD_PARMS, MCI_LOAD_PARMS, MCI_OVLY_LOAD_PARMS 



MCI_MARK      

  

The MCI_MARK command records or erases marks that can be used with the MCI_SEEK command for 
high-speed searches. VCR devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_MARK, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpMark);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpMark

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to VCR devices:

MCI_VCR_MARK_ERASE

Erases a mark at the current position if one exists.

MCI_VCR_MARK_WRITE

Writes a mark at the current position.
 

See Also
MCI_GENERIC_PARMS 



MCI_MONITOR      

  

The MCI_MONITOR command specifies the presentation source. Digital-video devices recognize this 
command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_MONITOR, 
    DWORD dwFlags, (DWORD) (LPMCI_DGV_MONITOR_PARMS) lpMonitor);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpMonitor

Address of an MCI_DGV_MONITOR_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to digital-video devices:

MCI_DGV_MONITOR_METHOD

A constant indicating the method of monitoring is included in the dwMethod member of the structure 
identified by lpMonitor. 

When the MCI_DGV_MONITOR_INPUT flag is used in the dwSource member, this selects the 
method of monitoring. Typically, different monitoring methods have different implications on how the 
hardware is used. The default monitoring method is selected by the device.

MCI_DGV_MONITOR_SOURCE

A constant indicating the monitor source is included in the dwSource member of the structure 
identified by lpMonitor. 

 

See Also
MCI_DGV_MONITOR_PARMS 



MCI_OPEN      

  

The MCI_OPEN command initializes a device or file. All devices recognize this command.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_OPEN, 
    DWORD dwFlags, (DWORD) (LPMCI_OPEN_PARMS) lpOpen);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see The Wait, Notify, and Test Flags.

lpOpen

Address of an MCI_OPEN_PARMS structure. (Devices with extended command sets might replace 
this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The MCI_OPEN_TYPE flag must be used whenever a device is specified in the mciSendCommand 
function. If you open a device by specifying a device-type constant, you must specify the 
MCI_OPEN_TYPE_ID flag in addition to MCI_OPEN_TYPE. For a list of device-type constants, see 
Constants: Device Types.

If the MCI_OPEN_SHAREABLE flag is not specified when a device or file is initially opened, all 
subsequent MCI_OPEN commands to the device or file will fail. If the device or file is already open and 
this flag is not specified, the call will fail even if the first open command specified 
MCI_OPEN_SHAREABLE. Files opened for the MCISEQ.DRV and MCIWAVE.DRV devices are 
nonshareable.

Case is ignored in the device name, but there cannot be leading or trailing blanks.

To use automatic type selection (via the entries in the registry), assign the filename and file extension to 
the lpstrElementName member of the structure identified by lpOpen, set the lpstrDeviceType member 
to NULL, and set the MCI_OPEN_ELEMENT flag.

The following additional flags apply to all devices supporting MCI_OPEN:

MCI_OPEN_ALIAS

An alias is included in the lpstrAlias member of the structure identified by lpOpen.

MCI_OPEN_SHAREABLE

The device or file should be opened as shareable.

MCI_OPEN_TYPE

A device type name or constant is included in the lpstrDeviceType member of the structure identified 



by lpOpen.

MCI_OPEN_TYPE_ID

The low-order word of the lpstrDeviceType member of the structure identified by lpOpen contains a 
standard MCI device type identifier and the high-order word optionally contains the ordinal index for 
the device. Use this flag with the MCI_OPEN_TYPE flag.

 

The following additional flags apply to compound devices:

MCI_OPEN_ELEMENT

A filename is included in the lpstrElementName member of the structure identified by lpOpen.

MCI_OPEN_ELEMENT_ID

The lpstrElementName member of the structure identified by lpOpen is interpreted as a doubleword 
value and has meaning internal to the device. Use this flag with the MCI_OPEN_ELEMENT flag.

 

The following additional flags are used with the digitalvideo device type:

MCI_DGV_OPEN_NOSTATIC

The device should reduce the number of static (system) colors in the palette. This increases the 
number of colors available for rendering the video stream. This flag applies only to devices that share 
a palette with Windows.

MCI_DGV_OPEN_PARENT

The parent window handle is specified in the hWndParent member of the structure identified by 
lpOpen.

MCI_DGV_OPEN_WS

A window style is specified in the dwStyle member of the structure identified by lpOpen.

MCI_DGV_OPEN_16BIT

Indicates a preference for 16-bit MCI device support.

MCI_DGV_OPEN_32BIT

Indicates a preference for 32-bit MCI device support.
 

For digital-video devices, the lpOpen parameter points to an MCI_DGV_OPEN_PARMS structure.

The following additional flags are used with the overlay device type:

MCI_OVLY_OPEN_PARENT

The parent window handle is specified in the hWndParent member of the structure identified by 
lpOpen.

MCI_OVLY_OPEN_WS

A window style is specified in the dwStyle member of the structure identified by lpOpen. The dwStyle 
value specifies the style of the window that the driver will create and display if the application does 
not provide one. The style parameter takes an integer that defines the window style. These constants 
are the same as the standard window styles (such as WS_CHILD, WS_OVERLAPPEDWINDOW, or 
WS_POPUP).

 



For video-overlay devices, the lpOpen parameter points to an MCI_OVLY_OPEN_PARMS structure.

The following additional flag is used with the waveaudio device type:

MCI_WAVE_OPEN_BUFFER

A buffer length is specified in the dwBufferSeconds member of the structure identified by lpOpen.
 

For waveform-audio devices, the lpOpen parameter points to an MCI_WAVE_OPEN_PARMS structure. 
The MCIWAVE driver requires an asychronous waveform-audio device.

See Also
CreateWindow, MCI_DGV_OPEN_PARMS, MCI_OPEN_PARMS, MCI_OVLY_OPEN_PARMS, 
MCI_WAVE_OPEN_PARMS, mciSendCommand 



MCI_PASTE      

  

The MCI_PASTE command pastes data from the clipboard into a file. Digital-video devices recognize this 
command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_PASTE, 
    DWORD dwlags, (DWORD) (LPMCI_DGV_PASTE_PARMS) lpPaste);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or    MCI_TEST. For information about these flags, see The Wait, Notify, 
and Test Flags.

lpPaste

Address of an MCI_DGV_PASTE_PARMS structure. 
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to digital-video devices:

MCI_DGV_PASTE_AT

A rectangle is included in the rc member of the structure identified by lpPaste. The first two values of 
the rectangle specify the point within the frame to place the clipboard information. If the rectangle 
height and width are nonzero, the clipboard contents are scaled to those dimensions when they are 
pasted in the frame. If the flag is omitted, MCI_PASTE defaults to the entire frame rectangle.

MCI_DGV_PASTE_AUDIO_STREAM

An audio-stream number is included in the dwAudioStream member of the structure identified by 
lpPaste. If only one audio stream exists on the clipboard, the audio data is pasted into the designated 
stream. If more than one audio stream exists on the clipboard, the stream indicates the starting 
number for the stream sequences. If you use this flag and also want to paste video, you must also 
use the MCI_DGV_PASTE_VIDEO_STREAM flag. (If neither flag is specified, all audio and video 
streams are pasted starting with the first audio and video stream. Each pasted stream retains its 
original stream number.)

MCI_DGV_PASTE_INSERT

Clipboard data should be inserted in the existing workspace at the position specified by the MCI_TO 
flag. Any existing data after the insertion point is moved in the workspace to make room. This is the 
default.

MCI_DGV_PASTE_OVERWRITE

Clipboard data should replace data already present in the workspace. The workspace data replaced 
follows the insertion point.



MCI_DGV_PASTE_VIDEO_STREAM

A video-stream number is included in the dwVideoStream member of the structure identified by 
lpPaste. If only one video stream exists on the clipboard, the video data is pasted into the designated 
stream. If more than one video stream exists on the clipboard, the stream indicates the starting 
number for the stream sequences. If you use this flag and also want to paste audio, you must also 
use the MCI_DGV_PASTE_AUDIO_STREAM flag. (If neither flag is specified, all audio and video 
streams are pasted starting with the first audio and video stream. Each pasted stream retains its 
original stream number.)

MCI_TO

A position value is included in the dwTo member of the structure identified by lpPaste. The position 
value specifies the position to begin pasting data into the workspace. If this flag is omitted, the 
position defaults to the current position.

 

See Also
MCI_DGV_PASTE_PARMS 



MCI_PAUSE      

  

The MCI_PAUSE command pauses the current action. CD audio, digital-video, MIDI sequencer, VCR, 
videodisc, and waveform-audio devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_PAUSE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpPause);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpPause

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The difference between the MCI_STOP and MCI_PAUSE commands depends on the device. If possible, 
MCI_PAUSE suspends device operation but leaves the device ready to resume play immediately. With 
the MCICDA, MCISEQ, and MCIPIONR drivers, the MCI_PAUSE command works the same as the 
MCI_STOP command.

For digital-video devices, the lpPause parameter points to an MCI_DGV_PAUSE_PARMS structure.

See Also
MCI_DGV_PAUSE_PARMS, MCI_GENERIC_PARMS, MCI_STOP 



MCI_PLAY      

  

The MCI_PLAY command signals the device to begin transmitting output data. CD audio, digital-video, 
MIDI sequencer, videodisc, VCR, and waveform-audio devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_PLAY, 
    DWORD dwFlags, (DWORD) (LPMCI_PLAY_PARMS ) lpPlay);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpPlay

Address of an MCI_PLAY_PARMS structure. (Devices with extended command sets might replace 
this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to all devices supporting MCI_PLAY:

MCI_FROM

A starting location is included in the dwFrom member of the structure identified by lpPlay. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the MCI_SET 
command. If MCI_FROM is not specified, the starting location defaults to the current position.

MCI_TO

An ending location is included in the dwTo member of the structure identified by lpPlay. The units 
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET. If 
MCI_TO is not specified, the ending location defaults to the end of the media.

 

The following additional flags are used with the digitalvideo device type:

MCI_DGV_PLAY_REPEAT

Playback should start again at the beginning when the end of the content is reached.

MCI_DGV_PLAY_REVERSE

Playback should occur in reverse.

MCI_MCIAVI_PLAY_WINDOW

Playback should occur in the window associated with a device instance (the default). (This flag is 
specific to MCIAVI.DRV.)



MCI_MCIAVI_PLAY_FULLSCREEN

Playback should use a full-screen display. Use this flag only when playing compressed or 8-bit files. 
 

For digital-video devices, lpPlay points to an MCI_DGV_PLAY_PARMS structure.

The following additional flags are used with the vcr device type:

MCI_VCR_PLAY_AT

The dwAt member of the structure identified by lpPlay contains a time when the entire command 
begins, or if the device is cued, when the device reaches the from position given by the MCI_CUE 
command.

MCI_VCR_PLAY_REVERSE

Playback should occur in reverse.

MCI_VCR_PLAY_SCAN

Playback should be as fast as possible while maintaining video output.
 

For VCR devices, lpPlay points to an MCI_VCR_PLAY_PARMS structure.

The following additional flags are used with the videodisc device type:

MCI_VD_PLAY_FAST

Play fast.

MCI_VD_PLAY_REVERSE

Play in reverse.

MCI_VD_PLAY_SCAN

Scan quickly.

MCI_VD_PLAY_SLOW

Play slowly.

MCI_VD_PLAY_SPEED

The play speed is included in the dwSpeed member in the structure identified by lpPlay.
 

See Also
MCI_CUE, MCI_DGV_PLAY_PARMS, MCI_PLAY_PARMS, MCI_SET, MCI_VCR_PLAY_PARMS, 
MCI_VD_PLAY_PARMS 



MCI_PUT      

  

The MCI_PUT command sets the source, destination, and frame rectangles. Digital-video and video-
overlay devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_PUT, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpDest);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags, 
see The Wait, Notify, and Test Flags.

lpDest

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags are used with the digitalvideo device type:

MCI_DGV_PUT_CLIENT

The rectangle defined for MCI_DGV_RECT applies to the position of the client window. The rectangle 
specified is relative to the parent window of the display window. MCI_DGV_PUT_WINDOW must be 
set concurrently with this flag.

MCI_DGV_PUT_DESTINATION

The rectangle defined for MCI_DGV_RECT specifies a destination rectangle. The destination 
rectangle specifies the portion of the client window associated with this device driver instance that 
shows the image or video.

MCI_DGV_PUT_FRAME

The rectangle defined for MCI_DGV_RECT applies to the frame rectangle. The frame rectangle 
specifies the portion of the frame buffer used as the destination of the video images obtained from the 
video rectangle. The video should be scaled to fit within the frame buffer rectangle. 

The rectangle is specified in frame buffer coordinates. The default rectangle is the full frame buffer. 
Specifying this rectangle lets the device scale the image as it digitizes the data. Devices that cannot 
scale the image reject this command with MCIERR_UNSUPPORTED_FUNCTION. You can use the 
MCI_GETDEVCAPS_CAN_STRETCH flag with the MCI_GETDEVCAPS command to determine if a 
device scales the image. A device returns FALSE if it cannot scale the image.

MCI_DGV_PUT_SOURCE

The rectangle defined for MCI_DGV_RECT specifies a source rectangle. The source rectangle 



specifies which portion of the frame buffer is to be scaled to fit into the destination rectangle.

MCI_DGV_PUT_VIDEO

The rectangle defined for MCI_DGV_RECT applies to the video rectangle. The video rectangle 
specifies which portion of the current presentation source is stored in the frame buffer. The rectangle 
is specified using the natural coordinates of the presentation source. It allows the specification of 
cropping that occurs prior to storing images and video in the frame buffer. The default rectangle is the 
full active scan area or the full decompressed images and video.

MCI_DGV_PUT_WINDOW

The rectangle defined for MCI_DGV_RECT applies to the display window. This rectangle is relative to 
the parent window of the display window (usually the desktop). If the window is not specified, it 
defaults to the initial window size and position. 

MCI_DGV_RECT

The rc member of the structure identified by lpDest contains a valid rectangle.
 

For digital-video devices, lpDest points to an MCI_DGV_PUT_PARMS structure.

The following additional flags are used with the overlay device type:

MCI_OVLY_PUT_DESTINATION

The rectangle defined for MCI_OVLY_RECT specifies the area of the client window used to display 
an image. The rectangle contains the offset and visible extent of the image relative to the window 
origin. If the frame is being stretched, the source is stretched to the destination rectangle.

MCI_OVLY_PUT_FRAME

The rectangle defined for MCI_OVLY_RECT specifies the area of the video buffer used to receive the 
video image. The rectangle contains the offset and extent of the buffer area relative to the video buffer 
origin.

MCI_OVLY_PUT_SOURCE

The rectangle defined for MCI_OVLY_RECT specifies the area of the video buffer used as the source 
of the digital image. The rectangle contains the offset and extent of the clipping rectangle for the video 
buffer relative to its origin.

MCI_OVLY_PUT_VIDEO

The rectangle defined for MCI_OVLY_RECT specifies the area of the video source capture by the 
video buffer. The rectangle contains the offset and extent of the clipping rectangle for the video 
source relative to its origin.

MCI_OVLY_RECT

The rc member of the structure identified by lpDest contains a valid display rectangle. If this flag is not 
specified, the default rectangle matches the coordinates of the video buffer or window being clipped.

 

For video-overlay devices, lpDest points to an MCI_OVLY_RECT_PARMS structure.

See Also
MCI_DGV_PUT_PARMS, MCI_GENERIC_PARMS, MCI_GETDEVCAPS, MCI_OVLY_RECT_PARMS 



MCI_QUALITY      

  

The MCI_QUALITY command defines a custom quality level for audio, video, or still image data 
compression. Digital-video devices recognize this command.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_QUALITY, 
    DWORD dwFlags, (DWORD) (LPMCI_DGV_QUALITY_PARMS) lpQuality);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpQuality

Address of an MCI_DGV_QUALITY_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The name defined for this quality level can be used when setting the audio, video, or still quality with the 
MCI_SETAUDIO and MCI_SETVIDEO commands.

The following additional flags apply to digital-video devices:

MCI_QUALITY_ALG

The lpstrAlgorithm member of the structure identified by lpQuality contains an address of a buffer 
containing the name of the algorithm. This algorithm must be supported by the device driver, and 
must be compatible with the audio, still, or video descriptor that is used. If this flag is omitted, the 
current algorithm is used.

MCI_QUALITY_DIALOG

The device driver should display a dialog box for specifying the quality level. The dialog box has 
algorithm-specific fields used internally by the device driver to create a structure describing a specific 
quality level.

MCI_QUALITY_HANDLE

The dwHandle member of the structure identified by lpQuality contains a handle to a structure. The 
structure contains algorithmic-specific data describing the specific quality level. The format of the 
structures for the algorithms is device dependent.

MCI_QUALITY_ITEM

A constant indicating the type of algorithm is included in the dwItem member of the structure 
identified by lpQuality. 

MCI_QUALITY_NAME



The lpstrName member of the structure identified by lpQuality contains an address of a buffer 
containing the quality descriptor.

 

See Also
MCI_DGV_QUALITY_PARMS, MCI_SETAUDIO, MCI_SETVIDEO 



MCI_REALIZE      

  

The MCI_REALIZE command causes a graphic device to realize its palette into a device context (DC). 
Digital-video devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_REALIZE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpRealize);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags, 
see The Wait, Notify, and Test Flags.

lpRealize

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
You should use this command when your application receives the WM_QUERYNEWPALETTE message. 

The following additional flags are used with the digitalvideo device type:

MCI_DGV_REALIZE_BKGD

Realizes the palette as a background palette.

MCI_DGV_REALIZE_NORM

Realizes the palette normally. This is the default.
 

For digital-video devices, the lpRealize parameter points to an MCI_REALIZE_PARMS    structure. For 
more information, see comments in the MCI_GENERIC_PARMS structure.

See Also
MCI_GENERIC_PARMS 



MCI_RECORD      

  

The MCI_RECORD command starts recording from the current position or from one specified location to 
another specified location. VCR and waveform-audio devices recognize this command. Although digital-
video devices and MIDI sequencers also recognize this command, the MCIAVI and MCISEQ drivers do 
not implement it.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_RECORD, 
    DWORD dwFlags, (DWORD) (LPMCI_RECORD_PARMS) lpRecord);
 

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpRecord

Address of an MCI_RECORD_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
This command is supported by devices that return TRUE when you call the MCI_GETDEVCAPS 
command with the MCI_GETDEVCAPS_CAN_RECORD flag. For the MCIWAVE driver, all data recorded 
after a file is opened is discarded if the file is closed without saving it.

The following additional flags apply to all devices supporting MCI_RECORD:

MCI_FROM

A starting location is included in the dwFrom member of the structure identified by lpRecord. The 
units assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the 
MCI_SET command. If MCI_FROM is not specified, the starting location defaults to the current 
position.

MCI_RECORD_INSERT

Newly recorded information should be inserted or pasted into the existing data. Some devices might 
not support this. If supported, this is the default.

MCI_RECORD_OVERWRITE

Data should overwrite existing data. The MCIWAVE.DRV device returns 
MCIERR_UNSUPPORTED_FUNCTION in response to this flag.

MCI_TO

An ending location is included in the dwTo member of the structure identified by lpRecord. The units 



assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the MCI_SET 
command. If MCI_TO is not specified, the ending location defaults to the end of the content.

 

The following additional flags are used with the digitalvideo device type:

MCI_DGV_RECORD_AUDIO_STREAM

An audio-stream number is included in the dwAudioStream member of the structure identified by 
lpRecord. If you omit this flag, audio data is recorded into the first physical stream.

MCI_DGV_RECORD_HOLD

When recording stops, the screen will hold the last image and will not resume showing the video until 
an MCI_MONITOR command is issued. 

MCI_DGV_RECORD_VIDEO_STREAM

A video-stream number is included in the dwVideoStream member of the structure identified by 
lpRecord. If you omit this flag, video data is recorded into the first physical stream.

MCI_DGV_RECT

A rectangle is specified in the rc member of the structure identified by lpRecord. The rectangle 
specifies the region of the external input used as the source for the pixels compressed and saved. 
This rectangle defaults to the rectangle specified (or defaulted) by the MCI_DGV_PUT_VIDEO flag 
for the MCI_PUT command. When it is set differently than the video rectangle, what is displayed is 
not what is recorded

 

For digital-video devices, lpRecord points to an MCI_DGV_RECORD_PARMS structure.

The following additional flags are used with the vcr device type:

MCI_VCR_RECORD_AT

The dwAt member of the structure identified by lpRecord contains a time when the entire command 
begins, or if the device is cued, when the device reaches the from position given by the cue 
command.

MCI_VCR_RECORD_INITIALIZE

Seek the device to the start of the media, begin recording blank video and audio, and record 
timecode, if possible.

 

For VCR devices, lpRecord points to an MCI_VCR_RECORD_PARMS structure.

See Also
MCI_DGV_RECORD_PARMS, MCI_GETDEVCAPS, MCI_MONITOR, MCI_PUT, 
MCI_RECORD_PARMS, MCI_SET, MCI_VCR_RECORD_PARMS 



MCI_RESERVE      

  

The MCI_RESERVE command allocates contiguous disk space for the workspace of the device driver 
instance for use with subsequent recording. Digital-video devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_RESERVE, 
    DWORD dwFlags, (DWORD) (LPMCI_DGV_RESERVE_PARMS) lpReserve);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpReserve

Address of an MCI_DGV_RESERVE_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
If the workspace contains unsaved data, this data is lost. If disk space is not reserved prior to recording, 
the MCI_RECORD command performs an implied reserve with device-specific default parameters. On 
some implementations, reserve is not required and might be ignored by the device driver. Explicitly 
reserving space gives you better control over when the delay for disk allocation occurs, how much space 
is allocated, and where the disk space is allocated. The amount and location of disk space already 
reserved for this device instance can be changed by issuing MCI_RESERVE again. Any allocated and still 
unused disk space is not deallocated until any recorded data is saved or until the device driver instance is 
closed. 

If video is turned off with the MCI_OFF flag of the MCI_SETVIDEO command, the space reserved does 
not include any video. If audio is turned off with the MCI_OFF flag of the MCI_SETAUDIO command, the 
space reserved does not include any audio. If both audio and video are turned off or if the requested size 
is zero, no space is reserved and any existing reserved space is deallocated.

The following additional flags apply to digital-video devices:

MCI_DGV_RESERVE_IN

The lpstrPath member of the structure identified by lpReserve contains an address of a buffer 
containing the location of a temporary file. The buffer contains only the drive and directory path of the 
file used to hold recorded data; the filename is specified by the device driver. This temporary file is 
deleted when the device instance is closed unless it is explicitly saved. If this flag is omitted, the 
device driver specifies where disk space is allocated.

MCI_DGV_RESERVE_SIZE

The dwSize member of the structure identified by lpReserve specifies the approximate amount of 
disk space to reserve in the workspace for recording. The value is specified in the current time format. 



The amount of disk space is estimated from the requested time and from which file format and video 
and audio algorithm and quality values are in effect. If this flag is omitted, the device driver might use 
a default value it defines.

 

See Also
MCI_DGV_RESERVE_PARMS, MCI_RECORD, MCI_SETAUDIO, MCI_SETVIDEO 



MCI_RESTORE      

  

The MCI_RESTORE command copies a bitmap from a file to the frame buffer. Digital-video devices 
recognize this command. This command performs the opposite action of the MCI_CAPTURE command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_RESTORE, 
    DWORD dwFlags, (DWORD) (LPMCI_DGV_RESTORE_PARMS) lpRestore);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpRestore

Address of an MCI_DGV_RESTORE_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The implementation can recognize a variety of image formats, but a Windows device-independent bitmap 
(DIB) is always accepted.

The following additional flags apply to digital-video devices:

MCI_DGV_RESTORE_FROM

The lpstrFileName member of the structure identified by lpRestore contains an address of a buffer 
containing the source filename. The filename is required.

MCI_DGV_RESTORE_AT

The rc member of the structure identified by lpRestore contains a valid rectangle. The rectangle 
specifies a region of the frame buffer relative to its origin. The first pair of coordinates specifies the 
upper left corner of the rectangle; the second pair specifies the width and height. If this flag is not 
specified, the image is copied to the upper left corner of the frame buffer.

 

See Also
MCI_CAPTURE, MCI_DGV_RESTORE_PARMS 



MCI_RESUME      

  

The MCI_RESUME command causes a paused device to resume the paused operation. Digital-video, 
VCR, and waveform-audio devices recognize this command. Although CD audio, MIDI sequencer, and 
videodisc devices also recognize this command, the MCICDA, MCISEQ, and MCIPIONR device drivers 
do not support it.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_RESUME, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpResume);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpResume

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
This command resumes playing and recording without changing the current track position set with 
MCI_PLAY or MCI_RECORD.

See Also
MCI_GENERIC_PARMS, MCI_PLAY, MCI_RECORD



MCI_SAVE      

  

The MCI_SAVE command saves the current file. Devices that modify files should not destroy the original 
copy until they receive the save message. Video-overlay and waveform-audio devices recognize this 
command. Although digital-video devices and MIDI sequencers also recognize this command, the MCIAVI 
and MCISEQ drivers do not implement it.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SAVE, 
    DWORD dwFlags, (DWORD) (LPMCI_SAVE_PARMS ) lpSave);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpSave

Address of an MCI_SAVE_PARMS structure. (Devices with additional parameters might replace this 
structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
This command is supported by devices that return TRUE when you call the MCI_GETDEVCAPS 
command with the MCI_GETDEVCAPS_CAN_SAVE flag.

The following additional flag applies to all devices supporting MCI_SAVE:

MCI_SAVE_FILE

The lpfilename member of the structure identified by lpSave contains an address of a buffer 
containing the destination filename.

 

The following additional flags are used with the digitalvideo device type:

MCI_DGV_RECT

The rc member of the structure identified by lpSave contains a valid rectangle. The rectangle 
specifies a region of the frame buffer that will be saved to the specified file. The first pair of 
coordinates specifies the upper left corner of the rectangle; the second pair specifies the width and 
height. Digital-video devices must use the MCI_CAPTURE command to capture the contents of the 
frame buffer. (Video-overlay devices should also use MCI_CAPTURE.) This flag is for compatibility 
with the existing MCI video-overlay command set.

MCI_DGV_SAVE_ABORT

Stops a save operation in progress. This must be the only flag present.



MCI_DGV_SAVE_KEEPRESERVE

Unused disk space left over from the original MCI_RESERVE command is not deallocated.
 

For digital-video devices, the lpSave parameter points to an MCI_DGV_SAVE_PARMS structure. 

The following additional flag is used with the overlay device type:

MCI_OVLY_RECT

The rc member of the structure identified by lpSave contains a valid display rectangle indicating the 
area of the video buffer to save. 

 

For video-overlay devices, the lpSave parameter points to an MCI_OVLY_SAVE_PARMS structure. 

See Also
MCI_CAPTURE, MCI_DGV_SAVE_PARMS, MCI_GETDEVCAPS, MCI_OVLY_SAVE_PARMS, 
MCI_RESERVE, MCI_SAVE_PARMS



MCI_SEEK      

  

The MCI_SEEK command changes the current position in the content as quickly as possible. Video and 
audio output are disabled during the seek. After the seek is complete, the device is stopped. CD audio, 
digital-video, MIDI sequencer, VCR, videodisc, and waveform-audio devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SEEK, 
    DWORD dwFlags, (DWORD) (LPMCI_SEEK_PARMS) lpSeek);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpSeek

Address of an MCI_SEEK_PARMS structure. (Devices with extended command sets might replace 
this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
If a data sample size for a device is larger than 1 byte (such as with waveform-audio stereo data), this 
command moves to the beginning of the nearest sample when a specified position does not coincide with 
the start of a sample.

The following additional flags apply to all devices supporting MCI_SEEK:

MCI_SEEK_TO_END

Seek to the end of the content.

MCI_SEEK_TO_START

Seek to the beginning of the content.

MCI_TO

A position is included in the dwTo member of the structure identified by lpSeek. The units assigned to 
the position values are specified with the MCI_SET_TIME_FORMAT flag of the MCI_SET command. 
Do not use this flag with MCI_SEEK_TO_END or MCI_SEEK_TO_START.

 

The following additional flags are used with the vcr device type:

MCI_VCR_SEEK_AT

The dwAt member of the structure identified by lpSeek contains a time when the entire command 
begins.



MCI_VCR_SEEK_MARK

The dwMark member of the structure identified by lpSeek contains the numbered mark to search for.

MCI_VCR_SEEK_REVERSE

Seek direction is reverse; this is used only with the MCI_VCR_SEEK_MARK flag.
 

For VCR devices, the lpSeek parameter points to an MCI_VCR_SEEK_PARMS structure. 

The following additional flag is used with the videodisc device type:

MCI_VD_SEEK_REVERSE

Seek direction is reverse.
 

See Also
MCI_SEEK_PARMS, MCI_SET, MCI_VCR_SEEK_PARMS 



MCI_SET      

  

The MCI_SET command sets device information. CD audio, digital-video, MIDI sequencer, VCR, 
videodisc, video-overlay, and waveform-audio devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SET, 
    DWORD dwFlags, (DWORD) (LPMCI_SET_PARMS) lpSet);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpSet

Address of an MCI_SET_PARMS structure. (Devices with extended command sets might replace this 
structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to all devices supporting MCI_SET:

MCI_SET_AUDIO

An audio channel number is included in the dwAudio member of the structure identified by lpSet. 
This flag must be used with MCI_SET_ON or MCI_SET_OFF. Use one of the following constants to 
indicate the channel number:

MCI_SET_AUDIO_ALL

All audio channels.

MCI_SET_AUDIO_LEFT

Left channel.

MCI_SET_AUDIO_RIGHT

Right channel.

MCI_SET_DOOR_CLOSED

Closes the media cover (if any).

MCI_SET_DOOR_OPEN

Opens the media cover (if any).

MCI_SET_OFF

Disables the specified video or audio channel.



MCI_SET_ON

Enables the specified video or audio channel.

MCI_SET_TIME_FORMAT

A time format parameter is included in the dwTimeFormat member of the structure identified by 
lpSet. The following flags are used with this flag:

MCI_FORMAT_BYTES 

Within a PCM (Pulse Code Modulation) data format, changes the time member description to bytes 
for input or output. Recognized by the waveaudio device type.

MCI_FORMAT_FRAMES 

Subsequent commands will use frames. Recognized by the digitalvideo, vcr, and videodisc 
device types.

MCI_FORMAT_HMS 

Changes the time format to hours, minutes, and seconds. Recognized by the vcr and videodisc 
device types.

MCI_FORMAT_MILLISECONDS 

Changes the time format to milliseconds. Recognized by all device types. 

MCI_FORMAT_MSF 

Changes the time format to minutes, seconds, and frames. Recognized by the cdaudio and vcr 
device types.

MCI_FORMAT_SAMPLES 

Changes the time format to samples for input or output. Recognized by the waveaudio device 
type.

MCI_FORMAT_SMPTE_24, MCI_FORMAT_SMPTE_25, and MCI_FORMAT_SMPTE_30 

Sets the time format to 24, 25, and 30 frame SMPTE (Society of Motion Picture and Television 
Engineers), respectively. Recognized by the sequencer and vcr device types.

MCI_FORMAT_SMPTE_30DROP 

Sets the time format to 30 drop-frame SMPTE. Recognized by the sequencer and vcr device 
types.

MCI_FORMAT_TMSF 

Changes the time format to tracks, minutes, seconds, and frames. (MCI uses continuous track 
numbers.) Recognized by the cdaudio and vcr device types.

MCI_SET_VIDEO

Sets the video signal on or off. This flag must be used with either MCI_SET_ON or MCI_SET_OFF. 
Devices that do not have video return MCIERR_UNSUPPORTED_FUNCTION.

 

The following additional flags are used with the digitalvideo device type:

MCI_DGV_SET_FILEFORMAT

A file format parameter is included in the dwFileFormat member of the structure identified by lpSet. 
For digital-video devices, the file format is used for save or capture commands. If omitted, this might 
default to a device driver defined format. If the specified file format conflicts with the currently selected 
algorithm and quality, then they are changed to the defaults for the file format. The following file 



format constants are defined:

MCI_DGV_FF_AVI

AVI format. 

MCI_DGV_FF_AVSS

AVSS format. 

MCI_DGV_FF_DIB

DIB format. 

MCI_DGV_FF_JFIF

JFIF format. 

MCI_DGV_FF_JPEG

JPEG format.

MCI_DGV_FF_MPEG

MPEG format. 

MCI_DGV_FF_RDIB

RLE DIB format.

MCI_DGV_FF_RJPEG

RJPEG format.

MCI_DGV_SET_SEEK_EXACTLY

Sets the format used for positioning. This flag must be used with MCI_SET_ON or MCI_SET_OFF. If 
MCI_SET_ON is specified, playing or recording precisely accesses the frame specified with the 
MCI_FROM flag. This might add some extra delay if the requested frame is not a key frame. If 
MCI_SET_OFF is specified, the device will seek to a key-frame image that precedes the requested 
frame. For some files and devices, this might be the first frame of the file. The default for this flag is 
device dependent.

MCI_DGV_SET_SPEED

A speed parameter is included in the dwSpeed member of the structure identified by lpSet. Speed is 
specified as a ratio between the nominal frame rate and the desired frame rate where the nominal 
frame rate is designated as 1000. Half speed is 500 and double speed is 2000. The allowable speed 
range is dependent on the device and possibly the file, too.

MCI_DGV_SET_STILL

When used with MCI_DGV_SET_FILEFORMAT, MCI_SET sets the file format used for capture 
commands.

 

For digital-video devices, the lpSet parameter points to an MCI_DGV_SET_PARMS structure.

The following additional flags are used with the sequencer device type:

MCI_SEQ_FORMAT_SONGPTR 

Sets the time format to song pointer units. 

MCI_SEQ_SET_MASTER

Sets the sequencer as a source of synchronization data and indicates that the type of synchronization 
is specified in the dwMaster member of the structure identified by lpSet. MCISEQ returns 



MCIERR_UNSUPPORTED_FUNCTION. The following constants are defined for the synchronization 
type:

MCI_SEQ_MIDI 

The sequencer will send MIDI format synchronization data.

MCI_SEQ_SMPTE 

The sequencer will send SMPTE format synchronization data.

MCI_SEQ_NONE 

The sequencer will not send synchronization data.

MCI_SEQ_SET_OFFSET

Changes the SMPTE offset of a sequence to that specified by the dwOffset member of the structure 
identified by lpSet. This affects only sequences with a SMPTE division type.

MCI_SEQ_SET_PORT

Sets the output MIDI port of a sequence to that specified by the MIDI device identifier in the dwPort 
member of the structure identified by lpSet. The device closes the previous port (if any), and attempts 
to open and use the new port. If it fails, it returns an error and reopens the previously used port (if 
any). The following constants are defined for the ports:

MCI_SEQ_NONE 

Closes the previously used port (if any). The sequencer behaves exactly the same as if a port were 
open, except no MIDI message is sent.

MIDI_MAPPER 

Sets the port opened to the MIDI mapper.

MCI_SEQ_SET_SLAVE

Sets the sequencer to receive synchronization data and indicates that the type of synchronization is 
specified in the dwSlave member of the structure identified by lpSet. MCISEQ returns 
MCIERR_UNSUPPORTED_FUNCTION. The following constants are defined for the synchronization 
type:

MCI_SEQ_FILE 

Sets the sequencer to receive synchronization data contained in the MIDI file.

MCI_SEQ_MIDI 

Sets the sequencer to receive MIDI synchronization data.

MCI_SEQ_NONE

Sets the sequencer to ignore synchronization data in a MIDI stream.

MCI_SEQ_SMPTE 

Sets the sequencer to receive SMPTE synchronization data.

MCI_SEQ_SET_TEMPO

Changes the tempo of the MIDI sequence to that specified by the dwTempo member of the structure 
pointed to by lpSet. For sequences with division type PPQN, tempo is specified in beats per minute; 
for sequences with division type SMPTE, tempo is specified in frames per second.

 

For sequencer devices, the lpSet parameter points to an MCI_SEQ_SET_PARMS structure.



The following additional flags are used with the vcr device type:

MCI_VCR_SET_ASSEMBLE_RECORD

Sets the device to record in assemble or insert modes (when assemble is off, insert is on, and vice-
versa). Use with one of the following flag:

MCI_SET_ON

Sets assemble record on, and turns insert record off. Records all video, audio and timecode tracks.

MCI_SET_OFF

Sets assemble record off, and turns insert record on. When assemble record is off, individual 
tracks of video, audio, and timecode can be selected for recording.

MCI_VCR_SET_CLOCK

The dwClock member of the structure identified by lpSet contains the new clock time.

MCI_VCR_SET_COUNTER_FORMAT

The dwCounterFormat member of the structure identified by lpSet contains a constant specifying the 
new counter-time format to be used by the status counter. For a list of valid constants, see 
MCI_SET_TIME_FORMAT in the list of additional flags for this command.

MCI_VCR_SET_COUNTER_VALUE

The dwCounterValue member of the structure identified by lpSet contains the new counter value.

MCI_VCR_SET_INDEX

The dwIndex member of the structure identified by lpSet contains a constant indicating the contents 
of the on-screen display and must be one of the following:

MCI_VCR_INDEX_COUNTER

Displays counter.

MCI_VCR_INDEX_DATE

Displays date.

MCI_VCR_INDEX_TIME

Displays time.

MCI_VCR_INDEX_TIMECODE

Displays timecode.

For more information, see the MCI_INDEX command.

MCI_VCR_SET_PAUSE_TIMEOUT

The dwPauseTimeout member of the structure identified by lpSet contains the maximum duration, in 
milliseconds, of a pause command.

MCI_VCR_SET_POSTROLL_DURATION

The dwPostrollDuration member of the structure identified by lpSet contains the videotape length, in 
the current time format, needed to brake the VCR transport when a stop or pause command is 
issued.

MCI_VCR_SET_POWER

Sets the power on or off. Must be used with one of the following flags:

MCI_SET_OFF



Turns power off.

MCI_SET_ON

Turns power on.

MCI_VCR_SET_PREROLL_DURATION

The dwPrerollDuration member of the structure identified by lpSet contains the videotape length, in 
the current time format, needed to stabilize the VCR output. 

MCI_VCR_SET_RECORD_FORMAT

The dwRecordFormat member of the structure identified by lpSet contains a constant describing the 
record speed, which must be one of the following:

MCI_VCR_FORMAT_EP

Records at slow speed.

MCI_VCR_FORMAT_LP

Records at medium-slow speed.

MCI_VCR_FORMAT_SP

Records at standard speed.

MCI_VCR_SET_SPEED

The dwSpeed member of the structure identified by lpSet contains the new speed setting, where 
1000 is normal speed, 2000 is double speed, and 500 is half speed, and so on.

MCI_VCR_SET_TAPE_LENGTH

The dwTapeLength member of the structure identified by lpSet contains the new length of the tape, 
provided that the length of the tape is undetectable.

MCI_VCR_SET_TIME_MODE

The dwTimeMode member of the structure identified by lpSet contains a constant indicating the new 
positional time mode. The following constants are valid:

MCI_VCR_TIME_COUNTER

Forces the device to use counter exclusively.

MCI_VCR_TIME_DETECT

Each time a new videotape is inserted into the device, or the mode changes from not ready to 
ready, the device should attempt to determine if there is timecode available on the videotape. If 
timecode is available, use timecode in all subsequent commands that specify positions. Otherwise, 
use the counter.

MCI_VCR_TIME_TIMECODE

Forces the device to use timecode exclusively.

MCI_VCR_SET_TRACKING

Tunes the speed of the VCR tape transport with a fine adjustment, and must be used with one of the 
following flags:

MCI_VCR_PLUS

Increases the tape transport speed.

MCI_VCR_MINUS

Decreases the tape transport speed.



MCI_VCR_RESET

Returns the tracking adjustment to zero.
 

For VCR devices, the lpSet parameter points to an MCI_VCR_SET_PARMS structure.

The following additional flag is used with the videodisc device type:

MCI_VD_FORMAT_TRACK 

Changes the time format to tracks. MCI uses continuous track numbers. 
 

The following additional flags are used with the waveaudio device type:

MCI_WAVE_INPUT

Sets the input used for recording to the wInput member of the structure identified by lpSet.

MCI_WAVE_OUTPUT

Sets the output used for playing to the wOutput member of the structure identified by lpSet.

MCI_WAVE_SET_ANYINPUT

Any wave input compatible with the current format can be used for recording.

MCI_WAVE_SET_ANYOUTPUT

Any wave output compatible with the current format can be used for playing.

MCI_WAVE_SET_AVGBYTESPERSEC

Sets the bytes per second used for playing, recording, and saving to the nAvgBytesPerSec member 
of the structure identified by lpSet.

MCI_WAVE_SET_BITSPERSAMPLE

Sets the bits per sample used for playing, recording, and saving to the nBitsPerSample member of 
the PCM data format identified by lpSet.

MCI_WAVE_SET_BLOCKALIGN

Sets the block alignment used for playing, recording, and saving to the nBlockAlign member of the 
structure identified by lpSet.

MCI_WAVE_SET_CHANNELS

The number of channels is indicated in the nChannels member of the structure identified by lpSet.

MCI_WAVE_SET_FORMATTAG

Sets the format type used for playing, recording, and saving to the wFormatTag member of the 
structure identified by lpSet. Specifying WAVE_FORMAT_PCM changes the format to PCM.

MCI_WAVE_SET_SAMPLESPERSEC

Sets the samples per second used for playing, recording, and saving to the nSamplesPerSec 
member of the structure identified by lpSet.

 

For waveform-audio devices, the lpSet parameter points to an MCI_WAVE_SET_PARMS structure.

Several properties of waveform-audio data are defined when the file to store the data is created. These 
properties describe how the data is structured within the file and cannot be changed once recording 



begins. The following list of flags identifies these properties:

· MCI_WAVE_SET_AVGBYTESPERSEC

· MCI_WAVE_SET_BITSPERSAMPLE

· MCI_WAVE_SET_BLOCKALIGN

· MCI_WAVE_SET_CHANNELS

· MCI_WAVE_SET_FORMATTAG

· MCI_WAVE_SET_SAMPLESPERSEC
 

See Also
MCI_DGV_SET_PARMS, MCI_INDEX, MCI_SEQ_SET_PARMS, MCI_SET_PARMS, 
MCI_VCR_SET_PARMS, MCI_WAVE_SET_PARMS 



MCI_SETAUDIO      

  

The MCI_SETAUDIO command sets values associated with audio playback and capture. Digital-video 
and VCR devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SETAUDIO, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSetAudio);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpSetAudio

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following flags apply to the digitalvideo device type:

MCI_DGV_SETAUDIO_ALG

The lpstrAlgorithm member of the structure identified by lpSetAudio contains an address of a buffer 
containing the name of an audio compression algorithm. The compression algorithm is used by 
subsequent MCI_RESERVE or MCI_RECORD commands. The available algorithms are device 
dependent. If the algorithm is incompatible with the current file format, the file format is changed to 
the default format for the algorithm.

MCI_DGV_SETAUDIO_CLOCKTIME

The time specified is in milliseconds and is absolute time when used with 
MCI_DGV_SETAUDIO_OVER. (This time is not in step with the playing of the workspace.)

MCI_DGV_SETAUDIO_INPUT

Modifies the bass, treble, or volume flag so that it affects the input signal and modifies what is 
recorded. If possible, this is the default when monitoring the input.

MCI_DGV_SETAUDIO_ITEM

An audio constant is specified in the dwItem member of the structure identified by lpSetAudio. The 
constant identifies the value that is being set. The following constants are defined:

MCI_DGV_SETAUDIO_AVGBYTESPERSEC

The average number of bytes is specified in the dwValue member of the structure identified by 
lpSetAudio. This value sets the average number of bytes per second for playing or recording in the 



PCM (Pulse Code Modulation) and ADPCM (Adaptive Differential Pulse Code Modulation) formats. 
The file is saved in this format. 

MCI_DGV_SETAUDIO_BASS

The audio low frequency level is specified as a factor in the dwValue member of the structure 
identified by lpSetAudio.

MCI_DGV_SETAUDIO_BITSPERSAMPLE

The number of bits per sample is specified in the dwValue member of the structure identified by 
lpSetAudio. This value sets the number of bits per sample played or recorded in the PCM format. 
The file is saved in this format. 

MCI_DGV_SETAUDIO_BLOCKALIGN

The data block alignment is specified in the dwValue member of the structure identified by 
lpSetAudio. This value sets the alignment of data blocks relative to the start of input waveform 
data. 

MCI_DGV_SETAUDIO_SAMPLESPERSEC

The sample rate is specified in the dwValue member of the structure identified by lpSetAudio. This 
value sets the sample rate for playing and recording with the PCM and ADPCM algorithms. The file 
is saved in this format.

MCI_DGV_SETAUDIO_SOURCE

A constant specifying the source of audio input is included in the dwValue member of the structure 
identified by lpSetAudio. The following constants are defined for the audio input sources:

MCI_DGV_SETAUDIO_SOURCE_AVERAGE

        The average of the left and right audio channels. 

MCI_DGV_SETAUDIO_SOURCE_LEFT

        Left audio channel. 

MCI_DGV_SETAUDIO_SOURCE_RIGHT

        Right audio channel. 

MCI_DGV_SETAUDIO_SOURCE_STEREO

        Stereo. 

MCI_DGV_SETAUDIO_STREAM

An audio-stream is specified in the dwValue member of the structure identified by lpSetAudio. The 
integer value specifies the audio stream played back from the workspace. If the stream is not 
specified, the first physically interleaved audio stream is played. 

MCI_DGV_SETAUDIO_TREBLE

The audio high-frequency level is specified as a factor in the dwValue member of the structure 
identified by lpSetAudio. 

MCI_DGV_SETAUDIO_VOLUME

The audio level for one or both audio channels is specified as a factor in the dwValue member of 
the structure identified by lpSetAudio. If the left and right volumes have been set to different 
values, then the ratio of left to right volume is approximately unchanged.

MCI_DGV_SETAUDIO_LEFT

Enables the left audio channel when used with MCI_SET_ON. Disables the left audio channel when 
used with MCI_SET_OFF. When this flag is used with the combination of 
MCI_DGV_SETAUDIO_VALUE and MCI_DGV_SETAUDIO_VOLUME, it sets the volume of the left 
audio channel. When this flag is used with MCI_DGV_SETAUDIO_SOURCE, it specifies the left 



audio channel as the source for the audio input digitizer.

MCI_DGV_SETAUDIO_OVER

A transition length parameter is included in the dwOver member of the structure identified by 
lpSetAudio. The length value specifies how long (in units of the current time format) it should take to 
make a change that uses a factor. If this flag is not used, changes occur immediately.

MCI_DGV_SETAUDIO_QUALITY

The lpstrQuality member of the structure identified by lpSetAudio contains an address of a buffer 
defining the audio quality. A text-string within the buffer specifies the characteristics of the audio 
compression algorithm. 

The MCI_DGV_SETAUDIO_ALG flag can be used to select a quality descriptor for the specified 
algorithm. If this flag is omitted, then the current algorithm is used. 

The algorithms and descriptor names available depend on the device. Each device supplies 
documentation for the available algorithms and a description of the applicable descriptor names. The 
MCI_QUALITY command can define additional descriptor names.

MCI_DGV_SETAUDIO_RECORD

Specifies whether recording includes or excludes audio data. When combined with MCI_SET_ON, 
audio data is recorded. When combined with MCI_SET_OFF, audio data is excluded. The default 
includes audio data.

MCI_DGV_SETAUDIO_RIGHT

Enables the right audio channel when used with MCI_SET_ON. Disables the right audio channel 
when used with MCI_SET_OFF. When this flag is used with the combination of 
MCI_DGV_SETAUDIO_VALUE and MCI_DGV_SETAUDIO_VOLUME, it sets the volume of the right 
audio channel.

MCI_DGV_SETAUDIO_VALUE

A value is specified in the dwValue member of the structure identified by lpSetAudio. The meaning of 
the value is specified by the constant defined for the MCI_DGV_SETAUDIO_ITEM flag.

MCI_SET_OFF

Disables the specified audio channel.

MCI_SET_ON

Enables the specified audio channel.

MCI_SETAUDIO_OUTPUT

Modifies the bass, treble, or volume flag so that it modifies only the played signal and not what is 
recorded. If possible, this is the default when monitoring the input.

 

For digital-video devices, the lpSetAudio parameter points to an MCI_DGV_SETAUDIO_PARMS 
structure.

The following additional flags are used with the vcr device type:

MCI_VCR_SETAUDIO_RECORD

Sets the audio recording to on or off, which is used in conjunction with one of following flags:

MCI_SET_ON

Audio recording on.

MCI_SET_OFF



Audio recording off. It might be necessary to first turn off the assemble recording (using the 
MCI_SET command with the MCI_VCR_SET_ASSEMBLE_RECORD flag set to off) before the 
audio recording can be turned off.

MCI_TRACK

The dwTrack member of the structure identified by lpSetAudio specifies which track is affected by 
the command.

MCI_VCR_SETAUDIO_SOURCE

Sets the audio source. This flag must be used with the MCI_VCR_SETAUDIO_TO flag.

MCI_VCR_SETAUDIO_MONITOR

Sets the audio source monitor. This flag must be used with the MCI_VCR_SETAUDIO_TO flag.

MCI_VCR_SETAUDIO_TO

The dwTo member of the structure identified by lpSetAudio contains a constant describing the type of 
input or monitored input. It must be one of the following:

MCI_VCR_SRC_TYPE_TUNER

Type is tuner.

MCI_VCR_SRC_TYPE_LINE

Type is line.

MCI_VCR_SRC_TYPE_AUX

Type is auxiliary.

MCI_VCR_SRC_TYPE_GENERIC

Type is generic.

MCI_VCR_SRC_TYPE_MUTE

Type is mute. This can be used only with the MCI_VCR_SETAUDIO_SOURCE flag.

MCI_VCR_SRC_TYPE_OUTPUT

Type is output.

MCI_VCR_SETAUDIO_NUMBER

The dwNumber member of the structure identified by lpSetAudio contains the audio input (of the type 
specified in the dwTo member) to use.

 

For VCR devices, the lpSetAudio parameter points to an MCI_VCR_SETAUDIO_PARMS structure.

See Also
MCI_DGV_SETAUDIO_PARMS, MCI_GENERIC_PARMS, MCI_QUALITY, MCI_RECORD, 
MCI_RESERVE, MCI_SET, MCI_VCR_SETAUDIO_PARMS 



MCI_SETTIMECODE      

  

The MCI_SETTIMECODE command enables or disables timecode recording for a VCR. VCR devices 
recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SETTIMECODE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSetTimeCode);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpSetTimeCode

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flag applies to VCR devices:

MCI_VCR_SETTIMECODE_RECORD

Sets the timecode track recording to on or off. This flag is used in combination with one of the 
following additional flags:

MCI_SET_ON

Timecode recording on.

MCI_SET_OFF

Timecode recording off.
 

See Also
MCI_GENERIC_PARMS 



MCI_SETTUNER      

  

The MCI_SETTUNER command sets the current channel on the tuner. VCR devices recognize this 
command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SETTUNER, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSetTuner);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpSetTuner

Address of an MCI_VCR_SETTUNER_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to VCR devices:

MCI_VCR_SETTUNER_CHANNEL

The dwChannel member of the structure identified by lpSetTuner contains the new channel number.

MCI_VCR_SETTUNER_CHANNEL_DOWN

Decrements the tuner channel.

MCI_VCR_SETTUNER_CHANNEL_SEEK_DOWN

Searches for a valid channel in the reverse direction.

MCI_VCR_SETTUNER_CHANNEL_SEEK_UP

Searches for a valid channel in the forward direction.

MCI_VCR_SETTUNER_CHANNEL_UP

Increments the tuner channel.

MCI_VCR_SETTUNER_NUMBER

The dwNumber member of the structure identified by lpSetTuner specifies which logical tuner to 
affect with this command.

 

See Also
MCI_VCR_SETTUNER_PARMS 



MCI_SETVIDEO      

  

The MCI_SETVIDEO command sets values associated with video playback. Digital-video and VCR 
devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SETVIDEO, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSetVideo);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpSetVideo

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags are used with the digitalvideo device type:

MCI_DGV_SETVIDEO_ALG

The lpstrAlgorithm member of the structure identified by lpSetVideo contains an address of a buffer 
containing the name of a video compression algorithm. The compression algorithm is used by 
subsequent MCI_RESERVE or MCI_RECORD commands. The available algorithms are device 
dependent. 

If the specified algorithm is incompatible with the current file format, the file format is changed to the 
default format for the algorithm.

MCI_DGV_SETVIDEO_CLOCKTIME

When used with MCI_DGV_SETVIDEO_OVER, indicates time is specified in milliseconds and is 
absolute time. (This time is not in step with the playing of the workspace.)

MCI_DGV_SETVIDEO_INPUT

Modifies the MCI_DGV_SETVIDEO_BRIGHTNESS, MCI_DGV_SETVIDEO_COLOR, 
MCI_DGV_SETVIDEO_CONTRAST, MCI_DGV_SETVIDEO_GAMMA, 
MCI_DGV_SETVIDEO_SHARPNESS, or MCI_DGV_SETVIDEO_TINT so that it affects the input 
signal and modifies what is recorded. If possible, this is the default when monitoring the input.

MCI_DGV_SETVIDEO_ITEM

A video constant is specified in the dwItem member of the structure identified by lpSetVideo. The 
constant identifies the value that is being set. You can specify the following constants with this flag:

MCI_AVI_SETVIDEO_DRAW_PROCEDURE



A new drawing procedure address is specified in the dwValue member of the structure identified 
by lpSetVideo. You can specify a new drawing procedure only when the device is idle. This flag is 
recognized only by the MCIAVI digital-video driver. There is no equivalent to this flag in the string 
command interface.

MCI_AVI_SETVIDEO_PALETTE_COLOR

A new palette color is specified in the dwOver and dwValue members of the structure identified by 
lpSetVideo. The dwOver member specifies the palette index of the color to be changed and the 
dwValue member specifies the new color, as an RGB value. You must also specify the 
MCI_DGV_SETVIDEO_OVER and MCI_DGV_SETVIDEO_VALUE flags with 
MCI_DGV_SETVIDEO_ITEM when you use this constant. This flag is recognized only by the 
MCIAVI digital-video driver.

MCI_AVI_SETVIDEO_PALETTE_HALFTONE

Indicates that the halftone palette should be used, instead of the default palette. This flag is 
recognized only by the MCIAVI digital-video driver.

MCI_DGV_SETVIDEO_BITSPERPEL

The number of bits per pixel is specified in the dwValue member of the structure identified by 
lpSetVideo. The number of bits per pixel is used for saving captured or recorded data 

MCI_DGV_SETVIDEO_BRIGHTNESS

The video brightness level is specified as a factor in the dwValue member of the structure 
identified by lpSetVideo.

MCI_DGV_SETVIDEO_COLOR

The video color saturation level is specified as a factor in the dwValue member of the structure 
identified by lpSetVideo. 

MCI_DGV_SETVIDEO_CONTRAST

The video contrast level is specified as a factor in the dwValue member of the structure identified 
by lpSetVideo. 

MCI_DGV_SETVIDEO_FRAME_RATE

A frame rate is specified in the dwValue member of the structure identified by lpSetVideo. The rate 
is specified in units of frames per second times 1000. For example, 29.97 frames per second is 
specified as 29970. 

MCI_DGV_SETVIDEO_GAMMA

A gamma correction exponent value is specified in the dwValue member of the structure identified 
by lpSetVideo. Gamma correction adjusts the mapping between the intensity encoded in the 
presentation source and the displayed brightness. The value is the exponent multiplied by 1000. 
For example, 2200 indicates an exponent of 2.2. A value of 1000 indicates an exponent of 1, which 
applies no gamma correction. 

MCI_DGV_SETVIDEO_KEY_COLOR

A key color is specified in the dwValue member of the structure identified by lpSetVideo. The key 
color is a Windows RGB value. 

MCI_DGV_SETVIDEO_KEY_INDEX

A key index value is specified in the dwValue member of the structure identified by lpSetVideo. 
The index parameter is a physical palette index.

MCI_DGV_SETVIDEO_PALHANDLE

A palette handle is specified in the dwValue member of the structure identified by lpSetVideo. The 



palette handle is contained in the low-order word. Digital-video devices should not free the palette 
passed with this command. Applications should free it after they close the device. This flag is 
supported only by devices that use palettes. If this specified palette handle is zero, then the default 
palette is used. 

MCI_DGV_SETVIDEO_SHARPNESS

A video sharpness value is specified as a factor in the dwValue member of the structure identified 
by lpSetVideo. 

MCI_DGV_SETVIDEO_SOURCE

A constant specifying the source of the video input is specified in the dwValue member of the 
structure identified by lpSetVideo. The following constants are defined:

MCI_DGV_SETVIDEO_SRC_NTSC 

        Specifies NTSC. 

MCI_DGV_SETVIDEO_SRC_PAL

        Specifies PAL.

MCI_DGV_SETVIDEO_SRC_RGB 

        Specifies RGB. 

MCI_DGV_SETVIDEO_SRC_SECAM 

        Specifies SECAM. 

MCI_DGV_SETVIDEO_SRC_SVIDEO 

        Specifies SVIDEO.

MCI_DGV_SETVIDEO_STREAM

A video stream is specified in the dwValue member of the structure identified by lpSetVideo. The 
integer value specifies the video stream played back from the workspace. If the stream is not 
specified and the file format does not define a default stream, the first physically interleaved video 
stream is played.

MCI_DGV_SETVIDEO_TINT

A video tint value is specified as a factor in the dwValue member of the structure identified by 
lpSetVideo. Typically, this adjustment is modeled after the tint control of many color television sets, 
with 250 defined as green, 750 defined as red, and 0 (or 1000) defined as blue. The nominal value 
is always 500.

MCI_DGV_SETVIDEO_OUTPUT

The MCI_DGV_SETVIDEO_BRIGHTNESS, MCI_DGV_SETVIDEO_COLOR, 
MCI_DGV_SETVIDEO_CONTRAST, MCI_DGV_SETVIDEO_GAMMA, 
MCI_DGV_SETVIDEO_SHARPNESS, or MCI_DGV_SETVIDEO_TINT flag is modified so that it 
affects only the displayed signal and not what is recorded. If possible, this is the default when 
monitoring a file.

MCI_DGV_SETVIDEO_OVER

A transition length parameter is included in the dwOver member of the structure identified by 
lpSetVideo. The transition length specifies how long (in the current time format) it should take to make 
a change. If this flag is not used, the change occurs immediately.

MCI_DGV_SETVIDEO_QUALITY

The lpstrQuality member of the structure identified by lpSetVideo contains an address of a buffer 
describing the video quality. A text-string in the buffer specifies the characteristics of the video 
compression algorithm. 

The MCI_DGV_SETVIDEO_ALG flag can be used to select a quality descriptor for the specified 
algorithm. If this flag is omitted, then the current algorithm is used. 



The algorithms and descriptor names available depend on the device. Each device supplies 
documentation for the available algorithms and a description of the applicable descriptor names. The 
MCI_QUALITY command can define additional descriptor names. All devices support the descriptors 
"low", "medium", and "high". The default is driver specific.

MCI_DGV_SETVIDEO_RECORD

Specifies whether recording includes or excludes video data. When combined with MCI_SET_ON, 
video data is recorded. When combined with MCI_SET_OFF, video data is excluded. The default 
includes video data.

MCI_DGV_SETVIDEO_SRC_NUMBER

A number for the video source is specified in the dwSourceNumber member of the structure 
identified by lpSetVideo. If there is more than one input of the type specified by 
MCI_DGV_SETVIDEO_VALUE, the value selects the input. This flag must always be used with 
MCI_DGV_SETVIDEO_SOURCE. If MCI_DGV_SETVIDEO_VALUE is omitted, however, the 
specified source number indicates the absolute source to use as specified in the MCI_LIST 
command.

MCI_DGV_SETVIDEO_STILL

The algorithm name or quality value specified applies to still images. 

Every device driver must support an algorithm of "none", which means no compression. This is the 
default. In this case, digital-video devices save still images as RGB format device-independent 
bitmaps (DIBs).

MCI_DGV_SETVIDEO_VALUE

A value is included in the dwValue member of the structure identified by lpSetVideo. The meaning of 
the value is specified by the MCI_DGV_SETVIDEO_ITEM flag.

MCI_SET_OFF

Disables video output. For digital-video devices, disabling video sets the pixels in the destination 
rectangle defined by the MCI_PUT command (or its default, the client region of the current window) to 
a solid color, but it has no effect on the frame buffer. You can hide the window with the MCI_WINDOW 
command if desired. The source of video, whether it's the workspace or an external input, might 
continue to store new images in the frame buffer, but they are not displayed until the video is enabled. 
While applications should use the MCI_SETVIDEO command to control this function, digital-video 
devices must still support this flag. The default value after an open is on.

MCI_SET_ON

Enables video output.
 

For digital-video devices, the lpSetVideo parameter points to an MCI_DGV_SETVIDEO_PARMS 
structure.

The following additional flags are used with the vcr device type:

MCI_VCR_SETVIDEO_RECORD

Sets the video recording to on or off. Used in conjunction with one of following flags:

MCI_SET_ON

Video recording on.

MCI_SET_OFF

Video recording off. It might be necessary to first turn off the assemble recording (using the 
MCI_SET command with the MCI_VCR_SET_ASSEMBLE_RECORD flag set to off) before the 



video recording can be turned off.

MCI_TRACK

The dwTrack member of the structure identified by lpSetVideo specifies which track is affected by 
the command.

MCI_VCR_SETVIDEO_SOURCE

Sets the video source, and must be used with the MCI_VCR_SETVIDEO_TO flag.

MCI_VCR_SETVIDEO_MONITOR

Sets the video source monitor, and must be used with the MCI_VCR_SETVIDEO_TO flag.

MCI_VCR_SETVIDEO_TO

The dwTo member of the structure identified by lpSetVideo contains one of the following constants: 

MCI_VCR_SRC_TYPE_TUNER
MCI_VCR_SRC_TYPE_LINE
MCI_VCR_SRC_TYPE_AUX
MCI_VCR_SRC_TYPE_GENERIC
MCI_VCR_SRC_TYPE_MUTE
MCI_VCR_SRC_TYPE_OUTPUT
MCI_VCR_SRC_TYPE_RGB

MCI_VCR_SETVIDEO_NUMBER

The dwNumber member of the structure identified by lpSetVideo contains the video input (of the type 
specified in the dwTo member) to use.

 

For VCR devices, the lpSetVideo parameter points to an MCI_VCR_SETVIDEO_PARMS structure.

See Also
MCI_DGV_SETVIDEO_PARMS, MCI_GENERIC_PARMS, MCI_LIST, MCI_PUT, MCI_QUALITY, 
MCI_RECORD, MCI_RESERVE, MCI_SET, MCI_VCR_SETVIDEO_PARMS, MCI_WINDOW, RGB 



MCI_SIGNAL      

  

The MCI_SIGNAL command sets a specified position in the workspace. Digital-video devices recognize 
this command. MCIAVI supports only one active signal at a time. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SIGNAL, 
    DWORD dwFlags, (DWORD) (LPMCI_DGV_SIGNAL_PARMS) lpSignal);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpSignal

Address of an MCI_DGV_SIGNAL_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The window whose handle you specify in the dwCallback member of the MCI_DGV_SIGNAL_PARMS 
structure receives the MM_MCISIGNAL message.

The following flags apply to digital-video devices:

MCI_DGV_SIGNAL_AT

A signal position is included in the dwPosition member of the structure identified by lpSignal. 

MCI_DGV_SIGNAL_CANCEL

Removes the signal position specified by the value associated with MCI_DGV_SIGNAL_USERVAL. 

MCI_DGV_SIGNAL_EVERY

A signal-period value is included in the dwPeriod member of the structure identified by lpSignal. 

MCI_DGV_SIGNAL_POSITION

The device will send the position value with the Windows message instead of the user-specified 
value. 

MCI_DGV_SIGNAL_USERVAL

A data value is included in the dwUserParm member of the structure identified by lpSignal. The data 
value associated with this request is reported back with the Windows message. 

 

See Also
MCI_DGV_SIGNAL_PARMS 



MCI_SPIN      

  

The MCI_SPIN command starts the device spinning up or down. Videodisc devices recognize this 
command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SPIN, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSpin);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see The Wait, Notify, and Test Flags.

lpSpin

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags apply to videodisc devices:

MCI_VD_SPIN_DOWN

Stops the disc spinning.

MCI_VD_SPIN_UP

Starts the disc spinning.
 

See Also
MCI_GENERIC_PARMS 



MCI_STATUS      

  

The MCI_STATUS command retrieves information about an MCI device. All devices recognize this 
command. Information is returned in the dwReturn member of the structure identified by the lpStatus 
parameter.

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_STATUS, 
    DWORD dwFlags, (DWORD) (LPMCI_STATUS_PARMS) lpStatus);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpStatus

Address of an MCI_STATUS_PARMS structure. (Devices with extended command sets might replace 
this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional standard and command-specific flags apply to all devices supporting 
MCI_STATUS:

MCI_STATUS_ITEM

Specifies that the dwItem member of the structure identified by lpStatus contains a constant 
specifying which status item to obtain. The following constants define which status item to return in 
the dwReturn member of the structure:

MCI_STATUS_CURRENT_TRACK 

The dwReturn member is set to the current track number. MCI uses continuous track numbers.

MCI_STATUS_LENGTH 

The dwReturn member is set to the total media length.

MCI_STATUS_MODE 

The dwReturn member is set to the current mode of the device. The modes include the following:

MCI_MODE_NOT_READY
MCI_MODE_PAUSE
MCI_MODE_PLAY
MCI_MODE_STOP
MCI_MODE_OPEN
MCI_MODE_RECORD
MCI_MODE_SEEK



MCI_STATUS_NUMBER_OF_TRACKS 

The dwReturn member is set to the total number of playable tracks.

MCI_STATUS_POSITION 

The dwReturn member is set to the current position.

MCI_STATUS_READY 

The dwReturn member is set to TRUE if the device is ready; it is set to FALSE otherwise.

MCI_STATUS_TIME_FORMAT 

The dwReturn member is set to the current time format of the device. The time formats include:

MCI_FORMAT_BYTES
MCI_FORMAT_FRAMES
MCI_FORMAT_HMS
MCI_FORMAT_MILLISECONDS
MCI_FORMAT_MSF
MCI_FORMAT_SAMPLES
MCI_FORMAT_TMSF

MCI_STATUS_START

Obtains the starting position of the media. To get the starting position, combine this flag with 
MCI_STATUS_ITEM and set the dwItem member of the structure identified by lpStatus to 
MCI_STATUS_POSITION.

MCI_TRACK

Indicates a status track parameter is included in the dwTrack member of the structure identified by 
lpStatus. You must use this flag with the MCI_STATUS_POSITION or MCI_STATUS_LENGTH 
constants. When used with MCI_STATUS_POSITION, MCI_TRACK obtains the starting position of 
the specified track. When used with MCI_STATUS_LENGTH, MCI_TRACK obtains the length of the 
specified track. MCI uses continuous track numbers.

 

The following additional flags are used with the cdaudio device type. These constants are used in the 
dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is 
specified for the dwFlags parameter.

MCI_CDA_STATUS_TYPE_TRACK

The dwReturn member is set to one of the following values:

MCI_CDA_TRACK_AUDIO
MCI_CDA_TRACK_OTHER

To use this flag, the MCI_TRACK flag must be set, and the dwTrack member of the structure 
identified by lpStatus must contain a valid track number.

MCI_STATUS_MEDIA_PRESENT 

The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE 
otherwise.

 

The following additional flags are used with the digitalvideo device type:

MCI_DGV_STATUS_DISKSPACE

The lpstrDrive member of the structure identified by lpStatus specifies a disk drive or, in some 
implementations, a path. The MCI_STATUS command returns the approximate amount of disk space 
that could be obtained by the MCI_RESERVE command in the dwReturn member of the structure 



identified by lpStatus. The disk space is measured in units of the current time format.

MCI_DGV_STATUS_INPUT

The constant specified by the dwItem member of the structure identified by lpStatus applies to the 
input.

MCI_DGV_STATUS_LEFT

The constant specified by the dwItem member of the structure identified by lpStatus applies to the left 
audio channel.

MCI_DGV_STATUS_NOMINAL

The constant specified by the dwItem member of the structure identified by lpStatus requests the 
nominal value rather than the current value.

MCI_DGV_STATUS_OUTPUT

The constant specified by the dwItem member of the structure identified by lpStatus applies to the 
output.

MCI_DGV_STATUS_RECORD

The frame rate returned for the MCI_DGV_STATUS_FRAME_RATE flag is the rate used for 
compression.

MCI_DGV_STATUS_REFERENCE

The dwReturn member of the structure identified by lpStatus returns the nearest key-frame image 
that precedes the frame specified in the dwReference member.

MCI_DGV_STATUS_RIGHT

The constant specified by the dwItem member of the structure identified by lpStatus applies to the 
right audio channel.

 

The following constants are used with the digitalvideo device type in the dwItem member of the 
structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is specified for the dwFlags 
parameter.

MCI_AVI_STATUS_AUDIO_BREAKS

The dwReturn member returns the number of times the audio portion of the last AVI sequence broke 
up. The system counts an audio break whenever it attempts to write audio data to the device driver 
and discovers that the driver has already played all of the available data. This flag is recognized only 
by the MCIAVI digital-video driver.

MCI_AVI_STATUS_FRAMES_SKIPPED

The dwReturn member returns the number of frames that were not drawn when the last AVI 
sequence was played. This flag is recognized only by the MCIAVI digital-video driver.

MCI_AVI_STATUS_LAST_PLAY_SPEED

The dwReturn member returns a value representing how closely the actual playing time of the last 
AVI sequence matched the target playing time. The value 1000 indicates that the target time and the 
actual time were the same. A value of 2000, for example, would indicate that the AVI sequence took 
twice as long to play as it should have. This flag is recognized only by the MCIAVI digital-video driver.

MCI_DGV_STATUS_AUDIO

The dwReturn member returns MCI_ON or MCI_OFF depending on the most recent 
MCI_SET_AUDIO option for the MCI_SET command. It returns MCI_ON if either or both speakers 
are enabled, and MCI_OFF otherwise. 



MCI_DGV_STATUS_AUDIO_INPUT

The dwReturn member returns the approximate instantaneous audio level of the analog audio signal. 
A value greater than 1000 implies there is clipping distortion. Some devices can determine this value 
only while recording audio. This status value has no associated MCI_SET or MCI_SETAUDIO 
command. This value is related to, but normalized differently from, the waveform-audio command 
MCI_WAVE_STATUS_LEVEL. 

MCI_DGV_STATUS_AUDIO_RECORD

The dwReturn member returns MCI_ON or MCI_OFF reflecting the state set by the 
MCI_DGV_SETAUDIO_RECORD flag of the MCI_SETAUDIO command. 

MCI_DGV_STATUS_AUDIO_SOURCE

The dwReturn member returns the current audio digitizer source:

MCI_DGV_SETAUDIO_AVERAGE

Specifies the average of the left and right audio channels. 

MCI_DGV_SETAUDIO_LEFT

Specifies the left audio channel. 

MCI_DGV_SETAUDIO_RIGHT

Specifies the right audio channel. 

MCI_DGV_SETAUDIO_STEREO

Specifies stereo. 

MCI_DGV_STATUS_AUDIO_STREAM

The dwReturn member returns the current audio-stream number.

MCI_DGV_STATUS_AVGBYTESPERSEC

The dwReturn member returns the average number of bytes per second used for recording.

MCI_DGV_STATUS_BASS

The dwReturn member returns the current audio bass level. Use MCI_DGV_STATUS_NOMINAL 
with this flag to obtain the nominal level. 

MCI_DGV_STATUS_BITSPERPEL

The dwReturn member returns the number of bits per pixel used for saving captured or recorded 
data. 

MCI_DGV_STATUS_BITSPERSAMPLE

The dwReturn member returns the number of bits per sample the device uses for recording. This 
applies only to devices supporting the PCM format. 

MCI_DGV_STATUS_BLOCKALIGN

The dwReturn member returns the alignment of data blocks relative to the start of the input 
waveform. 

MCI_DGV_STATUS_BRIGHTNESS

The dwReturn member returns the current video brightness level. Use 
MCI_DGV_STATUS_NOMINAL with this flag to obtain the nominal level. 

MCI_DGV_STATUS_COLOR

The dwReturn member returns the current color level. Use MCI_DGV_STATUS_NOMINAL with this 



flag to obtain the nominal level. 

MCI_DGV_STATUS_CONTRAST

The dwReturn member returns the current contrast level. Use MCI_DGV_STATUS_NOMINAL with 
this flag to obtain the nominal level.

MCI_DGV_STATUS_FILEFORMAT

The dwReturn member returns the current file format for recording or saving.

MCI_DGV_STATUS_FILE_MODE

The dwReturn member returns the state of the file operation:

MCI_DGV_FILE_MODE_EDITING

Returned during cut, copy, delete, paste, and undo operations. 

MCI_DGV_FILE_MODE_IDLE

Returned when the file is ready for the next operation. 

MCI_DGV_FILE_MODE_LOADING

Returned while the file is being loaded. 

MCI_DGV_FILE_MODE_SAVING

Returned while the file is being saved. 

MCI_DGV_STATUS_FILE_COMPLETION

The dwReturn member returns the estimated percentage a load, save, capture, cut, copy, delete, 
paste, or undo operation has progressed. (Applications can use this to provide a visual indicator of 
progress.) This flag is not supported by all digital-video devices. 

MCI_DGV_STATUS_FORWARD

The dwReturn member returns TRUE if the device direction is forward or the device is not playing.

MCI_DGV_STATUS_FRAME_RATE

The dwReturn member must be used with MCI_DGV_STATUS_NOMINAL, 
MCI_DGV_STATUS_RECORD, or both. When used with MCI_DGV_STATUS_RECORD, the current 
frame rate used for recording is returned. When used with both MCI_DGV_STATUS_RECORD and 
MCI_DGV_STATUS_NOMINAL, the nominal frame rate associated with the input video signal is 
returned. When used with MCI_DGV_STATUS_NOMINAL, the nominal frame rate associated with 
the file is returned. In all cases the units are in frames per second multiplied by 1000.

MCI_DGV_STATUS_GAMMA

The dwReturn member returns the current gamma value. Use MCI_DGV_STATUS_NOMINAL with 
this flag to obtain the nominal level. 

MCI_DGV_STATUS_HPAL

The dwReturn member returns the ASCII decimal value for the current palette handle. The handle is 
contained in the low-order word of the returned value. 

MCI_DGV_STATUS_HWND

The dwReturn member returns the ASCII decimal value for the current explicit or default window 
handle associated with this device driver instance. The handle is contained in the low-order word of 
the returned value. 

MCI_DGV_STATUS_KEY_COLOR

The dwReturn member returns the current key-color value. 



MCI_DGV_STATUS_KEY_INDEX

The dwReturn member returns the current key-index value.

MCI_DGV_STATUS_MONITOR

The dwReturn member returns a constant indicating the source of the current presentation. The 
following constants are defined:

MCI_DGV_MONITOR_FILE

A file is the source. 

MCI_DGV_MONITOR_INPUT

The input is the source. 

MCI_DGV_STATUS_MONITOR_METHOD

The dwReturn member returns a constant indicating the method used for input monitoring. The 
following constants are defined:

MCI_DGV_METHOD_DIRECT

Direct input monitoring. 

MCI_DGV_METHOD_POST

Post-input monitoring. 

MCI_DGV_METHOD_PRE

Pre-input monitoring.

MCI_DGV_STATUS_PAUSE_MODE

The dwReturn member returns MCI_MODE_PLAY if the device was paused while playing and 
returns MCI_MODE_RECORD if the device was paused while recording. The command returns 
MCIERR_NONAPPLICABLE_FUNCTION as an error return if the device is not paused.

MCI_DGV_STATUS_SAMPLESPERSECOND

The dwReturn member returns the number of samples per second recorded. 

MCI_DGV_STATUS_SEEK_EXACTLY

The dwReturn member returns TRUE or FALSE indicating whether or not the seek exactly format is 
set. (Applications can set this format by using the MCI_SET command with the 
MCI_DGV_SET_SEEK_EXACTLY flag.)

MCI_DGV_STATUS_SHARPNESS

The dwReturn member returns the current sharpness level. Use MCI_DGV_STATUS_NOMINAL with 
this flag to obtain the nominal level.

MCI_DGV_STATUS_SIZE

The dwReturn member returns the approximate playback duration of compressed data that the 
reserved workspace will hold. The duration units are in the current time format. It returns zero if there 
is no reserved disk space. The size returned is approximate since the precise disk space for 
compressed data cannot, in general, be predicted until after the data has been compressed. 

MCI_DGV_STATUS_SMPTE

The dwReturn member returns the SMPTE time code associated with the current position in the 
workspace.

MCI_DGV_STATUS_SPEED



The dwReturn member returns the current playback speed.

MCI_DGV_STATUS_STILL_FILEFORMAT

The dwReturn member returns the current file format for the MCI_CAPTURE command.

MCI_DGV_STATUS_TINT

The dwReturn member returns the current video tint level. Use MCI_DGV_STATUS_NOMINAL with 
this flag to obtain the nominal level.

MCI_DGV_STATUS_TREBLE

The dwReturn member returns the current audio treble level. Use MCI_DGV_STATUS_NOMINAL 
with this flag to obtain the nominal level.

MCI_DGV_STATUS_UNSAVED

The dwReturn member returns TRUE if there is recorded data in the workspace that might be lost as 
a result of a MCI_CLOSE, MCI_LOAD, MCI_RECORD, MCI_RESERVE, MCI_CUT, MCI_DELETE, 
or MCI_PASTE command. The member returns FALSE otherwise.

MCI_DGV_STATUS_VIDEO

The dwReturn member returns MCI_ON if video is enabled or MCI_OFF if it is disabled. 

MCI_DGV_STATUS_VIDEO_RECORD

The dwReturn member returns MCI_ON or MCI_OFF, reflecting the state set by the 
MCI_DGV_SETVIDEO_RECORD flag of the MCI_SETVIDEO command.

MCI_DGV_STATUS_VIDEO_SOURCE

The dwReturn member returns a constant indicating the type of video source set by the 
MCI_DGV_SETVIDEO_SOURCE flag of the MCI_SETVIDEO command. 

MCI_DGV_STATUS_VIDEO_SRC_NUM

The dwReturn member returns the number within its type of the video-input source currently active.

MCI_DGV_STATUS_VIDEO_STREAM

The dwReturn member returns the current video-stream number.

MCI_DGV_STATUS_VOLUME

The dwReturn member returns the average of the volume to the left and right speakers. Use 
MCI_DGV_STATUS_NOMINAL with this flag to obtain the nominal level.

MCI_DGV_STATUS_WINDOW_VISIBLE

The dwReturn member returns TRUE if the window is not hidden. 

MCI_DGV_STATUS_WINDOW_MINIMIZED

The dwReturn member returns TRUE if the window is minimized.

MCI_DGV_STATUS_WINDOW_MAXIMIZED

The dwReturn member returns TRUE if the window is maximized.

MCI_STATUS_MEDIA_PRESENT

The dwReturn member returns TRUE.
 

For digital-video devices, the lpStatus parameter points to an MCI_DGV_STATUS_PARMS structure.

The following additional flags are used with the sequencer device type. These constants are used in the 



dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is 
specified for the dwFlags parameter.

MCI_SEQ_STATUS_DIVTYPE 

The dwReturn member is set to one of the following values indicating the current division type of a 
sequence: 

MCI_SEQ_DIV_PPQN
MCI_SEQ_DIV_SMPTE_24
MCI_SEQ_DIV_SMPTE_25
MCI_SEQ_DIV_SMPTE_30
MCI_SEQ_DIV_SMPTE_30DROP

MCI_SEQ_STATUS_MASTER 

The dwReturn member is set to the synchronization type used for master operation.

MCI_SEQ_STATUS_OFFSET 

The dwReturn member is set to the current SMPTE offset of a sequence.

MCI_SEQ_STATUS_PORT 

The dwReturn member is set to the MIDI device identifier for the current port used by the sequence.

MCI_SEQ_STATUS_SLAVE 

The dwReturn member is set to the synchronization type used for slave operation.

MCI_SEQ_STATUS_TEMPO 

The dwReturn member is set to the current tempo of a MIDI sequence in beats per minute for PPQN 
files, or frames per second for SMPTE files.

MCI_STATUS_MEDIA_PRESENT 

The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE 
otherwise.

 

The following additional flags are used with the vcr device type. These constants are used in the dwItem 
member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is specified for 
the dwFlags parameter.

MCI_STATUS_MEDIA_PRESENT 

The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE 
otherwise.

MCI_VCR_STATUS_ASSEMBLE_RECORD

The dwReturn member is set to TRUE if assemble mode is on; it is set to FALSE otherwise.

MCI_VCR_STATUS_AUDIO_MONITOR

The dwReturn member is set to a constant, indicating the currently selected audio-monitor type.

MCI_VCR_STATUS_AUDIO_MONITOR_NUMBER

The dwReturn member is set to the number of the currently selected audio-monitor type.

MCI_VCR_STATUS_AUDIO_RECORD

The dwReturn member is set to TRUE if audio will be recorded when the next record command is 
given; it is set to FALSE otherwise. If you specify MCI_TRACK in the dwFlags parameter of this 
command, dwTrack contains the track this inquiry applies to.



MCI_VCR_STATUS_AUDIO_SOURCE

The dwReturn member is set to a constant, indicating the current audio-source type.

MCI_VCR_STATUS_AUDIO_SOURCE_NUMBER

The dwReturn member is set to the number of the currently selected audio-source type.

MCI_VCR_STATUS_CLOCK

The dwReturn member is set to the current clock value, in total clock increments.

MCI_VCR_STATUS_CLOCK_ID

The dwReturn member is set to a number which uniquely describes the clock in use.

MCI_VCR_STATUS_COUNTER_FORMAT

The dwReturn member is set to a constant describing the current counter format. For more 
information, see the MCI_SET_TIME_FORMAT flag of the MCI_SET command.

MCI_VCR_STATUS_COUNTER_RESOLUTION

The dwReturn member is set to a constant describing the resolution of the counter, and is one of the 
following values:

MCI_VCR_COUNTER_RES_FRAMES

Counter has resolution of frames.

MCI_VCR_COUNTER_RES_SECONDS

Counter has resolution of seconds.

MCI_VCR_STATUS_COUNTER_VALUE

The dwReturn member is set to the current counter reading, in the current counter-time format.

MCI_VCR_STATUS_FRAME_RATE

The dwReturn member is set to the current native frame rate of the device.

MCI_VCR_STATUS_INDEX

The dwReturn member is set to a constant, describing the current contents of the on-screen display, 
and is one of the following:

MCI_VCR_INDEX_COUNTER

MCI_VCR_INDEX_DATE

MCI_VCR_INDEX_TIME

MCI_VCR_INDEX_TIMECODE

MCI_VCR_STATUS_INDEX_ON

The dwReturn member is set to TRUE if the on-screen display is on; it is set to FALSE otherwise.

MCI_VCR_STATUS_MEDIA_TYPE

The dwReturn member is set to one of the following:

MCI_VCR_MEDIA_8MM
MCI_VCR_MEDIA_HI8
MCI_VCR_MEDIA_VHS
MCI_VCR_MEDIA_SVHS
MCI_VCR_MEDIA_BETA
MCI_VCR_MEDIA_EDBETA
MCI_VCR_MEDIA_OTHER

MCI_VCR_STATUS_NUMBER



The dwNumber member is set to the logical-tuner number when you use this flag with the 
MCI_VCR_STATUS_TUNER_CHANNEL flag.

MCI_VCR_STATUS_NUMBER_OF_AUDIO_TRACKS

The dwReturn member is set to the number of audio tracks that are independently selectable.

MCI_VCR_STATUS_NUMBER_OF_VIDEO_TRACKS

The dwReturn member is set to the number of video tracks that are independently selectable.

MCI_VCR_STATUS_PAUSE_TIMEOUT

The dwReturn member is set to the maximum duration, in milliseconds, of a pause command. The 
return value of zero indicates that no time-out will occur.

MCI_VCR_STATUS_PLAY_FORMAT

The dwReturn member is set to one of the following:

MCI_VCR_FORMAT_EP
MCI_VCR_FORMAT_LP
MCI_VCR_FORMAT_OTHER
MCI_VCR_FORMAT_SP

MCI_VCR_STATUS_POSTROLL_DURATION

The dwReturn member is set to the length of the videotape that will play after the spot at which it was 
stopped, in the current time format. This is needed to brake the VCR tape transport from a stop or 
pause command.

MCI_VCR_STATUS_POWER_ON

The dwReturn member is set to TRUE if the power is on; it is set to FALSE otherwise.

MCI_VCR_STATUS_PREROLL_DURATION

The dwReturn member is set to the length of the videotape that will play before the spot at which it 
was started, in the current time format. This is needed to stabilize the VCR output.

MCI_VCR_STATUS_RECORD_FORMAT

The dwReturn member is set to one of the following:

MCI_VCR_FORMAT_EP
MCI_VCR_FORMAT_LP
MCI_VCR_FORMAT_OTHER
MCI_VCR_FORMAT_SP

MCI_VCR_STATUS_SPEED

The dwReturn member is set to the current speed. For more information, see the 
MCI_VCR_SET_SPEED flag of the MCI_SET command.

MCI_VCR_STATUS_TIME_MODE

The dwReturn member is set to one of the following:

MCI_VCR_TIME_COUNTER
MCI_VCR_TIME_DETECT
MCI_VCR_TIME_TIMECODE

For more information, see the MCI_VCR_SET_TIME_MODE flag of the MCI_SET command.

MCI_VCR_STATUS_TIME_TYPE

The dwReturn member is set to a constant describing the current time type in use (used by play, 
record, seek, and so on), and is one of the following:

MCI_VCR_TIME_COUNTER



Counter is in use.

MCI_VCR_TIME_TIMECODE

Timecode is in use.

MCI_VCR_STATUS_TIMECODE_PRESENT

The dwReturn member is set to TRUE if timecode is present at the current position in the content; it 
is set to FALSE otherwise.

MCI_VCR_STATUS_TIMECODE_RECORD

The dwReturn member is set to TRUE if the timecode will be recorded when the next record 
command is given; it is set to FALSE otherwise.

MCI_VCR_STATUS_TIMECODE_TYPE

The dwReturn member is set to a constant, describing the type of timecode that is directly supported 
by the device, and is one of the following:

MCI_VCR_TIMECODE_TYPE_NONE

This device does not use a timecode.

MCI_VCR_TIMECODE_TYPE_OTHER

This device uses an unspecified timecode.

MCI_VCR_TIMECODE_TYPE_SMPTE

This device uses SMPTE timecode.

MCI_VCR_TIMECODE_TYPE_SMPTE_DROP

This device uses SMPTE drop timecode.

MCI_VCR_STATUS_TUNER_CHANNEL

The dwReturn member is set to the current channel number. If you specify 
MCI_VCR_STATUS_NUMBER in the dwFlags parameter of this command, dwNumber contains the 
logical-tuner number this command applies to.

MCI_VCR_STATUS_VIDEO_MONITOR

The dwReturn member is set to a constant, indicating the currently selected video-monitor type.

MCI_VCR_STATUS_VIDEO_MONITOR_NUMBER

The dwReturn member is set to the number of the currently selected video-monitor type.

MCI_VCR_STATUS_VIDEO_RECORD

The dwReturn member is set to TRUE if video will be recorded when the next record command is 
given; it is set to FALSE otherwise. If you specify MCI_TRACK in the dwFlags parameter of this 
command, dwTrack contains the track this inquiry applies to.

MCI_VCR_STATUS_VIDEO_SOURCE

The dwReturn member is set to a constant indicating the currently selected video-source type.

MCI_VCR_STATUS_VIDEO_SOURCE_NUMBER

The dwReturn member is set to the number of the currently selected video-source type.

MCI_VCR_STATUS_WRITE_PROTECTED

The dwReturn member is set to TRUE if the media is write-protected; it is set to FALSE otherwise.
 



For VCR devices, the lpStatus parameter points to an MCI_VCR_STATUS_PARMS structure.

Using the MCI_STATUS_LENGTH flag to determine the length of the media always returns 2 hours for 
VCR devices, unless the length has been explicitly changed using the MCI_SET command.

The following additional flags are used with the overlay device type. These constants are used in the 
dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is 
specified for the dwFlags parameter.

MCI_OVLY_STATUS_HWND

The dwReturn member is set to the handle of the window associated with the video-overlay device.

MCI_OVLY_STATUS_STRETCH

The dwReturn member is set to TRUE if stretching is enabled; it is set to FALSE otherwise.

MCI_STATUS_MEDIA_PRESENT

The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE 
otherwise.

 

The following additional flags are used with the videodisc device type. These constants are used in the 
dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is 
specified for the dwFlags parameter.

MCI_STATUS_MEDIA_PRESENT 

The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE 
otherwise.

MCI_STATUS_MODE 

The dwReturn member is set to the current mode of the device. Videodisc devices can return the 
MCI_VD_MODE_PARK constant, in addition to the constants any device can return, as documented 
with the dwFlags parameter.

MCI_VD_STATUS_DISC_SIZE 

The dwReturn member is set to the size of the loaded disc in inches (8 or 12).

MCI_VD_STATUS_FORWARD

The dwReturn member is set to TRUE if playing forward; it is set to FALSE otherwise.

The MCI videodisc device does not support this flag.

MCI_VD_STATUS_MEDIA_TYPE 

The dwReturn member is set to the media type of the inserted media. The following media types can 
be returned:

MCI_VD_MEDIA_CAV
MCI_VD_MEDIA_CLV
MCI_VD_MEDIA_OTHER

MCI_VD_STATUS_SIDE 

The dwReturn member is set to 1 or 2 to indicate which side of the disc is loaded. Not all videodisc 
devices support this flag.

MCI_VD_STATUS_SPEED 

The dwReturn member is set to the play speed in frames per second. The MCIPIONR.DRV device 
driver returns MCIERR_UNSUPPORTED_FUNCTION.

 



The following additional flags are used with the waveaudio device type. These constants are used in the 
dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is 
specified for the dwFlags parameter.

MCI_WAVE_FORMATTAG 

The dwReturn member is set to the current format tag used for playing, recording, and saving.

MCI_WAVE_INPUT 

The dwReturn member is set to the wave input device used for recording. If no device is in use and 
no device has been explicitly set, then the error return is MCIERR_WAVE_INPUTUNSPECIFIED.

MCI_WAVE_OUTPUT 

The dwReturn member is set to the wave output device used for playing. If no device is in use and 
no device has been explicitly set, then the error return is MCIERR_WAVE_OUTPUTUNSPECIFIED.

MCI_WAVE_STATUS_AVGBYTESPERSEC 

The dwReturn member is set to the current bytes per second used for playing, recording, and saving.

MCI_WAVE_STATUS_BITSPERSAMPLE 

The dwReturn member is set to the current bits per sample used for playing, recording, and saving 
PCM formatted data.

MCI_WAVE_STATUS_BLOCKALIGN 

The dwReturn member is set to the current block alignment used for playing, recording, and saving.

MCI_WAVE_STATUS_CHANNELS 

The dwReturn member is set to the current channel count used for playing, recording, and saving.

MCI_WAVE_STATUS_LEVEL

The dwReturn member is set to the current record or playback level of PCM formatted data. The 
value is returned as an 8- or 16-bit value, depending on the sample size used. The right or mono 
channel level is returned in the low-order word. The left channel level is returned in the high-order 
word.

MCI_WAVE_STATUS_SAMPLESPERSEC

The dwReturn member is set to the current samples per second used for playing, recording, and 
saving.

 

See Also
MCI_CAPTURE, MCI_CLOSE, MCI_CUT, MCI_DELETE, MCI_DGV_STATUS_PARMS, MCI_LOAD, 
MCI_PASTE, MCI_RECORD, MCI_RESERVE, or MCI_SET, MCI_SETAUDIO, MCI_SETVIDEO, 
MCI_STATUS_PARMS, MCI_VCR_STATUS_PARMS, play, record, seek 



MCI_STEP      

  

The MCI_STEP command steps the player one or more frames. Digital-video, VCR, and CAV-format 
videodisc devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_STEP, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpStep);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpStep

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
This command supports devices that return TRUE to the MCI_GETDEVCAPS_HAS_VIDEO flag of the 
MCI_GETDEVCAPS command.

The following additional flags are used with the digitalvideo device type:

MCI_DGV_STEP_FRAMES

The dwFrames member of the structure identified by lpStep specifies the number of frames to 
advance before displaying another image.

MCI_DGV_STEP_REVERSE

Steps in reverse.
 

For digital-video devices, the lpStep parameter points to an MCI_DGV_STEP_PARMS structure.

The following additional flags are used with the vcr device type:

MCI_VCR_STEP_FRAMES

The dwFrames member of the structure identified by lpStep specifies the number of frames to 
advance before displaying another image.

MCI_VCR_STEP_REVERSE

Steps in reverse.
 



For VCR devices, the lpStep parameter points to an MCI_VCR_STEP_PARMS structure.

The following additional flags are used with the videodisc device type:

MCI_VD_STEP_FRAMES

The dwFrames member of the structure identified by lpStep specifies the number of frames to step.

MCI_VD_STEP_REVERSE

Steps in reverse.
 

For videodisc devices, the lpStep parameter points to an MCI_VD_STEP_PARMS structure.

See Also
MCI_DGV_STEP_PARMS, MCI_GENERIC_PARMS, MCI_GETDEVCAPS, MCI_VCR_STEP_PARMS, 
MCI_VD_STEP_PARMS 



MCI_STOP      

  

The MCI_STOP command stops all play and record sequences, unloads all play buffers, and ceases 
display of video images. CD audio, digital-video, MIDI sequencer, videodisc, VCR, and waveform-audio 
devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_STOP, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpStop);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpStop

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The difference between the MCI_STOP and MCI_PAUSE commands depends on the device. If possible, 
MCI_PAUSE suspends device operation but leaves the device ready to resume play immediately.

For the CD audio device, MCI_STOP resets the current track position to zero; in contrast, MCI_PAUSE 
maintains the current track position, anticipating that the device will resume playing. 

See Also
MCI_GENERIC_PARMS, MCI_PAUSE 



MCI_SYSINFO      

  

The MCI_SYSINFO command retrieves information about MCI devices. MCI supports this command 
directly rather than passing it to the device. Any MCI application can use this command. String 
information is returned in the application-supplied buffer pointed to by the lpstrReturn member of the 
structure identified by lpSysInfo. Numeric information is returned as a doubleword value placed in the 
application-supplied buffer. The dwRetSize member specifies the buffer length. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SYSINFO, 
    DWORD dwFlags, (DWORD) (LPMCI_SYSINFO_PARMS) lpSysInfo);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

One or more of the following standard and command-specific flags:

MCI_SYSINFO_INSTALLNAME

Obtains the name (listed in the registry or the SYSTEM.INI file) used to install the device.

MCI_SYSINFO_NAME

Obtains a device name corresponding to the device number specified in the dwNumber member 
of the structure identified by lpSysInfo. If the MCI_SYSINFO_OPEN flag is set, MCI returns the 
names of open devices.

MCI_SYSINFO_OPEN

Obtains the quantity or name of open devices.

MCI_SYSINFO_QUANTITY

Obtains the number of devices of the specified type that are listed in the registry or the [mci] 
section of the SYSTEM.INI file. If the MCI_SYSINFO_OPEN flag is set, the number of open 
devices is returned.

lpSysInfo

Address of an MCI_SYSINFO_PARMS structure.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The wDeviceType member of the structure identified by lpSysInfo is used to indicate the device type of 
the query. If the wDeviceID parameter is set to MCI_ALL_DEVICE_ID, it overrides the value of 
wDeviceType. For a list of device types, see Constants: Device Types.

Integer return values are doubleword values returned in the buffer pointed to by the lpstrReturn member 
of the structure identified by lpSysInfo. 

String return values are null-terminated strings returned in the buffer pointed to by the lpstrReturn 



member of the structure identified by lpSysInfo.

See Also
MCI_SYSINFO_PARMS 



MCI_UNDO      

  

The MCI_UNDO command reverses the most recent successful MCI_CUT, MCI_COPY, MCI_DELETE, 
or MCI_PASTE command. Digital-video devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_UNDO, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpUndo);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see The Wait, Notify, and 
Test Flags.

lpUndo

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

See Also
MCI_CUT, MCI_COPY, MCI_DELETE, MCI_GENERIC_PARMS, MCI_PASTE 



MCI_UNFREEZE      

  

The MCI_UNFREEZE command restores motion to an area of the video buffer frozen with the 
MCI_FREEZE command. Digital-video, VCR, and video-overlay devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_UNFREEZE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpUnfreeze);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about 
these flags, see The Wait, Notify, and Test Flags.

lpUnfreeze

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flag is used with the digitalvideo device type:

MCI_DGV_RECT

The rc member of the structure identified by lpUnfreeze contains a valid display rectangle. The 
rectangle specifies a region within the frame buffer whose pixels should have their lock mask bit 
turned off. Rectangular regions are specified as described for the MCI_PUT command. If omitted, the 
rectangle defaults to the entire frame buffer. By using a sequence of freeze and unfreeze commands 
with different rectangles, arbitrary patterns of lock mask bits can be described.

 

For digital-video devices, the lpUnfreeze parameter points to an MCI_DGV_UNFREEZE_PARMS    
structure. For more information, see the comments for the MCI_DGV_RECT_PARMS structure. 

The following additional flags are used with the vcr device type:

MCI_VCR_UNFREEZE_INPUT

Unfreeze the input.

MCI_VCR_UNFREEZE_OUTPUT

Unfreeze the output.
 

The following additional flag is used with the overlay device type:

MCI_OVLY_RECT



The rc member of the structure identified by lpUnfreeze contains a valid display rectangle. This is a 
required parameter.

 

For video-overlay devices, the lpUnfreeze parameter points to an MCI_OVLY_RECT_PARMS structure.

See Also
MCI_DGV_RECT_PARMS, MCI_FREEZE, MCI_GENERIC_PARMS, MCI_OVLY_RECT_PARMS, 
MCI_PUT 



MCI_UPDATE      

  

The MCI_UPDATE command updates the display rectangle. Digital-video devices recognize this 
command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_UPDATE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpDest);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags, 
see The Wait, Notify, and Test Flags.

lpDest

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags are used with the digitalvideo device type:

MCI_DGV_UPDATE_HDC

The hDC member of the structure identified by lpDest contains a valid window of the DC to paint. This 
flag is required.

MCI_DGV_RECT

The rc member of the structure identified by lpUnfreeze contains a valid display rectangle. The 
rectangle specifies the clipping rectangle relative to the client rectangle.

MCI_DGV_UPDATE_PAINT

An application uses this flag when it receives a WM_PAINT message that is intended for a display 
DC. A frame-buffer device usually paints the key color. If the display device does not have a frame 
buffer, it might ignore the MCI_UPDATE command when the MCI_DGV_UPDATE_PAINT flag is used 
because the display will be repainted during the playback operation.

 

For digital-video devices, the lpDest parameter points to an MCI_DGV_UPDATE_PARMS structure.

See Also
MCI_DGV_UPDATE_PARMS, MCI_GENERIC_PARMS 



MCI_WHERE      

  

The MCI_WHERE command obtains the clipping rectangle for the video device. Digital-video, and video-
overlay devices recognize this command. The top and left members of the returned RECT contain the 
origin of the clipping rectangle, and the right and bottom members contain the width and height of the 
clipping rectangle. (This is not the standard use of the right and bottom members.)

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_WHERE, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpQuery);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags, 
see The Wait, Notify, and Test Flags.

lpQuery

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following additional flags are used with the digitalvideo device type:

MCI_DGV_WHERE_DESTINATION

Obtains a description of the rectangular region used to display video and images in the client area of 
the current window.

MCI_DGV_WHERE_FRAME

Obtains a description of the rectangular region of the frame buffer into which images from the video 
rectangle are scaled. The rectangle coordinates are placed in the rc member of the structure 
identified by lpQuery.

MCI_DGV_WHERE_MAX

When used with MCI_DGV_WHERE_DESTINATION or MCI_DGV_WHERE_SOURCE, the rectangle 
returned indicates the maximum width and height of the specified region. When used with 
MCI_DGV_WHERE_WINDOW, the rectangle returned indicates the size of the entire display.

MCI_DGV_WHERE_SOURCE

Obtains a description of the rectangular region (cropped from the frame buffer) that is stretched to fit 
the destination rectangle on the display.

MCI_DGV_WHERE_VIDEO

Obtains a description of the rectangular region cropped from the presentation source to fill the frame 



rectangle in the frame buffer. The rectangle coordinates are placed in the rc member of the structure 
identified by lpQuery.

MCI_DGV_WHERE_WINDOW

Obtains a description of the display-window frame. 
 

For digital-video devices, the lpQuery parameter points to an MCI_DGV_WHERE_PARMS structure. The 
MCI_DGV_WHERE_PARMS structure is identical to the MCI_DGV_RECT_PARMS structure.

The following additional flags are used with the overlay device type:

MCI_OVLY_WHERE_DESTINATION

Obtains the destination display rectangle. The rectangle coordinates are placed in the rc member of 
the structure identified by lpQuery.

MCI_OVLY_WHERE_FRAME

Obtains the overlay frame rectangle. The rectangle coordinates are placed in the rc member of the 
structure identified by lpQuery.

MCI_OVLY_WHERE_SOURCE

Obtains the source rectangle. The rectangle coordinates are placed in the rc member of the structure 
identified by lpQuery.

MCI_OVLY_WHERE_VIDEO

Obtains the video rectangle. The rectangle coordinates are placed in the rc member of the structure 
identified by lpQuery.

 

For video-overlay devices, the lpQuery parameter points to an MCI_OVLY_RECT_PARMS structure.

See Also
MCI_DGV_RECT_PARMS, MCI_GENERIC_PARMS, MCI_OVLY_RECT_PARMS 



MCI_WINDOW      

  

The MCI_WINDOW command specifies the window and the window characteristics for graphic devices. 
Digital-video, and video-overlay devices recognize this command. 

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_WINDOW, 
    DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpWindow);
  

Parameters
wDeviceID

Device identifier of the MCI device that is to receive the command message.

dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags, 
see The Wait, Notify, and Test Flags.

lpWindow

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might 
replace this structure with a device-specific structure.)

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Graphic devices should create a default window when a device is opened but should not display it until 
they receive the MCI_PLAY command. The MCI_WINDOW command is used to supply an application-
created window to the device and to change the display characteristics of an application-defined or 
default display window. If the application supplies the display window, it should be prepared to update an 
invalid rectangle on the window. 

The following additional flags are used with the digitalvideo device type:

MCI_DGV_WINDOW_HWND

The handle of the window needed for use as the destination is included in the hWnd member of the 
structure identified by lpWindow.

MCI_DGV_WINDOW_STATE

The nCmdShow member of the structure identified by lpWindow contains parameters for setting the 
window state.

MCI_DGV_WINDOW_TEXT

The lpstrText member of the structure identified by lpWindow contains an address of a buffer 
containing the caption used in the window title bar.

 

For digital-video devices, the lpWindow parameter points to an MCI_DGV_WINDOW_PARMS structure.

The following additional flags are used with the overlay device type:



MCI_OVLY_WINDOW_DISABLE_STRETCH

Disables stretching of the image.

MCI_OVLY_WINDOW_ENABLE_STRETCH

Enables stretching of the image.

MCI_OVLY_WINDOW_HWND

The handle of the window used for the destination is included in the hWnd member of the structure 
identified by lpWindow. Set this flag to MCI_OVLY_WINDOW_DEFAULT to return to the default 
window.

MCI_OVLY_WINDOW_STATE

The nCmdShow member of the lpWindow structure contains parameters for setting the window state. 
This flag is equivalent to calling ShowWindow with the state parameter. The constants are the same 
as those defined in WINDOWS.H (such as SW_HIDE, SW_MINIMIZE, or SW_SHOWNORMAL).

MCI_OVLY_WINDOW_TEXT

The lpstrText member of the structure identified by lpWindow contains an address of a buffer 
containing the caption used for the window.

 

For video-overlay devices, the lpWindow parameter points to an MCI_OVLY_WINDOW_PARMS 
structure.

See Also
MCI_DGV_WINDOW_PARMS, MCI_GENERIC_PARMS, MCI_OVLY_WINDOW_PARMS, MCI_PLAY, 
ShowWindow 

 

 



break      

  

The break command specifies a key to abort a command that was invoked using the "wait" flag. This 
command is an MCI system command; it is interpreted directly by MCI.

wsprintf(lpstrCommand, "break %s %s %s", lpszDeviceID, lpszVirtKey, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszVirtKey

One of the following flags:

on virtual key code Specifies the key that aborts a command that 
was started using the "wait" flag.

off Disables the current break key.
 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
When the break key is enabled and the user presses the key identified by the virtual-key code specified in 
the lpsVirtKey parameter, the device returns control to the application. If possible, the command continues 
execution.

The following command sets F2 as the break key for the "mysound" device:

break mysound on 113
  



capability      

  

The capability command requests information about a particular capability of a device. All MCI devices 
recognize this command.

wsprintf(lpstrCommand, "capability %s %s %s", lpszDeviceID, lpszRequest, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszRequest

Flag that identifies a device capability. The following table lists device types that recognize the 
capability command and the flags used by each type:

cdaudio can eject
can play
can record
can save
compound device

device type
has audio
has video
uses files

digitalvideo can eject
can freeze
can lock
can play
can record
can reverse
can save
can stretch
can stretch input
can test

compound device
device type
has audio
has still
has video
maximum play rate
minimum play rate
uses files
uses palettes
windows

overlay can eject
can freeze
can play
can record
can save
can stretch

compound device
device type
has audio
has video
uses files
windows

sequencer can eject
can play
can record
can save
compound device

device type
has audio
has video
uses files

vcr can detect length
can eject
can freeze
can monitor 
sources
can play
can preroll
can preview
can record

clock increment rate
compound device
device type
has audio
has clock
has timecode
has video
number of marks
seek accuracy



can reverse
can save
can test

uses files

videodisc can eject
can play
can record
can reverse
can save
CAV
CLV
compound device

device type
fast play rate
has audio
has video
normal play rate
slow play rate
uses files

waveaudio can eject
can play
can record
can save
compound device
device type

has audio
has video
inputs
outputs
uses files

 

The following table lists the flags that can be specified in the lpszRequest parameter and their 
meanings:

can detect 
length

Returns TRUE if the device can detect the length 
of the media.

can eject Returns TRUE if the device can eject the media.

can freeze Returns TRUE if the device can freeze data in 
the frame buffer.

can lock Returns TRUE if the device can lock data.

can monitor 
sources

Returns TRUE if the device can pass an input 
(source) to the monitored output, independent of 
the current input selection.

can play Returns TRUE if the device can play.

can preroll Returns TRUE if the device supports the "preroll" 
flag with the cue command.

can preview Returns TRUE if the device supports previews.

can record Returns TRUE if the device supports recording.

can reverse Returns TRUE if the device can play in reverse.

can save Returns TRUE if the device can save data.

can stretch Returns TRUE if the device can stretch frames to 
fill a given display rectangle.

can stretch 
input

Returns TRUE if the device can resize an image 
in the process of digitizing it into the frame buffer.

can test Returns TRUE if the device recognizes the test 
keyword. 

cav When combined with other items, this flag 
specifies that the return information applies to 
CAV format videodiscs. This is the default if no 
videodisc is inserted.

clock increment 
rate

Returns the number of subdivisions the external 
clock supports per second. If the external clock is 
a millisecond clock, the return value is 1000. If 
the return value is 0, no clock is supported. 

clv When combined with other items, this flag 



specifies that the return information applies to 
CLV format videodiscs.

compound 
device

Returns TRUE if the device supports an element 
name (filename).

device type Returns a device type name, which can be one of 
the following:

cdaudio
dat
digitalvideo
other
overlay
scanner
sequencer
vcr
videodisc
waveaudio

fast play rate Returns the fast play rate in frames per second, 
or zero if the device cannot play fast.

has audio Returns TRUE if the device supports audio 
playback.

has clock Returns TRUE if the device has a clock.

has still Returns TRUE if the device treats files with a 
single image more efficiently than motion video 
files.

has timecode Returns TRUE if the device is capable of 
supporting timecode, or if it is unknown.

has video Returns TRUE if the device supports video.

inputs Returns the total number of input devices.

maximum play 
rate

Returns the maximum play rate, in frames per 
second, for the device.

minimum play 
rate

Returns the minimum play rate, in frames per 
second, for the device.

normal play rateReturns the normal play rate, in frames per 
second, for the device.

number of 
marks

Returns the maximum number of marks that can 
be used; zero indicates that marks are 
unsupported.

outputs Returns the total number of output devices.

seek accuracy Returns the expected accuracy of a search in 
frames; 0 indicates that the device is frame 
accurate, 1 indicates that the device expects to 
be within one frame of the indicated seek 
position, and so on.

slow play rate Returns the slow play rate in frames per second, 
or zero if the device cannot play slowly.

uses files Returns TRUE if the data storage used by a 
compound device is a file.

uses palettes Returns TRUE if the device uses palettes.

windows Returns the number of simultaneous display 
windows the device can support.

 



lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns information in the lpstrReturnString parameter of the mciSendString function. The information is 
dependent on the request type.

Remarks
The following command returns the device type of the "mysound" device:

capability mysound device type
  

See Also
cue, mciSendString 



capture      

  

The capture command copies the contents of the frame buffer and stores it in the specified file. Digital-
video devices recognize this command.

wsprintf(lpstrCommand, "capture %s %s %s", lpszDeviceID, lpszCapture, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszCapture

One or more of the following flags:

as pathname Specifies the destination path and filename for the 
captured image. This flag is required.

at rectangle Specifies the rectangular region within the frame 
buffer that the device crops and saves to disk. If 
omitted, the cropped region defaults to the rectangle 
specified or defaulted on a previous put "source" 
command for this device instance.

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
This command might fail if the device is currently playing motion video or executing some other resource-
intensive operation. If the frame buffer is being updated in real time, the updating momentarily pauses so 
that a complete image is captured. If the device pauses the updating, there might be a visual or audible 
effect. If the file format, compression algorithm, and quality levels have not been set, their defaults are 
used. 

See Also
put 



close      

  

The close command closes the device or file and any associated resources. MCI unloads a device when 
all instances of the device or all files are closed. All MCI devices recognize this command.

wsprintf(lpstrCommand, "close %s %s", lpszDeviceID, lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszFlags

Can be "wait", "notify", or both. For more information about these flags, see The Wait, Notify, and Test 
Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
To close all devices opened by your application, specify the "all" device identifier for the lpszDeviceID 
parameter.

The following command closes the "mysound" device:

close mysound
  



configure      

  

The configure command displays a dialog box used to configure the device. Digital-video devices 
recognize this command. 

wsprintf(lpstrCommand, "configure %s %s", lpszDeviceID, lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszFlags

Can be "wait", "notify", or    "test". For more information about these flags, see The Wait, Notify, and 
Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.



copy      

  

The copy command copies data to the clipboard. Digital-video devices recognize this command. 

wsprintf(lpstrCommand, "copy %s %s %s", lpszDeviceID, lpszItem, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszItem

One of the following flags identifying the item to copy:

at rectangle Specifies the portion of each frame that will 
be copied. If omitted, the default setting is 
the entire frame.

audio stream stream Specifies the audio stream in the workspace 
affected by the command. If you use this 
flag and also want to copy video, you must 
also use the "video stream" flag. (If neither 
flag is specified, all audio and video streams 
are copied.)

from position Specifies the start of the range copied. If 
omitted, the default setting is the current 
position.

to position Specifies the end of the range copied. The 
audio and video data copied are exclusive 
of this position. If omitted, the default setting 
is the end of the workspace.

video stream stream Specifies the video stream in the workspace 
affected by the command. If you use this 
flag and also want to copy audio, you must 
also use the "audio stream" flag. (If neither 
flag is specified, all audio and video streams 
are copied.)

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.



cue      

  

The cue command prepares for playing or recording. Digital-video, VCR, and waveform-audio devices 
recognize this command. 

wsprintf(lpstrCommand, "cue %s %s %s", lpszDeviceID, lpszInOutTo, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszInOutTo

Flag that prepares a device for playing or recording. The following table lists device types that 
recognize the cue command and the flags used by each type:

digitalvideo input
noshow

output
to position

vcr from position
input
output

preroll
reverse
to position

waveaudio input output
 

The following table lists the flags that can be specified in the lpszInOutTo parameter and their 
meanings:

from position Indicates where to start.

input Prepares for recording. For digital-video devices, 
this flag can be omitted if the current presentation 
source is already the external input.

noshow Prepares for playing a frame without displaying it. 
When this flag is specified, the display continues to 
show the image in the frame buffer even though its 
corresponding frame is not the current position. A 
subsequent cue command without this flag and 
without the "to" flag displays the current frame.

output Prepares for playing. If neither "input" nor "output" 
is specified, the default setting is "output".

preroll Moves the preroll distance from the in-point. The in-
point is the current position, or the position 
specified by the "from" flag.

reverse Indicates play direction is in reverse (backward).

to position Moves the workspace to the specified position. For 
VCR devices, this flag indicates where to stop.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.



 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Although it is not necessary, issuing the cue command before playing or recording on some devices 
might reduce the delay before the device starts the action.

This command fails if playing or recording is in progress or if the device is paused. 

When cueing for playback (using cue "output"), issuing the play command with the "from", "to", or 
"reverse" flag cancels the cue command. 

When cueing for recording (using cue "input"), issuing the record command with the "from", "to", or 
"initialize" flag cancels the cue command.

The following command prepares the "mysound" device for recording:

cue mysound input
  

See Also
play, record 



cut      

  

The cut command removes data from the workspace and copies it to the clipboard. Digital-video devices 
recognize this command. 

wsprintf(lpstrCommand, "cut %s %s %s", lpszDeviceID, lpszItem, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszItem

One of the following flags identifying the item to cut:

at rectangle Specifies the portion of each frame cut. If 
omitted, it defaults to the entire frame. 
When this item is specified, frames are 
not deleted. Instead the area inside the 
rectangle becomes black.

audio stream stream Specifies the audio stream in the 
workspace affected by the command. If 
you use this flag and also want to cut 
video, you must also use the "video 
stream" flag. (If neither flag is specified, 
all audio and video streams are cut.)

from position Specifies the start of the range cut. If 
omitted, it defaults to the current position.

to position Specifies the end of the range cut. The 
audio and video data cut are exclusive of 
this position. If omitted it defaults to the 
end of the workspace.

video stream stream Specifies the video stream in the 
workspace affected by the command. If 
you use this flag and also want to cut 
audio, you must also use the "audio 
stream" flag. (If neither flag is specified, 
all audio and video streams are cut.)

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks



The change becomes permanent only when the data is explicitly saved; however, playback acts as if the 
data has been removed. 



delete      

  

The delete command deletes a data segment from a file. Digital-video and waveform-audio devices 
recognize this command. 

wsprintf(lpstrCommand, "delete %s %s %s", lpszDeviceID, lpszPosition, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszPosition

Flag that identifies a data segment to delete. The following table lists device types that recognize the 
delete command and the flags used by each type:

digitalvideo at rectangle
audio stream stream
from position

to position
video stream stream

waveaudio from position to position
 

The following table lists the flags that can be specified in the lpszPosition parameter and their 
meanings:

at rectangle Specifies the portion of each frame deleted. 
If omitted, it defaults to the entire frame. 
When this item is specified, frames are not 
deleted. Instead the area inside the 
rectangle becomes black.

audio stream stream Specifies the audio stream in the workspace 
affected by the command. If you use this flag 
and also want to delete video, you must also 
use the "video stream" flag. (If neither flag is 
specified, all audio and video streams are 
deleted.) 

from position Specifies the position at which deletion 
begins. If this flag is omitted, the deletion 
begins at the current position.

to position Specifies the position at which deletion ends. 
If this flag is omitted, the deletion continues 
to the end of the content or workspace.

video stream stream Specifies the video stream in the workspace 
affected by the command. If you use this flag 
and also want to delete audio, you must also 
use "audio stream" flag. (If neither flag is 
specified, all audio and video streams are 
deleted.) 

 

lpszFlags



Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Before issuing any commands that use position values, you should set the desired time format by using 
the set command.

The following command deletes the waveform-audio data from 1 millisecond through 900 milliseconds 
(assuming the time format is set to milliseconds):

delete mysound from 1 to 900
  

See Also
set



escape      

  

The escape command sends device-specific information to a device. Videodisc devices recognize this 
command. 

wsprintf(lpstrCommand, "escape %s %s %s", lpszDeviceID, lpszEscape, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszEscape

Custom information to send to the device.

lpszFlags

Can be "wait", "notify", or both. For more information about these flags, see The Wait, Notify, and Test 
Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following command sends the escape string "SA" to the videodisc device:

escape videodisc SA
  



freeze      

  

The freeze command freezes video input or video output on a VCR or disables video acquisition to the 
frame buffer. Digital-video, video-overlay, and VCR devices recognize this command. 

wsprintf(lpstrCommand, "freeze %s %s %s", lpszDeviceID, lpszFreezeFlags, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszFreezeFlags

Flag that identifies what to freeze. The following table lists device types that recognize the freeze 
command and the flags used by each type:

digitalvideo at rectangle outside

overlay at rectangle

vcr field
frame

input
output

 

The following table lists the flags that can be specified in the lpszFreezeFlags parameter and their 
meanings:

at rectangle Specifies the region that will be frozen. For video-
overlay devices, this region will have video 
acquisition disabled. For digital-video devices, 
the pixels within the rectangle will have their lock 
mask bit turned on (unless the "outside" flag is 
specified). The rectangle is relative to the video 
buffer origin and is specified as X1 Y1 X2 Y2. 
The coordinates X1 Y1 specify the upper left 
corner of the rectangle, and the coordinates X2 
Y2 specify the width and height.

field Freezes the first field. Field is assumed by default 
(if neither frame nor field is specified).

frame Freezes the entire frame, displaying both fields.

input Freezes the current frame of the input image, 
whether it is paused or running.

output Freezes the current frame of the output from the 
VCR. If the VCR is playing when freeze is 
issued, the current frame is frozen and the VCR 
is paused. If the VCR is paused when this 
command is issued, the current frame is frozen. 
The frozen image remains on the output device 
until an unfreeze command is issued. If neither 
"input" nor "output" is specified, "output" is 
assumed.

outside Indicates that the area outside the region 
specified using the "at" flag is frozen.



 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
When used with VCR devices, this command is intended for frame-grabbing cards. 

To specify irregular acquisition regions with the "at" flag, use a series of freeze and unfreeze commands. 
Some video-overlay devices limit the complexity of the acquisition region.

This command is supported only if a call to the capability command with the "can freeze" flag returns 
TRUE. 

The following command disables video acquisition in a 100-pixel square at the upper left corner of the 
video buffer:

freeze vboard at 0 0 100 100
  

See Also
capability, unfreeze



index      

  

The index command controls a VCR's on-screen display. VCR devices recognize this command. 

wsprintf(lpstrCommand, "index %s %s %s", lpszDeviceID, lpszIndex, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszIndex

One of the following flags:

off Turns off the on-screen display.

on Turns on the on-screen display. The item to be displayed is 
specified by the "index" flag of the set command.

 

lpszFlags

Can be "wait", "notify", or "test". For more information about these flags, see The Wait, Notify, and 
Test Flags.

Return Values
Returns zero if successful or an error otherwise.

See Also
set 



info      

  

The info command retrieves a hardware description from a device. All MCI devices recognize this 
command. 

wsprintf(lpstrCommand, "info %s %s %s", lpszDeviceID, lpszInfoType, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszInfoType

Flag that identifies the type of information required. The following table lists device types that 
recognize the info command and the flags used by each type:

cdaudio info identity
info upc

product

digitalvideo audio algorithm
audio quality
file
product
still algorithm
still quality

usage
version
video algorithm
video quality
window text

overlay file
product

window text

sequencer copyright
file

name
product

vcr product version

videodisc product

waveaudio file
input

output
product

 

The following table lists the flags that can be specified in the lpszInfoType parameter and their 
meanings:

audio 
algorithm

Returns the name of the current audio 
compression algorithm.

audio quality Returns the name for the current audio quality 
descriptor. This might return "unknown" if the 
application has set parameters to specific values 
that do not correspond to defined qualities.

copyright Retrieves the MIDI file copyright notice from the 
copyright meta event.

file Retrieves the name of the file used by the 
compound device. If the device is opened without 
a file and the load command has not been used, a 
null string is returned.



info identity Produces a unique identifier for the audio CD 
currently loaded in the player being queried.

info upc Produces the Universal Product Code (UPC) that 
is encoded on an audio CD. The UPC is a string of 
digits. It might not be available for all CDs.

input Retrieves the description of the current input 
device. Returns "none" if an input device is not set.

name Retrieves the sequence name from the 
sequence/track name meta event.

output Retrieves the description of the current output 
device. Returns "none" if an output device is not 
set.

product Retrieves a description of the device. This 
information often includes the product name and 
model. The string length will be 31 characters or 
fewer. 

still algorithm Returns the name of the current still image 
compression algorithm.

still quality Returns the name for the current still image quality 
descriptor. This might return "unknown" if the 
application has set parameters to specific values 
that do not correspond to defined qualities.

usage Returns a string describing usage restrictions that 
might be imposed by the owner of the visual or 
audio data in the workspace.

version Returns the release level of the device driver and 
hardware.

video 
algorithm

Returns the name of the current video 
compression algorithm.

video quality Returns the name for the current video quality 
descriptor. This might return "unknown" if the 
application has set parameters to specific values 
that do not correspond to defined qualities.

window text Retrieves the caption of the window used by the 
device.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following command retrieves a description of the hardware associated with the "mysound" device:

info mysound product
  

See Also



load 



list      

  

The list command determines the number and types of video and audio inputs. Digital-video and VCR 
devices recognize this command. 

wsprintf(lpstrCommand, "list %s %s %s", lpszDeviceID, lpszList, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszList

Flag that identifies the number and types of video and audio inputs. The following table lists device 
types that recognize the list command and the flags used by each type:

digitalvideo audio algorithm
audio quality algorithm 
algorithm
audio stream
count
number index

still algorithm
still quality algorithm 
algorithm
video algorithm
video quality algorithm 
algorithm
video source
video stream

vcr audio source count
audio source number 
index

video source count
video source number index

 

The following table lists the flags that can be specified in the lpszList parameter and their meanings:

audio algorithm Specifies the command should retrieve 
audio algorithm names.

audio quality algorithm 
algorithm

Specifies the command should retrieve 
quality levels associated with the 
specified algorithm. If algorithm is 
"current", the quality level of the current 
algorithm is returned.

audio source count Returns the total number of audio 
inputs.

audio source number 
index

Returns the type of audio input of 
source index.

audio stream Specifies the command should retrieve 
the names of the audio streams 
associated with the workspace. These 
strings (such as "English" or "German") 
are embedded in the file and identify 
the stream.

count Returns the number of options of the 
specified type.

number index Returns a string describing a specific 



option (as identified by index) of the 
specified option type. Index must be an 
integer between 1 and the value 
returned by "count".

still algorithm Specifies the command should retrieve 
still algorithm names.

still quality algorithm 
algorithm

Specifies the command should retrieve 
quality levels associated with the 
specified still algorithm. If algorithm is 
"current", the quality level of the current 
algorithm is returned.

video algorithm Specifies the command should retrieve 
video algorithm names.

video quality algorithm 
algorithm

Specifies the command should retrieve 
quality levels associated with the 
specified video algorithm. If algorithm is 
"current", the quality level of the current 
algorithm is returned.

video source Specifies the command should return 
information about the video sources. 
When used with the "count" flag, it 
returns the number of video sources. 
When used with the "number" flag, it 
returns the type of a video source. MCI 
defines the following constants for type: 
"ntsc", "rgb", "pal", "secam", "svideo", 
and "generic". There might be more 
than one source of each type returned. 
The "generic" source type is used when 
more than one signal is allowed for that 
connector.

video source count Returns total number of video inputs.

video source number 
index

Returns the type of video input of 
source index.

video stream Specifies the command should retrieve 
the names of video streams associated 
with the workspace. These strings 
(such as "funny ending" or "sad 
ending") are embedded in the file and 
identify the stream.

 

lpszFlags

Can be "wait", "notify", or "test". For more information about these flags, see The Wait, Notify, and 
Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
For VCR devices, either "video source" or "audio source" must be specified with either the "count" or 
"number" flags. If "count" is specified, the total number of inputs of video or audio is returned. If "number" 



is specified, the driver returns a type corresponding to the input. The type can be any one of the following: 
"tuner", "line", "svideo", "aux", or "generic". Typically, you should first query the VCR for the "count" and 
then use the count as the range for the "number" flag. The "source" numbers start from 1.



load      

  

The load command loads a file in a device-specific format. Digital-video and video-overlay devices 
recognize this command. 

wsprintf(lpstrCommand, "load %s %s %s", lpszDeviceID, lpszFilePos, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszFilePos

Path and filename to load. For video-overlay devices, this can also include a target rectangle for the 
data. To specify a target rectangle, specify "at" followed by X1 Y1 X2 Y2, where X1 Y1 specify the 
upper left corner of the rectangle, and X2 Y2 specify the width and height. The rectangle is relative to 
the video buffer origin. 

lpszFlags

Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more 
information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following command loads a file into the "vidboard" device:

load vidboard c:\vid\fish.vid notify
  

The "vidboard" device sends a notification message when the loading is completed.



mark      

  

The mark command controls recording and erasing of marks on the videotape. VCR devices recognize 
this command. 

wsprintf(lpstrCommand, "mark %s %s %s", lpszDeviceID, lpszMark, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszMark

One of the following flags:

erase Erases a mark at the current position, if one exists. To 
erase a mark, first seek to the mark and then issue the 
mark "erase" command.

write Writes a mark at the current position. The VCR might 
need to be in play or record mode for this command to 
succeed.

 

lpszFlags

Can be "wait", "notify", or "test". For more information about these flags, see The Wait, Notify, and 
Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Marks are special signals written to the content that can be detected by the VCR during high-speed 
searches. Marks are VCR specific.



monitor    

The monitor command specifies the presentation source. (The default presentation source is the 
workspace.) Switching the presentation source switches all audio and video streams in the source. 
Digital-video devices recognize this command. 

wsprintf(lpstrCommand, "monitor %s %s %s", lpszDeviceID, lpszMonitor, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszMonitor

One or more of the following flags:

file Specifies that the workspace is the presentation 
source. This is the default source.

input Specifies that the external input is the presentation 
source. If a play command is in progress, it is first 
paused. If setvideo is "on", this flag displays a 
default hidden window. Devices might limit what 
other device instances can do while monitoring 
input. 

method 
method

When used with monitor "input", this flag selects 
the method of monitoring. The method is either 
"pre", "post", or "direct". Direct monitoring requests 
that the device be configured for optimum display 
quality during monitoring. The direct monitoring 
method might be incompatible with motion video 
recording. 

Pre- and post-monitoring allow motion video 
recording. Pre-monitoring shows the external input 
prior to compression, while post-monitoring shows 
the external input after compression. Typically, 
different monitoring methods have different 
hardware implications. The default monitoring 
method is selected by the device. 

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The presentation source automatically switches to the workspace after a play, step, pause, cue "output", 
or seek command. The record command does not automatically switch presentation sources, which 
gives your application the option of not showing video while it is being recorded. 



See Also
cue, pause, play, record, seek, step 



open      

  

The open command initializes a device. All MCI devices recognize this command. 

wsprintf(lpstrCommand, "open %s %s %s", lpszDevice, lpszOpenFlags, 
    lpszFlags); 
 

Parameters
lpszDevice

Identifier of an MCI device or device driver. This can be either a device name (as given in the registry 
or the SYSTEM.INI file) or the filename of the device driver. If you specify the filename of the device 
driver, you can optionally include the .DRV extension, but you should not include the path to the file.

lpszOpenFlags

Flag that identifies what to initialize. The following table lists device types that recognize the open 
command and the flags used by each type:

cdaudio alias device_alias
shareable

type device_type

digitalvideo alias device_alias
elementname
nostatic
parent hwnd
shareable

style child
style overlapped
style popup
style style_type
type device_type

overlay alias device_alias
parent hwnd
shareable
style child

style overlapped
style popup
style style_type
type device_type

sequencer alias device_alias
shareable

type device_type

vcr alias device_alias
shareable

type device_type

videodisc alias device_alias
shareable

type device_type

waveaudio alias device_alias
buffer buffer_size

shareable
type device_type

 

The following table lists the flags that can be specified in the lpszOpenFlags parameter and their 
meanings:

alias 
device_alias

Specifies an alternate name for the given device. 
If specified, it must be used as the device_id in 
subsequent commands.

elementname Specifies the name of the device element (file) 
loaded when the device opens.

buffer 
buffer_size

Sets the size, in seconds, of the buffer used by 
the waveform-audio device. The default size of 
the buffer is set when the waveform-audio device 
is installed or configured. Typically the buffer size 
is set to 4 seconds. With the MCIWAVE device, 



the minimum size is 2 seconds and the maximum 
size is 9 seconds.

parent hwnd Specifies the window handle of the parent 
window.

shareable Initializes the device or file as shareable. 
Subsequent attempts to open the device or file 
fail unless you specify "shareable" in both the 
original and subsequent open commands. 
MCI returns an invalid device error if the device is 
already open and not shareable.

The MCISEQ sequencer and MCIWAVE devices 
do not support shared files.

style child Opens a window with a child window style.

style 
overlapped

Opens a window with an overlapped window 
style.

style popup Opens a window with a pop-up window style.

style style_type Indicates a window style.

type 
device_type

Specifies the device type of a file. 

 

lpszFlags

Can be "wait", "notify", or both. For more information about these flags, see The Wait, Notify, and Test 
Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
MCI reserves "cdaudio" for the CD audio device type, "videodisc" for the videodisc device type, 
"sequencer" for the MIDI sequencer device type, "AVIVideo" for the digital-video device type, and 
"waveaudio" for the waveform-audio device type.

As an alternative to the "type" flag, MCI can select the device based on the extension used by the file, as 
recorded in the registry or the [mci extension] section of the SYSTEM.INI file. 

MCI can open AVI files by using a file-interface pointer or a stream-interface pointer. To open a file by 
using either type of interface pointer, specify an at sign (@) followed by the interface pointer in place of 
the file or device name for the lpszDevice parameter. For more information about the file and stream 
interfaces, see "AVIFile Functions and Macros ."

The following command opens the "mysound" device:

open new type waveaudio alias mysound buffer 6
  

With device name "new", the waveform driver prepares a new waveform resource. The command assigns 
the device alias "mysound" and specifies a 6-second buffer.

You can eliminate the "type" flag if you combine the device name with the filename. MCI recognizes this 
combination when you use the following syntax:

device_name!element_name



The exclamation point separates the device name from the filename. The exclamation point should not be 
delimited by white spaces.

The following example opens the RIGHT.WAV file using the "waveaudio" device:

open waveaudio!right.wav
  

The MCIWAVE driver requires an asynchronous waveform-audio device.



paste      

  

The paste command copies the contents of the clipboard into the workspace. Digital-video devices 
recognize this command. 

wsprintf(lpstrCommand, "paste %s %s %s", lpszDeviceID, lpszItem, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszItem

One or more of the following flags:

at rectangle Specifies the location within the frame where 
the data is pasted. The upper left corner of the 
rectangle corresponds to the upper left corner 
of the added data. If the rectangle has a 
nonzero size in X or Y, the contents of the 
clipboard are scaled in those dimensions when 
they are pasted into the frame. If omitted, the 
rectangle defaults to the entire frame. If this 
flag is specified in "insert" mode (the default), 
any region outside the rectangle is painted a 
solid color.

audio stream 
stream

Specifies the audio stream in the workspace 
affected by the command. If only one audio 
stream exists on the clipboard, the audio data 
is pasted into the designated stream. If more 
than one audio stream exists on the clipboard, 
the stream indicates the starting number for 
the stream sequences. If you use this flag and 
also want to paste video, you must also use 
the "video stream" flag. (If neither flag is 
specified, all audio and video streams are 
pasted and retain their original stream 
numbers.) 

insert Specifies that the data is inserted into the 
workspace. Any data after the insertion point is 
moved forward in the workspace to make 
room. This is the default value.

overwrite Specifies that the data is copied into the 
workspace by writing over any existing data 
after the insertion point. The "insert" and 
"overwrite" flags affect whether frames are 
destroyed or moved during the paste 
operation, not how the data is pasted within 
each frame.

to position Specifies the position in the workspace at 
which the data is pasted. If omitted, it defaults 



to the current position.

video stream 
stream

Specifies the video stream in the workspace 
affected by the command. If only one video 
stream exists on the clipboard, the video data 
is pasted into the designated stream. If more 
than one video stream exists on the clipboard, 
the stream indicates the starting number for 
the stream sequences. If you use this flag and 
also want to paste audio, you must also use 
the "audio stream" flag. (If neither flag is 
specified, all audio and video streams are 
pasted and retain their original stream 
numbers.) 

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
No signals are present in the data copied from the clipboard. The change becomes permanent only when 
the data is explicitly saved; however, playback acts as if the data has been added.



pause      

  

The pause command pauses playing or recording. Most drivers retain the current position and eventually 
resume playback or recording at this position. CD audio, digital-video, MIDI sequencer, VCR, videodisc, 
and waveform-audio devices recognize this command. 

wsprintf(lpstrCommand, "pause %s %s", lpszDeviceID, lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
With the MCICDA, MCISEQ, and MCIPIONR drivers, the pause command works the same as the stop 
command.

The following command pauses the "mysound" device:

pause mysound
  

See Also
stop 



play      

  

The play command starts playing a device. CD audio, digital-video, MIDI sequencer, videodisc, VCR, and 
waveform-audio devices recognize this command. 

wsprintf(lpstrCommand, "play %s %s %s", lpszDeviceID, lpszPlayFlags, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszPlayFlags

Flag for playing a device. The following table lists device types that recognize the play command and 
the flags used by each type:

cdaudio from position to position

digitalvideo from position 
fullscreen
repeat

reverse
to position
window

sequencer from position to position

vcr at time
from position 
reverse

scan
to position

videodisc fast
from position 
reverse
scan

slow
speed integer
to position

waveaudio from position to position
 

The following table lists the flags that can be specified in the lpszPlayFlags parameter and their 
meanings:

at time Indicates when the device should begin performing 
this command, or, if the device has been cued, 
when the cued command begins. For more 
information, see the cue command.

fast Indicates that the device should play faster than 
normal. To determine the exact speed on a 
videodisc player, use the "speed" flag of the status 
command. To specify the speed more precisely, use 
the "speed" flag of this command.

from position Specifies a starting position for the playback. If the 
"from" flag is not specified, playback begins at the 
current position. For cdaudio devices, if the "from" 
position is greater than the end position of the disc, 
or if the "from" position is greater than the "to" 
position, the driver returns an error. For videodisc 
devices, the default positions are in frames for CAV 
discs and in hours, minutes, and seconds for CLV 



discs. 

fullscreen Specifies that a full-screen display should be used. 
Use this flag only when playing compressed files. 
(Uncompressed files won't play full-screen.) 

repeat Specifies that playback should restart when the end 
of the content is reached.

reverse Specifies that the play direction is backward. You 
cannot specify an ending location with the "reverse" 
flag. For videodiscs, "scan" applies only to CAV 
format.

scan Plays as fast as possible without disabling video 
(although audio might be disabled). For videodiscs, 
"scan" applies only to CAV format.

slow Plays slowly. To determine the exact speed on a 
videodisc player, use the "speed" flag of the status 
command. To specify the speed more precisely, use 
the "speed" flag of this command. For videodiscs, 
"slow" applies only to CAV format.

speed integerPlays a videodisc at the specified speed, in frames 
per second. This flag applies only to CAV discs.

to position Specifies an ending position for the playback. If the 
"to" flag is not specified, playback stops at the end 
of the content. For cdaudio devices, if the "to" 
position is greater than the end position of the disc, 
the driver returns an error. For videodisc devices, 
the default positions are in frames for CAV discs 
and in hours, minutes, and seconds for CLV discs. 

window Specifies that playing should use the window 
associated with the device instance. This is the 
default setting.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Before issuing commands that use position values, you should set the desired time format by using the 
set command. This command begins playing at the current speed, as set with the set "speed" command. 
The direction is reverse if the "reverse" flag is specified, or if the "to" flag is specified as a value less than 
the "from" flag. If the "from" flag is not specified, playback begins at the current position. The "to" and 
"reverse" flags cannot be used together.

The following command plays the "mysound" device from position 1000 through position 2000, sending a 
notification message when the playback completes:

play mysound from 1000 to 2000 notify
  



See Also
cue, set, status 



put      

  

The put command defines the area of the source image and destination window used for display. Digital-
video and video-overlay devices recognize this command. 

wsprintf(lpstrCommand, "put %s %s %s", lpszDeviceID, lpszRegions, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszRegions

Flag for defining the area. The following table lists device types that recognize the put command and 
the flags used by each type:

digitalvideo destination
destination at rectangle
frame
frame at rectangle
source
source at rectangle

video
video at rectangle
window
window at rectangle
window client
window client at rectangle

overlay destination
destination at rectangle
frame
frame at rectangle

source
source at rectangle
video
video at rectangle

 

The following table lists the flags that can be specified in the lpszRegions parameter and their 
meanings:

destination Selects the entire client area of the 
destination window to display the data.

destination at rectangle Selects a portion of the client area of the 
destination window used to display the 
image. When an area of the display 
window is specified and the device 
supports stretching, the source image is 
stretched to the destination offset and 
extent. 

frame Selects the entire frame buffer to receive 
the incoming video images.

frame at rectangle Selects a portion of the frame buffer to 
receive the incoming video images.

source Selects the entire image for display in the 
destination window.

source at rectangle Selects a portion of the image to display 
in the destination window. When an area 
of the source image is specified, and the 
device supports stretching, the source 
image is stretched to the destination offset 



and extent. 

video Selects the entire incoming video image 
to capture in the frame buffer.

video at rectangle Selects a portion of the incoming video 
image to capture in the frame buffer.

window Restores the initial window size on the 
display. This command also displays the 
window.

window at rectangle Changes the size and location of the 
display window. The specified rectangle is 
relative to the parent window of the 
display window (usually the desktop) if the 
"style child" flag has been used for the 
open command. To change the location of 
the window without changing its height or 
width, specify zero for the height and 
width.

window client Restores the client area of the window.

window client at 
rectangle

Changes the size and location of the 
client area of the window. The specified 
rectangle is relative to the parent window 
of the client window. To change the 
location of the window without changing 
its height or width, specify zero for the 
height and width.

 

When a flag includes a rectangle, the rectangle coordinates are relative to the window origin or the 
image origin, as appropriate, and are specified as X1 Y1 X2 Y2. The coordinates X1 Y1 specify the 
upper left corner, and the coordinates X2 Y2 specify the width and height of the rectangle. 

lpszFlags

Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more 
information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The put command defines one or more of the following rectangles when working with video-overlay 
devices:

· The video rectangle defines the region of the incoming video image to capture. 

· The frame rectangle defines the region of the frame buffer that receives the incoming video image.

· The source rectangle defines which region of the frame buffer is copied to the destination rectangle. 

· The destination rectangle defines the region of the display window client area that receives the video 
image.

 

The video rectangle is related to the frame rectangle in the same way the source rectangle is related to 
the destination rectangle. Stretching can occur from the video rectangle to the frame rectangle and from 
the source rectangle to the destination rectangle. Not all devices support stretching, and stretching must 



be enabled (by using the set command).

The following command defines three regions for the video, frame, and source:

put vboard video 120 120 200 200 frame 0 0 200 200 source 0 0 200 200
  

The regions in this example are defined as follows:

· A 200- by 200-pixel region of the incoming video data, starting at an origin 120 pixels from the upper 
left corner, will be captured to the frame buffer.

· The video data will be placed in a 200- by 200-pixel region at the upper left corner of the frame buffer.

· Transfers are made from the 200- by 200-pixel region at the upper left corner of the frame buffer to 
the destination window.

 

See Also
open, set 



quality      

  

The quality command defines a custom quality level for either audio, video or still image data 
compression. Digital-video devices recognize this command. 

wsprintf(lpstrCommand, "quality %s %s %s", lpszDeviceID, lpszQuality, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszQuality

One or more of the following flags. (One of the three flags "audio", "still", and "video" must be 
present.)

algorithm 
algorithm 

Associates the quality level with the specified 
algorithm. This algorithm must be supported 
by the device and be compatible with the 
"audio", "still", or "video" flag that is used. If 
omitted, the current algorithm is used.

audio name Indicates this command specifies an "audio" 
quality level identified with name. 

dialog Requests that the device display a dialog box. 
This dialog box has algorithm-specific fields 
that are used internally by the device to create 
the structure describing a specific quality level.

handle handle Specifies a handle to a structure that contains 
algorithmic-specific data describing a specific 
quality level. The structures for the data 
referenced by this handle are device specific.

still name Indicates the command specifies a "still" 
quality level identified with name.

video name Indicates the command specifies a "video" 
quality level identified with name. 

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
This command defines a string name for the quality level, which can then be used in a setvideo "quality", 
setvideo "still quality", or setaudio "quality" command to establish it as the current video, still, or audio-
compression quality level. 



See Also
setaudio, setvideo 



realize      

  

The realize command instructs a device to select and realize its palette into the display context of the 
displayed window. Digital-video devices recognize this command. 

wsprintf(lpstrCommand, "realize %s %s %s", lpszDeviceID, lpszPalette, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszPalette

One of the following flags:

background Realizes the palette as a background palette.

normal Realizes the palette for a top-level window. This is 
the default setting.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more 
information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Use this command only if your application uses a window handle and receives a 
WM_QUERYNEWPALLETTE or WM_PALETTECHANGED message.

The following command tells the "myvideo" device to realize its palette:

realize myvideo normal
  

See Also
WM_PALETTECHANGED 



record      

  

The record command starts recording data. VCR and waveform-audio devices recognize this command. 
Although digital-video devices and MIDI sequencers also recognize this command, the MCIAVI and 
MCISEQ drivers do not implement it.

wsprintf(lpstrCommand, "record %s %s %s", lpszDeviceID, lpszRecordFlags, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszRecordFlags

Flag for recording data. The following table lists device types that recognize the record command and 
the flags used by each type:

digitalvideo at rectangle
audio stream stream
from position
hold

insert
overwrite
to position
video stream stream

sequencer from position
insert

overwrite
to position

vcr at time
from position
initialize

insert
overwrite
to position

waveaudio from position
insert

overwrite
to position

 

The following table lists the flags that can be specified in the lpszRecordFlags parameter and their 
meanings:

at rectangle Specifies a rectangular region of the external 
input used as the source for the pixels 
compressed and saved. If not specified, the 
rectangle defaults to the rectangle specified for 
put "video". When it is set differently from the 
"video" rectangle, the displayed image is not 
what is recorded.

at time Indicates when the device should begin 
performing this command, or, if the device has 
been cued, when the cued command begins. 
For more information, see the cue command.

audio stream 
stream

Specifies the audio stream used for recording. 
If this flag is not specified and the file format 
does not define a default, it is recorded into the 
stream that is physically first.

from position Specifies a starting position for the recording. 
If the "from" flag is not specified, the device 
starts recording at the current position.



hold Freezes the image when recording has 
finished instead of showing live video. When 
recording stops, an automatic monitor "file" 
command is performed. To return to live video, 
issue the monitor "input" command.

initialize Initialize the tape (media), which involves 
recording timecode (if possible) for blank video 
and audio. This command might take several 
hours if the entire tape must be initialized.

insert Specifies that new data is added to the file at 
the current position.

overwrite Specifies that new data will replace data in the 
file.

to position Specifies an ending position for the recording. 
If the "to" flag is not specified, the device 
records until it receives a stop or pause 
command.

video stream 
stream

Specifies the video stream used for recording. 
If this is not specified and the file format does 
not define a default, then it is recorded into the 
stream that is physically first.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The recording stops when a stop or pause command is issued. For the MCIWAVE driver, all data 
recorded after a file is opened is discarded if the file is closed without saving it.

Before issuing any commands that use position values, you should set the desired time format by using 
the set command. The tracks to be recorded are specified by the settimecode "record", set "assemble 
record", setvideo "record", and setaudio "record" commands.

The following command starts recording at the current position:

record mysound
  

See Also
cue, monitor, pause, put, set, setaudio, settimecode, setvideo, stop 



reserve      

  

The reserve command allocates contiguous disk space for the device instance's workspace. Digital-video 
devices recognize this command. 

wsprintf(lpstrCommand, "reserve %s %s %s", lpszDeviceID, lpszReserve, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszReserve

One or more of the following flags:

in path Specifies the drive and directory path (but not the 
name) of a temporary file used to hold recorded 
data. The name of this file is specified by the device. 
The temporary file is deleted when the device is 
closed. If this flag is omitted, the device specifies the 
location of the disk space.

size duration Specifies the approximate amount of disk space to 
reserve in the workspace. The duration value is 
specified in the current time format. The device 
bases its estimate of the required disk space on the 
following parameters: the requested time, the file 
format, the video and audio compression algorithm, 
and the compression quality values in effect. If 
setvideo "record" is "off", then space is reserved 
only for audio. If setaudio "record" is "off", then 
space is reserved only for video. If both are "off", or 
if duration is zero, then no space is reserved and 
any existing reserved space is deallocated. If this 
flag is omitted, the device will use a device-defined 
default.

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
If needed, subsequent record or save commands use the space reserved by this command. If the 
workspace contains unsaved data, the data is lost. Some devices do not require reserve and ignore it. If 
disk space is not reserved prior to recording, the record command performs an implied reserve with 
device-specific default flags. Use an explicit reserve command if you want better control of when the 



delay for disk allocation occurs, control of how much space is allocated, and control of where the disk 
space is allocated. Your application can change the amount and location of previously reserved disk 
space with subsequent reserve commands. Any allocated and still unused disk space is not deallocated 
until any recorded data is saved, or until the device instance is closed. 

See Also
record, save, setaudio, setvideo 



restore      

  

The restore command copies a still image from a file to the frame buffer. This is the reverse of the 
capture command. Digital-video devices recognize this command. 

wsprintf(lpstrCommand, "restore %s %s %s", lpszDeviceID, lpszRestore, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszRestore

One or more of the following flags:

at rectangle Specifies a rectangle relative to the frame buffer 
origin. The rectangle is specified as X1 Y1 X2 Y2. 
The coordinates X1 Y1 specify the upper left corner 
and the coordinates X2 Y2 specify the width and 
height. 

If this flag is not used, the image is copied to the 
upper left corner of the frame buffer.

from 
filename

Specifies the image filename to recall. This flag is 
required. 

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Devices can recognize a variety of image formats; a Windows device-independent bitmap is always 
recognized. 

See Also
capture 



resume      

  

The resume command continues playing or recording on a device that has been paused using the pause 
command. Digital-video, VCR, and waveform-audio devices recognize this command. Although CD audio, 
MIDI sequencer, and videodisc devices also recognize this command, the MCICDA, MCISEQ, and 
MCIPIONR device drivers do not support it.

wsprintf(lpstrCommand, "resume %s %s", lpszDeviceID, lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following command continues playing or recording the "newsound" device:

resume newsound
  

See Also
pause 



save      

  

The save command saves an MCI file. Video-overlay and waveform-audio devices recognize this 
command. Although digital-video devices and MIDI sequencers also recognize this command, the MCIAVI 
and MCISEQ drivers do not support it.

wsprintf(lpstrCommand, "save %s %s %s", lpszDeviceID, lpszFilename, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszFilename

Flag specifying the name of the file being saved and, optionally, additional flags modifying the save 
operation. The following table lists device types that recognize the save command and the flags used 
by each type:

digitalvideo abort
at rectangle

filename
keepreserve

overlay at rectangle filename

sequencer filename

waveaudio filename
 

The following table lists the flags that can be specified in the lpszFilename parameter and their 
meanings:

abort Stops a save operation in progress. If used, this must 
be the only item present.

at rectangle Specifies a rectangle relative to the frame buffer 
origin. The rectangle is specified as X1 Y1 X2 Y2. 
The coordinates X1 Y1 specify the upper left corner 
and the coordinates X2 Y2 specify the width and 
height.

For digital-video devices, the capture command is 
used to capture the contents of the frame buffer.

filename Specifies the filename to assign to the data file. If a 
path is not specified, the file will be placed on the 
disk and in the directory previously specified on the 
explicit or implicit reserve command. If reserve has 
not been issued, the default drive and directory are 
those associated with the application's task. If a path 
is specified, the device might require it to be on the 
disk drive specified by the explicit or implicit reserve. 
This flag is required.

keepreserv
e

Specifies that unused disk space left over from the 
original reserve command is not deallocated.

 

lpszFlags



Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The filename variable is required if the device was opened using the "new" device identifier.

The following command saves the entire video buffer to a file named VCAPFILE.TGA:

save vboard c:\vcap\vcapfile.tga
  

See Also
capture, reserve 



seek      

  

The seek command moves to the specified position and stops. CD audio, digital-video, MIDI sequencer, 
VCR, videodisc, and waveform-audio devices recognize this command. 

wsprintf(lpstrCommand, "seek %s %s %s", lpszDeviceID, lpszSeekFlags, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszSeekFlags

Flag for moving to a specified position. The following table lists device types that recognize the seek 
command and the flags used by each type:

cdaudio to end
to position

to start

digitalvideo to end
to position

to start

sequencer to end
to position

to start

vcr at time
mark mark_num
reverse

to end
to position
to start

videodisc reverse
to end

to position
to start

waveaudio to end
to position

to start

 

The following table lists the flags that can be specified in the lpszSeekFlags parameter and their 
meanings:

at time Indicates when the device should begin 
performing this command, or, if the device has 
been cued, when the cued command begins. For 
more information, see the cue command.

mark 
mark_num

Seeks to the relative mark indicated by 
mark_num, which must be a positive integer 
value. Marks are signals written to the VCR tape 
using the mark command and are used for high-
speed searching.

reverse Indicates that the seek direction on VCRs and 
CAV videodiscs is backward. This flag is invalid if 
the "to" flag is specified. For VCRs, this flag must 
be used with the "mark" flag.

to end Seeks to the end of the content.

to position Specifies the position to stop the seek. For 
cdaudio devices, MCI returns an out-of-range 
error if the specified position is greater than the 



length of the disc. 

to start Seeks to the start of the content.
 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Before issuing any commands that use position values, you should set the desired time format by using 
the set command. 

Digital-video devices support two seek modes, which you can change by using the set command. The 
"seek exactly on" mode causes the seek command to move to the specified frame. The "seek exactly off" 
mode causes the seek command to move to the closest key frame prior to the specified frame.

If a CD audio device is playing when the seek command is issued, playback is stopped. When the seek 
command is issued with a videodisc device, the device searches using fast forward or fast reverse with 
video and audio off. 

When the seek command is issued with a waveform-audio device, the behavior depends on the sample 
size. If the sample size is 16 bits or greater, seek moves to the beginning of the nearest sample when a 
specified position does not coincide with the start of a sample.

The following command seeks to the start of the media file associated with the "mysound" device:

seek mysound to start
  

See Also
cue, mark, set 



set      

  

The set command establishes control settings for the device. CD audio, digital-video, MIDI sequencer, 
VCR, videodisc, video-overlay, and waveform-audio devices recognize this command. 

wsprintf(lpstrCommand, "set %s %s %s", lpszDeviceID, lpszSetting, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszSetting

Flag for establishing control settings. The following table lists device types that recognize the set 
command and the flags used by each type:

cdaudio audio all off
audio all on
audio left off
audio left on
audio right off
audio right on

door closed
door open
time format milliseconds
time format msf
time format tmsf

digitalvideo audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
door closed
door open

file format format
seek exactly on
seek exactly off
speed factor
still file format format
time format frames
time format milliseconds
video off
video on

overlay audio all off
audio all on
audio left off
audio left on
audio right off

audio right on
door closed
door open
video off
video on

sequencer audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
door closed
door open
master MIDI
master none
master SMPTE
offset time

port mapper
port none
port port_number
slave file
slave MIDI
slave none
slave SMPTE
tempo tempo_value
time format milliseconds
time format SMPTE fps
time format SMPTE 30 drop
time format song pointer

vcr assemble record on
assemble record off
audio all off

power on
power off
preroll duration duration



audio all on
audio left off
audio left on
audio right off
audio right on
clock time
counter format
counter value
door closed
door open
index counter
index date
index time
index timecode
length duration
pause timeout
postroll duration -
        duration

record format SP
record format LP
record format EP
speed factor
time format frames
time format hms
time format milliseconds
time format msf
time format SMPTE fps
time format SMPTE 30 drop
time format tmsf
time mode counter
time mode detect
time mode timecode
tracking plus
tracking minus
tracking reset

videodisc audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
door closed

door open
time format frames
time format hms
time format milliseconds
time format track
video off
video on

waveaudio alignment integer
any input
any output
audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
bitspersample 
bit_count
bytespersec 
byte_rate

channels channel_count
door closed
door open
format tag pcm
format tag tag
input integer
output integer
samplespersec integer
time format bytes
time format milliseconds
time format samples

 

The following table lists the flags that can be specified in the lpszSetting parameter and their 
meanings:

alignment integer Sets the alignment of data blocks relative 
to the start of data passed to the 
waveform-audio device. The file is saved 
in this format.

any input Use any input that supports the current 
format when recording. This is the default 
setting.

any output Use any output that supports the current 
format when playing. This is the default.

assemble record on
assemble record off

In assemble mode, all tracks are 
recorded as defined by the device. Most 
VCRs are in assemble mode by default.



audio all off
audio all on

Disables or enables audio output. Video-
overlay devices, the MCISEQ sequencer, 
and the MCIWAVE waveform-audio 
device do not support this flag.

audio left off
audio left on
audio right off
audio right on

Disables or enables output to either the 
left or the right audio channel. Video-
overlay devices, the MCISEQ sequencer, 
and the MCIWAVE waveform-audio 
device do not support this flag.

bitspersample bit_count Sets the number of bits per PCM (Pulse 
Code Modulation) sample played or 
recorded. The file is saved in this format.

bytespersec byte_rate Sets the average number of bytes per 
second played or recorded. The file is 
saved in this format.

channels 
channel_count

Sets the channels for playing and 
recording. The file is saved in this format.

clock time Sets time on the external clock to time. 
The format is specified as a long 
unsigned integer.

counter format Set the time format for the counter, as 
returned by status "counter". For 
information about applicable types, see 
the set "time format" command.

counter value Sets the VCR counter to the specified 
value. The value must be specified in the 
current counter format. For more 
information, see the set "counter format" 
command. 

door closed Retracts the tray and closes the door, if 
possible. For VCRs, loads the tape 
automatically.

door open Opens the door and ejects the tray or 
tape, if possible.

file format format Specifies a file format that is used for 
save or capture commands. If omitted, 
this might default to a device driver 
defined format. If the specified file format 
conflicts with the currently selected 
algorithm and quality, then they are 
changed to the defaults for the file format. 
The following file formats are defined:

avi
Specifies AVI format. 

avss
Specifies AVSS format. 

dib
Specifies DIB format. 

jfif
Specifies JFIF format. 

jpeg
Specifies JPEG format. 



mpeg
Specifies MPEG format. 

rdib
Specifies RLE DIB format. 

rjpeg
Specifies RJPEG format.

format tag pcm Sets the format type to PCM for playing 
and recording. The file is saved in this 
format.

format tag tag Sets the format type for playing and 
recording. The file is saved in this format.

index timecode
index counter
index date
index time

Sets the current display screen on the 
VCR.

input integer Sets the audio channel used as the input.

length duration Sets the user-specified length of the tape 
in the VCR. This length is returned by the 
status "length" command and is provided 
for compatibility with applications that 
require this command to return a valid 
length. 

master midi Sets the MIDI sequencer as the 
synchronization source. Synchronization 
data is sent in MIDI format. The MCISEQ 
sequencer does not support this flag.

master none Inhibits the MIDI sequencer from sending 
synchronization data. The MCISEQ 
sequencer does not support this flag.

master smpte Sets the MIDI sequencer as the 
synchronization source. Synchronization 
data is sent in SMPTE (Society of Motion 
Picture and Television Engineers) format. 
The MCISEQ sequencer does not 
support this flag.

offset time Sets the SMPTE offset time. The offset is 
the beginning time of a SMPTE based 
sequence. The time is expressed as 
hh:mm:ss:ff, where hh is hours, mm is 
minutes, ss is seconds, and ff is frames. 

output integer Sets the audio channel used as the 
output. 

pause timeout Sets the maximum duration, in 
milliseconds, of a pause command. A 
timeout value of zero indicates that no 
time-out will occur.

postroll duration 
duration

Sets the length, in the current time 
format, needed to brake the VCR 
transport when a stop or pause 
command is issued.

port mapper Sets the MIDI mapper as the port 
receiving the MIDI messages. This 



command fails if the MIDI mapper or a 
port it needs is being used by another 
application. 

port none Disables the sending of MIDI messages. 
This command also closes a MIDI port. 

port port_number Sets the MIDI port receiving the MIDI 
messages. This command fails if the port 
you are trying to open is being used by 
another application. 

power on
power off

Sets the device power to on or off.

preroll duration duration Sets the length, in the current time 
format, needed to stabilize the VCR 
output. 

record format SP
record format LP
record format EP

Sets the recording mode for the VCR to 
SP for standard play, EP for extended 
play, or LP for long play. These values are 
not intended to be VHS specific. They 
map to any three appropriate modes with 
other tape formats. For example, SP 
maps to the fastest, highest quality 
recording.

samplespersec integer Sets the sample rate for playing and 
recording. The file is saved in this format. 

seek exactly on
seek exactly off

Selects one of two seek modes. With 
"seek exactly on", seek will always move 
to the frame specified. With "seek exactly 
off", seek will move to the closest key 
frame prior to the frame specified.

slave file Sets the MIDI sequencer to use file data 
as the synchronization source. This is the 
default setting. 

slave midi Sets the MIDI sequencer to use incoming 
MIDI data for the synchronization source. 
The sequencer recognizes 
synchronization data with the MIDI 
format. The MCISEQ sequencer does not 
support this flag. 

slave none Sets the MIDI sequencer to ignore 
synchronization data.

slave smpte Sets the MIDI sequencer to use incoming 
MIDI data for the synchronization source. 
The sequencer recognizes 
synchronization data with the SMPTE 
format. The MCISEQ sequencer does not 
support this flag.

speed factor Sets the relative speed of video and 
audio playback from the workspace. 
Factor is the ratio between the nominal 
frame rate and the desired frame rate, 
where the nominal frame rate is 
designated as 1000. (A rate of 500 is half 
normal speed, 2000 is twice normal 



speed, and so on.) Setting the speed to 
zero plays the video as fast as possible 
without dropping frames and without 
audio.

still file format format Specifies the file format used for capture 
commands.

tempo tempo_value Sets the tempo of the sequence 
according to the current time format. For 
a PPQN-based file, the tempo_value is 
interpreted as beats per minute. For a 
SMPTE-based file, the tempo_value is 
interpreted as frames per second. 

time format bytes In a PCM file format, sets the time format 
to bytes. All position information is 
specified as bytes following this 
command. 

time format frames Sets the time format to frames. All 
commands that use position values will 
assume frames. When the device is 
opened, frames is the default mode. 
Supported by videodiscs using CAV 
format.

time format hms Sets the time format to hours, minutes, 
and seconds. All commands that use 
position values will assume HMS. HMS is 
the default format for CLV videodiscs. 

Specify an HMS value as hh:mm:ss, 
where hh is hours, mm is minutes, and ss 
is seconds. You can omit a field if it and 
all following fields are zero. For example, 
3, 3:0, and 3:0:0 are all valid ways to 
express 3 hours. 

time format 
milliseconds

Sets the time format to milliseconds. All 
commands that use position values will 
assume milliseconds. You can abbreviate 
milliseconds as "ms".

For sequencer devices, the sequence file 
sets the default format to PPQN or 
SMPTE. Video-overlay devices do not 
support this flag.

time format msf Sets the time format to minutes, seconds, 
and frames. All commands that use 
position values will assume MSF (the 
default format for CD audio).

Specify an MSF value as mm:ss:ff, where 
mm is minutes, ss is seconds, and ff is 
frames. You can omit a field if it and all 
following fields are zero. For example, 3, 
3:0, and 3:0:0 are valid ways to express 3 
minutes. 

The MSF fields have the following 
maximum values:

Minutes 99



Seconds 59
Frames    74

time format samples Sets the time format to samples. All 
position information is specified as 
samples following this command.

time format smpte 24
time format smpte 25
time format smpte 30

Sets the time format to an SMPTE frame 
rate. 

For VCRs, sets the time format to 
hh:mm:ss:ff, where the legal values are 
00:00:00:00 through 23:59:59:xx, and xx 
is one less than the frames per second as 
specified by the number 24, 25, or 30 as 
specified in the flag. On input, colons (:) 
are required to separate the components. 
The least significant units can be 
omitted if they are 00; for example, 02:00 
is the same 
as 02:00:00:00. 

All commands that use position values 
will assume SMPTE format. 

The sequence file sets the default format 
to PPQN or SMPTE.

time format smpte 30 
drop

Sets the time format to SMPTE 30 drop 
frame rate. 

For VCRs, same as SMPTE 30, except 
that certain timecode positions are 
dropped from the format to have the 
recorded timecode positions for each 
frame (at the NTSC frame rate of 29.97 
fps) correspond to real time (at 30 fps). 
Timecode positions that are dropped are 
as follows: two every minute, on the 
minute, for the first nine of every ten 
minutes of recorded content. For 
example, at 01:04:59:29, the next 
timecode position would be 01:05:00:02, 
not 01:05:00:00. 

All commands that use position values 
will assume SMPTE format. 

The sequence file sets the default format 
to PPQN or SMPTE.

time format song 
pointer

Sets the time format to song pointer 
(sixteenth notes). All commands that use 
position values will assume song pointer 
units. This flag is valid only for a 
sequence of division type PPQN.

time format tmsf Sets the time format to tracks, minutes, 
seconds, and frames. All commands that 
use position values will assume TMSF.

Specify a TMSF value as tt:mm:ss:ff, 
where tt is tracks, mm is minutes, ss is 
seconds, and ff is frames. You can omit a 
field if it and all following fields are zero. 



For example, 3, 3:0, 3:0:0, and 3:0:0:0 
are all valid ways to express track 3. 

The TMSF fields have the following 
maximum values:

Tracks 99
Minutes 99
Seconds 59
Frames    74

time format track Sets the position format to tracks. All 
commands that use position values will 
assume tracks. 

time mode counter Sets the position-information mode to use 
the VCR counters.

time mode detect Sets the position information mode based 
on detection of timecode information on 
the tape. If timecode information is 
detected, the time type is set to 
"timecode"; otherwise, the time type is set 
to "counter".

"Detect" is a special mode. Whenever the 
driver is opened, a new tape is inserted, 
or the "time mode" command is issued, 
the driver checks the current time mode 
available on the tape and sets "time type" 
to either "timecode" or "counter". Once 
"time type" is set, the driver doesn't 
change it until one of the above 
conditions occurs again.

time mode timecode Sets the position information mode to use 
"timecode" information on the tape.

tracking plus
tracking minus
tracking reset

Adjusts the speed of the videotape 
transport in fine increments. Use the 
"tracking" flags when a noisy picture is 
obtained from a VCR. "Tracking plus" 
increases the transport speed. "Tracking 
minus" decreases the transport speed. 
"Tracking reset" returns the tracking 
adjustment to zero.

video off Disables video output.

video on Enables video output.
 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
Several properties of waveform-audio data are defined when the file to store the data is created. These 



properties describe how the data is structured within the file and cannot be changed once recording 
begins. The following list identifies these properties:

· alignment

· bitspersample

· bytespersec

· channels

· format tag

· samplespersec
 

The following command sets the time format to milliseconds and sets the waveform-audio format to 8 bit, 
mono, 11 kHz:

set mysound time format ms bitspersample 8 channels 1 samplespersec 11025
  

See Also
capture, pause, save, status, stop 



setaudio      

  

The setaudio command sets values associated with audio playback and capture. Digital-video and VCR 
devices recognize this command. 

wsprintf(lpstrCommand, "setaudio %s %s %s", lpszDeviceID, lpszAudio, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszAudio

Flag for audio playback and capture. The following table lists device types that recognize the 
setaudio command and the flags used by each type:

digitalvideo algorithm algorithm
alignment to integer
bass to factor
bitspersample to bit_count
bytespersec to integer
clocktime
input
left off
left on
left volume to factor
off
on
output

over duration
quality descriptor
record off
record on
right off
right on
right volume to factor
samplespersec to integer
source to sourcename
stream to number
treble to factor
volume to factor

vcr off
on
monitor to type number 
number
record off
record track track_number 
off

record on 
record track 
track_number on 
source to type number 
number
track track_number off
track track_number on

 

The following table lists the flags that can be specified in the lpszAudio parameter and their 
meanings:

algorithm algorithm Selects a specific audio compression 
algorithm for use by a subsequent 
reserve or record command. The 
algorithms supported are device 
specific.

MCI defines the values "g711", 
"g721", "g722", "g728", "pcm", "cdxa", 
"adpcm", and "adpcm4e" for 
algorithm. If a device supports the 
algorithm names "pcm", "cdxa", and 
"adpcm4e", they adhere to standard 



definitions. The "cdxa" algorithm has 
been defined by Sony Corporation. 
The "adpcm4e" algorithm has been 
defined by Intel Corporation. The 
"g711", "g721", "g722", and "g728" 
values represent audio algorithms 
recommended by the International 
Telegraph and Telephone Consultative 
Committee (CCITT).

If the specified algorithm conflicts with 
the current file format, the file format 
is changed to the default format for 
the algorithm.

alignment to integer Sets the alignment of data blocks 
relative to the start of input waveform-
audio data.

bass to factor Sets the audio low frequency level.

bitspersample to bit_count Sets the number of bits per sample 
recorded. The file is saved in this 
format. This flag applies only to 
devices supporting the "pcm" 
algorithm.

bytespersec to integer Sets the average number of bytes per 
second for recording in the "pcm" and 
"adpcm" algorithms. The file is saved 
in this format.

clocktime Indicates the time specified in the 
"over" flag is in milliseconds. This time 
is absolute and not in step with the 
playing of the workspace.

input Modifies the "bass", "treble", or 
"volume" flag so that it affects the 
input signal and modifies what is 
recorded. If possible, this is the 
default when monitoring the input.

left off
left on

Enables or disables audio output on 
the left channel. The audio 
presentation source can be the 
external input or the workspace. The 
default is "left on". If there is only one 
channel, that channel is set on or off.

left volume to factor Sets the audio volume of the left audio 
channel. If there is only one channel it 
sets its volume.

monitor to type number 
number

Controls which source input will be 
passed to the VCR output without 
changing the recording source input 
selection. Type can be "output," or 
one of the valid input sources. If 
number is not specified, then the first 
input of that type will be chosen.

off
on

Enables or disables audio. The audio 
presentation source can either be the 



external input or the workspace. This 
command affects the left and right 
audio channels simultaneously. The 
default is setaudio "on".

output Modifies the "bass", "treble", or 
"volume" flag so that it modifies only 
the played signal and not what is 
recorded. If possible, this is the 
default when monitoring a file.

over duration Specifies how long it should take to 
make a change that uses a factor 
variable. The units for duration are in 
the current time format. Changes 
occur in step with the playing of the 
workspace. When playing is 
suspended, the change is also 
suspended until the play continues. If 
"over" is not specified or not 
supported, the change occurs 
immediately.

quality descriptor Specifies the characteristics of the 
audio compression performed when 
audio is recorded to a file. All devices 
support the three descriptors "low", 
"medium", and "high". The default is 
device specific.

If the "algorithm" flag is not specified, 
the "quality" adjustment applies to the 
current algorithm.

The quality command can be used to 
define additional descriptor names. 

record off Clears the audio-source selection so 
that no audio will be recorded with the 
next record command.

record on Enables recording of audio data. The 
default is to record audio data.

record track track_number 
off

Clears the audio-source selection so 
that no audio will be recorded with the 
next record command. "Track" allows 
independent track selection. Track 2 
corresponds to the PCM track in Hi8. 
If "track" is not specified, a default 
value of 1 is assumed.

record track track_number 
on 

Selects the audio source to be 
recorded with the next record 
command. "Track" allows independent 
track selection. Track 2 corresponds 
to the PCM track in Hi8. If "track" is 
not specified, a default value of 1 is 
assumed.

right off
right on

Enables or disables audio output on 
the right channel. The audio 
presentation source can be the 



external input or the workspace. The 
default is "right on". If there is only one 
channel, this flag has no effect.

right volume to factor Sets the audio volume to the right 
audio channel. If there is only one 
channel, it has no effect.

samplespersec to integer Sets the sample rate for recording 
with the "pcm" and "adpcm" 
algorithms. The file is saved in this 
format.

source to sourcename Specifies the source for the audio 
input digitizer. The constants defined 
for sourcename include: "left", "right", 
"average", and "stereo". The first three 
specify monophonic recording using 
the left input only, the right input only, 
and the average of the two inputs.

source to type number 
number

Selects the audio source to be 
recorded on the tape. Type must be 
"tuner", "line", "svideo", "aux", 
"generic", or "mute". 

stream to number Specifies the audio stream played 
back from the workspace. If the 
stream is not specified and the file 
format does not define a default, then 
the interleaved audio stream that is 
physically first will be played.

track track_number off Disables an individual track.

track track_number on Enables an individual track.

treble to factor Sets the audio high-frequency level.

volume to factor Sets the average audio volume for 
both audio channels. If the left and 
right volumes have been set to 
different values, then the ratio of left-
to-right volume is approximately 
unchanged.

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
For VCR devices, using setaudio with a flag that turns off an individual track ("track track_number off") 
might cause your application to receive a status message indicating that the command could not be 
carried out. Some VCRs can turn off only combinations of tracks, not individual tracks; for example, the 
first audio track and a video track of a video cassette. In this case, simply use setaudio and setvideo to 
continue to turn off the other tracks that make up the combination. The driver will turn off the tracks when 



it receives the command to turn off the last track in the combination.

See Also
quality, record, reserve, setvideo 



settimecode      

  

The settimecode command enables or disables timecode recording for a VCR. VCR devices recognize 
this command. 

wsprintf(lpstrCommand, "settimecode %s %s %s", lpszDeviceID,
    lpszTimecode, lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszTimecode

One of the following flags:

record on Sets the VCR to record timecode. 

record off Disables timecode recording.
 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.



settuner      

  

The settuner command changes the current tuner or the channel setting of the current tuner. VCR 
devices recognize this command. 

wsprintf(lpstrCommand, "settuner %s %s %s", lpszDeviceID, lpszTuner, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszTuner

One of the following flags:

channel channel Sets the tuner to channel. You might not be 
able to change the channel while recording, 
depending on the VCR. A channel larger than 
the maximum sets the tuner to the maximum 
channel.

channel seek up
channel seek 
down

Seeks the next channel with a valid signal. 
"Seek up" increments the channel number in its 
search. "Seek down" decrements the channel 
number in its search. The tuner wraps to 
channel 1 when the maximum channel number 
is exceeded. Similarly, when seeking down, the 
tuner wraps to the maximum channel. 

channel up 
channel down 

Increments or decrements the tuner channel. 
You might not be able to change the channel 
while recording, depending on the VCR. The 
tuner wraps to channel 1 when the maximum 
channel number is exceeded. Similarly, when 
seeking down, the tuner wraps to the maximum 
channel. 

number number Specifies the tuner to be affected by the 
settuner command. If number is not given, the 
default value of 1 is assumed.

 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.



setvideo      

  

The setvideo command sets values associated with video playback and capture. Digital-video and VCR 
devices recognize this command. 

wsprintf(lpstrCommand, "setvideo %s %s %s", lpszDeviceID, lpszVideo, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszVideo

Flag for video playback and capture. The following table lists device types that recognize the 
setvideo command and the flags used by each type:

digitalvideo algorithm algorithm
bitsperpel to count
brightness to factor
clocktime
color to factor
contrast to factor
gamma to value
halftone
input
key color to r:g:b
key index to index
off
on
output

over duration
palette color color over 
index 
        to newrgb
palette handle to handle
quality descriptor
record frame rate to rate 
record on
record off
sharpness to factor
source to source number 
value
still algorithm algorithm
still quality descriptor
stream to number
tint to factor

vcr off
on
monitor to type number 
number
record off
record track track_number 
off

record on 
record track track_number 
on 
source to type number 
number
track track_number off
track track_number on 

 

The following table lists the flags that can be specified in the lpszVideo parameter and their 
meanings:

algorithm algorithm Specifies a video compression 
algorithm for use by a subsequent 
reserve or record command. 
Algorithms supported by a device are 
device specific. MCI defines the 
constants "mpeg" and "h261" for 
algorithm.

If the specified algorithm conflicts with 



the current file format, the file format is 
changed to the default format for the 
algorithm.

bitsperpel to count Sets the number of bits per pixel for 
saving data with the capture or record 
command.

brightness to factor Sets the video brightness level.

clocktime Indicates that the time specified in the 
"over" flag is in milliseconds. The time is 
absolute and not in step with the playing 
of the workspace.

color to factor Sets the color-saturation level.

contrast to factor Sets the video-contrast level.

gamma to value Specifies the gamma correction 
exponent multiplied by 1000. For 
example, to specify an exponent of 2.2, 
use 2200 for value. A gamma value of 
1.0 (1000) indicates no gamma 
correction is applied. Gamma correction 
adjusts the mapping between the 
intensity encoded in the presentation 
source and the displayed brightness.

halftone Causes the halftone palette to be used 
instead of the default palette. This flag 
is recognized only by the MCIAVI 
digital-video driver. 

input Modifies the "brightness", "color", 
"contrast", "gamma", "sharpness", or 
"tint" flag so that it affects the input 
signal and modifies what is recorded. If 
possible, this is the default when 
monitoring the input.

key color to r:g:b Sets the key color. The r:g:b variable is 
a Windows RGB value. Colons (:) 
separate the individual red, green, and 
blue values.

key index to index Sets the key index. The index variable 
is a physical palette index.

monitor to type number 
number

Controls which source input will be 
passed to the VCR output, without 
changing the recording source input 
selection. Type can be "output", or one 
of the valid input sources. If "number" is 
not specified, then the first input of that 
type is chosen.

off
on

Enables or disables display of video. 
Disabling video sets the pixels in the 
put "destination" rectangle (or its 
default, the client region of the current 
window) to a solid color. It has no effect 
on the frame buffer.

The video source, whether the 
workspace or an external input, might 



continue to store new images in the 
frame buffer. They are not displayed 
until video is enabled. You can use the 
window "state" command to hide the 
window. The default is setvideo "on".

output Modifies the "brightness", "color", 
"contrast", "gamma", "sharpness", or 
"tint" flag so that it modifies only the 
displayed signal and not what is 
recorded. If possible, this is the default 
when monitoring a file.

over duration Specifies how long it should take to 
make a change that uses a factor 
variable. The units for duration are in 
the current time format. Changes occur 
in step with the playing of the 
workspace. When playing is suspended, 
the change is also suspended until the 
play continues. If "over" is not used or 
not supported, the change occurs 
immediately.

palette color color over 
index to newrgb

Sets a new palette color. The color and 
palette index to be changed are 
specified by the color and index 
parameters; the new color is specified 
by newrgb. This flag is recognized only 
by the MCIAVI digital-video driver.

palette handle to handle Specifies the handle to a palette the 
device must use for rendering. This item 
is supported only by devices that use 
palettes. If handle is zero, the default 
palette is used.

Digital-video devices should not free the 
palette passed with this command. 
Applications should free it after they 
close the device.

quality descriptor Specifies the characteristics of the video 
compression performed when video is 
recorded to a file. All devices support 
the three descriptors: "low", "medium", 
and "high". The default is device 
specific. The significance of these 
names depends on the algorithm and 
the device. Devices might define 
additional descriptor names. The 
quality command can be used to define 
additional descriptor names.

If the "algorithm" flag is not used, the 
descriptor applies to the current 
algorithm.

record frame rate to rate Sets the recording for motion video. The 
recording rate is specified in units of 
frames per second multiplied by 1000. 
For example, the NTSC frame rate of 



29.97 frames per second is represented 
as 29970.

record on
record off

Enables or disables recording of video 
data. Recording video data is the 
default.

record track 
track_number off

Clears the video-source selection so 
that no video will be recorded with the 
next record command. "Track" allows 
independent track selection. If "track" is 
not specified, a default value of 1 is 
assumed. It might be necessary to first 
issue a set "assemble record off" 
command before the video recording 
can be turned off.

record track 
track_number on 

Selects the video source to be recorded 
with the next record command. "Track" 
allows independent track selection. 
Track 2 corresponds to the PCM track 
in Hi8. If "track" is not specified, a 
default of 1 is assumed.

sharpness to factor Sets the video sharpness level.

source to source number 
value

Sets the source of the video input. This 
usually corresponds to external 
connectors. The constants defined for 
source include "rgb", "pal", "ntsc", 
"svideo", and "secam". If more than one 
input of the specified type exists, the 
optional "number" value indicates the 
desired input. For example, setvideo 
"source to ntsc number 2" specifies the 
second NTSC input.

If "to" source is omitted, then the 
absolute source is used as defined by 
the list "video source" command.

source to type number 
number 

Selects the video source to be recorded 
on the tape. Type must be "tuner", 
"line", "svideo", "aux", "generic", "mute", 
or "rgb". 

still algorithm algorithm Specifies the still image compression 
algorithm used by the capture 
command. Every device must support 
an algorithm of "none", which means no 
compression. This is the default. In this 
case, digital-video devices save still 
images as RGB format device-
independent bitmaps. Devices might 
also support a device-specific list of 
additional algorithms.

still quality descriptor Specifies the characteristics of the still-
image compression performed while 
capturing a still image. All devices 
support the descriptors "low", "medium", 
and "high". The default is device 



specific. 

If the "algorithm" flag is not used, the 
descriptor applies to the current 
algorithm.

The quality command can be used to 
define other descriptor names.

stream to number Specifies the video stream played back 
from the workspace. If the stream is not 
specified and a default stream is not 
defined by the file format, then the 
physically first interleaved video stream 
is played.

tint to factor Sets the image tint. Typically, this 
adjustment is modeled after the tint 
control of many color television sets, 
with 250 meaning green, 750 meaning 
red, and 0 (or 1000) meaning blue. The 
nominal value is always 500.

track track_number off Disables an individual video track.

track track_number on Enables an individual video track.
 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
For VCR devices, using setvideo with a flag that turns off an individual track ("track track_number off") 
might cause your application to receive a status message indicating that the command could not be 
carried out. Some VCRs can turn off only combinations of tracks, not individual tracks; for example, the 
first audio track and a video track of a video cassette. In this case, simply use setaudio and setvideo to 
continue to turn off the other tracks that make up the combination. The driver will turn off the tracks when 
it receives the command to turn off the last track in the combination.

See Also
capture, list, put, quality, record, reserve, RGB, set, setaudio, window 



signal      

  

The signal command identifies a specified position in the workspace by sending the application an 
MM_MCISIGNAL message. Digital-video devices recognize this command. MCIAVI supports only one 
active signal at a time. 

wsprintf(lpstrCommand, "signal %s %s %s", lpszDeviceID, lpszSignalFlags, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszSignalFlags

One of the following flags:

at position Specifies the frame to invoke a signal. 

cancel Removes signals from the workspace. An 
individual signal is specified by using the 
"uservalue" flag. If the "uservalue" flag is not 
specified by using "cancel", the device cancels all 
signals. The "cancel" flag is incompatible with the 
"at", "every", and "return position" flags.

every interval Specifies the period of the signals. The interval 
value is specified in the current time format. 

If used with "at" position, signals are placed 
throughout the workspace with one signal mark 
placed at position. 

Without the "at" flag, signals are placed 
throughout the workspace with one signal at the 
current position. 

If this flag is omitted, only the position indicated by 
the "at" flag is marked. 

If the interval value is less than the minimum 
frequency supported by a device, it will use its 
minimum value.

return 
position

Indicates the device should send the position 
value instead of the "uservalue" identifier in the 
signaling message. The "uservalue" identifier can 
still be used to cancel or to redefine the signal 
marks.

uservalue id Specifies an identifier that is reported back with 
the signaling message. This identifier acts as an 
identifier that can be used with other signal 
commands to reference this signal setting. If 
omitted, the default value is zero.

 

lpszFlags



Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The window handle used for notification of command completion messages is also used for signaling.

See Also
MM_MCISIGNAL 



spin      

  

The spin command starts spinning a disc or stops the disc from spinning. Videodisc devices recognize 
this command. 

wsprintf(lpstrCommand, "spin %s %s %s", lpszDeviceID, lpszUpDown, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszUpDown

One of the following flags:

down Stops the disc from spinning.

up Starts spinning the disc.
 

lpszFlags

Can be "wait", "notify", or both. For more information about these flags, see The Wait, Notify, and Test 
Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following command starts spinning a videodisc device:

spin videodisc up
  



status      

  

The status command requests status information from a device. All devices recognize this command. 

wsprintf(lpstrCommand, "status %s %s %s", lpszDeviceID, lpszRequest, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszRequest

Flag for requesting status information. The following table lists device types that recognize the status 
command and the flags used by each type:

cdaudio cdaudio type track 
number
current track
length
length track number
media present
mode

number of tracks
position
position track number
ready
start position
time format

digitalvideo audio
audio alignment
audio bitspersample
audio breaks
audio bytespersec
audio input
audio record
audio source
audio samplespersec
audio stream
bass
bitsperpel
brightness
color
contrast
current track
disk space drive
file completion
file format 
file mode
forward
frames skipped
gamma
input
left volume
length
length track number
media present
mode
monitor

output
palette handle
pause mode
play speed
position
position track number
ready
record frame rate
reference frame
reserved size
right volume
seek exactly
sharpness
smpte
speed
start position
still file format
time format
tint
treble
unsaved
video
video key index
video key color
video record
video source
video source number
video stream
volume
window handle



monitor method
nominal
nominal frame rate
nominal record frame rate
number of tracks

window visible
window minimized
window maximized

overlay media present
mode
number of tracks

ready
stretch
window handle

sequencer current track
division type
length
length track number
master
media present
mode
number of tracks
offset

port
position
position track number
ready
slave
start position
tempo
time format

vcr assemble record
audio monitor
audio monitor number
audio record 
audio record track number
audio source
audio source number
channel
channel tuner number
clock
clock id
counter
counter format
counter resolution
current track
frame rate
index
index on
length
length track number
media present
media type
mode
number of audio tracks
number of tracks
number of video tracks

pause timeout
play format
position
position start
position track number
postroll duration
power on
preroll duration
ready
record format
speed
time format
time mode
time type
timecode present
timecode record
timecode type
tuner number
video monitor
video monitor number
video record
video record track number
video source
video source number
write protected

videodisc current track
disc size
forward
length
length track number
media present
media type
mode

number of tracks
position
position track number
ready
side
speed
start position
time format

waveaudio alignment
bitspersample
bytespersec
channels

media present
mode
number of tracks
output



current track
format tag
input
length
length track number
level

position
position track number
ready
samplespersec
start position
time format

 

The following table lists the flags that can be specified in the lpszRequest parameter and their 
meanings:

alignment Returns the block alignment of data, 
in bytes.

assemble record Returns TRUE if the device is set to 
assemble mode recording. 

audio Returns "on" or "off" depending on the 
most recent setaudio "on" or "off" 
command. It returns "on" if either or 
both speakers are enabled, and "off" 
otherwise.

audio alignment Returns the alignment of data blocks 
relative to the start of input waveform-
audio data.

audio bitspersample Returns the number of bits per 
sample the device uses for recording. 
This flag applies only to devices 
supporting the "pcm" algorithm.

audio breaks Returns the number of times the 
audio portion of the last AVI sequence 
broke up. The system counts an 
audio break whenever it attempts to 
write audio data to the device driver 
and discovers that the driver has 
already played all of the available 
data. This flag is recognized only by 
the MCIAVI digital-video driver. It is 
meant for performance evaluation 
only; the return value is difficult to 
interpret.

audio bytespersec Returns the average number of bytes 
per second used for recording.

audio input Returns the approximate 
instantaneous audio level of the 
analog input audio signal. A value 
greater than 1000 implies clipping 
distortion. Some devices can return 
this value only while recording audio. 
The value has no associated set or 
setaudio command.

audio monitor Returns "output", or one of the valid 
source-input types. For more 
information, see the setaudio 
"monitor" command.

audio monitor number Returns the monitored-video number 
of the type specified by status "audio 



monitor". For more information, see 
the setaudio command.

audio record Returns "on" or "off", reflecting the 
state set by setaudio "record".

audio record track number Returns TRUE if the VCR is set to 
record audio. If no track number is 
given, the default value of 1 is 
assumed.

audio samplespersec Returns the number of samples per 
second recorded.

audio source Returns the current audio digitizer 
source: "left", "right", "average", or 
"stereo".

audio source number Returns the audio-source number of 
the type returned by status "audio 
source". For more information, see 
the setaudio command.

audio stream Returns the current audio-stream 
number.

bass Returns the current audio-bass level.

bitsperpel Returns the number of bits per pixel 
for saving captured or recorded data.

bitspersample Returns the bits per sample.

brightness Returns the current video-brightness 
level.

bytespersec Returns the average number of bytes 
per second played or recorded.

cdaudio type track number Returns the type of the specified track 
number. This can be "audio" or 
"other."

channel Returns the integer value of the 
channel set on the tuner. 

channel tuner number If "tuner" number is given, then the 
currently selected channel on the 
logical tuner number will be returned. 
Note that there can be several logical 
tuners.

channels Returns the number of channels set 
(1 for mono, 2 for stereo).

clock Returns the external time. The time 
must be an unsigned long integer 
expressing total increments. For more 
information, see the capability "clock 
increment rate" command.

clock id Returns a unique integer identifying 
the clock.

color Returns the current color level.

contrast Returns the current contrast level.

counter Returns the counter position, in the 
current counter format.

counter format Returns the current counter format. 



For more information, see the set 
"counter format" command.

counter resolution Returns "frames" or "seconds", 
indicating the counter's resolution. 
This is not the same as accuracy.

current track Returns the current track. The 
MCISEQ sequencer returns 1.

disc size Returns either 8 or 12, indicating the 
size of the loaded disc in inches.

disk space drive Returns the approximate disk space, 
in the current time format, that can be 
obtained by a reserve command for 
the specified disk drive. The drive is 
usually specified as a single letter or a 
single letter followed by a colon (:). 
Some devices, however, might use a 
path.

division type Returns one of the following file 
division types:

PPQN 
SMPTE 24 frame
SMPTE 25 frame
SMPTE 30 drop frame 
SMPTE 30 frame

Use this information to determine the 
format of the MIDI file and the 
meaning of tempo and position 
information.

file completion Returns the estimated percentage a 
load, save, capture, cut, copy, 
delete, paste, or undo operation has 
progressed. (Applications can use this 
to provide a visual indicator of 
progress.) 

file format Returns the current file format for 
record or save commands.

file mode Returns "loading", "saving", "editing", 
or "idle". During a load operation, it 
returns "loading". During save and 
capture operations, it returns 
"saving". During cut, copy, delete, 
paste, or undo operations, it returns 
"editing".

format tag Returns the format tag.

forward Returns TRUE if the play direction is 
forward or if the device is not playing. 

frame rate Returns the number of frames per 
second that the device will use by 
default. NTSC devices return 30, PAL 
25, and so on.

frames skipped Returns the number of frames that 
were not drawn when the last AVI 
sequence was played. This flag is 



recognized only by the MCIAVI digital-
video driver. It is meant for 
performance evaluation only; the 
return value is difficult to interpret.

gamma Returns the value set with setvideo 
"gamma to" value.

index Returns the current index display. For 
more information, see the set "index" 
command.

index on Returns TRUE if the index is on.

input Returns the input set. If one is not set, 
the error returned indicates that any 
device can be used. 

For digital-video devices, modifies the 
"bass", "treble", "volume", 
"brightness", "color", "contrast", 
"gamma", "sharpness", or "tint" flag 
so that it applies only to the input. 
This is the default when monitoring 
the input. 

left volume Returns the volume set for the left 
audio channel.

length Returns the total length of the media, 
in the current time format. 

For PPQN files, the length is returned 
in song pointer units. For SMPTE 
files, it is returned as hh:mm:ss:ff, 
where hh is hours, mm is minutes, ss 
is seconds, and ff is frames. For VCR 
devices, the length is 2 hours (unless 
the length has been explicitly 
changed using the set command).

length track number Returns the length of the track, in time 
or frames, specified by number. 

For PPQN files, the length is returned 
in song pointer units. For SMPTE 
files, it is returned as hh:mm:ss:ff, 
where hh is hours, mm is minutes, ss 
is seconds, and ff is frames. 

level Returns the current PCM audio 
sample value.

master Returns "midi", "none", or "smpte" 
depending on the type of 
synchronization set.

media present Returns TRUE if the media is inserted 
in the device or FALSE otherwise. 
Sequencer, video-overlay, digital-
video, and waveform-audio devices 
return TRUE. 

media type Returns the type of the media. For 
VCRS, this is "8mm", "vhs", "svhs", 
"beta", "Hi8", "edbeta", or "other". For 
videodiscs, this is "CAV", "CLV", or 



"other", depending on the type of 
videodisc.

mode Returns the current mode of the 
device. All devices can return the "not 
ready", "paused", "playing", and 
"stopped" values. Some devices can 
return the additional "open", "parked", 
"recording", and "seeking" values.

monitor Returns "file" or "input". The returned 
value indicates the current 
presentation source.

monitor method Returns "pre", "post", or "direct". The 
returned value indicates the method 
used for input monitoring.

nominal The item modifies the "bass", 
"brightness", "color", "contrast", 
"gamma", "sharpness", "tint", "treble," 
and "volume" flags to return the 
nominal value instead of the current 
setting.

nominal frame rate Returns the nominal frame rate 
associated with the file. The units are 
in frames per second multiplied by 
1000.

nominal record frame rate Returns the nominal frame rate 
associated with the input video signal. 
The units are in frames per second 
multiplied by 1000.

number of audio tracks Returns the number of audio tracks 
on the media.

number of tracks Returns the number of tracks on the 
media. The MCISEQ and MCIWAVE 
devices return 1, as do most VCR 
devices. The MCIPIONR device does 
not support this flag.

number of video tracks Returns the number of video tracks 
on the media.

offset Returns the offset of a SMPTE-based 
file. The offset is the start time of a 
SMPTE-based sequence. The time is 
returned as hh:mm:ss:ff, where hh is 
hours, mm is minutes, ss is seconds, 
and ff is frames. 

output Returns the currently set output. If no 
output is set, the error returned 
indicates that any device can be 
used. 

For digital-video devices, modifies the 
"bass", "treble", "volume", 
"brightness", "color", "contrast", 
"gamma", "sharpness", or "tint" flag 
so that it applies only to the output. 
This is the default when monitoring a 



file. 

pause mode Returns "recording" if the device is 
paused while recording. It returns 
"playing" if the device is paused while 
playing. It returns the error "Action not 
applicable in current mode" if the 
device is not paused.

pause timeout Returns the maximum duration, in 
milliseconds, of a pause command.

play format Returns a code indicating the format 
that the videotape will be played back 
in, if detectable: "lp", "ep", "sp", or 
"other". For more information, see the 
"record format" flag.

play speed Returns a value representing how 
closely the actual playing time of the 
last AVI sequence matched the target 
playing time. The value 1000 
indicates that the target time and the 
actual time were the same. A value of 
2000, for example, would indicate that 
the AVI sequence took twice as long 
to play as it should have. This flag is 
recognized only by the MCIAVI digital-
video driver. It is meant for 
performance evaluation only; the 
return value is difficult to interpret.

port Returns the MIDI port number 
assigned to the sequence. 

position Returns the current position.

For PPQN files, the position is 
returned in song pointer units. For 
SMPTE files, it is returned as 
hh:mm:ss:ff, where hh is hours, mm is 
minutes, ss is seconds, and ff is 
frames. 

position start Returns the position of the start of the 
usable media. 

position track number Returns the position of the start of the 
track specified by number.

For PPQN files, the time format is 
returned in song pointer units. For 
SMPTE files, it is returned as 
hh:mm:ss:ff, where hh is hours, mm is 
minutes, ss is seconds, and ff is 
frames. The MCISEQ sequencer 
returns zero. The MCIPIONR device 
does not support this flag. The 
MCIWAVE device returns zero.

postroll duration Returns the length of videotape, in the 
current time format, needed to brake 
the VCR transport when a stop or 
pause command is issued.



power on Returns TRUE if the VCR's power is 
on.

preroll duration Returns the length of videotape, in the 
current time format, needed to 
stabilize the VCR output. 

ready Returns TRUE if the device is ready 
to accept another command.

record format Returns a code indicating the format 
that the videotape will be recorded in. 
The current return types are "lp", "ep", 
"sp", or "other". These formats are not 
VHS specific and can be applied to 
any VCR that has multiple selectable 
recording formats. The "sp" type is 
the fastest, highest quality recording 
format and is used as default on 
single format VCRs.

record frame rate Returns the frame rate, in frames per 
second multiplied by 1000, used for 
compression. 

reference frame Returns the frame number for the 
nearest key frame image that 
precedes the specified frame.

reserved size Returns the size, in the current time 
format, of the reserved workspace. 
The size corresponds to the 
approximate time it would take to play 
the compressed data from a full 
workspace. It returns zero if there is 
no reserved disk space. This flag 
returns the approximate size because 
the precise disk space for 
compressed data cannot, in general, 
be predicted until after the data has 
been compressed.

right volume Returns the volume set for the right 
audio channel.

samplespersec Returns the number of samples per 
second played or recorded.

seek exactly Returns "on" or "off", indicating 
whether or not the "seek exactly" flag 
is set.

sharpness Returns the current sharpness level of 
the device.

side Returns 1 or 2 to indicate which side 
of the videodisc is loaded.

slave Returns "file", "midi", "none", or 
"smpte" depending on the type of 
synchronization set.

smpte Returns the SMPTE timecode 
associated with the current position in 
the workspace. This is a string with 
the form dd:dd:dd:dd, where each d 



denotes a digit from 0 to 9. If the 
workspace data does not include 
timecode data, then this flag returns 
00:00:00:00.

speed Returns the current speed of the 
device in frames per second (or in the 
same format used by the set "speed" 
command). The MCIPIONR videodisc 
player does not support this flag.

start position Returns the starting position of the 
media.

still file format Returns the current file format for the 
capture command.

stretch Returns TRUE if stretching is 
enabled.

tempo Returns the current tempo of a MIDI 
sequence in the current time format. 
For files with PPQN format, the tempo 
is in beats per minute. For files with 
SMPTE format, the tempo is in 
frames per second.

time format Returns the current time format. For 
more information, see the time 
formats in the set command.

time mode Returns the current position time 
mode. It can be "detect", "timecode", 
or "counter".

time type Returns the current position time in 
use: "timecode" or "counter".

timecode present Returns TRUE if timecode has been 
recorded at the current position on the 
tape. The timecode must advance 
from the current position. A VCR 
might need to be played to check this 
condition.

timecode record Returns TRUE if the VCR is set to 
record timecode.

timecode type Returns "smpte", "smpte drop", 
"other", or "none". Note the frames 
per second can be obtained from the 
status "frame rate" command, and 
the accuracy of the device can be 
returned by the capability "seek 
accuracy" command.

tint Returns the current video-tint level.

treble Returns the current audio-treble level.

tuner number Returns the current logical-tuner 
number.

unsaved Returns TRUE if there is recorded 
data in the workspace that might be 
lost as a result of a close, load, 
record, reserve, cut, delete, or 



paste command. Returns FALSE 
otherwise.

video Returns "on" or "off", reflecting the 
state set by the setvideo command.

video key color Returns the value for the key color.

video key index Returns the value for the key index.

video monitor Returns "output" or one of the valid 
source-input types. For more 
information, see the setvideo 
"monitor" command.

video monitor number Returns the monitored-video number 
of the type returned by status "video 
monitor". For more information, see 
the setvideo command.

video record Returns "on" or "off", reflecting the 
current state set by setvideo 
"record".

video record track number Return TRUE if the VCR is set to 
record video. If no track number is 
given, the default value of 1 is 
assumed.

video source Returns the video-source type. For 
more information, see the setvideo 
command.

video source number Returns a number corresponding to 
the video source of the type in use. 
For example, it returns 2 if the second 
NTSC video source input is being 
used.

video stream Returns the current video-stream 
number.

volume Returns the average volume to the 
left and right speaker. This returns an 
error if the device has not been 
played or volume has not been set.

window handle Returns ASCII decimal value for the 
window handle in the low-order word 
of the return value.

window maximized Returns TRUE if the window is 
maximized.

window minimized Returns TRUE if the window is 
minimized.

window visible Returns TRUE if the window is not 
hidden.

write protected Returns TRUE if the device detects 
that it cannot record (that is, if the 
write protect is on). If it can record, or 
if it is unable to determine whether or 
not it can record (without actually 
writing), the driver returns FALSE.

 



lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns information in the lpstrReturnString parameter of mciSendString. The information is dependent 
on the request type.

Remarks
Before issuing any commands that use position values, you should set the desired time format by using 
the set command.

The following command returns the current mode of the "mysound" device:

status mysound mode
  

See Also
capability, capture, close, cut, delete, load, mciSendString, pause, paste, record, reserve, save, 
set, setaudio, setvideo, stop, undo 



step      

  

The step command steps the play one or more frames forward or reverse. The default action is to step 
forward one frame. Digital-video, VCR, and CAV-format videodisc devices recognize this command. 

wsprintf(lpstrCommand, "step %s %s %s", lpszDeviceID, lpszStepFlags, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszStepFlags

One or both of the following flags:

by frames Indicates the number of frames to step. If you 
specify a negative frames value, you cannot specify 
the "reverse" flag.

reverse Step the frames in reverse.
 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.



stop      

  

The stop command stops playback or recording. CD audio, digital-video, MIDI sequencer, videodisc, 
VCR, and waveform-audio devices recognize this command. 

wsprintf(lpstrCommand, "stop %s %s %s", lpszDeviceID, lpszStopFlags, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszStopFlags

For digital-video devices, it can be the following flag:

hold Prevents the release of resources required to redraw a still 
image on the screen. The frame buffer remains available 
for use in updating the display when, for example, the 
window is moved.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
For CD audio devices, the stop command stops playback and resets the current track position to zero.

The following command stops playback or recording on the "mysound" device:

stop mysound
  



sysinfo      

  

The sysinfo command retrieves MCI system information. The sysinfo command is an MCI system 
command; it is interpreted directly by MCI. 

wsprintf(lpstrCommand, "sysinfo %s %s %s", lpszDeviceID, lpszRequest, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device or device type. If a device type is specified, it must be a standard MCI 
device-type name, as listed in the reference material for the capability command. You can specify 
"all" when the flag specified in lpszRequest allows that possibility.

lpszRequest

One of the following flags:

installname Returns the name listed in the registry or the 
SYSTEM.INI file used to install the open device 
with the specified device identifier.

quantity Returns the number of MCI devices listed in the 
registry or the SYSTEM.INI file of the type 
specified in the lpszDeviceID parameter. This 
device identifier must be a standard MCI device-
type name. Any digits after the device type are 
ignored. Specifying "all" for lpszDeviceID returns 
the total number of MCI devices in the system. 

quantity open Returns the number of open MCI devices of the 
type specified in lpszDeviceID. This device 
identifier must be a standard MCI device-type 
name. Specifying "all" for lpszDeviceID returns 
the total number of open MCI devices in the 
system.

name index Returns the name of an MCI device. The device 
identifier must be a standard MCI device-type 
name. The index ranges from 1 to the number of 
devices of that type. If "all" is specified for 
lpszDeviceID, index ranges from 1 to the total 
number of devices in the system.

name index 
open

Returns the name of an open MCI device. The 
device identifier must be a standard MCI device-
type name. The index ranges from 1 to the 
number of open devices of that device type. If 
"all" is specified for lpszDeviceID, index ranges 
from 1 to the total number of open devices in the 
system.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 



more information about these flags, see The Wait, Notify, and Test Flags.
 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following command returns the number of open waveform-audio devices:

sysinfo waveaudio quantity open
  

The following command returns the name (device alias) of the first open waveform-audio device:

sysinfo waveaudio name 1 open
  

See Also
capability 



undo      

  

The undo command reverses the action taken by the most recent successful copy, cut, delete, undo, or 
paste command. Digital-video devices recognize this command. 

wsprintf(lpstrCommand, "undo %s %s", lpszDeviceID, lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see 
The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

See Also
copy, cut, delete, paste 



unfreeze      

  

The unfreeze command reenables video acquisition to the frame buffer after it has been disabled by the 
freeze command. Digital-video, VCR, and video-overlay devices recognize this command. 

wsprintf(lpstrCommand, "unfreeze %s %s %s", lpszDeviceID, lpszUnfreeze, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszUnfreeze

Flag for reenabling video acquisition to the frame buffer. The following table lists device types that 
recognize the unfreeze command and the flags used by each type:

digitalvideo at rectangle

overlay at rectangle

vcr input output
 

The following table lists the flags that can be specified in the lpszUnfreeze parameter and their 
meanings:

at rectangle Specifies the region that will have video acquisition 
reenabled. The rectangle is relative to the video 
buffer origin and is specified as X1 Y1 X2 Y2. The 
coordinates X1 Y1 specify the upper left corner of 
the rectangle, and the coordinates X2 Y2 specify 
the width and height.

input Unfreeze the input image.

output Unfreeze the output image. If neither "input" nor 
"output" is given, "output" is assumed.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For 
more information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following command unfreezes a region of the video buffer:

unfreeze vboard at 10 20 90 165
  

See Also
freeze 



update      

  

The update command repaints the current frame into the specified device context (DC). Digital-video 
devices recognize this command. 

wsprintf(lpstrCommand, "update %s %s %s", lpszDeviceID, lpszHDC, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszHDC

Handle of a DC. The following table lists device types that recognize the update command and the 
flags used by each type:

digitalvideo hdc hdc
hdc hdc at rect

paint hdc hdc

 

The following table lists the flags that can be specified in the lpszHDC parameter and their meanings:

hdc hdc Specifies the handle of the DC to paint.

hdc hdc at rect Specifies the clipping rectangle relative to the 
client rectangle.

paint hdc hdc Paints the DC when the application receives a 
WM_PAINT message intended for a DC.

 

To specify the handle of the DC, use the string "hdc" followed by an ASCII representation of the 
handle. The rectangle is specified as X1 Y1 X2 Y2. The coordinates X1 Y1 specify the upper left 
corner of the rectangle, and the coordinates X2 Y2 specify the width and height. 

lpszFlags

Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more 
information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.

Remarks
The following command updates the entire display window used by the "movie" device. The number 203 
is a handle to a DC obtained from the BeginPaint function:

update movie hdc 203
  

See Also
BeginPaint, WM_PAINT 



where      

  

The where command retrieves the rectangle specifying the source or destination area. This rectangle 
was specified using the put command. Digital-video, and video-overlay devices recognize this command.

wsprintf(lpstrCommand, "where %s %s %s", lpszDeviceID, lpszRequestRect, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszRequestRect

Flag that identifies the rectangle whose dimensions are retrieved. The following table lists device 
types that recognize the where command and the flags used by each type:

digitalvideo destination
destination max
frame
frame max
source

source max
video
video max
window
window max

overlay destination
frame

source
video

 

The following table lists the flags that can be specified in the lpszRequestRect parameter and their 
meanings:

destination Retrieves the destination offset and extent. For 
video-overlay devices, the destination rectangle 
defines the area of the display window client area 
that displays the image data from the frame buffer.

destination 
max

Retrieves the current size of the client rectangle.

frame Retrieves the offset and extent of the frame buffer 
rectangle. The frame buffer rectangle defines the 
area of the frame buffer that receives incoming 
video data. Images from the "video" rectangle are 
scaled into this region.

frame max Returns the maximum size of the frame buffer.

source Retrieves the source offset and extent. For video-
overlay devices, the source rectangle defines the 
region of the frame buffer that is displayed in the 
destination window. The device uses this rectangle 
to crop the image before it is stretched to fit the 
destination rectangle on the display.

source max Retrieves the maximum size of the frame buffer.

video Retrieves the offset and extent of the video 
rectangle. The video rectangle defines the region 
of the incoming video data that is transferred to the 
frame buffer.



video max Returns the maximum size of the input.

window Retrieves the current size and position of the 
display-window frame.

window max Retrieves the size of the entire display.
 

lpszFlags

Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more 
information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns a rectangle in the lpstrReturnString parameter of the mciSendString function. The rectangle 
describes the area specified in the lpszRequestRect parameter of this command. The rectangle is 
specified as X1 Y1 X2 Y2. The coordinates X1 Y1 specify the upper left corner of the rectangle, and the 
coordinates X2 Y2 specify the width and height. 

Remarks
The following command returns the display rectangle of the "movie" device:

where movie destination
  

See Also
mciSendString, put 



window      

  

The window command controls the display window. You can use this command to change the display 
characteristics of the window or provide a destination window for the driver to use in place of the default 
display window. Digital-video, and video-overlay devices recognize this command. 

wsprintf(lpstrCommand, "window %s %s %s", lpszDeviceID, lpszWindowFlags, 
    lpszFlags); 
 

Parameters
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened. 

lpszWindowFlags

Flag for controlling the display window. The following table lists device types that recognize the 
window command and the flags used by each type:

digitalvideo handle hwnd
state hide
state minimize
state restore
state show
show maximized

show minimized
show min noactive
show na
show noactivate
show normal
text caption

overlay fixed
handle default
handle hwnd
state hide
state iconic
state maximized
state minimize
state minimized
state no action
state no activate
state normal

state restore
state show
show maximized
show minimized
show min noactive
show na
show noactivate
show normal
stretch
text caption

 

The following table lists the flags that can be specified in the lpszWindowFlags parameter and their 
meanings:

fixed Disables stretching of the image.

handle default Specifies that the device should set the display 
window back to the default window created 
during the open operation. For    video-overlay 
devices, specifies that the device should create 
and manage its own destination window.

handle hwnd Specifies the handle of the destination window 
to use instead of the default window. The hwnd 
parameter contains the ASCII numeric 
equivalent of the window handle returned by the 
CreateWindow function. Two device instances 
can use the same window handle provided that 
each instance updates the video and image 



pixels in the window as if the other instance did 
not exist. When video output is disabled with 
setvideo "off", an update command will make 
the destination rectangle a solid color.

show maximized Maximizes the destination window.

show min 
noactive

Displays the destination window as an icon.

show minimized Minimizes the destination window.

show na Displays the destination window in its current 
state; the window that is currently active 
remains active.

show noactivate Displays the destination window in its most 
recent size and position; the window that is 
currently active remains active.

show normal Activates and displays the destination window in 
its original size and position. (This is the same 
as the "state restore" flag.) 

state hide Hides the destination window.

state iconic Displays the destination window as an icon.

state maximized Maximizes the destination window.

state minimize Minimizes the destination window and activates 
the top-level window in the window-manager's 
list. 

state minimized Minimizes the destination window.

state no action Displays the destination window in its current 
state. The window that is currently active 
remains active.

state no activate Displays the destination window in its most 
recent size and state. The currently active 
window remains active.

state normal Activates and displays the destination window in 
its original size and position.

state restore Activates and displays the destination window in 
its original size and position.

state show Shows the destination window.

stretch Enables stretching of the image.

text caption Specifies the caption for the destination window. 
If this text contains embedded blanks, the entire 
caption must be enclosed in quotation marks. 
The default caption for the default window is 
blank.

 

lpszFlags

Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more 
information about these flags, see The Wait, Notify, and Test Flags.

 

Return Values
Returns zero if successful or an error otherwise.



Remarks
Video-overlay devices typically create and display a window when opened. If your application provides a 
window to the driver, your application is responsible for managing the messages sent to the window.

Since you can use the status command to retrieve the handle to the driver display window, you can also 
use the standard window manager functions (such as ShowWindow) to manipulate the window. 

The following command displays and sets the caption for the "movie" playback window:

window movie text "Welcome to the Movies" state show
  

See Also
CreateWindow, open, play, setvideo, ShowWindow, status, update 

 

 



IAVIEditStream      

The IAVIEditStream interface supports manipulating and modifying editable streams. Uses 
IUnknown::QueryInterface, IUnknown::AddRef, IUnknown::Release in addition to the following 
custom methods:

Method Description

Clone Duplicates a stream.

Copy Copies a stream or a portion of it 
to a temporary stream.

Cut Removes a portion of a stream 
and places it in a temporary 
stream. 

Paste Copies a stream or a portion of it 
and places it in another stream.

SetInfo Changes the characteristics of a 
stream.

 



IAVIEditStream::Clone      

  

The Clone method duplicates a stream. Called when an application uses the EditStreamClone function. 

HRESULT Clone(

        PAVISTREAM pavi,
        PAVISTREAM *ppResult
      );
 

Parameters
pavi

Address of the interface to the stream being cloned.

ppResult

Address to contain a pointer to the interface to the new stream. 
 

Return Values
The method returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Clone has the following syntax:

HRESULT Clone(PAVISTREAM *ppResult); 
 

See Also
EditStreamClone



IAVIEditStream::Copy      

  

The Copy method copies a stream or a portion of it to a temporary stream. Called when an application 
uses the EditStreamCopy function. 

HRESULT Copy(

        PAVISTREAM pavi,
        LONG *plStart,
        LONG *plLength,
        PAVISTREAM ppResult
      );
 

Parameters
pavi

Address of the interface to the stream to copy. 

plStart

Address that contains the starting position of the operation.

plLength

Address that contains the length, in frames, of the operation.

ppResult

Address to contain a pointer to the interface to the new stream. 
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Copy has the following syntax:

HRESULT Copy(LONG *plStart, LONG *plLength, 
    PAVISTREAM * ppResult); 
 

See Also
EditStreamCopy



IAVIEditStream::Cut      

  

The Cut method removes a portion of a stream and places it in a temporary stream. Called when an 
application uses the EditStreamCut function. 

HRESULT Cut(

        PAVISTREAM pavi,
        LONG *plStart,
        LONG *plLength,
        PAVISTREAM ppResult
      );
 

Parameters
pavi

Address of the interface to the stream to cut. 

plStart

Address that contains the starting position of the operation.

plLength

Address that contains the length, in frames, of the operation.

ppResult

Address to contain a pointer to the interface to the new stream. 
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Cut has the following syntax:

HRESULT Cut(LONG *plStart, LONG *plLength, 
    PAVISTREAM *ppResult); 
 

See Also
EditStreamCut



IAVIEditStream::Paste      

  

The Paste method copies a stream or a portion of it in another stream. Called when an application uses 
the EditStreamPaste function. 

HRESULT Paste(

        PAVISTREAM pavi,
        LONG *plPos,
        LONG *plLength,
        PAVISTREAM pstream,
        LONG lStart,
        LONG lLength
      );
 

Parameters
pavi

Address of the interface to the stream to receive the pasted data.

plPos

Address that contains the starting position of the operation.

plLength

Address that contains the length, in bytes, of the data to paste from the source stream. 

pstream

Address of the interface to the source stream. 

lStart

Starting position of the copy operation within the source stream.

lLength

Length, in frames, of the copy operation within the source stream.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Paste has the following syntax:

HRESULT Paste(LONG *plPos, LONG *plLength, 
    PAVISTREAM pstream, LONG lStart, LONG lLength); 
 

See Also
EditStreamPaste



IAVIEditStream::SetInfo      

  

The SetInfo method changes the characteristics of a stream. Called when an application uses the 
EditStreamSetInfo function. 

HRESULT SetInfo(

        PAVISTREAM pavi,
        AVISTREAMINFO *lpInfo,
        LONG cbInfo
      );
 

Parameters
pavi

Address of the interface to a stream.

lpInfo

Address of an AVISTREAMINFO structure containing the new stream characteristics.

cbInfo

Size, in bytes, of the buffer.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, SetInfo has the following syntax:

HRESULT SetInfo(AVISTREAMINFO *lpInfo, LONG cbInfo); 
 

See Also
EditStreamSetInfo, AVISTREAMINFO



IAVIFile      

The IAVIFile interface supports opening and manipulating files and file headers, and creating and 
obtaining stream interfaces. Uses IUnknown::QueryInterface, IUnknown::AddRef, and 
IUnknown::Release in addition to the following custom methods:

Method Description

CreateStream Creates a stream for writing.

EndRecord Writes the "REC" chunk in a tightly 
interleaved AVI file.

GetStream Opens a stream by accessing it in a 
file.

Info Fills and returns an AVIFILEINFO 
structure with information about a file.

Open Initializes a file handler.

ReadData Reads file headers data, format data, 
or nonaudio and nonvideo data. 

WriteData Writes file headers data, format data, 
or nonaudio and nonvideo data. 

 



IAVIFile::CreateStream      

  

The CreateStream method creates a stream for writing. Called when an application uses the 
AVIFileCreateStream function.

HRESULT CreateStream(

        PAVIFILE pf,
        PAVISTREAM *ppstream,
        AVISTREAMINFO *psi
      );
 

Parameters
pf

Address of the interface to a file.

ppStream

Address to contain a pointer to the interface to the new stream.

psi

Address of an AVISTREAMINFO structure defining the stream to create.
 

Return Values
Returns HRESULT defined by OLE.

Remarks
For handlers written in C++, CreateStream has the following syntax:

HRESULT CreateStream(PAVISTREAM *ppStream, 
    AVISTREAMINFO *psi); 
 

See Also
AVIFileCreateStream, AVISTREAMINFO



IAVIFile::EndRecord      

  

The EndRecord method writes the "REC" chunk in a tightly interleaved AVI file (having a one-to-one 
interleave factor of audio to video). Called when an application uses the AVIFileEndRecord function.

HRESULT EndRecord(

        PAVISTREAM pf
      );
 

Parameters
pf

Address of the interface to a file. 
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
This file handler method is typically not used. 

For handlers written in C++, EndRecord has the following syntax:

HRESULT EndRecord(VOID); 
 

See Also
AVIFileEndRecord



IAVIFile::GetStream      

  

The GetStream method opens a stream by accessing it in a file. Called when an application uses the 
AVIFileGetStream function. 

HRESULT GetStream(

        PAVIFILE pf,
        PAVISTREAM *ppStream,
        DWORD fccType,
        LONG lParam
      );
 

Parameters
pf

Address of the interface to a file.

ppStream

Address to contain a pointer to the interface to a stream.

fccType

Four-character code indicating the type of stream to locate.

lParam

Stream number.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
It is typically easier to implement this method by creating all of the stream objects in advance by using the 
IAVIFile::Open method. Then, this method accesses the interface to the specified stream. 

Remember to increment the reference count maintained by the AddRef method for the stream when this 
method is used.

For handlers written in C++, GetStream has the following syntax:

HRESULT GetStream(PAVISTREAM *ppStream, 
    DWORD fccType, LONG lParam); 
 

See Also
AVIFileGetStream, IAVIFile::Open



IAVIFile::Info      

  

The Info method fills and returns an AVIFILEINFO structure with information about a file. Called when an 
application uses the AVIFileInfo function.

HRESULT Info (

        PAVISTREAM pf,
        AVISTREAMINFO *pfi,
        LONG lSize
      );
 

Parameters
pf

Address of the interface to a file.

pfi

Address of an application-defined buffer to contain file information.

lSize

Size, in bytes, of the buffer specified by pfi.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
If the buffer allocated is too small for the structure, this method should fail the call by returning 
AVIERR_BUFFERTOOSMALL. Otherwise, it should fill the structure and return its size.

For handlers written in C++, Info has the following syntax:

HRESULT Info(AVIFILEINFO *psi, LONG lSize) 
 

See Also
AVIFileInfo, AVIFILEINFO



IAVIFile::Open      

  

The Open method initializes a file handler. Called when an application uses the AVIFileOpen function.

HRESULT Open(

        PAVISTREAM pf,
        LPCSTR szFile,
        UINT mode
      );
 

Parameters
pf

Address to contain a pointer to the interface to a file.

szFile

Address of a null-terminated string that contains the filename.

mode

Flags for the open operation. 
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
This method is always the first method called, regardless of whether your application is reading or writing 
a file.

For handlers written in C++, Open has the following syntax:

HRESULT Open(LPCSTR szFile, UINT mode); 
 

See Also
AVIFileOpen



IAVIFile::ReadData      

  

The ReadData method reads file headers. Called when an application uses the AVIFileReadData 
function.

HRESULT ReadData (

        PAVISTREAM ps,
        DWORD fcc,
        LPVOID lpBuffer,
        LONG *lpcbBuffer
      );
 

Parameters
ps

Address of the interface to a file.

fcc

Four-character code of the header to read.

lpBuffer

Address of the buffer for the data.

lpcbBuffer

Size, in bytes, of the buffer specified by lpBuffer. When this method returns control to the application, 
the contents of this parameter specifies the amount of data read.

 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, ReadData has the following syntax:

HRESULT ReadData(DWORD fcc, LPVOID lp, LONG *lpcb); 
 

See Also
AVIFileReadData



IAVIFile::WriteData      

  

The WriteData method writes file headers. Called when an application uses the AVIFileWriteData 
function. 

HRESULT AVIBallWriteData(

        PAVISTREAM ps,
        DWORD fcc,
        LPVOID lpBuffer,
        LONG cbBuffer
      );
 

Parameters
ps

Address of the interface to a file.

fcc

Four-character code of the header to write.

lpBuffer

Address of the buffer for the data.

cbBuffer

Size, in bytes, of the buffer specified by lpBuffer. 
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, WriteData has the following syntax:

HRESULT WriteData(DWORD fcc, LPVOID lpBuffer, LONG cbBuffer); 
 

See Also
AVIFileWriteData



IAVIStream      

The IAVIStream interface supports creating and manipulating data streams within a file. Uses 
IUnknown::QueryInterface, IUnknown::AddRef, IUnknown::Release in addition to the following 
custom methods:

Method Description

Create Initializes a stream handler that is 
not associated with any file.

Delete Deletes data from a stream.

Info Fills and returns an 
AVISTREAMINFO structure with 
information about a stream.

FindSample Obtains the position in a stream of 
a key frame or a nonempty frame.

Read Reads data from a stream and 
copies it to an application-defined 
buffer. 

ReadData Reads data headers, format data, 
or nonaudio and nonvideo data. 
(Use  the Read method to read 
audio and video data.)

ReadFormat Obtains format information from a 
stream.

SetFormat Sets format information in a 
stream.

Write Writes data to a stream.

WriteData Writes data headers, format data, 
or nonaudio and nonvideo data. 
(Use the Write method to write 
audio and video data.)

 



IAVIStream::Create      

  

The Create method initializes a stream handler that is not associated with any file. Called when an 
application uses the AVIStreamCreate function.

HRESULT Create(

        PAVISTREAM ps,
        LONG lParam1,
        LONG lParam2
      );
 

Parameters
ps

Address of the interface to a stream.

lParam1 and lParam2

Stream handler-specific data. 
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Create has the following syntax:

HRESULT Create(LONG lParam1, LONG lParam2) 
 

See Also
AVIStreamCreate



IAVIStream::Delete      

  

The Delete method deletes data from a stream. 

HRESULT Delete(

        PAVISTREAM ps,
        LONG lStart,
        LONG lSamples
      );
 

Parameters
ps

Address of the interface to a stream.

lStart

Starting sample or frame number to delete.

lSamples

Number of samples to delete.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Delete has the following syntax:

HRESULT Delete(LONG lStart, LONG lSamples); 
 



IAVIStream::Info      

  

The Info method fills and returns an AVISTREAMINFO structure with information about a stream. Called 
when an application uses the AVIStreamInfo function.

HRESULT Info(

        PAVISTREAM ps,
        AVISTREAMINFO *psi,
        LONG lSize
      );
 

Parameters
ps

Address of the interface to a stream.

psi

Address of an AVISTREAMINFO structure to contain stream information.

lSize

Size, in bytes, of the structure specified by psi.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
If the buffer allocated is too small for the structure, the Info method should fail the call by returning 
AVIERR_BUFFERTOOSMALL. Otherwise, it should fill the structure and return its size.

For handlers written in C++, Info has the following syntax:

HRESULT Info(AVIFILEINFO *psi, LONG lSize) 
 

See Also
AVIStreamInfo, AVISTREAMINFO



IAVIStream::FindSample      

  

The FindSample method obtains the position in a stream of a key frame or a nonempty frame. Called 
when an application uses the AVIStreamFindSample function.

LONG FindSample(

        PAVISTREAM ps,
        LONG lPos,
        LONG lFlags
      );
 

Parameters
ps

Address of the interface to a stream.

lPos

Position of the sample or frame.

lFlags

Applicable flags. The following values are defined:

FIND_ANY

Searches for a nonempty frame.

FIND_FORMAT

Searches for a format change.

FIND_KEY

Searches for a key frame.

FIND_NEXT

Searches forward through a stream, beginning with the current frame. 

FIND_PREV

Searches backward through a stream, beginning with the current frame.

The FIND_ANY, FIND_KEY, and FIND_FORMAT flags are mutually exclusive, as are the FIND_NEXT 
and FIND_PREV flags. You must specify one value from each group. 

 

Return Values
Returns the location of the key frame corresponding to the frame specified by the application. 

Remarks
If key frames are not significant in your custom format, return the position specified for lPos. 

For handlers written in C++, FindSample has the following syntax:

LONG FindSample(LONG lPos, LONG lFlags) 



 

See Also
AVIStreamFindSample



IAVIStream::Read      

  

The Read method reads data from a stream and copies it to an application-defined buffer. If no buffer is 
supplied, it determines the buffer size needed to retrieve the next buffer of data. Called when an 
application uses the AVIStreamRead function. 

HRESULT Read(

        PAVISTREAM ps,
        LONG lStart,
        LONG lSamples,
        LPVOID lpBuffer,
        LONG cbBuffer,
        LONG *plBytes,
        LONG *plSamples
      );
 

Parameters
ps

Address of the interface to a stream.

lStart

Starting sample or frame number to read.

lSamples

Number of samples to read.

lpBuffer

Address of the application-defined buffer to contain the stream data. You can also specify NULL to 
request the required size of the buffer. Many applications precede each read operation with a query 
for the buffer size to see how large a buffer is needed.

cbBuffer

Size, in bytes, of the buffer specified by lpBuffer.

plBytes

Address to contain the number of bytes read.

plSamples

Address to contain the number of samples read.
 

Return Values
Returns AVIERR_OK if successful or AVIERR_BUFFERTOOSMALL if the buffer is not large enough to 
hold the data. If successful, Read also returns either a buffer of data with the number of frames (samples) 
included in the buffer or the required buffer size, in bytes.

Remarks
For handlers written in C++, Read has the following syntax:



HRESULT Read(LONG lStart, LONG lSamples, 
    LPVOID lpBuffer, LONG cbBuffer, 
    LONG *plBytes, LONG *plSamples); 
 

See Also
AVIStreamRead



IAVIStream::ReadData      

  

The ReadData method reads data headers of a stream. Called when an application uses the 
AVIStreamReadData function. 

HRESULT ReadData(

        PAVISTREAM ps,
        DWORD fcc,
        LPVOID lpBuffer,
        LONG *lpcbBuffer
      );
 

Parameters
ps

Address of the interface to a stream.

fcc

Four-character code of the stream header to read.

lpBuffer

Address of the buffer to contain the header data.

lpcbBuffer

Size, in bytes, of the buffer specified by lpBuffer. When this method returns control to the application, 
the contents of this parameter specifies the amount of data read.

 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, ReadData has the following syntax:

HRESULT ReadData(DWORD fcc, LPVOID lp, LONG *lpcb); 
 

See Also
AVIStreamReadData



IAVIStream::ReadFormat      

  

The ReadFormat method obtains format information from a stream. Fills and returns a structure with the 
data in an application-defined buffer. If no buffer is supplied, determines the buffer size needed to retrieve 
the buffer of format data. Called when an application uses the AVIStreamReadFormat function. 

HRESULT ReadFormat(

        PAVISTREAM ps,
        LONG lPos,
        LPVOID lpFormat,
        LONG *lpcbFormat
      );
 

Parameters
ps

Address of the interface to a stream.

lPos

Position of the sample or frame.

lpFormat

Address of the buffer for the format data. Specify NULL to request the required size of the buffer. 

lpcbFormat

Address that contains the size, in bytes, of the buffer specified by lpFormat. When this method is 
called, the contents of this parameter indicates the size of the buffer specified by lpFormat. When this 
method returns control to the application, the contents of this parameter specifies the amount of data 
read or the required size of the buffer.

 

Return Values
Returns the HRESULT defined by OLE.

Remarks
The type of data stored in a stream dictates the format information and the structure that contains the 
format information. A stream handler should return all applicable format information in this structure, 
including palette information when the format uses a palette. A stream handler should not return stream 
data with the structure. 

Standard video stream handlers provide format information in a BITMAPINFOHEADER structure. 
Standard audio stream handlers provide format information in a PCMWAVEFORMAT structure. Other 
data streams can use other structures that describe the stream data.

For handlers written in C++, ReadFormat has the following syntax:

HRESULT ReadFormat(LONG lPos, LPVOID lpFormat, 
    LONG *lpcbFormat) 
 

See Also



AVIStreamReadFormat, BITMAPINFOHEADER, PCMWAVEFORMAT 



IAVIStream::SetFormat      

  

The SetFormat method sets format information in a stream. Called when an application uses the 
AVIStreamSetFormat function. 

HRESULT SetFormat (

        PAVISTREAM ps,
        LPVOID lpFormat,
        LONG cbFormat
      );
 

Parameters
ps

Address of the interface to a stream.

lpFormat

Address of the buffer for the format data.

cbFormat

Address containing the size, in bytes, of the buffer specified by lpFormat.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
Standard video stream handlers provide format information in a BITMAPINFOHEADER structure. 
Standard audio stream handlers provide format information in a PCMWAVEFORMAT structure. Other 
data streams can use other structures that describe the stream data.

For handlers written in C++, SetFormat has the following syntax:

HRESULT SetFormat(LONG lPos, LPVOID lpFormat, LONG cbFormat) 
 

See Also
AVIStreamSetFormat, BITMAPINFOHEADER, PCMWAVEFORMAT



IAVIStream::Write      

  

The Write method writes data to a stream. Called when an application uses the AVIStreamWrite 
function.

HRESULT Write (

        PAVISTREAM ps,
        LONG lStart,
        LONG lSamples,
        LPVOID lpBuffer,
        LONG cbBuffer,
        DWORD dwFlags,
        LONG *plSampWritten,
        LONG *plBytesWritten
      );
 

Parameters
ps

Address of the interface to a stream.

lStart

Starting sample or frame number to write.

lSamples

Number of samples to write.

lpBuffer

Address of the buffer for the data.

cbBuffer

Size, in bytes, of the buffer specified by lpBuffer.

dwFlags

Applicable flags. The AVIF_KEYFRAME flag is defined and indicates that this frame contains all the 
information needed for a complete image.

plSampWritten

Address of a buffer used to contain the number of samples written.

plBytesWritten

Address to contain the number of bytes written.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Write has the following syntax:



HRESULT Write(LONG lStart, LONG lSamples, LPVOID lpBuffer, 
    LONG cbBuffer, DWORD dwFlags, LONG *plSampWritten, 
    LONG *plBytesWritten); 
 

See Also
AVIStreamWrite



IAVIStream::WriteData      

  

The WriteData method writes headers for a stream. Called when an application uses the 
AVIStreamWriteData function.

HRESULT WriteData (

        PAVISTREAM ps,
        DWORD fcc,
        LPVOID lpBuffer,
        LONG cbBuffer
      );
 

Parameters
ps

Address of the interface to a stream.

fcc

Four-character code of the stream header to write.

lpBuffer

Address of the buffer that contains the header data to write.

cbBuffer

Size, in bytes, of the buffer specified by lpBuffer.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, WriteData has the following syntax:

HRESULT WriteData(DWORD fcc, LPVOID lpBuffer, LONG cbBuffer); 
 

See Also
AVIStreamWriteData



IAVIStreaming      

The IAVIStreaming interface supports preparing open data streams for playback in streaming operations. 
Uses IUnknown::QueryInterface, IUnknown::AddRef, IUnknown::Release in addition to the following 
custom methods:

Method Description

Begin Prepares for the streaming operation.

End Ends the streaming operation.
 



IAVIStreaming::Begin      

  

The Begin method prepares for the streaming operation. Called when an application uses the 
AVIStreamBeginStreaming function.

HRESULT Begin(

        PAVISTREAM ps,
        LONG lStart,
        LONG lEnd,
        LONG lRate
      );
 

Parameters
ps

Address of the interface to a stream.

lStart

Starting frame for streaming.

lEnd

Ending frame for streaming.

lRate

Speed at which the file is read relative to its normal playback rate. Normal speed is 1000. Larger 
values indicate faster speeds; smaller values indicate slower speeds.

 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Begin has the following syntax:

HRESULT Begin(LONG lStart, LONG lEnd, LONG lRate); 
 

See Also
AVIStreamBeginStreaming



IAVIStreaming::End      

  

The End method ends the streaming operation. Called when an application uses the 
AVIStreamEndStreaming function.

HRESULT End(

        PAVISTREAM ps
      );
 

Parameters
ps

Address of the interface to a stream.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, End has the following syntax:

HRESULT End(VOID); 
 

See Also
AVIStreamEndStreaming



IGetFrame      

The IGetFrame interface supports extracting, decompressing, and displaying individual frames from an 
open stream. Uses IUnknown::QueryInterface, IUnknown::AddRef, IUnknown::Release in addition to 
the following custom methods:

Method Description

Begin Prepares to extract and decompress copies of video 
frames from a stream.

End Ends frame extraction and decompression.

GetFrame Retrieves a decompressed copy of a frame from a 
stream.

SetFormat Sets the image format of the frames being extracted.
 



IGetFrame::Begin      

  

The Begin method prepares to extract and decompress copies of frames from a stream. Called when an 
application uses the AVIStreamGetFrameOpen function.

HRESULT Begin(

        PAVISTREAM ps,
        LONG lStart,
        LONG lEnd,
        LONG lRate
      );
 

Parameters
ps

Address of the interface to a stream.

lStart

Starting frame for extracting and decompressing.

lEnd

Ending frame for extracting and decompressing.

lRate

Speed at which the file is read relative to its normal playback rate. Normal speed is 1000. Larger 
values indicate faster speeds; smaller values indicate slower speeds.

 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Begin has the following syntax:

HRESULT Begin(LONG lStart, LONG lEnd, LONG lRate); 
 

See Also
AVIStreamGetFrameOpen



IGetFrame::End      

  

The End method ends frame extraction and decompression. Called when an application uses the 
AVIStreamGetFrameClose function.

HRESULT End(

        PAVISTREAM ps
      );
 

Parameters
ps

Address of the interface to a stream.
 

Return Values
Returns the HRESULT defined by OLE.

Remarks
For handlers written in C++, Begin has the following syntax:

HRESULT End(VOID); 
 

See Also
AVIStreamGetFrameClose



IGetFrame::GetFrame      

  

The GetFrame method retrieves a decompressed copy of a frame from a stream. Called when an 
application uses the AVIStreamGetFrame function.

LPVOID GetFrame(

        PAVISTREAM ps,
        LONG lPos
      );
 

Parameters
ps

Address of the interface to a stream.

lPos

Frame to copy and decompress.
 

Return Values
Returns the address of the decompressed frame data. 

Remarks
For handlers written in C++, GetFrame has the following syntax:

LPVOID GetFrame(LONG lPos); 
 

See Also
AVIStreamGetFrame



IGetFrame::SetFormat      

  

The SetFormat method sets the decompressed image format of the frames being extracted and 
optionally provides a buffer for the decompression operation.

HRESULT SetFormat(

        PAVISTREAM ps,
        LPBITMAPINFOHEADER lpbi,
        LPVOID lpBits,
        int x,
        int y,
        int dx,
        int dy
      );
 

Parameters
ps

Address of the interface to a stream.

lpbi

Address of a BITMAPINFOHEADER structure defining the decompressed image format. You can 
also specify NULL or the value ((LPBITMAPINFOHEADER) 1) for this parameter. NULL causes the 
decompressor to choose a format that is appropriate for editing (normally a 24-bit image depth 
format). The value ((LPBITMAPINFOHEADER) 1) causes the decompressor to choose a format 
appropriate for the current display mode.

lpBits

Address of a buffer to contain the decompressed image data. Specify NULL to have this method 
allocate a buffer. 

x and y

The x- and y-coordinates of the destination rectangle within the DIB specified by lpbi. This parameter 
is used when lpBits is not NULL.

dx and dy

Width and height of the destination rectangle. These parameters are used when lpBits is not NULL.
 

Return Values
Returns NOERROR if successful, E_OUTOFMEMORY if the decompressed image is larger than the 
buffer size, or E_FAIL otherwise.

Remarks
The x, y, dx, and dy parameters identify the portion of the bitmap specified by lpbi and lpBits that receives 
the decompressed image. 

For handlers written in C++, SetFormat has the following syntax:

HRESULT SetFormat(LPBITMAPINFOHEADER lpbi, LPVOID lpBits, int x, 



    int y, int dx, int dy); 
 

See Also
BITMAPINFOHEADER 



IUnknown      

  

The IUnknown interface is the OLE interface from which AVIFile and AVIStream interfaces are derived. 
Interfaces used with AVI files rely on definitions of the QueryInterface, AddRef, and Release methods 
from this interface.



IUnknown::QueryInterface      

  

The QueryInterface method determines if an interface can be used with an object. Used by the following 
interfaces: IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, and IGetFrame. 

HRESULT QueryInterface(

        LPUNKNOWN ps,
        const IID & riid,
        void *ppvObj
      );
 

Parameters
ps

Address of an IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, or IGetFrame interface. 

riid

Identifier of the interface being queried. 

ppvObj

Address to contain a pointer to the object whose interface is queried or NULL when an interface is not 
supported.

 

Return Values
Returns a pointer to the current interface if successful or E_NOINTERFACE otherwise.

Remarks
For handlers written in C++, QueryInterface has the following syntax:

HRESULT QueryInterface(const IID &riid, void *ppvObj); 
 

See Also
IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, IGetFrame



IUnknown::AddRef      

  

The AddRef method increments the reference count of the appropriate handler: IAVIEditStream, 
IAVIFile, IAVIStream, IAVIStreaming, or IGetFrame. When the reference count is nonzero, the handler 
must retain resources for the file or stream.

ULONG AddRef(

        LPUNKNWON ps
      );
 

Parameters
ps

Address of an IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, or IGetFrame interface. 
 

Return Values
Returns the resulting reference count.

Remarks
For handlers written in C++, AddRef has the following syntax:

HRESULT AddRef(VOID); 
 

See Also
IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, IGetFrame



IUnknown::Release      

  

The Release method decrements the reference count of the appropriate handler: IAVIEditStream, 
IAVIFile, IAVIStream, IAVIStreaming, or IGetFrame. When the reference count reaches zero, the 
handler must free resources established for the file or stream.

ULONG Release(

        LPUNKNOWN ps
      );
 

Parameters
ps

Address of an IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, or IGetFrame interface. 
 

Return Values
Returns the resulting reference count.

Remarks
For handlers written in C++, Release has the following syntax:

HRESULT Release(VOID); 
 

See Also
IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, IGetFrame

 

 



KEYARRAY      

  

KEYARRAY specifies a type used to define an array of keys. Each element in the array corresponds to a 
key-based percussion patch with each of the 16 bits representing one of the 16 MIDI channels. Bits are 
set for each of the channels that use that particular patch. For example, if the percussion patch for key 
number 60 is used by physical MIDI channels 9 and 15, element 60 of the array should be set to 0x8200.

typedef WORD KEYARRAY[MIDIPATCHSIZE]; 
 



PATCHARRAY      

  

PATCHARRAY is a type used to define an array of MIDI patches. Each element in the array corresponds 
to a patch with each of the 16 bits representing one of the 16 MIDI channels. Bits are set for each of the 
channels that use that particular patch. For example, if patch number 0 is used by physical MIDI channels 
0 and 8, element 0 of the array should be set to 0x0101.

typedef WORD PATCHARRAY[MIDIPATCHSIZE]; 
 

 

 



Constants: Device Types

The following values identify devices in MCI messages and structures:

Value Meaning

MCI_ALL_DEVICE_ID Any device

MCI_DEVTYPE_ANIMATION Animation-playback device

MCI_DEVTYPE_CD_AUDIO CD audio device

MCI_DEVTYPE_DAT Digital-audio tape device

MCI_DEVTYPE_DIGITAL_VIDEO Digital-video playback device

MCI_DEVTYPE_OTHER Undefined device

MCI_DEVTYPE_OVERLAY Video-overlay device

MCI_DEVTYPE_SCANNER Scanner device

MCI_DEVTYPE_SEQUENCER MIDI sequencer device

MCI_DEVTYPE_VCR Video-cassette recorder

MCI_DEVTYPE_VIDEODISC Videodisc player

MCI_DEVTYPE_WAVEFORM_AUDI
O

Waveform-audio device

 



Constants: MCIERR Return Values

The mciSendCommand and mciSendString functions return zero if they are successful; otherwise, they 
return a doubleword value that contains one of the following error values in the low word. You can obtain 
a description of individual return values by passing the return values to the mciGetErrorString function.



General Error Values
The following error values can be returned by either the mciSendCommand or mciSendString function:

Value Meaning

MCIERR_BAD_TIME_FORMAT The specified value for the time 
format is invalid. 

MCIERR_CANNOT_LOAD_DRIVER The specified device driver will 
not load properly.

MCIERR_CANNOT_USE_ALL The device name "all" is not 
allowed for this command.

MCIERR_CREATEWINDOW Could not create or use window.

MCIERR_DEVICE_LENGTH The device or driver name is too 
long. Specify a device or driver 
name that is less than 79 
characters.

MCIERR_DEVICE_LOCKED The device is now being closed. 
Wait a few seconds, then try 
again.

MCIERR_DEVICE_NOT_INSTALLED The specified device is not 
installed on the system. Use the 
Drivers option from the Control 
Panel to install the device.

MCIERR_DEVICE_NOT_READY The device driver is not ready.

MCIERR_DEVICE_OPEN The device name is already 
used as an alias by this 
application. Use a unique alias.

MCIERR_DEVICE_ORD_LENGTH The device or driver name is too 
long. Specify a device or driver 
name that is less than 79 
characters.

MCIERR_DEVICE_TYPE_REQUIRED The specified device cannot be 
found on the system. Check 
that the device is installed and 
the device name is spelled 
correctly.

MCIERR_DRIVER The device driver exhibits a 
problem. Check with the device 
manufacturer about obtaining a 
new driver.

MCIERR_DRIVER_INTERNAL The device driver exhibits a 
problem. Check with the device 
manufacturer about obtaining a 
new driver.

MCIERR_DUPLICATE_ALIAS The specified alias is already 
used in this application. Use a 
unique alias.

MCIERR_EXTENSION_NOT_FOUND The specified extension has no 
device type associated with it. 
Specify a device type.

MCIERR_EXTRA_CHARACTERS You must enclose a string with 
quotation marks; characters 



following the closing quotation 
mark are not valid.

MCIERR_FILE_NOT_FOUND The requested file was not 
found. Check that the path and 
filename are correct.

MCIERR_FILE_NOT_SAVED The file was not saved. Make 
sure your system has sufficient 
disk space or has an intact 
network connection.

MCIERR_FILE_READ A read from the file failed. Make 
sure the file is present on your 
system or that your system has 
an intact network connection.

MCIERR_FILE_WRITE A write to the file failed. Make 
sure your system has sufficient 
disk space or has an intact 
network connection.

MCIERR_FILENAME_REQUIRED The filename is invalid. Make 
sure the filename is no longer 
than eight characters, followed 
by a period and an extension.

MCIERR_FLAGS_NOT_COMPATIBLE The specified parameters 
cannot be used together.

MCIERR_GET_CD The requested file OR MCI 
device was not found. Try 
changing directories or 
restarting your system.

MCIERR_HARDWARE The specified device exhibits a 
problem. Check that the device 
is working correctly or contact 
the device manufacturer.

MCIERR_ILLEGAL_FOR_AUTO_OPENMCI will not perform the 
specified command on an 
automatically opened device. 
Wait until the device is closed, 
then try to perform the 
command.

MCIERR_INTERNAL A problem occurred in 
initializing MCI. Try restarting 
the Windows operating system.

MCIERR_INVALID_DEVICE_ID Invalid device ID. Use the ID 
given to the device when the 
device was opened.

MCIERR_INVALID_DEVICE_NAME The specified device is not open 
nor recognized by MCI.

MCIERR_INVALID_FILE The specified file cannot be 
played on the specified MCI 
device. The file may be corrupt 
or may use an incorrect file 
format.

MCIERR_MISSING_PARAMETER The specified command 
requires a parameter, which you 



must supply.

MCIERR_MULTIPLE Errors occurred in more than 
one device. Specify each 
command and device 
separately to identify the 
devices causing the errors.

MCIERR_MUST_USE_SHAREABLE The device driver is already in 
use. You must specify the 
"shareable" parameter with 
each open command to share 
the device.

MCIERR_NO_ELEMENT_ALLOWED The specified device does not 
use a filename. 

MCIERR_NO_INTEGER The parameter for this MCI 
command must be an integer 
value. 

MCIERR_NO_WINDOW There is no display window.

MCIERR_NONAPPLICABLE_FUNCTIO
N

The specified MCI command 
sequence cannot be performed 
in the given order. Correct the 
command sequence; then, try 
again.

MCIERR_NULL_PARAMETER_BLOCK A null parameter block 
(structure) was passed to MCI.

MCIERR_OUT_OF_MEMORY Your system does not have 
enough memory for this task. 
Quit one or more applications to 
increase the available memory, 
then, try to perform the task 
again.

MCIERR_OUTOFRANGE The specified parameter value 
is out of range for the specified 
MCI command.

MCIERR_SET_CD The specified file or MCI device 
is inaccessible because the 
application cannot change 
directories.

MCIERR_SET_DRIVE The specified file or MCI device 
is inaccessible because the 
application cannot change 
drives.

MCIERR_UNNAMED_RESOURCE You cannot store an unnamed 
file. Specify a filename.

MCIERR_UNRECOGNIZED_COMMAN
D

The driver cannot recognize the 
specified command.

MCIERR_UNSUPPORTED_FUNCTIONThe MCI device driver the 
system is using does not 
support the specified command.

 



mciSendString Errors
The following errors are returned by the mciSendString function but not by mciSendCommand:

Value Meaning

MCIERR_BAD_CONSTANT The value specified for a 
parameter is unknown.

MCIERR_BAD_INTEGER An integer in the command 
was invalid or missing.

MCIERR_DUPLICATE_FLAGS A flag or value was specified 
twice.

MCIERR_MISSING_COMMAND_STRING No command was specified.

MCIERR_MISSING_DEVICE_NAME No device name was 
specified.

MCIERR_MISSING_STRING_ARGUMEN
T

A string value was missing 
from the command.

MCIERR_NEW_REQUIRES_ALIAS An alias must be used with 
the "new" device name.

MCIERR_NO_CLOSING_QUOTE A closing quotation mark is 
missing.

MCIERR_NOTIFY_ON_AUTO_OPEN The "notify" flag is illegal with 
auto-open.

MCIERR_PARAM_OVERFLOW The output string was not 
long enough.

MCIERR_PARSER_INTERNAL An internal parser error 
occurred.

MCIERR_UNRECOGNIZED_KEYWORD An unknown command 
parameter was specified.

 



Digital-Video Errors
The following additional return values are defined for digital-video devices:

Value Meaning

MCIAVI_PRODUCTNAME Video

MCIERR_AVI_AUDIOERROR Unknown error while attempting 
to play audio.

MCIERR_AVI_BADPALETTE Unable to switch to new 
palette.

MCIERR_AVI_CANTPLAYFULLSCREE
N

This AVI file cannot be played 
in full screen mode.

MCIERR_AVI_DISPLAYERROR Unknown error while attempting 
to display video.

MCIERR_AVI_NOCOMPRESSOR Can't locate installable 
compressor needed to play this 
file.

MCIERR_AVI_NODISPDIB 256 color VGA mode not 
available.

MCIERR_AVI_NOTINTERLEAVED This AVI file is not interleaved.

MCIERR_AVI_OLDAVIFORMAT This AVI file is of an obsolete 
format.

MCIERR_AVI_TOOBIGFORVGA This AVI file is too big to be 
played in the selected VGA 
mode.

 



Sequencer Errors
The following additional return values are defined for MCI sequencers:

Value Meaning

MCIERR_SEQ_DIV_INCOMPATIBLE The time formats of the 
"song pointer" and SMPTE 
are singular. You can't use 
them together.

MCIERR_SEQ_NOMIDIPRESENT This system has no installed 
MIDI devices. Use the 
Drivers option from the 
Control Panel to install a 
MIDI driver.

MCIERR_SEQ_PORT_INUSE The specified MIDI port is 
already in use. Wait until it 
is free; then, try again.

MCIERR_SEQ_PORT_MAPNODEVICE The current MIDI Mapper 
setup refers to a MIDI 
device that is not installed 
on the system. Use the 
MIDI Mapper from the 
Control Panel to edit the 
setup.

MCIERR_SEQ_PORT_MISCERROR An error occurred with 
specified port.

MCIERR_SEQ_PORT_NONEXISTENT The specified MIDI device is 
not installed on the system. 
Use the Drivers option from 
the Control Panel to install a 
MIDI device.

MCIERR_SEQ_PORTUNSPECIFIED The system does not have a 
current MIDI port specified.

MCIERR_SEQ_TIMER All multimedia timers are 
being used by other 
applications. Quit one of 
these applications; then, try 
again.

 



Waveform-Audio Errors
The following additional return values are defined for MCI waveform-audio devices:

Value Meaning

MCIERR_WAVE_INPUTSINUSE All waveform devices that 
can record files in the current 
format are in use. Wait until 
one of these devices is free; 
then, try again.

MCIERR_WAVE_INPUTSUNSUITABLE No installed waveform 
device can record files in the 
current format. Use the 
Drivers option from the 
Control Panel to install a 
suitable waveform recording 
device.

MCIERR_WAVE_INPUTUNSPECIFIED You can specify any 
compatible waveform 
recording device.

MCIERR_WAVE_OUTPUTSINUSE All waveform devices that 
can play files in the current 
format are in use. Wait until 
one of these devices is free; 
then, try again.

MCIERR_WAVE_OUTPUTSUNSUITABLE No installed waveform 
device can play files in the 
current format. Use the 
Drivers option from the 
Control Panel to install a 
suitable waveform device.

MCIERR_WAVE_OUTPUTUNSPECIFIED You can specify any 
compatible waveform 
playback device.

MCIERR_WAVE_SETINPUTINUSE The current waveform device 
is in use. Wait until the 
device is free; then, try again 
to set the device for 
recording.

MCIERR_WAVE_SETINPUTUNSUITABLE The device you are using to 
record a waveform cannot 
recognize the data format.

MCIERR_WAVE_SETOUTPUTINUSE The current waveform device 
is in use. Wait until the 
device is free; then, try again 
to set the device for 
playback.

MCIERR_WAVE_SETOUTPUTUNSUITABL
E

The device you are using to 
playback a waveform cannot 
recognize the data format.

 

 

 



Multimedia PC Specifications
The Multimedia PC (MPC) Marketing Council has developed two specifications to encourage the adoption 
of multimedia capabilities. The Level 1 specification, developed in 1990, provides a baseline definition of 
multimedia computing in functionality, hardware components, and software components. The Level 2 
specification, issued in 1993, builds on the first specification and focuses on enhanced multimedia 
capabilities since the first specification was issued. 

This appendix summarizes the specifications. For more information or complete specifications, contact 
the MPC Marketing Council at the following address:

Multimedia PC Marketing Council
1730 M Street NW, Suite 707
Washington, DC    20036



Level 1 Specification
The Level 1 specification was developed to encourage the adoption of basic multimedia capabilities at a 
minimum performance level. The most common multimedia components available to the marketplace 
when the Level 1 specification was issued included several compact disc - read-only memory (CD-ROM) 
drives that provided data at sustained transfer rates varying from 90 to 150 kilobytes per second, 8-bit 
sound cards, and 16-color and 256-color (SVGA) video adapters.



Level 1 System Resources

The minimum configuration for a PC to satisfy the Level 1 specification includes the following items:

· A 386SX microprocessor with 2 megabytes (MB) of random-access memory (RAM)

· A 3.5-inch high-density floppy disk drive

· A hard disk drive with at least 30 MB of disk space

· A color monitor with a display resolution of 640 by 480 pixels with 16 colors

· System software that offers binary compatibility with the Microsoft Windows operating system version 
3.0 

 



Level 1 Optical Storage

The minimum performance optical storage device is a CD-ROM drive that meets the following criteria: 

· A sustained data transfer rate of 150 kilobytes per second

· A CPU bandwidth usage of 40 percent or less when maintaining a sustained data transfer rate of 150 
kilobytes per second

· An average seek time of 1 second or less
 



Level 1 Audio Requirements

The audio subsystem of a PC satisfying the Level 1 specification includes the following items:

· An 8-bit digital-to-analog converter (DAC) capable of processing waveform-audio files recorded at 
22.05 and 11.025 kHz sampling rates

· An 8-bit analog-to-digital converter (ADC) capable of recording waveform-audio files at the sample 
rate of 11.025 kHz through an external source, such as a microphone

· Internal synthesizer capabilities with four or nine multivoice, multitimbral capacity, and two 
simultaneous percussive notes

 



Level 2 Specification
The Level 2 specification was developed to encourage the adoption of enhanced multimedia capabilities. 
This specification builds on the requirements set in the Level 1 specification and is a superset of it. The 
Level 2 specification defines the minimum system functionality for enhanced multimedia capabilities. It is 
not a recommendation for a system configuration.



Level 2 System Resources

The minimum configuration for a PC to satisfy the Level 2 specification includes the following items:

· A 25 Mhz 486SX microprocessor with 4 MB of RAM

· A 3.5-inch high-density floppy disk drive

· A hard disk drive with at least 160 MB of disk space

· A 101-key keyboard with a standard DIN connector or one that provides identical functionality by 
using key combinations

· A two-button mouse with a serial or bus connector 

· A MIDI (Musical Instrument Digital Interface) port that includes MIDI Out, MIDI In, and MIDI Thru, and 
that has interrupt support for input and FIFO transfer

· An IBM-style analog or digital joystick (game) port

· A color monitor with a display resolution of 640 by 480 pixels with 65,536 colors 

· System software that offers binary compatibility with Windows 3.0 or Windows 3.1
 

In addition, the recommended performance goal for the video adapter (VGA+) is 1.2 million pixels per 
second using 40 percent or less of the CPU bandwidth. The device-independent bitmaps (DIBs) used to 
measure this performance goal have color depths of 1, 4, and 8 bits, and can use run-length encoding or 
be unencoded. A second method of measuring the video performance is to deliver 256-color, 320 by 240 
pixel digital-video images at 15 frames per second.



Level 2 Optical Storage

The minimum performance optical storage device is a double-speed CD-ROM drive that meets the 
following criteria: 

· A sustained data transfer rate of 300 kilobytes per second

· A CPU bandwidth usage of 40 percent or less when maintaining a sustained data transfer rate of 150 
kilobytes per second, or a CPU bandwidth of 60 percent or less when maintaining a sustained data 
transfer rate of 300 kilobytes per second

· An average seek time of 400 milliseconds or less

· A 10,000 hour mean-time-between-failures rating

· CD-ROM XA ready (mode 1 capable, mode 2 form 1 capable, mode form 2 capable)

· Multisession capable

· MSCDEX-2.2 driver or equivalent that implements the extended audio functions
 

The recommended CPU bandwidth should be reached by using a read-block size of at least 16K and a 
lead time of no more than the time needed to load one read-block of data into the CD-ROM buffer.



Level 2 Audio Requirements

The audio subsystem of a PC satisfying the Level 2 specification includes the following items:

· A CD-ROM driver with CD-DA (Red Book audio) outputs and volume control

· A 16-bit DAC with the following characteristics:

· Linear PCM (Pulse Code Modulation) sampling

· DMA or FIFO buffered transfer capability with interrupt on buffer empty 

· Mandatory sample rates of 44.1, 22.05, and 11.025 kHz

· Stereo channels

· CPU bandwidth usage of 10 percent or less when outputting audio of 22.05 or 11.025 kHz sample 
rate, or a CPU bandwidth of 15 percent or less when outputting audio of 44.1 kHz sample rate

 

· A 16-bit ADC with the following characteristics:

· Linear PCM sampling

· DMA or FIFO buffered transfer capability with interrupt on buffer empty 

· Mandatory sample rates of 44.1, 22.05, and 11.025 kHz

· Microphone input
 

· Internal synthesizer capabilities with multivoice, multitimbral, six simultaneous melody notes plus two 
simultaneous percussive notes

· Internal mixing with the following capabilities:

· Can combine three audio sources and present the output as a stereo, line-level audio signal at the 
back panel

· Mixing sources are CD Red Book audio, synthesizer, and DAC 

· Each mixing source has 3-bit volume control with a logarithmic taper

 

 



Manufacturer and Product Identifiers
This appendix documents the manufacturer and product identifiers defined for multimedia applications. 
These identifiers are used when an application issues a query about the installed devices on a computer. 
To use these identifiers in your application, include the MMREG.H file.

To request a product identifier for a device, send email to mmreg@microsoft.com.



Manufacturer Identifiers
 

Company name Identifier

Advanced Gravis Computer 
Technology, Ltd.

MM_GRAVIS

Antex Electronics Corporation MM_ANTEX

APPS Software MM_APPS

Artisoft, Inc. MM_ARTISOFT

AST Research, Inc. MM_AST

ATI Technologies, Inc. MM_ATI

Audio, Inc. MM_AUDIOFILE

Audio Processing Technology MM_APT

Audio Processing Technology MM_AUDIOPT

Auravision Corporation MM_AURAVISION

Aztech Labs, Inc. MM_AZTECH

Canopus, Co., Ltd. MM_CANOPUS

Compusic MM_COMPUSIC

Computer Aided Technology, Inc. MM_CAT

Computer Friends, Inc. MM_COMPUTER_FRIENDS

Control Resources Corporation MM_CONTROLRES

Creative Labs, Inc. MM_CREATIVE

Dialogic Corporation MM_DIALOGIC

Dolby Laboratories, Inc. MM_DOLBY

DSP Group, Inc. MM_DSP_GROUP

DSP Solutions, Inc. MM_DSP_SOLUTIONS

Echo Speech Corporation MM_ECHO

ESS Technology, Inc. MM_ESS

Everex Systems, Inc. MM_EVEREX

EXAN, Ltd. MM_EXAN

Fujitsu, Ltd. MM_FUJITSU

I/O Magic Corporation MM_IOMAGIC

ICL Personal Systems MM_ICL_PS

Ing. C. Olivetti & C., S.p.A. MM_OLIVETTI

Integrated Circuit Systems, Inc. MM_ICS

Intel Corporation MM_INTEL

InterActive, Inc. MM_INTERACTIVE

International Business Machines MM_IBM

Iterated Systems, Inc. MM_ITERATEDSYS 

Logitech, Inc. MM_LOGITECH

Lyrrus, Inc. MM_LYRRUS

Matsushita Electric Corporation of 
America

MM_MATSUSHITA

Media Vision, Inc. MM_MEDIAVISION

Metheus Corporation MM_METHEUS

microEngineering Labs MM_MELABS



Microsoft Corporation MM_MICROSOFT

MOSCOM Corporation MM_MOSCOM

Motorola, Inc. MM_MOTOROLA

Natural MicroSystems Corporation MM_NMS

NCR Corporation MM_NCR

NEC Corporation MM_NEC

New Media Corporation MM_NEWMEDIA

OKI MM_OKI

OPTi, Inc. MM_OPTI

Roland Corporation MM_ROLAND

SCALACS MM_SCALACS

Seiko Epson Corporation, Inc. MM_EPSON

Sierra Semiconductor Corporation MM_SIERRA

Silicon Software, Inc. MM_SILICONSOFT

Sonic Foundry MM_SONICFOUNDRY

Speech Compression MM_SPEECHCOMP

Supermac Technology, Inc. MM_SUPERMAC

Tandy Corporation MM_TANDY

Toshihiko Okuhura, Korg, Inc. MM_KORG

Truevision, Inc. MM_TRUEVISION

Turtle Beach Systems MM_TURTLE_BEACH

Video Associates Labs, Inc. MM_VAL

VideoLogic, Inc. MM_VIDEOLOGIC

Visual Information Technologies, 
Inc.

MM_VITEC

VocalTec, Inc. MM_VOCALTEC

Voyetra Technologies MM_VOYETRA

Wang Laboratories MM_WANGLABS

Willow Pond Corporation MM_WILLOWPOND

Winnov, LP MM_WINNOV

Xebec Multimedia Solutions Limited MM_XEBEC

Yamaha Corporation of America MM_YAMAHA
 



Microsoft Corporation Product Identifiers
 

Product name Identifier

Adlib-compatible 
synthesizer

MM_ADLIB

G.711 codec MM_MSFT_ACM_G711

GSM 610 codec MM_MSFT_ACM_GSM610

IMA ADPCM codec MM_MSFT_ACM_IMAADPCM

Joystick adapter MM_PC_JOYSTICK

MIDI mapper MM_MIDI_MAPPER

MPU 401-compatible 
MIDI input port

MM_MPU401_MIDIIN

MPU 401-compatible 
MIDI output port

MM_MPU401_MIDIOUT

MS ADPCM codec MM_MSFT_ACM_MSADPCM

MS audio board 
stereo FM synthesizer

MM_MSFT_WSS_FMSYNTH_STEREO

MS audio board aux 
port

MM_MSFT_WSS_AUX

MS audio board mixer 
driver

MM_MSFT_WSS_MIXER

MS audio board 
waveform input

MM_MSFT_WSS_WAVEIN

MS audio board 
waveform output

MM_MSFT_WSS_WAVEOUT

MS audio 
compression 
manager

MM_MSFT_MSACM

MS filter MM_MSFT_ACM_MSFILTER

MS OEM audio aux 
port

MM_MSFT_WSS_OEM_AUX

MS OEM audio board 
mixer driver

MM_MSFT_WSS_OEM_MIXER

MS OEM audio board 
stereo FM synthesizer

MM_MSFT_WSS_OEM_FMSYNTH_STERE
O

MS OEM audio board 
waveform input

MM_MSFT_WSS_OEM_WAVEIN

MS OEM audio board 
waveform output

MM_MSFT_WSS_OEM_WAVEOUT

MS vanilla driver aux 
(CD)

MM_MSFT_GENERIC_AUX_CD

MS vanilla driver aux 
(line in)

MM_MSFT_GENERIC_AUX_LINE

MS vanilla driver aux 
(mic)

MM_MSFT_GENERIC_AUX_MIC

MS vanilla driver MIDI 
external out

MM_MSFT_GENERIC_MIDIOUT

MS vanilla driver MIDI MM_MSFT_GENERIC_MIDIIN



in

MS vanilla driver MIDI 
synthesizer

MM_MSFT_GENERIC_MIDISYNTH

MS vanilla driver 
waveform input

MM_MSFT_GENERIC_WAVEIN

MS vanilla driver 
wavefrom output

MM_MSFT_GENERIC_WAVEOUT

PC speaker waveform 
output

MM_PCSPEAKER_WAVEOUT

PCM converter MM_MSFT_ACM_PCM

Sound Blaster internal 
synthesizer

MM_SNDBLST_SYNTH

Sound Blaster MIDI 
input port

MM_SNDBLST_MIDIIN

Sound Blaster MIDI 
output port

MM_SNDBLST_MIDIOUT

Sound Blaster 
waveform input

MM_SNDBLST_WAVEIN

Sound Blaster 
waveform output

MM_SNDBLST_WAVEOUT

Wave mapper MM_WAVE_MAPPER
 



Microsoft Windows Sound System Drivers
 

Driver Identifier

Sound Blaster 16 waveform 
output

MM_MSFT_SB16_WAVEOUT

Sound Blaster 16 aux (CD) MM_WSS_SB16_AUX_CD

Sound Blaster 16 aux (CD) MM_MSFT_SB16_AUX_CD

Sound Blaster 16 aux (line 
in)

MM_WSS_SB16_AUX_LINE

Sound Blaster 16 aux (line 
in)

MM_MSFT_SB16_AUX_LINE

Sound Blaster 16 FM 
synthesizer

MM_WSS_SB16_SYNTH

Sound Blaster 16 FM 
synthesizer

MM_MSFT_SB16_SYNTH

Sound Blaster 16 MIDI out MM_WSS_SB16_MIDIOUT

Sound Blaster 16 MIDI out MM_MSFT_SB16_MIDIOUT

Sound Blaster 16 MIDI in MM_WSS_SB16_MIDIIN

Sound Blaster 16 MIDI in MM_MSFT_SB16_MIDIIN

Sound Blaster 16 mixer 
device

MM_WSS_SB16_MIXER

Sound Blaster 16 mixer 
device

MM_MSFT_SB16_MIXER

Sound Blaster 16 waveform 
input

MM_WSS_SB16_WAVEIN

Sound Blaster 16 waveform 
input

MM_MSFT_SB16_WAVEIN

Sound Blaster 16 waveform 
output

MM_WSS_SB16_WAVEOUT

Sound Blaster Pro aux (CD)MM_WSS_SBPRO_AUX_CD

Sound Blaster Pro aux (CD)MM_MSFT_SBPRO_AUX_CD

Sound Blaster Pro aux (line 
in)

MM_WSS_SBPRO_AUX_LINE

Sound Blaster Pro aux (line 
in)

MM_MSFT_SBPRO_AUX_LINE

Sound Blaster Pro FM 
synthesizer

MM_WSS_SBPRO_SYNTH

Sound Blaster Pro FM 
synthesizer

MM_MSFT_SBPRO_SYNTH

Sound Blaster Pro MIDI in MM_WSS_SBPRO_MIDIIN

Sound Blaster Pro MIDI in MM_MSFT_SBPRO_MIDIIN

Sound Blaster Pro MIDI out MM_WSS_SBPRO_MIDIOUT

Sound Blaster Pro MIDI out MM_MSFT_SBPRO_MIDIOUT

Sound Blaster Pro mixer MM_WSS_SBPRO_MIXER

Sound Blaster Pro mixer MM_MSFT_SBPRO_MIXER

Sound Blaster Pro 
waveform input

MM_WSS_SBPRO_WAVEIN



Sound Blaster Pro 
waveform input

MM_MSFT_SBPRO_WAVEIN

Sound Blaster Pro 
waveform output

MM_WSS_SBPRO_WAVEOUT

Sound Blaster Pro 
waveform output

MM_MSFT_SBPRO_WAVEOUT

WSS NT aux MM_MSFT_WSS_NT_AUX

WSS NT FM synthesizer MM_MSFT_WSS_NT_FMSYNTH_ST
EREO

WSS NT mixer MM_MSFT_WSS_NT_MIXER

WSS NT wave in MM_MSFT_WSS_NT_WAVEIN

WSS NT wave out MM_MSFT_WSS_NT_WAVEOUT
 



Product Identifiers
 

Company Product identifiers

Artisoft, Inc. MM_ARTISOFT_SBWAVEIN
MM_ARTISOFT_SBWAVEOUT

Audio Processing 
Technology

MM_APT_ACE100CD

Aztech Labs, Inc. MM_AZTECH_AUX_CD
MM_AZTECH_AUX_LINE
MM_AZTECH_AUX_MIC
MM_AZTECH_DSP16_FMSYNTH
MM_AZTECH_DSP16_WAVEIN
MM_AZTECH_DSP16_WAVEOUT
MM_AZTECH_DSP16_WAVESYNTH
MM_AZTECH_FMSYNTH
MM_AZTECH_MIDIIN
MM_AZTECH_MIDIOUT
MM_AZTECH_PRO16_FMSYNTH
MM_AZTECH_PRO16_WAVEIN
MM_AZTECH_PRO16_WAVEOUT
MM_AZTECH_WAVEIN
MM_AZTECH_WAVEOUT

Computer Aided 
Technology, Inc.

MM_CAT_WAVEOUT

Creative Labs, Inc. MM_CREATIVE_AUX_CD
MM_CREATIVE_AUX_LINE
MM_CREATIVE_AUX_MASTER
MM_CREATIVE_AUX_MIC
MM_CREATIVE_AUX_MIDI
MM_CREATIVE_AUX_PCSPK
MM_CREATIVE_AUX_WAVE
MM_CREATIVE_FMSYNTH_MONO
MM_CREATIVE_FMSYNTH_STEREO
MM_CREATIVE_MIDIIN
MM_CREATIVE_MIDIOUT
MM_CREATIVE_SB15_WAVEIN
MM_CREATIVE_SB15_WAVEOUT
MM_CREATIVE_SB16_MIXER
MM_CREATIVE_SB20_WAVEIN
MM_CREATIVE_SB20_WAVEOUT
MM_CREATIVE_SBP16_WAVEIN
MM_CREATIVE_SBP16_WAVEOUT
MM_CREATIVE_SBPRO_MIXER
MM_CREATIVE_SBPRO_WAVEIN
MM_CREATIVE_SBPRO_WAVEOUT

DSP Group, Inc. MM_DSP_GROUP_TRUESPEECH

DSP Solutions, Inc. MM_DSP_SOLUTIONS_AUX
MM_DSP_SOLUTIONS_SYNTH
MM_DSP_SOLUTIONS_WAVEIN
MM_DSP_SOLUTIONS_WAVEOUT

Echo Speech 
Corporation

MM_ECHO_AUX
MM_ECHO_MIDIIN



MM_ECHO_MIDIOUT
MM_ECHO_SYNTH
MM_ECHO_WAVEIN
MM_ECHO_WAVEOUT

ESS Technology, Inc. MM_ESS_AMAUX
MM_ESS_AMMIDIIN
MM_ESS_AMMIDIOUT
MM_ESS_AMSYNTH
MM_ESS_AMWAVEIN
MM_ESS_AMWAVEOUT

Everex Systems, Inc. MM_EVEREX_CARRIER

I/O Magic Corporation MM_IOMAGIC_TEMPO_AUXOUT
MM_IOMAGIC_TEMPO_MIDIOUT
MM_IOMAGIC_TEMPO_MXDOUT
MM_IOMAGIC_TEMPO_SYNTH
MM_IOMAGIC_TEMPO_WAVEIN
MM_IOMAGIC_TEMPO_WAVEOUT

Ing. C. Olivetti & C., 
S.p.A.

MM_OLIVETTI_ACM_ADPCM
MM_OLIVETTI_ACM_CELP
MM_OLIVETTI_ACM_GSM
MM_OLIVETTI_ACM_OPR
MM_OLIVETTI_ACM_SBC
MM_OLIVETTI_AUX
MM_OLIVETTI_JOYSTICK
MM_OLIVETTI_MIDIIN
MM_OLIVETTI_MIDIOUT
MM_OLIVETTI_MIXER
MM_OLIVETTI_SYNTH
MM_OLIVETTI_WAVEIN
MM_OLIVETTI_WAVEOUT

Integrated Circuit 
Systems, Inc.

MM_ICS_WAVEDECK_AUX
MM_ICS_WAVEDECK_MIXER
MM_ICS_WAVEDECK_SYNTH
MM_ICS_WAVEDECK_WAVEIN
MM_ICS_WAVEDECK_WAVEOUT

InterActive, Inc. MM_INTERACTIVE_WAVEIN
MM_INTERACTIVE_WAVEOUT

International Business 
Machines 

MM_IBM_PCMCIA_AUX
MM_IBM_PCMCIA_MIDIIN
MM_IBM_PCMCIA_MIDIOUT
MM_IBM_PCMCIA_SYNTH
MM_IBM_PCMCIA_WAVEIN
MM_IBM_PCMCIA_WAVEOUT
MM_MMOTION_WAVEAUX
MM_MMOTION_WAVEIN
MM_MMOTION_WAVEOUT

Iterated Systems, Inc. MM_ITERATEDSYS_FUFCODEC

Lyrrus, Inc. MM_LYRRUS_BRIDGE_GUITAR

Matsushita Electric 
Corporation of America

MM_MATSUSHITA_AUX
MM_MATSUSHITA_FMSYNTH_STEREO
MM_MATSUSHITA_MIXER
MM_MATSUSHITA_WAVEIN
MM_MATSUSHITA_WAVEOUT



Media Vision, Inc. MM_MEDIAVISION_CDPC
MM_CDPC_AUX
MM_CDPC_MIDIIN
MM_CDPC_MIDIOUT
MM_CDPC_MIXER
MM_CDPC_SYNTH
MM_CDPC_WAVEIN
MM_CDPC_WAVEOUT

MM_OPUS401_MIDIIN
MM_OPUS401_MIDIOUT

MM_MEDIAVISION_OPUS1208
MM_OPUS1208_AUX
MM_OPUS1208_MIXER
MM_OPUS1208_SYNTH
MM_OPUS1208_WAVEIN
MM_OPUS1208_WAVEOUT

MM_MEDIAVISION_OPUS1216
MM_OPUS1216_AUX
MM_OPUS1216_MIDIIN
MM_OPUS1216_MIDIOUT
MM_OPUS1216_MIXER
MM_OPUS1216_SYNTH
MM_OPUS1216_WAVEIN
MM_OPUS1216_WAVEOUT

MM_MEDIAVISION_PROAUDIO
MM_PROAUD_AUX
MM_PROAUD_MIDIIN
MM_PROAUD_MIDIOUT
MM_PROAUD_MIXER

MM_MEDIAVISION_PROAUDIO_16
MM_PROAUD_16_AUX
MM_PROAUD_16_MIDIIN
MM_PROAUD_16_MIDIOUT
MM_PROAUD_16_MIXER
MM_PROAUD_16_SYNTH
MM_PROAUD_16_WAVEIN
MM_PROAUD_16_WAVEOUT

MM_MEDIAVISION_PROAUDIO_PLUS
MM_PROAUD_PLUS_AUX
MM_PROAUD_PLUS_MIDIIN
MM_PROAUD_PLUS_MIDIOUT
MM_PROAUD_PLUS_MIXER
MM_PROAUD_PLUS_SYNTH
MM_PROAUD_PLUS_WAVEIN
MM_PROAUD_PLUS_WAVEOUT
MM_PROAUD_SYNTH
MM_PROAUD_WAVEIN
MM_PROAUD_WAVEOUT

MM_MEDIAVISION_PROSTUDIO_16
MM_STUDIO_16_AUX
MM_STUDIO_16_MIDIIN
MM_STUDIO_16_MIDIOUT
MM_STUDIO_16_MIXER
MM_STUDIO_16_SYNTH



MM_STUDIO_16_WAVEIN
MM_STUDIO_16_WAVEOUT

MM_MEDIAVISION_THUNDER
MM_THUNDER_AUX
MM_THUNDER_SYNTH
MM_THUNDER_WAVEIN
MM_THUNDER_WAVEOUT

MM_MEDIAVISION_TPORT
MM_TPORT_SYNTH
MM_TPORT_WAVEIN
MM_TPORT_WAVEOUT

Metheus Corporation MM_METHEUS_ZIPPER

microEngineering Labs MM_MELABS_MIDI2GO

MOSCOM Corporation MM_MOSCOM_VPC2400

NCR Corporation MM_NCR_BA_AUX
MM_NCR_BA_MIXER
MM_NCR_BA_SYNTH
MM_NCR_BA_WAVEIN
MM_NCR_BA_WAVEOUT

New Media Corporation MM_NEWMEDIA_WAVJAMMER

OPTi, Inc. MM_OPTI_M16_AUX
MM_OPTI_M16_FMSYNTH_STEREO
MM_OPTI_M16_MIDIIN
MM_OPTI_M16_MIDIOUT
MM_OPTI_M16_MIXER
MM_OPTI_M16_WAVEIN
MM_OPTI_M16_WAVEOUT
MM_OPTI_M32_AUX
MM_OPTI_M32_MIDIIN
MM_OPTI_M32_MIDIOUT
MM_OPTI_M32_MIXER
MM_OPTI_M32_SYNTH_STEREO
MM_OPTI_M32_WAVEIN
MM_OPTI_M32_WAVEOUT
MM_OPTI_P16_AUX
MM_OPTI_P16_FMSYNTH_STEREO
MM_OPTI_P16_MIDIIN
MM_OPTI_P16_MIDIOUT
MM_OPTI_P16_MIXER
MM_OPTI_P16_WAVEIN
MM_OPTI_P16_WAVEOUT

Roland Corporation MM_ROLAND_MPU401_MIDIIN
MM_ROLAND_MPU401_MIDIOUT
MM_ROLAND_SC7_MIDIIN
MM_ROLAND_SC7_MIDIOUT
MM_ROLAND_SERIAL_MIDIIN
MM_ROLAND_SERIAL_MIDIOUT
MM_ROLAND_SMPU_MIDIINA
MM_ROLAND_SMPU_MIDIINB
MM_ROLAND_SMPU_MIDIOUTA
MM_ROLAND_SMPU_MIDIOUTB

Sierra Semiconductor 
Corporation

MM_SIERRA_ARIA_AUX
MM_SIERRA_ARIA_AUX2



MM_SIERRA_ARIA_MIDIIN
MM_SIERRA_ARIA_MIDIOUT
MM_SIERRA_ARIA_SYNTH
MM_SIERRA_ARIA_WAVEIN
MM_SIERRA_ARIA_WAVEOUT

Silicon Software, Inc. MM_SILICONSOFT_SC1_WAVEIN
MM_SILICONSOFT_SC1_WAVEOUT
MM_SILICONSOFT_SC2_WAVEIN
MM_SILICONSOFT_SC2_WAVEOUT
MM_SILICONSOFT_SOUNDJR2_WAVEOU
T
MM_SILICONSOFT_SOUNDJR2PR_WAVE
IN
MM_SILICONSOFT_SOUNDJR2PR_WAVE
OUT
MM_SILICONSOFT_SOUNDJR3_WAVEOU
T

Tandy Corporation MM_TANDY_PSSJWAVEIN
MM_TANDY_PSSJWAVEOUT
MM_TANDY_SENS_MMAMIDIIN
MM_TANDY_SENS_MMAMIDIOUT
MM_TANDY_SENS_MMAWAVEIN
MM_TANDY_SENS_MMAWAVEOUT
MM_TANDY_SENS_VISWAVEOUT
MM_TANDY_VISBIOSSYNTH
MM_TANDY_VISWAVEIN
MM_TANDY_VISWAVEOUT

Toshihiko Okuhura, 
Korg, Inc.

MM_KORG_PCIF_MIDIIN
MM_KORG_PCIF_MIDIOUT

Truevision, Inc. MM_TRUEVISION_WAVEIN1
MM_TRUEVISION_WAVEOUT1

VideoLogic, Inc. MM_VIDEOLOGIC_MSWAVEIN
MM_VIDEOLOGIC_MSWAVEOUT

Visual Information 
Technologies, Inc.

MM_VITEC_VMAKER
MM_VITEC_VMPRO

VocalTec, Inc. MM_VOCALTEC_WAVEIN
MM_VOCALTEC_WAVEOUT

Wang Laboratories MM_WANGLABS_WAVEIN1
MM_WANGLABS_WAVEOUT1

Winnov, LP MM_WINNOV_CAVIAR_CHAMPAGNE
MM_WINNOV_CAVIAR_VIDC
MM_WINNOV_CAVIAR_WAVEIN
MM_WINNOV_CAVIAR_WAVEOUT
MM_WINNOV_CAVIAR_YUV8

Yamaha Corporation of 
America

MM_YAMAHA_GSS_AUX
MM_YAMAHA_GSS_MIDIIN
MM_YAMAHA_GSS_MIDIOUT
MM_YAMAHA_GSS_SYNTH
MM_YAMAHA_GSS_WAVEIN
MM_YAMAHA_GSS_WAVEOUT

 

 

 



Installable Drivers
This appendix describes the general format of installable drivers and defines the installable driver 
functions that applications and DLLs use to open and manage installable drivers.



About Installable Drivers
An installable driver is a Microsoft Windows dynamic-link library (DLL) that provides a standard interface 
through which Windows-based applications and DLLs communicate with and manage the driver. 
Installable drivers are used most commonly for as multimedia device drivers, but installable drivers can 
also be used for other purposes and are particularly useful in situations that require a standard interface 
and control of multiple instances.



Installable Driver Format

Every installable driver exports a DriverProc function. This common entry-point function receives driver 
messages from the system that direct the driver to carry out actions or provide information. The system 
sends driver messages to the DriverProc function when an application or DLL opens or closes the driver 
or requests that a message be sent to the driver. The DriverProc function either processes the message 
or passes the message to the default message handler, the DefDriverProc function. In either case, 
DriverProc must return a value indicating whether the requested action was successful.



Driver Messages
Each driver message consists of a message identifier and two 32-bit parameters. The message identifier 
is a unique value that the DriverProc function checks to determine which action to carry out. The 
meaning of the message parameters depends on the message. The parameters may represent values or 
addresses. In many cases, the parameters are not used and are set to zero. 

Driver messages can be standard or custom. Windows sends standard driver messages, such as 
DRV_OPEN, DRV_CLOSE, and DRV_CONFIGURE, to an installable driver in response to a request to 
open, close, or configure the driver. The standard messages direct the installable driver to load or unload 
its resources, enable or disable its operation, open or close a driver instance, and display a configuration 
dialog box. Some standard messages, such as DRV_POWER and DRV_EXITSESSION, notify the driver 
of system-wide events that affect the operation of the driver or any related hardware. 

Applications and DLLs send custom driver messages to direct an installable driver to carry out driver-
specific actions. Installable drivers that support custom messages must include appropriate processing in 
the DriverProc function. To prevent conflict between custom and standard driver messages, custom 
message identifiers must have values ranging from DRV_RESERVED to DRV_USER. Custom messages 
passed to the DefDriverProc function are ignored.



Driver Instances
Windows allows for multiples instances of an installable driver. The system creates an instance of the 
driver each time the driver is opened and destroys the instance when the driver is closed. Driver 
instances are especially useful for installable drivers that support multiple devices or that are opened by 
multiple applications or by the same application multiple times.

To help the driver keep track of the instances, the system sends a driver instance handle with each driver 
message after the instance has been created. Because this handle uniquely identifies the instance, 
installable drivers often associate the handle with memory and other resources that they have specifically 
allocated for the instance. 

When the first instance is opened, the system sends the DRV_LOAD, DRV_ENABLE, and DRV_OPEN 
messages to the driver in that order. The DRV_LOAD and DRV_ENABLE messages notify the driver that 
it is now in memory and is enabled for operation. The DRV_OPEN message identifies the instance handle 
and may include configuration information for the instance. On each subsequent opening of an instance 
of the same driver, the system sends only a DRV_OPEN message. 

When processing a DRV_LOAD message, a driver typically reads configuration settings from the registry, 
configures the driver and any associated hardware, and allocates memory for use by all instances of the 
driver. If a driver cannot complete the configuration or allocate memory, it returns zero to direct the system 
to immediately remove the driver from memory and prevent any subsequent messages from being sent. 
When processing the DRV_ENABLE message, the driver prepares the hardware to receive and process 
input and output (I/O) requests. The preparation may include installing interrupt handlers. 

When processing the DRV_OPEN message, the driver allocates memory or resources required by the 
given instance of the driver and then returns a nonzero value. The system uses this nonzero value as the 
driver identifier in subsequent driver messages for the instance. The driver can use this identifier for any 
purpose. For example, some drivers use a memory handle for the identifier to gain quick access to 
memory containing information about the given instance.

Many installable drivers process the second parameter of the DRV_OPEN message, giving the system 
and applications the means to send additional information to the driver when opening an instance. The 
parameter can be a single value or an address of a structure containing a set of values. When processing 
DRV_OPEN, the driver checks the parameter to determine whether it is a value and uses the given 
values, if any, to complete the creation of the instance.

The system sends a DRV_CLOSE message each time an instance is closed. The instance handle sent 
with the message identifies which instance to close. When the last remaining instance is closed, the 
system sends the DRV_CLOSE, DRV_DISABLE, and DRV_FREE messages in that order. The 
DRV_CLOSE message directs the driver to close the instance, and the DRV_DISABLE and DRV_FREE 
messages notify the driver that it is now disabled and will be immediately freed from memory.

When processing the DRV_CLOSE message, the driver typically frees any memory or resources 
allocated for the instance. When processing the DRV_DISABLE message, the driver places any hardware 
in an inactive state, which may include the removal of interrupt handlers. When processing the 
DRV_FREE message, the driver frees any memory or resources that are still allocated. 

Installable drivers are not required to support multiple instances. A driver can prevent any instance from 
being created by returning zero for the DRV_OPEN message. 



Configuration
An installable driver can let users choose configuration settings for the driver and associated hardware by 
displaying a configuration dialog box when processing the DRV_CONFIGURE message. The driver is 
responsible for creating and managing the dialog box, processing any user input from the dialog box, and 
changing the configuration of the driver or hardware as requested by the user. The driver must provide a 
separate dialog box procedure to process window messages for the dialog box and a dialog box template 
to define the appearance and content of the dialog box.

Before receiving the DRV_CONFIGURE message, a driver receives the DRV_QUERYCONFIGURE 
message. The driver must return a nonzero value to the query to ensure receipt of the subsequent 
DRV_CONFIGURE message.

When initializing the configuration dialog box, the driver typically retrieves configuration information from 
the registry. To help locate this information, the DRV_CONFIGURE message usually includes the address 
of a DRVCONFIGINFO structure that contains the names of the registry key and value associated with 
the driver. If the user requests changes to the configuration, the driver should update the configuration 
information in the registry.



Installation
An installable driver can carry out driver-specific installation tasks when processing the DRV_INSTALL 
and DRV_REMOVE messages. An installation application, such as a Control Panel application, sends the 
messages to the driver when installing or removing the driver, respectively. 

When processing the DRV_INSTALL message, the driver typically verifies that the required hardware is 
present and then displays the configuration dialog box to let the user choose the initial configuration 
settings for the driver and associated hardware. The message includes the address of a 
DRVCONFIGINFO structure that contains the names of the registry key and value associated with the 
driver; the driver checks the registry value for default configuration information. Finally, the driver also 
creates any additional registry keys and values needed for successful operation. 

When processing the DRV_REMOVE message, the driver removes any registry keys and values it may 
have created. 



Callback Functions
Installable drivers can notify the application, window, or task that opened the given instance about events 
by using the DriverCallback function. This function gives the driver the means to return information to an 
application or DLL while continuing to process a request. 

If a driver supports callback functions, the application or DLL that opens the instance must supply a value 
this is either the address of a callback function, a window handle, or a task handle. This value and a flag 
identifying the type of the value are typically passed in a structure pointed to by the second parameter of 
the DRV_OPEN message.



Installable Drive Module-Definition File
The module-definition (.DEF) file of an installable driver names the driver, exports the DriverProc 
function, and defines a driver description. The following example shows a typical module-definition file for 
an installable driver:

LIBRARY OSCI 
DESCRIPTION 'FREQ,AMPL:Oscilloscope frequency and amplitude drivers.'
EXPORTS
    DriverProc
 

Some installation applications may open the driver and retrieve the description line to use when installing 
the driver. To remain compatible with these installation applications, the description line should have this 
form: 

DESCRIPTION alias[,alias]...:text 

The alias specifies a unique name for the driver that applications can use to open the driver. The alias 
also serves as the value name associated with the driver in the registry. Multiple aliases are separated by 
commas. The text describes the purpose of the driver. 



Installable Driver Functions and Messages

You can open an installable driver from an application by using the OpenDriver function. This function 
creates an instance of the driver, loading the driver into memory if no other instance exists, and returns 
the handle of the new instance. When opening an installable driver, you must supply either the full path of 
the driver or the names of the registry key and value associated with the driver.

Once a driver is open, you can direct it to carry out tasks by using the SendDriverMessage function to 
send driver messages to the driver. For example, you can direct the driver to display its configuration 
dialog box by sending the DRV_CONFIGURE message. Before sending this message, you must 
determine whether the driver has a configuration dialog box by sending the DRV_QUERYCONFIGURE 
message and checking for a nonzero return value. Many drivers provide a set of custom messages that 
you can send to direct the operations of the driver.

If you need special access to an installable driver, such as access to its resources, you can retrieve the 
module handle of the driver by using the GetDriverModuleHandle function.

When you no longer need the installable driver, you can close it by using the CloseDriver function. 

You can use the installable driver functions and messages to open and manage any installable driver. 
However, the recommended course of action for opening and managing multimedia devices is to first use 
standard services (such as waveOutOpen, waveOutMessage, and waveOutClose for waveform output 
devices), if they exist. If standard services do not exist for a multimedia driver, then open and manage the 
driver using the installable driver functions and messages.

 

Note    The SendDriverMessage and GetDriverModuleHandle functions are the preferred functions to 
use to send messages to a driver and to obtain a handle to a module instance. The older 
DrvGetModuleHandle function, however, has been included to maintain compatibility with previous 
versions of the Windows operating system. 

 



Using Installable Drivers
You use installable drivers to give applications or DLLs a standard way to access a device or a set of 
useful routines. The following sections show how to create an installable driver by using a DriverProc 
function and how to open an installable driver and direct it to carry out useful tasks.



Creating a DriverProc Function

You create a DriverProc function in much the same way as you create a window procedure. The function 
consists of a switch statement, and each case processes a given driver message, returning a value 
indicating success or failure. The DriverProc function has the following form: 



LONG DriverProc(DWORD dwDriverId, HDRVR hdrvr, UINT msg, 
    LONG lParam1, LONG lParam2)
{
    DWORD dwRes = 0L;

    switch (msg) {
    case DRV_LOAD:
    // Sent when the driver is loaded. This is always 
    // the first message received by a driver. 
        dwRes = 1L;  // returns 0L to fail
        break;

    case DRV_FREE:
    // Sent when the driver is about to be discarded.
    // This is the last message a driver receives
    // before it is freed.
        dwRes = 1L;  // return value ignored
        break;

    case DRV_OPEN:
    // Sent when the driver is opened.
        dwRes = 1L;  // returns 0L to fail
        break;       // value subsequently used
                     // for dwDriverId.

    case DRV_CLOSE:
    // Sent when the driver is closed. Drivers are
    // unloaded when the open count reaches zero.
        dwRes = 1L;  // returns 0L to fail
        break;

    case DRV_ENABLE:
    // Sent when the driver is loaded or reloaded and
    // when Windows is enabled. Install interrupt
    // handlers and initialize hardware. Expect the
    // driver to be in memory only between the enable
    // and disable messages.
        dwRes = 1L;  // return value ignored
        break;

    case DRV_DISABLE:
    // Sent before the driver is freed or when Windows
    // is disabled. Remove interrupt handlers and place
    // hardware in an inactive state.
        dwRes = 1L;  // return value ignored
        break;

    case DRV_INSTALL:
    // Sent when the driver is installed.
        dwRes = DRVCNF_OK;  // Can also return 
        break;              // DRVCNF_CANCEL
                            // and DRV_RESTART

    case DRV_REMOVE:
    // Sent when the driver is removed.



        dwRes = 1L;  // return value ignored
        break;

    case DRV_QUERYCONFIGURE:
    // Sent to determine if the driver can be
    // configured.
        dwRes = 0L;  // Zero indicates configuration
        break;       // NOT supported

    case DRV_CONFIGURE:
    // Sent to display the configuration
    // dialog box for the driver.
        dwRes = DRVCNF_OK;  // Can also return
        break;              // DRVCNF_CANCEL
                            // and DRVCNF_RESTART

    default:
    // Process any other messages.
        return DefDriverProc (dwDriverId, hdrvr, 
            msg, lParam1, lParam2);

    }
    return dwRes;
}
  



Configuring an Installable Driver

To direct an installable driver to carry out useful tasks, you must open the driver by using the OpenDriver 
function and send it messages by using the SendDriverMessage function. The following example shows 
how to direct the driver to display its configuration dialog box.

LONG MyConfigureDriver()
{
    HDRVR hdrvr;
    DRVCONFIGINFO dci;
    LONG lRes;

    // Open the driver (no additional parameters needed this time).
    if ((hdrvr = OpenDriver(L"\\samples\\sample.drv", 0, 0)) == 0) {
        // Can't open the driver
        return DRVCNF_CANCEL;
    }

    // Make sure driver has a configuration dialog box.
    if (SendDriverMessage(hdrvr, DRV_QUERYCONFIGURE, 0, 0) != 0) {
        // Set the DRVCONFIGINFO structure and send the message
        dci.dwDCISize = sizeof (dci);
        dci.lpszDCISectionName = (LPWSTR)0;
        dci.lpszDCIAliasName = (LPWSTR)0;
        lRes = SendDriverMessage(hdrvr, DRV_CONFIGURE, 0, (LONG)&dci);
     }

    // Close the driver (no additional parameters needed this time).
    CloseDriver(hdrvr, 0, 0);

    return lRes;
}
  



Installable Driver Reference
The functions and messages associated with installable drivers are grouped as follows. 

Loading and Unloading Drivers
GetDriverModuleHandle
OpenDriver
SendDriverMessage

CloseDriver
DRV_CLOSE
DRV_DISABLE
DRV_ENABLE
DRV_FREE
DRV_LOAD
DRV_OPEN

Configuring a Driver
DRV_CONFIGURE
DRV_QUERYCONFIGURE
DRVCONFIGINFO

Installing a Driver
DRV_INSTALL
DRV_REMOVE

Driver Functions
DefDriverProc
DriverCallback
DriverProc



Installable Driver Functions

The functions in this section can be used in an application to open, close, and communicate with an 
installable driver. 

CloseDriver
DrvGetModuleHandle
GetDriverModuleHandle
OpenDriver
SendDriverMessage



CloseDriver    

Closes an installable driver. 

LRESULT CloseDriver(HDRVR hdrvr, LONG lParam1, LONG lParam2);
  

Parameters
hdrvr

Handle of an installable driver instance. The handle must have been previously created by using the 
OpenDriver function. 

lParam1 and lParam2

32-bit driver-specific data. 
 

Return Value
Returns nonzero if successful or zero otherwise. 

Remarks
The function passes the lParam1 and lParam2 parameters to the DriverProc function of the installable 
driver. 



DrvGetModuleHandle    

Retrieves the instance handle of the module that contains the installable driver. This function is provided 
for compatibility with previous versions of Windows. 

WINMMAPI HMODULE WINAPI DrvGetModuleHandle(HDRVR hDriver); 
 

Parameters
hDriver

Handle of the installable driver instance. The handle must have been previously created by using the 
OpenDriver function.

 

Return Value
Returns an instance handle of the driver module if successful or NULL otherwise.



GetDriverModuleHandle    

Retrieves the instance handle of the module that contains the installable driver. 

HMODULE GetDriverModuleHandle(HDRVR hdrvr);
  

Parameters
hdrvr

Handle of the installable driver instance. The handle must have been previously created by using the 
OpenDriver function. 

 

Return Value
Returns an instance handle of the driver module if successful or NULL otherwise. 



OpenDriver    

Opens an instance of an installable driver and initializes the instance using either the driver's default 
settings or a driver-specific value. 

HDRVR OpenDriver(LPCWSTR lpDriverName, LPCWSTR lpSectionName, 
    LONG lParam);
  

Parameters
lpDriverName

Address of a null-terminated, wide-character string that specifies the filename of an installable driver 
or the name of a registry value associated with the installable driver. (This value must have been 
previously set when the driver was installed.)

lpSectionName

Address of a null-terminated, wide-character string that specifies the name of the registry key 
containing the registry value given by the lpDriverName parameter. If lpSectionName is NULL, the 
registry key is assumed to be Drivers32.

lParam

32-bit driver-specific value. This value is passed as the lParam2 parameter to the DriverProc function 
of the installable driver. 

 

Return Value
Returns the handle of the installable driver instance if successful or NULL otherwise. 



SendDriverMessage    

Sends the specified message to the installable driver. 

LRESULT SendDriverMessage(HDRVR hdrvr, UINT msg, LONG lParam1, 
    LONG lParam2);
  

Parameters
hdrvr

Handle of the installable driver instance. The handle must been previously created by using the 
OpenDriver function. 

msg

Driver message value. It can be a custom message value or one of these standard message values:

DRV_QUERYCONFIG
URE

Queries an installable driver about 
whether it supports the 
DRV_CONFIGURE message and can 
display a configuration dialog box. 

DRV_CONFIGURE Notifies an installable driver that it should 
display a configuration dialog box. (This 
message should only be sent if the driver 
returns a nonzero value when the 
DRV_QUERYCONFIGURE message is 
processed.) 

DRV_INSTALL Notifies an installable driver that it has 
been successfully installed. 

DRV_REMOVE Notifies an installable driver that it is 
about to be removed from the system. 

 

lParam1 and lParam2

32-bit message-dependent information.
 

Return Value
Returns nonzero if successful or zero otherwise. 



Driver Functions

The functions in this section describe the entry point, default processing, and callback functions to use in 
an installable driver. 

DefDriverProc
DriverProc
DriverCallback



DefDriverProc    

Provides default processing for any messages not processed by an installable driver. This function is 
intended to be used only within the DriverProc function of an installable driver. 

LONG DefDriverProc(DWORD dwDriverId, HDRVR hdrvr, UINT msg, 
    LONG lParam1, LONG lParam2);
  

Parameters
dwDriverId

Identifier of the installable driver.

hdrvr

Handle of the installable driver instance. 

msg

Driver message value.

lParam1 and lParam2

32-bit message-dependent information. 
 

Return Value
Returns nonzero if successful or zero otherwise. 



DriverProc    

Processes driver messages for the installable driver. DriverProc is a driver-supplied function.

LONG DriverProc(DWORD dwDriverId, HDRVR hdrvr, UINT msg, 
    LONG lParam1, LONG lParam2);
  

Parameters
dwDriverId

Identifier of the installable driver. 

hdrvr

Handle of the installable driver instance. Each instance of the installable driver has a unique handle. 

msg

Driver message value. It can be a custom value or one of these standard values:

DRV_CLOSE Notifies the driver that it should 
decrement its usage count and unload 
the driver if the count is zero. 

DRV_CONFIGURE Notifies the driver that it should display a 
configuration dialog box. This message is 
sent only if the driver returns a nonzero 
value when processing the 
DRV_QUERYCONFIGURE message. 

DRV_DISABLE Notifies the driver that its allocated 
memory is about to be freed. 

DRV_ENABLE Notifies the driver that it has been loaded 
or reloaded or that Windows has been 
enabled. 

DRV_FREE Notifies the driver that it will be discarded. 

DRV_INSTALL Notifies the driver that it has been 
successfully installed. 

DRV_LOAD Notifies the driver that it has been 
successfully loaded. 

DRV_OPEN Notifies the driver that it is about to be 
opened. 

DRV_POWER Notifies the driver that the device's power 
source is about to be turned on or off. 

DRV_QUERYCONFIG
URE

Directs the driver to specify whether it 
supports the DRV_CONFIGURE 
message. 

DRV_REMOVE Notifies the driver that it is about to be 
removed from the system. 

 

lParam1 and lParam2

32-bit message-specific value.
 

Return Value



Returns nonzero if successful or zero otherwise. 

Remarks
When msg is DRV_OPEN, lParam1 is the string following the driver filename from the SYSTEM.INI file 
and lParam2 is the value given as the lParam parameter in a call to the OpenDriver function. 

When msg is DRV_CLOSE, lParam1 and lParam2 are the same values as the lParam1 and lParam2 
parameters in a call to the CloseDriver function. 



DriverCallback    

Calls a callback function, sends a message to a window, or unblocks a thread. The action depends on the 
value of the notification flag. This function is intended to be used only within the DriverProc function of an 
installable driver. 

BOOLEAN DriverCallback(DWORD dwCallBack, DWORD dwFlags, HDRVR hdrvr,
    DWORD msg, DWORD dwUser, DWORD dwParam1, DWORD dwParam2);
  

Parameters
dwCallBack

Address of the callback function, a window handle, or a task handle, depending on the flag specified 
in the dwFlags parameter. 

dwFlags

Notification flags. It can be one of these values: 

DCB_NOSWITC
H

The system is prevented from switching stacks. 
This value is only used if enough stack space for 
the callback function is known to exist.

DCB_FUNCTIO
N

The dwCallback parameter is the address of an 
application-defined callback function. The 
system sends the callback message to the 
callback function. 

DCB_WINDOW The dwCallback parameter is the handle of an 
application-defined window. The system sends 
subsequent notifications to the window.

DCB_TASK The dwCallback parameter is the handle of an 
application or task. The system sends 
subsequent notifications to the application or 
task.

 

hdrvr

Handle of the installable driver instance. 

msg

Message value. 

dwUser

32-bit user-instance data supplied by the application when the device was opened. 

dwParam1 and dwParam2

32-bit message-dependent parameter. 
 

Return Value
Returns TRUE if successful or FALSE if a parameter is invalid or the task's message queue is full. 

Remarks
The client specifies how to notify it when the device is opened. The DCB_FUNCTION and 
DCB_WINDOW flags are equivalent to the high-order word of the corresponding flags 



CALLBACK_FUNCTION and CALLBACK_WINDOW specified in the lParam2 parameter of the 
DRV_OPEN message when the device was opened. 

If notification is accomplished with a callback function, hdrvr, msg, dwUser, dwParam1, and dwParam2 
are passed to the callback function. If notification is accomplished by means of a window, only msg, hdrvr, 
and dwParam1 are passed to the window. 



Installable Driver Messages

The messages in this section can be used with installable drivers. 

DRV_CLOSE
DRV_CONFIGURE
DRV_DISABLE
DRV_ENABLE
DRV_EXITSESSION
DRV_FREE
DRV_INSTALL
DRV_LOAD
DRV_OPEN
DRV_POWER
DRV_QUERYCONFIGURE
DRV_REMOVE



DRV_CLOSE    

Directs the driver to close the given instance. If no other instances are open, the driver should prepare for 
subsequent release from memory. 

Parameters
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the 
DRV_OPEN message. 

hdrvr

Handle of the installable driver instance.

lParam1

32-bit value specified as the lParam1 parameter in a call to the DriverClose function. 

lParam2

32-bit value specified as the lParam2 parameter in a call to the DriverClose function. 
 

Return Value
Returns nonzero if successful or zero otherwise.



DRV_CONFIGURE    

Directs the installable driver to display its configuration dialog box and let the user specify new settings for 
the given installable driver instance. 

Parameters
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the 
DRV_OPEN message. 

hdrvr

Handle of the installable driver instance.

lParam1

Handle of the parent window. This window is used as the parent window for the configuration dialog 
box. 

lParam2

Address of a DRVCONFIGINFO structure or NULL. If the structure is given, it contains the names of 
the registry key and value associated with the driver. 

 

Return Value
Returns one of these values: 

DRVCNF_OK The configuration is successful; no further action 
is required.

DRVCNF_CANCEL The user canceled the dialog box; no further 
action is required.

DRVCNF_RESTART The configuration is successful, but the changes 
do not take effect until the system is restarted.

 

Remarks
Some installable drivers append configuration information to the value assigned to the registry value 
associated with the driver. 

The DRV_CANCEL, DRV_OK, and DRV_RESTART return values are obsolete; they have been replaced 
by DRVCNF_CANCEL, DRVCNF_OK, and DRVCNF_RESTART, respectively. 



DRV_DISABLE    

Disables the driver. The driver should place the corresponding device, if any, in an inactive state and 
terminate any callback functions or threads. 

Parameters
hdrvr

Handle of the installable driver instance.
 

Return Value
No return value.

Remarks
The dwDriverId, lParam1, and lParam2 parameters are not used.

After disabling the driver, the system typically sends the driver a DRV_FREE message before removing 
the driver from memory.



DRV_ENABLE    

Enables the driver. The driver should initialize any variables and locate devices with the input and output 
(I/O) interface. 

Parameters
hdrvr

Handle of the installable driver instance.
 

Return Value
No return value. 

Remarks
The dwDriverId, lParam1, and lParam2 parameters are not used. 

Drivers are considered enabled from the time they receive this message until they are disabled by using 
the DRV_DISABLE message. 



DRV_EXITSESSION    

Notifies the driver that Windows is preparing to exit. The driver should prepare for termination.

Parameters
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the 
DRV_OPEN message. 

hdrvr

Handle of the installable driver instance.
 

Return Value
No return value.

Remarks
The lParam1 and lParam2 parameters are not used. 



DRV_FREE    

Notifies the driver that it is being removed from memory. The driver should free any memory and other 
system resources that it has allocated.

Parameters
hdrvr

Handle of the installable driver instance.
 

Return Value
No return value. 

Remarks
The dwDriverId, lParam1, and lParam2 parameters are not used. 

The DRV_FREE message is always the last message that a device driver receives. 



DRV_INSTALL    

Notifies the driver that is it being installed. The driver should create and initialize any needed registry keys 
and values and verify that the supporting drivers and hardware are installed and properly configured. 

Parameters
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the 
DRV_OPEN message. 

hdrvr

Handle of the installable driver instance.

lParam2

Address of a DRVCONFIGINFO structure or NULL. If a structure is given, it contains the names of the 
registry key and value associated with the driver. 

 

Return Value
Returns one of these values: 

DRVCNF_OK The installation is successful; no further action 
is required.

DRVCNF_CANCE
L

The installation failed..

DRVCNF_RESTA
RT

The installation is successful, but it does not 
take effect until the system is restarted.

 

Remarks
The lParam1 parameter is not used.

Some installable drivers append configuration information to the value assigned to the registry value 
associated with the driver. 



DRV_LOAD    

Notifies the driver that it has been loaded. The driver should make sure that any hardware and supporting 
drivers it needs to function properly are present.

Parameters
The hdrvr parameter is always zero. The dwDriverId, lParam1, and lParam2 parameters are not used. 

Return Value
Returns nonzero if successful or zero otherwise. 

Remarks
The DRV_LOAD message is always the first message that a device driver receives. 



DRV_OPEN    

Directs the driver to open an new instance. 

Parameters
dwDriverId

Identifier of the installable driver.

hdrvr

Handle of the installable driver instance.

lParam1

Address of a null-terminated, wide-character string that specifies configuration information used to 
open the instance. If no configuration information is available, either this string is empty or the 
parameter is NULL.

lParam2

32-bit driver-specific data.
 

Return Value
Returns a nonzero value if successful or zero otherwise. 

Remarks
If the driver returns a nonzero value, the system uses that value as the driver identifier (the dwDriverId 
parameter) in messages it subsequently sends to the driver instance. The driver can return any type of 
value as the identifier. For example, some drivers return memory addresses that point to instance-specific 
information. Using this method of specifying identifiers for a driver instance gives the drivers ready access 
to the information while they are processing messages.



DRV_POWER    

Notifies the driver that power to the device is being turned on or off. 

Parameters
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the 
DRV_OPEN message. 

hdrvr

Handle of the installable driver instance.
 

Return Value
Returns nonzero if successful or zero otherwise. 

Remarks
The lParam1 and lParam2 parameters are not used. 



DRV_QUERYCONFIGURE    

Directs the driver to specify whether it supports custom configuration. 

Parameters
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the 
DRV_OPEN message. 

hdrvr

Handle of the installable driver instance.
 

Return Value
Returns a nonzero value if the driver can display a configuration dialog box or zero otherwise.

Remarks
The lParam1 and lParam2 parameters are not used. 



DRV_REMOVE    

Notifies the driver that it is about to be removed from the system. When a driver receives this message, it 
should remove any sections it created in the registry. 

Parameters
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the 
DRV_OPEN message. 

hdrvr

Handle of the installable driver instance.
 

Return Value
No return value.

Remarks
The lParam1 and lParam2 parameters are not used. 



Installable Driver Structures

The following structure can be used with installable drivers. 

DRVCONFIGINFO



DRVCONFIGINFO    

Contains the registry key and value names associated with the installable driver. 

typedef struct tagDRVCONFIGINFO {
    DWORD dwDCISize; 
    LPCWSTR lpszDCISectionName; 
    LPCWSTR lpszDCIAliasName; 
} DRVCONFIGINFO;
 

Members
dwDCISize

Size of the structure, in bytes. 

lpszDCISectionName

Address of a null-terminated, wide-character string specifying the name of the registry key associated 
with the driver. 

lpszDCIAliasName

Address of a null-terminated, wide-character string specifying the name of the registry value 
associated with the driver. 

  

 




