
Welcome to RoboHELP. Click Topic (Ctrl+T) to add your first Help topic.

Dynamic-Link Libraries (DLLs)
See also

A dynamic-link library (DLL) is an executable module (extension .DLL) that contains code or resources
that are used by other DLLs or applications. In the Windows environment, DLLs permit multiple
applications to share code and resources.

The Object Pascal concept most comparable to a DLL is a unit. However, routines in units are linked into
your executable file at link time (statically linked), whereas DLL routines reside in a separate file and are
made available at run time (dynamically linked).

DLLs provide the ability for multiple applications to share a single copy of a routine they have in
common. The .DLL file must be in the same directory as the application at run time.

When the program is loaded into memory, the application dynamically links the procedure and function
calls in the program to their entry points in the DLLs used by the program.

Note: DLLs can export procedures and functions only.

For more information on using DLLs, choose from the following topics:

Accessing routines stored in DLLs

Writing DLLs

See also
Function calls

Import units

Accessing routines stored in DLLs
See also Example

There are two ways to access and call a routine stored in a DLL.

Use an external declaration in your program (static import or implicit loading).
Using an external declaration to perform a static DLL import causes the DLL to be loaded before
execution of your program begins. In this case you cannot change the name of the DLL at run
time. Your program cannot be executed if it specifies a DLL that isn't available at run time.

Use GetProcAddress and LoadLibrary WinAPI calls to initialize procedure pointers in your
program (dynamic import or explicit loading).
Using GetProcAddress and LoadLibrary (the two must be used in conjunction) to import a DLL gives
your program control over what DLL file is actually loaded. For example, Windows device drivers are all
DLLs with the same interface, but that internally perform hardware-specific functions. Programs can use
the device driver DLLs without knowing anything about the hardware. With a dynamic import, even if
LoadLibrary fails to locate a DLL your program can continue to run.

Although a DLL can have variables, it is not possible to import them into other modules. Any access to a
DLL's variables must take place through a procedural interface.

When you compile a program that uses a DLL, the compiler does not look for the DLL, so it need not be
present.

If you write your own DLLs, you must compile them separately.

Importing routines
In imported procedures and functions, the external directive takes the place of the declaration and
statement parts that would otherwise be present.

Object Pascal provides three ways to import procedures and functions:

by name
by new name
by ordinal number

By name
When you import a routine from a DLL with no index or name clause specified, the procedure or function
is imported explicitly by name.

The name used is the procedure's or function's identifier, with the same spelling and case.

When a name clause is specified, the procedure or function is imported by a different name than its
identifier.

Note: The DLL name specified after the external keyword and the new name specified in a name
clause do not have to be string literals. Any constant string expression is allowed.

By new name
When you import a routine from a DLL with a name clause specified, the procedure or function is
imported by a different name than its identifier.

By ordinal number
When you import a routine from a DLL with an index clause present, the procedure or function is
imported by ordinal.

Importing by ordinal reduces the load time of the module because Windows does not have to look up
the name in the DLL's name table.

The ordinal number specified in an index clause can be any constant-integer expression.

See also
Import units

Writing DLLs

Example
Example for importing routines by name

Example for importing routines by new name

Example for importing routines by ordinal number

Example
{ The following example imports the ImportByName procedure from testlib.dll
using the name 'ImportByName'. }

procedure ImportByName; external 'testlib.dll';

Example
{ The following example imports the ImportByNewName procedure from
testlib.dll using the name 'RealName'. }

procedure ImportByNewName; external 'testlib.dll' name 'RealName';

Example
{ The following example imports the ImportByOrdinal procedure as the fifth
entry point in testlib.dll. }

procedure ImportByOrdinal; external 'testlib.dll' index 5;

Import units
You can place declarations of imported procedures and functions directly in the program that imports
them. Usually, though, they are grouped together in an import unit that contains declarations for all
procedures and functions in a DLL, along with any constants and types required to interface with the
DLL.

To use an import unit,
Add it to the uses clause of the calling unit.

Import units are not a requirement of the DLL interface, but they do simplify maintenance of projects that
use multiple DLLs. Also, when the associated DLL is modified, only the import unit needs updating to
reflect the changes.

When you compile a program that uses a DLL, the compiler does not look for the DLL so it need not be
present. However, when you run the program it must be present.

If you write your own DLLs, you must compile them separately.

Writing DLLs
See also Example

The structure of an Object Pascal DLL is identical to that of a program, except that a DLL starts with a
library header instead of a program header.

The library header tells The Object Pascal compiler to produce an executable file with the
extension .DLL instead of .EXE. It also ensures that the executable file is marked as being a DLL.

If procedures and functions are to be exported by a DLL, they will often be compiled using the stdcall
procedure directive. Although not a requirement, use of the stdcall calling convention makes it possible
for applications written in other languages to use the DLL.

To actually export the routines, use the exports clause.

Libraries often consist of several units. In such cases, the library source file itself is frequently reduced
to a uses clause, an exports clause, and the library's initialization code.

Global variables
Global variables declared in a DLL are private to that DLL.

A DLL cannot access variables declared by modules that call the DLL, and it is not possible for a DLL to
export its variables for use by other modules. Such access must take place through a procedural
interface.

Even though a DLL can be used by multiple applications at the same time, to the DLL it appears that
there is only one client, and each instance of the DLL will have its own set of global variables. For
multiple DLLs (or multiple instances of one DLL) to share memory, the DLLs must use memory mapped
files. See the Windows API documentation for further details on this topic.

Example
{ The following exampleimplements a very simple DLL with two exported
functions: }

library MinMax;
{ The stdcall procedure directive exports Min and Max with a calling
convention supported by other languages. }

function Min(X, Y: Integer): Integer; stdcall;
 begin
 if X < Y then Min := X else Min := Y;
 end;

function Max(X, Y: Integer): Integer; stdcall;
 begin
 if X > Y then Max := X else Max := Y;
 end;

{The exports clause actually exports the two routines, supplying an optional
ordinal number for each of them}

exports
 Min index 1,
 Max index 2;

 begin
 end.

See also
Accessing routines stored in DLLs

DLLs and the system unit

Import units

Library initialization code

Run-time errors in DLLs

The Shared Memory Manager

The DLLProc variable

Library initialization code
Example Writing DLLs

The statement part of a library constitutes the library's initialization code. The initialization code is
executed once, when the library is loaded.

A library's initialization code typically performs tasks like registering window classes for window
procedures contained in the library, and setting initial values for the library's global variables. In addition,
the initialization code of a library can install an exit procedure using the ExitProc variable. The exit
procedure will be executed when the operating system unloads the library.

The initialization code of a library can signal an error condition by setting the ExitCode variable to a non-
zero value. ExitCode is declared in the System unit and defaults to zero, indicating successful
initialization. If the initialization code sets ExitCode to a non-zero value, the DLL is unloaded from
memory and the calling application is notified of the failure to load the DLL.

Note If an unhandled exception occurs while executing a library's initialization code, the calling
application will be notified of a failure to load the DLL.

When a DLL is unloaded, The Object Pascal compiler executes the library's exit procedures by
continuing to call the address stored in the ExitProc variable until ExitProc becomes nil. Because this
works the same way as exit procedures are handled in Object Pascal programs, you can use the same
exit procedure logic in both programs and libraries.

Note The initialization parts of all units used by an application or library are always executed before the
application or library's statement part. Likewise, unit finalization parts are executed after an exit
procedure installed by an application or library (unit finalization parts in fact use the ExitProc
variable to install themselves).

Example
{The following code is an example of a library with initialization code and
an exit procedure:}

library Test;

var
 SaveExit: Pointer;

procedure LibExit;
begin
 :
 { Library exit code }
 :
 ExitProc := SaveExit; { Restore exit procedure chain }
end;

begin
 :
 { Library initialization code }
 :
 SaveExit := ExitProc; { Save exit procedure chain }
 ExitProc := @LibExit; { Install LibExit exit procedure }
end.

DLLs and the system unit
See also

The IsLibrary Boolean variable can be used to determine whether code is executing in the context of an
application or a library. IsLibrary is always False in an application, and always True in a library.

During a DLL's lifetime, the HInstance variable contains the instance handle of the DLL.

The CmdLine variable is always nil in a DLL.

See also
Writing DLLs

Exceptions and run-time errors in DLLs
See also

If an exception is raised but not handled in a DLL, the exception is propagated out of the DLL. If the
calling application or DLL is itself written in Object Pascal, it is possible to handle the exception through
a normal try...except statement.

If the calling application or DLL is written in another programming language, the exception can be
handled as an operating system exception with an exception code of $0EEDFACE. The first entry in the
ExceptionInformation array of the operating system exception record contains the exception address,
and the second entry contains a reference to the Object Pascal exception object.

If a DLL does not use the SysUtils unit, Object Pascal's exception support is disabled. In that case, if a
run-time error occurs in a DLL, the application that called the DLL terminates. Because a DLL has no
way of knowing whether it was called from an Object Pascal application or an application written in
another programming language, it is not possible for the DLL to invoke the application's exit procedures
before the application is terminated. The application is simply aborted and removed from memory. For
this reason, make sure that there are sufficient checks in any DLL code so such errors do not occur.

See also
Handling exceptions

Writing DLLs

The Shared Memory Manager
Writing DLLS

If a DLL exports any procedures or functions that pass long strings as parameters or function results
(whether directly or nested in records or objects), then the DLL and its client applications (or DLLs) must
all use the ShareMem unit. The same is true if one module (application or DLL) allocates memory with
New or GetMem which is deallocated by a call to Dispose or FreeMem in another module.

ShareMem is the interface unit for the DELPHIMM.DLL shared memory manager, which must be
deployed along with applications and/or libraries that use ShareMem. When an application or DLL uses
ShareMem, the application or DLL's memory manager is replaced by the memory manager in
DELPHIMM.DLL, making it possible to share dynamically allocated memory between multiple modules.

When used by an application or library, the ShareMem unit should be the first unit listed in an application
or library's uses clause.

The DLLProc variable
See also Writing DLLs

The DLLProc variable defined in the System unit allows a DLL to monitor all calls that the operating
system makes to the DLL's entry point. This functionality is normally only of interest to DLLs that support
multi-threading.

To monitor operating system calls to a DLL's entry point, assign the address of a procedure with the
following parameter list to the DLLProc variable.

procedure DLLHandler(Reason: Integer);

When the DLL procedure is invoked, the Reason parameter will contain one of the following values
(defined in the Windows unit):

DLL_PROCESS_DETAC
H

Indicates that the DLL is detaching from the address space of the
calling process as a result of either a clean process exit or of a call
to FreeLibrary.

DLL_THREAD_ATTACH Indicates that the current process is creating a new thread.

DLL_THREAD_DETACH Indicates that a thread is exiting cleanly.

See also

Writing robust applications
Object Pascal provides you with a mechanism to ensure that your applications are robust, meaning that
they handle errors in a consistent manner that allows the application to recover from errors if possible
and to shut down if need be, without losing data or resources.

Error conditions in Object Pascal are indicated by exceptions.

To use exceptions to create safe applications, you need to understand the following tasks:

Protecting blocks of code
Protecting resource allocations
Handling RTL exceptions
Handling component exceptions
Silent exceptions
Defining your own exceptions

Protecting blocks of code
See also

To make your applications robust, your code needs to recognize exceptions when they occur and
respond to them. If you don't specify a response, the application will present a message box describing
the error. Your job, then, is to recognize places where errors might happen, and define responses,
particularly in areas where errors could cause the loss of data or system resources.

When you create a response to an exception, you do so on blocks of code. When you have a series of
statements that all require the same kind of response to errors, you can group them into a block and
define error responses that apply to the whole block.

Blocks with specific responses to exceptions are called protected blocks because they can guard
against errors that might otherwise either terminate the application or damage data.

To protect blocks of code you need to understand

Responding to exceptions
Exceptions and the flow of execution
Nesting exception responses

See also
Protecting resource allocations

Handling RTL exceptions

Handling component exceptions

Silent exceptions

Defining your own exceptions

Responding to exceptions
See also

When an error condition occurs, the application raises an exception, meaning it creates an exception
object. Once an exception is raised, your application can execute cleanup code, handle the exception,
or both.

Executing cleanup code
The simplest way to respond to an exception is to guarantee that some cleanup code is executed. This
kind of response doesn't correct the condition that caused the error but lets you ensure that your
application doesn't leave its environment in an unstable state.

You typically use this kind of response to ensure that the application frees allocated resources,
regardless of whether errors occur.

Handling the exception
Handling an exception means making a specific response to a specific kind of exception. This clears the
error condition and destroys the exception object, which allows the application to continue execution.

You typically define exception handlers to allow your applications to recover from errors and continue
running. Types of exceptions you might handle include attempts to open files that don't exist, writing to
full disks, or calculations that exceed legal bounds. Some of these, such as "File not found," are easy to
correct and retry, while others, such as running out of memory, might be more difficult for the application
or the user to correct.

See also
Raising an exception

Nesting exception responses

Protecting resource allocations

Handling RTL exceptions

Handling component exceptions

Silent exceptions

Defining your own exceptions

Exceptions and the flow of execution
See also Example

Object Pascal makes it easy to incorporate error handling into your applications because exceptions
don't get in the way of the normal flow of your code. In fact, by moving error checking and error handling
out of the main flow of your algorithms, exceptions can simplify the code you write.

When you declare a protected block, you define specific responses to exceptions that might occur within
that block. When an exception occurs in that block, execution immediately jumps to the response you
defined, then leaves the block.

Example
Here's some code that includes a protected block. If any exception occurs in the protected block,
execution jumps to the exception-handling part, which beeps. Execution resumes outside the block.

...
try { begin the protected block }
 Font.Name := 'Courier'; { if any exception occurs... }
 Font.Size := 24; { ...in any of these statements... }
 Color := clBlue;
except { ...execution jumps to here }
 on Exception do MessageBeep(0);{ this handles any exception by beeping }
end;
... { execution resumes here, outside the protected block}

See also
Responding to exceptions

Nesting exception responses

Nesting exception responses
See also

Your code defines responses to exceptions that occur within blocks. Because Pascal allows you to nest
blocks inside other blocks, you can customize responses even within blocks that already customize
responses.

In the simplest case, for example, you can protect a resource allocation, and within that protected block,
define blocks that allocate and protect other resources. Conceptually, that might look something like this:

You can also use nested blocks to define local handling for specific exceptions that overrides the
handling in the surrounding block. Conceptually, that looks something like this:

You can also mix different kinds of exception-response blocks, nesting resource protections within
exception handling blocks and vice versa.

See also
Responding to exceptions

Exceptions and the flow of execution

Scope of exception handlers

Protecting resource allocations
See also

One key to having a robust application is ensuring that if it allocates resources, it also releases them,
even if an exception occurs. For example, if your application allocates memory, you need to make sure it
eventually releases the memory, too. If it opens a file, you need to make sure it closes the file later.

Keep in mind that exceptions don't come just from your code. A call to an RTL routine, for example, or
another component in your application might raise an exception. Your code needs to ensure that if these
conditions occur, you release allocated resources.

To protect resources effectively, you need to understand the following:

What kind of resources need protection?
Creating a resource-protection block

See also
Protecting blocks of code

Handling RTL exceptions

Handling component exceptions

Silent exceptions

Defining your own exceptions

What kind of resources need protection?
See also Example

Under normal circumstances, you can ensure that an application frees allocated resources by including
code for both allocating and freeing. When exceptions occur, however, you need to ensure that the
application still executes the resource-freeing code.

Some common resources that you should always be sure to release are

Files
Memory
Windows resources
Objects

Example
The following event handler allocates memory, then generates an error, so it never executes the code to
free the memory:

procedure TForm1.Button1Click(Sender: TComponent);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem(APointer, 1024); { allocate 1K of memory }
 AnInteger := 10 div ADividend; { this generates an error }
 FreeMem(APointer, 1024); { it never gets here }
end;

Although most errors are not that obvious, the example illustrates an important point: When the division-
by-zero error occurs, execution jumps out of the block, so the FreeMem statement never gets to free the
memory.

In order to guarantee that the FreeMem gets to free the memory allocated by GetMem, you need to put
the code in a resource-protection block.

See also
Creating a resource-protection block

Creating a resource-protection block
See also Example

To ensure that you free allocated resources, even in case of an exception, you embed the resource-
using code in a protected block, with the resource-freeing code in a special part of the block. Here's an
outline of a typical protected resource allocation:

{ allocate the resource }
try
 { statements that use the resource }
finally
 { free the resource }
end;

The key to the try..finally block is that the application always executes any statements in the finally part
of the block, even if an exception occurs in the protected block. When any code in the try part of the
block (or any routine called by code in the try part) raises an exception, execution immediately jumps to
the finally part, which is called the cleanup code. If no exception occurs, the cleanup code is executed
in the normal order, after all the statements in the try part.

The statements in the termination code do not depend on an exception occurring. If no statement in the
try part raises an exception, execution continues through the termination code.

Note: A resource-protection block doesn't handle the exception. In fact, the termination code doesn't
have information about whether an exception even occurred, so it can't determine whether it
needs to handle an exception. If an exception occurs in a resource-protection block, execution
first goes to the termination code, then leaves the block with the exception still raised. The block
that contains the protected block can then respond to the exception.

Example
Here's an event handler that allocates memory and generates an error, but still frees the allocated
memory:

procedure TForm1.Button1Click(Sender: TComponent);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem(APointer, 1024); { allocate 1K of memory }
 try
 AnInteger := 10 div ADividend; { this generates an error }
 finally
 FreeMem(APointer, 1024); { execution resumes here, despite the
error }
 end;
end;

See also
What kind of resources need protection?

Handling RTL exceptions
See also

When you write code that calls routines in the run-time library (RTL), such as mathematical functions or
file-handling procedures, the RTL reports errors back to your application in the form of exceptions. By
default, RTL exceptions generate a message that the application displays to the user. You can define
your own exception handlers to handle RTL exceptions in other ways.

There are also silent exceptions that do not, by default, display a message.

To handle RTL exceptions effectively, you need to understand the following:

What are the RTL exceptions?
Creating an exception handler
Providing default exception handlers
Handling classes of exceptions
Reraising the exception

See also
Protecting blocks of code

Protecting resource allocations

Handling component exceptions

Silent exceptions

Defining your own exceptions

What are the RTL exceptions?
See also

The run-time library's exceptions are defined in the SysUtils unit, and they all descend from a generic
exception-object type called Exception. Exception provides the string for the message that RTL
exceptions display by default.

There are seven kinds of exceptions raised by the RTL:

Input/output exceptions]
Heap exceptions
Integer math exceptions
Floating-point math exceptions
Typecast exceptions
Conversion exceptions
Hardware exceptions

Input/output exceptions
Input/output (I/O) exceptions can sometimes occur when the RTL tries to access files or I/O devices.
Most I/O exceptions are related to error codes returned by Windows or DOS when accessing a file.

The SysUtils unit defines a generic input/output exception called EInOutError that contains an object
field named ErrorCode that indicates what error occurred. You can access that field in the exception-
object instance to determine how to handle the exception.

Heap exceptions
Heap exceptions can sometimes occur when you try to allocate or access dynamic memory. The
SysUtils unit defines two heap exceptions called EOutOfMemory and EInvalidPointer. The following
table shows the specific heap exceptions, each of which descends directly from Exeption:

Exception Meaning

EOutOfMemory There was not enough space on the heap to complete the requested operation.

EInvalidPointer The application tried to dispose of a pointer that points outside the heap. Usually,
this means the pointer was already disposed of.

Integer math exceptions
Integer math exceptions can occur when you perform operations on integer-type expressions. The
SysUtils unit defines a generic integer math exception called EIntError. The RTL never raises an
EIntError, but it provides a base from which all the specific integer math exceptions descend.

The following table shows the specific integer math exceptions, each of which descends directly from
EIntError.

Exception Meaning

EDivByZero Attempt to divide by zero.

ERangeError Number or expression out of range.

EIntOverflow Integer operation overflowed.

Floating-point math exceptions
Floating-point math exceptions can occur when you perform operations on real-type expressions. The
SysUtils unit defines a generic floating-point math exception called EMathError. The RTL never raises
an EMathError, but it provides a base from which all the specific floating-point math exceptions descend.

The following table shows the specific floating-point math exceptions, each of which descends directly
from EMathError:

Exception Meaning

EInvalidOp Processor encountered an undefined instruction.

EZeroDivide Attempt to divide by zero.

EOverflow Floating-point operation overflowed.

EUnderflow Floating-point operation underflowed.

Typecast exceptions
Typecast exceptions can occur when you attempt to typecast an object into another type using the as
operator. The SysUtils unit defines an exception called EInvalidCast that the RTL raises when the
requested typecast is illegal.

Conversion exceptions
Conversion exceptions can occur when you convert data from one form to another using functions such
as IntToStr, StrToInt, StrToFloat, and so on. The SysUtils unit defines an exception called EConvertError
that the RTL raises when the function cannot convert the data passed to it.

Hardware exceptions
Hardware exceptions can occur in two kinds of situations: either the processor detects a fault it can't
handle, or the application intentionally generates an interrupt to break execution. Hardware exception-
handling is not compiled into DLLs, only into standalone applications.

The SysUtils unit defines a generic hardware exception called EProcessorException. The RTL never
raises an EProcessorException, but it provides a base from which the specific hardware exceptions
descend.

The following table shows the specific hardware exceptions.

Exception Meaning

EFault Base exception object from which all fault objects descend.

EGPFault General protection fault, usually caused by an uninitialized pointer or object.

EStackFault Illegal access to the processor's stack segment.

EPageFault The Windows memory manager was unable to correctly use the swap file.

EInvalidOpCode Processor encountered an undefined instruction. This usually means the processor
was trying to execute data or uninitialized memory.

EBreakpoint The application generated a breakpoint interrupt.

ESingleStep The application generated a single-step interrupt.

You should rarely encounter the fault exceptions, other than the general protection fault, because they
represent serious failures in the operating environment. The breakpoint and single-step exceptions are
generally handled by the integrated debugger.

See also
Creating an exception handler

Providing default exception handlers

Handling classes of exceptions

Reraising the exception

Creating an exception handler
See also Example

An exception handler is code that handles a specific exception or exceptions that occur within a
protected block of code.

To define an exception handler, embed the code you want to protect in an exception-handling block and
specify the exception handling statements in the except part of the block. Here is an outline of a typical
exception-handling block:

try
 { statements you want to protect }
except
 { exception-handling statements }
end;

The application executes the statements in the except part only if an exception occurs during execution
of the statements in the try part. Execution of the try part statements includes routines called by code in
the try part. That is, if code in the try part calls a routine that doesn't define its own exception handler,
execution returns to the exception-handling block, which handles the exception.

When a statement in the try part raises an exception, execution immediately jumps to the except part,
where it steps through the specified exception-handling statements, or exception handlers, until it finds a
handler that applies to the current exception.

Once the application locates an exception handler that handles the exception, it executes the statement,
then automatically destroys the exception object. Execution continues at the end of the current block.

See also
Using the exception instance

Scope of exception handlers

Providing default exception handlers

Handling classes of exceptions

Reraising the exception

Exception-handling statements
See also Example

Each statement in the except part of a try..except block defines code to execute to handle a particular
kind of exception. The form of these exception-handling statements is as follows:

on <type of exception> do <statement>;

By using exceptions, you can spell out the "normal" expression of your algorithm, then provide for those
exceptional cases when it doesn't apply. Without exceptions, you have to test every single time to make
sure you're allowed to proceed with each step in the calculation.

Example
The followng example defines an exception handler for division by zero to provide a default result:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin
 try
 Result := Sum div NumberOfItems;
 except
 on EDivByZero do Result := 0;
 end;
end;

Note that this is clearer than having to test for zero every time you call the function. Here's an equivalent
function that doesn't take advantage of exceptions:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin
 if NumberOfItems <> 0 then
 Result := Sum div NumberOfItems
 else Result := 0;
end;

The difference between these two functions really defines the difference between programming with
exceptions and programming without them. This example is quite simple, but you can imagine a more
complex calculation involving hundreds of steps, any one of which could fail if one of dozens of inputs
were invalid.

See also
Using the exception instance

Scope of exception handlers

Using the exception instance
See also Example

Most of the time, an exception handler doesn't need any information about an exception other than its
type, so the statements following on..do are specific only to the type of exception. In some cases,
however, you might need some of the information contained in the exception instance.

To read specific information about an exception instance in an exception handler, you use a special
variation of on..do that gives you access to the exception instance. The special form requires that you
provide a temporary variable to hold the instance.

The temporary variable (E in this example) is of the type specified after the colon (EInvalidOperation in
this example). You can use the as operator to typecast the exception into a more specific type if needed.

Note: Never destroy the temporary exception object. Handling an exception automatically destroys the
exception object. If you destroy the object yourself, the application attempts to destroy the object
again, generating a fatal application error.

Example
If you create a new project that contains a single form, you can add a scroll bar and a command button
to the form. Double-click the button and add the following line to its click-event handler:

ScrollBar1.Max := ScrollBar1.Min - 1;

That line raises an exception because the maximum value of a scroll bar must always exceed the
minimum value. The default exception handler for the application opens a dialog box containing the
message in the exception object. You can override the exception handling in this handler and create
your own message box containing the exception's message string:

try
 ScrollBar1.Max := ScrollBar1.Min - 1;
except
 on E: EInvalidOperation do
 MessageDlg('Ignoring exception: ' + E.Message, mtInformation, [mbOK],
0);
end;

See also
Exception-handling statements

Scope of exception handlers

Scope of exception handlers
See also

You don't have to provide handlers for every kind of exception in every block. In fact, you need to
provide handlers only for those exceptions you want to handle specially within that particular block.

If a block doesn't handle a particular exception, execution leaves that block and returns to the block that
contains the block (or to the code that called the block), with the exception still raised. This process
repeats with increasingly broad scope unt.

See also
Exception-handling statements

Using the exception instance

Providing default exception handlers
See also

You can provide a single default exception handler to handle any exceptions you haven't provided
specific handlers for. To do that, you add an else part to the except part of the exception-handling block:

try
 { statements }
except
 on ESomething do { specific exception-handling code };
 else { default exception-handling code };
end;

Adding default exception handling to a block guarantees that the block handles every exception in some
way, thereby overriding all handling from the containing block.

Warning!: You should probably never use this all-encompassing default exception handler. The else
clause handles all exceptions, including those you know nothing about. In general, your
code should handle only exceptions you actually know how to handle. In other cases, it's
better to execute cleanup code and leave the handling to code that has more information
about the exception and how to handle it.

See also
Creating an exception handler

Handling classes of exceptions

Reraising the exception

Handling classes of exceptions
See also Example

Because exception objects are part of a hierarchy, you can specify handlers for entire parts of the
hierarchy by providing a handler for the exception class from which that part of the hierarchy descends.

You can still specify specific handlers for more specific exceptions, but you need to place those handlers
above the generic handler, because the application searches the handlers in the order they appear in,
and executes the first applicable handler it finds.

Example
The following block outlines an example that handles all integer math exceptions specially:

try
 { statements that perform integer math operations }
except
 on EIntError do { special handling for integer math errors };
end;

For example, this block provides special handling for range errors, and other handling for all other
integer math errors:

try
 { statements performing integer math }
except
 on ERangeError do { out-of-range handling };
 on EIntError do { handling for other integer math errors };
end;

Note that if the handler for EIntError came before the handler for ERangeError, execution would never
reach the specific handler for ERangeError.

See also
Creating an exception handler

Providing default exception handlers

Reraising the exception

Reraising the exception
See also Example

Sometimes when you handle an exception locally, you actually want to augment the handling in the
enclosing block, rather than replacing it. Of course, when your local handler finishes its handling, it
destroys the exception instance, so the enclosing block's handler never gets to act. You can, however,
prevent the handler from destroying the exception, giving the enclosing handler a chance to respond.

When an exception occurs, you might want to display some sort of message to the user, then proceed
with the standard handling. To do that, you declare a local exception handler that displays the message
then calls the reserved word raise.

If code in the { statements } part raises an exception, only the handler in the outer except part executes.
However, if code in the { special statements } part raises an exception, the handling in the inner except
part is executed, followed by the more general handling in the outer except part.

By reraising exceptions, you can easily provide special handling for exceptions in special cases without
losing (or duplicating) the existing handlers.

Example
The following example reraises an exception:

try
 { statements }
 try
 { special statements }
 except
 on ESomething do
 begin
 { handling for only the special statements }
 raise; { reraise the exception }
 end;
 end;
except
 on ESomething do ...; { handling you want in all cases }
end;

See also
Creating an exception handler

Providing default exception handlers

Handling classes of exceptions

Handling component exceptions
See also Example

The VCL components raise exceptions to indicate error conditions. Most component exceptions indicate
programming errors that would otherwise generate a run-time error. The mechanics of handling
component exceptions are no different than handling RTL exceptions.

A common source of errors in components is range errors in indexed properties. For example, if a list
box has three items in its list (0..2) and your application attempts to access item number 3, the list box
raises an "Index out of range" exception.

Example
The following event handler contains an exception handler to notify the user of invalid index access in a
list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add('a string');{ add a string to list box }
 ListBox1.Items.Add('another string');{ add another string... }
 ListBox1.Items.Add('still another string');{ ...and a third string }
 try
 Caption := ListBox1.Items[3];{ set form caption to fourth string in
list box }
 except
 on EListError do
 MessageDlg('List box contains fewer than four strings', mtWarning,
[mbOK], 0);
 end;
end;

If you click the button once, the list box has only three strings, so accessing the fourth string (Items[3])
raises an exception. Clicking a second time adds more strings to the list, so it no longer causes the
exception.

See also
Protecting blocks of code

Protecting resource allocations

Handling RTL exceptions

Defining your own exceptions

Silent exceptions
See also Example

Object Pascal applications handle most exceptions that your code doesn't specifically handle by
displaying a message box that shows the message string from the exception object. You can also define
"silent" exceptions that do not, by default, cause the application to show the error message.

Silent exceptions are useful when you don't intend to handle an exception, but you want to abort an
operation. Aborting an operation is similar to using the Break or Exit procedures to break out of a block,
but can break out of several nested levels of blocks.

Silent exceptions all descend from the standard exception type EAbort. The default exception handler
for Object Pascal applications displays the error-message dialog box for all exceptions that reach it
except those descended from EAbort.

There is a shortcut for raising silent exceptions. Instead of manually constructing the object, you can call
the Abort procedure. Abort automatically raises an EAbort exception, which will break out of the current
operation without displaying an error message.

Example
The following code shows a simple example of aborting an operation. On a form containing an empty list
box and a button, attach the following code to the button's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 10 do{ loop ten times }
 begin
 ListBox1.Items.Add(IntToStr(I)); { add a numeral to the list }
 if I = 7 then Abort; { abort after the seventh one }
 end;
end;

See also
Protecting blocks of code

Protecting resource allocations

Handling RTL exceptions

Handling component exceptions

Defining your own exceptions

Defining your own exceptions
See also

In addition to protecting your code from exceptions generated by the run-time library and various
components, you can use the same mechanism to manage exceptional conditions in your own code.

To use exceptions in your code, you need to understand these steps:

Declaring an exception object type
Raising an exception

See also
Protecting blocks of code

Protecting resource allocations

Handling RTL exceptions

Handling component exceptions

Silent exceptions

Declaring an exception object type
See also Example

Because exceptions are objects, defining a new kind of exception is as simple as declaring a new object
type. Although you can raise any object instance as an exception, the standard exception handlers
handle only exceptions descended from Exception.

It's therefore a good idea to derive any new exception types from Exception or one of the other standard
exceptions. That way, if you raise your new exception in a block of code that isn't protected by a specific
exception handler for that exception, one of the standard handlers will handle it instead.

Example
For example, consider the following declaration:

type
 EMyException = class(Exception);

If you raise EMyException but don't provide a specific handler for EMyException, a handler for
Exception (or a default exception handler) will still handle it. Because the standard handling for
Exception displays the name of the exception raised, you could at least see that it was your new
exception raised.

See also
Raising an exception

Raising an exception
See also Example

To indicate an error condition in an application, you can raise an exception which involves constructing
an instance of that type and calling the reserved word raise.

To raise an exception, call the reserved word raise, followed by an instance of an exception object.

When an exception handler actually handles the exception, it finishes by destroying the exception
instance, so you never need to do that yourself.

Setting the exception address
Raising an exception sets the ErrorAddr variable in the System unit to the address where the application
raised the exception. You can refer to ErrorAddr in your exception handlers, for example, to notify the
user of where the error occurred. You can also specify a value for ErrorAddr when you raise an
exception.

To specify an error address for an exception, add the reserved word at after the exception instance,
followed by and address expression such as an identifier.

Examples
For example, given the following declaration,

type
 EPasswordInvalid = class(Exception);

you can raise a "password invalid" exception at any time by calling raise with an instance of
EPasswordInvalid, like this:

if Password <> CorrectPassword then
 raise EPasswordInvalid.Create('Incorrect password entered');

See also
Declaring an exception object type

Reraising the exception

Scope
See also Example Language definition

Scope of an identifier within a program or unit. defines whether or not that identifier can be used by
other procedures and functions in the program or unit.

Scope can either be local or global. Local identifiers are only visible to those routines and declarations
contained within the block which declares the identifier.

Global identifiers are declared within the interface section of a unit and are visible to all routines and
declaration within that unit.

When designing the structure of your program, follow these three rules of scope:

Each identifier has meaning only within the block in which it is declared, and only after the point in
that block at which it is declared.

If a global identifier is redefined within a block, then the innermost (most deeply nested) definition
takes precedence from the point of declaration until the end of the block.

When invoking procedures recursively, a reference to a global variable always refers to the
instance of the variable in the most recent invocation of the procedure in which that variable is defined.
There are several different types of scope, they are:

Block scope

Component scope

Component visibility

Unit scope

Scope of interface and standard identifiers

See also
Global and local variables

Rules of scope

Component scope
See also Scope

The scope of a component identifier declared in a class type extends from the point of declaration to the
end of the class type definition, and extends over all descendants of the class type and the blocks of all
method declarations of the class type. Also, the scope of component identifiers includes field, method,
and property designators, and with statements that operate on variables of the given class type.

A component identifier declared in a class type can be redeclared in the block of a method declaration of
the class type. In that case, the Self parameter can be used to access the component whose identifier
was redeclared.

A component identifier declared in an ancestor class type can be redeclared in a descendant of the
class type. Such redeclaration effectively hides the inherited component, although the inherited
keyword can be used to bring the inherited component back into scope.

See also
Block scope

Rules of scope

Scope of interface and standard identifiers

Unit scope

Block scope
See also Example Scope

In a block, the scope of an identifier or label is from the point of declaration to the end of the current
block, and includes all nested blocks.

If you override an identifier within a nested block, the scope of the new identifier is only within the nested
block and it does not extend outward.

The scope of a type identifier is local to the block in which the type declaration occurs. Except for pointer
types, the declaration does not include itself.

Example

program Outer; { Start of outer scope }
type
 I = Integer; { Define I as type Integer }
var
 T: I; { Define T as an Integer variable }
procedure Inner; { Start of inner scope }
type
 T = I; {redefine T as type Integer }
var
 I: T; { Redefine I as an Integer variable }
begin
 I := 1;
end; { End of inner scope }
begin
 T := !;
end. { End of outer scope }

See also
Unit scope

Rules of scope

Record scope
See also Scope

The scope of a field identifier declared in a record-type definition extends from the point of declaration to
the end of the record type definition.

The scope of field identifiers includes field designators and with statements that operate on variable
references of the given record.

See also
Record types

Rules of scope

Unit scope
See also Scope

An identifier declared in the interface part of a unit is available to other programs or units that specify, in
their uses clauses, that unit containing the identifier.

When more than one unit is listed in the uses clause, the following rules apply:

The scope of each unit includes all the units that follow it, and the program (or unit) that contains
the uses clause.

The first unit defines the outermost scope, and the last unit defines the innermost scope.
Therefore, if an identifier is declared in more than one unit, an unqualified reference to the identifier
selects the instance declared by the last unit. To specify an instance declared in any other unit, use a
qualified identifier.
Note: The scope of the System unit is global so every program has access to the Object Pascal

standard identifiers. The System unit doesn't need to be listed in the uses clause.

See also
Qualifiers

Rules of scope

Example
program scope2;
var
 A: integer; {Global variable}

procedure SetA;
var
 A : integer; {Creates local variable A}
begin
 A := 4
end; {Destroys local variable A}

begin
 A := 3; {Assigns value to global variable A}
 SetA; {Calls procedure SetA}
 Writeln(A) {Value of A = 3 -- not 4!)
end.

Rules of scope
See also Scope

The presence of an identifier or label in a declaration defines the identifier or label, and each time the
identifier or label occurs again, it must be within the scope of this declaration.

The scope of an identifier or label extends from its declaration to the end of the current block, including
all blocks enclosed by the current block.

The scope also extends over all descendants of the object type, including field designators and with
statements that operate on variable references to the given object type.

The following three rules are the exceptions

1. Redeclaration in an enclosed block:

Suppose that Exterior is a block that encloses another block, Interior. If Exterior and Interior both
have an identifier with the same name (for example, J), Interior can only access the J it declared, and
Exterior can only access the J it declared.

2. Position of declaration within its block:

Identifiers and labels cannot be used until after they are declared.

An identifier or label's declaration must come before any occurrence of that identifier or label in the
program text, unless it is the base type of a pointer type that has not yet been declared. However, the
identifier must eventually be declared in the same type declaration part that the pointer type occurs in.

3. Redeclaration within a block:

An identifier or label can only be declared once in the outer level of a given block, unless it is declared
within a contained block or is in a record's field list.

A record field identifier is declared within a record type, and is significant only in combination with a
reference to a variable of that record type.

You can redeclare a field identifier (with the same spelling) within the same block, but not at the same
level within the same record type.

However, an identifier that has been declared can be redeclared as a field identifier in the same block.

See also
Block scope

Interface and standard identifier scope

Component scope

Record scope

Unit scope

Interface and standard identifier scope
See also Scope

Programs or units containing uses clauses have access to identifiers belonging to the interface parts of
the units listed in those uses clauses.

Each unit in a uses clause imposes a new scope that encloses the remaining units used and the
program or unit containing the uses clause.

The first unit in a uses clause represents the outermost scope, the last unit represents the innermost
scope.

If two or more units declare the same identifier, an unqualified reference to the identifier will select the
instance declared by the last unit in the uses clause.

See also
Block scope

Component scope

Rules of scope

Unit scope

Uses clause

Compiler directives: definition and use
See also Compiler directives

Compiler directives enable you to customize the default behavior of the compiler. Compiler directives
are comments with a special syntax, and can be used wherever comments are allowed. Their scope can
be local or global, but not all directives can be used in both contexts.

Local directives can appear anywhere in a program unit; they affect only part of the compilation.
Global directives must appear before the declaration part of the program or unit being compiled;

they affect the entire compilation.
Compiler directives fall into the following three categories:

Switch directives
Switch directives enable or disable compiler features.

For the single-letter versions, you add either + or - immediately after the directive letter.

For the long version, you supply the word "on" or "off."

You can group multiple switch directives, separating them with commas (and no spaces). For example:
{$F+,R+,D-}

Parameter directives
Parameter directives pass information to the compiler such as a file name, text, or memory sizes. There
must be at least one blank space between the directive name and its parameters. For example:
{$I TYPES.INC}
{$L YOUR.DOC}

Conditional directives and symbols
Conditional directives control compilation of parts of the source text, based on evaluation of a symbol
following the directive. You can define your own symbols or you can use the Object Pascal predefined
symbols. Conditional directives must be specified within code.

See also
Conditional directives and symbols

Using conditional directives

The predefined conditional symbols are: CONSOLE, WIN32, CPU386, and VER90.

Alphabetic list of compiler directives
See also

This topic provides an alphabetic list of all compiler directives supported by the Object Pascal compiler.
From the list, you can jump to a complete definition of each directive.

Directive Type Description

$A Switch Align Data

$ALIGN Switch Align Data

$APPTYPE Parameter Application type

$B Switch Boolean Evaluation

$BOOLEVAL Switch Boolean Evaluation

$D Switch Debug Information

$DEBUGINFO Switch Debug Information

$D Text Parameter Description

$DESCRIPTION Text Parameter Description

$EXTENDEDSYNTAX Switch Extended Syntax

$H Switch Long Strings

$HINTS Switch Compiler Hints

$I Switch Input/Output Checking

$I FileName Parameter Include File

$IMAGEBASE Parameter Code-Image Base Address

$INCLUDE FileName Parameter Include File

$IOCHECKS Switch Input/Output Checking

$J Switch Writeable typed constants

$L Switch Local Symbol Information

$L FileName Parameter Link Object File

$LINK FileName Parameter Link Object File

$LOCALSYMBOLS Switch Local Symbol Information

$LONGSTRINGS Switch Long Strings

$M Switch Run-time Type Information

$M StackSize Parameter Maximum Stack Size

$MAXSTACKSIZE StackSize Parameter Maximum Stack Size

$MINENUMSIZE Switch/Parameter Enumerated Type Size

$MINSTACKSIZE StackSize Parameter Minimum Stack Size

$O Switch Optimization

$OPENSTRINGS Switch Open String Parameters

$OPTIMIZATION Switch Optimization

$OVERFLOWCHECKS Switch Arithmetic Overflow Checking

$P Switch Open String Parameters

$Q Switch Arithmetic Overflow Checking

$R Switch Range Checking

$R FileName Parameter Resource File

$RANGECHECKS Switch Range Checking

$REFERENCEINFO Switch Symbol Reference Information

$RESOURCE FileName Parameter Resource File

$SAFEDIVIDE Switch Pentium-safe FDIV operations

$STACKFRAMES Switch Windows Stack Frame

$T Switch Typed @ Operator

$TYPEDADDRESS Switch Typed @ Operator

$TYPEINFO Switch Run-time Type Information

$U Switch Pentium-safe FDIV operations

$V Switch Var-String Checking

$VARSTRINGCHECKS Switch Var-String Checking

$W Switch Windows Stack Frame

$WARNINGS Switch Compiler Warnings

$WRITEABLECONST Switch Writeable typed constants

$X Switch Extended Syntax

$Y Switch Symbol Reference Information

$Z Switch Word Size Enumerated Types

See also
Conditional directives and symbols

Definition and use of compiler directives

Using conditional directives

Conditional directives and symbols
See also

Conditional directives control compilation of parts of the source text, based on evaluation of a symbol
following the directive. You can define your own symbols or you can use the Object Pascal predefined
symbols.

Conditional directive Meaning

$DEFINE Defines a conditional symbol

$ELSE Compiles or ignores a portion of source text

$ENDIF Ends the conditional section

$IFDEF Compiles source text if Name is defined

$IFNDEF Compiles source text if Name is NOT defined

$IFOPT Compiles source text if a compiler switch is in a specified state (+ or -)

$UNDEF Undefines a previously defined conditional symbol

Conditional symbol Meaning

CONSOLE Application is being compiled as a console application.

CPU386 CPU is an Intel 386 or better.

WIN32 The operating environment is the Win32 API.

VER90 Compiles based on the version specified. For example, code preceded by
{$IFDEF VER90} compiles only if the compiler version is 9.0.
The DCC32.EXE Object Pascal compiler used with C++Builder is VER93.

See also
Alphabetic list of compiler directives

Definition and use of compiler directives

Using conditional directives

Using conditional directives
See also Compiler directives

Conditional directives produce different code from the same source text, based on the state of
conditional symbols. Object Pascal identifiers cannot be used in conditional directives.

Note: Changing your conditional defines should generally be followed by rebuilding your program.

There are two possible conditional constructs:

{$IFxxx} ... {$ENDIF}
{$IFxxx} ... {$ELSE} ... {$ENDIF}

$IF ... $ENDIF
The $IFxxx ... $ENDIF construct compiles the source code between $IFxxx and $ENDIF only if
the condition specified in $IFxxx evaluates to True.

If the condition is False, the source text between the two directives is ignored.

$IF ... $ELSE ... $ENDIF
The source code in a $IFxxx ... $ELSE ... $ENDIF construct compiles when the following
conditions apply:

If $IFxxx is True, the source text between $IFxxx and $ELSE compiles.
If $IFxxx is False, the source text between $ELSE and $ENDIF compiles.

Conditional constructs can be nested to 16 levels deep.

Each $IFxxx must have a matching $ENDIF.

$IFDEF
Compiles the source text that follows it if Name is defined.

Syntax
{$IFDEF Name}
Within a portion of source text delimited by an $IFDEF (or an $IFNDEF) and an $ENDIF, $ELSE
compiles the source code that follows it if the $IFDEF (or $IFNDEF) condition is false.

If the $IFDEF (or $IFNDEF) condition is met, $ELSE ignores the source code that follows it.

$IFNDEF
Compiles the source text that follows it if Name is not defined.

Syntax
{$IFNDEF Name}

$IFOPT
Compiles the source text that follows it if switch is currently in the specified state.

Syntax
{$IFOPT Switch}

Switch is the name of a switch option, followed by + or -:

Switch+ Switch is On

Switch- Switch is Off

See also
$DEFINE and $UNDEF Conditional Symbol Directives

$DEFINE and $UNDEF conditional symbol directives
See also Compiler directives

Use $DEFINE and $UNDEF to define conditional symbols that the compiler evaluates before compiling.
Conditional symbols are similar to Boolean variables in that they are either True or False. They follow
Object Pascal identifier naming conventions but cannot be used in the actual program, just as Object
Pascal identifiers cannot be used in conditional directives.

$DEFINE
Defines a conditional symbol with the given Name (sets the symbol to True). The scope is within the
current source file only; not globally across all source files. To define something across all modules, use
the /D command-line option, or choose ** from the Options|Project|Conditional Defines dialog.

Syntax
{$DEFINE Name}
Within the program, the compiler recognizes the defined symbol until the symbol appears in an
$UNDEF Name directive. $DEFINE Name has no effect if Name is already defined.

$UNDEF
Undefines a previously defined conditional symbol of Name (sets it to False).

Syntax
{$UNDEF Name}
The symbol does not exist for the remainder of the compilation or until it reappears in a $DEFINE
directive. $UNDEF Name directive has no effect if Name is already undefined.

See also
Identifiers

Using conditional directives

Predefined conditional symbols
See also Compiler directives

The Object Pascal compiler defines the following conditional symbols.

CONSOLE
Defined if an application is being compiled as a console application.

CPU386
Indicates that the CPU is an Intel 386 or better.

VER90
Always defined, indicating that this is version 9.0 of the Object Pascal compiler. Each version has
corresponding predefined symbols; for example, version 9.1 would have VER91 defined, version 9.5
would have VER95 defined, and so on.

WIN32
Indicates that the operating environment is the Win32 API.

See also
Using conditional directives

Align fields directive { $A }, { $ALIGN }
Compiler directives

This compiler directive controls alignment of fields in record types.

Syntax: {$A+} or {$A-}
{$ALIGN ON} or {$ALIGN OFF}

Default: {A+}
{$ALIGN ON}

Scope: Local

Remarks
Regardless of the state of the $A directive, variables and typed constants are always aligned for optimal
access.

On { $A+ }, { $ALIGN ON }
When Align Fields is on, fields in record typesthat are declared without the packed modifier are aligned
on a machine-word boundary (an even-numbered address). If required, unused bytes are inserted
between variables to achieve word alignment.

This option does not affect byte-sized variables, fields of record structures or objects, or elements of
arrays. A field in a record or object will align on a word boundary only if the total size of all fields before it
is even. For every element of an array to align on a word boundary, the size of the elements must be
even.

Off { $A- }, { $ALIGN OFF }
When Align Fields is off, no alignment measures are taken

Application type
Compiler directives

The $APPTYPE directive controls whether to generate a Console or Graphical UI application.

Syntax: {$APPTYPE GUI}
{$APPTYPE CONSOLE}

Default: {$APPTYPE GUI}

Scope: Global

Graphical UI { $APPTYPE GUI }
In the {$APPTYPE GUI} state, the compiler generates a graphical UI application. This is the normal
state for the Object Pascal compiler.

Console { $APPTYPE CONSOLE }
In the {$APPTYPE CONSOLE} state, the compiler generates a console application. When a console
application is started, Windows creates a text mode console window through which the user can interact
with the application.

The Input and Output standard text files are automatically associated with the console window in a
console application.

Remarks
The IsConsole Boolean variable declared in the System unit can be used to detect whether a program is
running as a console or graphical UI application.

Note The $APPTYPE directive is meaningful only in a program. It should not be used in a library or a
unit.

Boolean evaluation directive { $B }, { $BOOLEVAL }
See also Compiler directives

Switches between the two different models of code generation for the AND and OR Boolean operators.

Syntax: {$B+} or {$B-}
{$BOOLEVAL ON} or {$BOOLEVAL OFF}

Default: {$B-}
{$BOOLEVAL OFF}

Scope: Local

On { $B+ }, { $BOOLEVAL ON }
When this option is on, the compiler generates code that evaluates every operand of a boolean
expression built from the AND and OR operators, even when the result of the entire expression is
already known.

Off { $B- }, { $BOOLEVAL OFF }
When this option is off, the compiler generates code for short-circuit boolean-expression evaluation.

This means evaluation stops as soon as the result of the entire expression becomes evident.

See also
Boolean operators

Debug information directive { $D }, { $DEBUGINFO }
See also Compiler directives

Enables or disables the generation of debug information.

Syntax: {$D+} or {$D-}
{$DEBUGINFO ON} or {$DEBUGINFO OFF}

Default: {$D+}
{$DEBUGINFO ON}

Scope: Global

Remarks
Debug information consists of a line-number table for each procedure which maps object code
addresses into source text numbers.

Debug information increases the size of the unit files and takes up additional room when you compile
programs that use the unit, but it does not affect the size or speed of the executable program. Debug
information is recorded in the .DCU (unit) file, along with the unit's object code.

On { $D+}, { $DEBUGINFO ON }
When Debug Information is on, the compiler puts debug information into the unit (.DCU) file.

You can use the stand-alone or integrated debuggers to single-step and set breakpoints in modules
compiled with Debug Information. When a run-time error occurs, the compiler can automatically go to
the statement that caused the error.

The Project|Options|Linker|Map File radio buttons produce complete line information for a given module
only if you've compiled that module with Debug Information.

The Debug Information directive is usually used with the Local Symbols directive.

If you want to use Turbo Debugger for Windows to debug your program, select Include TDW Debug Info
from the Linker page of the Project Options dialog box, then recompile your program.

See also
Debug and symbol information

Using debug with symbol information switch directives
See also Compiler directives

The $D, $L and $Y compiler directives are used together. $L and $Y can be thought of as subsets of $D,
with $D having outermost scope, $L the next in, and $Y having innermost scope. The following table
describes how these directives modify each other when used in combination.

Symbol Result

{$D+, L-, Y+} Debugging information on all code in the interface section; no information on
symbols in the implementation. ($Y is ignored.)

{$D+, L-, Y-} Debugging information on all code in the interface section; no information on
symbols in the implementation. ($Y is ignored.)

{$D-, L+, Y+} No debug information at all. ($L, $Y ignored.)

{$D+, L+, Y-} No symbol reference or other ObjectBrowser information. This setting could save
you some linking time.

{$D+, L+, Y+} Debug information on all symbols in the module; Line number and symbol
information on local variables and types; Symbol cross-reference and other Browser
information.

See also
$D debug information

$L local symbol information

$Y symbol reference information

Input/Output-Checking directive { $I }, { $IOCHECKS }
See also Compiler directives

The $I directive enables or disables the automatic code generation that checks the result of a call to a
file I/O procedure, such as Read, Write or Erase.

Syntax: {$I+} or {$I-}
{$IOCHECKS ON} or {$IOCHECKS OFF}

Default: {$I+}
{$IOCHECKS ON}

Scope: Local

On { $I+ }, { $IOCHECKS ON }
When I/O Checking is on, the compiler generates code to check for I/O errors after every I/O call. This is
the result if a check fails:

All run-time errors halt your application.

Off { $I- }, { $IOCHECKS OFF }
When I/O Checking is off, you must use the IOResult function to check for I/O errors.

See also
$I include file

Exception handling

Writeable typed constants directive { $J }, { $WRITEABLECONST }
Compiler directives

The $J directive controls whether typed constants can be modified.

Syntax: {$J+} or {$J-}
{$WRITEABLECONST ON} or {$WRITEABLECONST OFF}

Default: {$J-}
{$WRITEABLECONST OFF}

Scope: Local

On { $J+ }, { $WRITEABLECONST ON }
In the {$J+} state, typed constants can be modified, and are in essence initialized variables.

Off { $J- }, { $WRITEABLECONST OFF }
In the {$J-} state, typed constants are truly constant, and any attempt to modify a typed constant causes
the compiler to report an error.

Local symbol information directive { $L }, { $LOCALSYMBOLS }
See also Compiler directives

The $L directive enables or disables the generation of local symbol information.

Syntax: {$L+} or {$L-}
{$LOCALSYMBOLS ON} or {$LOCALSYMBOLS OFF}

Default: {$L+}
{$LOCALSYMBOLS ON}

Scope: Global

Remarks
Local symbol information consists of the identifiers within the module's procedures and functions. Local
symbol information does not include global variables or names declared in the interface section of a unit.

The Local Symbol Information directive is ignored if the Debug Information directive is off.

On { $L+ }, { $LOCALSYMBOLS ON }
When local symbols are on for a given program or unit, you can use the stand-alone or integrated
debugger to examine and modify the module's local variables.

When the Map File option on the Linker Options page of the the Options|Project dialog box is selected, it
produces local symbol information for a given module only if that module was compiled in the $L+ state.

The local symbol information is recorded in the unit file, along with the unit's object code. Local symbol
information increases the size of the unit files. It does not affect the size or speed of the executable
program.

Off { $L- }, { $LOCALSYMBOLS OFF }
Disabling this option reduces the memory required to compile your program, makes the unit file smaller,
and reduces the volume of debugger symbol information.

See also
Debug and symbol information

Open parameters directive { $P }, { $OPENSTRINGS }
See also Example Compiler directives

The $P directive controls the meaning of variable parameters declared using the string keyword. Open
parameters allow string variables of varying sizes to be passed to the same procedure or function.

Syntax: {$P+} or {$P-}
{$OPENSTRINGS ON} or {$OPENSTRINGS OFF}

Default: {$P-}
{$OPENSTRINGS OFF}

Scope: Global

On { $P+ }, { $OPENSTRINGS ON }
When Open Parameters is enabled, variable parameters declared using the string keyword are open
string parameters. Regardless of the setting of this option, the OpenString identifier can always be used
to declare open string parameters.

The actual parameter of an open-string parameter can be a variable of any string type, and within the
procedure or function, the size attribute (maximum length) of the formal parameter will be the same as
that of the actual parameter.

Open string parameters behave exactly as variable parameters of a string type, except that they cannot
be passed as regular variable parameters to other procedures and functions.

Off { $P- }, { $OPENSTRINGS OFF }
When Open Parameters is off, Open parameters are disabled. In this state, variable parameters
declared using the string keyword are normal variable parameters. This allows compatibility with earlier
versions of Turbo Pascal.

Example
procedure MyProc(var S:string);
 begin
 S:= 'abcdefghijk';
 end;

var
 shortstring: string[5];
 begin
 MyProc(ShortString);
 end.

Compiler switch Result

$P-, V+ MyProc(ShortString) produces a compiler error of Type Mismatch.

$P+, V- MyProc(ShortString) is allowed, and the code generated ensures that
assignments to S do not exceed the declared size of the actual parameter. After
the call to MyProc, ShortString equals 'abcde'.

$P-, V- MyProc does not produce a compiler error, but might cause a memory overwrite
error in your program, which could crash your system.

See also
$V var-string checking

Overflow checking directive { $Q }, { $OVERFLOWCHECKS }
See also Compiler directives

This compiler directive controls the generation of arithmetic overflow checking code.

Syntax: {$Q+} or {$Q-}
{$OVERFLOWCHECKS ON} or {$OVERFLOWCHECKS OFF}

Default: {$Q-}

Scope: Local

Remarks
An arithmetic overflow happens when the result of a calculation exceeds the size of the type of
calculation. In some cases, information is lost.

On { $Q+ }, { $OVERFLOWCHECKS ON }
When Overflow Checking is on, the compiler generates code to check arithmetic overflow for the
following integer operations:

\ + - * Abs Sqr Succ Pred Inc Dec

The code for each of these arithmetic operations is followed by additional code that verifies that the
result is within the supported range.

If an overflow check fails, the program halts with a run-time error.

Enabling overflow checking slows down your program and makes it larger. Use it during program
development and debugging and then turn it off when building your final product.

The $Q directive is usually used in conjunction with the $R directive.

Off { $Q- }, { $OVERFLOWCHECKS OFF }
When off, no arithmetic overflow checking is done.

See also
Exception handling

Range-checking directive { $R }, { $RANGECHECKS }
See also Compiler directives

This compiler directive enables and disables the generation of range-checking code

Syntax: {$R+} or {$R-}
{$RANGECHECKS ON} or {$RANGECHECKS OFF}

Default: {$R-}
{$RANGECHECKS OFF}

Scope: Local

On { $R+ }, { $RANGECHECKS ON }
When Range Checking is on, the compiler generates code to check that array and string subscripts are
within bounds, and that assignments to scalar-type variables do not exceed their defined ranges. Range
checking does not apply to Inc and Dec.

If a check fails, the program halts with a run-time error.

Enabling range-checking slows down your program and makes it larger. Enable this option during
program development and debugging, and then turn it off when building your final product.

Off { $R- }, { $RANGECHECKS OFF }
When Range Checking is off, no range checking code is generated.

See also
$Q arithmetic overflow checking

Exception handling

Stack-overflow checking directive { $S }, { $STACKCHECKS }
Compiler directives

This compiler directive enables and disables the generation of stack-overflow checking code.

Syntax: {$S+} or {$S-}
{$STACKCHECKS ON} or {$STACKCHECKS OFF}

Default: {$S+}
{$STACKCHECKS ON}

Scope: Local

On { $S+ }, { $STACKCHECKS ON }
When Stack Overflow checking is on, the compiler generates code at the beginning of each procedure
or function to check whether there is sufficient stack space for the local variables and other temporary
storage.

Note: In general, Stack checking should be left on even in the final build of your program, unless you
are certain your program will never overflow the stack.

Off { $S- }, { $STACKCHECKS OFF }
When Stack Checking is off, and there is not enough stack space available, a call to a procedure or
function is likely to cause a system crash or halt with a run-time error.

Typed @ operator directive { $T }, { $TYPEDADDRESS }
See also Compiler directives

This compiler directive controls the type of pointer value the @ operator returns when applied to a
variable reference.

Menu command: Options|Project|Compiler Options|Typed @ Operator

Syntax: {$T+} or {$T-}
{$TYPEDADDRESS ON} or {$TYPEDADDRESS OFF}

Default: {$T-}
{$TYPEDADDRESS OFF}

Scope: Local

Off { $T- }, { $TYPEDADDRESS OFF }
When Typed @ Operator is off, the result of the @ operator is an untyped pointer (Pointer) compatible
with all other pointer types.

On { $T+ }, { $TYPEDADDRESS ON }
When Typed @ Operator is on, the result of the @ operator is ^T, where T is the type of variable
reference. For example, @ applied to an integer variable always returns an integer pointer type.

If you apply @ to a procedure, function or method, the type of the resulting pointer is always Pointer,
regardless of the state of this option.

See also
@ operator

Pentium-safe FDIV operations directive { $U }, { $SAFEDIVIDE }
Compiler directives

The $U directive controls generation of floating-point code that guards against the flawed FDIV
instruction exhibited by certain early Pentium processors.

Syntax: {$U+} or {$U-}
{$SAFEDIVIDE ON} or {$SAFEDIVIDE OFF}

Default: {$U-}
{$SAFEDIVIDE OFF}

Scope: Local

On { $U+ }, { $SAFEDIVIDE ON }
In the {$U+} state, all floating-point divisions are performed using a run-time library routine. The first
time the floating-point division routine is invoked, it checks whether the processor's FDIV instruction
works correctly, and updates the TestFDIV variable (declared in the System unit) accordingly. For
subsequent floating-point divide operations, the value stored in TestFDIV is used to determine what
action to take.

The following table shows the possible values of TestFDIV:

Value Meaning

-1 FDIV instruction has been tested and found to be
flawed.

0 FDIV instruction has not yet been tested.

1 FDIV instruction has been tested and found to be
correct.

For processors that do not exhibit the FDIV flaw, {$U+} results in only a slight performance degradation.
For a flawed Pentium processor, floating-point divide operations may take up to three times longer in the
{$U+} state, but they will always produce correct results.

Off { $U- }, { $SAFEDIVIDE OFF }
In the {$U-} state, floating-point divide operations are performed using in-line FDIV instructions. This
results in optimum speed and code size, but may produce incorrect results on flawed Pentium
processors. You should use the {$U-} only in cases where you are certain that the code is not running
on a flawed Pentium processor.

Var-string checking directive { $V }, { $VARSTRINGCHECKS }
Compiler directives

This compiler directive controls type-checking on short strings passed as variable parameters.

Syntax: {$V+} or {$V-}
{$VARSTRINGCHECKS ON} or {$VARSTRINGCHECKS OFF}

Default: {$V+}
{$VARSTRINGCHECKS ON}

Scope: Local

On { $V+ }, { $VARSTRINGCHECKS ON }
In the {$V+} state, strict type checking is performed, requiring the formal and actual parameters to be of
identical string types.

Off { $V- }, { $VARSTRINGCHECKS OFF }
In the {$V-} state, any short string-type variable is allowed as an actual parameter, even if the declared
maximum length is not the same as that of the formal parameter.

Windows stack frame directive { $W }, { $STACKFRAMES }
Compiler directives

This compiler directive generates special prolog and epilog code for far procedures and functions, for
programs that run in Windows 3.0 real mode.

Syntax: {$W+} or {$W-}
{$STACKFRAMES ON} or {$STACKFRAMES OFF}

Default: {$W+}
{$STACKFRAMES ON}

Scope: Local

On { $W+ }, { $STACKFRAMES ON }
When Windows Stack Frame is on, the compiler generates stack frames for procedures and functions,
even when they are not needed.

Off { $W- }, { $STACKFRAMES OFF }
When off, the compiler generates stack frames only when needed.

Remarks
Some debugging tools require stack frames to be generated for all procedures and functions, but other
than that, you should never need to use the {$W+} state.

Extended syntax directive {$X }, { $EXTENDEDSYNTAX }
Compiler directives

This compiler directive enables or disables The Object Pascal compiler's extended syntax.

Syntax: {$X+} or {$X-}
{$EXTENDEDSYNTAX ON} or {$EXTENDEDSYNTAX OFF}

Default: {$X+}
{$EXTENDEDSYNTAX ON}

Scope: Global

On { $X+ }, { $EXTENDEDSYNTAX ON }
When the Extended Syntax option is on, the Object Pascal syntax is extended so you can use user-
defined function calls as statements (as if they were procedures). Extended syntax also allows you to
use null-terminated strings.

Function calls can be used as statements; the result of a function call can be discarded. However,
Extended Syntax does not apply to built-in functions (functions defined in the System Unit).

Extended Syntax also enables support for null-terminated strings by activating the special rules that
apply to the built-in PChar type and zero-based character arrays.

Off { $X- }, { $EXTENDEDSYNTAX OFF }
When Extended Syntax is off, attempts to use these extensions result in a compiler error.

Symbol information directive { $Y }, { $REFERENCEINFO }
See also Compiler directives

This compiler directive enables or disables generation of symbol reference information for debugging
purposes.

Syntax: {$Y+} or {$Y-}
{$REFERENCEINFO ON} or {$REFERENCEINFO OFF}

Default: {$Y+}
{$REFERENCEINFO ON}

Scope: Global

Remarks
Symbol reference information consists of tables that provide the line numbers of all declarations of and
references to symbols in a module.

On { $Y+ }, { $REFERENCEINFO ON }
When a program or unit is compiled with symbol information, the ObjectBrowser can display symbol
definition and reference information in that module.

The symbol reference information for units is recorded in the .DCU file along with the unit's object code.
Symbol reference information increases the size of the unit files, but does not affect the size or speed of
the executable program.

The $Y switch has no effect unless both the $D and $L switches are enabled.

Off { $Y- }, { $REFERENCEINFO OFF }
When off, disables generation of symbol reference information.

See also
Debug and symbol information

Include file directive { $I filename }, { $INCLUDE filename }
Compiler directives

Instructs the compiler to include the named file in the compilation.

Syntax: {$I filename}
{$INCLUDE filename}

Scope: Local

Remarks
The default extension for filename is .PAS.

If filename does not specify a directory, The Object Pascal compiler searches for the file

First in the directory of the current source
Then in the search path

The included file is inserted in the compiled text right after the {$I filename} directive.

Note: An Include file cannot be specified in the middle of a statement part. All statements between the
begin and end of a statement part must reside in the same source file.

Link object file directive { $L filename }, { $LINK filename }
Compiler directives

Instructs the compiler to link the named file with the program or unit being compiled.

Syntax: {$L filename}
{$LINK filename}

Scope: Local

Remarks
The $L directive is used to link in external routines written in other languages for procedures and
functions declared to be external .

The named file must be an Intel relocatable object file (.OBJ file).

The default extension for filename is .OBJ.

If filename does not specify a directory, The Object Pascal compiler searches

First in the directory of the current source
Then in the search path

Run-time type information { $M }, { $TYPEINFO }
Compiler directives

Controls generation of run-time type information.

Syntax: {$M+} or {$M-}
{$TYPEINFO ON} or {$TYPEINFO OFF}

Default: {$M-}
{$TYPEINFO OFF}

Scope: Local

Remarks
The $M switch directive controls generation of run-time type information. When a class is declared in the
{$M+} state, or is derived from a class that was declared in the {$M+} state, the compiler generates run-
time type information for fields, methods, and properties that are declared in a published section. If a
class is declared in the {$M-} state, and is not derived from a class that was declared in the {$M+} state,
published sections are not allowed in the class.

Note The TPersistent class defined in the Visual Component Library (VCL) was declared in the {$M+}
state, so any class derived from TPersistent is allowed to contain published sections. VCL uses
the run-time type information generated for published sections to access the values of a
component's properties when saving and loading form files. Furthermore, the IDE uses a
component's run-time type information to determine the list of properties to show in the Object
Inspector.

There is seldom, if ever, any need for an application to directly use the $M compiler switch.

Memory allocation size directives {$M }, {$MAXSTACKSIZE },
{ $MINSTACKSIZE }
Compiler directives

Specifies a program's stack allocation parameters.

Syntax: {$M minstacksize, maxstacksize}
{$MINSTACKSIZE number}
{$MAXSTACKSIZE number}

Default: {$M 16384, 1048576}

Scope: Global

Remarks
The $M directive specifies an application's stack allocation parameters. minstacksize must be an integer
number between 1024 and 2147483647 which specifies the minimum size of an application's stack, and
maxstacksize must be an integer number between minstacksize and 2147483647 which specifies the
maximum size of an application's stack.

If there is not enough memory available to satisfy an application's minimum stack requirement, Windows
will report an error upon attempting to start the application.

An application's stack is never allowed to grow larger than the maximum stack size. Any attempt to grow
the stack beyond the maximum stack size causes an EStackOverflow exception to be raised.

The $MINSTACKSIZE and $MAXSTACKSIZE directives allow the minimum and maximum stack sizes
to be specified separately.

Note The memory allocation directives are meaningful only in a program. They should not be used in a
library or a unit.

Description directive { $D text }, { $DESCRIPTION text }
Compiler directives

Inserts the specified text into the module description entry in the header of an EXE file or DLL.

Syntax: {$D text}
{$DESCRIPTION text}

Scope: Global

Remarks
Only one description directive can appear in a program or DLL source file. Do not use $D in unit source
files.

Resource file directive { $R filename }, { $RESOURCE filename }
Compiler directives

Specifies the name of the resource file to be included in an application or library.

Syntax: {$R filename}
{$RESOURCE filename}

Scope: Local

Remarks
The default extension for filename is .RES. It must be a Windows resource file.

If filename does not specify a directory, the compiler searches for the file

First in the directory of the current source
Then in the search path

When used in a unit, the resource file name is simply recorded in the resulting unit file; no checks are
made to ensure that the file exists at compile time.

When an application or library is linked, the resource files specified in all units and in the program or
library itself are processed and each resource in each resource file is copied to the .EXE or .DLL file
being produced.

Note: This directive allows multiple .RES files per unit. There is no compile-time confirmation of the
contents of a .RES file, or whether it is a valid .RES file (whether it exists). Files listed with the $R
directive must be present at link time, or you will receive the error message "File not found
(<filename>.RES)."

Minimum enumeration size directive { $Z }, { $MINENUMSIZE }
Compiler directives

This directive controls the minimum storage size of enumerated types.

Syntax: {$Z1} or {$Z2} or {$Z4}
{$MINENUMSIZE 1} or {$MINENUMSIZE 2} or {$MINENUMSIZE 4}

Default: {$Z1}
{$MINENUMSIZE 4}

Scope: Local

Remarks
An enumerated type is stored as an unsigned byte if the enumeration has no more than 256 values, and
if the type was declared in the {$Z1} state (the default). If an enumerated type has more than 256
values, or if the type was declared in the {$Z2} state, it is stored as an unsigned word. Finally, if an
enumerated type is declared in the {$Z4} state, it is stored as an unsigned double-word.

The {$Z2} and {$Z4} states are useful for interfacing with C and C++ libraries, which usually represent
enumerated types as words or double-words.

Warnings directive { $WARNINGS }
See also Compiler directives

This compiler directive controls whether the generation of compiler warnings.

Syntax: {$WARNINGS ON} or {$WARNINGS OFF}

Default: {$WARNINGS OFF}

Scope: Local

On { $WARNINGS ON }
When Warnings is on, the compiler generates warning messages in the Message Window when it
detects unititialized variables, missing function results, construction of abstract objects, and so on.

Off { $WARNINGS OFF }
When off, the compiler does not generate warning messages.

See also
Hints directive

Hints directive { $HINTS }
See also Example Compiler directives

The $HINTS directive controls whether the compiler generates hint messages at compile time.

Syntax: {$HINTS ON} or {$HINTS OFF}

Default: {$HINTS OFF}

Scope: Local

On { $HINTS ON }
When Hints is on, the compiler issues hint messages in the Message Window when it detects.unused
variables, unused assignments, for or while loops that never execute, and so on.

Off { $HINTS OFF }
When off, the compiler does not generate hint messages.

Remarks
By placing code btwenne {$HINTS OFF} and {$HINTS ON} directives, you can selectively turn off hints
that you don't care about.

Example
{ The following example shows how to prevent the compiler from generating
hints on an unused variable. }
{$HINTS OFF}
procedure Test;
var
 I: Integer;
begin
end;
{$HINTS ON}

See also
Warnings directive

Code-image base directive { $IMAGEBASE address }
Compiler directives

The $IMAGEBASE directive specifies the default load address for an application or DLL.

Syntax: {$IMAGEBASE number}

Default: {$IMAGEBASE $00400000}

Scope: Global

Remarks
The number argument must be a 32-bit integer value that specifies image base address. The number
argument must be greater than or equal to $00010000, and the lower 16 bit of the argument are
ignored and should be zero.

When a module (application or DLL) is loaded into the address space of a process, Windows will
attempt to place the module at its default image base address. If that does not succeed, that is if the
given address range is already reserved, the module is relocated to an address assigned by Windows.

There is seldom, if ever, any reason to change the image base address of an application. For a DLL,
however, it is recommended that you use the $IMAGEBASE directive to specify a non-default image
base address, since the default image base address of $00400000 will almost certainly never be
available. The recommended address range of DLL images is $40000000 to $7FFFFFFF. Addresses in
this range are always available to a process in both Windows NT and Windows 95.

When Windows succeeds in loading a DLL at its image base address, the load time of the DLL is
decreased because relocation fixups do not have to be applied. Furthermore, when the given address
range is available in multiple processes that use the DLL, code portions of the DLL's image can be
shared among the processes, thus reducing load time and memory consumption.

Long strings directive { $H }, { $LONGSTRINGS }
See also Compiler directives

The $H directive controls the meaning of the reserved word string used alone in a type declaration.

Syntax: {$H+} or {$H-}
{$LONGSTRINGS ON} or {$LONGSTRINGS OFF}

Default: {$H+}
{$LONGSTRINGS ON}

Scope: Global

Remarks
The generic type string can represent either a long, dynamically-allocated string (the fundamental type
AnsiString) or a short, statically-allocated string (the fundamental type ShortString).

On { $H+ }, { $LONGSTRINGS ON }
By default {$H+}, The Object Pascal compiler defines the generic string type to be the long AnsiString.
All components in the Visual Component Library (VCL) are compiled in this state. If you write
components, they should also use long strings, as should any code that receives data from VCL string-
type properties.

Off { $H- }, { $LONGSTRINGS OFF }
The {$H-} state is mostly useful for using code from versions of Object Pascal that used short strings by
default. You can locally override the meaning of string-type definitions to ensure generation of short
strings. You can also change declarations of short string types to string[255] or ShortString, which are
unambiguous and independent of the $H setting.

See also
Long string types

Short string types

Optimization directive { $O }, { $OPTIMIZATION}
Compiler directives

Syntax: {$O+} or {$O-}
{$OPTIMIZATION ON} or {$OPTIMIZATION OFF}

Default: {$O+}
{$OPTIMIZATION ON}

Scope Local

The $O directive controls code optimization. In the {$O+} state, the compiler performs a number of code
optimizations, such as placing variables in CPU registers, eliminating common subexpressions, and
generating induction variables. In the {$O-} state, all such optimizations are disabled.

Other than for certain debugging situations, you should never have a need to turn optimizations off. All
optimizations performed by the Object Pascal compiler are guaranteed not to alter the meaning of a
program. In other words, The Object Pascal compiler performs no "unsafe" optimizations that require
special awareness by the programmer.

Language definition
Language reference

The topics listed below are the elements of the formal Object Pascal language definition.

Some of these topics use syntax diagrams to illustrate aspects of the Object Pascal language. If you do
not know how to read a syntax diagram, see the topic How to read a syntax diagram.

You can access this material from the from the Help Contents screen, from the Help search engine, or
directly from the Code Editor by pressing Ctrl+F1.

Arrays

Blocks

Character strings

Comments

Compiler directives

Constant declarations

DLLs

Exception handling

Expressions

Functions

Identifiers

Labels

Loops

Methods

Numbers

Operators

Procedures

Reserved words

Scope

Special symbols

Statements

Strings

Tokens

Typed constants

Type declarations

Variables

Units

Language reference
Language definition

You can access this material from the Help menu, from the Help Contents screen, or directly from the
Code Editor by pressing Ctrl+F1.

Compiler directives

Components

Conditional directives and symbols

Procedures and Functions (categorical)

Reserved words

Standard directives

Units

How to read a syntax diagram
Knowing how to read a syntax diagram is a basic skill necessary for learning the Object Pascal
language. Throughout this Help system you will encounter syntax diagrams. They represent the proper
ordering of the syntax elements for that part of the language.

To read a syntax diagram, follow the arrows. Frequently, more than one path is possible and all are
legal.

Actual terms that are used in your code are shown in bold type in the diagrams.

The shapes in the syntax diagram represent specific syntax elements. They are:

Shape Represents

Box Constructions

Circle Reserved words, operators, and punctuation

Blocks
See also

A block is made up of statements.

Blocks are part of a procedure declarations, function declarations, method declarations, or a program or
unit.

Declaration part
The declaration part of a block can contain any of the following:

Labels
Constants
Types
Variables
Procedures
Functions
Exports clause

All identifiers and labels that you declare in a block are local in scope to that block.

Statement part
The statement part of a block is a compound statement: that is, it is delimited by the reserved words
begin and end and contains one or more statements.

See also
Begin..end

Block scope

Statements

Constant declarations
See also

A constant is an identifier that represents a value that cannot change. The scope of a constant is only
within the block containing its declaration. A constant identifier cannot be included within its own
declaration.

Constants are declared with the reserved word const.
Object Pascal lets you use constant expressions, which can be evaluated by the compiler without actually
executing the program.

Since Object Pascal has to completely evaluate a constant expression at compile time, the following
constructs are not allowed in constant expressions:

References to variables and typed constants (except in constant address expressions)
The @ operator (except in constant address expressions)
Function calls (except for the following)

Abs Odd

Addr Ord

Chr Pred

Hi Round

High SizeOf

Length Succ

Lo Swap

Low Trunc

The following binary arithmetic and Boolean operators can also be used in constant expressions:

+ shr

- shl

/ and

div or

mod xor

=

See also
Scope

Typed constants

Variables
See also Example

A variable is an identifier that represents a value that can change. You can declare variables within the
variable declaration part of a unit, procedure, function, or program.

In a variable declaration, you must declare an identifier and its associated type.

The type given for the variable(s) can be a type identifier previously declared in one of the following:

A type declaration part in the same block
An enclosing block
A unit

Variables can also declare new types.

The scope of a variable identifier is within the block in which the declaration occurs. The variable can be
referred to throughout the block, unless the identifier is redeclared in an enclosed block.

Redeclaration creates a new variable using the same identifier, without affecting the value of the original
variable.

See also
Global and local variables

Scope

Unit

Var (reserved word)

Variable reference

Variable typecasting

Initialized variables

Examples
var
 X, Y, Z: Double;
 I, J, K: Integer;
 Digit: 0..9;
 C: Color;
 Done,Error: Boolean;
 Operator: (Plus, Minus, Times);
 Hue1, Hue2: set of Color;
 Today: Date;
 Matrix: array[1..10, 1..10] of Double;

Global and local variables
See also Variables

Global variables are declared outside procedures and functions. Global variables are available to all

Procedures
Functions
Methods

Local variables are declared within procedures, functions, and methods. They are available only within
the enclosing block and are destroyed when the procedure or function returns to the caller.

Local variables and the stack
Variables declared within procedures and functions are called local variables, and reside in an
application's stack. Each time a procedure or function is called, it allocates a set of local variables on the
stack. On exit, the local variables are disposed of.

An application's stack is defined by two values: The minimum stack size and the maximum stack size.
The values are controlled through the $MINSTACKSIZE and $MAXSTACKSIZE compiler directives,
and default to 16,384 (16K) and 1,048,576 (1M) respectively. An application is guaranteed to always
have the minimum stack size available, and an application's stack is never allowed to grow larger than
the maximum stack size.

If there is not enough memory available to satisfy an application's minimum stack requirement, Windows
will report an error upon attempting to start the application.

If an application requires more stack space than specified by the minimum stack size, additional
memory is automatically allocated as needed in 4K increments. If allocation of additional stack space
fails, either because more memory is not available or because the total size of the stack would exceed
the maximum stack size, an EStackOverflow exception is raised.

See also
Scope

Initialized variables
See also Variables

When a variable declaration declares a single global variable, the declaration can optionally specify an
initial value for the variable. If a global variable declaration does not explicitly specify an initial value, the
memory occupied by the variable will initially be set to zero.

It is not possible to specify the initial value for a local variable, and upon entry to a procedure or function,
all local variables have undefined values.

See also
Typed constants

Global and local variables

Variable references
See also

A variable reference signifies one of the following:

A variable
A component of a structured- or string-type variable
A dynamic variable pointed to by a pointer-type variable

The structure for a variable reference is:

The syntax for a variable reference allows an expression that computes a pointer-type value. The
expression must be followed by a qualifier that dereferences the pointer value (or indexes the pointer
value if the extended syntax is enabled with the {$X+} directive) to produce an actual variable reference.

See also
Pointer-type variables

Qualifiers

String-type variables

Structured-typed variables

Variables

Variable typecasting

Qualifiers
See also Variable references

Qualifiers modify the meaning of a variable reference. A variable can contain zero or more qualifiers.

An array identifier that references the whole array has no qualifier.
An array identifier followed by an index represents a specific component of the array.
With a component that is a record or object, you can follow the index with a field designator which
represents a specific field within a specific array component.
You can follow the field designator in a pointer field with the pointer symbol (^) to differentiate between the
pointer field and the dynamic variable to which it points.
If the variable being pointed to is an array, you can add indexes to denote components of this array.

The pointer symbol is optional when dereferencing a structured type.

See also
Array types

Field and object component designators

Indexes

Pointers and dynamic variables

Pointer types

Variable references

Indexes
See also Variable references

Indexes provide a means for accessing a specific element of an array, a string, or a string list.

Array indexes
The index of an array lets you access a specific component of an array.

The index expression selects components in each corresponding dimension of the array. The following
restrictions apply to array indexes:

The number of expressions cannot exceed the number of index types in the array declaration.
The type of each expression must be assignment-compatible with the corresponding index type.

String indexes
You can index a short string variable with a single index expression, whose value must be in the range
0..N, where N is the declared maximum length of the short string. The type of a character accessed
through indexing of a short string is Char. The index of the first character in a string is 1. The element at
index 0 contains the dynamic length of the string.

You can index a non-empty long string variable with a single index expression, whose value must be in
the range 1..N, where N is the dynamic length of the long string. The type of a character accessed
through indexing of a long string is Char. The index of the first character in a long string is 1.

A value of type PChar, PAnsiChar, or PWideChar can be indexed with a single index expression of type
Integer. The index expression specifies an offset (number of characters or wide characters) to add to the
character pointer before it is dereferenced to produce a Char, AnsiChar, or WideChar type variable
reference.

To determine the length of a string,
Use the Length function.

String list indexes
The index of a string list lets you access a particular string in the list.

The string list has an indexed property called Strings, which you can treat like an array of strings.

Since the Strings property is the most common part of a string list to access, Strings is the default
property of the list, meaning that you can omit the Strings identifier and just treat the string list itself as
an indexed array of strings.

To access a particular string in a string list, refer to it by its index. The string numbers are zero-based, so
if a list has three strings in it, the indexes cover the range 0..2.

To determine the maximum index, check the Count property. If you try to access a string outside the
range of valid indexes, the string list raises an exception.

See also
Array types

Qualifiers

String types

Working with string lists

Example
The following example accesses a cell of an array.
Matrix[I, J];

The following examples do exactly the same thing, setting the first line of text in a memo field:
Memo1.Lines.Strings[0] := 'This is the first line.';
Memo1.Lines[0] := 'This is the first line.';

Field and object designators
See also Example Variable references

Field designators
A field designator provides access to a specific field in a record.

In a statement within a with statement, a field designator does not have to be preceded by a variable
reference to its containing record.

Object component designators
The object component designator provides access to a specific component of an object. A component
designator that designates a method is called a method designator.

The instance and the period can be omitted in the following cases:

When referencing components using the with statement
Within a method block because the effect is the same as if Self and a period were written before

the component reference

See also
Class types

Record types

With statement

Example
The following examples access fields within a record.
Today.Year
Results[1].Count
Results[1].When.Month

Pointers and dynamic variables
See also Example

Pointer variables contain a value of nil or the address of a dynamic variable.

The dynamic variable pointed to by a pointer variable is referenced by writing the pointer symbol (^)
after the pointer variable.

You can create dynamic variables and their pointer values using the New and GetMem procedures.

You can use the @ (address-of) operator and the function Addr to create pointer values that are treated
as pointers to dynamic variables.

nil does not point to any variable. The results are undefined if you access a dynamic variable when the
value of the pointer is nil or undefined.

See also
Pointer types

Variables

Example
The following examples are references to dynamic variables.
Pl^
Pl^.Siblings^
Results[1].Data^

Variable typecasting
See also Example Variables

Variable typecasting changes the variable reference of one type into a variable reference of another
type.

When a variable typecast is applied to a variable reference, the variable reference is treated as an
instance of the type specified by the type identifier. The size of the variable must be the same as the size
of the type denoted by the type identifier. If a typecast is performed using the as operator, the validity of
the cast is checked, and an exception is raised if the variable is not assignment-compatible with the type
to which it is cast. No checks are performed if the typecast is written using the name of the type followed
by a variable name in parentheses.
A variable typecast can be followed by one or more qualifiers, as allowed by the specific type.

Object Pascal supports variable typecasts involving procedural types.

See also
Qualifiers

Value typecasts

Example
Given the following declarations:
type
 Func = function(X: Integer): Integer;
var
 F: Func;
 P: Pointer;
 N: Integer;

You can construct the following assignments:
 F := Func(P); { Assign procedural value in P to F }
 Func(P) := F; { Assign procedural value in F to P }
 @F := P; { Assign pointer value in P to F }
 P := @F; { Assign pointer value in P to F }
 N := F(N); { Call function via F }
 N := Func(P)(N); { Call function via P }

Identifiers
Example Language definition

Identifiers are descriptive names you assign to any element of an Object Pascal program.

Constants

Fields in records

Functions

Labels

Procedures

Programs

Types

Units

Variables

Identifiers are not case-sensitive.

The following restrictions apply to identifier names:

Identifiers can be of any length, but only the first 63 characters are significant.
The first character of an identifier must be a letter or an underscore (_).
The characters that follow the first one must be letters, digits, or underscores.
No spaces are allowed in an identifier.

Qualified identifiers
Qualified identifiers are helpful in preventing name conflicts when several instances of the same
identifier exist. You can qualify the identifier with another identifier in order to select a specific instance.

Examples
The following items are regular identifiers.
TextFile
Exit
Real2String

The following items are qualified identifiers.
System.MemAvail (* unit = System, identifier = MemAvail *)
System.CloseFile;

Typed constants
See also Example

The declaration of a typed constant corresponds to the declaration of a read-only variable. Typed
constants can be used exactly like variables of the same type, except that they cannot be modified.

In addition to a normal constant expression, the value of a typed constant can be specified with a
constant address expression.

There are five categories of typed constants:

Pointer-type constants

Procedural-type constants

Simple-type constants

String-type constants

Structured-type constants

Note The $J compiler directive allows the declaration of typed constants that can be modified. Typed
constants declared in the default {$J-} state are read-only and cannot be modified.

See also
Constant declarations

Initialized variables

Examples
(* Typed Constant Declarations *)
type
 Point = record X, Y: real end;
const
 Minimum: Integer = 0;
 Maximum: Integer = 9999;
 Factorial: array[1..7] of Integer = (1, 2, 6, 24, 120, 720, 5040);
 HexDigits: set of Char = ['0'..'9', 'A'..'Z', 'a'..'z'];
 Origin: Point = (X: 0.0; Y: 0.0);

Structured-type constants
See also Typed constants

The declaration of a structured-type constant specifies the value of each of the structure's components.

Object Pascal supports the declaration of the following type constants:

array

record

set

pointer

File-type constants and constants of array, and record types that contain file-type components are not
allowed.

See also
Pointer-type constants

Procedural-type constants

Simple-type constants

String-type constants

Array-type constants
Examples Structured-type constants

An array-type constant declares an array with preinitialized elements.

The declaration of an array-type constant specifies the values of the components. The component type
of an array-type constant can be any type except a file type.

Character arrays
Packed string-type constants (character arrays) can be specified either as single characters or as
strings.

Zero-based character arrays
The index of the first element of a zero-based character array is 0, and that of the last element is a
positive nonzero integer.

A zero-based character array can be initialized with a string that is shorter than the declared length of
the array. When the string is shorter than the array's length, the remaining characters are set to NULL
(#0) and the array will effectively contain a null-terminated string.

Multidimensional array constants
Multidimensional array constants are defined by enclosing the constants of each dimension in separate
sets of parentheses, separated by commas.

The innermost constants correspond to the rightmost dimensions.

Examples
The following example constructs the array-type constant StatStr.
type
 TStatus = (Active, Passive, Waiting);
 TStatusMap = array[TStatus] of string;
const
 StatStr: TStatusMap = ('Active', 'Passive', 'Waiting');

These are the components of StatStr:
 StatStr[Active] = 'Active'
 StatStr[Passive] = 'Passive'
 StatStr[Waiting] = 'Waiting' }

The following example declares an initialized multidimensional array Maze.
 type
 TCube = array[0..1, 0..1, 0..1] of Integer;
 const
 Maze: TCube = (((0, 1), (2, 3)), ((4, 5), (6, 7)));

These are the values for the array Maze:
 Maze[0, 0, 0] = 0
 Maze[0, 0, 1] = 1
 Maze[0, 1, 0] = 2
 Maze[0, 1, 1] = 3
 Maze[1, 0, 0] = 4
 Maze[1, 0, 1] = 5
 Maze[1, 1, 0] = 6
 Maze[1, 1, 1] = 7

Pointer-type constants
See also Example Typed constants

The declaration of a pointer-type constant typically uses a constant address expression to specify the
pointer value.

A typed constant of type PChar can be initialized with a string constant.

See also
PChar

Pointer types

Examples
The following example declares pointer-type constants.
type
 TDirection = (Left, Right, Up, Down);
 PNode = ^Node;
 TNode = record
 Next: PNode;
 Symbol: string;
 Value: TDirection;
 end;

const
 N1: TNode = (Next: nil; Symbol: 'DOWN'; Value: Down);
 N2: TNode = (Next: @N1; Symbol: 'UP'; Value: Up);
 N3: TNode = (Next: @N2; Symbol: 'RIGHT'; Value: Right);
 N4: TNode = (Next: @N3; Symbol: 'LEFT'; Value: Left);
var
 DirectionTable: PNode = @N4;

Procedural-type constants
See also Example Typed constants

A procedural-type constant lets you preinitialize procedural types.

A procedural-type constant must specify the identifier of a procedure or function that is assignment
compatible with the type of the constant, or it must specify the value nil .

See also
Procedural types

Typed constants

Example
The following example assigns a procedure to a type constant.
type
 TErrorProc = procedure(ErrorCode: Integer);

procedure DefaultError(ErrorCode: Integer);
begin
 WriteLn('Error ', ErrorCode, '.');
end;

const
 ErrorHandler: TErrorProc = DefaultError;

Record-type constants
See also Example Structured-type constants

The declaration of a record-type constant specifies the identifier and value of each field, enclosed in
parentheses and separated by commas.

The fields must be specified in the same order as they appear in the definition of the record type.

If a record contains fields of file types, constants of that record type cannot be declared.
If a record contains a variant, only fields of the selected variant can be specified.
If the variant contains a tag field, its value must be specified.

See also
Records

Typed constants

Examples
The following example declares the record-type constant TPoint.
type
 TPoint = record
 X, Y: Single;
 end;
 TVector = array[0..1] of Point;
 TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jly, Aug, Sep, Oct, Nov, Dec);
 TDate = record
 D: 1..31;
 M: Month;
 Y: 1900..1999;
 end;
const
 Origin: TPoint = (X: 0.0; Y: 0.0);
 Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
 SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

Set-type constants
See also Example Structured-type constants

A set-type constant lets you preinitialize the elements of a set constant.

The declaration of a set-type constant specifies the value of the set using a constant expression.

See also
Sets

Set types

Typed Constants

Examples
The following example declares a set-type contants for Digits and Letters.
type
 Digits = set of 0..9;
 Letters = set of 'A'..'Z';
const
 EvenDigits: Digits = [0, 2, 4, 6, 8];
 Vowels: Letters = ['A', 'E', 'I', 'O', 'U', 'Y'];
 HexDigits: set of '0'..'z' = ['0'..'9', 'A'..'F', 'a'...'f'];

Simple-type constants
See also Example Typed constants

The declaration of a simple-type constant specifies the value of the constant.

You can specify the value of a typed constant using a constant address expression.

Because a typed constant is actually a variable with a constant value, it cannot be used in the
declaration of other constant types.

See also
Types

Typed constants

Examples
The following example declares simple constants.
const
 Maximum: Integer = 9999;
 Factor: Real = -0.1;
 Breakchar: Char = #3;

String-type constants
See also Examples Typed constants

The declaration of a typed constant of a string type simply specifies the string constant:

To declare a short string typed constant, include a length specifier in the declaration:

See also
String types

Typed constants

String-type constant examples
The following declares long-string-type constants.
const
 Heading: string = 'Section';
 NewLine: string = #13#10;
 TrueStr: string = 'Yes';
 FalseStr: string = 'No';

The following declares a short-string-type constant.
const
 ShortStr: string[5] = 'Short';.

Expressions
See also

Expressions are a combination of operators and operands that evaluate to a single resulting value.

These are the operands:

Constants

Function calls

Procedure statements

Set constructors

Variables

Subexpressions can be enclosed in parentheses to change the order of precedence.

See also
@ operator

Blocks

Comments

Constant declarations

Function calls

Precedence of operators

Set types

Statements

Value typecasts

Variable reference

Function calls
See also

A function call activates a function specified by one of the following:

A function identifier
A method designator
A qualified method designator
A procedural-type variable reference

If the corresponding function declaration contains a list of formal parameters, the function call must
include a list of actual parameters. Each parameter takes the place of the corresponding formal
parameter according to parameter rules.

Object Pascal allows the result of a function call to be discarded, in essence treating the function call as
a procedure statement.

See also
Method activation

Qualified-method activations

Parameters

Procedural types

Value typecasting
See also Example

Value typecasting is the process of changing the type of an expression to another type.

The expression type and the specified type must both be one of the following:

An ordinal type
A pointer type

For ordinal types, the resulting value is obtained by converting the expression, which may involve
truncation or extension of the original value if the size of the specified type is different from that of the
expression. In cases where the value is extended, the sign of the value is always preserved.

Value typecasts operate on values and cannot be followed by a qualifier.

Example
The following statements are examples of value typecasting.
Integer('A')
Char(48)
Boolean(0)
Color(2)
Longint(@Buffer)

See also
Variable typecasting

Using procedural types in expressions
See also Example

Using a procedural variable in a statement of an expression calls the procedure or function stored in the
variable. However, when the compiler sees a procedural variable on the left side of an assignment
statement, it knows that the right side has to represent a procedural value. Unfortunately, there are
situations where the compiler cannot determine the action you want from the context.

Procedural types and the @ operator
When you apply the address (@) operator to a procedure or function identifier, the argument is
converted into a pointer, and the compiler is prevented from calling the procedure.

The @ operator is often used when assigning an untyped pointer value to a procedural variable.

To get the memory address of a procedural variable rather than the address stored in it, use a double
address (@@) operator.

Example
type
 IntFunc = function: Integer;

var
 F: IntFunc;
 N: Integer;

function ReadInt: Integer;
var
 I: Integer;
begin
 Read(I);
 ReadInt := I;
end;

begin
 F := ReadInt; { Assign procedural value }
 N := ReadInt; { Assign function result }
end.

See also
@ operator

Procedural types

Special symbols
See also

Special symbols are characters from the ASCII character set that have predefined meanings. Therefore,
you can use them in your programs only as they are defined by the Object Pascal language.

The following single characters are special symbols:

+ - * / = < > [] . , () : ; ^ @
{ } $ #

The following character pairs are also special symbols:

<= >= := .. (* *) (. .)

Some of the special symbols are operators.

Certain special symbols have a character pair that performs the same function.

Character Equivalent character pair

[(.

]).

{ (*

} *)

Object Pascal uses the following subsets of the ASCII character set:

Letters -- the English alphabet, A through Z and a through z

Digits -- the Arabic numerals 0 through 9

Hex digits -- the Arabic numerals 0 through 9, the letters A through F, and the letters a through f

Blanks -- the space character (ASCII 32) and all ASCII control characters (ASCII 0 through 31),
including the end-of-line or return character (ASCII 13)

See also
Comments

Operators

Numbers
Ordinary decimal notation is used for numbers that are constants of integer and real types.

Numbers with decimals or exponents are real-type constants. Other decimal numbers denote integer-
type constants; they must be between -2,147,483,648 and 2,147,483,647.

Hexadecimal numbers
Hexadecimal integer constants use a dollar sign ($) as a prefix.

When hexadecimal numbers are used as integer-type constants; they must be between $00000000 and
$FFFFFFFF. The resulting value's sign is implied by the hexadecimal notation.

Engineering notation
Engineering notation (E or e, followed by an exponent) is read as "times 10 to the power of" in real
types. For example:

7E-2 means 7 x 10-2

12.25e+6 or 12.25e6 both mean 12.25 x 10+6.

Character strings
Example

A character string is a sequence of zero or more characters from the extended ASCII character set,
written on one line in the program and enclosed by apostrophes.

A character string with nothing between the apostrophes is a null string.

Two sequential apostrophes in a character string represents a single apostrophe.

The length attribute of a character string is the actual number of characters within the apostrophes. The
maximum length for a string is 255 characters.

Control characters
As an extension to standard Object Pascal, the compiler allows the use of extended characters within
character strings.

The # character followed by an unsigned integer constant between 0 and 255 represents a character of
the corresponding ASCII value.

There must be no separators between the # character and the integer constant.

If several control characters are part of a character string, there must be no separators between them.

String compatibility
A character string of length 0 (the null string) is compatible only with string types.
A character string of length 1 is compatible with any Char and string type.
A character string of length N, where N is greater than or equal to 2, is compatible with the

following:
Any string type
Packed arrays of N characters
The PChar type when extended syntax is enabled with the {$X+} compiler directive

Examples
'BORLAND' { BORLAND }
'You''ll see' {You'll see }
'''' { ' }
'' { null string }
' ' { space }

Comments
See also Example

If you want to clarify the purpose of a block of code, you can include explanatory comments by
enclosing the text in braces { } or asterisks/parentheses (* *).

The text between the comment delimiters is ignored by the compiler.

You cannot include an end-of-comment delimiter (} or *)} within the comment text because the compiler
recognizes that as closing the comment.

A comment containing a dollar sign ($) immediately after the opening { or (* is a compiler directive. A
mnemonic of the compiler command follows the $ character.

You can also create a single-line comment by putting two slashes (//) in front of the comment text. The
compiler then ignores everything until the end of the line.

See also
Blocks

Examples
 { Any text not containing right brace }
 (* Any text not containing asterisk/right parenthesis *)
 // Any text from a double-slash to the end of the line

Tokens
See also

Tokens are the smallest meaningful units of text in a Object Pascal program. Tokens include

Character strings
Identifiers
Labels
Numbers
Reserved words
Special symbols

When you use two consecutive tokens in a program, you need to include a separator between them if
either token is a reserved word, an identifier, a label, or a number. You cannot use separators as part of
tokens except in string constants.

See also
Comments

Standard directives

Labels
See also

A label is a digit sequence in the range 0 to 9999 (leading zeros are not significant) that marks the target
of a goto statement.

As an extension to Standard Pascal, Object Pascal also allows identifiers to function as labels.

See also
Blocks

Label (reserved word)

Statements
See also

Statements describe algorithmic actions that the program can execute.

There are two basic types of statements:

Simple statements
Structured statements

Simple statements
Simple statements can either assign a value, activate a procedure or function, or transfer the running
program to another statement in the code.

The simple statements that Object Pascal supports are:

Assignment (:=) statements

Goto statements

Procedure statements

Structured statements
Structured statements are constructs composed of other statements that are to be executed
sequentially, conditionally, or repeatedly.

The structured statements that Object Pascal supports are:

Compound statements

Conditional statements

Loops

With statements

See also
Blocks

Assignment statements
See also Example

Assignment statements impart the value of the expression on the right side of the assignment operator
to the identifier on the left side. The assignment operator, which separates the two sides of an
assignment statement, is :=.

You can use assignment statements to do either of the following:

Replace the current value of a variable with a new value specified by an expression
Specify an expression whose value is returned by a function

Object type assignments
You can assign an instance of an object type an instance of any of its decendant types. Such an
assignment constitutes a projection of the descendant onto the space spanned by its ancestor.

Note: Assigning an instance of an object does not initialize the instance.

See also
Assignment compatibility

Assignment operator

Object types

Type compatibility

Examples
X := Y + Z;
Done := (I >= 1) and (I < 100);
Hue1 := [Blue, Succ(C)];
I := Sqr(J) - I * K;

Goto statements
See also

A goto statement transfers program execution to the statement marked by the specified list.

When using goto statements, you must observe the following rules:

The label referenced by the goto statement must be in the same block as the goto statement.
You cannot jump into or out of a procedure or statement.

Jumping into a structured statement from outside that structured statement can have undefined
effects, although the compiler does not indicate an error.
Good programming practices recommend that you use goto statements as little as possible.

See also
Goto (reserved word)

Scope

Procedure statements
See also

Procedure statements activate a procedure specified by one of the following:

A procedure identifier
A method designator
A qualified-method designator
A procedural-type variable reference

If the corresponding procedure declaration contains a list of formal parameters, then the procedure
statement must have a matching list of actual parameters.

The actual pararmeters are passed to the formal parameters as part of the call.

See also
Function calls

Method activation

Parameters

Procedural types

Procedure (reserved word)

Qualified-method activations

Variable reference

Compound statements
See also Example Language definition

Compound statements specify that its constituent statements are to be executed in the same sequence
as they are written. The compound statements are treated as one statement, which is crucial in context
where Object Pascal allows only one statement.

The reserved words begin and end bracket the statements, and each statement is separated by a
semicolon.

Example
The following code is an example of a compound statement:
begin
 Z := X;
 X := Y;
 Y := Z;
end;

See also
Begin..end

Blocks

Loops
See also Language definition

Loops let you repeat one or more statements until or while a condition is met.

There are three kinds of loops:

for..to/downto..do
while...do
repeat..until

The loop you want to use depends upon two criteria:
The actions you want to perform
How much you know about those actions prior to entering the loop

Loop When to use

for If you know exactly how many times you want the loop to repeat

while...do If you want to test a condition before entering the loop

repeat...until If you want the loop to execute at least once before the condition is tested

You can use the standard procedures Break and Continue to control the flow of a loop.

See also
Conditional statements

Boolean expressions

Conditional statements
See also

Conditional statements let you control whether certain expressions are evaluated. They test if a specific
condition is met before executing the block of statements following the test.

There are two types of conditional statements:

if statements
case statements

Use if statements when you have only two possible choices.

Use case statements when you have many possible choices.

See also
Boolean expressions

Loops

Boolean expressions
See also

Boolean expressions evaluate to True or False. All loop and conditional statements depend upon
Boolean expressions.

A Boolean expression compares two operands and produces a result that must be assigned to a
variable of type Boolean.

The Boolean operators and and or work on pairs of Boolean values. Object Pascal supports two
different models of code generation for these operators.

Complete evaluation
Short-circuit evaluation

The evaluation model is controlled through the $B compiler directive. In the default state {$B-}, the
compiler generates short-circuit evaluation code. In the {$B+} state, the compiler generates complete
evaluation.

See also
Boolean operators

Boolean types

Relational operators

Parameters
See also

Parameters let you pass data to and receive data from a procedure or function.

The declaration of a procedure or function specifies a formal parameter list.

Each parameter declared in a formal parameter list is local to the procedure or function being declared.
Parameters can be referred to by their identifier in the block statement associated with the procedure or
function.

There are five types of parameters:

Value parameters Parameter group without a preceding var and followed by a type

Constant parameters Parameter group preceded by const and followed by a type

Variable parameters Parameter group preceded by var and followed by a type

Untyped parameters Parameter group preceded by var or const and not followed by a type

Open-array parameters Parameter group for array-type parameters

See also
Function calls

Functions

Procedures

Value parameters
See also

A formal value parameter is local to the declaring procedure or function, except it obtains its initial value
from the corresponding actual parameter in the calling procedure or function.

Changes made to a formal value parameter do not affect the value of the actual parameter.

A value parameter's corresponding actual parameter in a procedure statement or function call must be
an expression, and its value must not be of file type or of any structured type that contains a file type.

The actual parameter must be assignment-compatible with the type of the formal value parameter.

See also
Function calls

Parameters

Variable parameters

Constant parameters
See also

A formal constant parameter is a local read-only variable that gets its value from the corresponding
actual parameter.

Assignments to a formal constant parameter are not allowed, and likewise a formal constant parameter
cannot be passed as an actual variable parameter to another procedure or function.

A constant parameter's corresponding actual parameter in a procedure statement or function must be an
expression, and its value must not be of file type or of any structured type that contains a file type.

If you do not want a formal parameter to change its value during the execution of a procedure or
function, use a constant parameter instead of a value parameter. Constant parameters protect against
accidental assignments to a formal parameter.

For structured- and string-type parameters, the compiler generates more efficient code when constant
parameters are used instead of value parameters.

See also
Function calls

Parameters

Variable parameters
See also

A variable parameter passes a variable to a procedure or function by reference. That is, the address of
the parameter is passed so the value of the parameter can be accessed and modified.

In order for the actual parameter to be a variable parameter, the parameter must be passed by a
variable reference. A variable reference is made by placing the var reserved word in the parameter list of
the procedure or function declaration.

The formal variable parameter represents the actual variable during the activation of the procedure or
function, so any changes to the value of the formal variable parameter are reflected on the actual
parameter.

Note File types can be passed only as variable parameters.

Within the procedure or function, any reference to the formal variable parameter accesses the actual
parameter itself. The type of the actual parameter must be identical to the type of the formal variable
parameter (you can bypass this restriction through untyped parameters).

If referencing an actual variable parameter involves indexing an array or finding the object of a pointer,
these actions occur before the activation of the procedure or function.

See also
Assignment compatibility

Function calls

Parameters

Untyped parameters

Untyped parameters
See also Example

When a formal parameter is an untyped parameter, the corresponding actual parameter can be any
variable or constant reference, regardless of its type.

An untyped parameter declared using the var reserved word can be modified.

An untyped parameter declared using the const reserved word is read-only.

Within the procedure or function, the untyped parameter is typeless; that is, it is incompatible with
variables of all other types, unless it is given a specific type through a variable typecast.

Untyped parameters give you greater flexibility, but they can be riskier to use because the compiler
cannot verify valid operations.

Example
function Equal(var Source, Dest; Size: Integer): Boolean;
type
 TBytes = array[0..MaxInt - 1] of Byte;
var
 N: Integer;
begin
 N := 0;
 while (N < Size) and (TBytes(Dest)[N] = TBytes(Source)[N]) do
 Inc(N);
 Equal := N = Size;
end;

Open-array parameters
See also Example

Open array parameters allow arrays of different sizes to be passed to the same procedure or function.

Declare formal parameters as open-array parameters using the following syntax:
array of T

T must be a type identifier, and the actual parameter must be a variable of type T, or an array variable
whose element type is T.

Within the procedure or function, the formal parameter behaves as if it was declared as
array[0..N - 1] of T
where N is the number of elements in the actual parameter. The index range of the actual parameter is
mapped onto the integers 0 to N - 1. If the actual parameter is a simple variable of type T, it is treated as
an array with one element of type T.

You can access a formal open-array parameter only by element. Assignments to an entire open array
are illegal.

You can pass open arrays to other procedures and functions only as an open-array parameter or as an
untyped variable parameter.

Open-array parameters can be value parameters, constant parameters, or variable parameters, and
their same restrictions hold true.

Note For an open-array value parameter, the compiler creates a local copy of the actual parameter
within the procedure or function's stack frame. Therefore, be careful not to overflow the stack
when passing large arrays as open-array value parameters. To ensure that the stack does not
overflow, use var or const when passing open-array value parameters.

When passed as an open-character array, an empty string is converted to a string with one element
containing a null character, so the statement PrintStr('') is identical to the statement PrintStr(#0).

When the element type of an open-array parameter is Char, the actual parameter may be a string
constant.

The following standard functions can be applied to open-array parameters:

Function Return value

Low Zero

High The index of the last element in the actual array parameter

SizeOf The size of the actual array parameter

Constructing open array parameters
You can construct an open-array parameter immediately, without declaring or assigning a variable or
constant, by enclosing the desired array elements, separated by commas, between brackets. Therefore,
instead of declaring and filling an array, you can construct and pass the array all at once:
MyProcedure([3, 2, 1900, 42]);

See also
Array types

Parameters

Type-safe open arrays

Example
procedure Clear(var A: array of Double); {assigns zero to each element of
an array of Double}

var
 I: Integer;
begin
 for I := 0 to High(A) do A[I] := 0;
end;

function Sum(const A: array of Double): Double; {computes the sum of all
elements in an array of Double}

var
 I: Integer;
 S: Real;
begin
 S := 0;
 for I := 0 to High(A) do S := S + A[I];
 Sum := S;
end;

procedure PrintStr(const S: array of Char); {allows string constants to be
passed to the procedure }

var
 I: Integer;
begin
 for I := 0 to High(S) do
 if S[I] <> #0 then Write(S[I]) else Break;
end;

Type variant open-array parameters
See also

The new construct array of const allows an open array of objects of more than one type to be passed
to a procedure or function in a type-safe manner. It makes it possible to declare a formatting routine
which accepts any number of items of multiple types.

The following procedure declaration demonstrates the use of an array of const in the declaration of a
string formatting function. The parameter Args accepts an open array containing any number of
variables, each of any type:
procedure FmtStr(var Result: string; const Format: string; const Args: array
of const);

The compiler treats the construct array of const as identical to array of TVarRec.

See also
Open array parameters

TVarRec type

External declarations
See also Example

External declarations provide a means so you can:

Interface with separately compiled procedures and functions written in assembly language
Import procedures and functions from DLLs

External directives consisting only of the reserved word external are used in conjunction with {$L
filename} directives to link with external procedures and functions implemented in .OBJ files.
External directives that specify a DLL name (and optionally an import name or import ordinal number) are
used to import procedures and functions from DLLs.
The external directive takes the place of the declaration and statement parts in an imported procedure or
function. Aside from this difference, imported procedures and functions behave like regular procedures
and functions.

Examples
These are examples of external procedure declarations:
procedure MoveWord(var Source, Dest; Count: Integer); external;
procedure MoveLong(var Source, Dest; Count: Integer); external;

procedure FillWord(var Dest; Data: Integer; Count: Integer); external;
procedure FillLong(var Dest; Data: Longint; Count: Integer); external;

The following external declaration imports a function called MessageBox from the DLL called 'user32.dll'
(part of the Windows API):
function MessageBox(HWnd: Integer; Text, Caption: PChar
Flags: Integer): Integer; stdcall;
external 'user32.dll' name 'MessageBoxA';

See also
Dynamic-Link Libraries

Functions

Procedures

Method declarations
See also Example

The declaration of a method within an object type corresponds to a forward declaration of that method.

Somewhere after the object-type declaration and within the same scope as the object-type declaration,
the method must be implemented by a defining declaration.

For procedure and function methods, the defining declaration takes the form of a normal procedure or
function, but the procedure or function identifier is a qualified-method identifier.

For constructor methods and destructor methods, the defining declaration takes the form of a procedure
method declaration, except that the procedure reserved word is replaced by a constructor or
destructor reserved word.

Optionally, a method's defining declaration can repeat the formal parameter list of the method heading in
the object type. The defining declaration's method heading must match exactly the order, types, and
names of the parameters, and the type of the function result, if any.

Self Parameter
In the defining declaration of a method, there is always an implicit Self parameter, corresponding to a
formal variable parameter that possesses the object type.

Within the method block, Self represents the instance whose method component was designated to
activate the method. Therefore, any changes made to the values of the fields of Self are reflected in the
instance.

Examples
{ Here are examples of method declarations }

procedure TRectangle.Intersect(var R: TRectangle);
begin
 if A.X < R.A.X then A.X := R.A.X;
 if A.Y < R.A.Y then A.Y := R.A.Y;
 if B.X > R.B.X then B.X := R.B.X;
 if B.Y > R.B.Y then B.Y := R.B.Y;
 if (A.X >= B.X) or (A.Y >= B.Y) then Init(0, 0, 0, 0);
end;

procedure TField.Display;
begin
 GotoXY(X, Y);
 Write(Name^, ' ', GetStr);
end;

function TNumField.PutStr(S: String): Boolean;
var
 E: Integer;
begin
 Val(S, Value, E);
 PutStr := (E = 0) and (Value >= Min) and (Value <= Max);
end;

See also
Constructors and destructors

Methods

Object types

Constructors and destructors
See also Example

Constructors and destructors are special methods that control construction and destruction of objects.

A class can have zero or more constructors and destructors for objects of the class type. Each is
specified as a component of the class in the same way as a procedure or function method, except that
the reserved words constructor and destructor begin each declaration instead of procedure and
function. Like other methods, constructors and destructors can be inherited.

Constructors
Constructors are used to create and initialize new objects. Typically, the initialization is based on values
passed as parameters to the constructor.

Contrary to an ordinary method, which must be invoked on an object reference, a constructor can be
invoked on either a class reference or an object reference.

In order to create a new object, a constructor must be invoked on a class reference. When a constructor
is invoked on a class reference, the following actions take place:

Storage for a new object is allocated from the heap.
The allocated storage is cleared. This causes the ordinal value of all ordinal type fields to become

zero, the value of all pointer and class type fields to become nil, and the value of all string fields to
become empty.

The user-specified actions of the constructor are executed.
A reference to the newly allocated and initialized object is returned from the constructor. The type

of the returned value is the same as the class type specified in the constructor call.
When you invoke a constructor on an object reference, a new object is not allocated and cleared, and
the constructor call does not return an object reference. Instead, the constructor operates on the
specified object reference and executes only the user-specified actions given in the constructor's
statement part. A constructor is typically invoked on an object reference only in conjunction with the
inherited keyword to execute an inherited constructor.

The first action of a constructor is almost always to call an inherited constructor to initialize the inherited
fields of the object. Following that, the constructor initializes the fields of the object that were introduced
in the class. Since a constructor always clears the storage it allocates for a new object, all fields
automatically have a default value of zero (ordinal types), nil (pointer and class types), empty (string
types), or Unassigned (the Variant type). Unless a field's default value is nonzero, there is no need to
initialize the field in a constructor.

If an exception occurs during execution of a constructor that was invoked on a class reference, the
Destroy destructor is automatically called to destroy the unfinished object.

Like other methods, constructors can be virtual. When invoked through a class type identifier, as is
usually the case, a virtual constructor is equivalent to a static constructor. However, when combined with
object reference types, virtual constructors allow polymorphic construction of objects, that is,
construction of objects whose types are not known at compile time.

Destructors
Destructors are used to destroy objects. When a destructor is invoked, the user-defined actions of the
destructor are executed, and then the storage that was allocated for the object is disposed of. The user-
defined actions of a destructor typically consist of destroying any embedded objects and releasing any
resources that were allocated by the object.

The last action of a destructor is typically to call the inherited destructor to destroy the inherited fields of
the object.

While it is possible to declare multiple destructors for a class, it is recommended that classes implement
only overrides of the inherited Destroy destructor. Destroy is a parameterless virtual destructor declared
in TObject, and since TObject is the ultimate ancestor of every class, the Destroy destructor is
guaranteed to be available for any object.

If an exception occurs during execution of a constructor, the Destroy destructor is invoked to destroy the
unfinished object. This means that destructors must be prepared to handle destruction of partially
constructed objects. Since a constructor sets all fields of a new object to null values before executing
any user-defined actions, any class-type or pointer-type fields in a partially constructed object are
guaranteed to be nil. A destructor should therefore always check for nil values before performing
operations on class-type or pointer-type fields.

Making a call to a Free method is a convenient way of checking for nil before invoking Destroy on an
object reference. By calling Free instead of Destroy for any class-type fields, a destructor is
automatically prepared to handle partially constructed objects resulting from constructor exceptions. For
that same reason, direct calls to Destroy are not recommended.

Examples
The following example is the constructor and destructor for TShape.
type
 TShape = class(TGraphicControl)
 private
 FPen: TPen;
 FBrush: TBrush;
 procedure PenChanged(Sender: TObject);
 procedure BrushChanged(Sender: TObject);
 public
 constructor Create(Owner: TComponent); override;
 destructor Destroy; override;
 :
 end;

constructor TShape.Create(Owner: TComponent);
begin
 inherited Create(Owner); { Initialize inherited parts }
 Width := 65; { Change inherited properties }
 Height := 65;
 FPen := TPen.Create; { Initialize new fields }
 FPen.OnChange := PenChanged;
 FBrush := TBrush.Create;
 FBrush.OnChange := BrushChanged;
end;

destructor TShape.Destroy;
begin
 FBrush.Free;
 FPen.Free;
 inherited Destroy;
end;

procedure TObject.Free;
begin
 if Self <> nil then Destroy;
end;

See also
Instantiating objects

Method declarations

Object types

Indirect unit references
See also Example

The uses clause in a module need name only the units used directly by that module.

However often a module is directly dependent on another module. To compile a module, the compiler
must be able to locate all units the module depends upon, directly or indirectly.

When you make changes to the interface part of a unit, you must recompile all other units that use the
changed unit. If you use Project|Build All, the compiler does this for you.

If changes are made only to the implementation or the initialization part, however, you do not need to
recompile other units that use the changed unit.

Note: For users of C and other languages: The uses clauses of an Object Pascal program provides the
"make" logic information traditionally found in make or project files of other languages. With the
uses clause, Object Pascal can build all the dependency information into the module itself and
reduce the chance for error.

The Object Pascal compiler can tell when the interface part of a unit has changed by computing a unit
version number when the unit is compiled.

See also
Compiling, building and running projects

Unit

Uses

Example
{ The following is an example of units being dependent upon each other.
Notice that Unit2 directly depends on Unit1 and Prog is directly dependent
upon Unit2. }

program Prog;
uses Unit2;
const a = b;
begin
end.

unit Unit2;
interface
uses Unit1;
const b = c;
implementation
end.

unit Unit1;
interface
const c = 1;
implementation
const d = 2;
end.

Circular unit references
See also Example

Circular unit references occur when you have mutually dependent units.

Mutually dependent units occur when you place a uses clause in the implementation part of a unit,
essentially hiding the inner details of the unit referenced in the uses clause; the referenced unit is
private and not available to the program or unit using the unit it is referenced in.

Because Object Pascal can compile complete interface parts, two units can refer to each other in the
uses clause in their implementation part. The compiler accepts a reference to a partially compiled unit in
the implementation part of another unit, as long as neither unit's interface part depends upon the other.
Therefore, the units follow Pascal's strict rules for declaration order.

If the interface parts are interdependent, Object Pascal generates a circular unit-reference error.

Mutually dependent units can be useful in special situations, but use them judiciously. If you use them
when they are not needed, they can make your program harder to maintain and more susceptible to
errors.

See also
Unit

Uses

Example
{ The following program demonstrates how two units can "use" each other: }

program Circular;
{ Display text using WriteXY }

uses
 WinCrt, Display;

begin
 ClrScr;
 WriteXY(1, 1, 'Upper left corner of screen');
 WriteXY(1000, 1000, 'Way off the screen');
 WriteXY(81 - Length('Back to reality'), 15, 'Back to reality');
end.

unit Display;
{ Contains a simple video display routine }

interface

procedure WriteXY(X, Y: Integer; Message: String);

implementation
uses
 WinCrt, Error;

procedure WriteXY(X, Y: Integer; Message: String);
begin
 if (X in [1..80]) and (Y in [1..25] then
 begin
 GoToXY(X, Y);
 Write(Message);
 end

 else
 ShowError('Invalid WriteXY coordinates');
end;
end.

unit Error;
{ Contains a simple error-reporting routine }

interface

procedure ShowError(ErrMsg: String)

implementation

uses Display;

procedure ShowError(ErrMsg: String);
begin
 WriteXY(1, 25, 'Error: ' + ErrMsg);
end;

end.

Heap manager
See also

Windows supports dynamic memory allocations on two different heaps:

The global heap
The local heap

Object Pascal includes a heap manager that implements the following standard procedures:

New
Dispose
GetMem
FreeMem

The heap manager uses the global heap for all allocations. Because the global heap has a system-wide
limit of 8192 memory blocks (which is fewer than some applications might require), the heap manager
includes a segment sub-allocator algorithm to enhance performance and allow a substantially larger
number of blocks to be allocated.

So that the segment addresses of the blocks do not change, global blocks are locked using GlobalLock
immediately after they are allocated, and not unlocked until immediately before they are deallocated.

In Windows standard and 386 enhanced modes, you can move fixed blocks in physical memory to make
room for other memory allocation requests, so there is no performance penalty associated with using
the Object Pascal heap manager.

In Windows real mode, however, a fixed block must remain fixed in physical memory. This precludes the
Windows memory manager from moving it so it can allocate other blocks.

If your application is to run in real mode, consider using the memory-management services provided by
Windows when allocating dynamic memory blocks.

See also
DLLs

Exit procedures
See also Example

Exit procedures give you control over a program's termination process. This is useful when you want to
carry out specific actions before a program terminates; a typical example is updating and closing files.

There are three types of application termination:

Normal termination
Termination through a call to Halt
Termination because of a run-time error (Object Pascal provides exception handling to handle

run-time errors without terminating your application.)
To install an exit procedure, use the ExitProc pointer variable.

An exit procedure takes no parameters.

When implemented properly, an exit procedure actually becomes part of a chain of exit procedures
making it possible for units, as well as programs, to install exit procedures. Some units install an exit
procedure as part of their initialization code and then rely on that specific procedure to be called to clean
up after the unit.

The procedures on the exit chain are executed in reverse order of installation. This ensures that the exit
code of one unit is not executed before the exit code of any units that depend upon it.

To keep the exit chain intact, you must do the following:

Save the current contents of ExitProc before changing it to the address of your own exit
procedure

 Reinstall the saved value of ExitProc in the first statement in your exit procedure
The termination routine in the run-time library continues calling exit procedures until ExitProc becomes
nil.

To avoid infinite loops, ExitProc is set to nil before every call, so the next exit procedure is called only if
the current exit procedure assigns an address to ExitProc. If an error occurs in an exit procedure, it will
not be called again.

An exit procedure can learn the cause of termination by examining the ExitCode integer variable and the
ErrorAddr pointer variable. ExitCode and ErrorAddr will have the following values depending on the type
of termination.

Variable Normal
Termination

Halt Run-Time Error

ExitCode Zero Value passed Error code
 to Halt

ErrorAddr nil nil Address of the error statement

The last exit procedure (the one installed by the run-time library) closes the Input and Output files. If
ErrorAddr is not nil, it outputs a run-time error message.

Error messages
If you want to present run-time error messages yourself, install an exit procedure that examines
ErrorAddr and outputs a message if it is not nil. In addition, before returning, make sure to set ErrorAddr
to nil, so that the error is not reported again by other exit procedures.

Once the run-time library has called all exit procedures, it returns to Windows, passing the value stored
in ExitCode as a return code.

See also
DLLs

Exception handling

Example
{The following example demonstrates a skeleton method of implementing an
exit procedure:}

program TestExit;
var
 ExitSave: Pointer;

procedure MyExit;
begin
 ExitProc := ExitSave; { Always restore old vector first }
end;
begin
 ExitSave := ExitProc;
 ExitProc := @@MyExit;
end.

 Changing the Z-order of components
When a form contains overlapping components, the plane containing the last-added component always
lies in front of the plane in which any previous components exist. In other words, overlapping objects on
a form exist in layers.

 Back Front

Perhaps you may not add components in the order in which you want them to appear. You might want to
move one component behind another. To do this, you must change the position of its visual layer. These
visual layers on a form are known as the z-order, because these components lie on the z-axis (depth) of
the layout. This determines what appears in front of (or on top of) what.

This is extremely useful when adding graphics or shapes that you want to appear in the background of
your form.

To change the z-order of a component,
1. Select the component.

2. Choose either Edit|Bring to Front or Edit|Send to Back depending on which way you want to move the
component.

Note: Windowed and non-windowed components have their own distinct z-order logic. You cannot
include a non-windowed control, such as a Label or Shape component, in the z-order of a
windowed control such as a button.

Direct memory access
Object Pascal implements three predefined arrays which are used to directly access memory.

Mem
MemW
MemL

Each component of Mem is a byte, each component of MemW is a Word, and each component of
MemL is a Longint.

The Mem arrays use a special syntax for indexes:

Two expressions of the integer type Word, separated by a colon, are used to specify the segment
base and offset of the memory location to access.
Here are two examples:
Mem[Seg0040:$0049] := 7; {stores the value 7 in the byte at $0040:$0049}
Data := MemW[Seg(V):Ofs(V)]; {moves the Word value stored in the first 2
bytes of the variable V into the variable Data}

Calling conventions
See also

Object Pascal provides four directives that allow you to specify the calling conventions to be used for
passing parameters to procedures and functions. The default calling convention is always register.

Calling conventions differe in three areas:

Order of passing parameters
Responsibility for removing parameters from the stack ("cleanup")
Use of registers for passing parameters

The register and pascal conventions pass parameters from left to right, that is the leftmost parameter is
evaluated and passed first and the rightmost parameter is evaluated and passed last. The cdecl and
stdcall conventions pass parameters from right to left. For all conventions except cdecl, the procedure or
function removes parameters from the stack upon returning. With the cdecl convention, the caller must
remove parameters from the stack when the call returns. The register convention uses up to three CPU
registers to pass parameters, whereas the other conventions always pass all parameters on the stack.
The calling conventions are summarized in the following table.

Directive Order Cleanup Registers

register Left-to-right Function Yes

pascal Left-to-right Function No

cdecl Right-to-left Caller No

stdcall Right-to-left Function No

The register convention is by far the most efficient, since it often avoids the creation of a stack frame.
The pascal and cdecl conventions are mostly useful for calling routines in dynamic-link libraries written
in C, C++, or other languages. The stdcall convention is used for calling Windows API routines.

See also
Procedures

Functions

Precedence of operators
See also

Operators are symbols or reserved words used to indicate that some operation is to be performed on
one or more pieces of data.

The precedence of the Object Pascal operators is:

Operators Precedence Category

@ not First (high) Unary operators

* / div mod as Second Multiplicative and type casting

 and shl shr operators

+ - or xor Third Additive operators

= <> < > Fourth (low) Relational, set membership,

<= >= in is and type comparison operators

Rules of precedence
1. An operand between two operators of different precedence is bound to the operator with higher

precedence.

2. An operand between two equal operators is bound to the one on its left.

3. Expressions within parentheses are evaluated before being treated as a single operand.

See also
@ operator

Assignment operator

Binary arithmetic operators

Bitwise operators

Boolean operators

Character-pointer operators

Relational operators

Set operators

String operator

Unary arithmetic operators

Variant operators

Binary arithmetic operators
See also Operators

Binary arithmetic operators perform arithmetic operations on two operands.

The binary arithmetic operators are:

Operator Operation Operand types Result type

+ Addition integer type integer type

real typereal type

- Subtraction integer type integer type

real typereal type

* Multiplication integer type integer type

real typereal type

/ Division integer type real type

real typereal type

div Integer division integer type integer type

mod Modulus integer type integer type

Any operand whose type is a subrange of an ordinal type is treated as if it were of the ordinal type.

If both operands of a +, -, *, div, or mod operator are of an integer type, the result type is of the
common type of the two operands.

If both operands of a +, -, or * operator are of a real type, the result type Extended.

If the operand of the sign identity or sign negation operator is of an integer type, the result is the same
integer type. If the operator is of a real type, the type of the result is Extended.

The value of X/Y is always of type Extended regardless of the operand types. A run-time error occurs
if Y is 0. You can handle that run-time error using exceptions.

The value of I div J is the mathematical quotient of I / J, rounded in the direction of 0 to an integer-
type value. An error occurs if J is 0. You can handle that run-time error using exceptions.

The mod operator returns the remainder obtained by dividing its two operands:
 I mod J = I - (I div J) * J

The sign of the result of mod is the same as the sign of I. An error occurs if J is 0.

Note: The +, -, and * operators can also be used as set operators, character-pointer operators, or unary
operators. The + operator is also the string operator.

See also
Types

Is operator
See also

The is operator is used to perform dynamic type checking. Using the is operator, it is possible to check
whether the actual (run-time) type of an object reference belongs to a particular class. The syntax of the
is operator is

ObjectRef is ClassRef

where ObjectRef is an object reference and ClassRef is a class reference. The is operator returns a
boolean value. The result is True if ObjectRef is an instance of the class denoted by ClassRef or an
instance of a class derived from the class denoted by ClassRef. Otherwise, the result is False. If
ObjectRef is nil, the result is always False. If the declared types of ObjectRef and ClassRef are known
not to be related, that is if the declared type of ObjectRef is known not to be an ancestor of, equal to, or
a descendant of ClassRef, the compiler will report a type mismatch error.

The is operator is often used in conjunction with an if statement to perform a guarded typecast. For
example,

if ActiveControl is TEdit then TEdit(ActiveControl).SelectAll;
Here, if the is test is True, it is safe to typecast ActiveControl to be of class TEdit.

The rules of operator precedence group the is operator with the relational operators (=, <>, <, >, <=, >=,
and in). This means that when combined with other boolean expressions using the and and or
operators, is tests must be enclosed in parentheses:

if (Sender is TButton) and (TButton(Sender).Tag <> 0) then ...;

See also
Conditional statements

As operator
See also

The as operator is used to perform checked typecasts. The syntax of the as operator is
ObjectRef as ClassRef

where ObjectRef is an object reference and ClassRef is a class reference. The resulting value is a
reference to the same object as ObjectRef, but with the type given by ClassRef. When evaluated at run
time, ObjectRef must be nil, an instance of the class denoted by ClassRef, or an instance of a class
derived from the class denoted by ClassRef. If neither of these conditions are True, an exception is
raised. If the declared types of ObjectRef and ClassRef are known not to be related, that is if the
declared type of ObjectRef is known not to be an ancestor of, equal to, or a descendant of ClassRef, the
compiler will report a type mismatch error.

The as operator is often used in conjunction with a with statement, for example,
with Sender as TButton do
begin
 Caption := '&Ok';
 OnClick := OkClick;
end;

The rules of operator precedence group the as operator with the multiplying operators (*, /, div, mod,
and, shl, and shr). This means that when used in a variable reference, an as typecast must be
enclosed in parentheses:

(Sender as TButton).Caption := '&Ok';

See also
Variable typecasting

With statements

Unary arithmetic operators
Operators

Unary arithmetic operators denote the sign of the operand.

The unary arithmetic operators are:

Operator Operation Operand types Result type

+ Sign identity integer type integer type

real typereal type

- Sign negation integer type integer type

real typereal type

Note: Any operand whose type is a subrange of an ordinal type is treated as if it were of the ordinal
type.

If the operand of a + or - operator is of a real type, the result type is Extended.

Note: The + and - operators can also be used as set operators, character-pointer operators, or binary
operators. The + operator is also the string operator.

Bitwise operators
Operators

The bitwise operators change the bit values for an integer.

The bitwise operators are:

Operator Operation Operand types Result type

not Bitwise negation integer type integer type

and Bitwise and integer type integer type

or Bitwise or integer type integer type

xor Bitwise xor integer type integer type

shl Bitwise shift left integer type integer type

shr Bitwise shift right integer type integer type

not reverses bit values. For example, if the bit is 1, not changes it to a 0.

not is a unary operator. If the operand of the not operator is of an integer type, the result is of the same
integer type.

The bitwise operators and, or, and xor perform Boolean operations between corresponding bits.

If both operands of an and, or, or xor operator are of an integer type, the result type is the common type
of the two operands.

The operations I shl J and I shr J shift the value of I to the left or to the right by J bits. The result
type is the same as the type of I.

not, and, or, and xor are also Boolean operators.

Boolean operators
See also Operators

Boolean operators use Boolean logic to evaluate expressions.

The Boolean operators are:

Operator Operation Operand types Result type

not negation Boolean Boolean

and logical and Boolean Boolean

or logical or Boolean Boolean

xor logical xor Boolean Boolean

not takes a Boolean value and inverts it. For example, not True is False. not is a unary operator.

and Boolean expressions returns True if both operands evaluate to True.

or returns True if either or both operand is True.

xor returns True if one, but not both, of the operands is True. If both operands are True the expression
evaluates to False.

The and and or operators work on pairs of Boolean values and Object Pascal supports two different
models of code generation for these operators.

Complete evaluation
Short-circuit evaluation

The evaluation model is controlled throught the $B compiler directive. In the defualt state {$B-}, the
compiler generates short-circuit evaluation code. In the {$B+} state, the compiler generates complete
evaluation.

not, and, or, and xor are also bitwise operators.

See also
Boolean expressions

Boolean types

String operator
See also Operators

The + operator concatenates two strings.

Operator Operation Operand types Result type

+ concatenation string type, Char type, string type

or packed string type

The result is compatible with any string type (but not with Char and packed string types).

If both operands are short strings and the result is longer than 255 characters, the result is truncated
after character 255. If either operand is a long string, the result is also a long string.

Note: The + operator can also be used as a set operator, unary operator, character-pointer operator, or
binary operator.

See also
Relational operators

Character-pointer operators
Operators

The plus (+) and minus (-) operators can increment and decrement a character pointer value, and the
minus (-) operator can calculate the distance (difference) between two character pointers.

The minus operator can calculate the distance (difference) between the offset parts of two character
pointers.

Assuming that P and Q are values of type PChar and I is a value of type Integer, these constructs are
allowed:

Construct Result

P + I Add I to P

I + P Add I to P

P - I Subtract I from P

P - Q Subtract Q from P

The operations P + I and I + P add I to the address given by P, producing a pointer that points I
characters after P.

The operation P - I subtracts I from the address given by P, producing a pointer that points I
characters before P.

The operation P - Q computes the distance between Q (the lower address) and P (the higher address),
resulting in a value of type Integer that gives the number of characters between Q and P.

This operation assumes that P and Q point within the same character array. If the two character pointers
point into different character arrays, the result is undefined.

Set operators
Operators

Set operators are used to find the union, difference or intersection of two sets, or to test set
membership.

The set operators are:

Operator Operation Operand types

+ Union compatible set types

- Difference compatible set types

* Intersection compatible set types

in Member of left operand: any ordinal T;
right operand: set whose base type is compatible with T.

The results of set operations conform to the rules of set logic:

An ordinal value C is in A + B only if C is in A or B.
An ordinal value C is in A - B only if C is in A and not in B.
An ordinal value C is in A * B only if C is in both A and B.

If the smallest ordinal value that is a member of the result of a set operation is A and the largest is B, the
type of the result is set of A..B. The results of the +, -, and * operators are sets; the result of the in
operator is a Boolean.

Relational operators
See also Operators

Relational operators compare operands and return a Boolean value based on the result.

Operator Operation Result type Operand types

= Equal Boolean compatible simple, class, class reference, pointer, set, string, packed
string, or variant types

<> Not equal Boolean compatible simple, class, class reference, pointer, set,
string, packed string, or variant types

< Less than Boolean compatible simple, string, packed string, PChar, or variant
types

> Greater than Boolean compatible simple, string, packed string, PChar, or variant
types

<= Less or equal Boolean compatible simple, string, packed string, PChar, or variant
types

>= Greater or equal Boolean compatible simple, string, or packed string, PChar, or
variant types

<= Subset of Boolean compatible set types

>= Superset of Boolean compatible set types

See also
Boolean expressions

Boolean operators

Type compatibility

The @ ("at") operator: Pointer operation
See also Example Operators

The @ operator is used in an address factor to compute the address of a variable, procedure, function,
or method.

The @ operator returns the address of its operand, that is, it constructs a pointer value that points to the
operand.

You can create a pointer to a variable with the @ operator.

@ is a unary operator.

Special rules apply to the @ operator when used with a procedural variable.

The type of the value is the same as the type of nil, so it can be assigned to any pointer variable.

@ with Returns a pointer to

variable The variable.

value parameter The stack location containing the actual value.

variable parameter The actual parameter. The pointer type value is controlled by the $T compiler
directive.

procedure or function The procedure's or function's entry point.

method The method's entry point.

When the @ operator is applied to a variable reference, the type of the resulting pointer value is
controlled through the {$T} compiler directive.

The type of the resulting pointer to a routine’s entry point is always a Pointer.

The only use for a method or procedural pointer is to pass it to an assembly language routine.

The preferred way to reference a method is with a qualified method identifier.

Example
{The following example modifies a copy of the parameter.}
procedure ValueEx (X :Integer);
var
 ptr := ^integer;
begin
 ptr := @X;
 writeln(Ptr^);
 Ptr^ := 15;
end;

var
 Fred : integer;
begin
 Fred := 10;
 ValueEx (Fred);
 Writeln (Fred); {10}
end.

{The following example modifies the actual parameter.}
procedure VarEx(var Y : integer);
var Ptr = ^integer;
begin
 Ptr := @Y;
 writeln (Ptr^);
 Ptr^ := 15;
end;

var Fred : integer;
begin
 Fred := 10;
 VarEx (Fred);
 writeln (Fred); {15}
end.

See also
Procedural values

Value parameters

Variable parameters

Assignment operator
See also Example Operators

Syntax

Description
The assignment operator, :=, gives the value of expression (on the right side) to a variable of the same
type (on the left side).

Example
X := Y;
Done := (I > 0) and (I < 100)
A[I] := A[I] + 1;

See also
Assignment compatibility

Expression

Statement

Variable

Variant operators
See also Operators

The +, –, *, /, div, mod, shl, shr, and, or, xor, and not operators support operands of type Variant. For
binary operators, if one operand is of type Variant, the other operand is automatically converted to type
Variant.

See also
Variant types

Variant expressions

Reserved words
See also

Reserved words have fixed meanings within the Object Pascal language: You cannot redefine them.

Object Pascal is not case sensitive, so you can use upper or lowercase letters in any combination for
reserved words.

In the Borland manuals and in this Help system, reserved words appear in boldface type.

Here is an alphabetical listing of Object Pascal reserved words.

and exports library shl

array file mod shr

as finalization nil string

asm finally not then

begin for object threadvar

case function of to

class goto on try

const if or type

constructor implementation packed unit

destructor in procedure until

div inherited program uses

do initialization property var

downto inline raise while

else interface record with

end is repeat xor

except label set

See also
Standard directives

Standard directives
See also

The Object Pascal standard directives have predefined meanings that can be redefined; however, this is
not advised. Directives are used only in contexts where user-defined identifiers cannot occur.

In the Borland manuals and in this Help system, standard directives appear in boldface type.

Object Pascal is not case-sensitive, so you can use upper- or lowercase letters in any combination for
directives.

Here is an alphabetical listing of the Object Pascal standard directives.

absolute

abstract

assembler

at

automated

cdecl

default

dispid

dynamic

external

forward

index

message

name

nodefault

override

pascal

private

protected

public

published

read

register

resident

stdcall

stored

virtual

write

The private, protected, public, published, and automated directives act as reserved words within
class type declarations, but are otherwise treated as directives.

See also
Reserved words

Absolute
Example Standard directives

Syntax
absolute address

Description
The standard directive absolute declares a variable that resides at a specific memory address.

You can do either of the following:

Assign the variable directly to a specific address
Declare the variable to reside at the same memory address as another variable

The first form directly specifies the address of the variable.

The second form declares a new variable on top of an existing variable (at the same address).

The variable declaration's identifier list can specify only one identifier when an absolute clause is
present.

Example
var
 Str: ShortString;
 StrLen: Byte absolute Str;

Abstract
Example Standard directives

Description
The abstract directive is used in an object definition to indicate that a virtual or dynamic method is not
declared in the object in which it appears; its definition is then deferred to descendant classes. An
abstract method in effect defines an interface, but not the underlying operation.

You cannot declare a method to be abstract unless it is first declared virtual or dynamic. An abstract
method must not be called without being overridden. An override of an abstract method is identical to an
override of a normal virtual or dynamic method, except that in the implementation of the overriding
method, an inherited method is not available to call.

If you attempt to call an abstract method that has not been overridden, the run-time library procedure
Abstract is called, and the program terminates with a run-time error.

Example
type
 TMyObject = class
 procedure Something; virtual; abstract;
 end;

Array
See also Example

Syntax
array [index-type] of element-type

Description
The array reserved word defines an array type.

Several index types are allowed if they are separated by commas.

The element type can be any type, but the index type must be an ordinal type.

Example
type
 IntList = array[1..100] of Integer;
 CharData = array['A'..'Z'] of Byte;
 Matrix = array[0..9, 0..9] of real;

See also
Array type

Array-type constants

Indexes

Asm
See also Reserved words

Syntax
 asm
 AssemblerStmt <Separator AssemblerStmt>
 end

where

AssemblerStmt is an assembler statement.
Separator is a semicolon, a new-line, or a Pascal comment.

Description
The asm reserved word accesses the built-in assembler.

When placing multiple assembler statements on a single line, separate them with semicolons.
Assembler statements on separate lines do not require a semicolon.

In an asm statement, a semicolon does not indicate that the rest of the line is a comment. Comments
must be Pascal style, using { and } or (* and *).

Register use
The rules of register use in an asm statement are the same as those of an external procedure or
function.

An asm statement must preserve these registers:

EDI ESI

EBP EBX

An asm statement can freely modify these registers:

EAX EDX ECX

Except for EDI, ESI, EBP, and EBX registers, an asm statement can assume nothing about register
contents.

See also
Assembler directive

Comments

External

Assembler
See also Standard directives

Syntax

Description
The standard directive assembler lets you write complete procedures and functions in inline assembly
language, without a begin...end statement.

Assembler causes the compiler to perform these code-generation optimizations:

Value Parameters: The compiler does not generate code to copy value parameters into local
variables. This affects all string-type value parameters and other value parameters whose size is not 1, 2,
or 4 bytes.

Within the procedure or function, such parameters must be treated as var parameters.

Function Result Variable: The compiler does not allocate a function result variable, and a
reference to the @Result symbol is an error.

String functions are an exception to the function-result optimization--they always have an @Result
pointer allocated by the caller.

Stack Frame: The compiler does not generate a stack frame for procedures and functions with no
parameters or local variables.
The automatically generated enty and exit code for an assembler procedure or function looks like this:
 PUSH BP ;Present if Locals <> 0 or Params <> 0
 MOV BP, SP ;Present if Locals <> 0 or Params <> 0
 SUB SP, Locals ;Present if Locals <> 0
 .
 .
 .
 MOV SP, BP ;Present if Locals <> 0
 POP BP ;Present if Locals <> 0 or Params <> 0
 RET Params ;Always present
If both Locals and Params are zero, there is no entry code, and the exit code is only of a RET
instruction.

Functions using assembler must return their results as follows:

Function type Return results

Ordinal AL (8-bit values)
AX (16-bit values)
EAX (32-bit values)

Real ST(0) on the coprocessor's register stack

Pointer EAX

Short string Temporary location pointed to by @Result

See also
Asm

Automated
See also Standard directives

The visibility rules for automated components are identical to those of public components. The only
difference between automated and public components is that automation type information is generated
for methods and properties that are declared in an automated section. This automation type information
makes it possible to create OLE Automation Servers.

Note automated sections are typically only used in classes derived from the TAutoObject class defined
in the OleAuto unit.

The following restrictions apply to methods and properties declared in an automated section:

For a method, the types of all method parameters and the function result (if any) must be
automatable. Likewise, for a property, the property type and the types of any array property parameters
must be automatable.

The automatable types are:

Byte, Currency, Double, Integer, Single, Smallint, string, TDateTime, Variant, WordBool.

Declaring methods or properties that use non-automatable types in an automated section
results in an error.

Method declarations must use the register calling convention (the default).
Methods can be virtual, but not dynamic.
Property declarations can only include access specifiers (read and write). No other specifiers

(index, stored, default, nodefault) are allowed.
Property access specifiers must list a method identifier. Field identifiers are not allowed.
Property access methods must use the register calling convention.
Property overrides (property declarations that don't include the property type) are not allowed.

A method or property declaration in an automated section can include an optional dispid directive,
which must be followed by an integer constant that gives the OLE Automation dispatch ID of the method
or property. If a dispid directive is not present, the compiler automatically picks a number one larger
than the largest dispatch ID used by any method or property in the class and its ancestors. Specifying
an already used dispatch ID in a dispid directive causes an error.

See also
Component visibility

private

protected

public

published

Begin ... End construct
SeeAlso Example Reserved words

Syntax

Description
The begin and end reserved words group a series of statements together into a compound statement.

The compound statement is then treated as a single statement.

Example
(* Compound statement used within an "if" statement *)
if First < Last then
begin
 Temp := First;
 First := Last;
 Last := Temp;
end;

See also
Statements

Case
See also Example Reserved words

Syntax

Description
Case statements are used to branch code depending on the results or values the code encounters.

A case statement consists of an expression (the selector) and a list of statements, each prefixed with
one or more constants (called case constants) or with the reserved word else. The selector must be of
an ordinal type, so string types are invalid selector types.

All case constants must be unique and of an ordinal type compatible with the selector type.

When the program enters a case statement, it evaluates each expression until a match is found. The
program then performs the actions associated with that expression. If no match is found program
defaults to the else statement. If there is no else part, execution continues with the next statement
following the case statement.

Ranges in case statements must not overlap. So for example, the following case statement, is not
allowed:

case MySelector of
 5: Writeln('Special case');
 1..10: Writeln('General case');
end;

Placing case constants in ascending order allows the compiler to optimize the case into jumps instead of
calculating each time. For example, the compiler will turn this case statement into jumps:

case MySelector of
 1: Writeln('One');
 2: Writeln('Two');
 else Writeln('More');
end;

but this version will involve multiple calculations:
case MySelector of
 2: Writeln('Two');
 1: Writeln('One');
 else Writeln('More');
end;

Example
case Ch of
 'A'..'Z', 'a'..'z': WriteLn('Letter');
 '0'..'9': WriteLn('Digit');
 '+', '-', '*', '/': WriteLn('Operator');
else
 WriteLn('Special character');
end;

See also
Else

Expression

Statement

Cdecl
See also Standard directives

Syntax
procedure A; cdecl;

Description
The cdecl directive specifies that a procedure or function uses the C/C++ calling convention for passing
parameters.

The C/C++ calling convention passes parameters from right to left, with parameters removed from the
stack by the caller.

The C/C++ calling convention is mostly useful for calling routines exported from dynamic-link libraries
(DLLs) written in C, C++, and other languages.

See also
Calling conventions

pascal

register

stdcall

Class
See also Reserved words

Syntax

Description
The class reserved word is used to declare an object type or class method. It is also used to define a
class reference type.

An object type is a data structure that contains a fixed number of components. Each component is either
a field (which contains data of a particular type); a method, which performs an operation on the object;
or a property.

The declaration of a field specifies an identifier that names the field, and its data type.

The declaration of a method specifies a procedure, function, constructor, or destructor heading.

The definition of a property names the property and its access methods, and may provide information on
how the property behaves during streaming.

An object type can inherit components from another object type. The inheriting object is a descendant
and the object inherited from is an ancestor.

The domain of an object type consists of itself and all its descendants.

A class reference type is defined using the sequence of reserved words class of followed by the name
of a class. A variable of a class reference type can be set at run time to refer either to the class named in
the declaration or any of its subclasses.

See also
Field and object component designators

Object-type scope

Object types

Const
See also Example Reserved words

Syntax

Description
The const reserved word defines an identifier whose value cannot change within the block containing
the declaration. A constant identifier cannot be included in its own declaration.

Object Pascal allows constant expressions.

Expressions used in constant declarations must be written such that the compiler can evaluate them at
compile time.

See also
Constant declarations

Expressions

Typed constants

Examples
(* Constant Declarations *)
const
 MaxData = 1024 * 64 - 16;
 NumChars = Ord('Z') - Ord('A') + 1;
 Message = 'Hello world...';
(* Typed constants *)
const
 identifier: type = value;
 ...
 identifier: type = value;

Constructor
See also Reserved words

Syntax

Description
A constructor defines the actions associated with creating an object. It must be declared using the
reserved word constructor. All Object Pascal objects inherit at least a rudimentary constructor from
TObject.

When invoked, the constructor returns a reference to a newly allocated and initialized instance of the
class type.

See also
Constructors and destructors

Destructor

Instantiating objects

Method

Object

Virtual

Default
See also Standard directives

Syntax

Description
The default directive is used to specify the default array property of an object.

When an array property is declared as the default you can access it using only the object name.

The default specifier is supported only for properties of ordinal types and small set types. If present in a
property definition, default must be followed by a constant of the same type as the property.

If a property definition does not (or cannot) include a default or nodefault specifier, the results are the
same as if a nodefault specifier had been included.

See also
Nodefault

Destructor
See also Reserved words

Syntax

Description
A destructor defines the actions associated with destroying an object. It must be declared using the
reserved word destructor.

When invoked a destructor will deallocate the memory that was allocated for the object by the
constructor.

Destructors can be virtual and they seldom take any parameters.

See also
Constructor

Constructors and destructors

Object

Virtual

Dispid
See also Standard directives

Description
The dispid standard directive is used to specify an OLE automation dispatch ID for a method or
property declared in an automated section of a class.

See also
automated

Do
See also Example Reserved words

The reserved word do is used in conjunction with while, for, on, and with statements to indicate which
statements to execute while the condition holds true.

Example
while Ch = ' ' do Ch := GetChar;
for Ch := 1 to 100 do Ch := GetChar;
with Date[I] do month := 1;
on <exception> do...

See also
Except

For

While

With

Dynamic
See also Standard directives

Description
The dynamic directive makes a method dynamic. Dynamic methods are semantically identical to virtual
methods. Virtual and dynamic methods differ only in the implementation of method call dispatching at
run time; for all other purposes, the two types of methods can be considered equivalent.

In the implementation of virtual methods, the compiler favors speed of call dispatching over code size.
The implementation of dynamic methods on the other hand favors code size over speed of call
dispatching.

In general, virtual methods are the most efficient way to implement polymorphic behavior. Dynamic
methods are useful only in situations where a base class declares a large number of virtual methods,
and an application declares a large number of descendant classes with a small number of overrides of
the inherited virtual methods.

See also
Methods

Else
See also Example Reserved words

The reserved word else is used as the default condition in if, case, and try statements.

Example
(* using if statement *)
if ParamCount <> 2 then
begin
 WriteLn('Bad command line');
 Halt(1);
end
else
begin
 ReadFile(ParamStr(1));
 WriteFile(ParamStr(2));
end;
(* using case statement *)
case Ch of
 'A'..'Z', 'a'..'z': WriteLn('Letter');
 '0'..'9': WriteLn('Digit');
 '+', '-', '*', '/': WriteLn('Operator');
else
 WriteLn('Special character');
end;

See also
Case

If

Try

End
See also Example Reserved words

The reserved word end marks the end of a block. End can be used with

begin to form compound statements
case to form case statements
record to declare record types
object to declare object types
asm to call the built-in assembler
except to end an exception list
finally to end a finally block

The final end of a module is followed by a period to denote that there is nothing after it.

See also
Asm

Begin

Case

Except

Finally

Object

Record

Examples
(* with begin to form compound statement *)
if First < Last then
begin
 Temp := First;
 First := Last;
 Last := Temp;
end;
(* with case statement *)
case Ch of
 'A'..'Z', 'a'..'z': WriteLn('Letter');
 '0'..'9': WriteLn('Digit');
 '+', '-', '*', '/': WriteLn('Operator');
else
 WriteLn('Special character');
end;
(* in record type definitions *)
type
 MyClass = (Num, Dat, Str);
 Date = record
 D, M, Y: Integer;
 end;
 Facts = record
 Name: string[10];
 case Kind: MyClass of
 Num: (N: real);
 Dat: (D: Date);
 Str: (S: string);
 end;
(* in object type definitions *)
type
Location = object
 X, Y: Integer;
 procedure Init(PX, PY: Integer);
 function GetX: Integer;
 function GetY: Integer;
end;
(* with asm *)
asm
 mov ax,1
 mov cx, 100
end;

Except
See also Reserved words

Syntax

Description
The except reserved word marks the beginning of the list of exception handlers in an exception-
handling block.

The except part is a list of specific exceptions and responses to them, with each being an on..do
statement. If none of the on..do statements apply to the current exception, the default exception handler
in the else part is executed.

When an exception occurs in an exception-handling block, execution jumps immediately to the except
part, where the application looks to each on..do statement until it finds one that applies to the specific
exception raised. If no specific handler exists in the block, the application executes the default handler
(specified with the else reserved word) if any.

Once a handler (either a specific one or the default handler) deals with the exception, the exception is
considered handled, the exception object destroyed, and execution continues after the exception-
handling block.

If no exception handler applies to the specific exception raised, execution leaves the block with the
exception still unhandled.

See also
Else

Exception handling

Finally

Try

Exports
See also Reserved words

The exports reserved word is used in DLLs to list procedures and functions exported by that DLL.

You can use an exports clause anywhere and any number of times in a program's or library's
declaration.

Each entry in an exports clause specifies the identifier of a procedure or function to be exported. The
procedure or function to be exported must be declared before the exports clause appears.

You can precede the identifier in the exports clause with a unit identifier and a period; this is known as a
fully qualified identifier.

An exports clause can also include

An index clause
A name clause

The quickest way to look up a DLL entry is by index.

A program can contain an exports clause, but it seldom does because Windows does not allow
application modules to export functions for use by other applications.

See also
Dynamic-linked libraries

Using DLLs

Writing DLLs

External
See also Examples Standard directives

The external directive lets your program interface with separately compiled procedures and functions
written in assembly language, or located in DLLs.

The external directive takes the place of the declaration and statement parts that would otherwise be
present.

The external code for assembly language routines is linked with the Pascal unit or program through $L
filename compiler directives.

For a complete discussion of importing external routines from DLLs, see Accessing routines stored in
DLLs.

Examples
{ The following lines import routines from an external assembly language
file }

function GetMode: Word; external;
procedure SetMode(Mode: Word); external; {$L CURSOR.OBJ}

{ The following line imports a function from a DLL. }
function GlobalAlloc(Flags: Word; Bytes: Longint): THandle; external
'KERNEL.DLL' index 15;

See also
DLLs

Functions

Procedures

File
See also Example Reserved words

Syntax

Description
A file type consists of a linear sequence of data. Use the reserved word of to assign a file to a specific
type. Files can be of any type except for type file or object.

If of and the component type are omitted, it is an untyped file.

The predefined file type Text signifies a file containing printable ASCII characters organized into
lines.

Example
(* File type declarations *)
type
 Person = record
 FirstName: string[15];
 LastName : string[25];
 Address : string[35];
 end;
 PersonFile = file of Person;
 NumberFile = file of Integer;
 SwapFile = file;

See also
Of

Finalization
See also Reserved words

Syntax

Description
The finalization part is optional and can only appear if a unit also has an initialization part. The
finalization part consists of the reserved word finalization, followed by a list of statements which finalize
the unit. Finalization is the counterpart of initialization, and any resources (memory, files, etc.) acquired
by a unit in its initialization part are typically released in the finalization part.

Unit finalization parts execute in the opposite order of initializations. For example, if your application
initializes unics A, B, and C in that order, it will finalize them in the order C, B, and A.

Once a unit's initialization code starts ot execute, the coresponding finalization part is guaranteed to
execute when the application shuts down. The finalization part must therefore be able to handle
incompletely-initialized data, since, if an exception is raised, the initialization code might not execute
completely.

See also
Interface

Implementation

Initialization

Units

Finally
See also Reserved words

Syntax

Description
The finally reserved word marks the section of a protected block that always executes, even if an
execption occurs.

When an exception occurs, you might need to execute some cleanup code, such as releasing allocated
resources, before handling the exception. The try..finally block enables you to do that.

All statements in a try..finally block execute normally unless an exception occurs, at which point
execution jumps immediately to the statements in the finally part.

Note that a try..finally block does not handle particular exceptions. It just enables you to ensure that
certain code in a block always executes, regardless of exceptions.

See also
Except

Exception handling

Try

Protecting resource allocations

For ... To, For ... Downto
See also Example Reserved words

Syntax

Description
The for statement causes the statements after do to be executed once for each value between the
initial value of the range and final value, inclusive. For loops are useful if you know beforehand exactly
how many times you want the loop to be executed.

The control variable always starts off at initial value.

to Increments the control variable by 1 for each loop. The initial value must be less than the
final value.

downto Decrements the control variable by 1 for each loop. The initial value must be greater than
the final value.

The following rules apply to the control variable:

It must be a variable identifier that is local in scope to the block containing the for statement.
It must be of an ordinal type.

The initial and final values must be of a type assignment compatible with the ordinal type of the control
variable.

After a for statement is executed, the value of the control variable is undefined, unless execution of the
for statement was interrupted by a goto statement.

Example
(* for ... to, for ... downto *)
for I := 1 to ParamCount do
 WriteLn(ParamStr(I);
for I := 1 to 10 do
 for J := 1 to 10 do
 begin
 X := 0;
 for K := 1 to 10 do
 X := X + Mat1[I, K] * Mat2[K, J];
 Mat[I, J] := X;
 end;

See also
Goto statements

Loops

Ordinal types

Scope

Forward
See also Example Standard directives

The standard directive forward allows you to declare a procedure or function without actually defining
it.

From the point of the forward declaration, other procedures and functions can call the forwarded
routine, making mutual recursion possible.

Somewhere after a forward declaration, you must define the procedure or function with a declaration
that specifies the statement part of the routine.

The defining declaration can omit the parameter list from the procedure or function header.

A procedure's or function's defining declaration can be an external or assembler declaration; however,
it cannot be another forward declaration.

Example
(* Forwarded procedure *)
procedure Flip(N: Integer); forward;
procedure Flop(N: Integer);
begin
 WriteLn('Flop');
 if N > 0 then Flip(N - 1);
end;
procedure Flip;
begin
 WriteLn('Flip');
 if N > 0 then Flop(N - 1);
end;

See also
Assembler

External

Function
See also Example Reserved words

Syntax

Description
The reserved word function defines a block that computes and returns a value.

The function heading specifies the identifier for the function, the formal parameters (if any), and the
function result type.

Functions can return values of any type except file types.

A function can have declaration parts following the function heading.

The function heading is followed by:

Declarations of local variables, types, labels, constants, procedures, or functions
Statements that execute when the function is called

The statement part must contain at least one statement that assigns a value to the function identifier; the
result of the function is the last value assigned.

Instead of the declaration and statement parts, a function declaration can specify any of the following:

forward declaration
external declaration

Result variable in functions
Every function implicitly has a local variable Result of the same type as the function's return value.
Assigning to Result has the same effect as assigning to the name of the function. A function is activated
by the evaluation of a function call. The function call gives the function's identifier and actual
parameters, if any, required by the function.

In addition, however, you can refer to Result on the right side of an assignment statement, which refers
to the current return value rather than generating a recursive function call.

See also
Expression

Function calls

Ordinal

Parameters

Pointer

Real

String

Example
(* Function declaration *)
function UpCaseStr(S: string): string;
var
 I: Integer;
begin
 for I := 1 to Length(S) do
 if (S[I] >= 'a') and (S[I] <= 'z') then
 Dec(S[I], 32);
 UpCaseStr := S;
end;

Goto
See also Example Reserved words

Syntax

Description
The reserved word goto transfers program execution to the statement prefixed by the label referenced
in the statement.

The label must be in the same block as the goto statement; it is not possible to jump out of a procedure
or a function.

See also
Label

Example
label 1, 2;
goto 1
 .
 .
 .
1: WriteLn ('Abnormal program termination');
2: WriteLn ('Normal program termination');

If ... Then ... Else
See also Example Reserved words

Syntax

Description
If, then, and else specify the conditions under which a statement will be executed.

If the Boolean expression after if is True, the statement after then is executed.

Otherwise, if the expression evaluates to False and the else part is present, the statement after else is
executed. If the else part is not present, execution continues with the next statement following the if
statement.

Note: No semicolon is allowed preceding an else clause.

See also
Boolean types

Conditional statements

Else

Example
(* if statements *)
if (I < Min) or (I > Max) then I := 0;
if x < 1.5 then
 z := x + y
else
 z := 1.5;

Implementation
See also Reserved words

The implementation part of a unit defines the block of all public procedures and functions declared in the
interface part of the unit. It also declares constants, types, variables, procedures, and functions that are
private.

Syntax

Description
Declarations made in the implementation part of a unit are private and can be used only within this part
of the unit. All constants, types, variables, procedures, and functions declared in the interface part are
visible in the implementation part.

Implementations of procedures and functions declared in the interface part can be defined and
referenced in any sequence in the implementation part.

A uses clause can appear in the implementation, immediately following the reserved word
implementation. If you put a uses clause in the interface part of a unit, those units which are listed in
the uses clause are not seen by the defining unit.

If any procedures are declared external, one or more $L filename directive(s) should appear in the
source file before the final end of the unit.

The procedure/function header in the implementation should be either of athe following:

Identical to the declaration in the interface
In the short form

See also
$L filename

Interface

Initialization

Finalization

Units

Initialization
See also Reserved words

Syntax

Description
The optional initialization part of a unit consists of the reserved word initialization, followed by a list of
statements that initialize the unit.

The initialization parts of units used by a program are executed in the same order that the units appear
in the uses clause of the main program.

See also
Finalization

Units

Short-form headers
See also

Short-form headers are procedures and functions declared in the implementation part that do not list
their parameters. The parameters of a short-form header are previously listed in the interface part or
are declared forward or as part of an object type.

For short-form headers, type the reserved word (procedure or function), followed by the routine
identifier.

Routines local to the implementation part (not declared in the interface part) must have a complete
procedure/function header.

See also
Implementation

Index
See also Example Standard directives

An index clause specifies an ordinal number for exporting procedures or functions from a dynamic-link
library (DLL.) If no index clause is used in an exports clause, the compiler assigns an ordinal number.

An index clause is included in an exports clause and consists of the word index followed by an integer
constant between 1 and 32767.

Example
procedure ImportByOrdinal; external 'TESTLIB' index 5;

See also
Dynamic-linked libraries

Forward

Using DLLs

Writing DLLs

Inherited
See also Reserved words

The reserved word inherited denotes the ancestor of the enclosing method's object type.

Inherited cannot be used within methods of an object type with no ancestor because it has no declaring
object to inherit from.

See also
Object types

Inline
Reserved words

Description
The reserved word inline is not used in this version of Object Pascal. It remains reserved, however, for

future use.

Interface
See also Reserved words

The interface part of a unit determines what is visible and accessible to any program (or other unit)
using that unit.

Syntax

Description
The interface part starts at the reserved word interface, which appears after the unit header, and ends
before the reserved word implementation.

The interface part declares constants, types, variables, procedures, and functions that are public. That
is, other programs or units can use them.

The interface part only lists the heading of a declared procedure or function. The block of the procedure
or function follows in the implementation part. In effect, the procedure and function declarations in the
interface part are like forward declarations, although the forward directive is not used.

A uses clause can appear in the interface part. (If present, uses must immediately follow the reserved
word interface).

See also
Implementation

Units

Label
See also Example Reserved words

Syntax

Description
The reserved word label declares placeholders that mark statements in the corresponding statement
part. Control is transferred to a label via a goto statement.

Each label must mark only one statement.

In addition to an identifier, a digit sequence between 0 and 9999 can also be used as a label.

See also
Goto

Library
See also Reserved words

Syntax

Description
A dynamic-link library (DLL) starts with a library header.

The library header tells the compiler to produce an executable file with the extension .DLL instead
of .EXE.

See also
Exports clause

Import units

Index clause

Name clause

Writing DLLs

MaxInt and MaxLongInt
MaxInt and MaxLongInt are predefined constants. In this version of Object Pascal, they have the same
value.

MaxInt contains the largest possible Integer (2,147,483,647).
MaxLongint contains the largest possible Longint (2,147,483,647).

Name
See also Standard directives

A name clause can be included in an exports clause. A name clause consists of the word name
followed by a string constant.

When you use a name clause, the procedure or function is exported using the name specified by the
string constant.

If no name clause is used, the procedure or function is exported by its identifier and is converted to all
uppercase.

See also
Using DLLs

Exports

Index

Nil
Reserved words

Description
The reserved word nil denotes a pointer type constant that does not point to anything.

nil is compatible with all pointer types.

Nodefault
See also Standard directives

Syntax

Description
The nodefault directive controls the value that is considered a property's default value.

In a property declaration, nodefault is an optional specifier. If it is not included, the results are the same
as if a nodefault specifier had been included.

See also
Default

Object
See also

Syntax

Description
The reserved word object is used to declare object types that conform to the object model used in
previous versions of Borland and Turbo Pascal. New programs should use the reserved word class
and the new object model. Object types declared using the reserved word object and the old object
model may not have class methods, nor may they have properties as components.

An object type is a data structure that contains a fixed number of components.

Each component is either a field (which contains data of a particular type) or a method, which performs
an operation on the object.

The declaration of a field specifies an identifier that names the field, and its data type.

The declaration of a method specifies a procedure, function, constructor, or destructor heading.

An object type can inherit components from another object type. The inheriting object is a descendant
and the object inherited from is an ancestor.

The domain of an object type consists of itself and all its descendants.

See also
Field and object component designators

Object-type scope

Object types

Of
See also Example Reserved words

The reserved word of precedes a type in array, set, class, file type declarations, and in case statements.

See also
Array

Case

File

Set

Examples
(* array declaration *)
type
 IntList = array[1..100] of Integer;
 CharData = array['A'..'Z'] of Byte;
 Matrix = array[0..9, 0..9] of real;
(* Set types *)
type
 Day = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 CharSet = set of Char;
 Digits = set of 0..9;
 Days = set of Day;
(* File type declarations *)
type
 Person = record
 FirstName: string[15];
 LastName : string[25];
 Address : string[35];
 end;
 PersonFile = file of Person;
 NumberFile = file of Integer;
 SwapFile = file;
(* case statement *)
case Ch of
 'A'..'Z', 'a'..'z': WriteLn('Letter');
 '0'..'9': WriteLn('Digit');
 '+', '-', '*', '/': WriteLn('Operator');
else
 WriteLn('Special character');
end;

On
See also Reserved words

Syntax

Description
The reserved word on defines responses to exceptions. On is always coupled with the reserved word
do to form an entire exception handler.

The except part of a try..except block consists of a list of one or more on..do statements for the
handling of specific exceptions.

See also
Exception-handling statements

Responding to exceptions

Do

Except

Try

Override
Example Standard directives

The override directive is used to redefine a virtual or dynamic method.

When the override directive is included in the declaration of a method, the method overrides the
inherited implementation of the method. An override of a virtual method must exactly match the order
and types of the parameters, and the function result type (if any), of the original method.

Because virtual methods have two kinds of dispatching, VMT-based and dynamic, methods that override
virtual and dynamic methods use the override directive instead of repeating virtual or dynamic.

Example
The following example uses override to replace the inherited procedure P.

type
 TAnObject = class
 procedure P; virtual;
 end;
 TAnotherObject = class(TAnObject)
 procedure P; override;
 end;

Packed
See also Reserved words

Description
The reserved word packed in a structured type declaration tells the compiler to compress data storage,
even at the cost of slower access to a component of a variable of this type.

However, it has no effect in Object Pascal, since packing occurs automatically.

See also
Structured types

Pascal
See also Standard directives

Description
The pascal directive specifies that a procedure or function uses the Pascal calling convention for
passing parameters.

The Pascal calling convention passes parameters from left to right, with parameters removed from the
stack by the function.

The Pascal calling convention is mostly useful for calling routines exported from dynamic-link libraries
(DLLs) written in C, C++, and other languages.

See also
Calling conventions

cdecl

register

stdcall

Private
See also Standard directives

Syntax

Description
The private directive is used within an object to denote a component declaration part.

Inside the module, private component identifiers act like public component identifiers.
Outside the module, private component identifiers are unknown and inaccessible.

Place related object types in the same module (or unit) so they can access each other's private
components without making those private components known to other modules.

The scope of component identifiers declared as private are restricted to the module containing the
object type declaration.

See also
Objects

Protected

Public

Rules of scope

Object-type scope

Units

Procedure
See also Example Reserved words

Syntax

Description
Procedures let you nest additional blocks in the main program block. Each procedure declaration has a
heading followed by a block of statements.

The procedure heading specifies the identifier for the procedure and the formal parameters (if any).

A procedure is activated by a procedure statement, which states the procedure's identifiers and actual
parameters, if any.

The procedure heading is followed by:

A declaration part that declares local objects
The statements between begin and end, which specify what is to be executed when the

procedure is called.
Note: If the procedure's identifier is used in a procedure statement within the procedure's block, the

procedure calls itself while being executed. This results in an endless loop.

Instead of the declaration and statement parts, a procedure declaration can specify any of the following
directives:

assembler
external
forward

Example
{ Procedure Declaration }
procedure NumString(N: Integer; var S: string);
var
 V: Integer;
begin
 V := Abs(N);
 S := '';
 repeat
 S := Chr(N mod 10 + Ord('0')) + S;
 N := N div 10;
 until N = 0;
 if N < 0 then
 S := '-' + S;
end;

See also
Functions

Parameters

Procedure statements

Procedural-type constants

Calling conventions

Program
See also Reserved words

Syntax

Description
The reserved word program is placed at the top of a program and specifies the program's name.

See also
Uses clause

Labels

Constants

Types

Variables

Procedures

Functions

Statements

Property
See also

Syntax

Description
The reserved word property enables you to declare properties. A property definition in a class declares
a named attribute for objects of the class and the actions associated with reading and writing the
attribute.

See also
Read

Write

Stored

Object types

Protected
See also Standard directives

Syntax

Description
The protected directive is used in object type declarations.

Components declared as protected are accessible only to descendants of the declaring type.

Declaring a component as protected combines the advantages of public and private components.

As with private components, you can hide implementation details from end users. However, unlike
private components, protected components are still available to programmers who want to derive new
objects from your objects without the requirement that the derived objects be declared in the same unit.

See also
Component visibility

Private

Public

Published

Automated

Object-type scope

Public
See also Standard directives

Syntax

Description
The public directive is used within class type declarations.

Component identifiers declared in public component parts have no special restrictions on their scope.

See also
Component visibility

Private

Protected

Published

Automated

Object-type scope

Published
See also Standard directives

Syntax

Description
The published directive is used in object type declarations.

Declaring a part of an object as published generates run-time type information for that part, including it
in the application's published interface.

Inside your application, a published part acts just like a public part. The only difference is that other
applications can get information about those parts through the published interface.

The Object Inspector uses the published interface of objects in the Component palette to determine the
properties and events it displays.

See also
Component visibility

Private

Protected

Public

Automated

Object-type scope

Read
See also Example

Syntax

Description
The read directive enables you to specify a routine or field that will get a value from a property.

See also
Write

Example
property Color: TColor read GetColor write SetColor;

Record
See also Example Reserved words

Syntax

Description
A record contains components, or fields, that can be of different types.

Each field list separates identifiers with a comma, followed by a colon and a type.

You must name the field and assign a field type in the record-type declaration.

The variant part of the record type syntax diagram distributes memory space for more than one list of
fields, letting you access information in more than one way. Each field list is a variant which overlays the
same space in memory. Each variant is distinguished by a constant, and you can access all fields of all
variants at all times.

The optional identifier, the tag field identifier, is the identifier of an additional fixed field--the tag field--of
the record. The program uses the tag field's value to show which variant is currently active.

Accessing records
You can access the whole record or each field individually. To retrieve information from an individual field
type the record name, a period, and then the field identifier. For example,
TDateRec.Year
If a record contains a subrecord, you can access it using qualifier.

Example
{ Record Type Definitions }
type
 TClass = (Num, Dat, Str);
 TDate = record
 D, M, Y: Integer;
 end;
 Facts = record
 Name: string[10];
 case Kind: TClass of
 Num: (N: Real);
 Dat: (D: TDate);
 Str: (S: string);
 end;

See also
Field and object component designators

Record-type constants

Record scope

With statements

Register
See also Standard directives

Description
The register directive specifies that a procedure or function uses the register calling convention for
passing parameters. This is the default calling convention in this version of Object Pascal.

The register calling convention passes parameters from left to right, with parameters removed from the
stack by the function.

The register convention uses up to three CPU registers to pass parameters, where the other
conventions always pass all parameters on the stack. The register convention is by far the most efficient
calling convention, since it often avoids the creation of a stack frame.

See also
Calling conventions

cdecl

pascal

stdcall

Repeat...Until
See also Example Reserved words

Syntax

Description
The statements between repeat and until are executed in sequence while the Boolean expression in
the until statement evaluates to True.

Using this loop ensures that the sequence is executed at least once because the Boolean expression is
evaluated after the execution of each sequence.

Example
{ Repeat Statements }
 repeat Ch := GetChar until Ch <> ' ';
 repeat
 Write('Enter value: ');
 ReadLn(I);
 until (I >= 0) and (I <= '9');

See also
Loops

Resident
Standard directives

The resident standard directive is included in an exports clause.

When resident is used, the export information stays in memory when the dynamic-link library (DLL)is
loaded.

The resident option reduces the time it takes Windows to look up a DLL entry by name.

If client programs that use the DLL are likely to import certain entries by name, they should be exported
using the resident standard directive.

Self
Reserved words

Self is an implicit parameter passed whenever a method is called.

Self can be used as a pointer to the instance through which the method is being called.

It guarantees, among other things, that the correct virtual methods will be called for a particular object
instance and that the correct instance data will be used by the object method.

Set
See also Example Reserved words

Syntax

Description
The reserved word set defines a collection of objects of the same ordinal type with no more than 256
possible values.

The ordinal values of the upper and lower bounds of the base type must be between 0 and 255.

A set constructor, which denotes a set-type value, is formed by writing expressions within brackets.
Each expression denotes a value of the set.

The notation [] denotes the empty set, which is compatible with all set types.

Example
{ Set types }
 type
 Day = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 CharSet = set of Char;
 Digits = set of 0..9;
 Days = set of Day;
{ Set constructors }
 ['0'..'9', 'A'..'Z', 'a'..'z', '_']
 [1, 5, I + 1 .. J - 1]
 [Mon..Fri]

See also
Of

Set types

Set-type constants

Stdcall
See also Standard directives

Description
The stdcall directive specifies that a procedure or function uses the Windows standard calling
convention for passing parameters.

The stdcall convention passes parameters from right to left, like the cdecl convention, but with
parameters removed from the stack by the function.

The stdcall calling convention is used for calling Windows API routines.

See also
Calling conventions

cdecl

pascal

register

String
See also Reserved words

Syntax

Description
The reserved word string is used to declare string type variables.

See also
Indexes

String types

Stored
Standard directives

Syntax

Description
The stored directive controls whether or not a property is filed.

If present in a property definition, the stored directive must be followed by one of the following:

A Boolean constant (True or False)
The identifier of a field of type Boolean
The identifier of a parameterless function method that returns a value of type Boolean

If a property definition does not include a stored specifier, the results are the same as if a stored True
specifier had been included.

Threadvar
See also Reserved words

The threadvar reserved word is used to declare thread-local variables. Its syntax is identical to that of
the var reserved word.

See also
Var

Try
See also Example Reserved words

The try reserved word is used to mark the first part of a protected block. There are two types of
protected blocks:

try..except block
try..finally block

Syntax

The try...except Block
A block that handles exceptions is a try..except block.

Within the try part of the block, statements execute in the normal order unless an exception occurs, at
which point execution jumps to the except part. If no exception occurs, the block ends without using the
except or else parts.

The except part is a list of specific exceptions and responses to them, with each being an on..do
statement. If none of the on..do statements applies to the current exception, the default exception
handler in the else part executes. Once one handler (either a specific one or the default handler) deals
with the exception, the block ends.

Execution does not resume within the block after an exception. In the example above, if Statement1
causes an exception, Statement2 never executes.

The try..finally Block
In order to ensure that resources allocated by your application are also released, you can protect
resource allocations with a try..finally block.

The statements in the finally part of a try..finally block always execute, even if an exception occurs.

The statements in a try..finally block execute normally unless an exception occurs, at which point the
statements in the finally part execute. Note that the try..finally block does not itself handle particular
exceptions.

Example
The following code shows a protected resource. Closing the file in the finally part of the block ensures
that the application always closes the file, even if an exception occurs.
var
 F: File;
begin
 Assign(F, 'SOMEFILE.EXT');
 Reset(F);
 try
 { statements that access file F }
 finally
 Close(F);
 end;
end;

See also
Exception handling

Protecting resource allocations

Type
See also Reserved words

Syntax

Description
A type declaration specifies an identifier that denotes a type. A variable's type defines the set of values
it can have and the operations that can be performed on it.

See also
Type declarations

Unit
See also Reserved words

Syntax

Description
Units are the basis of modular programming. You use units to create libraries and to divide large
programs into logically related modules.

These are the parts of a unit:

unit heading
interface part
implementation part
initialization part
finalization part

Unit heading
The unit heading specifies the unit's name, which you use when referring to the unit in a uses clause.

The name must be unique: Two units with the same name cannot be used at the same time.

See also
Circular unit references

Indirect unit references

Uses
Example Reserved words

The uses clause identifies all units used by the program.

Syntax

Description
Each identifier in a uses clause names a unit that has functions or procedures accessed by the current
program or unit.

The System unit is always used automatically. System implements all low-level, run-time routines to
support such features as file input and output (I/O), string handling, floating point, dynamic memory
allocation, and others.

Apart from System, Object Pascal implements many standard units that aren't used automatically; you
must include them in your uses clause.

The order of the units listed in the uses clause determines the order of their initialization.

To find the unit file containing a compiled unit, the compiler adds the file extension .DCU to the unit
name listed in the uses clause.

The compiler searches for units in the current directory and in the directories specified in the Unit
Directories list box on the Directories/Conditionals page of the Project Options dialog box.

Example
program MyProgram;
uses SysUtils;

Var
See also Example Reserved words

Syntax

Description
A variable (var) declaration associates an identifier and a type with a location in memory where values
of that type can be stored.

An absolute clause can be used to specify an absolute memory address.

The var reserved word is also used to declare variable parameters.

Example
{ Variable Declarations }
 var
 X, Y, Z: real;
 I, J, K: Integer;
 Done, Error: Boolean;
 Vector: array[1..10] of real;
 Name: string[15];
 InFile, OutFile: Text;
 Letters: set of 'A'..'Z';

See also
Global and local variables

Scope

Variable declarations

Virtual
See also Standard directives

Description
The virtual directive is used to declare a virtual method.

A virtual method is linked to its code at run time, by a process called late binding.

Declaring a method as virtual makes it possible for methods with the same name to be implemented in
different ways within a hierarchy of object types.

To make a method virtual, follow its declaration in the object type with a semicolon, followed by the
reserved word virtual.

See also
Objects

Self

Virtual methods

While
See also Example Reserved words

Syntax

Description
A while statement controls the repeated execution of a singular or compound statement.

The statement after do executes as long as the Boolean expression is True.

The expression is evaluated before the statement is executed, so if the expression is False at the
beginning, the statement is not executed.

See also
Compound statements

Do (reserved word)

For (reserved word)

Loops

Repeat (reserved word)

Example
{ while statements }
 while Ch = ' ' do Ch := GetChar;

With
See also Example Reserved words

Syntax:

Description
The with statement is a shorthand method for referencing the fields of a record and the fields and
methods of an object.

Within a with statement, the fields of one or more record variables can be referenced using only their
field identifiers.

Within a with statement, each variable reference is first checked to see if it can be interpreted as a field
of the record. If so, it is always interpreted as such, even if a variable with the same name is also
accessible.

If the selection of a record variable involves indexing an array or dereferencing a pointer, these actions
are executed once before the component statement is executed.

See also
Records

Example
type
 TDate = record
 Day : Integer;
 Month: Integer;
 Year : Integer;
 end;
var OrderDate: TDate;
with OrderDate do
 if Month = 12 then
 begin
 Month := 1;
 Year := Year + 1
 end
 else
 Month := Month + 1;

Write
See also Example

Syntax

Description
The write directive is a property access specifier that enables you specify a routine that will set the
value of a property.

See also
Read

Type declarations
See also Language definition

When you declare a variable, you must state its type. Types can be either predefined or user-defined.
User-defined types are declared in the type declaration part of a program or unit.

A variable's type defines the set of values it can have and the operations that can be performed on it.

The scope of a type declaration is within the block in which it was declared.

A type identifier's scope does not include itself, with the exception of pointer types.

There are six major classes of types:

1. Simple types define ordered sets of values.

2. String types define a sequence of characters with a dynamic length attribute and a constant size
attribute.

3. Structured types define a structure that can hold more than one value.

4. Pointer types define a set of values that point to variables of a specified type.

5. Procedural types allow procedures and functions to be treated as objects.

6. Variant types allow variables to assume values of different types.

See also
Scope

Type compatibility

Fundamental and generic types
Types

Object Pascal's predefined types are diveded into two categories:

Fundamental types
Generic types

The range and format of fundamental types is independent of the underlying CPU and operating system
and does not change across different implementations of Object Pascal.

The range and format of generic types depends on the underlying CPU and operating system.

There are currently three classes of predefined types that distinguish between fundamental and generic
types:

Integer types
Character types
String types

For all other classes, you should regard the predefined types as fundamental.

Applications should use the generic formats whenever possible, since they generally result in the best
performance for the underlying CPU and operating system. The fundamental types should be used only
when the actual range and / or storage format matters to the application.

Simple types
Types

Simple types define ordered sets of values. There are two base classes for simple types:

Ordinal types
Real types

A real type identifier is one of the standard identifiers: Real, Single, Double, Extended, or Comp.

Comparing simple types
When comparing simple types, the operands must be of compatible types; however, if one operand is of
a real type, the other can be an integer type.

Ordinal types
See also Types

Ordinal types are a subset of simple types and contain a finite number of elements.

Object Pascal has twelve predefined ordinal types and two user-defined types. The predefined types
are:

Integer Shortint SmallInt Longint

Byte Word Cardinal Char

Boolean ByteBool WordBool LongBool

The user-defined ordinal types are:

enumerated types
subrange types

All values of an ordinal type are an ordered set, and each value is represented by its index position
within that set. Except for integer type values, the first element of every ordinal type has the position
index 0, the next is 1, and so on. The position index of an integer type value is the value itself.

You can use the following standard functions with ordinal types:

Function What it does

Ord Returns the element's numerical ordering within the set.

Pred Returns the predecessor of the value. If the value in question is the first value in the
ordinal type and if range checking is enabled {$R+}, Pred produces a run-time error that
you can handle by using exceptions.

Succ Returns the successor of the value. If the value in question is the last value in the ordinal
type and if range checking is enabled {$R+}, Succ produces a run-time error that you can
handle by using exceptions.

Low Determines the lowest value in the range of the given ordinal type.

High Determines the highest value in the range of the given ordinal type.

See also
Exception handling

Type compatibility

Variable typecasting

Value typecasting

Integer types
See also Ordinal types
Object Pascal's predefined integer types are divided fundamental and generic types.

Applications should use the generic integer formats whenever possible, since they generally result in the
best performance for the underlying CPU and operating system. The fundamental integer types should
be used only when the actual range and / or storage format matters to the application.

Fundamental types
The fundamental integer types are:

Type Range Format

Shortint -128 .. 127 Signed 8-bit

SmallIn
t

-32768 .. 32767 Signed 16-bit

Longint -2147483648 ..
2147483647

Signed 32-bit

Byte 0 .. 255 Unsigned 8-bit

Word 0 .. 65535 Unsigned 16-bit

The range and format of the fundamental types are independent of the underlying CPU and operating
system and does not change across different implementations of Object Pascal.

Generic types
The generic integer types are Integer and Cardinal. The Integer type represents a generic signed
integer, and the Cardinal type represents a generic unsigned integer. The actual ranges and storage
formats of the generic types vary across different implementations of Object Pascal, but are generally
the ones that result in the most efficient integer operations for the underlying CPU and operating
system.

Type Range Format

Integer -32768 .. 32767 Signed 16-bit

Integer -2147483648 ..
2147483647

Signed 32-bit

Cardinal 0 .. 65535 Unsigned 16-
bit

Cardinal 0 .. 2147483647 Unsigned 32-
bit

Arithmetic operations
Arithmetic operations with integer-type operands use 8-bit, 16-bit, or 32-bit precision, according to the
following rules:

An integer constant takes the integer type with the smallest range that includes the value of the
integer constant.

Both operands in a binary operation, convert to the integer type with the smallest range that
includes all possible values of both types. The resulting type of the expression is the common type.

The expression on the right of an assignment statement evaluates independently from the size or
type of the variable on the left.

Bytes convert to an intermediate word operand compatible with both Integer and Word before the
statement evaluates.
Note: You can explicitly convert an integer-type value to another integer type through typecasting.

See also
Type compatibility

Value typecasting

Variable typecasting

Fundamental and generic types

Boolean types
See also Ordinal types

There are four predefined Boolean types. The Boolean type declares variables that will evaluate to
either False or True.

Type Memory

Boolean 1 byte

ByteBool 1 byte

WordBool two bytes (one word)

LongBool four bytes (two words)

The most common use of a Boolean expression is with relational operators and conditional statements.
Since Boolean types are enumerated types, the following relationships apply:

False < True
Ord(False) = 0
Ord(True) = 1
Succ(False) = True
Pred(True) = False

Boolean is the preferred type and uses less memory; ByteBool, WordBool, and LongBool provide
compatibility with other languages and the Windows environment.

Unlike Boolean variables, which can only assume the values 0 (False) or 1 (True), ByteBool, WordBool,
and LongBool can assume other ordinal values where 0 is False and any nonzero value is True.
Whenever a ByteBool, WordBool, or LongBool value is used in a context where a Boolean value is
expectd, the compiler will automatically generate code that converts any nonzero value to the value
True.

See also
Boolean expressions

Boolean operators

Conditional statements

Relational operators

Type compatibility

Character types
See also Ordinal types

Object Pascal defines two fundamental character types and a generic character type.

The fundamental character types are

AnsiChar Byte-sized characters, ordered according to the extended ANSI character set.

WideChar Word-sized characters, ordered according to the Unicode character set. The first 256
Unicode characters correspond to the ANSI characters.

The generic character type is Char.

In the current implementation of Object Pascal, Char corresponds to the fundamental type AnsiChar, but
implementations for other CPUs and operating systems might define Char to be WideChar. When
writing code that might need to handle characters of either size, use the standard function SizeOf
instead of a hard-coded constant for character size.

The function call Ord(Ch), where Ch is any character-type value, returns Ch's ordinality.

A string constant of length 1 can be represented by a constant character value. The Chr function can
convert an Integer value into a character with the corresponding ordinality.

See also
Type compatibility

Fundamental and generic types

Enumerated types
See also Example Ordinal types

Enumerated types assign sequential values to elements in an identifier list. The first element gets the
value 0; the second element gets 1, and so on.

The compiler recognizes the enumerated type name as the type for all the entire identifier list.

An identifier's ordinality is determined by its position within the identifier list in which it is declared.

Use the Succ and Pred functions to cycle forward or backward through the elements of the identifier list.

When the Ord function is applied to an enumerated type's value, Ord returns an integer that shows
where the value falls with respect to the other values of the enumerated type.

See also
Boolean types

Type compatibility

Type declarations

Enumerated type example
type
 Suit = (Club, Diamond, Heart, Spade);

Subrange types
Example Ordinal types

A subrange type is a range of values from an ordinal type called the host type. The definition of a
subrange type specifies the smallest value and the largest value in the subrange.

Both constants must be of the same ordinal type.

A variable of a subrange type has all the properties of the host type, but its run-time value must be within
the specified range.

One syntactic ambiguity occurs in constant expressions, since the compiler defines a type definition
starting with a parenthesis as an enumerated type. There are two possible solutions to this problem:

Reorganize the first subrange expression so that it does not start with a parenthesis.
Set a constant equal to the value of the expression and use that constant in the type definition.

The $R compiler directive controls range checking of subrange types.

Subrange type examples
These are examples of subrange types:
0..99
-128..127
Club..Heart

The following example is one possible solution to the constant expression problem:
type
 Scale = 2 * (X - Y)..(X + Y) * 2;

Real types
See also Types

A real type is a subset of real numbers, which you can represent in floating-point notation with a fixed
number of digits.

There are six kinds of real types; they differ in the range, precision of values and in size.

Significant Size in
Type Range digits bytes

Real 2.9 * 10e-39 .. 1.7 * 10e38 11-12 6

Single 1.5 * 10e-45 .. 3.4 * 10e38 7-8 4

Double 5.0 * 10e-324 .. 1.7 * 10e308 15-16 8

Extended 3.4 * 10e-4932 .. 1.1 * 10e4932 19-20 10

Comp -2e63+1 .. 2e63-1 19-20 8

Currency -922337203685477.5808..92233720368
5477.5807

19-20 8

The Comp (computational) type holds only integral values within -2e63+1 to 2e63-1, which is
approximately -9.2 * 10e18 to 9.2 * 10e18.

The Currency type is a fixed-point data type suitable for monetary calculations. It is stored as a scaled
64-bit integer with the four least-significant digits implicitly representing four decimal places.

Pointer types
See also Example Types

A pointer type is a value that points to variables of a base type. A pointer-type variable contains the
memory address of a variable.

If the base type is an undeclared identifier, you must declare it in the same type declaration part as the
pointer type.

You can assign a value to a pointer variable using the following:

Procedure/Function What it does

New Allocates a new memory area in the application heap for a dynamic variable and
stores the address of that area in the pointer variable

@ operator Directs the pointer variable to the memory area containing any existing variable
or procedure or function entry point, including variables that already have
identifiers

GetMem Creates a new dynamic variable of a specified size, and puts the address of the
block in the pointer variable

The reserved word nil denotes a pointer-valued constant that does not point to anything.

Comparing pointers
The operators = and <> can be used on compatible pointer-type operands. Two pointers are equal only
if they point to the same object.

Compatibility note
Object Pascal allows the use of undeclared identifiers in the declaration of pointer types only in the
following context:
type
PointerType = ^UndefinedType;

where UndefinedType is defined later in the same type-declaration block.

See also
Pointer-type constants

Pointers and dynamic variables

Type compatibility

Type Pointer

Type PChar

Value typecasting

Type Pointer
See also

The predefined type Pointer is an untyped pointer.

You cannot dereference variables of type Pointer; writing the pointer symbol ^ after such a variable is an
error.

You can dereference generic pointers through typecasting.

Values of type Pointer are compatible with all other pointer types.

See also
Pointer Types

Pointers and Dynamic Variables

Type Compatibility

Type PChar

Variable Typecasting

Character-pointer types
See also

Object Pascal defines two fundamental character-pointer types and a generic character-pointer type.

Character-pointer types are simply pointers to character types, but Object Pascal supports a set of
extended syntax rules to facilitate handling of null-terminated strings using character-pointer types.

The fundamental character-pointer types are

PAnsiChar a pointer to a null-terminated string of characters of type AnsiChar

PWideChar a pointer to a null-terminated string of characters of type PWideChar

The generic character-pointer type is

PChar a pointer to a null-terminated string of characters of type Char

The System unit declares the pointer-character types as follows:
type
 PAnsiChar = ^AnsiChar;
 PWideChar = ^WideChar;
 PChar = PAnsiChar;

The fundamental character-pointer types are pointers to the fundamental character types (or to null-
terminated strings of such characters), and the generic character-pointer type is a pointer to the generic
character type.

Comparing character pointers
Object Pascal allows the <, >, <=, or >= operators to be applied to character-pointer values. These
relational tests assume that the two pointers being compared point within the same character array, and
for that reason, the operators compare only the offset parts of the two pointer values.

If the two character pointers point to different character arrays, the result is undefined.

See also
Character-pointer operators

Null-terminated strings

Pointer types

Relational operators

Type compatibility

Type Pointer

Pointer type example
{ Pointer Type Declaration }
type
 BytePtr = ^Byte;
 WordPtr = ^Word;
 IdentPtr = ^IdentRec;
 IdentRec = record
 Ident: string[15];
 RefCount: Word;
 Next: IdentPtr;
 end;

Standard Pointers
See also

When you define a structure or a data type in Pascal, you should also define a pointer to that data type.
Many advanced programming techniques, such as linked lists of dynamically allocated records, may
require you use the pointer instead of the variable itself.

When you a variable the compiler generates the necessary code to initialize and finalize these special
types automatically. When you write code that allocates and frees the pointers to dynamic structures like
AnsiString, and Variant, they require special initialization and finalization.

Some pointers are listed in the following table.

Pointer Points to
PAnsiString Points to an AnsiString variable.

PByteArray Points to a variable of type TByteArray. Often used to
typecast dynamically allocated blocks of memory for array
access.

PCurrency Points to a variable of type Currency.

PExtended Points to a variable of type Extended.

PTextBuf Points to a variable of type TextBuf. TextBuf is the internal
buffer used in the TTextRec text file record.

PVarRec Points to a variable of type TVarRec.

PVariant Points to a variable of type Variant.

PWordArray Points to a variable of type TWordArray. Often used to
typecast dynamically allocated memory blocks for use as an
array of word-sized (2 byte unsigned) values.

See also
Character-pointer operators

Procedural types
See also Example Types

Procedural types enable you to treat procedures and functions as entities that can be assigned to
variables and passed as parameters.

The syntax for a procedural type declaration is the same as that of a procedure or function header,
except that the identifier after the procedure or function keyword is omitted. A procedural-type
declaration can optionally specify a calling convention. The default calling convention is register.

There are two catagories of procedural types:

Global procedure pointers
Method pointers

You cannot declare functions that return procedural-type values. However, you can return the address of
a procedure or function using a function result of type Pointer and then typecast it to a procedural type.

A function result must be a one of the following types:

string
real
integer
char
Boolean
Pointer
user-defined enumeration

Procedural-type compatibility
In order for procedural types to be compatible the following conditions apply:

Both types must use the same calling convention.
Both types must have the same number of parameters.
Parameters in corresponding positions must be of identical types.
The result types of functions must be identical.

The value nil is compatible with any procedural type.

Note: Parameter names have no significance when determining procedural-type compatibility.

Global procedure pointer types and method pointers are mutually incompatible.

See also
Procedural-type constants

Procedural values

Type pointer

Variable typecasting

Procedural type examples
type
 Proc = procedure;
 SwapProc = procedure(var X, Y: Integer);
 StrProc = procedure(S: string);
 MathFunc = function(X: Double): Double;
 DeviceFunc = function(var F: Text): Integer;
 MaxFunc = function(A, B: Double; F: MathFunc): Double;

var
 P: SwapProc;
 F: MathFunc;

procedure Swap(var A, B: Integer);
var
 Temp: Integer;
begin
 Temp := A;
 A := B;
 B := Temp;
end;

function Tan(Angle: Double);
begin
 Tan := Sin(Angle) / Cos(Angle);
end;

{ You can assign the variables P and F to the following values }
P := Swap;
F := Tan;

{ The following calls using P and F are now legal }
P(I, J); { Equivalent to Swap(I, J) }
X := F(X); { Equivalent to X := Tan(X) }

Global procedure pointers
See also Example

A global procedure pointer is a procedural type declared without the of object clause.

Global procedure pointers can reference a global procedure of function, and is encoded as a pointer that
stores the address of a global procedure or function.

See also
Procedural types

Example
type
 TProcedure = procedure;
 TStrProc = procedure(const S: string);
 TMathFunc = function(X: Double): Double;'

Procedural values
See also Example

You can assign a procedural value to a procedural-type variable.

Procedural values can be one of following:

The value nil
A variable reference of a procedural type
A procedure or function identifier
A method designator

When you declare a procedure or function as a procedural value, it is considered a constant declaration.

Using a procedural variable that has the value nil in a procedure statement or a function call results in
an error. nil indicates an unassigned procedural variable. Procedure statements or function calls
involving a nil procedural variable should use the following test. The @ operator indicates that P is
being examined rather than being called.
if @P <> nil then P(I, J);

The following types of procedures and functions cannot be used as procedural values:

standard
nested
methods
inline

Although you cannot directly use standard procedures and functions, there is a workaround. To use
standard procedures or functions as a procedural values, you must declare a new function or procedure
that calls the standard procedure or function in its main body.

See also
Procedural types

Type compatibility

Using procedural types in expressions

String types
See also Example Types

Object Pascal supports two types of strings:

short strings
long strings

Short strings and long strings can be mixed in assignments and expressions, and the compiler
automatically generates code to perform the necessary string type conversions.
The short string type represents a statically allocated string with maximum length between 1 and 255
characters, and a dynamic length between 0 and the maximum length.
The long string type represents a dynamically allocated string with a maximum length limited only by
available memory. For new applications, it is recommended that you use the long string type.
Note A new compiler directive, $H, controls whether the reserved word string represents a short string

or a long string. In the default state, {$H+}, string represents a long string, and using the string
keyword is the same as using the predefined identifier AnsiString. In the {$H–} state, string
represents a short string with a maximum length of 255 characters, and using the string keyword
is the same as using the predefined identifier ShortString.

Two consecutive single quotes are used to indicate a single quote in a string.

Example
{ String Type Definitions }
 const
 LineLen = 79;
 type
 Name = string[25];
 Line = string[LineLen];

See also
String (reserved word)

String operators

String-type constants

Type compatibility

Short string types
See also String types

The declaration of a short-string-type specifies a maximum length between 1 and 255 characters.
Variables of a short-string-type can contain strings with a dynamic length between 0 and the declared
maximum length.

The predefined type ShortString denotes a short-string-type with a maximum length of 255 characters.
The number of bytes of storage occupied by a short-string-type variable is the maximum length of the
short-string-type plus one.
When assigning a string value to a short string variable, the string value is truncated if it is longer than the
declared maximum length of the short string variable.
You can index a short string variable with a single index expression, whose value must be in the range
0..N, where N is the declared maximum length of the short string. The type of a character accessed
through indexing of a short string is Char. The index of the first character in a string is 1. The element at
index 0 contains the dynamic length of the string, and for a short string, Length(S) is the same as
Ord(S[0]). Assigning a value to the zeroth element of a short string alters the dynamic length of the
string, but the compiler doesn't check whether the value is less than the declared maximum length of the
string. It is possible to index a short string beyond its current dynamic length. The character values read
in that case are undefined and assignments to character positions beyond the current length do not
affect the actual value of the short string variable.

The Low and High standard functions can be applied to a short-string-type variable. In this case, Low
returns zero, and High returns the declared maximum length of the short string.

See also
String types

Long string types

String (reserved word)

Long string types
See also String types

The long-string-type is denoted by the reserved word string and by the predefined identifier AnsiString.

Note If you change the state of the $H compiler switch to {$H-}, the reserved word string denotes a
short-string with a maximum length of 255 characters. However, the predefined identifier
AnsiString always denotes the long-string-type.

Long strings are dynamically allocated and have no declared maximum length. The theoretical
maximum length of a long string value is 2GB (two gigabytes). In practice this means that the maximum
length of a long string value is limited only by the amount of memory available to an application.

Management of the dynamically allocated memory associated with a long string variable is entirely
automatic and requires no additional user code. The automatic management of long strings has the
following characteristics:

A long string variable occupies four bytes of memory which contain a pointer to a dynamically
allocated string. When a long string variable is empty (contains a zero-length string), the string pointer is
nil and no dynamic memory is associated with the string variable. For a non-empty string value, the string
pointer points to a dynamically allocated block of memory that contains the string value in addition to a
32-bit length indicator and a 32-bit reference count.

Long strings are reference counted. When a long string variable is assigned a new value, the
reference count of its previous value (if non-empty) is decremented, and the reference count of its new
value (if non-empty) is incremented. When the reference count of a string value reaches zero, the
dynamically allocated memory that contains the string value is deallocated. Reference counting
dramatically reduces string-data copying and memory consumption. The only data that is copied in a long
string assignment is the 32-bit string value pointer, and any number of long string variables can reference
the same value without consuming additional memory. For this reason, long string assignments typically
execute faster than short string assignments.

When indexing is used to change the value of a single character in a long string variable, a copy
of the string value is first created if the string value's reference count is greater than one. This is known as
copy-on-write semantics, and guarantees that the modification does not also modify other long string
variables that reference the string value.

Long string variables are always initialized to be empty when they are first created. This is true
whether a long string variable is global, local, or part of a structure such as an array, record, or object.

When long string variables go out of scope (such as upon exiting a function with local long string
variables, or upon destroying an object that contains long string fields), the reference count of their values
are automatically decremented. For a function this is true even if the function is exited because of an
exception.

You can index a non-empty long string variable with a single index expression, whose value must
be in the range 1..N, where N is the dynamic length of the long string. The type of a character accessed
through indexing of a long string is Char. The index of the first character in a long string is 1. Unlike short
strings, long strings have no zeroth element that contains the dynamic string length. To find the length of a
long string you must use the Length standard function, and to set the length of a long string you must use
the SetLength standard procedure.
While it is possible to assign to a character position obtained by indexing a long string, it is not possible
to pass such a character as a var parameter.

When declaring long string fields in a record type, all such fields must reside in the non-variant part of
the record type. In other words, long string fields or fields of a type that contains long strings are not
allowed in a variant part of a record type.

Long strings and null-terminated strings
Dynamic memory allocated for a long string value is automatically terminated by a null character (the
null character is not part of the string, but rather is automatically stored right after the last character in
the string). Because of the automatic null character termination, it is possible to directly typecast a long
string value to a PChar value. The syntax of such a typecast is PChar(S), where S is a long string
expression. A PChar typecast returns a pointer to the first character of the long string value, and is

guaranteed to return a pointer to a null terminated string even if the string expression is empty.

The following example shows how PChar typecasts can be used to pass long string values to a function
that expects null-terminated string parameters. Caption and Message are long string variables, and
MessageBox is a Win32 API function defined in the Windows interface unit.
Caption := 'Hello world';
Message := 'This is a test of long strings';
MessageBox(0, PChar(Message), PChar(Caption), MB_OK);

It is also possible to typecast a long string to an untyped pointer, using the syntax Pointer(S), where S is
a long string expression. A Pointer typecast returns the address of the first character of the long string
value. Unlike a PChar typecast, a Pointer typecast returns nil if the string expression is empty.

The lifetime of a pointer returned by a PChar or Pointer typecast depends on the argument of the
typecast. If the argument is a long string expression, the pointer remains valid only within the statement
in which the typecast is performed. This essentially limits such a typecast to use only in parameter
expressions. If the argument is a long string variable, the pointer remains valid until a new value is
assigned to the variable, or until the variable goes out of scope.

In general, the null-terminated string referenced by the pointer returned by a PChar or Pointer typecast
should be considered read-only.

It is possible to use the pointer returned by a PChar or Pointer typecast to modify a corresponding long
string, but it is safe to do so only in certain situations. Given a typecast of the form PChar(S) or
Pointer(S), the null-terminated string referenced by the result of the typecast can be modified only if all
of the following requirements are satisfied:

S is a long string variable (not an expression).
The value of S is not empty. In other words, S must contain a string with a length greater than

zero.
The value of S is unique, that is the long string value has a reference count of one. Following a

call to the SetLength, SetString, and UniqueString standard procedures, a long string variable's value is
unique, and it is guaranteed to remain unique as long as the string variable is not referenced in a string
expression.

S has not been modified and has not gone out of scope since it was typecast.
The characters modified all lie within the length of the string. In other words, when indexing the

returned PChar value, index values must be between 0 and Length(S) – 1.

See also
String types

Short string types

String (reserved word)

Null-terminated strings

Using strings
See also String types

The ordering between any two string values is defined by the ordering relationship of the character
values in corresponding positions. In two strings of unequal length, each character in the longer string
without a corresponding character in the shorter string takes on a higher or greater-than value. For
example, 'BA' is greater than 'A'. Zero length strings are equal only to other zero length strings, and they
hold the least string values.

Operators for the string types are described in "String operator" and "Relational operators" in Chapter 5.

It is possible to mix short and long string types in assignments and expressions, but strings passed as
var parameters must be of the appropriate type. In other words, it is not possible to pass a short string
as a var parameter to a procedure or function that expects a long string, and vice versa.

A short string can be explicitly converted to a long string using a typecast of the form AnsiString(S),
where S is a short string expression. Also, in the default {$H+} state, a typecast of the form string(S),
will convert a short string expression to a long string.

A long string can be explicitly converted to a short string using a typecast of the form ShortString(S),
where S is a long string expression. Also, in the {$H–} state, a typecast of the form string(S), will
convert a long string expression to a short string.

See also
Long string types

Short string types

String (reserved word)

Structured types
See also Types

A structured type holds more than one value. The components of structured types can be manipulated
individually or as a whole, and can themselves be structured types. There is no limit to the number of
such nested structures.

Object Pascal's structured types are:

array types
file types
class types
class reference types
record types
set types

A structured type can have nested levels.

Class types and class reference types are the cornerstones of object oriented programming in Object
Pascal.

The reserved word packed in a structured type's declaration tells the compiler to compress data
storage, even at the cost of diminished access to a component of a variable of this type. By default
Object Pascal aligns components of structured types on word or double-word boundaries for faster
access. Adding packed to a structured type's declaration overrides such alignment for that type.

See also
Structured-type constants

Type compatibility

Array types
See also Example Structured types

Arrays are one dimensional or multidimensional containers that hold multilple variables of the same
type. Each variable of the array can be referred to by the array name and the its index enclosed in
brackets.

To specify an array type you must give the compiler two pieces of information:

The ordinal index type of an array that specifies the number of elements.
The base type.

The number of elements in an array is the product of the number of values in each index type.

To access the elements of the array, add brackets and an index value to the array identifier. The
following statement accesses the third element in the array:
array[3];
Use the standard functions Low and High with an array-type identifier or a variable reference of an array
type to return the low and high bounds of the index type of the array.

Multidimensional array types
If an array's component type is also an array, you can treat the result as an array of arrays or as a single
multidimensional array. For example,
array[Boolean] of array[1..10] of array[Size] of Real
is interpreted the same way by the compiler as
array[Boolean,1..10,Size] of Real

When declaring multidimensional arrays the total number of elements in the array is the product of the
number of values in each index type.

Zero-based arrays
Zero-based arrays are declared by assigning the first element in the array declaration an index of zero.
For example,
array[0..5] of Char
Use zero-based character arrays to store null-terminated strings. ,A zero-based character array is
compatible with a PChar value.

Array example
Here is a declaration of ;
array[1..100] of Real { declares an array that can hold 100 elements of
type real }

See also
Array (reserved word)

Array-type constants

Indexes

Null-terminated strings

Open-array parameters

Type compatibility

Variable reference

Record types
See also Example Structured types

A record type is a collection of fields that can be of different types.

The field name and field type must be assigned in the record-type declaration.

The fixed part of a record type sets out the list of fixed fields, giving an identifier and type for each. Each
field contains information that is always retrieved in the same way.

The variant part of a record type distributes memory space for more than one list of fields, letting you
access information in more than one way.

Each field list is a variant that overlays the same space in memory. Each variant is distinguished by a
constant, and you can access all fields of all variants at all times.

Each variant is identified by at least one constant. All constants must be unique and of an ordinal type
compatible with the tag field type.

The optional tag field identifier, is the identifier for an additional fixed field--the tag field--of the record.
The program uses the value of the tag field to show the active variant.

Without a tag field, the program selects a variant by another criterion.

Note Fields in the variant part of a record cannot be of a long string type or of the type Variant.
Likewise, fields in the variant part of a record cannot be of a structured type that contains long
string or Variant components.

Accessing records
You can access the whole record or each field individually. To access an individual field, type the record
name, a period, and then the field identifier. For example,
TDateRec.Year

To access an entire record, use the with statement.

See also
Record scope

Type compatibility

With statement

Record type examples
type
 TDateRec = record
 Year: Integer;
 Month: 1..12;
 Day: 1..31;
 end;

type
 TPerson = record
 FirstName, LastName: string[40];
 BirthDate: TDate;
 case Citizen: Boolean of
 True: (BirthPlace: string[40]);
 False: (Country: string[20];
 EntryPort: string[20];
 EntryDate: TDate;
 ExitDate: TDate);
 end;

Class types
See also Example Structured types

A class type is a structure consisting of a fixed number components.

Possible components of a class are

fields
methods
properties

Unlike other types, a class type can be declared only in a type declaration part in the outermost scope of
a program or unit. Therefore, a class type cannot be declared in a variable declaration part or within a
procedure, function, or method block.

A class type is declared using the reserved word class and defines the contents of a class. Classes are
also called "object types." The two terms are interchangeable.

You must globally declare a class type. A class type cannot be declared in a variable declaration part or
within a procedure, function, or method block.

The component type of a file cannot be a class type, or any structured type with a class-type
component.

Inheritance
A class type can inherit components from another class type. The inheriting class is a descendant and
the class inherited from is its ancestor.

Inheritance is transitive; for example, if T3 inherits from T2, and T2 inherits from T1, then T3 also inherits
from T1. The domain of a class type consists of itself and all its descendants.

A descendant class implicitly contains all the components defined by its ancestor classes. A descendant
class can add new components to those it inherits. However, it cannot remove the definition of a
component defined in an ancestor class.

The predefined class type TObject is the ultimate ancestor of all class types. If the declaration of an
class type does not specify an ancestor type (that is, if the heritage part of the class declaration is
omitted), the class type will be derived from TObject. TObject is declared by the System unit, and
defines a number of methods that apply to all classes.

Class-type compatibility
A class type is assigment-compatible with any ancestor object type; therefore, during program
execution, a class type variable can reference an instance of that type or an instance of any descendant
type. For example, given the declarations
type
 TFigure = class
 :
 end;
 TRectangle = class(TFigure)
 :
 end;
 TRoundRect = class(TRectangle)
 :
 end;
 TEllipse = class(TFigure)
 :
 end;

a value of type TRectangle can be assigned to variables of type TRectangle, TFigure, and TObject, and
during execution of a program, a variable of type TFigure might be either nil or reference an instance of
TFigure, TRectangle, TRoundRect, TEllipse, or any other instance of a descendant of TFigure.

See also
Class (reserved word)

Component scope

Component visiblity

Instantiating objects

Methods

Class type example
The following example declares the class TField
TField = class
private
 X, Y, Len: Integer;
 FName: string;
public
 constructor Copy(F: TField);
 constructor Create(FX, FY, FLen: Integer; FName: string);
 destructor destroy; override;
 procedure Display; virtual;
 procedure Edit; dynamic;
protected
 function GetStr: string; virtual;
 function PutStr(S: string): Boolean; virtual;
private
 procedure DisplayStr(X, Y: Integer; S: string);
public
 property Name: String read GetStr write Buffer;
end;

 TStrField = class(TField)
 private
 Value: PString;
 public
 constructor Create(FX, FY, FLen: Integer; FName: string);
 destructor Destroy; override;
 protected
 function GetStr: string; override;
 function PutStr(S: string): Boolean; override;
 end;

 TNumField = class(TField)
 private
 Value, Min, Max: Longint;
 public
 constructor Create(FX, FY, FLen: Integer; FName: string;
 FMin, FMax: Longint);
 function GetStr: string; override;
 function PutStr(S: string): Boolean; override;
 function Get: Longint;
 procedure Put(N: Longint);
 end;

Methods
See also Class types

A method is a procedure or function declared inside an object-type declaration that performs an
operation on an object.

Methods declared in an object type are by default static. When a static method is called, the declared
(compile-time) type of the class or object used in the method call determines which method
implementation to activate.

Methods can access the object's data fields without having them passed to it as parameters.

The declaration inside the object-type declaration corresponds to a forward declaration of that method.

The body of the method is defined outside the object type declaration but within the same scope. Its
header must contain the name of the object type it is bound to., like this:

procedure ObjectType.Method(Param1, Param2: Integer);
begin
...
end; (* Method *)

Within the implementation of a method, the identifier Self represents an implicit parameter that
references the object for which the method was invoked.

By default methods are static; however, they can also be any of the following types:

Virtual methods

Class methods

Constructors and destructors are special methods that control construction and destruction of objects.

Within a method, a function call or procedure statement allows a qualified method designator to activate
a specific method. This type of call is known as a qualified method activation.

See also
Constructors and destructors

Method activation

Method declarations

Object types

Qualified-method activation

Self

Method implementations
Example

The declaration of a method within an object type corresponds to a forward declaration of that method.
Somewhere after the object-type declaration, and within the same module, the method must be
implemented by a defining declaration.

For procedure and function methods, the defining declaration takes the form of a normal procedure or
function declaration, except that the procedure or function identifier in the heading is a qualified method
identifier.

For constructors and destructors, the defining declaration takes the form of a procedure method
declaration, except that the procedure reserved word is replaced by constructor or destructor.

A method's defining declaration can optionally repeat the formal parameter list of the method heading in
the class type. The defining declaration's method heading must match exactly the order, types, and
names of the parameters, and the type of the function result, if any.

In the defining declaration of a method, there is always an implicit parameter with the identifier Self,
corresponding to a formal parameter of the class type. Within the method block, Self represents the
instance for which the method was activated.

The scope of a component identifier in an object type extends over any procedure, function, constructor,
or destructor block that implements a method of the class type.

Within a method block, the reserved word inherited can be used to access redeclared and overridden
component identifiers. When an identifier is prefixed with inherited, the search for the identifier begins
with the immediate ancestor of the enclosing method's object type.

Example
Given the following object type declaration,

type
 TFramedLabel = class(TLabel)
 protected
 procedure Paint; override;
 end;

the Paint method must later be implemented by a defining declaration, for example,
procedure TFramedLabel.Paint;
begin
 inherited Paint;
 with Canvas do
 begin
 Brush.Color := clWindowText;
 Brush.Style := bsSolid;
 FrameRect(ClientRect);
 end;
end;

Virtual methods
See also Example

Virtual methods are resolved by the compiler at run-time; this process is known as late binding. By
default, all methods are static except constructor methods, but you can make any methods virtual by
including a virtual directive in the method declaration.

When a virtual method is called, the actual (run-time) type of the class or object used in the method call
determines which method implementation to activate.

Overriding a virtual method
An object type can override (redefine) any of the methods it inherits from its ancestors. The scope of an
override method extends over all of the descendants of the defining object, or until you redefine the
method identifier.

An override of a virtual method must match exactly the order, types, and names of the parameters, and
the type of the function result, if any. The override must include the override directive in place of virtual.

Note: The only way to override a virtual method is through the override directive. If a method
declaration in a descendant class specifies the same method identifier as an inherited method,
but does not specify an override directive, the new method declaration will hide the inherited
declaration, but not override it.

Example
The following two descendant classes override the Draw method inherited from TFigure.
type
 TRectangle = class(TFigure)
 procedure Draw; override;
 :
 end;
 TEllipse = class(TFigure)
 procedure Draw; override;
 :
 end;
The following section of code illustrates the effect of calling a virtual method through a class type
variable whose actual type varies at run-time.
var
 Figure: TFigure;
begin
 Figure := TRectangle.Create;
 Figure.Draw; { Invokes TRectangle.Draw }
 Figure.Destroy;
 Figure := TEllipse.Create;
 Figure.Draw; { Invokes TEllipse.Draw }
 Figure.Destroy;
end;

See also
Methods

Override directive

Virtual (standard directive)

Instantiating objects
See also

An instance of an object type is a dynamically allocated block of memory with a layout defined by the
object type.

Instances of an object type are also commonly referred to as objects. Each object of an object type has
a unique copy of the fields declared in the object type, but all share the same methods.

A variable of an object type contains a reference to an object of the object type. The variable does not
contain the object itself, but rather is a pointer to the memory block that has been allocated for the
object. Analagous to pointer variables, multiple object-type variables can refer to the same object, and
an object-type variable can contain the value nil, indicating that it does not currently reference an object.

Note: Contrary to a pointer variable, it is not necessary to dereference an object-type variable to gain
access to the referenced object. In other words, where it is necessary to write Ptr^.Field to access
a field in a dynamically allocated record, the ^ operator is implied when accessing a component of
an object, and the syntax is simply Instance.Field.

See also
Constructors and destructors

Methods

Virtual methods

Method activation
See also

You can activate a method by calling a function or procedure statement consisting of a method
designator followed by an actual parameter list.

The variable reference must be an instance of an object reference or class reference, and the method
identifier must be a method of that object type.

The method designator becomes an implicit actual parameter of the method. It corresponds to a formal
variable parameter named Self that possesses the object type corresponding to the activated method.

When using a with statement, you can omit the variable-reference part of a method designator because
it references the Self parameter.

Within a method declaration, you can omit the variable reference. The implicit Self parameter of the
method activation becomes the Self of the method containing the call.

See also
Function calls

Method declarations

Parameters

Procedure statements

Qualified-method activation

With statement

Qualified-method activations
See also Example

Qualified-method activation uses a qualifier to call a specific method. It can occur within any of the
following:

A method
A function call
A procedure statement

The object type in a qualified-method designator must be the same as the enclosing method's object
type or an ancestor of it.

Use the reserved word inherited to specify the ancestor of the enclosing method's object type; you
cannot use inherited within methods of an object type that has no ancestor.

The implicit Self parameter of a qualified-method activation becomes the Self of the method containing
the call.

A qualified-method activation is always static and always invokes the specified method.

Use qualified-method activation within an override method to activate the overridden method.

See also
Function calls

Method declarations

Object types

Procedure statements

Qualified-method activation examples
The following example demonstrates a qualified-method activation that overrides a method and reuses
the code of the method it overrides.
constructor TShape.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 Width := 65;
 Height := 65;
 FPen := TPen.Create;
 FPen.OnChange := StyleChanged;
 FBrush := TBrush.Create;
 FBrush.OnChange := StyleChanged;
end;

Component visibility
See also Class types

The visibility of a component identifier is governed by the visibility attribute of the component part in
which the identifier was declared. There are five possible visibility attributes:

published
public
protected
private
automated

Component identifiers declared in the component list that immediately follows the object type heading
have the published visibility attribute if the object type is compiled in the {$M+} state or is derived from a
class that was compiled in the {$M+} state. Otherwise, such component identifiers have the public
visibility attribute.

See also

Set types
See also Types

A set type is a collection of objects of the same ordinal type. To declare a set type use the reserved
words set of followed by the base type.

A set type's range of values is the power set of a particular ordinal type (the base type). Each possible
value of a set type is a subset of the possible values of the base type.

A variable of a set type can hold none or all the values of the set. Every set type can hold the value [],
which is called the empty set.

The base type must not have more than 256 possible values, and the ordinal values of the upper and
lower bounds of the base type must be within the range 0 to 255.

Comparing sets
If A and B are set operands, their comparisions produce the following results:

A = B is True only if A and B contain exactly the same members; otherwise, A <> B.
A <= B is True only if every member of A is also a member of B.
A >= B is True only if every member of B is also a member of A.

Testing set membership
The relational operator in returns True if the value of the ordinal-type operand is a member of the set-
type operand; otherwise, it returns False.

See also
Ordinal types

Relational operators

Set (reserved word)

Set operators

Set-type constants

Type compatibility

File types
See also Types

A file type is a linear sequence of elements that can be of any type except the following:

File type
Any structured type with a file-type component
An object type

The number of elements is not set by the file-type declaration.

If you omit the word of and the type from the file declaration, the file is an untyped file.

The standard file type Text (or TextFile) represents a file containing characters organized into lines.

See also
File (reserved word)

Type compatibility

Type compatibility
See also

Compatibility between two types is required in expressions or in relational operations. Type compatibility
is a precondition of assignment compatibility.

Types are compatible when at least one of the following conditions is true:

Both types are the same.
Both types are real types.
Both types are integer types.
One type is a subrange of the other.
Both types are subranges of the same host type.
Both types are set types with compatible base types.
Both types are packed string types with an identical number of components.
One type is a string type and the other is either a string type, packed-string type, or Char type.
One type is Pointer and the other is any pointer type.
Both types are class types or class reference types, and one type is derived from the other.
One type is PChar and the other is a zero-based character array of the form array[0..X] of Char.
Both types are pointers to identical types. (This applies only when type-checked pointers are

enabled with the {$T+} directive.)
Both types are procedural types with identical result types, an identical number of parameters,

and a one-to-one identity between parameter types.
One type is Variant and the other is either an integer type, a real type, string type or Boolean

type.

See also
Assignment compatibility

Assignment compatibility
See also

Assignment compatibility is necessary when a value is assigned to something, such as in an assignment
statement or in passing value parameters.

An object type is assigment compatible with any ancestor object type.

A value of type T2 is assignment-compatible with a type T1 (that is, T1 := T2 is allowed) if any of the
following are true:

T1 and T2 are identical types and neither is a file type or a structured type that contains a file-type
component at any level of structuring.

T1 and T2 are compatible ordinal types, and the value of type T2 falls within the range of possible
values of T .

T1 and T2 are real types, and the value of type T2 falls within the range of possible values of T1.
T1 is a real type, and T2 is an integer type.
T1 and T2 are string types.
T1 is a string type, and T2 is a Char type.
T1 is a string type, and T2 is a packed-string type.
T1 is a long string type, and T2 is of type PChar.
T1 and T2 are compatible, packed-string types.
T1 and T2 are compatible set types, and all the members of the value of type T2 fall within the

range of possible values of T1.
T1 and T2 are compatible pointer types.
T1 is a class type and T2 is a class type derived from T1.
T1 is a class reference type and T2 is a class reference type derived from T1.
T1 is a PChar and T2 is a string constant.
T1 is a PChar and T2 is a zero-based character array of the form array[0..X] of Char
T1 and T2 are compatible procedural types.
T1 is a procedural type, and T2 is a procedure or function with an identical result type, an

identical number of parameters, and a one-to-one identity between parameter types.
T1 is Variant and T2 is an integer type, real type, string type, or Boolean type.
T1 is an integer type, real type, string type, or Boolean type, and T2 is Variant.

A compile-time error occurs when assignment compatibility is necessary and none of the items in the
preceding list are true.

See also
Type compatibility

Class reference types
See also Example Object types

Class-reference types allow operations to be performed directly on classes. This contrasts with class
types, which allow operations to be performed on instances of classes. Class-reference types are
sometimes referred to as metaclasses or metaclass types.

Class-reference types are useful in the following situations:

With a virtual constructor to create an object whose actual type is unknown at compile time
With a class method to perform an operation on a class whose actual type is unknown at compile

time
As the right operand of an is operator to perform a dynamic type check with a type that is

unknown at compile time
As the right operand of an as operator to perform a checked typecast to a type that is unknown at

compile time
The declaration of a class-reference type consists of the reserved words class of followed by a class-
type identifier. For example,

type
 TComponent = class(TPersistent)
 :
 end;
 TComponentClass = class of TComponent;
 TControl = class(TComponent)
 :
 end;
 TControlClass = class of TControl;
var
 ComponentClass: TComponentClass;
 ControlClass: TControlClass;

The previous declarations define TComponentClass as a type that can reference class TComponent, or
any class that derives from TComponent, and TControlClass as a type that can reference class
TControl, or any class that derives from TControl.

Class-type identifiers function as values of their corresponding class-reference types. For example, in
addition to its other uses, the TComponent identifier functions as a value of type TComponentClass, and
the TControl identifier functions as a value of type TControlClass.

A class-reference type value is assignment-compatible with any ancestor class-reference type.
Therefore, during program execution, a class-reference type variable can reference the class it was
defined for or any descendant class of the class it was defined for. Referring to the previous
declarations, the assignments

ComponentClass := TComponent; { Valid }
ComponentClass := TControl; { Valid }

are both valid. Of these assignments,
ControlClass := TComponent; { Invalid }
ControlClass := TControl; { Valid }

only the second one is valid, however. The first assignment is an error because TComponent is not a
descandant of TControl, and therefore not a value of type TControlClass.

A class-reference type variable can be nil, which indicates that the variable does not currently reference
a class.

Every class inherits (from TObject) a method function called ClassType, which returns a reference to the
class of an object. The type of the value returned by ClassType is TClass, which is declared as class of
TObject. This means that the value returned by ClassType may have to be typecast to a more specific
descendant type before it can be used, for example

if Control <> nil then
 ControlClass := TControlClass(Control.ClassType) else
 ControlClass := nil;

See also
Class (reserved word)

Example
type
 {A variable of type TComponentRef can be set at run time to refer
 to TComponentClass or any of its subclasses}
 TComponentRef = class of TComponentClass;

var
 TCRef: TComponentRef;
 NewComponent: TComponent;

...

TCRef := TButton; {TCRef can now be used anywhere the name of the
 class TButton could be used}
NewComponent := TCRef.Create; {TCRef is used here to create a new
 TButton}

...

Null-terminated strings
See also

The Object Pascal compiler supports a class of character strings called null-terminated strings. Null-
terminated strings are widely used by the C and C++ programming languages, and by Windows itself.
Using Object Pascal's null-terminated string support and the null-terminated string handling functions
supplied by the SysUtils unit, you can easily interface with other languages and the Windows API.

What is a null-terminated string?
A null-terminated string consists of a sequence of non-null characters followed by a NULL (#0)
character. Unlike Object Pascal strings, null-terminated strings have no separate length indicator.
Instead, the first NULL character in a null-terminated string marks the end of the string.

Using null-terminated strings
Null-terminated strings are stored as arrays of characters with a zero-based integer index type, like
array[0..X] of Char

where X = a positive nonzero integer.

This is called a zero-based character array.

Null-terminated strings use character pointers with

String literals
Character arrays

Null-terminated strings and standard procedures
The following standard procedures can be applied to zero-based character arrays:

Read
Readln
Str
Val

The following procedures can also be applied to character pointers:

AssignFile
Rename
Val
Write
Writeln

See also
String types

Character pointer indexing

Null-terminated string functions

Mixing long strings and null-terminated strings

Null-terminated wide character strings

Character pointers and string literals
See also Example Null-terminated strings

A string literal is assignment-compatible with the PChar type. This means that a string literal can be
assigned to a variable of type PChar.

The effect of such an assignment is that the pointer points to an area of memory that contains a null-
terminated copy of the string literal.

You can use string literals as actual parameters in procedure and function calls when the corresponding
formal parameter is of type PChar. Just as it does with an assignment, the compiler generates a null-
terminated copy of the string literal.

You can initialize a typed constant of type PChar with a string constant. You can do this with structured
types as well, such as arrays of PChar and records and objects with PChar fields.

See also
Character pointers and character arrays

Character pointer indexing

Null-terminated strings

Example
var
 P: PChar;
begin
 P := 'Hello world...';
end;

Character pointers and character arrays
See also Example Null-terminated strings

A zero-based character array is compatible with the PChar type. This means that whenever a PChar is
expected, you can use a zero-based character array instead.

When you use a character array in place of a PChar value, the compiler converts the character array to
a pointer constant whose value corresponds to the address of the first element of the array.

You can initialize a typed constant of a zero-based character array type with a string literal that is shorter
than the declared length of the array. The remaining characters are set to NULL (#0), and the array
effectively contains a null-terminated string.

See also
Character pointers and character arrays

Character pointer indexing

Null-terminated strings

Example

var
 A: array[0..63] of Char;
 P: PChar;

begin
 P := A; {P now points to the first element of A}
 PrintStr(A);
 PrintStr(P); {PrintStr is called twice with the same value}
end;

Character pointer indexing
See also Example Null-terminated strings

Since a zero-based character array is compatible with a character pointer, a character pointer can be
indexed as if it were a zero-based character array.

When you index a character pointer, the index specifies a signed offset to add to the pointer before it is
dereferenced. Therefore, P[0] = P^. P[0] specifies the character pointed to by P; P[1] specifies the
character right after the one pointed to by P; P[2] specifies the next character, and so on. Likewise, P[-1]
specifies the character right before the one pointed to by P, and so on.

The compiler performs no range checks when indexing a character pointer because it has no type
information available to determine the maximum length of the null-terminated string pointed to by the
character pointer. Your program must perform any such range checking.

Example
{The following example uses character pointer indexing to convert a null-
terminated string to uppercase.}

function StrUpper(Str: PChar): PChar;
var
 I: Integer;
begin
 I := 0;
 while Str[I] <> #0 do
 begin
 Str[I] := UpCase(Str[I]);
 Inc(I);
 end;
 StrUpper := Str;
end;

See also
PChar

Null-terminated string functions
Null-terminated strings

The SysUtils unit provides a number of null-terminated string handling functions. The following table
gives a brief description of each of these functions.

Function Description

StrAlloc Allocates a character buffer of a given size on the heap.

StrBufSize Returns the size of a character buffer allocated using StrAlloc or StrNew.

StrCat Concatenates two strings.

StrComp Compares two strings.

StrCopy Copies a string.

StrDispose Disposes a character buffer allocated using StrAlloc or StrNew.

StrECopy Copies a string and returns a pointer to the end of the string.

StrEnd Returns a pointer to the end of a string.

StrFmt Formats one or more values into a string.

StrIComp Compares two strings without case sensitivity.

StrLCat Concatenates two strings with a given maximum length of the resulting string.

StrLComp Compares two strings for a given maximum length.

StrLCopy Copies a string up to a given maximum length.

StrLen Returns the length of a string.

StrLFmt Formats one or more values into a string with a given maximum length.

StrLIComp Compares two strings for a given maximum length without case sensitivity.

StrLower Converts a string to lower case.

StrMove Moves a block of characters from one string to another.

StrNew Allocates a string on the heap.

StrPCopy Copies a Pascal string to a null-terminated string.

StrPLCopy Copies a Pascal string to a null-terminated string with a given maximum
length.

StrPos Returns a pointer to the first occurrence of a given substring within a string.

StrRScan Returns a pointer to the last occurrence of a given character within a string.

StrScan Returns a pointer to the first occurrence of a given character within a string.

StrUpper Converts a string to upper case.

Mixing long strings and null-terminated strings
See also Null-terminated strings

Object Pascal allows you to mix long strings and null-terminated strings in expressions and
assignments. The rules that control mixing of long strings and null-terminated strings are outlined below.

A null-terminated string is assignment compatible with a long string. In other words, a PChar
value can be assigned to a variable of type string, or passed as a constant or value parameter of type
string. For example, the assignment S := P, where S is a string variable and P is a PChar expression,
copies a null-terminated string into a long string.

In an expression, if one operand of a binary operator is of type string and the other is of type
PChar, the PChar operand is automatically converted to type string.

A typecast of the form string(P), where P is a PChar expression, can be used to explicitly convert
a null-terminated string to a long string. This is useful in situations where both operands of an operator
are of type PChar, but you want to perform a string operation. For example,

S := string(P1) + string(P2);

concatenates two null-terminated strings to form a resulting long string.

A typecast of the form PChar(S), where S is a long string expression, can be used to convert a
long string to a null-terminated string.

See also
Long string types

Null-terminated wide character strings
See also Null-terminated strings

The Windows operating system supports three types of character sets:

single-byte character sets
double-byte character sets
the Unicode character set

Single-byte characters
With a single-byte character set (SBCS), a character string is a sequence of bytes, and each byte
represents an individual character.

The ANSI character set used by most Western versions of Windows is a single-byte character set.

Double-byte characters
With a double-byte character set (DBCS), a character string is also a sequence of bytes, but unlike a
single-byte character set, some characters are represented by one byte and others by two bytes.

The first byte of a two byte character is called the lead byte.

In general, the lower 128 characters of a double-byte character set map to the 7-bit ASCII character set,
and lead bytes typically have ordinal values greater than or equal to 128.

Double-byte character sets are widely used in Asia, where native character sets contain far more than
256 characters.

Unicode characters
The Unicode character set is fundamentally different from single- and double-byte character sets in that
each character is represented as a word (two bytes). A character string in the Unicode character set is a
sequence of words, not bytes.

Unicode characters are also known as wide characters, and Unicode strings are often referred to as
wide character strings.

With 65536 possible values for each character, Unicode can represent all the world's characters in
modern computer use, including technical symbols and special characters used in publishing.

The first 256 characters of the Unicode character set map to the ANSI character set.

Object Pascal character sets
Object Pascal supports single- and double-byte characters and character strings through the AnsiChar,
PAnsiChar, and AnsiString fundamental types, and the Char, PChar, and string generic types. Wide
characters are suppored through the WideChar and PWideChar types.

There is no wide character equivalent of the string type.

Strings of wide characters
The null-terminated string handling features of Object Pascal also apply to the PWideChar type. This
means that a string literal is assignment compatible with the PWideChar type (although the string literal
can only contain wide characters with ordinal values in the ANSI character range). Also, a zero-based
wide character array of the form
array[0..X] of WideChar

is assignment compatible with the PWideChar type, and a value of type PWideChar can be indexed as if
it were a zero-based wide character array. Furthermore, the character-pointer operators (+ and –) also
apply to wide character pointers.

Note When adding or subtracting integer offsets to and from wide character pointers, the offsets
represent distances in wide characters, and are therefore automatically multiplied by two before
being added to or subtracted from the pointers. Likewise, when subtracting one wide character
pointer from another, the resulting integer is automatically divided by two to yield a distance in
wide characters.

The System unit provides three functions, WideCharToString, WideCharLenToString, and
StringToWideChar, that can be used to convert null-terminated wide character strings to single- or
double-byte long strings.

See also
Character types

String types

Null-terminated string functions

Variant types
See also Examples Types

The Variant type is capable of representing values that change type dynamically. Whereas a variable of
any other type is statically bound to that type, a variable of the Variant type can assume values of
differing types at run-time. The Variant type is most commonly used in situations where the actual type
to be operated upon varies or is unknown at compile-time.

The predefined identifier Variant is used denote the variant type. Variants have the following
characteristics:

Variants can contain integer values, real values, string values, boolean values, date-and-time
values, and OLE Automation objects. In addition, variants can contain arrays of varying size and
dimension with elements of any of these types.

The special variant value Unassigned is used to indicate that a variant has not yet been assigned
a value, and the special variant value Null is used to indicate unknown or missing data.

Variants can be combined with other variants and with integer, real, string, and boolean values in
expressions, and the compiler will automatically generate code that performs the necessary type
conversions.

When a variant contains an OLE Automation object, the variant can be used to get and set
properties of the object, and to invoke methods on the object.

Variant variables are always initialized to be Unassigned when they are first created. This is true
whether a variant variable is global, local, or part of a structure such as an array, record, or object.
Note that while variants offer great flexibility, they also consume more memory than regular variables,
and operations on variants are substantially slower than operations on statically typed values.

Variant type examples
The following section of code demonstrates the use of variants and some of the automatic type
conversions that are performed when variants are combined with other types.
var
 V1, V2, V3, V4, V5: Variant;
 I: Integer;
 D: Double;
 S: string;
begin
 V1 := 1; { Integer value }
 V2 := 1234.5678; { Real value }
 V3 := 'Hello world'; { String value }
 V4 := '1000'; { String value }
 V5 := V1 + V2 + V4; { Real value 2235.5678 }
 I := V1; { I = 1 }
 D := V2; { D = 1234.5678 }
 S := V3; { S = 'Hello world' }
 I := V4; { I = 1000 }
 S := V5; { S = '2235.5678' }
end;

See also
Values in variants

Variant type conversions

Variant expressions

Variant arrays

Variants and OLE Automation objects

Values in variants
Variant types

A variable of type Variant occupies 16 bytes of memory, and its internal representation consists of a type
code and a value (or a reference to a value) of the type given by the type code. The standard function
VarType returns a variant's type code. The following table lists the variant type constants and values,
and the meaning of each type code.

VarType Value Contents of variant
varEmpty $0000 The variant is Unassigned. The variant has not been assigned a

value and is assumed to be zero. When used in expressions,
VarEmpty is coerced to a zero value or empty string.

varNull $0001 The variant is Null. The variant has not been assigned a value.
VarNulls propogate through expressions. An expression
containing a VarNull variant and an assigned variant will evaluate to
VarNull. VarNull is usually used to indicate missing data, a state
which should propogate through all calculations on that data.

varSmallint $0002 16-bit signed integer (type Smallint).

varInteger $0003 32-bit signed integer (type Integer).

varSingle $0004 Single-precision floating-point value (type Single).

varDouble $0005 Double-precision floating-point value (type Double).

varCurrency $0006 Currency floating-point value (type Currency). The variant contains
a currency value (an 8 byte fixed point value with 4 decimal places)

varDate $0007 Date and time value (type TDateTime).

varOleStr $0008 Reference to an OLE string (a dynamically allocated Unicode
string). The variant contains a pointer to a null terminated string
allocated with SysAllocStr.

varDispatch $0009 Reference to an OLE automation object (an IDispatch interface
pointer).

varError $000A Operating system error code.

varBoolean $000B 16-bit boolean (type WordBool).

varVariant $000C Variant (used only with variant arrays).

varUnknown $000D Reference to an unknown OLE object (an IUnknown interface
pointer). The variant contains indeterminate or custom data.

varByte $0011 8-bit unsigned integer (type Byte).

varString $0100 Reference to a dynamically-allocated long string (type AnsiString).

varTypeMask $0FFF Bit mask for extracting type code. This constant is a mask that can
be combined with the VType field using a bit-wise AND..

varArray $2000 Bit indicating variant array. This constant is a mask that can be
combined with the VType field using a bit-wise AND to determine if
the variant contains a single value or an array of values.

varByRef $4000 This constant can be AND'd with Variant.VType to determine if the
variant contains a pointer to the indicated data instead of
containing the data itself.

The varXXXX constants returned by the VarType standard function are defined in the System unit. Note
that future versions of Object Pascal may define additional type codes, so be careful not to write code

that depends on only these codes being returned.

The varArray bit position is set if the variant contains an array of the given type. The varTypeMask bit
mask is used to extract the actual type code from a value returned by the VarType function. For
example, the following expression is True if V contains a Double or an array of Double:
if VarType(V) and varTypeMask = varDouble then ...

The TVarData record defined in the System unit can be used to typecast a Variant variable to gain
access to its internal representation. For further details, see the description of TVarData in the Visual
Component Library Reference manual.

Variant type conversions
See also Variant types

All integer, real, string, character, and boolean types are assignment compatible with the Variant type.
The following table lists the types that can be assigned to a Variant, and the resulting variant type codes.

Expression type Variant type code
integer types varInteger

real types except
Currency

varDouble

Currency type varCurrency

string and character
types

varString

Boolean types varBoolean

An expression can be explicitly cast to type Variant using a typecast of the form Variant(X), where X is
an expression of one of the types listed in the table above.

A Variant is assigment compatible with all integer, real, string, and Boolean types. The following tables
show the type conversion rules that govern conversions of Variant values to other types.

Converting a variant to an integer type value

Variant type Result
varEmpty 0.

varNull Raises an EVariantError exception.

varByte

varSmallint

varInteger

varError

Converts one integer format to another, raises an EVariantError exception
if value does not fit in destination format.

varSingle

varDouble

varCurrency

Rounds real value to nearest integer, raises an EVariantError exception if
result does not fit in destination format.

varDate Interprets date and time value as a Double, rounds value to nearest
integer, raises an EVariantError exception if result does not fit in
destination format.

varOleStr

varString

Converts string to integer, raises an EVariantError exception if string is not
a valid integer value or if result does not fit in destination format.

varBoolean 0 for False, -1 for True (255 if destination type is Byte).

Converting a variant to a real type value

Variant type Result
varEmpty 0.

varNull Raises an EVariantError exception.

varByte

varSmallint

varInteger

Converts integer to real.

varError

varSingle

varDouble

varCurrency

Converts from one real format to another, raises an EVariantError
exception if value does not fit in destination format.

varDate Interprets value as a Double, converts value to destination format, raises
an EVariantError exception if value does not fit in destination format.

varOleStr

varString

Converts string to real using the Regional Settings in the Windows Control
Panel, raises an EVariantError exception if string is not a valid real value
or if result does not fit in destination format.

varBoolean 0 for False, -1 for True.

Converting a variant to a date and time value

Variant type Result
varEmpty 12/30/1899 12:00:00 am.

varNull Raises exception.

varByte

varSmallint

varInteger

varError

Converts integer to Double, interprets result as a date and time value.

varSingle

varDouble

varCurrency

Converts value to Double, interprets result as a date and time value.

varDate No translation.

varOleStr

varString

Converts string to a date and time value using the Regional Settings in the
Windows Control Panel.

varBoolean Converts Boolean to Double, interprets result as a date and time value.

Converting a variant to a string type value

Variant type Result
varEmpty Empty string.

varNull Raises exception.

varByte

varSmallint

varInteger

varError

Converts integer value to its string representation.

varSingle

varDouble

varCurrency

Converts real value to its string representation using the Regional Settings
in the Windows Control Panel.

varDate Converts date and time value to its string representation using the
Regional Settings in the Windows Control Panel.

varOleStr Converts from Unicode to ANSI if destination type is varString.

varString Converts from ANSI to Unicode if destination type is varOleStr.

varBoolean '0' for True, '-1' for False.

Converting a variant to a Boolean type value

Variant type Result
varEmpty False.

varNull Raises exception.

varByte

varSmallint

varInteger

varError

False if value is zero, True if value is non-zero.

varSingle

varDouble

varCurrency

False if value is zero, True if value is non-zero.

varDate Interprets value as a Double, returns False if value is zero, True if value is
non-zero.

varOleStr

varString

False if string contains 'false' (case insensitive) or a numeric string that
evaluates to zero, True if string contains 'true' (case insensitive) or a
numeric string that evaluates to non-zero, otherwise raises an
EVariantError exception.

varBoolean No translation.

A Variant value can be explicitly cast to an integer, real, string, or Boolean type using a typecast of the
form TypeName(V), where TypeName is an integer, real, string, or Boolean type identifier and V is an
expression of type Variant. Furthermore, the VarAsType standard function and the VarCast standard
procedure can be used to change the internal representation of a variant. The tables above list the rules
that govern all such type conversions.

If a variant contains a reference to an OLE Automation object (the varDispatch type code), any attempt
to convert the variant to another type will first fetch the value of the object's default property and then
convert that value to the requested type. If the given OLE Automation object has no default property, an
EVariantError exception is raised.

See also
Values in variants

Variant expressions

Variant expressions
See also Variant types

Variants can participate in expressions. The following operators support operands of type Variant:

 + – * / div mod shl shr and or xor not = <> < > <= >=

For operators that take two operands, if one operand is of type Variant, the other operand is
automatically converted to type Variant using the rules set forth in Variant type conversions. The result
type of a non-relational operation (all operators shown above but the last six) on Variant values is
always Variant. The result type of a relational operation on Variant values is always Boolean.

For all non-relational operators, if one or both operands are Unassigned, an EVariantError exception is
raised. In other words, no operations other than comparisons are allowed on Unassigned variants.

Also for all non-relational operators, if one or both operands are Null, the result of the operation is Null.
In other words, Null values propagate through expressions, and the presence of a Null value in an
expression causes the entire expression to become Null.

When performing a double operand operation, the common type of the two Variant operands governs
the operation. The common type is determined using the matrix shown in the table below. When reading
this table, variant type codes varSmallint, varInteger, and varByte map to Integer, varSingle and
varDouble map to Double, and varOleStr and varString map to String.

Variant operation type matrix
Integer Double Currency String Boolean Date

Integer Integer Double Currency Double Integer Date

Double Double Double Currency Double Double Date

Currency Currency Currency Currency Currency Currency Date

String Double Double Currency String Boolean Date

Boolean Integer Double Currency Boolean Boolean Date

Date Date Date Date Date Date Date

For example, in the operation V1 + V2, if the type code of V1 is varInteger and the type code of V2 is
varString, the common type used to perform the operation is Double.

For non-relational operators, once the common type is established the operation proceeds as described
in the following table.

Non-relational variant operator results
Common type Operator results

Integer For all operators except /, the operands are converted to Integer, and the
result type is Integer, or Double if the result does not fit in a 32-bit signed
integer. For the / operator, the operation is performed as a Double
operation.

Double For the +, –, *, and / operators, the operands are converted to Double and
the result type is Double. For all other operators, the operation is performed
as an Integer operation.

Currency For the +, –, *, and / operators, the operands are converted to Currency
and the result type is Currency, or Double when dividing two Currency
values. For all other operators, the operation is performed as an Integer
operation.

String For the + operator, if both operands are strings, the result is the

concatenation of the two strings. Otherwise, and for all other operators, the
operation is performed as a Double operation.

Boolean For the and, or, and xor operators, the operands are converted to Boolean
and the result type is Boolean. For all other operators, the operation is
performed as a Double operation.

Date For the + and – operators, the operands are converted to Date and the
result type is Date, or Double when subtracting two Date values. For all
other operators, the operation is performed as a Double operation.

For relational operators, both variants are converted to the common type, and the resulting values are
compared to produce a Boolean result. The Unassigned value compares less than all other values. The
Null value compares greater than Unassigned and less than all other values.

For the unary minus (–) operator, strings are converted to Double before the operation, and booleans
are converted to Integer before the operation.

For the not operator, if the type code of the variant is varBoolean, a logical negation operation is
performed. For all other type codes, the variant is converted to Integer and a bitwise negation operation
is performed.

See also
Variant type conversions

Values in variants

Variant arrays
See also Example Variant types

Variants can contain arrays of varying size and dimension with elements of any of the variant base
types. The elements of a variant array are all of the same type, but if the element type is Variant,
individual elements can of course contain different kinds of data (including other variant arrays).

Variant arrays are typically created using the VarArrayCreate standard procedure.

The following table lists the variant array standard procedures and functions which are all defined in the
System unit.

Variant array standard procedures and functions
Name Description

VarArrayCreate Creates a variant array with a given low and high bound for each
dimension and a given element type. The element type can be any of
the varXXXX type codes, except varString. To create a variant array of
strings, you must use the varOleStr type code. The elements of the
newly created array are all set to zero or empty.

VarArrayOf Creates a one-dimensional variant array with a given list of elements.
The element type of the returned variant array is Variant. The
VarArrayOf function is useful for "on the fly" construction of variant array
parameters.

VarArrayRedim Resizes a variant array by changing the high bound of the rightmost
dimension to a given value. Existing elements of the array are
preserved, and new elements are set to zero or empty.

VarArrayDimCount Returns the number of dimensions in a variant array, or zero if the
argument is not a variant array.

VarArrayLowBound Returns the low bound of a given dimension in a variant array.

VarArrayHighBoun
d

Returns the high bound of a given dimension in a variant array.

VarArrayLock Locks a variant array and returns a pointer to the data in the variant
array. Using this function you can gain direct access to the data in a
variant array for much improved performance.

VarArrayUnlock Unlocks a variant array that was previously locked by VarArrayLock.

VarIsArray Tests whether the argument contains a variant array.

Note The element type of a variant array cannot be varString. To create variant arrays of strings, you
must use the varOleStr type code.

When a variant contains an array, elements of the array can be accessed by following the variant with
one or more index expressions, enclosed in square brackets and separated by commas. Index
expressions are always of type Integer. When indexing a variant, an EVariantError exception is raised if
the variant does not contain a variant array, if an incorrect number of index expressions are specified, or
if one or more of the index expressions are not within the bounds of the corresponding dimension.

Variant array elements can be accessed in expressions and assigned new values using assignment
statements. Note however, that it is not possible to pass a variant array element as a var parameter.

When a variant containing a variant array is assigned to another variant or passed as a value parameter,
a copy of the entire array is made, possibly consuming a lot of memory. For this reason, whenever
possible you should avoid assigning variant arrays to other variants, and unless there is a good reason
not to, you should pass variant arrays as var or const parameters.

Variant array example
Variant arrays are typically created using the VarArrayCreate standard procedure, for example:

var

 A, B: Variant;

 I: Integer;

begin

 A := VarArrayCreate([0, 9], varInteger);

 for I := 0 to 9 do A[I] := I * I;

 B := VarArrayCreate([1, 3, 0, 9], varVariant);

 for I := 0 to 9 do B[1, I] := I;

 for I := 0 to 9 do B[2, I] := Sqrt(I);

 for I := 0 to 9 do B[3, I] := Format('Value=%d', [I]);

 ...

end;

See also
Variant array dimensions

Locking variant arrays

Variant array dimensions
See also Example Variant arrays

A variant array can be resized using the VarArrayRedim standard procedure. VarArrayRedim allows you
to change the high bound of the rightmost (last) dimension of a variant array. The bounds of other
dimensions cannot be changed. Existing elements of an array are preserved across a resize operation.

The VarArrayDimCount, VarArrayLowBound, and VarArrayHighBound standard functions allow you to
examine the number of dimensions in a variant array, and the bounds of each dimension. This may be
useful when writing general purpose variant array manipulation routines, such as the VarArraySum
function shown on the example screen.

Variant array dimension examples
The code fragment below demonstrates the use of VarArrayRedim.
var
 A: Variant;
 I: Integer;
begin
 A := VarArrayCreate([0, 4], varOleStr);
 for I := 0 to 4 do A[I] := 'Initial';
 ...
 VarArrayRedim(A, 9);
 for I := 5 to 9 do A[I] := 'Additional';
 ...
end;

function VarArraySum(const A: Variant): Double;
var
 I: Integer;
begin
 if VarArrayDimCount(A) <> 1 then
 raise Exception.Create('One-dimensional variant array expected');
 Result := 0;
 for I := VarArrayLowBound(A, 1) to VarArrayHighBound(A, 1) do
 Result := Result + Double(A[I]);
end;

See also
Locking variant arrays

Locking variant arrays
See also%LockingVariantArraysSA Example%LockingVariantArraysEx Variant arrays%VariantArrays

Using the VarArrayLock standard function and the VarArrayUnlock standard procedure you can gain
direct access to the data in a variant array.

Variant arrays with an element type of varByte (like the one created by the function above) are the
preferred method of passing binary data between OLE Automation controllers and servers. Such arrays
are subject to no translation of their data, and can be efficiently accessed using the VarArrayLock and
VarArrayUnlock routines.

Variant-array locking example
The VarArrayLoadFile function shown below loads the contents of a file into a variant array of bytes. It
uses VarArrayLock and VarArrayUnlock to read the file directly into the array.
function VarArrayLoadFile(const FileName: string): Variant;
var
 F: file;
 Size: Integer;
 Data: PChar;
begin
 AssignFile(F, FileName);
 Reset(F, 1);
 try
 Size := FileSize(F);
 Result := VarArrayCreate([0, Size - 1], varByte);
 Data := VarArrayLock(Result);
 try
 BlockRead(F, Data^, Size);
 finally
 VarArrayUnlock(Result);
 end;
 finally
 CloseFile(F);
 end;
end;

See also
Variant array dimensions

Variants and OLE Automation objects
See also Example Variant types

When a variant contains a reference to an OLE Automation object, Object Pascal allows you to call
methods and get and set properties of the object. You enable this functionality by using the OleAuto unit,
that is by including a reference to OleAuto in the uses clause of one of your units or in the uses clause
of your program or library.

The syntax of an OLE Automation object method call or property access is analogous to that of a normal
method call or property access.

An OLE Automation object method call is late bound, and requires no previous declaration of the
method and its parameters. Contrary to a normal method call, in an OLE Automation method call the
compiler allows any method identifier and any number and type of parameters to be specified. Whether
or not the method call will actually succeed is not determined until it is executed at run-time.

Identifiers for OLE Automation object methods, properties, and named parameters are allowed to
contain alphabetical characters from an international character set such as á, ü, and Ø.

OLE automation variant example
An example of a section of code that uses OLE Automation method calls follows below. Notice the use
of the CreateOleObject function (defined in the OleAuto unit) to create a variant that contains a
reference to an OLE Automation object.
var
 Word: Variant;
begin
 Word := CreateOleObject('Word.Basic');
 Word.FileNew('Normal');
 Word.Insert('This is the first line'#13);
 Word.Insert('This is the second line'#13);
 Word.FileSaveAs('c:\temp\test.txt', 3);
end;

See also
Variant OLE automation parameters

OLE automation properties

Variant OLE automation parameters
See also Example Variants and OLE Automation

OLE Automation method calls support two types of parameters:

positional parameters
named parameters.

A positional parameter is simply an expression. A named parameter consists of a parameter identifier
followed by a colon-equals symbol (:=) followed by an expression.

Positional parameters must precede named parameters in an OLE Automation method call. It is possible
to omit positional parameters by leaving parameter positions empty and by writing fewer parameter
expressions than are expected by the method call.

Note OLE Automation servers often do not support named parameters. Likewise, some OLE
Automation servers do not allow you to omit positional parameters.

OLE Automation method call parameters can be of the following types: Integer, real, string, Boolean,
and variant. A parameter is passed by reference if the parameter expression consists only of a variable
reference, and if the variable reference is of type Byte, Smallint, Integer, Single, Double, Currency,
TDateTime, AnsiString (or string), WordBool, or Variant. If a parameter expression is not just a variable
reference, or if the expression is not of one of the above types, the parameter is passed by value. When
a parameter is passed by reference, the corresponding variable can be modified by the method to which
a call is made.

Note Passing a parameter by reference to a method that expects a value parameter simply causes
OLE to fetch the value from reference parameter. The reverse situation however causes an error.
In other words, it is an error to pass a value parameter where a reference parameter is expected.

OLE automation method parameters examples
Some examples of positional and named parameters follow below.

Word.FileSaveAs('test.doc');

Word.FileSaveAs('test.doc', 6);

Word.FileSaveAs('test.doc',,,'secret');

Word.FileSaveAs('test.doc', Password := 'secret');

Word.FileSaveAs(Password := 'secret', Name := 'test.doc');

The first call supplies one positional parameter. The second call supplies two positional parameters. The
third call supplies four positional parameters, whereof the middle two are omitted. The fourth call
supplies one positional parameter and one named parameter. Finally, the fifth call supplies no positional
parameters and two named parameters. Note that using named parameters it is possible to write the
parameters in any order.

See also
OLE automation properties

OLE automation properties
See also Variants and OLE automation

Access to properties of an OLE Automation object follows the same rules as method calls. When a
property access is used in an expression, the value of the property is read, and when a property access
is used on the left hand side in an assignment statement, the value of the property is written. For array
properties, the index parameters list must be enclosed in square brackets.

The Object Pascal compiler allows any method or property identifier and any number and type of
parameters to be specified in an OLE Automation method call or property access. The call information is
packaged up by the compiler, and not until the call or property access is executed at run-time is it known
whether it will succeed.

 If an OLE Automation method call or property access fails, an EOleError exception is raised. A call or
property access may fail for any of the reasons listed below.

The variant expression specified in the variant method designator or variant property designator
does not currently reference an OLE Automation object.

The method or property identifier is not supported by the OLE Automation object.
An incorrect number of parameters were specified, or the type(s) of one or more parameters were

incorrect.
One or more required positional parameters were omitted.
Named parameters were specified, but are not supported by the OLE Automation object.
A method call was used in an expression, but the method did not return a value.
The method or property access was succesfully called, but returned an exception.

When an OLE Automation method call or property access fails, the EOleError exception object contains
an error message that explains the reason for the failure.

See also
Variant OLE automation parameters

Compiler messages
Run-time error messages

The following list shows all the error, warning, and hint messages generated by the Delphi compiler, in
alphabetical order. To see further information on a particular message, click its text in the list.

Many of the messages contain variable text, so it might be difficult to locate a particular message in the
list.

Note The most convenient way to get information on a message you receive in the Integrated
Development Environment (IDE) is to highlight the message in the message window and press
F1.

';' not allowed before 'ELSE'

'<clause>' clause not allowed in OLE automation section

<clause1> clause expected, but <clause2> found

<Filename>: <RLink32 error message>

'<name>' is not a type identifier

'<name>' not previously declared as a PROPERTY

<RLink32 error message>

<token1> expected but <token2> found

16-Bit fixup encountered in object file '<Filename>'

486/487 instructions not enabled

Abstract methods must be virtual or dynamic

Array type required

Assignment to FOR-Loop variable '<name>'

Bad argument type in variable type array constructor

Bad file format '<name>'

Bad file format: <Filename>

Bad global symbol definition: '<name>' in object file '<Filename>'

Bad specification of M format

Bad unit format: <Filename>

BREAK or CONTINUE outside of loop

Cannot add or subtract relocatable symbols

Cannot assign to a read-only property

Cannot BREAK, CONTINUE or EXIT out of a FINALLY clause

Cannot initialize local variables

Cannot initialize multiple variables

Cannot initialize thread local variables

Cannot override a static method

Cannot read a write-only property

Case label outside of range of case expression

Circular unit reference to <Unitname>

Class already has a default property

Class does not have a default property

Class or object types only allowed in type section

Class type required

Close error on <Filename>

Compile terminated by user

Constant expected

Constant expression expected

Constant expression violates subrange bounds

Constant object cannot be passed as var parameter

Constant or type identifier expected

Constants cannot be used as open array arguments

Constructing instance of '<name>' containing abstract methods

Constructors and destructors not allowed in OLE automation section

Could not compile used unit '<Unitname>'

Could not create output file <Filename>

Could not load RLINK32.DLL

Data type too large: exceeds 2 GB

Declaration of <name> differs from previous declaration

Default property must be an array property

Default values must be of ordinal, pointer or small set type

Destination cannot be assigned to

Destination is inaccessible

Dispid '<number>' already used by '<name>'

Dispid clause only allowed in OLE automation section

Division by zero

Division by zero

Duplicate case label

Duplicate message method index

Duplicate tag value

Dynamic method or message handler not allowed here

Dynamic methods and message handlers not allowed in OLE automation section

Element 0 inaccessible - use 'Length' or 'SetLength'

Error in numeric constant

EXCEPT or FINALLY expected

EXPORTS allowed only at global scope

Expression has no value

Expression is not a procedure

Expression too complicated

Field definition not allowed in OLE automation section

Field definition not allowed after methods or properties

Field or method identifier expected

File not found: <Filename>

File type not allowed here

Fn requires 2 <= n <= 18

For loop control variable must be simple local variable

For loop control variable must have ordinal type

FOR or WHILE loop executes zero times - deleted

FOR-Loop variable '<name>' cannot be passed as var parameter

FOR-Loop variable '<name>' may be undefined after loop

Format specifier must be C, S, D, H, X, Fn, P, R or nM

Function needs result type

'GOTO <label>' leads into or out of TRY statement

Identifier redeclared: '<name>'

Illegal character in input file: '<Char>' (<Hexadecimal value>)

Illegal message method index

Illegal reference to symbol '<name>' in object file '<Filename>'

Illegal type in OLE automation section: '<typename>'

Illegal type in Read/Readln statement

Illegal type in Write/Writeln statement

Inaccessible value

Incompatible format specification

Incompatible types: '<name>' and '<name>'

Incompatible types: <text>

Incompatible types

Inline assembler stack overflow

Inline assembler syntax error

Instance variable '<name>' inaccessible here

Integer constant or variable name expected

Integer constant too large

Internal error: <ErrorCode>

Invalid combination of opcode and operands

Invalid compiler directive: <Directive>

Invalid function result type

Invalid message parameter list

Invalid register combination

Invalid typecast

Label '<name>' is not declared in current procedure

Label already defined: '<Labelname>'

Label declaration not allowed in interface part

Label declared and referenced, but not set: '<label>'

Label expected

Left side cannot be assigned to

Line too long (more than 255 characters)

Local class or object types not allowed

Local procedure/function '<name>' assigned to procedure variable

LOOP/JCXZ distance out of range

Low bound exceeds high bound

Memory reference expected

Method '<name>' hides virtual method of base type '<name>'

Method '<name>' not found in base class

Method identifier expected

Missing ENDIF directive

Missing operator or semicolon

Missing or invalid conditional symbol in '$<symbol>' directive

Missing parameter type

Necessary library helper function was eliminated by linker

No definition for abstract method '<name>' allowed

No source line for this procedure

Not enough actual parameters

Number of elements differs from declaration

Numeric overflow

Object or class type required

Object type required

Only register calling convention allowed in OLE automation section

Operand size mismatch

Operator not applicable to this operand type

Order of fields in record constant differs from declaration

Ordinal type required

Out of memory

Overflow in conversion or arithmetic operation

Overriding automated virtual method '<name>' cannot specify a dispid

PACKED not allowed here

Pointer type required

Procedure cannot have a result type

Procedure DISPOSE needs destructor

 Procedure FAIL only allowed in constructor

 Procedure NEW needs constructor

PROCEDURE or FUNCTION expected

Procedure or function name expected

Program or unit recursively uses itself

Property '<name>' does not exist in base class

Published property '<name>' cannot be of type <type>

Published Real property '<name>' must be Single, Double or Extended

Re-raising an exception only allowed in exception handler

Read error on <Filename>

Record, object or class type required

Redeclaration of '<name>' hides a member in the base class

Redeclaration of property not allowed in OLE automation section

Return value of function '<Functionname>' might be undefined

Seek error on <Filename>

Segment/Offset pairs not supported in Borland 32-bit Pascal

Sets may have at most 256 elements

Size of published set '<name>' is >4 bytes

Slice standard function only allowed as open array argument

Statement expected, but expression of type '<type>' found

Statements not allowed in interface part

String constant too long

String constant truncated to fit STRING[<number>]

Strings may have at most 255 elements

Structure field identifier expected

Syntax error in real number

System unit out of date or corrupted: missing '<name>'

Text after final 'END.' - ignored by compiler

This form of method call only allowed for class methods

This form of method call only allowed in methods of derived types

This type cannot be initialized

Thread local variables cannot be ABSOLUTE

Thread local variables cannot be local to a function

Too many actual parameters

Too many conditional symbols

Type '<name>' has no type info

Type '<name>' is not yet completely defined

Type '<name>' must be a class to have a PUBLISHED section

Type '<name>' must be a class to have OLE automation

Type '<name>' needs finalization - not allowed in file type

Type '<name>' needs finalization - not allowed in variant record

Type expected

Type not allowed in OLE Automation call

Type of expression must be BOOLEAN

Type of expression must be INTEGER

TYPEINFO standard function expects a type identifier

TYPEOF can only be applied to object types with a VMT

Types of actual and formal var parameters must be identical

Undeclared identifier: '<name>'

Unexpected end of file in comment started on line <Number>

Unit <Unit1> was compiled with a different version of <Unit2>

Unit name mismatch: '<Unitname>'

Unknown directive: '<Directive>'

Unnamed arguments must precede named arguments in OLE Automation call

Unsatisfied forward or external declaration: '<Procedurename>'

Unterminated string

Value assigned to '<name>' never used

Variable '<name>' inaccessible here due to optimization

Variable '<name>' is declared but never used in '<name>'

Variable '<name>' might not have been initialized

Variable required

Virtual constructors are not allowed

Write error on <Filename>

Wrong or corrupted version of RLINK32.DLL

"Ordinal type required"
See also Example Compiler error messages

Description

The compiler required an ordinal type at this point.

Ordinal types are the predefined types Integer, Char, WideChar, Boolean, and declared enumerated
types. Ordinal types are required in several different situations:

The index type of an array must be ordinal.

The low and high bounds of a subrange type must be constant expressions of ordinal type.
The element type of a set must be an ordinal type.
The selection expression of a case statement must be of ordinal type.
The first argument to the standard procedures Inc and Dec must be a variable of either ordinal or

pointer type.

Examples

{ The index type of an array must be an ordinal type - type TByteSet is a set, not an ordinal. }

program Produce;

type

 TByteSet = set of 0..7;

var

 BitCount: array[TByteSet] of Integer;

begin

end.

{ Supply an ordinal type as the array index type. }

program Solve;

type

 TByteSet = set of 0..7;

var

 BitCount: array[Byte] of Integer;

begin

end.

See also

Array types

Subrange types

Enumerated types

Case statement

Inc procedure

Dec procedure

"File type not allowed here"
See also Examples Compiler error messages

Description

File types are not allowed as value parameters and as the base type of a file type itself. They are also not
allowed as function return types, and you cannot assign them - those errors will however produce a
different error message.

Examples

{ In this example, the problem is that T is value parameter of type Text, which is a file type. Recall that
whatever gets written to a value parameter has no effect on the caller's copy of the variable. Declaring a
file as a value parameter therefore makes little sense. }

program Produce;

procedure WriteInteger(T: Text; I: Integer);

begin

 Writeln(T, I);

end;

begin

end.

{ Declaring the parameter as a var parameter solves the problem. }

program Solve;

procedure WriteInteger(var T: Text; I: Integer);

begin

 Writeln(T, I);

end;

begin

end.

See also

File types

"Low bound exceeds high bound"
Examples Compiler error messages

Description

This error message is given when either the low bound of a subrange type is greater than the high bound,
or the low bound of a case label range is greater than the high bound.

Examples

{ In this example, the compiler gives an error rather than treating the ranges as empty. Most likely, the
reversal of the bounds was not intentional. }

program Produce;

type

 SubrangeType = 1..0; { Gets: Low bound exceeds high bound }

begin

 case True of

 True..False: { Gets: Low bound exceeds high bound }

 Writeln('Expected result');

 else

 Writeln('Unexpected result');

 end;

end.

{ Make sure you have specified the bounds in the correct order. }

program Solve;

type

 SubrangeType = 0..1;

begin

 case True of

 False..True:

 Writeln('Expected result');

 else

 Writeln('Unexpected result');

 end;

end.

"Program or unit recursively uses itself"
Example Compiler error messages

Description

This error message is issued if a uses clause ends up loading the same unit or program. This can
happen when you specify the -P compiler directive (look for 8.3 names) due to file name truncation, if the
names are identical in the first 8 characters.

Examples

{ The following unit, in the file Produce_.pas, produces an error when compiled with the use-short-file-
names option }

unit Produce_Unit_1;

interface

uses Produce_Unit_2;

implementation

end.

"Procedure runs out of local address space"
Compiler error messages

Description

This error message is unused on the Intel architecture.

"Label '<name>' is not declared in current procedure"
Examples Compiler error messages

In contrast to Standard Pascal, Borland Pascal does not allow a goto to jump out of the current
procedure. However, his construct is mainly useful for error handling, and Borland Pascal provides a
more general and structured mechanism to deal with errors: exception handling.

Examples

{ The example above tries to halt computation by doing a non-local goto. }

program Produce;

label 99;

procedure MyProc;

begin

 { Something goes very wrong... }

 goto 99;

end;

begin

 MyProc;

 99:

 Writeln('Fatal error');

end.

{ In our solution, we used exception handling to stop the program. This has the advantage that we can
also pass an error message. Another solution would be to use the standard procedures Halt or
RunError. }

program Solve;

uses SysUtils;

procedure MyProc;

begin

 { Something goes very wrong... }

 raise Exception.Create('Fatal error');

end;

begin

 try

 MyProc;

 except

 on E: Exception do Writeln(E.Message);

 end;

end.

"Local procedure/function '<name>' assigned to procedure variable"
Examples Compiler error messages

Description

This error message is issued if you try to assign a local procedure to a procedure variable, or pass it as a
procedural parameter. This is illegal, because the local procedure could then be called even if the
enclosing procedure is not active. This situation would cause the program to crash if the local procedure
tried to access any variables of the enclosing procedure.

Examples

{ The example tries to assign a local procedure to a procedure variable. This is illegal because it is unsafe
at run time. }

program Produce;

var

 P: Procedure;

procedure Outer;

 procedure Local;

 begin

 Writeln('Local is executing');

 end;

begin

 P := Local; { <-- Error message here }

end;

begin

 Outer;

 P;

end.

{ The solution is to move the local procedure out of the enclosing one. }

program Solve;

var

 P: Procedure;

procedure NonLocal;

begin

 Writeln('NonLocal is executing');

end;

procedure Outer;

begin

 P := NonLocal;

end;

begin

 Outer;

 P;

end.

"Missing ENDIF directive"
See also Examples Compiler error messages

Description

This error message is issued if the compiler does not find a corresponding $ENDIF directive after an
$IFDEF, $IFNDEF or $IFOPT directive.

Examples

(* In this example, we left out the $ character in the {$Endif} directive, so the compiler mistook it for a
comment. *)

program Produce;

{$AppType Console}

begin

{$IfOpt O+}

 Writeln('Compiled with optimizations');

{$Else}

 Writeln('Compiled without optimizations');

{Endif}

end. { <-- Error message here }

{ The solution is to simply make sure all the conditional directives have a valid $ENDIF directive. }

program Solve;

{$AppType Console}

begin

{$IfOpt O+}

 Writeln('Compiled with optimizations');

{$Else}

 Writeln('Compiled without optimizations');

{$Endif}

end.

See also

Conditional directives

"Method identifier expected"
Examples Compiler error messages

Description

This error message will be issued in several different situations:

Properties in an automated section must use methods for access, they cannot use fields in their
read or write clauses.

You tried to call a class method with the "ClassType.MethodName" syntax, but "MethodName"
was not the name of a method.

You tried calling an inherited method with the "inherited MethodName" syntax, but
"MethodName" was not the name of a method.

Examples

{ The example tried to declare an automated property that accesses a field directly. The second error was
caused by trying to get at a field of the base class - this is also not legal. }

program Produce;

type

 TMyBase = class

 Field: Integer;

 end;

 TMyDerived = class(TMyBase)

 Field: Integer;

 function Get: Integer;

 automated

 property Prop: Integer read Field; { <-- Error message here }

 end;

function TMyDerived.Get: Integer;

begin

 Result := TMyBase.Field; { <-- Error message here }

end;

begin

end.

{ The first problem is fixed by accessing the field via a method. The second problem can be fixed by
casting the Self pointer to the base class type, and acessing the field off of that. }

program Solve;

type

 TMyBase = class

 Field: Integer;

 end;

 TMyDerived = class(TMyBase)

 Field: Integer;

 function Get: Integer;

 automated

 property Prop: Integer read Get;

 end;

function TMyDerived.Get: Integer;

begin

 Result := TMyBase(Self).Field;

end;

begin

 Writeln(TMyDerived.Create.Prop);

end.

"Constant object cannot be passed as var parameter"
Examples Compiler error messages

Description

As variable parameters are intended to be modified by the called procedure or function, you can not pass
a constant object to a variable parameter. If your intention is just to pass a big datastructure efficiently,
and the called function should not modify it, you can use a const parameter instead.

Examples

{ In the example, function has a variable parameter, but we are passing a constant to it. }

program Produce;

{$AppType Console}

function Max(var A: array of Integer): Integer;

var

 I: Integer;

begin

 Result := Low(Integer);

 for I := 0 to High(A) do

 if Result < A[I] then

 Result := A[I];

end;

begin

 Writeln(Max([1,2,3])); { <-- Error message here }

end.

{ The solution is to declare the parameter as a constant parameter (we do not intend to modify it, after all).
Alternatively, you can also modify the call so it does not pass constants. }

program Solve;

{$AppType Console}

function Max(const A: array of Integer): Integer;

var

 I: Integer;

begin

 Result := Low(Integer);

 for I := 0 to High(A) do

 if Result < A[I] then

 Result := A[I];

end;

begin

 Writeln(Max([1,2,3]));

end.

"FOR-Loop variable '<name>' cannot be passed as var parameter"
Examples Compiler error messages

Description

This warning is issued when you pass the control variable of a for loop as a variable parameter. The
called procedure or function could modify the control variable and cause the for loop to execute
incorrectly. Check whether the parameter should be better declared as value or const parameter. If that is
possible, it will improve the efficiency of both the called procedure and the for loop.

Examples

{ The example passes the control variable I as a variable parameter to procedure MyProc, which causes
a warning. }

program Produce;

{$WARNINGS ON}

procedure MyProc(var I: Integer);

begin

 Writeln(I);

end;

var

 I: Integer;

begin

 for I := 1 to 10 do

 MyProc(I); { <-- Warning message here }

end.

{ The solution in this case was to change the parameter declaration to a constant parameter. Alternatively,
we can also assign the control variable to another, auxiliary variable, and pass that one. }

program Solve;

{$WARNINGS ON}

procedure MyProc(const I: Integer);

begin

 Writeln(I);

end;

var

 I: Integer;

begin

 for I := 1 to 10 do

 MyProc(I);

end.

"BREAK or CONTINUE outside of loop"
Examples Compiler error messages

Description

The compiler has found a Break or Continue statement which is not contained inside a while or repeat
loop. These two constructs are only legal in loops.

Examples

{ The example above shows how a continue statement could seem to be included in the body of a looping
construct but, due to the compound-statement nature of Pascal, it really is not. }

program Produce;

 procedure Error;

 var

 I: Integer;

 begin

 I := 0;

 while I < 100 do

 Inc(I);

 if Odd(I) then

 begin

 Inc(I);

 Continue;

 end;

 end;

begin

end.

{ Often times it is a simple matter to create compound statement out of the looping construct to ensure
that your CONTINUE or BREAK statements are included. }

program Solve;

 procedure Error;

 var

 I: Integer;

 begin

 I := 0;

 while I < 100 do

 begin

 Inc(I);

 if Odd(I) then

 begin

 Inc(I);

 Continue;

 end;

 end;

 end;

begin

end.

"Division by zero"
Compiler error messages

Description

The compiler has detected a constant division by zero in your program.

Check your constant expressions and respecify them so that a division by zero error will not occur.

"Type of expression must be BOOLEAN"
Examples Compiler error messages

Description

This error message is output when an expression serves as a condition and must therefore be of Boolean
type. This is the case for the controlling expression of the if, while and repeat statements, and for the
expression that controls a conditional breakpoint.

Examples

{ Here, a C++ programmer just used a pointer variable as the condition of an if statement. }

program Produce;

var

 P: Pointer;

begin

 if P then

 Writeln('P <> nil');

end.

{ In Pascal, you need to be more explicit in this case. }

program Solve;

var

 P: Pointer;

begin

 if P <> nil then

 Writeln('P <> nil');

end.

"Overflow in conversion or arithmetic operation"
Compiler error messages

Description

The compiler has detected an overflow in an arithmetic expression: the result of the expression is too
large to be represented in 32 bits.

Check your computations to ensure that the value can be represented by the computer hardware.

"Data type too large: exceeds 2 GB"
Examples Compiler error messages

Description

You have specified a data type which is too large for the compiler to represent. You must decrease the
size of the description of the type.

Examples

{ It is easily apparant to see why these declarations will elicit error messages. }

program Produce;

type

 EnormousArray = array[0..MaxLongint] of Longint;

 BigRecord = record

 Points: array[1..10000] of Extended;

 end;

var

 Data: array[0..500000] of BigRecord;

begin

end.

{ The easy solution to avoid this error message is to make sure that the size of your data types remain
under 2Gb in size. A more complicated method would involve the restructuring of your data, as has been
begun with the BigRecord declaration. }

program Solve;

type

 EnormousArray = array[0..MaxLongint div 8] of Longint;

 DataPoints = ^DataPointDesc;

 DataPointDesc = array[1..10000] of Extended;

 BigRecord = record

 Points: DataPoints;

 end;

var

 Data: array[0..500000] of BigRecord;

begin

end.

"Integer constant too large"
Examples Compiler error messages

Description

You have specified an integer constant that requires more than 32 bits to represent.

Examples

{ Both constants in the following example are too large to represent in 32 bits, thus the compiler will
output an error. }

program Produce;

const

 VeryDecimal = 123456789;

 VeryBigHex = $123456789;

begin

end.

{ Check the constants that you have specified and ensure that they are representable in 32 bits. }

program Solve;

const

 VeryDecimal = 12345678;

 VeryBigHex = $12345678;

begin

end.

"16-Bit fixup encountered in object file '<Filename>'"
Compiler error messages

Description

A 16-bit fixup has been found in one of the object modules linked to your program with the $L compiler
directive. The compiler only supports 32 bit fixups in linked object modules.

Make sure that the linked object module is a 32 bit object module.

"Inline assembler syntax error"
Examples Compiler error messages

Description

You have entered an expression which the inline assembler is unable to interpret as a valid assembly
instruction.

Examine the offending inline assembly statement and ensure that it conforms to the proper syntax.

Examples

program Produce;

 procedure Assembly;

 asm

 adx eax, 151

 end;

begin

end.

program Solve;

 procedure Assembly;

 asm

 add eax, 151

 end;

begin

end.

"Inline assembler stack overflow"
Compiler error messages

Description

Your inline assembler code has exceeded the capacity of the inline assembler.

Contact Borland International if you encounter this error.

"Operand size mismatch"
See also Examples Compiler error messages

Description

The size required by the instruction operand does not match the size given.

Examples

{ In the following sample, the compiler will complain because the 'offset' operator produces a 'dword', but
the operator is expecting a 'byte'. }

program Produce;

var

 V: Integer;

 procedure Assembly;

 asm

 db offset V

 end;

begin

end.

{ The solution, for this example, is to change the operator to receive a 'dword'. In the general case you will
need to closely examine your code and ensure the the operator and operand sizes match. }

program Solve;

var

 V: Integer;

 procedure Assembly;

 asm

 dd offset v

 end;

begin

end.

See also

Inline assembler

"Memory reference expected"
Compiler error messages

Description

The inline assembler has expected to find a memory reference expression but did not find one.

Ensure that the offending statement is indeed a memory reference.

"Constant expected"
Examples Compiler error messages

Description

The inline assembler was expecting to find a constant but did not find one.

Many of the inline assembler expressions require constants to assemble correctly. Change the offending
statement to have a assemble-time constant.

Examples

{ The inline assembler is not capable of performing a MOD operation on a Pascal variable, thus the
following code will cause an error. }

program Produce;

 procedure Assembly(X: Integer);

 asm

 mov ax, X MOD 10

 end;

begin

end.

"Type expected"
Compiler error messages

Description

Contact Borland International if you receive this error.

"Type of expression must be INTEGER"
Examples Compiler error messages

Description

This error message is only given when the constant expression that specifies the number of characters in
a short string type is not of type integer.

Examples

{ The example tries to specify the number of elements in a string as dependent on the maximum element
of type Color - unfortunately, the element count is of type Color, which is illegal. }

program Produce;

type

 Color = (red,green,blue);

var

 S3: string[Succ(High(Color))];

begin

end.

program Solve;

type

 Color = (red,green,blue);

var

 S3: string[Ord(High(Color))+1];

begin

end.

"Cannot add or subtract relocatable symbols"
Example Compiler error messages

Description

The inline assembler is not able to add or substract memory address which may be changed by the linker.

Make sure you don't try to add or subtract relocatable addresses from within your inline assembler
statements.

Example

{ Global variables fall into the class of items which produce relocatable addresses, and the inline
assembler is unable to add or subtract these. }

program Produce;

var

 A: array[1..10] of Integer;

 EndOfA: Integer;

 procedure Relocatable;

 begin

 end;

 procedure Assembly;

 asm

 mov eax, A + EndOfA

 end;

begin

end.

"Invalid register combination"
Examples Compiler error messages

Description

You have specified an illegal combination of registers in a inline assembler statement. Please refer to an
assembly language guide for more information on addressing modes allowed on the Intel 80x86 family.

Examples

{ The right operand specified in this mov instruction is illegal. }

program Produce;

 procedure AssemblerExample;

 asm

 mov eax, [ecx + esp * 4]

 end;

begin

end.

{ The addressing mode specified by the right operand of this mov instruction is allowed. }

program Solve;

 procedure AssemblerExample;

 asm

 mov eax, [ecx + ebx * 4]

 end;

begin

end.

"Numeric overflow"
Examples Compiler error messages

Description

The inline assembler has detected a numeric overflow in one of your expressions.

Examples

{ Specifying a number which requires more than 32bits to represent will elicit this error. }

program Produce;

 procedure AssemblerExample;

 asm

 mov eax, $0ffffffffffffffffffffff

 end;

begin

end.

{ Make sure that your numbers all fit in 32bits. }

program Solve;

 procedure AssemblerExample;

 asm

 mov al, $0ff

 end;

begin

end.

"String constant too long"
Examples Compiler error messages

Description

The inline assembler has not found the end of the string that you specified. The most likely cause is a
misplaced closing quote.

Examples

{ The inline assembler is unable to find the end of the string, before the end of the line, so it reports that
the string is too long. }

program Produce;

 procedure AssemblerExample;

 asm

 db 'Hello world. I am an inline assembler statement

 end;

begin

end.

{ Adding the closing quote will vanquish this error. }

program Solve;

 procedure AssemblerExample;

 asm

 db 'Hello world. I am an inline assembler statement'

 end;

begin

end.

"Error in numeric constant"
Examples Compiler error messages

Description

The inline assembler has found an error in the numeric constant you entered.

Examples

{ In the following example, the inline assembler was expecting to parse a hexadecimal constant, but it
found an erroneous character. }

program Produce;

 procedure AssemblerExample;

 asm

 mov al, $z0f0

 end;

begin

end.

{ Make sure that the numeric constants you enter conform to the type that the inline assembler is
expecting to parse. }

program Solve;

 procedure AssemblerExample;

 asm

 mov al, $f0

 end;

begin

end.

"Invalid combination of opcode and operands"
Examples Compiler error messages

Description

You have specified an inline assembler statement which is not correct.

Examples

{ The inline assembler is not capable of storing the result of $f0 * 16 into the 'al' register -- it simply won't
fit. }

program Produce;

 procedure AssemblerExample;

 asm

 mov al, $0f0 * 16

 end;

begin

end.

{ Make sure that the type of both operands are compatible. }

program Solve;

 procedure AssemblerExample;

 asm

 mov al, $0f * 16

 end;

begin

end.

"486/487 instructions not enabled"
Compiler error messages

Description

You should not receive this inline assembler error as 486 instructions are always enabled.

"Division by zero"
Examples Compiler error messages

Description

The inline assembler has encountered an expression which results in a division by zero.

Examples

{ If you are using program constants instead of constant literals, this error might not be quite so obvious. }

program Produce;

 procedure AssemblerExample;

 asm

 dw 1000 / 0

 end;

begin

end.

{ The solution, as when programming in high level langauges, is to make sure that you don't divide by
zero. }

program Solve;

 procedure AssemblerExample;

 asm

 dw 1000 / 10

 end;

begin

end.

"Structure field identifier expected"
Examples Compiler error messages

Description

The inline assembler recognized an identifier on the right side of a '.', but it was not a field of the record
found on the left side of the '.'. One common, yet difficult to realize, error of this sort is to use a record with
a field called 'ch' -- the inline assembler will always interpret 'ch' to be a register name.

Examples

{ In this example, the inline assembler has recognized that 'y' is a valid identifier, but it has not found 'y' to
be a member of the type of 'd'. }

program Produce;

type

 Data = record

 X: Integer;

 end;

 procedure AssemblerExample(D: Data; Y: Char);

 asm

 mov eax, D.Y

 end;

begin

end.

{ By specifying the proper variable name, the error will go away. }

program Solve;

type

 Data = record

 X: Integer;

 end;

 procedure AssemblerExample(D: Data; Y: Char);

 asm

 mov eax, D.X

 end;

begin

end.

"LOOP/JCXZ distance out of range"
Compiler error messages

Description

You have specified a LOOP or JCXZ destination in inline assembler code that is out of range. The
distance must be in the range -128..127.

If you encounter this error, replace LOOP or JCXZ with an equivalent two-instruction sequence.

"Statement expected, but expression of type '<type>' found"
Examples Compiler error messages

Description

The compiler was expecting to find a statement, but instead it found an expression of the specified type.

Examples

{ In this example, the compiler is expecting to find a statement, such as an IF, WHILE, REPEAT, but
instead it found the expression (3+4). }

program Produce;

var

 A: Integer;

begin

 (3 + 4);

end.

{ The solution here was to assign the result of the expression (3+4) to the variable 'a'. Another solution
would have been to remove the offending expression from the source code. The choice depends on the
situation. }

program Produce;

var

 A: Integer;

begin

 A := (3 + 4);

end.

"Procedure or function name expected"
Examples Compiler error messages

Description

You have specified an identifier which does not represent a procedure or function in an exports clause.

Examples

{ It is not possible to export variables from a Delphi library, even though the variable is of 'procedure' type.
}

library Produce;

var

 Y: procedure;

exports Y;

begin

end.

{ Always be sure that all the identifiers listed in an EXPORTS clause truly represent procedures. }

program Solve;

 procedure ExportMe;

 begin

 end;

exports ExportMe;

begin

end.

"PROCEDURE or FUNCTION expected"
Examples Compiler error messages

Description

This error message is produced by two different constructs, but in both cases the compiler is expecting to
find the keyword procedure or the keyword function .

Examples

{ In both cases above, the word 'procedure' should follow the keyword 'class'. }

program Produce;

type

 Base = class

 class AProcedure; { case 1 }

 end;

 class Base.AProcedure; { case 2 }

 begin

 end;

begin

end.

{ As can be seen, adding the keyword 'procedure' removes the error from this program. }

program Solve;

type

 Base = class

 class procedure AProcedure;

 end;

 class procedure Base.AProcedure;

 begin

 end;

begin

end.

"Instance variable '<name>' inaccessible here"
Examples Compiler error messages

Description

You are attempting to reference an instance variable from within a class method.

Examples

{ Class methods do not have an instance pointer, so they cannot access any methods or instance data of
the class. }

program Produce;

type

 Base = class

 Title: string;

 class procedure Init;

 end;

 class procedure Base.Init;

 begin

 Self.Title := 'Does not work';

 Title := 'Does not work';

 end;

begin

end.

{ The only solution to this error is to not access any member data or methods from within a class
method. }

program Solve;

type

 Base = class

 Title: string;

 class procedure Init;

 end;

 class procedure Base.Init;

 begin

 end;

begin

end.

"EXCEPT or FINALLY expected"
Examples Compiler error messages

Description

Every try block must contain either an exception-handling part (except) or a cleanup code part (finally).

Examples

{ In the code above, the 'except' or 'finally' clause of the exception handling code is missing, so the
compiler will issue an error. }

program Produce;

begin

 try

 end;

end.

{ By adding the missing clause, the compiler will be able to complete the compilation of the code. In this
case, the 'except' clause will allow the program to finish. }

program Solve;

begin

 try

 except

 end;

end.

"Cannot BREAK, CONTINUE or EXIT out of a FINALLY clause"
Examples Compiler error messages

Description

Because a finally clause may be entered and exited through Delphi's exception handling mechanism or
through normal program control, the explicit control flow of your program may not be followed. When the
finally is entered through the exception handling mechanism, it is not possible to exit the clause with
Break, Continue, or Exit -- when the finally clause is being executed by the exception handling system,
control must return to the exception handling system.

Examples

{ The following program attempts to exit the finally clause with a break statement. It is not legal to exit a
FINALLY clause in this manner. }

program Produce;

 procedure A0;

 begin

 try

 (* try something that might fail *)

 finally

 Break;

 end;

 end;

begin

end.

{ The only solution to this error is to restructure your code so that the offending statement does not
appear in the FINALLY clause. }

program Solve;

 procedure A0;

 begin

 try

 (* try something that might fail *)

 finally

 end;

 end;

begin

end.

"'GOTO <label>' leads into or out of TRY statement"
Example Compiler error messages

Description

The goto statement cannot jump into or out of an exception handling statement.

The ideal solution to this problem is to avoid using goto statements altogether, however, if that is not
possible you will have to perform more detailed analysis of the program to determine the correct course of
action.

Example

{ Both GOTO statements in the following code are incorrect. It is not possible to jump into, or out of,
exception handling blocks. }

program Produce;

label 1, 2;

begin

 goto 1;

 try

1:

 except

 goto 2;

 end;

2:

end.

"<clause1> clause expected, but <clause2> found"
Examples Compiler error messages

Description

The compiler was, due to the Pascal syntax, expecting to find a <clause1> in your program, but instead
found <clause2>.

Examples

{ The first declaration of a property must specify a read and write clause, and since both are missing on
the 'Ch' property, an error will result when compiling. In the case of properties, the original intention might
have been to hoist a property defined in a base class to another visibility level -- for example, from public
to private. In this case, the most probable cause of the error is that the property name was not found in
the base class. Make sure that you have spelled the property name correctly and that it is actually
contained in one of the parent classes. }

program Produce;

type

 CharDesc = class

 vch: Char;

 property Ch: Char;

 end;

end.

{ The solution is to ensure that all the proper clauses are specified, where required. }

program Produce;

type

 CharDesc = class

 vch: Char;

 property Ch: Char read vch write vch;

 end;

end.

"Cannot assign to a read-only property"
Examples Compiler error messages

Description

The property to which you are attempting to assign a value did not specify a write clause, thereby
causing it to be a read-only property.

Examples

{ If a property does not specify a 'write' clause, it effectively becomes a read-only property; it is not
possible to assign a value to a property which is read-only, thus the compiler outputs an error on the
assignment to 'c.Title'. }

program Produce;

type

 Base = class

 S: string;

 property Title: string read S;

 end;

var

 C: Base;

procedure DiddleTitle

begin

 if C.Title = '' then

 C.Title := 'Super Galactic Invaders with Turbo Gungla Sticks';

 { perform other work on the C.Title }

end;

begin

end.

{ One solution, if you have source code, is to provide a write clause for the read-only property -- of
course, this could dramatically alter the semantics of the base class and should not be taken lightly.
Another alternative would be to introduce an intermediate variable which would contain the value of the
read-only property -- it is this second alternative which is shown in the code that follows. }

program Solve;

type

 Base = class

 S: string;

 property Title: string read S;

 end;

var

 C: Base;

procedure DiddleTitle;

var

 Title: string;

begin

 Title := C.Title;

 if Title = '' then

 Title := 'Super Galactic Invaders with Turbo Gungla Sticks';

 { perform other work on Title }

end;

begin

end.

"Cannot read a write-only property"
Examples Compiler error messages

Description

The property from which you are attempting to read a value did not specify a read clause, thereby
causing it to be a write-only property.

Examples

{ Since C.Password has not specified a read clause, it is not possible to read its value. }

program Produce;

type

 Base = class

 S: string;

 property Password: string write S;

 end;

var

 C: Base;

 S: string;

begin

 S := C.Password;

end.

{ One easy solution to this problem, if you have source code, would be to add a read clause to the write-
only property. But, adding a read clause is not always desirable and could lead to holes in a security
system -- consider, for example, a write-only property called 'Password', as in this example: you certainly
wouldn't want to casually allow programs using this class to read the stored password. If a property was
created as write-only, there is probably a good reason for it and you should reexamine why you need to
read this property. }

program Solve;

type

 Base = class

 S: string;

 property Password: string read S write S;

 end;

var

 C: Base;

 S: string;

begin

 S := C.Password;

end.

"Class already has a default property"
See also Examples Compiler error messages

Description

You have tried to assign a default property to a class which already has defined a default property.

Examples

{ The Access property in the code above attempts to become the default property of the class, but Data
has already been specified as the default. There can be only one default property in a class. }

program Produce;

type

 Base = class

 function GetV(I: Integer): Char;

 procedure SetV(I: Integer; const X: Char);

 property Data[I: Integer]: Char read GetV write SetV; default;

 property Access[I: Integer]: Char read GetV write SetV; default;

 end;

function Base.GetV(I: Integer): Char;

begin

 GetV := 'A';

end;

procedure Base.SetV(I: Integer; const X: Char);

begin

end;

begin

end.

{ The solution is to remove the incorrect default property specifications from the program source. }

program Solve;

type

 Base = class

 function GetV(I: Integer): Char;

 procedure SetV(I: Integer; const X: Char);

 property Data[I: Integer]: Char read GetV write SetV; default;

 end;

function Base.GetV(I: Integer): Char;

begin

 GetV := 'A';

end;

procedure Base.SetV(I: Integer; const X: Char);

begin

end;

begin

end.

See also

Default property

Properties

Array Properties

"Operator not applicable to this operand type"
Examples Compiler error messages

Description

This error message is given whenever an operator cannot be applied to the operands it was given - for
instance if a boolean operator is applied to a pointer.

Examples

{ Here a C++ programmer was unclear about operator precedence in Pascal; P is not a Boolean
expression, and the comparison needs to be parenthesized. }

program Produce;

var

 P: ^Integer;

begin

 if P and P^ > 0 then

 Writeln('P points to a number greater 0');

end.

{ If we explicitly compare P to nil and use parentheses, the compiler is happy. }

program Solve;

var

 P: ^Integer;

begin

 if (P <> nil) and (P^ > 0) then

 Writeln('P points to a number greater 0');

end.

"Default property must be an array property"
Examples Compiler error messages

Description

The default property which you have specified for the class is not an array property. Default properties are
required to be array properties.

Examples

{ When specifying a default property, you must make sure that it conforms to the array property syntax.
The Data property in the following code specifies a Char type rather than an array. }

program Produce;

type

 Base = class

 function GetV: Char;

 procedure SetV(X: Char);

 property Data: Char read GetV write SetV; default;

 end;

function Base.GetV: Char;

begin

 GetV := 'A';

end;

procedure Base.SetV(X: Char);

begin

end;

begin

end.

{ By changing the specifciation of the offending property to an array, or by removing the 'default' directive,
you can remove this error. }

program Solve;

type

 Base = class

 function GetV(I: Integer): Char;

 procedure SetV(I: Integer; const X: Char);

 property Data[I: Integer]: Char read GetV write SetV; default;

 end;

function Base.GetV(I: Integer): Char;

begin

 GetV := 'A';

end;

procedure Base.SetV(I: Integer; const X: Char);

begin

end;

begin

end.

"TYPEINFO standard function expects a type identifier"
Examples Compiler error messages

Description

You have attempted to obtain type information for an identifier which does not represent a type.

Examples

{ The TypeInfo standard procedure requires a type identifer as it's parameter. In the code that follows,
'NotType' does not represent a type identifier. }

program Produce;

var

 P: Pointer;

procedure NotType;

begin

end;

begin

 P := TypeInfo(NotType);

end.

{ By ensuring that the parameter used for TypeInfo is a type identifier, you will avoid this error. }

program Solve;

type

 Base = class

 end;

var

 P: Pointer;

begin

 P := TypeInfo(Base);

end.

"Type '<name>' has no type info"
Examples Compiler error messages

Description

You have applied the TypeInfo standard procedure to a type identifier which does not have any run-time
type information associated with it.

Examples

{ Record types do not generate type information, so this use of TypeInfo is illegal. }

program Produce;

type

 Data = record

 end;

var

 V: Pointer;

begin

 V := TypeInfo(Data);

end.

{ A class does generate RTTI, so the use of TypeInfo here is perfectly legal. }

program Solve;

type

 Base = class

 end;

var

 V: Pointer;

begin

 V := TypeInfo(Base);

end.

"FOR or WHILE loop executes zero times - deleted"
Examples Compiler error messages

Description

The compiler has determined that the specified looping structure will not ever execute, so as an
optimization it will remove it.

Examples

{ The compiler determines that 'FALSE AND (i < 100)' always evaluates to FALSE, and then easily
determines that the loop will not be executed. }

program Produce;

{$HINTS ON}

var

 I: Integer;

begin

 I := 0;

 while False and (I < 100) do

 Inc(I);

end.

{ The solution to this hint is to check the boolean expression used to control while statements is not
always FALSE. In the for loops you should make sure that (upper bound - lower bound) >= 1. }

program Solve;

{$HINTS ON}

var

 I: Integer;

begin

 I := 0;

 while I < 100 do

 Inc(I);

end.

"No definition for abstract method '<name>' allowed"
Examples Compiler error messages

Description

You have declared <name> to be abstract, but the compiler has found a definition for the method in the
source file. It is illegal to provide a definition for an abstract declaration.

Examples

{ Abstract methods cannot be defined. An error will appear at the point of Base.Foundation when you
compile this program. }

program Produce;

type

 Base = class

 procedure Foundation; virtual; abstract;

 end;

procedure Base.Foundation;

begin

end;

begin

end.

{ Two steps are required to solve this error. First, you must remove the definition of the abstract procedure
which is declared in the base class. Second, you must extend the base class, declare the abstract
procedure as an 'override' in the extension, and then provide a definition for the newly declared
procedure. }

program Solve;

type

 Base = class

 procedure Foundation; virtual; abstract;

 end;

 Derived = class(Base)

 procedure Foundation; override;

 end;

procedure Derived.Foundation;

begin

end;

begin

end.

"Method '<name>' not found in base class"
Examples Compiler error messages

Description

You have applied the 'override' directive to a method, but the compiler is unable to find a procedure of the
same name in the base class.

Examples

{ A common cause of this error is a simple typographical error in your source code. Make sure that the
name used as the 'override' procedure is spelled the same as it is in the base class. In other situations,
the base class will not provide the desired procedure: it is those situations which will require much deeper
analysis to determine how to solve the problem. }

program Produce;

type

 Base = class

 procedure Title; virtual;

 end;

 Derived = class(Base)

 procedure Titl; override;

 end;

procedure Base.Title;

begin

end;

procedure Derived.Titl;

begin

end;

begin

end.

{ The solution in this example is to simple correct the spelling of the procedure name in Derived. }

program Solve;

type

 Base = class

 procedure Title; virtual;

 end;

 Derived = class(Base)

 procedure Title; override;

 end;

procedure Base.Title;

begin

end;

procedure Derived.Title;

begin

end;

begin

end.

"Invalid message parameter list"
Examples Compiler error messages

Description

A message-handling method can take only one, var, parameter; it's type is not checked.

Examples

{ The obvious error in the first case is that the parameter is not VAR. The error in the second case is that
more than one parameter is declared. }

program Produce;

type

 Base = class

 procedure Msg1(X: Integer); message 151;

 procedure Msg2(var X, Y: Integer); message 152;

 end;

procedure Base.Msg1(X: Integer);

begin

end;

procedure Base.Msg2(var X, Y: Integer);

begin

end;

begin

end.

{ The solution in both cases was to only specify one, var, parameter in the message method declaration. }

program Solve;

type

 Base = class

 procedure Msg1(var X: Integer); message 151;

 procedure Msg2(var Y: Integer); message 152;

 end;

procedure Base.Msg1(var X: Integer);

begin

end;

procedure Base.Msg2(var Y: Integer);

begin

end;

begin

end.

"Illegal message method index"
See also Examples Compiler error messages

Description

You have specified value for your message index which <= 0.

Examples

{ The specification of -151 as the message index is illegal in the above example. }

program Produce;

type

 Base = class

 procedure Dynamo(var X: Integer); message -151;

 end;

procedure Base.Dynamo(var X: Integer);

begin

end;

begin

end.

{ Always make sure that your message index values are >= 1. }

program Solve;

type

 Base = class

 procedure Dynamo(var X: Integer); message 151;

 end;

procedure Base.Dynamo(var X: Integer);

begin

end;

begin

end.

See also

Message methods

Virtual methods

Dynamic methods

"Duplicate dynamic method index"
Examples Compiler error messages

Description

You have specified an index for a dynamic methodwhich is already used by another dynamic method.

Examples

{ The declaration of 'Second' attempts to reuse the same message index which is used by 'First'; this is
illegal. }

program Produce;

type

 Base = class

 procedure First(var X: Integer); message 151;

 procedure Second(var X: Integer); message 151;

 end;

procedure Base.First(var X: Integer);

begin

end;

procedure Base.Second(var X: Integer);

begin

end;

begin

end.

{ There are two straightforward solutions to this problem. First, if you really do not need to use the same
message value, you can simply change the message number to be unique. Alternatively, you could derive
a new class from the base and override the behavior of the message handler declared in the base class.
Both options are shown in the above example. }

program Solve;

type

 Base = class

 procedure First(var X: Integer); message 151;

 procedure Second(var X: Integer); message 152; { change to unique
index }

 end;

 Derived = class(Base)

 procedure First(var X: Integer); override; { override base class
behavior }

 end;

procedure Base.First(var X: Integer);

begin

end;

procedure Base.Second(var X: Integer);

begin

end;

procedure Derived.First(var X: Integer);

begin

end;

begin

end.

"Bad file format '<name>'"
Compiler error messages

Description

The compiler state file has become corrupted. It is not possible to reload the previous compiler state.

"Array type required"
Examples Compiler error messages

Description

This error message is given if you either index into an operand that is not an array, or if you pass an
argument that is not an array to an open array parameter.

Examples

{ We try to apply an index to a pointer to integer - that would be legal in C, but is not in Pascal. }

program Produce;

var

 P: ^Integer;

 I: Integer;

begin

 Writeln(P[I]);

end.

{ In Pascal, we must tell the compiler that we intend P to point to an array of integers. }

program Solve;

type

 TIntArray = array[0..MaxInt div sizeof(Integer)-1] of Integer;

var

 P: ^TIntArray;

 I: Integer;

begin

 Writeln(P^[I]); { P[I] would also be legal in Delphi 2.0 }

end.

"Inaccessible value"
Compiler error messages

Description

You have tried to view a value that is not accessible from within the integrated debugger. Certain types
of values, such as a zero-length Variant-type string, cannot be viewed within the debugger.

"Destination cannot be assigned to"
Compiler error messages

Description

The integrated debugger has determined that your assignment is not valid in the current context.

"Expression has no value"
Compiler error messages

Description

You have attempted to assign the result of an expression, which did not produce a value, to a variable.

"Destination is inaccessible"
Compiler error messages

Description

The address to which you are attempting to put a value is inaccessible from within the integrated
debugger.

"Expression is not a procedure"
Compiler error messages

Description

You have attempted to use a symbol from your program as if it were a procedure, but it is not.

"No source line for this procedure"
Compiler error messages

Description

The integrated debugger is unable to find a source line for the procedure you requested.

If you have the source, recompile the unit containing the desired procedure with debugging information
turned on. If you don't have the source, you will not be able to view this procedure.

"Re-raising an exception only allowed in exception handler"
Examples Compiler error messages

Description

You have used the syntax of the raise statement which is used to reraise an exception, but the compiler
has determined that this reraise has occurred outside of an exception-handling block. A limitation of the
current exception handling mechanism disallows reraising exceptions from nested exception handlers.

Examples

{ There are several reasons why this error might occur. First, you might have specified a raise with no
exception constructor outside of an exception handler. Secondly, you might be attempting to reraise an
exception in the try block of an exception handler. Thirdly, you might be attempting to reraise the
exception in an exception handler nested in another exception handler. }

program Produce;

procedure RaiseException;

begin

 raise; { case 1 }

 try

 raise; { case 2 }

 except

 try

 raise; { case 3 }

 except

 end;

 raise;

 end;

end;

begin

end.

{ One solution to this error is to explicitly raise a new exception; this is probably the intention in situations
like 'case 1' and 'case 2'. For the situation of 'case 3', you will have to examine your code to determine a
suitable workaround which will provide the desired results. }

program Solve;

uses SysUtils;

procedure RaiseException;

begin

 raise Exception.Create('case 1');

 try

 raise Exception.Create('case 2');

 except

 try

 raise Exception.Create('case 3');

 except

 end;

 raise;

 end;

end;

begin

end.

"Default values must be of ordinal, pointer or small set type"
Examples Compiler error messages

Description

You have declared a property containing a default clause, but the property type is incompatible with
default values.

Examples

{ The program above creates a property and attempts to assign a default value to it, but since the type of
the property does not allow default values, an error is output. }

program Produce;

type

 VisualGuage = class

 Pos: Single;

 property Position: Single read Pos write Pos default 0.0;

 end;

begin

end.

{ When this error is encountered, there are two easy solutions: the first is to remove the default value
definition, and the second is to change the type of the property to one which allows a default value. Your
program, however, may not be as simple to fix; consider when you have a set property which is too large
-- it is this case which will require you to carefully examine your program to determine the best solution to
this problem. }

program Solve;

type

 VisualGuage = class

 Pos: Integer;

 property Position: Integer read Pos write Pos default 0;

 end;

begin

end.

"Property '<name>' does not exist in base class"
Examples Compiler error messages

Description

The compiler believes you are attempting to hoist a property to a different visibility level in a derived class,
but the specified property does not exist in the base class.

Examples

{ There are two basic causes of this error. The first is the specification of a new property without
specifying a type; this usually is not supposed to be a movement to a new visibility level. The second is
the specification of a property which should exist in the base class, but is not found by the compiler; the
most incarnation of this is a typo. In the second form, the compiler will also output errors that a read or
write clause was expected. of a proper }

program Produce;

type

 Base = class

 private

 A: Integer;

 property BaseProp: Integer read A write A;

 end;

 Derived = class(Base)

 Ch: Char;

 property Alpha read Ch write Ch; { case 1 }

 property BesaProp; { case 2 }

 end;

begin

end.

{ The solution for the first case is to supply the type of the property. The solution for the second case is to
check the spelling of the property name. }

program Solve;

type

 Base = class

 private

 A: Integer;

 property BaseProp: Integer read A write A;

 end;

 Derived = class(Base)

 Ch: Char;

 public

 property Alpha: Char read Ch write Ch; { case 1 }

 property BaseProp; { case 2 }

 end;

begin

end.

"Dynamic method or message handler not allowed here"
Examples Compiler error messages

Description

Dynamic and message methods cannot be used as accessor functions for properties.

Examples

{ Both 'Velocity' and 'Value' above are in error since they both have illegal accessor functions assigned to
them. }

program Produce;

type

 Base = class

 V: Integer;

 procedure SetV(X: Integer); dynamic;

 function GetV: Integer; message;

 property Velocity: Integer read GetV write V;

 property Value: Integer read V write SetV;

 end;

procedure Base.SetV(X: Integer);

begin

 V := X;

end;

function Base.GetV: Integer;

begin

 GetV := V;

end;

begin

end.

{ The solution taken in this is example was to remove the offending compiler directives from the
procedure declarations; this may not be the right solution for you. You may have to closely examine the
logic of your program to determine how best to provide accessor functions for your properties. }

program Solve;

type

 Base = class

 V: Integer;

 procedure SetV(X: Integer);

 function GetV: Integer;

 property Velocity: Integer read GetV write V;

 property Value: Integer read V write SetV;

 end;

procedure Base.SetV(X: Integer);

begin

 V := X;

end;

function Base.GetV: Integer;

begin

 GetV := v;

end;

begin

end.

"Pointer type required"
Examples Compiler error messages

Description

This error message is given when you apply the dereferencing operator '^' to an operand that is not a
pointer, and, as a very special case, when the second operand in a 'Raise <exception> at <address>'
statement is not a pointer.

Examples

{ Even though class types are implemented internally as pointers to the actual information, it is illegal to
apply the dereferencing operator to class types at the source level. It is also not necessary - the compiler
will dereference automatically whenever it is appropriate. }

program Produce;

var

 C: TObject;

begin

 C^.Destroy;

end.

{ Simply leave off the dereferencing operator - the compiler will do the right thing automatically. }

program Solve;

var

 C: TObject;

begin

 C.Destroy;

end.

"Class does not have a default property"
Examples Compiler error messages

Description

You have used a class instance variable in an array expression, but the class type has not declared a
default array property.

Examples

{ The example above elicits an error because 'Base' does not declare an array property, and 'b' is not an
array itself. }

program Produce;

type

 Base = class

 end;

var

 B: Base;

procedure P;

var

 Ch: Char;

begin

 Ch := B[1];

end;

begin

end.

{ When you have declared a default property for a class, you can use the class instance variable in array
expression, as if the class instance variable itself were actually an array. Alternatively, you can use the
name of the property as the actual array accessor. Note: if you have hints turned on, you will receive two
warnings about the value assigned to 'ch' never being used. }

program Solve;

type

 Base = class

 function GetChar(I: Integer): Char;

 property data[I: Integer]: Char read GetChar; default;

 end;

var

 B: Base;

function Base.GetChar(I: Integer): Char;

begin

 GetChar := 'A';

end;

procedure P;

var

 Ch: Char;

begin

 Ch := B[1];

 Ch := B.Data[1];

end;

begin

end.

"Bad argument type in variable type array constructor"
Examples Compiler error messages

Description

You are attempting to construct an array using a type which is not allowed in variable arrays.

Examples

{ Both calls to Examiner will fail because enumerations and records are not supported in array
constructors. }

program Produce;

type

 Fruit = (apple, orange, pear);

 Data = record

 X: Integer;

 Ch: Char;

 end;

var

 F: Fruit;

 D: Data;

procedure Examiner(V: array of TVarRec);

begin

end;

begin

 Examiner([D]);

 Examiner([F]);

end.

{ Many data types, like those in the example above, are allowed in array constructors. }

program Solve;

var

 I: Integer;

 R: Real;

 V: Variant;

procedure Examiner(V: array of TVarRec);

begin

end;

begin

 I := 0; R := 0; V := 0;

 Examiner([I, R, V]);

end.

"Could not load RLINK32.DLL"
Compiler error messages

Description

RLINK32.DLL could not be found. Please ensure that it is on the path.

"Wrong or corrupted version of RLINK32.DLL"
Compiler error messages

Description

The internal consistency check performed on the RLINK32.DLL file has failed.

You should check to insure that you have no conflicts on your PATH which could be causing an older
RLINK32 to load. If you are sure that you have a proper RLINK32.DLL, and you still receive this
message, please contact Borland International.

"';' not allowed before 'ELSE'"
Examples Compiler error messages

Description

You have placed a ';' directly before an else in an if..else statement. The reason for this is that the ';' is
treated as a statement separator, not a statement terminator -- if..else is one statement, a ';' cannot
appear in the middle (unless you use compound statements).

Examples

{ Pascal does not allow a ';' to be placed directly before an ELSE statement. In the code above, an error
will be flagged because of this fact. }

program Produce;

var

 B: Integer;

begin

 if B = 10 then

 B := 0;

 else

 B := 10;

end.

{ There are two easy solutions to this problem. The first is to remove the offending ';'. The second is to
create compound statements for each part of the IF..ELSE. If $HINTS are turned on, you will receive a
hint about the value assigned to B is never used. statement. }

program Solve;

var

 B: Integer;

begin

 if B = 10 then

 B := 0

 else

 B := 10;

 if B = 10 then

 begin

 B := 0;

 end

 else

 begin

 B := 10;

 end;

end.

"Type '<name>' needs finalization - not allowed in variant record"
Examples Compiler error messages

Description

Certain types are treated specially by the compiler on an internal basis in that they must be correctly
finalized to release any resources that they might currently own. Because the compiler cannot determine
what type is actually stored in a record's variant section at run time, it is not possible to guarantee that
these special data types are correctly finalized.

Examples

{ String is one of those types which requires special treatment by the compiler to correctly release the
resources. As such, it is illegal to have a String in a variant section. }

program Produce;

type

 Data = record

 case Kind:Char of

 'A': (Str: string);

 end;

begin

end.

{ One solution to this error is to move all offending declarations out of the variant section. Another
solution would be to use pointer types (^String, for example) and manage the memory yourself. }

program Solve;

type

 Data = record

 Str: string;

 end;

begin

end.

"Type '<name>' needs finalization - not allowed in file type"
Examples Compiler error messages

Description

Certain types are treated specially by the compiler on an internal basis in that they must be correctly
finalized to release any resources that they might currently own.

Because the compiler cannot determine what the length of a long string will be at run time, it is not
possible to guarantee that these special data types are correctly finalized. Records in typed files must all
be of the same size, so types containing long strings are not allowed.

Examples

{ String is one of those data types which need finalization, and as such they cannot be stored in a File
type. }

program Produce;

type

 Data = record

 Name: string;

 end;

var

 InFile: file of Data;

begin

end.

{ One simple solution, for the case of String, is to redeclare the type as an array of characters. For other
cases which require finalization, it becomes increasingly difficult to maintain a binary file structure with
standard Pascal features, such as 'file of'. In these situations, it is probably easier to write specialized file
I/O routines. }

program Solve;

type

 Data = record

 Name: array[1..25] of Char;

 end;

var

 InFile: file of Data;

begin

end.

"Expression too complicated"
Compiler error messages

Description

The compiler has encounter an expression in your source code that is too complicated for it to handle.

Reduce the complexity of your expression by introducing some temporary variables.

"Element 0 inaccessible - use 'Length' or 'SetLength'"
Examples Compiler error messages

Description

The Delphi string type does not store the length of the string in element 0. The old method of changing,
or getting, the length of a string by accessing element 0 does not work with long strings.

Examples

{ Here the program is attempting to get the length of the string by directly accessing the first element.
This is not legal. }

program Produce;

var

 Str: string;

 Len: Integer;

begin

 Str := 'Kojo no tsuki';

 Len := Str[0];

end.

{ You can use the SetLength and Length standard procedures to provide the same functionality as directly
accessing the first element of the string. If hints are turned on, you will receive a warning about the value
of 'len' not being used. }

program Solve;

var

 Str: string;

 Len: Integer;

begin

 Str := 'Kojo no tsuki';

 Len := Length(Str);

end.

"System unit out of date or corrupted: missing '<name>'"
Compiler error messages

Description

The compiler is looking for a special function which resides in System.dcu but could not find it. Your
System unit is either corrupted or obsolete.

Make sure there are no conflicts in your library search path which can point to another System.dcu. Try
reinstalling System.dcu. If neither of these solutions work, then contact Borland International.

"Record, object or class type required"
Examples Compiler error messages

Description

The compiler was expecing to find the type name which specified a record, object or class but did not find
one.

There are two causes for this error. The first is the application of '.' to an object that is not a record. The
second cause is the use of a variable which is of the wrong type in a with statement.

Examples

{ There are two causes for the same error in this program. The first is the application of '.' to a object that
is not a record. The second case is the use of a variable which is of the wrong type in a WITH
statement. }

program Produce;

type

 RecordDesc = class

 Ch: Char;

 end;

var

 pCh: PChar;

 r: RecordDesc;

procedure A;

begin

 pCh.Ch := 'A'; (* case 1 *)

 with pCh do

 begin (* case 2 *)

 end;

end;

end.

{ The easy solution to this error is to always make sure that the '.' and WITH are both applied only to
records, objects or class variables. }

program Solve;

type

 RecordDesc = class

 Ch: Char;

 end;

var

 R: RecordDesc;

procedure A;

begin

 R.Ch := 'A'; (* case 1 *)

 with r do

 begin (* case 2 *)

 end;

end;

end.

"Type not allowed in OLE Automation call"
Examples Compiler error messages

Description

If a data type cannot be converted by the compiler into a variant, then it is not allowed in an OLE
automation call.

Examples

{ A class cannot be converted into a Variant type, so it is not allowed in an OLE call. }

program Produce;

type

 Base = class

 X: Integer;

 end;

var

 B: Base;

 V: Variant;

begin

 V.Dispatch(B);

end.

{ The only solution to this problem is to manually convert these data types to Variants or to only use data
types that can automatically be converted into a Variant. }

program Solve;

type

 Base = class

 X: Integer;

 end;

var

 B: Base;

 V: Variant;

begin

 V.Dispatch(B.X);

end.

"<RLink32 error message>"
Compiler error messages

Description

RLINK32 has encountered an error, which it is duly reporting to you.

Please refer to the RLINK32 reference for a more thorough description of this error.

"<Filename>: <RLink32 error message>"
Compiler error messages

Description

RLINK32 has encountered an error, which it is duly reporting to you.

Please refer to the RLINK32 reference for a more thorough description of this error.

"Too many conditional symbols"
Compiler error messages

Description

You have exceeded the memory allocated to conditional symbols defined on the command line (including
configuration files). There are 256 bytes allocated for all the conditional symbols. Each conditional
symbol requires 1 extra byte when stored in conditional symbol area.

The only solution is to reduce the number of conditional compilation symbols contained on the command
line (or in confiugration files).

"Method '<name>' hides virtual method of base type '<name>'"
See also Examples Compiler error messages

Description

You have declared a method which has the same name as a virtual method in the base class. Your new
method is not a virtual method; it will hide access to the base's method of the same name.

Examples

{ Both methods declared in the definition of Derived will hide the virtual functions of the same name
declared in the base class. }

program Produce;

type

 Base = class

 procedure VirtuMethod; virtual;

 procedure VirtuMethod2; virtual;

 end;

 Derived = class(Base)

 procedure VirtuMethod;

 procedure VirtuMethod2;

 end;

procedure Base.VirtuMethod;

begin

end;

procedure Base.VirtuMethod2;

begin

end;

procedure Derived.VirtuMethod;

begin

end;

procedure Derived.VirtuMethod2;

begin

end;

begin

end.

{ There are two alternatives to take when solving this error. First, you could specify override to make the
derived class' procedure also virtual, and thus allowing inherited calls to still reference the original
procedure. You could also change the name of the procedure as it is declared in the derived class.
Both methods are exhibited in this example. }

program Solve;

type

 Base = class

 procedure VirtuMethod; virtual;

 procedure VirtuMethod2; virtual;

 end;

 Derived = class(Base)

 procedure VirtuMethod; override;

 procedure Virtu2Method;

 end;

procedure Base.VirtuMethod;

begin

end;

procedure Base.VirtuMethod2;

begin

end;

procedure Derived.VirtuMethod;

begin

end;

procedure Derived.Virtu2Method;

begin

end;

begin

end.

See also

Overriding Methods

"Variable '<name>' is declared but never used in '<name>'"
Examples Compiler error messages

Description

You have declared a variable in a procedure, but you never actually use it.

Examples

program Produce;

{$HINTS ON}

procedure Local;

var

 I: Integer;

begin

end;

begin

end.

{ One simple solution is to remove any unused variable from your procedures. However, unused variables
can also indicate an error in the implementation of your algorithm. }

program Solve;

{$HINTS ON}

procedure Local;

begin

end;

begin

end.

"Compile terminated by user"
Compiler error messages

Description

You pressed the Cancel button in the Compiling dialog box during a compile.

"Unnamed arguments must precede named arguments in OLE Automation call"
Examples Compiler error messages

Description

You have attempted to follow named OLE Automation parameterswith unnamed parameters.

Examples

{ The named parameter FileName must follow the unnamed parameter in this OLE dispatch. }

program Produce;

var

 Ole: Variant;

begin

 Ole.Dispatch(FileName:='FrogEggs', 'Tapioca');

end.

{ This solution, reversing the parameters, is the most straightforward but it may not be appropriate for
your situation. Another alternative would be to provide the unnamed parameter with a name. }

program Solve;

var

 Ole: Variant;

begin

 Ole.dispatch('Tapioca', FileName:='FrogEggs');

end.

"Abstract methods must be virtual or dynamic"
Examples Compiler error messages

Description

When declaring an abstract method in a base class, it must either be of regular virtual or dynamic virtual
type.

Examples

{ The declaration that follows is in error because abstract methods must either be virtual or dynamic. }

program Produce;

type

 Base = class

 procedure DaliVision; abstract;

 procedure TellyVision; abstract;

 end;

begin

end.

{ It is possible to remove this error by either specifying virtual or dynamic, whichever is most appropriate
for your application. }

program Solve;

type

 Base = class

 procedure DaliVision; virtual; abstract;

 procedure TellyVision; dynamic; abstract;

 end;

begin

end.

"Case label outside of range of case expression"
Examples Compiler error messages

Description

You have provided a label inside a case statement which cannot be produced by the case statement
control variable.

Examples

{ It is not possible for a TatesCompass to hold all the values of the CompassPoints, and so several of the
case labels will elict errors. }

program Produce;

{$WARNINGS ON}

type

 CompassPoints = (n, e, s, w, ne, se, sw, nw);

 FourPoints = n..w;

var

 TatesCompass: FourPoints;

begin

 TatesCompass := e;

 case TatesCompass of

 n: Writeln('North');

 e: Writeln('East');

 s: Writeln('West');

 w: Writeln('South');

 ne: Writeln('Northeast');

 se: Writeln('Southeast');

 sw: Writeln('Southwest');

 nw: Writeln('Northwest');

 end;

end.

{ After examining your code to determine what the intention was, there are two alternatives. The first is
to change the type of the case statement's control variable so that it can produce all the case labels. The
second alternative would be to remove any case labels that cannot be produced by the control variable.
The first alternative is shown in this example. }

program Solve;

{$WARNINGS ON}

type

 CompassPoints = (n, e, s, w, ne, se, sw, nw);

 FourPoints = n..w;

var

 TatesCompass: CompassPoints;

begin

 TatesCompass := e;

 case TatesCompass OF

 n: Writeln('North');

 e: Writeln('East');

 s: Writeln('West');

 w: Writeln('South');

 ne: Writeln('Northeast');

 se: Writeln('Southeast');

 sw: Writeln('Southwest');

 nw: Writeln('Northwest');

 end;

end.

"Object type required"
Examples Compiler error messages

Description

This error is given whenever an object type is expected by the compiler. For instance, the ancestor type
of an object must also be an object type.

Examples

{ TObject in the System unit is a class type, so we cannot derive an object type from it. }

type

 MyObject = object(TObject)

 end;

begin

end.

{ Make sure the type identifier really stands for an object type - maybe it is misspelled, or maybe is hidden
by an identifier from another unit. }

program Solve;

type

 MyObject = class { Actually, this means: class(TObject) }

 end;

begin

end.

"Field or method identifier expected"
Examples Compiler error messages

Description

You have specified an identifier for a read or write clause to a property which is not a field or method.

Examples

{ The two properties in this code both cause errors. The first causes an error because it is not possible to
specify the property itself as the read & write methods. The second causes an error because 'r' is not a
member of the Base class. }

program Produce;

var

 R: string;

type

 Base = class

 T: string;

 property Title: string read Title write Title;

 property Caption: string read R write R;

 end;

begin

end.

{ To solve this error, make sure that all read and write clauses for properties specify a valid field or method
identifier that is a member of the class which owns the property. }

program Solve;

type

 Base = class

 T: string;

 property Title: string read T write T;

 end;

begin

end.

"Constructing instance of '<name>' containing abstract methods"
Examples Compiler error messages

Description

The code you are compiling is constructing instances of classes which contain abstract methods.

Examples

{ An abstract procedure does not exist, so it becomes dangerous to create instances of a class which
contains abstract procedures. In this case, the creation of 'b' is the cause of the warning. Any
invocation of 'Abstraction' through the instance of 'b' created here would cause a runtime error. A hint will
be issued that the value assigned to 'b' is never used. }

program Produce;

{$WARNINGS ON}

{$HINTS ON}

type

 Base = class

 procedure Abstraction; virtual; abstract;

 end;

var

 B: Base;

begin

 B := Base.Create;

end.

{ One solution to this problem is to remove the abstract directive from the procedure declaration, as is
shown here. Another method of approaching the problem would be to derive a class from Base and then
provide a concrete version of Abstraction. A hint will be issued that the value assigned to B is never
used. }

program Solve;

{$WARNINGS ON}

{$HINTS ON}

type

 Base = class

 procedure Abstraction; virtual;

 end;

var

 B: Base;

procedure Base.Abstraction;

begin

end;

begin

 B := Base.Create;

end.

"Field definition not allowed after methods or properties"
Examples Compiler error messages

Description

You have attempted to add more fields to a class after the first method or property declaration has been
encountered. You must place all field definitions before methods and properties.

Examples

{ The declaration of 'a' after 'FirstMethod' will cause an error. }

program Produce;

type

 Base = class

 procedure FirstMethod;

 A: Integer;

 end;

procedure Base.FirstMethod;

begin

end;

begin

end.

{ To solve this error, it is normally sufficient to simply move all field definitions before the first field or
property declaration. }

program Solve;

type

 Base = class

 A: Integer;

 procedure FirstMethod;

 end;

procedure Base.FirstMethod;

begin

end;

begin

end.

"Cannot override a static method"
Examples Compiler error messages

Description

You have tried, in a derived class, to override a base method which was not declared as one of the virtual
types.

Examples

{ The example above elicits an error because Base.StaticMethod is not declared to be a virtual method,
and as such it is not possible to override its declaration. }

program Produce;

type

 Base = class

 procedure StaticMethod;

 end;

 Derived = class(Base)

 procedure StaticMethod; override;

 end;

procedure Base.StaticMethod;

begin

end;

procedure Derived.StaticMethod;

begin

end;

begin

end.

{ The only way to remove this error from your program, when you don't have the source for the base
classes, is to remove the 'override' specification from the declaration of the derived method. If you have
source to the base classes, you could, with careful consideration, change the base's method to be
declared as one of the virtual types -- but be aware that this change can have a drastic affect on your
programs. }

program Solve;

type

 Base = class

 procedure StaticMethod;

 end;

 Derived = class(Base)

 procedure StaticMethod;

 end;

procedure Base.StaticMethod;

begin

end;

procedure Derived.StaticMethod;

begin

end;

begin

end.

"Variable '<name>' inaccessible here due to optimization"
Examples Compiler error messages

Description

The evaluator or watch statement is attempting to retrieve the value of <name>, but the compiler was
able to determine that the variables actual lifetime ended prior to this inspection point. This error will often
occur if the compiler determines a local variable is assigned a value that is not used beyond a specific
point in the program's control flow.

Examples

1. Create a new application.

2. Place a button on the form.

3. Double-click the button to be taken to the 'click' method.

4. Add a global variable, C, of type Integer to the implementation section.

The click method should read as:

procedure TForm1.Button1Click(Sender: TObject);

var

 A, B: Integer;

begin

 A := 10;

 B := 20;

 C := B;

 A := C;

end;

5. Set a breakpoint on the assignment to C.

6. Compile and run the application.

7. Press the button.

8. After the breakpoint is reached, open the evaluator (Run|Evaluate/Watch).

9. Evaluate A.

The compiler realizes that the first assignment to A is dead, since the value is never used. As such, it
defers even using A until the second assignment occurs -- up until the point where C is assigned to A, the
variable A is considered to be dead and cannot be used by the evaluator.

The only solution is to only attempt to view variables which are known to have live values.

"Necessary library helper function was eliminated by linker"
Examples Compiler error messages

Description

The integrated debugger is attempting to use some of the compiler helper functions to perform the
requested evaluate. The linker, on the other hand, determined that the helper function was not actually
used by the program and it did not link it into the program.

Examples

1 Create a new application.

2 Place a button on the form.

3 Double click the button to be taken to the 'click' method.

4 Add a global variable, V, of type string to the interface section.

5 Add a global variable, P, of type PChar to the interface section.

The click method should read as follows:

procedure TForm1.Button1Click(Sender: TObject);

begin

 V := 'Initialized';

 P := nil;

 V := 'Abid';

end;

6 Set a breakpoint on the second assignment to V.

7 Compile and run the application.

8 Press the button.

9 After the breakpoint is reached, open the evaluator (Run|Evaluate/Watch).

10 Evaluate V.

11Move the cursor to the 'New Value' box.

12 Type in P.

13 Choose Modify.

The compiler uses a special function to copy a PChar to a string. In order to reduce the size of the
produced executable, if that special function is not used by the program, it is not linked in. In this case,
there is no assignment of a PChar to a string, so it is eliminated by the linker.

procedure TForm1.Button1Click(Sender: TObject);

begin

 V := 'Initialized';

 P := nil;

 V := 'Abid';

 V := p;

end;

Adding the extra assignment of a PChar to a string will ensure that the linker includes the desired
procedure in the program. Encountering this error during a debugging session is an indicator that you are
using some language/environment feature that was not needed in the original program.

"Missing or invalid conditional symbol in '$<symbol>' directive"
Examples Compiler error messages

Description

The $IFDEF, $IFNDEF, $DEFINE and $UNDEF directives require that a symbol follow them.

Examples

{ The $IFDEF conditional directive is incorrectly specified here and will result in an error. }

program Produce;

{$IFDEF}

{$ENDIF}

begin

end.

{ The solution to the problem is to ensure that a symbol to test follows the appropriate directives. }

program Solve;

{$IFDEF WIN32}

{$ENDIF}

begin

end.

"Incompatible format specification"
Compiler error messages

Description

You have specified a format specifier for a watch or evaluate statement that is incompatible with the type
of the object which you are inspecting. For example, attempting to display a Boolean variable as a string
will result in this error.

"Format specifier must be C, S, D, H, X, Fn, P, R or nM"
Compiler error messages

Description

You have attempted to specify a format specifier for the watch/evaluate expression which is invalid.

You must specify a valid format specification before the evaluation is able to proceeed.

"Bad specification of M format"
Compiler error messages

Description

You have specified an M format specifier which is not allowed. Only C, D, H, X, S, or M are allowed as
suffixes to the M specifier.

"Object or class type required"
Examples Compiler error messages

Description

This error message is given when the syntax 'Typename.Methodname' is used, but the typename does
not refer to an object or class type.

Examples

{ Type Integer does not have a Create method of course - TInteger does. }

program Produce;

type

 TInteger = class

 Value: Integer;

 end;

var

 V: TInteger;

begin

 V := Integer.Create;

end.

{ Make sure the identifier really refers to an object or class type - maybe it is misspelled or it is hidden by
an identifier from another unit. }

program Solve;

type

 TInteger = class

 Value: Integer;

 end;

var

 V: TInteger;

begin

 V := TInteger.Create;

end.

"Fn requires 2 <= n <= 18"
Examples Compiler error messages

Description

You have specified a value which is out of range for the floating point format specifier in the integrated
debugger.

The range for the Fn format specifier is 2..18.

Examples

1 Create an application with a real variable.

2 Evaluate that variable with ',F21' on the end of the evaluate command (such as: realVar,F21).

3 Reevaluate f, but specify a number in the range 2..18 for the Fn specifier.

When evaluating real numbers with the Fn specification, make sure 2 <= n <= 18.

"'<name>' not previously declared as a PROPERTY"
Examples Compiler error messages

Description

You have attempted to hoist a property to a different visibility level by redeclaration, but <name> in the
base class was not declared as a property.

Examples

{ The intent of the redeclaration of 'Derived.Title' is to change the field which is used to read and write the
property 'Title' as well as hoist it to 'public' visibility. Unfortunately, the programmer really meant to use
'TitleProp', not 'Title'. }

program Produce;

{$WARNINGS ON}

type

 Base = class

 protected

 Caption: string;

 Title: string;

 property TitleProp: string read Title write Title;

 end;

 Derived = class(Base)

 public

 property Title read Caption write Caption;

 end;

begin

end.

{ There are a couple ways of approaching this error. The first, and probably the most commonly taken, is
to specify the real property which is to be redeclared. The second, which can be seen in the receclaration
of 'Title' addresses the problem by explicitly creating a new property, with the same name as a field in the
base class. This new property will hide the base field, which will no longer be accessible without a
typecast. (Note: If you have warnings turned on, the redeclaration of 'Title' will issue a warning notifying
you that the redeclaration will hide the base class' member.) }

program Solve;

{$WARNINGS ON}

type

 Base = class

 protected

 Caption: string;

 Title: string;

 property TitleProp: string read Title write Title;

 end;

 Derived = class(Base)

 public

 property TitleProp read Caption write Caption;

 property Title: string read Caption write Caption;

 end;

begin

end.

"Field definition not allowed in OLE automation section"
Examples Compiler error messages

Description

You have tried to place a field definition in an OLE automation section of a class declaration. Only
properties and methods may be declared in an automated section.

Examples

{ The declaration of I in this class will cause the compile error. }

program Produce;

type

 Base = class

 automated

 I: Integer;

 end;

begin

end.

{ Moving the declaration of I out of the automated section will vanquish the error. }

program Solve;

type

 Base = class

 I: Integer;

 automated

 end;

begin

end.

"Illegal type in OLE automation section: '<typename>'"
Examples Compiler error messages

Description

<typename> is not an allowed type in an automated section. Only a small subset of all the valid Pascal
types are allowed in automation sections.

Examples

{ Since the character type is not one allowed in the 'automated' section, the declaration of 'Ch' will
produce an error when compiled. }

program Produce;

type

 Base = class

 function GetC: Char;

 procedure SetC(C: Char);

 automated

 property Ch: Char read GetC write SetC dispid 151;

 end;

procedure Base.SetC(C: Char);

begin

end;

function Base.GetC: Char;

begin

 GetC := '!';

end;

begin

end.

{ There are two solutions to this problem. The first is to move the offending declaration out of the
'automated' section. The second is to change the offending type to one that is allowed in 'automated'
sections. }

program Solve;

type

 Base = class

 function GetC: string;

 procedure SetC(C: string);

 automated

 property Ch: string read GetC write SetC dispid 151;

 end;

procedure Base.SetC(C: string);

begin

end;

function Base.GetC: string;

begin

 GetC := '!';

end;

begin

end.

"String constant truncated to fit STRING[<number>]"
See also Examples Compiler error messages

Description

A string constant is being assigned to a variable which is not large enough to contain the entire string. The
compiler is alerting you to the fact that it is truncating the literal to fit into the variable.

Examples

{ The two string constants are assigned to variables which are too short to contain the entire string. The
compiler will truncate the strings and perform the assignment. }

program Produce;

{$WARNINGS ON}

const

 Title = 'Super Galactic Invaders with Turbo Gungla Sticks';

 Subtitle = 'Copyright (c) 1968 by Frank Borland';

type

 TitleString = string[25];

 SubtitleString = string[18];

var

 ProgramTitle: TitleString;

 ProgramSubtitle: SubtitleString;

begin

 ProgramTitle := Title;

 ProgramSubtitle := Subtitle;

end.

{ There are two solutions to this problem, both of which are demonstrated in this example. The first
solution is to increase the size of the variable to hold the string. The second is to reduce the size of the
string to fit in the declared size of the variable. }

program Solve;

{$WARNINGS ON}

const

 Title = 'Super Galactic Invaders with Turbo Gungla Sticks';

 Subtitle = 'Copyright (c) 1968';

type

 TitleString = string[55];

 SubtitleString = string[18];

var

 ProgramTitle: TitleString;

 ProgramSubtitle: SubtitleString;

begin

 ProgramTitle := Title;

 ProgramSubtitle := Subtitle;

end.

See also

Short string types

"Constructors and destructors not allowed in OLE automation section"
Examples Compiler error messages

Description

You have incorrectly tried to put a constructor or destructor into the automated section of a class
declaration.

Examples

{ It is not possible to declare a class constructor or destruction in an OLE automation section. The
constructor and destructor declarations in the above code will both elicit this error. }

program Produce;

type

 Base = class

 automated

 constructor HardHatBob;

 destructor DemolitionBob;

 end;

constructor Base.HardHatBob;

begin

end;

destructor Base.DemolitionBob;

begin

end;

begin

end.

{ The only solution to this error is to move your declarations out of the automated section, as has been
done in this example. }

program Solve;

type

 Base = class

 constructor HardHatBob;

 destructor DemolitionBob;

 end;

constructor Base.HardHatBob;

begin

end;

destructor Base.DemolitionBob;

begin

end;

begin

end.

"Dynamic methods and message handlers not allowed in OLE automation
section"

Examples Compiler error messages

Description

You have incorrectly put a dynamic or message method into an automated section of a class declaration.

Examples

{ It is not possible to have a dynamic or message method declaration in an OLE automation section of a
class. As such, the two method declarations in the above program both produce errors. }

program Produce;

type

 Base = class

 automated

 procedure DynaMethod; dynamic;

 procedure MessageMethod(var Msg: Integer); message 151;

 end;

procedure Base.DynaMethod;

begin

end;

procedure Base.MessageMethod;

begin

end;

begin

end.

{ There are several ways to remove this error from your program. First, you could move any declaration
which produces this error out of the automated section, as has been done in this example. Alternatively,
you could remove the dynamic or message attributes of the method; of course, removing these attributes
will not provide you with the desired behavior, but it will remove the error. }

program Solve;

type

 Base = class

 procedure DynaMethod; dynamic;

 procedure MessageMethod(var Msg: Integer); message 151;

 end;

procedure Base.DynaMethod;

begin

end;

procedure Base.MessageMethod;

begin

end;

begin

end.

"Only register calling convention allowed in OLE automation section"
Examples Compiler error messages

Description

You have specified an illegal calling convention on a method appearing in an automated section of a
class declaration.

Examples

{ The language specification disallows all calling conventions except 'register' in an OLE automation
section. The offending statement is 'cdecl' in the following code. }

program Produce;

type

 Base = class

 automated

 procedure Method; cdecl;

 end;

procedure Base.Method; cdecl;

begin

end;

begin

end.

{ There are three solutions to this error. The first is to specify no calling convention on methods declared
in an auto section. The second is to specify only the register calling convention. The third is to move the
offending declaration out of the automation section. }

program Solve;

type

 Base = class

 automated

 procedure Method; register;

 procedure Method2;

 end;

procedure Base.Method; register;

begin

end;

procedure Base.Method2;

begin

end;

begin

end.

"Dispid '<number>' already used by '<name>'"
See also Examples Compiler error messages

Description

An attempt to use a dispid which is already assigned to another member of this class.

Examples

{ Each automated property's dispid must be unique, thus SecondValue is in error. }

program Produce;

type

 Base = class

 V: Integer;

 procedure SetV(X: Integer);

 function GetV: Integer;

 automated

 property Value: Integer read GetV write SetV dispid 151;

 property SecondValue: Integer read GetV write SetV dispid 151;

 end;

procedure Base.SetV(X: Integer);

begin

 V := X;

end;

function Base.GetV: Integer;

begin

 GetV := V;

end;

begin

end.

{ Giving a unique dispid to SecondValue will remove the error. }

program Solve;

type

 Base = class

 V: Integer;

 procedure SetV(X: Integer);

 function GetV: Integer;

 automated

 property Value: Integer read getV write setV dispid 151;

 property SecondValue: Integer read GetV write SetV dispid 152;

 end;

procedure Base.SetV(X: Integer);

begin

 V := X;

end;

function Base.GetV: Integer;

begin

 GetV := V;

end;

begin

end.

See also

OLE Automation

Properties

"Redeclaration of property not allowed in OLE automation section"
Examples Compiler error messages

Description

It is not allowed to redeclare a property into an automated section.

Examples

{ In the following example, Name is moved from a private visibility in Base to public visibility in Derived by
redeclaration. The same idea is attempted on Value, but an error results. }

program Produce;

type

 Base = class

 V: Integer;

 S: string;

 protected

 property Name: string read S write S;

 property Value: Integer read V write V;

 end;

 Derived = class(Base)

 public

 property Name; (* Move Name to a public visibility by redeclaration *)

 automated

 property Value;

 end;

begin

end.

{ It is simply not possible to change the visibility of a property to an automated section, therefore the
solution to this problem is to not redeclare properties of base classes in automated sections. }

program Solve;

type

 Base = class

 V: Integer;

 S: string;

 protected

 property Name: string read S write S;

 property Value: Integer read V write V;

 end;

 Derived = class(Base)

 public

 property Name; (* Move Name to a public visibility by redeclaration *)

 property Value;

 automated

 end;

begin

end.

"Undeclared identifier: '<name>'"
Examples Compiler error messages

Description

The compiler could not find the given identifier - most likely it has been misspelled either at the point of
declaration or the point of use. It might be from another unit that has not mentioned a uses clause.

Examples

{ In the example the variable has been declared as "Counter", but used as "Count". The solution is to
either change the declaration or the places where the variable is used. }

program Produce;

var

 Counter: Integer;

begin

 Count := 0;

 Inc(Count);

 Writeln(Count);

end.

{ In the example we have chosen to change the declaration - that was less work. }

program Solve;

var

 Count: Integer;

begin

 Count := 0;

 Inc(Count);

 Writeln(Count);

end.

"Class type required"
Examples Compiler error messages

Description

In certain situations the compiler requires a class type:

As the ancestor of a class type
In the on clause of a try .. except statement
As the first argument of a raise statement
As the final type of a forward-declared class type

Examples

program Produce;

begin

 raise 'This would work in C++, but does not in Delphi';

end.

program Solve;

uses SysUtils;

begin

 raise Exception.Create('There is a simple workaround, however');

end.

"'<clause>' clause not allowed in OLE automation section"
Examples Compiler error messages

Description

The directives index, stored, default, and nodefault are not allowed in OLE automation sections.

Examples

{ Including a NODEFAULT clause on an automated property is not allowed. }

program Produce;

type

 Base = class

 V: Integer;

 procedure SetV(X: Integer);

 function GetV: Integer;

 automated

 property Value: Integer read GetV write SetV nodefault;

 end;

procedure Base.SetV(X: Integer);

begin

 V := X;

end;

function Base.GetV: Integer;

begin

 GetV := V;

end;

begin

end.

{ Simply removing the offending clause will cause the error to go away. Alternatively, moving the property
out of the automated section will also make the error go away. }

program Solve;

type

 Base = class

 V: Integer;

 procedure SetV(X: Integer);

 function GetV: Integer;

 automated

 property Value: Integer read GetV write SetV;

 end;

procedure Base.SetV(X: Integer);

begin

 V := X;

end;

function Base.GetV: Integer;

begin

 GetV := V;

end;

begin

end.

"Dispid clause only allowed in OLE automation section"

Description

A dispid has been given to a property which is not in an automated section.

Examples

{ This program attempts to set the dispid for an OLE automation object, but the property has not been
declared in an automated section. }

program Produce;

type

 Base = class

 V: Integer;

 procedure SetV(X: Integer);

 function GetV: Integer;

 property Value: Integer read GetV write SetV dispid 151;

 end;

procedure Base.SetV(X: Integer);

begin

 V := X;

end;

function Base.GetV: Integer;

begin

 GetV := V;

end;

begin

end.

{ To solve the error, you can either remove the dispid clause from the property declaration, or move the
property declaration into an automated section. }

program Solve;

type

 Base = class

 V: Integer;

 procedure SetV(X: Integer);

 function GetV: Integer;

 automated

 property Value: Integer read GetV write SetV dispid 151;

 end;

procedure Base.SetV(X: Integer);

begin

 V := X;

end;

function Base.GetV: Integer;

begin

 GetV := V;

end;

begin

end.

"Type '<name>' must be a class to have OLE automation"
Examples Compiler error messages

Description

Old-style objects cannot have an automated section.

Examples

{ It is not possible to have an automated section in an old-style object, thus an error will result from this
example. }

program Produce;

type

 OldObject = object

 automated

 end;

begin

end.

{ Changing the type from 'object' to 'class', or removing the automated section will remove the error. }

program Solve;

type

 NewClass = class

 automated

 end;

begin

end.

"Type '<name>' must be a class to have a PUBLISHED section"
Examples Compiler error messages

Description

Old-style objects cannot have a published section.

Examples

{ It is not possible to have a published section in an old-style object, thus an error will result from this
example. }

{$TYPEINFO ON}

program Produce;

type

 OldObject = object

 published

 end;

begin

end.

{ Changing the type from 'object' to 'class', or removing the published section will remove the error. }

{$TYPEINFO ON}

program Solve;

type

 NewClass = class

 published

 end;

begin

end.

"Redeclaration of '<name>' hides a member in the base class"
Examples Compiler error messages

Description

A property has been created in a class with the same name of a variable contained in one of the base
classes.

One possible, and not altogether apparent, reason for getting this error is that a new version of the base
class hierarchy has been installed and it contains new member variables which have names identical to
your properties' names.

Examples

{ Derived.v overrides, and thus hides, Base.v; it will not be possible to access Base.v in any variable of
type Derived without a typecast. }

{$WARNINGS ON}

program Produce;

type

 Base = class

 V: Integer;

 end;

 Derived = class(Base)

 Ch: Char;

 property V: Char read Ch write Ch;

 end;

begin

end.

{ By simply changing the name of the property in the derived class, the error is alleviated. }

{$WARNINGS ON}

program Solve;

type

 Base = class

 V: Integer;

 end;

 Derived = class(Base)

 Ch: Char;

 property ChV: Char read Ch write Ch;

 end;

begin

end.

"Overriding automated virtual method '<name>' cannot specify a dispid"
Examples Compiler error messages

Description

The dispid declared for the original virtual automated procedure declaration must be used by all
overriding procedures in derived classes.

Examples

{ The overriding declaration of Base.Automatic, in Derived (Derived.Automatic) erroneously attempts to
define another dispid for the procedure. }

program Produce;

type

 Base = class

 automated

 procedure Automatic; virtual; dispid 151;

 end;

 Derived = class(Base)

 automated

 procedure Automatic; override; dispid 152;

 end;

procedure Base.Automatic;

begin

end;

procedure Derived.Automatic;

begin

end;

begin

end.

{ By removing the offending dispid clause, the program will now compile. }

program Solve;

type

 Base = class

 automated

 procedure Automatic; virtual; dispid 151;

 end;

 Derived = class(Base)

 automated

 procedure Automatic; override;

 end;

procedure Base.Automatic;

begin

end;

procedure Derived.Automatic;

begin

end;

begin

end.

"Published Real property '<name>' must be Single, Double or Extended"
Examples Compiler error messages

Description

You have attempted to publish a property of type Real, which is not allowed. Published floating point
properties must be Single, Double or Extended.

Examples

{ The published Real property in the program above must be either removed, moved to an unpublished
section or changed into an acceptable type. }

program Produce;

type

 Base = class

 R: Real;

 published

 property RVal: Real read R write R;

 end;

end.

{ This solution changed the property into a real type that will actually produce run-time type information. }

program Produce;

type

 Base = class

 R: Single;

 published

 property RVal: Single read R write R;

 end;

end.

"Size of published set '<name>' is >32 bits"
Examples Compiler error messages

Description

The compiler does not allow sets greater than 32 bits to be contained in a published section. The size, in
bytes, of a set can be calculated by High(setname) div 8 - Low(setname) div 8 + 1.

Examples

{$TYPEINFO ON}

program Produce;

type

 CharSet = set of Char;

 NamePlate = class

 Characters: CharSet;

 published

 property TooBig: CharSet read Characters write Characters ;

 end;

begin

end.

{$TYPEINFO ON}

program Solve;

type

 CharSet = set of 'A'..'Z';

 NamePlate = class

 Characters: CharSet;

 published

 property TooBig: CharSet read Characters write Characters ;

 end;

begin

end.

"Published property '<name>' cannot be of type <type>"
Examples Compiler error messages

Description

Published properties must be an ordinal type, Single, Double, Extended, Comp, a string type, a set type
which fits in 32 bits, or a method pointer type. When any other property type is encountered in a
published section, the compiler will remove the published attribute

Examples

{ An error is induced because an array is not one of the data types which can be published. }

{$TYPEINFO ON}

program Produce;

type

 TitleArr = array[0..24] of Char;

 NamePlate = class

 TitleStr: TitleArr;

 published

 property Title: TitleArr read TitleStr write TitleStr;

 end;

begin

end.

{ Moving the property declaration out of the published section will avoid this error. Another alternative, as
in this example, is to change the type of the property to be something that can actually be published. }

{$TYPEINFO ON}

program Solve;

type

 TitleArr = Integer;

 NamePlate = class

 TitleStr: TitleArr;

 published

 property Title: TitleArr read TitleStr write TitleStr;

 end;

begin

end.

"Thread local variables cannot be local to a function"
Examples Compiler error messages

Description

Thread-local variables must be declared at a global scope.

Examples

{ A thread variable cannot be declared local to a procedure. }

program Produce;

procedure NoTLS;

threadvar

 X: Integer;

begin

end;

begin

end.

{ There are two simple alternatives for avoiding this error. First, the threadvar section can be moved to a
local scope. Secondly, the theadvar in the procedure could be changed into a normal var section. Note
that if compiler hints are turned on, a hint about localX being declared but not used will be emitted. }

program Solve;

threadvar

 X: Integer;

procedure YesTLS;

var

 LocalX: Integer;

begin

end;

begin

end.

"Function needs result type"
Examples Compiler error messages

Description

You have declared a function, but have not specified a return type.

Examples

{ Here Sum is meant to be function, we have not told the compiler about it. }

program Produce;

function Sum(A: array of Integer);

var

 I: Integer;

begin

 Result := 0;

 for I := 0 to High(A) do

 Result := Result + A[I];

end;

begin

end.

{ Just make sure you specify the result type. }

program Solve;

function Sum(A: array of Integer): Integer;

var

 I: Integer;

begin

 Result := 0;

 for I := 0 to High(A) do

 Result := Result + A[I];

end;

begin

end.

"Thread local variables cannot be ABSOLUTE"
Examples Compiler error messages

Description

A thread local variable cannot refer to another variable, nor can it reference an absolute memory address.

Examples

{ The absolute directive is not allowed in a threadvar declaration section. }

program Produce;

threadvar

 SecretNum: Integer absolute $151;

begin

end.

{ There are two easy ways to solve a problem of this nature. The first is to simply remove the absolute
directive from the threadvar section. The second would be to move the absolute variable to a normal var
declaration section. }

program Solve;

threadvar

 SecretNum: Integer;

var

 sNum: Integer absolute $151;

begin

end.

"EXPORTS allowed only at global scope"
Examples Compiler error messages

Description

An exports clause has been encountered in the program source at a non-global scope.

Examples

{ It is not allowed to have an EXPORTS clause anywhere but a global scope. }

program Produce;

procedure ExportedProcedure;

exports ExportedProcedure;

begin

end;

begin

end.

{ The solution is to ensure that your EXPORTS clause is at a global scope and textually follows all
procedures named in the clause. As a general rule, EXPORTS clauses are best placed right before the
source file's initialization code. }

program Solve;

procedure ExportedProcedure;

begin

end;

exports ExportedProcedure;

begin

end.

"Constants cannot be used as open array arguments"
Examples Compiler error messages

Description

Open array parameters must be supplied with an actual array variable, a constructed array or a single
variable of the parameter's element type.

Examples

{ The error is caused in this example because a string literal is being supplied when an array is expected.
It is not possible to implicitly construct an array from a constant. }

program Produce;

procedure TakesArray(S: array of string);

begin

end;

begin

 TakesArray('Hello Error');

end.

{ The solution avoids the error because the array is explicitly constructed. }

program Solve;

procedure TakesArray(S: array of string);

begin

end;

begin

 TakesArray(['Hello Error']);

end.

"Slice standard function only allowed as open array argument"
Examples Compiler error messages

Description

An attempt has been made to pass an array slice to a fixed size array. Array slices can only be sent to
open array parameters.

Examples

{ In the following example, the error is produced because TakesArray expects a fixed size array. }

program Produce;

type

 IntegerArray = array[1..10] of Integer;

var

 SliceMe: array[1..200] of Integer;

procedure TakesArray(X: IntegerArray);

begin

end;

begin

 TakesArray(Slice(SliceMe, 5));

end.

{ In the following example, the error is not produced because TakesArray takes an open array as the
parameter. }

program Solve;

type

 IntegerArray = array[1..10] of Integer;

var

 SliceMe: array[1..200] of Integer;

procedure TakesArray(X: array of Integer);

begin

end;

begin

 TakesArray(Slice(SliceMe, 5));

end.

"Cannot initialize thread local variables"
Examples Compiler error messages

Description

The compiler does not allow initialization of thread-local variables.

Examples

{ The declaration and initialization of 'tls' above is not allowed. }

program Produce;

threadvar

 tls: Integer = 151;

begin

end.

{ You can declare thread local storage as normal, and then initialize it in the initialization section of your
source file. }

program Solve;

threadvar

 tls: Integer;

begin

 tls := 151;

end.

"Cannot initialize local variables"
Examples Compiler error messages

Description

The compiler disallows the use of local initialized variables.

Examples

{ The declaration and initialization of i in procedure Show is illegal. }

program Produce;

var

 J: Integer;

procedure Show;

var

 I: Integer = 151;

begin

end;

begin

end.

{ You can use a programmatic style to set all variables to known values. }

program Solve;

var

 J: Integer;

procedure Show;

var

 I: Integer;

begin

 I := 151;

end;

begin

 J := 0;

end.

"Cannot initialize multiple variables"
Examples Compiler error messages

Description

Variable initialization can only occur when variables are declared individually.

Examples

{ The compiler will disallow the declaration and initialization of more than one variable at a time. }

program Produce;

var

 I, J: Integer = 151, 152;

begin

end.

{ Simple declare each variable by itself to allow initialization. }

program Solve;

var

 I: Integer = 151;

 J: Integer = 152;

begin

end.

"Constant object cannot be passed as var parameter"
Examples Compiler error messages

Description

As variable parameters are intended to be modified by the called procedure or function, you can not pass
a constant object to a variable parameter. If your intention is just to pass a big datastructure efficiently,
and the called function should not modify it, you can use a const parameter instead.

Examples

{ In the example, function has a variable parameter, but we are passing a constant to it. }

program Produce;

{$AppType Console}

function Max(var A: array of Integer): Integer;

var

 I: Integer;

begin

 Result := Low(Integer);

 for I := 0 to High(A) do

 if Result < A[I] then

 Result := A[I];

end;

begin

 Writeln(Max([1,2,3])); { <-- Error message here }

end.

{ The solution is to declare the parameter as a constant parameter (we do not intend to modify it, after all).
Alternatively, you can also modify the call so it does not pass constants. }

program Solve;

{$AppType Console}

function Max(const A: array of Integer): Integer;

var

 I: Integer;

begin

 Result := Low(Integer);

 for I := 0 to High(A) do

 if Result < A[I] then

 Result := A[I];

end;

begin

 Writeln(Max([1,2,3]));

end.

"Invalid function result type"
Examples Compiler error messages

Description

File types are not allowed as function result types.

Examples

{ You cannot return a file from a function. }

program Produce;

function OpenFile(Name: string): file;

begin

end;

begin

end.

{ You can "return" the file as a variable parameter. Alternatively, you can allocate a file dynamically and
return a pointer to it. }

program Solve;

procedure OpenFile(Name: string; var F: file);

begin

end;

begin

end.

"Procedure cannot have a result type"
Examples Compiler error messages

Description

You have declared a procedure, but given it a result type. Either you really meant to declare a function, or
you should delete the result type.

Examples

{ Here DotProduct was really meant to be a function, we just happened to use the wrong keyword... }

program Produce;

procedure DotProduct(const A,B: array of Double): Double;

var

 I: Integer;

begin

 Result := 0.0;

 for I := 0 to High(A) do

 Result := Result + A[I]*B[I];

end;

const

 C: array[1..3] of Double = (1,2,3);

begin

 Writeln(DotProduct(C,C));

end.

{ Just make sure you specify a result type when you declare a function, and no result type when you
declare a procedure. }

program Solve;

function DotProduct(const A,B: array of Double): Double;

var

 I: Integer;

begin

 Result := 0.0;

 for I := 0 to High(A) do

 Result := Result + A[I]*B[I];

end;

const

 C: array[1..3] of Double = (1,2,3);

begin

 Writeln(DotProduct(C,C));

end.

"Text after final 'END.' - ignored by compiler"
Examples Compiler error messages

Description

This warning is given when there is still source text after the final end and the period that constitute the
logical end of the program. Possibly the nesting of begin..end is inconsistent (there is one 'end' too many
somewhere). Check whether you intended the source text to be ignored by the compiler - maybe it is
actually quite important.

Examples

program Produce;

begin

end.

Text here is ignored by Delphi 16-bit - Delphi 32-bit gives a warning.

//-------------------------------

program Solve;

begin

end.

{ You can of course always put text in comments - }

{ that will of course not cause a warning }

"Constant expression expected"
Examples Compiler error messages

Description

The compiler expected a constant expression here, but the expression it found turned out not to be
constant.

Examples

{ The call to Pos is not a constant expression to the compiler, even though its arguments are constants,
and it could in principle be evaluated at compile time. }

program Produce;

const

 Message = 'Hello World!';

 WPosition = Pos('W', Message);

begin

end.

{ So in this case, we just have to calculate the right value for WPosition ourselves. }

program Solve;

const

 Message = 'Hello World!';

 WPosition = 7;

begin

end.

"Constant expression violates subrange bounds"
Examples Compiler error messages

Description

This error message occurs when the compiler can determine that a constant is outside the legal range.
This can occur for instance if you assign a constant to a variable of a subrange type.

Examples

program Produce;

var

 Digit: 1..9;

begin

 Digit := 0; { Get message: Constant expression violates subrange bounds
}

end.

program Solve;

var

 Digit: 0..9;

begin

 Digit := 0;

end.

"Duplicate tag value"
Examples Compiler error messages

Description

This error message is given when a constant appears more than once in the declaration of a variant
record.

Examples

program Produce;

type

 VariantRecord = record

 case Integer of

 0: (IntField: Integer);

 0: (RealField: Real); { <-- Error message here }

 end;

begin

end.

program Solve;

type

 VariantRecord = record

 case Integer of

 0: (IntField: Integer);

 1: (RealField: Real);

 end;

begin

end.

"Sets may have at most 256 elements"
Examples Compiler error messages

Description

This error message appears when you try to declare a set type of more than 256 elements. More
precisely, the ordinal values of the upper and lower bounds of the base type must be within the range
0..255.

Examples

{ In the example, BigSet really only has 256 elements, but is still illegal. }

program Produce;

type

 BigSet = set of 1..256; { <-- error message given here }

begin

end.

{ We need to make sure the upper and lower bounds and in the range 0..255. }

program Solve;

type

 BigSet = set of 0..255;

begin

end.

"<Token1> expected but <token2> found"
Examples Compiler error messages

Description

This error message appears for syntax errors. There is probably a typo in the source, or something was
left out. When the error occurs at the beginning of a line, the actual error is often on the previous line.

Examples

{ After the type Integer, the compiler expects to find a semicolon to terminate the variable declaration. It
does not find the semicolon on the current line, so it reads on and finds the 'begin' keyword at the start of
the next line. At this point it finally knows something is wrong... }

program Produce;

var

 I: Integer

begin { <-- Error message here: ';' expected but 'BEGIN' found
}

end.

{ In this case, just the semicolon was missing - a frequent case in practice. In general, have a close look
at the line where the error message appears, and the line above it to find out whether something is
missing or misspelled. }

program Solve;

var

 I: Integer; { Semicolon was missing }

begin

end.

"Identifier redeclared: '<name>'"
Examples Compiler error messages

Description

The given identifier has already been declared in this scope - you are trying to reuse its name for
something else.

Examples

{ Here the name of the program is the same as that of the variable - we need to change one of them to
make the compiler happy. }

program Tests;

var

 Tests: Integer;

begin

end.

program Tests;

var

 TestCnt: Integer;

begin

end.

"Duplicate case label"
Examples Compiler error messages

Description

This error message occurs when there is more than one case label with a given value in a case
statement.

Examples

{ Here we did not pay attention and mentioned the case label 0 twice. }

program Produce;

function DigitCount(I: Integer): Integer;

begin

 case Abs(I) of

 0: DigitCount := 1;

 0 ..9: DigitCount := 1; { <-- Error message here }

 10 ..99: DigitCount := 2;

 100 ..999: DigitCount := 3;

 1000 ..9999: DigitCount := 4;

 10000 ..99999: DigitCount := 5;

 100000 ..999999: DigitCount := 6;

 1000000 ..9999999: DigitCount := 7;

 10000000 ..99999999: DigitCount := 8;

 100000000..999999999: DigitCount := 9;

 else DigitCount := 10;

 end;

end;

begin

 Writeln(DigitCount(12345));

end.

{ In general, the problem might not be so easy to spot when you have symbolic constants and ranges of
case labels - you might have to write down the real values of the constants to find out what is wrong. }

program Solve;

function DigitCount(I: Integer): Integer;

begin

 case Abs(I) of

 0 ..9: DigitCount := 1;

 10 ..99: DigitCount := 2;

 100 ..999: DigitCount := 3;

 1000 ..9999: DigitCount := 4;

 10000 ..99999: DigitCount := 5;

 100000 ..999999: DigitCount := 6;

 1000000 ..9999999: DigitCount := 7;

 10000000 ..99999999: DigitCount := 8;

 100000000..999999999: DigitCount := 9;

 else DigitCount := 10;

 end;

end;

begin

 Writeln(DigitCount(12345));

end.

"Label expected"
Examples Compiler error messages

Description

This error message occurs if the identifier given in a goto statement or used as a label in inline assembly
is not declared as a label.

Examples

program Produce;

begin

 if 2*2 <> 4 then

 goto Exit; { <-- Error message here: Exit is also a standard procedure }

 { ... }

Exit: { Additional error messages here }

end.

program Solve;

label

 Exit; { Labels must be declared in Pascal }

begin

 if 2*2 <> 4 then

 goto Exit;

 { ... }

Exit:

end.

"For loop control variable must be simple local variable"
Examples Compiler error messages

Description

This error message is given when the control variable of a for statement is not a simple variable (but a
component of a record, for instance), or if it is not local to the procedure containing the for statement. For
backward compatibility reasons, it is legal to use a global variable as the control variable - the compiler
gives a warning in this case. Note that using a local variable will also generate more efficient code.

Examples

program Produce;

var

 I: Integer;

 A: array[0..9] of Integer;

procedure Init;

begin

 for I := Low(A) to High(a) do { <-- Warning given here }

 A[I] := 0;

end;

begin

 Init;

end.

program Solve;

var

 A: array[0..9] of Integer;

procedure Init;

var

 I: Integer;

begin

 for I := Low(A) to High(a) do

 A[I] := 0;

end;

begin

 Init;

end.

"For loop control variable must have ordinal type"
Examples Compiler error messages

Description

The control variable of a for loop must have type Boolean, Char, WideChar, Integer, an enumerated type,
or a subrange type.

Examples

{ The example uses a variable of type Real as the for loop control variable, which is illegal. }

program Produce;

var

 X: Real;

begin { Plot sine wave }

 for X := 0 to 2*Pi/0.2 do { <-- Error message
here }

 Writeln('*': Round((Sin(X*0.2) + 1)*20) + 1);

end.

{ The most obvious ordinal type to use here is Integer, which works just fine. }

program Solve;

var

 X: Integer;

begin { Plot sine wave }

 for X := 0 to Round(2*Pi/0.2) do

 Writeln('*': Round((Sin(X*0.2) + 1)*20) + 1);

end.

"Types of actual and formal var parameters must be identical"
Examples Compiler error messages

Description

For a variable parameter, the actual argument must be of the exact type of the formal parameter.

Examples

{ Arguments C1 and C2 are not acceptable to SwapBytes, although they have the exact memory
representation and range that a Byte has. }

program Produce;

procedure SwapBytes(var B1, B2: Byte);

var

 Temp: Byte;

begin

 Temp := B1; B1 := B2; B2 := Temp;

end;

var

 C1, C2: 0..255; { Similar to a byte, but NOT identical }

begin

 SwapBytes(C1,C2); { <-- Error message here }

end.

{ So you actually have to declare C1 and C2 as Bytes to make this example compile. }

program Solve;

procedure SwapBytes(var B1, B2: Byte);

var

 Temp: Byte;

begin

 Temp := B1; B1 := B2; B2 := Temp;

end;

var

 C1, C2: Byte;

begin

 SwapBytes(C1,C2); { <-- Error message here }

end.

"Too many actual parameters"
Examples Compiler error messages

Description

This error message occurs when a procedure or function call gives more parameters than the procedure
or function declaration specifies.

Additionally, this error message occurs when an OLE automation call has too many (more than 255), or
too many named parameters.

Examples

{ It would have been convenient for Max to accept three parameters... }

program Produce;

function Max(A,B: Integer): Integer;

begin

 if A > B then Max := A else Max := B

end;

begin

 Writeln(Max(1,2,3)); { <-- Error message here }

end.

{ Normally, you would change to call site to supply the right number of parameters. Here, we have chosen
to show you how to implement Max with an unlimited number of arguments. Note that now you have to
call it in a sligtly different way. }

program Solve;

function Max(const A: array of Integer): Integer;

var

 I: Integer;

begin

 Result := Low(Integer);

 for I := 0 to High(A) do

 if Result < A[I] then

 Result := A[I];

end;

begin

 Writeln(Max([1,2,3]));

end.

"Not enough actual parameters"
Examples Compiler error messages

Description

This error message occurs when a call to procedure or function gives fewer parameters than specified in
the procedure or function declaration. This can also occur for calls to standard procedures or functions.

Examples

{ The standard procedure Val has one additional parameter to return an error code in. The example did
not supply that parameter. }

program Produce;

var

 X: Real;

begin

 Val('3.141592', X); { <-- Error message here }

end.

{ Typically, you will check the call against the declaration of the procedure called or the help, and you will
find you forgot about a parameter you need to supply. }

program Solve;

var

 X: Real;

 Code: Integer;

begin

 Val('3.141592', X, Code);

end.

"Variable required"
Examples Compiler error messages

Description

This error message occurs when you try to take the address of an expression or a constant.

Examples

{ A constant like 1 does not have a memory address, so you cannot apply the @ operator or the Addr
standard function to it. }

program Produce;

var

 I: Integer;

 PI: ^Integer;

begin

 PI := Addr(1);

end.

{ You need to make sure you take the address of variable. }

program Solve;

var

 I: Integer;

 PI: ^Integer;

begin

 PI := Addr(I);

end.

"Declaration of <name> differs from previous declaration"
Examples Compiler error messages

Description

This error message occurs when the declaration of a procedure, function, method, constructor, or
destructor differs from its previous (forward) declaration.

This error message also occurs when you try to override a virtual method, but the overriding method has
a different parameter list, calling convention etc.

Examples

{ As you can see, there are a number of reasons for this error message to be issued. }

program Produce;

type

 MyClass = class

 procedure Proc(Inx: Integer);

 function Func: Integer;

 procedure Load(const Name: string);

 procedure Perform(Flag: Boolean);

 constructor Create;

 destructor Destroy(Msg: string); override; { <-- Error message here
}

 class function NewInstance: MyClass; override; { <-- Error message here
}

 end;

procedure MyClass.Proc(Index: Integer); { <-- Error message here
}

begin

end;

function MyClass.Func: Longint; { <-- Error message here
}

begin

end;

procedure MyClass.Load(Name: string); { <-- Error message here
}

begin

end;

procedure MyClass.Perform(Flag: Boolean); cdecl; { <-- Error message here

}

begin

end;

procedure MyClass.Create; { <-- Error message here
}

begin

end;

function MyClass.NewInstance: MyClass; { <-- Error message here
}

begin

end;

begin

end.

{ You need to carefully compare the 'previous declaration' with the one that causes the error to determine
what is different between the two. }

program Solve;

type

 MyClass = class

 procedure Proc(Inx: Integer);

 function Func: Integer;

 procedure Load(const Name: string);

 procedure Perform(Flag: Boolean);

 constructor Create;

 destructor Destroy; override; { No parameters }

 class function NewInstance: TObject; override; { Result type }

 end;

procedure MyClass.Proc(Inx: Integer); { Parameter name }

begin

end;

function MyClass.Func: Integer; { Result type }

begin

end;

procedure MyClass.Load(const Name: string); { Parameter kind }

begin

end;

procedure MyClass.Perform(Flag: Boolean); { Calling convention }

begin

end;

constructor MyClass.Create; { constructor }

begin

end;

class function MyClass.NewInstance: TObject; { class function }

begin

end;

begin

end.

"Illegal character in input file: '<Char>' (<Hexadecimal value>)"
Examples Compiler error messages

Description

The compiler found a character that is illegal in Pascal programs. This error message is caused most
often by errors with string constants or comments.

Examples

{ Here a programmer fell back to C++ habits and quoted a string with double quotes. }

program Produce;

begin

 Writeln("Hello world!"); { <-- Error messages here }

end.

{ The solution is to use single quotes. In general, you need to delete the illegal character. }

program Solve;

begin

 Writeln('Hello world!'); { Need single quotes in Pascal }

end.

"'<name>' is not a type identifier"
Examples Compiler error messages

Description

This error message occurs when the compiler expected the name of a type, but the name it found did not
stand for a type.

Examples

{ The example erroneously uses the name of the variable, not the name of the type, as the type of the
argument. }

program Produce;

type

 TMyClass = class

 Field: Integer;

 end;

var

 MyClass: TMyClass;

procedure Proc(C: MyClass); { <-- Error message here }

begin

end;

begin

end.

{ Make sure the offending identifier is indeed a type - maybe it was misspelled, or another identifier of the
same name hides the one you meant to refer to. }

program Solve;

type

 TMyClass = class

 Field: Integer;

 end;

var

 MyClass: TMyClass;

procedure Proc(C: TMyClass);

begin

end;

begin

end.

"File not found: <Filename>"
Examples Compiler error messages

Description

This error message occurs when the compiler cannot find an input file. This can be a source file, a
compiled unit file (.dcu file), an include, an object file or a resource file. Check the spelling of the name
and the relevant search path.

Examples

program Produce;

uses SysUtis; { <-- Error message here }

begin

end.

program Solve;

uses SysUtils; { Fixed typo }

begin

end.

"Could not create output file <Filename>"
Compiler error messages

Description

The compiler could not create an output file. This can be a compiled unit file (.dcu file), an executable file,
a map file or an object file. Most likely causes are a nonexistent directory or a write protected file or disk.

"Seek error on <Filename>"
Compiler error messages

Description

The compiler encountered a seek error on an input or output file. This should never happen - if it does,
the most likely cause is corrupt data.

"Read error on <Filename>"
Compiler error messages

Description

The compiler encountered a read error on an input file. This should never happen - if it does, the most
likely cause is corrupt data.

"Write error on <Filename>"
Compiler error messages

Description

The compiler encountered a write error while writing to an output file. Most likely, the output disk is full.

"Close error on <Filename>"
Compiler error messages

Description

The compiler encountered an error while closing an input or output file. This should rarely happen. If it
does, the most likely cause is a full or bad disk.

"Bad file format: <Filename>"
Compiler error messages

Description

This error occurs if an object file loaded with a $L or $LINK directive is not of the correct format.

Several restrictions must be met:

Check the naming restrictions on segment names in the help file
Not more than 10 segments
Not more than 255 external symbols
Not more than 50 local names in LNAMES records
LEDATA and LIDATA records must be in offset order
No THREAD subrecords are supported in FIXU32 records
Only 32-bit offsets can be fixed up
Only segment and self relative fixups
Target of a fixup must be a segment, a group or an EXTDEF
Object must be 32-bit object file
Various internal consistency condition that should only fail if the object file is ccorrupted.

"Out of memory"
Compiler error messages

Description

The compiler ran out of memory. This should rarely happen. If it does, make sure your swap file is large
enough and that there is still room on the disk.

"Circular unit reference to <Unitname>"
Examples Compiler error messages

Description

One or more units use each other in their interface parts. As the compiler has to translate the interface
part of a unit before any other unit can use it, the compiler must be able to find a compilation order for the
interface parts of the units. Check whether all the units in the uses clauses are really necessary, and
whether some can be moved to the implementation part of a unit instead.

Examples

{ The problem is caused because A and B use each other in their interface sections. }

unit A;

interface

uses B; { A uses B, and B uses A }

implementation

end.

unit B;

interface

uses A;

implementation

end.

{ You can break the cycle by moving one or more uses to the implementation part. }

unit A;

interface

uses B; { Compilation order: B.interface, A, B.implementation }

implementation

end.

unit B;

interface

implementation

uses A; { Moved to the implementation part }

end.

"Bad unit format: <Filename>"
Compiler error messages

Description

This error occurs if a compiled unit file (.dcu file) has a bad format. Most likely, the .dcu file has been
corrupted. Recompile the file or reinstall Delphi.

"PACKED not allowed here"
Examples Compiler error messages

Description

The packed keyword is only legal for set, array, record, object, class and file types. In contrast to the 16-
bit version of Delphi, packed will affect the layout of record, object and class types.

Examples

{ Packed can not be applied to a real type - if you want to conserve storage, you need to use the smallest
real type, type Single. }

program Produce;

type

 SmallReal = packed Real;

begin

end.

program Solve;

type

 SmallReal = Single;

begin

end.

"Label declaration not allowed in interface part"
Examples Compiler error messages

Description

This error occurs when you declare a label in the interface part of a unit.

Examples

{ It is just illegal to declare a label in the interface section of a unit. }

unit Produce;

interface

label 99;

implementation

begin

99:

end.

{ You have to move it to the implementation section. }

unit Solve;

interface

implementation

label 99;

begin

99:

end.

"Statements not allowed in interface part"
Examples Compiler error messages

Description

The interface part of a unit can only contain declarations, not statements. Move the bodies of procedures
to the implementation part.

Examples

{ We got carried away and gave MyProc a body right in the interface section. }

unit Produce;

interface

procedure MyProc;

begin { <-- Error message here }

end;

implementation

begin

end.

{ We need move the body to the implementation section - then it's fine. }

unit Solve;

interface

procedure MyProc;

implementation

procedure MyProc;

begin

end;

begin

end.

"Unit1> was compiled with a different version of <Unit2>"
Compiler error messages

Description

This error occurs when the declaration of a symbol declared in the interface part of a unit has changed,
and the compiler cannot recompile a unit that relies on this declaration because the source is not
available to it.

There are several possible solutions - recompile Unit1 (assuming you have the source code available),
use an older version of Unit2 or change Unit2, or get a new version of Unit1 from whoever has the source
code to it.

"Unterminated string"
Examples Compiler error messages

Description

The compiler did not find a closing apostrophe at the end of a character string.

Note that character strings cannot be continued onto the next line - however, you can use the + operator
to concatenate two character strings on separate lines.

Examples

{ We just forgot the closing quote at the string - no big deal, happens all the time. }

program Produce;

begin

 Writeln('Hello world!); { <-- Error message here - }

end.

{ So we supplied the closing quote, and the compiler is happy. }

program Solve;

begin

 Writeln('Hello world!');

end.

"Syntax error in real number"
Examples Compiler error messages

Description

This error message occurs if the compiler finds the beginning of a scale factor (an 'E' or 'e' character) in a
number, but no digits follow it.

Examples

{ In the example, we put a space after '3.0E' - now for the compiler the number ends here, and it is
incomplete. }

program Produce;

const

 SpeedOfLight = 3.0E 8; { <-- Error message here }

begin

end.

{ We could have just deleted the blank, but we put in a '+' sign because it looks a little nicer. }

program Solve;

const

 SpeedOfLight = 3.0E+8;

begin

end.

"Procedure too long: exceeds 32K"
Compiler error messages

Description

This error message is unused on the Intel processor.

"Illegal type in Write/Writeln statement"
Examples Compiler error messages

Description

This error occurs when you try to output a type in a Write or Writeln statement that is not legal.

Examples

{ It would have been convenient to use a writeln statement to output Color, wouldn't it? }

program Produce;

type

 TColor = (red,green,blue);

var

 Color: TColor;

begin

 Writeln(Color);

end.

{ Unfortunately, that is not legal, and we have to do it with an auxiliary array. }

program Solve;

type

 TColor = (red,green,blue);

var

 Color: TColor;

const

 ColorString: array[TColor] of string = ('red', 'green', 'blue');

begin

 Writeln(ColorString[Color]);

end.

"Illegal type in Read/Readln statement"
Examples Compiler error messages

Description

This error occurs when you try to read a variable in a Read or Readln that is not of a legal type. Check
the type of the variable and make sure you are not missing a dereferencing, indexing or field selection
operator.

Examples

{ We cannot read variables of enumerated types directly. }

program Produce;

type

 TColor = (red,green,blue);

var

 Color: TColor;

begin

 Readln(Color); { <-- Error message here }

end.

{ The solution is to read a string, and look up that string in an auxiliary table. In the example above, we
didn't bother to do error checking - any string will be treated as 'blue'. In practice, we would probably
output an error message and ask the user to try again. }

program Solve;

type

 TColor = (red,green,blue);

var

 Color: TColor;

 InputString: string;

const

 ColorString: array[TColor] of string = ('red', 'green', 'blue');

begin

 Readln(InputString);

 Color := red;

 while (color < blue) and (ColorString[color] <> InputString) do

 Inc(color);

end.

"Strings may have at most 255 elements"
Examples Compiler error messages

Description

This error message occurs when you declare a short string type with more than 255 elements, if you
assign a string literal of more than 255 characters to a variable of type ShortString, or when you have
more than 255 characters in a single character string.

Note that you can construct long string literals spanning more than one line by using the '+' operator to
concatenate several string literals.

Examples

{ In the example above, the length of the string is just one beyond the limit. }

program Produce;

var

 LongString: string[256]; { <-- Error message here }

begin

end.

{ The most convenient solution is to use the new long strings - then you don't even have to spend any
time thinking about what a reasonable maximum length would be. }

program Solve;

var

 LongString: AnsiString;

begin

end.

"Unexpected end of file in comment started on line <Number>"
Examples Compiler error messages

Description

This error occurs when you open a comment, but do not close it. Note that a comment started with '{'
must be closed with '}', and a comment started with '(*' must be closed with '*)'.

Examples

{ So the example just didn't close the comment. }

program Produce;

{ Let's start a comment here but forget to close it

begin

end.

{ Doing so fixes the problem. }

program Solve;

{ Let's start a comment here and not forget to close it }

begin

end.

"Constant or type identifier expected"
Examples Compiler error messages

Description

This error message occurs when the compiler expects a type, but finds a symbol that is neither a constant
(a constant could start a subrange type), nor a type identifier.

Examples

{ Here, ExceptionClass is a variable, not a type. }

program Produce;

var

 C: ExceptionClass; { ExceptionClass is a variable in System }

begin

end.

{ You need to make sure you specify a type. Maybe the identifier is misspelled, or it is hidden by some
other identifier, for example from another unit. }

program Solve;

var

 C: Exception; { Exception is a type in SysUtils }

begin

end.

"Invalid compiler directive: '<Directive>'"
Examples Compiler error messages

Description

This error message means there is an error in a compiler directive or in a command line option.

Here are some possible error situations:

An external declaration was syntactically incorrect.
A command line option or an option in a DCC32.CFG file was not recognized by the compiler or

was invalid. For example, '-$M100' is invalid because the minimum stack size must be at least 1024.
The compiler found a $XXXXX directive, but could not recognize it. It was probably misspelled.
The compiler found a $ELSE or $ENDIF directive, but no preceding $IFDEF, $IFNDEF or $IFOPT

directive.
{$IFOPT} was not followed by a a switch option and a + or -.
The long form of a switch directive was not followed by ON or OFF.
A directive taking a numeric parameter was not followed by a valid number.
The $DESCRIPTION directive was not followed by a string.
The $APPTYPE directive was not followed by CONSOLE or GUI.
The $ENUMSIZE directive (short form $Z) was not followed by 1,2 or 4.

Examples

{ The example shows three typical error situations, and the last two errors are caused by the compiler not
having recognized $If. }

{$Description Copyright Borland International 1996} { <-- Error here }

program Produce;

{$ApType Console} { <-- Error here }

begin

{$If O+} { <-- Error here }

 Writeln('Optimizations are ON');

{$Else} { <-- Error here }

 Writeln('Optimizations are OFF');

{$Endif} { <-- Error here }

 Writeln('Hello world!');

end.

{ So $Description needs a quoted string, we need to spell $AppType right, and checking options is done
with $IfOpt. With these changes, the example compiles fine. }

{$Description 'Copyright Borland International 1996'} { Need string }

program Solve;

{$AppType Console} { AppType }

begin

{$IfOpt O+} { IfOpt }

 Writeln('Optimizations are ON');

{$Else} { Now fine }

 Writeln('Optimizations are OFF');

{$Endif} { Now fine }

 Writeln('Hello world!');

end.

"Bad global symbol definition: '<name>' in object file '<Filename>'"
Compiler error messages

Description

This warning is given when an object file linked in with a $L or $LINK directive contains a definition for a
symbol that was not declared in Pascal as an external procedure, but as something else (such as a
variable). The definition in the object will be ignored in this case.

"Invalid relocation information"
Compiler error messages

Description

This error message is currently unused.

"Class or object types only allowed in type section"
Examples Compiler error messages

Description

Class or object types must always be declared with an explicit type declaration in a type section - unlike
record types, they cannot be anonymous. The main reason for this is that there would be no way you
could declare the methods of that type - after all, there is no type name.

Examples

{ The example tries to declare a class type within a variable declaration - that is not legal. }

program Produce;

var

 MyClass: class

 Field: Integer;

 end;

begin

end.

{ The solution simply is to introduce a type declaration for the class type. Alternatively, you could have
changed the class type to a record type. }

program Solve;

type

 TMyClass = class

 Field: Integer;

 end;

var

 MyClass: TMyClass;

begin

end.

"Local class or object types not allowed"
Examples Compiler error messages

Description

Class and object cannot be declared local to a procedure.

Examples

{ MyProc tries to declare a class type locally, which is illegal. }

program Produce;

procedure MyProc;

type

 TMyClass = class

 Field: Integer;

 end;

begin

{ ... }

end;

begin

end.

{ The solution is to simply move out the declaration of the class or object type to the global scope. }

program Solve;

type

 TMyClass = class

 Field: Integer;

 end;

procedure MyProc;

begin

{ ... }

end;

begin

end.

"Virtual constructors are not allowed"
Examples Compiler error messages

Description

Unlike class types, object types can only have static constructors.

Examples

{ The example tries to declare a virtual constructor, which does not really make sense for object types and
is therefore illegal. }

program Produce;

type

 TMyObject = object

 constructor Init; virtual;

 end;

constructor TMyObject.Init;

begin

end;

begin

end.

{ The solution is to either make the constructor static, or to use a new-style class type which can have a
virtual constructor }

program Solve;

type

 TMyObject = object

 constructor Init;

 end;

constructor TMyObject.Init;

begin

end;

begin

end.

"Could not compile used unit '<Unitname>'"
Compiler error messages

Description

This fatal error is given when a unit used by another could not be compiled. In this case, the compiler
gives up compilation of the dependent unit because it is likely very many errors will be encountered as a
consequence.

"Left side cannot be assigned to"
Examples Compiler error messages

Description

This error message is given when you try to modify a read-only object like a constant, a constant
parameter, or the return value of a function.

Examples

{ The example assigns to constant parameter, to a constant, and to the result of a function call. All of
these are illegal. }

program Produce;

const

 C = 1;

procedure P(const S: string);

begin

 S := 'changed'; { <-- Error message here }

end;

function F: PChar;

begin

 F := 'Hello'; { This is fine - we are setting the return
value }

end;

begin

 C := 2; { <-- Error message here }

 F := 'h'; { <-- Error message here }

end.

{ There two ways you can solve this kind of problem: either you change the definition of whatever you are
assigning to, so the assignment becomes legal, or you eliminate the assignment. }

program Solve;

var

 C: Integer = 1; { Use an initialized variable }

procedure P(var S: string);

begin

 S := 'changed'; { Use variable parameter }

end;

function F: PChar;

begin

 F := 'Hello'; { This is fine - we are setting the return
value }

end;

begin

 C := 2;

 F^ := 'h'; { This compiles, but will crash at runtime }

end.

"Unsatisfied forward or external declaration: '<Procedurename>'"
Examples Compiler error messages

Description

This error message appears when you have a forward or external declaration of a procedure or function,
or a declaration of a method in a class or object type, and you don't define the procedure, function or
method anywhere. Maybe the definition is really missing, or maybe its name is just misspelled.

Note that a declaration of a procedure or function in the interface section of a unit is equivalent to a
forward declaration - you have to supply the implementation (the body of the procedure or function) in the
implementation section. Similarly, the declaration of a method in a class or object type is equivalent to a
forward declaration.

Examples

{ The definition of Sum has an easy to spot typo - it may not be so obvious in a real world example with a
couple thousand lines between the forward declaration and the definition of a procedure. }

program Produce;

type

 TMyClass = class

 constructor Create;

 end;

function Sum(const A: array of Double): Double; forward;

function Summ(const A: array of Double): Double;

var

 I: Integer;

begin

 Result := 0.0;

 for I:= 0 to High(A) do

 Result := Result + A[I];

end;

begin

end.

{ So you just need to make sure the definitions of your procedures, functions and methods are all there,
and spelled correctly. }

program Solve;

type

 TMyClass = class

 constructor Create;

 end;

constructor TMyClass.Create;

begin

end;

function Sum(const A: array of Double): Double; forward;

function Sum(const A: array of Double): Double;

var

 I: Integer;

begin

 Result := 0.0;

 for I:= 0 to High(A) do

 Result := Result + A[I];

end;

begin

end.

"Missing operator or semicolon"
See also Examples Compiler error messages

Description

This error message appears if there is no operator between two subexpressions, or no semicolon
between two statements. Often, a semicolon is missing on the previous line.

Examples

{ The first statement in the example has two errors - a '+' operator and a semicolon are missing. The first
error is reported on this statement, the second on the following line. }

program Produce;

var

 I: Integer;

begin

 I := 1 2 { <-- Error message here }

 if I = 3 then { <-- Error message here }

 Writeln('Fine')

end.

{ The solution is to make sure the necessary operators and semicolons are there. }

program Solve;

var

 I: Integer;

begin

 I := 1 + 2; { We were missing a '+' operator and a
semicolon }

 if I = 3 then

 Writeln('Fine')

end.

See also

Compound statements

"Incompatible types"
Examples Compiler error messages

Description

This error message occurs when the compiler expected two types to be compatible (meaning very
similar), but in fact, they turned out to be different. This error occurs in many different situations - for
example when a read or write clause in a property mentions a method whose parameter list does not
match the property, or when a parameter to a standard procedure or function is of the wrong type.

Examples

{ The standard function Hi expects an argument of type Integer or Word, but we supplied an array
instead. }

program Produce;

var

 A: array[0..9] of Char;

 I: Integer;

begin

 I:= Hi(A);

end.

{ We really meant to use the standard function High, not Hi. }

program Solve;

var

 A: array[0..9] of Char;

 I: Integer;

begin

 I:= High(A);

end.

"Missing parameter type"
Examples Compiler error messages

Description

This error message is issued when a parameter list gives no type for a value parameter. Leaving off the
type is legal for constant and variable parameters.

Examples

{ We intended procedure P to have two integer parameters, but we put a semicolon instead of a comma
after the first parameters. The function ComputeHash was supposed to have an untyped first parameter,
but untyped parameters must be either variable or constant parameters - they cannot be value
parameters. }

program Produce;

procedure P(I;J: Integer); { <-- Error message
here }

begin

end;

function ComputeHash(Buffer; Size: Integer): Integer; { <-- Error message
here }

begin

end;

begin

end.

{ The solution in this case was to fix the type in P's parameter list, and to declare the Buffer parameter to
ComputeHash as a constant parameter, because we don't intend to modify it. }

program Solve;

procedure P(I,J: Integer);

begin

end;

function ComputeHash(const Buffer; Size: Integer): Integer;

begin

end;

begin

end.

"Illegal reference to symbol '<name>' in object file '<Filename>'"
Compiler error messages

Description

This error message is given if an object file loaded with a $L or $LINK directive contains a reference to a
Pascal symbol that is not a procedure, function, variable, typed constant or thread local variable.

"Line too long (more than 255 characters)"
Compiler error messages

Description

This error message is given when the length of a line in the source file exceeds 255 characters. Usually,
you can divide the long line into two shorter lines.

If you need a really long string constant, you can break it into several pieces on consecutive lines that you
concatenate with the '+' operator.

"Unknown directive: '<Directive>'"
Examples Compiler error messages

Description

This error message appears when the compiler encounters an unknown directive in a procedure or
function declaration. The directive is probably misspelled, or a semicolon is missing.

Examples

{ In the declaration of P, the calling convention is misspelled. In the declaration of Q and GetLastError,
we're missing a semicolon. }

program Produce;

procedure P; stcall;

begin

end;

procedure Q forward;

function GetLastError: Integer external 'kernel32.dll';

begin

end.

{ The solution is to make sure the directives are spelled correctly, and that the necessary semicolons are
there. }

program Solve;

procedure P; stdcall;

begin

end;

procedure Q; forward;

function GetLastError: Integer; external 'kernel32.dll';

begin

end.

"This type cannot be initialized"
Examples Compiler error messages

Description

File types (including type Text) and the type Variant cannot be initialized. That is, you cannot declare
typed constants or initialized variables of these types.

Note For compatibility with older versions of Delphi and Borland Pascal, Object Pascal supports a
compiler directive to allow assignments to typed constants. To enable writeable typed constants,
set the $J directive to {$J+} or {$WRITEABLECONSTS ON}.

Examples

{ The example tries to declare an initialized variable of type Variant, which illegal. }

program Produce;

var

 V: Variant = 0;

begin

end.

{ The solution is simply to initialize a normal variable with an assignment statement. }

program Solve;

var

 V: Variant;

begin

 V := 0;

end.

"Number of elements differs from declaration"
Examples Compiler error messages

Description

This error message appears when you declare a typed constant or initialized variable of array type, but do
not supply the appropriate number of elements.

Examples

{ The example declares an array of 10 elements, but the initialization only supplies 9 elements. }

program Produce;

var

 A: array[1..10] of Integer = (1,2,3,4,5,6,7,8,9);

begin

end.

{ We just had to supply the missing element to make the compiler happy. When initializing bigger arrays, it
can be sometimes hard to see whether you have supplied the right number of elements. To help with that,
you layout the source file in a way that makes counting easy (e.g. ten elements to a line), or you can put
the index of an element in comments next to the element itself. }

program Solve;

var

 A: array[1..10] of Integer = (1,2,3,4,5,6,7,8,9,10);

begin

end.

"Label already defined: '<Labelname>'"
Examples Compiler error messages

Description

This error message is given when a label is set on more than one statement.

Examples

{ The example just tries to set label 1 twice. }

program Produce;

label 1;

begin

1:

 goto 1;

1: { <-- Error message here }

end.

{ Make sure every label is set exactly once. }

program Solve;

label 1;

begin

1:

 goto 1;

end.

"Label declared and referenced, but not set: '<label>'"
Examples Compiler error messages

Description

You declared and used a label in your program, but the label definition was not encountered in the source
code.

Examples

{ Label 10 is declared and used in the procedure 'Labeled', but the compiler never finds a defintion of the
label. }

program Produce;

procedure Labeled;

label 10;

begin

 goto 10;

end;

begin

end.

{ The simple solution is to ensure that a declared and used label has a defintion, in the same scope, in
your program. }

program Produce;

procedure Labeled;

label 10;

begin

 goto 10;

 10:

end;

begin

end.

"This form of method call only allowed in methods of derived types"
Examples Compiler error messages

Description

This error message is issued if you try to make a call to a method of an ancestor type, but you are in fact
not in a method.

Examples

{ The example tries to call an inherited constructor in procedure Create, which is not a method. }

program Produce;

type

 TMyClass = class

 constructor Create;

 end;

procedure Create;

begin

 inherited Create; { <-- Error message here }

end;

begin

end.

{ The solution is to make sure you are in fact in a method when using this form of call. }

program Solve;

type

 TMyClass = class

 constructor Create;

 end;

constructor TMyclass.Create;

begin

 inherited Create;

end;

begin

end.

"This form of method call only allowed for class methods"
Examples Compiler error messages

Description

You were trying to call a normal method by just supplying the class type, not an instance. This is only
allowed for class methods and constructors, not normal methods and destructors.

Examples

{ The example tries to destroy the type TMyClass - this doesn't make sense and is therefore illegal. }

program Produce;

type

 TMyClass = class

 { ... }

 end;

var

 MyClass: TMyClass;

begin

 MyClass := TMyClass.Create; { Fine, constructor }

 Writeln(TMyClass.ClassName); { Fine, class method }

 TMyClass.Destroy; { <-- Error message here }

end.

{ Obviously, we really meant to destroy the instance of the type, not the type itself. }

program Solve;

type

 TMyClass = class

 { ... }

 end;

var

 MyClass: TMyClass;

begin

 MyClass := TMyClass.Create; { Fine, constructor }

 Writeln(TMyClass.ClassName); { Fine, class method }

 MyClass.Destroy; { Fine, called on instance }

end.

"Incompatible types: <text>"
See also Examples Compiler error messages

Description

The compiler has detected a difference between the declaration and use of a procedure.

Examples

{ The call of 'TakesParm0' will elicit an error because the type 'ProcedureParm0' expects a 'stdcall'
procedure, whereas 'WrongConvention' is declared with the 'register' calling convention. Similarly, the
call of 'TakesParm1' will fail because the parameter lists do not match. }

program Produce;

type

 ProcedureParm0 = procedure; stdcall;

 ProcedureParm1 = procedure(var X: Integer);

procedure WrongConvention; register;

begin

end;

procedure WrongParms(x, y, z: Integer);

begin

end;

procedure TakesParm0(p: ProcedureParm0);

begin

end;

procedure TakesParm1(p: ProcedureParm1);

begin

end;

begin

 TakesParm0(WrongConvention);

 TakesParm1(WrongParms);

end.

{ The solution to both of these problems is to simply ensure that the calling convention or the parameter
lists matches the declaration. }

program Solve;

type

 ProcedureParm0 = procedure; stdcall;

 ProcedureParm1 = procedure(var X: Integer);

procedure RightConvention; stdcall;

begin

end;

procedure RightParms(var X: Integer);

begin

end;

procedure TakesParm0(p: ProcedureParm0);

begin

end;

procedure TakesParm1(p: ProcedureParm1);

begin

end;

begin

 TakesParm0(RightConvention);

 TakesParm1(RightParms);

end.

See also

Procedural types

Calling conventions

"Variable '<name>' might not have been initialized"
Examples Compiler error messages

Description

This warning is given if a variable has not been assigned a value on every code path leading to a point
where it is used.

Examples

{ In an if statement, you have to make sure the variable is assigned in both branches. In a case
statement, you need to add an else part to make sure the variable is assigned a value in every
conceivable case. In a try-except construct, the compiler assumes that assignments in the try part may in
fact not happen, even if they are at the very beginning of the try part and so simple that they cannot
conceivably cause an exception. }

program Produce;

{$WARNINGS ON}

var

 B: Boolean;

 C: (Red,Green,Blue);

procedure Simple;

var

 I: Integer;

begin

 Writeln(I); { <-- Warning here }

end;

procedure IfStatement;

var

 I: Integer;

begin

 if B then

 I := 42;

 Writeln(I); { <-- Warning here }

end;

procedure CaseStatement;

var

 I: Integer;

begin

 case C of

 Red..Blue: I := 42;

 end;

 Writeln(I); { <-- Warning here }

end;

procedure TryStatement;

var

 I: Integer;

begin

 try

 I := 42;

 except

 Writeln('Should not get here!');

 end;

 Writeln(I); { <-- Warning here }

end;

begin

 B := False;

end.

{ The solution is to either add assignments to the code paths where they were missing, or to add an
assignment before a conditional statement or a try-except construct. }

program Solve;

{$WARNINGS ON}

var

 B: Boolean;

 C: (Red,Green,Blue);

procedure Simple;

var

 I: Integer;

begin

 I := 42;

 Writeln(I);

end;

procedure IfStatement;

var

 I: Integer;

begin

 if B then

 I := 42

 else

 I := 0;

 Writeln(I); { Need to assign I in the else part

end;

procedure CaseStatement;

var

 I: Integer;

begin

 case C of

 Red..Blue: I := 42;

 else I := 0;

 end;

 Writeln(I); { Need to assign I in the else part }

end;

procedure TryStatement;

var

 I: Integer;

begin

 I := 0;

 try

 I := 42;

 except

 Writeln('Should not get here!');

 end;

 Writeln(I); { Need to assign I before the try }

end;

begin

 B := False;

end.

"Value assigned to '<name>' never used"
Examples Compiler error messages

Description

The compiler gives this hint message if the value assigned to a variable is not used. If optimization is
enabled, the assignment is eliminated. This can happen because either the variable is not used
anymore, or because it is reassigned before it is used.

This hint message does not indicate your program is wrong - it just means the compiler has determined
there is an assignment that is not necessary. You can usually just delete this assignment - it will be
dropped in the compiled code anyway if you compile with optimizations on. Sometimes, however, the real
problem is that you assigned to the wrong variable, e.g. to meant to assign J but instead assigned I. So it
is worthwhile to check the assignment in question carefully.

Examples

{ In procedure Propagate, the compiler is smart enough to realize that as variable I is not used after the
while loop, it does not need to be incremented inside the while, and therefore the increment and the
assignment before the while loop are also superfluous. In procedure TryFinally, the assignment to I
before the try-finally construct is not necessary. If an exception happens, we don't execute the Writeln
statement at the end, so the value of I does not matter. If no exception happens, the value of I seen by
the Writeln statement is always 42. So the first assignment will not change the behaviour of the
procedure, and can therefore be eliminated. }

program Produce;

{$HINTS ON}

procedure Simple;

var

 I: Integer;

begin

 I := 42; { <-- Hint message here }

end;

procedure Propagate;

var

 I: Integer;

 K: Integer;

begin

 I := 0; { <-- Hint message here }

 Inc(I); { <-- Hint message here }

 K := 42;

 while K > 0 do

 begin

 if Odd(K) then

 Inc(I); { <-- Hint message here }

 Dec(K);

 end;

end;

procedure TryFinally;

var

 I: Integer;

begin

 I := 0; { <-- Hint message here }

 try

 I := 42;

 finally

 Writeln('Reached finally');

 end;

 Writeln(I); { Will always write 42 - if an exception happened,

 we wouldn't get here }

end;

begin

end.

"Return value of function '<Functionname>' might be undefined"
Examples Compiler error messages

Description

This warning is given if the return value of a function has not been assigned a value on every code path.
To put it a little differently, the function could execute in a way that never assigns anything to the return
value.

Examples

{ The problem with procedure IfStatement and CaseStatement is that the result is not assigned in every
code path. In TryStatement, the compiler assumes that an exception could happen before Result is
assigned (in this case, the compiler is too conservative, obviously). }

program Produce;

{$WARNINGS ON}

var

 B: Boolean;

 C: (Red, Green, Blue);

function Simple: Integer;

begin

end; { <-- Warning here }

function IfStatement: Integer;

begin

 if B then

 Result := 42;

end; { <-- Warning here }

function CaseStatement: Integer;

begin

 case C of

 Red..Blue: Result := 42;

 end;

end; { <-- Warning here }

function TryStatement: Integer;

begin

 try

 Result := 42;

 except

 Writeln('Should not get here!');

 end;

end; { <-- Warning here }

begin

 B := False;

end.

{ The solution simply is to make sure there is an assignment to the result variable in every possible code
path. }

program Solve;

{$WARNINGS ON}

var

 B: Boolean;

 C: (Red, Green, Blue);

function Simple: Integer;

begin

 Result := 42;

end;

function IfStatement: Integer;

begin

 if B then

 Result := 42

 else

 Result := 0;

end;

function CaseStatement: Integer;

begin

 case C of

 Red..Blue: Result := 42;

 else Result := 0;

 end;

end;

function TryStatement: Integer;

begin

 Result := 0;

 try

 Result := 42;

 except

 Writeln('Should not get here!');

 end;

end;

begin

 B := False;

end.

"Procedure FAIL only allowed in constructor"
Compiler error messages

Description

The standard procedure Fail can only be called from within a constructor - it is illegal otherwise.

"Procedure NEW needs constructor"
Examples Compiler error messages

Description

This error message is issued when an identifier given in the parameter list to New is not a constructor.

Examples

${ By mistake, we called New with the destructor, not the constructor. }

program Produce;

type

 PMyObject = ^TMyObject;

 TMyObject = object

 F: Integer;

 constructor Init;

 destructor Done;

 end;

constructor TMyObject.Init;

begin

 F := 42;

end;

destructor TMyObject.Done;

begin

end;

var

 P: PMyObject;

begin

 New(P, Done); { <-- Error message here }

end.

{ Make sure you give the New standard function a constructor, or no additional argument at all. }

program Solve;

type

 PMyObject = ^TMyObject;

 TMyObject = object

 F: Integer;

 constructor Init;

 destructor Done;

 end;

constructor TMyObject.Init;

begin

 F := 42;

end;

destructor TMyObject.Done;

begin

end;

var

 P: PMyObject;

begin

 New(P, Init);

end.

"Procedure DISPOSE needs destructor"
Examples Compiler error messages

Description

This error message is issued when an identifier given in the parameter list to Dispose is not a destructor.

Examples

{ In this example, we passed the constructor to Dispose by mistake. }

program Produce;

type

 PMyObject = ^TMyObject;

 TMyObject = object

 F: Integer;

 constructor Init;

 destructor Done;

 end;

constructor TMyObject.Init;

begin

 F := 42;

end;

destructor TMyObject.Done;

begin

end;

var

 P: PMyObject;

begin

 New(P, Init);

 { ... }

 Dispose(P, Init); { <-- Error message here }

end.

{ The solution is to either pass a destructor to Dispose, or to eliminate the second argument. }

program Solve;

type

 PMyObject = ^TMyObject;

 TMyObject = object

 F: Integer;

 constructor Init;

 destructor Done;

 end;

constructor TMyObject.Init;

begin

 F := 42;

end;

destructor TMyObject.Done;

begin

end;

var

 P: PMyObject;

begin

 New(P, Init);

 Dispose(P, Done);

end.

"Assignment to FOR-Loop variable '<name>'"
Examples Compiler error messages

Description

It is illegal to assign a value to the for loop control variable inside the for loop. If the purpose is to leave
the loop prematurely, use a Break or goto statement.

Examples

{ In this case, the programmer thought that assigning 99 to I would cause the program to exit the loop. }

program Produce;

var

 I: Integer;

 A: array[0..99] of Integer;

begin

 for I := 0 to 99 do

 begin

 if A[I] = 42 then

 I := 99;

 end;

end.

{ Using a break statement is a cleaner way to exit out of a for loop. }

program Solve;

var

 I: Integer;

 A: array[0..99] of Integer;

begin

 for I := 0 to 99 do

 begin

 if A[I] = 42 then

 Break;

 end;

end.

"FOR-Loop variable '<name>' may be undefined after loop"
Examples Compiler error messages

Description

This warning is issued if the value of a for loop control variable is used after the loop. You can only rely
on the final value of a for loop control variable if the loop is left with a goto or Exit statement. The
purpose of this restriction is to enable the compiler to generate efficient code for the for loop.

Examples

{ In the example, the Result variable is used implicitly after the loop, but it is undefined if we did not find
the value - hence the warning. }

program Produce;

{$WARNINGS ON}

function Search(const A: array of Integer; Value: Integer): Integer;

begin

 for Result := 0 to High(A) do

 if A[Result] = Value then

 Break;

end;

const

 A: array[0..9] of Integer = (1,2,3,4,5,6,7,8,9,10);

begin

 Writeln(Search(A,11));

end.

{ The solution simply is to assign the intended value to the control variable for the case where we don't
exit the loop prematurely. }

program Solve;

{$WARNINGS ON}

function Search(const A: array of Integer; Value: Integer): Integer;

begin

 for Result := 0 to High(A) do

 if A[Result] = Value then

 Exit;

 Result := High(A)+1;

end;

const

 A: array[0..9] of Integer = (1,2,3,4,5,6,7,8,9,10);

begin

 Writeln(Search(A,11));

end.

"TYPEOF can only be applied to object types with a VMT"
Examples Compiler error messages

Description

This error message is issued if you try to apply the standard function TypeOf to an object type that does
not have a virtual method table. A simple workaround is to declare a dummy virtual method to force the
compiler to generate a VMT.

Examples

{ The example tries to apply the TypeOf standard function to type TMyObject which does not have virtual
functions, and therefore no virtual function table (VMT). }

program Produce;

type

 TMyObject = object

 procedure MyProc;

 end;

procedure TMyObject.MyProc;

begin

 { ... }

end;

var

 P: Pointer;

begin

 P := TypeOf(TMyObject); { <-- Error message here }

end.

{ The solution simply is to introduce a dummy virtual function, or to eliminate the call to TypeOf. }

program Solve;

type

 TMyObject = object

 procedure MyProc;

 procedure Dummy; virtual;

 end;

procedure TMyObject.MyProc;

begin

 { ... }

end;

procedure TMyObject.Dummy;

begin

end;

var

 P: Pointer;

begin

 P := TypeOf(TMyObject);

end.

"Order of fields in record constant differs from declaration"
Examples Compiler error messages

Description

This error message occurs if record fields in a typed constant or initialized variable are not initialized in
declaration order.

Examples

{ The example tries to initialize first Y, then X, in the opposite order from the declaration. }

program Produce;

type

 TPoint = record

 X, Y: Integer;

 end;

var

 Point: TPoint = (Y: 123; X: 456);

begin

end.

{ The solution simply is to adjust the order of initialization to correspond to the declaration order. }

program Solve;

type

 TPoint = record

 X, Y: Integer;

 end;

var

 Point: TPoint = (X: 456; Y: 123);

begin

end.

"Incompatible types: '<name>' and '<name>'"
Examples Compiler error messages

Description

This error message results when the compiler expected two types to be compatible (i.e. similar), but they
turned out to be different.

Examples

{ Here a C++ programmer thought the division operator / would give him an integral result - not the case
in Pascal. }

program Produce;

procedure Proc(I: Integer);

begin

end;

begin

 Proc(22 / 7); { Result of / operator is Real }

end.

{ The solution in this case is to use the integral division operator div - in general, you have to look at your
program very careful to decide how to resolve type incompatibilities. }

program Solve;

procedure Proc(I: Integer);

begin

end;

begin

 Proc(22 div 7); { The div operator gives result type Integer }

end.

"Internal error: <ErrorCode>"
Compiler error messages

Description

You should never get this error message - it means there is a programming error in the compiler. If you
do, please call Borland Tech Support and let us know the ErrorCode (e.g. "C1196") that appears in the
error message. This will give us a rough indication what went wrong. It is even more helpful if you can
give us an example program that produces this message.

"Unit name mismatch: '<Unitname>'"
Examples Compiler error messages

Description

The unit identifier does not match the unit file name. This can happen when mixing long file names and
shorter unit identifiers.

Examples

{ In this case, the problem is that the compiler found the wrong unit, because the file names were
truncated to 8 characters. }

----- Contents of MY_UNIT_.PAS ---

unit My_Unit_With_A_Long_Name;

interface

implementation

end.

----- End of MY_UNIT_.PAS --

program Produce;

uses My_Unit_With_Another_Long_Name; { Will find MY_UNIT_.PAS if -P command
line

 switch is active - but it's the wrong unit. }

begin

end.

{ The solution is to use long file names or to make sure the file names differ in the first 8 characters. Also,
you need to make sure the file name of a unit corresponds to the unit name. }

"No identifiers referenced from unit <unit>"
Compiler error messages

Description

This error message is currently unused.

"Type '<name>' is not yet completely defined"
Examples Compiler error messages

Description

This error occurs if there is either a reference to a type that is just being defined, or if there is a forward
declared class type in a type section and no final declaration of that type.

Examples

{ The example tries to refer to record type before it is completely defined. Also, because of a typo, the
compiler never sees a complete declaration for TMyClass. }

program Produce;

type

 TListEntry = record

 Next: ^TListEntry; { <-- Error message here }

 Data: Integer;

 end;

 TMyClass = class; { <-- Error message here }

 TMyClassRef = class of TMyClass;

 TMyClasss = class { <-- Typo ... }

 { ... }

 end;

begin

end.

{ The solution for the first problem is to introduce a type declaration for an auxiliary pointer type. The
second problem is fixed by spelling TMyClass correctly. }

program Solve;

type

 PListEntry = ^TListEntry;

 TListEntry = record

 Next: PListEntry;

 Data: Integer;

 end;

 TMyClass = class;

 TMyClassRef = class of TMyClass;

 TMyClass = class

 { ... }

 end;

begin

end.

"This Demo Version has been patched"
Compiler error messages

Description

This error message is currently unused.

"Integer constant or variable name expected"
Examples Compiler error messages

Description

This error message is issued if you try to declare an absolute variable, but the absolute directive is not
followed by an integer constant or a variable name.

Examples

program Produce;

var

 I: Integer;

 J: Integer absolute Addr(I); { <-- Error message here }

begin

end.

program Solve;

const

 Addr = 0;

var

 I: Integer;

 J: Integer absolute I;

begin

end.

"Invalid typecast"
See also Examples Compiler error messages

Description

This error message is issued for typecasts not allowed by the rules.

The following kinds of casts are allowed:

Ordinal or pointer type to another ordinal or pointer type
A character, string, array of character or pchar to a string
An ordinal, real, string or variant to a variant
A variant to an ordinal, real, string or variant
A variable reference to any type of the same size

Note that casting real types to integer can be performed with the standard functions Trunc and Round.
There are other transfer functions like Ord and Chr that might make your intention clearer.

Examples

{ This programmer thought he could cast a floating point constant to Integer, like in C. }

program Produce;

begin

 Writeln(Integer(Pi));

end.

{ In Pascal, we have separate Transfer functions to convert floating point values to integer. }

program Solve;

begin

 Writeln(Trunc(Pi));

end.

See also

Typecasting, Transfer routines, Trunc, Round, Chr, Ord

"User break - compilation aborted"
Compiler error messages

Description

This message is currently unused.

"Assignment to typed constant '<name>'"
Compiler error messages

Description

This warning message is currently unused.

"Segment/Offset pairs not supported in Borland 32-bit Pascal"
Examples Compiler error messages

Description

32-bit code no longer uses the segment/offset addressing scheme that 16-bit code used. In 16-bit
versions of Borland Pascal, segment/offset pairs were used to declare absolute variables, and as
arguments to the Ptr standard function.

Note that absolute addresses should not be used in 32-bit protected mode programs. Instead, appropriate
Win32 API functions should be called.

Examples

program Produce;

var

 VideoMode: Integer absolute $0040:$0049;

begin

 Writeln(Byte(Ptr($0040,$0049)^));

end.

program Solve;

{ This version will compile, but will not run - absolute addresses are
uncool }

var

 VideoMode: Integer absolute $0040*16+$0049;

begin

 Writeln(Byte(Ptr($0040*16+$0049)^));

end.

Run-time errors
Certain errors at run time cause the program to display an error message and terminate:

Run-time error nnn at xxxxxxxx
where nnn is the run-time error number, and xxxxxxxx is the run-time error address.

Delphi applications that use the SysUtils unit map most run-time errors into exceptions, which enable your application to resolve
the error without terminating. This is called exception handling.

The run-time errors are divided into three categories:

I/O errors, numbered 100 through 149
fatal errors, numbered 200 through 255
Operating system errors

I/O errors
These errors cause termination if the particular statement was compiled in the {$I+} state. In the {$I-} state, the program
continues to execute, and the error is reported by the IOResult function.

 Number Name Description

100 Disk read error Reported by Read on a typed file if you attempt to read past the end of the file.

101 Disk write error Reported by CloseFile, Write, Writeln, or Flush if the disk becomes full.

102 File not assigned Reported by Reset, Rewrite, Append, Rename, and Erase if the file variable has
not been assigned a name through a call to Assign or AssignFile.

103 File not open Reported by CloseFile, Read, Write, Seek, Eof, FilePos, FileSize, Flush,
BlockRead, or BlockWrite if the file is not open.

104 File not open for input Reported by Read, Readln, Eof, Eoln, SeekEof, or SeekEoln on a text file if the
file is not open for input.

105 File not open for output Reported by Write and Writeln on a text file if you do not generate a Console
application.

106 Invalid numeric format Reported by Read or Readln if a numeric value read from a text file does not
conform to the proper numeric format.

Fatal errors
These errors always immediately terminate the program.

In applications that use the SysUtils unit (as most Delphi applications do), these errors are mapped to exceptions. For detailed
descriptions of the error conditions that produce each error, see the explanations of the exceptions.

Number Name Exception

200 Division by zero EDivByZero

201 Range check error ERangeError

202 Stack overflow EStackOverflow

203 Heap overflow error EOutOfMemory

204 Invalid pointer operation EInvalidPointer

205 Floating point overflow EOverflow

206 Floating point underflow EUnderflow

207 Invalid floating point operation EInvalidOp

215 Arithmetic overflow error EIntOverflow

216 Access violation EAccessViolation

217 Control-C EControlC

218 Privileged instruction EPrivilege

219 Invalid typecast EInvalidCast

220 Invalid variant typecast EVariantError

221 Invalid variant operation EVariantError

222 No variant method call dispatcher EVariantError

223 Cannot create variant array EVariantError

224 Variant does not contain array EVariantError

225 Variant array bounds error EVariantError

226 TLS initialization error

Operating system errors
All errors other than I/O errors and fatal errors are reported with the error codes returned by the Win32 error function,
GetLastError. The error code values are dependent on the operating system, but you can see a list of them in the Win32
documentation.

