
Global Variables
Borland C++Builder provides you with predefined global variables for many common needs, such as
dates, times, command-line arguments, and so on.
_8087 _osminor
_argc _osversion
_argv
_ctype _sys_errlist
_daylight _sys_nerr

_threadid
_doserrno _ _throwExceptionName
_environ _ _throwFileName
_errno _ _throwLineNumber
_floatconvert _timezone
_fmode _tzname
_new_handler _wtzname
_osmajor _version

_8087
Portability Global Variables

Syntax
extern int _8087;
Header File
dos.h

Description
The _8087 variable is set to a nonzero value if the startup code autodetection logic detects a floating-
point coprocessor.

_8087 Math
Value Coprocessor

1 8087
2 80287
3 80387
0 (none detected)

The autodetection logic can be overridden by setting the 87 environment variable to YES or NO. (The
commands are SET 87=YES and SET 87=NO; it is essential that there be no spaces before or after the
equal sign.) In this case, the _8087 variable will reflect the override.

_argc
Portability Example Global Variables

Syntax
extern int _argc;
Header File
dos.h

Description
_argc has the value of argc passed to main when the program starts.

/* _argc and _argv example */
#include <iostream.h>
#include <dos.h> // TO GET THE GLOBAL _arg VALUES

void func() {
 cout << "argc= " << _argc << endl;

 for (int i = 0; i < _argc; ++i)
 cout << _argv[i] << endl;
 }

void main(int argc, char ** argv) {
 func(); // THIS FUNCTION KNOWS ALL THE main() ARGUMENTS
 }

_argv, _wargv
Portability Example Global Variables

Syntax
extern char **_argv;
extern wchar_t ** _wargv
Header File
dos.h

Description
_argv points to an array containing the original command-line arguments (the elements of argv[]) passed
to main when the program starts.
_wargv is the Unicode version of _argv.

_ctype
Portability Global Variables

Syntax
extern char _ctype[];
Header File
ctype.h

Description
_ctype is an array of character attribute information indexed by ASCII value + 1. Each entry is a set of
bits describing the character. This array is used by isdigit, isprint, and so on.

_daylight
See also Portability Global Variables

Syntax
extern int _daylight;
Header File
time.h

Description
_daylight is used by the time and date functions. It is set by the tzset, ftime, and localtime functions to 1
for daylight saving time, 0 for standard time.
On Win32, the value of _daylight is obtained from the operating system.

_environ, _wenviron
See also Portability Global Variables

Syntax
extern char ** _environ;
extern wchar_t ** _wenviron
Header File
dos.h

Description
_environ is an array of pointers to strings; it is used to access and alter the operating system
environment variables. Each string is of the form:
envvar = varvalue
where envvar is the name of an environment variable (such as PATH), and varvalue is the string value to
which envvar is set (such as C:\BIN;C:\DOS). The string varvalue can be empty.
When a program begins execution, the operating system environment settings are passed directly to the
program. Note that env, the third argument to main, is equal to the initial setting of _environ.
The _environ array can be accessed by getenv; however, the putenv function is the only routine that
should be used to add, change or delete the _environ array entries. This is because modification can
resize and relocate the process environment array, but _environ is automatically adjusted so that it
always points to the array.

errno
Portability Example Global Variables

Syntax
extern int errno;
Header File
errno.h

Description
errno is used by perror to print error messages when certain library routines fail to accomplish their
appointed tasks.
When an error in a math or system call occurs, errno is set to indicate the type of error. Sometimes
errno and _doserrno are equivalent. At other times, errno does not contain the actual operating system
error code, which is contained in _doserrno. Still other errors might occur that set only errno, not
_doserrno.

/* errno, _doserrno, _sys_errlist, and _sys_nerr example */
/* DISPLAY THE SYSTEM ERRORS. */
#include <errno.h>
#include <stdio.h>

extern char *_sys_errlist[];

main()
{
 int i = 0;

 while(_sys_errlist[i++]) printf("%s\n", _sys_errlist[i]);
 return 0;
}

_doserrno
Portability Example Global Variables

Syntax
extern int _doserrno;
Header File
errno.h

Description
_doserrno is a variable that maps many operating system error codes to errno; however, perror does not
use _doserrno directly.
When an operating system call results in an error, _doserrno is set to the actual operating system error
code. errno is a parallel error variable inherited from UNIX.
The following list gives mnemonics for the actual DOS error codes to which _doserrno can be set. (This
value of _doserrno may or may not be mapped (through errno) to an equivalent error message string in
_sys_errlist.

Mnemonic DOS error code
E2BIG Bad environ
EACCES Access denied
EACCES Bad access
EACCES Is current dir
EBADF Bad handle
EFAULT Reserved
EINVAL Bad data
EINVAL Bad function
EMFILE Too many open
ENOENT No such file or directory
ENOEXEC Bad format
ENOMEM Mcb destroyed
ENOMEM Out of memory
ENOMEM Bad block
EXDEV Bad drive
EXDEV Not same device

Refer to your DOS reference manual for more information about DOS error return codes.

_sys_errlist
Portability Example Global Variables

Syntax
extern char * _sys_errlist[];
Header File
errno.h

Description
_sys_errlist is used by perror to print error messages when certain library routines fail to accomplish
their appointed tasks.
To provide more control over message formatting, the array of message strings is provided in
_sys_errlist. You can use errno as an index into the array to find the string corresponding to the error
number. The string does not include any newline character.
The following table gives mnemonics and their meanings for the values stored in _sys_errlist. The list is
alphabetically ordered for ease your reading convenience. For the numerical ordering, see the header
file errno.h.

Mnemonic 16-bit Description 32-bit Description
E2BIG Arg list too long Arg list too long
EACCES Permission denied Permission denied
EBADF Bad file number Bad file number
ECHILD No child process
ECONTR Memory blocks destroyed Memory blocks destroyed
ECURDIR Attempt to remove CurDir Attempt to remove CurDir
EDEADLOCK Locking violation
EDOM Domain error Math argument
EEXIST File already exists File already exists
EFAULT Unknown error Unknown error
EINTR Interrupted function call
EINVACC Invalid access code Invalid access code
EINVAL Invalid argument Invalid argument
EINVDAT Invalid data Invalid data
EINVDRV Invalid drive specified Invalid drive specified
EINVENV Invalid environment Invalid environment
EINVFMT Invalid format Invalid format
EINVFNC Invalid function number Invalid function number
EINVMEM Invalid memory block address Invalid memory block address
EIO input/output error
EMFILE Too many open files Too many open files
ENAMETOOLONG File name too long
ENFILE Too many open files
ENMFILE No more files No more files
ENODEV No such device No such device
ENOENT No such file or directory No such file or directory
ENOEXEC Exec format error Exec format error
ENOFILE No such file or directory File not found
ENOMEM Not enough memory Not enough core
ENOPATH Path not found Path not found
ENOSPC No space left on device
ENOTSAM Not same device Not same device
ENXIO No such device or address
EPERM Operation not permitted
EPIPE Broken pipe
ERANGE Result out of range Result too large
EROFS Read-only file system

ESPIPE Illegal seek
EXDEV Cross-device link Cross-device link
EZERO Error 0 Error 0

Refer to your DOS reference manual for more information about DOS error return codes.

_sys_nerr
Portability Example Global Variables

Syntax
extern int _sys_nerr;
Header File
errno.h

Description
_sys_nerr is used by perror to print error messages when certain library routines fail to accomplish their
appointed tasks.
This variable is defined as the number of error message strings in _sys_errlist.

_floatconvert
Portability Example Global Variables

Syntax
extern int _floatconvert;
Header File
stdio.h

Description
Floating-point output requires linking of conversion routines used by printf, scanf, and any variants of
these functions. In order to reduce executable size, the floating-point formats are not automatically
linked. However, this linkage is done automatically whenever your program uses a mathematical routine
or the address is taken of some floating-point number. If neither of these actions occur, the missing
floating-point formats can result in a run-time error.

/* _floatconvert example */
/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
#include <stdio.h>
#pragma extref _floatconvert

void main() {
 printf("d = %lf\n", 1);
}

_fmode
Portability Global Variables

Syntax
extern int _fmode;
Header File
fcntl.h

Description
_fmode determines in which mode (text or binary) files will be opened and translated. The value of
_fmode is O_TEXT by default, which specifies that files will be read in text mode. If _fmode is set to
O_BINARY, the files are opened and read in binary mode. (O_TEXT and O_BINARY are defined in
fcntl.h.)
In text mode, carriage-return/linefeed (CR/LF) combinations are translated to a single linefeed character
(LF) on input. On output, the reverse is true: LF characters are translated to CR/LF combinations.
In binary mode, no such translation occurs.
You can override the default mode as set by _fmode by specifying a t (for text mode) or b (for binary
mode) in the argument type in the library functions fopen, fdopen, and freopen. Also, in the function
open, the argument access can include either O_BINARY or O_TEXT, which will explicitly define the file
being opened (given by the open pathname argument) to be in either binary or text mode.

_new_handler
Portability Global Variables

Syntax
typedef void (*pvf)();
pvf _new_handler;
Header File
new.h

Description
_new_handler contains a pointer to a function that takes no arguments and returns void. If operator
new() is unable to allocate the space required, it will call the function pointed to by _new_handler; if that
function returns it will try the allocation again. By default, the function pointed to by _new_handler simply
terminates the application. The application can replace this handler, however, with a function that can try
to free up some space. This is done by assigning directly to _new_handler or by calling the function
set_new_handler,, which returns a pointer to the former handler.
As an alternative, you can set using the function set_new_handler, like this:
pvf set_new_handler(pvf p);
_new_handler is provided primarily for compatibility with C++ version 1.2. In most cases this
functionality can be better provided by overloading operator new().

_osmajor
See also Portability Global Variables

Syntax
extern unsigned char _osmajor;
Header File
dos.h

Description
The major version number of the operating system is available individually through _osmajor. For
example, if you are running DOS version 3.2, _osmajor will be 3.
This variable can be useful when you want to write modules that will run on DOS versions 2.x and 3.x.
Some library routines behave differently depending on the DOS version number, while others only work
under DOS 3.x and higher. For example, refer to creatnew and _rtl_open.

_osminor
See also Portability Global Variables

Syntax
extern unsigned char _osminor;
Header File
dos.h

Description
The minor version number of the operating system is available individually through _osminor. For
example, if you are running DOS version 3.2, _osminor will be 20.
This variables can be useful when you want to write modules that will run on DOS versions 2.x and 3.x.
Some library routines behave differently depending on the DOS version number, while others only work
under DOS 3.x and higher. For example, refer to creatnew and _rtl_open.

_osversion
See also Portability Global Variables

Syntax
extern unsigned _osversion;
Header File
dos.h

Description
_osversion contains the operating system version number, with the major version number in the low byte
and the minor version number in the high byte. (For DOS version x.y, the x is the major version number,
and y is the minor version number.)
_osversion is functionally identical to _version.

_ _throwExceptionName
See also Portability Global Variables

Syntax
extern char * _ _throwExceptionName;
Header File
except.h

Description
Use this global variable to get the name of a thrown exception. The output for this variable is a printable
character string.

_ _throwFileName
See also Portability Global Variables

Syntax
extern char * _ _throwFileName;
Header File
except.h

Description
Use this global variable to get the name of a thrown exception. The output for this variables is a
printable character string.
To get the file name for a thrown exception with __throwFileName, you must compile the module with
the -xp compiler option.

_ _throwLineNumber
See also Portability Global Variables

Syntax
extern char * _ _throwLineNumber;
Header File
except.h

Description
Use this global variable to get the name of a thrown exception. The output for this variables is a
printable character string.
To get the line number for a thrown exception with __throwLineNumber, you must compile the module
with the -xp compiler option.

_threadid
Portability Global Variables

Syntax
extern long _threadid;
Header File
stddef.h

Description
_threadid is a long integer that contains the ID of the currently executing thread. It is implemented as a
macro, and should be declared only by including stddef.h.

_timezone
See also Portability Global Variables

Syntax
extern long _timezone;
Header File
time.h

Description
_timezone is used by the time-and-date functions. It is calculated by the tzset function; it is assigned a
long value that is the difference, in seconds, between the current local time and Greenwich mean time.
On Win32, the value of _timezone is obtained from the operating system.

_tzname, _wtzname
See also Portability Global Variables

Syntax
extern char * _tzname[2]
extern wchar_t *const _wtzname[2]
Header File
time.h

Description
The global variable _tzname is an array of pointers to strings containing abbreviations for time zone
names. _tzname[0] points to a three-character string with the value of the time zone name from the TZ
environment string. The global variable _tzname[1] points to a three-character string with the value of
the daylight saving time zone name from the TZ environment string. If no daylight saving name is
present, _tzname[1] points to a null string.
On Win32, the value of _tzname is obtained from the operating system.

_version
See also Portability Global Variables

Syntax
extern unsigned _version;
Header File
dos.h

Description
_version contains the operating system version number, with the major version number in the low byte
and the minor version number in the high byte. (For DOS version x.y, the x is the major version number,
and y is the minor.)

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + + +

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + +

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + +

The main() Function
See also
Every C and C++ program must have a program-startup function.

Console-based programs call the main function at startup.
Windows GUI programs call the WinMain function at startup.

Where you place the startup function is a matter of preference. Some programmers place main at the
beginning of the file, others at the end. Regardless of its location, the following points about main always
apply.

Arguments to main
Wildcard Arguments
Using -p (Pascal Calling Conventions)
Value main() Returns

Arguments to main ()
The main() Function Example
Three parameters (arguments) are passed to main by the Borland C++ startup routine: argc, argv, and
env.

argc, an integer, is the number of command-line arguments passed to main, including the name
of the executable itself.

argv is an array of pointers to strings (char *[]).
- argv[0] is the full path name of the program being run.
- argv[1] points to the first string typed on the operating system command line after the program

name.
- argv[2] points to the second string typed after the program name.
- argv[argc-1] points to the last argument passed to main.
- argv[argc] contains NULL.

env is also an array of pointers to strings. Each element of env[] holds a string of the form
ENVVAR=value.

- ENVVAR is the name of an environment variable, such as PATH or COMSPEC.
- value is the value to which ENVVAR is set, such as C:\APPS;C:\TOOLS; (for PATH) or C:\DOS\

COMMAND.COM (for COMSPEC).
If you declare any of these parameters, you must declare them exactly in the order given: argc, argv,
env. For example, the following are all valid declarations of arguments to main:
int main()
int main(int argc) /* legal but very unlikely */
int main(int argc, char * argv[])
int main(int argc, char * argv[], char * env[])]
The declaration int main(int argc) is legal, but it is very unlikely that you would use argc in your program
without also using the elements of argv.
The argument env is also available through the global variable _environ..
For all platforms, argc and argv are also available via the global variables _argc and _argv.

Example of how Arguments are Passed to main()
Here is an example that demonstrates a simple way of using these arguments passed to main:
/* Program ARGS.C */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[], char *env[]) {
 int i;

 printf("The value of argc is %d \n\n", argc);
 printf("These are the %d command-line arguments passed to"
 " main:\n\n", argc);

 for (i = 0; i < argc; i++)
 printf(" argv[%d]: %s\n", i, argv[i]);

 printf("\nThe environment string(s) on this system are:\n\n");

 for (i = 0; env[i] != NULL; i++)
 printf(" env[%d]: %s\n", i, env[i]);
 return 0;
 }
Suppose you run ARGS.EXE at the command prompt with the following command line:
 C:> args first_arg "arg with blanks" 3 4 "last but one" stop!
Notice that you can pass arguments with embedded blanks by surrounding them with quotes, as shown
by "argument with blanks" and "last but one" in this example command line.
The output of ARGS.EXE (assuming that the environment variables are set as shown here) would then
be like this:
The value of argc is 7

These are the 7 command-line arguments passed to main:

 argv[0]: C:\BC5\ARGS.EXE
 argv[1]: first_arg
 argv[2]: arg with blanks
 argv[3]: 3
 argv[4]: 4
 argv[5]: last but one
 argv[6]: stop!

The environment string(s) on this system are

 env[0]: COMSPEC=C:\COMMAND.COM
 env[1]: PROMPT=$p $g
 env[2]: PATH=C:\SPRINT;C:\DOS;C:\BC5
The maximum combined length of the command-line arguments passed to main (including the space
between adjacent arguments and the program name itself) is

128 for DOS
260 for Win16
255 for Win32

Wildcard Arguments
The main() Function Example
Command-line arguments containing wildcard characters can be expanded to all the matching file
names, much the same way DOS expands wildcards when used with commands like COPY. All you
have to do to get wildcard expansion is to link your program with the WILDARGS.OBJ object file, which
is included with Borland C++.
Note: Wildcard arguments are used only in console-mode applications.
Once WILDARGS.OBJ is linked into your program code, you can send wildcard arguments (such as *.*)
to your main function. The argument will be expanded (in the argv array) to all files matching the
wildcard mask. The maximum size of the argv array varies, depending on the amount of memory
available in your heap.
If no matching files are found, the argument is passed unchanged. (That is, a string consisting of the
wildcard mask is passed to main.)
Arguments enclosed in quotes ("...") are not expanded.

Example of using Wildcard Arguments with main()
The following commands compile the file ARGS.C and link it with the wildcard expansion module
WILDARGS.OBJ, then run the resulting executable file ARGS.EXE:
BCC ARGS.C WILDARGS.OBJ
ARGS C:\BC5\INCLUDE*.H "*.C"
When you run ARGS.EXE, the first argument is expanded to the names of all the *.H files in the
INCLUDE directory. Note that the expanded argument strings include the entire path. The argument *.C
is not expanded because it is enclosed in quotes.
If you prefer the wildcard expansion to be the default, modify your standard CW32?.LIB library files to
have WILDARGS.OBJ linked automatically. To do so, remove SETARGV and INITARGS from the
libraries and add WILDARGS. The following commands invoke the Turbo librarian (TLIB) to modify all
the standard library files (assuming the current directory contains the standard C and C++ libraries and
WILDARGS.OBJ):

Window Users
tlib CW32 -setargv +wildargs
tlib CW32MT -setargv +wildargs
tlib -setargv +wildargs

Using --p (Pascal Calling Conventions)
The main() Function
If you compile your program using Pascal calling conventions, you must remember to explicitly declare
main as a C type. Do this with the _ _cdecl keyword, like this:
 int _ _cdecl main(int argc, char* argv[], char* envp[])

The Value main() Returns
The main() Function
The value returned by main is the status code of the program: an int. If, however, your program uses the
routine exit (or _exit) to terminate, the value returned by main is the argument passed to the call to exit
(or to _exit).
For example, if your program contains the call
exit(1)
the status is 1.

Passing File Information to Child Processes
The main() Function
If your program uses the exec or spawn functions to create a new process, the new process will
normally inherit all of the open file handles created by the original process. Some information, however,
about these handles will be lost, including the access mode used to open the file. For example, if your
program opens a file for read-only access in binary mode, and then spawns a child process, the child
process might corrupt the file by writing to it, or by reading from it in text mode.
To allow child processes to inherit such information about open files, you must link your program with
the object file FILEINFO.OBJ.
For example:
 BCC32 TEST.C \BCB\LIB\FILEINFO.OBJ
The file information is passed in the environment variable _C_FILE_INFO. This variable contains
encoded binary information. Your program should not attempt to read or modify its value. The child
program must have been built with the C++ run-time library to inherit this information correctly.
Other programs can ignore _C_FILE_INFO, and will not inherit file information.

Multithread Programs
See also
32-bit programs can create more than one thread of execution. If your program creates multiple threads,
and these threads also use the C++ run-time library, you must use the CW32MT.LIB or CW32MTI
library instead.
The multithread libraries provide the following functions which you use to create threads:
_beginthread
_beginthreadNT
The multithread libraries also provide
_endthread a function that terminates threads
_threadid a global variable that contains the current identification number of the thread also known
as the thread ID).
The header file stddef.h contains the declaration of _threadid.
When you compile or link a program that uses multiple threads, you must use the -tWM compiler switch.
For example:
 BCC32 -tWM THREAD.C
Note: Take special care when using the signal function in a multithread program. The SIGINT,

SIGTERM, and SIGBREAK signals can be used only by the main thread (thread one) in a non-
Win32 application. When one of these signals occurs, the currently executing thread is
suspended, and control transfers to the signal handler (if any) set up by thread one. Other signals
can be handled by any thread.
A signal handler should not use C++ run-time library functions, because a semaphore deadlock
might occur. Instead, the handler should simply set a flag or post a semaphore, and return
immediately.

WinMain
See also

Syntax
int PASCAL WinMain(HINSTANCE hCurInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow)

Description
This function is the main entry point for a Windows application. It must be supplied by the user.

Type Parameter Description
HINSTANCE hCurInstance The instance handle of the application. Each instance of

an application has a unique instance handle. It is used as
an argument to several Windows functions and can be
used to distinguish between multiple instances of a given
application.

HINSTANCE hPrevInstance The handle of the previous instance of this application.
This value is NULL if this is the first instance.

LPSTR lpCmdLine A far pointer to a null-terminated command-line. Specify
this value when invoking the application from the program
manager or from a call to WinExec.

int nCmdShow An integer that specifies the application's window display.
Pass this value to ShowWindow.

Under Win32, there are two differences in the values passed through these parameters:
hPrevInstance always returns NULL.
lpCmdLine points to a string containing the entire command line, not just the parameters.

Return Value
The return value from WinMain is not currently used by Windows. It is useful during debugging because
you can display this value upon termination of your program.

Library Routines, by Category
See also Overview
If you know the name of the function you want Help on, see:
Library Routines, by Name
Otherwise, if you do not know the name of a particular function, but you know what type of action it
performs, choose one of the following categories:
Classification Routines
Console I/O Routines
Conversion Routines
Diagnostic Routines
Directory Control Routines
Inline Routines
Input/output Routines
Manipulation Routines
Math Routines
Memory Routines
Miscellaneous Routines
Obsolete Functions
Process Control Routines
Time and Date Routines
Variable Argument List Routines

C++Builder has several hundred classes, functions, and macros that you call from within your C and C+
+ programs to perform a wide variety of tasks, including low- and high-level I/O, string and file
manipulation, memory allocation, process control, data conversion, mathematical calculations, and
much more. These classes, functions, and macros are collectively referred to as library routines.

Run-time Libraries Overview
C++Builder has several hundred classes, functions, and macros that you call from within your C and C+
+ programs to perform a wide variety of tasks, including low- and high-level I/O, string and file
manipulation, memory allocation, process control, data conversion, mathematical calculations, and
much more. These classes, functions, and macros are collectively referred to as library routines.
The C++Builder run-time libraries are divided into static (.OBJ and .LIB) and dynamic-link (.DLL)
versions.

Static libraries are located in the LIB subdirectory of your installation.
Dynamic-link libraries are located in the BIN subdirectory of your installation.

Several versions of the run-time libraries are available. For example, there are specific versions for,
debugging and versions that either include Delph and VCL support, or contain only C and C++ routines

Static Run-time Libraries
See also Overview
Listed below are each of the C++Builder static library names, the operating environment in which it is
available, and its use.
File name Use
Directory of BCB\LIB
BWCC32.LIB 32-bit import library for BWCC32.DLL
C0D32.OBJ 32-bit DLL startup module
C0W32.OBJ 32-bit GUI EXE startup module
C0X32.OBJ 32-bit console-mode EXE startup module
CP32MT.LIB 32-bit GUI multithread library with VCL and support for

Delphi exception handling
CW32MT.LIB 32-bit GUI multithread library
CW32MTI.LIB 32-bit multithread, GUI, dynamic RTL import library for

W3230MT.DLL
IMPORT32.LIB 32-bit import library; includes Winsock 1.x

INET.LIB Import library for the Internet API (URLMON, WININET,
HLINK, MSCONF, WEBPOST).

MSEXTRA.LIB Import library for some APIs who’s module names differ
between NT and Win95.

MSWSOCK.LIB Import library for MSWSOCK.DLL.
OBSOLETE.LIB Provides obsolete global variables.

OLE2W32.LIB Import library for the 32-bit OLE 2.0 API.
RPCEXTRA.LIB Import library for some RPC APIs who’s module names

differ between NT and Win95.
TH32.LIB Import library for the 32-bit ToolHelp API under Win95.
VCL.LIB Visual Component Library
VCLD.LIB Visual Component Library , debug version
WS2_32.LIB Import library for the 32-bit WinSock 2.0 API.
W32SUT32.LIB 32-bit universal thunking library
Directory of BCB\LIB\RTL
FILES.C Increases the number of file handles
FILES2.C Increases the number of file handles
FILEINFO.OBJ Passes open file-handle information to child processes
GP.OBJ Prints register-dump information when an exception

occurs
MATHERR.C Sample of a user-defined floating-point math exception

handler for float and double types
MATHERRL.C Sample of a user-defined floating-point math exception

handler for long double type
WILDARGS.OBJ Transforms wild-card arguments into an array of

arguments to main() in console-mode applications

Dynamic-link Libraries
See also Overview
The dynamic-link library (DLL) version of the run-time library is contained in the BIN subdirectory of your
installation. The dynamic-link versions of the static libraries either contain VCL support and Delphi style
exception handling.
Listed below are each of the C++Builder DLL names, the operating environment in which it is available,
and its use.
Directory: BCB\BIN

File Name

CP3230MT.DLL 32-bit, multithread, GUI mode, Delphi exception handling
and VCL support

CW3230MT.DLL 32-bit, multithread, GUI mode; no Delphi or VCL support

Default Run-Time Libraries
See also Overview
The following table identifies the default run-time libraries used with each compiler.
Compiler Environment Default Libraries

BCC32.EXE Win32 C0W32.OBJ, CW32MT.LIB, IMPORTW32.LIB

C++ Prototyped Routines
See also
Certain routines described in this book have multiple declarations. You must choose the prototype
appropriate for your program. In general, the multiple prototypes are required to support the original C
implementation and the stricter and sometimes different C++ function declaration syntax. For example,
some string-handling routines have multiple prototypes because in addition to the ANSI-C specified
prototype, C++Builder provides prototypes consistent with the ANSI C++ draft.

Function Header
max stdlib.h
memchr string.h
min stdlib.h
strchr string.h
strpbrk string.h
strrchr string.h
strstr string.h

Classification Routines
See also
The following routines classify ASCII characters as letters, control characters, punctuation, uppercase,
and so.
These routines are all declared in ctype.h.
isalnum islower
isalpha isprint
isascii ispunct
iscntrl isspace
isdigit isupper
isgraph isxdigit

Console I/O Routines
See also
The following routines output text to the screen or read from the keyboard. They cannot be used in a
GUI application.

Function Header Function Header
cgets conio.h movetext conio.h
clreol conio.h normvideo conio.h
clrscr conio.h putch conio.h
cprintf conio.h puttext conio.h
cputs conio.h _setcursortype conio.h
delline conio.h textattr conio.h
getpass conio.h textbackground conio.h
gettext conio.h textcolor conio.h
gettextinfo conio.h textmode conio.h
gotoxy conio.h ungetc stdio.h
highvideo conio.h wherex conio.h
insline conio.h wherey conio.h
lowvideo conio.h window conio.h

Conversion Routines
See also
The following routines convert characters and strings from

alpha to different numeric representations (floating-point, integers, longs)
numeric to alpha representations
uppercase to lowercase (and vice versa).

Function Header Function Header
atof stdlib.h strtol stdlib.h
atoi stdlib.h _strtold stdlib.h
atol stdlib.h strtoul stdlib.h
ecvt stdlib.h toascii ctype.h
fcvt stdlib.h _tolower ctype.h
gcvt stdlib.h tolower ctype.h
itoa stdlib.h _toupper ctype.h
_ltoa stdlib.h toupper ctype.h
strtod stdlib.h ultoa stdlib.h

Diagnostic Routines
See also
The following routines provide built-in troubleshooting capability.

Function Header
assert assert.h
_matherr math.h
_matherrl math.h
perror errno.h

Directory Control Routines
See also
The following routines manipulate directories and path names.

Function Header Function Header
chdir dir.h _ getdcwd direct.h
_chdrive direct.h getdisk dir.h
closedir dirent.h _ makepath stdlib.h

mkdir dir.h
_mktemp dir.h
opendir direct.h
readdir dirent.h
rewinddir dirent.h

findfirst dir.h _rmdir dir.h
findnext dir.h _searchenv stdlib.h
fnmerge dir.h searchpath dir.h
fnsplit dir.h _searchstr stdlib.h
_ fullpath stdlib.h setdisk dir.h
getcurdir dir.h _splitpath stdlib.h
getcwd dir.h

Inline Routines
See also
The following routines have inline versions. The compiler will generate code for the inline versions when
you use #pragma intrinsic or if you specify program optimization.

Function Header Function Header
abs math.h stpcpy string.h
alloca malloc.h strcat string.h
_crotl stdlib.h strchr string.h
_crotr stdlib.h strcmp string.h
_lrotl stdlib.h strcpy string.h
_lrotr stdlib.h strlen string.h
memchr mem.h strncat string.h
memcmp mem.h strncmp string.h
memcpy mem.h strncpy string.h
memset mem.h strnset string.h
_rotl stdlib.h strrchr string.h
_rotr stdlib.h strset string.h

Input/output Routines
See also
The following routines provide stream- and operating-system level I/O capability.

Function Header Function Header
access io.h getftime io.h
chmod io.h gets stdio.h
chsize io.h _getw stdio.h
clearerr stdio.h
close io.h isatty io.h
creat io.h kbhit conio.h
creatnew io.h lock io.h
creattemp io.h locking io.h
cscanf conio.h lseek io.h

open io.h
_pclose stdio.h _open_osfhandle io.h
perror stdio.h

_pipe io.h
_popen stdio.h
printf stdio.h

putc stdio.h
putchar stdio.h
puts stdio.h
_putw stdio.h
read io.h

dup io.h remove stdio.h
dup2 io.h rename stdio.h
eof io.h rewind stdio.h
fclose stdio.h _rmtmp stdio.h
_fcloseall stdio.h _rtl_chmod io.h
_fdopen stdio.h _rtl_close io.h
feof stdio.h _rtl_creat io.h
ferror stdio.h _rtl_open io.h
fflush stdio.h _rtl_read io.h
fgetc stdio.h _rtl_write io.h
_fgetchar stdio.h scanf stdio.h
fgetpos stdio.h setbuf stdio.h
fgets stdio.h
filelength io.h setmode io.h
_fileno stdio.h setvbuf stdio.h
_flushall stdio.h _sopen io.h

fopen stdio.h sprintf stdio.h
fprintf stdio.h sscanf stdio.h
fputc stdio.h strerror stdio.h
_fputchar stdio.h _strerror string.h, stdio.h
fputs stdio.h tell io.h
fread stdio.h _tempnam stdio.h
freopen stdio.h
fscanf stdio.h tmpfile stdio.h
fseek stdio.h tmpnam stdio.h
fsetpos stdio.h umask io.h
_fsopen stdio.h _unlink dos.h
fstat sys\stat.h unlock io.h
ftell stdio.h _utime utime.h
fwrite stdio.h vfprintf stdio.h
get_osfhandle io.h vfscanf stdio.h
getc stdio.h vprintf stdio.h
getch conio.h vscanf stdio.h
getchar stdio.h vsprintf stdio.h
getche conio.h vsscanf io.h

Manipulation Routines
See also
The following routines handle strings and blocks of memory: copying, comparing, converting, and
searching.

Function Header Function Header
mblen stdlib.h strerror string.h
mbstowcs stdlib.h stricmp string.h
mbtowc stdlib.h strlen string.h
memccpy mem.h, string.h strlwr string.h
memchr mem.h, string.h strncat string.h
memcmp mem.h, string.h strncmpi string.h
memcpy mem.h, string.h strncmp string.h
memicmp mem.h, string.h strncpy string.h
memmove mem.h, string.h strnicmp string.h
memset mem.h, string.h strnset string.h

strpbrk string.h
strrchrstring.h

setmem mem.h strrev string.h
stpcpy string.h strset string.h
strcat string.h strspn string.h
strchr string.h strstr string.h
strcmpi string.h strtok string.h
strcmp string.h strupr string.h
strcoll string.h strxfrm string.h
strcpy string.h wcstombs stdlib.h
strcspn string.h wctomb stdlib.h
strdup string.h

Math Routines
See also
The folowing routines perform mathematical calculations and conversions.

Function Header Function Header
abs stdlib.h labs stdlib.h
acos math.h ldexp math.h
acosl math.h ldexpl math.h

ldiv math.h
asin math.h log math.h
asinl math.h logl math.h
atan math.h log10 math.h
atan2 math.h log10l math.h
atan2l math.h _lrotl stdlib.h
atanl math.h _lrotr stdlib.h
atof stdlib.h, math.h _ltoa stdlib.h
atoi stdlib.h _matherr math.h
atol stdlib.h _matherrl math.h
_atold math.h modf math.h

modfl math.h
cabs math.h
cabsl math.h
ceil math.h poly math.h
ceill math.h polyl math.h
_clear87 float.h pow math.h
_control87 float.h powl math.h
cos math.h rand stdlib.h
cosh math.h random stdlib.h
coshl math.h randomize stdlib.h
cosl math.h
div math.h _rotl stdlib.h
ecvt stdlib.h _rotr stdlib.h
exp math.h sin math.h
expl math.h sinh math.h
fabs math.h sinhl math.h
fabsl math.h sinl math.h
fcvt stdlib.h sqrt math.h
floor math.h sqrtl math.h
floorl math.h srand stdlib.h
fmod math.h _status87 float.h
fmodl math.h strtod stdlib.h

_fpreset float.h strtol stdlib.h
frexp math.h _strtold stdlib.h
frexpl math.h strtoul stdlib.h
gcvt stdlib.h tan math.h
hypot math.h tanh math.h
hypotl math.h tanhl math.h

tanl math.h
itoa stdlib.h ultoa stdlib.h

Memory Routines
See also
The following routines provide dynamic memory allocation in the small-data and large-data models.

Function Header Function Header
alloca malloc.h heapcheckfree alloc.h

heapchecknode alloc.h
calloc alloc.h, stdlib.h heapwalk alloc.h

malloc alloc.h, stdlib.h
realloc alloc.h, stdlib.h
set_new_handler new.h

free alloc.h, stdlib.h stackavail malloc.h
heapcheck alloc.h

Miscellaneous Routines
See also
The following routines provide non-local goto capabilities and locale.

Function Header

localeconv locale.h
longjmp setjmp.h
setjmp setjmp.h
setlocale locale.h

Obsolete Functions
See also
The old names of the following functions are available, but the compiler will generate a warning that you
are using an obsolete name. Future versions of C++Builder might not provide support for the old
function names.
The following function names have been changed:

Old name New name Header file
_chmod _rtl_chmod io.h
_close _rtl_close io.h
_creat _rtl_creat io.h
_heapwalk _rtl_heapwalk malloc.h
_open _rtl_open io.h
_read _rtl_read io.h
_write _rtl_write io.h

Process Control Routines
See also
The following routines invoke and terminate new processes from within another routine.

Function Header Function Header

abort (process.h) exit (process.h)

_beginthread _expand (process.h)

_beginthreadNT (process.h) getpid (process.h)

_c_exit (process.h) _pclose (stdio.h)

_cexit (process.h) _popen (stdio.h)

cwait (process.h) raise (signal.h)

_endthread (process.h) signal (signal.h)

execle (process.h) spawnle (process.h)

execl (process.h) spawnlpe (process.h)

execlpe (process.h) spawnlp (process.h)

execlp (process.h) spawnl (process.h)

execve (process.h) spawnve (process.h)

execv (process.h) spawnvpe (process.h)

execvpe (process.h) spawnvp (process.h)

execvp (process.h) spawnv (process.h)

_exit (process.h) wait (process.h)

Time and Date Routines
See also
The following following functions are time conversion and time manipulation routines.

Function Header Function Header
asctime time.h gmtime time.h

bios.h localtime time.h
ctime time.h mktime time.h
difftime time.h stime time.h

_strdate time.h
strftime time.h
_strtime time.h
time time.h

ftime sys\timeb.h
_tzset time.h

gettime dos.h unixtodos dos.h

Variable Argument List Routines
See also
The following routines are for use when accessing variable argument lists (such as with printf, vscanf,
and so on).

Function Header

va_start stdarg.h
va_arg stdarg.h
va_end stdarg.h

Library Routines, by Name
See also Overview
{button A,JI(`',`libxref_a')} {button B,JI(`',`libxref_b')} {button C,JI(`',`libxref_c')} {button D,JI(`',`libxref_d')} {button E,JI(`',`libxref_e')}
{button F,JI(`',`libxref_f')} {button G,JI(`',`libxref_g')} {button H,JI(`',`libxref_h')} {button I,JI(`',`libxref_i')} {button K,JI(`',`libxref_k')}
{button L,JI(`',`libxref_l')} {button M,JI(`',`libxref_m')} {button N,JI(`',`libxref_n')} {button O,JI(`',`libxref_o')} {button P,JI(`',`libxref_p')}
{button Q,JI(`',`libxref_q')} {button R,JI(`',`libxref_r')} {button S,JI(`',`libxref_s')} {button T,JI(`',`libxref_t')} {button U,JI(`',`libxref_u')}
{button V,JI(`',`libxref_v')} {button W,JI(`',`libxref_w')}
If you do not know the name of a particular function, but you know what type of action it performs, see:
Library Routines, by Category
Otherwise, if you know which function you want Help on, choose one of the following topics:

A
abort
abs
access
acos
acosl
alloca
asctime
asin
asinl
assert
atan
atan2
atan2l
atanl
atexit
atof
atoi
atol
_atold

B
_beginthread
_beginthreadNT
bsearch

C
_c_exit
cabs
cabsl
calloc
ceil
ceill
_cexit
cgets
chdir
_chdrive
chmod
chsize
_clear87
clearerr

clock
close
closedir
clreol
clrscr
_control87
cos
cosh
coshl
cosl
creat
creatnew
creattemp
_crotl
_crotr
cscanf
ctime
cwait

D
delline
difftime
disable
_disable
div
dup

E
ecvt
_ _emit_ _
enable
_enable
_endthread
eof
execl
execle
execlp
execlpe
execv
execve
execvp
execvpe
exit
_exit
exp
_expand
expl

F
fabs
fabsl

fclose
_fcloseall
fcvt
_fdopen
feof
ferror
fflush
fgetc
_fgetchar
fgetpos
fgets
filelength
_fileno
findfirst
findnext
floor
floorl
_flushall
fmod
fmodl
fnmerge
fnsplit
fopen
_fpreset
fprintf
fputc
_fputchar
fputs
fread
free
freopen
frexp
frexpl
fscanf
fseek
fsetpos
_fsopen
fstat
ftell
ftime
_fullpath
fwrite

G
gcvt
geninterrupt
_get_osfhandle
getc
getch
getchar

getche
getcurdir
getcwd
_getdcwd
getdfree
getdisk
getenv
getftime
getpass
getpid
gets
gettext
gettextinfo
gettime
_getw
gmtime
gotoxy

H
heapcheck
heapcheckfree
heapchecknode
_heapchk
heapfillfree
_heapmin
_heapset
heapwalk
highvideo
hypot
hypotl

I
insline
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
itoa

K
kbhit

L
labs
ldexp
ldexpl
ldiv
lfind
localeconv
localtime
lock
locking
log
log10
log10l
logl
longjmp
lowvideo
_lrotl
_lrotr
lsearch
lseek
_ltoa

M
_makepath
malloc
_matherr
_matherrl
max
mblen
mbstowcs
mbtowc
memccpy
memchr
memcmp
memcpy
memicmp
memmove
memset
min
mkdir
_mktemp
mktime
modf
modfl
movetext
_msize

N
normvideo

O

offsetof
open
_open_osfhandle
opendir

P
_pclose
perror
_pipe
poly
polyl
_popen
pow
pow10
pow10l
powl
printf
putc
putch
putchar
putenv
puts
puttext
_putw

Q
qsort

R
raise
rand
random
randomize
read
readdir
realloc
remove
rename
rewind
rewinddir
_rmdir
_rmtmp
_rotl
_rotr
_rtl_chmod
_rtl_close
_rtl_creat
_rtl_heapwalk
_rtl_open
_rtl_read
_rtl_write

S
scanf
_searchenv
searchpath
_searchstr
set_new_handler
setbuf
_setcursortype
setdate
setdisk
setjmp
setlocale
setmem
setmode
settime
setvbuf
signal
sin
sinh
sinhl
sinl
sleep
_sopen
spawnl
spawnle
spawnlp
spawnlpe
spawnv
spawnve
spawnvp
spawnvpe
_splitpath
sprintf
sqrt
sqrtl
srand
sscanf
stackavail
stat
_status87
stime
stpcpy
strcat
strchr
strcmp
strcmpi
strcoll
strcpy
strcspn

_strdate
strdup
strerror
_strerror
strftime
stricmp
strlen
strlwr
strncat
strncmp
strncmpi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
strset
strspn
strstr
_strtime
strtod
strtok
strtol
_strtold
strtoul
strupr
strxfrm
swab
system

T
tan
tanh
tanhl
tanl
tell
_tempnam
textattr
textbackground
textcolor
textmode
time
tmpfile
tmpnam
toascii
tolower
_tolower
toupper
_toupper

_tzset

U
ultoa
umask
ungetc
ungetch
unixtodos
_unlink
unlock
_utime

V
va_arg
va_end
va_start
vfprintf
vfscanf
vprintf
vscanf
vsprintf
vsscanf

W
wait
wcstombs
wctomb
wherex
wherey
window
write

abort
See also Example Portability

Syntax
#include <stdlib.h>
void abort(void);
Description
Abnormally terminates a program.
abort causes an abnormal program termination by calling raise(SIGABRT). If there is no signal handler
for SIGABRT, then abort writes a termination message (Abnormal program termination) on stderr, then
aborts the program by a call to _exit with exit code 3.

Return Value
abort returns the exit code 3 to the parent process or to the operating system command processor.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

abs
See also Example Portability

Syntax
#include <stdlib.h>
int abs(int x);
Description
Returns the absolute value of an integer.
abs returns the absolute value of the integer argument x. If abs is called when stdlib.h has been
included, it's treated as a macro that expands to inline code.
If you want to use the abs function instead of the macro, include
#undef abs

in your program, after the #include <stdlib.h>.

Return Value
The abs function returns an integer in the range of 0 to INT_MAX, with the exception that an argument
with the value INT_MIN is returned as INT_MIN. The values for INT_MAX and INT_MIN are defined in
header file limit.h.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

access, _waccess
See also Example Portability

Syntax
#include <io.h>
int access(const char *filename, int amode);
int _waccess(const wchar_t *filename, int amode);
Description
Determines accessibility of a file.
access checks the file named by filename to determine if it exists, and whether it can be read, written to,
or executed.
The list of amode values is as follows:

06 Check for read and write permission
04 Check for read permission
02 Check for write permission
01 Execute (ignored)
00 Check for existence of file

Under DOS, OS/2, and Windows (16- and 32-bit) all existing files have read access (amode equals 04),
so 00 and 04 give the same result. Similarly, amode values of 06 and 02 are equivalent because under
DOS write access implies read access.
If filename refers to a directory, access simply determines whether the directory exists.

Return Value
If the requested access is allowed, access returns 0; otherwise, it returns a value of -1, and the global
variable errno is set to one of the following values:
ENOENT Path or file name not found
EACCES Permission denied

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

acos, acosl
See also Example Portability

Syntax
#include <math.h>
double acos(double x);
long double acosl(long double x);
Description
Calculates the arc cosine.
acos returns the arc cosine of the input value.
acosl is the long double version; it takes a long double argument and returns a long double result.
Arguments to acos and acosl must be in the range -1 to 1, or else acos and acosl return NAN and set
the global variable errno to
EDOM Domain error

Return Value
acos and acosl of an argument between -1 and +1 return a value in the range 0 to pi. Error handling for
these routines can be modified through the functions _matherr_matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

acos + + + + + + +
acosl + + + +

alloca
See also Example Portability

Syntax
#include <malloc.h>
void *alloca(size_t size);
Description
Allocates temporary stack space.
alloca allocates size bytes on the stack; the allocated space is automatically freed up when the calling
function exits.
Because alloca modifies the stack pointer, do not place calls to alloca in an expression that is an
argument to a function.
The alloca function should not be used in the try-block of a C++ program. If an exception is thrown, any
values placed on the stack by alloca will be corrupted.
If the calling function does not contain any references to local variables in the stack, the stack will not be
restored correctly when the function exits, resulting in a program crash. To ensure that the stack is
restored correctly, use the following code in the calling function:
char *p;
char dummy[5];

dummy[0] = 0;

 .
 .
 .
p = alloca(nbytes);
Return Value
If enough stack space is available, alloca returns a pointer to the allocated stack area. Otherwise, it
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

asctime, _wasctime
See also Example Portability

Syntax
#include <time.h>
char *asctime(const struct tm *tblock);
wchar_t *_wasctime(const struct tm *tblock);
Description
asctime converts date and time to ASCII.
_wasctime converts date and time to a wchar_t string.
asctime converts a time stored as a structure in *tblock to a 26-character string of the same form as the
ctime string:
 Sun Sep 16 01:03:52 1973\n\0
Return Value
asctime returns a pointer to the character string containing the date and time. This string is a static
variable that is overwritten with each call to asctime.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

asin, asinl
See also Example Portability

Syntax
#include <math.h>
double asin(double x);
long double asinl(long double x);
Description
Calculates the arc sine.
asin of a real argument returns the arc sine of the input value.
asinl is the long double version; it takes a long double argument and returns a long double result.
Real arguments to asin and asinl must be in the range -1 to 1, or else asin and asinl return NAN and set
the global variable errno to
 EDOM Domain error

Return Value
asin and asinl of a real argument return a value in the range -pi/2 to pi/2. Error handling for these
functions may be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

asin + + + + + + +
asinl + + + +

assert
See also Example Portability

Syntax
#include <assert.h>
void assert(int test);
Description
Tests a condition and possibly aborts.
assert is a macro that expands to an if statement; if test evaluates to zero, assert aborts the program
(by calling abort) and asserts the following a message on stderr:
Assertion failed: test, file filename, line linenum
The filename and linenum listed in the message are the source file name and line number where the
assert macro appears.
If you place the #define NDEBUG directive ("no debugging") in the source code before the #include
<assert.h> directive, the effect is to comment out the assert statement.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

atan, atanl
See also Example Portability

Syntax
#include <math.h>
double atan(double x);
long double atanl(long double x);
Description
Calculates the arc tangent.
atan calculates the arc tangent of the input value.
atanl is the long double version; it takes a long double argument and returns a long double result.

Return Value
atan and atanl of a real argument return a value in the range -pi/2 to pi/2. Error handling for these
functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

atan + + + + + + +
atanl + + + +

atan2, atan2l
See also Example Portability

Syntax
#include <math.h>
double atan2(double y, double x);
long double atan2l(long double y, long double x);
Description
Calculates the arc tangent of y/x.
atan2 returns the arc tangent of y/x; it produces correct results even when the resulting angle is near
pi/2 or -pi/2 (x near 0). If both x and y are set to 0, the function sets the global variable errno to EDOM,
indicating a domain error.
atan2l is the long double version; it takes long double arguments and returns a long double result.

Return Value
atan2 and atan2l return a value in the range -pi to pi. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

atan2 + + + + + + +
atan2l + + + +

atexit
See also Example Portability

Syntax
#include <stdlib.h>
int atexit(void (_USERENTRY * func)(void));
Description
Registers termination function.
atexit registers the function pointed to by func as an exit function. Upon normal termination of the
program, exit calls func just before returning to the operating system. fcmp must be used with the
_USERENTRY calling convention.
Each call to atexit registers another exit function. Up to 32 functions can be registered. They are
executed on a last-in, first-out basis (that is, the last function registered is the first to be executed).

Return Value
atexit returns 0 on success and nonzero on failure (no space left to register the function).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

atof, _atold, _wtof, _wtold
See also Example Portability

Syntax
#include <math.h>
double atof(const char *s);
double _wtof(const wchar_t *s);
long double _atold(const char *s);
long double _wtold(const wchar_t *s);
Description
Converts a string to a floating-point number.
atof converts a string pointed to by s to double; this function recognizes the character representation of

a floating-point number, made up of the following:
An optional string of tabs and spaces
An optional sign
A string of digits and an optional decimal point (the digits can be on both sides of the decimal

point)
An optional e or E followed by an optional signed integer

The characters must match this generic format:
 [whitespace] [sign] [ddd] [.] [ddd] [e|E[sign]ddd]
atof also recognizes +INF and -INF for plus and minus infinity, and +NAN and -NAN for Not-a-Number.
In this function, the first unrecognized character ends the conversion.
_atold is the long double version; it converts the string pointed to by s to a long double.
The functions strtod and _strtold are similar to atof and _atold; they provide better error detection, and
hence are preferred in some applications.

Return Value
atof and _atold return the converted value of the input string.
If there is an overflow, atof (or _atold) returns plus or minus HUGE_VAL (or _LHUGE_VAL), errno is set
to ERANGE (Result out of range), and _matherr (or _matherrl) is not called.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

atof + + + + + + +
_atold + + + +

atoi, _atoi64, _wtoi, _wtoi64
See also Example Portability

Syntax
#include <stdlib.h>
int atoi(const char *s);
__int64 _atoi64(const char *s);
int _wtoi(const wchar_t *s);
__int64 _wtoi64(const wchar_t *s);
Description
Converts a string to an integer.
atoi converts a string pointed to by s to int; atoi recognizes (in the following order)

An optional string of tabs and spaces
An optional sign
A string of digits

The characters must match this generic format:
 [ws] [sn] [ddd]
In this function, the first unrecognized character ends the conversion. There are no provisions for
overflow in atoi (results are undefined).

Return Value
atoi returns the converted value of the input string. If the string cannot be converted to a number of the
corresponding type (int), atoi returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

aatol, _wtol
See also Example Portability

Syntax
#include <stdlib.h>
long atol(const char *s);
long _wtol(const wchar_t *s);
Description
Converts a string to a long.
atol converts the string pointed to by s to long. atol recognizes (in the following order)

An optional string of tabs and spaces
An optional sign
A string of digits

The characters must match this generic format:
[ws] [sn] [ddd]
In this function, the first unrecognized character ends the conversion. There are no provisions for
overflow in atol (results are undefined).

Return Value
atol returns the converted value of the input string. If the string cannot be converted to a number of the
corresponding type (b), atol returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_beginthread
See also Example Portability

Syntax
#include <process.h>
unsigned long _beginthread(_USERENTRY (*start_address)(void *), unsigned
stack_size, void *arglist)

Description
Starts execution of a new thread.
Note: The start_address must be declared to be _USERENTRY.
The _beginthread function creates and starts a new thread. The thread starts execution at
start_address.
The size of its stack in bytes is stack_size; the stack is allocated by the operating system after the stack
size is rounded up to the next multiple of 4096. The thread is passed arglist as its only parameter; it can
be NULL, but must be present. The thread terminates by simply returning, or by calling _endthread.
Either this function or _beginthreadNT must be used instead of the operating system thread-creation API
function because _beginthread and _beginthreadNT perform initialization required for correct operation
of the run-time library functions.
This function is available only in the multithread libraries.

Return Value
_beginthread returns the handle of the new thread.
On error, the function returns -1, and the global variable errno is set to one of the following values:
EAGAIN Too many threads
EINVAL Invalid request

Also see the Win32 description of GetLastError.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + +

_beginthreadNT
See also Example Portability

Syntax
#include <process.h>
unsigned long _beginthreadNT(void (_USERENTRY *start_address)(void *),
unsigned stack_size, void *arglist, void *security_attrib, unsigned long
create_flags, unsigned long *thread_id);

Description
Starts execution of a new thread under Windows NT.
Note: The start_address must be declared to be _USERENTRY.
All multithread Windows NT programs must use _beginthreadNT or the _beginthreadfunction instead of
the operating system thread-creation API function because these functions perform initialization required
for correct operation of the run-time library functions. The _beginthreadNT function provides support for
the operating system security. These functions are available only in the multithread libraries.
The _beginthreadNT function creates and starts a new thread. The thread starts execution at
start_address.
The size of its stack in bytes is stack_size; the stack is allocated by the operating system after the stack
size is rounded up to the next multiple of 4096. The thread arglist can be NULL, but must be present.
The thread terminates by simply returning, or by calling _endthread.
The _beginthreadNT function uses the security_attr pointer to access the SECURITY_ATTRIBUTES
structure. The structure contains the security attributes for the thread. If security_attr is NULL, the thread
is created with default security attributes. The thread handle is not inherited if security_attr is NULL.
_beginthreadNT reads the create_flags variable for flags that provide additional information about the
thread creation. This variable can be zero, specifying that the thread will run immediately upon creation.
The variable can also be CREATE_SUSPENDED; in which case, the thread will not run until the
ResumeThread function is called. ResumeThread is provided by the Win32 API.
_beginthreadNT initializes the thread_id variable with the thread identifier.

Return Value
On success, _beginthreadNT returns the handle of the new thread.
On error, it returns -1, and the global variable errno is set to one of the following values:
EAGAIN Too many threads
EINVAL Invalid request

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 +

biosmemory
Example Portability

Syntax
#include <bios.h>
int biosmemory(void);
Description
Returns memory size.
biosmemory returns the size of RAM memory using BIOS interrupt 0x12. This does not include display
adapter memory, extended memory, or expanded memory.

Return Value
biosmemory returns the size of RAM memory in 1K blocks.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

bsearch
See also Example Portability

Syntax
#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nelem, size_t width,
int (_USERENTRY *fcmp)(const void *, const void *));

Description
Binary search of an array.
bsearch searches a table (array) of nelem elements in memory, and returns the address of the first entry
in the table that matches the search key. The array must be in order. If no match is found, bsearch
returns 0.
Note: Because this is a binary search, the first matching entry is not necessarily the first entry in the

table.
The type size_t is defined in stddef.h header file.

nelem gives the number of elements in the table.
width specifies the number of bytes in each table entry.

The comparison routine fcmp must be used with the _USERENTRY calling convention.
fcmp is called with two arguments: elem1 and elem2. Each argument points to an item to be compared.
The comparison function compares each of the pointed-to items (*elem1 and *elem2), and returns an
integer based on the results of the comparison.
For bsearch, the fcmp return value is

< 0 if *elem1 < *elem2
== 0 if *elem1 == *elem2
> 0 if *elem1 > *elem2

Return Value
bsearch returns the address of the first entry in the table that matches the search key. If no match is
found, bsearch returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

cabs, cabsl
See also Example Portability

Syntax
#include <math.h>
double cabs(struct complex z);
long double cabsl(struct _complexl z);
Description
cabs calculates the absolute value of a complex number. cabs is a macro that calculates the absolute
value of z, a complex number. z is a structure with type complex; the structure is defined in math.h as
struct complex {
 double x, y;
 };

where x is the real part, and y is the imaginary part.
Calling cabs is equivalent to calling sqrt with the real and imaginary components of z, as shown here:
sqrt(z.x * z.x + z.y * z.y)
cabsl is the long double version; it takes a structure with type _complexl as an argument, and returns a
long double result. The structure is defined in math.h as
struct _complexl {
 long double x, y;
};
Return Value
cabs (or cabsl) returns the absolute value of z, a double. On overflow, cabs (or cabsl) returns
HUGE_VAL (or _LHUGE_VAL) and sets the global variable errno to
ERANGE Result out of range

Error handling for these functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

cabs + + + + +
cabsl + + + +

calloc
See also Example Portability

Syntax
#include <stdlib.h>
void *calloc(size_t nitems, size_t size);
Description

Allocates main memory.

calloc provides access to the C memory heap. The heap is available for dynamic allocation of variable-
sized blocks of memory. Many data structures, such as trees and lists, naturally employ heap memory
allocation.

calloc allocates a block of size nitems * size. The block is initialized to 0.Return Value
calloc returns a pointer to the newly allocated block. If not enough space exists for the new block or if
nitems or size is 0, calloc returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ceil, ceill
See also Example Portability

Syntax
#include <math.h>
double ceil(double x);
long double ceill(long double x);
Description
Rounds up.
ceil finds the smallest integer not less than x.
ceill is the long double version; it takes a long double argument and returns a long double result.

Return Value
These functions return the integer found as a double (ceil) or a long double (ceill).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

ceil + + + + + + +
ceill + + + +

_c_exit
See also Example Portability

Syntax
#include <process.h>
void _c_exit(void);
Description
Performs _exit cleanup without terminating the program.
_c_exit performs the same cleanup as _exit, except that it does not terminate the calling process.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_cexit
See also Example Portability

Syntax
#include <process.h>
void _cexit(void);
Description
Performs exit cleanup without terminating the program.
_cexit performs the same cleanup as exit, closing all files but without terminating the calling process.
The _cexit function calls any registered "exit functions" (posted with atexit). Before _cexit returns, it
flushes all input/output buffers and closes all streams which were open.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

cgets
See also Example Portability

Syntax
#include <conio.h>
char *cgets(char *str);
Description
Reads a string from the console.
cgets reads a string of characters from the console, storing the string (and the string length) in the
location pointed to by str.
cgets reads characters until it encounters a carriage-return/linefeed (CR/LF) combination, or until the
maximum allowable number of characters have been read. If cgets reads a CR/LF combination, it
replaces the combination with a \0 (null terminator) before storing the string.
Before cgets is called, set str[0] to the maximum length of the string to be read. On return, str[1] is set to
the number of characters actually read. The characters read start at str[2] and end with a null terminator.
Thus, str must be at least str[0] plus 2 bytes long.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
On success, cgets returns a pointer to str[2].

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

chdir, _wchdir
See also Example Portability

Syntax
#include <dir.h>
int chdir(const char *path);
int _wchdir(const wchar_t *path);
Description
Changes current directory.
chdir causes the directory specified by path to become the current working directory; path must specify
an existing directory.
A drive can also be specified in the path argument, such as
 chdir("a:\\BC")
but this method changes only the current directory on that drive; it does not change the active drive.
Under Windows, only the current process is affected.
Under DOS, the function changes the current directory of the parent process.

Return Value
Upon successful completion, chdir returns a value of 0. Otherwise, it returns a value of -1, and the global
variable errno is set to
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_chdrive
Example Portability

Syntax
#include <direct.h>
int _chdrive(int drive);
Description
Sets current disk drive.
_chdrive sets the current drive to the one associated with drive: 1 for A, 2 for B, 3 for C, and so on.
This function changes the current drive of the parent process.

Return Value
_chdrive returns 0 if the current drive was changed successfully; otherwise, it returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

chmod, _wchmod
See also Example Portability

Syntax
#include <io.h>
int chmod(const char *path, int amode);
int _wchmod(const wchar_t *path, int amode);
Description
Changes file access mode.
chmod sets the file-access permissions of the file given by path according to the mask given by amode.
path points to a string.
amode can contain one or both of the symbolic constants S_IWRITE and S_IREAD (defined in sys\
stat.h).

Value of amode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD | S_IWRITE Permission to read and write (write permission implies read

permission)

Return Value
Upon successfully changing the file access mode, chmod returns 0. Otherwise, chmod returns a value
of -1.
In the event of an error, the global variable errno is set to one of the following values:
EACCES Permission denied
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

chsize
See also Example Portability

Syntax
#include <io.h>
int chsize(int handle, long size);
Description
Changes the file size.
chsize changes the size of the file associated with handle. It can truncate or extend the file, depending
on the value of size compared to the file's original size.
The mode in which you open the file must allow writing.
If chsize extends the file, it will append null characters (\0). If it truncates the file, all data beyond the
new end-of-file indicator is lost.

Return Value
On success, chsize returns 0. On failure, it returns -1 and the global variable errno is set to one of the
following values:
EACCESS Permission denied
EBADF Bad file number
ENOSPC No space left on device

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_clear87
See also Example Portability

Syntax
#include <float.h>
unsigned int _clear87 (void);
Description
Clears floating-point status word.
_clear87 clears the floating-point status word, which is a combination of the 80x87 status word and other
conditions detected by the 80x87 exception handler.

Return Value
The bits in the value returned indicate the floating-point status before it was cleared. For information on
the status word, refer to the constants defined in float.h.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

clearerr
See also Example Portability

Syntax
#include <stdio.h>
void clearerr(FILE *stream);
Description
Resets error indication.
clearerr resets the named stream's error and end-of-file indicators to 0. Once the error indicator is set,
stream operations continue to return error status until a call is made to clearerr or rewind. The end-of-file
indicator is reset with each input operation.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

clock
See also Example Portability

Syntax
#include <time.h>
clock_t clock(void);
Description
Determines processor time.
clock can be used to determine the time interval between two events. To determine the time in seconds,
the value returned by clock should be divided by the value of the macro CLK_TCK.

Return Value
On success, clock returns the processor time elapsed since the beginning of the program invocation.
On error (if the processor time is not available or its value cannot be represented), clock returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

close
See also Example Portability

Syntax
#include <io.h>
int close(int handle);
Description
Closes a file.
The close function closes the file associated with handle, a file handle obtained from a call to creat,
creatnew, creattemp, dup, dup2, open, _rtl_creat, or _rtl_open.
It does not write a Ctrl-Z character at the end of the file. If you want to terminate the file with a Ctrl-Z,
you must explicitly output one.

Return Value
Upon successful completion, close returns 0.
On error (if it fails because handle is not the handle of a valid, open file), close returns a value of -1 and
the global variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

closedir, wclosedir
See also Example Portability

Syntax
#include <dirent.h>
void closedir(DIR *dirp);
void wclosedir(wDIR *dirp);
Description
Closes a directory stream.
On UNIX platforms, closedir is available on POSIX-compliant systems.
The closedir function closes the directory stream dirp, which must have been opened by a previous call
to opendir. After the stream is closed, dirp no longer points to a valid directory stream.
wclosedir is the Unicode version of closedir.

Return Value
If closedir is successful, it returns 0. Otherwise, closedir returns -1 and sets the global variable errno to
EBADF The dirp argument does not point to a valid open directory stream

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

clreol
See also Example Portability

Syntax
#include <conio.h.>
void clreol(void);
Description
Clears to end of line in text window.
clreol clears all characters from the cursor position to the end of the line within the current text window,
without moving the cursor.
Note: This function should not be used in Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

clrscr
See also Example Portability

Syntax
#include <conio.h>
void clrscr(void);
Description
Clears the text-mode window.
clrscr clears the current text window and places the cursor in the upper left corner (at position 1,1).
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_control87
See also Portability

Syntax
#include <float.h>
unsigned int _control87(unsigned int newcw, unsigned int mask);
Description
Manipulates the floating-point control word.
_control87 retrieves or changes the floating-point control word.
The floating-point control word is an unsigned int that, bit by bit, specifies certain modes in the floating-
point package; namely, the precision, infinity, and rounding modes. Changing these modes lets you
mask or unmask floating-point exceptions.
_control87 matches the bits in mask to the bits in newcw. If a mask bit equals 1, the corresponding bit in
newcw contains the new value for the same bit in the floating-point control word, and _control87 sets
that bit in the control word to the new value.
Here is a simple illustration:

Original control word: 0100 0011 0110 0011
mask: 1000 0001 0100 1111
newcw: 1110 1001 0000 0101
Changing bits: 1xxx xxx1 x0xx 0101

If mask equals 0, _control87 returns the floating-point control word without altering it.

Return Value
The bits in the value returned reflect the new floating-point control word. For a complete definition of the
bits returned by _control87, see the header file float.h.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

cos, cosl
See also Example Portability

Syntax
#include <math.h>
double cos(double x);
long double cosl(long double x);
Description
Calculates the cosine of a value.
cos computes the cosine of the input value. The angle is specified in radians.
cosl is the long double version; it takes a long double argument and returns a long double result.

Return Value
cos of a real argument returns a value in the range -1 to 1. Error handling for these functions can be
modified through _matherr (or _matherrl).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

cos + + + + + + +
cosl + + + +

cosh, coshl
See also Example Portability

Syntax
#include <math.h>
double cosh(double x);
long double coshl(long double x);
Description
Calculates the hyperbolic cosine of a value.
cosh computes the hyperbolic cosine, . coshl is the long double version; it takes a long
double argument and returns a long double result.

Return Value
cosh returns the hyperbolic cosine of the argument.
When the correct value would create an overflow, these functions return the value HUGE_VAL (cosh) or
_LHUGE_VAL (coshl) with the appropriate sign, and the global variable errno is set to ERANGE. Error
handling for these functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

cosh + + + + + + +
coshl + + + +

cprintf
See also Example Portability

Syntax
#include <conio.h>
int cprintf(const char *format[, argument, ...]);
Description
Writes formatted output to the screen.
cprintf accepts a series of arguments, applies to each a format specifier contained in the format string
pointed to by format, and outputs the formatted data directly to the current text window on the screen.
There must be the same number of format specifiers as arguments.
For details details on format specifiers, see printf Format Specifiers.
The string is written either directly to screen memory or by way of a BIOS call, depending on the value
of the global variable _directvideo.
Unlike fprintf and printf, cprintf does not translate linefeed characters (\n) into carriage-return/linefeed
character pairs (\r\n). Tab characters (specified by \t) are not expanded into spaces.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
cprintf returns the number of characters output.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

cputs
See also Example Portability

Syntax
#include <conio.h>
int cputs(const char *str);
Description
Writes a string to the screen.
cputs writes the null-terminated string str to the current text window. It does not append a newline
character.
The string is written either directly to screen memory or by way of a BIOS call, depending on the value
of the global variable _directvideo. Unlike puts, cputs does not translate linefeed characters (\n) into
carriage-return/linefeed character pairs (\r\n).
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
cputs returns the last character printed.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_creat, _wcreat
See also Example Portability

Syntax
#include <io.h>
int _creat(const char *path, int amode);
int _wcreat(const wchar_t *path, int amode);
Description
Creates a new file or overwrites an existing one.
Note: Remember that a backslash in a path requires '\\'.

_creat creates a new file or prepares to rewrite an existing file given by path. amode applies only to
newly created files.
A file created with creat is always created in the translation mode specified by the global variable
_fmode (O_TEXT or O_BINARY).
If the file exists and the write attribute is set, creat truncates the file to a length of 0 bytes, leaving the file
attributes unchanged. If the existing file has the read-only attribute set, the creat call fails and the file
remains unchanged.
The _creat call examines only the S_IWRITE bit of the access-mode word amode. If that bit is 1, the file
can be written to. If the bit is 0, the file is marked as read-only. All other operating system attributes are
set to 0.
amode can be one of the following (defined in sys\stat.h):

Value of amode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD / S_IWRITE Permission to read and write (write permission implies read permission)

Return Value
Upon successful completion, _creat returns the new file handle, a nonnegative integer; otherwise, it
returns -1.
In the event of error, the global variable errno is set to one of the following:
EACCES Permission denied
ENOENT Path or file name not found
EMFILE Too many open files

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

creatnew
See also Example Portability

Syntax
#include <io.h>
int creatnew(const char *path, int mode);
Description
Creates a new file.
creatnew is identical to _rtl_creat with one exception: If the file exists, creatnew returns an error and
leaves the file untouched.
The mode argument to creatnew can be zero or an OR-combination of any one of the following
constants (defined in dos.h):
FA_HIDDEN Hidden file
FA_RDONLY Read-only attribute
FA_SYSTEM System file

Return Value
Upon successful completion, creat returns the new file handle, a nonnegative integer; otherwise, it
returns -1.
In the event of error, the global variable errno is set to one of the following values:
EACCES Permission denied
EEXIST File already exists
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

creattemp
See also Example Portability

Syntax
#include <io.h>
int creattemp(char *path, int attrib);
Description
Creates a unique file in the directory associated with the path name.
A file created with creattemp is always created in the translation mode specified by the global variable
_fmode (O_TEXT or O_BINARY).
path is a path name ending with a backslash (\). A unique file name is selected in the directory given by
path. The newly created file name is stored in the path string supplied. path should be long enough to
hold the resulting file name. The file is not automatically deleted when the program terminates.
creattemp accepts attrib, a DOS attribute word. Upon successful file creation, the file pointer is set to the
beginning of the file. The file is opened for both reading and writing.
The attrib argument to creattemp can be zero or an OR-combination of any one of the following
constants (defined in dos.h):
FA_HIDDEN Hidden file
FA_RDONLY Read-only attribute
FA_SYSTEM System file

Return Value
Upon successful completion, the new file handle, a nonnegative integer, is returned; otherwise, -1 is
returned.
In the event of error, the global variable errno is set to one of the following values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_crotl, _crotr
See also Example Portability

Syntax
#include <stdlib.h>
unsigned char _crotl(unsigned char val, int count);
unsigned char _crotr(unsigned char val, int count);
Description
Rotates an unsigned char left or right.
_crotl rotates the given val to the left count bits. _crotr rotates the given val to the right count bits.
The argument val is an unsigned char, or its equivalent in decimal or hexadecimal form.

Return Value
The functions return the rotated word:

_crotl returns the value of val left-rotated count bits.
_crotr returns the value of val right-rotated count bits.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

cscanf
See also Example Portability

Syntax
#include <conio.h>
int cscanf(char *format[, address, ...]);
Description
Scans and formats input from the console.
cscanf scans a series of input fields one character at a time, reading directly from the console. Then
each field is formatted according to a format specifier passed to cscanf in the format string pointed to by
format. Finally, cscanf stores the formatted input at an address passed to it as an argument following
format, and echoes the input directly to the screen. There must be the same number of format specifiers
and addresses as there are input fields.
Note: For details on format specifiers, see scanf Format Specifiers.
cscanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely for a number of reasons. See scanf for a discussion of possible
causes.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
cscanf returns the number of input fields successfully scanned, converted, and stored; the return value
does not include scanned fields that were not stored. If no fields were stored, the return value is 0.
If cscanf attempts to read at end-of-file , the return value is EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

actime, _wctime
See also Example Portability

Syntax
#include <time.h>
char *ctime(const time_t *time);
wchar_t *_wctime(const time_t *time);
Description
Converts date and time to a string.
ctime converts a time value pointed to by time (the value returned by the function time) into a 26-
character string in the following form, terminating with a newline character and a null character:
 Mon Nov 21 11:31:54 1983\n\0
All the fields have constant width.
The global long variable _timezone contains the difference in seconds between GMT and local standard
time (in PST, _timezone is 8*60*60). The global variable _daylight is nonzero if and only if the standard
U.S. _daylight saving time conversion should be applied. These variables are set by the tzset function,
not by the user program directly.

Return Value
ctime returns a pointer to the character string containing the date and time. The return value points to
static data that is overwritten with each call to ctime.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

cwait
See also Example Portability

Syntax
#include <process.h>
int cwait(int *statloc, int pid, int action);
Description
Waits for child process to terminate.
The cwait function waits for a child process to terminate. The process ID of the child to wait for is pid. If
statloc is not NULL, it points to the location where cwait will store the termination status. The action
specifies whether to wait for the process alone, or for the process and all of its children.
If the child process terminated normally (by calling exit, or returning from main), the termination status
word is defined as follows:
Bits 0-7 Zero
Bits 8-15 The least significant byte of the return code from the child process. This is the value that

is passed to exit, or is returned from main. If the child process simply exited from main
without returning a value, this value will be unpredictable.

If the child process terminated abnormally, the termination status word is defined as follows:
Bits 0-7 Termination information about the child:
 1 Critical error abort.
 2 Execution fault, protection exception.
 3 External termination signal.
Bits 8-15 Zero

If pid is 0, cwait waits for any child process to terminate. Otherwise, pid specifies the process ID of the
process to wait for; this value must have been obtained by an earlier call to an asynchronous spawn
function.
The acceptable values for action are WAIT_CHILD, which waits for the specified child only, and
WAIT_GRANDCHILD, which waits for the specified child and all of its children. These two values are
defined in process.h.

Return Value
When cwait returns after a normal child process termination, it returns the process ID of the child.
When cwait returns after an abnormal child termination, it returns -1 to the parent and sets errno to
EINTR (the child process terminated abnormally).
If cwait returns without a child process completion, it returns a -1 value and sets errno to one of the
following values:
ECHILD No child exists or the pid value is bad
EINVAL A bad action value was specified

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

delline
See also Example Portability

Syntax
#include <conio.h>
void delline(void);
Description
Deletes line in text window.
delline deletes the line containing the cursor and moves all lines below it one line up. delline operates
within the currently active text window.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

difftime
See also Example Portability

Syntax
#include <time.h>
double difftime(time_t time2, time_t time1);
Description
Computes the difference between two times.
difftime calculates the elapsed time in seconds, from time1 to time2.

Return Value
difftime returns the result of its calculation as a double.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

disable, _disable, enable, _enable
Examples Portability

Syntax
#include <dos.h>
void disable(void);
void _disable(void);
void enable(void);
void _enable(void);
Description
Disables and enables interrupts.
These macros are designed to provide a programmer with flexible hardware interrupt control.
disable and _disable macros disable interrupts. Only the NMI (non-maskable interrupt) is allowed from
any external device.
enable and _enable macros enable interrupts, allowing any device interrupts to occur.

Return Value
None.

Examples
disable
_disable
enable
_enable

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

div
See also Example Portability

Syntax
#include <stdlib.h>
div_t div(int numer, int denom);
Description
Divides two integers, returning quotient and remainder.
div divides two integers and returns both the quotient and the remainder as a div_t type. numer and
denom are the numerator and denominator, respectively. The div_t type is a structure of integers defined
(with typedef) in stdlib.h as follows:
typedef struct {
 int quot; /* quotient */
 int rem; /* remainder */
} div_t;
Return Value
div returns a structure whose elements are quot (the quotient) and rem (the remainder).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

dup
See also Example Portability

Syntax
#include <io.h>
int dup(int handle);
Description
Duplicates a file handle.
dup creates a new file handle that has the following in common with the original file handle:

Same open file or device
Same file pointer (that is, changing the file pointer of one changes the other)
Same access mode (read, write, read/write)

handle is a file handle obtained from a call to creat, open, dup, dup2, _rtl_creat, or _rtl_open.

Return Value
Upon successful completion, dup returns the new file handle, a nonnegative integer; otherwise, dup
returns -1.
In the event of error, the global variable errno is set to one of the following values:
EBADF Bad file number
EMFILE Too many open files

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

dup2
See also Example Portability

Syntax
#include <io.h>
int dup2(int oldhandle, int newhandle);
Description
Duplicates a file handle (oldhandle) onto an existing file handle (newhandle).
dup2 creates a new file handle that has the following in common with the original file handle:

Same open file or device
Same file pointer (that is, changing the file pointer of one changes the other)
Same access mode (read, write, read/write)

dup2 creates a new handle with the value of newhandle. If the file associated with newhandle is open
when dup2 is called, the file is closed.
newhandle and oldhandle are file handles obtained from a creat, open, dup, or dup2 call.

Return Value
dup2 returns 0 on successful completion, -1 otherwise.
In the event of error, the global variable errno is set to one of the following values:
 EBADF Bad file number
 EMFILE Too many open files

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

ecvt
See also Example Portability

Syntax
#include <stdlib.h>
char *ecvt(double value, int ndig, int *dec, int *sign);
Description
Converts a floating-point number to a string.
ecvt converts value to a null-terminated string of ndig digits, starting with the leftmost significant digit,
and returns a pointer to the string. The position of the decimal point relative to the beginning of the string
is stored indirectly through dec (a negative value for dec means that the decimal lies to the left of the
returned digits). There is no decimal point in the string itself. If the sign of value is negative, the word
pointed to by sign is nonzero; otherwise, it's 0. The low-order digit is rounded.

Return Value
The return value of ecvt points to static data for the string of digits whose content is overwritten by each
call to ecvt and fcvt.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_ _emit_ _
Example Portability

Syntax
#include <dos.h>
void _ _emit_ _(argument, ...);
Description
Inserts literal values directly into code.
_ _emit_ _ is an inline function that lets you insert literal values directly into object code as it is
compiling. It is used to generate machine language instructions without using inline assembly language
or an assembler.
Generally the arguments of an _ _emit_ _ call are single-byte machine instructions. However, because
of the capabilities of this function, more complex instructions, complete with references to C variables,
can be constructed.
You should use this function only if you are familiar with the machine language of the 80x86 processor
family. You can use this function to place arbitrary bytes in the instruction code of a function; if any of
these bytes is incorrect, the program misbehaves and can easily crash your machine. Borland C++ does
not attempt to analyze your calls for correctness in any way. If you encode instructions that change
machine registers or memory, Borland C++ will not be aware of it and might not properly preserve
registers, as it would in many cases with inline assembly language (for example, it recognizes the usage
of SI and DI registers in inline instructions). You are completely on your own with this function.
You must pass at least one argument to _ _emit_ _; any number can be given. The arguments to this
function are not treated like any other function call arguments in the language. An argument passed to _
emit _ will not be converted in any way.
There are special restrictions on the form of the arguments to _ _emit_ _. Arguments must be in the
form of expressions that can be used to initialize a static object. This means that integer and floating-
point constants and the addresses of static objects can be used. The values of such expressions are
written to the object code at the point of the call, exactly as if they were being used to initialize data. The
address of a parameter or auto variable, plus or minus a constant offset, can also be used. For these
arguments, the offset of the variable from BP is stored.
The number of bytes placed in the object code is determined from the type of the argument, except in

the following cases:
If a signed integer constant (that is 0x90) appears that fits within the range of 0 to 255, it is

treated as if it were a character.
If the address of an auto or parameter variable is used, a byte is written if the offset of the

variable from BP is between -128 and 127; otherwise, a word is written.
Simple bytes are written as follows:
 _ _emit_ _(0x90);
If you want a word written, but the value you are passing is under 255, simply cast it to unsigned using
one of these methods:
 _ _emit_ _(0xB8, (unsigned)17);
 _ _emit_ _(0xB8, 17u);
Two- or four-byte address values can be forced by casting an address to void near * or void far *,
respectively.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_endthread
See also Examples Portability

Syntax
#include <process.h>
void _endthread(void);
Description
Terminates execution of a thread.
The _endthread function terminates the currently executing thread. The thread must have been started
by an earlier call to _beginthread or _beginthreadNT.
This function is available in the multithread libraries; it is not in the single-thread libraries.

Return Value
The function does not return a value.

Examples
_beginthread (Win32s version)
_beginthreadNT (Windows NT version)

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

eof
See also Example Portability

Syntax
#include <io.h>
int eof(int handle);
Description
Checks for end-of-file.
eof determines whether the file associated with handle has reached end-of-file.

Return Value
If the current position is end-of-file, eof returns the value 1; otherwise, it returns 0. A return value of -1
indicates an error; the global variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe
See also Examples Portability

Syntax
#include <process.h>
int execl(char *path, char *arg0 *arg1, ..., *argn, NULL);
int _wexecl(wchar_t *path, wchar_t *arg0 *arg1, ..., *argn, NULL);
int execle(char *path, char *arg0, *arg1, ..., *argn, NULL, char **env);
int _wexecle(wchar_t *path, wchar_t *arg0, *arg1, ..., *argn, NULL, wchar_t
**env);

int execlp(char *path, char *arg0,*arg1, ..., *argn, NULL);
int _wexeclp(wchar_t *path, wchar_t *arg0,*arg1, ..., *argn, NULL);
int execlpe(char *path, char *arg0, *arg1, ..., *argn, NULL, char **env);
int _wexeclpe(wchar_t *path, wchar_t *arg0, *arg1, ..., *argn, NULL, wchar_t
**env);

int execv(char *path, char *argv[]);
int _wexecv(wchar_t *path, wchar_t *argv[]);
int execve(char *path, char *argv[], char **env);
int _wexecve(wchar_t *path, wchar_t *argv[], wchar_t **env);

int execvp(char *path, char *argv[]);
int _wexecvp(wchar_t *path, wchar_t *argv[]);
int execvpe(char *path, char *argv[], char **env);
int _wexecvpe(wchar_t *path, wchar_t *argv[], wchar_t **env);
Description
Loads and runs other programs.
The functions in the exec... family load and run (execute) other programs, known as child processes.
When an exec... call succeeds, the child process overlays the parent process. There must be sufficient
memory available for loading and executing the child process.
path is the file name of the called child process. The exec... functions search for path using the standard
search algorithm:

If no explicit extension is given, the functions search for the file as given. If the file is not found,
they add .EXE and search again. If not found, they add .COM and search again. If found, the command
processor, COMSPEC (Windows) or COMMAND.COM (DOS), is used to run the batch file.

If an explicit extension or a period is given, the functions search for the file exactly as given.
The suffixes l, v, p, and e added to the exec... "family name" specify that the named function operates
with certain capabilities.
l specifies that the argument pointers (arg0, arg1, ..., argn) are passed as separate arguments.

Typically, the l suffix is used when you know in advance the number of arguments to be passed.
v specifies that the argument pointers (argv[0] ..., arg[n]) are passed as an array of pointers.

Typically, the v suffix is used when a variable number of arguments is to be passed.
p specifies that the function searches for the file in those directories specified by the PATH

environment variable (without the p suffix, the function searches only the current working
directory). If the path parameter does not contain an explicit directory, the function searches first
the current directory, then the directories set with the PATH environment variable.

e specifies that the argument env can be passed to the child process, letting you alter the
environment for the child process. Without the e suffix, child processes inherit the environment of
the parent process.

Each function in the exec... family must have one of the two argument-specifying suffixes (either l or v).

The path search and environment inheritance suffixes (p and e) are optional; for example:
execl is an exec... function that takes separate arguments, searches only the root or current

directory for the child, and passes on the parent's environment to the child.
execvpe is an exec... function that takes an array of argument pointers, incorporates PATH in its

search for the child process, and accepts the env argument for altering the child's environment.
The exec... functions must pass at least one argument to the child process (arg0 or argv[0]); this
argument is, by convention, a copy of path. (Using a different value for this 0th argument won't produce
an error.)
path is available for the child process.
When the l suffix is used, arg0 usually points to path, and arg1, ..., argn point to character strings that
form the new list of arguments. A mandatory null following argn marks the end of the list.
When the e suffix is used, you pass a list of new environment settings through the argument env. This
environment argument is an array of character pointers. Each element points to a null-terminated
character string of the form
 envvar = value
where envvar is the name of an environment variable, and value is the string value to which envvar is
set. The last element in env is null. When env is null, the child inherits the parents' environment settings.
The combined length of arg0 + arg1 + ... + argn (or of argv[0] + argv[1] + ... + argn[n]), including space
characters that separate the arguments, must be less than 128 bytes for a 16-bit application, or 260
bytes for Win32 application. Null terminators are not counted.
When an exec... function call is made, any open files remain open in the child process.

Return Value
If successful, the exec... functions do not return. On error, the exec... functions return -1, and the global
variable errno is set to one of the following values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found
ENOEXEC Exec format error
ENOMEM Not enough memory

Examples
execl
execle
execlp
execlpe
execv
execve
execvp
execvpe

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_exit
See also Example Portability

Syntax
#include <stdlib.h>
void _exit(int status);
Description
Terminates program.
_exit terminates execution without closing any files, flushing any output, or calling any exit functions.
The calling process uses status as the exit status of the process. Typically a value of 0 is used to
indicate a normal exit, and a nonzero value indicates some error.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

exit
See also Example Portability

Syntax
#include <stdlib.h>
void exit(int status);
Description
Terminates program.
exit terminates the calling process. Before termination, all files are closed, buffered output (waiting to be
output) is written, and any registered "exit functions" (posted with atexit) are called.
status is provided for the calling process as the exit status of the process. Typically a value of 0 is used
to indicate a normal exit, and a nonzero value indicates some error. It can be, but is not required, to be
set with one of the following:
EXIT_FAILURE Abnormal program termination; signal to operating system that program has

terminated with an error
EXIT_SUCCESS Normal program termination

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

exp, expl
See also Example Portability

Syntax
#include <math.h>
double exp(double x);
long double expl(long double x);
Description
Calculates the exponential e to the x.
expl is the long double version; it takes a long double argument and returns a long double result.

Return Value
exp returns e to the x.
Sometimes the arguments passed to these functions produce results that overflow or are incalculable.
When the correct value overflows, exp returns the value HUGE_VAL and expl returns _LHUGE_VAL.
Results of excessively large magnitude cause the global variable errno to be set to
ERANGE Result out of range

On underflow, these functions return 0.0, and the global variable errno is not changed. Error handling for
these functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

exp + + + + + + +
expl + + + +

_expand
See also Example Portability

Syntax
#include <malloc.h>
void *_expand(void *block, size_t size);
Description
Grows or shrinks a heap block in place.
This function attempts to change the size of an allocated memory block without moving the block's
location in the heap. The data in the block are not changed, up to the smaller of the old and new sizes of
the block. The block must have been allocated earlier with malloc, calloc, or realloc, and must not have
been freed.

Return Value
If _expand is able to resize the block without moving it, _expand returns a pointer to the block, whose
address is unchanged. If _expand is unsuccessful, it returns a NULL pointer and does not modify or
resize the block.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

fabs, fabsl
See also Example Portability

Syntax
#include <math.h>
double fabs(double x);
long double fabsl(long double x);
Description
Returns the absolute value of a floating-point number.
fabs calculates the absolute value of x, a double. fabsl is the long double version; it takes a long
double argument and returns a long double result.

Return Value
fabs and fabsl return the absolute value of x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

fabs + + + + + + +
fabsl + + + +

fclose
See also Example Portability

Syntax
#include <stdio.h>
int fclose(FILE *stream);
Description
Closes a stream.
fclose closes the named stream. All buffers associated with the stream are flushed before closing.
System-allocated buffers are freed upon closing. Buffers assigned with setbuf or setvbuf are not
automatically freed. (But if setvbuf is passed null for the buffer pointer it will free it upon close.)

Return Value
fclose returns 0 on success. It returns EOF if any errors were detected.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_fcloseall
See also Example Portability

Syntax
#include <stdio.h>
int _fcloseall(void);
Description
Closes open streams.
_fcloseall closes all open streams except
stdin
stdout
stdprn
stderr
stdauxstdstreams
When _fcloseall flushes the associated buffers before closing a stream. The buffers allocated by the
sytem are released.
Note: stdprn and stdaux streams are not available in OS/2 and Win32.

Return Value
_fcloseall returns the total number of streams it closed. The _fcloseall function returns EOF if any errors
were detected.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

fcvt
See also Example Portability

Syntax
#include <stdlib.h>
char *fcvt(double value, int ndig, int *dec, int *sign);
Description
Converts a floating-point number to a string.
fcvt converts value to a null-terminated string digit starting with the leftmost significant digit with ndig
digits to the right of the decimal point. fcvt then returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored indirectly through dec (a negative value for
dec means to the left of the returned digits). There is no decimal point in the string itself. If the sign of
value is negative the word pointed to by sign is nonzero; otherwise it is 0.
The correct digit has been rounded for the number of digits to the right of the decimal point specified by
ndig.

Return Value
The return value of fcvt points to static data whose content is overwritten by each call to fcvt and ecvt.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_fdopen, _wfdopen
See also Example Portability

Syntax
#include <stdio.h>
FILE *_fdopen(int handle, char *type);
FILE *_wfdopen(int handle, wchar_t *type);
Description
Associates a stream with a file handle.
_fdopen associates a stream with a file handle obtained from creat, dup, dup2, or open.
The type of stream must match the mode of the open handle.
The type string used in a call to _fdopen is one of the following values:

Value Description
r Open for reading only. _fdopen returns NULL if the file cannot be opened.
w Create for writing. If the file already exists, its contents are overwritten.
a Append; open for writing at end-of-file or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing). _fdopen returns NULL if the file

cannot be opened.
w+ Create a new file for update. If the file already exists, its contents are overwritten.
a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode, append t to the value of the type
string (for example, rt or w+t).

Similarly, to specify binary mode append b to the type string (for example, rb or w+b).

If t or b is not given in the type string, the mode is governed by the global variable _fmode.
If _fmode is set to O_BINARY, files will be opened in binary mode.
If _fmode is set to O_TEXT, files will be opened in text mode.
Note: The O_... constants are defined in fcntl.h.
When a file is opened for update, both input and output can be done on the resulting stream; however,

output cannot be directly followed by input without an intervening fseekor rewind
input cannot be directly followed by output without an intervening fseek, rewind, or an input that

encounters end-offile

Return Value
On successful completion _fdopen returns a pointer to the newly opened stream. In the event of error it
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

feof
See also Example Portability

Syntax
#include <stdio.h>
int feof(FILE *stream);
Description
Detects end-of-file on a stream.
feof is a macro that tests the given stream for an end-of-file indicator. Once the indicator is set read
operations on the file return the indicator until rewind is called or the file is closed. The end-of-file
indicator is reset with each input operation.

Return Value
feof returns nonzero if an end-of-file indicator was detected on the last input operation on the named
stream and 0 if end-of-file has not been reached.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ferror
See also Example Portability

Syntax
#include <stdio.h>
int ferror(FILE *stream);
Description
Detects errors on stream.
ferror is a macro that tests the given stream for a read or write error. If the stream's error indicator has
been set it remains set until clearerr or rewind is called or until the stream is closed.

Return Value
ferror returns nonzero if an error was detected on the named stream.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fflush
See also Example Portability

Syntax
#include <stdio.h>
int fflush(FILE *stream);
Description
Flushes a stream.
If the given stream has buffered output fflush writes the output for stream to the associated file.
The stream remains open after fflush has executed. fflush has no effect on an unbuffered stream.

Return Value
fflush returns 0 on success. It returns EOF if any errors were detected.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fgetc, fgetwc
See also Example Portability

Syntax
#include <stdio.h>
int fgetc(FILE *stream);
wint_t fgetwc(FILE *stream);
Description
Gets character from stream.
fgetc returns the next character on the named input stream.

Return Value
On success fgetc returns the character read after converting it to an int without sign extension. On end-
of-file or error it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_fgetchar, _fgetwchar
See also Example Portability

Syntax
#include <stdio.h>
int _fgetchar(void);
wint_t _fgetwchar(void);
Description
Reads a character from stdin.
_fgetchar returns the next character from stdin. It is defined as fgetc(stdin).
Note: For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value
On success _fgetchar returns the character read after converting it to an int without sign extension. On
end-of-file or error it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

fgetpos
See also Example Portability

Syntax
#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);
Description
Gets the current file pointer.
fgetpos stores the position of the file pointer associated with the given stream in the location pointed to
by pos. The exact value is unimportant; its value is opaque except as a parameter to subsequent
fsetpos calls.

Return Value
On success fgetpos returns 0. On failure it returns a nonzero value and sets the global variable errno to
EBADF Bad file number
EINVAL Invalid number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

fgets, fgetws
See also Example Portability

Syntax
#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);
wchar_t *fgetws(wchar_t *s, int n, FILE *stream); // Unicode version
Description
Gets a string from a stream.
fgets reads characters from stream into the string s. The function stops reading when it reads either n -
1 characters or a newline character whichever comes first. fgets retains the newline character at the end
of s. A null byte is appended to s to mark the end of the string.

Return Value
On success fgets returns the string pointed to by s; it returns NULL on end-of-file or error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

filelength
See also Example Portability

Syntax
#include <io.h>
long filelength(int handle);
Description
Gets file size in bytes.
filelength returns the length (in bytes) of the file associated with handle.

Return Value
On success filelength returns a long value the file length in bytes. On error it returns -1 and the global
variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_fileno
See also Example Portability

Syntax
#include <stdio.h>
int _fileno(FILE *stream);
Description
Gets the file handle.
_fileno is a macro that returns the file handle for the given stream. If stream has more than one handle
_fileno returns the handle assigned to the stream when it was first opened.

Return Value
_fileno returns the integer file handle associated with stream.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_findfirst, _wfindfirst
See also Example Portability

Syntax
#include <dir.h>
int _findfirst(const char *pathname, struct ffblk *ffblk, int attrib);
int _wfindfirst(const wchar_t *pathname, struct _wffblk *ffblk, int attrib);
Description
Searches a disk directory.
_findfirst begins a search of a disk directory for files specifed by attributes or wildcards.
pathname is a string with an optional drive specifier path and file name of the file to be found. Only the
file name portion can contain wildcard match characters (such as ? or *). If a matching file is found the
ffblk structure is filled with the file-directory information.
When Unicode is defined, the_wfindfirst function uses the following _wffblk structure.
struct _wffblk {
 long ff_reserved;
 long ff_fsize;
 unsigned long ff_attrib;
 unsigned short ff_ftime;
 unsigned short ff_fdate;
 wchar_t ff_name[256];
};

For Win32, the format of the structure ffblk is as follows:
struct ffblk {
 long ff_reserved;
 long ff_fsize; /* file size */
 unsigned long ff_attrib; /* attribute found */
 unsigned short ff_ftime; /* file time */
 unsigned short ff_fdate; /* file date */
 char ff_name[256]; /* found file name */
 };
attrib is a file-attribute byte used in selecting eligible files for the search. attrib should be selected from
the following constants defined in dos.h:
FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory
FA_ARCH Archive

A combination of constants can be ORed together.
For more detailed information about these attributes refer to your operating system documentation.
ff_ftime and ff_fdate contain bit fields for referring to the current date and time. The structure of these
fields was established by the operating system. Both are 16-bit structures divided into three fields.

ff_ftime:
Bits 0 to 4 The result of seconds divided by 2 (for example 10 here means 20 seconds)
Bits 5 to 10 Minutes
Bits 11 to 15 Hours

ff_fdate:
Bits 0-4 Day
Bits 5-8 Month
Bits 9-15 Years since 1980 (for example 9 here means 1989)

The structure ftime declared in io.h uses time and date bit fields similar in structure to ff_ftime and
ff_fdate.

Return Value
_findfirst returns 0 on successfully finding a file matching the search pathname.
When no more files can be found, or if there is an error in the file name:

-1 is returned
errno is set to

ENOENT Path or file name not found
_doserrno is set to one of the following values:

ENMFILE No more files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_findnext, _wfindnext
See also Example Portability

Syntax
#include <dir.h>
int _findnext(struct ffblk *ffblk);
int _wfindnext(struct _wffblk *ffblk);
Description
Continues _findfirst search.
_findnext is used to fetch subsequent files that match the pathname given in findfirst. ffblk is the same
block filled in by the findfirst call. This block contains necessary information for continuing the search.
One file name for each call to _findnext will be returned until no more files are found in the directory
matching the pathname.

Return Value
_findnext returns 0 on successfully finding a file matching the search pathname. When no more files can
be found or if there is an error in the file name

-1 is returned
errno is set to

ENOENT Path or file name not found
_doserrno is set to one of the following values:

ENMFILE No more files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

floor, floorl
See also Example Portability

Syntax
#include <math.h>
double floor(double x);
long double floorl(long double x);
Description
Rounds down.
floor finds the largest integer not greater than x.
floorl is the long double version; it takes a long double argument and returns a long double result.

Return Value
floor returns the integer found as a double. floorl returns the integer found as a long double.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

floor + + + + + + +
floorl + + + +

_flushall
See also Example Portability

Syntax
#include <stdio.h>
int _flushall(void);
Description
Flushes all streams.
_flushall clears all buffers associated with open input streams and writes all buffers associated with open
output streams to their respective files. Any read operation following _flushall reads new data into the
buffers from the input files. Streams stay open after _flushall executes.

Return Value
_flushall returns an integer the number of open input and output streams.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

fmod, fmodl
See also Example Portability

Syntax
#include <math.h>
double fmod(double x, double y);
long double fmodl(long double x, long double y);
Description
Calculates x modulo y, the remainder of x/y.
fmod calculates x modulo y (the remainder f, where x = ay + f for some integer a, and 0 < f < y).
fmodl is the long double version; it takes long double arguments and returns a long double result.

Return Value
fmod and fmodl return the remainder f where x = ay + f (as described above). When y = 0, fmod and
fmodl return 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

fmod + + + + + + +
fmodl + + + +

fnmerge, _wfnmerge
See also Example Portability

Syntax
#include <dir.h>
void fnmerge(char *path, const char *drive, const char *dir, const char
*name, const char *ext);

void _wfnmerge(wchar_t *path, const wchar_t *drive, const wchar_t *dir,
const wchar_t *name, const wchar_t *ext);

Description
Builds a path from component parts.
fnmerge makes a path name from its components. The new path name is
X:\DIR\SUBDIR\NAME.EXT
where:

drive = X
dir = \\DIR\\SUBDIR\\
name = NAME
ext = .EXT

If drive is empty or NULL, no drive is inserted in the path name. If it is missing a trailing colon (:), a colon
is inserted in the path name.
If dir is empty or NULL, no directory is inserted in the path name. If it is missing a trailing slash (\ or /), a
backslash is inserted in the path name.
If name is empty or NULL, no file name is inserted in the path name.
If ext is empty or NULL, no extension is inserted in the path name. If it is missing a leading period (.), a
period is inserted in the path name.
fnmerge assumes there is enough space in path for the constructed path name. The maximum
constructed length is MAXPATH. MAXPATH is defined in dir.h.
fnmerge and fnsplit are invertible; if you split a given path with fnsplit then merge the resultant
components with fnmerge you end up with path.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fnsplit, _wfnsplit
See also Example Portability

Syntax
#include <dir.h>
int fnsplit(const char *path, char *drive, char *dir, char *name, char
*ext);

int _wfnsplit(const wchar_t *path, wchar_t *drive, wchar_t *dir, wchar_t
*name, wchar_t *ext);

Description
Splits a full path name into its components.
fnsplit takes a file's full path name (path) as a string in the form X:\DIR\SUBDIR\NAME.EXT and splits
path into its four components. It then stores those components in the strings pointed to by drive, dir,
name, and ext. All five components must be passed but any of them can be a null which means the
corresponding component will be parsed but not stored. If any path component is null, that component
corresponds to a non-NULL, empty string.
The maximum sizes for these strings are given by the constants MAXDRIVE, MAXDIR, MAXPATH,
MAXFILE, and MAXEXT (defined in dir.h) and each size includes space for the null-terminator.

Constant Max 16-bit Max 32-bit String
MAXPATH 80 256 path
MAXDRIVE 3 3 drive; includes colon (:)
MAXDIR 66 260 dir; includes leading and trailing backslashes (\)
MAXFILE 9 256 name
MAXEXT 5 256 ext; includes leading dot (.)

fnsplit assumes that there is enough space to store each non-null component.
When fnsplit splits path it treats the punctuation as follows:

drive includes the colon (C:, A:, and so on)
dir includes the leading and trailing backslashes (\BC\include\, \source\ ,and so on)
name includes the file name
ext includes the dot preceding the extension (.C, .EXE, and so on).

fnmerge and fnsplit are invertible; if you split a given path with fnsplit then merge the resultant
components with fnmerge you end up with path.

Return Value
fnsplit returns an integer (composed of five flags defined in dir.h) indicating which of the full path name
components were present in path. These flags and the components they represent are
EXTENSION An extension
FILENAME A file name
DIRECTORY A directory (and possibly subdirectories)
DRIVE A drive specification (see dir.h)
WILDCARDS Wildcards (* or ?)

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fopen, _wfopen
See also Example Portability

Syntax
#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
FILE *_wfopen(const wchar_t *filename, const wchar_t *mode);
Description
Opens a stream.
fopen opens the file named by filename and associates a stream with it. fopen returns a pointer to be
used to identify the stream in subsequent operations.
The mode string used in calls to fopen is one of the following values:

Value Description
r Open for reading only.
w Create for writing. If a file by that name already exists, it will be overwritten.
a Append; open for writing at end-of-file or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing).
w+ Create a new file for update (reading and writing). If a file by that name already exists, it

will be overwritten.
a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode append a t to the mode string (rt w+t
and so on). Similarly to specify binary mode append a b to the mode string (wb a+b and so on). fopen
also allows the t or b to be inserted between the letter and the + character in the mode string; for
example rt+ is equivalent to r+t.
If a t or b is not given in the mode string the mode is governed by the global variable _fmode. If _fmode
is set to O_BINARY files are opened in binary mode. If _fmode is set to O_TEXT they are opened in text
mode. These O_... constants are defined in fcntl.h.
When a file is opened for update, both input and output can be done on the resulting stream; however,

output cannot be directly followed by input without an intervening fseek or rewind
input cannot be directly followed by output without an intervening fseek, rewind, or an input that

encounters end-offile

Return Value
On successful completion fopen returns a pointer to the newly opened stream. In the event of error it
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_fpreset
See also Portability

Syntax
#include <float.h>
void _fpreset(void);
Description

Reinitializes floating-point math package.
_fpreset reinitializes the floating-point math package. This function is usually used in conjunction with
system or the exec... or spawn... functions. It is also used to recover from floating-point errors before
calling longjmp.
Note: If an 80x87 coprocessor is used in a program a child process (executed by the system, or by an

exec... or spawn... function) might alter the parent process' floating-point state.
If you use an 80x87 take the following precautions:

Do not call system or an exec... or spawn... function while a floating-point expression is being
evaluated.

Call _fpreset to reset the floating-point state after using system exec... or spawn... if there is any
chance that the child process performed a floating-point operation with the 80x87.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fprintf, fwprintf
See also Example Portability

Syntax
#include <stdio.h>
int fprintf(FILE *stream, const char *format[, argument, ...]);
int fwprintf(FILE *stream, const wchar_t *format[, argument, ...]);
Description
Writes formatted output to a stream.
fprintf accepts a series of arguments applies to each a format specifier contained in the format string
pointed to by format and outputs the formatted data to a stream. There must be the same number of
format specifiers as arguments.
Note: For details on format specifiers, see printf Format Specifiers.

Return Value
fprintf returns the number of bytes output. In the event of error it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fputc, fputwc
See also Example Portability

Syntax
#include <stdio.h>
int fputc(int c, FILE *stream);
wint_t fputwc(wint_t c, FILE *stream);
Description
Puts a character on a stream.
fputc outputs character c to the named stream.
Note: For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value
On success, fputc returns the character c. On error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_fputchar, _fputwchar
See also Example Portability

Syntax
#include <stdio.h>
int _fputchar(int c);
wint_t _fputwchar(wint_t c);
Description
Outputs a character to stdout.
_fputchar outputs character c to stdout. _fputchar(c) is the same as fputc(cstdout).
For Win32s or Win32 GUI applications, stdout must be redirected.

Return Value
On success _fputchar returns the character c.
On error it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

fputs, fputws
See also Example Portability

Syntax
#include <stdio.h>
int fputs(const char *s, FILE *stream);
int fputws(const wchar_t *s, FILE *stream);
Description
Outputs a string on a stream.
fputs copies the null-terminated string s to the given output stream; it does not append a newline
character and the terminating null character is not copied.

Return Value
On success fputs returns a non-negative value.
On error it returns a value of EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fread
See also Example Portability

Syntax
#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t n, FILE *stream);
Description
Reads data from a stream.
fread reads n items of data each of length size bytes from the given input stream into a block pointed to
by ptr.
The total number of bytes read is (n * size).

Return Value
On success fread returns the number of items (not bytes) actually read.
On end-of-file or error it returns a short count (possibly 0).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

free
See also Example Portability

Syntax
#include <stdlib.h>
void free(void *block);
Description
Frees allocated block.
free deallocates a memory block allocated by a previous call to calloc, malloc, or realloc.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

freopen, _wfreopen
See also Example Portability

Syntax
#include <stdio.h>
FILE *freopen(const char *filename, const char *mode, FILE *stream);
FILE *_wfreopen(const wchar_t *filename, const wchar_t *mode, FILE *stream);
Description
Associates a new file with an open stream.
freopen substitutes the named file in place of the open stream. It closes stream regardless of whether
the open succeeds. freopen is useful for changing the file attached to stdin, stdout, or stderr.
The mode string used in calls to fopen is one of the following values:

Value Description
r Open for reading only.
w Create for writing. .
a Append; open for writing at end-of-file or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing).
w+ Create a new file for update (reading and writing).
a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode append a t to the mode string (rt w+t
and so on); similarly to specify binary mode append a b to the mode string (wb a+b and so on).
If a t or b is not given in the mode string the mode is governed by the global variable _fmode. If _fmode
is set to O_BINARY files are opened in binary mode. If _fmode is set to O_TEXT they are opened in text
mode. These O_... constants are defined in fcntl.h.
When a file is opened for update, both input and output can be done on the resulting stream; however,

output cannot be directly followed by input without an intervening fseekor rewind
input cannot be directly followed by output without an intervening fseek, rewind, or an input that

encounters end-offile

Return Value
On successful completion freopen returns the argument stream.
On error it returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

frexp, frexpl
See also Example Portability

Syntax
#include <math.h>
double frexp(double x, int *exponent);
long double frexpl(long double x, int *exponent);
Description
Splits a number into mantissa and exponent.
frexp calculates the mantissa m (a double greater than or equal to 0.5 and less than 1) and the integer
value n such that x (the original double value) equals m * 2n. frexp stores n in the integer that exponent
points to.
frexpl is the long double version; it takes a long double argument for x and returns a long double
result.

Return Value
frexp and frexpl return the mantissa m. Error handling for these routines can be modified through the
functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

frexp + + + + + + +
frexpl + + + +

fscanf, fwscanf
See also Example Portability

Syntax
#include <stdio.h>
int fscanf(FILE *stream, const char *format[, address, ...]);
int fwscanf(FILE *stream, const wchar_t *format[, address, ...]);
Description
Scans and formats input from a stream.
fscanf scans a series of input fields one character at a time reading from a stream. Then each field is
formatted according to a format specifier passed to fscanf in the format string pointed to by format.
Finally fscanf stores the formatted input at an address passed to it as an argument following format. The
number of format specifiers and addresses must be the same as the number of input fields.
Note: For details on format specifiers, see scanf Format Specifiers.
fscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion of possible
causes.

Return Value
fscanf returns the number of input fields successfully scanned, converted and stored. The return value
does not include scanned fields that were not stored.
If fscanf attempts to read at end-of-file, the return value is EOF. If no fields were stored, the return value
is 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fseek
See also Example Portability

Syntax
#include <stdio.h>
int fseek(FILE *stream, long offset, int whence);
Description
Repositions a file pointer on a stream.
fseek sets the file pointer associated with stream to a new position that is offset bytes from the file
location given by whence. For text mode streams offset should be 0 or a value returned by ftell.
whence must be one of the values 0. 1, or 2 which represent three symbolic constants (defined in
stdio.h) as follows:

Constant whence File location
SEEK_SET 0 File beginning
SEEK_CUR 1 Current file pointer position
SEEK_END 2 End-of-file

fseek discards any character pushed back using ungetc. fseek is used with stream I/O; for file handle
I/O use lseek.
After fseek the next operation on an update file can be either input or output.

Return Value
fseek returns 0 if the pointer is successfully moved and nonzero on failure.
fseek might return a 0 indicating that the pointer has been moved successfully when in fact it has not
been. This is because DOS, which actually resets the pointer, does not verify the setting. fseek returns
an error code only on an unopened file or device.
In the event of an error return the global variable errno is set to one of the following values:
EBADF Bad file pointer
EINVAL Invalid argument
ESPIPE Illegal seek on device

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fsetpos
See also Example Portability

Syntax
#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);
Description
Positions the file pointer of a stream.
fsetpos sets the file pointer associated with stream to a new position. The new position is the value
obtained by a previous call to fgetpos on that stream. It also clears the end-of-file indicator on the file
that stream points to and undoes any effects of ungetc on that file. After a call to fsetpos the next
operation on the file can be input or output.

Return Value
On success fsetpos returns 0.
On failure it returns a nonzero value and also sets the global variable errno to a nonzero value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

_fsopen, _wfsopen
See also Example Portability

Syntax
#include <stdio.h>
#include <share.h>
FILE *_fsopen(const char *filename, const char *mode, int shflag);
FILE *_wfsopen(const wchar_t *filename, const wchar_t *mode, int shflag);
Description
Opens a stream with file sharing.
_fsopen opens the file named by filename and associates a stream with it. _fsopen returns a pointer that
is used to identify the stream in subsequent operations.
The mode string used in calls to _fsopen is one of the following values:

Mode Description
r Open for reading only.
w Create for writing. If a file by that name already exists, it will be overwritten.
a Append; open for writing at end of file. or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing).
w+ Create a new file for update (reading and writing). If a file by that name already exists, it

will be overwritten.
a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode append a t to the mode string (rt w+t
and so on). Similarly to specify binary mode append a b to the mode string (wb a+b and so on). _fsopen
also allows the t or b to be inserted between the letter and the + character in the mode string; for
example rt+ is equivalent to r+t. If a t or b is not given in the mode string the mode is governed by the
global variable _fmode. If _fmode is set to O_BINARY files are opened in binary mode. If _fmode is set
to O_TEXT they are opened in text mode. These O_... constants are defined in fcntl.h.
When a file is opened for update, both input and output can be done on the resulting stream, however:

output cannot be directly followed by input without an intervening fseekor rewind
input cannot be directly followed by output without an intervening fseek, rewind, or an input that

encounters end-offile
shflag specifies the type of file-sharing allowed on the file filename. Symbolic constants for shflag are
defined in share.h.
Note: For DOS users, the file-sharing flags are ignored if SHARE is not loaded.

Value of shflagDescription
SH_COMPAT Sets compatibility mode
SH_DENYRW Denies read/write access
SH_DENYWR Denies write access
SH_DENYRD Denies read access
SH_DENYNONE Permits read/write access
SH_DENYNO Permits read/write access

Return Value
On successful completion _fsopen returns a pointer to the newly opened stream.
On error it returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fstat, stat, _wstat
See also Examples Portability

Syntax
#include <sys\stat.h>
int fstat(int handle, struct stat *statbuf);
int stat(const char *path, struct stat *statbuf);
int _wstat(const wchar_t *path, struct stat *statbuf);
Description
Gets open file information.
fstat stores information in the stat structure about the file or directory associated with handle.
stat stores information about a given file or directory in the stat structure. The name of the file is path.
statbuf points to the stat structure (defined in sys\stat.h). That structure contains the following fields:
st_mode Bit mask giving information about the file's mode
st_dev Drive number of disk containing the file or file handle if the file is on a device
st_rdev Same as st_dev
st_nlink Set to the integer constant 1
st_size Size of the file in bytes
st_atime Most recent access (Windows) or last time modified (DOS)
st_mtime Same as st_atime
st_ctime Same as st_atime

The stat structure contains three more fields not mentioned here. They contain values that are
meaningful only in UNIX.
The st_mode bit mask that gives information about the mode of the open file includes the following bits:
One of the following bits will be set:
S_IFCHR If handle refers to a device.
S_IFREG If an ordinary file is referred to by handle.

One or both of the following bits will be set:
S_IWRITE If user has permission to write to file.
S_IREAD If user has permission to read to file.

The HPFS and NTFS file-management systems make the following distinctions:
st_atime Most recent access
st_mtime Most recent modify
st_ctime Creation time

Return Value
fstat and stat return 0 if they successfully retrieved the information about the open file.
On error (failure to get the information) these functions return -1 and set the global variable errno to
EBADF Bad file handle

Examples
fstat
stat

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

ftell
See also Example Portability

Syntax
#include <stdio.h>
long int ftell(FILE *stream);
Description
Returns the current file pointer.
ftell returns the current file pointer for stream. The offset is measured in bytes from the beginning of the
file (if the file is binary). The value returned by ftell can be used in a subsequent call to fseek.

Return Value
ftell returns the current file pointer position on success. It returns -1L on error and sets the global
variable errno to a positive value.
In the event of an error return the global variable errno is set to one of the following values:
EBADF Bad file pointer
ESPIPE Illegal seek on device

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ftime
See also Example Portability

Syntax
#include <sys\timeb.h>
void ftime(struct timeb *buf)
Description
Stores current time in timeb structure.
On UNIX platforms ftime is available only on System V systems.
ftime determines the current time and fills in the fields in the timeb structure pointed to by buf. The timeb
structure contains four fields: time, millitm, _timezone, and dstflag:
struct timeb {
 long time ;
 short millitm ;
 short _timezone ;
 short dstflag ;
};
time provides the time in seconds since 00:00:00 Greenwich mean time (GMT) January 1 1970.
millitm is the fractional part of a second in milliseconds.
_timezone is the difference in minutes between GMT and the local time. This value is computed going

west from GMT. ftime gets this field from the global variable _timezone which is set by
tzset.

dstflag is set to nonzero if daylight saving time is taken into account during time calculations.
Note: ftime calls tzset. Therefore it isn't necessary to call tzset explicitly when you use ftime.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_fullpath, _wfullpath
See also Example Portability

Syntax
#include <stdlib.h>
char * _fullpath(char *buffer, const char *path, int buflen);
wchar_t * _wfullpath(wchar_t *buffer, const wchar_t *path, int buflen);
Description
Converts a path name from relative to absolute.
_fullpath converts the relative path name in path to an absolute path name that is stored in the array of
characters pointed to by buffer. The maximum number of characters that can be stored at buffer is
buflen. The function returns NULL if the buffer isn't big enough to store the absolute path name or if the
path contains an invalid drive letter.
If buffer is NULL, _fullpath allocates a buffer of up to _MAX_PATH characters. This buffer should be
freed using free when it is no longer needed. _MAX_PATH is defined in stdlib.h.

Return Value
If successful the _fullpath function returns a pointer to the buffer containing the absolute path name.
On error, this function returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fwrite
See also Example Portability

Syntax
#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);
Description
Writes to a stream.
fwrite appends n items of data each of length size bytes to the given output file. The data written begins
at ptr. The total number of bytes written is (n x size). ptr in the declarations is a pointer to any object.

Return Value
On successful completion fwrite returns the number of items (not bytes) actually written.
On error it returns a short count.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

gcvt
See also Example Portability

Syntax
#include <stdlib.h>
char *gcvt(double value, int ndec, char *buf);
Description
Converts floating-point number to a string.
gcvt converts value to a null-terminated ASCII string and stores the string in buf. It produces ndec
significant digits in FORTRAN F format, if possible; otherwise, it returns the value in the printf E format
(ready for printing). It might suppress trailing zeros.

Return Value
gcvt returns the address of the string pointed to by buf.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

geninterrupt
See also Example Portability

Syntax
#include <dos.h>
void geninterrupt(int intr_num);
Description
Generates a software interrupt.
The geninterrupt macro triggers a software trap for the interrupt given by intr_num. The state of all
registers after the call depends on the interrupt called.
Interrupts can leave registers in unpredictable states.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

getc, getwc
See also Example Portability

Syntax
#include <stdio.h>
int getc(FILE *stream);
wint_t getwc(FILE *stream);
Description
Gets character from stream.
getc returns the next character on the given input stream and increments the stream's file pointer to
point to the next character.
Note: For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value
On success, getc returns the character read, after converting it to an int without sign extension.
On end-of-file or error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

getch
See also Example Portability

Syntax
#include <conio.h>
int getch(void);
Description
Gets character from keyboard, does not echo to screen.
getch reads a single character directly from the keyboard, without echoing to the screen.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
getch returns the character read from the keyboard.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

getchar, getwchar
See also Example Portability

Syntax
#include <stdio.h>
int getchar(void);
wint_t getwchar(void);
Description
Gets character from stdin.
getchar is a macro that returns the next character on the named input stream stdin. It is defined to be
getc(stdin).
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
On success, getchar returns the character read, after converting it to an int without sign extension.
On end-of-file or error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

getche
See also Example Portability

Syntax
#include <conio.h>
int getche(void);
Description
Gets character from the keyboard, echoes to screen.
getche reads a single character from the keyboard and echoes it to the current text window using direct
video or BIOS.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
getche returns the character read from the keyboard.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

getcurdir, _wgetcurdir
See also Example Portability

Syntax
#include <dir.h>
int getcurdir(int drive, char *directory);
int _wgetcurdir(int drive, wchar_t *directory);
Description
Gets current directory for specified drive.
getcurdir gets the name of the current working directory for the drive indicated by drive. drive specifies a
drive number (0 for default, 1 for A, and so on). directory points to an area of memory of length MAXDIR
where the null-terminated directory name will be placed. The name does not contain the drive
specification and does not begin with a backslash.

Return Value
getcurdir returns 0 on success or -1 in the event of error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getcwd, _wgetcwd
See also Example Portability

Syntax
#include <dir.h>
char *getcwd(char *buf, int buflen);
wchar_t *_wgetcwd(wchar_t *buf, int buflen);
Description
Gets current working directory.
getcwd gets the full path name (including the drive) of the current working directory, up to buflen bytes
long and stores it in buf. If the full path name length (including the null terminator) is longer than buflen
bytes, an error occurs.
If buf is NULL, a buffer buflen bytes long is allocated for you with malloc. You can later free the allocated
buffer by passing the return value of getcwd to the function free.

Return Value
getcwd returns the following values:

If buf is not NULL on input, getcwd returns buf on success, NULL on error.
If buf is NULL on input, getcwd returns a pointer to the allocated buffer.

In the event of an error return, the global variable errno is set to one of the following values:
ENODEV No such device
ENOMEM Not enough memory to allocate a buffer (buf is NULL)
ERANGE Directory name longer than buflen (buf is not NULL)

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getdate, setdate
See Also Examples Portability

Syntax
#include <dos.h>
void getdate(struct date *datep);
void setdate(struct date *datep);
Description
Gets and sets system date.
getdate fills in the date structure (pointed to by datep) with the system's current date.
setdate sets the system date (month, day, and year) to that in the date structure pointed to by datep.
Note that a request to set a date might fail if you do not have the privileges required by the operating
system.
The date structure is defined as follows:
struct date{
 int da_year; /* current year */
 char da_day; /* day of the month */
 char da_mon; /* month (1 = Jan) */
};
Return Value
getdate and setdate do not return a value.

See Also
ctime
gettime
settime

Examples
getdate
setdate

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_getdcwd, _wgetdcwd
See also Example Portability

Syntax
#include <direct.h>
char * _getdcwd(int drive, char *buffer, int buflen);
wchar_t * _wgetdcwd(int drive, wchar_t *buffer, int buflen);
Description
Gets current directory for specified drive.
_getdcwd gets the full path name of the working directory of the specified drive (including the drive
name), up to buflen bytes long, and stores it in buffer. If the full path name length (including the null-
terminator) is longer than buflen, an error occurs. The drive is 0 for the default drive, 1=A, 2=B, and so
on.
If the working directory is the root directory, the terminating character for the full path is a backslash. If
the working directory is a subdirectory, there is no terminating backslash after the subdirectory name.
If buffer is NULL, _getdcwd allocates a buffer at least buflen bytes long. You can later free the allocated
buffer by passing the _getdcwd return value to the free function.

Return Value
If successful, _getdcwd returns a pointer to the buffer containing the current directory for the specified
drive.
Otherwise it returns NULL, and sets the global variable errno to one of the following values:
ENOMEM Not enough memory to allocate a buffer (buffer is NULL)
ERANGE Directory name longer than buflen (buffer is not NULL)

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getdfree
Example Portability

Syntax
#include <dos.h>
void getdfree(unsigned char drive, struct dfree *dtable);
Description
Gets disk free space.
getdfree accepts a drive specifier in drive (0 for default, 1 for A, and so on) and fills the dfree structure
pointed to by dtable with disk attributes.
The dfree structure is defined as follows:
struct dfree {
 unsigned df_avail; /* available clusters */
 unsigned df_total; /* total clusters */
 unsigned df_bsec; /* bytes per sector */
 unsigned df_sclus; /* sectors per cluster */
};
Return Value
getdfree returns no value. In the event of an error, df_sclus in the dfree structure is set to (unsigned) -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getdisk, setdisk
See also Examples Portability

Syntax
#include <dir.h>
int getdisk(void);
int setdisk(int drive);
Description
Gets or sets the current drive number.
getdisk gets the current drive number. It returns an integer: 0 for A, 1 for B, 2 for C, and so on.
setdisk sets the current drive to the one associated with drive: 0 for A, 1 for B, 2 for C, and so on.
The setdisk function changes the current drive of the parent process.

Return Value
getdisk returns the current drive number. setdisk returns the total number of drives available.

Examples
getdisk
setdisk

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getenv, _wgetenv
See also Example Portability

Syntax
#include <stdlib.h>
char *getenv(const char *name);
wchar_t *_wgetenv(const wchar_t *name);
Description
Find or delete an environment variable from the system environment.
The environment consists of a series of entries that are of the form name=string\0.
getenv returns the value of a specified variable. On DOS and OS/2, name must be uppercase. On other
systems, name can be either uppercase or lowercase. name must not include the equal sign (=). If the
specified environment variable does not exist, getenv returns a NULL pointer.
To delete the variable from the environment, use getenv("name=").

Note: Environment entries must not be changed directly. If you want to change an environment value,
you must use putenv.

Return Value
On success, getenv returns the value associated with name.
If the specified name is not defined in the environment, getenv returns a NULL pointer.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

getftime, setftime
See also Examples Portability

Syntax
#include <io.h>
int getftime(int handle, struct ftime *ftimep);
int setftime(int handle, struct ftime *ftimep);
Description
Gets and sets the file date and time.
getftime retrieves the file time and date for the disk file associated with the open handle. The ftime
structure pointed to by ftimep is filled in with the file's time and date.
setftime sets the file date and time of the disk file associated with the open handle to the date and time
in the ftime structure pointed to by ftimep. The file must not be written to after the setftime call or the
changed information will be lost. The file must be open for writing; an EACCES error will occur if the file
is open for read-only access.
setftime requires the file to be open for writing; an EACCES error will occur if the file is open for read-
only access.
The ftime structure is defined as follows:
struct ftime {
 unsigned ft_tsec: 5; /* two seconds */
 unsigned ft_min: 6; /* minutes */
 unsigned ft_hour: 5; /* hours */
 unsigned ft_day: 5; /* days */
 unsigned ft_month: 4; /* months */
 unsigned ft_year: 7; /* year - 1980*/
 };
Return Value
getftime and setftime return 0 on success.
In the event of an error return -1 is returned and the global variable errno is set to one of the following
values:
EACCES Permission denied
EBADF Bad file number
EINVFNC Invalid function number

Examples
getftime
setftime

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_get_osfhandle
See also Example Portability

Syntax
#include <io.h>
long _get_osfhandle(int filehandle);
Description
Associates file handles.
The _get_osfhandle function associates an operating system file handle with an existing run-time file
handle. The variable filehandle is the file handle of your program.

Return value
On success, _get_osfhandle returns an operating system file handle corresponding to the variable
filehandle.
On error, the function returns -1 and sets the global variable errno to
EBADF an invalid file handle

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 +

getpass
See also Example Portability

Syntax
#include <conio.h>
char *getpass(const char *prompt);
Description
Reads a password.
getpass reads a password from the system console after prompting with the null-terminated string
prompt and disabling the echo. A pointer is returned to a null-terminated string of up to eight characters
(not counting the null-terminator).
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
The return value is a pointer to a static string which is overwritten with each call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getpid
Example Portability

Syntax
#include <process.h>
unsigned getpid(void)
Description
Gets the process ID of a program.
This function returns the current process ID--an integer that uniquely identifies the process.

Return Value
getpid returns the current process' ID.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

gets, _getws
See also Example Portability

Syntax
#include <stdio.h>
char *gets(char *s);
wchar_t *_getws(wchar_t *s); // Unicode version
Description
Gets a string from stdin.
gets collects a string of characters terminated by a new line from the standard input stream stdin and
puts it into s. The new line is replaced by a null character (\0) in s.
gets allows input strings to contain certain whitespace characters (spaces, tabs). gets returns when it
encounters a new line; everything up to the new line is copied into s.
The gets function is not length-terminated. If the input string is sufficiently large, data can be overwritten
and corrupted. The fgets function provides better control of input strings.
Note: For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value
On success, gets returns the string argument s.
On end-of-file or error, it returns NULL

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

gettext
See also Example Portability

Syntax
#include <conio.h>
int gettext(int left, int top, int right, int bottom, void *destin);
Description
Copies text from text mode screen to memory.
gettext stores the contents of an onscreen text rectangle defined by left, top, right, and bottom into the
area of memory pointed to by destin.
All coordinates are absolute screen coordinates not window-relative. The upper left corner is (1,1).
gettext reads the contents of the rectangle into memory sequentially from left to right and top to bottom.
Each position onscreen takes 2 bytes of memory: The first byte is the character in the cell and the
second is the cell's video attribute. The space required for a rectangle w columns wide by h rows high is
defined as

bytes = (h rows) x (w columns) x 2
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
gettext returns 1 if the operation succeeds.
On error, it returns 0 (for example, if it fails because you gave coordinates outside the range of the
current screen mode).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

gettextinfo
See also Example Portability

Syntax
#include <conio.h>
void gettextinfo(struct text_info *r);
Description
Gets text mode video information.
gettextinfo fills in the text_info structure pointed to by r with the current text video information.
The text_info structure is defined in conio.h as follows:
struct text_info {
 unsigned char winleft; /* left window coordinate */
 unsigned char wintop; /* top window coordinate */
 unsigned char winright; /* right window coordinate */
 unsigned char winbottom; /* bottom window coordinate */
 unsigned char attribute; /* text attribute */
 unsigned char normattr; /* normal attribute */
 unsigned char currmode; /* BW40, BW80, C40, C80, or C4350 */
 unsigned char screenheight; /* text screen's height */
 unsigned char screenwidth; /* text screen's width */
 unsigned char curx; /* x-coordinate in current window */
 unsigned char cury; /* y-coordinate in current window */
};
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None. Results are returned in the structure pointed to by r.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

gettime, settime
See also Examples Portability

Syntax
#include <dos.h>
void gettime(struct time *timep);
void settime(struct time *timep);
Description
Gets and sets the system time.
gettime fills in the time structure pointed to by timep with the system's current time.
settime sets the system time to the values in the time structure pointed to by timep.
The time structure is defined as follows:
struct time {
 unsigned char ti_min; /* minutes */
 unsigned char ti_hour; /* hours */
 unsigned char ti_hund; /* hundredths of seconds */
 unsigned char ti_sec; /* seconds */
};
Return Value
None.

Examples
gettime
settime

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

gettime + + + +
settime + + +

_getw
See also Example Portability

Syntax
#include <stdio.h>
int _getw(FILE *stream);
Description
Gets an integer from stream.
_getw returns the next integer in the named input stream. It assumes no special alignment in the file.
_getw should not be used when the stream is opened in text mode.

Return Value
_getw returns the next integer on the input stream.
On end-of-file or error, _getw returns EOF.
Note: Because EOF is a legitimate value for _getw to return, feof or ferror should be used to detect end-

of-file or error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

gmtime
See also Example Portability

Syntax
#include <time.h>
struct tm *gmtime(const time_t *timer);
Description
Converts date and time to Greenwich mean time (GMT).
gmtime accepts the address of a value returned by time and returns a pointer to the structure of type tm
containing the time elements. gmtime converts directly to GMT.
The global long variable _timezone should be set to the difference in seconds between GMT and local
standard time (in PST _timezone is 8 x 60 x 60). The global variable _daylight should be set to nonzero
only if the standard U.S. daylight saving time conversion should be applied.
This is the tm structure declaration from the time.h header file:
struct tm {
 int tm_sec; /* Seconds */
 int tm_min; /* Minutes */
 int tm_hour; /* Hour (0 - 23) */
 int tm_mday; /* Day of month (1 - 31) */
 int tm_mon; /* Month (0 - 11) */
 int tm_year; /* Year (calendar year minus 1900) */
 int tm_wday; /* Weekday (0 - 6; Sunday is 0) */
 int tm_yday; /* Day of year (0 -365) */
 int tm_isdst; /* Nonzero if daylight saving time is in effect.
*/

};
These quantities give the time on a 24-hour clock, day of month (1 to 31), month (0 to 11), weekday
(Sunday equals 0), year - 1900, day of year (0 to 365), and a flag that is nonzero if daylight saving time
is in effect.

Return Value
gmtime returns a pointer to the structure containing the time elements. This structure is a static that is
overwritten with each call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

gotoxy
See also Example Portability

Syntax
#include <conio.h>
void gotoxy(int x, int y);
Description
Positions cursor in text window.
gotoxy moves the cursor to the given position in the current text window. If the coordinates are in any
way invalid the call to gotoxy is ignored. An example of this is a call to gotoxy(40,30) when (35,25) is the
bottom right position in the window. Neither argument to gotoxy can be zero.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Examples
gotoxygotoxy_Ex

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

heapcheck
Example Portability

Syntax
#include <alloc.h>
int heapcheck(void);
Description
Checks and verifies the heap.
heapcheck walks through the heap and examines each block, checking its pointers, size, and other
critical attributes.

Return Value
The return value is less than 0 for an error and greater than 0 for success. The return values and their
meaning are as follows:
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_HEAPOK Heap is verified

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

heapcheckfree
Example Portability

Syntax
#include <alloc.h>
int heapcheckfree(unsigned int fillvalue);
Description
Checks the free blocks on the heap for a constant value.

Return Value
The return value is less then 0 for an error and greater than 0 for success. The return values and their
meaning are as follows:
_BADVALUE A value other than the fill value was found
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_HEAPOK Heap is accurate

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

heapchecknode
Example Portability

Syntax
#include <alloc.h>
int heapchecknode(void *node);
Description
Checks and verifies a single node on the heap.
If a node has been freed and heapchecknode is called with a pointer to the freed block, heapchecknode
can return _BADNODE rather than the expected _FREEENTRY. This is because adjacent free blocks
on the heap are merged, and the block in question no longer exists.

Return Value
One of the following values:
_BADNODE Node could not be found
_FREEENTRY Node is a free block
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_USEDENTRY Node is a used block

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_heapchk
See also Example Portability

Syntax
#include <malloc.h>
int _heapchk(void);
Description
Checks and verifies the heap.
_heapchk walks through the heap and examines each block, checking its pointers, size, and other
critical attributes.

Return Value
One of the following values:
_HEAPBADNODE A corrupted heap block has been found
_HEAPEMPTY No heap exists
_HEAPOK The heap appears to be uncorrupted

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

heapfillfree
Example Portability

Syntax
#include <alloc.h>
int heapfillfree(unsigned int fillvalue);
Description
Fills the free blocks on the heap with a constant value.

Return Value
One of the following values:
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_HEAPOK Heap is accurate

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_heapmin
See also Portability

Syntax
#include <malloc.h>
int _heapmin(void);
Description
Release unused heap areas.
The _heapmin function returns unused areas of the heap to the operating system. This allows blocks
that have been allocated and then freed to be used by other processes. Due to fragmentation of the
heap, _heapmin might not always be able to return unused memory to the operating system; this is not
an error.

Return Value
_heapmin returns 0 if it is successful, or -1 if an error occurs.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_heapset
See also Example Portability

Syntax
#include <malloc.h>
int _heapset(unsigned int fillvalue);
Description
Fills the free blocks on the heap with a constant value.
_heapset checks the heap for consistency using the same methods as _heapchk. It then fills each free
block in the heap with the value contained in the least significant byte of fillvalue. This function can be
used to find heap-related problems. It does not guarantee that subsequently allocated blocks will be
filled with the specified value.

Return Value
One of the following values:
_HEAPOK The heap appears to be uncorrupted
_HEAPEMPTY No heap exists
_HEAPBADNODE A corrupted heap block has been found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

heapwalk
Example Portability

Syntax
#include <alloc.h>
int heapwalk(struct heapinfo *hi);
Description
heapwalk is used to "walk" through the heap, node by node.
heapwalk assumes the heap is correct. Use heapcheck to verify the heap before using heapwalk.
_HEAPOK is returned with the last block on the heap. _HEAPEND will be returned on the next call to
heapwalk.
heapwalk receives a pointer to a structure of type heapinfo (declared in alloc.h). For the first call to
heapwalk, set the hi.ptr field to null. heapwalk returns with hi.ptr containing the address of the first block.
hi.size holds the size of the block in bytes. hi.in_use is a flag that's set if the block is currently in use.

Return Value
One of the following values:
_HEAPEMPTY No heap exists
_HEAPEND The end of the heap has been reached
_HEAPOK The heapinfo block contains valid information about the next heap block

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

highvideo
See also Example Portability

Syntax
#include <conio.h>
void highvideo(void);
Description
Selects high-intensity characters.
highvideo selects high-intensity characters by setting the high-intensity bit of the currently selected
foreground color.
This function does not affect any characters currently onscreen, but does affect those displayed by
functions (such as cprintf) that perform direct video, text mode output after highvideo is called.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

hypot, hypotl
Example Portability

Syntax
#include <math.h>
double hypot(double x, double y);
long double hypotl(long double x, long double y);
Description
Calculates hypotenuse of a right triangle.
hypot calculates the value z where

z2 = x2 + y2 and z >= 0
This is equivalent to the length of the hypotenuse of a right triangle, if the lengths of the two sides are x
and y.
hypotl is the long double version; it takes long double arguments and returns a long double result.

Return Value
On success, these functions return z, a double (hypot) or a long double) (hypotl). On error (such as an
overflow), they set the global variable errno to
ERANGE Result out of range

and return the value HUGE_VAL (hypot) or _LHUGE_VAL) (hypotl). Error handling for these routines
can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

hypot + + + + +
hypotl + + + +

inpw
Example Portability

Syntax
#include <conio.h>
unsigned inpw(unsigned portid);
Description
Reads a word from a hardware port.
inpw is a macro that reads a 16-bit word from the inport port specified by portid. It reads the low byte of
the word from portid, and the high byte from portid + 1.
If inpw is called when conio.h has been included, it will be treated as a macro that expands to inline
code. If you don't include conio.h, or if you do include conio.h and #undef the macro inpw, you get the
inpw function.

Return Value
inpw returns the value read.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

insline
See also Example Portability

Syntax
#include <conio.h>
void insline(void);
Description
Inserts a blank line in the text window.
insline inserts an empty line in the text window at the cursor position using the current text background
color. All lines below the empty one move down one line, and the bottom line scrolls off the bottom of the
window.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

isalnum, iswalnum, _ismbcalnum
Example Portability

Syntax
#include <ctype.h>
int isalnum(int c);
int iswalnum(wint_t c);

#include <mbstring.h>
int _ismbcalnum(unsigned int c);
Description
Tests for an alphanumeric character.
isalnum is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a letter (A to Z or a to z) or a digit
(0 to 9).
You can make this macro available as a function by undefining (#undef) it.

Return Value
It is a predicate returning nonzero for true and 0 for false. isalnum returns nonzero if c is a letter or a
digit.
iswalnum returns nonzero if iswalpha or iswdigit return true for c.
_ismbcalnum returns true if and only if the argument c is a single-byte ASCII English letter.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isalpha, iswalpha, _ismbcalpha
Example Portability

Syntax
#include <ctype.h>
int isalpha(int c);
int iswalpha(wint_t c);

#include <mbstring.h>
int _ismbcalpha(unsigned int c);
Description
Classifies an alphabetical character.
isalpha is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a letter (A to Z or a to z).
You can make this macro available as a function by undefining (#undef) it.

Return Value
isalpha returns nonzero if c is a letter.
iswalpha returns nonzero if c is a wchar_t in the character set defined by the implementation.
_ismbcalpha returns true if and only if the argument c is a single-byte ASCII English letter.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isascii, iswascii
Example Portability

Syntax
#include <ctype.h>
int isascii(int c);
int iswascii(wint_t c);
Description
Character classification macro.
These functions depend on the LC_CTYPE
isascii is a macro that classifies ASCII-coded integer values by table lookup. It is a predicate returning
nonzero for true and 0 for false.
isascii is defined on all integer values.

Return Value
isascii returns nonzero if c is in the range 0 to 127 (0x00-0x7F).
iswascii returns nonzero if c is

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

isatty
Example Portability

Syntax
#include <io.h>
int isatty(int handle);
Description
Checks for device type.
isatty determines whether handle is associated with any one of the following character devices:

a terminal
a console
a printer
a serial port

Return Value
If the device is one of the four character devices listed above, isatty returns a nonzero integer. If it is not
such a device, isatty returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

iscntrl, iswcntrl
Example Portability

Syntax
#include <ctype.h>
int iscntrl(int c);
int iswcntrl(wint_t c);
Description
Tests for a control character.
iscntrl is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a delete character or control
character (0x7F or 0x00 to 0x1F).
You can make this macro available as a function by undefining (#undef) it.

Return Value
iscntrl returns nonzero if c is a delete character or ordinary control character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isdigit, iswdigit, _ismbcdigit
Example Portability

Syntax
#include <ctype.h>
int isdigit(int c);
int iswdigit(wint_t c);

#include <mbstring.h>
int _ismbcdigit(unsigned int c);
Description
Tests for decimal-digit character.
isdigit is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a digit (0 to 9).
You can make this macro available as a function by undefining (#undef) it.

Return Value
isdigit returns nonzero if c is a digit.
_ismbcdigit returns true if and only if the argument c is a single-byte representation of an ASCII digit.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isgraph, iswgraph, _ismbcgraph
Example Portability

Syntax
#include <ctype.h>
int isgraph(int c);
int iswgraph(wint_t c);

#include <mbstring.h>
int _ismbcgraph(unsigned int c);
Description
Tests for printing character.
isgraph is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a printing character except blank
space (' ').
You can make this macro available as a function by undefining (#undef) it.

Return Value
isgraph returns nonzero if c is a printing character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

islower, iswlower, _ismbclower
Example Portability

Syntax
#include <ctype.h>
int islower(int c);
int iswlower(wint_t c);

#include <mbstring.h>
int _ismbclower(unsigned int c);
Description
Tests for lowercase character.
islower is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a lowercase letter (ato z).
You can make this macro available as a function by undefining (#undef) it.

Return Value
islower returns nonzero if c is a lowercase letter.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_ismbblead, _ismbbtrail

Syntax
#include <mbstring.h>
int _ismbblead(unsigned int c);
int _ismbbtrail(unsigned int c);
Description
_ismbblead and _ismbbtrail are used to test whether the argument c is the first or the second byte of a
multibyte character.
_ismbblead and _ismbbtrail are affected by the code page in use. You can set the code page by using
the _setlocale function.

Return Value
If c is in the lead byte of a multibyte character, _ismbblead returns true.
If c is in the trail byte of a multibyte character, _ismbbtrail returns a nonzero value.

_ismbclegal

Syntax
#include <mbstring.h>
int _ismbclegal(unsigned int c);
Description
_ismbclegal tests whether each byte of the c argument is in the code page that is currently in use.

Return Value
_ismbclegal returns a nonzero value if the argument c is a valid multibyte character on the current code
page. Otherwise, the function returns zero.

_ismbslead, _ismbstrail
See also

Syntax
#include <mbstring.h>
int _ismbslead(const unsigned char *s1, const unsigned char *s2);
int _ismbstrail(const unsigned char *s1, const unsigned char *s2);
Description
The _ismbslead and _ismbstrail functions test the s1 argument to determine whether the s2 argument is
a pointer to the lead byte or the trail byte. The test is case-sensitive.

Return Value
The _ismbslead and _ismbstrail routines return -1 if s2 points to a lead byte or a trail byte, respectively.
If the test is false, the routines return zero.

isprint, iswprint, _ismbcprint
Example Portability

Syntax
#include <ctype.h>
int isprint(int c);
int iswprint(wint_t c);

#include <mbstring.h>
int _ismbcprint(unsigned int c);
Description
Tests for printing character.
isprint is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a printing character including the
blank space (' ').
You can make this macro available as a function by undefining (#undef) it.

Return Value
isprint returns nonzero if c is a printing character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ispunct, iswpunct, _ismbcpunct
Example Portability

Syntax
#include <ctype.h>
int ispunct(int c);
int iswpunct(wint_t c);

#include <mbstring.h>
int _ismbcpunct(unsigned int c);
Description
Tests for punctuation character.
ispunct is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is any printing character that is
neither an alphanumeric nor a blank space (' ').
You can make this macro available as a function by undefining (#undef) it.

Return Value
ispunct returns nonzero if c is a punctuation character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isspace, iswspace, _ismbcspace
Example Portability

Syntax
#include <ctype.h>
int isspace(int c);
int iswspace(wint_t c);

#include <mbstring.h>
int _ismbcspace(unsigned int c);
Description
Tests for space character.
isspace is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category.
You can make this macro available as a function by undefining (#undef) it.

Return Value
isspace returns nonzero if c is a space, tab, carriage return, new line, vertical tab, formfeed (0x09 to
0x0D, 0x20), or any other locale-defined space character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isupper, iswupper, _ismbcupper
Example Portability

Syntax
#include <ctype.h>
int isupper(int c);
int iswupper(wint_t c);

#include <mbstring.h>
int _ismbcupper(unsigned int c);
Description
 Tests for uppercase character.
isupper is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is an uppercase letter (A to Z).
You can make this macro available as a function by undefining (#undef) it.

Return Value
isupper returns nonzero if c is an uppercase letter.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isxdigit, iswxdigit
Example Portability

Syntax
#include <ctype.h>
int isxdigit(int c);
int iswxdigit(wint_t c);
Description
Tests for hexadecimal character.
isxdigit is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category.
You can make this macro available as a function by undefining (#undef) it.

Return Value
isxdigit returns nonzero if c is a hexadecimal digit (0 to 9, A to F, a to f) or any other hexadecimal digit
defined by the locale.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

itoa, _itow
See also Example Portability

Syntax
#include <stdlib.h>
char *itoa(int value, char *string, int radix);
wchar_t *_itow(int value, wchar_t *string, int radix);
Description
Converts an integer to a string.
itoa converts value to a null-terminated string and stores the result in string. With itoa, value is an
integer.
radix specifies the base to be used in converting value; it must be between 2 and 36, inclusive. If value
is negative and radix is 10, the first character of string is the minus sign (-).
Note: The space allocated for string must be large enough to hold the returned string, including the

terminating null character (\0). itoa can return up to 17 bytes.

Return Value
itoa returns a pointer to string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

kbhit
See also Example Portability

Syntax
#include <conio.h>
int kbhit(void);
Description
Checks for currently available keystrokes.
kbhit checks to see if a keystroke is currently available. Any available keystrokes can be retrieved with
getch or getche.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
If a keystroke is available, kbhit returns a nonzero value. Otherwise, it returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

labs
See also Example Portability

Syntax
#include <math.h>
long labs(long int x);
Description
Gives long absolute value.
labs computes the absolute value of the parameter x.

Return Value
labs returns the absolute value of x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ldexp, ldexpl
See also Example Portability

Syntax
#include <math.h>
double ldexp(double x, int exp);
long double ldexpl(long double x, int exp);
Description
Calculates

lexpl is the long double version; it takes a long double argument for x and returns a long double result.

Return Value
On success, ldexp (or ldexpl) returns the value it calculated, . Error handling for these routines
can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

ldexp + + + + + + +
ldexpl + + + +

ldiv
See also Example Portability

Syntax
#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);
Description
Divides two longs, returning quotient and remainder.
ldiv divides two longs and returns both the quotient and the remainder as an ldiv_t type. numer and
denom are the numerator and denominator, respectively.
The ldiv_t type is a structure of longs defined in stdlib.h as follows:
typedef struct {
 long int quot; /* quotient */
 long int rem; /* remainder */
 } ldiv_t;
Return Value
ldiv returns a structure whose elements are quot (the quotient) and rem (the remainder).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

lfind
See also Example Portability

Syntax
#include <stdlib.h>
void *lfind(const void *key, const void *base, size_t *num, size_t width,
int (_USERENTRY *fcmp)(const void *, const void *));

Description
Performs a linear search.
lfind makes a linear search for the value of key in an array of sequential records. It uses a user-defined
comparison routine fcmp. The fcmp function must be used with the _USERENTRY calling convention.
The array is described as having *num records that are width bytes wide, and begins at the memory
location pointed to by base.

Return Value
lfind returns the address of the first entry in the table that matches the search key. If no match is found,
lfind returns NULL. The comparison routine must return 0 if *elem1 == *elem2, and nonzero otherwise
(elem1 and elem2 are its two parameters).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

localeconv
See also Example Portability

Syntax
#include <locale.h>
struct lconv *localeconv(void);
Description
Queries the locale for numeric format.
This function provides information about the monetary and other numeric formats for the current locale.
The information is stored in a struct lconv type. The structure can only be modified by the setlocale.
Subsequent calls to localeconv will update the lconv structure.
The lconv structure is defined in locale.h. It contains the following fields:

Field Application
char *decimal_point; Decimal point used in nonmonetary formats. This can never be an

empty string.
char *thousands_sep; Separator used to group digits to the left of the decimal point. Not used

with monetary quantities.
char *grouping; Size of each group of digits. Not used with monetary quantities. See the

value listing table below.
char *int_curr_symbol; International monetary symbol in the current locale. The symbol format

is specified in the ISO 4217 Codes for the Representation of Currency
and Funds.

char *currency_symbol; Local monetary symbol for the current locale.
char *mon_decimal_point; Decimal point used to format monetary quantities.
char *mon_thousands_sep; Separator used to group digits to the left of the decimal point for

monetary quantities.
char *mon_grouping; Size of each group of digits used in monetary quantities. See the value

listing table below.
char *positive_sign; String indicating nonnegative monetary quantities.
char *negative_sign; String indicating negative monetary quantities.
char int_frac_digits; Number of digits after the decimal point that are to be displayed in an

internationally formatted monetary quantity.
char frac_digits; Number of digits after the decimal point that are to be displayed in a

formatted monetary quantity.
char p_cs_precedes; Set to 1 if currency_symbol precedes a nonnegative formatted monetary

quantity. If currency_symbol is after the quantity, it is set to 0.
char p_sep_by_space; Set to 1 if currency_symbol is to be separated from the nonnegative

formatted monetary quantity by a space. Set to 0 if there is no space
separation.

char n_cs_precedes; Set to 1 if currency_symbol precedes a negative formatted monetary
quantity. If currency_symbol is after the quantity, set to 0.

char n_sep_by_space; Set to 1 if currency_symbol is to be separated from the negative
formatted monetary quantity by a space. Set to 0 if there is no space
separation.

char p_sign_posn; Indicate where to position the positive sign in a nonnegative formatted
monetary quantity.

char n_sign_posn; Indicate where to position the positive sign in a negative formatted
monetary quantity.

Any of the above strings (except decimal_point) that is empty " " is not supported in the current locale.
The nonstring char elements are nonnegative numbers. Any nonstring char element that is set to
CHAR_MAX indicates that the element is not supported in the current locale.
The grouping and mon_grouping elements are set and interpreted as follows:

Value Meaning
CHAR_MAX No further grouping is to be performed.
0 The previous element is to be used repeatedly for the remainder of the digits.
any other integer Indicates how many digits make up the current group. The next element is read

to determine the size of the next group of digits before the current group.
The p_sign_posn and n_sign_posn elements are set and interpreted as follows:

Value Meaning
0 Use parantheses to surround the quantity and currency_symbol.
1 Sign string precedes the quantity and currency_symbol.
2 Sign string succeeds the quatity and currency_symbol.
3 Sign string immediately precedes the quantity and currency_symbol.
4 Sign string immediately succeeds the quantity and currency_symbol.

Return Value
Returns a pointer to the the filled-in structure of type struct lconv. The values in the structure will
change whenever setlocale modifies the LC_MONETARY or LC_NUMERIC categories.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

localtime
See also Example Portability

Syntax
#include <time.h>
struct tm *localtime(const time_t *timer);
Description
Converts date and time to a structure.
localtime accepts the address of a value returned by time and returns a pointer to the structure of type
tm containing the time elements. It corrects for the time zone and possible daylight saving time.
The global long variable _timezone contains the difference in seconds between GMT and local standard
time (in PST, _timezone is 8 x 60 x 60). The global variable daylight contains nonzero only if the
standard U.S. daylight saving time conversion should be applied. These values are set by tzset, not by
the user program directly.
This is the tm structure declaration from the time.h header file:
struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};
These quantities give the time on a 24-hour clock, day of month (1 to 31), month (0 to 11), weekday
(Sunday equals 0), year - 1900, day of year (0 to 365), and a flag that is nonzero if _daylight saving time
is in effect.

Return Value
localtime returns a pointer to the structure containing the time elements. This structure is a static that is
overwritten with each call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

lock
See also Example Portability

Syntax
#include <io.h>
int lock(int handle, long offset, long length);
Description
Sets file-sharing locks. DOS users must be sure to load SHARE.EXE before using lock.
lock provides an interface to the operating system file-sharing mechanism.
A lock can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to read or
write into a locked region will retry the operation three times. If all three retries fail, the call fails with an
error.

Return Value
lock returns 0 on success. On error, lock returns -1 and sets the global variable errno to
EACCES Locking violation

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

locking
See also Example Portability

Syntax
#include <io.h>
#include <sys\locking.h>
int locking(int handle, int cmd, long length);
Description
Sets or resets file-sharing locks. DOS users must be sure to load SHARE.EXE before using locking.
locking provides an interface to the operating system file-sharing mechanism. The file to be locked or
unlocked is the open file specified by handle. The region to be locked or unlocked starts at the current
file position, and is length bytes long.
Locks can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to read or
write into a locked region will retry the operation three times. If all three retries fail, the call fails with an
error.
The cmd specifies the action to be taken (the values are defined in sys\locking.h):
LK_LOCK Lock the region. If the lock is unsuccessful, try once a second for 10 seconds before

giving up.
LK_RLCK Same as LK_LOCK.
LK_NBLCK Lock the region. If the lock if unsuccessful, give up immediately.
LK_NBRLCK Same as LK_NBLCK.
LK_UNLCK Unlock the region, which must have been previously locked.

Return Value
On successful operations, locking returns 0. Otherwise, it returns -1, and the global variable errno is set
to one of the following values:
EACCES File already locked or unlocked
EBADF Bad file number
EDEADLOCK File cannot be locked after 10 retries (cmd is LK_LOCK or LK_RLCK)
EINVAL Invalid cmd, or SHARE.EXE not loaded

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

log, logl
See also Example Portability

Syntax
#include <math.h>
double log(double x);
long double logl(long double x);
Description
Calculates the natural logarithm of x.
log calculates the natural logarithm of x.
logl is the long double version; it takes a long double argument and returns a long double result.

Return Value
On success, log and logl return the value calculated, ln(x).
If the argument x passed to these functions is real and less than 0, the global variable errno is set to
EDOM Domain error

If x is 0, the functions return the value negative HUGE_VAL (log) or negative _LHUGE_VAL (logl), and
set errno to ERANGE. Error handling for these routines can be modified through the functions _matherr
and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

log + + + + + + +
logl + + + +

log10, log10l
See also Example Portability

Syntax
#include <math.h>
double log10(double x);
long double log10l(long double x);
Description
log10 calculates the base 10 logarithm of x.
log10l is the long double version; it takes a long double argument and returns a long double result.

Return Value
On success, log10 (or log10l) returns the value calculated, .
If the argument x passed to these functions is real and less than 0, the global variable errno is set to
EDOM Domain error

If x is 0, these functions return the value negative HUGE_VAL (log10) or _LHUGE_VAL (log10l). Error
handling for these routines can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

log10 + + + + + + +
log10l + + + +

longjmp
See also Example Portability

Syntax
#include <setjmp.h>
void longjmp(jmp_buf jmpb, int retval);
Description
Performs nonlocal goto.
A call to longjmp restores the task state captured by the last call to setjmp with the argument jmpb. It
then returns in such a way that setjmp appears to have returned with the value retval.
A task state includes
Win 16 Win 32

All segment registers
CS, DS, ES, SS

No segment registers are saved

Register variables Register variables
DI and SI EBX, EDI, ESI
Stack pointer SP Stack pointer ESP
Frame pointer BP Frame pointer EBP
Flags Flags are not saved

A task state is complete enough that setjmp and longjmp can be used to implement co-routines.
setjmp must be called before longjmp. The routine that called setjmp and set up jmpb must still be active
and cannot have returned before the longjmp is called. If this happens, the results are unpredictable.
longjmp cannot pass the value 0; if 0 is passed in retval, longjmp will substitute 1.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

lowvideo
See also Example Portability

Syntax
#include <conio.h>
void lowvideo(void);
Description
Selects low-intensity characters.
lowvideo selects low-intensity characters by clearing the high-intensity bit of the currently selected
foreground color.
This function does not affect any characters currently onscreen. It affects only those characters
displayed by functions that perform text mode, direct console output after this function is called.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_lrotl, _lrotr
See also Example Portability

Syntax
#include <stdlib.h>
unsigned long _lrotl(unsigned long val, int count);
unsigned long _lrotr(unsigned long val, int count);
Description
Rotates an unsigned long integer value to the left or right.
_Irotlrotates the given val to the left count bits. _lrotr rotates the given val to the right count bits.

Return Value

The functions return the rotated integer:
_lrotl returns the value of val left-rotated count bits.
_lrotr returns the value of val right-rotated count bits.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

lsearch
See also Example Portability

Syntax
#include <stdlib.h>
void *lsearch(const void *key, void *base, size_t *num, size_t width, int
(_USERENTRY *fcmp)(const void *, const void *));

Description
 Performs a linear search.
lsearch searches a table for information. Because this is a linear search, the table entries do not need to
be sorted before a call to lsearch. If the item that key points to is not in the table, lsearch appends that
item to the table.

base points to the base (0th element) of the search table.
num points to an integer containing the number of entries in the table.
width contains the number of bytes in each entry.
key points to the item to be searched for (the search key).

The function fcmp must be used with the _USERENTRY calling convention.
The argument fcmp points to a user-written comparison routine, that compares two items and returns a
value based on the comparison.
To search the table, lsearch makes repeated calls to the routine whose address is passed in fcmp.
On each call to the comparison routine, lsearch passes two arguments:

key a pointer to the item being searched for
elem pointer to the element of base being compared.

fcmp is free to interpret the search key and the table entries in any way.

Return Value
lsearch returns the address of the first entry in the table that matches the search key.
If the search key is not identical to *elem, fcmp returns a nonzero integer. If the search key is identical to
*elem, fcmp returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

lseek
See also Example Portability

Syntax
#include <io.h>
long lseek(int handle, long offset, int fromwhere);
Description
Moves file pointer.
lseek sets the file pointer associated with handle to a new position offset bytes beyond the file location
given by fromwhere. fromwhere must be one of the following symbolic constants (defined in io.h):

fromwhere File location
SEEK_CUR Current file pointer position
SEEK_END End-of-file
SEEK_SET File beginning

Return Value
lseek returns the offset of the pointer's new position measured in bytes from the file beginning. lseek
returns -1L on error, and the global variable errno is set to one of the following values:
EBADF Bad file handle
EINVAL Invalid argument
ESPIPE Illegal seek on device

On devices incapable of seeking (such as terminals and printers), the return value is undefined.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_ltoa, _ltow, _i64toa, _ui64toa, _i64tow, _ui64tow
See also Example Portability

Syntax
#include <stdlib.h>
char *_ltoa(long value, char *string, int radix);
char *_i64toa(__int64 value, char *strP, int radix);
char *_ui64toa(unsigned __int64 value, char *strP, int radix);

// The following are Unicode versions
wchar_t *_ltow(long value, wchar_t *string, int radix);
wchar_t *_i64tow(__int64 value, wchar_t *strP, int radix);
wchar_t *_ui64tow(unsigned __int64 value, wchar_t *strP, int radix);
Description
Converts a long to a string.
_ltoa converts value to a null-terminated string and stores the result in string. value is a long integer.
radix specifies the base to be used in converting value; it must be between 2 and 36, inclusive. If value
is negative and radix is 10, the first character of string is the minus sign (-).
Note: The space allocated for string must be large enough to hold the returned string, including the

terminating null character (\0). _ltoa can return up to 33 bytes.

Return Value
_ltoa returns a pointer to string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_makepath, _wmakepath
See also Example Portability

Syntax
#include <stdlib.h>
void _makepath(char *path, const char *drive, const char *dir, const char
*name, const char *ext);

void _wmakepath(wchar_t *path, const wchar_t *drive, const wchar_t *dir,
const wchar_t *name, const wchar_t *ext);

Description
Builds a path from component parts.
_makepath makes a path name from its components. The new path name is
 X:\DIR\SUBDIR\NAME.EXT
where
drive = X:
dir = \DIR\SUBDIR\
name = NAME
ext = .EXT

If drive is empty or NULL, no drive is inserted in the path name. If it is missing a trailing colon (:), a colon
is inserted in the path name.
If dir is empty or NULL, no directory is inserted in the path name. If it is missing a trailing slash (\ or /), a
backslash is inserted in the path name.
If name is empty or NULL, no file name is inserted in the path name.
If ext is empty or NULL, no extension is inserted in the path name. If it is missing a leading period (.), a
period is inserted in the path name.
_makepath assumes there is enough space in path for the constructed path name. The maximum
constructed length is _MAX_PATH. _MAX_PATH is defined in stdlib.h.
_makepath and _splitpath are invertible; if you split a given path with _splitpath, then merge the
resultant components with _makepath, you end up with path.

Return Value
None

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

malloc
See also Example Portability

Syntax
#include <stdlib.h> or #include<alloc.h>
void *malloc(size_t size);
Description
malloc allocates a block of size bytes from the memory heap. It allows a program to allocate memory
explicitly as it's needed, and in the exact amounts needed.
Allocates main memory.The heap is used for dynamic allocation of variable-sized blocks of memory.
Many data structures, for example, trees and lists, naturally employ heap memory allocation.
For 16-bit programs, all the space between the end of the data segment and the top of the program
stack is available for use in the small data models, except for a small margin immediately before the top
of the stack. This margin is intended to allow the application some room to make the stack larger, in
addition to a small amount needed by DOS.
In the large data models, all the space beyond the program stack to the end of available memory is
available for the heap.

Return Value
On success, malloc returns a pointer to the newly allocated block of memory. If not enough space exists
for the new block, it returns NULL. The contents of the block are left unchanged. If the argument size ==
0, malloc returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_matherr, _matherrl
Example Portability

Syntax
#include <math.h>
int _matherr(struct _exception *e);
int _matherrl(struct _exceptionl *e);
Description
User-modifiable math error handler.
_matherr is called when an error is generated by the math library.
_matherrl is the long double version; it is called when an error is generated by the long double math
functions.
_matherr and _matherrl each serve as a user hook (a function that can be customized by the user) that
you can replace by writing your own math error-handling routine.
_matherr and _matherrl are useful for information on trapping domain and range errors caused by the
math functions. They do not trap floating-point exceptions, such as division by zero. See signal for
information on trapping such errors.
You can define your own _matherr or _matherrl routine to be a custom error handler (such as one that
catches and resolves certain types of errors); this customized function overrides the default version in
the C library. The customized _matherr or _matherrl should return 0 if it fails to resolve the error, or
nonzero if the error is resolved. When _matherr or _matherrl return nonzero, no error message is printed
and the global variable errno is not changed.
Here are the _exception and _exceptionl structures (defined in math.h):
struct _exception {
 int type;
 char *name;
 double arg1, arg2, retval;
};

struct _exceptionl {
 int type;
 char *name;
 long double arg1, arg2, retval;
};
The members of the _exception and _exceptionl structures are shown in the following table:

Member What It Is (Or Represents)
type The type of mathematical error that occurred; an enum type defined in the typedef

_mexcep (see definition after this list).
name A pointer to a null-terminated string holding the name of the math library function that

resulted in an error.
arg1, arg2 The arguments (passed to the function that name points to) caused the error; if only one

argument was passed to the function, it is stored in arg1.
retval The default return value for _matherr (or _matherrl); you can modify this value.

The typedef _mexcep, also defined in math.h, enumerates the following symbolic constants
representing possible mathematical errors:

Symbolic Constant Mathematical Error
DOMAIN Argument was not in domain of function, such as log(-1).
SING Argument would result in a singularity, such as pow(0, -2).

OVERFLOW Argument would produce a function result greater than DBL_MAX (or
LDBL_MAX), such as exp(1000).

UNDERFLOW Argument would produce a function result less than DBL_MIN (or
LDBL_MIN), such as exp(-1000).

TLOSS Argument would produce function result with total loss of significant digits,
such as sin(10e70).

The macros DBL_MAX, DBL_MIN, LDBL_MAX, and LDBL_MIN are defined in float.h
The source code to the default _matherr and _matherrl is on the C++Builder distribution disks.
The UNIX-style _matherr and _matherrl default behavior (printing a message and terminating) is not
ANSI compatible. If you want a UNIX-style version of these routines, use MATHERR.C and
MATHERRL.C provided on the C++Builder distribution disks.

Disabling floating-point exceptions
By default, programs abort if a floating-point overflow or divide-by-zero error occurs. You can mask
these floating-point exceptions by a call to _control87 in main, before any floating-point operations are
performed.

Example
#include <float.h>
main() {
 _control87(MCW_EM,MCW_EM);
 .
 .
 .
}
You can determine whether a floating-point exception occurred after the fact by calling _status87 or
_clear87.
Certain math errors can also occur in library functions; for instance, if you try to take the square root of a
negative number. The default behavior is to print an error message to the screen, and to return a NAN
(an IEEE not-a-number). Use of the NAN is likely to cause a floating-point exception later, which will
abort the program if unmasked. If you don’t want the message to be printed, insert the following version
of _matherr into your program:
#include <math.h>
int _matherr(struct _exception *e)
{
 return 1; /* error has been handled */
}
Any other use of _matherr to intercept math errors is not encouraged; it is considered obsolete and
might not be supported in future versions of C++Builder.

Return Value
The default return value for _matherr and _matherrl is 1 if the error is UNDERFLOW or TLOSS, 0
otherwise. _matherr and _matherrl can also modify e -> retval, which propagates back to the original
caller.
When _matherr and _matherrl return 0 (indicating that they were not able to resolve the error), the
global variable errno is set to 0 and an error message is printed.
When _matherr and _matherrl return nonzero (indicating that they were able to resolve the error), the
global variable errno is not set and no messages are printed.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

max
See also Example Portability

Syntax
#include <stdlib.h> /* macro version */
(type) max(a, b);
template <class T> T max(T t1, T t2); // C++ only
Description
Returns the larger of two values.
The C macro and the C++ template function compare two values and return the larger of the two. Both
arguments and the routine declaration must be of the same type.

Return Value
max returns the larger of two values.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_mbbtype
See also

Syntax
#include <mbstring.h>
int _mbbtype(unsigned char ch, int mode);
Description
The _mbbtype function inspects the multibyte argument, character ch, to determine whether it is a
single-byte character, or whether ch is the leadbyte or trailing byte in a multibyte character. The
_mbbtype function can determine whether ch is an invalid character.

Return Value
The value that _mbbtype returns is one of the following manifest constants, defined in mbctype.h. The
return value depends on the value of ch and the test which you want performed on ch.
Value of mode Value of ch Test performed Return value
 mode != 1 Single byte Valid single or lead byte _MBC_SINGLE
 mode != 1 Leadbyte Valid single or lead byte _MBC_LEAD
 mode = 1 Trailbyte Valid single or trail byte _MBC_TRAIL
Any value Any value Valid character _MBC_ILLEGAL

_mbccmp

_mbccpy

Syntax
#include <mbstring.h>
void _mbccpy(unsigned char *dest, unsigned char *src);
Description
The _mbccpy function copies a multibyte character from src to dest. The _mbccpy function makes an
implicit call to _ismbblead so that the src pointer references a lead byte. If src doesn’t reference a lead
byte, no copy is performed.

Return Value
None.

mblen
See also Example Portability

Syntax
#include <stdlib.h>
int mblen(const char *s, size_t n);
Description
Determines the length of a multibyte character.
If s is not null, mblen determines the number of bytes in the multibyte character pointed to by s. The
maximum number of bytes examined is specified by n.
The behavior of mblen is affected by the setting of LC_CTYPE category of the current locale.

Return Value
If s is null, mblen returns a nonzero value if multibyte characters have state-dependent encodings.
Otherwise, mblen returns 0.
If s is not null, mblen returns 0 if s points to the null character, and -1 if the next n bytes do not comprise
a valid multibyte character; the number of bytes that comprise a valid multibyte character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

_mbsbtype
See also

Syntax
#include <mbstring.h>
int _mbsbtype(const unsigned char *str, size_t nbyte);
Description
The nbyte argument specifies the number of bytes from the start of the zero-based string.
The _mbsbtype function inspects the argument str to determine whether the byte at the position
specified by nbyte is a single-byte character, or whether it is the leadbyte or trailing byte in a multibyte
character. The _mbsbtype function can determine whether the byte pointed at is an invalid character or
a NULL byte.
Any invalid bytes in str before nbyte are ignored.

Return Value
The value that _mbsbtype returns is one of the following manifest constants, defined in mbctype.h.
Type of byte found Return value

Single byte _MBC_SINGLE
Leadbyte _MBC_LEAD
Trailbyte _MBC_TRAIL
Invalid character or byte _MBC_ILLEGAL

_mbsnbcmp
See also

Syntax
#include <mbstring.h>
int _mbsnbcmp(const unsigned char *s1, const unsigned char s2, size_t
maxlen);

Description
_mbsnbcmp makes an case-sensitive comparison of s1 and s2 for no more than maxlen bytes. It starts
with the first byte in each string and continues with subsequent bytes until the corresponding bytes differ
or until it has examined maxlen bytes.
_mbsnbcmp is case sensitive.
_mbsnbcmp is not affected by locale.
_mbsnbcmp compares bytes based on the current multibyte code page.

Return Value
_mbsnbcmp returns an integer value based on the result of comparing s1 (or part of it) to s2 (or part of

it):
< 0 if s1 is less than s2
== 0 if s1 is the same as s2
> 0 if s1 is greater than s2

_mbsnbcoll, _mbsnbicoll
See also

Syntax
#include <mbstring.h>
int _mbsnbcoll(const unsigned char *s1, const unsigned char *s2, maxlen);
int _mbsnbicoll(const unsigned char *s1, const unsigned char *s2, maxlen);
Description
_mbsnbicoll is the case-insensitive version of _mbsnbcoll.
These functions collate the strings specified by arguments s1 and s2. The collation order is determined
by lexicographic order as specified by the current multibyte code page. At most, maxlen number of bytes
are collated.
Note: The lexicographic order is not always the same as the order of characters in the character set.
If the last byte in s1 or s2 is a leadbyte, it is not compared.

Return Value
Each of these functions return an integer value based on the result of comparing s1 (or part of it) to s2

(or part of it):
< 0 if s1 is less than s2
== 0 if s1 is the same as s2
> 0 if s1 is greater than s2

On error, each of these functions returns _NLSCMPERROR.

_mbsnbcpy
See also

Syntax
#include <mbstring.h>
unsigned char *_mbsnbcpy(unsigned char *dest, unsigned char *src, size_t
maxlen);

Description
The _mbsnbcpy function copies at most maxlen number of characters from the src buffer to the dest
buffer. The dest buffer is null terminated after the copy.
It is the user’s responsibility to be sure that dest is large enough to allow the copy. An improper buffer
size can result in memory corruption.

Return Value
The functon returns dest.

_mbsnbicmp
See also

Syntax
#include <mbstring.h>
int _mbsnbicmp(const unsigned char *s1, const unsigned char s2, size_t
maxlen);

Description
_mbsnbicmp ignores case while making a comparison of s1 and s2 for no more than maxlen bytes. It
starts with the first byte in each string and continues with subsequent bytes until the corresponding
bytes differ or until it has examined maxlen bytes.
_mbsnbicmp is not case sensitive.
_mbsnbicmp is not affected by locale.
_mbsnbicmp compares bytes based on the current multibyte code page.

Return Value
_mbsnbicmp returns an integer value based on the result of comparing s1 (or part of it) to s2 (or part of

it):
< 0 if s1 is less than s2
== 0 if s1 is the same as s2
> 0 if s1 is greater than s2

_mbsnbset
See also

Syntax
#include <mbstring.h>
unsigned char *_mbsnbset(unsigned char str, unsigned int ch, size_t maxlen);
Description
_mbsnbset sets at most maxlen number of bytes in the string str to the character ch. The argument ch
can be a single or multibyte character.
The function quits if the terminating null character is found before maxlen is reached. If ch is a multibyte
character that cannot be accomodated at the end of str, the last character in str is set to a blank
character.

Return Value
strset returns str.

_mbsninc, _strninc, _wcsninc
See also

Syntax
#include <mbstring.h>
unsigned char *_mbsninc(const unsigned char *str, size_t num);
Description
These functions should be accessed throught the portable macro, _tcsninc, defined in tchar.h.
The functions increment the character array str by num number of characters.

Return value
The functions return a pointer to the resized character string specified by the argument str.

_mbsnbcnt, _mbsnccnt, _strncnt, _wcsncnt
See also

Syntax
#include <mbstring.h>
size_t _mbsnbcnt(const unsigned char * str, size_t nmbc);
size_t _mbsnccnt(const unsigned char * str, size_t nbyte);
Description
If _MBCS is defined:

· _mbsnbcnt is mapped to the portable macro _tcsnbcnt
· _mbsnccnt is mapped to the portable macro _tcsnccnt
If _UNICODE is defined:

· both _mbsnbcnt and _mbsnccnt are mapped to the _wcsncnt macro
If neither _MBCS nor _UNICODE are defined.

· _tcsnbcnt and _tcsnccnt are mapped to the _strncnt macro
_strncnt is the single-byte version of these functions.
_wcsncnt is the wide-character version of these functions.
_strncnt and _wcsncnt are available only for generic-text mappings. They should not be used directly.
_mbsnbcnt examines the first nmbc multibyte characters of the str argument. The function returns the
number of bytes found in the those characters.
_mbsnccnt examines the first nmbc bytes of the str argument. The function returns the number of
characters found in those bytes. If NULL is encountered in the second byte of a multibyte character, the
whole character is considered NULL and will not be included in the return value.
Each of the functions ends its examination of the str argument if NULL is reached before the specified
number of characters or bytes is examined.
If str has fewer than the specified number of characters or bytes, the function return the number of
characters or bytes found in str.

Return Value
_mbsnbcnt returns the number of bytes found.
_mbsnccnt returns the number of characters found.
If nmbc or nbyte are less than zero, the functions return 0.

_mbsspnp, _strspnp, _wcsspnp
See also Example

Syntax
#include <mbstring.h>
unsigned char *_mbsspnp(const unsigned char *s1, const unsigned char *s2);
Description
Use the portable macro, _tcsspnp, defined in tchar.h, to access these functions.
Each of these functions search for the first character in s1 that is not contained in s2.

Return Value
The functions return a pointer to the first character in s1 that is not found in the character set for s2.
If every character from s1 is found in s2, each of the functions return NULL.

mbstowcs
See also Example Portability

Syntax
#include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);
Description
Converts a multibyte string to a wchar_t array.
The function converts the multibyte string s into the array pointed to by pwcs. No more than n values are
stored in the array. If an invalid multibyte sequence is encountered, mbstowcs returns (size_t) -1.
The pwcs array will not be terminated with a zero value if mbstowcs returns n.

Return Value
If an invalid multibyte sequence is encountered, mbstowcs returns (size_t) -1. Otherwise, the function
returns the number of array elements modified, not including the terminating code, if any.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

mbtowc
See also Example Portability

Syntax
#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);
Description
Converts a multibyte character to wchar_t code.
If s is not null, mbtowc determines the number of bytes that comprise the multibyte character pointed to
by s. Next, mbtowc determines the value of the type wchar_t that corresponds to that multibyte
character. If there is a successful match between wchar_t and the multibyte character, and pwc is not
null, the wchar_t value is stored in the array pointed to by pwc. At most n characters are examined.

Return Value
When s points to an invalid multibyte character, -1 is returned. When s points to the null character, 0 is
returned. Otherwise, mbtowc returns the number of bytes that comprise the converted multibyte
character.
The return value never exceeds MB_CUR_MAX or the value of n.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

memccpy
See also Example Portability

Syntax
#include <mem.h>
void *memccpy(void *dest, const void *src, int c, size_t n);
Description
Copies a block of n bytes.
memccpy is available on UNIX System V systems.
memccpy copies a block of n bytes from src to dest. The copying stops as soon as either of the
following occurs:

The character c is first copied into dest.
n bytes have been copied into dest.

Return Value
memccpy returns a pointer to the byte in dest immediately following c, if c was copied; otherwise,
memccpy returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memccpy + + + + +

_fmemccpy + +

memchr, _wmemchr
Example Portability

Syntax
#include <mem.h>
void *memchr(const void *s, int c, size_t n); /* C
only */

const void *memchr(const void *s, int c, size_t n); // C++
only

void *memchr(void *s, int c, size_t n); // C++
only

void *memchr(const void *s, int c, size_t n);
void * _wmemchr(void *s, int c, size_t n);
Description
Searches n bytes for character c.
memchr is available on UNIX System V systems.
memchr searches the first n bytes of the block pointed to by s for character c.

Return Value
On success, memchr returns a pointer to the first occurrence of c in s; otherwise, it returns NULL.
Note: If you are using the intrinsic version of these functions, the case of n = 0 will return NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memchr + + + + + + +

_fmemchr + +

memcmp
See also Example Portability

Syntax
#include <mem.h>
int memcmp(const void *s1, const void *s2, size_t n);
Description
Compares two blocks for a length of exactly n bytes.
memcmp is available on UNIX System V systems.
memcmp compares the first n bytes of the blocks s1 and s2 as unsigned chars.

Return Value
Because it compares bytes as unsigned chars, memcmp returns a value that is

< 0 if s1 is less than s2
= 0 if s1 is the same as s2
> 0 if s1 is greater than s2

For example,
 memcmp("\xFF", "\x7F", 1)
returns a value greater than 0.
Note: If you are using the intrinsic version of these functions, the case of n = 0 will return NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memcmp + + + + + + +

_fmemcmp + +

memcpy, _wmemcpy
See also Example Portability

Syntax
#include <mem.h>
void *memcpy(void *dest, const void *src, size_t n);
void *_wmemcpy(void *dest, const void *src, size_t n);
Description
Copies a block of n bytes.
memcpy is available on UNIX System V systems.
memcpy copies a block of n bytes from src to dest. If src and dest overlap, the behavior of memcpy is
undefined.

Return Value
memcpy returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memcpy + + + + + + +

_fmemcpy + +

memicmp
See also Example Portability

Syntax
#include <mem.h>
int memicmp(const void *s1, const void *s2, size_t n);
Description
Compares n bytes of two character arrays, ignoring case.
memicmp is available on UNIX System V systems.
memicmp compares the first n bytes of the blocks s1 and s2, ignoring character case (upper or lower).

Return Value
memicmp returns a value that is

< 0 if s1 is less than s2
= 0 if s1 is the same as s2
> 0 if s1 is greater than s2

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memicmp + + + + +

_fmemicmp + +

memmove
See also Example Portability

Syntax
#include <mem.h>
void *memmove(void *dest, const void *src, size_t n);
Description
Copies a block of n bytes.
memmove copies a block of n bytes from src to dest. Even when the source and destination blocks
overlap, bytes in the overlapping locations are copied correctly.

Return Value
memmove returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memmove + + + + + + +

+ +

memset, _wmemset
See also Example Portability

Syntax
#include <mem.h>
void *memset(void *s, int c, size_t n);
void *_wmemset(void *s, int c, size_t n);
Description
Sets n bytes of a block of memory to byte c.
memset sets the first n bytes of the array s to the character c.

Return Value
memset returns s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memset + + + + + + +

_fmemset + +

min
See also Example Portability

Syntax
#include <stdlib.h> /* macro version */
(type) min(a, b);
template <class T> T min(T t1, T t2); // C++ only
Description
Returns the smaller of two values.
The C macro and the C++ template function compare two values and return the smaller of the two. Both
arguments and the routine declaration must be of the same type.

Return Value
min returns the smaller of two values.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

mkdir, _wmkdir
See also Example Portability

Syntax
#include <dir.h>
int mkdir(const char *path);
int _wmkdir(const wchar_t *path);
Description
Creates a directory.
mkdir is available on UNIX, though it then takes an additional parameter.
mkdir creates a new directory from the given path name path.

Return Value
mkdir returns the value 0 if the new directory was created.
A return value of -1 indicates an error, and the global variable errno is set to one of the following values:
EACCES Permission denied
ENOENT No such file or directory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_mktemp, _wmktemp
Example Portability

Syntax
#include <dir.h>
char *_mktemp(char *template);
wchar_t *_wmktemp(wchar_t *template);
Description
Makes a unique file name.
_mktemp replaces the string pointed to by template with a unique file name and returns template.
template should be a null-terminated string with six trailing Xs. These Xs are replaced with a unique
collection of letters plus a period, so that there are two letters, a period, and three suffix letters in the
new file name.
Starting with AA.AAA, the new file name is assigned by looking up the name on the disk and avoiding
pre-existing names of the same format.

Return Value
If a unique name can be created and template is well-formed, _mktemp returns the address of the
template string. Otherwise, it returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

mktime
See also Example Portability

Syntax
#include <time.h>
time_t mktime(struct tm *t);
Description
Converts time to calendar format.
Converts the time in the structure pointed to by t into a calendar time with the same format used by the
time function. The original values of the fields tm_sec, tm_min, tm_hour, tm_mday, and tm_mon are not
restricted to the ranges described in the tm structure. If the fields are not in their proper ranges, they are
adjusted. Values for fields tm_wday and tm_yday are computed after the other fields have been
adjusted.
The allowable range of calendar times is Jan 1 1970 00:00:00 to Jan 19 2038 03:14:07.

Return Value
On success, mktime returns calendar time as described above.
On error (if the calendar time cannot be represented), mktime returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

modf, modfl
See also Example Portability

Syntax
#include <math.h>
double modf(double x, double *ipart);
long double modfl(long double x, long double *ipart);
Description
Splits a double or long double into integer and fractional parts.
modf breaks the double x into two parts: the integer and the fraction. modf stores the integer in ipart
and returns the fraction.
modfl is the long double version; it takes long double arguments and returns a long double result.

Return Value
modf and modfl return the fractional part of x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

modf + + + + + + +
modfl + + + +

movetext
See also Example Portability

Syntax
#include <conio.h>
int movetext(int left, int top, int right, int bottom, int destleft, int
desttop);

Description
Copies text onscreen from one rectangle to another.
movetext copies the contents of the onscreen rectangle defined by left, top, right, and bottom to a new
rectangle of the same dimensions. The new rectangle's upper left corner is position (destleft, desttop).
All coordinates are absolute screen coordinates. Rectangles that overlap are moved correctly.
movetext is a text mode function performing direct video output.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
On success, movetext returns nonzero.
On error (for example, if it failed because you gave coordinates outside the range of the current screen
mode), movetext returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_msize
See also Example Portability

Syntax
#include <malloc.h>
size_t _msize(void *block);
Description
Returns the size of a heap block.
_msize returns the size of the allocated heap block whose address is block. The block must have been
allocated with malloc, calloc, or realloc. The returned size can be larger than the number of bytes
originally requested when the block was allocated.

Return Value
_msize returns the size of the block in bytes.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

normvideo
See also Example Portability

Syntax
#include <conio.h>
void normvideo(void);
Description
Selects normal-intensity characters.
normvideo selects normal characters by returning the text attribute (foreground and background) to the
value it had when the program started.
This function does not affect any characters currently on the screen, only those displayed by functions
(such as cprintf) performing direct console output functions after normvideo is called.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

offsetof
Example Portability

Syntax
#include <stddef.h>
size_t offsetof(struct_type, struct_member);
Description
Gets the byte offset to a structure member.
offsetof is available only as a macro. The argument struct_type is a struct type. struct_member is any
element of the struct that can be accessed through the member selection operators or pointers.
If struct_member is a bit field, the result is undefined.
See also Chapter 2 in the Programmer's Guide for a discussion of the sizeof operator, memory
allocation, and alignment of structures.

Return Value
offsetof returns the number of bytes from the start of the structure to the start of the named structure
member.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

open, _wopen
See also Example Portability

Syntax
#include <fcntl.h>
#include<io.h>
int open(const char *path, int access [, unsigned mode]);
int _wopen(const wchar_t *path, int access [, unsigned mode]);
Description
Opens a file for reading or writing.
open opens the file specified by path, then prepares it for reading and/or writing as determined by the
value of access.
To create a file in a particular mode, you can either assign to the global variable _fmode or call open
with the O_CREAT and O_TRUNC options ORed with the translation mode desired.
For example, the call
 open("XMP",O_CREAT|O_TRUNC|O_BINARY,S_IREAD)
creates a binary-mode, read-only file named XMP, truncating its length to 0 bytes if it already existed.
For open, access is constructed by bitwise ORing flags from the following lists. Only one flag from the
first list can be used (and one must be used); the remaining flags can be used in any logical
combination.
These symbolic constants are defined in fcntl.h.
Read/Write Flags
O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Other Access Flags
O_NDELAY Not used; for UNIX compatibility.
O_APPEND If set, the file pointer will be set to the end of the file prior to each write.
O_CREAT If the file exists, this flag has no effect. If the file does not exist, the file is

created, and the bits of mode are used to set the file attribute bits as in chmod.
O_TRUNC If the file exists, its length is truncated to 0. The file attributes remain

unchanged.
O_EXCL Used only with O_CREAT. If the file already exists, an error is returned.
O_BINARY Can be given to explicitly open the file in binary mode.
O_TEXT Can be given to explicitly open the file in text mode.

If neither O_BINARY nor O_TEXT is given, the file is opened in the translation mode set by the global
variable _fmode.
If the O_CREAT flag is used in constructing access, you need to supply the mode argument to open
from the following symbolic constants defined in sys\stat.h.

Value Of Mode Access Permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD|S_IWRITE Permission to read and write

Return Value
On success, open returns a nonnegative integer (the file handle). The file pointer, which marks the

current position in the file, is set to the beginning of the file.
On error, open returns -1 and the global variable errno is set to one of the following values:
EACCES Permission denied
EINVACC Invalid access code
EMFILE Too many open files
ENOENT No such file or directory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

opendir, wopendir
See also Example Portability

Syntax
#include <dirent.h>
DIR *opendir(char *dirname);
wDIR *wopendir(const wchar_t *dirname);
Description
Opens a directory stream for reading.
opendir is available on POSIX-compliant UNIX systems.
The opendir function opens a directory stream for reading. The name of the directory to read is dirname.
The stream is set to read the first entry in the directory.
A directory stream is represented by the DIR structure, defined in dirent.h. This structure contains no
user-accessible fields. Multiple directory streams can be opened and read simultaneously. Directory
entries can be created or deleted while a directory stream is being read.
Use the readdir function to read successive entries from a directory stream. Use the closedir function to
remove a directory stream when it is no longer needed.

Return Value
On success, opendir returns a pointer to a directory stream that can be used in calls to readdir,
rewinddir, and closedir.
On errror (If the directory cannot be opened), it returns NULL and sets the global variable errno to
ENOENT The directory does not exist
ENOMEM Not enough memory to allocate a DIR object

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_open_osfhandle
See also Example Portability

Syntax
#include <io.h>
int _open_osfhandle(long osfhandle, int flags);
Description
Associates file handles.
The _open_osfhandle function allocates a run-time file handle and sets it to point to the operating
system file handle specified by osfhandle.
The value flags is a bitwise OR combination of one or more of the following manifest constants (defined
in fcntl.h):
O_APPEND Repositions the file pointer to the end of the file before every write operation.
O_RDONLY Opens the file for reading only.
O_TEXT Opens the file in text (translated) mode.

Return Value
On success, _open_osfhandle returns a C run-time file handle. Otherwise, it returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 +

_pclose
See also Example Portability

Syntax
#include <stdio.h>
int _pclose(FILE * stream);
Description
Waits for piped command to complete.
_pclose closes a pipe stream created by a previous call to _popen, and then waits for the associated
child command to complete.

Return Value
On success, _pclose returns the termination status of the child command. This is the same value as the
termination status returned by cwait, except that the high and low order bytes of the low word are
swapped.
On error, it returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

perror, _wperror
See also Example Portability

Syntax
#include <stdio.h>
void perror(const char *s);
void _wperror(const wchar_t *s);
Description
Prints a system error message.
perror prints to the stderr stream (normally the console) the system error message for the last library
routine that set the global variable errno.
It prints the argument s followed by a colon (:) and the message corresponding to the current value of
the global variable errno and finally a new line. The convention is to pass the file name of the program
as the argument string.
The array of error message strings is accessed through the global variable _sys_errlist. The global
variable errno can be used as an index into the array to find the string corresponding to the error
number. None of the strings include a newline character.
The global variable _sys_nerr contains the number of entries in the array.
The following messages are generated by perror:

Win 16 and Win 32 messages
Arg list too big
Attempted to remove current directory
Bad address
Bad file number
Block device required
Broken pipe
Cross-device link
Error 0
Exec format error
Executable file in use
File already exists
File too large
Illegal seek
Inappropriate I/O control operation
Input/output error
Interrupted function call
Invalid access code
Invalid argument Resource busy
Invalid dataResource temporarily unavailable
Invalid environment
Invalid format
Invalid function number
Invalid memory block address
Is a directory
Math argument
Memory arena trashed

Name too long
No child processes
No more files
No space left on device
No such device
No such device or address
No such file or directory
No such process
Not a directory
Not enough memory
Not same device
Operation not permitted
Path not found
Permission denied
Possible deadlock
Read-only file system
Resource busy
Resource temporarily unavailable
Result too large
Too many links
Too many open files

Win 32 only messages
Note: For Win32s or Win32 GUI applications, stderr must be redirected.
Bad address
Block device required
Broken pipe
Executable file in use
File too large
Illegal seek
Inappropriate I/O control
Input/output error
Interrupted function call
Is a directory
Name too long
No child processes
No space left on device
No such device or address
No such process
Not a directory
Operation not permitted
Possible deadlock
Read-only file system
Resource busy
Resource temporarily unavailable
Too many links

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

_pipe
See also Example Portability

Syntax
#include <fcntl.h>
#include<io.h>
int _pipe(int *handles, unsigned int size, int mode);
Description
Creates a read/write pipe.
The _pipe function creates an anonymous pipe that can be used to pass information between
processes. The pipe is opened for both reading and writing. Like a disk file, a pipe can be read from and
written to, but it does not have a name or permanent storage associated with it; data written to and from
the pipe exist only in a memory buffer managed by the operating system.
The read handle is returned to handles[0], and the write handle is returned to handles[1]. The program
can use these handles in subsequent calls to read, write, dup, dup2, or close. When all pipe handles are
closed, the pipe is destroyed.
The size of the internal pipe buffer is size. A recommended minimum value is 512 bytes.
The translation mode is specified by mode, as follows:
O_BINARY The pipe is opened in binary mode
O_TEXT The pipe is opened in text mode

If mode is zero, the translation mode is determined by the external variable _fmode.

Return Value
On success, _pipe returns 0 and returns the pipe handles to handles[0] and handles[1].
On error, it returns -1 and sets errno to one of the following values:
EMFILE Too many open files
ENOMEM Out of memory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

poly, polyl
Example Portability

Syntax
#include <math.h>
double poly(double x, int degree, double coeffs[]);
long double polyl(long double x, int degree, long double coeffs[]);
Description
Generates a polynomial from arguments.
poly generates a polynomial in x, of degree degree, with coefficients coeffs[0], coeffs[1], ...,
coeffs[degree]. For example, if n = 4, the generated polynomial is:

polyl is the long double version; it takes long double arguments and returns a long double result.

Return Value
poly and polyl return the value of the polynomial as evaluated for the given x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

poly + + + + +
polyl + + + +

_popen, _wpopen
See also Example Portability

Syntax
#include <stdio.h>
FILE *_popen (const char *command, const char *mode);
FILE *_wpopen (const wchar_t *command, const wchar_t *mode);
Description
Creates a command processor pipe.
The _popen function creates a pipe to the command processor. The command processor is executed
asynchronously, and is passed the command line in command. The mode string specifies whether the
pipe is connected to the command processor's standard input or output, and whether the pipe is to be
opened in binary or text mode.
The mode string can take one of the following values:

Value Description
rt Read child command's standard output (text).
rb Read child command's standard output (binary).
wt Write to child command's standard input (text).
wb Write to child command's standard input (binary).

The terminating t or b is optional; if missing, the translation mode is determined by the external variable
_fmode.
Use the _pclose function to close the pipe and obtain the return code of the command.

Return Value
On success, _popen returns a FILE pointer that can be used to read the standard output of the
command, or to write to the standard input of the command, depending on the mode string.
On error, it returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

pow, powl
See also Example Portability

Syntax
#include <math.h>
double pow(double x, double y);
long double powl(long double x, long double y);
Description
Calculates x to the power of y.
powl is the long double version; it takes long double arguments and returns a long double result.

Return Value
On success, pow and powl return the value calculated of x to the power of y.
Sometimes the arguments passed to these functions produce results that overflow or are incalculable.
When the correct value would overflow, the functions return the value HUGE_VAL (pow) or
_LHUGE_VAL (powl). Results of excessively large magnitude can cause the global variable errno to be
set to
ERANGE Result out of range

If the argument x passed to pow or powl is real and less than 0, and y is not a whole number, or you call
pow(0,0), the global variable errno is set to
EDOM Domain error

Error handling for these functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

pow + + + + + + +
 powl + + + +

pow10, pow10l
See also Example Portability

Syntax
#include <math.h>
double pow10(int p);
long double pow10l(int p);
Description
Calculates 10 to the power of p.
pow10l is the long double version; it takes long double arguments and returns a long double result.

Return Value
On success, pow10 returns the value calculated, 10 to the power of p and pow10l returns a long
double result.
The result is actually calculated to long double accuracy. All arguments are valid, although some can
cause an underflow or overflow.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

pow10 + + + + +
pow10l + + + +

printf, wprintf
See also Example Portability

Syntax
#include <stdio.h>
int printf(const char *format[, argument, ...]);
int wprintf(const wchar_t *format[, argument, ...]);
Description
Writes formatted output to stdout.
The printf function:

Accepts a series of arguments
Appllies to each argument a format specifier contained in the format string *format
Outputs the formatted data (to the screen, a stream, stdout, or a string)

There must be enough arguments for the format. If there are not, the results will be unpredictable and
likely disastrous. Excess arguments (more than required by the format) are merely ignored.
Note: For Win32s or Win32 GUI applications, stdout must be redirected.

Return Value
On success, printf returns the number of bytes output.
On error, printf returns EOF.

More About printf
Unicode output format specifiers
Format String
Format Specifiers
Format Specifier Conventions
Flag Characters
Input-size Modifiers
Precision Specifiers
Type Characters
Width Specifiers

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

printf Format String
See also
The format string, present in each of the printf function calls, controls how each function will convert,
format, and print its arguments.
Note: There must be enough arguments for the format; if not, the results will be unpredictable and

possibly disastrous. Excess arguments (more than required by the format) are ignored.
The format string is a character string that contains two types of objects:

Plain characters are copied verbatim to the output stream.
Conversion specifications fetch arguments from the argument list and apply formatting to them.

Plain characters are simply copied verbatim to the output stream.
Conversion specifications fetch arguments from the argument list and apply formatting to them.

printf Format Specifiers
See also
print format specifiers have the following form
% [flags] [width] [.prec] [F|N|h|l|L] type_char
Each format specifier begins with the percent character (%).

After the % come the following optional specifiers, in this order:

Optional Format String Components
These are the general aspects of output formatting controlled by the optional characters, specifiers, and
modifiers in the format string:

Component Optional/Required What it Controls or Specifies
[flags] (Optional) Flag character(s) Output justification, numeric signs,

decimal points, trailing zeros, octal and hex prefixes
[width] (Optional) Width specifier Minimum number of characters to print,

padding with blanks or zeros
[prec] (Optional) Precision specifier Maximum number of characters to print;

for integers, minimum number of digits to print
[F|N|h|l|L] (Optional) Input size modifier Override default size of next input

argument:
N = near pointer
F = far pointer
h = short int
l = long
L = long double

type_char (Required) Conversion-type character

printf Flag characters
See also
They can appear in any order and combination.

Flag What it means
- Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the result,

pads on the left with zeros or blanks.
+ Signed conversion results always begin with a plus (+) or minus (-) sign.
blank If value is nonnegative, the output begins with a blank instead of a plus; negative values still

begin with a minus.
Specifies that arg is to be converted using an alternate form.

Note: Plus (+) takes precedence over blank () if both are given.

Alternate Forms for printf Conversion
See also
If you use the # flag conversion character, it has the following effect on the argument (arg) being
converted:

Conversion character How # affects the argument
c s d iu No effect.

0 0 is prepended to a nonzero arg.

x X 0x (or 0X) is prepended to arg.

e E f The result always contains a decimal point even if no digits follow the
point. Normally, a decimal point appears in these results only if a digit
follows it.

g G Same as e and E, except that trailing zeros are not removed.

printf Width Specifiers
See also
The width specifier sets the minimum field width for an output value.
Width is specified in one of two ways:

directly, through a decimal digit string
indirectly, through an asterisk (*)

If you use an asterisk for the width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.
Nonexistent or small field widths do not cause truncation of a field. If the result of a conversion is wider
than the field width, the field is expanded to contain the conversion result.

Width specifierHow output width is affected
n At least n characters are printed. If the output value has less than n characters,

the output is padded with blanks (right-padded if - flag given, left-padded
otherwise).

0n At least n characters are printed. If the output value has less than n characters, it
is filled on the left with zeros.

* The argument list supplies the width specifier, which must precede the actual
argument being formatted.

printf Precision Specifiers
See also
The printf precision specifiers set the maximum number of characters (or minimum number of integer
digits) to print.
A printf precision specification always begins with a period (.) to separate it from any preceding width
specifier.
Then, like [width], precision is specified in one of two ways:

directly, through a decimal digit string
indirectly, through an asterisk (*)

If you use an * for the precision specifier, the next argument in the call (treated as an int) specifies the
precision.
If you use asterisks for the width or the precision, or for both, the width argument must immediately
follow the specifiers, followed by the precision argument, then the argument for the data to be
converted.

[.prec] How Output Precision Is Affected
(none) Precision set to default:

= 1 for d,i,o,u,x,X types
= 6 for e,E,f types
= All significant digits for g,G types
= Print to first null character for s types
= No effect on c types

.0 For d,i,o,u,x types, precision set to defaul
for e,E,f types, no decimal point is printed.

.n n characters or n decimal places are printed.
If the output value has more than n characters, the output might be truncated or
rounded. (Whether this happens depends on the type character.)

. The argument list supplies the precision specifier, which must precede the actual
argument being formatted.

No numeric characters will be output for a field (i.e., the field will be blank) if the following conditions are
all met:

you specify an explicit precision of 0
the format specifier for the field is one of the integer formats (d, i, o, u, or x)
the value to be printed is 0

How [.prec] Affects Conversion
Char Type Effect of [.prec] (.n) on Conversion
d Specifies that at least n digits are printed.
i If input argument has less than n digits,
o output value is left-padded x with zeros.
u If input argument has more than n digits,
x the output value is not truncated.
X

e Specifies that n characters are
E printed after the decimal point, and

f the last digit printed is rounded.

g Specifies that at most n significant
G digits are printed.

c Has no effect on the output.
s Specifies that no more than n characters are printed.

printf Conversion-Type Characters
See also
The information in this table is based on the assumption that no flag characters, width specifiers,
precision specifiers, or input-size modifiers were included in the format specifier.
Note: Certain conventions accompany some of these format specifiers.

Type Char Expected InputFormat of output
Numerics
d Integer signed decimal integer
i Integer signed decimal integer
o Integer unsigned octal integer
u Integer unsigned decimal integer
x Integer unsigned hexadecimal int (with a, b, c, d, e, f)
X Integer unsigned hexadecimal int (with A, B, C, D, E, F)
f Floating point signed value of the form [-]dddd.dddd.
e Floating point signed value of the form [-]d.dddd or e[+/-]ddd
g Floating point signed value in either e or f form, based on given value and

precision. Trailing zeros and the decimal point are printed if
necessary.

E Floating point Same as e; with E for exponent.
G Floating point Same as g; with E for exponent if e format used

Characters
c Character Single character
s String pointer Prints characters until a null-terminator is pressed or

precision is reached
% None Prints the % character

Pointers
n Pointer to int Stores (in the location pointed to by the input argument) a

count of the chars written so far.
p Pointer Prints the input argument as a pointer; format depends on

which memory model was used. It will be either
XXXX:YYYY or YYYY (offset only).

Infinite floating-point numbers are printed as +INF and -INF.

An IEEE Not-A-Number is printed as +NAN or -NAN.

printf Input-size Modifiers
See also
These modifiers determine how printf functions interpret the next input argument, arg[f].

Modifier Type of arg arg is interpreted as ...
F Pointer (p, s, A far pointer

N and n) A near pointer (Note: N can't be used with any conversion in
huge model.)

h d i o u x X A short int

l d i o u x X A long int
e E f g G A double

L e E f g G A long double
These modifiers affect how all the printf functions interpret the data type of the corresponding input
argument arg.
Both F and N reinterpret the input variable arg. Normally, the arg for a %p, %s, or %n conversion is a
pointer of the default size for the memory model.
h, l, and L override the default size of the numeric data input arguments. Neither h nor l affects character
(c,s) or pointer (p,n) types.

printf Format Specifier Conventions
See also
Certain conventions accompany some of the printf format specifiers for the following conversions:
- %e or %E
- %f
- %g or %G
- %x or %X
Note: Infinite floating point numbers are printed as +INF and -INF. An IEEE Not-a-Number is printed as

+NAN or -NAN.

%e or %E Conversions
See also
The argument is converted to match the style
[-] d.ddd...e[+/-]ddd
where:

one digit precedes the decimal point
the number of digits after the decimal point is equal to the precision.
the exponent always contains at least two digits

%f Conversions
See also
The argument is converted to decimal notation in the style
[-] ddd.ddd...
where the number of digits after the decimal point is equal to the precision (if a non-zero precision was
given).

%g or %G Conversions
See also
The argument is printed in style e, E or f, with the precision specifying the number of significant digits.
Trailing zeros are removed from the result, and a decimal point appears only if necessary.
The argument is printed in style e or f (with some restraints) if g is the conversion character. Style e is
used only if the exponent that results from the conversion is either greater than the precision or less
than -4.
The argument is printed in style E if G is the conversion character.

%x or %X Conversions
See also
For x conversions, the letters a, b, c, d, e, and f appear in the output.
For X conversions, the letters A, B, C, D, E, and F appear in the output.

...printf functions
The ...printf functions include
fprintf sends formatted output to a stream
printf sends formatted output to stdout
sprintf sends formatted output to a string
vfprintf sends formatted output to a stream, using an argument list
vprintf sends formatted output to stdout, using an argument list
vsprintf sends formatted output to a string, using an argument list

putc, putwc
See also Portability

Syntax
#include <stdio.h>
int putc(int c, FILE *stream);
wint_t putwc(wint_t c, FILE *stream);
Description
Outputs a character to a stream.
putc is a macro that outputs the character c to the stream given by stream.
Return Value
On success, putc returns the character printed, c.
On error, putc returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

putch
See also Example Portability

Syntax
#include <conio.h>
int putch(int c);
Description
Outputs character to screen.
putch outputs the character c to the current text window. It is a text mode function performing direct
video output to the console. putch does not translate linefeed characters (\n) into
carriage-return/linefeed pairs.
The string is written either directly to screen memory or by way of a BIOS call, depending on the value
of the global variable _directvideo.
Note: This function should not be used in Win32s or Win32 GUI applications.

Return Value
On success, putch returns the character printed, c. On error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

putchar, putwchar
See also Example Portability

Syntax
#include <stdio.h>
int putchar(int c);
wint_t putwchar(wint_t c);
Description
putchar(c) is a macro defined to be putc(c, stdout).
Note: For Win32s or Win32 GUI applications, stdout must be redirected.

Return Value
On success, putchar returns the character c. On error, putchar returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

putenv, _wputenv
See also Example Portability

Syntax
#include <stdlib.h>
int putenv(const char *name);
int _wputenv(const wchar_t *name);
Description
Adds string to current environment.
putenv accepts the string name and adds it to the environment of the current process. For example,
 putenv("PATH=C:\\BC");
putenv can also be used to modify an existing name. On DOS and OS/2, name must be uppercase. On
other systems, name can be either uppercase or lowercase. name must not include the equal sign (=).
You can set a variable to an empty value by specifying an empty string on the right side of the '=' sign.
putenv can be used only to modify the current program's _environment. Once the program ends, the old
_environment is restored. The _environment of the current process is passed to child processes,
including any changes made by putenv.
Note that the string given to putenv must be static or global. Unpredictable results will occur if a local or
dynamic string given to putenv is used after the string memory is released.

Return Value
On success, putenv returns 0; on failure, -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

puts, _putws
See also Example Portability

Syntax
#include <stdio.h>
int puts(const char *s);
int _putws(const wchar_t *s);
Description
Outputs a string to stdout.
puts copies the null-terminated string s to the standard output stream stdout and appends a newline
character.
Note: For Win32s or Win32 GUI applications, stdout must be redirected.

Return Value
On successful completion, puts returns a nonnegative value. Otherwise, it returns a value of EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

puttext
See also Example Portability

Syntax
#include <conio.h>
int puttext(int left, int top, int right, int bottom, void *source);
Description
Copies text from memory to the text mode screen.
puttext writes the contents of the memory area pointed to by source out to the onscreen rectangle
defined by left, top, right, and bottom.
All coordinates are absolute screen coordinates, not window-relative. The upper left corner is (1,1).
puttext places the contents of a memory area into the defined rectangle sequentially from left to right
and top to bottom.
Each position onscreen takes 2 bytes of memory: The first byte is the character in the cell, and the
second is the cell's video attribute. The space required for a rectangle w columns wide by h rows high is
defined as
bytes = (h rows) x (w columns) x 2
puttext is a text mode function performing direct video output.
Note: This function should not be used in Win32s or Win32 GUI applications.

Return Value
puttext returns a nonzero value if the operation succeeds; it returns 0 if it fails (for example, if you gave
coordinates outside the range of the current screen mode).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_putw
See also Example Portability

Syntax
#include <stdio.h>
int _putw(int w, FILE *stream);
Description
Writes an integer on a stream.
_putw outputs the integer w to the given stream. _putw neither expects nor causes special alignment in
the file.

Return Value
On success, _putw returns the integer w. On error, _putw returns EOF. Because EOF is a legitimate
integer, use ferror to detect errors with _putw.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

qsort
See also Example Portability

Syntax
#include <stdlib.h>
void qsort(void *base, size_t nelem, size_t width, int (_USERENTRY *fcmp)
(const void *, const void *));

Description
Sorts using the quicksort algorithm.
qsort is an implementation of the "median of three" variant of the quicksort algorithm. qsort sorts the
entries in a table by repeatedly calling the user-defined comparison function pointed to by fcmp.

base points to the base (0th element) of the table to be sorted.
nelem is the number of entries in the table.
width is the size of each entry in the table, in bytes.

fcmp, the comparison function, must be used with the _USERENTRY calling convention.
fcmp accepts two arguments, elem1 and elem2, each a pointer to an entry in the table. The
comparison function compares each of the pointed-to items (*elem1 and *elem2), and returns an
integer based on the result of the comparison.

*elem1 < *elem2 fcmp returns an integer < 0
*elem1 == *elem2 fcmp returns 0
*elem1 > *elem2 fcmp returns an integer > 0

In the comparison, the less-than symbol (<) means the left element should appear before the right
element in the final, sorted sequence. Similarly, the greater-than (>) symbol means the left element
should appear after the right element in the final, sorted sequence.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

raise
See also Example Portability

Syntax
#include <signal.h>
int raise(int sig);
Description
Sends a software signal to the executing program.
raise sends a signal of type sig to the program. If the program has installed a signal handler for the
signal type specified by sig, that handler will be executed. If no handler has been installed, the default
action for that signal type will be taken.
The signal types currently defined in signal.h are noted here:

Signal Description
SIGABRT Abnormal termination
SIGFPE Bad floating-point operation
SIGILL Illegal instruction
SIGINT Ctrl-C interrupt
SIGSEGV Invalid access to storage
SIGTERM Request for program termination
SIGUSR1 User-defined signal
SIGUSR2 User-defined signal
SIGUSR3 User-defined signal
SIGBREAK Ctrl-Break interrupt

Note: SIGABRT isn't generated by C++Builder during normal operation. It can, however, be generated
by abort, raise, or unhandled exceptions.

Return Value
On succes, raise returns 0.
On error it returns nonzero.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

rand
See also Example Portability

Syntax
#include <stdlib.h>
int rand(void);
Description
Random number generator.
rand uses a multiplicative congruential random number generator with period 2 to the 32nd power to
return successive pseudorandom numbers in the range from 0 to RAND_MAX. The symbolic constant
RAND_MAX is defined in stdlib.h.

Return Value
rand returns the generated pseudorandom number.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

random
See also Example Portability

Syntax
#include <stdlib.h>
int random(int num);
Description
Random number generator.
random returns a random number between 0 and (num-1). random(num) is a macro defined in stdlib.h.
Both num and the random number returned are integers.

Return Value
random returns a number between 0 and (num-1).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

randomize
See also Example Portability

Syntax
#include <stdlib.h>
#include <time.h>
void randomize(void);
Description
Initializes random number generator.
randomize initializes the random number generator with a random value.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

read
See also Example Portability

Syntax
#include <io.h>
int read(int handle, void *buf, unsigned len);
Description
Reads from file.
read attempts to read len bytes from the file associated with handle into the buffer pointed to by buf.
For a file opened in text mode, read removes carriage returns and reports end-of-file when it reaches a
Ctrl-Z.
The file handle handle is obtained from a creat, open, dup, or dup2 call.
On disk files, read begins reading at the current file pointer. When the reading is complete, it increments
the file pointer by the number of bytes read. On devices, the bytes are read directly from the device.
The maximum number of bytes that read can read is UINT_MAX -1, because UINT_MAX is the same as
-1, the error return indicator. UINT_MAX is defined in limits.h.

Return Value
On successful completion, read returns an integer indicating the number of bytes placed in the buffer. If
the file was opened in text mode, read does not count carriage returns or Ctrl-Z characters in the number
of bytes read.
On end-of-file, read returns 0. On error, read returns -1 and sets the global variable errno to one of the
following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

readdir, wreaddir
See also Example Portability

Syntax
#include <dirent.h>
struct dirent *readdir(DIR *dirp);
struct wdirent *wreaddir(wDIR *dirp)
Description
Reads the current entry from a directory stream.
readdir is available on POSIX-compliant UNIX systems.
The readdir function reads the current directory entry in the directory stream pointed to by dirp. The
directory stream is advanced to the next entry.
The readdir function returns a pointer to a dirent structure that is overwritten by each call to the function
on the same directory stream. The structure is not overwritten by a readdir call on a different directory
stream.
The dirent structure corresponds to a single directory entry. It is defined in dirent.h and contains (in
addition to other non-accessible members) the following member:
 char d_name[];
where d_name is an array of characters containing the null-terminated file name for the current directory
entry. The size of the array is indeterminate; use strlen to determine the length of the file name.
All valid directory entries are returned, including subdirectories, "." and ".." entries, system files, hidden
files, and volume labels. Unused or deleted directory entries are skipped.
A directory entry can be created or deleted while a directory stream is being read, but readdir might or
might not return the affected directory entry. Rewinding the directory with rewinddir or reopening it with
opendir ensures that readdir will reflect the current state of the directory.
The wreaddir function is the Unicode version of readdir. It uses the wdirent structure but otherwise is
similar to readdir.

Return Value
On success, readdir returns a pointer to the current directory entry for the directory stream.
If the end of the directory has been reached, or dirp does not refer to an open directory stream, readdir
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

realloc
See also Example Portability

Syntax
#include <stdlib.h>
void *realloc(void *block, size_t size);
Description
Reallocates main memory.
realloc attempts to shrink or expand the previously allocated block to size bytes. If size is zero, the
memory block is freed and NULL is returned. The block argument points to a memory block previously
obtained by calling malloc, calloc, or realloc. If block is a NULL pointer, realloc works just like malloc.
realloc adjusts the size of the allocated block to size, copying the contents to a new location if
necessary.

Return Value
realloc returns the address of the reallocated block, which can be different than the address of the
original block.
If the block cannot be reallocated, realloc returns NULL.
If the value of size is 0, the memory block is freed and realloc returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

remove, _wremove
See also Example Portability

Syntax
#include <stdio.h>
int remove(const char *filename);
int _wremove(const wchar_t *filename);
Description
Removes a file.
remove deletes the file specified by filename. It is a macro that simply translates its call to a call to
unlink. If your file is open, be sure to close it before removing it.
The filename string can include a full path.

Return Value
On successful completion, remove returns 0. On error, it returns -1, and the global variable errno is set
to one of the following values:
EACCES Permission denied
ENOENT No such file or directory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

rename, _wrename
Example Portability

Syntax
#include <stdio.h>
int rename(const char *oldname, const char *newname);
int _wrename(const wchar_t *oldname, const wchar_t *newname);
Description
Renames a file.
rename changes the name of a file from oldname to newname. If a drive specifier is given in newname,
the specifier must be the same as that given in oldname.
Directories in oldname and newname need not be the same, so rename can be used to move a file from
one directory to another. Wildcards are not allowed.
This function will fail (EEXIST) if either file is currently open in any process.

Return Value
On success, rename returns 0.
On error (if the file cannot be renamed), it returns -1 and the global variable errno is set to one of the
following values:
EEXIST Permission denied: file already exists.
ENOENT No such file or directory
ENOTSAM Not same device

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

rewind
See also Example Portability

Syntax
#include <stdio.h>
void rewind(FILE *stream);
Description
Repositions a file pointer to the beginning of a stream.
rewind(stream) is equivalent to fseek(stream, 0L, SEEK_SET), except that rewind clears the end-of-file
and error indicators, while fseek clears the end-of-file indicator only.
After rewind, the next operation on an update file can be either input or output.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

rewinddir, wrewinddir
See also Example Portability

Syntax
#include <dirent.h>
void rewinddir(DIR *dirp);
void wrewinddir(wDIR *dirp);
Description
Resets a directory stream to the first entry.
rewinddir is available on POSIX-compliant UNIX systems.
The rewinddir function repositions the directory stream dirp at the first entry in the directory. It also
ensures that the directory stream accurately reflects any directory entries that might have been created
or deleted since the last opendir or rewinddir on that directory stream.
wrewinddir is the Unicode version of rewinddir.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_rmdir, _wrmdir
See also Example Portability

Syntax
#include <dir.h>
int _rmdir(const char *path);
int _wrmdir(const wchar_t *path);
Description
Removes a directory.
_rmdir deletes the directory whose path is given by path. The directory named by path

must be empty
must not be the current working directory
must not be the root directory

Return Value
_rmdir returns 0 if the directory is successfully deleted. A return value of -1 indicates an error, and the
global variable errno is set to one of the following values:
EACCES Permission denied
ENOENT Path or file function not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_rmtmp
See also Example Portability

Syntax
#include <stdio.h>
int _rmtmp(void);
Description
Removes temporary files.
The _rmtmp function closes and deletes all open temporary file streams which were previously created
with tmpfile. The current directory must the same as when the files were created, or the files will not be
deleted.

Return Value
_rmtmp returns the total number of temporary files it closed and deleted.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_rotl, _rotr
See also Example Portability

Syntax
#include <stdlib.h>
unsigned short _rotl(unsigned short value, int count);
unsigned short _rotr(unsigned short value, int count);
Description
 Bit-rotates an unsigned short integer value to the left or right.
_rotl rotates the given value to the left count bits.
_rotr rotates the given value to the right count bits.

Return Value
_rotl, and _rotr return the rotated integer:

_rotl returns the value of value left-rotated count bits.
_rotr returns the value of value right-rotated count bits.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_rtl_chmod, _wrtl_chmod
See also Example Portability

Syntax
#include <io.h>
int _rtl_chmod(const char *path, int func [, int attrib]);
int _wrtl_chmod(const wchar_t *path, int func, ...);
Description
Gets or sets file attributes.
Note: The _rtl_chmod function replaces _chmod which is obsolete
_rtl_chmod can either fetch or set file attributes. If func is 0, _rtl_chmod returns the current attributes for
the file. If func is 1, the attribute is set to attrib.
attrib can be one of the following symbolic constants (defined in dos.h):
FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory
FA_ARCH Archive

Return Value
On success, _rtl_chmod returns the file attribute word.
On error, it returns a value of -1 and sets the global variable errno to one of the following values:
ENOENT Path or filename not found
EACCES Permission denied

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_close
See also Example Portability

Syntax
#include <io.h>
int _rtl_close(int handle);
Description
Closes a file.
Note: This function replaces _close which is obsolete
The _rtl_close function closes the file associated with handle, a file handle obtained from a call to creat,
creatnew, creattemp, dup, dup2, open, _rtl_creat, or _rtl_open.
It does not write a Ctrl-Z character at the end of the file. If you want to terminate the file with a Ctrl-Z, you
must explicitly output one.

Return Value
On success, _rtl_close returns 0.
On error (if it fails because handle is not the handle of a valid, open file), _rtl_close returns a value of -1
and the global variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_creat, _wrtl_creat
See also Example Portability

Syntax
#include <io.h>
int _rtl_creat(const char *path, int attrib);
int _wrtl_creat(const wchar_t *path, int attrib);
Description
Creates a new file or overwrites an existing one.
Note: The _rtl_creat function replaces _creat which is obsolete
_rtl_creat opens the file specified by path. The file is always opened in binary mode. Upon successful
file creation, the file pointer is set to the beginning of the file. The file is opened for both reading and
writing.
If the file already exists its size is reset to 0. (This is essentially the same as deleting the file and
creating a new file with the same name.)
The attrib argument is an ORed combination of one or more of the following constants (defined in
dos.h):
FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Return Value
On success, _rtl_creat returns the new file handle (a non-negative integer).
On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_heapwalk
See also Example Portability

Syntax
#include <malloc.h>
int _rtl_heapwalk(_HEAPINFO *hi);
Description
Inspects the heap node by node.
Note: This function replaces _heapwalk which is obsolete.
_rtl_heapwalk assumes the heap is correct. Use _heapchk to verify the heap before using
_rtl_heapwalk. _HEAPOK is returned with the last block on the heap. _HEAPEND will be returned on
the next call to _rtl_heapwalk.
_rtl_heapwalk receives a pointer to a structure of type _HEAPINFO (declared in malloc.h).
For the first call to _rtl_heapwalk, set the hi._pentry field to NULL. _rtl_heapwalk returns with hi._pentry
containing the address of the first block.
hi._size holds the size of the block in bytes.
hi._useflag is a flag that is set to _USEDENTRY if the block is currently in use. If the block is free,

hi._useflag is set to _FREEENTRY.

Return Value
This function returns one of the following values:
_HEAPBADNODE A corrupted heap block has been found
_HEAPBADPTR The _pentry field does not point to a valid heap block
_HEAPEMPTY No heap exists
_HEAPEND The end of the heap has been reached
_HEAPOK The _heapinfo block contains valid information about the next heap block

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

_rtl_open, _wrtl_open
See also Example Portability

Syntax
#include <io.h>
int _rtl_open(const char *filename, int oflags);
int _wrtl_open(const wchar_t *path, int oflags);
Description
Opens a file for reading or writing.
Note: The _rtl_open function replaces _open which is obsolete.
_rtl_open opens the file specified by filename, then prepares it for reading or writing, as determined by
the value of oflags. The file is always opened in binary mode.
oflags uses the flags from the following two lists. Only one flag from List 1 can be used (and one must
be used) and the flags in List 2 can be used in any logical combination.

List 1: Read/write flags
O_RDONLY Open for reading.
O_WRONLY Open for writing.
O_RDWR Open for reading and writing.

The following additional values can be included in oflags (using an OR operation):

List 2: Other access flags
O_NOINHERIT The file is not passed to child programs.
SH_COMPAT Allow other opens with SH_COMPAT. All other openings of a file with the

SH_COMPAT flag must be opened using SH_COMPAT flag. You can request a
file open that uses SH_COMPAT logically OR’ed with some other flag (for
example, SH_COMPAT | SH_DENWR is allowed). The call will fail if the file has
already been opened in any other shared mode.

SH_DENYRW Only the current handle can have access to the file.
SH_DENWR Allow only reads from any other open to the file.
SH_DENYRD Allow only writes from any other open to the file.
SH_DENYNO Allow other shared opens to the file, but not other SH_COMPAT opens.

Note: These symbolic constants are defined in fcntl.h and share.h.
Only one of the SH_DENYxx values can be included in a single _rtl_open routine. These file-sharing
attributes are in addition to any locking performed on the files.
The maximum number of simultaneously open files is defined by HANDLE_MAX.

Return Value
On success:_rtl_open returns a non-negative integer (the file handle). The file pointer, which marks the
current position in the file, is set to the beginning of the file.
On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EINVACC Invalid access code
EMFILE Too many open files
ENOENT Path or file not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_read
See also Example Portability

Syntax
#include <dos.h>
int _rtl_read(int handle, void *buf, unsigned len);
Description
Reads from file.
Note: This function replaces _read which is obsolete.
This function reads len bytes from the file associated with handle into the buffer pointed to by buf. When
a file is opened in text mode, _rtl_read does not remove carriage returns.
The argument handle is a file handle obtained from a creat, open, dup, or dup2 call.
On disk files, _rtl_read begins reading at the current file pointer. When the reading is complete, it
increments the file pointer by the number of bytes read. On devices, the bytes are read directly from the
device.
The maximum number of bytes it can read is UINT_MAX -1 (because UINT_MAX is the same as -1, the
error return indicator). UINT_MAX is defined in limits.h.

Return Value
On success, _rtl_read returns either

a positive integer, indicating the number of bytes placed in the buffer
zero, indicating end-of-file

On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_write
See also Example Portability

Syntax
#include <io.h>
int _rtl_write(int handle void *buf unsigned len);
Description
Writes to a file.
Note: This function replaces _write which is obsolete.
_rtl_write attempts to write len bytes from the buffer pointed to by buf to the file associated with handle.
The maximum number of bytes that _rtl_write can write is UINT_MAX -1 (because UINT_MAX is the
same as -1), which is the error return indicator for _rtl_write. UINT_MAX is defined in limits.h. _rtl_write
does not translate a linefeed character (LF) to a CR/LF pair because all its files are binary files.
If the number of bytes actually written is less than that requested the condition should be considered an
error and probably indicates a full disk.
For disk files, writing always proceeds from the current file pointer. On devices, bytes are directly sent to
the device.
For files opened with the O_APPEND option, the file pointer is not positioned to EOF before writing the
data.

Return Value
On success, _rtl_write returns number of bytes written.
On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

scanf, wscanf
See also Example Portability

Syntax
#include <stdio.h>
int scanf(const char *format[, address, ...]);
int wscanf(const wchar_t *format[, address, ...]);
Description
Scans and formats input from the stdin stream.
Note: For Win32s or Win32 GUI applications, stdin must be redirected.
The scanf function:

scans a series of input fields one character at a time
formats each field according to a corresponding format specifier passed in the format string

*format.
vsscanf scans and formats input from a string, using an argument list

There must be one format specifier and address for each input field.
scanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely. For details about why this might happen, see When ...scanf
Stops Scanning.
Warning: scanf often leads to unexpected results if you diverge from an expected pattern. You must

provide information that tells scanf how to synchronize at the end of a line.
The combination of gets or fgets followed by sscanf is safe and easy, and therefore recommended over
scanf.

Return Value
On success, scanf returns the number of input fields successfully scanned, converted, and stored. The
return value does not include scanned fields that were not stored.
On error:

if no fields were stored, scanf returns 0.
if scanf attempts to read at end-of-file or at end-of-string, it returns EOF.

More About scanf
Unicode input format specifiers
Argument-type Modifiers
Assignment Suppression
Format Specifiers
Format Specifier Conventions
Format String
Input Fields
Pointer-size Modifiers
Type Characters
Width Specifiers
When ...scanf Functions Stop Scanning

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

The scanf Format String
See also
The format string controls how each ...scanf function scans, converts, and stores its input fields.
The format string is a character string that contains three types of objects:

whitespace characters
non-whitespace characters
format specifiers

Whitespace Characters
The whitespace characters are blank, tab (\t) or newline (\n).

If a ...scanf function encounters a whitespace character in the format string, it reads, but does not store,
all consecutive whitespace characters up to the next non-whitespace character in the input.
Trailing whitespace is left unread (including a newline), unless explicitly matched in the format string.

Non-whitespace Characters
The non-whitespace characters are all other ASCII characters except the percent sign (%).
If a ...scanf function encounters a non-whitespace character in the format string, it will read, but not
store, a matching non-whitespace character.

Format Specifiers
The format specifiers direct the ...scanf functions to read and convert characters from the input field into
specific types of values, then store them in the locations given by the address arguments.
Warning: Each format specifier must have an address argument. If there are more format specs than

addresses, the results are unpredictable and likely disastrous.
Excess address arguments (more than required by the format) are ignored.

scanf Format Specifiers
See also
In ...scanf format strings, format specifiers have the following form:
% [*] [width] [F|N] [h|l|L] type_char
Each format specifier begins with the percent character (%).

After the % come the following, in this order:

Component Optional/Required What It Is/Does
[*] (Optional) Assignment-suppression character. Suppresses

assignment of the next input field.
[width] (Optional) Width specifier. pecifies maximum number of characters

to read; fewer characters might be read if the ...scanf
function encounters a whitespace or unconvertible
character.

[F|N] (Optional) Pointer size modifier. Overrides default size of address
argument:
N = near pointer
F = far pointer

[h|l|L] (Optional) Argument-type modifier. Overrides default type of address
argument:
h = short int
l = long int, if type_char specifies integer

conversion
l = double, if type_char specifies floating-point

conversion
L = long double, (valid only with floating-point

conversion)
type_char (Required) Type character

Type Characters
See also
The information in this table is based on the assumption that no optional characters, specifiers, or
modifiers (*, width, or size) were included in the format specifier.
Note: Certain conventions accompany some of these format specifiers.

Type Expected input Type of argument
Numerics
d Decimal integer Pointer to int (int *arg)
D Decimal integer Pointer to long (long *arg)
e,E Floating point Pointer to float (float *arg)
f Floating point Pointer to float (float *arg)
g,G Floating point Pointer to float (float *arg)
o Octal integer Pointer to int (int *arg)
O Octal integer Pointer to long (long *arg)
i Decimal, octal, or Pointer to int (int *arg)

hexadecimal integer
I Decimal, octal, or Pointer to long (long *arg)

hexadecimal integer
u Unsigned decimal integer Pointer to unsigned int (unsigned int *arg)
U Unsigned decimal integer Pointer to unsigned long (unsigned long *arg)
x Hexadecimal integer Pointer to int (int *arg)
X Hexadecimal integer Pointer to int (int *arg)
Characters
s Character string Pointer to array of chars (char arg[])
c Character Pointer to char (char *arg) if a field width is given

along with the c-type character (such as %5c)
 Pointer to array of W chars (char arg[W])
% % character No conversion done; the % is stored

Pointers
n Pointer to int (int *arg). The number of characters read successfully up to

%n is stored in this int.
p Hexadecimal form Pointer to an object (far* or near*)

YYYY:ZZZZ or ZZZZ %p conversions default to the pointer size native to the
memory model

Input Fields for Scanf Functions
See also
In a ...scanf function, any one of the following is an input field:

all characters up to (but not including) the next whitespace character
all characters up to the first one that can't be converted under the current format specifier (such

as an 8 or 9 under octal format)
up to n characters, where n is the specified field width

Assignment-suppression Character
See also
The assignment-suppression character is an asterisk (*), not to be confused with the C indirection
(pointer) operator.
If the asterisk follows the percent sign (%) in a format specifier, the next input field will be scanned but it
won't be assigned to the next address argument.
The suppressed input data is assumed to be of the type specified by the type character that follows the
asterisk character.

Width Specifiers
See also
The width specifier (n), a decimal integer, controls the maximum number of characters to be read from
the current input field.
Up to n characters are read, converted, and stored in the current address argument.
If the input field contains fewer than n characters, the ...scanf function reads all the characters in the
field, then proceeds with the next field and format specifier.
The success of literal matches and suppressed assignments is not directly determinable.
If the ...scanf function encounters a whitespace or non-convertible character before it reads "width"
characters, it:

reads, converts, and stores the characters read so far, then
attends to the next format specifier.

A non-convertible character is one that can't be converted according to the given format (8 or 9 when the
format is octal, J or K when the format is hexadecimal or decimal, etc.).

Pointer-size and Argument-type Modifiers
See also
These modifiers affect how ...scanf functions interpret the corresponding address argument arg[f].

Pointer-size Modifiers
Pointer-size modifiers override the default or declared size of arg.
Modifier arg Interpreted As...

F Far pointer
N Near pointer (Can't be used with any conversion in huge model)

Argument-type Modifiers
Argument-type modifiers indicate which type of the following input data is to be used (h = short, l =
long, L = long double).
The input data is converted to the specified version, and the arg for that input data should point to an
object of corresponding size.
Modifier For This Type Convert Input to...

h d i o u x short int; store in short object
D I O U X (No effect)
e f c s n p (No effect)

l d i o u x long int; store in long object
e f g double; store in double object
D I O U X (No effect)
c s n p (No effect)

L e f g long double; store in long double object
(all others) (No effect)

Format Specifier Conventions
See also
Certain conventions accompany some of the ...scanf format specifiers for the following conversions:
single character (%c)
character array (%[W]c)
string (%s)
floating-point (%e, %E, %f, %g, and %G)
unsigned (%d, %i, %o, %x, %D, %I, %O, %X, %c, %n)
search sets(%[...], %[^...])

Single Character Conversion (%c)
See also
This specification reads the next character, including a whitespace character.
To skip one whitespace character and read the next non-whitespace character, use %1s.

Character Array Conversion (%[W]c)
[W] = width specification

The address argument is a pointer to an array of characters (char arg[W]).

The array consists of W elements.

String Conversion (%s)
See also
The address argument is a pointer to an array of characters (char arg[]).

The array size must be at least (n+1) bytes, where n = the length of string s (in characters).
A space or newline character terminates the input field.
A null terminator is automatically appended to the string and stored as the last element in the array.

Floating-point Conversions (%e, %E, %f, %g, and %G)
See also
Floating-point numbers in the input field must conform to the following generic format:
[+/-] ddddddddd [.] dddd [E|e] [+/-] ddd
where [item] indicates that item is optional, and ddd represents digits (decimal, octal, or
hexadecimal).
In addition, +INF, -INF, +NAN, and -NAN are recognized as floating-point numbers. The sign (+ or -) and
capitalization are required.

Unsigned Conversions (%d, %i, %o, %x, %D, %I, %O, %X, %c, and %n)
See also
A pointer to unsigned character, unsigned integer, or unsigned long can be used in any conversion
where a pointer to a character, integer, or long is allowed.

Search Set Conversion (%[search_set])
See also Examples
The set of characters surrounded by brackets can be substituted for the s-type character.
The address argument is a pointer to an array of characters (char arg[]).

These brackets surround a set of characters that define a search set of possible characters making up
the string (the input field).
If the first character in the brackets is a caret (^), the search set is inverted to include all ASCII
characters except those between the brackets.
(Normally, a caret will be included in the inverted search set unless explicitly listed somewhere after the
first caret.)
The input field is a string not delimited by whitespace. ...scanf reads the corresponding input field up to
the first character it reaches that does not appear in the search set (or in the inverted search set).

Rules covering search set ranges
1. The character prior to the hyphen (-) must be lexically less than the one after it.
2. The hyphen must not be the first or last character in the set. (If it is first or last, it is considered to just

be the hyphen character, not a range definer.)
3. The characters on either side of the hyphen must be the ends of the range and not part of some other

range.

Examples
%[abcd] Searches the input field for any of the characters a, b, c, and d

%[^abcd] Searches the input field for any characters except a, b, c, and d

You can also use a range facility shortcut [<first>-<last>] to define a range of letters or numerals
in the search set.

Examples
To catch all decimal digits, you could define the search set with the explicit search set:
%[0123456789] or with the range shortcut: %[0-9]
To catch alphanumeric characters, you could use the following shortcuts:
%[A-Z] Catches all uppercase letters

%[0-9A-Za-z] Catches all decimal digits and all letters

%[A-FT-Z] Catches all uppercase letters from A through F and from T through Z.

When ...scanf Functions Stop Scanning
See also
A ...scanf function might stop scanning a particular input field before reaching the normal field-end
character (whitespace), or it might terminate entirely.

Stop and Skip to Next Input Field
...scanf functions stop scanning and storing the current input field and proceed to the next one if any of
the following occurs:

An assignment-suppression character (*) appears after the % in the format specifier. The current
input field is scanned but not stored.

width characters have been read.
The next character read can't be converted under the current format (for example, an A when the

format is decimal).
The next character in the input field does not appear in the search set (or does appear in an

inverted search set).
When scanf stops scanning the current input field for one of these reasons, it assumes that the next
character is unread and is either

the first character of the following input field, or
the first character in a subsequent read operation on the input.

Terminate
...scanf functions will terminate under the following circumstances:
1. The next character in the input field conflicts with a corresponding non-whitespace character in the

format string.
2. The next character in the input field is EOF.
3. The format string has been exhausted.
If a character sequence that is not part of a format specifier occurs in the format string, it must match the
current sequence of characters in the input field.
...scanf functions will scan but not store the matched characters.
When a conflicting character occurs, it remains in the input field as if the ...scanf function never read it.

...scanf functions
The ..scanf functions include
fscanf scans and formats input from a stream
scanf scans and formats input from stdin
sscanf scans and formats input from a string
vfscanf scans and formats input from a stream, using an argument list
vscanf scans and formats input from stdin using an argument list
vsscanf scans and formats input from a string, using an argument list

_searchenv, _wsearchenv
See also Example Portability

Syntax
#include <stdlib.h>
char *_searchenv(const char *file, const char *varname, char *buf);
char *_wsearchenv(const wchar_t *file, const wchar_t *varname, wchar_t
*buf);

Description
Searches an environment path for a file.
_searchenv attempts to locate file, searching along the path specified by the operating system
environment variable varname. Typical environment variables that contain paths are PATH, LIB, and
INCLUDE.
_searchenv searches for the file in the current directory of the current drive first. If the file is not found
there, the environment variable varname is fetched, and each directory in the path it specifies is
searched in turn until the file is found, or the path is exhausted.
When the file is located, the full path name is stored in the buffer pointed to by buf. This string can be
used in a call to access the file (for example, with fopen or exec...). The buffer is assumed to be large
enough to store any possible file name. If the file cannot be successfully located, an empty string
(consisting of only a null character) will be stored at buf.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

searchpath, wsearchpath
See also Example Portability

Syntax
#include <dir.h>
char *searchpath(const char *file);
wchar_t *wsearchpath(const wchar_t *file);

Description
Searches the operating system path for a file.
searchpath attempts to locate file, searching along the operating system path, which is the PATH=...
string in the environment. A pointer to the complete path-name string is returned as the function value.
searchpath searches for the file in the current directory of the current drive first. If the file is not found
there, the PATH environment variable is fetched, and each directory in the path is searched in turn until
the file is found, or the path is exhausted.
When the file is located, a string is returned containing the full path name. This string can be used in a
call to access the file (for example, with fopen or exec...).
The string returned is located in a static buffer and is overwritten on each subsequent call to searchpath.

Return Value
searchpath returns a pointer to a file name string if the file is successfully located; otherwise, searchpath
returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_searchstr, _wsearchstr
See also Example Portability

Syntax
#include <stdlib.h>
void _searchstr(const char *file, const char *ipath, char *buf);
void _wsearchstr(const wchar_t *file, const wchar_t *ipath,wchar_t
*pathname);

Description
Searches a list of directories for a file.
_searchstr attempts to locate file, searching along the path specified by the string ipath.
_searchstr searches for the file in the current directory of the current drive first. If the file is not found
there, each directory in ipath is searched in turn until the file is found, or the path is exhausted. The
directories in ipath must be separated by semicolons.
When the file is located, the full path name is stored in the buffer pointed by by buf. This string can be
used in a call to access the file (for example, with fopen or exec...). The buffer is assumed to be large
enough to store any possible file name. The constant _MAX_PATH defined in stdlib.h, is the size of the
largest file name. If the file cannot be successfully located, an empty string (consisting of only a null
character) will be stored at buf.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

setbuf
See also Example Portability

Syntax
#include <stdio.h>
void setbuf(FILE *stream, char *buf);
Description
Assigns buffering to a stream.
setbuf causes the buffer buf to be used for I/O buffering instead of an automatically allocated buffer. It is
used after stream has been opened.
If buf is null, I/O will be unbuffered; otherwise, it will be fully buffered. The buffer must be BUFSIZ bytes
long (specified in stdio.h).
stdin and stdout are unbuffered if they are not redirected; otherwise, they are fully buffered. setbuf can
be used to change the buffering style used.
Unbuffered means that characters written to a stream are immediately output to the file or device, while
buffered means that the characters are accumulated and written as a block.
setbuf produces unpredictable results unless it is called immediately after opening stream or after a call
to fseek. Calling setbuf after stream has been unbuffered is legal and will not cause problems.
A common cause for error is to allocate the buffer as an automatic (local) variable and then fail to close
the file before returning from the function where the buffer was declared.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_setcursortype
Example Portability

Syntax
#include <conio.h>
void _setcursortype(int cur_t);
Description
Selects cursor appearance.
Sets the cursor type to
_NOCURSOR Turns off the cursor
_NORMALCURSOR Normal underscore cursor
_SOLIDCURSOR Solid block cursor

Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

setjmp
See also Example Portability

Syntax
#include <setjmp.h>
int setjmp(jmp_buf jmpb);
Description
Sets up for nonlocal goto.
setjmp captures the complete task state in jmpb and returns 0.
A later call to longjmp with jmpb restores the captured task state and returns in such a way that setjmp
appears to have returned with the value val.
A task state includes

Win 16 Win 32
All segment registers No segment registers are saved
CS, DS, ES, SS
Register variables Register variables
DI and SI EBX, EDI, ESI
Stack pointer SP Stack pointer ESP
Frame pointer BP Frame pointer EBP
Flags Flags are not saved

A task state is complete enough that setjmp can be used to implement co-routines.
setjmp must be called before longjmp. The routine that calls setjmp and sets up jmpb must still be active
and cannot have returned before the longjmp is called. If it has returned, the results are unpredictable.
setjmp is useful for dealing with errors and exceptions encountered in a low-level subroutine of a
program.

DOS Users
You cannot use setjmp and longjmp for implementing co-routines if your program is overlaid. Normally,
setjmp and longjmp save and restore all the registers needed for co-routines, but the overlay manager
needs to keep track of stack contents and assumes there is only one stack. When you implement co-
routines there are usually either two stacks or two partitions of one stack, and the overlay manager will
not track them properly.
You can have background tasks that run with their own stacks or sections of stack, but you must ensure
that the background tasks do not invoke any overlaid code, and you must not use the overlay versions
of setjmp or longjmp to switch to and from background. When you avoid using overlay code or support
routines, the existence of the background stacks does not disturb the overlay manager.

Return Value
setjmp returns 0 when it is initially called. If the return is from a call to longjmp, setjmp returns a nonzero
value (as in the example).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

setlocale, _wsetlocale
See also Example Portability

Syntax
#include <locale.h>
char *setlocale(int category, const char *locale);
wchar_t * _wsetlocale(int category, const wchar_t *locale);
Description
Use the setlocale to select or query a locale.
Borland C++ supports all locales supported in NT 3.5x and Win95/NT 4.0 operating systems. See your
system documentation for details.
The possible values for the category argument are as follows:

Value Affect
LC_ALL Affects all the following categories
LC_COLLATE Affects strcoll and strxfrm
LC_CTYPE Affects single-byte character handling functions. The mbstowcs and mbtowc

functions are not affected.
LC_MONETARY Affects monetary formatting by the localeconv function
LC_NUMERIC Affects the decimal point of non-monetary data formatting. This includes the printf

family of functions, and the information returned by localeconv.
LC_TIME Affects strftime

The locale argument is a pointer to the name of the locale or named locale category. Passing a NULL
pointer returns the current locale in effect. Passing a pointer that points to a null string requests
setlocale to look for environment variables to determine which locale to set. The locale names are not
case sensitive.
When setlocale is unable to honor a locale request, the preexisting locale in effect is unchanged and a
null pointer is returned.
If the locale argument is a NULL pointer, the locale string for the category is returned. If category is
LC_ALL, a complete locale string is returned. The structure of the complete locale string consists of the
names of all the categories in the current locale concatenated and separated by semicolons. This string
can be used as the locale parameter when calling setlocale with any of the LC_xxx values. This will
reinstate all the locale categories that are named in the complete locale string, and allows saving and
restoring of locale states. If the complete locale string is used with a single category, for example,
LC_TIME, only that category will be restored from the locale string.
If an empty string "" is used as the locale parameter an implementation-defined locale is used. This is
the ANSI C specified behavior.
To take advantage of dynamically loadable locales in your application, define _ _USELOCALES_ _ for
each module. If _ _USELOCALES_ _ is not defined, all locale-sensitive functions and macros will work
only with the default C locale.
If a NULL pointer is used as the argument for the locale parameter, setlocale returns a string that
specifies the current locale in effect. If the category parameter specifies a single category, such as
LC_COLLATE, the string pointed to will be the name of that category. If LC_ALL is used as the category
parameter then the string pointed to will be a full locale string that will indicate the name of each
category in effect.
 .
 .
 .
localenameptr = setlocale(LC_COLLATE, NULL);

if (localenameptr)
 printf("%s\n", localenameptr);
 .
 .
 .

The output here will be one of the module names together with the specified code page. For example,
the output could be LC_COLLATE = English_United States.437.
 .
 .
 .
localenameptr = setlocale(LC_ALL, NULL);

if (localenameptr)
 printf("%s\n", localenameptr);
 .
 .
 .

An example of the output here could be the following:
 LC_COLLATE=English_United States.437;
 LC_TIME=English_United States.437;
 LC_CTYPE=English_United States.437;

Each category in this full string is delimited by a semicolon. This string can be copied and saved by an
application and then used again to restore the same locale categories at another time. Each delimited
name corresponds to the locale category constants defined in locale.h. Therefore, the first name is the
name of the LC_COLLATE category, the second is the LC_CTYPE category, and so on. Any other
categories named in the locale.h header file are reserved for future implementation.
To set all default categories for the specified French locale:
 setlocale(LC_ALL, "French_France.850");
To find out which code page is currently being used:
 localenameptr = setlocale(LC_ALL, NULL);
Return value
If selection is successful, setlocale returns a pointer to a string that is associated with the selected
category (or possibly all categories) for the new locale.
If UNICODE is defined, _wsetlocale returns a wchar_t string.
On failure, a NULL pointer is returned and the locale is unchanged. All other possible returns are
discussed in the Remarks section above.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

setmem
See also Example Portability

Syntax
#include <mem.h>
void setmem(void *dest, unsigned length, char value);
Description
Assigns a value to a range of memory.
setmem sets a block of length bytes, pointed to by dest, to the byte value.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

setmode
See also Example Portability

Syntax
#include <io.h>
int setmode(int handle, int amode);
Description
Sets mode of an open file.
setmode sets the mode of the open file associated with handle to either binary or text. The argument
amode must have a value of either O_BINARY or O_TEXT, never both. (These symbolic constants are
defined in fcntl.h.)

Return Value
setmode returns the previous translation mode if successful. On error it returns -1 and sets the global
variable errno to
EINVAL Invalid argument

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

setvbuf
See also Example Portability

Syntax
#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int type, size_t size);
Description
Assigns buffering to a stream.
setvbuf causes the buffer buf to be used for I/O buffering instead of an automatically allocated buffer. It
is used after the given stream is opened.
If buf is null, a buffer will be allocated using malloc; the buffer will use size as the amount allocated. The
buffer will be automatically freed on close. The size parameter specifies the buffer size and must be
greater than zero.
The parameter size is limited by the constant UINT_MAX as defined in limits.h.
stdin and stdout are unbuffered if they are not redirected; otherwise, they are fully buffered. Unbuffered
means that characters written to a stream are immediately output to the file or device, while buffered
means that the characters are accumulated and written as a block.
The type parameter is one of the following:
_IOFBF fully buffered file. When a buffer is empty, the next input operation will attempt to fill the

entire buffer. On output, the buffer will be completely filled before any data is written to
the file.

_IOLBF line buffered file. When a buffer is empty, the next input operation will still attempt to fill
the entire buffer. On output, however, the buffer will be flushed whenever a newline
character is written to the file.

_IONBF unbuffered file. The buf and size parameters are ignored. Each input operation will read
directly from the file, and each output operation will immediately write the data to the file.

A common cause for error is to allocate the buffer as an automatic (local) variable and then fail to close
the file before returning from the function where the buffer was declared.

Return Value
On success, setvbuf returns 0.
On error (if an invalid value is given for type or size, or if there is not enough space to allocate a buffer),
it returns nonzero.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

signal
See also Example Portability

Syntax
#include <signal.h>
void (_USERENTRY *signal(int sig, void (_USERENTRY *func)
 (int sig[, int subcode])))(int);
Description
Specifies signal-handling actions.
signal determines how receipt of signal number sig will subsequently be treated. You can install a user-
specified handler routine (specified by the argument func) or use one of the two predefined handlers,
SIG_DFL and SIG_IGN, in signal.h. The function func must be used with the _USERENTRY calling
convention.
A routine that catches a signal (such as a floating point) also clears the signal. To continue to receive
signals, a signal handler must be reinstalled by calling signal again.

Function Pointer Description
SIG_DFL Terminates the program
SIG_ERR Indicates an error return from signal
SIG_IGN Ignore this type signal

The following table shows signal types and their defaults:

Signal Type Description
SIGBREAK Keyboard must be in raw mode.
SIGABRT Abnormal termination. Default action is equivalent to calling _exit(3).
SIGFPE Arithmetic error caused by division by 0, invalid operation, and the like. Default

action is equivalent to calling _exit(1).
SIGILL Illegal operation. Default action is equivalent to calling _exit(1).
SIGINT Ctrl-C interrupt. Default action is to do an INT 23h.
SIGSEGV Illegal storage access. Default action is equivalent to calling _exit(1).
SIGTERM Request for program termination. Default action is equivalent to calling _exit(1).

SIGUSR1, SIGUSR2, SIGUSR3
User-defined signals (available only in Win32) can be generated only by calling
raise. Default action is to ignore the signal

signal.h defines a type called sig_atomic_t, the largest integer type the processor can load or store
atomically in the presence of asynchronous interrupts (for the 8086 family, this is a 16-bit word, for
80386 and higher number processors, it is a 32-bit word -- a Borland C++ integer).
When a signal is generated by the raise function or by an external event, the following two things
happen:

If a user-specified handler has been installed for the signal, the action for that signal type is set to
SIG_DFL.

The user-specified function is called with the signal type as the parameter.
User-specified handler functions can terminate by a return or by a call to abort, _exit, exit, or longjmp. If
your handler function is expected to continue to receive and handle more signals, you must have the
handler function call signal again.
Borland C++ implements an extension to ANSI C when the signal type is SIGFPE, SIGSEGV, or SIGILL.
The user-specified handler function is called with one or two extra parameters. If SIGFPE, SIGSEGV, or
SIGILL has been raised as the result of an explicit call to the raise function, the user-specified handler is

called with one extra parameter, an integer specifying that the handler is being explicitly invoked. The
explicit activation values for SIGFPE, SIGSEGV and SIGILL are as follows
Note: Declarations of these types are defined in float.h.

SIGSEGV signal Meaning
SIGFPE FPE_EXPLICITGEN
SIGSEGV SEGV_EXPLICITGEN
SIGILL ILL_EXPLICITGEN

If SIGFPE is raised because of a floating-point exception, the user handler is called with one extra
parameter that specifies the FPE_xxx type of the signal. If SIGSEGV, SIGILL, or the integer-related
variants of SIGFPE signals (FPE_INTOVFLOW or FPE_INTDIV0) are raised as the result of a processor
exception, the user handler is called with two extra parameters:
1. The SIGFPE, SIGSEGV, or SIGILL exception type (see float.h for all these types). This first parameter

is the usual ANSI signal type.
2. An integer pointer into the stack of the interrupt handler that called the user-specified handler. This

pointer points to a list of the processor registers saved when the exception occurred. The registers
are in the same order as the parameters to an interrupt function; that is, BP, DI, SI, DS, ES, DX, CX,
BX, AX, IP, CS, FLAGS. To have a register value changed when the handler returns, change one of
the locations in this list.
For example, to have a new SI value on return, do something like this:
 ((int)list_pointer + 2) = new_SI_value;
In this way, the handler can examine and make any adjustments to the registers that you want.

The following SIGFPE-type signals can occur (or be generated). They correspond to the exceptions that
the 8087 family is capable of detecting, as well as the "INTEGER DIVIDE BY ZERO" and the
"INTERRUPT ON OVERFLOW" on the main CPU. (The declarations for these are in float.h.)

SIGFPE signal Meaning
FPE_INTOVFLOW INTO executed with OF flag set
FPE_INTDIV0 Integer divide by zero
FPE_INVALID Invalid operation
FPE_ZERODIVIDE Division by zero
FPE_OVERFLOW Numeric overflow
FPE_UNDERFLOW Numeric underflow
FPE_INEXACT Precision
FPE_EXPLICITGEN User program executed raise(SIGFPE)
FPE_STACKFAULT Floating-point stack overflow or underflow
FPE_STACKFAULT Stack overflow

The FPE_INTOVFLOW and FPE_INTDIV0 signals are generated by integer operations, and the others
are generated by floating-point operations. Whether the floating-point exceptions are generated
depends on the coprocessor control word, which can be modified with _control87. Denormal exceptions
are handled by Borland C++ and not passed to a signal handler.
The following SIGSEGV-type signals can occur:
SEGV_BOUND Bound constraint exception
SEGV_EXPLICITGEN raise(SIGSEGV) was executed

The 8088 and 8086 processors don't have a bound instruction. The 186, 286, 386, and NEC V series
processors do have this instruction. So, on the 8088 and 8086 processors, the SEGV_BOUND type of
SIGSEGV signal won't occur. Borland C++ doesn't generate bound instructions, but they can be used in

inline code and separately compiled assembler routines that are linked in.
The following SIGILL-type signals can occur:
ILL_EXECUTION Illegal operation attempted
ILL_EXPLICITGEN raise(SIGILL) was executed

The 8088, 8086, NEC V20, and NEC V30 processors do not have an illegal operation exception. The
186, 286, 386, NEC V40, and NEC V50 processors do have this exception type. On 8088, 8086, NEC
V20, and NEC V30 processors, the ILL_EXECUTION type of SIGILL won't occur.
When the signal type is SIGFPE, SIGSEGV, or SIGILL, a return from a signal handler is generally not
advisable if the state of the 8087 is corrupt, the results of an integer division are wrong, an operation
that shouldn't have overflowed did, a bound instruction failed, or an illegal operation was attempted. The
only time a return is reasonable is when the handler alters the registers so that a reasonable return
context exists or the signal type indicates that the signal was generated explicitly (for example,
FPE_EXPLICITGEN, SEGV_EXPLICITGEN, or ILL_EXPLICITGEN). Generally in this case you would
print an error message and terminate the program using _exit, exit, or abort. If a return is executed
under any other conditions, the program's action will probably be unpredictable.
Note: Take special care when using the signal function in a multithread program. The SIGINT,

SIGTERM, and SIGBREAK signals can be used only by the main thread (thread one) in a non-
Win32 application. When one of these signals occurs, the currently executing thread is
suspended, and control transfers to the signal handler (if any) set up by thread one. Other signals
can be handled by any thread.
A signal handler should not use C++ run-time library functions, because a semaphore deadlock
might occur. Instead, the handler should simply set a flag or post a semaphore, and return
immediately.

Return Value
On success, signal returns a pointer to the previous handler routine for the specified signal type.
On error, signal returns SIG_ERR, and the external variable errno is set to EINVAL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

sin, sinl
See also Example Portability

Syntax
#include <math.h>
double sin(double x);
long double sinl(long double x);
Description
Calculates sine.
sin computes the sine of the input value. Angles are specified in radians.
sinl is the long double version; it takes a long double argument and returns a long double result.
Error handling for these functions can be modified through the functions _matherr and _matherrl.

Return Value
sin and sinl return the sine of the input value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

sin + + + + + +
sinl + + + +

sinh, sinhl
See also Example Portability

Syntax
#include <math.h>
double sinh(double x);
long double sinhl(long double x);
Description
Calculates hyperbolic sine.

sinh computes the hyperbolic sine, .
sinl is the long double version; it takes a long double argument and returns a long double result. Error
handling for sinh and sinhl can be modified through the functions _matherr and _matherrl.

Return Value
sinh and sinhl return the hyperbolic sine of x.
When the correct value overflows, these functions return the value HUGE_VAL (sinh) or _LHUGE_VAL
(sinhl) of appropriate sign. Also, the global variable errno is set to ERANGE.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

sinh + + + + + +
sinhl + + + +

sleep
Example Portability

Syntax
#include <dos.h>
void sleep(unsigned seconds);
Description
Suspends execution for an interval (seconds).
With a call to sleep, the current program is suspended from execution for the number of seconds
specified by the argument seconds. The interval is accurate only to the nearest hundredth of a second
or to the accuracy of the operating system clock, whichever is less accurate.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_sopen, _wsopen
See also Example Portability

Syntax
#include <fcntl.h>
#include <sys\stat.h>
#include <share.h>
#include <io.h>
#include <stdio.h>
int _sopen(char *path, int access, int shflag[, int mode]);
int _wsopen(wchar_t *path, int access, int shflag[, int mode]);
Description
Opens a shared file.
_sopen opens the file given by path and prepares it for shared reading or writing, as determined by
access, shflag, and mode.
_wsopen is the Unicode version of _sopen. The Unicode version accepts a filename that is a wchar_t
character string. Otherwise, the functions perform identically.
For _sopen, access is constructed by ORing flags bitwise from the following lists:

Read/write flags
You can use only one of the following flags:
O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Other access flags
You can use any logical combination of the following flags:
O_NDELAY Not used; for UNIX compatibility.
O_APPEND If set, the file pointer is set to the end of the file prior to each write.
O_CREA If the file exists, this flag has no effect. If the file does not exist, the file is created,

and the bits of mode are used to set the file attribute bits as in chmod.
O_TRUNC If the file exists, its length is truncated to 0. The file attributes remain unchanged.
O_EXCL Used only with O_CREAT. If the file already exists, an error is returned.
O_BINARY This flag can be given to explicitly open the file in binary mode.
O_TEXT This flag can be given to explicitly open the file in text mode.
O_NOINHERIT The file is not passed to child programs.

Note: These O_... symbolic constants are defined in fcntl.h.
If neither O_BINARY nor O_TEXT is given, the file is opened in the translation mode set by the global
variable _fmode.
If the O_CREAT flag is used in constructing access, you need to supply the mode argument to _sopen
from the following symbolic constants defined in sys\stat.h.

Value of mode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD|S_IWRITE Permission to read/write

shflag specifies the type of file-sharing allowed on the file path. Symbolic constants for shflag are

defined in share.h.

Value of shflagWhat it does
SH_COMPAT Sets compatibility mode.
SH_DENYRW Denies read/write access
SH_DENYWR Denies write access
SH_DENYRD Denies read access
SH_DENYNONE Permits read/write access
SH_DENYNO Permits read/write access

Return Value
On success, _sopen returns a nonnegative integer (the file handle), and the file pointer (that marks the
current position in the file) is set to the beginning of the file.
On error, it returns -1, and the global variable errno is set to
EACCES ermission denied
EINVACC nvalid access code
EMFILE oo many open files
ENOENT Path or file function not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe
See also Examples Portability

Syntax
#include <process.h>
#include <stdio.h>
int spawnl(int mode, char *path, char *arg0, arg1, ..., argn, NULL);
int _wspawnl(int mode, wchar_t *path, wchar_t *arg0, arg1, ..., argn, NULL);
int spawnle(int mode, char *path, char *arg0, arg1, ..., argn, NULL, char
*envp[]);

int _wspawnle(int mode, wchar_t *path, wchar_t *arg0, arg1, ..., argn, NULL,
wchar_t *envp[]);

int spawnlp(int mode, char *path, char *arg0, arg1, ..., argn, NULL);
int _wspawnlp(int mode, wchar_t *path, wchar_t *arg0, arg1, ..., argn,
NULL);

int spawnlpe(int mode, char *path, char *arg0, arg1, ..., argn, NULL, char
*envp[]);

int _wspawnlpe(int mode, wchar_t *path, wchar_t *arg0, arg1, ..., argn,
NULL, wchar_t *envp[]);

int spawnv(int mode, char *path, char *argv[]);
int _wspawnv(int mode, wchar_t *path, wchar_t *argv[]);
int spawnve(int mode, char *path, char *argv[], char *envp[]);
int _wspawnve(int mode, wchar_t *path, wchar_t *argv[], wchar_t *envp[]);
int spawnvp(int mode, char *path, char *argv[]);
int _wspawnvp(int mode, wchar_t *path, wchar_t *argv[]);
int spawnvpe(int mode, char *path, char *argv[], char *envp[]);
int _wspawnvpe(int mode, wchar_t *path, wchar_t *argv[], wchar_t *envp[]);

Note: In spawnle, spawnlpe, spawnv, spawnve, spawnvp, and spawnvpe, the last string must be NULL.

Description
The functions in the spawn... family create and run (execute) other files, known as child processes.
There must be sufficient memory available for loading and executing a child process.
The value of mode determines what action the calling function (the parent process) takes after the
spawn... call. The possible values of mode are
P_WAIT Puts parent process on hold until child process completes execution.
P_NOWAIT Continues to run parent process while child process runs. The child process ID is

returned, so that the parent can wait for completion using cwait or wait. This mode is
currently not available for 16-bit Windows or 16-bit DOS; using it generates an error
value.

P_NOWAITO Identical to P_NOWAIT except that the child process ID isn't saved by the operating
system, so the parent process can't wait for it using cwait or wait.

P_DETACH Identical to P_NOWAITO, except that the child process is executed in the
background with no access to the keyboard or the display.

P_OVERLAY Overlays child process in memory location formerly occupied by parent. Same as an
exec... call.

path is the file name of the called child process. The spawn... function calls search for path using the
standard operating system search algorithm:

If there is no extension or no period, they search for an exact file name. If the file is not found,
they search for files first with the extension EXE, then COM, and finally BAT.

If an extension is given, they search only for the exact file name.
If only a period is given, they search only for the file name with no extension.
If path does not contain an explicit directory, spawn... functions that have the p suffix search the

current directory, then the directories set with the operating system PATH environment variable.
The suffixes p, l, and v, and e added to the spawn... "family name" specify that the named function
operates with certain capabilities.
p The function searches for the file in those directories specified by the PATH environment variable.

Without the p suffix, the function searches only the current working directory.
l The argument pointers arg0, arg1, ..., argn are passed as separate arguments. Typically, the l suffix

is used when you know in advance the number of arguments to be passed.
v The argument pointers argv[0], ..., arg[n] are passed as an array of pointers. Typically, the v suffix is

used when a variable number of arguments is to be passed.
e The argument envp can be passed to the child process, letting you alter the environment for the

child process. Without the e suffix, child processes inherit the environment of the parent process.
Each function in the spawn... family must have one of the two argument-specifying suffixes (either l or
v). The path search and environment inheritance suffixes (p and e) are optional.
For example:

spawnl takes separate arguments, searches only the current directory for the child, and passes
on the parent's environment to the child.

spawnvpe takes an array of argument pointers, incorporates PATH in its search for the child
process, and accepts the envp argument for altering the child's environment.
The spawn... functions must pass at least one argument to the child process (arg0 or argv[0]). This
argument is, by convention, a copy of path. (Using a different value for this 0 argument won't produce
an error.) If you want to pass an empty argument list to the child process, then arg0 or argv[0] must be
NULL.
Under DOS 3.x, path is available for the child process; under earlier versions, the child process cannot
use the passed value of the 0 argument (arg0 or argv[0]).
When the l suffix is used, arg0 usually points to path, and arg1,, argn point to character strings that
form the new list of arguments. A mandatory null following argn marks the end of the list.
When the e suffix is used, you pass a list of new environment settings through the argument envp. This
environment argument is an array of character pointers. Each element points to a null-terminated
character string of the form
envvar = value
where envvar is the name of an environment variable, and value is the string value to which envvar is
set. The last element in envp[] is null. When envp is null, the child inherits the parents' environment
settings.
The combined length of arg0 + arg1 + ... + argn (or of argv[0] + argv[1] + ... + argv[n]), including space
characters that separate the arguments, must be less than 260 bytes for Windows (128 for DOS). Null-
terminators are not counted.
When a spawn... function call is made, any open files remain open in the child process.

Return Value
When successful, the spawn... functions, where mode is P_WAIT, return the child process' exit status (0
for a normal termination). If the child specifically calls exit with a nonzero argument, its exit status can be
set to a nonzero value.
If mode is P_NOWAIT or P_NOWAITO, the spawn functions return the process ID of the child process.
The ID obtained when using P_NOWAIT can be passed to cwait.
On error, the spawn... functions return -1, and the global variable errno is set to one of the following
values:
E2BIG Arg list too long
EINVAL Invalid argument
ENOENT Path or file name not found

ENOEXEC Exec format error
ENOMEM Not enough memory

Examples
spawnl
spawnle
spawnlp
spawnlpe
spawnv
spawnve
spawnvp
spawnvpe

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_splitpath, _wsplitpath
See also Example Portability

Syntax
#include <stdlib.h>
void _splitpath(const char *path, char *drive, char *dir, char *name, char
*ext);

void _wsplitpath(const wchar_t *path, wchar_t *drive, wchar_t *dir, wchar_t
*name, wchar_t *ext);

Description
Splits a full path name into its components.
_splitpath takes a file's full path name (path) as a string in the form
 X:\DIR\SUBDIR\NAME.EXT
and splits path into its four components. It then stores those components in the strings pointed to by
drive, dir, name, and ext. (All five components must be passed, but any of them can be a null, which
means the corresponding component will be parsed but not stored.) The maximum sizes for these
strings are given by the constants _MAX_DRIVE, _MAX_DIR, _MAX_PATH, _MAX_FNAME, and
_MAX_EXT (defined in stdlib.h), and each size includes space for the null-terminator. These constants
are defined in stdlib.h.

Constant String
_MAX_PATH path
_MAX_DRIVE drive; includes colon (:)
_MAX_DIR dir; includes leading and trailing backslashes (\)
_MAX_FNAME name
_MAX_EXT ext; includes leading dot (.)

_splitpath assumes that there is enough space to store each non-null component.
When _splitpath splits path, it treats the punctuation as follows:

drive includes the colon (C:, A:, and so on).
dir includes the leading and trailing backslashes (\BC\include\, \source\, and so on).
name includes the file name.
ext includes the dot preceding the extension (.C, .EXE, and so on).

_makepath and _splitpath are invertible; if you split a given path with _splitpath, then merge the
resultant components with _makepath, you end up with path.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

sprintf, swprintf
See also Example Portability

Syntax
#include <stdio.h>
int sprintf(char *buffer, const char *format[, argument, ...]);
int swprintf(wchar_t *buffer, const wchar_t *format[, argument, ...]);
Description
Writes formatted output to a string.
Note: For details on format specifiers, see printf.
sprintf accepts a series of arguments, applies to each a format specifier contained in the format string
pointed to by format, and outputs the formatted data to a string.
sprintf applies the first format specifier to the first argument, the second to the second, and so on. There
must be the same number of format specifiers as arguments.

Return Value
On success, sprintf returns the number of bytes output. The return value does not include the
terminating null byte in the count.
On error, sprintf returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

sqrt, sqrtl
See also Example Portability

Syntax
#include <math.h>
double sqrt(double x);
long double sqrtl(long double x);
Description
Calculates the positive square root.
sqrt calculates the positive square root of the argument x.
sqrtl is the long double version; it takes a long double argument and returns a long double result.
Error handling for these functions can be modified through the functions _matherr and _matherrl.

Return Value
On success, sqrt and sqrtl return the value calculated, the square root of x. If x is real and positive, the
result is positive. If x is real and negative, the global variable errno is set to
EDOM Domain error

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

sqrt + + + + + +
sqrtl + + + +

srand
See also Example Portability

Syntax
#include <stdlib.h>
void srand(unsigned seed);
Description
Initializes random number generator.
The random number generator is reinitialized by calling srand with an argument value of 1. It can be set
to a new starting point by calling srand with a given seed number.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

sscanf, swscanf
See also Example Portability

Syntax
#include <stdio.h>
int sscanf(const char *buffer, const char *format[, address, ...]);
int swscanf(const wchar_t *buffer, const wchar_t *format[, address, ...]);
Description
Scans and formats input from a string.
Note: For details on format specifiers, see scanf.
sscanf scans a series of input fields, one character at a time, reading from a string. Then each field is
formatted according to a format specifier passed to sscanf in the format string pointed to by format.
Finally, sscanf stores the formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there are input fields.
sscanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely, for a number of reasons. See scanf for a discussion of possible
causes.

Return Value
On success, sscanf returns the number of input fields successfully scanned, converted, and stored; the
return value does not include scanned fields that were not stored.
If sscanf attempts to read at end-of-string, it returns EOF.
On error (If no fields were stored), it returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

stackavail
See also Example Portability

Syntax
#include <malloc.h>
size_t stackavail(void);
Description
Gets the amount of available stack memory.
stackavail returns the number of bytes available on the stack. This is the amount of dynamic memory
that alloca can access.

Return Value
stackavail returns a size_t value indicating the number of bytes available.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_status87
Example Portability

Syntax
#include <float.h>
unsigned int _status87(void);
Description
Gets floating-point status.
_status87 gets the floating-point status word, which is a combination of the 80x87 status word and other
conditions detected by the 80x87 exception handler.

Return Value
The bits in the return value give the floating-point status. See float.h for a complete definition of the bits
returned by _status87.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

stime
See also Example Portability

Syntax
#include <time.h>
int stime(time_t *tp);
Description
Sets system date and time.
stime sets the system time and date. tp points to the value of the time as measured in seconds from
00:00:00 GMT, January 1, 1970.

Return Value
stime returns a value of 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_stpcpy, _wcspcpy
See also Example Portability

Syntax
#include <string.h>
char *stpcpy(char *dest, const char *src);
wchar * _wcspcpy(wchar *dest, const wchar *src);
Description
Copies one string into another.
_stpcpy copies the string src to dest, stopping after the terminating null character of src has been
reached.

Return Value
stpcpy returns a pointer to the terminating null character of dest.
If UNICODE is defined, _wcspcpy returns a pointer to the terminating null character of the wchar_t dest
string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

strcat, _mbscat, wcscat
Example Portability

Syntax
#include <string.h>
char *strcat(char *dest, const char *src);
wchar_t *wcscat(wchar_t *dest, const wchar_t *src);

#include <mbstring.h>
unsigned char *_mbscat(unsigned char *dest, const unsigned char *src);
Description
Appends one string to another.
strcat appends a copy of src to the end of dest. The length of the resulting string is strlen(dest) +
strlen(src).

Return Value
strcat returns a pointer to the concatenated strings.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strcat + + + + + + +

_fstrcat + +

strchr, _mbschr, wcschr
See also Example Portability

Syntax
#include <string.h>
char *strchr(const char *s, int c); /* C only */

const char *strchr(const char *s, int c); // C++ only
char *strchr(char *s, int c); // C++ only
wchar_t *wcschr(const wchar_t *s, int c);

#include <mbstring.h>
unsigned char * _mbschr(const unsigned char *s, unsigned int c);

Description
Scans a string for the first occurrence of a given character.
strchr scans a string in the forward direction, looking for a specific character. strchr finds the first
occurrence of the character c in the string s. The null-terminator is considered to be part of the string.
For example:
strchr(strs,0)
returns a pointer to the terminating null character of the string strs.

Return Value
strchr returns a pointer to the first occurrence of the character c in s; if c does not occur in s, strchr
returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strchr + + + + + + +

 +

strcmp, _mbscmp, wcscmp
See also Example Portability

Syntax
#include <string.h>
int strcmp(const char *s1, const char *s2);
int wcscmp(const wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
int _mbscmp(const unsigned char *s1, const unsigned char *s2);
Description
Compares one string to another.
strcmp performs an unsigned comparison of s1 to s2, starting with the first character in each string and
continuing with subsequent characters until the corresponding characters differ or until the end of the
strings is reached.

Return Value
If s1 is... return value is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

strcmpi
See also Example Portability

Syntax
#include <string.h>
int strcmpi(const char *s1, const char *s2);
Description
Compares one string to another, without case sensitivity.
strcmpi performs an unsigned comparison of s1 to s2, without case sensitivity (same as stricmp--
implemented as a macro).
It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2 (or part of it).
The routine strcmpi is the same as stricmp. strcmpi is implemented through a macro in string.h and
translates calls from strcmpi to stricmp. Therefore, in order to use strcmpi, you must include the header
file string.h for the macro to be available. This macro is provided for compatibility with other C compilers.

Return Value
If s1 is... strcmpi returns a value that is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

strcoll, _stricoll, _mbscoll, _mbsicoll, wcscoll, _wcsicoll
See also Example Portability

Syntax
#include <string.h>
int strcoll(const char *s1, const char *s2);
int wcscoll(const wchar_t *s1, const wchar_t *s2);

int _stricoll(const char *s1, const char *s2);
int _wcsicoll(const wchar_t *s1, wconst_t char *s2);

#include <mbstring.h>
int _mbscoll(const unsigned char *s1, const unsigned char *s2);
int _mbsicoll(const unsigned char *s1, const unsigned char *s2);
Description
Compares two strings.
strcoll compares the string pointed to by s1 to the string pointed to by s2, according to the current
locale's LC_COLLATE category.
_stricoll performs like strcoll but is not case sensitive.

Return Value
If s1 is... strcoll and _stricoll return a value that is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strcoll + + + + + +
_stricoll + +

strcpy, _mbscpy, wcscpy
See also Example Portability

Syntax
#include <string.h>
char *strcpy(char *dest, const char *src);
wchar_t *wcscpy(wchar_t *dest, const wchar_t *src);

#include <mbstring.h>
unsigned char *_mbscpy(unsigned char *dest, const unsigned char *src);
Description
Copies one string into another.
Copies string src to dest, stopping after the terminating null character has been moved.

Return Value
strcpy returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

strcspn, _mbscspn, wcscspn
See also Example Portability

Syntax
#include <string.h>
size_t strcspn(const char *s1, const char *s2);
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
size_t _mbscspn(const unsigned char *s1, const unsigned char *s2);
Description
Scans a string for the initial segment not containing any subset of a given set of characters.
The strcspn functions search s1 until any one of the characters contained in s2 is found. The number of
characters which were read in s1 is the return value. The string termination character is not counted.
Neither string is altered during the search.

Return Value
strcspn returns the length of the initial segment of string s1 that consists entirely of characters not from
string s2.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strcspn + + + + + + +

_fstrcspn + +

_strdate, _wstrdate
See also Example Portability

Syntax
#include <time.h>
char *_strdate(char *buf);
wchar_t *_wstrdate(wchar_t *buf);
Description
Converts current date to string.
_strdate converts the current date to a string, storing the string in the buffer buf. The buffer must be at
least 9 characters long.
The string has the form MM/DD/YY where MM, DD, and YY are all two-digit numbers representing the
month, day, and year. The string is terminated by a null character.

Return Value
_strdate returns buf, the address of the date string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

strdup, _mbsdup, _wcsdup
See also Example Portability

Syntax
#include <string.h>
char *strdup(const char *s);
wchar_t *_wcsdup(const wchar_t *s);

#include <mbstring.h>
unsigned char *_mbsdup(const wchar_t *s);
Description
Copies a string into a newly created location.
strdup makes a duplicate of string s, obtaining space with a call to malloc. The allocated space is
(strlen(s) + 1) bytes long. The user is responsible for freeing the space allocated by strdup when it is no
longer needed.

Return Value
strdup returns a pointer to the storage location containing the duplicated string, or returns null if space
could not be allocated.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strdup + + + + +

_fstrdup + +

_strerror
See also Example Portability

Syntax
#include <string.h>
char *_strerror(const char *s);
Description
Builds a customized error message.
_strerror lets you generate customized error messages; it returns a pointer to a null-terminated string
containing an error message.

If s is null, the return value points to the most recent error message.
If s is not null, the return value contains s (your customized error message), a colon, a space, the

most-recently generated system error message, and a new line. s should be 94 characters or less.

Return Value
_strerror returns a pointer to a constructed error string. The error message string is constructed in a
static buffer that is overwritten with each call to _strerror.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

strerror
See also Example Portability

Syntax
#include <string.h>
char *strerror(int errnum);
Description
Returns a pointer to an error message string.
strerror takes an int parameter errnum, an error number, and returns a pointer to an error message
string associated with errnum.

Return Value
strerror returns a pointer to a constructed error string. The error message string is constructed in a static
buffer that is overwritten with each call to strerror.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strftime, wcsftime
See also Example Portability

Syntax
#include <time.h>
size_t strftime(char *s, size_t maxsize, const char *fmt, const struct tm
*t);

size_t wcsftime(wchar_t *s, size_t maxsize, const wchar_t *fmt, const struct
tm *t);

Description
Formats time for output.
strftime formats the time in the argument t into the array pointed to by the argument s according to the
fmt specifications. All ordinary characters are copied unchanged. No more than maxsize characters are
placed in s.
The time is formatted according to the current locale's LC_TIME category.

Return Value
On success, strftime returns the number of characters placed into s.
On error (if the number of characters required is greater than maxsize), strftime returns 0.

More about strftime
ANSI-defined format specifiers
POSIX-defined Format Specifiers
POSIX-defined Format Specifier Modifiers

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strftime Format String
Consists of zero or more directives and ordinary characters. A directive consists of the % character
followed by a character that determines the substitution that is to take place.

ANSI-defined Format Specifiers for strftime
See also
The following table describes the ANSI-defined specifiers for the format string used with strftime.

Format specifier Substitutes
%% Character %
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%c Date and time
%d Two-digit day of month (01 - 31)
%H Two-digit hour (00 - 23)
%I Two-digit hour (01 - 12)
%j Three-digit day of year (001 - 366)
%m Two-digit month as a decimal number (1 - 12)
%M 2-digit minute (00 - 59)
%p AM or PM
%S Two-digit second (00 - 59)
%U Two-digit week number where Sunday is the first day of the week (00 - 53)
%w Weekday where 0 is Sunday (0 - 6)
%W Two-digit week number where Monday is the first day of week the week (00 - 53)
%x Date
%X Time
%y Two-digit year without century (00 to 99)
%Y Year with century
%Z Time zone name, or no characters if no time zone

POSIX-defined Format Specifiers for strftime
See also
The following table describes the POSIX-defined specifiers for the format string used with strftime.
Note: You must define __USELOCALES__ in order to use these descriptors.

Format specifier Substitution
%C Century as a decimal number (00 - 99). For example, 1992 => 19
%D Date in the format mm/dd/yy
%e Day of the month as a decimal number in a two-digit field with leading space (1

-31)
%h A synonym for %b
%n Newline character
%r 12-hour time (01 - 12) format with am/pm string i.e. "%I:%M:%S %p"
%t Tab character
%T 24-hour time (00 - 23) in the format "HH:MM:SS"
%u Weekday as a decimal number (1 Monday - 7 Sunday)

Modifiers
strftime also supports POSIX-defined modifiers for certain specifiers. See POSIX-defined Format
Specifier Modifiers.

POSIX-defined Format Specifier Modifiers for strftime
See also
The following table describes the POSIX-defined modifiers for the following format string specifiers used
with strftime.
Note: You must define __USELOCALES__ in order to use these descriptors.

Descriptor modifier Substitutes
%Od Day of the month using alternate numeric symbols
%Oe Day of the month using alternate numeric symbols
%OH Hour (24 hour) using alternate numeric symbols
%OI Hour (12 hour) using alternate numeric symbols
%Om Month using alternate numeric symbols
%OM Minutes using alternate numeric symbols
%OS Seconds using alternate numeric symbols
%Ou Weekday as a number using alternate numeric symbols
%OU Week number of the year using alternate numeric symbols
%Ow Weekday as number using alternate numeric symbols
%OW Week number of the year using alternate numeric symbols
%Oy Year (offset from %C) using alternate numeric symbols

%O modifier
When the %O modifier is used before any of the above supported numeric format descriptors (for
example, %Od), the numeric value is converted to the corresponding ordinal string, if it exists. If an
ordinal string does not exist, the basic format descriptor is used unmodified.
For example, on 4/20/94:

%d produces 20
%Od produces 20th

stricmp, _mbsicmp, _wcsicmp
See also Example Portability

Syntax
#include <string.h>
int stricmp(const char *s1, const char *s2);
int _wcsicmp(const wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
int _mbsicmp(const unsigned char *s1, const unsigned char *s2);
Description
Compares one string to another, without case sensitivity.
stricmp performs an unsigned comparison of s1 to s2, starting with the first character in each string and
continuing with subsequent characters until the corresponding characters differ or until the end of the
strings is reached. The comparison is not case sensitive.
It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2 (or part of it).
The routines stricmp and strcmpi are the same; strcmpi is implemented through a macro in string.h that
translates calls from strcmpi to stricmp. Therefore, in order to use stricmp, you must include the header
file string.h for the macro to be available.

Return Value
If s1 is... stricmp returns a value that is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

stricmp + + + + + + +

_fstricmp + +

strlen, _mbslen, wcslen, _mbstrlen
Example Portability

Syntax
#include <string.h>
size_t strlen(const char *s);
size_t wcslen(const wchar_t *s);

#include <mbstring.h>
size_t _mbslen(const unsigned char *s);

#include <stdlib.h>
size_t _mbstrlen(const char *s)
Description
Calculates the length of a string.
strlen calculates the length of s.
_mbslen and _mbstrlen test the string argument to determine the number of multibyte characters they
contain.
_mbstrlen is affected by the LC_CTYPE category setting as determined by the setlocale function. The
function tests to determine whether the string argument is a valid multibyte string.
_mbslen is affected by the code page that is in use. This function doesn’t test for multibyte validity.

Return Value
strlen returns the number of characters in s, not counting the null-terminating character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strlen + + + + + + +

_fstrlen + +

strlwr, _mbslwr, _wcslwr
See also Example Portability

Syntax
#include <string.h>
char *strlwr(char *s);
wchar_t *_wcslwr(wchar_t *s);

#include <mbstring.h>
unsigned char *_mbslwr(unsigned char *s);
Description
Converts uppercase letters in a string to lowercase.
strlwr converts uppercase letters in string s to lowercase according to the current locale's LC_CTYPE
category. For the C locale, the conversion is from uppercase letters (A to Z) to lowercase letters (a to z).
No other characters are changed.

Return Value
strlwr returns a pointer to the string s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strlwr + + + + + + +

_fstrlwr + +

strncat, _mbsncat, wcsncat
Example Portability

Syntax
#include <string.h>
char *strncat(char *dest, const char *src, size_t maxlen);
wchar_t *wcsncat(wchar_t *dest, const wchar_t *src, size_t maxlen);

#include <mbstring.h>
unsigned char *_mbsncat(unsigned char *dest, const unsigned char *src,
size_t maxlen);

Description
Appends a portion of one string to another.
strncat copies at most maxlen characters of src to the end of dest and then appends a null character.
The maximum length of the resulting string is strlen(dest) + maxlen.
These three functions behave identically and differ only with respect to the type of arguments and return
types.

Return Value
strncat returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strncat + + + + + + +

strncmp, _mbsncmp, wcsncmp
See also Example Portability

Syntax
#include <string.h>
int strncmp(const char *s1, const char *s2, size_t maxlen);
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t maxlen);

#include <mbstring.h>
int _mbsncmp(const unsigned char *s1, const unsigned char *s2, size_t
maxlen);

Description
Compares a portion of one string to a portion of another.
strncmp makes the same unsigned comparison as strcmp, but looks at no more than maxlen characters.
It starts with the first character in each string and continues with subsequent characters until the
corresponding characters differ or until it has examined maxlen characters.

Return Value
strncmp returns an int value based on the result of comparing s1 (or part of it) to s2 (or part of it):

< 0 if s1 is less than s2
== 0 if s1 is the same as s2
> 0 if s1 is greater than s2

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strncmp + + + + + + +

_fstrncmp + +

_strncoll, _strnicoll, _mbsncoll, _mbsnicoll, _wcsncoll, _wcsnicoll
See also Portability

Syntax
#include <string.h>
int _strncoll(const char *s1, const char *s2, size_t n);
int _wcsncoll(const wchar_t *s1, const wchar_t *s2, size_t n);

int _strnicoll(const char *s1, const char *s2, size_t n);
int _wcsnicoll(const wchar_t *s1, const wchar_t *s2, size_t n);

#include <mbstring.h>
int _mbsncoll(const unsigned char *s1, const unsigned char *s2, size_t n);
int _mbsnicoll(const unsigned char *s1, const unsigned char *s2, size_t n);
Description
_strncoll compares n number of elements from the string pointed to by s1 to the string pointed to by s2,
according to the current locale's LC_COLLATE category.
_strnicoll performs like _strncoll but is not case sensitive.

Return Value
If s1 is... _strncoll and _strnicoll return a value that is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

strncmpi, wcsncmpi
Example Portability

Syntax
#include <string.h>
int strncmpi(const char *s1, const char *s2, size_t n);
int wcsncmpi(const wchar_t *s1, const wchar_t *s2, size_t n);
Description
Compares a portion of one string to a portion of another, without case sensitivity.
strncmpi performs a signed comparison of s1 to s2, for a maximum length of n bytes, starting with the
first character in each string and continuing with subsequent characters until the corresponding
characters differ or until n characters have been examined. The comparison is not case sensitive.
(strncmpi is the same as strnicmp--implemented as a macro). It returns a value (< 0, 0, or > 0) based on
the result of comparing s1 (or part of it) to s2 (or part of it).
The routines strnicmp and strncmpi are the same; strncmpi is implemented through a macro in string.h
that translates calls from strncmpi to strnicmp. Therefore, in order to use strncmpi, you must include the
header file string.h for the macro to be available. This macro is provided for compatibility with other C
compilers.

Return Value
If s1 is... strncmpi returns a value that is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

strncpy, _mbsncpy, wcsncpy
Example Portability

Syntax
#include <stdio.h>
char *strncpy(char *dest, const char *src, size_t maxlen);
wchar_t *wcsncpy(wchar_t *dest, const wchar_t *src, size_t maxlen);

#include <mbstring.h>
unsigned char *_mbsncpy(unsigned char *dest, const unsigned char *src,
size_t maxlen);

Description
Copies a given number of bytes from one string into another, truncating or padding as necessary.
strncpy copies up to maxlen characters from src into dest, truncating or null-padding dest. The target
string, dest, might not be null-terminated if the length of src is maxlen or more.

Return Value
strncpy returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strncpy + + + + + + +

_fstrncpy + +

_strnextc, _mbsnextc, _wcsnextc
Example

Syntax
#include <tchar.h>
unsigned int _strnextc(const char *str);

#include <mbstring.h>
unsigned int _mbsnextc (const unsigned char *str);
Description
These routines should be accessed by using the portable _tcsnextc function. The functions inspect the
current character in str. The pointer to str is not advanced.

Return Value
The functions return the integer value of the character pointed to by str.

strnicmp, _mbsnicmp, _wcsnicmp
Example Portability

Syntax
#include <string.h>
int strnicmp(const char *s1, const char *s2, size_t maxlen);
int _wcsnicmp(const wchar_t *s1, const wchar_t *s2, size_t maxlen);

#include <mbstring.h>
int _mbsnicmp(const unsigned char *s1, const unsigned char *s2, size_t
maxlen);

Description
Compares a portion of one string to a portion of another, without case sensitivity.
strnicmp performs a signed comparison of s1 to s2, for a maximum length of maxlen bytes, starting with
the first character in each string and continuing with subsequent characters until the corresponding
characters differ or until the end of the strings is reached. The comparison is not case sensitive.
It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2 (or part of it).

Return Value
If s1 is... strnicmp returns a value that is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strnicmp + + + +

_fstrnicmp + +

strnset, _mbsnset, _wcsnset
Example Portability

Syntax
#include <string.h>
char *strnset(char *s, int ch, size_t n);
wchar_t *_wcsnset(wchar_t *s, wchar_t ch, size_t n);

#include <mbstring.h>
unsigned char *_mbsnset(unsigned char *s, unsigned int ch, size_t n);
Description
Sets a specified number of characters in a string to a given character.
strnset copies the character ch into the first n bytes of the string s. If n > strlen(s), then strlen(s) replaces
n. It stops when n characters have been set, or when a null character is found.

Return Value
Each of these functions return s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strnset + + + +

_fstrnset + +

strpbrk, _mbspbrk, wcspbrk
Example Portability

Syntax
#include <string.h>
char *strpbrk(const char *s1, const char *s2); /* C only */
const char *strpbrk(const char *s1, const char *s2); // C++ only
char *strpbrk(char *s1, const char *s2); // C++ only
wchar_t * wcspbrk(const wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
unsigned char *_mbspbrk(const unsigned char *s1, const unsigned char *s2);
Description
Scans a string for the first occurrence of any character from a given set.
strpbrk scans a string, s1, for the first occurrence of any character appearing in s2.

Return Value
strpbrk returns a pointer to the first occurrence of any of the characters in s2. If none of the s2
characters occur in s1, strpbrk returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strpbrk + + + + + + +

_fstpbrk + +

strrchr, _mbsrchr, wcsrchr
See also Example Portability

Syntax
char *strrchr(const char *s, int c); /* C only */

const char *strrchr(const char *s, int c); // C++ only
char *strrchr(char *s, int c); // C++ only
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

#include <mbstring.h>
unsigned char * _mbsrchr(const unsigned char *s, unsigned int c);

Description
Scans a string for the last occurrence of a given character.
strrchr scans a string in the reverse direction, looking for a specific character. strrchr finds the last
occurrence of the character c in the string s. The null-terminator is considered to be part of the string.

Return Value
strrchr returns a pointer to the last occurrence of the character c. If c does not occur in s, strrchr returns
null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strrchr + + + + + + +

_fstrrchr + +

strrev, _mbsrev, _wcsrev
Example Portability

Syntax
#include <string.h>
char *strrev(char *s);
wchar_t *_wcsrev(wchar_t *s);

#include <mbstring.h>
unsigned char *_mbsrev(unsigned char *s);
Description
Reverses a string.
strrev changes all characters in a string to reverse order, except the terminating null character. (For
example, it would change string\0 to gnirts\0.)

Return Value
strrev returns a pointer to the reversed string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strrev + + + +

_fstrrev + +

strset, _mbsset, _wcsset
See also Example Portability

Syntax
#include <string.h>
char *strset(char *s, int ch);
wchar_t *_wcsset(wchar_t *s, wchar_t ch);

#include <mbstring.h>
unsigned char *_mbsset(unsigned char *s, unsigned int ch);
Description
Sets all characters in a string to a given character.
strset sets all characters in the string s to the character ch. It quits when the terminating null character is
found.

Return Value
strset returns s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strset + + + +

_fstrset + +

strspn, _mbsspn, wcsspn
See also Example Portability

Syntax
#include <string.h>
size_t strspn(const char *s1, const char *s2);
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
size_t _mbsspn(const unsigned char *s1, const unsigned char *s2);
Description
Scans a string for the first segment that is a subset of a given set of characters.
strspn finds the initial segment of string s1 that consists entirely of characters from string s2.

Return Value
strspn returns the length of the initial segment of s1 that consists entirely of characters from s2.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strspn + + + + + + +

_fstrspn + +

strstr, _mbsstr, wcsstr
Example Portability

Syntax
#include <string.h>
char *strstr(const char *s1, const char *s2); /* C only */
const char *strstr(const char *s1, const char *s2); // C++ only
char *strstr(char *s1, const char *s2); // C++ only
wchar_t * wcsstr(const wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
unsigned char * _mbsstr(const unsigned char *s1, const unsigned char *s2);
Description
Scans a string for the occurrence of a given substring.
strstr scans s1 for the first occurrence of the substring s2.

Return Value
strstr returns a pointer to the element in s1, where s2 begins (points to s2 in s1). If s2 does not occur in
s1, strstr returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strstr + + + + + + +

_fstrstr + +

_strtime, _wstrtime
See also Example Portability

Syntax
#include <time.h>
char *_strtime(char *buf);
wchar_t *_wstrtime(wchar_t *buf);
Description
Converts current time to string.
_strtime converts the current time to a string, storing the string in the buffer buf. The buffer must be at
least 9 characters long.
The string has the following form:
 HH:MM:SS
where HH, MM, and SS are all two-digit numbers representing the hour, minute, and second,
respectively. The string is terminated by a null character.

Return Value
_strtime returns buf, the address of the time string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

strtod, _strtold, wcstod, _wcstold
See also Example Portability

Syntax
#include <stdlib.h>
double strtod(const char *s, char **endptr);
double wcstod(const wchar_t *s, wchar_t **endptr);
long double _strtold(const char *s, char **endptr);
long double _wcstold(const wchar_t *s, wchar_t **endptr);
Description
Convert a string to a double or long double value.
strtod converts a character string, s, to a double value. s is a sequence of characters that can be
interpreted as a double value; the characters must match this generic format:
 [ws] [sn] [ddd] [.] [ddd] [fmt[sn]ddd]
where:

[ws] = optional whitespace
[sn] = optional sign (+ or -)
[ddd] = optional digits
[fmt] = optional e or E
[.] = optional decimal point

strtod also recognizes +INF and -INF for plus and minus infinity, and +NAN and -NAN for Not-a-Number.
For example, here are some character strings that strtod can convert to double:
 + 1231.1981 e-1
 502.85E2
 + 2010.952
strtod stops reading the string at the first character that cannot be interpreted as an appropriate part of a
double value.
If endptr is not null, strtod sets *endptr to point to the character that stopped the scan (*endptr =
&stopper). endptr is useful for error detection.
_strtold is the long double version; it converts a string to a long double value.

Return Value
These functions return the value of s as a double (strtod) or a long double (_strtold). In case of
overflow, they return plus or minus HUGE_VAL (strtod) or _LHUGE_VAL (_strtold).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strtod + + + + + + +
_strtold + + + +

strtok, _mbstok, wcstok
Example Portability

Syntax
#include <string.h>
char *strtok(char *s1, const char *s2);
wchar_t *wcstok(wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
unsigned char *_mbstok(unsigned char *s1, const unsigned char *s2);
Description
Searches one string for tokens, which are separated by delimiters defined in a second string.
strtok considers the string s1 to consist of a sequence of zero or more text tokens, separated by spans
of one or more characters from the separator string s2.
The first call to strtok returns a pointer to the first character of the first token in s1 and writes a null
character into s1 immediately following the returned token. Subsequent calls with null for the first
argument will work through the string s1 in this way, until no tokens remain.
The separator string, s2, can be different from call to call.
Note: Calls to strtok cannot be nested with a function call that also uses strtok. Doing so will causes an

endless loop.

Return Value
strtok returns a pointer to the token found in s1. A NULL pointer is returned when there are no more
tokens.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strtok + + + + + + +

_fstrtok + +

strtol, wcstol
See also Example Portability

Syntax
#include <stdlib.h>
long strtol(const char *s, char **endptr, int radix);
long wcstol(const wchar_t *s, wchar_t **endptr, int radix);
Description
Converts a string to a long value.
strtol converts a character string, s, to a long integer value. s is a sequence of characters that can be
interpreted as a long value; the characters must match this generic format:
 [ws] [sn] [0] [x] [ddd]
where:

[ws] = optional whitespace
[sn] = optional sign (+ or -)
[0] = optional zero (0)
[x] = optional x or X
[ddd] = optional digits

strtol stops reading the string at the first character it doesn't recognize.
If radix is between 2 and 36, the long integer is expressed in base radix. If radix is 0, the first few
characters of s determine the base of the value being converted.

First character Second character String interpreted as...
0 1 - 7 Octal
0 x or X Hexadecimal
1 - 9 Decimal

If radix is 1, it is considered to be an invalid value. If radix is less than 0 or greater than 36, it is
considered to be an invalid value.
Any invalid value for radix causes the result to be 0 and sets the next character pointer *endptr to the
starting string pointer.
If the value in s is meant to be interpreted as octal, any character other than 0 to 7 will be unrecognized.
If the value in s is meant to be interpreted as decimal, any character other than 0 to 9 will be
unrecognized.
If the value in s is meant to be interpreted as a number in any other base, then only the numerals and
letters used to represent numbers in that base will be recognized. (For example, if radix equals 5, only 0
to 4 will be recognized; if radix equals 20, only 0 to 9 and A to J will be recognized.)
If endptr is not null, strtol sets *endptr to point to the character that stopped the scan (*endptr =
&stopper).

Return Value
strtol returns the value of the converted string, or 0 on error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strtoul, wcstoul
See also Example Portability

Syntax
#include <stdlib.h>
unsigned long strtoul(const char *s, char **endptr, int radix);
unsigned long wcstoul(const wchar_t *s, wchar_t **endptr, int radix);
Description
Converts a string to an unsigned long in the given radix.
strtoul operates the same as strtol, except that it converts a string str to an unsigned long value (where
strtol converts to a long). Refer to the entry for strtol for more information.

Return Value
strtoul returns the converted value, an unsigned long, or 0 on error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strupr, _mbsupr, _wcsupr
See also Example Portability

Syntax
#include <string.h>
char *strupr(char *s);
wchar_t *_wcsupr(wchar_t *s);

#include <mbstring.h>
unsigned char *_mbsupr(unsigned char *s);
Description
Converts lowercase letters in a string to uppercase.
strupr converts lowercase letters in string s to uppercase according to the current locale's LC_CTYPE
category. For the default C locale, the conversion is from lowercase letters (a to z) to uppercase letters
(A to Z). No other characters are changed.

Return Value
strupr returns s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strupr + + + +

_fstrupr + +

strxfrm, wcsxfrm
See also Example Portability

Syntax
#include<string.h>
size_t strxfrm(char *target, const char *source, size_t n);
size_t wcsxfrm(wchar_t *target, const wchar_t *source, size_t n);
Description
Transforms a portion of a string to a specified collation.
strxfrm transforms the string pointed to by source into the string target for no more than n characters.
The transformation is such that if the strcmp function is applied to the resulting strings, its return
corresponds with the return values of the strcoll function.
No more than n characters, including the terminating null character, are copied to target.
strxfrm transforms a character string into a special string according to the current locale's LC_COLLATE
category. The special string that is built can be compared with another of the same type, byte for byte, to
achieve a locale-correct collation result. These special strings, which can be thought of as keys or
tokenized strings, are not compatible across the different locales.
The tokens in the tokenized strings are built from the collation weights used by strcoll from the active
locale's collation tables.
Processing stops only after all levels have been processed for the character string or the length of the
tokenized string is equal to the maxlen parameter.
All redundant tokens are removed from each level's set of tokens.
The tokenized string buffer must be large enough to contain the resulting tokenized string. The length of
this buffer depends on the size of the character string, the number of collation levels, the rules for each
level and whether there are any special characters in the character string. Certain special characters
can cause extra character processing of the string resulting in more space requirements. For example,
the French character "oe" will take double the space for itself because in some locales, it expands to
collation weights for each level. Substrings that have substitutions will also cause extra space
requirements.
There is no safe formula to determine the required string buffer size, but at least (levels * string length)
are required.

Return Value
Number of characters copied not including the terminating null character. If the value returned is greater
than or equal to n, the content of target is indeterminate.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

swab
Example Portability

Syntax
#include <stdlib.h>
void swab(char *from, char *to, int nbytes);
Description
Swaps bytes.
swab copies nbytes bytes from the from string to the to string. Adjacent even- and odd-byte positions
are swapped. This is useful for moving data from one machine to another machine with a different byte
order. nbytes should be even.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

system, _wsystem
See also Example Portability

Syntax
#include <stdlib.h>
int system(const char *command);
int _wsystem(const wchar_t *command);
Description
Issues an operating system command.
system invokes the operating system command processor to execute an operating system command,
batch file, or other program named by the string command, from inside an executing C program.
To be located and executed, the program must be in the current directory or in one of the directories
listed in the PATH string in the environment.
The COMSPEC environment variable is used to find the command processor program file, so that file
need not be in the current directory.

Return Value
If command is a NULL pointer, system returns nonzero if a command processor is available.
If command is not a NULL pointer, system returns 0 if the command processor was successfully started.
If an error occurred, a -1 is returned and errno is set to one of the following:
ENOENT Path or file function not found
ENOEXEC Exec format error
ENOMEM Not enough memory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

tan, tanl
See also Example Portability

Syntax
#include <math.h>
double tan(double x);
long double tanl(long double x);
Description
Calculates the tangent.
tan calculates the tangent. Angles are specified in radians.
tanl is the long double version; it takes a long double argument and returns a long double result.
Error handling for these routines can be modified through the functions _matherr and _matherrl.

Return Value
tan and tanl return the tangent of x, sin(x)/cos(x).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

tan + + + + + + +
tanl + + + +

tanh, tanhl
See also Example Portability

Syntax
#include <math.h>
double tanh(double x);
long double tanhl(long double x);
Description
Calculates the hyperbolic tangent.
tanh computes the hyperbolic tangent, sinh(x)/cosh(x).
tanhl is the long double version; it takes a long double argument and returns a long double result.
Error handling for these functions can be modified through the functions _matherr and _matherrl.

Return Value
tanh and tanhl return the hyperbolic tangent of x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

tanh + + + + + + +
tanhl + + + +

tell
See also Example Portability

Syntax
#include <io.h>
long tell(int handle);
Description
Gets the current position of a file pointer.
tell gets the current position of the file pointer associated with handle and expresses it as the number of
bytes from the beginning of the file.

Return Value
tell returns the current file pointer position. A return of -1 (long) indicates an error, and the global
variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_tempnam, _wtempnam
See also Example Portability

Syntax
#include <stdio.h>
char *_tempnam(char *dir, char *prefix)
wchar_t *_wtempnam(wchar_t *dir, wchar_t *prefix)
Description
Creates a unique file name in specified directory.
The _tempnam function accepts single-byte or multibyte string arguments.
The _tempnam function creates a unique file name in arbitrary directories. The unique file is not actually
created; _tempnam only verifies that it does not currently exist. It attempts to use the following
directories, in the order shown, when creating the file name:

The directory specified by the TMP environment variable.
The dir argument to _tempnam.
The P_tmpdir definition in stdio.h. If you edit stdio.h and change this definition, _tempnam will not

use the new definition.
The current working directory.

If any of these directories is NULL, or undefined, or does not exist, it is skipped.
The prefix argument specifies the first part of the file name; it cannot be longer than 5 characters, and
cannot contain a period (.). A unique file name is created by concatenating the directory name, the
prefix, and 6 unique characters. Space for the resulting file name is allocated with malloc; when this file
name is no longer needed, the caller should call free to free it.
If you do create a temporary file using the name constructed by _tempnam, it is your responsibility to
delete the file name (for example, with a call to remove). It is not deleted automatically. (tmpfile does
delete the file name.)

Return Value
If _tempnam is successful, it returns a pointer to the unique temporary file name, which the caller can
pass to free when it is no longer needed. Otherwise, if _tempnam cannot create a unique file name, it
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

textattr
See also Example Portability

Syntax
#include <conio.h>
void textattr(int newattr);
Description
Sets text attributes.
Note: Do not use this function for Win32s or Win32 GUI applications.
textattr lets you set both the foreground and background colors in a single call. (Normally, you set the
attributes with textcolor and textbackground.)
This function does not affect any characters currently onscreen; it affects only those characters
displayed by functions (such as cprintf) performing text mode, direct video output after this function is
called.
The color information is encoded in the newattr parameter as follows:

In this 8-bit newattr parameter:
ffff is the 4-bit foreground color (0 to 15).
bbb is the 3-bit background color (0 to 7).
B is the blink-enable bit.

If the blink-enable bit is on, the character blinks. This can be accomplished by adding the constant
BLINK to the attribute.
If you use the symbolic color constants defined in conio.h for creating text attributes with textattr, note

the following limitations on the color you select for the background:
You can select only one of the first eight colors for the background.
You must shift the selected background color left by 4 bits to move it into the correct bit positions.

These symbolic constants are listed in the following table:

Symbolic constant Numeric value Foreground or background
BLACK 0 Both
BLUE 1 Both
GREEN 2 Both
CYAN 3 Both
RED 4 Both
MAGENTA 5 Both
BROWN 6 Both
LIGHTGRAY 7 Both
DARKGRAY 8 Foreground only
LIGHTBLUE 9 Foreground only
LIGHTGREEN 10 Foreground only
LIGHTCYAN 11 Foreground only
LIGHTRED 12 Foreground only
LIGHTMAGENTA 13 Foreground only
YELLOW 14 Foreground only

WHITE 15 Foreground only
BLINK 128 Foreground only

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

textbackground
See also Example Portability

Syntax
#include <conio.h>
void textbackground(int newcolor);
Description
Selects new text background color.
Note: Do not use this function for Win32s or Win32 GUI applications.
textbackground selects the background color. This function works for functions that produce output in
text mode directly to the screen. newcolor selects the new background color. You can set newcolor to an
integer from 0 to 7, or to one of the symbolic constants defined in conio.h. If you use symbolic constants,
you must include conio.h.
Once you have called textbackground, all subsequent functions using direct video output (such as
cprintf) will use newcolor. textbackground does not affect any characters currently onscreen.
The following table lists the symbolic constants and the numeric values of the allowable colors:

Symbolic constant Numeric value
BLACK 0
BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
BROWN 6
LIGHTGRAY 7

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

textcolor
See also Example Portability

Syntax
#include <conio.h>
void textcolor(int newcolor);
Description
Selects new character color in text mode.
Note: Do not use this function for Win32s or Win32 GUI applications.
textcolor selects the foreground character color. This function works for the console output functions.
newcolor selects the new foreground color. You can set newcolor to an integer as given in the table
below, or to one of the symbolic constants defined in conio.h. If you use symbolic constants, you must
include conio.h.
Once you have called textcolor, all subsequent functions using direct video output (such as cprintf) will
use newcolor. textcolor does not affect any characters currently onscreen.
The following table lists the allowable colors (as symbolic constants) and their numeric values:

Symbolic constant Numeric value
BLACK 0
BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
BROWN 6
LIGHTGRAY 7
DARKGRAY 8
LIGHTBLUE 9
LIGHTGREEN 10
LIGHTCYAN 11
LIGHTRED 12
LIGHTMAGENTA 13
YELLOW 14
WHITE 15
BLINK 128

You can make the characters blink by adding 128 to the foreground color. The predefined constant
BLINK exists for this purpose.
For example:
 textcolor(CYAN + BLINK);
Note: Some monitors do not recognize the intensity signal used to create the eight "light" colors (8-15).

On such monitors, the light colors are displayed as their "dark" equivalents (0-7). Also, systems
that do not display in color can treat these numbers as shades of one color, special patterns, or
special attributes (such as underlined, bold, italics, and so on). Exactly what you'll see on such
systems depends on your hardware.

Return Value

None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

textmode
See also Example Portability

Syntax
#include <conio.h>
void textmode(int newmode);
Description
Puts screen in text mode.
Note: Do not use this function for Win32s or Win32 GUI applications.
textmode selects a specific text mode.
You can give the text mode (the argument newmode) by using a symbolic constant from the
enumeration type text_modes (defined in conio.h).
The most commonly used text_modes type constants and the modes they specify are given in the
following table. Some additional values are defined in conio.h.

Symbolic Constant Text Mode
LASTMODE Previous text mode
BW40 Black and white, 40 columns
C40 Color, 40 columns
BW80 Black and white, 80 columns
C80 Color, 80 columns
MONO Monochrome, 80 columns
C4350 EGA 43-line and VGA 50-line modes

When textmode is called, the current window is reset to the entire screen, and the current text attributes
are reset to normal, corresponding to a call to normvideo.
Specifying LASTMODE to textmode causes the most recently selected text mode to be reselected.
textmode should be used only when the screen or window is in text mode (presumably to change to a
different text mode). This is the only context in which textmode should be used. When the screen is in
graphics mode, use restorecrtmode instead to escape temporarily to text mode.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

time
See also Example Portability

Syntax
#include <time.h>
time_t time(time_t *timer);
Description
Gets time of day.
time gives the current time, in seconds, elapsed since 00:00:00 GMT, January 1, 1970, and stores that
value in the location pointed to by timer, provided that timer is not a NULL pointer.

Return Value
time returns the elapsed time in seconds.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

tmpfile
See also Example Portability

Syntax
#include <stdio.h>
FILE *tmpfile(void);
Description
Opens a "scratch" file in binary mode.
tmpfile creates a temporary binary file and opens it for update (w + b). If you do not change the directory
after creating the temporary file, the file is automatically removed when it's closed or when your program
terminates.

Return Value
tmpfile returns a pointer to the stream of the temporary file created. If the file can't be created, tmpfile
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

tmpnam, _wtmpnam
See also Example Portability

Syntax
#include <stdio.h>
char *tmpnam(char *s);
wchar_t *_wtmpnam(wchar_t *s);
Description
Creates a unique file name.
tmpnam creates a unique file name, which can safely be used as the name of a temporary file. tmpnam
generates a different string each time you call it, up to TMP_MAX times. TMP_MAX is defined in stdio.h
as 65,535.
The parameter to tmpnam, s, is either null or a pointer to an array of at least L_tmpnam characters.
L_tmpnam is defined in stdio.h. If s is NULL, tmpnam leaves the generated temporary file name in an
internal static object and returns a pointer to that object. If s is not NULL, tmpnam overwrites the internal
static object and places its result in the pointed-to array, which must be at least L_tmpnam characters
long, and returns s.
If you do create such a temporary file with tmpnam, it is your responsibility to delete the file name (for
example, with a call to remove). It is not deleted automatically. (tmpfile does delete the file name.)

Return Value
If s is null, tmpnam returns a pointer to an internal static object. Otherwise, tmpnam returns s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

toascii
Example Portability

Syntax
#include <ctype.h>
int toascii(int c);
Description
Translates characters to ASCII format.
toascii is a macro that converts the integer c to ASCII by clearing all but the lower 7 bits; this gives a
value in the range 0 to 127.

Return Value
toascii returns the converted value of c.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_tolower
Example Portability

Syntax
#include <ctype.h>
int _tolower(int ch);
Description
_tolower is a macro that does the same conversion as tolower, except that it should be used only when
ch is known to be uppercase (AZ).
To use _tolower, you must include ctype.h.

Return Value
_tolower returns the converted value of ch if it is uppercase; otherwise, the result is undefined.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

tolower, _mbctolower, towlower
Example Portability

Syntax
#include <ctype.h>
int tolower(int ch);
int towlower(wint_t ch); // Unicode version

#include <mbstring.h>
unsigned int _mbctolower(unsigned int c);
Description
Translates characters to lowercase.
tolower is a function that converts an integer ch (in the range EOF to 255) to its lowercase value (a to z;
if it was uppercase, A to Z). All others are left unchanged.

Return Value
tolower returns the converted value of ch if it is uppercase; it returns all others unchanged.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_toupper
Example Portability

Syntax
#include <ctype.h>
int _toupper(int ch);
Description
Translates characters to uppercase.
_toupper is a macro that does the same conversion as toupper, except that it should be used only when
ch is known to be lowercase (a to z).
To use _toupper, you must include ctype.h.

Return Value
_toupper returns the converted value of ch if it is lowercase; otherwise, the result is undefined.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

toupper, _mbctoupper, towupper
Example Portability

Syntax
#include <ctype.h>
int toupper(int ch);
int towupper(wint_t ch); // Unicode version

#include <mbstring.h>
unsigned int _mbctoupper(unsigned int c);
Description
Translates characters to uppercase.
toupper is a function that converts an integer ch (in the range EOF to 255) to its uppercase value (A to
Z; if it was lowercase, a to z). All others are left unchanged.
towupper is the Unicode version of toupper. It is available when Unicode is defined.

Return Value
toupper returns the converted value of ch if it is lowercase; it returns all others unchanged.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_tzset, _wtzset
See also Example Portability

Syntax
#include <time.h>
void _tzset(void)
void _wtzset(void)
Description
Sets value of global variables _daylight, _timezone, and _tzname.
_tzset is available on XENIX systems.
_tzset sets the _daylight, _timezone, and _tzname global variables based on the environment variable
TZ. _wtzset sets the _daylight, _timezone, and _wtzname global variables. The library functions ftime
and localtime use these global variables to adjust Greenwich Mean Time (GMT) to the local time zone.
The format of the TZ environment string is:
 TZ = zzz[+/-]d[d][lll]
where zzz is a three-character string representing the name of the current time zone. All three
characters are required. For example, the string "PST" could be used to represent Pacific standard time.
[+/-]d[d] is a required field containing an optionally signed number with 1 or more digits. This number is
the local time zone's difference from GMT in hours. Positive numbers adjust westward from GMT.
Negative numbers adjust eastward from GMT. For example, the number 5 = EST, +8 = PST, and -1 =
continental Europe. This number is used in the calculation of the global variable _timezone. _timezone
is the difference in seconds between GMT and the local time zone.
lll is an optional three-character field that represents the local time zone, daylight saving time. For
example, the string "PDT" could be used to represent pacific daylight saving time. If this field is present,
it causes the global variable _daylight to be set nonzero. If this field is absent, _daylight is set to zero.
If the TZ environment string isn't present or isn't in the preceding form, a default TZ = "EST5EDT" is
presumed for the purposes of assigning values to the global variables _daylight, _timezone, and
_tzname. On a Win32 system, none of these global variables are set if TZ is null.
The global variables _tzname[0] and _wtzname[1] point to a three-character string with the value of the
time-zone name from the TZ environment string. _tzname[1] and _wtzname[1] point to a three-character
string with the value of the daylight saving time-zone name from the TZ environment string. If no daylight
saving name is present, _tzname[1] and _wtzname[1] point to a null string.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

ultoa, _ultow
See also Example Portability

Syntax
#include <stdlib.h>
char *ultoa(unsigned long value, char *string, int radix);
wchar_t *_ultow(unsigned long value, wchar_t *string, int radix);
Description
Converts an unsigned long to a string.
ultoa converts value to a null-terminated string and stores the result in string. value is an unsigned
long.
radix specifies the base to be used in converting value; it must be between 2 and 36, inclusive. ultoa
performs no overflow checking, and if value is negative and radix equals 10, it does not set the minus
sign.
Note: The space allocated for string must be large enough to hold the returned string, including the

terminating null character (\0). ultoa can return up to 33 bytes.

Return Value
ultoa returns string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

umask
See also Example Portability

Syntax
#include <io.h>
unsigned umask(unsigned mode);
Description
Sets file read/write permission mask.
The umask function sets the access permission mask used by open and creat. Bits that are set in mode
will be cleared in the access permission of files subsequently created by open and creat.
The mode can have one of the following values, defined in sys\stat.h:

Value of mode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD|S_IWRITE Permission to read and write

Return Value
The previous value of the mask. There is no error return.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

ungetc, ungetwc
See also Example Portability

Syntax
#include <stdio.h>
int ungetc(int c, FILE *stream);
wint_t ungetwc(wint_t c, FILE *stream);
Description
Pushes a character back into input stream.
Note: Do not use this function for Win32s or Win32 GUI applications.
ungetc pushes the character c back onto the named input stream, which must be open for reading. This
character will be returned on the next call to getc or fread for that stream. One character can be pushed
back in all situations. A second call to ungetc without a call to getc will force the previous character to be
forgotten. A call to fflush, fseek, fsetpos, or rewind erases all memory of any pushed-back characters.

Return Value
On success, ungetc returns the character pushed back.
On eror, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ungetch
See also Example Portability

Syntax
#include <conio.h>
int ungetch(int ch);
Description
Pushes a character back to the keyboard buffer.
Note: Do not use this function for Win32s or Win32 GUI applications.
ungetch pushes the character ch back to the console, causing ch to be the next character read. The
ungetch function fails if it is called more than once before the next read.

Return Value
On success, ungetch returns the character ch.
On error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

unixtodos
See also Example Portability

Syntax
#include <dos.h>
void unixtodos(long time, struct date *d, struct time *t);
Description
Converts date and time from UNIX to DOS format.
unixtodos converts the UNIX-format time given in time to DOS format and fills in the date and time
structures pointed to by d and t.
time must not represent a calendar time earlier than Jan. 1, 1980 00:00:00.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_unlink, _wunlink
See also Example Portability

Syntax
#include <io.h>
int _unlink(const char *filename);
int _wunlink(const wchar_t *filename);
Description
Deletes a file.
_unlink deletes a file specified by filename. Any drive, path, and file name can be used as a filename.
Wildcards are not allowed.
Read-only files cannot be deleted by this call. To remove read-only files, first use chmod or _rtl_chmod
to change the read-only attribute.
Note: If the file is open, it must be closed before unlinking it.
_wunlink is the Unicode version of _wunlink. The Unicode version accepts a filename that is a wchar_t
character string. Otherwise, the functions perform identically.

Return Value
On success, _unlink returns 0.
On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

unlock
See also Example Portability

Syntax
#include <io.h>
int unlock(int handle, long offset, long length);
Description
Releases file-sharing locks.
unlock provides an interface to the operating system file-sharing mechanism. unlock removes a lock
previously placed with a call to lock. To avoid error, all locks must be removed before a file is closed. A
program must release all locks before completing.

Return Value
On success, unlock returns 0
O error, it returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_utime, _wutime
See also Example Portability

Syntax
#include <utime.h>
int _utime(char *path, struct utimbuf *times);
int _wutime(wchar_t *path, struct _utimbuf *times);
Description
Sets file time and date.
_utime sets the modification time for the file path. The modification time is contained in the utimbuf
structure pointed to by times. This structure is defined in utime.h, and has the following format:
 struct utimbuf {
 time_t actime; /* access time */
 time_t modtime; /* modification time */
 };
The FAT (file allocation table) file system supports only a modification time; therefore, on FAT file
systems _utime ignores actime and uses only modtime to set the file's modification time.
If times is NULL, the file's modification time is set to the current time.
_wutime is the Unicode version of _utime. The Unicode version accepts a filename that is a wchar_t
character string. Otherwise, the functions perform identically.

Return Value
On sucess, _utime returns 0.
On error, it returns -1, and sets the global variable errno to one of the following values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

va_arg, va_end, va_start
See also Example Portability

Syntax
#include <stdarg.h>
void va_start(va_list ap, lastfix);
type va_arg(va_list ap, type);
void va_end(va_list ap);
Description
Implement a variable argument list.
Some C functions, such as vfprintf and vprintf, take variable argument lists in addition to taking a
number of fixed (known) parameters. The va_arg, va_end, and va_start macros provide a portable way
to access these argument lists. They are used for stepping through a list of arguments when the called
function does not know the number and types of the arguments being passed.
The header file stdarg.h declares one type (va_list) and three macros (va_start, va_arg, and va_end).

va_list: This array holds information needed by va_arg and va_end. When a called function takes
a variable argument list, it declares a variable ap of type va_list.

va_start: This routine (implemented as a macro) sets ap to point to the first of the variable
arguments being passed to the function. va_start must be used before the first call to va_arg or va_end.

va_start takes two parameters: ap and lastfix. (ap is explained under va_list in the preceding
paragraph; lastfix is the name of the last fixed parameter being passed to the called function.)

va_arg: This routine (also implemented as a macro) expands to an expression that has the same
type and value as the next argument being passed (one of the variable arguments). The variable ap to
va_arg should be the same ap that va_start initialized.

Note: Because of default promotions, you cannot use char, unsigned char, or float types with
va_arg.
The first time va_arg is used, it returns the first argument in the list. Each successive time
va_arg is used, it returns the next argument in the list. It does this by first dereferencing ap,
and then incrementing ap to point to the following item. va_arg uses the type to both perform
the dereference and to locate the following item. Each successive time va_arg is invoked, it
modifies ap to point to the next argument in the list.

va_end: This macro helps the called function perform a normal return. va_end might modify ap in
such a way that it cannot be used unless va_start is recalled. va_end should be called after va_arg has
read all the arguments; failure to do so might cause strange, undefined behavior in your program.

Return Value
va_start and va_end return no values; va_arg returns the current argument in the list (the one that ap is
pointing to).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

vfprintf, vfwprintf
See also Example Portability

Syntax
#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va_list arglist);
int vfwprintf(FILE *stream, const wchar_t *format, va_list arglist);
Description
Writes formatted output to a stream.
The v...printf functions are known as alternate entry points for the ...printf functions. They behave exactly
like their ...printf counterparts, but they accept a pointer to a list of arguments instead of an argument
list.
For details on format specifiers, see Printf Format Specifiers.
vfprintf accepts a pointer to a series of arguments, applies to each argument a format specifier
contained in the format string pointed to by format, and outputs the formatted data to a stream. There
must be the same number of format specifiers as arguments.

Return Value
On success, vfprintf returns the number of bytes output.
On error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

vfscanf
See also Example Portability

Syntax
#include <stdio.h>
int vfscanf(FILE *stream, const char *format,va_list arglist);
Description
Scans and formats input from a stream.
The v...scanf functions are known as alternate entry points for the ...scanf functions. They behave
exactly like their ...scanf counterparts but they accept a pointer to a list of arguments instead of an
argument list.
For details on format specifiers, see Scanf Format Specifiers.
vfscanf scans a series of input fields one character at a time reading from a stream. Then each field is
formatted according to a format specifier passed to vfscanf in the format string pointed to by format.
Finally vfscanf stores the formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there are input fields. vfscanf
might stop scanning a particular field before it reaches the normal end-of-field (whitespace) character or
it might terminate entirely for a number of reasons. See scanf for a discussion of possible causes.

Return Value
vfscanf returns the number of input fields successfully scanned converted and stored; the return value
does not include scanned fields that were not stored. If no fields were stored the return value is 0.
If vfscanf attempts to read at end-of-file the return value is EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

vprintf, vfwprintf
See also Example Portability

Syntax
#include <stdarg.h>
int vprintf(const char *format, va_list arglist);
int vwprintf(const wchar_t *format, va_list arglist);
Description
Writes formatted output to stdout.
Note: Do not use this function for Win32s or Win32 GUI applications.
The v...printf functions are known as alternate entry points for the ...printf functions. They behave exactly
like their ...printf counterparts, but they accept a pointer to a list of arguments instead of an argument
list.
For details on format specifiers, see Printf Format Specifiers.
vprintf accepts a pointer to a series of arguments, applies to each a format specifier contained in the
format string pointed to by format, and outputs the formatted data to stdout. There must be the same
number of format specifiers as arguments.
Note: When you use the SS!=DS flag in 16-bit applications, vprintf assumes that the address being

passed is in the SS segment.

Return Value
vprint returns the number of bytes output. In the event of error, vprint returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

vscanf
See also Example Portability

Syntax
#include <stdarg.h>
int vscanf(const char *format, va_list arglist);
Description
Scans and formats input from stdin.
Note: Do not use this function for Win32s or Win32 GUI applications.
The v...scanf functions are known as alternate entry points for the ...scanf functions. They behave
exactly like their ...scanf counterparts, but they accept a pointer to a list of arguments instead of an
argument list.
For details on format specifiers, see Scanf Format Specifiers.
vscanf scans a series of input fields, one character at a time, reading from stdin. Then each field is
formatted according to a format specifier passed to vscanf in the format string pointed to by format.
Finally, vscanf stores the formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there are input fields.
vscanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely, for a number of reasons. See scanf for a discussion of possible
causes.

Return Value
vscanf returns the number of input fields successfully scanned, converted, and stored; the return value
does not include scanned fields that were not stored. If no fields were stored, the return value is 0.
If vscanf attempts to read at end-of-file, the return value is EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

vsprintf, vswprintf
See also Example Portability

Syntax
#include <stdarg.h>
int vsprintf(char *buffer, const char *format, va_list arglist);
int vswprintf(wchar_t *buffer, const wchar_t *format, va_list arglist);
Description
Writes formatted output to a string.
The v...printf functions are known as alternate entry points for the ...printf functions. They behave exactly
like their ...printf counterparts, but they accept a pointer to a list of arguments instead of an argument
list.
For details on format specifiers, see Printf Format Specifiers.
vsprintf accepts a pointer to a series of arguments, applies to each a format specifier contained in the
format string pointed to by format, and outputs the formatted data to a string. There must be the same
number of format specifiers as arguments.

Return Value
vsprintf returns the number of bytes output. In the event of error, vsprintf returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

vsscanf
See also Example Portability

Syntax
#include <stdarg.h>
int vsscanf(const char *buffer, const char *format, va_list arglist);
Description
Scans and formats input from a stream.
The v...scanf functions are known as alternate entry points for the ...scanf functions. They behave
exactly like their ...scanf counterparts, but they accept a pointer to a list of arguments instead of an
argument list.
For details on format specifiers, see Scanf Format Specifiers.
vsscanf scans a series of input fields, one character at a time, reading from a stream. Then each field is
formatted according to a format specifier passed to vsscanf in the format string pointed to by format.
Finally, vsscanf stores the formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there are input fields.
vsscanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely, for a number of reasons. See scanf for a discussion of possible
causes.

Return Value
vsscanf returns the number of input fields successfully scanned, converted, and stored; the return value
does not include scanned fields that were not stored. If no fields were stored, the return value is 0.
If vsscanf attempts to read at end-of-string, the return value is EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

wait
See also Portability

Syntax
#include <process.h>
int wait(int *statloc);
Description
Waits for one or more child processes to terminate.
The wait function waits for one or more child processes to terminate. The child processes must be those
created by the calling program; wait cannot wait for grandchildren (processes spawned by child
processes). If statloc is not NULL, it points to location where wait will store the termination status.
If the child process terminated normally (by calling exit, or returning from main), the termination status
word is defined as follows:
Bits 0-7 Zero.
Bits 8-15 The least significant byte of the return code from the child process. This is the value that

is passed to exit, or is returned from main. If the child process simply exited from main
without returning a value, this value will be unpredictable. If the child process terminated
abnormally, the termination status word is defined as follows:

Bits 0-7 Termination information about the child:
 1 Critical error abort.
 2 Execution fault, protection exception.
 3 External termination signal.
Bits 8-15 Zero.

Return Value
When wait returns after a normal child process termination it returns the process ID of the child.
When wait returns after an abnormal child termination it returns -1 to the parent and sets errno to
EINTR.
If wait returns without a child process completion it returns a -1 value and sets errno to
ECHILD No child process exists

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

wcstombs
Example Portability

Syntax
#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);
Description
Converts a wchar_t array into a multibyte string.
wcstombs converts the type wchar_t elements contained in pwcs into a multibyte character string s.
The process terminates if either a null character or an invalid multibyte character is encountered.
No more than n bytes are modified. If n number of bytes are processed before a null character is
reached, the array s is not null terminated.
The behavior of wcstombs is affected by the setting of LC_CTYPE category of the current locale.

Return Value
If an invalid multibyte character is encountered, wcstombs returns (size_t) -1. Otherwise, the function
returns the number of bytes modified, not including the terminating code, if any.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

wctomb
Example Portability

Syntax
#include <stdlib.h>
int wctomb(char *s, wchar_t wc);
Description
Converts wchar_t code to a multibyte character.
If s is not null, wctomb determines the number of bytes needed to represent the multibyte character
corresponding to wc (including any change in shift state). The multibyte character is stored in s. At most
MB_CUR_MAX characters are stored. If the value of wc is zero, wctomb is left in the initial state.
The behavior of wctomb is affected by the setting of LC_CTYPE category of the current locale.

Return Value
If s is a NULL pointer, wctomb returns a nonzero value if multibyte character encodings do have state-
dependent encodings, and a zero value if they do not.
If s is not a NULL pointer, wctomb returns -1 if the wc value does not represent a valid multibyte
character. Otherwise, wctomb returns the number of bytes that are contained in the multibyte character
corresponding to wc. In no case will the return value be greater than the value of MB_CUR_MAX macro.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

wherex
See also Example Portability

Syntax
#include <conio.h>
int wherex(void);
Description
Gives horizontal cursor position within window.
Note: Do not use this function for Win32s or Win32 GUI applications.
wherex returns the x-coordinate of the current cursor position (within the current text window).

Return Value
wherex returns an integer in the range 1 to the number of columns in the current video mode.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

wherey
See also Example Portability

Syntax
#include <conio.h>
int wherey(void);
Description
Gives vertical cursor position within window.
Note: Do not use this function for Win32s or Win32 GUI applications.
wherey returns the y-coordinate of the current cursor position (within the current text window).

Return Value
wherey returns an integer in the range 1 to the number of rows in the current video mode.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

window
See also Example Portability

Syntax
#include <conio.h>
void window(int left, int top, int right, int bottom);
Description
Defines active text mode window.
Note: Do not use this function for Win32s or Win32 GUI applications.
window defines a text window onscreen. If the coordinates are in any way invalid, the call to window is
ignored.
left and top are the screen coordinates of the upper left corner of the window.
right and bottom are the screen coordinates of the lower right corner.
The minimum size of the text window is one column by one line. The default window is full screen, with
the coordinates:
 1,1,C,R
where C is the number of columns in the current video mode, and R is the number of rows.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

See Also
lseek
_rtl_read
write

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

write
See also Example Portability

Syntax
#include <io.h>
int write(int handle, void *buf, unsigned len);
Description
Writes to a file.
write writes a buffer of data to the file or device named by the given handle. handle is a file handle
obtained from a creat, open, dup, or dup2 call.
This function attempts to write len bytes from the buffer pointed to by buf to the file associated with
handle. Except when write is used to write to a text file, the number of bytes written to the file will be no
more than the number requested. The maximum number of bytes that write can write is UINT_MAX -1,
because UINT_MAX is the same as -1, which is the error return indicator for write. On text files, when
write sees a linefeed (LF) character, it outputs a CR/LF pair. UINT_MAX is defined in limits.h.
If the number of bytes actually written is less than that requested, the condition should be considered an
error and probably indicates a full disk. For disks or disk files, writing always proceeds from the current
file pointer. For devices, bytes are sent directly to the device. For files opened with the O_APPEND
option, the file pointer is positioned to EOF by write before writing the data.

Return Value
write returns the number of bytes written. A write to a text file does not count generated carriage returns.
In case of error, write returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

/* abs example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 int number = -1234;

 printf("number: %d absolute value: %d\n", number, abs(number));
 return 0;
}

/* cabs example */
#include <stdio.h>
#include <math.h>

#ifdef __cplusplus
 #include <complex.h>
#endif

#ifdef __cplusplus /* if C++, use class complex */

 void print_abs(void)
 {
 complex z(1.0, 2.0);
 double absval;

 absval = abs(z);
 printf("The absolute value of %.2lfi %.2lfj is %.2lf",
 real(z), imag(z), absval);
 }

#else /* below function is for C (and not C++) */

 void print_abs(void)
 {
 struct complex z;
 double absval;

 z.x = 2.0;
 z.y = 1.0;
 absval = cabs(z);

 printf("The absolute value of %.2lfi %.2lfj is %.2lf",
 z.x, z.y, absval);
 }

#endif

int main(void)
{
 print_abs();
 return 0;
}

/* fabs example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 float number = -1234.0;

 printf("number: %f absolute value: %f\n", number, fabs(number));
 return 0;
}

/* labs example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 long result;
 long x = -12345678L;

 result= labs(x);
 printf("number: %ld abs value: %ld\n", x, result);

 return 0;
}

/* acos example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;

 result = acos(x);
 printf("The arc cosine of %lf is %lf\n", x, result);
 return 0;
}

/* asin example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;
 result = asin(x);
 printf("The arc sin of %lf is %lf\n", x, result);
 return(0);
}

/* atan example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;

 result = atan(x);
 printf("The arc tangent of %lf is %lf\n", x, result);
return(0);

}

/* atan2 example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 90.0, y = 45.0;

 result = atan2(y, x);
 printf("The arc tangent ratio of %lf is %lf\n", (y / x), result);
 return 0;
}

/* alloca example */
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

void test(int a)
{
 char *newstack;
 int len = a;
 char dummy[1];

dummy[0] = 0; /* force good stack frame */
 printf("SP before calling alloca(0x%X) = 0x%X\n",len,_SP);
 newstack = (char *) alloca(len);
printf("SP after calling alloca = 0x%X\n",_SP);

 if (newstack)
 printf("Alloca(0x%X) returned %p\n",len,newstack);
 else
 printf("Alloca(0x%X) failed\n",len);
}
void main()
{
 test(256);
 test(16384);
}

/* asctime example */
#include <string.h>
#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm t;
 char str[80];

 /* sample loading of tm structure */

 t.tm_sec = 1; /* Seconds */
 t.tm_min = 30; /* Minutes */
 t.tm_hour = 9; /* Hour */
 t.tm_mday = 22; /* Day of the Month */
 t.tm_mon = 11; /* Month */
 t.tm_year = 56; /* Year - does not include century */
 t.tm_wday = 4; /* Day of the week */
 t.tm_yday = 0; /* Does not show in asctime */
 t.tm_isdst = 0; /* Is Daylight SavTime; does not show in asctime */

 /* converts structure to null terminated string */

 strcpy(str, asctime(&t));
 printf("%s\n", str);

 return 0;
}

/* ctime example */
#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t t;

 time(&t);
 printf("Today's date and time: %s\n", ctime(&t));
 return 0;
}

/* _beginthread example */
#include <stdio.h>
#include <errno.h>
#include <stddef.h> /* _threadid variable */
#include <process.h> /* _beginthread, _endthread */
#include <time.h> /* time, _ctime */

void thread_code(void *threadno)
{
 time_t t;

 time(&t);
 printf("Executing thread number %d, ID = %d, time = %s\n",
 (int)threadno, _threadid, ctime(&t));
 _endthread();
}

void start_thread(int i)
{
 int thread_id;

#if defined(__WIN32__)
 if ((thread_id = _beginthread(thread_code,4096,(void *)i)) == (unsigned
long)-1)

#else
 if ((thread_id = _beginthread(thread_code,4096,(void *)i)) == -1)
#endif
 {
 printf("Unable to create thread %d, errno = %d\n",i,errno);
 return;
 }
 printf("Created thread %d, ID = %ld\n",i,thread_id);
}

int main(void)
{
 int i;

 for (i = 1; i < 20; i++)
 start_thread(i);
 printf("Hit ENTER to exit main thread.\n");
 getchar();
 return 0;
}

/* beginthreadNT example */
#include <windows.h>
#include <process.h>
#include <stdio.h>
#include <conio.h>

/* This function acts as the 'main' function for each new thread.
static void threadMain(void *arg) */
{
 printf("Thread %2d has an ID of %u\n", (int)arg,
GetCurrentThreadId());

 _endthread();
}

int main(void)
{
 #define NTHREADS 25

 HANDLE hThreads[NTHREADS];
 int i;

 // Create NTHREADS inheritable threads that are initially
 // suspended and that will run starting at threadMain().
 // at threadMain().
 for (i = 0; i < NTHREADS; i++)
 {
 SECURITY_ATTRIBUTES sa =
 {
 sizeof(SECURITY_ATTRIBUTES), // structure size
 0, // No security
descriptor

 TRUE, // Thread handle is
inheritable

 };

 DWORD threadId;

 hThreads[i] = (HANDLE)_beginthreadNT(
 threadMain, // Thread
starting address

 4096, // Thread
stack size

 (void *)i, // Thread
start argument

 &sa, // Thread
security

 CREATE_SUSPENDED, // Create
in suspended state

 &threadId); // Thread
ID.

 if (hThreads[i] == INVALID_HANDLE_VALUE)
 {

 MessageBox(0, "Thread Creation Failed", "Error",
MB_OK);

 return 1;
 }

 printf("Created thread %2d with an ID of %u\n", i,
threadId);

 }

 printf("\nPress a key to thaw all threads\n\n");
 getch();

 // Resume the suspended threads.
 for (i = 0; i < NTHREADS; i++)
 ResumeThread(hThreads[i]);

 // Wait for all threads to finish execution.
 WaitForMultipleObjects(NTHREADS, // Number of objects to
wait for

 hThreads, // The objects to wait for
 TRUE, // Wait for all objects
 INFINITE); // No timeout

 // Close all of the thread handles.
 for (i = 0; i < NTHREADS; i++)
 CloseHandle(hThreads[i]);

 return 0;
}

/* biosequip example */
#include <bios.h>
#include <stdio.h>

#define CO_PROCESSOR_MASK 0x0002

int main(void)
{
 int equip_check;

 /* get the current equipment configuration */
 equip_check = biosequip();

 /* check to see if there is a coprocessor installed */
 if (equip_check & CO_PROCESSOR_MASK)
 printf("There is a math coprocessor installed.\n");
 else
 printf("No math coprocessor installed.\n");
 return 0;
}

/* _bios_equiplist example */
#include <stdio.h>
#include <bios.h>

#define CO_PROCESSOR_MASK 0x0002

int main(void)
{
 unsigned equip_check;

 /* get the current equipment configuration */
 equip_check = _bios_equiplist();

 /* check to see if there is a coprocessor installed */
 if (equip_check & CO_PROCESSOR_MASK)
 printf("There is a math coprocessor installed.\n");
 else
 printf("No math coprocessor installed.\n");
 return 0;
}

/* biosmemory example */
#include <stdio.h>
#include <bios.h>

int main(void)
{
 int memory_size;

 memory_size = biosmemory(); /* returns value up to 640K */
 printf("RAM size = %dK\n",memory_size);
 return 0;
}

/* _bios_memsize example */
#include <stdio.h>
#include <bios.h>

int main(void)
{
 unsigned memory_size;

 memory_size = _bios_memsize(); /* returns value up to 640K */

 printf("RAM size = %dK\n", memory_size);

 return 0;
}

/* biostime example */
#include <stdio.h>
#include <bios.h>
#include <time.h>
#include <conio.h>

int main(void)
{
 long bios_time;
 clrscr();
 printf("The number of clock ticks since midnight is:\n");
 printf("The number of seconds since midnight is:\n");
 printf("The number of minutes since midnight is:\n");
 printf("The number of hours since midnight is:\n");
 printf("\nPress any key to stop:");
 while(!kbhit())
 {
 bios_time = biostime(0, 0L);

 gotoxy(50, 1);
 printf("%lu", bios_time);

 gotoxy(50, 2);
 printf("%.4f", bios_time / _BIOS_CLK_TCK);

 gotoxy(50, 3);
 printf("%.4f", bios_time / _BIOS_CLK_TCK / 60);

 gotoxy(50, 4);
 printf("%.4f", bios_time / _BIOS_CLK_TCK / 3600);
 }
 return 0;
}

/* _bios_timeofday example */
#include <bios.h>
#include <time.h>
#include <conio.h>
#include <stdio.h>

int main(void)
{
 long bios_time;
 clrscr();
 printf("The number of clock ticks since midnight is:\n");
 printf("The number of seconds since midnight is:\n");
 printf("The number of minutes since midnight is:\n");
 printf("The number of hours since midnight is:\n");
 printf("\nPress any key to stop:");
 while(!kbhit())
 {
 _bios_timeofday(_TIME_GETCLOCK, &bios_time);
 gotoxy(50, 1);
 printf("%lu", bios_time);
 gotoxy(50, 2);
 printf("%.4f", bios_time / CLK_TCK);
 gotoxy(50, 3);
 printf("%.4f", bios_time / CLK_TCK / 60);
 gotoxy(50, 4);
 printf("%.4f", bios_time / CLK_TCK / 3600);
 }
 return 0;
}

/* bsearch example */
#include <stdlib.h>
#include <stdio.h>

typedef int (*fptr)(const void*, const void*);

#define NELEMS(arr) (sizeof(arr) / sizeof(arr[0]))

int numarray[] = {123, 145, 512, 627, 800, 933};

int numeric (const int *p1, const int *p2)
{
 return(*p1 - *p2);
}

#pragma argsused
int lookup(int key)
{
 int *itemptr;

 /* The cast of (int(*)(const void *,const void*))
 is needed to avoid a type mismatch error at
 compile time */
 itemptr = (int *) bsearch (&key, numarray, NELEMS(numarray),
 sizeof(int), (fptr)numeric);
 return (itemptr != NULL);
}

int main(void)
{
 if (lookup(512))
 printf("512 is in the table.\n");
 else
 printf("512 isn't in the table.\n");

 return 0;
}

/* lfind example */
#include <stdio.h>
#include <stdlib.h>

int compare(int *x, int *y)
{
 return(*x - *y);
}

int main(void)
{
 int array[5] = {35, 87, 46, 99, 12};
 size_t nelem = 5;
 int key;
 int *result;

 key = 99;
 result = (int *) lfind(&key, array, &nelem,
 sizeof(int), (int(*)(const void *,const void *))compare);
 if (result)
 printf("Number %d found\n",key);
 else
 printf("Number %d not found\n",key);

 return 0;
}

/* lsearch example */
#include <stdlib.h>
#include <stdio.h>
#include <string.h> /* for strcmp declaration */

/* initialize number of colors */
char *colors[10] = { "Red", "Blue", "Green" };
int ncolors = 3;

int colorscmp(char **arg1, char **arg2)
{
 return(strcmp(*arg1, *arg2));
}

int addelem(char **key)
{
 int oldn = ncolors;
 lsearch(key, colors, (size_t *)&ncolors, sizeof(char *),
 (int(*)(const void *,const void *))colorscmp);
 return(ncolors == oldn);
}

int main(void)
{
 int i;
 char *key = "Purple";

 if (addelem(&key))
 printf("%s already in colors table\n", key);
 else
 {
 printf("%s added to colors table\n", key);
 }

 printf("The colors:\n");
 for (i = 0; i < ncolors; i++)
 printf("%s\n", colors[i]);
 return 0;
}

/* qsort example */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int sort_function(const void *a, const void *b);
char list[5][4] = { "cat", "car", "cab", "cap", "can" };

int main(void)
{
 int x;

 qsort((void *)list, 5, sizeof(list[0]), sort_function);
 for (x = 0; x < 5; x++)
 printf("%s\n", list[x]);
 return 0;
}

int sort_function(const void *a, const void *b)
{
 return(strcmp((char *)a,(char *)b));
}

/* _rtl_chmod example */
#include <errno.h>
#include <stdio.h>
#include <dos.h>
#include <io.h>

int get_file_attrib(char *filename);

int main(void)
{
 char filename[128];
 int attrib;
 printf("Enter a filename:");
 scanf("%s", filename);
 attrib = get_file_attrib(filename);
 if (attrib == -1)
 switch(errno)
 {
 case ENOENT : printf("Path or file not found.\n");
 break;
 case EACCES : printf("Permission denied.\n");
 break;
 default: printf("Error number: %d", errno);
 break;
 }
 else
 {
 if (attrib & FA_RDONLY)
 printf("%s is read-only.\n", filename);

 if (attrib & FA_HIDDEN)
 printf("%s is hidden.\n", filename);

 if (attrib & FA_SYSTEM)
 printf("%s is a system file.\n", filename);

 if (attrib & FA_DIREC)
 printf("%s is a directory.\n", filename);

 if (attrib & FA_ARCH)
 printf("%s is an archive file.\n", filename);
 }
 return 0;
}

/* returns the attributes of a DOS file */
int get_file_attrib(char *filename)
{
 return(_rtl_chmod(filename, 0));
}

/* _dos_getfileattr example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 char filename[128];
 unsigned attrib;
 printf("Enter a file name:");
 scanf("%s", filename);
 if (_dos_getfileattr(filename,&attrib) != 0)
 {
 perror("Unable to obtain file attributes");
 return 1;
 }
 if (attrib & _A_RDONLY)
 printf("%s is read-only.\n", filename);

 if (attrib & _A_HIDDEN)
 printf("%s is hidden.\n", filename);

 if (attrib & _A_SYSTEM)
 printf("%s is a system file.\n", filename);

 if (attrib & _A_VOLID)
 printf("%s is a volume label.\n", filename);

 if (attrib & _A_SUBDIR)
 printf("%s is a directory.\n", filename);

 if (attrib & _A_ARCH)
 printf("%s is an archive file.\n", filename);
 return 0;
}

/* _dos_setfileattr example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 char filename[128];
 unsigned attrib;
 printf("Enter a file name:");
 scanf("%s", filename);
 if (_dos_getfileattr(filename,&attrib) != 0)
 {
 perror("Unable to obtain file attributes");
 return 1;
 }
 if (attrib & _A_RDONLY)
 {
 printf("%s currently read-only, making it read-write.\n", filename);
 attrib &= ~_A_RDONLY;
 }
 else
 {
 printf("%s currently read-write, making it read-only.\n", filename);
 attrib |= _A_RDONLY;
 }
 if (_dos_setfileattr(filename,attrib) != 0)
 perror("Unable to set file attributes");
 return 0;
}

/* close example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

main()
{
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 handle = open("NEW.FIL", O_CREAT);
 if (handle > -1)
 {
 write(handle, buf, strlen(buf));

 close(handle); /* close the file */
 }
 else
 {
 printf("Error opening file\n");
 }
 return 0;
}

/* _rtl_close example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "Hello world";

 if ((handle = _rtl_open("TEST.$$$", O_RDWR)) == -1)
 {
 perror("Error:");
 return 1;
 }
 _rtl_write(handle, msg, strlen(msg));
 _rtl_close(handle);
 return 0;
}

/* _dos_close example */
#include <dos.h>
#include <string.h>
#include <stdio.h>

int main(void)
{
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 if (_dos_creat("DUMMY.FIL", _A_NORMAL, &handle) != 0)
 {
 perror("Unable to create DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0)
 {
 perror("Unable to write to DUMMY.FIL");
 return 1;
 }
 /* close the file */
 _dos_close(handle);
 return 0;
}

/* cos example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;

 result = cos(x);
 printf("The cosine of %lf is %lf\n", x, result);
 return 0;
}

/* sin example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result, x = 0.5;

 result = sin(x);
 printf("The sin of %lf is %lf\n", x, result);
 return 0;
}

/* tan example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result, x;

 x = 0.5;
 result = tan(x);
 printf("The tan of %lf is %lf\n", x, result);
 return 0;
}

/* cosh example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;

 result = cosh(x);
 printf("The hyperbolic cosine of %lf is %lf\n", x, result);
 return 0;
}

/* sinh example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result, x = 0.5;

 result = sinh(x);
 printf("The hyperbolic sin of %lf is %lf\n", x, result);
 return 0;
}

/* tanh example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result, x;

 x = 0.5;
 result = tanh(x);
 printf("The hyperbolic tangent of %lf is %lf\n", x, result);
 return 0;
}

/* creat example */
#include <sys\stat.h>
#include <string.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char buf[11] = "0123456789";

 /* change the default file mode from text to binary */
 _fmode = O_BINARY;

 /* create a binary file for reading and writing */
 handle = creat("DUMMY.FIL", S_IREAD |S_IWRITE);

 /* write 10 bytes to the file */
 write(handle, buf, strlen(buf));

 /* close the file */
 close(handle);
 return 0;
}

/* _rtl_creat example */
#include <dos.h>
#include <string.h>
#include <stdio.h>
#include <io.h>

int main() {
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* Create a 10-byte file using _dos_creat. */
 if (_dos_creat("DUMMY.FIL", _A_NORMAL, &handle) != 0) {
 perror("Unable to _dos_creat DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0) {
 perror("Unable to _dos_write to DUMMY.FIL");
 return 1;
 }
 _dos_close(handle);

 /* Create another 10-byte file using _rtl_creat. */
 if ((handle = _rtl_creat("DUMMY2.FIL", 0)) < 0) {
 perror("Unable to _rtl_create DUMMY2.FIL");
 return 1;
 }
 if (_rtl_write(handle, buf, strlen(buf)) < 0) {
 perror("Unable to _rtl_write to DUMMY2.FIL");
 return 1;
 }
 _rtl_close(handle);
 return 0;
}

/* _dos_creat example */
#include <dos.h>
#include <string.h>
#include <stdio.h>

int main(void)
{
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 if (_dos_creat("DUMMY.FIL", _A_NORMAL, &handle) != 0)
 {
 perror("Unable to create DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0)
 {
 perror("Unable to write to DUMMY.FIL");
 return 1;
 }
 /* close the file */
 _dos_close(handle);
 return 0;
}

/* _dos_creatnew example */
#include <dos.h>
#include <string.h>
#include <stdio.h>

int main(void)
{
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 if (_dos_creatnew("DUMMY.FIL", _A_NORMAL, &handle) != 0)
 {
 perror("Unable to create DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0)
 {
 perror("Unable to write to DUMMY.FIL");
 return 1;
 }
 /* close the file */
 _dos_close(handle);
 return 0;
}

/* creatnew example */
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <dos.h>
#include <io.h>

int main(void)
{
 int handle;
 char buf[11] = "0123456789";

 /* attempt to create a file that doesn't already exist */
 handle = creatnew("DUMMY.FIL", 0);

if (handle == -1)
 printf("DUMMY.FIL already exists.\n");
 else
 {
 printf("DUMMY.FIL successfully created.\n");
 write(handle, buf, strlen(buf));
 close(handle);
 }
 return 0;
}

/* disable example */
/* * * * * * * * * *
NOTE: This is an interrupt service routine. You cannot compile this program
with Test Stack Overflow turned on and get an executable file that
operates correctly.

 * * * * * * * * * */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS) /* if C++, need the the ellipsis */
{
/* disable interrupts during the handling of the interrupt */
 disable();
/* increase the global counter */
 count++;
/* reenable interrupts at the end of the handler */
enable();

/* call the old routine */
 oldhandler();
}

int main(void)
{
/* save the old interrupt vector */
 oldhandler = getvect(INTR);

/* install the new interrupt handler */
 setvect(INTR, handler);

/* loop until the counter exceeds 20 */
 while (count < 20)
 printf("count is %d\n",count);

/* reset the old interrupt handler */
 setvect(INTR, oldhandler);

return 0;
}

/* _disable example */
/* * * * * * * * * *
NOTE: This is an interrupt service routine. You cannot compile this program
with Test Stack Overflow turned on and get an executable file that
operates correctly.

 * * * * * * * * * */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS) /* if C++, need the the ellipsis */
{
/* disable interrupts during the handling of the interrupt */
 _disable();
/* increase the global counter */
 count++;
/* reenable interrupts at the end of the handler */
 enable();
/* call the old routine */
 oldhandler();
}

int main(void)
{
/* save the old interrupt vector */
oldhandler = _dos_getvect(INTR);

/* install the new interrupt handler */
 _dos_setvect(INTR, handler);

/* loop until the counter exceeds 20 */
 while (count < 20)
 printf("count is %d\n",count);

/* reset the old interrupt handler */
 _dos_setvect(INTR, oldhandler);

 return 0;
}

/* enable example */
/* * * * * * * * * *
NOTE: This is an interrupt service routine. You cannot compile this program
with Test Stack Overflow turned on and get an executable file that
operates correctly.

 * * * * * * * * * */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS) /* if C++, need the the ellipsis */
{
/* disable interrupts during the handling of the interrupt */
 disable();
/* increase the global counter */
 count++;
/* reenable interrupts at the end of the handler */
 enable();
/* call the old routine */
 oldhandler();
}

int main(void)
{
/* save the old interrupt vector */
 oldhandler = getvect(INTR);

/* install the new interrupt handler */
 setvect(INTR, handler);

/* loop until the counter exceeds 20 */
 while (count < 20)
 printf("count is %d\n",count);

/* reset the old interrupt handler */
 setvect(INTR, oldhandler);

 return 0;
}

/* _enable example */
/* * * * * * * * * *
NOTE: This is an interrupt service routine. You cannot compile this program
with Test Stack Overflow turned on and get an executable file that
operates correctly.

 * * * * * * * * * */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS) /* if C++, need the the ellipsis */
{
/* disable interrupts during the handling of the interrupt */
 disable();
/* increase the global counter */
 count++;
/* reenable interrupts at the end of the handler */
 _enable();
/* call the old routine */
 oldhandler();
}

int main(void)
{
/* save the old interrupt vector */
 oldhandler = _dos_getvect(INTR);

/* install the new interrupt handler */
 _dos_setvect(INTR, handler);

/* loop until the counter exceeds 20 */
 while (count < 20)
 printf("count is %d\n",count);

/* reset the old interrupt handler */
 _dos_setvect(INTR, oldhandler);

 return 0;
}

/* div example */
/* div example */

#include <stdlib.h>
#include <stdio.h>

div_t x;

int main(void)
{
 x = div(10,3);
 printf("10 div 3 = %d remainder %d\n",
 x.quot, x.rem);

 return 0;
}

/* ldiv example */
/* ldiv example */

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 ldiv_t lx;

 lx = ldiv(100000L, 30000L);
 printf("100000 div 30000 = %ld remainder %ld\n", lx.quot, lx.rem);
 return 0;
}

/* dup example */
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <io.h>

void flush(FILE *stream);

int main(void)
{
 FILE *fp;
 char msg[] = "This is a test";

 /* create a file */
 fp = fopen("DUMMY.FIL", "w");

 /* write some data to the file */
 fwrite(msg, strlen(msg), 1, fp);

 clrscr();
 printf("Press any key to flush DUMMY.FIL:");
 getch();

 /* flush the data to DUMMY.FIL without closing it */
 flush(fp);

 printf("\nFile was flushed, Press any key to quit:");
 getch();
 return 0;
}

void flush(FILE *stream)
{
 int duphandle;

 /* flush TC's internal buffer */
 fflush(stream);

 /* make a duplicate file handle */
 duphandle = dup(fileno(stream));

 /* close the duplicate handle to flush the DOS buffer */
 close(duphandle);
}

/* dup2 example */
#include <sys\stat.h>
#include <string.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 #define STDOUT 1

 int nul, oldstdout;
 char msg[] = "This is a test";

 /* create a file */
 nul = open("DUMMY.FIL", O_CREAT | O_RDWR,
 S_IREAD | S_IWRITE);

 /* create a duplicate handle for standard output */
 oldstdout = dup(STDOUT);
 /*
 redirect standard output to DUMMY.FIL
 by duplicating the file handle onto
 the file handle for standard output.
 */
 dup2(nul, STDOUT);

 /* close the handle for DUMMY.FIL */
 close(nul);

 /* will be redirected into DUMMY.FIL */
 write(STDOUT, msg, strlen(msg));

 /* restore original standard output handle */
 dup2(oldstdout, STDOUT);

 /* close duplicate handle for STDOUT */
 close(oldstdout);

 return 0;
}

/* ecvt example */
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>

int main(void)
{
 char *string;
 double value;
 int dec, sign;
 int ndig = 10;

 clrscr();
 value = 9.876;
 string = ecvt(value, ndig, &dec, &sign);
 printf("string = %s dec = %d sign = %d\n", string, dec, sign);

 value = -123.45;
 ndig= 15;
 string = ecvt(value,ndig,&dec,&sign);
 printf("string = %s dec = %d sign = %d\n", string, dec, sign);

 value = 0.6789e5; /* scientific notation */
 ndig = 5;
 string = ecvt(value,ndig,&dec,&sign);
 printf("string = %s dec = %d sign = %d\n", string, dec, sign);

 return 0;
}

/* fcvt example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *str;
 double num;
 int dec, sign, ndig = 5;

 /* a regular number */
 num = 9.876;
 str = fcvt(num, ndig, &dec, &sign);
 printf("string = %10s decimal place = %d sign = %d\n", str, dec, sign);

 /* a negative number */
 num = -123.45;
 str = fcvt(num, ndig, &dec, &sign);
 printf("string = %10s decimal place = %d sign = %d\n", str, dec, sign);

 /* scientific notation */
 num = 0.678e5;
 str = fcvt(num, ndig, &dec, &sign);
 printf("string = %10s decimal place= %d sign = %d\n", str, dec, sign);
 return 0;
}

/* execl example */
/* execl() example */
#include <stdio.h>
#include <process.h>

int main(int argc, char *argv[])
{
 int loop;

 printf("%s running...\n\n", argv[0]);

 if (argc == 1) { /* check for only one command-line parameter */
 printf("%s calling itself again...\n", argv[0]);
 execl(argv[0], argv[0], "ONE", "TWO", "THREE", NULL);
 perror("EXEC:");
 exit(1);
 }

 printf("%s called with arguments:\n", argv[0]);

 for (loop = 1; loop <= argc; loop++)
 puts(argv[loop]); /* Display all command-line parameters */
 return 0;
}

/* execlp example */
/* execlp example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");

 for (i=0; i < argc; ++i)
 printf("[%2d] %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execlp("CHILD.EXE", "CHILD.EXE", "arg1", "arg2", NULL);

 perror("exec error");
 exit(1);

 return 0;
}

/* execle example */
#include <process.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[], char *env[])
{
 int loop;
 char *new_env[] = { "TESTING", NULL };
 printf("%s running...\n\n", argv[0]);
 if (argc == 1) { /* check for only one command-line parameter */
 printf("%s calling itself again...\n", argv[0]);
 execle(argv[0], argv[0], "ONE", "TWO", "THREE", NULL, new_env);
 perror("EXEC:");
 exit(1);
 }
 printf("%s called with arguments:\n", argv[0]);
 for (loop = 1; loop <= argc; loop++)
 puts(argv[loop]); /* display all command-line parameters */

 /* display the first environment parameter */
 printf("value of env[0]: %s\n",env[0]);
 return 0;
}

/* execlpe example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execlpe("CHILD.EXE", "CHILD.EXE", "arg1", "arg2", NULL, envp);

 perror("exec error");
 exit(1);
 return 0;
}

/* execv example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; i++)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execv("CHILD.EXE", argv);

 perror("exec error");
 exit(1);
 return 0;
}

/* execve example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execve("CHILD.EXE", argv, envp);

 perror("exec error");
 exit(1);
 return 0;
}

/* execvp example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execvp("CHILD.EXE", argv);

 perror("exec error");
 exit(1);
 return 0;
}

/* execvpe example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execvpe("CHILD.EXE", argv, envp);

 perror("exec error");
 exit(1);
 return 0;
}

/* _exit example */
#include <stdlib.h>
#include <stdio.h>

void done(void);

int main(void)
{

 atexit(done);
 _exit(0);
 return 0;
}

void done()
{
 printf("hello\n");
}

/* _c_exit example */
#include <process.h>
#include <io.h>
#include <fcntl.h>
#include <stdio.h>
#include <dos.h>

main()
{
 int fd;
 char c;

 if ((fd = open("_c_exit.c",O_RDONLY)) < 0)
 {
 printf("Unable to open _c_exit.c for reading\n");
 return 1;
 }
 if (read(fd,&c,1) != 1)
 printf("Unable to read from open file handle %d before _c_exit\n",fd);
 else
 printf("Successfully read from open file handle %d before _c_exit\
n",fd);

 printf("Interrupt zero vector before _c_exit = %Fp\n",_dos_getvect(0));
 _c_exit();
 if (read(fd,&c,1) != 1)
 printf("Unable to read from open file handle %d after _c_exit\n",fd);
 else
 printf("Successfully read from open file handle %d after _c_exit\
n",fd);

 printf("Interrupt zero vector after _c_exit = %Fp\n",_dos_getvect(0));
 return 0;
}

/* exit */
#include <stdlib.h>
#include <conio.h>
#include <stdio.h>

int main(void)
{
 int status;

 printf("Enter either 1 or 2\n");
 status = getch();
 /* Sets DOS errorlevel */
 exit(status - '0');

/* Note: this line is never reached */
 return 0;
}

/* _cexit example */
#include <windows.h>
#include <process.h>
#include <io.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

void exit_func(void)
{
 printf("Exit function called\n\n");
 printf("Close Window to return to program... It will beep if able to read
from file");

}

int main(void)
{
 int fd;
 char c;

 if ((fd = open("_cexit.c",O_RDONLY)) < 0)
 {
printf("Unable to open _cexit.c for reading\n");
return 1;

 }
 atexit(exit_func);
 if (read(fd,&c,1) != 1)
printf("Unable to read from open file handle %d before _cexit\n",fd);

 else
printf("Successfully read from open file handle %d before _cexit\n",fd);

 _cexit();
 if (read(fd,&c,1) == 1)
 MessageBeep(0);

 return 0;
}

/* farfree example */
#include <stdio.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char far *fptr;
 char *str = "Hello";

 /* allocate memory for the far pointer */
 fptr = (char far *) farcalloc(10, sizeof(char));

 /* copy "Hello" into allocated memory */
/*
Note: movedata is used because you might be in a small data model, in which
case a normal string copy routine can't be used since it assumes the
pointer size is near.

 */
 movedata(FP_SEG(str), FP_OFF(str),
 FP_SEG(fptr), FP_OFF(fptr),
 strlen(str));

 /* display string (note the F modifier) */
 printf("Far string is: %Fs\n", fptr);

 /* free the memory */
 farfree(fptr);

 return 0;
}

/* free example */
#include <string.h>
#include <stdio.h>
#include <alloc.h>

int main(void)
{
 char *str;

 /* allocate memory for string */
 str = (char *) malloc(10);

 /* copy "Hello" to string */
 strcpy(str, "Hello");

 /* display string */
 printf("String is %s\n", str);

 /* free memory */
 free(str);

 return 0;
}

/* fgetc example */
#include <string.h>
#include <stdio.h>
#include <conio.h>

int main(void)
{
 FILE *stream;
 char string[] = "This is a test";
 char ch;

 /* open a file for update */
 stream = fopen("DUMMY.FIL", "w+");

 /* write a string into the file */
 fwrite(string, strlen(string), 1, stream);

 /* seek to the beginning of the file */
 fseek(stream, 0, SEEK_SET);

 do
 {
 /* read a char from the file */
 ch = fgetc(stream);

 /* display the character */
 putch(ch);
 } while (ch != EOF);

 fclose(stream);
 return 0;
}

/* fputc example */
#include <stdio.h>

int main(void)
{
 char msg[] = "Hello world";
 int i = 0;

 while (msg[i])
 {
 fputc(msg[i], stdout);
 i++;
 }
 return 0;
}

/* fgetchar example */
#include <stdio.h>

int main(void)
{
 char ch;

 /* prompt the user for input */
 printf("Enter a character followed by <Enter>: ");

 /* read the character from stdin */
 ch = fgetchar();

 /* display what was read */
 printf("The character read is: '%c'\n", ch);
 return 0;
}

/* fputchar example */
#include <stdio.h>

int main(void)
{
 char msg[] = "This is a test";
 int i = 0;

 while (msg[i])
 {
 fputchar(msg[i]);
 i++;
 }
 return 0;
}

/* fgets example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 FILE *stream;
 char string[] = "This is a test";
 char msg[20];

 /* open a file for update */
 stream = fopen("DUMMY.FIL", "w+");

 /* write a string into the file */
 fwrite(string, strlen(string), 1, stream);

 /* seek to the start of the file */
 fseek(stream, 0, SEEK_SET);

 /* read a string from the file */
 fgets(msg, strlen(string)+1, stream);

 /* display the string */
 printf("%s", msg);

 fclose(stream);
 return 0;
}

/* fputs example */
#include <stdio.h>

int main(void)
{
 /* write a string to standard output */
 fputs("Hello world\n", stdout);

 return 0;
}

/* _dos_findfirst and _dos_findnext example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct find_t ffblk;
 int done;
 printf("Directory listing of *.*\n");
 done = _dos_findfirst("*.*",_A_NORMAL,&ffblk);
 while (!done) {
 printf(" %s\n", ffblk.name);
 done = _dos_findnext(&ffblk);
 }
 return 0;
}

/* Program output

Directory listing of *.*
 FINDFRST.C
 FINDFRST.OBJ
 FINDFRST.MAP
 FINDFRST.EXE */

/* findfirst and findnext example */
/* findfirst and findnext example */

#include <stdio.h>
#include <dir.h>

int main(void)
{
 struct ffblk ffblk;
 int done;
 printf("Directory listing of *.*\n");
 done = findfirst("*.*",&ffblk,0);
 while (!done)
 {
 printf(" %s\n", ffblk.ff_name);
 done = findnext(&ffblk);
 }

 return 0;
}

/* _fsopen example */
#include <io.h>
#include <process.h>
#include <share.h>
#include <stdio.h>

int main(void)
{
 FILE *f;
 int status;
 f = _fsopen("c:\\autoexec.bat", "r", SH_DENYNO);
 if (f == NULL)
 {
 printf("_fsopen failed\n");
 exit(1);
 }
 status = access("c:\\autoexec.bat", 6);
 if (status == 0)
 printf("read/write access allowed\n");
 else
 printf("read/write access not allowed\n");
 fclose(f);
 return 0;
}

/* fdopen example */
#include <sys\stat.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 FILE *stream;

 /* open a file */
 handle = open("DUMMY.FIL", O_CREAT,
 S_IREAD | S_IWRITE);

 /* now turn the handle into a stream */
 stream = fdopen(handle, "w");

 if (stream == NULL)
 printf("fdopen failed\n");
 else
 {
 fprintf(stream, "Hello world\n");
 fclose(stream);
 }
 return 0;
}

/* fopen example */
/* Program to create backup of the AUTOEXEC.BAT file */

#include <stdio.h>

int main(void)
{
 FILE *in, *out;

 if ((in = fopen("\\AUTOEXEC.BAT", "rt"))
 == NULL)
 {
 fprintf(stderr, "Cannot open input file.\n");
 return 1;
 }

 if ((out = fopen("\\AUTOEXEC.BAK", "wt"))
 == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }

 while (!feof(in))
 fputc(fgetc(in), out);

 fclose(in);
 fclose(out);
 return 0;
}

/* freopen example */
#include <stdio.h>

int main(void)
{
 /* redirect standard output to a file */
 if (freopen("OUTPUT.FIL", "w", stdout)
 == NULL)
 fprintf(stderr, "error redirecting stdout\n");

 /* this output will go to a file */
 printf("This will go into a file.");

 /* close the standard output stream */
 fclose(stdout);

 return 0;
}

/* freemem example */
#include <dos.h>
#include <alloc.h>
#include <stdio.h>

int main(void)
{
 unsigned int size, segp;
 int stat;

 size = 64; /* (64 x 16) = 1024 bytes */
 stat = allocmem(size, &segp);
 if (stat < 0)
 printf("Allocated memory at segment: %x\n", segp);
 else
 printf("Failed: maximum number of\
 paragraphs available is %u\n", stat);
 freemem(segp);

 return 0;
}

/* fstat example */
#include <sys\stat.h>
#include <stdio.h>
#include <time.h>

int main(void)
{
 struct stat statbuf;
 FILE *stream;

 /* open a file for update */
 if ((stream = fopen("DUMMY.FIL", "w+"))
 == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return(1);
 }
 fprintf(stream, "This is a test");
 fflush(stream);

 /* get information about the file */
 fstat(fileno(stream), &statbuf);
 fclose(stream);

 /* display the information returned */
 if (statbuf.st_mode & S_IFCHR)
 printf("Handle refers to a device.\n");
 if (statbuf.st_mode & S_IFREG)
 printf("Handle refers to an ordinary file.\n");
 if (statbuf.st_mode & S_IREAD)
 printf("User has read permission on file.\n");
 if (statbuf.st_mode & S_IWRITE)
 printf("User has write permission on file.\n");

 printf("Drive letter of file: %c\n", 'A'+statbuf.st_dev);
 printf("Size of file in bytes: %ld\n", statbuf.st_size);
 printf("Time file last opened: %s\n", ctime(&statbuf.st_ctime));
 return 0;
}

/* stat example */
#include <sys\stat.h>
#include <stdio.h>
#include <time.h>

#define FILENAME "TEST.$$$"

int main(void)
{
 struct stat statbuf;
 FILE *stream;

 /* open a file for update */
 if ((stream = fopen(FILENAME, "w+")) == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return(1);
 }

 /* get information about the file */
 stat(FILENAME, &statbuf);

 fclose(stream);

 /* display the information returned */
 if (statbuf.st_mode & S_IFCHR)
 printf("Handle refers to a device.\n");
 if (statbuf.st_mode & S_IFREG)
 printf("Handle refers to an ordinary file.\n");
 if (statbuf.st_mode & S_IREAD)
 printf("User has read permission on file.\n");
 if (statbuf.st_mode & S_IWRITE)
 printf("User has write permission on file.\n");

 printf("Drive letter of file: %c\n", 'A'+statbuf.st_dev);
 printf("Size of file in bytes: %ld\n", statbuf.st_size);
 printf("Time file last opened: %s\n", ctime(&statbuf.st_ctime));
 return 0;
}

/* getc example */
#include <stdio.h>

int main(void)
{
 char ch;

 printf("Input a character:");
/* read a character from the
standard input stream */

 ch = getc(stdin);
 printf("The character input was: '%c'\n", ch);
 return 0;
}

/* putc example */
#include <stdio.h>

int main(void)
{
 char msg[] = "Hello world\n";
 int i = 0;

 while (msg[i])
 putc(msg[i++], stdout);
 return 0;
}

/* getch example */
#include <conio.h>
#include <stdio.h>

int main(void)
{
 int c;
 int extended = 0;
 c = getch();
 if (!c)
 extended = getch();
 if (extended)
 printf("The character is extended\n");
 else
 printf("The character isn't extended\n");

 return 0;
}

/* getche example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 char ch;

 printf("Input a character:");
 ch = getche();
 printf("\nYou input a '%c'\n", ch);
 return 0;
}

/* getchar example */
#include <stdio.h>

int main(void)
{
 int c;

/*
Note that getchar reads from stdin and is line buffered; this means it will
not return until you press ENTER.

 */

 while ((c = getchar()) != '\n')
 printf("%c", c);

 return 0;
}

/* putchar example */
#include <stdio.h>

/* define some box-drawing characters */
#define LEFT_TOP 0xDA
#define RIGHT_TOP 0xBF
#define HORIZ 0xC4
#define VERT 0xB3
#define LEFT_BOT 0xC0
#define RIGHT_BOT 0xD9

int main(void)
{
 char i, j;

 /* draw the top of the box */
 putchar(LEFT_TOP);
 for (i=0; i<10; i++)
 putchar(HORIZ);
 putchar(RIGHT_TOP);
 putchar('\n');

 /* draw the middle */
 for (i=0; i<4; i++)
 {
 putchar(VERT);
 for (j=0; j<10; j++)
 putchar(' ');
 putchar(VERT);
 putchar('\n');
 }

 /* draw the bottom */
 putchar(LEFT_BOT);
 for (i=0; i<10; i++)
 putchar(HORIZ);
 putchar(RIGHT_BOT);
 putchar('\n');

 return 0;
}

/* getcwd example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 char buffer[MAXPATH];

 getcwd(buffer, MAXPATH);
 printf("The current directory is: %s\n", buffer);
 return 0;
}

/* _getdcwd example */
#include <direct.h>
#include <stdio.h>

char buf[65];

void main()
{
 if (_getdcwd(3, buf, sizeof(buf)) == NULL)
 perror("Unable to get current directory of drive C");
 else
 printf("Current directory of drive C is %s\n",buf);
}

/* _dos_getdate example */
#include <dos.h>
#include <stdio.h>

int main(void)
{
 struct dosdate_t d;
 _dos_getdate(&d);
 printf("The current year is: %d\n", d.year);
 printf("The current day is: %d\n", d.day);
 printf("The current month is: %d\n", d.month);
 return 0;
}

/* _dos_setdate example */
#include <dos.h>
#include <process.h>
#include <stdio.h>

int main(void)
{
 struct dosdate_t reset;
 reset.year = 2001;
 reset.day = 1;
 reset.month = 1;
 printf("Setting date to 1/1/2001.\n");
 _dos_setdate(&reset);
 system("date");
 return 0;
}

/* getdate example */
#include <dos.h>
#include <stdio.h>

int main(void)
{
 struct date d;

 getdate(&d);
 printf("The current year is: %d\n", d.da_year);
 printf("The current day is: %d\n", d.da_day);
 printf("The current month is: %d\n", d.da_mon);
 return 0;
}

/* setdate example */
#include <stdio.h>
#include <process.h>
#include <dos.h>

int main(void)
{
 struct date reset;
 struct date save_date;

 getdate(&save_date);
 printf("Original date:\n");
 system("date");

 reset.da_year = 2001;
 reset.da_day = 1;
 reset.da_mon = 1;
 setdate(&reset);

 printf("Date after setting:\n");
 system("date");

 setdate(&save_date);
 printf("Back to original date:\n");
 system("date");

 return 0;
}

/* _dos_getdiskfree example */
#include <stdio.h>
#include <dos.h>
#include <process.h>

int main(void)
{
 struct diskfree_t free;
 long avail;

 if (_dos_getdiskfree(0, &free) != 0) {
 printf("Error in _dos_getdiskfree() call\n");
 exit(1);
 }
 avail = (long) free.avail_clusters
 * (long) free.bytes_per_sector
 * (long) free.sectors_per_cluster;
 printf("The current drive has %ld bytes available\n", avail);
 return 0;
}

/* getdfree example */
#include <stdio.h>
#include <dos.h>
#include <process.h>

int main(void)
{
 struct diskfree_t free;
 long avail;

 if (_dos_getdiskfree(0, &free) != 0) {
 printf("Error in _dos_getdiskfree() call\n");
 exit(1);
 }
 avail = (long) free.avail_clusters
 * (long) free.bytes_per_sector
 * (long) free.sectors_per_cluster;
 printf("The current drive has %ld bytes available\n", avail);
 return 0;
}

/* _chdrive example */
 #include <stdio.h>
#include <direct.h>

int main(void)
{
 if (_chdrive(3) == 0)
 printf("Successfully changed to drive C:\n");
 else
 printf("Cannot change to drive C:\n");
 return 0;
}

/* _dos_getdrive example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 unsigned disk;
 _dos_getdrive(&disk);
 printf("The current drive is: %c\n", disk + 'A' - 1);
 return 0;
}

/* _dos_setdrive example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 unsigned maxdrives;
 _dos_setdrive(3,&maxdrives); /* set drive to C: */
 printf("The number of logical drives is: %d\n", maxdrives);
 return 0;
}

/* _getdrive example */
#include <stdio.h>
#include <direct.h>

int main(void)
{
 int disk;
 disk = _getdrive() + 'A' - 1;
 printf("The current drive is: %c\n", disk);
 return 0;
}

/* getdisk example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 int disk, maxdrives = setdisk(2);
 disk = getdisk() + 'A';
 printf("\nThe number of logical drives is:%d\n", maxdrives);
 printf("The current drive is: %c\n", disk);
 return 0;
 }

/* setdisk example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 int save, disk, disks;

 /* save original drive */
 save = getdisk();

 /* print number of logic drives */
 disks = setdisk(save);
 printf("%d logical drives on the system\n\n", disks);

 /* print the drive letters available */
 printf("Available drives:\n");
 for (disk = 0;disk < 26;++disk)
 {
 setdisk(disk);
 if (disk == getdisk())
 printf("%c: drive is available\n", disk + 'a');
 }
 setdisk(save);

 return 0;
}

/* getdta example */
#include <dos.h>
#include <stdio.h>

int main(void)
{
 char far *dta;

 dta = getdta();
 printf("The current disk transfer address is: %Fp\n", dta);
 return 0;
}

/* setdta example */
#include <process.h>
#include <string.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 char line[80], far *save_dta;
 char buffer[256] = "SETDTA test!";
 struct fcb blk;
 int result;

 /* get new file name from user */
 printf("Enter a file name to create:");
 gets(line);

 /* parse the new file name to the dta */
 parsfnm(line, &blk, 1);
 printf("%d %s\n", blk.fcb_drive, blk.fcb_name);

 /* request DOS services to create file */
 if (bdosptr(0x16, &blk, 0) == -1)
 {
 perror("Error creating file");
 exit(1);
 }

 /* save old dta and set new dta */
 save_dta = getdta();
 setdta(buffer);

 /* write new records */
 blk.fcb_recsize = 256;
 blk.fcb_random = 0L;
 result = randbwr(&blk, 1);
 printf("result = %d\n", result);

 if (!result)
 printf("Write OK\n");
 else
 {
 perror("Disk error");
 exit(1);
 }

 /* request DOS services to close the file */
 if (bdosptr(0x10, &blk, 0) == -1)
 {
 perror("Error closing file");
 exit(1);
 }

 /* reset the old dta */
 setdta(save_dta);
 return 0;

}

/* getfat example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct fatinfo diskinfo;
 int flag = 0;

 printf("Please insert disk in drive A\n");
 getchar();

 getfat(1, &diskinfo);
/* get drive information */

 printf("\nDrive A: is ");
 switch((unsigned char) diskinfo.fi_fatid)
 {
 case 0xFD:
 printf("360K low density\n");
 break;

 case 0xF9:
 printf("1.2 Meg high density\n");
 break;

 default:
 printf("unformatted\n");
 flag = 1;
 }

 if (!flag)
 {
 printf(" sectors per cluster %5d\n", diskinfo.fi_sclus);
 printf(" number of clusters %5d\n", diskinfo.fi_nclus);
 printf(" bytes per sector %5d\n", diskinfo.fi_bysec);
 }

 return 0;
}

/* getfatd example */
#include <stdio.h>
#include <dos.h>

int main()
{
 struct fatinfo diskinfo;

 /* get default drive information */
 getfatd(&diskinfo);
 printf("\nDefault Drive:\n");
 printf("sectors per cluster: %5d\n",diskinfo.fi_sclus);
 printf("FAT ID byte: %5X\n",diskinfo.fi_fatid & 0xFF);
 printf("number of clusters %5d\n",diskinfo.fi_nclus);
 printf("bytes per sector %5d\n",diskinfo.fi_bysec);
 return 0;
}

/* getftime example */
#include <stdio.h>
#include <io.h>

int main(void)
{
 FILE *stream;
 struct ftime ft;

 if ((stream = fopen("TEST.$$$",
 "wt")) == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }
 getftime(fileno(stream), &ft);
 printf("File time: %u:%u:%u\n",
 ft.ft_hour, ft.ft_min,
 ft.ft_tsec * 2);
 printf("File date: %u/%u/%u\n",
 ft.ft_month, ft.ft_day,
 ft.ft_year+1980);
 fclose(stream);
 return 0;
}

/* setftime example */
#include <stdio.h>
#include <process.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 struct ftime filet;
 FILE *fp;

 if ((fp = fopen("TEST.$$$", "w")) == NULL)
 {
 perror("Error:");
 exit(1);
 }

 fprintf(fp, "testing...\n");

 /* load ftime structure with new time and date */
 filet.ft_tsec = 1;
 filet.ft_min = 1;
 filet.ft_hour = 1;
 filet.ft_day = 1;
 filet.ft_month = 1;
 filet.ft_year = 21;

 /* show current directory for time and date */
 system("dir TEST.$$$");

 /* change the time and date stamp*/
 setftime(fileno(fp), &filet);

 /* close and remove the temporary file */
 fclose(fp);

 system("dir TEST.$$$");

 unlink("TEST.$$$");
 return 0;
}

/* _dos_getftime example */
#include <stdio.h>
#include <dos.h>

int main()
{
 FILE *stream;
 unsigned date, time;
 if ((stream = fopen("TEST.$$$", "w")) == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }
 _dos_getftime(fileno(stream), &date, &time);
 printf("File date: 0x%x\n",date);
 printf("File time: 0x%x\n",time);
 fclose(stream);
 return 0;
}

/* _dos_setftime example */
#include <stdio.h>
#include <dos.h>

int main()
{
 FILE *stream;
 unsigned date, time;
 if ((stream = fopen("TEST.$$$", "w")) == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }
 _dos_getftime(fileno(stream), &date, &time);
 printf("File year of TEST.$$$: %d\n",((date >> 9) & 0x7f) + 1980);
 date = (date & 0x1ff) | (21 << 9);
 _dos_setftime(fileno(stream), date, time);
 printf("Set file year to 2001.\n");
 fclose(stream);
 return 0;
}

/* puts example */
#include <stdio.h>

int main(void)
{
 char string[] = "This is an example output string\n";

 puts(string);
 return 0;
}

/* gets example */
#include <stdio.h>

int main(void)
{
 char string[80];

 printf("Input a string:");
 gets(string);
 printf("The string input was: %s\n", string);
 return 0;
}

/* puttext example */
#include <conio.h>

int main(void)
{
 char buffer[512];

 /* put some text to the console */
 clrscr();
 gotoxy(20, 12);
 cprintf("This is a test. Press any key to continue ...");
 getch();

 /* grab screen contents */
 gettext(20, 12, 36, 21,buffer);
 clrscr();

 /* put selected characters back to the screen */
 gotoxy(20, 12);
 puttext(20, 12, 36, 21, buffer);
 getch();

 return 0;
}

/* gettext example */
#include <conio.h>

char buffer[4096];

int main(void)
{
 int i;

 clrscr();
 for (i = 0; i <= 20; i++)
 cprintf("Line #%d\r\n", i);
 gettext(1, 1, 80, 25, buffer);

 gotoxy(1, 25);
 cprintf("Press any key to clear screen...");
 getch();
 clrscr();
 gotoxy(1, 25);
 cprintf("Press any key to restore screen...");
 getch();
 puttext(1, 1, 80, 25, buffer);
 gotoxy(1, 25);
 cprintf("Press any key to quit...");
 getch();

 return 0;
}

/* _dos_gettime example */
#include <dos.h>

int main(void)
{
 struct dostime_t t;
 _dos_gettime(&t);
 printf("The current time is: %2d:%02d:%02d.%02d\n", t.hour, t.minute,
 t.second, t.hsecond);
 return 0;
}

/* _dos_settime example */
#include <dos.h>
#include <process.h>
#include <stdio.h>

int main(void)
{
 struct dostime_t reset;
 reset.hour = 17;
 reset.minute = 0;
 reset.second = 0;
 reset.hsecond = 0;
 printf("Setting time to 5 PM.\n");
 _dos_settime(&reset);
 system("time");
 return 0;
}

/* gettime example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct time t;

 gettime(&t);
 printf("The current time is: %2d:%02d:%02d.%02d\n",
 t.ti_hour, t.ti_min, t.ti_sec, t.ti_hund);
 return 0;
}

/* settime example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct time t;

 gettime(&t);
 printf("The current minute is: %d\n", t.ti_min);
 printf("The current hour is: %d\n", t.ti_hour);
 printf("The current hundredth of a second is: %d\n", t.ti_hund);
 printf("The current second is: %d\n", t.ti_sec);

 /* Add one to the minutes struct element and then call settime */
 t.ti_min++;
 settime(&t);

 return 0;
}

/* _dos_getvect and _dos_setvect example */
#include <stdio.h>
#include <dos.h>

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt get_out(__CPPARGS); /* interrupt prototype */
void interrupt (*oldfunc)(__CPPARGS); /* interrupt function pointer */

int looping = 1;

int main(void)
{
 puts("Press <Shift><PrtSc> to terminate");

 /* save the old interrupt */
 oldfunc = _dos_getvect(5);

 /* install interrupt handler */
 _dos_setvect(5,get_out);

 /* do nothing */
 while (looping);

 /* restore to original interrupt routine */
 _dos_setvect(5,oldfunc);

 puts("Success");
 return 0;
}

void interrupt get_out(__CPPARGS) {
 looping = 0; /* change global var to get out of oop */
}

/* getvect and setvect example */
/* * * * * * * * * * * * * * *
NOTE: This is an interrupt service routine.
You can NOT compile this program with
Test Stack Overflow turned on and get an
executable file that will operate correctly.
 * * * * * * * * * * * * * * */
#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS)
{
/* increase the global counter */
 count++;

/* call the old routine */
oldhandler();

}
int main(void)

{
/* save the old interrupt vector */
 oldhandler = getvect(INTR);

/* install the new interrupt handler */
 setvect(INTR, handler);

/* loop until the counter exceeds 20 */
while (count < 20)

 printf("count is %d\n",count);

/* reset the old interrupt handler */
 setvect(INTR, oldhandler);

 return 0;
}

/* getw example */
#include <stdio.h>
#include <stdlib.h>

#define FNAME "test.$$$"

int main(void)
{
FILE *fp;
int word;

/* place the word in a file */
fp = fopen(FNAME, "wb");
if (fp == NULL)
{

printf("Error opening file %s\n", FNAME);
 exit(1);
 }

 word = 94;
 putw(word,fp);
 if (ferror(fp))
 printf("Error writing to file\n");
 else
 printf("Successful write\n");
 fclose(fp);

 /* reopen the file */
 fp = fopen(FNAME, "rb");
 if (fp == NULL)
 {
 printf("Error opening file %s\n", FNAME);
 exit(1);
 }

 /* extract the word */
 word = getw(fp);

 if (ferror(fp))
 printf("Error reading file\n");
 else
 printf("Successful read: word = %d\n", word);

 /* clean up */
 fclose(fp);
 unlink(FNAME);

 return 0;
}

/* putw example */
#include <stdio.h>
#include <stdlib.h>

#define FNAME "test.$$$"

int main(void)
{
 FILE *fp;
 int word;

 /* place the word in a file */
 fp = fopen(FNAME, "wb");
 if (fp == NULL)
 {
 printf("Error opening file %s\n", FNAME);
 exit(1);
 }

 word = 94;
 putw(word,fp);
 if (ferror(fp))
 printf("Error writing to file\n");
 else
 printf("Successful write\n");
 fclose(fp);

 /* reopen the file */
 fp = fopen(FNAME, "rb");
 if (fp == NULL)
 {
 printf("Error opening file %s\n", FNAME);
 exit(1);
 }

 /* extract the word */
 word = getw(fp);
 if (ferror(fp))
 printf("Error reading file\n");
 else
 printf("Successful read: word = %d\n", word);

 /* clean up */
 fclose(fp);
 unlink(FNAME);

 return 0;
}

/* gmtime example */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <dos.h>

/* Pacific Standard Time & Daylight Savings */
char *tzstr = "TZ=PST8PDT";

int main(void)
{
 time_t t;
 struct tm *gmt, *area;

 putenv(tzstr);
 tzset();

 t = time(NULL);
 area = localtime(&t);
 printf("Local time is: %s", asctime(area));
 gmt = gmtime(&t);
 printf("GMT is: %s", asctime(gmt));
 return 0;
}

/* localtime example */
#include <time.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 time_t timer;
 struct tm *tblock;

 /* gets time of day */
 timer = time(NULL);

 /* converts date/time to a structure */
 tblock = localtime(&timer);

 printf("Local time is: %s", asctime(tblock));

 return 0;
}

/* heapcheck and _heapchk example */
#include <stdio.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
 char *array[NUM_PTRS];
 int i;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char *) malloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 free(array[i]);

 if(heapcheck() == _HEAPCORRUPT)
 printf("Heap is corrupted.\n");
 else
 printf("Heap is OK.\n");

 return 0;
}

/* farheapcheck example */
#include <stdio.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
char far *array[NUM_PTRS];
int i;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char far *) farmalloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 farfree(array[i]);

 if(farheapcheck() == _HEAPCORRUPT)
 printf("Heap is corrupted.\n");
 else
 printf("Heap is OK.\n");

 return 0;
}

/* heapchecknode example */
#include <stdio.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
 char *array[NUM_PTRS];
 int i;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char *) malloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 free(array[i]);

 for(i = 0; i < NUM_PTRS; i++)
 {
 printf("Node %2d ", i);
 switch(heapchecknode(array[i]))
 {
 case _HEAPEMPTY:
 printf("No heap.\n");
 break;
 case _HEAPCORRUPT:
 printf("Heap corrupt.\n");
 break;
 case _BADNODE:
 printf("Bad node.\n");
 break;
 case _FREEENTRY:
 printf("Free entry.\n");
 break;
 case _USEDENTRY:
 printf("Used entry.\n");
 break;
 default:
 printf("Unknown return code.\n");
 break;
 }
 }

 return 0;
}

/* heapfillfree and heapcheckfree example */
#include <stdio.h>
#include <alloc.h>
#include <mem.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
 char *array[NUM_PTRS];
 int i;
 int res;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char *) malloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 free(array[i]);

 if(heapfillfree(1) < 0)
 {
 printf("Heap corrupted.\n");
 return 1;
 }

 for(i = 1; i < NUM_PTRS; i += 2)
 memset(array[i], 0, NUM_BYTES);

 res = heapcheckfree(1);
 if(res < 0)
 switch(res)
 {
 case _HEAPCORRUPT:
 printf("Heap corrupted.\n");
 return 1;
 case _BADVALUE:
 printf("Bad value in free space.\n");
 return 1;
 default:
 printf("Unknown error.\n");
 return 1;
 }

 printf("Test successful.\n");
 return 0;
}

/* heapwalk example*/
#include <stdio.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
 struct heapinfo hi;
char *array[NUM_PTRS];

 int i;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char *) malloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 free(array[i]);

 hi.ptr = NULL;
 printf(" Size Status\n");
 printf(" ---- ------\n");
 while(heapwalk(&hi) == _HEAPOK)
 printf("%7u %s\n", hi.size, hi.in_use ? "used" : "free");

 return 0;
}

/* _rtl_heapwalk example*/
#include <stdio.h>
#include <malloc.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16
#if defined(__FLAT__)
int main(void)
{
struct heapinfo hi;
char *array[NUM_PTRS];
int i;

for(i = 0; i < NUM_PTRS; i++)
array[i] = (char *) malloc(NUM_BYTES);

for(i = 0; i < NUM_PTRS; i += 2)
free(array[i]);

hi.ptr = NULL;
printf(" Size Status\n");
printf(" ---- ------\n");
while(_rtl_heapwalk(&hi) == _HEAPOK)
printf("%7u %s\n", hi.size, hi.in_use ? "used" : "free");

return 0;
}
#endif

/* inp example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 int result;
 int port = 0; /* serial port 0 */

 result = inport(port);
 printf("Word read from port %d = 0x%X\n", port, result);
 return 0;
}

/* inpw example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 unsigned result;
 unsigned port = 0;
 result = inpw(port);
 printf("Word read from port %d = 0x%X\n", port, result);
 return 0;
}

/* outp example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 unsigned port = 0;
 int value;
 value = outp(port, 'C');
 printf("Value %c sent to port number %d\n", value, port);
 return 0;
}

/* outpw example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 unsigned value;
 unsigned port = 0;
 value = outpw(port, 64);
 printf("Value %d sent to port number %d\n", value, port);
 return 0;
}

/* inport example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 int result;
 int port = 0;
 result = inport(port);
 printf("Word read from port %d = 0x%X\n", port, result);
 return 0;
}

/* inportb example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 unsigned char result;
 int port = 0; /* serial port 1 */

 result = inportb(port);
 printf("Byte read from port %d = 0x%X\n", port, result);
 return 0;
}

/* outport example */
#include <conio.h>
#include <stdio.h>
int main(void)
{
 int port = 0;
 int value = 'C';

 outport(port, value);
 printf("Value %d sent to port number %d\n", value, port);
 return 0;
}

/* outportb example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
int port = 0;
char value = 'C';

outportb(port, value);
 printf("Value %c sent to port number %d\n", value, port);
return 0;

}

/* int86 example */
#include <stdio.h>
#include <conio.h>
#include <dos.h>

#define VIDEO 0x10

void movetoxy(int x, int y)
{
union REGS regs;

 regs.h.ah = 2; /* set cursor position */
regs.h.dh = y;

 regs.h.dl = x;
 regs.h.bh = 0; /* video page 0 */
int86(VIDEO, ®s, ®s);

}

int main(void)
{
clrscr();
movetoxy(35, 10);
printf("Hello\n");
return 0;

}

/* int86x example */
#include <dos.h>
#include <process.h>
#include <stdio.h>

int main(void)
{
char filename[80];
union REGS inregs, outregs;
struct SREGS segregs;

printf("Enter filename: ");
gets(filename);
inregs.h.ah = 0x43;
inregs.h.al = 0x21;
inregs.x.dx = FP_OFF(filename);
segregs.ds = FP_SEG(filename);
int86x(0x21, &inregs, &outregs, &segregs);

 printf("File attribute: %X\n", outregs.x.cx);
 return 0;
}

/* intdos example */
#include <stdio.h>
#include <dos.h>

/* deletes file name; returns 0 on success, nonzero on failure */
int delete_file(char near *filename)
{
 union REGS regs;
 int ret;
 regs.h.ah = 0x41;
/* delete file */
 regs.x.dx = (unsigned) filename;
 ret = intdos(®s, ®s);

 /* if carry flag is set, there was an error */
 return(regs.x.cflag ? ret : 0);
}

int main(void)
{
 int err;
 err = delete_file("NOTEXIST.$$$");
 if (!err)
 printf("Able to delete NOTEXIST.$$$\n");
 else
 printf("Not Able to delete NOTEXIST.$$$\n");
 return 0;
}

/* intdosx example */
#include <stdio.h>
#include <dos.h>

/* deletes file name; returns 0 on success,
nonzero on failure */
int delete_file(char far *filename)
{
 union REGS regs; struct SREGS sregs;
 int ret;
 regs.h.ah = 0x41; /* delete file */
 regs.x.dx = FP_OFF(filename);
 sregs.ds = FP_SEG(filename);
 ret = intdosx(®s, ®s, &sregs);

 /* if carry flag is set, there was an error */
 return(regs.x.cflag ? ret : 0);
}

int main(void)

{
 int err;
 err = delete_file("NOTEXIST.$$$");
 if (!err)
 printf("Able to delete NOTEXIST.$$$\n");
 else
 printf("Not Able to delete NOTEXIST.$$$\n");
 return 0;
}

/* itoa example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int number = 12345;
 char string[25];

 itoa(number, string, 10);
 printf("integer = %d string = %s\n", number, string);
 return 0;
}

/* ltoa example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char string[25];
 long value = 123456789L;

 ltoa(value,string,10);
 printf("number = %ld string = %s\n", value, string);

 return 0;
}

/* ultoa example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 unsigned long lnumber = 3123456789L;
 char string[25];

 ultoa(lnumber,string,10);
 printf("string = %s unsigned long = %lu\n",string,lnumber);

 return 0;
}

/* keep example */
/* * * * * * * * * * * * *

NOTE: This is an interrupt service routine. You can NOT compile this
program with Test Stack Overflow turned on and get an executable file
which will operate correctly.

Due to the nature of this function the formula used to compute the number
of paragraphs may not necessarily work in all cases. Use with care!

Terminate Stay Resident (TSR) programs are complex and no other support for
them is provided.

Refer to the MS-DOS technical documentation for more information.

 * * * * * * * * * * * * */

#include <dos.h>
/* The clock tick interrupt */
#define INTR 0x1C
/* Screen attribute (blue on grey) */
#define ATTR 0x7900

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

/* reduce heaplength and stacklength to make a smaller program in memory */
extern unsigned _heaplen = 1024;
extern unsigned _stklen = 512;

void interrupt (*oldhandler)(__CPPARGS);

typedef unsigned int (far *s_arrayptr);

void interrupt handler(__CPPARGS)
{
 s_arrayptr screen[80];
 static int count;

/* For a color screen the video memory is at B800:0000.
 For a monochrome system use B000:000 */
 screen[0] = (s_arrayptr) MK_FP(0xB800,0);

/* increase the counter and keep it within 0 to 9 */
 count++;
 count %= 10;

/* put the number on the screen */
 screen[0][79] = count + '0' + ATTR;

/* call the old interrupt handler */
 oldhandler();
}

int main(void)
{

/* get the address of the current clock
 tick interrupt */
oldhandler = getvect(INTR);

/* install the new interrupt handler */
setvect(INTR, handler);

/* * *
_psp is the starting address of the program in memory. The top of the
stack is the end of the program.

Using _SS and _SP together we can get the end of the stack. You may want
to allow a bit of safety space to insure that enough room is being
allocated ie:

 (_SS + ((_SP + safety space)/16) - _psp)
* * */

keep(0, (_SS + (_SP/16) - _psp));
return 0;
}

/* localeconv example */
#include <locale.h>
#include <stdio.h>

int main(void)
{
 struct lconv ll;
 struct lconv *conv = ≪

/* read the locality conversion structure */
 conv = localeconv();

/* display the structure */
 printf("Decimal Point : %s\n", conv-> decimal_point);
 printf("Thousands Separator : %s\n", conv-> thousands_sep);
 printf("Grouping : %s\n", conv-> grouping);
 printf("International Currency symbol : %s\n", conv-> int_curr_symbol);
 printf("$ thousands separator : %s\n", conv-> mon_thousands_sep);
 printf("$ grouping : %s\n", conv-> mon_grouping);
 printf("Positive sign : %s\n", conv-> positive_sign);
 printf("Negative sign : %s\n", conv-> negative_sign);
 printf("International fraction digits : %d\n", conv-> int_frac_digits);
 printf("Fraction digits : %d\n", conv-> frac_digits);
 printf("Positive $ symbol precedes : %d\n", conv-> p_cs_precedes);
 printf("Positive sign space separation: %d\n", conv-> p_sep_by_space);
 printf("Negative $ symbol precedes : %d\n", conv-> n_cs_precedes);
 printf("Negative sign space separation: %d\n", conv-> n_sep_by_space);
 printf("Positive sign position : %d\n", conv-> p_sign_posn);
 printf("Negative sign position : %d\n", conv-> n_sign_posn);
 return 0;
}

/* setlocale example */
#include <locale.h>
#include <stdio.h>

int main(void)
{
 char *old_locale;

 /* The only locale supported in Borland C++ is "C" */
 old_locale = setlocale(LC_ALL,"C");
 printf("Old locale was %s\n",old_locale);

 return 0;
}

/* locking example */
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <share.h>
#include <stdio.h>
#include <sys\locking.h>

int main(void)
{
 int handle, status;
 long length;

 /* must have DOS SHARE.EXE loaded for file locking to function */
 handle = sopen("c:\\autoexec.bat", O_RDONLY,SH_DENYNO);
 if (handle < 0) {
 printf("sopen failed\n");
 exit(1);
 }
 length = filelength(handle);
 status = locking(handle,LK_LOCK,length/2);
 if (status == 0)
 printf("lock succeeded\n");
 else
 perror("lock failed");
 status = locking(handle,LK_UNLCK,length/2);
 if (status == 0)
 printf("unlock succeeded\n");
 else
 perror("unlock failed");
 close(handle);
 return 0;
}

/* lock example */
#include <io.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <process.h>
#include <share.h>
#include <stdio.h>

int main(void)
{
 int handle, status;
 long length;

 /* Must have DOS Share.exe loaded for */
 /* file locking to function properly */

 handle = sopen("c:\\autoexec.bat",
 O_RDONLY,SH_DENYNO,S_IREAD);

 if (handle < 0)
 {
 printf("sopen failed\n");
 exit(1);
 }

 length = filelength(handle);
 status = lock(handle,0L,length/2);

 if (status == 0)
 printf("lock succeeded\n");
 else
 printf("lock failed\n");

 status = unlock(handle,0L,length/2);

 if (status == 0)
 printf("unlock succeeded\n");
 else
 printf("unlock failed\n");

 close(handle);
 return 0;
}

/* unlock example */
#include <io.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <process.h>
#include <share.h>
#include <stdio.h>

int main(void)
{
 int handle, status;
 long length;

 handle = sopen("c:\\autoexec.bat",O_RDONLY,SH_DENYNO,S_IREAD);

 if (handle < 0)
 {
 printf("sopen failed\n");
 exit(1);
 }

 length = filelength(handle);
 status = lock(handle,0L,length/2);

 if (status == 0)
 printf("lock succeeded\n");
 else
 printf("lock failed\n");

 status = unlock(handle,0L,length/2);

 if (status == 0)
 printf("unlock succeeded\n");
 else
 printf("unlock failed\n");

 close(handle);
 return 0;
}

/* log example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double result;
 double x = 8.6872;

 result = log(x);
 printf("The natural log of %lf is %lf\n", x, result);

 return 0;
}

/* log10 example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double result;
 double x = 800.6872;

 result = log10(x);
 printf("The common log of %lf is %lf\n", x, result);

 return 0;
}

/* _lrotl and _lrotr example */
#include <stdlib.h>
#include <stdio.h>

/* function prototypes */

int lrotl_example(void);
int lrotr_example(void);

/* lrotl example */

int lrotl_example(void)
{
 unsigned long result;
 unsigned long value = 100;

 result = _lrotl(value,1);
 printf("The value %lu rotated left one bit is: %lu\n", value, result);

 return 0;
}

/* lrotr example */

int lrotr_example(void)
{
 unsigned long result;
 unsigned long value = 100;

 result = _lrotr(value,1);
 printf("The value %lu rotated right one bit is: %lu\n", value, result);

 return 0;
}

int main(void)
{
 lrotl_example();
 lrotr_example();
 return 0;
}

/* _rotl and _rotr example */
#include <stdlib.h>
#include <stdio.h>

/* rotl example */

int rotl_example(void)
{
 unsigned value, result;

 value = 32767;
 result = _rotl(value, 1);
 printf("The value %u rotated left one bit is: %u\n", value, result);
 return 0;
}

/* rotr example */

int rotr_example(void)
{
 unsigned value, result;

 value = 32767;
 result = _rotr(value, 1);
 printf("The value %u rotated right one bit is: %u\n", value, result);
 return 0;
}

int main(void)
{
 rotl_example();
 rotr_example();
 return 0;
}

/* _makepath example */
#include <dir.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char s[_MAX_PATH];
 char drive[_MAX_DRIVE];
 char dir[_MAX_DIR];
 char file[_MAX_FNAME];
 char ext[_MAX_EXT];

 getcwd(s,_MAX_PATH); /* get current working directory */
 if (s[strlen(s)-1] != '\\')
 strcat(s,"\\"); /* append a trailing \ character */
 _splitpath(s,drive,dir,file,ext); /* split the string to separate
 elems */
 strcpy(file,"DATA");
 strcpy(ext,".TXT");
 _makepath(s,drive,dir,file,ext); /* merge everything into one string */
 puts(s); /* display resulting string */
 return 0;
}

/* _splitpath example */
#include <dir.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char s[_MAX_PATH];
 char drive[_MAX_DRIVE];
 char dir[_MAX_DIR];
 char file[_MAX_FNAME];
 char ext[_MAX_EXT];

 /* get current working directory */
 getcwd(s,_MAX_PATH);
 if (s[strlen(s)-1] != '\\')

 /* append a trailing \ character */
 strcat(s,"\\");

 /* split the string to separate elems */
 _splitpath(s,drive,dir,file,ext);
 strcpy(file,"DATA");
 strcpy(ext,".TXT");

 /* merge everything into one string */
 _makepath(s,drive,dir,file,ext);

 /* display resulting string */
 puts(s);
 return 0;
}

/* fnsplit example */
#include <stdlib.h>
#include <stdio.h>
#include <dir.h>

int main(void)
{
 char *s;
 char drive[MAXDRIVE];
 char dir[MAXDIR];
 char file[MAXFILE];
 char ext[MAXEXT];
 int flags;

 s=getenv("COMSPEC"); /* get the comspec environment parameter */
 flags=fnsplit(s,drive,dir,file,ext);

 printf("Command processor info:\n");
 if(flags & DRIVE)
 printf("\tdrive: %s\n",drive);
 if(flags & DIRECTORY)
 printf("\tdirectory: %s\n",dir);
 if(flags & FILENAME)
 printf("\tfile: %s\n",file);
 if(flags & EXTENSION)
 printf("\textension: %s\n",ext);

 return 0;
}

/* fnmerge example */
#include <string.h>
#include <stdio.h>
#include <dir.h>

int main(void)
{
 char s[MAXPATH];
 char drive[MAXDRIVE];
 char dir[MAXDIR];
 char file[MAXFILE];
 char ext[MAXEXT];

 getcwd(s,MAXPATH); /* get the current working directory */
 strcat(s,"\\"); /* append on a trailing character */
 fnsplit(s,drive,dir,file,ext); /* split the string to separate elems */
 strcpy(file,"DATA");
 strcpy(ext,".TXT");
 fnmerge(s,drive,dir,file,ext); /* merge everything into one string */
 puts(s); /* display resulting string */

 return 0;
}

/* memmove example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *dest = "abcdefghijklmnopqrstuvwxyz0123456789";
 char *src = "******************************";
 printf("destination prior to memmove: %s\n", dest);
 memmove(dest, src, 26);
 printf("destination after memmove: %s\n", dest);
 return 0;
}

/* memccpy example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *src = "This is the source string";
 char dest[50];
 char *ptr;

 ptr = (char *) memccpy(dest, src, 'c', strlen(src));

 if (ptr)
 {
 *ptr = '\0';
 printf("The character was found: %s\n", dest);
 }
 else
 printf("The character wasn't found\n");
 return 0;
}

/* memcpy example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char src[] = "******************************";
 char dest[] = "abcdefghijlkmnopqrstuvwxyz0123456709";
 char *ptr;

 printf("destination before memcpy: %s\n", dest);
 ptr = (char *) memcpy(dest, src, strlen(src));
 if (ptr)
 printf("destination after memcpy: %s\n", dest);
 else
 printf("memcpy failed\n");
 return 0;
}

/* memcmp example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *buf1 = "aaa";
 char *buf2 = "bbb";
 char *buf3 = "ccc";

 int stat;

 stat = memcmp(buf2, buf1, strlen(buf2));
 if (stat > 0)
 printf("buffer 2 is greater than buffer 1\n");
 else
 printf("buffer 2 is less than buffer 1\n");

 stat = memcmp(buf2, buf3, strlen(buf2));
 if (stat > 0)
 printf("buffer 2 is greater than buffer 3\n");
 else
 printf("buffer 2 is less than buffer 3\n");

 return 0;
}

/* memicmp example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *buf1 = "ABCDE123";
 char *buf2 = "abcde456";
 int stat;
 stat = memicmp(buf1, buf2, 5);
 printf("The strings to position 5 are ");
 if (stat)
 printf("not ");
 printf("the same\n");
 return 0;
}

/* _dos_open example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <dos.h>

int main(void)
{
 int handle;
 unsigned nbytes;
 char msg[] = "Hello world\n";
 if (_dos_open("TEST.$$$", O_RDWR, &handle) != 0) {
 perror("Unable to open TEST.$$$");
 return 1;
 }
 if (_dos_write(handle, msg, strlen(msg),&nbytes) != 0)
 perror("Unable to write to TEST.$$$");
 printf("%u bytes written to TEST.$$$\n",nbytes);
 _dos_close(handle);
 return 0;
}

/* _rtl_open example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "Hello world";

 if ((handle = _rtl_open("TEST.$$$", O_RDWR)) == -1)
 {
 perror("Error:");
 return 1;
 }
 _rtl_write(handle, msg, strlen(msg));
 _rtl_close(handle);
 return 0;
}

/* sopen example */
/* Load share before running this example.
*/
 #include <io.h>
 #include <fcntl.h>
 #include <sys\stat.h>
 #include <process.h>
 #include <share.h>
 #include <stdio.h>
 #include <stdlib.h>

 int main(void)
 {
 int handle,
 handle1;

 handle = sopen("c:\\autoexec.bat", O_RDONLY, SH_DENYWR, S_IREAD);

 if (handle == -1)
 {
 perror (sys_errlist[errno]);
 exit (1);
 }

 if (!handle)
 {
 printf("sopen failed\n");
 exit(1);
 }

 /* Attempt sopen for write.
 */
 handle1 = sopen("c:\\autoexec.bat", O_RDONLY, SH_DENYWR, S_IREAD);

 if (handle1 == -1)
 {
 perror (sys_errlist[errno]);
 exit (1);
 }

 if (!handle1)
 {
 printf("sopen failed\n");
 exit(1);
 }

 close (handle);
 close (handle1);
 return 0;
}

/* open example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "Hello world";

 if ((handle = open("TEST.$$$", O_CREAT | O_TEXT)) == -1)
 {
 perror("Error:");
 return 1;
 }
 write(handle, msg, strlen(msg));
 close(handle);
 return 0;
}

/* cprintf example */
#include <conio.h>

int main(void)
{
 /* clear the screen */
 clrscr();

 /* create a text window */
 window(10, 10, 80, 25);

 /* output some text in the window */
 cprintf("Hello world\r\n");

 /* wait for a key */
 getch();
 return 0;
}

/* fprintf example */
#include <stdio.h>

int main(void)
{
 FILE *stream;
 int i = 100;
 char c = 'C';
 float f = 1.234;

 /* open a file for update */
 stream = fopen("DUMMY.FIL", "w+");

 /* write some data to the file */
 fprintf(stream, "%d %c %f", i, c, f);

 /* close the file */
 fclose(stream);
 return 0;
}

/* printf example */
#include <stdio.h>
#include <string.h>

#define I 555
#define R 5.5

int main(void)
{
 int i,j,k,l;
 char buf[7];
 char *prefix = buf;
 char tp[20];
 printf("prefix 6d 6o 8x 10.2e "
 "10.2f\n");
 strcpy(prefix,"%");
 for (i = 0; i < 2; i++)
 {
 for (j = 0; j < 2; j++)
 for (k = 0; k < 2; k++)
 for (l = 0; l < 2; l++)
 {
 if (i==0) strcat(prefix,"-");
 if (j==0) strcat(prefix,"+");
 if (k==0) strcat(prefix,"#");
 if (l==0) strcat(prefix,"0");
 printf("%5s |",prefix);
 strcpy(tp,prefix);
 strcat(tp,"6d |");
 printf(tp,I);
 strcpy(tp,"");
 strcpy(tp,prefix);
 strcat(tp,"6o |");
 printf(tp,I);
 strcpy(tp,"");
 strcpy(tp,prefix);
 strcat(tp,"8x |");
 printf(tp,I);
 strcpy(tp,"");
 strcpy(tp,prefix);
 strcat(tp,"10.2e |");
 printf(tp,R);
 strcpy(tp,prefix);
 strcat(tp,"10.2f |");
 printf(tp,R);
 printf(" \n");
 strcpy(prefix,"%");
 }
 }
 return 0;
}

/* sprintf example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 char buffer[80];

 sprintf(buffer, "An approximation of Pi is %f\n", M_PI);
 puts(buffer);
 return 0;
}

/* vfprintf example */
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

FILE *fp;

int vfpf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 va_start(argptr, fmt);
 cnt = vfprintf(fp, fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber = 30;
 float fnumber = 90.0;
 char string[4] = "abc";

 fp = tmpfile();
 if (fp == NULL)
 {
 perror("tmpfile() call");
 exit(1);
 }

 vfpf("%d %f %s", inumber, fnumber, string);
 rewind(fp);
 fscanf(fp,"%d %f %s", &inumber, &fnumber, string);
 printf("%d %f %s\n", inumber, fnumber, string);
 fclose(fp);

 return 0;
}

/* vprintf example */
#include <stdio.h>
#include <stdarg.h>

int vpf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 va_start(argptr, fmt);
 cnt = vprintf(fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber = 30;
 float fnumber = 90.0;
 char *string = "abc";

 vpf("%d %f %s\n",inumber,fnumber,string);

 return 0;
}

/* vsprintf example */
#include <stdio.h>
#include <conio.h>
#include <stdarg.h>

char buffer[80];

int vspf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 va_start(argptr, fmt);
 cnt = vsprintf(buffer, fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber = 30;
 float fnumber = 90.0;
 char string[4] = "abc";

 vspf("%d %f %s", inumber, fnumber, string);
 printf("%s\n", buffer);
 return 0;
}

/* _dos_read example */
#include <stdio.h>
#include <fcntl.h>
#include <dos.h>

int main(void)
{
 int handle;
 unsigned bytes;
 char buf[10];

 /* Looks for a file in the current directory named TEST.$$$ and
 attempts to read 10 bytes from it. To use this example you
 should create the file TEST.$$$ */
 if (_dos_open("TEST.$$$", O_RDONLY, &handle) != 0) {
 perror("Unable to open TEST.$$$");
 return 1;
 }
 if (_dos_read(handle, buf, 10, &bytes) != 0) {
 perror("Unable to read from TEST.$$$");
 return 1;
 }
 else
 printf("_dos_read: %d bytes read.\n", bytes);
 return 0;
}

/* _rtl_read example */
#include <stdio.h>
#include <io.h>
#include <alloc.h>
#include <fcntl.h>
#include <process.h>
#include <sys\stat.h>

int main(void)
{
 void *buf;
 int handle, bytes;

 buf = malloc(10);

/*
Looks for a file in the current directory named TEST.$$$ and attempts to
read 10 bytes from it. To use this example you should create the file
TEST.$$$

 */
 if ((handle =
 open("TEST.$$$", O_RDONLY | O_BINARY, S_IWRITE | S_IREAD)) == -1)
 {
 printf("Error Opening File\n");
 exit(1);
 }

 if ((bytes = _rtl_read(handle, buf, 10)) == -1) {
 printf("Read Failed.\n");
 exit(1);
 }
 else {
 printf("_rtl_read: %d bytes read.\n", bytes);
 }
 return 0;
}

/* read example */
#include <stdio.h>
#include <io.h>
#include <alloc.h>
#include <fcntl.h>
#include <process.h>
#include <sys\stat.h>

int main(void)
{
 void *buf;
 int handle, bytes;

 buf = malloc(10);

/*
Looks for a file in the current directory named TEST.$$$ and attempts to
read 10 bytes from it. To use this example you should create the file
TEST.$$$.

 */
 if ((handle =
 open("TEST.$$$", O_RDONLY | O_BINARY, S_IWRITE | S_IREAD)) == -1)
 {
 printf("Error Opening File\n");
 exit(1);
 }

 if ((bytes = read(handle, buf, 10)) == -1) {
 printf("Read Failed.\n");
 exit(1);
 }
 else {
 printf("Read: %d bytes read.\n", bytes);
 }
 return 0;
}

/* farrealloc example */
#include <stdio.h>
#include <alloc.h>

int main(void)
{
 char far *fptr;
 char far *newptr;

 fptr = (char far *) farmalloc(16);
 printf("First address: %Fp\n", fptr);

/*
We use a second pointer, newptr, so that in the case of farrealloc()
returning NULL, our original pointer is not set to NULL.

 */

 newptr = (char far *) farrealloc(fptr,64);
 printf("New address : %Fp\n", newptr);
 if (newptr != NULL)
 farfree(newptr);
 return 0;
}

/* realloc example */
#include <stdio.h>
#include <alloc.h>
#include <string.h>

int main(void)
{
 char *str;

 /* allocate memory for string */
 str = (char *) malloc(10);

 /* copy "Hello" into string */
 strcpy(str, "Hello");

 printf("String is %s\n Address is %p\n", str, str);
 str = (char *) realloc(str, 20);
 printf("String is %s\n New address is %p\n", str, str);

 /* free memory */
 free(str);

 return 0;
}

/* cscanf example */
#include <conio.h>

int main(void)
{
 char string[80];

 /* clear the screen */
 clrscr();

 /* Prompt the user for input */
 cprintf("Enter a string with no spaces:");

 /* read the input */
 cscanf("%s", string);

 /* display what was read */
 cprintf("\r\nThe string entered is: %s", string);
 return 0;
}

/* fscanf example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i;

 printf("Input an integer: ");

 /* read an integer from the
 standard input stream */
 if (fscanf(stdin, "%d", &i))
 printf("The integer read was: %i\n", i);
 else
 {
 fprintf(stderr, "Error reading an integer from stdin.\n");
 exit(1);
 }
 return 0;
}

/* scanf example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 char label[20];
 char name[20];
 int entries = 0;
 int loop, age;
 double salary;

 struct Entry_struct
 {
 char name[20];
 int age;
 float salary;
 } entry[20];

/* Input a label as a string of characters restricting to 20 characters */
 printf("\n\nPlease enter a label for the chart: ");
 scanf("%20s", label);
 fflush(stdin); /* flush the input stream in case of bad input */

/* Input number of entries as an integer */
 printf("How many entries will there be? (less than 20) ");
 scanf("%d", &entries);
 fflush(stdin); /* flush the input stream in case of bad input */

/* input a name restricting input to only letters upper or lower case */
 for (loop=0;loop<entries;++loop)
 {
 printf("Entry %d\n", loop);
 printf(" Name : ");
 scanf("%[A-Za-z]", entry[loop].name);
 fflush(stdin); /* flush the input stream in case of bad input */

/* input an age as an integer */
 printf(" Age : ");
 scanf("%d", &entry[loop].age);
 fflush(stdin); /* flush the input stream in case of bad input */

/* input a salary as a float */
 printf(" Salary : ");
 scanf("%f", &entry[loop].salary);
 fflush(stdin); /* flush the input stream in case of bad input */
 }

/* Input a name, age and salary as a string, integer, and double */
 printf("\nPlease enter your name, age and salary\n");
 scanf("%20s %d %lf", name, &age, &salary);

/* Print out the data that was input */
 printf("\n\nTable %s\n",label);
 printf("Compiled by %s age %d $%15.2lf\n", name, age, salary);

 printf("---\n");
 for (loop=0;loop<entries;++loop)
 printf("%4d | %-20s | %5d | %15.2lf\n",
 loop + 1,
 entry[loop].name,
 entry[loop].age,
 entry[loop].salary);
 printf("---\n");
 return 0;
}

/* sscanf example */
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

char *names[4] = {"Peter", "Mike", "Shea", "Jerry"};

#define NUMITEMS 4

int main(void)
{
 int loop;
 char temp[4][80];

 char name[20];
 int age;
 long salary;

/* clear the screen */
 clrscr();

/* create name, age and salary data */
 for (loop=0; loop < NUMITEMS; ++loop)
 sprintf(temp[loop], "%s %d %ld", names[loop], random(10) + 20,
random(5000) + 27500L);

/* print title bar */
 printf("%4s | %-20s | %5s | %15s\n", "#", "Name", "Age", "Salary");
 printf(" --\n");

/* input a name, age and salary data */
 for (loop=0; loop < NUMITEMS; ++loop)
 {
 sscanf(temp[loop],"%s %d %ld", &name, &age, &salary);
 printf("%4d | %-20s | %5d | %15ld\n", loop + 1, name, age, salary);
 }

 return 0;
}

/* vfscanf example */
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

FILE *fp;

int vfsf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 va_start(argptr, fmt);
 cnt = vfscanf(fp, fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber = 30;
 float fnumber = 90.0;
 char string[4] = "abc";

 fp = tmpfile();
 if (fp == NULL)
 {
 perror("tmpfile() call");
 exit(1);
 }
 fprintf(fp,"%d %f %s\n",inumber,fnumber,string);
 rewind(fp);

 vfsf("%d %f %s",&inumber,&fnumber,string);
 printf("%d %f %s\n",inumber,fnumber,string);
 fclose(fp);

 return 0;
}

/* vscanf example */
#include <stdio.h>
#include <conio.h>
#include <stdarg.h>

int vscnf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 printf("Enter an integer, a float, and a string (e.g. i,f,s,)\n");
 va_start(argptr, fmt);
 cnt = vscanf(fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber;
 float fnumber;
 char string[80];

 vscnf("%d, %f, %s", &inumber, &fnumber, string);
 printf("%d %f %s\n", inumber, fnumber, string);

 return 0;
}

/* vsscanf example */
#include <stdio.h>
#include <conio.h>
#include <stdarg.h>

char buffer[80] = "30 90.0 abc";

int vssf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 fflush(stdin);

 va_start(argptr, fmt);
 cnt = vsscanf(buffer, fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber;
 float fnumber;
 char string[80];

 vssf("%d %f %s", &inumber, &fnumber, string);
 printf("%d %f %s\n", inumber, fnumber, string);
 return 0;
}

/* setbuf example */
#include <stdio.h>

/* BUFSIZ is defined in stdio.h */
char outbuf[BUFSIZ];

int main(void)
{
 /* attach a buffer to the standard output stream */
 setbuf(stdout, outbuf);

 /* put some characters into the buffer */
 puts("This is a test of buffered output.\n\n");
 puts("This output will go into outbuf\n");
 puts("and won't appear until the buffer\n");
 puts("fills up or we flush the stream.\n");

 /* flush the output buffer */
 fflush(stdout);

 return 0;
}

/* setvbuf example */
#include <stdio.h>

int main(void)
{
 FILE *input, *output;
 char bufr[512];

 input = fopen("file.in", "r+b");
 output = fopen("file.out", "w");

 /* set up input stream for minimal disk access,
 using our own character buffer */
if (setvbuf(input, bufr, _IOFBF, 512) != 0)

 printf("failed to set up buffer for input file\n");
 else
 printf("buffer set up for input file\n");

 /* set up output stream for line buffering using space that
 will be obtained through an indirect call to malloc */
 if (setvbuf(output, NULL, _IOLBF, 132) != 0)
 printf("failed to set up buffer for output file\n");
 else
 printf("buffer set up for output file\n");

 /* perform file I/O here */

 /* close files */
 fclose(input);
 fclose(output);
 return 0;
}

/* spawnl example */
#include <process.h>
#include <stdio.h>
#include <conio.h>

void spawnl_example(void)
{
 int result;

 clrscr();
 result = spawnl(P_WAIT, "bcc.exe", "bcc.exe", NULL);
 if (result == -1)
 {
 perror("Error from spawnl");
 exit(1);
 }
}

int main(void)
{
 spawnl_example();
 return 0;
}

/* spawnle example */
#include <process.h>
#include <stdio.h>
#include <conio.h>

void spawnle_example(void)
 {
 int result;

 clrscr();
 result = spawnle(P_WAIT, "bcc.exe", "bcc.exe", NULL, NULL);
 if (result == -1)
 {
 perror("Error from spawnle");
 exit(1);
 }
}

int main(void)
{
 spawnle_example();
 return 0;
}

/* spawnlp example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

void main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i<argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);
 printf("About to exec child with arg1 arg2 ...\n");
 spawnlp(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", "C:\\BC5\\BIN\\BCC.EXE",
argv[1], argv[2], NULL);

 perror("exec error");
 exit(1);
}

/* spawnlpe example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");

 for (i=0; i < argc; ++i)
 printf("[%2d] %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 spawnlpe(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", "C:\\BC5\\BIN\\BCC.EXE",
argv[1], argv[2], NULL, envp);

 perror("exec error");
 exit(1);

 return 0;
}

/* spawnv example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

void main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i<argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);
 printf("About to exec child with arg1 arg2 ...\n");
spawnv(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", argv);

 perror("exec error");
 exit(1);
 }

/* spawnve example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

void main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i<argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);
 printf("About to exec child with arg1 arg2 ...\n");
spawnve(P_WAIT, "C:\\BC5\\BIN\\TDMEM.EXE", argv, envp);

 perror("exec error");
 exit(1);
}

/* spawnvp example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

void main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i<argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);
 printf("About to exec child with arg1 arg2 ...\n");
 spawnvp(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", argv);

 perror("exec error");
 exit(1);
}

/* spawnvpe example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
int i;

printf("Command line arguments:\n");

for (i=0; i < argc; ++i)
printf("[%2d] %s\n", i, argv[i]);

printf("About to exec child with arg1 arg2 ...\n");
spawnvpe(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", argv, envp);

perror("exec error");
exit(1);

 return 0;
}

/* strcmp example */
#include <string.h>
#include <stdio.h>

int main(void)
{
char *buf1 = "aaa", *buf2 = "bbb", *buf3 = "ccc";
int ptr;

ptr = strcmp(buf2, buf1);
if (ptr > 0)

 printf("buffer 2 is greater than buffer 1\n");
 else
 printf("buffer 2 is less than buffer 1\n");

 ptr = strcmp(buf2, buf3);
 if (ptr > 0)
 printf("buffer 2 is greater than buffer 3\n");
 else
 printf("buffer 2 is less than buffer 3\n");

 return 0;
}

/* strcmpi example */
/* strncmpi example */

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *buf1 = "BBB", *buf2 = "bbb";
 int ptr;

 ptr = strcmpi(buf2, buf1);

 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");

 if (ptr < 0)
 printf("buffer 2 is less than buffer 1\n");

 if (ptr == 0)
 printf("buffer 2 equals buffer 1\n");

 return 0;
}

/* stricmp example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *buf1 = "BBB", *buf2 = "bbb";
 int ptr;

 ptr = stricmp(buf2, buf1);

 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");

 if (ptr < 0)
 printf("buffer 2 is less than buffer 1\n");

 if (ptr == 0)
 printf("buffer 2 equals buffer 1\n");

 return 0;
}

/* _strnextc example */
#include <tchar.h>
#include <stdio.h>

int main()
{
 unsigned int retval = 0;
 const unsigned char *string = "ABC";

 retval = _strnextc(string);
 printf("The starting character:%c", retval);

 retval = _strnextc(++string);
 printf("\nThe next character:%c", retval);

 return 0;
}

/***
The starting character:A
The next character:B
***/

/* strspn example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>

int main(void)
{
 char *string1 = "1234567890";
 char *string2 = "123DC8";
 int length;

 length = strspn(string1, string2);
 printf("Character where strings differ is at position %d\n", length);
 return 0;
}

/* strcspn example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>

int main(void)
{
 char *string1 = "1234567890";
 char *string2 = "747DC8";
 int length;

 length = strcspn(string1, string2);
 printf("Character where strings intersect is at position %d\n",
 length);

 return 0;
}

/* _strerror example */
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char *buffer;
 buffer = strerror(errno);
 printf("Error: %s\n", buffer);
 return 0;
}

/* strerror example */
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char *buffer;
 buffer = strerror(errno);
 printf("Error: %s\n", buffer);
 return 0;
}

/* strlwr example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string = "Borland International";

 printf("string prior to strlwr: %s\n", string);
 strlwr(string);
 printf("string after strlwr: %s\n", string);
 return 0;
}

/* strupr example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string = "abcdefghijklmnopqrstuvwxyz", *ptr;

 /* converts string to upper case characters */
 ptr = strupr(string);
 printf("%s\n", ptr);
 return 0;
}

/* strncmp example */
#include <string.h>
#include <stdio.h>

int main(void)

{
 char *buf1 = "aaabbb", *buf2 = "bbbccc", *buf3 = "ccc";
 int ptr;

 ptr = strncmp(buf2,buf1,3);
 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");
 else
 printf("buffer 2 is less than buffer 1\n");

 ptr = strncmp(buf2,buf3,3);
 if (ptr > 0)
 printf("buffer 2 is greater than buffer 3\n");
 else
 printf("buffer 2 is less than buffer 3\n");

 return(0);
}

/* strncmpi Example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *buf1 = "BBBccc", *buf2 = "bbbccc";
 int ptr;

 ptr = strncmpi(buf2,buf1,3);

 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");

 if (ptr < 0)
 printf("buffer 2 is less than buffer 1\n");

 if (ptr == 0)
 printf("buffer 2 equals buffer 1\n");

 return 0;
}

/* strnicmp Example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *buf1 = "BBBccc", *buf2 = "bbbccc";
 int ptr;

 ptr = strnicmp(buf2, buf1, 3);

 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");

 if (ptr < 0)
 printf("buffer 2 is less than buffer 1\n");

 if (ptr == 0)
 printf("buffer 2 equals buffer 1\n");

 return 0;
}

/* strtod example */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char input[80], *endptr;
 double value;

 printf("Enter a floating point number:");
 gets(input);
 value = strtod(input, &endptr);
 printf("The string is %s the number is %lf\n", input, value);
 return 0;
}

/* strtol example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string = "87654321", *endptr;
 long lnumber;

 /* strtol converts string to long integer */
 lnumber = strtol(string, &endptr, 10);
 printf("string = %s long = %ld\n", string, lnumber);

 return 0;
}

/* strtoul example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string = "87654321", *endptr;
 unsigned long lnumber;

 lnumber = strtoul(string, &endptr, 10);
 printf("string = %s long = %lu\n",
 string, lnumber);

 return 0;
}

/* textattr example */
#include <conio.h>

int main(void)
{
 int i;

 clrscr();
 for (i=0; i<9; i++)
 {
 textattr(i + ((i+1) << 4));
 cprintf("This is a test\r\n");
 }

 return 0;
}

/* textbackground and textcolor example */
#include <conio.h>

int main(void)
{
 int i, j;

 clrscr();
 for (i=0; i<9; i++)
 {
 for (j=0; j<80; j++)
 cprintf("C");
 cprintf("\r\n");
 textcolor(i+1);
 textbackground(i);
 }

 return 0;
}

/* time example */
#include <time.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 time_t t;

 t = time(NULL);
 printf("The number of seconds since January 1, 1970 is %ld",t);
 return 0;
}

/* stime example */
#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t t;

 t = time(NULL);

 printf("Current date is %s", ctime(&t));

 t -= 24L*60L*60L; /* Back up to same time previous day */

 stime(&t);
 printf("\nNew date is %s", ctime(&t));

 return 0;
}

/* tolower example */
#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int length, i;
 char *string = "THIS IS A STRING";

 length = strlen(string);
 for (i=0; i<length; i++)
 {
 string[i] = tolower(string[i]);
 }
 printf("%s\n",string);

 return 0;
}

/* _tolower example */
#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int length, i;
 char *string = "THIS IS A STRING.";

 length = strlen(string);
 for (i = 0; i < length; i++) {
 if ((string[i] >= 'A') && (string[i] <= 'Z')){
 string[i] = _tolower(string[i]);
 }
 }

 printf("%s\n",string);
 return 0;
}

/* toupper example */
#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int length, i;
 char *string = "this is a string";

 length = strlen(string);
 for (i=0; i<length; i++)
 {
 string[i] = toupper(string[i]);
 }

 printf("%s\n",string);

 return 0;
}

/* _toupper example */
#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int length, i;
 char *string = "this is a string.";

 length = strlen(string);
 for (i = 0; i < length; i++) {
 if ((string[i] >= 'a') && (string[i] <= 'z')){
 string[i] = _toupper(string[i]);
 }
 }
 printf("%s\n",string);
 return 0;
}

/* _dos_write example */
#include <dos.h>
#include <string.h>
#include <stdio.h>

int main(void)
{
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 if (_dos_creat("DUMMY.FIL", _A_NORMAL, &handle) != 0)
 {
 perror("Unable to create DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0)
 {
 perror("Unable to write to DUMMY.FIL");
 return 1;
 }
 /* close the file */
 _dos_close(handle);
 return 0;
}

/* _rtl_write example */
#include <stdio.h>
#include <io.h>
#include <alloc.h>
#include <fcntl.h>
#include <process.h>
#include <sys\stat.h>

int main(void)
{
 void *buf;
 int handle, bytes;

 buf = malloc(200);

/*
Create a file name TEST.$$$ in the current directory and writes 200 bytes
to it. If TEST.$$$ already exists, it's overwritten.

 */

 if ((handle = open("TEST.$$$", O_CREAT | O_WRONLY | O_BINARY,
 S_IWRITE | S_IREAD)) == -1)
 {
 printf("Error Opening File\n");
 exit(1);
 }

 if ((bytes = _rtl_write(handle, buf, 200)) == -1) {
 printf("Write Failed.\n");
 exit(1);
 }
 printf("_rtl_write: %d bytes written.\n",bytes);

 return 0;
}

/* write example */
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <io.h>
#include <string.h>

int main(void)
{
 int handle;
 char string[40];
 int length, res;

/*
Create a file named "TEST.$$$" in the current directory and write a string
to it. If "TEST.$$$" already exists, it will be overwritten.

 */

 if ((handle = open("TEST.$$$", O_WRONLY | O_CREAT | O_TRUNC,
 S_IREAD | S_IWRITE)) == -1)
 {
 printf("Error opening file.\n");
 exit(1);
 }

 strcpy(string, "Hello, world!\n");
 length = strlen(string);

 if ((res = write(handle, string, length)) != length)
 {
 printf("Error writing to the file.\n");
 exit(1);
 }
 printf("Wrote %d bytes to the file.\n", res);

 close(handle);
 return 0;
}

/* getcurdir example */
#include <dir.h>
#include <stdio.h>
#include <string.h>

char *current_directory(char *path)
{
 strcpy(path, "X:\\"); /* fill string with form of response: X:\ */
 path[0] = 'A' + getdisk(); /* replace X with current drive letter */
 getcurdir(0, path+3); /* fill rest of string with current directory */
 return(path);
}

int main(void)
{
 char curdir[MAXPATH];

 current_directory(curdir);
 printf("The current directory is %s\n", curdir);

 return 0;
}

/* getenv example */
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char *path, *ptr;
 int i = 0;

 /* get the current path environment */
 ptr = getenv("PATH");

 /* set up new path */
 path = (char *) malloc(strlen(ptr)+15);
 strcpy(path,"PATH=");
 strcat(path,ptr);
 strcat(path,";c:\\temp");

 /* replace the current path and display current environment */
 putenv(path);
 while (_environ[i])
 printf("%s\n",_environ[i++]);

 return 0;
}

/* putenv example */
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char *path, *ptr;
 int i = 0;

 /* get the current path environment */
 ptr = getenv("PATH");

 /* set up new path */
 path = (char *) malloc(strlen(ptr)+15);
 strcpy(path,"PATH=");
 strcat(path,ptr);
 strcat(path,";c:\\temp");

 /* replace the current path and display current environment */
 putenv(path);
 while (_environ[i])
 printf("%s\n",_environ[i++]);

 return 0;
}

/* getpass example */
#include <conio.h>

int main(void)
{
 char *password;

 password = getpass("Input a password:");
 cprintf("The password is: %s\r\n", password);
 return 0;
}

/* getpid example */
#include <stdio.h>
#include <process.h>

int main()
{
 printf("This program's process identification number (PID) "
 "number is %X\n", getpid());
 printf("Note: under DOS it is the PSP segment\n");
 return 0;
}

/* gettextinfo example */
#include <conio.h>

int main(void)
 {
 struct text_info ti;
 gettextinfo(&ti);
 cprintf("window left %2d\r\n",ti.winleft);
 cprintf("window top %2d\r\n",ti.wintop);
 cprintf("window right %2d\r\n",ti.winright);
 cprintf("window bottom %2d\r\n",ti.winbottom);
 cprintf("attribute %2d\r\n",ti.attribute);
 cprintf("normal attribute %2d\r\n",ti.normattr);
 cprintf("current mode %2d\r\n",ti.currmode);
 cprintf("screen height %2d\r\n",ti.screenheight);
 cprintf("screen width %2d\r\n",ti.screenwidth);
 cprintf("current x %2d\r\n",ti.curx);
 cprintf("current y %2d\r\n",ti.cury);
 return 0;
}

/* getverify example */
#include <stdio.h>
#include <conio.h>
#include <dos.h>

int main(void)
{
 int verify_flag;

 printf("Enter 0 to set verify flag off\n");
 printf("Enter 1 to set verify flag on\n");

 verify_flag = getch() - 0;

 setverify(verify_flag);

 if (getverify())
 printf("DOS verify flag is on\n");
 else
 printf("DOS verify flag is off\n");

 return 0;
}

/* setverify example */
#include <stdio.h>
#include <conio.h>
#include <dos.h>

int main(void)
{
 int verify_flag;

 printf("Enter 0 to set verify flag off\n");
 printf("Enter 1 to set verify flag on\n");

 verify_flag = getch() - 0;

 setverify(verify_flag);

 if (getverify())
 printf("DOS verify flag is on\n");
 else
 printf("DOS verify flag is off\n");

 return 0;
}

/* gotoxy example */
#include <conio.h>

int main(void)
{
 clrscr();
 gotoxy(35, 12);
 cprintf("Hello world");
 getch();
 return 0;
}

/* harderr example */
/*
This program will trap disk errors and
prompt the user for action. Try running it
with no disk in drive A: to invoke its
functions.
*/
#include <stdio.h>
#include <conio.h>
#include <dos.h>

#define IGNORE 0
#define RETRY 1
#define ABORT 2

int buf[500];

/*
define the error messages for trapping disk problems
*/
 static char *err_msg[] = {
 "write protect",
 "unknown unit",

 "drive not ready",
 "unknown command",
 "data error (CRC)",
 "bad request",
 "seek error",

 "unknown media type",
 "sector not found",
 "printer out of paper",
 "write fault",
 "read fault",
 "general failure",
 "reserved",

 "reserved",
 "invalid disk change"
};

error_win(char *msg)
{
 int retval;

 cputs(msg);

/*
prompt for user to press a key to abort, retry, ignore
*/
 while(1)
 {
 retval= getch();
 if (retval == 'a' || retval == 'A')
 {
 retval = ABORT;
 break;

 }
 if (retval == 'r' || retval == 'R')
 {

retval = RETRY;
 break;
 }
 if (retval == 'i' || retval == 'I')
 {
 retval = IGNORE;
 break;
 }
 }

 return(retval);
}

/*
pragma warn -par reduces warnings which occur
due to the non use of the parameters
not_used1 and not_used2 to the handler.
*/
#pragma warn -par
void handler(unsigned int ax, unsigned int not_used1, unsigned int
*not_used2)

{
static char msg[80];
unsigned di;
int drive;
int errorno;

di= _DI;
/*
if this is not a disk error then it was
another device having trouble
*/

if (ax < 0)
{

/* report the error */
error_win("Device error");
/* and return to the program directly requesting abort */
_hardretn(ABORT);

}
/* otherwise it was a disk error */
drive = ax & 0x00FF;
errorno = di & 0x00FF;

/* report which error it was */
sprintf(msg, "Error: %s on drive %c\r\nA)bort, R)etry, I)gnore: ",
 err_msg[errorno], 'A' + drive);

/*
return to the program via dos interrupt 0x23 with abort, retry,
or ignore as input by the user.
*/
_hardresume(error_win(msg));
// return ABORT;

}
#pragma warn +par

int main(void)
{
/*
install our handler on the hardware problem interrupt
*/
_harderr(handler);

 clrscr();
 printf("Make sure there is no disk in drive A:\n");
 printf("Press any key\n");
 getch();
 printf("Trying to access drive A:\n");
 printf("fopen returned %p\n",fopen("A:temp.dat", "w"));
 return 0;
}

/* hardresume example */
/*
This program will trap disk errors and
prompt the user for action. Try running it
with no disk in drive A: to invoke its
functions.
*/
#include <stdio.h>
#include <conio.h>
#include <dos.h>

#define IGNORE 0
#define RETRY 1
#define ABORT 2

int buf[500];

/*
define the error messages for trapping disk problems
*/
static char *err_msg[] = {
 "write protect",
 "unknown unit",
 "drive not ready",

 "unknown command",
 "data error (CRC)",
 "bad request",
 "seek error",
 "unknown media type",
 "sector not found",
 "printer out of paper",
 "write fault",
 "read fault",
 "general failure",
 "reserved",
 "reserved",

 "invalid disk change"
};

error_win(char *msg)
{
 int retval;

 cputs(msg);

/*
prompt for user to press a key to abort, retry, ignore
*/
 while(1)
 {
 retval= getch();
 if (retval == 'a' || retval == 'A')
 {
 retval = ABORT;
 break;
 }

 if (retval == 'r' || retval == 'R')
 {

retval = RETRY;
break;

 }
 if (retval == 'i' || retval == 'I')
 {
 retval = IGNORE;
 break;
 }
 }

 return(retval);
}

/*
pragma warn -par reduces warnings which occur
due to the non use of the parameters
not_used1 and not_used2 to the handler.
*/

#pragma warn -par
void handler(unsigned int ax, unsigned int not_used1, unsigned int
*not_used2)

{
 static char msg[80];
 unsigned di;
 int drive;
 int errorno;

 di= _DI;
 /*
 if this is not a disk error then it was
 another device having trouble
 */

 if (ax < 0)
 {

 /* report the error */
 error_win("Device error");
 /* and return to the program directly requesting abort */
 _hardretn(ABORT);

 }
 /* otherwise it was a disk error */
 drive = ax & 0x00FF;
 errorno = di & 0x00FF;
 /* report which error it was */
 sprintf(msg, "Error: %s on drive %c\r\nA)bort, R)etry, I)gnore: ",

 err_msg[errorno], 'A' + drive);
 /*
 return to the program via dos interrupt 0x23 with abort, retry,
 or ignore as input by the user.
 */
 _hardresume(error_win(msg));
// return ABORT;

 }
 #pragma warn +par

 int main(void)
 {
 /*
 install our handler on the hardware problem interrupt
 */
 _harderr(handler);
 clrscr();
 printf("Make sure there is no disk in drive A:\n");
 printf("Press any key\n");

 getch();
 printf("Trying to access drive A:\n");
 printf("fopen returned %p\n",fopen("A:temp.dat", "w"));
 return 0;

}

/* highvideo example */
#include <conio.h>

int main(void)
{
clrscr();

lowvideo();
cprintf("Low Intensity text\r\n");
highvideo();
gotoxy(1,2);
cprintf("High Intensity Text\r\n");

return 0;
}

/* lowvideo example */
#include <conio.h>

int main(void)
{
clrscr();

highvideo();
 cprintf("High Intensity Text\r\n");
 lowvideo();
gotoxy(1,2);

 cprintf("Low Intensity Text\r\n");

return 0;
}

/* normvideo example */
#include <conio.h>

int main(void)
{
 normvideo();
 cprintf("NORMAL Intensity Text\r\n");
 return 0;

}

/* hypot example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 3.0;

 double y = 4.0;

 result = hypot(x, y);
 printf("The hypotenuse is: %lf\n", result);

 return 0;
}

/* imag example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;

 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";

 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";
 return 0;

}

/* insline example */
#include <conio.h>

int main(void)
{
 clrscr();
 cprintf("INSLINE inserts an empty line in the text window\r\n");
 cprintf("at the cursor position using the current text\r\n");

 cprintf("background color. All lines below the empty one\r\n");
 cprintf("move down one line and the bottom line scrolls\r\n");
 cprintf("off the bottom of the window.\r\n");

 cprintf("\r\nPress any key to continue:");
 gotoxy(1, 3);
 getch();

 insline();
 getch();
 return 0;

}

/* intr example */
#include <stdio.h>
#include <string.h>
#include <dir.h>
#include <dos.h>

#define CF 1 /* Carry flag */

int main(void)
{
 char directory[80];
 struct REGPACK reg;

 printf("Enter directory to change to: ");
 gets(directory);
 reg.r_ax = 0x3B << 8; /* shift 3Bh into AH */
 reg.r_dx = FP_OFF(directory);
 reg.r_ds = FP_SEG(directory);
 intr(0x21, ®);
 if (reg.r_flags & CF)
 printf("Directory change failed\n");
 getcwd(directory, 80);
 printf("The current directory is: %s\n", directory);
 return 0;
}

/* ioctl example */
#include <stdio.h>
#include <dir.h>
#include <io.h>

int main(void)
{
 int stat;

 /* use func 8 to determine if the default drive is removable */
 stat = ioctl(0, 8, 0, 0);
 if (!stat)
 printf("Drive %c is removable.\n", getdisk() + 'A');
 else
 printf("Drive %c is not removable.\n", getdisk() + 'A');
 return 0;
}

/* isatty example */
#include <stdio.h>
#include <io.h>

int main(void)
{
 int handle;

 handle = fileno(stdprn);
 if (isatty(handle))
 printf("Handle %d is a device type\n", handle);
 else
 printf("Handle %d isn't a device type\n", handle);
 return 0;
}

/* kbhit example */
#include <conio.h>

int main(void)
{
 cprintf("Press any key to continue:");

 while (!kbhit()) /* do nothing */ ;
 cprintf("\r\nA key was pressed...\r\n");
 return 0;
}

/* ldexp example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double value;
 double x = 2;

 /* ldexp raises 2 by a power of 3
 then multiplies the result by 2 */
 value = ldexp(x,3);
 printf("The ldexp value is: %lf\n", value);

 return 0;
}

/* setjmp example */
#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

void subroutine(jmp_buf);

int main(void)
{

 int value;
 jmp_buf jumper;

 value = setjmp(jumper);
 if (value != 0)
 {
 printf("Longjmp with value %d\n", value);
 exit(value);
 }
 printf("About to call subroutine ... \n");
 subroutine(jumper);

 return 0;
}

void subroutine(jmp_buf jumper)
{
 longjmp(jumper,1);
}

/* longjmp example */
#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

void subroutine(jmp_buf);

int main(void)
{

 int value;
 jmp_buf jumper;

 value = setjmp(jumper);
 if (value != 0)
 {
 printf("Longjmp with value %d\n", value);
 exit(value);
 }
 printf("About to call subroutine ... \n");
 subroutine(jumper);

 return 0;
}

void subroutine(jmp_buf jumper)
{
 longjmp(jumper,1);
}

/* lseek example */
#include <sys\stat.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "This is a test";
 char ch;

 /* create a file */
 handle = open("TEST.$$$", O_CREAT | O_RDWR, S_IREAD | S_IWRITE);

 /* write some data to the file */
 write(handle, msg, strlen(msg));

 /* seek to the begining of the file */
 lseek(handle, 0L, SEEK_SET);

 /* reads chars from the file until we hit EOF */
 do
 {
 read(handle, &ch, 1);
 printf("%c", ch);
 } while (!eof(handle));

 close(handle);
 return 0;
}

/* malloc example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>
#include <process.h>

int main(void)
{
 char *str;

 /* allocate memory for string */
 if ((str = (char *) malloc(10)) == NULL)
 {
 printf("Not enough memory to allocate buffer\n");
 exit(1); /* terminate program if out of memory */
 }

 /* copy "Hello" into string */
 strcpy(str, "Hello");

 /* display string */
 printf("String is %s\n", str);

 /* free memory */
 free(str);

 return 0;
}

/* _matherr example */
#include <math.h>
#include <string.h>
#include <stdio.h>

int matherr (struct exception *a)
{
 if (a->type == DOMAIN)
 if (!strcmp(a->name,"sqrt")) {
 a->retval = sqrt (-(a->arg1));
 return 1;
 }
 return 0;
}

int main(void)
{
 double x = -2.0, y;
 y = sqrt(x);
 printf("Matherr corrected value: %lf\n",y);
 return 0;
}

/* max and min example */
#include <stdlib.h>
#include <stdio.h>

#ifdef __cplusplus

 int max (int value1, int value2);

 int max(int value1, int value2)
 {
 return ((value1 > value2) ? value1 : value2);
 }

#endif

int main(void)
{
 int x = 5;
 int y = 6;
 int z;
 z = max(x, y);
 printf("The larger number is %d\n", z);
 return 0;
}

/* memchr example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char str[17];
 char *ptr;

 strcpy(str, "This is a string");
 ptr = (char *) memchr(str, 'r', strlen(str));
 if (ptr)
 printf("The character 'r' is at position: %d\n", ptr - str);
 else
 printf("The character was not found\n");
 return 0;
}

/* memset example */
#include <string.h>
#include <stdio.h>
#include <mem.h>

int main(void)
{
 char buffer[] = "Hello world\n";

 printf("Buffer before memset: %s\n", buffer);
 memset(buffer, '*', strlen(buffer) - 1);
 printf("Buffer after memset: %s\n", buffer);
 return 0;
}

/* mkdir example */
#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <dir.h>

#define DIRNAME "testdir.$$$"

int main(void)
{
 int stat;

 stat = mkdir(DIRNAME);
 if (!stat)
 printf("Directory created\n");
 else
 {
 printf("Unable to create directory\n");
 exit(1);
 }

 getch();
 system("dir/p");
 getch();

 stat = rmdir(DIRNAME);
 if (!stat)
 printf("\nDirectory deleted\n");
 else
 {
 perror("\nUnable to delete directory\n");
 exit(1);
 }

 return 0;
}

/* rmdir example */
#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <dir.h>

#define DIRNAME "testdir.$$$"

int main(void)
{
 int stat;

 stat = mkdir(DIRNAME);
 if (!stat)
 printf("Directory created\n");
 else
 {
 printf("Unable to create directory\n");
 exit(1);
 }

 getch();
 system("dir/p");
 getch();

 stat = rmdir(DIRNAME);
 if (!stat)
 printf("\nDirectory deleted\n");
 else
 {
 perror("\nUnable to delete directory\n");
 exit(1);
 }

 return 0;
}

/* mktemp example */
#include <dir.h>
#include <stdio.h>

int main(void)
{
 /* fname defines the template for the
 temporary file. */

 char *fname = "TXXXXXX", *ptr;

 ptr = mktemp(fname);
 printf("%s\n",ptr);
 return 0;
}

/* mktime example */
#include <stdio.h>
#include <time.h>

 char *wday[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "Unknown"};

int main(void)
{
 struct tm time_check;
 int year, month, day;

/* Input a year, month and day to find the weekday for */
 printf("Year: ");
 scanf("%d", &year);
 printf("Month: ");
 scanf("%d", &month);
 printf("Day: ");
 scanf("%d", &day);

/* load the time_check structure with the data */
 time_check.tm_year = year - 1900;
 time_check.tm_mon = month - 1;
 time_check.tm_mday = day;
 time_check.tm_hour = 0;
 time_check.tm_min = 0;
 time_check.tm_sec = 1;
 time_check.tm_isdst = -1;

/* call mktime to fill in the weekday field of the structure */
 if (mktime(&time_check) == -1)
 time_check.tm_wday = 7;

/* print out the day of the week */
 printf("That day is a %s\n", wday[time_check.tm_wday]);
 return 0;
}

/* modf example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double fraction, integer;
 double number = 100000.567;

 fraction = modf(number, &integer);
 printf("The whole and fractional parts of %lf are %lf and %lf\n",
 number, integer, fraction);
 return 0;
}

/* movedata example */
#include <mem.h>

#define MONO_BASE 0xB000

char buf[80*25*2];

/* saves the contents of the monochrome screen in buffer */
void save_mono_screen(char near *buffer)
{
 movedata(MONO_BASE, 0, _DS, (unsigned)buffer, 80*25*2);
}

int main(void)
{
 save_mono_screen(buf);
 return 0;
}

/* movmem example */
#include <mem.h>
#include <alloc.h>
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *source = "Borland International";
 char *destination;
 int length;

 length = strlen(source);
 destination = (char *) malloc(length + 1);
 movmem(source, destination, length);
 printf("%s\n", destination);

 return 0;
}

/* movetext example */
#include <conio.h>
#include <string.h>

int main(void)
{
 char *str = "This is a test string";

 clrscr();
 cputs(str);
 getch();

 movetext(1, 1, strlen(str), 2, 10, 10);
 getch();

 return 0;
}

/* norm example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";

 double mag = sqrt(norm(z));
 double ang = arg(z);
 cout << "The polar form of z is:\n";
 cout << " magnitude = " << mag << "\n";
 cout << " angle (in radians) = " << ang << "\n";
 cout << "Reconstructing z from its polar form gives:\n";
 cout << " z = " << polar(mag,ang) << "\n";
 return 0;
}

/* closedir and readdir example */
/* opendir.c - test opendir(), readdir(), closedir() */

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

void scandir(char *dirname)
{
 DIR *dir;
 struct dirent *ent;

 printf("First pass on '%s':\n",dirname);
 if ((dir = opendir(dirname)) == NULL)
 {
 perror("Unable to open directory");
 exit(1);
 }
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);

 printf("Second pass on '%s':\n",dirname);
 rewinddir(dir);
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);
 if (closedir(dir) != 0)
 perror("Unable to close directory");
}

void main(int argc,char *argv[])
{
 if (argc != 2)
 {
 printf("usage: opendir dirname\n");
 exit(1);
 }
 scandir(argv[1]);
 exit(0);
}

/* opendir example */
 /* opendir.c - test opendir(), readdir(), closedir() */

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

void scandir(char *dirname)
{
 DIR *dir;
 struct dirent *ent;

 printf("First pass on '%s':\n",dirname);
 if ((dir = opendir(dirname)) == NULL)
 {
 perror("Unable to open directory");
 exit(1);
 }
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);

 printf("Second pass on '%s':\n",dirname);
 rewinddir(dir);
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);
 if (closedir(dir) != 0)
 perror("Unable to close directory");
}

void main(int argc,char *argv[])
{
 if (argc != 2)
 {
 printf("usage: opendir dirname\n");
 exit(1);
 }
 scandir(argv[1]);
 exit(0);
}

/* parsfnm example */
#include <process.h>
#include <string.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 char line[80];
 struct fcb blk;

 /* get file name */
 printf("Enter drive and file name (no path; e.g., a:file.dat)\n");
 gets(line);

 /* put file name in fcb */
 if (parsfnm(line, &blk, 1) == NULL)
 printf("Error in parsfm call\n");
 else
 printf("Drive #%d Name: %11s\n", blk.fcb_drive, blk.fcb_name);

 return 0;
}

/* peek example */
#include <stdio.h>
#include <conio.h>
#include <dos.h>

int main(void)
{
 int value = 0;

 printf("The current status of your keyboard is:\n");
 value = peek(0x0040, 0x0017);
 if (value & 1)
 printf("Right shift on\n");
 else
 printf("Right shift off\n");

 if (value & 2)
 printf("Left shift on\n");
 else
 printf("Left shift off\n");

 if (value & 4)
 printf("Control key on\n");
 else
 printf("Control key off\n");

 if (value & 8)
 printf("Alt key on\n");
 else
 printf("Alt key off\n");

 if (value & 16)
 printf("Scroll lock on\n");
 else
 printf("Scroll lock off\n");

 if (value & 32)
 printf("Num lock on\n");
 else
 printf("Num lock off\n");

 if (value & 64)
 printf("Caps lock on\n");
 else
 printf("Caps lock off\n");

 return 0;
}

/* perror example */
#include <stdio.h>

int main(void)
{
 FILE *fp;

 fp = fopen("perror.dat", "r");
 if (!fp)
 perror("Unable to open file for reading");
 return 0;
}

/* poke example */
#include <dos.h>
#include <conio.h>

int main(void)
{
 clrscr();
 cprintf("Make sure the scroll lock key is off and press any key\r\n");
 getch();
 poke(0x0000,0x0417,16);
 cprintf("The scroll lock is now on\r\n");
 return 0;
}

/* polar example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";

 double mag = sqrt(norm(z));
 double ang = arg(z);
 cout << "The polar form of z is:\n";
 cout << " magnitude = " << mag << "\n";
 cout << " angle (in radians) = " << ang << "\n";
 cout << "Reconstructing z from its polar form gives:\n";
 cout << " z = " << polar(mag,ang) << "\n";
 return 0;
}

/* poly example */
#include <stdio.h>
#include <math.h>

/* polynomial: x**3 - 2x**2 + 5x - 1 */

int main(void)
{
 double array[] = { -1.0, 5.0, -2.0, 1.0
};
 double result;

 result = poly(2.0, 3, array);
 printf("The polynomial: x**3 - 2.0x**2 + 5x - 1 at 2.0 is %lf\n",
result);

 return 0;
}

/* pow example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 2.0, y = 3.0;

 printf("%lf raised to %lf is %lf\n", x, y, pow(x, y));
 return 0;
}

/* pow10 example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double p = 3.0;

 printf("Ten raised to %lf is %lf\n", p, pow10(p));
 return 0;
}

/* putch example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 char ch = 0;

 printf("Input a string:");
 while ((ch != '\r'))
 {
 ch = getch();
 putch(ch);
 }
 return 0;
}

/* raise example */
#include <signal.h>

int main(void)
{
 int a, b;

 a = 10;
 b = 0;
 if (b == 0)
 /* preempt divide by zero error */
 raise(SIGFPE);
 a = a / b;
 return 0;
}

/* rand example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i;

 randomize();
 printf("Ten random numbers from 0 to 99\n\n");
 for(i=0; i<10; i++)
 printf("%d\n", rand() % 100);
 return 0;
}

/* random example */
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

/* prints a random number in the range 0 to 99 */
int main(void)
 {
 randomize();
 printf("Random number in the 0-99 range: %d\n", random (100));
 return 0;
}

/* randomize example */
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

int main(void)
{
 int i;

 randomize();
 printf("Ten random numbers from 0 to 99\n\n");
 for(i=0; i<10; i++)
 printf("%d\n", rand() % 100);
 return 0;
}

/* real example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";
 return 0;
}

/* remove example */
#include <stdio.h>

int main(void)
{
 char file[80];

 /* prompt for file name to delete */
 printf("File to delete: ");
 gets(file);

 /* delete the file */
 if (remove(file) == 0)
 printf("Removed %s.\n",file);
 else
 perror("remove");

 return 0;
}

/* rename example */
#include <stdio.h>

int main(void)
{
 char oldname[80], newname[80];

 /* prompt for file to rename and new name */
 printf("File to rename: ");
 gets(oldname);
 printf("New name: ");
 gets(newname);

 /* Rename the file */
 if (rename(oldname, newname) == 0)
 printf("Renamed %s to %s.\n", oldname, newname);
 else
 perror("rename");

 return 0;
}

/* rewind example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 FILE *fp;
 char *fname = "TXXXXXX", *newname, first;

 newname = mktemp(fname);
 fp = fopen(newname,"w+");
 fprintf(fp,"abcdefghijklmnopqrstuvwxyz");
 rewind(fp);
 fscanf(fp,"%c",&first);
 printf("The first character is: %c\n",first);
 fclose(fp);
 remove(newname);

 return 0;
}

/* rewinddir example */
/* opendir.c - test opendir(), readdir(), closedir() */

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

void scandir(char *dirname)
{
 DIR *dir;
 struct dirent *ent;

 printf("First pass on '%s':\n",dirname);
 if ((dir = opendir(dirname)) == NULL)
 {
 perror("Unable to open directory");
 exit(1);
 }
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);

 printf("Second pass on '%s':\n",dirname);
 rewinddir(dir);
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);
 if (closedir(dir) != 0)
 perror("Unable to close directory");
 }

 void main(int argc,char *argv[])
 {
 if (argc != 2)
 {
 printf("usage: opendir dirname\n");
 exit(1);
 }
 scandir(argv[1]);
 exit(0);
}

/* rmtmp example */
#include <stdio.h>
#include <process.h>

void main()
{
 FILE *stream;
 int i;

 /* Create temporary files */
 for (i = 1; i <= 10; i++)
 {
 if ((stream = tmpfile()) == NULL)
 perror("Could not open temporary file\n");
 else
 printf("Temporary file %d created\n", i);
 }
 /* Remove temporary files */
 if (stream != NULL)
 printf("%d temporary files deleted\n", rmtmp());
}

/* _searchenv example */
#include <stdio.h>
#include <stdlib.h>

char buf[_MAX_PATH];

int main(void)
{
 /* looks for TLINK */
 _searchenv("TLINK.EXE","PATH",buf);
 if (buf[0] == '\0')
 printf("TLINK.EXE not found\n");
 else
 printf("TLINK.EXE found in %s\n", buf);

 /* looks for non-existent file */
 _searchenv("NOTEXIST.FIL","PATH",buf);
 if (buf[0] == '\0')
 printf("NOTEXIST.FIL not found\n");
 else
 printf("NOTEXIST.FIL found in %s\n", buf);
 return 0;
}

 /* Program output

 TLINK.EXE found in C:\BIN\TLINK.EXE
 NOTEXIST.FIL not found
 */

/* searchpath example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 char *p;

 /* Looks for TLINK and returns a pointer
 to the path */
 p = searchpath("TLINK.EXE");
 printf("Search for TLINK.EXE : %s\n", p);

 /* Looks for non-existent file */
 p = searchpath("NOTEXIST.FIL");
 printf("Search for NOTEXIST.FIL : %s\n", p);

 return 0;
}

/* abort example */
#include <stdio.h>
#include <stdlib.h>

 int main(void)
 {
 printf("Calling abort()\n");
 abort();
 return 0; /* This is never reached */
 }

/* access example */
 #include <stdio.h>
 #include <io.h>

 int file_exists(char *filename);

 int main(void)
 {
printf("Does NOTEXIST.FIL exist: %s\n",

 file_exists("NOTEXISTS.FIL") ? "YES" : "NO");
return 0;

 }

 int file_exists(char *filename)
 {
 return (access(filename, 0) == 0);
 }

/* arg example */
 #include <iostream.h>
 #include <complex.h>

 int main(void)
 {
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";

 double mag = sqrt(norm(z));
 double ang = arg(z);
 cout << "The polar form of z is:\n";
 cout << " magnitude = " << mag << "\n";
 cout << " angle (in radians) = " << ang << "\n";
 cout << "Reconstructing z from its polar form gives:\n";
 cout << " z = " << polar(mag,ang) << "\n";
 return 0;
 }

/* assert example */
 #include <assert.h>
 #include <stdio.h>
 #include <stdlib.h>

 struct ITEM {
 int key;
 int value;
 };

 /* add item to list, make sure list is not null */
 void additem(struct ITEM *itemptr) {
 assert(itemptr != NULL);
 /* add item to list */
 }

 int main(void)
 {
 additem(NULL);
 return 0;
 }

/* atexit example */
 #include <stdio.h>
 #include <stdlib.h>

 void exit_fn1(void)
 {
 printf("Exit function #1 called\n");
 }

 void exit_fn2(void)
 {
 printf("Exit function #2 called\n");
 }

 int main(void)
 {
 /* post exit function #1 */
 atexit(exit_fn1);
 /* post exit function #2 */
 atexit(exit_fn2);
 return 0;
 }

/* atof example */
 #include <stdlib.h>
 #include <stdio.h>

 int main(void)
 {
 float f;
 char *str = "12345.67";

 f = atof(str);
 printf("string = %s float = %f\n", str, f);
 return 0;
 }

/* atoi example */
 #include <stdlib.h>
 #include <stdio.h>

 int main(void)
 {
 int n;
 char *str = "12345.67";

 n = atoi(str);
 printf("string = %s integer = %d\n", str, n);
 return 0;
 }

/* atol example */
 #include <stdlib.h>
 #include <stdio.h>

 int main(void)
 {
 long l;
 char *lstr = "98765432";

 l = atol(lstr);
 printf("string = %s integer = %ld\n", lstr, l);
 return(0);
 }

/* bcd example */
 #include <iostream.h>
 #include <bcd.h>

 double x = 10000.0; // ten thousand dollars
 bcd a = bcd(x/3,2); // a third, rounded to nearest penny

 int main(void)
 {
 cout << "share of fortune = $" << a << "\n";
 return 0;
 }

/* bdos example */
 #include <stdio.h>
 #include <dos.h>

 /* Get current drive as 'A', 'B', ... */
 char current_drive(void)
 {
 char curdrive;

 /* Get current disk as 0, 1, ... */
 curdrive = bdos(0x19, 0, 0);
 return('A' + curdrive);
 }

 int main(void)
 {
 printf("The current drive is %c:\n", current_drive());
 return 0;
 }

/* bdosptr example */
 #include <string.h>
 #include <stdio.h>
 #include <dir.h>
 #include <dos.h>
 #include <errno.h>
 #include <stdlib.h>

 #define BUFLEN 80

 int main(void)
 {
 char buffer[BUFLEN];
 int test;

 printf("Enter full pathname of a directory\n");
 gets(buffer);

 test = bdosptr(0x3B,buffer,0);
 if(test)
 {
 printf("DOS error message: %d\n", errno);
 /* See errno.h for error listings */
 exit (1);
 }

 getcwd(buffer, BUFLEN);
 printf("The current directory is: %s\n", buffer);

 return 0;
 }

/* calloc example */
 #include <stdio.h>
 #include <alloc.h>
 #include <string.h>

 int main(void)
 {
 char *str = NULL;

 /* allocate memory for string */
 str = (char *) calloc(10, sizeof(char));

 /* copy "Hello" into string */
 strcpy(str, "Hello");

 /* display string */
 printf("String is %s\n", str);

 /* free memory */
 free(str);

 return 0;
 }

/* ceil and floor example */
 #include <math.h>
 #include <stdio.h>

 int main(void)
 {
 double number = 123.54;
 double down, up;

 down = floor(number);
 up = ceil(number);

 printf("original number %5.2lf\n", number);
 printf("number rounded down %5.2lf\n", down);
 printf("number rounded up %5.2lf\n", up);

 return 0;
 }

/* cgets example */
 #include <stdio.h>
 #include <conio.h>

 int main(void)
 {
 char buffer[83];
 char *p;

 /* There's space for 80 characters plus the NULL terminator */
 buffer[0] = 81;

 printf("Input some chars:");
 p = cgets(buffer);
 printf("\ncgets read %d characters: \"%s\"\n", buffer[1], p);
 printf("The returned pointer is %p, buffer[0] is at %p\n", p, &buffer);

 /* Leave room for 5 characters plus the NULL terminator */
 buffer[0] = 6;

 printf("Input some chars:");
 p = cgets(buffer);
 printf("\ncgets read %d characters: \"%s\"\n", buffer[1], p);
 printf("The returned pointer is %p, buffer[0] is at %p\n", p, &buffer);
 return 0;
 }

/* _chain_intr example */
#include <dos.h>
#include <stdio.h>
#include <process.h>

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

typedef void interrupt (*fptr)(__CPPARGS);

static void mesg(char *s)
{
 while (*s)
 bdos(2,*s++,0);
}

#pragma argsused
void interrupt handler2(unsigned bp, unsigned di)
{
 _enable();
 mesg("In handler 2.\r\n");
 if (di == 1)
 mesg("DI is 1\r\n");
 else
 mesg("DI is not 1\r\n");
 di++;
}

#pragma argsused
void interrupt handler1(unsigned bp, unsigned di)
{
 _enable();
 mesg("In handler 1.\r\n");
 if (di == 0)
 mesg("DI is 0\r\n");
 else
 mesg("DI is not 0\r\n");
 di++;
 mesg("Chaining to handler 2.\r\n");
 _chain_intr((fptr) handler2);
}

int main()
{
 _dos_setvect(128,(fptr) handler1);
 printf("About to generate interrupt 128\n");
 _DI = 0;
 geninterrupt(128);
 printf("DI was 0 before interrupt, is now 0x%x\n",_DI);
 return 0;
}

/* chdir example */
#include <stdio.h>
#include <stdlib.h>
#include <dir.h>

char old_dir[MAXDIR];
char new_dir[MAXDIR];

int main(void)
{
 if (getcurdir(0, old_dir))
 {
 perror("getcurdir()");
 exit(1);
 }
 printf("Current directory is: \\%s\n", old_dir);

 if (chdir("\\"))
 {
 perror("chdir()");
 exit(1);
 }

 if (getcurdir(0, new_dir))
 {
 perror("getcurdir()");
 exit(1);
 }
 printf("Current directory is now: \\%s\n", new_dir);

 printf("\nChanging back to original directory: \\%s\n", old_dir);
 if (chdir(old_dir))
 {
 perror("chdir()");
 exit(1);
 }

 return 0;
}

/* chmod example */
/* NEW chmod() example: */

#include <errno.h>
#include <stdio.h>
#include <io.h>
#include <process.h>
#include <sys\stat.h>

void main(void)
{
 char filename[64];
 struct stat stbuf;
 int amode;

 printf("Enter name of file: ");
 scanf("%s", filename);
 if (stat(filename, &stbuf) != 0)
 {
 perror("Unable to get file information");
 exit(1);
 }
 if (stbuf.st_mode & S_IWRITE)
 {
 printf("Changing to read-only\n");
 amode = S_IREAD;
 }
 else
 {
 printf("Changing to read-write\n");
 amode = S_IREAD|S_IWRITE;
 }
 if (chmod(filename, amode) != 0)
 {
 perror("Unable to change file mode");
 exit(1);
 }
 exit(0);
}

/* chsize example */
#include <string.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char buf[11] = "0123456789";

 /* create text file containing 10 bytes */
 handle = open("DUMMY.FIL", O_CREAT);
 write(handle, buf, strlen(buf));

 /* truncate the file to 5 bytes in size */
 chsize(handle, 5);

 /* close the file */
 close(handle);
 return 0;
}

/* _clear87 and _status87 example */
#include <stdio.h>
#include <float.h>

int main(void)
{
 float x;
 double y = 1.5e-100;

 printf("\nStatus 87 before error: %X\n", _status87());

 x = y; /* create underflow and precision loss */
 printf("Status 87 after error: %X\n", _status87());

 _clear87();
 printf("Status 87 after clear: %X\n", _status87());

 y = x;

 return 0;
}

/* clearerr example */
#include <stdio.h>

int main(void)
{
 FILE *fp;
 char ch;

 /* open a file for writing */
 fp = fopen("DUMMY.FIL", "w");

 /* force an error condition by attempting to read */
 ch = fgetc(fp);
 printf("%c\n",ch);

 if (ferror(fp))
 {
 /* display an error message */
 printf("Error reading from DUMMY.FIL\n");

 /* reset the error and EOF indicators */
 clearerr(fp);
 }

 fclose(fp);
 return 0;
}

/* clock example */
#include <time.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 clock_t start, end;
 start = clock();

 delay(2000);

 end = clock();
 printf("The time was: %f\n", (end - start) / CLK_TCK);

 return 0;
}

/* clreol example */
#include <conio.h>

int main(void)

{
 clrscr();
 cprintf("The function CLREOL clears all characters from the\r\n");
 cprintf("cursor position to the end of the line within the\r\n");
 cprintf("current text window, without moving the cursor.\r\n");
 cprintf("Press any key to continue . . .");
 gotoxy(14, 4);
 getch();

 clreol();
 getch();

 return 0;
}

/* clrscr example */
#include <conio.h>

int main(void)
{
 int i;

 clrscr();
 for (i = 0; i < 20; i++)
 cprintf("%d\r\n", i);
 cprintf("\r\nPress any key to clear screen");
 getch();

 clrscr();
 cprintf("The screen has been cleared!");
 getch();

 return 0;
}

/* complex example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = "<< z << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << " \n";
 return 0;
}

/* conj example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = "<< z << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << " \n";
 return 0;
}

/* country example */
#include <dos.h>
#include <stdio.h>

#define USA 0

int main(void)
{
 struct COUNTRY country_info;

 country(USA, &country_info);
 printf("The currency symbol for the USA is: %s\n",
 country_info.co_curr);
 return 0;
}

/* cputs example */
#include <conio.h>

int main(void)
{
 /* clear the screen */
 clrscr();

 /* create a text window */
 window(10, 10, 80, 25);

 /* output some text in the window */
 cputs("This is within the window\r\n");

 /* wait for a key */
 getch();
 return 0;
}

/* creattemp example */
#include <string.h>
#include <stdio.h>
#include <io.h>

int main(void)
{
 int handle;
 char pathname[128];

 strcpy(pathname, "\\");

 /* create a unique file in the root directory */
 handle = creattemp(pathname, 0);

 printf("%s was the unique file created.\n", pathname);
 close(handle);
 return 0;
}

/* ctrlbrk example */
#include <stdio.h>
#include <dos.h>

#define ABORT 0

int c_break(void)
{
 printf("Control-Break pressed. Program aborting ...\n");
return (ABORT);

}

void main(void)
{
 ctrlbrk(c_break);
 for(;;)
 {
 printf("Looping... Press <Ctrl-Break> to quit:\n");
 }
}

/* delline example */
#include <conio.h>

int main(void)
{
 clrscr();
 cprintf("The function DELLINE deletes the line containing the\r\n");
 cprintf("cursor and moves all lines below it one line up.\r\n");
 cprintf("DELLINE operates within the currently active text\r\n");
 cprintf("window. Press any key to continue . . .");
 gotoxy(1,2); /* Move the cursor to the second line and first column */
 getch();

 delline();
 getch();

 return 0;
}

/* difftime example */
#include <time.h>
#include <stdio.h>
#include <dos.h>
#include <conio.h>

int main(void)
{
 time_t first, second;

 clrscr();
 first = time(NULL); /* Gets system
 time */
 delay(2000); /* Waits 2 secs */
 second = time(NULL); /* Gets system time
 again */

 printf("The difference is: %f seconds\n",difftime(second,first));
 getch();

 return 0;
}

/* dosexterr example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 FILE *fp;
 struct DOSERROR info;

 fp = fopen("perror.dat","r");
 if (!fp) perror("Unable to open file for reading");
 dosexterr(&info);

 printf("Extended DOS error information:\n");
 printf(" Extended error: %d\n",info.de_exterror);
 printf(" Class: %x\n",info.de_class);
 printf(" Action: %x\n",info.de_action);
 printf(" Error Locus: %x\n",info.de_locus);

 return 0;
}

/* dostounix example */
#include <time.h>
#include <stddef.h>
#include <dos.h>
#include <stdio.h>

int main(void)
{
 time_t t;
 struct time d_time;
 struct date d_date;
 struct tm *local;

 getdate(&d_date);
 gettime(&d_time);

 t = dostounix(&d_date, &d_time);
 local = localtime(&t);
 printf("Time and Date: %s\n", asctime(local));

 return 0;
}

/* __emit__ example */
#include <dos.h>

int main(void)
{
/* Emit code that will generate a print screen via int 5 */
 __emit__(0xcd,0x05);
 return 0;
}

/* eof example */
#include <sys\stat.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "This is a test";
 char ch;

 /* create a file */
 handle = open("DUMMY.FIL",
 O_CREAT | O_RDWR,
 S_IREAD | S_IWRITE);

 /* write some data to the file */
 write(handle, msg, strlen(msg));

 /* seek to the beginning of the file */
 lseek(handle, 0L, SEEK_SET);

 /* reads chars from the file until it reaches EOF */
 do
 {
 read(handle, &ch, 1);
 printf("%c", ch);
 } while (!eof(handle));

 close(handle);
 return 0;
}

/* exp and expl example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 4.0;

 result = exp(x);
 printf("'e' raised to the power \
 of %lf (e ^ %lf) = %lf\n",
 x, x, result);

 return 0;
}

/* farcalloc example */
#include <stdio.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char far *fptr;
 char *str = "Hello";

 /* allocate memory for the far pointer */
 fptr = (char far *) farcalloc(10, sizeof(char));

 /* copy "Hello" into allocated memory */
 /*
 Note: movedata is used because you might be in a small data model, in
 which case a normal string copy routine can not be used since it
 assumes the pointer size is near.
 */
 movedata(FP_SEG(str), FP_OFF(str),
 FP_SEG(fptr), FP_OFF(fptr),
 strlen(str));

 /* display string (note the F modifier) */
 printf("Far string is: %Fs\n", fptr);

 /* free the memory */
 farfree(fptr);

 return 0;
}

/* farmalloc example */
#include <stdio.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char far *fptr;
 char *str = "Hello";

 /* allocate memory for the far pointer */
 fptr = (char far *) farmalloc(10);

 /* copy "Hello" into allocated memory */
 /*
 Note: movedata is used because we might be in a small data model,
 in which case a normal string copy routine can not be used since it
 assumes the pointer size is near.
 */
 movedata(FP_SEG(str), FP_OFF(str),
 FP_SEG(fptr), FP_OFF(fptr),
 strlen(str) + 1);

 /* display string (note the F modifier)
*/
 printf("Far string is: %Fs\n", fptr);

 /* free the memory */
 farfree(fptr);

 return 0;
}

/* fclose example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 FILE *fp;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 fp = fopen("DUMMY.FIL", "w");
 fwrite(&buf, strlen(buf), 1, fp);

 /* close the file */
 fclose(fp);
 return 0;
}

/* fcloseall example */
#include <stdio.h>

int main(void)
{
 int streams_closed;

 /* open two streams */
 fopen("DUMMY.ONE", "w");
 fopen("DUMMY.TWO", "w");

 /* close the open streams */
 streams_closed = fcloseall();

 if (streams_closed == EOF)
 /* issue an error message */
 perror("Error");
 else
 /* print result of fcloseall() function */
 printf("%d streams were closed.\n", streams_closed);

 return 0;
}

/* feof example */
#include <stdio.h>

int main(void)
{
 FILE *stream;

 /* open a file for reading */
 stream = fopen("DUMMY.FIL", "r");

 /* read a character from the file */
 fgetc(stream);

 /* check for EOF */
 if (feof(stream))
 printf("We have reached end-of-file\n");

 /* close the file */
 fclose(stream);
 return 0;
}

/* ferror example */
#include <stdio.h>

int main(void)
{
 FILE *stream;

 /* open a file for writing */
 stream = fopen("DUMMY.FIL", "w");

 /* force an error condition by attempting to read */
 (void) getc(stream);

 if (ferror(stream)) /* test for an error on the stream */
 {
 /* display an error message */
 printf("Error reading from DUMMY.FIL\n");

 /* reset the error and EOF indicators */
 clearerr(stream);
 }

 fclose(stream);
 return 0;
}

/* fflush example */
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <io.h>

void flush(FILE *stream);

int main(void)
{
 FILE *stream;
 char msg[] = "This is a test";

 /* create a file */
 stream = fopen("DUMMY.FIL", "w");

 /* write some data to the file */
 fwrite(msg, strlen(msg), 1, stream);

 clrscr();
 printf("Press any key to flush DUMMY.FIL:");
 getch();

 /* flush the data to DUMMY.FIL without closing it */
 flush(stream);

 printf("\nFile was flushed, Press any key to quit:");
 getch();
 return 0;
}

void flush(FILE *stream)
{
 int duphandle;

 /* flush the stream's internal buffer */
 fflush(stream);

 /* make a duplicate file handle */
 duphandle = dup(fileno(stream));

 /* close the duplicate handle to flush the DOS buffer */
 close(duphandle);
}

/* fgetpos and fsetpos example */
#include <stdlib.h>
#include <stdio.h>

void showpos(FILE *stream);

int main(void)
{
 FILE *stream;
 fpos_t filepos;

 /* open a file for update */
 stream = fopen("DUMMY.FIL", "w+");

 /* save the file pointer position */
 fgetpos(stream, &filepos);

 /* write some data to the file */
 fprintf(stream, "This is a test");

 /* show the current file position */
 showpos(stream);

 /* set a new file position, display it */
 if (fsetpos(stream, &filepos) == 0)
 showpos(stream);
 else
 {
 fprintf(stderr, "Error setting file pointer.\n");
 exit(1);
 }

 /* close the file */
 fclose(stream);
 return 0;
}

void showpos(FILE *stream)
{
 fpos_t pos;

 /* display the current file pointer
 position of a stream */
 fgetpos(stream, &pos);
 printf("File position: %ld\n", pos);
}

/* filelength example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 handle = open("DUMMY.FIL", O_CREAT);
 write(handle, buf, strlen(buf));

 /* display the size of the file */
 printf("file length in bytes: %ld\n", filelength(handle));

 /* close the file */
 close(handle);
 return 0;
}

/* fileno example */
#include <stdio.h>

int main(void)
{
 FILE *stream;
 int handle;

 /* create a file */
 stream = fopen("DUMMY.FIL", "w");

 /* obtain the file handle associated with the stream */
 handle = fileno(stream);

 /* display the handle number */
 printf("handle number: %d\n", handle);

 /* close the file */
 fclose(stream);
 return 0;
}

/* flushall example */
#include <stdio.h>

int main(void)
{
 FILE *stream;

 /* create a file */
 stream = fopen("DUMMY.FIL", "w");

 /* flush all open streams */
 printf("%d streams were flushed.\n", flushall());

 /* close the file */
 fclose(stream);
 return 0;
}

/* fmod and fmodl example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double x = 5.0, y = 2.0;
 double result;

 result = fmod(x,y);
 printf("The remainder of (%lf / %lf) is %lf\n", x, y, result);
 return 0;
}

/* FP_OFF, and FP_SEG example*/
#include <stdio.h>
#include <dos.h>

main()
{
 char *str = "Hello\n";

 printf("The address pointed to by str is %04X:%04X\n",
 FP_SEG(str), FP_OFF(str));
 printf("The address of str is %04X:%04X\n", FP_SEG(&str), FP_OFF(&str));
 return 0;
}

/* fread example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 FILE *stream;
 char msg[] = "this is a test";
 char buf[20];

 if ((stream = fopen("DUMMY.FIL", "w+"))
 == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }

 /* write some data to the file */
 fwrite(msg, strlen(msg)+1, 1, stream);

 /* seek to the beginning of the file */
 fseek(stream, SEEK_SET, 0);

 /* read the data and display it */
 fread(buf, strlen(msg)+1, 1, stream);
 printf("%s\n", buf);

 fclose(stream);
 return 0;
}

/* frexp and frexpl examples */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double mantissa, number;
 int exponent;

 number = 8.0;
 mantissa = frexp(number, &exponent);

 printf("The number %lf is ", number);
 printf("%lf times two to the ", mantissa);
 printf("power of %d\n", exponent);

 return 0;
}

/* fseek example */
#include <stdio.h>

long filesize(FILE *stream);

int main(void)
{
 FILE *stream;

 stream = fopen("MYFILE.TXT", "w+");
 fprintf(stream, "This is a test");
 printf("Filesize of MYFILE.TXT is %ld bytes\n", filesize(stream));
 fclose(stream);
 return 0;
}

long filesize(FILE *stream)
{
 long curpos, length;

 curpos = ftell(stream);
 fseek(stream, 0L, SEEK_END);
 length = ftell(stream);
 fseek(stream, curpos, SEEK_SET);
 return length;
}

/* ftell example */
#include <stdio.h>
int main(void)
{
 FILE *stream;

 stream = fopen("MYFILE.TXT", "w+");
 fprintf(stream, "This is a test");
 printf("The file pointer is at byte %ld\n", ftell(stream));
 fclose(stream);
 return 0;
}

/* ftime example */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys\timeb.h>

/* pacific standard & daylight savings */
char *tzstr = "TZ=PST8PDT";

int main(void)
{
 struct timeb t;
 putenv(tzstr);
 tzset();
 ftime(&t);
 printf("Seconds since 1/1/1970 GMT: %ld\n", t.time);
 printf("Thousandths of a second: %d\n", t.millitm);
 printf("Difference between local time and GMT: %d\n", t._timezone);
 printf("Daylight savings in effect (1) not (0): %d\n", t.dstflag);
 return 0;
}

/* _fullpath example */
#include <stdio.h>
#include <stdlib.h>

char buf[_MAX_PATH];

void main(int argc, char *argv[])
{
 for (; argc; argv++, argc--)
 {
 if (_fullpath(buf, argv[0], _MAX_PATH) == NULL)
 printf("Unable to obtain full path of %s\n",argv[0]);
 else
 printf("Full path of %s is %s\n",argv[0],buf);
 }
}

/* fwrite example */
#include <stdio.h>

struct mystruct
{
 int i;
 char ch;
};

int main(void)
{
 FILE *stream;
 struct mystruct s;

 if ((stream = fopen("TEST.$$$", "wb")) == NULL) /* open file TEST.$$$ */
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }
 s.i = 0;
 s.ch = 'A';
 fwrite(&s, sizeof(s), 1, stream); /* write struct s to file */
 fclose(stream); /* close file */
 return 0;
}

/* gcvt example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char str[25];
 double num;
 int sig = 5; /* significant digits */

 /* a regular number */
 num = 9.876;
 gcvt(num, sig, str);
 printf("string = %s\n", str);

 /* a negative number */
 num = -123.4567;
 gcvt(num, sig, str);
 printf("string = %s\n", str);

 /* scientific notation */
 num = 0.678e5;
 gcvt(num, sig, str);
 printf("string = %s\n", str);

 return(0);
}

/* geninterrupt example */
#include <conio.h>
#include <dos.h>

/* function prototype */
void writechar(char ch);

int main(void)
{
 clrscr();
 gotoxy(80,25);
 writechar('*');
 getch();
 return 0;
}

/*
 outputs a character at the current cursor
 position using the video BIOS to avoid
 the scrolling of the screen when writing
 to location (80,25).
*/

void writechar(char ch)
{
 struct text_info ti;
 /* grab current text settings */
 gettextinfo(&ti);
 /* interrupt 0x10 sub-function 9 */
 _AH = 9;
 /* character to be output */
 _AL = ch;
 _BH = 0; /* video page */
 _BL = ti.attribute; /* video attribute */
 _CX = 1; /* repetition factor */
 geninterrupt(0x10); /* output the char */
}

/* getcbrk and setcbrk example */
#include <dos.h>
#include <conio.h>
#include <stdio.h>

int main(void)
{
 int break_flag;

 printf("Enter 0 to turn control break off\n");
 printf("Enter 1 to turn control break on\n");

 break_flag = getch() - 0;

 setcbrk(break_flag);

 if (getcbrk())
 printf("Cntrl-brk flag is on\n");
 else
 printf("Cntrl-brk flag is off\n");
 return 0;
}

/* segread example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct SREGS segs;

 segread(&segs);
 printf("Current segment register settings\n\n");
 printf("CS: %X DS: %X\n", segs.cs, segs.ds);
 printf("ES: %X SS: %X\n", segs.es, segs.ss);

 return 0;
}

/* setmem example */
#include <stdio.h>
#include <alloc.h>
#include <mem.h>

int main(void)
{
 char *dest;

 dest = (char *) calloc(21, sizeof(char));
 setmem(dest, 20, 'c');
 printf("%s\n", dest);

 return 0;
}

/* setmode example */
#include <fcntl.h>
#include <io.h>
#include <stdio.h>
int main (int argc, char ** argv)
(
 FILE *fp;
 int newmode;
 long where;
 char buf[256];

 fp = fopen(argv[1], "r+");
 if (!fp)
 {
 printf("Couldn't open %s\n", argv[1]);
 return -1;
 }

 newmode = setmode(fileno(fp), O_BINARY);
 if (newmode == -1)
 {
 printf("Coudn't set mode of %s\n", argv[1]);
 return -2
 }

 fp->flags |= _F_BIN;
 where = ftell(fp);
 printf ("file position: %d\n", where);
 fread(buf, 1, 1, fp);
 where = ftell (fp);
 printf("read %c, file position: %ld\n", *buf, where);
 fclose (fp);
 return 0;
}

/* signal example */
/* signal example */

/*
 This example installs a signal handler routine for SIGFPE,
 catches an integer overflow condition, makes an adjustment to AX
 register, and returns. This example program MAY cause your computer
 to crash, and will produce runtime errors depending on which memory
 model is used.
*/

#pragma inline
#include <stdio.h>
#include <signal.h>

#ifdef __cplusplus
 typedef void (*fptr)(int);
#else
 typedef void (*fptr)();
#endif

void Catcher(int *reglist)
{
 signal(SIGFPE, (fptr)Catcher); // ******reinstall signal handler

 printf("Caught it!\n"); *(reglist + 8) = 3; /* make return AX = 3 */
}

int main(void)
{
 signal(SIGFPE, (fptr)Catcher); /* cast Catcher to appropriate type */

 asm mov ax,07FFFH /* AX = 32767 */
 asm inc ax /* cause overflow */
 asm into /* activate handler */

 /* The handler set AX to 3 on return. If that had not happened,
 there would have been another exception when the next 'into'
 executed after the 'dec' instruction. */

 asm dec ax /* no overflow now */
 asm into /* doesn't activate */
 return 0;
}

/* sleep example */
#include <dos.h>
#include <stdio.h>

int main(void)
{
 int i;

 for (i=1; i<5; i++)
 {
 printf("Sleeping for %d seconds\n", i);
 sleep(i);
 }
 return 0;
}

/* sqrt example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 4.0, result;

 result = sqrt(x);
 printf("The square root of %lf is %lf\n", x, result);
 return 0;
}

/* srand example */
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

int main(void)
{
 int i;
 time_t t;

 srand((unsigned) time(&t));
 printf("Ten random numbers from 0 to 99\n\n");
 for(i=0; i<10; i++)
 printf("%d\n", rand() % 100);
 return 0;
}

/* stpcpy example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[10];
 char *str1 = "abcdefghi";

 stpcpy(string, str1);
 printf("%s\n", string);
 return 0;
}

/*strcat example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char destination[25];
 char *blank = " ", *c = "C++", *Borland = "Borland";

 strcpy(destination, Borland);
 strcat(destination, blank);
 strcat(destination, c);

 printf("%s\n", destination);
 return 0;
}

/* strchr example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[15];
 char *ptr, c = 'r';

 strcpy(string, "This is a string");
 ptr = strchr(string, c);
 if (ptr)
 printf("The character %c is at position: %d\n", c, ptr-string);
 else
 printf("The character was not found\n");
 return 0;
}

/* strcoll example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *two = "International";
 char *one = "Borland";
 int check;

 check = strcoll(one, two);
 if (check == 0)
 printf("The strings are equal\n");
 if (check < 0)
 printf("%s comes before %s\n", one, two);
 if (check > 0)
 printf("%s comes before %s\n", two, one);
 return 0;
}

/* strcpy example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[10];
 char *str1 = "abcdefghi";

 strcpy(string, str1);
 printf("%s\n", string);
 return 0;
}

/* _strdate example */
#include <time.h>
#include <stdio.h>
void main(void)
{
 char datebuf[9];
 char timebuf[9];

 _strdate(datebuf);
 _strtime(timebuf);
 printf("Date: %s Time: %s\n",datebuf,timebuf);
}

/* strdup example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>

int main(void)
{
 char *dup_str, *string = "abcde";

 dup_str = strdup(string);
 printf("%s\n", dup_str);
 free(dup_str);

 return 0;
}

/* strftime example */
#include <stdio.h>
#include <time.h>
#include <dos.h>

int main(void)
{
 struct tm *time_now;
 time_t secs_now;
 char str[80];

 tzset();
 time(&secs_now);
 time_now = localtime(&secs_now);
 strftime(str, 80,
 "It is %M minutes after %I o'clock (%Z) %A, %B %d 19%y",
 time_now);
 printf("%s\n",str);
 return 0;
}

/*strlen example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string = "Borland International";

 printf("%d\n", strlen(string));
 return 0;
}

/*strncat example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char destination[25];
 char *source = " States";

 strcpy(destination, "United");
 strncat(destination, source, 7);
 printf("%s\n", destination);
 return 0;
}

/* strncpy example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[10];
 char *str1 = "abcdefghi";

 strncpy(string, str1, 3);
 string[3] = '\0';
 printf("%s\n", string);
 return 0;
}

/* strnset example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string = "abcdefghijklmnopqrstuvwxyz";
 char letter = 'x';

 printf("string before strnset: %s\n", string);
 strnset(string, letter, 13);
 printf("string after strnset: %s\n", string);

 return 0;
}

/* strpbrk example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string1 = "abcdefghijklmnopqrstuvwxyz";
 char *string2 = "onm";
 char *ptr;

 ptr = strpbrk(string1, string2);

 if (ptr)
 printf("strpbrk found first character: %c\n", *ptr);
 else
 printf("strpbrk didn't find character in set\n");

 return 0;
}

/* strrchr example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[15];
 char *ptr, c = 'r';

 strcpy(string, "This is a string");
 ptr = strrchr(string, c);
 if (ptr)
 printf("The character %c is at position: %d\n", c, ptr-string);
 else
 printf("The character was not found\n");
 return 0;
}

/* strrev example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *forward = "string";

 printf("Before strrev(): %s\n", forward);
 strrev(forward);
 printf("After strrev(): %s\n", forward);
 return 0;
}

/* strset example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[10] = "123456789";
 char symbol = 'c';

 printf("Before strset(): %s\n", string);
 strset(string, symbol);
 printf("After strset(): %s\n", string);
 return 0;
}

/* strstr example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *str1 = "Borland International", *str2 = "nation", *ptr;

 ptr = strstr(str1, str2);
 printf("The substring is: %s\n", ptr);
 return 0;
}

/* _strtime example */
#include <time.h>
#include <stdio.h>
void main(void)
{
 char datebuf[9];
 char timebuf[9];

 _strdate(datebuf);
 _strtime(timebuf);
 printf("Date: %s Time: %s\n",datebuf,timebuf);
}

/* strtok example */
 #include <string.h>
 #include <stdio.h>

 int main(void)
 {
 char input[16] = "abc,d";
 char *p;

 /* strtok places a NULL terminator
 in front of the token, if found */
 p = strtok(input, ",");
 if (p) printf("%s\n", p);

 /* A second call to strtok using a NULL
 as the first parameter returns a pointer
 to the character following the token */
 p = strtok(NULL, ",");
 if (p) printf("%s\n", p);
 return 0;
 }

/* strxfrm example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>

int main(void)
{
 char *target;
 char *source = "Frank Borland";
 int length;

 /* allocate space for the target string */
 target = (char *) calloc(80, sizeof(char));

 /* copy the source over to the target and get the length */
 length = strxfrm(target, source, 80);

 /* print out the results */
 printf("%s has the length %d\n", target, length);
 return 0;
}

/* swab example */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

char source[15] = "rFna koBlrna d";
char target[15];

int main(void)
{
 swab(source, target, strlen(source));
 printf("This is target: %s\n", target);
 return 0;
}

/* system example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 printf("About to spawn command.com and run a DOS command\n");
 system("dir");
 return 0;
}

/* tell example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "Hello world";

 if ((handle = open("TEST.$$$", O_CREAT | O_TEXT | O_APPEND)) == -1)
 {
 perror("Error:");
 return 1;
 }
 write(handle, msg, strlen(msg));
 printf("The file pointer is at byte %ld\n", tell(handle));
 close(handle);
 return 0;
}

/* tempnam example */
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 FILE *stream;
 int i;
 char *name;

 for (i = 1; i <= 10; i++) {
 if ((name = tempnam("\\tmp","wow")) == NULL)
 perror("tempnam couldn't create name");
 else {
 printf("Creating %s\n",name);
 if ((stream = fopen(name,"wb")) == NULL)
 perror("Could not open temporary file\n");
 else
 fclose(stream);
 }
 free(name);
 }
 printf("Warning: temp files not deleted.\n");
}

/* textmode example */
#include <conio.h>

int main(void)
{
 textmode(BW40);
 cprintf("ABC");
 getch();

 textmode(C40);
 cprintf("ABC");
 getch();

 textmode(BW80);
 cprintf("ABC");
 getch();

 textmode(C80);
 cprintf("ABC");
 getch();

 textmode(MONO);
 cprintf("ABC");
 getch();

 return 0;
}

/* tmpfile example */
#include <stdio.h>
#include <process.h>

int main(void)
{
 FILE *tempfp;

 tempfp = tmpfile();
 if (tempfp)
 printf("Temporary file created\n");
 else
 {
 printf("Unable to create temporary file\n");
 exit(1);
 }

 return 0;
}

/* tmpnam example */
#include <stdio.h>

int main(void)
{
 char name[13];

 tmpnam(name);
 printf("Temporary name: %s\n", name);
 return 0;
}

/* toascii example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int number, result;
 number = 511;
 result = toascii(number);
 printf("%d %d\n", number, result);
 return 0;
}

/* tzset example */
#include <time.h>
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 time_t td;

 putenv("TZ=PST8PDT");
 tzset();
 time(&td);
 printf("Current time = %s\n", asctime(localtime(&td)));
 return 0;
}

/* ungetc example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int i=0;
 char ch;

 puts("Input an integer followed by a char:");

 /* read chars until non digit or EOF */
 while((ch = getchar()) != EOF && isdigit(ch))
 i = 10 * i + ch - 48; /* convert ASCII into int value */

 /* if non digit char was read, push it back into input buffer */
 if (ch != EOF)
 ungetc(ch, stdin);

 printf("i = %d, next char in buffer = %c\n", i, getchar());
 return 0;
}

/* ungetch example */
#include <stdio.h>
#include <ctype.h>
#include <conio.h>

int main(void)
{
 int i=0;
 char ch;

 puts("Input an integer followed by a char:");

 /* read chars until non digit or EOF */
 while((ch = getche()) != EOF && isdigit(ch))
 i = 10 * i + ch - 48; /* convert ASCII into int value */

 /* if non digit char was read, push it back into input buffer */
 if (ch != EOF)
 ungetch(ch);

 printf("\n\ni = %d, next char in buffer = %c\n", i, getch());
 return 0;
}

/* unixtodos example */
#include <stdio.h>
#include <dos.h>

char *month[] = {"---", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

#define SECONDS_PER_DAY 86400L /* the number of seconds in one day */

struct date dt;
struct time tm;

int main(void)
{
 unsigned long val;

/* get today's date and time */
 getdate(&dt);
 gettime(&tm);
 printf("today is %d %s %d\n", dt.da_day, month[dt.da_mon], dt.da_year);

/*convert date and time to unix format (num of seconds since Jan 1, 1970*/
 val = dostounix(&dt, &tm);
/* subtract 42 days worth of seconds */
 val -= (SECONDS_PER_DAY * 42);

/* convert back to dos time and date */
 unixtodos(val, &dt, &tm);
 printf("42 days ago it was %d %s %d\n",
 dt.da_day, month[dt.da_mon], dt.da_year);
 return 0;
}

/* unlink example */
#include <stdio.h>
#include <io.h>

int main(void)
{
 FILE *fp = fopen("junk.jnk","w");
 int status;

 fprintf(fp,"junk");

 status = access("junk.jnk",0);
 if (status == 0)
 printf("File exists\n");
 else
 printf("File doesn't exist\n");

 fclose(fp);
 unlink("junk.jnk");
 status = access("junk.jnk",0);
 if (status == 0)
 printf("File exists\n");
 else
 printf("File doesn't exist\n");

 return 0;
}

/* umask example */
#include <io.h>
#include <stdio.h>
#include <sys\stat.h>

#define FILENAME "TEST.$$$"

int main(void)
{
 unsigned oldmask;

 FILE *f;
 struct stat statbuf;

 /* Cause subsequent files to be created as read-only */
 oldmask = umask(S_IWRITE);
 printf("Old mask = 0x%x\n",oldmask);

 /* Create a zero-length file */
 if ((f = fopen(FILENAME,"w+")) == NULL)
 {
 perror("Unable to create output file");
 return (1);
 }
 fclose(f);

 /* Verify that the file is read-only */
 if (stat(FILENAME,&statbuf) != 0)
 {
 perror("Unable to get information about output file");
 return (1);
 }
 if (statbuf.st_mode & S_IWRITE)
 printf("Error! %s is writable!\n",FILENAME);
 else
 printf("Success! %s is not writable.\n",FILENAME);
 return (0);
}

/* utime example */
/* Copy timestamp from one file to another */

#include <sys\stat.h>
#include <utime.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 struct stat src_stat;
 struct utimbuf times;
 if(argc != 3) {
 printf("Usage: copytime <source file> <dest file>\n");
 return 1;
 }

 if (stat(argv[1],&src_stat) != 0) {
 perror("Unable to get status of source file");
 return 1;
 }

 times.modtime = times.actime = src_stat.st_mtime;
 if (utime(argv[2],×) != 0) {
 perror("Unable to set time of destination file");
 return 1;
 }
 return 0;
}

/* va_arg example */
#include <stdio.h>
#include <stdarg.h>

/* calculate sum of a 0 terminated list */
void sum(char *msg, ...)
{
 int total = 0;
 va_list ap;
 int arg;
 va_start(ap, msg);
 while ((arg = va_arg(ap,int)) != 0) {
 total += arg;
 }
 printf(msg, total);
 va_end(ap);
}

int main(void) {
 sum("The total of 1+2+3+4 is %d\n", 1,2,3,4,0);
 return 0;
}

/* wherex and wherey example */
#include <conio.h>

int main(void)
{
 clrscr();
 gotoxy(10,10);
 cprintf("Current location is X: %d Y: %d\r\n", wherex(), wherey());
 getch();

 return 0;
}

/* window example */
#include <conio.h>

int main(void)
{

 window(10,10,40,11);
 textcolor(BLACK);
 textbackground(WHITE);
 cprintf("This is a test\r\n");

 return 0;
}

/* getpsp example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 static char command[128];
 char far *cp;
 int len, i;

 printf("The program segment prefix is: %u\n", getpsp());

/*
_psp is preset to segment of the PSP. Command line is located at offset
0x81 from start of PSP

*/
 cp = (char *) MK_FP(_psp, 0x80);
 len = *cp;

 for (i = 0; i < len; i++)
 command[i] = cp[i+1];

 printf("Command line: %s\n", command);

 return 0;
}

/* stackavail example */
 #include <malloc.h>
 #include <stdio.h>

 int main(void)
 {
 char *buf;

 printf("\nThe stack: %u\tstack pointer: %u", stackavail(), _SP);
 buf = (char *) alloca(100 * sizeof(char));
 printf("\nNow, the stack: %u\tstack pointer: %u", stackavail(), _SP);
 return 0;
 }

 /* **

 Program output

 The stack: 64046 stack pointer: 65524
 Now, the stack: 63946 stack pointer: 65424

 ** */

/* set_new_handler example */
#include <iostream.h>
#include <new.h>
#include <stdlib.h>

void mem_warn() {
 cerr << "\nCan't allocate!";
 exit(1);
 }

void main(void) {
 set_new_handler(mem_warn);

 char *ptr = new char[100];
 cout << "\nFirst allocation: ptr = " << hex << long(ptr);
 ptr = new char[64000U];
 cout << "\nFinal allocation: ptr = " << hex << long(ptr);
 set_new_handler(0); // Reset to default.
}

/* isalpha example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isalpha(c))
 printf("%c is alphabetical\n",c);
 else printf("%c is not alphabetical\n",c);

 return 0;
}

/* isalnum example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isalnum(c))
 printf("%c is alphanumeric\n",c);
 else printf("%c is not alphanumeric\n",c);

 return 0;
}

/* isascii example */
#include <stdio.h>
#include <ctype.h>
#include <stdio.h>
int main(void)
{
 char c = 'C';

 if (isascii(c))
 printf("%c is ascii\n",c);
 else printf("%c is not ascii\n",c);
 return 0;
}

/* iscntrl example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';
 if (iscntrl(c))
 printf("%c is a control character\n",c);
 else printf("%c is not a control character\n",c);

 return 0;
}

/* isdigit example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isdigit(c))
 printf("%c is a digit\n",c);
 else printf("%c is not a digit\n",c);

 return 0;
}

/* isgraph example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isgraph(c))
 printf("%c is a graphic character\n",c);
 else printf("%c is not a graphic character\n",c);

 return 0;
}

/* islower example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (islower(c))
 printf("%c is a lowercase character\n",c);
 else printf("%c is not a lowercase character\n",c);

 return 0;
}

/* isprint example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isprint(c))
 printf("%c is a printable character\n",c);
 else printf("%c is not a printable character\n",c);

 return 0;
}

/* ispunct example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (ispunct(c))
 printf("%c is a punctuation character\n",c);
 else printf("%c is not a punctuation character\n",c);

 return 0;
}

/* isspace example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isspace(c))
 printf("%c is white space\n",c);
 else printf("%c is not white space\n",c);

 return 0;
}

/* isupper example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isupper(c))
 printf("%c is an uppercase character\n",c);
 else printf("%c is not an uppercase character\n",c);

 return 0;
}

/* isxdigit example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isxdigit(c))
 printf("%c is a hexidecimal digit\n",c);
 else printf("%c is not a hexidecimal digit\n",c);

 return 0;
}

/* mblen example */
#include <stdlib.h>
#include <stdio.h>

void main (void)
{
 int i ;
 char *mulbc = (char *)malloc(sizeof(char));
 wchar_t widec = L'a';
 printf (" convert a wide character to multibyte character:\n");
 i = wctomb (mulbc, widec);
 printf("\tCharacters converted: %u\n", i);
 printf("\tMultibyte character: %x\n\n", mulbc);

 printf(" Find length--in byte-- of multibyte character:\n");
 i = mblen(mulbc, MB_CUR_MAX);
 printf("\tLenght--in bytes--if multiple character: %u\n",i);
 printf("\tWide character: %x\n\n", mulbc);

 printf(" Attempt to find length of a Wide character Null:\n");
 widec = L'\0';
 wctomb(mulbc, widec);
 i = mblen(mulbc, MB_CUR_MAX);
 printf("\tLenght--in bytes--if multiple character: %u\n",i);
 printf("\tWide character: %x\n\n", mulbc);

}

/* mbstowcs example */
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 int x;
 char *mbst = (char *)malloc(MB_CUR_MAX);
 wchar_t *pwst = L"Hi";
 wchar_t *pwc = (wchar_t *)malloc(sizeof(wchar_t));

 printf ("Convert to multibyte string:\n");
 x = wcstombs (mbst, pwst, MB_CUR_MAX);
 printf ("\tCharacters converted %u\n",x);
 printf ("\tHEx value of first");
 printf (" multibyte character: %#.4x\n\n", mbst);

 printf ("Convert back to wide character string:\n");
 x = mbstowcs(pwc, mbst, MB_CUR_MAX);
 printf("\tCharacters converted: %u\n",x);
 printf("\tHex value of first");
 printf("wide character: %#.4x\n\n", pwc);
}

/* mbtowc example */
#include <stdlib.h>
#include<stdio.h>

void main(void)
{
 int x;
 char *mbchar = (char *)calloc(1, sizeof(char));
 wchar_t wchar = L'a';
 wchar_t *pwcnull = NULL;
 wchar_t *pwchar = (wchar_t *)calloc(1, sizeof(wchar_t));

 printf ("Convert a wide character to multibyte character:\n");
 x = wctomb(mbchar, wchar);
 printf("\tCharacters converted: %u\n", x);
 printf("\tMultibyte character: %x\n\n", mbchar);

 printf ("Convert multibyte character back to a wide character:\n");
 x = mbtowc(pwchar, mbchar, MB_CUR_MAX);
 printf("\tBytes converted: %u\n", x);
 printf("\tWide character: %x\n\n", pwchar);

 printf ("Atempt to convert when target is NULL\n");
 printf (" returns the length of the multibyte character:\n");
 x = mbtowc (pwcnull, mbchar, MB_CUR_MAX);
 printf ("\tlength of multibyte character:%u\n\n", x);

 printf ("Attempt to convert a NULL pointer to a");
 printf (" wide character:\n");
 mbchar = NULL;
 x = mbtowc (pwchar, mbchar, MB_CUR_MAX);
 printf("\tBytes converted: %u\n", x);
 }

/* MK_FP example */
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <dos.h>
#include <malloc.h>

main()
{

 char *str = "hello\n";
 char far *farstr;

 printf ("the address pointed to by str is %04X:%04X\n",
 FP_SEG(str), FP_OFF(str));
 farstr = (char far *)MK_FP(FP_SEG(str), FP_OFF(str));

 printf ("the string pointed by far pointer is %s\n", farstr);
 return 0;
}

/* _msize example */
/* _msize works as a 32-bit command, not as a 16-bit command */
#include <malloc.h> /* malloc() _msize() */
#include <stdio.h> /* printf() */

int main()
{
 int size;
 int *buffer;

 buffer = malloc(100 * sizeof(int));
 size = _msize(buffer);
 printf("Allocated %d bytes for 100 integers\n", size);

 return(0);
}

/* offsetof example */
/*
This program uses the offsetof command to show the effect
of changing alignment boundaries within a structure.
It produces this output:

 In STRUCT1, two_bytes begins at byte 1.
 In STRUCT2, two_bytes begins at byte 2.

By default, the 16-bit compiler aligns structure members
at 1-byte boundaries. With the -a2 flag set, the compiler
aligns fields on even boundaries.

The CPU often processes structure elements more quickly
when they align on even boundaries.
*/

#include <stddef.h> // offsetof()
#include <stdio.h> // printf()

#pragma option -a1 // align on bytes (default)

typedef struct {
 char one_byte;
 int two_bytes;
} STRUCT1;

#pragma option -a2 // align on even bytes

typedef struct {
 char one_byte;
 int two_bytes;
} STRUCT2;

#pragma option -a. // restore command-line option

void main()
{
 printf("In STRUCT1, two_bytes begins at byte %d.\n",
 offsetof(STRUCT1, two_bytes));

 printf("In STRUCT2, two_bytes begins at byte %d.\n",
 offsetof(STRUCT2, two_bytes));
}

/* _pipe example */
/* _pipe example */
#include <windows.h> //for SECURITY_ATTRIBUTES
#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>

void main(int argc, char *argv[])
{
 int retcode, stat, pid;
 char asc_handle[10];
 SECURITY_ATTRIBUTES sa;
 HANDLE s_hFileMap;

 if (argc > 1) /* this is the child */
 {
 /* Get the read pipe handle from command line,
 * and set the handle to binary.
 */
 printf("Child: The handle passed as 2nd argument is: %s\n",
argv[1]);

 s_hFileMap = (HANDLE) atoi(argv[1]);

 LPVOID lpView = MapViewOfFile(s_hFileMap,
 FILE_MAP_READ|FILE_MAP_WRITE,
 0,0,0);
 if (lpView == NULL)
 {
 perror("Child: unable to read pipe");
 retcode = 255;
 }

 printf("Child: returning %s to parent\n",lpView);

 retcode = atoi((char*) lpView);
 UnmapViewOfFile(lpView);
 CloseHandle(s_hFileMap); //Child is responsible for this
 exit(retcode);
 }
 else /* this is the parent */
 {
 //Here we set up the security attributes of the file mapping object
 //so that we can inherit it from the child process. Alternatively
 //and more cheaply, we could use just the name of the mapping
object

 //once inside the child process and call OpenFileMapping with that
 //name.
 sa.nLength = sizeof(sa);
 sa.lpSecurityDescriptor = NULL;
 sa.bInheritHandle = TRUE;

 s_hFileMap = CreateFileMapping((HANDLE) 0xFFFFFFFF,//in memory
 &sa, //security
attrib

 PAGE_READWRITE,
 0, //min. size
 256, //size
 NULL); //give mapping
object no name

 LPVOID lpView = MapViewOfFile(s_hFileMap,
 FILE_MAP_READ|FILE_MAP_WRITE,
 0,0,0);
 if (lpView == NULL)
 {
 perror("Parent: unable to create file mapping");
 exit(1);
 }

 sprintf(asc_handle,"%d",s_hFileMap);
 retcode = 10;
 if (sprintf((char*)lpView,"%d",retcode) == EOF)
 {
 perror("Parent: unable to write to pipe");
 exit(1);
 }

 /* Call ourself with read handle as argument.
 */
 if ((pid = spawnl(P_NOWAIT, argv[0], argv[0],
 asc_handle, NULL)) == -1)
 perror("Parent: spawnl failed");
 else
 {
 printf("Parent: spawned child process %d\n",pid);
 if (wait(&stat) != pid)
 perror("Parent: wait failure");
 else
 {
 if ((stat & 0xff) == 0)
 printf("Parent: child returned %d\n", stat >> 8);
 else
 printf("Parent: child terminated abnormally\n");

 }
 }
 UnmapViewOfFile(lpView);
 CloseHandle(s_hFileMap);
 exit(0);
 }
}

/* send example */
/*
 There are two short programs here. SEND spawns a child
 process, RECEIVE. Each process holds one end of a
 pipe. The parent transmits its command-line argument
 to the child, which prints the string and exits.

 IMPORTANT: The parent process must be linked with
 the \32bit\fileinfo.obj file. The code in fileinfo
 enables a parent to share handles with a child.
 Without this extra information, the child cannot use
 the handle it receives.
*/

/* SEND */

#include <fcntl.h> // _pipe()
#include <io.h> // write()
#include <process.h> // spawnl() cwait()
#include <stdio.h> // puts() perror()
#include <stdlib.h> // itoa()
#include <string.h> // strlen()

#define DECIMAL_RADIX 10 // for atoi()
enum PIPE_HANDLES { IN, OUT }; // to index the array of handles

int main(int argc, char *argv[])
{
 int handles[2]; // in- and
//outbound pipe handles
 char handleStr[10]; // a handle
//stored as a string
 int pid;
 // system's ID for child process

 if (argc <= 1)
 {
 puts("No message to send.");
 return(1);
 }

 if (_pipe(handles, 256, O_TEXT) != 0)
 {
 perror("Cannot create the pipe");
 return(1);
 }

 // store handle as a string for passing on the command line
 itoa(handles[IN], handleStr, DECIMAL_RADIX);

 // create the child process, passing it the inbound pipe handle
 spawnl(P_NOWAIT, "receive.exe", "receive.exe", handleStr, NULL);

 // transmit the message
 write(handles[OUT], argv[1], strlen(argv[1])+1);

 // when done with the pipe, close both handles
 close(handles[IN]);
 close(handles[OUT]);

 // wait for the child to finish
 wait(NULL);
 return(0);
}

/* _setcursortype example */
#include <conio.h>

int main()
{
 // tell the user what to do
 clrscr();
 cputs("Press any key three times.\n\r");
 cputs("Each time the cursor will change shape.\n\r");

 gotoxy(1,5); // show a solid cursor
 cputs("Now the cursor is solid.\n\r");
 _setcursortype(_SOLIDCURSOR);

 while(!kbhit()) {}; // wait to proceed
 getch();

 gotoxy(1,5); // remove the cursor
 cputs("Now the cursor is gone.");
 clreol();
 gotoxy(1,6);
 _setcursortype(_NOCURSOR);

 while(!kbhit()) {}; // wait to proceed
 getch();

 gotoxy(1,5); // show a normal cursor
 cputs("Now the cursor is normal.");
 clreol();
 gotoxy(1,6);
 _setcursortype(_NORMALCURSOR);

 while(!kbhit()) {}; // wait to proceed
 getch();

 clrscr();
 return(0);
}

/* _dos_commit example */
#include <dos.h>
#include <errno.h>
#include <conio.h>

void main(void)
{
 char save[] = "to disk.",
 prompt[] = " File exist,overwrite?[y/n]",
 err[] = "Error occured. ",
 newline[] = "\n\r";

int handle, ch;
unsigned count;

 /* Open file and create and overwrite it */

 if (_dos_createnew("DUMMY.FIL",_A_NORMAL, &handle) !=0)
 {
 if (errno == EEXIST)
 {
 /* Use _dos_write to display prompts*/
 _dos_write (1, prompt, sizeof(prompt) -1, &count);
 ch = bdos(1, 0, 0) & 0x00ff;
 if ((ch == 'y') || (ch == 'Y'))
 _dos_creat("DUMMY.FIL", _A_NORMAL, &handle);
 _dos_write(1,newline, sizeof(newline) -1, &count);
 }
 }

 /* Write to file; output passes through operating system's buffer*/

 if (_dos_write(handle, save, sizeof(save),&count) != 0)

 {
 _dos_write(1, err, sizeof(err) - 1, &count);
 _dos_write(1, newline, sizeof(newline) -1, &count);
 }

 /* Write directly to file with no intermediate buffering */
 if (_dos_commit(handle) != 0)
 {
 _dos_write(1, err, sizeof(err) -1, &count);
 _dos_write(1, newline, sizeof(newline) - 1 , &count);
 }

 /* Close file */
 if (_dos_close(handle) != 0)
 {
 _dos_write(1, err, sizeof(err) -1, &count);
 _dos_write(1, newline, sizeof(newline) -1, &count);
 }

}

/* _expand example */
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)
{
 char *bufchar;

 printf("Allocate a 512 element buffer\n");
 if((bufchar = (char *) calloc(512, sizeof(char))) == NULL)
 exit(1);
 printf("Allocated %d bytes at %Fp\n",
 _msize (bufchar), (void __far *)bufchar);

 if ((bufchar = (char *) _expand (bufchar, 1024)) == NULL)
 printf ("can not expand");
 else
 printf (" Expanded block to %d bytes at %Fp\n",
 _msize(bufchar) , (void __far *)bufchar);
/* free memory */
 free(bufchar);
 exit (0);
}

/* _get_osfhandle and _open_osfhandle example */
#include <windows.h>
#include <fcntl.h>
#include <stdio.h>
#include <io.h>
#ifndef __FLAT__
#error This Example must be compiled using 32 bit compiler
#endif

//Example for _get_osfhandle() and _open_osfhandle()

BOOL InitApplication(HINSTANCE hInstance);
HWND InitInstance(HINSTANCE hInstance, int nCmdShow);
LRESULT FAR PASCAL _export MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam);
Example_get_osfhandle(HWND hWnd);

#pragma argsused
int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)

{
MSG msg; // message

 if (!InitApplication(hInstance)) // Initialize shared things
 return (FALSE); // Exits if unable to initialize

 /* Perform initializations that apply to a specific instance */

 if (!(InitInstance(hInstance, nCmdShow)))
 return (FALSE);

 /* Acquire and dispatch messages until a WM_QUIT message is received. */

 while (GetMessage(&msg, // message structure
 NULL, // handle of window receiving the message
 NULL, // lowest message to examine
 NULL)) // highest message to examine
 {
 TranslateMessage(&msg); // Translates virtual key codes
 DispatchMessage(&msg); // Dispatches message to window
 }

 return (msg.wParam); // Returns the value from PostQuitMessage

}
BOOL InitApplication(HINSTANCE hInstance)
{
 WNDCLASS wc;

 // Fill in window class structure with parameters that describe the
 // main window.

 wc.style = CS_HREDRAW | CS_VREDRAW; // Class style(s).

 wc.lpfnWndProc = (long (FAR PASCAL*)(void *,unsigned int,unsigned int,
long))MainWndProc; // Function to retrieve messages for

 // windows of this class.
 wc.cbClsExtra = 0; // No per-class extra data.
 wc.cbWndExtra = 0; // No per-window extra data.
 wc.hInstance = hInstance; // Application that owns the class.
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = GetStockObject(WHITE_BRUSH);
 wc.lpszMenuName = NULL; // Name of menu resource in .RC file.
 wc.lpszClassName = "Example"; // Name used in call to CreateWindow.

 /* Register the window class and return success/failure code. */

 return (RegisterClass(&wc));

}
HWND InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd; // Main window handle.

 /* Create a main window for this application instance. */

 hWnd = CreateWindow(
 "Example", // See RegisterClass() call.
 "Example _get_osfhandle _open_osfhandle (32 bit)", // Text for window
title bar.

 WS_OVERLAPPEDWINDOW, // Window style.
 CW_USEDEFAULT, // Default horizontal position.
 CW_USEDEFAULT, // Default vertical position.
 CW_USEDEFAULT, // Default width.
 CW_USEDEFAULT, // Default height.
 NULL, // Overlapped windows have no parent.
 NULL, // Use the window class menu.
 hInstance, // This instance owns this window.
 NULL // Pointer not needed.
);

 /* If window could not be created, return "failure" */

 if (!hWnd)
 return (FALSE);

 /* Make the window visible; update its client area; and return "success"
*/

 ShowWindow(hWnd, nCmdShow); // Show the window
 UpdateWindow(hWnd); // Sends WM_PAINT message
 return (hWnd); // Returns the value from PostQuitMessage

}
#pragma argsused
LRESULT FAR PASCAL _export MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{

 switch (message)

 {
 case WM_CREATE:
 {
 Example_get_osfhandle(hWnd);
 return NULL;
 }
 case WM_QUIT:
 case WM_DESTROY: // message: window being destroyed
 PostQuitMessage(0);
 break;

 default: // Passes it on if unproccessed
 return (DefWindowProc(hWnd, message, wParam, lParam));
 }
}

Example_get_osfhandle(HWND hWnd)
{
 long osfHandle;
 char str[128];
 int fHandle = open("file1.c", O_CREAT|O_TEXT);
 if(fHandle != -1)
 {
 osfHandle = _get_osfhandle(fHandle);
 sprintf(str, "file handle = %lx OS file handle = %lx", fHandle,
osfHandle);

 MessageBox(hWnd,str,"_get_osfhandle",MB_OK|MB_ICONINFORMATION);
 close(fHandle);

 fHandle = _open_osfhandle(osfHandle, O_TEXT);
 sprintf(str, "file handle = %lx OS file handle = %lx", fHandle,
osfHandle);

 MessageBox(hWnd,str,"_open_osfhandle",MB_OK|MB_ICONINFORMATION);
 close(fHandle);

 }
 else
 MessageBox(hWnd,"File Open Error","WARNING",MB_OK|MB_ICONSTOP);
return 0;
}

/* _heapset example */
#include <windowsx.h>
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

#ifndef __FLAT__
#error This Example must be compiled using 32 bit compiler
#endif
BOOL InitApplication(HINSTANCE hInstance);
HWND InitInstance(HINSTANCE hInstance, int nCmdShow);
LRESULT FAR PASCAL _export MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam);
void ExampleHeapSet(HWND hWnd);
#pragma argsused
int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)

{
MSG msg; // message

 if (!InitApplication(hInstance)) // Initialize shared things
 return (FALSE); // Exits if unable to initialize

 /* Perform initializations that apply to a specific instance */

 if (!(InitInstance(hInstance, nCmdShow)))
 return (FALSE);

 /* Acquire and dispatch messages until a WM_QUIT message is received. */

 while (GetMessage(&msg, // message structure
 NULL, // handle of window receiving the message
 NULL, // lowest message to examine
 NULL)) // highest message to examine
 {
 TranslateMessage(&msg); // Translates virtual key codes
 DispatchMessage(&msg); // Dispatches message to window
 }

 return (msg.wParam); // Returns the value from PostQuitMessage

}
BOOL InitApplication(HINSTANCE hInstance)
{
 WNDCLASS wc;

 // Fill in window class structure with parameters that describe the
 // main window.

 wc.style = CS_HREDRAW | CS_VREDRAW; // Class style(s).
 wc.lpfnWndProc = (long (FAR PASCAL*)(void *,unsigned int,unsigned int,
long))MainWndProc; // Function to retrieve messages for

 // windows of this class.

 wc.cbClsExtra = 0; // No per-class extra data.
 wc.cbWndExtra = 0; // No per-window extra data.
 wc.hInstance = hInstance; // Application that owns the class.
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = GetStockObject(WHITE_BRUSH);
 wc.lpszMenuName = NULL; // Name of menu resource in .RC file.
 wc.lpszClassName = "Example"; // Name used in call to CreateWindow.

 /* Register the window class and return success/failure code. */

 return (RegisterClass(&wc));

}
HWND InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd; // Main window handle.

 /* Create a main window for this application instance. */

 hWnd = CreateWindow(
 "Example", // See RegisterClass() call.
 "Example _heapset 32 bit only", // Text for window title bar.
 WS_OVERLAPPEDWINDOW, // Window style.
 CW_USEDEFAULT, // Default horizontal position.
 CW_USEDEFAULT, // Default vertical position.
 CW_USEDEFAULT, // Default width.
 CW_USEDEFAULT, // Default height.
 NULL, // Overlapped windows have no parent.
 NULL, // Use the window class menu.
 hInstance, // This instance owns this window.
 NULL // Pointer not needed.
);

 /* If window could not be created, return "failure" */

 if (!hWnd)
 return (FALSE);

 /* Make the window visible; update its client area; and return "success"
*/

 ShowWindow(hWnd, nCmdShow); // Show the window
 UpdateWindow(hWnd); // Sends WM_PAINT message
 return (hWnd); // Returns the value from PostQuitMessage

}

void ExampleHeapSet(HWND hWnd)
{
 int hsts;
 char *buffer;

 if ((buffer = (char *)malloc(1)) == NULL)
 exit(0);
 hsts = _heapset('Z');

 switch (hsts)
 {
 case _HEAPOK:
 MessageBox(hWnd,"Heap is OK","Heap",MB_OK|MB_ICONINFORMATION);
 break;
 case _HEAPEMPTY:
 MessageBox(hWnd,"Heap is empty","Heap",MB_OK|MB_ICONINFORMATION);
 break;
 case _HEAPBADNODE:
 MessageBox(hWnd,"Bad node in heap","Heap",MB_OK|MB_ICONINFORMATION);
 break;
 default:
 break;

 }

 free (buffer);
}
#pragma argsused
LRESULT FAR PASCAL _export MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{

 switch (message) {
 case WM_CREATE:
 {
 //Example _heapset
 ExampleHeapSet(hWnd);
 return NULL;
 }
 case WM_QUIT:
 case WM_DESTROY: // message: window being destroyed
 PostQuitMessage(0);
 break;

 default: // Passes it on if unproccessed
 return (DefWindowProc(hWnd, message, wParam, lParam));
 }
}

/* _searchstr example */
#include <stdio.h>
#include <stdlib.h>

char buf[_MAX_PATH];

int main(void)
{
 /* look for TLINK.EXE */
 _searchstr("TLINK.EXE", "PATH", buf);
 if (buf[0] == '\0')
 printf ("TLINK.EXE not found\n");
 else
 printf ("TLINK.EXE found in %s\n", buf);

 return 0;
}

/* _popen and _pclose example */
/* this program initiates a child process to run the dir command
 and pipes the directory listing from the child to the parent.
*/

#include <stdio.h> // popen() pclose() feof() fgets() puts()
#include <string.h> // strlen()

int main()
{
 FILE* handle; // handle to one end of pipe
 char message[256]; // buffer for text passed through pipe
 int status; // function return value

 // open a pipe to receive text from a process running "DIR"
 handle = _popen("dir /b", "rt");
 if (handle == NULL)
 {
 perror("_popen error");
 }

 // read and display input received from the child process
 while (fgets(message, sizeof(message), handle))
 {
 fprintf(stdout, message);
 }

 // close the pipe and check the return status
 status = _pclose(handle);
 if (status == -1)
 {
 perror("_pclose error");
 }

 return(0);
}

/* wctomb example */
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 int x;
 wchar_t wc = L'a';
 char *pmbNULL = NULL;
 char *pmb = (char *)malloc(sizeof(char));

 printf (" Convert a wchar_t array into a multibyte string:\n");
 x = wctomb(pmb, wc);
 printf ("Character converted: %u\n", x);
 printf ("Multibyte string: %1s\n\n",pmb);

 printf (" Convert when target is NULL\n");
 x = wctomb(pmbNULL, wc);
 printf ("Character converted: %u\n",x);
 printf ("Multibyte stri ng: %1s\n\n",pmbNULL);

}

/* wcstombs example */
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 int x;
 char *pbuf = (char*)malloc(MB_CUR_MAX);
 wchar_t *pwcsEOL = L'\0';
 char *pwchi= L"Hi there!";

 printf (" Convert entire wchar string into a multibyte string:\n");
 x = wcstombs(pbuf, pwchi,MB_CUR_MAX);
 printf ("Character converted: %u\n", x);
 printf ("Multibyte string character: %1s\n\n",pbuf);

 printf (" Convert when target is NULL\n");
 x = wcstombs(pbuf, pwcsEOL, MB_CUR_MAX);
 printf ("Character converted: %u\n",x);
 printf ("Multibyte string: %1s\n\n",pbuf);

}

Run-Time Support
See also
These topics provide a detailed description of the functions and classes that provide run-time support.
Any class operators or member functions are listed immediatedly after the class constructor.

Classes
Bad_cast class
Bad_typeid class
typeinfo class
xalloc class
xmsg class

Functions
set_new_handler
set_terminate
set_unexpected
terminate
unexpected

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + + +

Bad_cast class
See also Portability Example

Header File
typeinfo.h

Description
When dynamic_cast fails to make a cast to reference, the expression can throw Bad_cast. Note that
when dynamic_cast fails to make a cast to pointer type, the result is the null pointer.

Bad_typeid class
See also Portability Example

Header File
typeinfo.h

Description
When the operand of typeid is a dereferenced null pointer, the typeid operator can throw Bad_typeid.

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + + + +

set_new_handler
See Also Portability

Header File
new.h

Syntax
typedef void (new * new_handler)();
new_handler set_new_handler(new_handler my_handler);
Description
set_new_handler installs the function to be called when the global operator new or operator new[]()
cannot allocate the requested memory. By default the new operators throw an xalloc exception if
memory cannot be allocated. You can change this default behavior by calling set_new_handler to set a
new handler. To retain the traditional version of new, which does not throw exceptions, you can use
set_new_handler(0).
If new cannot allocate the requested memory, it calls the handler that was set by a previous call to
set_new_handler. If there is no handler installed by set_new_handler, new returns 0. my_handler should
specify the actions to be taken when new cannot satisfy a request for memory allocation. The
new_handler type, defined in new.h, is a function that takes no arguments and returns void. A
new_handler can throw an xalloc exception.
The user-defined my_handler should do one of the following:

return after freeing memory
throw an xalloc exception or an exception derived from xalloc
call abort or exit functions

If my_handler returns, then new will again attempt to satisfy the request.
Ideally, my_handler would free up memory and return. new would then be able to satisfy the request and
the program would continue. However, if my_handler cannot provide memory for new, my_handler must
throw an exception or terminate the program. Otherwise, an infinite loop will be created.
Preferably, you should overload operator new() and operator new[]() to take appropriate actions for
your applications.

Return Value
set_new_handler returns the old handler, if one has been registered.
The user-defined argument function, my_handler, should not return a value.

set_terminate
See also Portability

Header File
except.h

Syntax
typedef void (*terminate_function)();
terminate_function set_terminate(terminate_function t_func);
Description
set_terminate lets you install a function that defines the program's termination behavior when a handler
for the exception cannot be found. The actions are defined in t_func, which is declared to be a function
of type terminate_function. A terminate_function type, defined in except.h, is a function that takes no
arguments, and returns void.
By default, an exception for which no handler can be found results in the program calling the terminate
function. This will normally result in a call to abort. The program then ends with the message Abnormal
program termination. If you want some function other than abort to be called by the terminate
function, you should define your own t_func function. Your t_func function is installed by set_terminate
as the termination function. The installation of t_func lets you implement any actions that are not taken
by abort.

Return Value
The previous function given to set_terminate will be the return value.
The definition of t_func must terminate the program. Such a user-defined function must not return to its
caller, the terminate function. An attempt to return to the caller results in undefined program behavior. It
is also an error for t_func to throw an exception.

set_unexpected
See also Portability

Header File
except.h

Syntax
typedef void (* unexpected_function)();
unexpected_function set_unexpected(unexpected_function unexpected_func);
Description
set_unexpected lets you install a function that defines the program's behavior when a function throws an
exception not listed in its exception specification. The actions are defined in unexpected_func, which is
declared to be a function of type unexpected_function. An unexpected_function type, defined in
except.h, is a function that takes no arguments, and returns void.
By default, an unexpected exception causes unexpected to be called. If is defined, it is subsequently
called by unexpected. Program control is then turned over to the user-defined unexpected_func.
Otherwise, terminate is called.

Return Value
The previous function given to set_unexpected will be the return value.
The definition of unexpected_func must not return to its caller, the unexpected function. An attempt to
return to the caller results in undefined program behavior.
unexpected_func can also call abort, exit, or terminate.

terminate
See also Portability

Header File
except.h

Syntax
void terminate();
Description
The function terminate can be called by unexpected or by the program when a handler for an exception
cannot be found. The default action by terminate is to call abort. Such a default action causes immediate
program termination.
You can modify the way that your program will terminate when an exception is generated that is not
listed in the exception specification. If you do not want the program to terminate with a call to abort, you
can instead define a function to be called. Such a function (called a terminate_function) will be called by
terminate if it is registered with set_terminate.

Return Value
None.

typeinfo class
See also Portability Example

Header File
typeinfo.h

Description
Provides information about a type.

Constructor
Only a private constructor is provided. You cannot create typeinfo objects. By declaring your objects to
be _ _rtti types, or by using the -RT compiler switch, the compiler provides your objects with the
elements of typeinfo. typeinfo references are generated by the typeid operator.

Public Member Functions
name
before

Operators
==
!=

typeinfo::name
typeinfo class

Syntax
const char* name() const;
Description
This function returns a printable string that identifies the type name of the operand to typeid. The space
for the character string is overwritten on each call.

typeinfo::before
typeinfo class

Syntax
int before(const typeinfo&);
Description
Use this function to compare the lexical order of types. For example, to compare two types, T1 and T2,
use the following syntax:
typeid (T1).before(typeid(T2));

The before function returns 0 or 1.

typeinfo::operator ==
typeinfo class

Syntax
int operator==(const typeinfo &) const;
Description
Provides comparison of typeinfos.

typeinfo::operator !=
typeinfo class

Syntax
int operator!=(const typeinfo &) const;
Description
Provides comparison of typeinfos.

// Example
// HOW TO GET RUNTIME TYPE INFORMATION.
#include <iostream.h>
#include <typeinfo.h>

class __rtti Alpha {
 virtual void func() {}; // This makes Alpha a polymorphic class type.
};

class B : public Alpha {};

int main(void) {
 B Binst; // Instantiate class B
 B *Bptr; // Declare a B-type pointer
 Bptr = &Binst; // Initialize the pointer

 // THESE TESTS ARE DONE AT RUNTIME

 if (typeid(*Bptr) == typeid(B))
 // Ask "WHAT IS THE TYPE FOR *Bptr?"
 cout << "Name is " << typeid(*Bptr).name();

 if (typeid(*Bptr) != typeid(Alpha))
 cout << "\nPointer is not an Alpha-type.";

 return 0;
 }

// Program Output
// Name is B
// Pointer is not an Alpha-type.

unexpected
See also Portability

Header File
except.h

Syntax
void unexpected();
Description
The unexpected function is called when a function throws an exception not listed in its exception
specification. The program calls unexpected, which by default calls any user-defined function registered
by set_unexpected. If no function is registered with set_unexpected, the unexpected function then calls
terminate.

Return Value
None, although unexpected may throw an exception.

xalloc class
See also Portability

Header File
except.h

Description
Reports an error on allocation request.

Constructor
xalloc::xalloc

Public Member Functions
raise
requested

xalloc::xalloc
xalloc class

Syntax
xalloc(const string &msg, size_t size);
Description
The xalloc class has no default constructor. Every use of xalloc must define the message to be reported
when a size allocation cannot be fulfilled. The string type is defined in cstring.h header file.

xalloc::raise
xalloc class

Syntax
void raise() throw(xalloc);
Description
Calling raise causes an xalloc to be thrown. In particular, it throws *this.

xalloc::requested
xalloc class

Syntax
size_t requested() const;
Description
Returns the number of bytes that were requested for allocation.

xmsg class
See also Portability

Header File
except.h

Description
Reports a message related to an exception.

Constructor
xmsg::xmsg

Public Member Functions
raise
why

xmsg::xmsg
xmsg class

Syntax
xmsg(string msg);
Description
There is no default constructor for xmsg. Every xmsg object must have a string message explicitly
defined. The string type is defined in cstring.h header file.

xmsg::raise
xmsg class

Syntax
void raise() throw(xmsg);
Description
Calling raise causes an xmsg to be thrown. In particular, it throws *this.

xmsg::why
xmsg class

Syntax
const string _FAR & why() const;
Description
Reports the string used to construct an xmsg. Because every xmsg must have its message explicitly
defined, every instance should have a unique message.

except.h
The except.h header file contains the declarations and prototypes for exception-handling functions and
classes, their data members, and member functions.

Classes
xalloc class
xmsg class

Functions
set_terminate
set_unexpected
terminate
unexpected

typeinfo.h
The typeinfo.h header file contains the declarations and prototypes for the run-time type information
classes, their data members, and member functions.

Classes
Bad_cast class
Bad_typeid class
typeinfo class

O_xxxx #defines

Header File
fcntl.h

Description
These #defines are bit definitions for a file-access argument.
These RTL file-open functions use some (not all) of these definitions:
 fdopen

 fopen
 freopen
 _fsopen
 open
 _rtl_open
 sopen
 sopen also uses file-sharing symbolic constants in the file-access argument.

Category
Constant Description

Read/Write flag (Used by _rtl_open, and sopen)
O_RDONLY Open for reading only
O_WRONLY Open for writing only
O_RDWR Open for reading and writing

Other access flags (Used by open and sopen)
O_NDELAY Not used; for UNIX compatibility.
O_APPEND Append to end of file

If set, the file pointer is set to the end of the file prior to each write.
O_CREAT Create and open file

If the file already exists, has no effect.
If the file does not exist, the file is created.

O_EXCL Exclusive open: Used only with O_CREAT.
If the file already exists, an error is returned.

O_TRUNC Open with truncation
If the file already exists, its length is truncated to 0. The file attributes remain

unchanged.
Binary-mode/Text-mode flags(Used by fdopen, fopen, freopen, _fsopen, open and sopen)

O_BINARY No translation: Explicitly opens the file in binary mode
O_TEXT CR-LF translation: Explicitly opens the file in text mode

Additional values available under DOS 3.x (Used by _rtl_open)
O_NOINHERIT Child processes inherit file
O_DENYALL Error if opened for read/write
O_DENYWRITE Error if opened for write
O_DENYREAD Error if opened for read
O_DENYNONE Allow concurrent access
Note: Only one of the O_DENYxxx options can be included in a single open. These file-sharing

attributes are in addition to any locking performed on the files.
DO NOT MODIFY these special read-only bits described in DOS documentation!

O_CHANGED Special DOS read-only bit
O_DEVICE Special DOS read-only bit

SEEK_xxx
See also

Header File
io.h
stdio.h

Description
#defines that set seek starting points

Constant Value File Location

SEEK_SET 0 Seeks from beginning of file
SEEK_CUR 1 Seeks from current position
SEEK_END 2 Seeks from end of file

SH_xxxx

Header File
share.h

Description
File-sharing mode for use with sopen (under DOS 3.0 or later).

Constant Meaning

SH_COMPAT Sets compatibility mode:
Allows other opens with SH_COMPAT. The call will fail if the file has already been
opened in any other shared mode.

SH_DENYNONE Permits read/write access
Allows other shared opens to the file, but not other SH_COMPAT opens

SH_DENYNO Permits read/write access (provided for compatibility)
SH_DENYRD Denies read access. Allows only writes from any other open to the file
SH_DENYRW Denies read/write access. Only the current handle may have access to the file
SH_DENYWR Denies write access. Allows only reads from any other open to the file
O_NOINHERIT The file is not passed to child programs

These file-sharing attributes are in addition to any locking performed on the files.

P_xxxx

Header File
process.h

Description
Modes used by the spawn... functions.

Constant Meaning

P_WAIT Child runs separately, parent waits until exit
P_DETACH Child and parent run concurrently with child process in background mode
P_NOWAIT Child and parent run concurrently (Not implemented)
P_NOWAITO Child and parent run concurrently, but the child process is not saved
P_OVERLAY Child replaces parent so that parent no longer exists

SIG_xxx
See also

Header File
signal.h

Description
Predefined functions for handling signals generated by raise or by external events.

Name Meaning

SIG_DFL Terminate the program
SIG_IGN No action, ignore signal
SIG_ERR Return error code

SIGxxxx

Header File
signal.h

Description
Signal types used by raise and signal.

Signal Note Meaning Default Action

SIGABRT (*) Abnormal termination = to calling _exit(3)

SIGFPE Bad floating-point operation = to calling _exit(1)
Arithmetic error caused by
division by 0, invalid operation, etc.

SIGILL (#) Illegal operation = to calling _exit(1)
SIGINT Control-C interrupt Is to do an INT 23h
SIGSEGV (#) Invalid access to storage = to calling _exit(1)
SIGTERM (*) Request for program termination = to calling _exit(1)

(*) Signal types marked with a (*) aren't generated by DOS or Borland C++ during normal operation.
However, they can be generated with raise.
(#) Signals marked by (#) can't be generated asynchronously on 8088 or 8086 processors but can be
generated on some other processors (see signal for details).

stdaux, stderr, stdin, stdout, and stdprn

Header File
stdio.h

Description
Predefined streams automatically opened when the program is started.

Name Meaning

stdin Standard input device
stdout Standard output device
stderr Standard error output device
stdaux Standard auxiliary device
stdprn Standard printer

S_Ixxxx

Header File
sys\stat.h

Description
Definitions used for file status and directory functions.

Name Meaning

S_IFMT File type mask
S_IFDIR Directory
S_IFIFO FIFO special
S_IFCHR Character special
S_IFBLK Block special
S_IFREG Regular file
S_IREAD Owner can read
S_IWRITE Owner can write
S_IEXEC Owner can execute

NULL #define

Header File
stddef.h

Description
Null pointer constant that is compatible with any data object pointer. It is not compatible with function
pointers. When a pointer is equivalent to NULL it is guaranteed not to point to any data object defined
within the program.

Bit Definitions for fnsplit

Header File
dir.h

Description
Bit definitions returned from fnsplit to identify which pieces of a file name were found during the split.

Flag Component

DIRECTORY Path includes a directory (and possibly subdirectories)
DRIVE Path includes a drive specification (see DIR.H)
EXTENSION Path includes an extension
FILENAME Path includes a file name
WILDCARDS Path contains wildcards (* or ?)

MAXxxxx

Header File
dir.h

Description
These symbols define the maximum number of characters in a file specification for fnsplit (including
room for a terminating NULL).

Name Meaning

MAXPATH Complete file name with path
MAXDRIVE Disk drive (e.g., "A:")
MAXDIR File subdirectory specification
MAXFILE File name without extension
MAXEXT File extension

_F_xxxx

Header File
stdio.h

Description
File status flags of streams

Name Meaning

_F_RDWR Read and write
_F_READ Read-only file
_F_WRIT Write-only file
_F_BUF Malloc'ed buffer data
_F_LBUF Line-buffered file
_F_ERR Error indicator
_F_EOF EOF indicator
_F_BIN Binary file indicator
_F_IN Data is incoming
_F_OUT Data is outgoing
_F_TERM File is a terminal

FA_xxxx

Header File
dos.h

Description
DOS file attributes

Constant Description

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory
FA_ARCH Archive

For more detailed information about these attributes, refer to your DOS reference manuals.

EXIT_xxxx

Header File
stdlib.h

Description
Constants defining exit conditions for calls to the exit function.

Name Meaning

EXIT_SUCCESS Normal program termination
EXIT_FAILURE Abnormal program termination

_IOxxx
See also

Header File
stdio.h

Description
Constants for defining buffering style to be used with a file.

Name Meaning

_IOFBF The file is fully buffered. When a buffer is empty, the next input operation will attempt
to fill the entire buffer.

 On output, the buffer will be completely filled before any data is written to the file.
_IOLBF The file is line buffered. When a buffer is empty, the next input operation will still

attempt to fill the entire buffer.
 On output, however, the buffer will be flushed whenever a newline character is

written to the file.
_IONBF The file is unbuffered. The buf and size parameters are ignored. Each input

operation will read directly from the file, and each output operation will immediately
write the data to the file.

BUFSIZ

Header File
stdio.h

Description
Default buffer size used by setbuf function.

EOF

Header File
stdio.h

Description
A constant indicating that end-of-file has been reached on a file.

_IS_xxx

Header File
ctype.h

Description
Bit settings in the _ctype[] used by the is... character macros.

Name Meaning

_IS_SP Is space
_IS_DIG Is digit
_IS_UPP Is uppercase
_IS_LOW Is lowercase
_IS_HEX [A-F] or [a-f]
_IS_CTL Control
_IS_PUN Punctuation

CHAR_xxx

Header File
limits.h

Description
Name Meaning

CHAR_BIT Type char, number of bits
CHAR_MAX Type char, minimum value
CHAR_MIN Type char, maximum value

These values are independent of whether type char is defined as signed or unsigned by default.

SCHAR_xxx

Header File
limits.h

Description
Name Meaning

SCHAR_MAX Type char, maximum value
SCHAR_MIN Type char, minimum value

Uxxxx_MAX

Header File
limits.h

Description
Name Maximum value for type xxx

UCHAR_MAX unsigned char
USHRT_MAX unsigned short
UINT_MAX unsigned integer
ULONG_MAX unsigned long

SHRT_xxx

Header File
limits.h

Description
Name Meaning

SHRT_MAX Type short, maximum value
SHRT_MIN Type short, minimum value

INT_xxx

Header File
limits.h

Description
Maximum and minimum value for type int.

Name Meaning

INT_MAX Type int, maximum value
INT_MIN Type int, minimum value

LONG_xxx

Header File
limits.h

Description
Maximum and minimum value for type long.

Name Meaning

LONG_MAX Type long, maximum value
LONG_MIN Type long, minimum value

CW_DEFAULT

Header File
float.h

Description
Default control word for 8087/80287 math coprocessor.

EDOM, ERANGE, HUGE_VAL

Header File
errno.h
math.h

Description
Name Meaning

EDOM Error code for math domain error
ERANGE Error code for result out of range
HUGE_VAL Overflow value for math functions

NDEBUG

Header File
assert.h

Description
NDEBUG means "Use #define to treat assert as a macro or a true function".
Can be defined in a user program. If defined, assert is a true function; otherwise assert is a macro.

NFDS

Header File
dos.h

Description
Maximum number of file descriptors.

MAXxxxx

Header File
values.h

Description
Maximum values for integer data types

Name Meaning

MAXSHORT Largest short
MAXINT Largest int
MAXLONG Largest long

M_E, M_LOGxxx, M_LNxx

Header File
math.h

Description
The constant values for logarithm functions.

Name Meaning

M_E The value of e
M_LOG2E The value of log(e)
M_LOG10E The value of log10(e)
M_LN2 The value of ln(2)
M_LN10 The value of ln(10)

PI constants

Header File
math.h

Description
Common constants of pi

Name Meaning

M_PI pi
M_PI_2 One-half pi
M_PI_4 One-fourth pi
M_1_PI One divided by pi
M_2_PI Two divided by pi
M_1_SQRTPI One divided by the square root of pi
M_2_SQRTPI Two divided by the square root of pi

M_SQRTxxx

Header File
math.h

Description
Constant values for square roots of 2.

Name Meaning

M_SQRT2 Square root of 2
M_SQRT_2 1/2 the square root of 2

L_ctermid

Header File
stdio.h

Description
The length of a device id string.

L_tmpnam

Header File
stdio.h

Description
Size of an array large enough to hold a temporary file name string.

TMP_MAX

Header File
stdio.h

Description
Maximum number of unique file names.

OPEN

Header File
stdio.h

Description
Number of files that can be open simultaneously.

Name Meaning

FOPEN_MAX Maximum files per process
SYS_OPEN Maximum files for system

HANDLE_MAX

Header File
io.h

Description
Maximum number of handles.

RAND_MAX

Header File
stdlib.h

Syntax

Description
Maximum value returned by rand function.

BITSPERBYTE

Header File
values.h

Description
Number of bits in a byte.

Float and Double Limits

Header File
values.h

Description

UNIX System V compatible:
_LENBASE Base to which exponent applies

Limits for double float values
_DEXPLEN Number of bits in exponent
DMAXEXP Maximum exponent allowed
DMAXPOWTWO Largest power of two allowed
DMINEXP Minimum exponent allowed
DSIGNIF Number of significant bits
MAXDOUBLE Largest magnitude double value
MINDOUBLE Smallest magnitude double value

Limits for float values
_FEXPLEN Number of bits in exponent
FMAXEXP Maximum exponent allowed
FMAXPOWTWO Largest power of two allowed
FMINEXP Minimum exponent allowed
FSIGNIF Number of significant bits
MAXFLOAT Largest magnitude float value
MINFLOAT Smallest magnitude float value

HIBITxxx

Header File
values.h

Description
Bit mask for the high (sign) bit of standard integer types.

Name Meaning
HIBITS For type short
HIBITI For type int
HIBITL For type long

Error Numbers in errno

Header File
errno.h

Description
These are the mnemonics and meanings for the error numbers found in errno.
Each value listed can be used to index into the sys_errlist array for displaying messages.
Also, perror will display messages.

Mnemonic Meaning
EZERO Error 0
EINVFNC Invalid function number
ENOFILE File not found
ENOPATH Path not found
ECONTR Memory blocks destroyed
EINVMEM Invalid memory block address
EINVENV Invalid environment
EINVFMT Invalid format
EINVACC Invalid access code
EINVDAT Invalid data
EINVDRV Invalid drive specified
ECURDIR Attempt to remove CurDir
ENOTSAM Not same device
ENMFILE No more files
ENOENT No such file or directory
EMFILE Too many open files
EACCES Permission denied
EBADF Bad file number
ENOMEM Not enough memory
ENODEV No such device
EINVAL Invalid argument
E2BIG Arg list too long
ENOEXEC Exec format error
EXDEV Cross-device link
EDOM Math argument
ERANGE Result too large
EFAULT Unknown error
EEXIST File already exists

International API overview
See also
The C++Builder provides support for developing international applications. The C++Builder runtime
library now includes extensions to many of the single-byte routines. These extensions allow you to write
applications that can process multibyte or Unicode types.

International API routines
See also
To allow maximum portability, C++Builder provides a portable macro for that expands to a multibyte or
a Unicode routine without having to rewrite the source code. When you use the portable macros, you
can recompile and define one of the following macros.
_MBCS enables multibyte routines
_UNICODE enables wide-character routines
If neither macro is defined, the single-byte routines are used.
The following table provides a list of the routines that are available for international applications. The
column Unicode platform support provides a list of the functions that are not supported on Windows
NT. Some Unicode functions are available as macros. When a routine is available as a macro, the
macro version is used by default. To get the function version of a routine, you must undefine the macro.

Single byte Portable macro Multibyte Unicode Unicode platform
support

_istlegal _ismbclegal - Win 95, NT
_istlead _ismbblead - Win 95, NT
_isleadbyte _ismbblead - Win 95, NT

_argv _targv _wargv Win NT
_atoi64 _ttoi64 _wtoi64 Win 95, NT
_atold _ttold _wtold Win 95, NT
closedir _tclosedir wclosedir WIN NT
_environ _tenviron _wenviron Win NT
_fdopen _tfdopen _wfdopen Win 95, NT
_fsopen _tfsopen _wfsopen Win NT
_fullpath _tfullpath _wfullpath Win NT
_getdcwd _tgetdcwd _wgetdcwd Win NT
_i64toa _i64tot _i64tow Win 95, NT
_makepath _tmakepath _wmakepath Win 95, NT
_popen _tpopen _wpopen Win NT
readdir _treaddir wreaddir WIN NT
_rtl_chmod _trtl_chmod _wrtl_chmod Win NT
_rtl_creat _trtl_creat _wrtl_creat Win NT
_rtl_open _trtl_open _wrtl_open Win NT
_searchenv _tsearchenv _wsearchenv Win NT
_searchstr _tsearchstr _wsearchstr Win NT
_snprintf _sntprintf _snwprintf Win 95, NT
_splitpath _tsplitpath _wsplitpath Win 95, NT

_strdate _tstrdate _wstrdate Win 95, NT
_strdec _tcsdec _mbsdec _wcsdec Win 95, NT
_stricoll _tcsicoll _mbsicoll _wcsicoll Win 95, NT
_strinc _tcsinc _mbsinc _wcsinc Win 95, NT
_strncnt _tcsnbcnt _mbsnbcnt _wcsncnt Win 95, NT
_strncoll _tcsnccoll _mbsncoll _wcsncoll Win 95, NT
_strncoll _tcsncoll _mbsnbcoll _wcsncoll Win 95, NT
_strnextc _tcsnextc _mbsnextc _wcsnextc Win 95, NT
_strnicoll _tcsncicoll _mbsnbicoll _wcsnicoll Win 95, NT
_strnicoll _tcsnicoll _mbsnbicoll _wcsnicoll Win 95, NT
_strninc _tcsninc _mbsninc _wcsninc Win 95, NT
_strspnp _tcsspnp _mbsspnp _wcsspnp Win 95, NT
_strtime _tstrtime _wstrtime Win 95, NT
_strtold _tcstold _wcstold Win 95, NT
_tzname _ttzname _wtzname Win NT
_ui64toa _ui64tot _ui64tow Win 95, NT
access _taccess _waccess Win NT
asctime _tasctime _wasctime Win 95, NT
atof _ttof _wtof Win 95, NT
atoi _ttoi _wtoi Win 95, NT
atol _ttol _wtol Win 95, NT
chdir _tchdir _wchdir Win NT
chmod _tchmod _wchmod Win NT
creat _tcreat _wcreat Win NT
ctime _tctime _wctime Win 95, NT
execl _texecl _wexecl Win NT
execle _texecle _wexecle Win NT
execlp _texeclp _wexeclp Win NT
execlpe _texeclpe _wexeclpe Win NT
execv _texecv _wexecv Win NT
execve _texecve _wexecve Win NT
execvp _texecvp _wexecvp Win NT
execvpe _texecvpe _wexecvpe Win NT
fgetc _fgettc fgetwc Win 95, NT
_fgetchar _fgettchar _fgetwchar Win 95, NT

fgets _fgetts fgetws Win 95, NT
findfirst _tfindfirst _wfindfirst Win NT
findnext _tfindnext _wfindnext Win NT
fnmerge _tfnmerge _wfnmerge Win NT
fnsplit _tfnsplit _wfnsplit Win NT
fopen _tfopen _wfopen Win NT
fprintf _ftprintf fwprintf Win 95, NT
fputc _fputtc fputwc Win 95, NT
_fputchar _fputtchar _fputwchar Win 95, NT
fputs _fputts fputws Win 95, NT
freopen _tfreopen _wfreopen Win NT
getc _gettc getwc Win 95, NT
getchar _gettchar getwchar Win 95, NT
getcurdir _tgetcurdir _wgetcurdir Win NT
getcwd _tgetcwd _wgetcwd Win NT
getenv _tgetenv _wgetenv Win 95, NT
gets _getts _getws Win 95, NT
isalnum _istalnum _ismbcalnum iswalnum Win 95, NT
isalpha _istalpha _ismbcalpha iswalpha Win 95, NT
isascii _istascii iswascii Win 95, NT
iscntrl _istntrl iswcntrl Win 95, NT
isdigit _istdigit _ismbcdigit iswdigit Win 95, NT
isgraph _istgraph _ismbcgraph iswgraph Win 95, NT
islower _istlower _ismbclower iswlower Win 95, NT
isprint _istprint _ismbcprint iswprint Win 95, NT
ispunct _istpunct _ismbcpunct iswpunct Win 95, NT
isspace _istspace _ismbcspace iswspace Win 95, NT
isupper _istupper _ismbcupper iswupper Win 95, NT
isxdigit _istxdigit iswxdigit Win 95, NT
ltoa _ltot _ltow Win 95, NT
main _tmain wmain Win NT
memchr _tmemchr _wmemchr Win 95, NT
memcpy _tmemcpy _wmemcpy Win 95, NT
memset _tmemset _wmemset Win 95, NT
mkdir _tmkdir _wmkdir Win NT

_mktemp _tmktemp _wmktemp Win 95, NT
open _topen _wopen Win NT
opendir _topendir wopendir WIN NT
perror _tperror _wperror Win 95, NT
printf _tprintf wprintf Win 95, NT
putc _puttc putwc Win 95, NT
putchar _puttchar putwchar Win 95, NT
putenv _tputenv _wputenv Win NT
puts _putts _putws Win 95, NT
remove _tremove wremove Win NT
rename _trename _wrename Win NT
rewinddir _trewinddir wrewinddir WIN NT
_rmdir _trmdir _wrmdir Win NT
scanf _tscanf wscanf Win 95, NT
searchpath _tsearchpath wsearchpath Win NT
setlocale _tsetlocale _wsetlocale Win 95, NT
_sopen _tsopen _wsopen Win 95, NT
spawnl _tspawnl _wspawnl Win NT
spawnle _tspawnle _wspawnle Win NT
spawnlp _tspawnlp _wspawnlp Win NT
spawnlpe _tspawnlpe _wspawnlpe Win NT
spawnv _tspawnv _wspawnv Win NT
spawnve _spawnve _wspawnve Win NT
spawnvp _tspawnvp _wspawnvp Win NT
spawnvpe _tspawnvpe _wspawnvpe Win NT
sprintf _stprintf swprintf Win 95, NT
sscanf _stsscanf swscanf Win 95, NT
stat _tstat _wstat Win NT
_stpcpy _tcspcpy _wcspcpy Win 95, NT
strcat _tcscat _mbscat wcscat Win 95, NT
strchr _tcschr _mbschr wcschr Win 95, NT
strcmp _tcscmp _mbscmp wcscmp Win 95, NT
strcmpi _tcscmpi _mbsicmp _wcscmpi Win 95, NT
strcoll _tcscoll _mbscoll wcscoll Win 95, NT
strcpy _tcscpy _mbscpy wcscpy Win 95, NT

strcspn _tcscspn _mbscspn wcscspn Win 95, NT
strdup _tcsdup _mbsdup _wcsdup Win 95, NT
strftime _tcsftime wcsftime Win 95, NT
_stricmp _stricmp _mbsicmp _wcsicmp Win 95, NT
strlen _tcslen _mbslen wcslen Win 95, NT
strlen _tcsclen _mbslen wcslen Win 95, NT
strlwr _tcslwr _mbslwr _wcslwr Win 95, NT
strncat _tcsncat _mbsnbcat wcsncat Win 95, NT
strncat _tcsnccat _mbsncat wcsncat Win 95, NT
strncmp _tcsnccmp _mbsncmp wcsncmp Win 95, NT
strncmp _tcsncmp _mbsnbcmp wcsncmp Win 95, NT
strncmpi _tcsncmpi wcsncmpi Win 95, NT
strncnt _tcsnccnt __mbsncnt _wcsncnt Win 95, NT
strncnt _tcsnbcnt _mbsnbcnt _wcsncnt Win 95, NT
strncpy _tcsncpy _mbsnbcpy wcsncpy Win 95, NT
strncpy _tcsnccpy _mbsncpy wcsncpy Win 95, NT
strnicmp _tcsncicmp _mbsnicmp _wcsnicmp Win 95, NT
strnicmp _tcsnicmp _mbsnbicmp wcsnicmp Win 95, NT
strnset _tcsnset _mbsnbset _wcsnset Win 95, NT
strnset _tcsncset _mbsnset _wcsnset Win 95, NT
strpbrk _tcspbrk _mbspbr wcspbrk Win 95, NT
strrchr _tcsrchr _mbsrchr wcsrchr Win 95, NT
strrev _tcsrev _mbsrev _wcsrev Win 95, NT
strset _tcsset _mbsset _wcsset Win 95, NT
strspn _tcsspn _mbsspn wcsspn Win 95, NT
strstr _tcsstr _mbsstr wcsstr Win 95, NT
strtod _tcstod wcstod Win 95, NT
strtok _tcstok _mbstok wcstok Win 95, NT
strtol _tcstol wcstol Win 95, NT
strtoul _tcstoul _wcstoul Win 95, NT
strupr _tcsupr _mbsupr _wcsupr Win 95, NT
strxfrm _tcsxfrm wcsxfrm Win 95, NT
system _tsystem _wsystem Win NT
_tempnam _ttempnam _wtempnam Win 95, NT
tmpnam _ttmpnam _wtmpnam Win 95, NT

tolower _totlower _mbctolower towlower Win 95, NT
toupper _totupper _mbctoupper towupper Win 95, NT
tzset _ttzset _wtzset Win 95, NT
ultoa _ultot _ultow Win 95, NT
ungetc _ungettc ungetwc Win 95, NT
_unlink _tunlink _wunlink Win NT
_utime _tutime _wutime Win 95, NT
vfprintf _vftprintf vfwprintf Win 95, NT
vprintf _vtprintf vwprintf Win 95, NT
vsprintf _vstprintf vswprintf Win 95, NT
WinMain _tWinMain wWinMain Win NT

Unicode macros
See also

By default, these Unicode routines are available as a macro. To get the function version, you must
undefine the macro.
iswalpha
iswascii
iswcntrl
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit

International API formatted I/O
See also
There are now versions of some runtime library functions that take wide strings (wchar_t*) instead of
narrow strings (char*). These wide functions have similar names as their narrow counter parts but with a
w placed in it. For example: along with printf and scanf there are now wprintf and wscanf functions. The
file TCHAR.H has #define names that map to either the narrow versions (for normal ANSI char’s) or
wide versions (for Unicode support) based on the setting of the _UNICODE macro.
The standard functions operate on regular strings, and the wide versions operate on wide strings. The
printf and scanf family of functions allow you to input or output similar width or opposite width strings
with some new format conversion characters and prefixes.
The narrow versions of the functions take narrow format strings and default to reading/writing narrow
strings and chars. The wide versions of the functions take wide format strings and default to
reading/writing wide strings and chars.
Note: The capitol letter version of %s and %c (%S and %C) mean "use the opposite width than the

default for the function that was called". This means that %S in wprintf will write to a narrow string.
Also, %l and %h force the width to be either long (wide) or short (narrow).

Summary of formatted I/O functions
See also
Here is a summary of the current printf and scanf family of functions.

 ANSI function Unicode function Description
 cprintf {None} Console output
 cscanf {None} Console input
 fprintf fwprintf FILE * stream output
 fscanf fwscanf FILE * stream input
 printf wprintf STDOUT output
 scanf wscanf STDIN input
 sprintf swprintf string/memory output
 sscanf swscanf string/memory input
 vfprintf vfwprintf VA_LIST FILE* stream output
 vfscanf vfwscanf VA_LIST FILE* stream input
 vprintf vwprintf VA_LIST STDOUT output
 vscanf vwscanf VA_LIST STDIN input

Unicode output format specifiers
See also
The following table shows the formatted ouput specifiers for the Unicode family of functions. The table
shows how the format specifier is used by printf and the Unicode family of output functions to output
strings and characters.

Format
specifier

printf
function

Unicode
function

 %c narrow wide
 %C wide narrow
 %hc narrow narrow
 %hC narrow narrow
 %lc wide wide
 %lC wide wide
 %s narrow wide
 %S wide narrow
 %hs narrow narrow
 %hS narrow narrow
 %ls wide wide
 %lS wide wide

Unicode family of output functions
The Unicode output family of functions includes the following.
_snprintf
fprintf
sprintf
vfprintf
vprintf
vsprintf
_snprintf
fwprintf
swprintf
vfwprintf
vwprintf
vswprintf

Unicode input format specifiers
See also
The following table shows the formatted ouput specifiers for the Unicode family of functions. The table
shows how the format specifier is used by scanf and the Unicode family of input functions to input
strings and characters.

Format
specifier

scanf
function

Unicode
function

 %c narrow wide
 %C wide narrow
 %hc narrow narrow
 %hC narrow narrow
 %lc wide wide
 %lC wide wide
 %s narrow wide
 %S wide narrow
 %hs narrow narrow
 %hS narrow narrow
 %ls wide wide
 %lS wide wide

Unicode family of input functions
The Unicode input family of functions includes the following.
sscanf
swscanf

Extended types formatted I/O
See also
The following table shows new format specifiers implemented in C++Builder for the printf and scanf
family of functions. This implementation allows the input and output of 64-bit integers and provides
greater I/O flexibility for other types.

Format
character

 Functionality

 %Ld __int64
 %I8d 8-bit wide integer (char)
 %I16d 16-bit wide integer (short)
 %I32d 32-bit wide integer (long)
 %I64d 64-bit wide integer (__int64)

Note that the above table uses the %d format as an example. The I8, I16, I32, I64 prefixes can be
used with the d, i, o, x, X formats, as well as the new L prefix previously allowed only on float to specify
long double type.

