About error and warning messages

Messages are displayed with the message class first, followed by the source file name and line number
where the error was detected, and finally with the text of the message itself.

The following categories of messages can occur:

Category Indicates

Informational Progress such as build status.

Error A problem that should be fixed such as a missing declaration or a type mismatch.
Warning A problem that can be overlooked.

Fatal A problem of critical nature that prevents execution from continuing.

Be aware that the compiler generates messages as they are detected. Because C and C++ don't force
any restrictions on placing statements on a line of text, the true cause of the error might occur one or
more lines before or after the line number specified in the error message.

Many of the messages appear in the Message view. For those messages, context-sensitive help is
available. Point to the message and press F1 to display the message description.

If you are working from the command line or want to look up information on an error message, refer to
the alphabetical list of Error and warning messages. Find the message you're interested in and click on
it to display its description.

Symbols

Some messages include a symbol (such as a variable, file name, or module) that is taken from your
program. In the following example, 'filename' will be replaced by the file causing the problem:

Error opening 'filename' for output
Here's what the symbols in error and warning messages stand for.

Symbol Meaning

address A hexadecimal number indicating the address where the error occurred
argument An argument

class A class name

filename A file name (with or without extension)
function A function name

group A group name

identifier An identifier (variable name or other)
language The name of a programming language
member The name of a data member or member function
message A message string

module A module name

name Any type of name

num An actual number

number An actual number

option An option

parameter A parameter name

path A path name

reason Reason given in message

segment A segment name

size An actual number

specifier A type specifier

symbol A symbol name
type A type name
variable A program variable

Some messages begin with a symbol name such as the following:

'filename' not found

These messages are listed alphabetically using the name of the symbol. The above message would be
filed under f.

Compiler errors and warnings

Compile-time error messages indicate errors in program syntax, command-line errors, or errors in
accessing a disk or memory. When most compile-time errors occurs, the compiler completes the current
phase (preprocessing, parsing, optimizing, and code-generating) of the compilation and stops. But when
fatal compile-time errors happen, compilation stops completely. If a fatal error occurs, fix the error and
recompile.

Runtime errors occur after the program has successfully compiled and is running. Runtime errors are
usually caused by logic errors in your program code. If you receive a runtime error, you must fix the
error in your source code and recompile the program for the fix to take effect.

Warnings indicate that conditions which are suspicious but legitimate exist or that machine-dependent
constructs exist in your source files. Warnings do not stop compilation.

Warnings are issued as a result of a variety of conditions, such as:

ANSI violations Warn you of code that is acceptable to C++Builder (because of C++
code or C++Builder extensions), but is not in the ANSI definition of C.

Frequent warnings Alert you to common programming mistakes. These warning messages
point out conditions that are not in violation of the C++Builder language
but can yield the wrong result.

Less frequent warnings Alert you to less common programming mistakes. These warning
messages point out conditions that are not in violation of the C++Builder
language but can yield the wrong result.

Portability warnings Alert you to possible problems with porting your code to other compilers.
These usually apply to C++Builder extensions.

C++ warnings Warn you of errors you've made in your C++ code. They might be due to
obsolete items or incorrect syntax.

Runtime errors and warnings
Runtime errors occur after the program has successfully compiled and is running.

Linker errors and warnings
As a rule, linker errors do not stop the linker or cause .EXE or .MAP files to be deleted. When such
errors happens, don't try to execute the .EXE file. Fix the error and relink.

A fatal link error, however, stops the linker immediately. In such a case, the .EXE file is deleted. All
Linker errors are treated as fatal errors if you are compiling from the Integrated Development
Environment (IDE).

Linker warnings point out conditions that you should fix. When warnings occur, .EXE and .MAP files are
still created.

Librarian errors and warnings

Librarian errors and warnings occur when there is a problem with files or extended dictionaries, when
memory runs low, or when there are problems as libraries are accessed.

Error and warning messages

Overview

{button Symbols,JI(*',"errorsxref_symbols')} {button a,JI(*', errorsxref_A")} {button b,JI("","errorsxref_B')} {button

c,JI("', errorsxref_C")} {button d,JI("","errorsxref_D'")} {button e,JI("',"errorsxref_E")} {button f,JI("", errorsxref_F")} {button
g,JI("", errorsxref_G')} {button h,JI(*',"errorsxref_H')} {button i,JI("',"errorsxref_I')} {button I,JI("","errorsxref_L")} {button
m,JI(*', errorsxref_M')} {button n,JI(*', errorsxref_N')} {button o,JI(*', errorsxref_O")} {button p,JI("',"errorsxref_P")} {button
q,JI("", errorsxref_Q')} {button r,JI("","errorsxref_R')} {button s,JI("", errorsxref_S")} {button t,JI("","errorsxref_T")} {button
u,JI("", errorsxref_U")} {button v,JI("',"errorsxref_\')} {button w,JI("", errorsxref W')}

Symbols
#undef directive ignored—Compiler warning
(_expected—Compiler error
) expected—Compiler error
, expected—Compiler error
: expected after private—Compiler error
: expected after protected—Compiler error
: expected after public—Compiler error
< expected—Compiler error
> expected—Compiler error
@ seen, expected a response-files name—Librarian error
{ expected—Compiler error
} expected—Compiler error
16-bit segments not supported in module 'module'—Linker error

A
Abnormal program termination—Runtime error
A n onl chan to public or protected—Compiler error

Access specifier of property identifier must be a member of function—Compiler error
Access violation. Program terminated—Incremental Linker error

Added file filename' does not begin correctly, ignored—Librarian warning

Address of overloaded function 'function' doesn't match 'type'—Compiler error
Ambiguity between function1' and 'function2'—Compiler error

Ambiguous member name 'name'—Compiler error

Ambiguous operators need parentheses—Compiler warning

Ambiguous override of virtual base member 'function1': 'function2'—Compiler error
Application is running—Runtime error

Array allocated using 'new' may not have an initializer—Compiler error

Array bounds missing]—Compiler error

Array must have at least one element—Compiler error

Array of references is not allowed—Compiler error

Array size for 'delete' ignored —Compiler warning or error

Array size too large—Compiler error

Array variable 'identifier' is near—Compiler warning

Assembler stack overflow—Compiler error

Assembler statement too long—Compiler error

Assertion failed: module at \address\', line number—Incremental Linker error
Assigning 'type' to 'enumeration'—Compiler warning

Assignment to 'this' not allowed, use X::operator new instead—Compiler error
Attempt to export non-public symbol 'symbol'—Linker error

Attempt to free NULL pointer in module, 'line number'—Incremental Linker error
Attempt to grant or r to 'identifier'—Compiler error

Attempting to return a reference to a local object—Compiler error

Attempting to return a reference to local variable ‘identifier' —Compiler error

B
Bad call of intrinsic function—Compiler error
Bad character in parameters -> 'char'—Linker error
Bad 'directive' directive syntax—Compiler error

Bad field list in debug information in module 'module'—Linker error
Bad file name 'filename'—Linker error

Bad file name format in include directive—Compiler error

Bad filename format in include statement—MAKE error

Bad file name format in line directive—Compiler error

Bad GRPDEF type encountered, extended dictionary aborted—Librarian warning
Bad header in input LIB—Librarian error

Bad LF_POINTER in module 'module'—Linker error

Bad loc for fixupp in module 'module' near file offset 'offset'—Linker error
Bad macro output translator—MAKE error

Bad object file 'filename' near file offset 'offset'—Linker error

Bad OMF record type 'type' encountered in module 'module’—Librarian error
Bad secondary target for fixup in module 'module’—Linker error

Bad syntax for pure function definition—Compiler error

Bad 'type' debug info in module 'module'—Linker error

Bad undef statement syntax—MAKE error

Base class 'class1' is also a base class of 'class2'—Compiler warning

Base class 'class' contains dynamically dispatchable functions—Compiler error
Base class 'class' is inaccessible because also in 'class'—Compiler warning
Base class 'class' is included more than once—Compiler error

Base class 'class' is initialized more than once—Compiler error

Base initialization without a class name is now obsolete—Compiler warning
'base' is an indirect virtual base class of 'class'—Compiler error

Bit field cannot be static—Compiler error

Bit field too large—Compiler error

Bit fields must be signed or unsigned int—Compiler error

Bit fields must be signed or unsigned int—Compiler warning

Bit fields must contain at least one bit—Compiler error

Bit fields must have integral type—Compiler error

Body has already been defined for function ‘function'—Compiler error
Both return and return with a value used—Compiler warning

C
Call of nonfunction—Compiler error
Call to function ‘function' with no prototype—Compiler warning
Call to function with no prototype—Compiler warning
Call to undefined function 'function'—Compiler error
Can't grow LE/LIDATA record buffer—Librarian error
Can't inherit non-RTTI class from RTTI base 'class'—Compiler error
Can't inherit RTTI class from non-RTTI base 'class'—Compiler error
Cannot add or subtract relocatable symbols—Compiler error
Cannot allocate a reference—Compiler error
Cannot call 'main' from within the program—cCompiler error
Cannot call near class member function with a pointer of type 'type'—Compiler error
Cannot cast from 'type1' to 'type2'—Compiler error
Cannot convert 'type1' to 'type2'—Compiler error
Cannot create instance of abstract class 'class'—Compiler error

Cannot create precompiled header: 'reason'—Compiler error
Cannot declare or define 'identifier' here—Compiler error

Cannot define a pointer or reference to a reference—Compiler error

Cannot define 'identifier' using a namespace alias—Compiler error
Cannot find 'class"::operator=('class'&) to copy a vector—Compiler error
Cannot find class::class (class &) to copy a vector—Compiler error

Cannot find default constructor to initialize array element of type 'class'—Compiler error
Cannot find default constructor to initialize base class 'class'—Compiler error

Cannot find default constructor to initialize member 'identifier'—Compiler error
Cannot find MAKE.EXE—MAKE error

Cannot find tasm program: tasm.exe—IDE error

Cannot generate 'function’ from template function 'template’—Compiler error
Cannot have a non-inline function in a local class—Compiler error

Cannot have a static data in a local class—Compiler error

Cannot have multiple paths for implicit rule—MAKE error

Cannot have path list for target—MAKE error

Cannot inherit non-RTTI class from RTTI base—Compiler error

Cannot initialize 'type1' with 'type2'—Compiler error
Cannot initialize a class member here—Compiler error

Cannot locate file I/O hook functions for resource compiler—Resource compiler error
Cannot Load Linker: linker—IDE error

Cannot modify a const object—Compiler error

Cannot overload 'main'—Compiler error

Cannot take address of 'main'—Compiler error

Cannot throw 'type' -- ambiguous base class 'base'—Compiler error
Cannot use local type 'identifier' as template argument—Compiler error
Cannot use tiny or huge memory model with Windows—Compiler error
Cannot write a string option—MAKE error

Cannot write GRPDEF list, extended dictionary aborted—Librarian warning
Cannot write to disk—Incremental Linker error

Case bypasses initialization of a local variable—Compiler error

Case outside of switch—Compiler error

Case statement missing :—Compiler error

'catch' expected —Compiler error

Character constant must be one or two characters long—Compiler error
Character constant too long—MAKE error

Circular dependency exists in makefile—MAKE error

Circular property definition :—Compiler error

Class 'class' may not contain pure functions—Compiler error

Class 'classname' is abstract because of 'member = 0'—Compiler error
Classid requires definition of ‘type’ as a pointer type—Compiler error
Class member 'member' declared outside its class—Compiler error
Code has no effect—Compiler warning

CodeGuarded programs must use the large memory model and be targeted for Windows—Compiler error
Colon expected—MAKE error

Command arguments {00 long—MAKE error

Command syntax error—MAKE error

Comparing signed and unsigned values—Compiler warning

Compiler could not generate copy constructor for class 'class'—Compiler error
Compiler could not generate default constructor for class 'class'—Compiler error
Compiler could not generate default destructor for class 'class'—Compiler error
Compiler could not generate operator = for class 'class'—Compiler error
Compiler stack overflow—Compiler error

Compiler table limit exceeded—Compiler error

Compound statement missing }—Compiler error

Condition is always false—Compiler warning

Condition is always true—Compiler warning
Conflicting type modifiers—Compiler error
Constant expression required—Compiler error

Constant is long—Compiler warning
Constant member 'member’ in class without constructors—Compiler error

Constant member 'member’ is not initialized—Compiler warning

Constant out of range in comparison—Compiler warning

Constant variable 'variable' must be initialized—Compiler error
Constructor cannot be declared 'const' or 'volatile'—Compiler error
Constructor cannot have a return type specification—Compiler error
‘constructor' is not an unambiguous base class of 'class'—Compiler error

Constructor initializer list ignored—Compiler warning
Constructors and destructors not allowed in__automated section—Compiler error

Continuation character \ found in // comment—Compiler warning

Conversion may lose significant digits—Compiler warning

Conversion of near pointer not allowed—Compiler error

Conversion operator cannot have a return type specification—Compiler error
Conversion to 'type' will fail for members of virtual base 'class'—Compiler warning
Conversions of class to itself or base class not allowed —Compiler error
Converting reference to external type ‘type’ to void —Linker warning

Could not allocate memory for per module data—Librarian error

Could not create 'filename' (error code 'number')—incremental Linker error
Could not create list file 'filename'—Librarian error

Could not find a match for argument(s)—Compiler error

Could not find file 'filename'—Compiler error

Could not find object file 'filename'—incremental Linker error

Could not find precompiled type obj file 'filename'—Linker warning

Could not get procedure address from RLINK32.DLL—Incremental Linker error
Could not load RLINK32.DLL —Incremental Linker error

Could not open 'filename' (error code 'number')—Incremental Linker error
Could not open *filename' (program still running?)—Incremental Linker error
Could not open ‘filename' (project already open in IDE?)—Incremental Linker error
Could not write output—Librarian error

Couldn't get LE/LIDATA record buffer—Librarian error

Couldn't get procedure address from DLL 'dIlI'Linker error

Couldn't load DLL 'dIl'—Linker error

Cycle in include files: 'filename'—MAKE error

D

Data member definition not allowed in __automated section—Compiler error
Debug info switch ignored for COM files—Linker warning

Debug information overflow in module ‘module’ near file—Linker error
Debug information enabled, but no debug information found in OBJs—Linker warning
Declaration does not specify a tag or an identifier—Compiler error
Declaration ignored—Compiler warning

Declaration is not allowed here—Compiler error

Declaration missing ;—Compiler error

Declaration of static function '(...)' ignored—Compiler warning

Declaration syntax error—Compiler error

Declaration terminated incorrectly—Compiler error

Declaration was expected—Compiler error

Declare operator delete (void*) or (void*, size t)—Compiler error

Declare operator delete[] (void*) or (void*, size t)—Compiler error

Declare type 'type' prior to use in prototype—Compiler warning

.DEF file heap reserve size < 64K; 1MB default will be used—Linker warning
.DEF file stack reserve size < 64K; 1MB default will be used—Linker warning
Default argument value redeclared—Compiler error

Default argument value redeclared for parameter 'parameter'—Compiler error
Default expression may not use local variables—Compiler error

Default outside of switch—Compiler error

Default value missing—Compiler error

Default value missing following parameter 'parameter'—Compiler error
Define directive needs an identifier—Compiler error

Delete array size missing]—Compiler error

Destructor cannot be declared 'const' or 'volatile' —Compiler error
Destructor cannot have a return type specification—Comepiler error
Destructor for 'class' required in conditional expression—Compiler error
Destructor for class is not accessible—Compiler error

Destructor name must match the class name—Compiler error
Dispid ‘number’ already used by ‘identifier’ Divide error—Compiler error
Dispid only allowed in __automated sections—Compiler error
Divide error—Runtime error

Division by zero—Compiler error

Division by zero—Compiler warning

Division by zero—MAKE error

do statement must have while—Compiler error

do-while statement missing (—Compiler error

do-while statement missing)—Compiler error

do-while statement missing ;—Compiler error

DPMI programs must use the large memory model—Compiler error
Duplicate case—Compiler error

Duplicate file ' filename' in list, not added!—Librarian error

—Linker error

E
Earlier declaration of 'identifier'—Compiler error

End of system input buffer encountered—Linker error

Empty LEDATA record in module 'module'—Linker warning

Enum syntax error—Compiler error

Error changing file buffer size—Librarian error

Error directive: 'message'—Compiler error

Error directive: 'message'—MAKE error

Error opening ‘filename'—Librarian error

Error opening 'filename' for output—Librarian error

Error processing module 'module'—Incremental Linker error

Error renaming 'filename' to ‘filename'—Librarian error

Error writing output file—Compiler error

' except' or' finally' Expected Following ' try'—Compiler error
Exception handling not enabled—Compiler error

Exception handling variable may not be used here—Compiler error
Exception specification not allowed here—Compiler error

Explicit stacks are ignored for PE images—Linker warning

Export 'symbol' has multiple ordinal values: 'value1' and 'value2'—Linker warning
Export 'symbol' is duplicated—Linker warning

Expression expected—Compiler error

Expression of scalar type expected—Compiler error

Expression syntax—Compiler error

Expression syntax error in lif statement—MAKE error

Extern 'symbol' was not qualified with _import in module 'module'—Linker warning
Extern variable cannot be initialized—Compiler error

Extra argument in template class name 'template'—Compiler error

Extra parameter in call—Compiler error

Extra parameter in call to function—Compiler error

F
Failed to create map file 'filename' (error code 'number')—Incremental Linker error

Failed read from 'filename'—Linker error

Failed write to 'filename'—Linker error

Far COMDEEFs are not supported—Linker error

FATAL ERROR: Cannot Load Linker: 'linker'—IDE error
FATAL ERROR: Linker CREATE Failed—IDE error

FATAL ERROR: Linker missing CREATE Entry Point—IDE error

FATAL ERROR: Linker missing DESTROY Entry Point—IDE error
FATAL ERROR: GP FAULT—MAKE error

File must contain at least one external declaration—Compiler error

File name too long—Compiler error

Filename too long—MAKE error

‘filename' couldn't be created, original won't be changed—Librarian warning
‘filename' does not exist—don't know how to make it—MAKE error
'filename' file not found—Librarian error

‘filename' file not found—Librarian warning

'filename' is not a valid library—Linker warning

'filename' not a MAKE—MAKE error

Fixup to zero length segment in module 'module'—Linker error
Fixupps found for an LIDATA record—Linker error

Floating point error: Divide by 0—Runtime error

Floating point error: Domain—Runtime error

Floating point error: Overflow—Runtime error

Floating point error: Partial loss of precision—Runtime error
Floating point error: Stack fault—Runtime error

Floating point error: Underflow—Runtime error

For statement missing (—Compiler error

For statement missing)—Compiler error

For statement missing ;—Compiler error

Friends must be functions or classes—Compiler error

Function body ignored—Compiler warning

Function call missing)—Compiler error

Function call terminated by unhandled exception 'value' at address 'addr'—Compiler error
'function’ cannot return a value—Compiler error

Function defined inline after use as extern—Compiler error

Function definition cannot be a typedef'ed declaration—Compiler error
Function '"function' cannot be static—Compiler error

'function’ is obsolete—Compiler warning

function' must be declared with no parameters—Compiler error
‘function' must be declared with one parameter—cCompiler error

‘function’' must be declared with two parameters—Compiler error
Function should return a value—Compiler error

Function should return a value—Compiler warning

‘function’ was previously declared with the language 'language'—Compiler error

‘function1' cannot be distinguished from 'function2'—Compiler error
‘function1' hides virtual function 'function2'—Compiler warning or error

Functions 'function1' and 'function2' both use same dispatch number—Compiler error

Functions taking class by value arguments are not expanded inline—Compiler warning

Functions with exception specifications are not expanded inline—Compiler warning

Functions cannot return arrays or functions—Comepiler error

Functions containing local destructors are not expanded inline in function 'function'—Compiler warning
Functions containing reserved words are not expanded inline—Compiler warning

Functions may not be part of a struct or union—Compiler error

G
General error (32-bit)—Linker error
General error in library file 'filename' in module 'module' near module file offset '0xyyyyyyyy'—Incremental Linker

message
General error in link set—Incremental Linker error
General error in module 'module'—Linker error
General linker message—Incremental Linker message
Global anonymous union not static—Comepiler error
Goto bypasses initialization of a local variable—Compiler error
Goto into an exception handler is not allowed—Compiler error
Goto statement missing label—Compiler error
Group overflowed maximum size: 'group'—Compiler error

H
Handler for 'type1' hidden by previous handler for 'type2'—Compiler error
HEAP commit 'size' greater than reserve 'size'—Linker error
Hexadecimal value contains more than 3 digits—Compiler error or warning

'identifier' cannot be declared in an anonymous union—Compiler error
'identifier' cannot start a parameter declaration—Compiler error
Identifier expected—Compiler error

Identifier 'identifier' cannot have a type qualifier—Compiler error

'identifier’ is assigned a value that is never used—Compiler error or warning
'identifier' is declared as both external and static—Compiler error or warning

'identifier’ is declared but never used—Compiler warning

'identifier’ is not a member of 'struct'—Compiler error

'identifier' is not a non-static member and can't be initialized here—Compiler error
'identifier’ is not a parameter—Compiler error

'identifier’ is not a public base class of 'classtype'—Compiler error

'identifier' must be a member function—Compiler error

'identifier' must be a member function or have parameter of class type—Compiler error
'identifier' must be a previously defined class or struct—Compiler error

'identifier' must be a previously defined enumeration tag—Compiler error

'identifier' requires VCL style class type—Compiler error

'identifier' specifies multiple or duplicate access—Compiler error
If statement missing (—Compiler error

If statement missing)—Compiler error

If statement too long—MAKE error

Ifdef statement too long—MAKE error

Ifndef statement too long—MAKE error

Ignored 'module’, path is too long—Librarian warning

ILINK32 does not support segmentation - use TLINK32—incremental Linker error
lll-formed pragma—Compiler warning

lilegal ACBP byte in SEGDEF in module 'module’—Linker error

lllegal character 'character' (0x'value')—Compiler error

llegal character in constant expression 'expression'—MAKE error

lllegal component to GRPDEF in module 'module’—Linker error
lllegal initialization—Compiler error

lllegal number suffix—Compiler error

lllegal octal digit—Compiler error

lllegal octal digit—MAKE error

lllegal parameter to _emit —Compiler error

lllegal pointer subtraction—cCompiler error

lllegal structure operation—Compiler error

lilegal to take address of bit field—Compiler error

lilegal type ‘type’ in automated section—Compiler error

lilegal type of entry point—Linker error

lllegal 'type' fixup index in module 'module’—Incremental Linker error
lllegal use of floating point—Compiler error

lilegal use of member pointer—Compiler error

lllegal use of pointer—Compiler error

lilegal/invalid option in CMDSWITCHES directive 'option'—MAKE error
Image base address must be a multiple of 0x10000—Linker error
Image linked as EXE, but with DLL extension—Linker warning
Images fixed at specific addresses typically will not run under Win32s—Linker warning
Implicit conversion of 'type1' to 'type2' not allowed—Compiler error
Import by ordinal not supported by ILINK32—Incremental Linker error
Import record does not match previous definition—Linker warning
Import 'symbol' in module 'module’ clashes with prior module—Librarian error
Improper use of typedef 'identifier' —Compiler error

Include files nested too deep—Compiler error

Incompatible type conversion—Compiler error

Incompatible version of RLINK32.DLL—Incremental Linker error
Incorrect command line argument: —MAKE error

Incorrect number format—Compiler error

Incorrect option—Compiler error

Incorrect use of default—Compiler error

Incorrect version of RLINK32.DLL—Linker error

Initialization is only partially bracketed—Compiler warning
Initializer for object 'x' ignored—Compiler warning

Initializing 'identifier with 'identifier' —Compiler error
Initializing enumeration with type—Compiler warning
Initializing 'type' with 'type'—Compiler warning

Inline assembly not allowed—Comepiler error

Inline assembly not allowed in inline and template function—Compiler error
Int and string types compared—MAKE error

Internal code generator error—Compiler error

Internal compiler error—Compiler error

Internal failure -- Retrying link...—Incremental Linker error
Invalid combination of opcode and operands—Compiler error
Invalid exe filename: 'filename'—Linker error

Invalid file/object alignment value 'value'—Linker error
Invalid indirection—Compiler error

Invalid macro argument separator—Compiler error

Invalid map filename: 'filename'—Linker error

Invalid overlay switch specification—Linker error

Invalid page size value ignored—Librarian warning

Invalid pointer addition—Compiler error

Invalid register combination (e.g. [BP+BX])—Compiler error

Invalid size specified for segment alignment—Linker error
Invalid size specified for segment packing—Linker error
Invalid stack reserve/commit size 'size'—Linker error
Invalid target /T 'target'—Linker error

Invalid template argument list—Compiler error

Invalid template member definition—Compiler error

Invalid template qualified nhame 'template::name'—Compiler error
Invalid use of dot—Compiler error

Invalid use of namespace 'identifier' —Compiler error
Invalid use of template 'template'—Compiler error
Irreducible expression tree—Compiler error

L

Last parameter of 'operator' must have type 'int'—Compiler error
Library contains COMDEF records—extended dictionary not created—Librarian warning
Library too large, please restart with /P 'size'—Librarian error
Library too large, restart with library page size 'size'—Librarian error
Linkage specification not allowed—Compiler error

Linker CREATE Failed—IDE error

Linker missing CREATE Entry Point—IDE error

Linker missing DESTROY Entry Point—IDE error

Link terminated by user—IDE error

Local data exceeds segment size limit—Compiler error

Lvalue required—Compiler error

M

Macro argument syntax error—Compiler error

Macro definition ignored—Compiler warning

Macro expansion too long—Compiler error

Macro expansion too long—MAKE error

Macro replace text 'string' is too long—MAKE error

Macro substitute text 'string' is too long—MAKE error

'macroname'—")' missing in macro invocation—MAKE error

Main must have a return type of int—Compiler error

Malformed command-line—Linker error

Malloc of number bytes failed in module, line number—incremental Linker error
Matching base class function 'function’ has different dispatch number—cCompiler error
Matching base class function 'function’ is not dynamic—Compiler error
Maximum precision used for member pointer type type—Compiler error
Member function must be called or its address taken—Compiler error
Member identifier expected—Compiler error

Member is ambiguous: 'member1' and 'member2'—Compiler error
'member’ is not accessible—Compiler error

'member' is not a valid template type member—Compiler error

Member 'member' cannot be used without an object—Compiler error
Member 'member' has the same name as its class—Compiler error
Member 'member’ is initialized more than once—Compiler error
Member pointer required on right side of .* or ->*—Compiler error
Memory full listing truncated!—Librarian warning

Memory reference expected—Compiler error

Misplaced break—Compiler error

Misplaced continue—Compiler error

Misplaced decimal point—Compiler error

Misplaced elif directive—Compiler error

Misplaced elif statement—MAKE error

Misplaced else—Compiler error

Misplaced else statement—MAKE error

Misplaced else directive—Compiler error

Misplaced endif directive—Compiler error

Misplaced endif statement—MAKE error

'module’ already in LIB, not changed!—Librarian warning

'module’ contains invalid OMF record, type OxHH—Incremental Linker error

'module’ ILINK32 does not support segmentation - use TLINK32 —Incremental Linker error
'module’ not found in library—Librarian warning

Mixed common types in module 'module'. Cannot mix COMDEFs and VIRDEFs—Linker error
Mixing pointers to different 'char' types—Compiler error

Mixing pointers to signed and unsigned char—Compiler warning

Multiple base classes not supported for VCL classes—Compiler error

Multiple base classes require explicit class names—Compiler error

Multiple declaration for 'identifier' —Compiler error

Multiple entry points defined—Linker error

Multiple public definitions for symbol 'symbol' in module 'module;' link case sensitively—Linker error
Multiple stack segments found. The most recent one will be used.—Linker warning

Must take address of a memory location—Compiler error

N

Namespace member 'identifier' declared outside its namespace—Compiler error
Namespace name expected—Compiler error

Need an identifer to declare—Compiler error

Negating unsigned value—Compiler warning

No : following the ?—Compiler error

No base class to initialize—Compiler error

No closing quote—MAKE error

No declaration for function 'function'—Compiler error or warning

No DEF file—Linker warning

No file name ending—Compiler error

No file names given—Compiler error

No filename ending—MAKE error

No internal name for IMPORT in .DEF file—Linker error

No macro before =—MAKE error

No match found for wildcard 'expression'—MAKE error

No output file specified—Linker error

No program entry point—Linker warning

No terminator specified for in-line file operator—MAKE error

No type OBJ file present. Disabling external types option—Compiler warning
Non-ANSI| Keyword Used: 'keyword'—Compiler error

Non-const function function called for const object—Compiler error
Non-constant function 'function' called for constant object—Compiler warning
Non-existent segment 'segment' in SEGMENTS section of .DEF file—Linker warning
Non-virtual function 'function' declared pure—Compiler error

Non-volatile function 'function' called for volatile object—Compiler error or warning
Nonportable pointer comparison—Compiler error or warning

Nonportable pointer conversion—Compiler error

Nonportable pointer conversion—Compiler warning

Nontype template argument must be of scalar type—Compiler error

Not an allowed type—Compiler error

Not enough memory—MAKE error

Not enough memory for command-line buffer—Librarian error

Null pointer assignment—Runtime error
Numeric constant too large—Compiler error

(o)

Object module 'filename' is invalid—Librarian error

Obijects of type 'type' cannot be initialized with { }—Compiler error

Old debug information in module 'module’ will be ignored—Linker warning

Only _ fastcall functions allowed in __automated section—Compiler error

Only member functions may be 'const’ or 'volatile' —Compiler error

Only one of a set of overloaded functions can be functions can be "C"—Compiler error
Only <<KEEP or <<NOKEEP-—MAKE error

Only read or write clause allowed in property declaration in __automated section—Compiler error
Operand of 'delete’ must be non-const pointer—Compiler error

operator -> must return a pointer or a class—Compiler error

operator [] missing]—Compiler error

operator delete must return void—Compiler error

Operator delete[] must return void—Compiler error

Operator must be declared as function—Compiler error

‘operator' must be declared with one or no parameters—Compiler error

'operator' must be declared with one or two parameters—Compiler error
Operator new must have an initial parameter of type size t—Compiler error
Operator new must return an object of type void *—Compiler error

Operator new[] must have an initial parameter of type size t—Compiler error
Operator new[] must return an object of type void—Compiler error

Operators may not have default argument values—Compiler error

Out of disk space—Incremental Linker error

Out of memory—Compiler error

Out of memory—Librarian error

Out of memory—Incremental Linker error

Out of memory creating extended dictionary—Librarian error

Out of memory in block ‘address'—Incremental Linker error

Out of memory reading LE/LIDATA record from object module—Librarian error
Out of space allocating per module debug struct—Librarian error

Output device is full—Librarian error

Overlays only supported in medium, large, and huge memory models—Compiler error
'overload' is now unnecessary and obsolete—Compiler warning

Overloadable operator expected—Compiler error

Overloaded 'function name' ambiguous in this context—Compiler error
Overloaded prefix 'operator’ used as a postfix operator—Compiler error and warning

P
Parameter mismatch in 'specifier' access specifier of property 'property'—Compiler error
Parameter names are used only with a function body—Compiler error
Parameter 'number' missing hame—Compiler error
Parameter 'parameter’ is never used—Compiler error and warning
‘path’—path is too long—Librarian error
Pointer to structure required on left side of -> or ->*—Compiler error
Possible unresolved external 'symbol' referenced from module 'module'—Linker warning
Possible use of 'identifier' before definition—Compiler error and warning
POSSib|¥ incorrect aSSignment—Compiler error and warning
Printf/Scanf floating point formats not linked—Runtime error
Public 'symbol' in module 'module1’ clashes with prior module 'module2'—Librarian error
Public symbol 'symbol' defined in both module 'module1' and 'module2'—Linker message
Public symbol 'symbol' defined in both module 'module1' and 'module2'—Incremental Linker message

published or _automated sections only supported for VCL classes—Compiler error

Published property access functions must use _ fastcall calling convention—Compiler error
Pure virtual function called—Runtime error

Qualifier 'identifier' is not a class or namespace name—Compiler error

R

Realloc of number bytes failed in module, line number—Incremental Linker error
reason'—extended dictionary not created—Librarian warning

Record kind 'num' found, expected theadr or Iheadr in module ‘'filename'—Librarian error
Record length 'len' exceeds available buffer in module 'module'—Librarian error

Record type 'type' found, expected theadr or Iheadr in module—Librarian error
Recursive template function: ™ instantiated "—Compiler error

Redeclaration of property not allowed in _automated sedtion'—Compiler error
Redefinition of 'macro' is not identical—Compiler error or warning

Redefinition of target 'filename'—MAKE error

Reference initialized with 'type1', needs lvalue of type 'type2'—Compiler error
Reference member 'member’ Initialized with a non-reference parameter—Compiler error
Reference member 'member' in class without constructors—compiler error

Reference member 'member' is not initialized—Compiler error

Reference member 'member' needs a temporary for initialization—Compiler error
Reference variable 'variable' must be initialized—Compiler error

Register allocation failure—Compiler error

Restarting compile using assembly—Compiler warning
Results are safe in file 'filename'—Librarian warning

RLINK32 was not initialized—Incremental Linker error
RTTI not available for expression evaluation—Compiler error
Rule line too long—MAKE error

S

Self relative fixupp overflowed in module 'module'—Linker warning
Side effects are not allowed—Compiler error

Size of 'identifier' is unknown or zero—Compiler error

Size of the type 'identifier' is unknown or zero—Compiler error
Size of the type is unknown or zero—Compiler error

sizeof may not be applied to a bit field—Compiler error

sizeof may not be applied to a function—Compiler error
Specialization after first use of template—Compiler error
'specifier' has already been included—Compiler error

STACK commit 'size' greater than reserve 'size'—Linker error
Stack overflow—Runtime error

Statement missing ;—Compiler error

Static data members not allowed in __published or automated sections—Compiler error
Srorage class 'storage class' is not allowed here—Compiler error
Srorage specifier not allowed for array properties—Compiler error
String type not allowed with this operand—MAKE error

Structure packing size has changed—Compiler warning

Structure passed by value—Compiler error or warning

Structure required on left side of . or .*—Compiler error

Structure size too large—Compiler error

Style of function definition is now obsolete—Compiler error or warning
Subscripting missing]—Compiler error

Superfluous & with function—Compiler error or warning

Suspicious pointer arithmetic—Compiler warning

Suspicious pointer conversion—Compiler error or warning

Switch selection expression must be of integral type—Compiler error

Switch statement missing (—Compiler error

Switch statement missing)—Compiler error

Symbol 'symbol' marked as __import in 'module’ was public—Incremental Linker error

T
T3 and T7 fixupps not allowed (module 'module')—Linker error

Target index of FIXUPP is 0 in module 'module’—Linker error

Template argument must be a constant expression—Compiler error

Template class nesting too deep: ‘class'—Compiler error

Template function argument ‘argument' not used in argument types—Compiler error
Template functions may only have 'type-arguments'—Compiler error

Templates and overloaded operators cannot have C linkage—Compiler error
Templates can only be declared at file level—Compiler error

Templates must be classes or functions—Compiler error

Templates not supported—Compiler error

Temporary used for parameter 'parameter'—Compiler warning

Temporary used for parameter 'number'—Compiler warning

Temporary used for parameter 'number’ in call to 'function'—Compiler warning
Temporary used for parameter 'parameter'—Compiler warning

Temporary used for parameter 'parameter'—Compiler warning

Temporary used for parameter 'parameter’ in call to ‘function'—Compiler warning
Temporary used to initialize 'identifier' —Compiler error or warning

Terminated by user (32-bit)—Linker error

The '..." handler must be last—Compiler error

The combinations '+*' or "+' are not allowed—Librarian error

The constructor 'constructor' is not allowed—Compiler error

The value for 'identifier' is not within the range of an int—Compiler error

'this' can only be used within a member function—Compiler error
THREAD fixup found in module 'module'—Linker error

Throw expression violates exception specification—Compiler warning
Too few arguments in template class name 'template'—Compiler error
Too few parameters in call—Compiler error

Too few parameters in call to function—Compiler error

Too many commas on command-line—Linker error

Too many decimal points—Compiler error

Too many default cases—Compiler error

Too many default libraries—Linker error

Too many error or warning messages—Compiler error
M—Linker error

Too many exponents—Compiler error

Too many file names—Linker error

Too many initializers—Compiler error

Too many LNAMES—Linker error

Too many rules for target 'target' —MAKE error

Too many storage classes in declaration—Compiler error

Too many suffixes in .SUFFIXES list—MAKE error

Too many types in declaration—Compiler error

Too much global data defined in file—Compiler error

Trying to derive a far class from the huge base 'base'—Compiler error
Trying to derive a far class from the near base 'base'—Compiler error
Trying to derive a huge class from the far base 'base'—Compiler error
Trying to derive a huge class from the near base 'base'—Compiler error

Trying to derive a near class from the far base 'base'—Compiler error

Trying to derive a near class from the huge base 'base'—Compiler error

Two consecutive dots—Compiler error

Two operands must evaluate to the same type—Compiler error

'type' is not a polymorphic class type—Compiler error

Type 'type' is not a defined class with virtual functions—Compiler error

Type 'typename' may not be defined here—Compiler error

Type mismatch in default argument value—Compiler error

Type mismatch in default value for parameter 'parameter'—Compiler error

Type mismatch in parameter 'number'—Compiler error

Type mismatch in parameter 'number' in call to 'function'—Compiler error

Type mismatch in parameter 'number’ in template class nhame 'template'—Compiler error
Type mismatch in parameter 'parameter'—Compiler error

Type mismatch in parameter 'parameter’ in call to 'function'—Compiler error

Type mismatch in parameter 'parameter’ in template name 'template'—Compiler error
Type mismatch in redeclaration of 'identifier' —Compiler error

Type name expected—Compiler error

U

Unable to create output file 'filename'—Compiler error
Unable to create turboc.$In—Compiler error

Unable to execute command 'command'—Compiler error
Unable to execute command: 'command'—MAKE error
Unable to load RW32CORE.DLL—Resource compiler error
Unable to open include file 'filename'—MAKE error
Unable to open file 'filename'—Linker error

Unable to open file 'filename'—MAKE error

Unable to open file 'filename'—Incremental Linker error
Unable to open ‘filename'—Compiler error

Unable to open 'filename' for output—Librarian error
Unable to open include file 'filename'—Compiler error
Unable to open input file ‘filename'—Compiler error
Unable to open makefile—MAKE error

Unable to redirect input or output—MAKE error

Unable to rename 'filename1' to 'filename2'—Librarian error
#undef directive ignored—Compiler warning

Undefined external type 'data-type'—Incremental Linker error
Undefined label 'identifier'—Compiler error

Undefined structure 'structure'—Compiler error

Undefined structure 'structure'—Compiler warning

Undefined symbol ‘identifier'—Compiler error

Undefined symbol 'symbol' referenced from 'module'—Incremental Linker error
Unexpected }—Compiler error

Unexpected char X in command line —Librarian error

Unexpected end of file—MAKE error

Unexpected end of file in comment started on 'line number'—Compiler error
Unexpected end of file in conditional started at line 'line number'—MAKE error
Unexpected end of file in conditional started on 'line humber'—Compiler error
Unexpected termination during compilation [Module Seg#:offset]—Compiler error
Union cannot be a base type—Compiler error

Union cannot have a base type—Compiler error

Union member 'member’ is of type class with constructor—Compiler error
Union member 'member’ is of type class with destructor—Compiler error
Union member 'member' is of type class with operator =—Compiler error

Unions cannot have virtual member functions—Compiler error
Unknown assembler instruction—Compiler warning

Unknown CMDSWITCHES operator 'operator' —MAKE error
Unknown command line switch 'X' ignored—Librarian warning
Unknown fatal error—Resource compiler error

Unknown error (# errornum)—IDE error

Unknown Goodie—Linker error

Unknown language, must be C or C++—Compiler error
Unknown option 'option'—Linker error

Unknown preprocessor directive: 'identifier' —Compiler error
Unknown preprocessor statement—MAKE error

Unknown RLINK32 error—Incremental Linker error

Unreachable code—Compiler warning

Unresolved external 'symbol' referenced from module 'module’—Linker error
Unsupported 16-bit segment(s) in module 'module'—Incremental Linker error
Unsupported COMENT OMF extension 'extension'—Linker error
Unsupported option 'string'—Linker error

Unterminated string or character constant—Compiler error

Use '> >' for nested templates instead of '>>'—Compiler error

Use . or -> to call function—Compiler error

Use . or -> to call 'member’, or & to take its address—Compiler error

Use /e with TLINK to obtain debug information from library—Librarian warning
Use :: to take the address of a member function—Compiler error

Use of : and :: dependents for target 'target' —MAKE error

Use qualified name to access member type 'identifier'—Compiler warning
User break—Compiler error

User break—IDE error

User break, library aborted—Librarian error

User break. Link aborted—Incremental Linker error

User-defined message—Compiler error

Using based linking for DLLs may cause the DLL to malfunction—Linker warning

\"
Value of type void is not allowed—Compiler error
Variable 'identifier' is initialized more than once—Compiler error
'variable' requires runtime initialization/finalization—Compiler error
Variable 'variable' has been optimized and is not available—Compiler error
VCL classes have to be derived from VCL classes —Compiler error
VCL style class must be constructed using operator new —Compiler error
VCL style classes must be caught by pointer —Compiler error
VCL style classes need virtual destructors—Comepiler error
VCL style classes require exception handling to be enabled—Compiler error
VIRDEF name conflict for 'function'—Compiler error
Virtual base classes not supported for VCL classes—Compiler error
'virtual' can only be used with member functions—Compiler error
Virtual function 'function1' conflicts with base class 'base'—Compiler error
virtual specified more than once—Compiler error
void & is not a valid type—Compiler error
Void functions may not return a value—Compiler warning

w
While statement missing (—Compiler error
While statement missing)—Compiler error

Write error on file 'filename'—MAKE error

Wrong number of arguments in call of macro 'macro'—Compiler error

Compiler table limit exceeded Compiler message
One of the compiler's internal tables overflowed.
This usually means that the module being compiled contains too many function bodies.

This limitation will not be solved by making more memory available to the compiler. You need to simplify
the file being compiled.

Irreducible expression tree Compiler message

An expression on the indicated line of the source file caused the code generator to be unable to
generate code. Avoid using the expression. Notify Borland if an expression consistently reproduces this

error.

Register allocation failure Compiler message

Possible Causes

An expression on the indicated line of the source file was so complicated that the code generator could
not generate code for it.

Solutions
Simplify the expression. If this does not solve the problem, avoid the expression.

Notify Borland if an expression can consistently reproduce this error.

Bad call of intrinsic function Compiler message

You have used an intrinsic function without supplying a prototype. You may have supplied a prototype
for an intrinsic function that was not what the compiler expected.

Unable to open input file ‘filename' Compiler message
This error occurs if the source file can't be found.
Check the spelling of the name. Make sure the file is on the specified disk or directory.

Verify that the proper directory paths are listed. If multiple paths are required, use a semicolon to
separate them.

Unable to create output file 'filename'Compiler message

This error occurs if the work disk is full or write protected.

This error also occurs if the output directory does not exist.

Solutions

If the disk is full, try deleting unneeded files and restarting the compilation.

If the disk is write-protected, move the source files to a writeable disk and restart the compilation.

Error writing output file Compiler message

A DOS error that prevents the C++ IDE from writing an .OBJ, .EXE, or temporary file.
Solutions

Make sure that the Output directory in the Directories dialog box is a valid directory.
Check that there is enough free disk space.

Error directive: 'message’ Compiler message
This message is issued when an #error directive is processed in the source file.
'message’ is the text of the #error directive.

Out of memory Compiler message
The total working storage is exhausted.
This error can occur in the following circumstances:
Not enough virtual memory is available for compiling a particular file. In this case, shut down any
other concurrent applications. You may also try to reconfigure your machine for more available virtual

memory, or break up the source file being compiled into smaller separate components. You can also
compile the file on a system with more available RAM.

- The compiler has encountered an exceedingly complex or long expression at the line indicated
and has insufficient reserves to parse it. Break the expression down into separate statements.

Unable to open ‘filename'’ Compiler message
This error occurs if the specified file can't be opened.

Make sure the file is on the specified disk or directory. Verify the proper paths are listed. If multiple paths
are required, use a semicolon to separate them.

Declaration syntax error Compiler message
Your source file contained a declaration that was missing a symbol or had an extra symbol added to it.
Check for a missing semicolon or parenthesis on that line or on previous lines.

Wrong number of arguments in call of macro 'macro’ Compiler message

Your source file called the named macro with an incorrect number of arguments.

Array size too large Compiler message
The declared array is larger than 64K and the 'huge' keyword was not used.
If you need an array of this size, either use the 'huge' modifier, like this:

int huge array[70000L]; /* Allocate 140000 bytes */
or dynamically allocate it with farmalloc() or farcalloc(), like this:

int huge *array = (int huge *) farmalloc (sizeof (int) * 70000); ?? Allocate
140,000 bytes

Invalid macro argument separator Compiler message

In a macro definition, arguments must be separated by commas.

The compiler encountered some other character after an argument name.
This is correct:

#define tri add(a, b, c) ((a) + (b) + (c))

This is incorrecE

#define tri add(a b. c) ((a) + (b) + (c))

Assembler statement too long Compiler message

Inline assembly statements can't be longer than 480 bytes.

Macro argument syntax error Compiler message
An argument in a macro definition must be an identifier.
The compiler encountered some non-identifier character where an argument was expected.

Bad file name format in include directive = Compiler message

OR Bad file name format in line directive

Include and line directive file names must be surrounded by quotes ("filename.h") or angle brackets
(<filename.h>).

The file name was missing the opening quote or angle bracket.

If a macro was used, the resulting expansion text is not surrounded by quote marks.

Invalid indirection Compiler message

The indirection operator (*) requires a non-void pointer as the operand.

Example

int main (void)

{
void *p;
p = 10; / ERROR: Invalid Indirection */
return 0;

lllegal use of pointer Compiler message

Pointers can only be used with these operators:
addition (+)
subtraction (-)
assignment (=)
comparison (==
indirection (*
arrow (—>)

Your source file used a pointer with some other operator.

==)
)

Example

int main (void)

{
char *p;
p /= 7; /* ERROR: Illegal Use of Pointer */
return 0;

Not an allowed type Compiler message

Your source file declared some sort of forbidden type; for example, a function returning a function or
array.

Incompatible type conversion Compiler message

The cast requested can't be done.

Misplaced decimal point Compiler message

The compiler encountered a decimal point in a floating-point constant as part of the exponent.

Incorrect use of default Compiler message

The compiler found no colon after the default keyword.

Invalid use of dot Compiler message

An identifier must immediately follow a period operator (.).

Example
struct foo {
int x;
int y;
lp = 0,0;
int main (void)
{
p.x++; /* Correct */
p. y++; /* Error: Invalid use of dot */
return 0;

Function call missing) Compiler message

The function call argument list had some sort of syntax error, such as a missing or mismatched right
parenthesis.

Case statement missing : Compiler message
A case statement must have a constant expression followed by a colon.

The expression in the case statement either was missing a colon or had an extra symbol before the
colon.

Character constant must be one or two characters long Compiler message

Character constants can only be one or two characters long.

Compound statement missing } Compiler message
The compiler reached the end of the source file and found no closing brace.
This is most commonly caused by mismatched braces.

Cannot modify a const object Compiler message

This indicates an illegal operation on an object declared to be const, such as an assignment to the
object.

Declaration missing ; Compiler message
Your source file contained a struct or union field declaration that was not followed by a semicolon.
Check previous lines for a missing semicolon.

Define directive needs an identifier Compiler message
The first non-whitespace character after a #define must be an identifier.
The compiler found some other character.

Too much global data defined in file Compiler message

The sum of the global data declarations exceeds 64K bytes. This includes any data stored in the
DGROUP (all global variables, literal strings, and static locals).

Solutions

Check the declarations for any array that might be too large. You can also remove variables from the
DGROUP.

Here's how:
* Declare the variables as automatic. This uses stack space.

- Dynamically allocate memory from the heap using calloc, malloc, or farmalloc for the variables.
This requires the use of pointers.

Literal strings are also put in the DGROUP. Get the file farstr.zip from our BBS to extract literal strings
into their own segment.

Two consecutive dots Compiler message

Because an ellipsis contains three dots (...), and a decimal point or member selection operator uses one
dot (.), two consecutive dots cannot legally occur in a C program.

Too many storage classes in declaration Compiler message

A declaration can never have more than one storage class, either Auto, Register, Static, or Extern.

Too many types in declaration Compiler message

A declaration can never have more than one of these basic types:
* char

. class

. int

. float

. double
. struct
. union

- enum

. typedef name

Misplaced elif directive Compiler message

The compiler encountered an #elif directive without any matching #if, #ifdef, or #ifndef directive.

Misplaced else directive Compiler message

The compiler encountered an #else directive without any matching #if, #ifdef, or #ifndef directive.

Misplaced endif directive Compiler message

The compiler encountered an #endif directive without any matching #if, #ifdef, or #ifndef directive.

Enum syntax error Compiler message

An enum declaration did not contain a properly formed list of identifiers.

Unexpected end of file in comment started on 'line number' Compiler message
The source file ended in the middle of a comment.
This is normally caused by a missing close of comment (*/).

Unexpected end of file in conditional started on 'line number' Compiler message
The source file ended before the compiler (or MAKE) encountered #endif.

The #endif either was missing or misspelled.
Every #if statement needs a matching #endif statement.

Expression syntax Compiler message

This is a catch-all error message when the compiler parses an expression and encounters a serious
error.

Possible Causes
This is most commonly caused by one of the following:

* two consecutive operators

. mismatched or missing parentheses
. a missing semicolon on the previous statement.
Solutions

If the line where the error occurred looks syntactically correct, look at the line directly above for errors.
Try moving the line with the error to a different location in the file and recompiling.

If the error still occurs at the moved statement, the syntax error is occurring somewhere in that
statement.

If the error occurred in another statement, the syntax error is probably in the surrounding code.

Too few parameters in call Compiler message

This error message occurs when a call to a function with a prototype (via a function pointer) had too few
arguments. Prototypes require that all parameters be given. Make certain that your call to a function has
the same parameters as the function prototype.

Too few parameters in call to 'function’ Compiler message
A call to the named function (declared using a prototype) has too few arguments.

Make certain that the parameters in the call to the function match the parameters of the function
prototype.

lllegal use of floating point Compiler message
Floating-point operands are not allowed in these operators
* shift (SHL, SHR)

. bitwise Boolean (AND, OR, XOR, NOT)
. conditional (? :)

. indirection (*)

. certain others

The compiler found a floating-point operand with one of these prohibited operators.

File name too long Compiler message
The file name given in an #include directive was too long for the compiler to process.
File names in DOS must be no more than 79 characters long.

Conflicting type modifiers Compiler message

This occurs when a declaration is given that includes more than one addressing modifier on a pointer or
more than one language modifier for a function.

Only one language modifier (cdecl and pascal) can be given for a function.

One cannot multiply derive from a class declared to use the fast this pointer optimization, and one that
was not. For example:

class _ fastthis A { // one way to declare a class as using the
myex () ; // fast this optimization, note that

}i // #pragma option -po- turns it off.

class B {
twoex () ;

}i
class ¢ : A, B {}; // error
// note that _ fastthis is only recognized in BC 4.0 or later

Goto statement missing label Compiler message

The goto keyword must be followed by an identifier.

Group overflowed maximum size: 'name' Compiler message
The total size of the segments in a group (for example, DGROUP) exceeded 64K.

lllegal character ‘character’' (0x'value’) Compiler message
The compiler encountered some invalid character in the input file.

The hexadecimal value of the offending character is printed.

This can also be caused by extra parameters passed to a function macro.

lllegal initialization Compiler message

Initializations must be one of the following:

- constant expressions
. the address of a global extern or static variable plus or minus a constant

Unable to open include file ‘filename' Compiler message

The compiler could not find the named file.

Possible Causes
* The named file does not exist.

- An #include file included itself.
- You do not have FILES set in CONFIG.SYS on your root directory.
Solutions

* Verify that the named file exists.
. Set FILES = 20 in CONFIG.SYS.

No file name ending Compiler message

The file name in an #include statement was missing the correct closing quote or angle bracket.

Lvalue required Compiler message
The left side of an assignment operator must be an addressable expression.

Addressable expressions include the following:

* numeric or pointer variables
. structure field references or indirection through a pointer
. a subscripted array element

Too many error or warning messages Compiler message

There were more errors or warnings than allowed.

statement missing (Compiler message

In a do, for, if, switch, or while statement, the compiler found no left parenthesis after the while keyword
or test expression.

statement missing) Compiler message

In a do, for, if, switch, or while statement, the compiler found no right parenthesis after the while keyword
or test expression.

do-while statement missing OR For statement missing ; Compiler message

In a do or for statement, the compiler found no semicolon after the right parenthesis.

Type mismatch in redeclaration of ‘identifier’ Compiler message
Your source file redeclared a variable with a different type than was originally declared for the variable.

Possible Causes

This can occur if a function is called and subsequently declared to return something other than an
integer.

Solutions
If this has happened, you must declare the function before the first call to it.

Default outside of switch Compiler message
The compiler encountered a default statement outside a switch statement.
This is most commonly caused by mismatched braces.

Macro expansion too long Compiler message

A macro can't expand to more than 4,096 characters.

Too many decimal points Compiler message

The compiler encountered a floating-point constant with more than one decimal point.

Too many exponents Compiler message

The compiler encountered more than one exponent in a floating-point constant.

Too many initializers Compiler message

The compiler encountered more initializers than were allowed by the declaration being initialized.

Inline assembly not allowed Compiler message

Your source file contains inline assembly language statements and you are compiling it from within the
integrated environment.

You must use the BCC command to compile this source file from the DOS command line.

Incorrect number format Compiler message

The compiler encountered a decimal point in a hexadecimal number.

Numeric constant too large Compiler message
String and character escape sequences larger than hexadecimal or octal 77 can't be generated.

Two-byte character constants can be specified by using a second backslash. For example,
AN\

represents a two-byte constant.

A numeric literal following an escape sequence should be broken up like this:

printf ("" "12345");

This prints a carriage return followed by 12345.

lllegal octal digit Compiler message

The compiler found an octal constant containing a non-octal digit (8 or 9).

Type mismatch in parameter 'number’ in call to ‘function’ Compiler message

Your source file declared the named function with a prototype, and the given parameter number
(counting left to right from 1) could not be converted to the declared parameter type.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is usually "Cannot convert 'type1' to 'type2"™, but the mismatch might be due to
many other reasons.

Type mismatch in parameter 'parameter’ in call to 'function’ Compiler message

Your source file declared the named function with a prototype, and the named parameter could not be
converted to the declared parameter type.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is usually "Cannot convert 'type1' to 'type2™ but the mismatch might be due to many
other reasons.

Type mismatch in parameter 'number’ Compiler message
The function called, via a function pointer, was declared with a prototype.

However, the given parameter number (counting left to right from 1) could not be converted to the
declared parameter type.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is usually "Cannot convert 'type1' to 'type2™ but the mismatch might be due to many
other reasons.

Type mismatch in parameter 'parameter’ Compiler message
Your source file declared the function called via a function pointer with a prototype.
However, the named parameter could not be converted to the declared parameter type.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is usually "Cannot convert 'type1' to 'type2™ but the mismatch might be due to many
other reasons.

Pointer to structure required on left side of -> or ->* Compiler message
Nothing but a pointer is allowed on the left side of the arrow (->) in C or C++.
In C++ a -> operator is allowed.

Invalid pointer addition Compiler message

Your source file attempted to add two pointers together.

lllegal pointer subtraction Compiler message

This is caused by attempting to subtract a pointer from a non-pointer.

lllegal structure operation Compiler message
Structures can only be used with dot (.), address-of (&) or assignment (=) operators, or be passed to or
from a function as parameters.

The compiler encountered a structure being used with some other operator.

Bad 'directive' directive syntax Compiler message

A macro definition starts or ends with the ## operator, or contains the # operator that is not followed by a
macro argument name.

An example of this might be:

Bad ifdef directive syntax

Note that an #ifdef directive must contain a single identifier (and nothing else) as the body of the
directive.

Another example is:

Bad undef directive syntax

An #undef directive must also contain only one identifier as the body of the directive.

Unterminated string or character constant Compiler message

The compiler found no terminating quote after the beginning of a string or character constant.

Structure size too large Compiler message

Your source file declared a structure larger than 64K.

Unknown preprocessor directive: ‘identifier Compiler message

The compiler encountered a # character at the beginning of a line. The directive name that followed the
was not one of the following:

= define
. else
. endif
. if
. ifdef
. ifndef
. include
- line

. undef

Undefined symbol ‘identifier' Compiler message
The named identifier has no declaration.

Possible Causes

- actual declaration of identifier has been commented out.

. misspelling, either at this point or at the declaration.

. there was an error in the declaration of the identifier.
Tools to help track down the problem:

. CPP

' GREP

Could not find file 'filename’' Compiler message

The compiler is unable to find the file supplied on the command line.

Non-portable pointer conversion Compiler warning
(Command-line option to suppress warning: -w-rpt)

An implicit conversion between a pointer and an integral type is required, but the types are not the same
size. You must use an explicit cast.

This conversion might not make any sense, so be sure this is what you want to do.

Extra parameter in call Compiler message

A call to a function, via a pointer defined with a prototype, had too many arguments.

Extra parameter in call to function Compiler message

A call to the named function (which was defined with a prototype) had too many arguments given in the
call.

User break Compiler message
You typed a Ctrl+Break while compiling in the IDE.
(This is not an error, just a confirmation.)

Multiple base classes require explicit class names Compiler message

In a C++ class constructor, if there is more than one immediate base class, each base class constructor
call in the constructor header must include the base class name.

Member is ambiguous: 'member1' and 'member2' Compiler message
You must qualify the member reference with the appropriate base class name.

In C++ class 'class', member 'member' can be found in more than one base class, and it was not
qualified to indicate which one you meant.

This applies only in multiple inheritance, where the member name in each base class is not hidden by
the same member name in a derived class on the same path.

The C++ language rules require that this test for ambiguity be made before checking for access rights
(private, protected, public).

It is possible to get this message even though only one (or none) of the members can be accessed.

‘function1’ cannot be distinguished from ‘function2’ Compiler message

The parameter type lists in the declarations of these two functions do not differ enough to tell them
apart.

Try changing the order of parameters or the type of a parameter in one declaration.

Attempt to grant or reduce access to 'identifier' Compiler message

A C++ derived class can modify the access rights of a base class member, but only by restoring it to the
rights in the base class.

It can't add or reduce access rights.

Array must have at least one elementCompiler message

ANSI C and C++ require that an array be defined to have at least one element (objects of zero size are
not allowed).

An old programming trick declares an array element of a structure to have zero size, then allocates the
space actually needed with malloc.

You can still use this trick, but you must declare the array element to have (at least) one element if you
are compiling in strict ANSI mode.

Declarations (as opposed to definitions) of arrays of unknown size are still allowed.

Example
char rayl[]; /* definition of unknown size -- ILLEGAL */
char rayl[0]; /* definition of 0 size -- ILLEGAL */

extern char ray[]; /* declaration of unknown size -- OK */

operator -> must return a pointer or a class Compiler message

The C++ operator -> function must be declared to either return a class or a pointer to a class (or struct
or union).

In either case, it must be something to which the -> operator can be applied.

'identifier' must be a previously defined class or struct Compiler message

You are attempting to declare 'identifier' to be a base class, but either it is not a class or it has not yet
been fully defined.

Correct the name or rearrange the declarations.

Misplaced break Compiler message
The compiler encountered a break statement outside a switch or looping construct.
You can only use break statements inside of switch statements or loops.

Switch selection expression must be of integral type Compiler message

The selection expression in parentheses in a switch statement must evaluate to an integral type (char,
short, int, long, enum).

You might be able to use an explicit cast to satisfy this requirement.

Cannot cast from 'type1’ to 'type2' Compiler message

A cast from type 'ident1' to type 'ident2' is not allowed.

In C++, you cannot cast a member function pointer to a normal function pointer.
For example:

class A {
public:
int myex();
}i
typedef int (*fp) ()
test ()
{
fp myfp - (fp) &A::myex; //error
The reason being that a class member function takes a hidden parameter, the this pointer, thus it
behaves very differently than a normal function pointer.

A static member function behaves as normal function pointer and can be cast.
For example:

class A {
public:
static int myex();
}i
typedef int (*fp) ();
test ()
{
fp myfp - (fp) &A::myex; //ok
However, static member functions can only access static data members of the class.

InC

* A pointer can be cast to an integral type or to another pointer.
- An integral type can be cast to any integral, floating, or pointer type.
- A floating type can be cast to an integral or floating type.

Structures and arrays can't be cast to or from.
You usually can't cast from a void type.

In C++

User-defined conversions and constructors are checked for. If one can't be found, the preceding rules
apply (except for pointers to class members).

Among integral types, only a constant zero can be cast to a member pointer.
A member pointer can be cast to an integral type or to a similar member pointer.

A similar member pointer points to a data member (or to a function) if the original does. The qualifying
class of the type being cast to must be the same as (or a base class of) the original.

Constructor cannot have a return type specification Compiler message

C++ constructors have an implicit return type used by the compiler, but you can't declare a return type or
return a value.

Misplaced continue Compiler message

The compiler encountered a continue statement outside a looping construct.

Declaration terminated incorrectly = Compiler message
A declaration has an extra or incorrect termination symbol, such as a semicolon placed after a function

body.
A C++ member function declared in a class with a semicolon between the header and the opening left

brace also generates this error.

Need an identifier to declare = Compiler message

In this context, an identifier was expected to complete the declaration.

This might be a typedef with no name, or an extra semicolon at file level.

In C++, it might be a class name improperly used as another kind of identifier.

Default value missing Compiler message

When a C++ function declares a parameter with a default value, all of the following parameters must
also have default values.

In this declaration, a parameter with a default value was followed by a parameter without a default value.

Declare operator delete (void*) or (void*, size_t)

Declare operator delete[] (void*) or (void*, size_t) Compiler message

Declare the operator delete with one of the following:
1. A single void* parameter, or
2. A second parameter of type size_t

If you use the second version, it will be used in preference to the first version.
The global operator delete can only be declared using the single-parameter form.

operator delete must return void

operator delete[] must return void Compiler message

This C++ overloaded operator delete was declared in some other way.

Declare the operator delete with one of the following:

1. A single void* parameter, or

2. A second parameter of type size t

If you use the second version, it will be used in preference to the first version.
The global operator delete can only be declared using the single-parameter form.

Destructor name must match the class name Compiler message
In a C++ class, the tilde (~) introduces a declaration for the class destructor.

The name of the destructor must be same as the class name.

In your source file, the ~ preceded some other name.

Destructor cannot have a return type specification Compiler message

C++ destructors never return a value, and you can't declare a return type or return a value.

Default value missing following parameter 'parameter’ Compiler message

All parameters following the first parameter with a default value must also have defaults specified.

Misplaced else Compiler message
The compiler encountered an else statement without a matching if statement.

Possible Causes
= An extra "else" statement

. An extra semicolon
. Missing braces
. Some syntax error in a previous "if" statement

Unknown language, must be C or C++ Compiler message

In the C++ construction

extern "name" type func(/*...*/);

the given "name" must be "C" or "C++" (use the quotes); other language names are not recognized.
You can declare an external Pascal function without the compiler's renaming like this:

extern "C" int pascal func(/*...*/);
To declare a (possibly overloaded) C++ function as Pascal and allow the usual compiler renaming (to
allow overloading), you can do this:

extern int pascal func(/*...*/);

‘function’ was previously declared with the language 'language’ Compiler
message

Only one language modifier (cdecl pascal) can be given for a function.
This function has been declared with different language modifiers in two locations.

Parameter names are used only with a function body Compiler message

When declaring a function (not defining it with a function body), you must use either empty parentheses
or a function prototype.

A list of parameter names only is not allowed.

Example declarations

int
int
int
int

func () ;
func (int,

func
func

(
(
(

int i,

i,

j)

int);
int J);

/*
/*
/*
/*

declaration without prototype -- OK */
declaration with prototype -- OK */
parameter names in prototype -- OK */
parameter names only -- ILLEGAL */

Extern variable cannot be initialized Compiler message

The storage class extern applied to a variable means that the variable is being declared but not defined
here--no storage is being allocated for it.

Therefore, you can't initialize the variable as part of the declaration.

Cannot initialize 'type1' with 'type2' Compiler message
You are attempting to initialize an object of type 'type1' with a value of type 'type2' which is not allowed.
The rules for initialization are essentially the same as for assignment.

Objects of type 'type’ cannot be initialized with {} Compiler message
Ordinary C structures can be initialized with a set of values inside braces.

C++ classes can only be initialized with constructors if the class has constructors, private members,
functions, or base classes that are virtual.

Operator new must return an object of type void *

Operator new[] must return an object of type void * Compiler message
This C++ overloaded operator new was declared in some other way.

‘function' must be declared with no parameters Compiler message

This C++ operator function was incorrectly declared with parameters.

‘function' must be declared with one parameter Compiler message

This C++ operator function was incorrectly declared with more than one parameter.

‘function' must be declared with two parameters Compiler message

This C++ operator function was incorrectly declared with other than two parameters.

‘identifier' must be a member function or have a parameter of class type
Compiler message

Most C++ operator functions must have an implicit or explicit parameter of class type.

This operator function was declared outside a class and does not have an explicit parameter of class
type.

Only one of a set of overloaded functions can be "C" Compiler message
C++ functions are by default overloaded, and the compiler assigns a new name to each function.

If you wish to override the compiler's assigning a new name by declaring the function extern "C", you
can do this for only one of a set of functions with the same name.

(Otherwise the linker would find more than one global function with the same name.)

‘identifier' is not a parameter Compiler message

In the parameter declaration section of an old-style function definition, 'identifier' is declared but not
listed as a parameter. Either remove the declaration or add 'identifier' as a parameter.

Qualifier 'identifier' is not a class or namespace name Compiler message

The C++ qualifier in the construction qual::identifier is not the name of a struct or class.

Two operands must evaluate to the same type Compiler message

The types of the expressions on both sides of the colon in the conditional expression operator (2 :) must
be the same, except for the usual conversions.

These are some examples of usual conversions

* char to int
- float to double
- void* to a particular pointer

In this expression, the two sides evaluate to different types that are not automatically converted.
This might be an error or you might merely need to cast one side to the type of the other.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is usually "Cannot convert 'type1' to 'type2™ but the mismatch might be due to many
other reasons.

'this’ can only be used within a member function Compiler message
In C++, "this" is a reserved word that can be used only within class member functions.

Virtual function 'function1’ conflicts with base class 'base’ Compiler message

A virtual function has the same argument types as one in a base class, but a different return type. This is
illegal.

Bit field too large Compiler message

This error occurs when you supply a bit field with more than 16 bits.

Bit fields must contain at least one bit Compiler message
You can't declare a named bit field to have 0 (or less than 0) bits.

You can declare an unnamed bit field to have 0 bits.
This is a convention used to force alignment of the following bit field to a byte boundary (or to a word
boundary.

Overloadable operator Compiler message
Almost all C++ operators can be overloaded.

These are the only ones that can't be overloaded:
* the field-selection dot (.)

. dot-star (. *)
. double colon (: :)
. conditional expression (?:)

The preprocessor operators (# and ##) are not C or C++ language operators and thus can't be
overloaded.

Other non-operator punctuation, such as semicolon (;), can't be overloaded.

Default argument value redeclared Compiler message

When a parameter of a C++ function is declared to have a default value, this value can't be changed,
redeclared, or omitted in any other declaration for the same function.

Default argument value redeclared for parameter ‘parameter’ Compiler message

When a parameter of a C++ function is declared to have a default value, this value can't be changed,
redeclared, or omitted in any other declaration for the same function.

Declaration is not allowed here Compiler message

Declarations can't be used as the control statement for while, for, do, if, or switch statements.

Array allocated using 'new' may not have an initializer Compiler message
When initializing a vector (array) of classes, you must use the constructor that has no arguments.

This is called the default constructor, which means that you can't supply constructor arguments when
initializing such a vector.

Trying to derive a far class from the near base 'base’ Compiler message

If a class is declared (or defaults to) near, all derived classes must also be near.

Trying to derive a near class from the far base 'base’ Compiler message

If a class is declared (or defaults to) far, all derived classes must also be far.

Destructor for class is not accessible Compiler message

The destructor for this C++ class is protected or private, and can't be accessed here to destroy the
class.

If a class destructor is private, the class can't be destroyed, and thus can never be used. This is
probably an error.

A protected destructor can be accessed only from derived classes.

This is a useful way to ensure that no instance of a base class is ever created, but only classes derived
from it.

Division by zero Compiler message

Your source file contains a divide or remainder in a constant expression with a zero divisor.

Too many default cases Compiler message

The compiler encountered more than one default statement in a single switch.

‘identifier' specifies multiple or duplicate access Compiler message
A base class can be declared public or private, but not both.
This access specifier can appear no more than once for a base class.

Base class 'class’' is included more than once Compiler message

A C++ class can be derived from any number of base classes, but can be directly derived from a given
class only once.

Duplicate case Compiler message

Each case of a switch statement must have a unique constant expression value.

Member 'member’ is initialized more than once Compiler message

In a C++ class constructor, the list of initializations following the constructor header includes the same
member name more than once.

Multiple declaration for ‘identifier' = Compiler message
This identifier was improperly declared more than once.

This might be caused by conflicting declarations such as:
*int a; double a;
. a function declared two different ways, or

. a label repeated in the same function, or
- some declaration repeated other than an extern function or a simple variable

This can also happen by inadvertently including the same header file twice. For example, given:
//a.h

struct A { int a; };

//b.h
#include "a.h"

//myprog.cpp
#include "a.h"
#include "b.h"

myprog.cpp will get two declarations for the struct A. To protect against this, one would write the a.h
header file as:

//a.h
#ifndef A H
#define A H

struct A { int a; }:

#endif
This will allow one to safely include a.h several times in the same source code file.

Base class 'class’ is initialized more than once Compiler message

In a C++ class constructor, the list of initializations following the constructor header includes base class
'class' more than once.

'specifier' has already been included Compiler message
This type specifier occurs more than once in this declaration.
Delete or change one of the occurrences.

Body has already been defined for function ‘function' Compiler message

A function with this name and type was previously supplied a function body.

A function body can only be supplied once.

One cause of this error is not declaring a default constructor which you implement. For example:

class A {
public:
virtual myex();
}i
A::A() {} // error
Having not seen you declare the default constructor in the class declaration, the compiler has had to
generate one, thus giving the error message when it sees one. this is a correct example:

class A {
public:
A();
virtual myex () ;
}s
A::A() {}

virtual specified more than once Compiler message

The C++ reserved word "virtual" can appear only once in one member function declaration.

File must contain at least one external declaration Compiler message
This compilation unit was logically empty, containing no external declarations.
ANSI C and C++ require that something be declared in the compilation unit.

'member’ is not accessible Compiler message

You are trying to reference C++ class member 'member,' but it is private or protected and can't be
referenced from this function.

This sometimes happens when you attempt to call one accessible overloaded member function (or
constructor), but the arguments match an inaccessible function.

The check for overload resolution is always made before checking for accessibility.

If this is the problem, try an explicit cast of one or more parameters to select the desired accessible
function.

Virtual base class constructors must be accessible within the scope of the most derived class. This is
because C++ always constructs virtual base classes first, no matter how far down the hierarchy they
are. For example:
class A {
public:

A();
}i

class B : private virtual A {};

class C : private B {

public:

cQO;

}s

C::C() {} // error, A::A() is not accessible

Since Ais private to B, which is private to C, it makes A's constructor not accessible to C. However, the
constructor for C must be able to call the constructors for its virtual base class, A. If B inherits A publicly,
the above example would compile.

Function defined inline after use as extern Compiler message
Functions can't become inline after they have already been used.

Either move the inline definition forward in the file or delete it entirely.

The compiler encountered something like:

myex () ;
twoex () { myex(); }
inline myex() { return 2; } // error

and already used the function as an extern before it saw that it was specified as inline. This would be
correct:

myex () ;

inline myex() { return 2; }
twoex () { myex(); }

or better:

inline myex();
inline myex () { return 2; }

twoex () { myex(); }

Undefined label 'identifier’ Compiler message

The named label has a goto in the function, but no label definition.

Unexpected } Compiler message
An extra right brace was encountered where none was expected. Check for a missing {.

Useful Tip:
The IDE has a mechanism for finding a matching curly brace. If you put the cursor on the {' or }'
character, hold down control, hit 'Q" and then '{’ or '}', it will position the cursor on the matching brace.

Ambiguity between ‘function1' and ‘function2' Compiler message
Both of the named overloaded functions could be used with the supplied parameters.
This ambiguity is not allowed.

Class member 'member' declared outside its class Compiler message
C++ class member functions can be declared only inside the class declaration.
Unlike nonmember functions, they can't be declared multiple times or at other locations.

‘constructor’ is not an unambiguous base class of ‘class’ Compiler message
A C++ class constructor is trying to call a base class constructor 'constructor.'

This error can also occur if you try to change the access rights of 'class::constructor.'

Check your declarations.

‘identifier' must be a member function Compiler message
Most C++ operator functions can be members of classes or ordinary non-member functions, but these
are required to be members of classes:

* operator =
. operator ->
. operator ()
. type conversions

This operator function is not a member function but should be.

Parameter 'number' missing name Compiler message

In a function definition header, this parameter consisted only of a type specifier 'number' with no
parameter name.

This is not legal in C.
(It is allowed in C++, but there's no way to refer to the parameter in the function.)

No base class to initialize Compiler message
This C++ class constructor is trying to implicitly call a base class constructor, but this class was declared
with no base classes.

Check your declarations.

lllegal to take address of bit field Compiler message

It is not legal to take the address of a bit field, although you can take the address of other kinds of fields.

Cannot initialize a class member here Compiler message
Individual members of structs, unions, and C++ classes can't have initializers.
A struct or union can be initialized as a whole using initializers inside braces.
A C++ class can only be initialized by the use of a constructor.

: expected after private/protected/private = Compiler message

When used to begin a private, protected, or public section of a C++ class, the reserved words "private,"
"protected," and "public" must be followed by a colon.

No : following the ? Compiler message
The question mark (?) and colon (:) operators do not match in this expression.
The colon might have been omitted, or parentheses might be improperly nested or missing.

, expected Compiler message
A comma was expected in a list of declarations, initializations, or parameters.

This problem is often caused by a missing syntax element earlier in the file or one of its included
headers.

Cannot find 'class::class’ (‘class'&) to copy a vector Compiler message

OR Cannot find 'class'::operator=('class'&) to copy a vector

Cannot find class::class ...

When a C++ class 'class1' contains a vector (array) of class 'class2’, and you want to construct an
object of type 'class1' from another object of type 'class 1', you must use this constructor:

class2::class2(class2&)

so that the elements of the vector can be constructed.

The constructor, called a copy constructor, takes just one parameter (which is a reference to its class).
Usually, the compiler supplies a copy constructor automatically.

However, if you have defined a constructor for class 'class2' that has a parameter of type 'class2&' and
has additional parameters with default values, the copy constructor can't exist and can't be created by
the compiler.

This is because these two can't be distinguished:

class?2::class?2(class2&)
class2::class2(class2&, int = 1)

You must redefine this constructor so that not all parameters have default values.
You can then define a reference constructor or let the compiler create one.

Cannot find class::operator= ...

When a C++ class 'class1' contains a vector (array) of class 'class2', and you want to copy a class of
type 'class1', you must use this assignment operator:

class?2::class?2(class2&)
so that the elements of the vector can be copied.

Usually, the compiler automatically supplies this operator.

However, if you have defined an operator= for class 'class2' that does not take a parameter of type
'class2&,' the compiler will not supply it automatically--you must supply one.

Declaration was expected Compiler message

A declaration was expected here but not found.
This is usually caused by a missing delimiter such as a comma, semicolon, right parenthesis, or right

brace.

‘identifier' must be a previously defined enumeration tag Compiler message

This declaration is attempting to reference 'ident' as the tag of an enum type, but it has not been so
declared.

Correct the name, or rearrange the declarations.

Expression expected Compiler message
An expression was expected here, but the current symbol can't begin an expression.

This message might occur where the controlling expression of an if or while clause is expected or where
a variable is being initialized.

This message is often due to a symbol that is missing or has been added.

Member identifier expected Compiler message

The name of a structure or C++ class member was expected here, but not found. The right side of a dot
(.) or arrow (->) operator must be the name of a member in the structure or class on the left of the

operator.

‘identifier' is not a member of 'struct' Compiler message
You are trying to reference 'identifier' as a member of 'struct’, but it is not a member.
Check your declarations.

Friends must be functions or classes Compiler message
A friend of a C++ class must be a function or another class.

Functions may not be part of a struct or union Compiler message
This C struct or union field was declared to be of type function rather than pointer to function.
Functions as fields are allowed only in C++.

Identifier expected Compiler message
An identifier was expected here, but not found.
In C, an identifier is expected in the following situations:

* in a list of parameters in an old-style function header

. after the reserved words struct or union when the braces are not present, and
. as the name of a member in a structure or union (except for bit fields of width 0).

In C++, an identifier is also expected in these situations:
* in a list of base classes from which another class is derived, following a double colon (::), and
- after the reserved word "operator" when no operator symbol is present.

Constant/Reference variable 'variable' must be initialized Compiler message
This C++ object is declared constant or as a reference, but is not initialized.
It must be initialized at the point of declaration.

Inline assembly not allowed in inline and template functions Compiler message
The compiler can't handle inline assembly statements in a C++ inline or template function.

You could eliminate the inline assembly code or, in the case of an inline function, make this a macro,
and remove the inline storage class.

{ expected Compiler message
A left brace was expected at the start of a block or initialization.

Attempting to return a reference to local variable 'identifier' = Compiler message

This C++ function returns a reference type, and you are trying to return a reference to a local (auto)
variable.

This is illegal, because the variable referred to disappears when the function exits.

You can return a reference to any static or global variable, or you can change the function to return a
value instead.

(expected Compiler message
A left parenthesis was expected before a parameter list.

Reference member 'member’ is not initialized Compiler message
References must always be initialized, in the constructor for the class.
A class member of reference type must have an initializer provided in all constructors for that class.

This means you can't depend on the compiler to generate constructors for such a class, because it has
no way of knowing how to initialize the references.

Could not find a match for argument(s) Compiler message

No C++ function could be found with parameters matching the supplied arguments. Check parameters
passed to function or overload function for parameters that are being passed.

Use :: to take the address of a member function Compiler message

If f is a member function of class c, you take its address with the syntax

&c::f

Note the use of the class type name (not the name of an object) and the :: separating the class name
from the function name.

(Member function pointers are not true pointer types, and do not refer to any particular instance of a
class.)

Cannot find default constructor to initialize base class 'class’ Compiler message

Whenever a C++ derived class 'class?' is constructed, each base class 'class1' must first be
constructed.

If the constructor for 'class2' does not specify a constructor for 'class1' (as part of 'class2's' header),
there must be a constructor class1::class1 () for the base class.

This constructor without parameters is called the default constructor.

The compiler will supply a default constructor automatically unless you have defined any constructor for
class 'class1'.

In that case, the compiler will not supply the default constructor automatically--you must supply one.

class Base {

public:
Base (int) ({}

}i

class Derived = public Base {
Derived () :Base (1) {}

}

// must explicitly call the Base constructor, or provide a
// default constructor in Base.

Class members with constructors must be initialized in the class’ initializer list, for example:

class A {
public
A(int);
}i
class B {
public:
A ay
B() : a(3) {}; //ok
}i

Cannot find default constructor to initialize member ‘identifier' Compiler message

When the following occurs
1. AC++ class 'class1' contains a member of class 'class2,’
and

2. You want to construct an object of type 'class1' (but not from another object of type 'class1').
There must be a constructor class2::class2() so that the member can be constructed.

This constructor without parameters is called the default constructor.

The compiler will supply a default constructor automatically unless you have defined any constructor for
class 'class2'.

In that case, the compiler will not supply the default constructor automaticallyyou must supply one.

Use . or -> to call function Compiler message

You attempted to call a member function without providing an object. This is required to call a member
function.

class X {

member func() {}
}i
X x;
X*xp = new X;
X.memberfunc () ;
Xp-> memberfunc () ;

missing] Compiler message

This error is generated if any of the following occur:
* Your source file declared an array in which the array bounds were not terminated by a right bracket.

. The array specifier in an operator is missing a right bracket.
. The operator [] was declared as operator [.
. A right bracket is missing from a subscripting expression.

Add the bracket or fix the declaration.
Check for a missing or extra operator or mismatched parentheses.

} expected Compiler message
A right brace was expected at the end of a block or initialization.

Must take address of a memory location Compiler message

Your source file used the address-of operator (&) with an expression that can't be used that way; for
example, a register variable.

) expected Compiler message
A right parenthesis was expected at the end of a parameter list.

Statement missing ; Compiler message

The compiler encountered an expression statement without a semicolon following it.

Bit field cannot be static Compiler message

Only ordinary C++ class data members can be declared static, not bit fields.

Global anonymous union not static Compiler message

In C++, a global anonymous union at the file level must be static.

Structure required on left side of . or .* Compiler message
The left side of a dot (.) operator (or C++ dot-star operator, .*) must evaluate to a structure type. In this
case it did not.

This error can occur when you create an instance of a class using empty parentheses, and then try to
access a member of that 'object'.

Constant expression required Compiler message
Arrays must be declared with constant size.
This error is commonly caused by misspelling a #define constant.

Call of nonfunction Compiler message
The name being called is not declared as a function.
This is commonly caused by incorrectly declaring the function or misspelling the function name.

Case outside of switch Compiler message
The compiler encountered a case statement outside a switch statement.
This is often caused by mismatched braces.

Member pointer required on right side of .* or ->* Compiler message

The right side of a C++ dot-star (.*) or an arrow star (->*) operator must be declared as a pointer to a
member of the class specified by the left side of the operator.

In this case, the right side is not a member pointer.

Type name expected Compiler message

One of these errors has occurred:
* In declaring a file-level variable or a struct field, neither a type name nor a storage class was given.

. In declaring a typedef, no type for the name was supplied.

. In declaring a destructor for a C++ class, the destructor name was not a type name (it must be
the same name as its class).

. In supplying a C++ base class name, the name was not the name of a class.

union cannot have a base type Compiler message

In general, a C++ class can be of union type, but such a class can't be derived from any other class.

Value of type void is not allowed Compiler message
A value of type void is really not a value at all, so it can't appear in any context where an actual value is
required.
Such contexts include the following:
* the right side of an assignment

. an argument of a function
. the controlling expression of an if, for, or while statement.

do statement must have while Compiler message

Your source file contained a do statement that was missing the closing while keyword.

Identifier 'identifier' cannot have a type qualifier Compiler message
A C++ qualifier class::identifier can't be applied here.

A qualifier is not allowed on the following:

* typedef names
. function declarations (except definitions at the file level)

. on local variables or parameters of functions
. on a class member--except to use its own class as a qualifier (redundant but legal).

sizeof may not be applied to a bit field Compiler message

sizeof returns the size of a data object in bytes, which does not apply to a bit field.

sizeof may not be applied to a function Compiler message
sizeof can be applied only to data objects, not functions.
You can request the size of a pointer to a function.

Storage class 'storage class’ is not allowed here Compiler message
The given storage class is not allowed here.
Probably two storage classes were specified, and only one can be given.

Access can only be changed to public or protected Compiler message

A C++ derived class can modify the access rights of a base class member, but only to public or
protected.

A base class member can't be made private.

Variable 'identifier' is once Compiler message

This variable has more than one initialization. It is legal to declare a file level variable more than once,
but it can have only one initialization (even if two are the same).

Improper use of typedef ‘identifier' = Compiler message
Your source file used a typedef symbol where a variable should appear in an expression.
Check for the declaration of the symbol and possible misspellings.

Size of 'identifier' is unknown or zero Compiler message
This identifier was used in a context where its size was needed.

A struct tag might only be declared (the struct not defined yet), or an extern array might be declared
without a size.

It's illegal then to have some references to such an item (like sizeof) or to dereference a pointer to this
type.

Rearrange your declaration so that the size of 'identifier' is available.

Size of the type 'identifier' is unknown or zero Compiler message
This type was used in a context where its size was needed.
For example, a struct tag might only be declared (the struct not defined yet).

It's illegal then to have some references to such an item (like sizeof) or to dereference a pointer to this
type.
Rearrange your declarations so that the size of this type is available.

Size of the type is unknown or zero Compiler message

This error message indicates that an array of unspecified dimension nested within another structure is
initialized and the -A (ANSI) switch is on. For example:

struct
{

char al]; //Size of 'a' is unknown or zero
}

b = { "hello" }; //Size of the type is

//unknown or zero

Conversion operator cannot have a return type specification Compiler message
This C++ type conversion member function specifies a return type different from the type itself.
A declaration for conversion function operator can't specify any return type.

Linkage specification not allowed Compiler message
Linkage specifications such as extern "C" are only allowed at the file level.
Move this function declaration out to the file level.

Reference member ‘'member’ needs a temporary for initialization Compiler
message

You provided an initial value for a reference type that was not an Ivalue of the referenced type.
This requires the compiler to create a temporary for the initialization.

Because there is no obvious place to store this temporary, the initialization is illegal.

'identifier' cannot be declared in an anonymous union Compiler message
The compiler found a declaration for a member function or static member in an anonymous union.
Such unions can only contain data members.

Function 'function’ cannot be static Compiler message
Only ordinary member functions and the operators new and delete can be declared static.
Constructors, destructors and other operators must not be static.

Cannot overload 'main' Compiler message

main is the only function that can't be overloaded.

Non-virtual function 'function' declared pure Compiler message

Only virtual functions can be declared pure, because derived classes must be able to override them.

Bad syntax for pure function definition Compiler message

Pure virtual functions are specified by appending "= 0" to the declaration, like this:

class A { virtual void £ () = 0;}
class B : public A { void £ () {}; }

You wrote something similar, but not quite the same.

Cannot create instance of abstract class ‘class' Compiler message
Abstract classes (those with pure virtual functions) can't be used directly, only derived from.

When you derive an abstract base class, with the intention to instantiate instances of this derived class,
you must override each of the pure virtual functions of the base class exactly as they are declared.

For example:
class A {
public:
virtual myex(int) = 0;
virtual twoex(const int) const = 0;

}i
class B : public A {
public:
myex (int);
twoex (const int);
}s
B b; // error
The error occurs because we have not overridden the virtual function in which twoex can act on const
objects of the class. We have created a new one which acts on non-const objects. This would compile:

class A {

public:
virtual myex(int) = 0;
virtual twoex(const int) const = 0;

bi
class B : public A {

public:
myex (int);
twoex (const int) const;

}s
B b; // ok

Cannot define a pointer or reference to a reference Compiler message

It is illegal to have a pointer to a reference or a reference to a reference.

Array of references is not allowed Compiler message

It is illegal to have an array of references, because pointers to references are not allowed and array
names are coerced into pointers.

void & is not a valid type Compiler message
A reference always refers to an object, but an object cannot have the type void.
Thus, the type void is not allowed.

'identifier' is not a non-static member and can't be initialized here Compiler
message

Only data members can be initialized in the initializers of a constructor.
This message means that the list includes a static member or function member.

Static members must be initialized outside of the class, for example:

class A { static int 1i; };
int A::i = -1;

Destructor for 'class’ required in conditional expression Compiler message

If the compiler must create a temporary local variable in a conditional expression, it has no good place
to call the destructor because the variable might or might not have been initialized.

The temporary can be explicitly created, as with classname(val, val), or implicitly created by some other
code.

You should recast your code to eliminate this temporary value.

The value for 'identifier' is not within the range of an int Compiler message
All enumerators must have values that can be represented as an integer.

You have attempted to assign a value that is out of the range of an integer.

If you need a constant of this value, use a const integer.

Member 'member' cannot be used without an object Compiler message

This means that you have written class::member where 'member' is an ordinary (non-static) member,
and there is no class to associate with that member.

For example, it is legal to write this:

obj.class: :member

but not to write this:

class: :member

Function should return a value Compiler warning

(Command-line option to suppress warning: -w-rvl)

Your source file declared the current function to return some type other than int or void, but the compiler
encountered a return with no value. This usually indicates some sort of error.

Functions declared as returning int are exempt because older versions of C did not support void
function return types.

Undefined structure 'structure’ Compiler warning

(Command-line option to display warning = -wstu)

The named structure was used in the source file, probably on a pointer to a structure, but had no
definition in the source file.

This is probably caused by a misspelled structure name or a missing declaration.

'base’ is an indirect virtual base class of 'class' Compiler message
You can't create a pointer to a C++ member of a virtual base class.

You have attempted to create such a pointer (either directly, or through a cast) and access an
inaccessible member of one of your base classes.

‘identifier' is not a public base class of 'classtype' Compiler message

The right operand of a .*, ->*, or ::operator was not a pointer to a member of a class that is either
identical to (or an unambiguous accessible base class of) the left operand's class type.

‘operator’ must be declared with one or no parameters Compiler message

When operator ++ or operator -- is declared as a member function, it must be declared to take either:
* No parameters (for the prefix version of the operator), or

. One parameter of type int (for the postfix version)

‘operator’ must be declared with one or two parameters Compiler message

When operator ++ or operator -- is declared as a non-member function, it must be declared to take
either:

* one parameter (for the prefix version of the operator), or
. two parameters (for the postfix version)

‘virtual' can only be used with member functions Compiler message
A data member has been declared with the virtual specifier.

Only member functions can be declared virtual.

For example:

class myclass
{
public:
virtual int a; //error

}i

Address of overloaded function 'function' doesn’'t match 'type' Compiler message
A variable or parameter is assigned (or initialized with) the address of an overloaded function.

However, the type of the variable or parameter doesn't match any of the overloaded functions with the
specified name.

Ambiguous member name 'name’ Compiler message
Whenever a structure member name is used in inline assembly, such a name must be unique.

(If it is defined in more than one structure, all of the definitions must agree as to its type and offset within
the structures).

In this case, an ambiguous member name has been used.

For example:

struct A
{
int a;
int b;
}s

asm ax, .a;

Assignment to 'this’' not allowed, use X::operator new instead Compiler message

In early versions of C++, the only way to control allocation of class of objects was by assigning to the
'this' parameter inside a constructor.

This practice is no longer allowed, because a better, safer, and more general technique is to define a
member function operator new instead.

For example:

this = malloc(n);

Cannot allocate a reference Compiler message
You have attempted to create a reference using the new operator.
This is illegal, because references are not objects and can't be created through new.

Cannot call near class member function with a pointer of type ‘type’ Compiler
message

Member functions of near classes can't be called via a member pointer.

This also applies to calls using pointers to members.

(Remember, classes are near by default in the tiny, small, and medium memory models.)
Either change the pointer to be near, or declare the class as far.

Cannot convert 'type1’ to 'type2’ Compiler message

An assignment, initialization, or expression requires the specified type conversion to be performed, but
the conversion is not legal.

In C++, the compiler will convert one function pointer to another only if the signature for the functions are
the same. Signature refers to the arguments and return type of the function. For example:
myex (int);
typedef int (*ffp) (float);
test ()
{
ffp fp = myex; //error
}
Seeing that myex takes an int for its argument, and fp is a pointer to a function which takes a float as
argument, the compiler will not convert it for you.
In cases where this is what is intended, performing a typecast is necessary:
myex (int);
typedef int (*ffp) (float);
test ()
{
ffp fp = (ffp)myex; //ok
}

Class ‘class' may not contain pure functions Compiler message

The class being declared cannot be abstract, and therefore it cannot contain any pure functions.

Compiler could not generate copy constructor for class ‘class' Compiler message
OR Compiler could not generate default constructor for class 'class’
OR Compiler could not generate operator = for class 'class’

Sometimes the compiler is required to generate a member function for the user.

Whenever such a member function can't be generated due to applicable language rules, the compiler
issues one of these error messages.

Constant/Reference member 'member’ in class without constructors Compiler
message

A class that contains constant or reference members (or both) must have at least one user-defined
constructor.

Otherwise, there would be no way to ever initialize such members.

Constructor/Destructor cannot be declared 'const’ or 'volatile' Compiler message
A constructor or destructor has been declared as const or volatile.
This is not allowed.

Default expression may not use local variables Compiler message

A default argument expression is not allowed to use any local variables or other parameters.

lllegal use of member pointer Compiler message

Pointers to class members can only be passed as arguments to functions, or used with the following
operators:

* assignment

. comparison
[. *

[] _>*

- ?:

. &&

- Il

The compiler has encountered a member pointer being used with a different operator.

In order to call a member function pointer, one must supply an instance of the class for it to call upon.
For example:

class A {
public:
myex () ;
}i
typedef int (A::*Amfptr) ();
myex ()
{
Amfptr mmyex = &A::myex;
(*mmyex) () : //error
}
This will compile:

class A {
public:
myex () ;
}i
typedef int (A::*Amfptr) ();
foo ()
{
A ay
Amfptr mmyex - &A::myex;
(a.*mmyex) 90;

Implicit conversion of 'type1’ to 'type2' not allowed Compiler message

When a member function of a class is called using a pointer to a derived class, the pointer value must
be implicitly converted to point to the appropriate base class.

In this case, such an implicit conversion is illegal.

Last parameter of 'operator’' must have type 'int' Compiler message

When a postfix operator ++ or operator -- is overloaded, the last parameter must be declared with the
type int.

Member function must be called or its address taken Compiler message

A reference to a member function must be called, or its address must be taken with & operator.
In this case, a member function has been used in an illegal context.

For example:

class A
{

void (A::* infptr) (void);
public;

A();

void myex (void) ;

A::A()

{
infptr = myex; //illegal - call myex or take address?
infptr = A::& myex; //correct

Reference initialized with ‘type1’, needs Ivalue of type 'type2' Compiler message
A reference variable that is not declared constant must be initialized with an Ivalue of the appropriate

type.
In this case, the initializer either wasn't an Ivalue, or its type didn't match the reference being initialized.

Only member functions may be 'const’ or 'volatile’ Compiler message

Something other than a class member function has been declared const or volatile.

Operand of 'delete' must be non-const pointer Compiler message
It is illegal to delete a variable that is not a pointer.
It is also illegal to delete a pointer to a constant.

For example:
const int x=10;
const int * a = &x;
int * const b = new int;

int &c = *b;

delete a; //illegal - deleting pointer to constant

delete b; //legal

delete c; //1illegal - operand not of pointer type
//should use 'delete&c' instead

Operator must be declared as function Compiler message
An overloaded operator was declared with something other than function type.
For example:

class A

{

A& operator +; ..note missing parenthesis
}i
In the example, the function operator '()' is missing, so the operator does not have function type and
generates this error.

Operators may not have default argument values Compiler message

It is illegal for overloaded operators to have default argument values.

Overloaded ‘function name' ambiguous in this context Compiler message

The only time an overloaded function name can be used or assigned without actually calling the function
is when a variable or parameter of the correct function pointer type is initialized or assigned the address
of the overload function.

In this case, an overloaded function name has been used in some other context, for example, the
following code will generate this error:

class A{
A() {myex;} //calling the function
void myex (int) {} //or taking its address?

void myex (float) {}
}i

Type mismatch in default argument value Compiler message
The default parameter value given could not be converted to the type of the parameter.

The message "Type mismatch in default argument value" is used when the parameter was not given a
name.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is most often "Cannot convert 'type1' to 'type2™ but the mismatch could be due to
another reason.

Type mismatch in default value for parameter '‘parameter’ Compiler message
The default parameter value given could not be converted to the type of the parameter.

The message "Type mismatch in default argument value" is used when the parameter was not given a
name.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is usually "Cannot convert 'type1' to 'type2™ but the mismatch might be due to many
other reasons.

union cannot be a base type Compiler message

A union can't be used as a base type for another class type.

unions cannot have virtual member functions Compiler message
A union can't have virtual functions as its members.

Union member 'member’ is of type class with constructor (or destructor, or
operator =) Compiler message

A union can't contain members that are of type class with user-defined constructors, destructors, or
operator =.

Use . or -> to call 'member’, or & to take its address Compiler message
A reference to a non-static class member without an object was encountered.
Such a member can't be used without an object, or its address must be taken with the & operator.

Void 'function' cannot return a value Compiler message
A function with a return type void contains a return statement that returns a value; for example, an int.
Default = displayed

'identifier' cannot start a parameter declaration Compiler message
An undefined 'identifier' was found at the start of an argument in a function declarator.

Often the type name is misspelled or the type declaration is missing. This is usually caused by not
including the appropriate header file.

< expected Compiler message
The keyword template was not followed by <.

Every template declaration must include the template formal parameters enclosed within < >,
immediately following the template keyword.

Attempting to return a reference to a local object Compiler message

You attempted to return a reference to a temporary object in a function that returns a reference type.
This may be the result of a constructor or a function call.

This object will disappear when the function returns, making the reference illegal.

Base class 'class' contains dynamically dispatchable functions Compiler
message

This error occurs when a class containing a DDVT function attempts to inherit DDVT functions from
multiple parent classes.

Currently, dynamically dispatched virtual tables do not support the use of multiple inheritance.

Bit fields must be signed or unsigned int Compiler message

In ANSI C, bit fields may only be signed or unsigned int (not char or long, for example).

Cannot add or subtract relocatable symbols Compiler message

The only arithmetic operation that can be performed on a relocatable symbol in an assembler operand is
addition or subtraction of a constant.

Variables, procedures, functions, and labels are relocatable symbols.

Cannot have a non-inline function/static data in a local class Compiler message
All members of classes declared local to a function must be entirely defined in the class definition.

This means that local classes cannot contain any static data members, and all of their member functions
must have bodies defined within the class definition.

Case bypasses initialization of a local variable Compiler message
In C++ it is illegal to bypass the initialization of a local variable.
This error indicates a case label that can transfer control past this local variable.

Declaration does not specify a tag or an identifier Compiler message
This declaration doesn't declare anything.

This may be a struct or union without a tag or a variable in the declaration. C++ requires that something
be declared.

For example:

struct
{
int a
}i

//no tag or identifier

Expression of scalar type expected Compiler message
The !, ++, and -- operators require an expression of scalar type.
Only these types are allowed:

= char
- short
- int
- long
- enum
. float
- double
. long double

. pointer

Extra argument in template class name ‘template' Compiler message

A template class name specified too many actual values for its formal parameters.

Function definition cannot be a typedef'ed declaration Compiler message
In ANSI C, a function body cannot be defined using a typedef with a function Type.
Redefine the function body.

Functions 'function1' and ‘function2' both use the same dispatch number
Compiler message

This error indicates a dynamically dispatched virtual table (DDVT) problem.

Goto bypasses initialization of a local variable Compiler message
In C++ it is illegal to bypass the initialization of a local variable.
This error indicates a goto statement that can transfer control past this local variable.

lllegal parameter to _ _emit_ _ Compiler message
There are some restrictions on inserting literal values directly into your code with the __emit__ function.
For example, you cannot give a local variable as a parameter to __emit__.

Invalid combination of opcode and operands Compiler message

The built-in assembler does not accept this combination of operands.

Possible Causes
* There are too many or too few operands for this assembler opcode.

- The number of operands is correct, but their types or order do not match the opcode.

Invalid register combination (e.g. [BP+BX]) Compiler message
The built-in assembler detected an illegal combination of registers in an instruction.

These are valid index register combinations:
" [BX]

Other index register combinations are not allowed.

Invalid template argument list Compiler message
This error indicates that an illegal template argument list was found.

In a template declaration, the keyword template must be followed by a list of formal arguments
enclosed within < and > delimiters.

Invalid template qualified name 'template::name' Compiler message

When defining a template class member, the actual arguments in the template class name used as the
left operand for the :: operator must match the formal arguments of the template class.

Invalid use of template 'template’ Compiler message

You can only use a template class name without specifying its actual arguments inside a template
definition.

Using a template class name without specifying its actual arguments outside a template definition is
illegal.

Matching base class function 'function’ has different dispatch number
Compiler message

If a DDVT function is declared in a derived class, the matching base class function must have the same
dispatch number as the derived function.

Matching base class function 'function’ is not dynamic Compiler message

If a DDVT function is declared in a derived class, the matching base class function must also be
dynamic.

Member 'member' has the same name as its class Compiler message

A static data member, enumerator, member of an anonymous union, or nested type cannot have the
same name as its class.

Only a member function or a non-static member can have a name that is identical to its class.

Memory reference expected Compiler message
The built-in assembler requires a memory reference.
You probably forgot to put square brackets around an index register operand.

Nontype template argument must be of scalar type Compiler message

A nontype formal template argument must have scalar type; it can have an integral, enumeration, or
pointer type.

operator new must have an initial parameter of type size_t

Operator new[] Must Have an Initial Parameter of Type size_t Compiler message
Operator new can be declared with an arbitrary number of parameters.
It must always have at least one, the amount of space to allocate.

Template argument must be a constant expression Compiler message
A non-type template class argument must be a constant expression of the appropriate type.

This includes constant integral expressions and addresses of objects or functions with external linkage
or members.

Template class nesting too deep: ‘class' Compiler message

The compiler imposes a certain limit on the level of template class nesting. This limit is usually only
exceeded through a recursive template class dependency.

When this nesting limit is exceeded, the compiler issues this error message for all of the nested
template classes. This usually makes it easy to spot the recursion.

This error message is always followed by the fatal error "Out of memory".

Template functions may only have 'type-arguments’ Compiler message
A function template was declared with a non-type argument.
This is not allowed with a template function, as there is no way to specify the value when calling it.

Template function argument ‘argument' not used in argument types Compiler
message

The given argument was not used in the argument list of the function.

The argument list of a template function must use all of the template formal arguments; otherwise, there
is no way to generate a template function instance based on actual argument types.

Templates can only be declared at file level Compiler message
Templates cannot be declared inside classes or functions.

They are only allowed in the global scope, or file level.

For example:

template <class T, class U>
void foo (Ta, Tb)
{

}

// error U is not used

Templates must be classes or functions Compiler message

The declaration in a template declaration must specify either a class type or a function.

The constructor 'constructor’ is not allowed Compiler message
Constructors of the form

X:: (X)

are not allowed.

This is the correct way to write a copy constructor:

X:: (const X¢&).

Too few arguments in template class name ‘template’ Compiler message

A template class name was missing actual values for some of its formal parameters.

Trying to derive a far class from the huge base '‘base’ Compiler message

If a class is declared (or defaults to) huge, all derived classes must also be huge.

Trying to derive a huge class from the far base '‘base’ Compiler message

If a class is declared (or defaults to) far, all derived classes must also be far.

Trying to derive a huge class from the near base ‘base’ Compiler message

If a class is declared (or defaults to) near, all derived classes must also be near.

Trying to derive a near class from the huge base 'base’ Compiler message

If a class is declared (or defaults to) far, all derived classes must also be far.

Type mismatch in parameter ‘parameter’ in template class name ‘template’
Compiler message

The actual template argument value supplied for the given parameter did not exactly match the formal
template parameter type.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is usually "Cannot convert 'type1' to 'type2™ but the mismatch might be due to many
other reasons.

Type mismatch in parameter 'number’ in template class name ‘template’
Compiler message

The actual template argument value supplied for the given parameter did not exactly match the formal
template parameter type.

When compiling C++ programs, this message is always preceded by another message that explains the
exact reason for the type mismatch.

That other message is usually "Cannot convert 'type1' to 'type2™ but the mismatch might be due to many
other reasons.

Bit fields must have integral type Compiler message

In C++, bit fields must have an integral type. This includes enumerations.

Cannot find default constructor to initialize array element of type ‘class’
Compiler message

When declaring an array of a class that has constructors, you must either explicitly initialize every
element of the array, or the class must have a default constructor.

The compiler will define a default constructor for a class unless you have defined any constructors for
the class.

Cannot generate ‘function' from template function 'template’ Compiler message

A call to a template function was found, but a matching template function cannot be generated from the
function template.

Variable 'variable' has been optimized and is not available Compiler message
You have tried to inspect, watch, or otherwise access a variable which the optimizer removed.
This variable is never assigned a value and has no stack location.

Function should return a value Compiler message

This function was declared (maybe implicitly) to return a value.

The compiler found a return statement without a return value, or it reached the end of the function
without finding a return statement.

Either return a value or change the function declaration to return void.

Undefined structure "structure’' Compiler message

Your source file used the named structure on some line before where the error is indicated (probably on
a pointer to a structure) but had no definition for the structure.

This is probably caused by a misspelled structure name or a missing declaration.

Call to function 'function’ with no prototype Compiler message

This message is given if the "Prototypes required" warning is enabled and you call function "function’
without first giving a prototype for that function.

Initializing 'identifier’ with ‘identifier' Compiler warning
(Command-line option to suppress warning: -w-bei)
You're trying to initialize an enum variable to a different type.

For example, the following initialization will result in this warning, because 2 is of type int, not type enum
count:

enum count zero, one, two x = 2;

It is better programming practice to use an enum identifier instead of a literal integer when assigning to
or initializing enum types.

This is an error, but is reduced to a warning to give existing programs a chance to work.

Initialization is only partially bracketed Compiler warning

(Command-line option to display warning: -wpin)

When structures are initialized, braces can be used to mark the initialization of each member of the
structure.

If a member itself is an array or structure, nested pairs of braces can be used.

This ensures that the compiler's idea and your idea of what value goes with which member are the
same.

When some of the optional braces are omitted, the compiler issues this warning.

‘identifier' is declared as both external and static Compiler warning
(Command-line option to suppress warning: -w-ext)

This identifier appeared in a declaration that implicitly or explicitly marked it as global or external, and
also in a static declaration.

The identifier is taken as static.
You should review all declarations for this identifier.

Declare 'type’ prior to use in prototype Compiler warning
(Command-line option to suppress warning: -w-dpu)

When a function prototype refers to a structure type that has not previously been declared, the
declaration inside the prototype is not the same as a declaration outside the prototype.

For example,

int func(struct s *ps); struct s /* ... */ ;

Because there is no "struct s" in scope at the prototype for func, the type of parameter ps is pointer to
undefined struct s, and is not the same as the "struct s" that is later declared.

This will result in later warning and error messages about incompatible types, which would be very
mysterious without this warning message.

To fix the problem, you can move the declaration for "struct s" ahead of any prototype that references it,
or add the incomplete type declaration "struct s;" ahead of any prototype that references "structs".

If the function parameter is a struct, rather than a pointer to struct, the incomplete declaration is not
sufficient.

You must then place the struct declaration ahead of the prototype.

Division by zero Compiler warning
(Command-line option to suppress warning: -w-zdi)
A divide or remainder expression had a literal zero as a divisor.

Ambiguous operators need parentheses Compiler warning
(Command-line option to display warning: -wamb)

This warning is displayed whenever two shift, relational, or bitwise-Boolean operators are used together
without parentheses.

Also, an addition or subtraction operator that appears without parentheses with a shift operator will
produce this warning.

Superfluous & with function Compiler warning
(Command-line option to display warning: -wamp)
An address-of operator (&) is not needed with function name; any such operators are discarded.

Parameter '‘parameter’ is never used Compiler warning

(Command-line option to suppress warning: -w-par)

The named parameter, declared in the function, was never used in the body of the function.
This might or might not be an error and is often caused by misspelling the parameter.

This warning can also occur if the identifier is redeclared as an automatic (local) variable in the body of
the function.

The parameter is masked by the automatic variable and remains unused.

Restarting compile using assembly Compiler warning
(Command-line option to suppress warning: -w-asc)
The compiler encountered an asm with no accompanying or #pragma inline statement.

The compile restarts using assembly language capabilities.
Default = On

Unknown assembler instruction Compiler warning

(Command-line option to suppress warning: -w-asm)
The compiler encountered an inline assembly statement with a disallowed opcode.

Check the spelling of the opcode.
This warning is off by default.

Hexadecimal value contains more than three digits Compiler warning

(Command-line option to suppress warning = -w-big)
Under older versions of C, a hexadecimal escape sequence could contain no more than three digits.

The ANSI standard allows any number of digits to appear as long as the value fits in a byte.

This warning results when you have a long hexadecimal escape sequence with many leading zero digits
(such as \x00045).

Older versions of C would interpret such a string differently.

Constant is long Compiler warning
(Command-1line option to display warning:
The compiler encountered one of the following:

* a decimal constant greater than 32,767 or
an octal, hexadecimal, or decimal constant greater than 65,535 without a letter | or L following it

-wcln)

The constant is treated as a long.

Non-portable pointer comparison Compiler warning
(Command-line option to suppress warning: -w-cpt)

Your source file compared a pointer to a non-pointer other than the constant 0.
You should use a cast to suppress this warning if the comparison is proper.

Temporary used to initialize 'identifier Compiler warning

(Command-line option to suppress warning: -w-1lin)

In C++, a variable or parameter of reference type must be assigned a reference to an object of the same
type.

If the types do not match, the actual value is assigned to a temporary of the correct type, and the
address of the temporary is assigned to the reference variable or parameter.

The warning means that the reference variable or parameter does not refer to what you expect, but to a
temporary variable, otherwise unused.

Related Topics
Example

Example for "Temporary used ..." error messages Compiler message

In this example, function f requires a reference to an int, and c is a char:

f(inté&) ;
char c;
f(c);

Instead of calling f with the address of ¢, the compiler generates code equivalent to the C++ source
code:

int X = ¢, £(X);

Temporary used for parameter '‘parameter’ Compiler warning

OR Temporary used for parameter 'number’
OR Temporary used for parameter ‘parameter’ in call to ‘function’
OR Temporary used for parameter 'number’ in call to 'function’

(Command-line option to suppress warning: -w-1lvc)

In C++, a variable or parameter of reference type must be assigned a reference to an object of the same

type.

If the types do not match, the actual value is assigned to a temporary of the correct type, and the
address of the temporary is assigned to the reference variable or parameter.

The warning means that the reference variable or parameter does not refer to what you expect, but to a

temporary variable, otherwise unused.

The constant member 'identifier' is not initialized Compiler warning
(Command-line option to suppress warning: -w-nci)
This C++ class contains a constant member 'member’ that doesn't have an initialization.

Note that constant members can be initialized only; they can't be assigned to.

Functions containing reserved words are not expanded inline Compiler warning
Also:

Functions containing local destructors are not expanded inline in function ‘function’
(Command-line option to suppress warning: -w-inl)

Reserved Words

Functions containing any of these reserved words can't be expanded inline, even when specified as
inline:

* break
. case
. continue
- do
. for
. goto
- switch
- while

The function is still perfectly legal, but will be treated as an ordinary static (not global) function.
A copy of the function will appear in each compilation unit where it is called.
Local Destructors

You've created an inline function for which the compiler turns off inlining. You can ignore this warning;
the function will be generated out of line.

Base initialization without a class name is now obsolete Compiler warning
(Command-line option to suppress warning: -w-obi)

Early versions of C++ provided for initialization of a base class by following the constructor header with
just the base class constructor parameter list.

It is now recommended to include the base class name.
This makes the code much clearer, and is required when you have multiple base classes.

Old way

derived: :derived(int i) : (i, 10) { ... }

New way
derived: :derived(int i) : base(i, 10) { ... }

Style of function definition is now obsolete Compiler warning
(Command-line option to suppress warning = -w-ofp)

In C++, this old C style of function definition is illegal:

int func(pl, p2) int pl, p2; { /* ... */ }

This practice might not be allowed by other C++ compilers.

Overload is now unnecessary and obsolete Compiler warning
(Command-line option to suppress warning: -w-ovl)
Early versions of C++ required the reserved word "overload" to mark overloaded function names.

C++ now uses a "type-safe linkage" scheme, whereby all functions are assumed overloaded unless
marked otherwise.

The use of the term "overload" should be discontinued.

Assigning 'type' to 'enumeration’ Compiler warning

(Command-line option to suppress warning: -w-eas)

Assigning an integer value to an enum type.

This is an error in C++, but is reduced to a warning to give existing programs a chance to work.

Non-const function 'function’ called for const object Compiler warning
(Command-line option to suppress warning = -w-ncf)

A non-const member function was called for a const object.

(This is an error, but was reduced to a warning to give existing programs a chance to work.)

Non-volatile function ‘function’ called for volatile object Compiler message

(Command-line option to suppress warning: -w-nvf)

In C++, a class member function was called for a volatile object of the class type, but the function was
not declared with volatile following the function header. Only a volatile member function can be called for
a volatile object.

For example, if you have

class c

{
public:
f() volatile;

g();
}s

volatile ¢ vcvar;
it is legal to call vevar. £ (), butnotto call vevar.g().

‘function1’ hides virtual function ‘function2' Compiler warning
(Command-line option to suppress warning: -w-hid)
A virtual function in a base class is usually overridden by a declaration in a derived class.

In this case, a declaration with the same name but different argument types makes the virtual functions
inaccessible to further derived classes.

Possible use of 'identifier' before definition Compiler warning
(Command-line option to display warning: -wdef)
Your source file used the variable 'identifier' in an expression before it was assigned a value.

The compiler uses a simple scan of the program to determine this condition.
If the use of a variable occurs physically before any assignment, this warning will be generated.
Of course, the actual flow of the program can assign the value before the program uses it.

Constant out of range in comparison Compiler warning
(Command-line option to suppress warning: -w-rng)
Your source file includes a comparison involving a constant sub-expression that was outside the range
allowed by the other sub-expression's type.
For example, comparing an unsigned quantity to -1 makes no sense.
To get an unsigned constant greater than 32,767 (in decimal), you should either
* cast the constant to unsigned--for example, (unsigned) 65535, or
. append a letter u or U to the constant--for example, 65535u.
Whenever this message is issued, the compiler still generates code to do the comparison.

If this code ends up always giving the same result (such as comparing a char expression to 4000), the
code will still perform the test.

Redefinition of 'macro’ is not identical Compiler warning

(Command-line option to suppress warning: -w-dup)
Your source file redefined the macro 'ident' using text that was not exactly the same as the first definition
of the macro.

The new text replaces the old.

Array variable ‘identifier' is near Compiler warning
(Command-line option to suppress warning: -w-ias)

When you use set the Far Data Threshold option, the compiler automatically makes any global variables
that are larger than the threshold size be far.

When the variable is an initialized array with an unspecified size, its total size is not known when the
compiler must decide whether to make it near or far, so the compiler makes it near.

The compiler issues this warning if the number of initializers given for the array causes the total variable
size to exceed the data size threshold.

If the fact that the compiler made the variable be near causes problems, make the offending variable
explicitly far.

To do this, insert the keyword "far" immediately to the left of the variable name in its definition.

Possibly incorrect assignment Compiler warning
(Command-line option to suppress warning: -w-pia)

This warning is generated when the compiler encounters an assignment operator as the main operator
of a conditional expression (part of an if, while, or do-while statement).

This is usually a typographical error for the equality operator.

If you want to suppress this warning, enclose the assignment in parentheses and compare the whole
thing to zero explicitly.

For example, this code
if (a = b)

should be rewritten as
if ((a = b) !'= 0)

Conversion may lose significant digits Compiler warning
(Command-line option to display warning: -wsig)

For an assignment operator or some other circumstance, your source file requires a conversion from
long or unsigned long to int or unsigned int type.

Because int type and long type variables don't have the same size, this kind of conversion might alter
the behavior of a program.

No declaration for function 'function’ Compiler warning
(Command-line option to display warning: -wnod)

This message is given if you call a function without first declaring that function.

In C, you can declare a function without presenting a prototype, as in

int func();

In C++, every function declaration is also a prototype; this example is equivalent to
int func(void);

The declaration can be either classic or modern (prototype) style.

Code has no effect Compiler warning
(Command-line option to suppress warning: -w-eff)

This warning is issued when the compiler encounters a statement with some operators that have no
effect.

For example, the statement
a + b;
has no effect on either variable.

The operation is unnecessary and probably indicates a bug.

'identifier' is assigned a value that is never used Compiler warning
(Command-line option to suppress warning: -w-aus)

The variable appears in an assignment, but is never used anywhere else in the function just ending.
The warning is indicated only when the compiler encounters the closing brace.

lll-formed pragma Compiler warning
(Command-line option to suppress warning: -w-ill)
A pragma does not match one of the pragmas expected by the compiler.

Call to function with no prototype Compiler warning
(Command-line option to suppress warning: -w-pro)

This message is given if the "Prototypes required" warning is enabled and you call a function without
first giving a prototype for that function.

Suspicious pointer conversion Compiler warning

(Command-line option to suppress warning: -w-sus)

The compiler encountered some conversion of a pointer that caused the pointer to point to a different
type.

You should use a cast to suppress this warning if the conversion is proper.

A common cause of this warning is when the C compiler converts a function pointer of one type to
another (the C++ compiler generates an error when asked to do that). It can be suppressed by doing a
typecast. Here is a common occurrence of it for Window programmers:

#define STRICT
#include <windows.h>

LPARAM export WndProc(HWND , UINT , WPARAM , LPARAM);

test () {
WNDCLASS wc;
wc.lpfnWndProc = WndProc; //warning

}
It is suppressed by making the assignment to Ipfn\WndProc as follows:
wc.lpfnWndProc = (WNDPROC) WndProc;

Unreachable code Compiler warning

(Command-line option to suppress warning: -w-rch)

A break, continue, goto, or return statement was not followed by a label or the end of a loop or function.
The compiler checks while, do,, and for loops with a constant test condition, and attempts to recognize
loops that can't fall through.

Both return and return of a value used Compiler warning

(Command-line option to suppress warning: -w-ret)
The current function has return statements with and without values.

This is legal C, but almost always an error.
Possibly a return statement was omitted from the end of the function.

Nonportable pointer conversion Compiler message

A nonzero integral value is used in a context where a pointer is needed or where an integral value is
needed; the sizes of the integral type and pointer are the same.

Use an explicit cast if this is what you really meant to do.

Void functions may not return a value Compiler warning
(Command-line option to suppress warning: -w-voi)

Your source file declared the current function as returning void, but the compiler encountered a return
statement with a value.

The value of the return statement will be ignored.

Structure passed by value Compiler warning
(Command-line option to display warning: -wstv)
This warning is generated any time a structure is passed by value as an argument.

It is a frequent programming mistake to leave an address-of operator (&) off a structure when passing it
as an argument.

Because structures can be passed by value, this omission is acceptable.
This warning provides a way for the compiler to warn you of this mistake.

Mixing pointers to different ‘char’ types Compiler warning
(Command-line option to display warning: -wucp)

You converted a signed char pointer to an unsigned char pointer, or vice versa, without using an explicit
cast. (Strictly speaking, this is incorrect, but it is often harmless.)

'identifier' is declared but never used Compiler warning
(Command-line option to display warning: -wuse)

This message can occur in the case of either local or static variables. It occurs when the source file

declares the named local or static variable as part of the block just ending, but the variable was never
used.

In the case of local variables, this warning occurs when the compiler encounters the closing brace of the
compound statement or function.

In the case of static variables, this warning occurs when the compiler encounters the end of the source
file.

Condition is always true OR Condition is always false Compiler warning
(Command-line option to suppress warning: -w-ccc)

Whenever the compiler encounters a constant comparison that (due to the nature of the value being
compared) is always true or false, it issues this warning and evaluates the condition at compile time.

For example:

void proc (unsigned x) {
if (x >= 0) /* always 'true' */

{
}

Array size for ‘delete' ignored Compiler warning
(Command-line option to suppress warning: -w-dsz)
The C++ IDE issues this warning when you've specified the array size when deleting an array.

With the new C++ specification, you don't need to make this specification. The compiler ignores this
construct.

This warning lets older code compile.

Base class 'class1' is also a base class of 'class2' Compiler warning
(Command-line option to suppress warning: -w-ibc)

A class inherits from the same base class both directly and indirectly. It is best to avoid this non-
portable construct in your program code.

Bit fields must be signed or unsigned int Compiler warning

(Command-line option to display warning: -wbbf)

In ANSI C, bit fields may not be of type signed char or unsigned char.

When you're not compiling in strict ANSI mode, the compiler allows these constructs, but flags them with
this warning.

Overloaded prefix operator 'operator' used as a postfix operator Compiler
warning

(Command-line option to suppress warning: -w-pre)

With the latest C++ specification, it is now possible to overload both the prefix and postfix versions of the
++ and -- operators.

Whenever the prefix operator is overloaded, but is used in a postfix context, the compiler uses the prefix
operator and issues this warning.

This allows older code to compile.

Use qualified name to access member type ‘identifier' Compiler warning

(Command-line option to suppress warning: -w-nst)

In previous versions of the C++ specification, typedef and tag names declared inside classes were
directly visible in the global scope.

In the latest specification of C++, these names must be prefixed with class::qualifier ifthey are
to be used outside of their class scope.

The compiler issues this warning whenever a name is uniquely defined in a single class. The compiler
permits this usage without class: :. This allows older versions of code to compile.

Conversion to 'type’ will fail for members of virtual base ‘class’ Compiler
warning

(Command-line option to suppress warning: -w-mpc)
This warning is issued only if the -Vv option is in use.

The warning may be issued when a member pointer to one type is cast to a member pointer of another
type and the class of the converted member pointer has virtual bases.

Encountering this warning means that at runtime, if the member pointer conversion cannot be
completed, the result of the cast will be a NULL member pointer.

Stack overflow Runtime message

This error is reported when you compile a function with the Test Stack Overflow option on, but there is
not enough stack space to allocate the function's local variables.

This error can also be caused by the following:

* infinite recursion, or
. an assembly language procedure that does not maintain the stack project
. a large array in a function

Abnormal program termination Runtime message
The program called abort because there wasn't enough memory to execute.
This message can be caused by memory overwrites.

Divide errorRuntime message

You tried to divide an integer by zero, which is illegal.

Floating point error: Divide by 0 Runtime messages

OR Floating point error: Domain

OR Floating point error: Overflow

These fatal errors result from a floating-point operation for which the result is not finite:
* Divide by 0 means the result is +INF or -INF exactly, suchas 1.0/0.0.

. Domain means the result is NAN (not a number), like 0.0/0.0.
. Overflow means the result is + INF (infinity) or —-INF with complete loss of precision, such as

assigning 1e200*1e200 to a double.

Floating point error: Partial loss of precision Runtime messages

OR Floating point error: Underflow
These exceptions are masked by default, because underflows are converted to zero and losses of
precision are ignored.

Floating point error: Stack fault Runtime message

The floating-point stack has been overrun. This error may be due to assembly code using too many
registers or due to a misdeclaration of a floating-point function.

The program prints the error message and calls abort and _exit.

These floating-point errors can be avoided by masking the exception so that it doesn't occur, or by
catching the exception with signal.

Type ‘typename' may not be defined here Compiler message

Class and enumeration types may not be defined in a function return type, a function argument type, a
conversion operator type, or the type specified in a cast.

You must define the given type before using it in one of these contexts.

Note: This error message is often the result of a missing semicolon (;) for a class declaration. You

might want to verify that all the class declarations preceding the line on which the error
occurred end with a semicolon.

Cannot call 'main' from within the program Compiler message
C++ does not allow recursive calls of main().

Application is running Runtime message

The application you tried to run is already running.

For Windows, make sure the message loop of the program has properly terminated.
PostQuitMessage (0) ;

Maximum precision used for member pointer type 'type' Compiler warning
(Command-line option to suppress warning: -w-mpd)

When a member pointer type is declared, its class has not been fully defined, and the -vmd option has
been used, the compiler has to use the most general (and the least efficient) representation for that
member pointer type. This can cause less efficient code to be generated (and make the member pointer
type unnecessarily large), and can also cause problems with separate compilation; see the -vm
compiler switch for details.

Include files nested too deep Compiler message

This message flags (directly or indirectly) recursive #include directives.

Cannot take address of 'main' Compiler message
In C++, it is illegal to take the address of the main function.

Ambiguous override of virtual base member 'base_function': ‘derived_function’
Compiler message

A virtual function in a virtual base class was overridden with two or more different functions along
different paths in the inheritance hierarchy. For example,

struct VB

{

virtual f();

}i

struct A:virtual VB
{
virtual f();

}i

struct B:virtual VB
virtual £();

}

Cannot throw 'type’ -- ambiguous base class 'base’ Compiler message

It is not legal to throw a class that contains more than one copy of a (non-virtual) base class.

Exception specification not allowed here Compiler message

Function pointer type declarations are not allowed to contain exception specifications.

Exception handling variable may not be used here Compiler message

An attempt has been made to use one of the exception handling values that are restricted to particular
exception handling constructs, such as GetExceptionCode().

Functions cannot return arrays or functions Compiler message

A function was defined to return an array or a function. Check to see if either the intended return was a
pointer to an array or function (and perhaps the * is missing) or if the function definition contained a
request for an incorrect datatype.

Duplicate handler for ‘'type1’, already had 'type2' Compiler message

It is not legal to specify two handlers for the same type.

The name handler must be lastCompiler message

In a list of catch handlers, if the specified handler is present, it must be the last handler in the list (that is,
it cannot be followed by any more catch handlers).

VIRDEF name conflict for 'function' Compiler message

The compiler must truncate mangled names to a certain length because of a name length limit that is
imposed by the linker. This truncation may (in very rare cases) cause two names to mangle to the same
linker name. If these names happen to both be VIRDEF names, the compiler issues this error message.
The simplest workaround for this problem is to change the name of 'function' so that the conflict is
avoided.

Goto into an exception handler is not allowed Compiler message

It is not legal to jump into a try block, or an exception handler that is attached to a try block.

‘catch’ expected Compiler message

In a C++ program, a 'try' block must be followed by at least one 'catch' block.

Type 'type’ is not a defined class with virtual functions Compiler message

A dynamic_cast was used with a pointer to a class type that is either undefined, or doesn't have any
virtual member functions.

> expected Compiler message

A new-style cast (for example, dynamic_cast) was found with a missing closing ">".

'type’ is not a polymorphic class type Compiler message

This error is generated if the -RT compiler option (for runtime type information) is disabled and either
- dynamic_cast was used with a pointer to a class

or
- you tried to delete a pointer to an object of a class that has a virtual destructor

__except' or'__finally' expected following *__try' Compiler message

In C,a'__try block' must be followed by a'__except' or'__finally' handler block.

Reference member 'member’ initialized with a non-reference parameter
Compiler message

An attempt has been made to bind a reference member to a constructor parameter. Since the parameter
will cease to exist the moment the constructor returns to its caller, this will not work correctly.

Non-ANSI keyword used: 'keyword' Compiler warning
(Command-line option to display warning: -wnak)

A non-ANSI keyword (such as ' fastcall') was used when strict ANSI conformance was requested via
the -A option.

Handler for ‘type1’ hidden by previous handler for 'type2' Compiler warning
(Command-line option to suppress warning: -w-hch)

This warning is issued when a handler for a type 'D' that is derived from type 'B' is specified after a
handler for B', since the handler for 'D' will never be invoked.

Cannot create precompiled header: 'reason’ Compiler warning
(Command-line option to suppress warning: -w-pch)

This warning is issued when pre-compiled headers are enabled but the compiler could not generate
one, for one of the following reasons:

Reason Explanation

write failed The compiler could not write to the pre-compiled header file. This is
usually due to the disk being full.

code in header One of the headers contained a non-inline function body.

initialized data in header One of the headers contained a global variable definition (in C, a global

variable with an initializer; in C++ any variable not declared as 'extern’).

header incomplete The pre-compiled header ended in the middle of a declaration, for
example, inside a class definition (this often happens when there is a
missing"}" in a header file).

Use "> >' for nested templates Instead of ">>' Compiler warning
(Command-line option to suppress warning: -w-ntd)

Whitespace is required to separate the closing ">" in a nested template name, but since it is an
extremely common mistake to leave out the space, the compiler accepts a ">>" with this warning.

Initializing enumeration with type Compiler message

You're trying to initialize an enum variable to a different type. For example,

enum count { zero, one, two } x = 2;
will result in this warning, because 2 is of type int, not type enum count. It is better programming practice
to use an enum identifier instead of a literal integer when assigning to or initializing enum types.

This is an error, but is reduced to a warning to give existing programs a chance to work.

Main must have a return type of int Compiler message

In C++, function main has special requirements, one of which is that it cannot be declared with any
return type other than int.

'ident’ is obsolete Compiler warning
(Command-line option to suppress warning: -w-obs)

Issues a warning upon usage for any "C" linkage function that has been specified. This will warn about
functions that are "obsolete".

Here's an example of it's usage:
#ifdef cplusplus
extern "C" {

#endif

void my func(void);
#ifdef cplusplus

}

fendif

#pragma obsolete my func

main ()
{
my func(); // Generates warning about obsolete function

}

Unexpected termination during compilation [Module Seg#:offset] Compiler
message

OR Unexpected termination during linking [Module Seg#:offset]

If either of these errors occur, it indicates a catastrophic failure of the Borland tools. You should contact
Borland to report the problem and to find a potential work around for your specific case. By isolating the
test case as well as possible, you will increase the chance for either Borland or yourself to find a work
around for the problem.

Commonly, compiler failures can be worked around by moving the source code that is currently being
compiled. Simple cases might be switching the order of variable declarations, or functions within the
source module. Moving the scope and storage of variables also helps in many cases.

For linker failures, you can reduce the amount of debugging information that the linker has to work with.
Try compiling only one or two modules with debug information instead of an entire project.

Similarly, switching the order in which object modules are handed to the linker can work around the
problem. The IDE hands objects to the linker in the order that they are listed in the project tree. Try
moving a source up or down in the list.

Compiler stack overflow Compiler message

The compiler's stack has overflowed. This can be caused by a number of things, among them deeply
nested statements in a function body (for example, if/else) or expressions with a large number of
operands. You must simplify your code if this message occurs. Adding more memory to your system will
not help.

286/287 instructions not enabled Compiler message

Use the -2 command-line compiler option to enable 286/287 opcodes. Be aware that the resulting code
cannot be run on 8086- and 8088-based machines.

Incorrect option: Compiler message

An error has occurred in either the configuration file or a command-line option. The compiler may not
have recognized the configuration file parameter as legal; check for a preceding hyphen (-), or the
compiler may not have recognized the command-line parameter as legal.

This error can also occur if you use a #pragma option in your code with an invalid option.

Unable to execute command ‘command’ Compiler message
TLINK or TASM cannot be found, or possibly the disk is bad.

Cannot evaluate function call Compiler message
The error message is issued if someone tries to explicitly construct an object or call a virtual function.

In integrated debugger expression evaluation, calls to certain functions (including implicit conversion
functions, constructors, destructors, overloaded operators, and inline functions) are not supported.

Not a valid expression format type Compiler message

Invalid format specifier following expression in the debug evaluate or watch window. A valid format
specifier is an optional repeat value followed by a format character (c, d, f[n], h, x, m, p, r, or s).

Cannot access an inactive scope Compiler message

You have tried to evaluate or inspect a variable local to a function that is currently not active. (This is an
integrated debugger expression evaluation message.)

Unable to create turboc.$In Compiler message

The compiler cannot create the temporary file TURBOC.$LN because it cannot access the disk or the
disk is full.

Conversion of near pointer not allowed Compiler message

A near pointer cannot be converted to a far pointer in the expression evaluation box when a program is
not currently running. This is because the conversion needs the current value of DS in the user program,

which doesn't exist.

'new' and 'delete' not supported Compiler message

The integrated debugger does not support the evaluation of the new and delete operators.

Exception handling not enabled Compiler message
A'try' block was found with the exception handling disabled.

No file names given Compiler message

The command line contained no file names. You must specify a source file name.

Multiple base classes not supported for VCL classes
VCL style classes cannot have multiple base classes.
Example:

struct declspec (delphiclass) basel {};
struct declspec(delphiclass) base2 {};
struct derived : basel, base?2 {}; // Error

Compiler message

Overloaded function resolution not supported Compiler message

In integrated debugger expression evaluation, resolution of overloaded functions or operators is not
supported, not even to take an address.

Templates not supported Compiler message

An error has occurred while using the command-line utility H2ASH. See the online file "tsm_util.txt" for
further information about this utility.

No type information Compiler message

The integrated debugger has no type information for this variable. Ensure that you've compiled the
module with debug information. If it has, the module may have been compiled by another compiler or

assembler.

Virtual base classes not supported for VCL classes Compiler message

VCL style classes cannot be derived virtually, not even from other VCL style classes.
Example:

struct declspec(delphiclass) base ({};
struct derived : virtual base {}; // Error

Overlays only supported in medium, large, and huge memory models
Compiler message

Only programs using the medium, large, or huge memory models can be overlaid.

Repeat count needs an Ivalue Compiler message

The expression before the comma (,) in the Watch or Evaluate window must be an accessible region of
storage. For example, expressions like this one are not valid:

i++,10d

x = vy, 10m

Can't inherit non-RTTI class from RTTI base Compiler message

OR Can't inherit RTTI class from non-RTTI base

When virtual functions are present, the RTTI attribute of all base classes must match that of the derived
class.

Side effects are not allowed Compiler message

Side effects such as assignments, ++, or -- are not allowed in the debugger watch window. A common
error is to use x = y (not allowed) instead of x ==y to test the equality of x and y.

'member’ is not a valid template type member Compiler message

A member of a template with some actual arguments that depend on the formal arguments of an
enclosing template was found not to be a member of the specified template in a particular instance.

'%s' requires runtime initialization/finalization Compiler message

This message is issued when a global variable that is declared as __thread (a Win32-only feature) or a
static data member of a template class is initialized with a non-constant initial value.

This message is also issued when a global variable that is declared as __thread (a Win32-only feature)
or a static data member of a template class has the type class with constructor or destructor.

Cannot use tiny or huge memory model with Windows Compiler message

This message is self-explanatory. Use small, medium, compact, or large instead.

Declaration ignored Compiler warning

(Command-line option to suppress warning: -w-dig)
An error has occurred while using the command-line utility H2ASH. See the online file "tsm_ util.txt" for
further information about this utility.

Default = On

Macro definition ignored Compiler warning
(Command-line option to suppress warning: -w-nma)

An error has occurred while using the command-line utility H2ASH. See the online file "tsm_ util.txt" for
further information about this utility.

Constructor initializer list ignored Compiler warning
(Command-line option to suppress warning: -w-ncl)

An error has occurred while using the command-line utility H2ASH. See the online file "tsm_ util.txt" for
further information about this utility.

Function body ignored Compiler warning
(Command-line option to suppress warning: -w-nfd)

An error has occurred while using the command-line utility H2ASH. See the online file "tsm_ util.txt" for
further information about this utility.

Initializer for object 'x' ignored Compiler warning
(Command-line option to suppress warning: -w-nin)

An error has occurred while using the command-line utility H2ASH. See the online file "tsm_ util.txt" for
further information about this utility.

Functions with exception specifications are not expanded inline Compiler
message

Also: Functions taking class by value agruments are not expanded inline

Exception specifications are not expanded inline: Check your inline code for lines containing exception
specification.

Functions taking class-by-value argument(s) are not expanded inline: When exception handling is
enabled, functions that take class arguments by value cannot be expanded inline.

Note: Functions taking class parameters by reference are not subject to this restriction.

#undef directive ignored Compiler warning
(Command-line option to suppress warning: -w-nmu)

An error has occurred while using the command-line utility H2ASH. See the online file "tsm_ util.txt" for
further information about this utility.

Declaration of static function function ignored Compiler warning
(Command-line option to suppress warning: -w-nsf)

An error has occurred while using the command-line utility H2ASH. See the online file "tsm_ util.txt" for
further information about this utility.

Temporary used for parameter '???' Compiler message

In C++, a variable or parameter of reference type must be assigned a reference to an object of the same
type. If the types do not match, the actual value is assigned to a temporary of the correct type, and the
address of the temporary is assigned to the reference variable or parameter.

The warning means that the reference variable or parameter does not refer to what you expect, but to a
temporary variable, otherwise unused.
In the following example, function f requires a reference to an int, and c is a char:

f(int &);
char c;
f(c);

Instead of calling f with the address of c, the compiler generates code equivalent to the C++ source
code:

int X = ¢, f£(X);

Temporary used for parameter 2 in call to '???' Compiler message

In C++, a variable or parameter of reference type must be assigned a reference to an object of the same
type. If the types do not match, the actual value is assigned to a temporary of the correct type, and the
address of the temporary is assigned to the reference variable or parameter.

The warning means that the reference variable or parameter does not refer to what you expect, but to a
temporary variable, otherwise unused.
In the following example, function f requires a reference to an int, and c is a char:

f(int &);
char c;
f(c);

Instead of calling f with the address of c, the compiler generates code equivalent to the C++ source
code:

int X = ¢, f£(X);

Internal compiler error Compiler message

An error occurred in the internal logic of the compiler. This error shouldn't occur in practice, but is
generated in the event that a more specific error message is not available.

DPMI programs must use the large memory model Compiler message

DPMI programs can only use large memory model. Tiny, Small, Medium, Compact, and Huge memory
models are not allowed.

Recursive template function: "™ instantiated " Compiler message

The compiler has detected a recursive template function instance. For example:
template<class T> void £(T x)
{

£((T*)0); // recursive template function!

}

void main ()
{

£(0);
}

The compiler will issue one message per each nesting of the recursive instantiation, so it is usually quite
obvious where the recursion has occurred. To fix a recursive template, either change the dependencies,
or provide a specialized version that will stop the recursion. For example, adding the following function
definition to the above program will remove the endless recursion:

void f(int *¥*)

{

}

Class 'classname’ is abstract because of 'member = 0" Compiler message

This message is issued immediately after the "Cannot create instance of abstract class 'classname
error message and is intended to make it easier to figure out why a particular class is considered
abstract by the compiler.

For example, consider the following example of an illegal attempt to instantiate an abstract class:

struct VB
{

virtualvoid £() = 0;
virtualvoid g() = 0;
virtualvoid hi() = 0;

bi
struct D1 : virtual VB
{
void £f();
}i
struct D2 : virtual VB
{
void h();
}i
struct DD : D1, D2
{
}

v; // error 'DD' is an abstract class

The above code will cause the following two error messages:

Error TEST.CPP 21: Cannot create instance of abstract class 'DD'
Error TEST.CPP 21: Class 'DD' is abstract because of 'VB::g() = 0'

User-defined message Compiler message
The error message on which you have requested Help, is a user-defined warning.

In C++Builder code, user-defined messages are introduced by using the #pragma message compiler
syntax.

Note: In addition to messages that you introduce with the #pragma message compiler syntax, user-
defined warnings can be introduced by third party libraries. Should you require Help about a third
party warning, please contact the vendor of the header file that issued the warning.

Internal code generator error Compiler message

An error has occurred in the internal logic of the code generator. Contact Borland technical support.

Conversions of class to itself or base class not allowed Compiler message

You tried to define a conversion operator to the same class or a base class.

Cannot declare or define 'identifier' here = Compiler message

You tried to declare a template in an illegal place or a namespace member outside of its namespace.

Invalid use of namespace 'identifier' Compiler message

A namespace identifier was used in an illegal way, for example, in an expression.

Cannot define 'identifier' using a namespace alias Compiler message

You cannot use a namespace alias to define a namespace member outside of its namespace.

Namespace name expected Compiler message

The name of a namespace symbol was expected.

Namespace member ‘identifier' declared outside its namespace Compiler
message

Namespace members must be declared inside their namespace. You can only use explicit qualification
to define a namespace member (for example, to give a body for a function declared in a namespace).
The declaration itself must be inside the namespace.

Invalid template member definition Compiler message

After the declarator of a template member, either a semicolon, an initialization, or a body was expected,
but some other, illegal token was found. This message appears when a template member is declared
outside of the template, but the syntax was wrong.

Cannot use local type 'identifier' as template argument Compiler message

Alocal type was used in an actual template type argument, which is illegal.

CodeGuarded programs must use the large memory model and be targeted for
Windows Compiler message

Only issued by the 16-bit compiler. Programs that have CodeGuard enabled must use the large memory
model and be targeted for Windows.

Local data exceeds segment size limit Compiler message

The local variables in the current function take up more than 64K.

RTTI not available for expression evaluation Compiler message

Expressions requiring RTTI are not supported by the expression evaluator in the integrated debugger.
This error message is only issued by the expression evaluator (if you try to Inspect, Watch, or Evaluate),
not by the compiler.

Specialization after first use of template Compiler message

A new ANSI C++ rule requires that a specialization for a function template be declared before its first
use. This error message is only issued when the ANSI conformance option (-A) is active.

Earlier declaration of 'identifier' Compiler message

This error message only shows up after the messages "Multiple declaration for 'identifier™ and "Type
mismatch in redeclaration of 'identifier. It tells you where the previous definition of the identifier in
question was found by the compiler, so you don't have to search for it.

Templates and overloaded operators cannot have C linkage Compiler message

You tried to use a linkage specification with a template or overloaded operator. The most common cause
for this error message is having the declaration wrapped in an extern "C" { linkage specification.

Structure packing size has changed Compiler warning
(Command-line option to suppress warning: -w-pck)

This warning message is issued when the structure alignment is different after including a file than it was
before including that file.

The intention is to warn you about cases where an include file changes structure packing, but by
mistake doesn't restore the original setting at the end. If this is intentional, you can give a #pragma
nopackwarning directive at the end of an include file to disable the warning for this file.

The warning can be disabled altogether by #pragma warn -pck.

Continuation character \ found in // comment Compiler warning
(Command-line option to suppress warning: -w-com)

This warning message is issued when a C++ // comment is continued onto the next line with backslash
line continuation.

The intention is to warn about cases where lines containing source code unintentionally become part of
a comment because that comment happened to end in a backslash.

If you get this warning, check carefully whether you intend the line after the // comment to be part of the
comment. If you don't, either remove the backslash or put some other character after it. If you do, it's
probably better coding style to start the next comment line with // also.

The warning can be disabled altogether with #pragma warn -com.

Assembler stack overflow Compiler message

The assembler ran out of memory during compilation. Review the portion of code flagged by the error
message to ensure that it uses memory correctly.

Call to undefined function 'function’ Compiler message

Your source file declared the current function to return some type other than void in C++ (or int in C),
but the compiler encountered a return with no value. All int functions are exempt in C because in old
versions of C, there was no void type to indicate functions that return nothing.

Null pointer assignment Runtime message

When a small or medium memory model program exits, a check is made to determine if the contents of
the first few bytes within the program's data segment have changed. These bytes would never be
altered by a working program. If they have been changed, this message is displayed to inform you that
(most likely) a value was stored to an uninitialized pointer.

The program might appear to work properly in all other respects; however, this is a serious bug which
should be attended to immediately. Failure to correct an uninitialized pointer can lead to unpredictable
behavior (including locking the computer up in the large, compact, and huge memory models).

You can use the integrated debugger to track down null pointers.

Pure virtual function called Runtime message

This is a runtime error. It is generated if the body of a pure virtual function was never generated and
somehow the compiler tried to call it.

Invalid ‘expression’ in scope override Compiler message

The evaluator issues this message when there is an error in a scope override in an expression you are
watching or inspecting. You can specify a symbol table, a compilation unit, a source file name, etc. as
the scope of the expression, and the message will appear whenever the compiler cannot access the

symbol table, compilation unit, or whatever.

String literal not allowed in this context Compiler message

This error message is issued by the evaluator when a string literal appears in a context other than a
function call.

The function 'function' is not available Compiler message

You tried to call a function that is known to the evaluator, but which was not present in the program
being debuggedfor example, an inline function.

Missing 'identifier’ in scope override Compiler message

The syntax of a scope override is somehow incomplete. The evaluator issues this message.

Cannot take address of member function ‘function’ Compiler message

An expression takes the address of a class member function, but this member function was not found in
the program being debugged. The evaluator issues this message.

Invalid function call Compiler message

A requested function call failed because the function is not available in the program, a parameter cannot
be evaluated, and so on. The evaluator issues this message.

Printf/Scanf floating-point formats not linked Runtime message

Floating-point formats contain formatting information that is used to manipulate floating-point numbers in
certain runtime library functions, such as scanf() and atof(). Typically, you should avoid linking the
floating-point formats (which take up about 1K) unless they are required by your application. However,
you must explicitly link the floating-point formats for programs that manipulate fields in a limited and
specific way.

Refer to the following list of potential causes (listed from most common to least common) to determine
how to resolve this error:

. CAUSE: Floating point set to None. You set the floating-point option to None when it should be
set to either Fast or Normal.

FIX: Set Floating Point to Fast or Normal.

. CAUSE: Either the compiler is over-optimizing or the floating-point formats really do need to be
linked. You need the floating-point formats if your program manipulates floats in a limited and specific
way. Under certain conditions, the compiler will ignore floating-point usage in scanf(). For example, this
may occur when trying to read data into a float variable that is part of an array contained in a structure.

FIX: Add the following code to one source module:

extern floatconvert;
#pragma extref floatconvert

- CAUSE: You forgot to put the address operator & on the scanf variable expression. For
example:
float foo;

scanf ("%f", foo);
FIX: Change the code so that the & operator is used where needed. For example, change the above
code to the following:

float foo;
scanf ("%f", &foo);

lllegal number suffix
A numeric literal is followed by a suffix that is not recognized by the compiler.
Example:

int 1 = 12341i15; // Error: no 115 suffix
int j 1234i16; // OK

Circular property definition
Indicates that a property definition relies directly or indirectly on itself.

Example:

struct pbase
{
int property ipl = {read = ip2, write = ip2};
int property ip2 = {read = ipl, write = ipl};
}i

The above code sample will cause this error message on any usage of ip1 or ip2.

access specifier of property property must be a member function

Only member functions or data members are allowed in access specifications of properties.
Example:

int GlobalGetter (void)

{

return O;

}

struct pbase
{

int MemberGetter (void) {return 1;}

int property ipl = { read = GlobalGetter }; // Error
int property ip2 { read = MemberGetter }; // OK

}s

Parameter mismatch in access specifier specifier of property property

The parameters of the member function used to access a property don’t match the expected
parameters.

Example:

struct pbase

{
void Setterl (void) {1}
void Setter2 (int) {}

int property ipl = { write Setterl }; // Error
int property ip2 = { write = Setter2 }; // OK

Storage specifier not allowed for array properties
Array properties cannot have a storage specification.
Example:

struct pbase
{
int property aplchar *] =

{ stored = false }; // Error
}s

VCL style classes must be constructed using operator new

VCL style classes cannot be statically defined. They have to be constructed on the heap.
Example:
void foo (void)
{
Tobject ol; // Error;
Tobject *o02 = new TObject();

VCL style classes must be caught by pointer

It is only possible to catch a VCL style object by pointer.
Example:

void foo (TObject *p)
{
try
{
throw (p) ;
}

catch (TObject o) // Error
{
}

catch (TObject *op) // OK
{
}

VCL classes have to be derived from VCL classes

It is not allowed to derive a VCL style class from a non-VCL style class.
Example:

struct base // base not a VCL style class
{
int Dbasemem;

}i

struct _ declspec(delphiclass) derived : base // or

{
int derivedmem;

}s

Specifier requires VCL style class type

The stored, default, and nodefault storage specifiers are only allowed within property declarations of
VCL style class types.

Example:

struct regclass

{

int property ipl = { stored = false }; // Error
int property ip2 = { default = 42 }; // Error
int property ip3 = { nodefault ; // Error
bi
struct declspec(delphiclass) vclclass
{
int property ipl = { stored = false }; // OK

int property ip2 = { default = 42 }: // OK
int property ip3 = { nodefault }; // OK

}s

VCL style classes require exception handling to be enabled

If you are using VCL style classes in your program, you cannot turn off exception handling (compiler
option -x-) when compiling your source code.

__classid requires definition of TClass as a pointer type

To use __ classid, there needs to be a definition for TClass which can be found in vcl.h.
Example:

// #include <vcl/vcl.h> missing

struct declspec(delphiclass)bar
{
virtual int barbara(void);

}i

void *foo (void)
{

return classid(bar); // Error

}

__published or __automated sections only supported for VCL classes

The compiler needs to generate a special kind of vtable for classes containing ___published and
__automated sections. Therefore, these sections are only supported for VCL style classes.
Example:

struct regclass
{

int mem;
__published: // Error: no VCL style class
int property ip = { read = mem, write = mem };

bi

struct declspec(delphiclass) vclclass
{
int mem;
__published: // OK
int property ip = { read = mem, write = mem };

}s

Static data members not allowed in __published or __automated sections

Only nonstatic data members and member functions are allowed in __published or __automated
sections.

Example:

struct declspec(delphiclass) vclclass
{
__published:
static int staticDataMember; // Error

}i

lllegal type type in __automated section
Only certain types are allowed in __automated sections.
Example:

struct declspec(delphiclass) vclclass
{
__automated:
int fastcall foolInt (int); // OK
long fastcall foolLong (long); // Error: long illegal
}i

Data member definition not allowed in __automated section

Only member function declarations are allowed in __automated sections.
Example:

struct declspec(delphiclass) vclclass

{

__automated:
int fastcall foolInt (int); // OK
int memInt; // Error

}i

Only __ fastcall functions allowed in __automated section

The calling convention for functions declared in an __automated section must be __ fastcall.
Example:

struct declspec(delphiclass) vclclass
{
__automated:
int fastcall foolInt (int); // OK
int cdecl barInt (int); // Error
}i

Constructors and destructors not allowed in __automated section Compiler error
Only member function declarations are allowed in __automated sections.
Example:

struct declspec(delphiclass) vclclass

{

__automated:
int fastcall foolInt (int); // OK
vclclass () {1} // Error

}i

Redeclaration of property not allowed in __automated section Compiler error

If you declare a property in an __automated section it has be a new declaration. Property hoisting is not
allowed.

Example:

struct declspec (delphiclass) vclbaseclass
{

int _ fastcall Get(void);

void __fastcall Set(int);

int property ipl = { read = Get, write
bi

Set };

struct vclderivedclass : vclbaseclass
{

int fastcall NewGetter (void);
__automated:

__property ipl; // Error

int property ip2 = { read = Get, write
}i

Set }; // OK

Only read or write clause allowed in property declaration in __automated section
Compiler error

Storage specifiers stored, default, and nodefault are not allowed in property declarations in __automated
sections.

Example:

struct declspec(delphiclass) vclclass

{

int _ fastcall Get(void);
__automated:
int property ipl = { read = Get }; // OK

int property ip2
}i

{ read = Get, default = 42 }; // Error

Dispid number already used by identifier = Compiler error
Dispids must be unique and the compiler checks for this.
Example:

struct declspec(delphiclass) vclclass
{
__automated:
int fastcall fool(void) _ dispid(42); // OK
int fastcall foo2(void) _ dispid(42); // Error
}i

Dispid only allowed in __automated sections Compiler error
The definition of dispids is only permitted in __automated sections.
Example:

struct declspec(delphiclass) vclclass
{
int fastcall fool(void) _ dispid(42); // Error
___automated:
int fastcall foo2(void) _ dispid(43); // OK
i

Suspicious pointer arithmetic Compiler error

This message indicates an unintended side effect to the pointer arithmetic (or array indexing) found in
an expression.

Example:

#pragma warn +spa

int array[10];

int foo(int64 index)
{

return array[index];

}

The value of index is 64 bits wide while the address of array is only 32 bits wide.

No type OBJ file present. Disabling external types option. Compiler warning
(Command-line option to suppress warning: -w-nto)

A precompiled header file references a type object file, but the type object file cannot be found. This is
not a fatal problem but will make your object files larger than necessary.

Comparing signed and unsigned values Compiler warning
(Command-line option to suppress warning: -w-csu)

Since the ranges of signed and unsigned types are different the result of an ordered comparison of an
unsigned and a signed value might have an unexpected result.

Example:

#pragma warn +csu

bool foo (unsigned u, int i)
{
return u < 1i;

}

Negating unsigned value Compiler warning

(Command-line option to suppress warning: -w-ngu)

Basically, it makes no sense to negate an unsigned value because the result will still be unsigned.
Example:

#pragma warn +ngu

unsigned foo (unsigned u)
{
return -u;

}

Throw expression violates exception specification Compiler warning
(Command-line option to suppress warning: -w-thr)

The function contains a throw expression whose type is not specified in the exception specification in
the function header.

Example:

#pragma warn +thr

voidfoo (int 1) throw (double)
{
throw 1i;

}

Simple type name expected Compiler error

To ensure interoperability between Delphi and C++ Builder, there are restrictions on the types names
mentioned in the parameter lists of published closure types. The parameter types have to be simple type
names with optional const modifier and pointer or reference notation.

Example:
struct _ declspec(delphiclass) foo
{
typedef void _ fastcall (_ closure *fool) (SomeTemplateType<int> *);

typedef SomeTemplateType<int> SimpleTypeName;
typedef void _ fastcall (_ closure *foo2) (SimpleTypeName *);

published:

__property fool propl; // Error
__property foo2 prop2; // OK
}i

Function call terminated by unhandled exception 'value' at address ‘addr’
Compiler error
This message is emitted when an expression you are evaluating while debugging includes a function

call that terminates with an unhandled exception. For example, if in the debugger's evaluate dialog, you
request an evaluation of the expression foo () +1 and the execution of the function foo () causes a GP

fault, this evaluation produces the above error message.

You may also see this message in the watches window because it also displays the results of evaluating
an expression.

VCL style classes need virtual destructors Compiler error
Destructors defined in VCL style class have to be virtual.
Example:

struct declspec(delphiclass) vclclassl

{

~vclclassl () {} // Error
}i

struct declspec(delphiclass) vclclass?2
{

virtual ~vclclass2() {} // OK
b

= expected Compiler error

The compiler expected an equal sign in the position where the error was reported but there was none.
This is usually a syntax error or typo.

Published property access functions must use __fastcall calling convention
Compiler error

The calling convention for access functions of a property (read, write, and stored) declared in a
__published section must be __fastcall. This also applies to hoisted properties.

Example:

struct declspec(delphiclass) vclclass

{

int _ fastcall Getterl (void);
int _ cdecl Getter2 (void);
__published:
int property ipl = {read = Getterl}; // OK
int property ip2 = {read = Getter2}; // Error

}i

Bad character in parameters -> ‘char’ Linker message

One of the following characters was encountered in the command line or in a response file:
" * < = > ? [] \

or any control character other than horizontal tab, line feed, carriage return, or Ctrl+Z.

Unable to open file ‘filename’ Linker message

The named file can't be found, possibly because it does not exist or is misspelled, or it resides in a
different directory than those being searched.

If you are using the IDE, make sure you have set the appropriate directory paths.

Unresolved type external type referenced from module module Linker
message

This warning means that the compiler emitted debug information in a compilation unit which referred to
an external type. The external type definition could not be found in another module or in a type OBJ.
This can happen if you have Pascal code compiled with debug linked to Pascal code that is compiled
without debug. If you are linking Pascal code into your project, it is best to compile it all with debug
information if you plan to debug the Pascal code. Otherwise, compile all of the Pascal code without

debug information.

Debug information overflow in module module near file offset Linker message

This error message happens when you compiled with debug information, and are linking with debug
information and a module contained more than 64K lines. You need to turn off debug information in the
specified module, or break the module into multiple modules with fewer lines. The offset is the file offset

in the OBJ where the problem occurred.

Unknown Optimization Linker message
This error message refers to an UNDOCUMENTED optimization feature.

Self relative fixup overflowed in module module Linker message

This message appears if a self-relative reference (a call or a jump) is made from one physical segment
to another. This often happens when employing assembler code, but can occur if you use the segment-
naming options in the compiler. If the reference is from one code segment to another, you are safe. If,
however, the reference is from a code segment to a data segment, you have probably made a mistake
in some assembler code.

You can suppress this warning with the /w-srf command-line option.

Using based linking for DLLs may cause the DLL to malfunction Linker
message

This warning occurs if you use the /B switch when linking a DLL. In almost every case, this is an error
that will prevent the application from running.

You can suppress this warning with the /w-bdl command-line option.

Public symbol 'symbol’' defined in both module ‘'module1’ and ‘'module2’ Linker
message

There is a conflict between two public symbols. This usually means that a symbol is defined in two
modules.

. An error occurs if both are encountered in the .OBJ file(s), because TLINK doesn't know which is
valid.
- A warning results if TLINK finds one of the duplicated symbols in a library and finds the other in

an .OBJ file; in this case, TLINK uses the one in the .OBJ file.

Import record does not match previous definition Linker message

This warning usually occurs if an IMPDEF record appears in an import library when the import in
question is also imported from a .DEF file. If the description of the imports differ in internal name or
ordinal, this warning appears, and the first definition is used.

You can suppress this warning with the /w-imt command-line option.

Multiple stack segments found. The most recent one will be used. Linker
message

This warning occurs when two stack segments of different names are defined in the object modules. The
startup code defines a stack segment for the application.

You can suppress this warning with the /w-msk command-line option.

Empty LEDATA record in module 'module’ Linker message

This warning can happen if the translator emits a data record containing data. If this should happen,
report the occurrence to the translator vendor. There should be no bad side effects from the record.

Explicit stacks are ignored for PE images Linker message

Win32 apps are PE format applications, which do not have explicit stacks. The stack segment will be
linked into the image, but it will not be used as the application stack. Instead, the stack size parameter
will be used to set the stack size, and the operating system will allocate a stack for the application.

Export 'symbol' is duplicated Linker message

This warning will occur if two different functions with the same name are exported by the use of _export.
The linker cannot resolve which definition to export, and will use the first symbol.

Old debug information in module 'module’ will be ignored Linker message

Debug information in the OBJ is incompatible with this linker, and will be ignored.

Extern 'symbol' was not qualified with __import in module 'module’ Linker
message

Win32 applications which make reference to imported symbols need to make indirections to get to the
data. For calls, this is handled automatically by the linker. For references to imported DATA, the compiler
must generate an indirection, or the application will function incorrectly. The compiler knows to generate
the indirection when the symbol is qualified with __import. If the linker sees a segment relative reference
to a symbol which is imported, and if the symbol was not qualified with __import, you will get this
message.

You can suppress this warning with the /w-inq command-line option.

Debug information enabled, but no debug information found in OBJs Linker
message

No part of the application was compiled with debug information, but you requested that debug
information be turned on in the link.

‘filename’ is not a valid library Linker message
This error happens when the first record in a library file is not the LIBSTART record.

This can happen when something that is not a library is passed as a library file to the linker, or if the
library file was corrupted.

Too many LNAMEs Linker message
TLINKS32 supports up to 255 LNAMEs appearing in an OBJ file.

lllegal ACBP byte in SEGDEF in module 'module’ Linker message

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

lllegal component to GRPDEF in module ‘'module’ Linker message

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Unsupported option 'string’ Linker message

You specified an unknown option on the command line.

Too many commas on command-line Linker message

You specified an invalid entry on the command line. Check the command you entered.

Malformed command-line Linker message

You specified an invalid entry on the command line. Check the command you entered.

Bad file name 'filename’ Linker message

An invalid file name was passed to the linker.

Failed read from ‘filename' Linker message
The linker was unable to read from the file.

Failed write to 'filename’ Linker message
The linker was unable to write to the file.

Terminated by user Linker message

The user pressed Ctrl+Break.

Too many errors Linker message

The linker got more errors than the maximum number of errors specified by the user.

Bad object file ‘filename' near file offset 'offset’ Linker message

The linker has found a bad OBJ file. This is usually caused by a translator error.

No output file specified Linker message

You did not specify an output file.

Image base address must be a multiple of 0x10000 Linker message

Based images must be aligned on 64K boundaries.

General error in module 'module’ Linker message

TLink32 emits a General Error and crashes if the user specifies a map file that cannot be opened. This
usually occurs when the directory (or drive) for the command-line specified map file doesn't exist. This
linker is trying to emit the following message to the map file:

Fatal: cannot open mapfile...

Make sure that the map file destination drive and directory is correct.

General error Linker message

An unhandled exception occurred in the linker. Inform Borland Technical Support of the circumstances.

Mixed common types in module 'module’. Cannot mix COMDEFs and VIRDEFs.
Linker message

You cannot mix both COMDEFs and VIRDEFs. Turn off the -Fc switch to stop generating COMDEFs, or
turn on the -Vs switch to stop generating VIRDEFs.

Out of memory for block 'block’ Linker message

The linker ran out of memory. Try reducing the size of disk caches and/or RAM drives.

Bad LF_POINTER in module 'module’Linker message

This is typically caused by bad debug information in the OBJ file. Borland Technical Support should be
informed.

Target index of FIXUP is 0 in Module ‘'module’ Linker message
This is a translator error.

Bad field list in debug information in module ‘'module’ Linker message

This is typically caused by bad debug information in the OBJ file. Borland Technical Support should be
informed.

Couldn't load DLL 'dII' Linker message
The linker was not able to load the specified DLL. Check to make sure that the DLL is on your path.

Couldn't get procedure address from DLL 'dIl' Linker message

The linker was not able to get a procedure from the specified DLL. Check to make sure that you have
the correct version of the DLL.

Incorrect version of RLINK32.DLL Linker message

You don't have a the right version of RLINK32.DLL. Check to make sure that you have the correct
version of the DLL. If not, delete that DLL and reinstall C++Builder.

Too many default libraries Linker message
The linker can handle a maximum of 128 default libraries.

16-bit segments not supported in module 'module’ Linker message

16-bit segments are not supported for Win32 applications. Check to make sure that you have not
compiled the application with the 16-bit compiler.

Multiple entry points defined Linker message

Multiple entry points were defined for the application. This can happen if you have specified the startup
code twice, or if you are making use of assembler code which defines a starting address for the

application.

Duplicate ordinal for exports: 'string’ (‘ordval1’) and 'string’ (‘ordval2’) Linker
message

Two exports share the same ordinal. The linker cannot resolve which export should get which ordinal.

Attempt to export non-public symbol ‘'symbol’ Linker message
The EXPORTS section in the .DEF file specified the name of a symbol which has no public definition.

Fixup to zero length segment in module module Linker message

A reference has been made past the end of an image segment. This reference would end up accessing
an invalid address, and has been flagged as an error.

No internal name for IMPORT in .DEF file Linker message
The .DEF file has a semantic error. You typed an illegal import sequence or forgot to put the internal
name for an import before the module name. For example:

IMPORTS
_foo.l

Here, _foo was to be the function to be imported, but the proper syntax is:

IMPORTS
_foo=mydll.1l

Converting reference to external type type to void Linker message

This warning means that the linker was unable to resolve a reference within the debug information to a
legitimate type. Try deleting your precompiled header files and type OBJ files (*.#*) and rebuilding your
project. In the message, type is the name of the type that couldn't be converted.

Debug info switch ignored for COM files Linker message

C++Builder does not include debug information for .COM files. See the description of the /v option.

Export 'symbol’ has multiple ordinal values: 'value1' and 'value2’ Linker
message

The linker encountered one symbol with multiple ordinal values. The linker cannot resolve which value
to export, and will use the first value.

Check the EXPORTS section of the module definition file and make sure that the export name applies
only once.

Bad secondary target for fixup in module 'module’ Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

THREAD fixup found in module 'module’ Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Far COMDEFs are not supported Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

lllegal type of entry point Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Unsupported COMENT OMF extension ‘extension'Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Fixupps found for an LIDATA record Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Bad loc for fixupp in module 'module’ near file offset 'offset’ Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Bad type debug info in module module Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Block overflow for block 'block’ Linker message
This message results from one of the linker's internal tables overflowing.

The internal linker tables contain information such as linker or debugging data. The tables are setto a
default size which was not sufficient for the data in your application.

When this error occurs, the linker emits an INI file called TLINK32.INI and includes the name of the
block that overflowed along with its size. Edit the INI file and increase the size.

The .DEF file is ill formed. You typed an illegal import sequence in the .DEF file.

STACK/HEAP commit 'size' greater than reserve 'size' Linker message

The heap or stack commit size has to be less than or equal to the stack or heap reserve size. Change
the stack and heap reserve or commit sizes by changing the 32-bit linker values in the IDE or by
changing HEAPSIZE and STACKSIZE in the module definition file.

Invalid stack reserve/commit size 'size’ Linker message

The heap or stack commit size specified is not valid. The default and minimum values for reserve and
commit sizes are shown here.

Reserve Default Minimum
Stack 1Mb 4K
Heap 1Mb 0K
Commit Default Minimum
Stack 8K 4K
Heap 4K 0K

Change the stack and heap reserve or commit sizes by changing the 32-bit linker values in the IDE or
by changing HEAPSIZE and STACKSIZE in the module definition file.

Invalid file/object alignment value 'value' Linker message

You specified an incorrect value for file or object alignment in the 32-bit linker options. The value must
be a number (either decimal or hex) that is a power of 2. The smallest allowable file alignment value is
16. The smallest allowable object alignment value is 4096.

Image linked as EXE, but with DLL extension Linker message

The linker generates this warning when an executable file has been generated and stored in a file with a
.DLL extension.

This usually occurs when you intended to build a .DLL but forgot to specify a .DLL target with the /T
linker option (or you forgot the IT option altogether) on the command line. If you want to generate a
DLL as a target, use the appropriate /T option.

Possible unresolved external 'symbol’ referenced from module 'module’ Linker
message

This warning appears only for static data members of classes that have been declared but not defined.

Images fixed at specific addresses typically will not run under Win32s Linker
message

Windows 32s loads all applications in a single address space. It's possible to predict where your
application is going to be loaded, because other 32-bit applications might have been loaded before

yours.

Non-existent segment 'segment’ in SEGMENTS section of .DEF file Linker

message
You specified a segment name in the SEGMENTS section of the .DEF file which doesn't exist in any of

the object files or library files included in the link.

.DEF file stack/heap reserve size < 64K; 1MB default will be used Linker
message

The reserve size for either the STACK or the HEAP specified in the .DEF file is less than 64K. The linker
emits this warning to inform you that it will use the default of 1MB instead of the value specified.

Multiple public definitions for symbol ‘symbol' in module 'module;' link case
sensitively Linker message

The specified symbol was encountered twice in the same module. This is usually caused by the use of
case-sensitive symbols. Try linking case sensitively.

Unresolved external ‘symbol' referenced from module ‘'module’ Linker
message

The named symbol is referenced in the given module but is not defined anywhere in the set of object
files and libraries included in the link.

Check to make sure the symbol is spelled correctly.
You will usually see this error from the linker for C or C++ symbols if any of the following occur:

. You did not properly match a symbol's declarations of pascal and cdecl type in different source
files.

. You have omitted the name of an .OBJ file your program needs.

- You did not link in the emulation library.

If you are linking C++ code with C modules, you might have forgotten to wrap C external declarations in
extern "C" {...}.

You could also have a case mismatch between two symbols.

T3 and T7 fixupps not allowed (module 'module’) Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking .OBJ files compiled
using another compiler, these files may be incompatible with TLINK32. You'll need to recompile all
modules using one of the C++Builder compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Could not find precompiled type object file filename.

The linker could not find the OBJ file that contains some of the debug information needed for the link.
This most commonly happens if your library path (-L option) doesn't point to the place where your
precompiled header files are. Make sure that the path is correct and try again. This warning may also
appear if the type OBJ files were deleted, and the precompiled header file was not. In this case, delete
the precompiled header files, and rebuild the application.

Unknown option 'option’Linker message

A forward slash character (/), hyphen (-), or DOS switch character was encountered on the command
line or in a response file without being followed by one of the allowable options. You might have used

the wrong case to specify an option.

Invalid target /T 'target’ Linker message

The command-line linker found an invalid target. Valid targets are 'w' and 'd.’

Unknown Goodie Linker message

An unsupported option was supplied to the command-line linker.

Invalid size specified for segment packing Linker message

A non-decimal number was provided on the command line for the segment packing size limit.

Invalid size specified for segment alignment Linker message

This error occurs if an invalid value is specified for the Segment Alignment setting. The value specified
must be an integral multiple of 2 and less than 64K. Common values are 16 and 512. This error only
occurs when linking Windows applications.

Invalid map filename: ‘filename' Linker message
The map file name had an incorrect extension, such as .OBJ, .EXE, .DLL, .LIB, .DEF, or .RES.

Invalid exe filename: 'filename’ Linker message
The .EXE file name has an incorrect extension such as .OBJ, .MAP, .LIB, .DEF, or .RES.

Too many file names Linker message

This error occurs if the linker encounters more than 64K characters in the response file. The linker only
handles response files up to 64K.

You'll need to shorten the response file, shorten the pathnames, or chunk the .OBJs into a library.

End of system input buffer encountered Linker message

The input line you typed is too long. Instead of typing all you're object and library files on the command
line, put them into a response file.

Invalid overlay switch specification Linker message

You specified an overlay option but omitted the file name or names. Delete the switches or add the
names of the files containing the overlays.

No program entry point Linker message

This warning message appears if no starting execution point was defined in the application. This usually
happens if you forget to link in the startup code.

You can suppress this warning with the /w-ent command-line option.

No DEF file Linker message

This warning message appears if the module definition file is missing from the project.

Out of memory in block address

The linker has run out of memory.

Solutions

You can try reducing size of active RAM disks and/or disk caches.
Close one or more applications to free memory.

Malloc of number bytes failed in module, line number

The linker has run out of memory.

Solutions
You can try reducing size of active RAM disks and/or disk caches.

Close one or more applications to free memory.

Realloc of number bytes failed in module, line number

The linker has run out of memory.

Solutions
You can try reducing size of active RAM disks and/or disk caches.

Close one or more applications to free memory.

Attempt to realloc NULL pointer in module, line number

This message is typically caused by bad debug information in the OBJ file. You should note the
circumstances under which this message occurred and inform Borland Technical Support.

Attempt to free NULL pointer in module, line number

Internally, an attempt was made to free a block of memory that was not allocated. Try using Build All to
recompile the application. If you still receive this message, note the circumstances under which this
message occurred and inform Borland Technical Support.

Out of memory

The linker has run out of dynamically allocated memory needed during the link process. The total
working storage is exhausted.

This error is a catchall for running into a limit on memory usage. This usually means that too many
modules, externals, groups, or segments have been defined by the object files being linked together.

Solutions
You can try reducing size of active RAM disks and/or disk caches.

Close one or more applications to free memory.

Assertion failed: module at "\address\", line number

This is an internal error. You should note the circumstances under which this message occurred and
inform Borland Technical Support.

Access violation. Program terminated.

You should note the circumstances under which this message occurred and inform Borland Technical
Support.

lllegal type fixup index in module module

The object file contains an invalid fixup index. This can result if the compiler emits the wrong the index.
It can also happen if the object file is corrupted. Try to recompile that object file. If this message still
persists, contact Borland Technical Support.

User break. Link aborted.

You typed Ctrl+Break while in the linker. The link was aborted. (This is not an error, just a confirmation.)

Out of disk space

Your disk is full. Check to ensure that you have write access to the disk.

Cannot write to disk
Writing to the specified disk failed. Check to see if the disk is full.

module: ILINK32 does not support segmentation - use TLINK32

A module processed by ILINK32 contained multiple user-defined code segments or user-defined data
segments of different classes. ILINK32 does not support this. You must either eliminate these
additional segments or use TLINK32.

Undefined symbol symbol referenced from module

The named symbol is referenced in the given module but is not defined anywhere in the set of object
files and libraries included in the link. Check to make sure the symbol is spelled correctly.

You will usually see this error from the linker for C or C++ symbols if any of the following occur:

- You did not properly match a symbol’s declarations of __pascal and __cdecl types in different
source files.

- You have omitted the name of an .OBJ file your program needs.

. You did not link in the emulation library.

If you are linking C++ code with C modules, you might have forgotten to wrap C external declarations in
extern “C”".

You could also have a case mismatch between two symbols.

Attempt to export non-public symbol symbol

A symbol name was listed in the EXPORTS section of the module definition file, but no symbol of this
name was found as public in the modules linked.

If compiling in C++Builder, this is usually caused by the name mangling that occurs as a result of C+
+Builder type safe linkage. Inserting the _export keyword in the function prototype and function
definition is required for all Windows callback functions.

Language-independent causes result from a mistake in spelling or case, case-sensitive exports, or a
procedure with this name that was not defined.

If you are using case-sensitive exports, the Pascal calling convention used by Windows requires these
symbols to be all uppercase characters.

Import by ordinal not supported by ILINK32

You attempted to import by ordinal in the IMPORTS section of a .DEF file. This is not supported by
ILINK32. ILINK32 only supports importing by name. Import by name or else use the -o flag in TLINK32.

Public symbol 'symbol' defined in both module module1 and module2

There is a conflict between two public symbols. This means that a symbol is defined in two modules.

Could not find object file filename

The compiler is unable to find the file supplied on the command line.

Error processing module module

The incremental linker is unable to process the module named in the error message.

Unable to open file filename

The named file can't be found, possibly because it does not exist or is misspelled, or it resides in a
different directory than those being searched.

If you are using the IDE, make sure you have set the appropriate directory paths in the Options |
Directories dialog box.

RLINK32 was not initialized
The RLINK32.DLL failed to initialize. The .DLL is either corrupted or missing.

Could not load RLINK32.DLL

The linker was not able to load the specified DLL. Check to make sure that the DLL is in a directory
that is in your path.

Could not get procedure address from RLINK32.DLL

A procedural export is missing from RLINK32.DLL. You don't have the right version of RLINK32.DLL in
the C++Builder BIN directory. You need to delete that version of the DLL and replace it with the correct
version from the C++Builder source. You can either copy it from another system or reinstall Borland C++

Builder.

Incompatible version of RLINK32.DLL

You don't have the right version of RLINK32.DLL in the C++Builder BIN directory. You need to delete
that version of the DLL and replace it with the correct version from the C++Builder source. You can
either copy it from another system or reinstall Borland C++ Builder.

Unknown RLINK32 error

Error processing resources (general error).Try using Build All to recompile the application. If you still
receive this message, note the circumstances under which this message occurred and inform Borland

Technical Support.

Undefined external type data-type

This happens if you mix object files containing debug information with object files that do not have
debug information. It means that the debugger will not be able to display type-information (objects of
that type will be “opaque” in the debugger). The solution is to compile with debug information turned on

the module containing that type definition.

Could not open filename (error code number)

The incremental linker was unable to open filename.

Could not create filename (error code number)
The linker could not create the file filename.

Could not open filename (program still running?)

Unable to open filename. s the program still running?

Could not open filename (project already open in IDE?)

Unable to open filename. Is the project already open in the IDE?

Failed to create map file filename (error code number)

Attempt to create map file filename failed.

Symbol symbol marked as __import in module was public

This happens if you compile one object module using imports (-D_RTLDLL, for example), and another
module using static binding (no such compilation flag). The result is that one object will expect global
variables within the module to require an indirection in the assembly code (because it is an import),
while the other object will expect to reference the data directly.

The solution is to either compile all object modules to using imports, or compile them all to link statically.

Internal failure -- Retrying link...
An error occurred in the internal logic of the linker.
This error shouldn’t occur, but is listed for completeness in the event that a more specific error isn’'t

generated.
If this error persists, write down the errorcode number and contact Borland Technical Support.

State invalid: module at "\address\", line line

Internal linker error. Call Borland Technical Support if you receive this error.

module contains invalid OMF record, type OxHH

The object file is corrupt. Regenerate it, or contact Borland Technical Support.

General error in link set

An unhandled exception occurred in the linker. Inform Borland Technical support of the circumstances.

General linker message
OR General error in library file filename in module module near module file offset '0xyyyyyyyy'
OR General error in module module near module file offset '0xyyyyyyyy'

The linker gives as much information as possible about what processing was happening at the time of
the unknown fatal error.

Call Borland Technical Support with information about the .OBJ or .LIB files.

Error parsing .DEF file
An error occurred while parsing the .DEF file. Check the .DEF file syntax.

Unsupported 16-bit segment(s) in module module

You cannot link 16-bit segments into 32-bit applications. The only way you can code 16-bit segments is
using the assembler (tasm32.exe).

Bad OMF record type ‘type’' encountered in module 'module’ Librarian message
The librarian encountered a bad Object Module Format (OMF) record while reading through the object
module.

Because the librarian has already read and verified the header records in 'module’, the object module
is probably corrupt. Recreate it.

Could not allocate memory for per module data Librarian message

The librarian has run out of memory.

Could not create list file 'filename’ Librarian message

The librarian could not create a list file for the library. This could be due to lack of disk space.

Could not write output Librarian message

The librarian could not write the output file.

Error opening ‘filename'Librarian message

The librarian cannot open the specified file.

Error opening ‘filename' for output Librarian message

The librarian cannot open the specified file for output.

Error renaming ‘filename’ to ‘filename' Librarian message

This error occurs when the librarian is building a temporary library file and renaming the temporary file
to the target library file name.

The error indicates that the target file is read only.

Library too large, restart with library page size 'size’ Librarian message

The library being created could not be built with the current library page size.

Not enough memory for command-line buffer Librarian message

This error occurs when the librarian runs out of memory.

Object module ‘filename' is invalid Librarian message

The librarian could not understand the header record of the object module being added to the library.
The librarian assumes that it is an invalid module.

Out of memory Librarian message

For any number of reasons, the librarian or the IDE ran out of memory while building the library. For
many specific cases, a more detailed message is reported.

Close one or more applications.

Out of memory creating extended dictionary Librarian message

The librarian ran out of memory while creating an extended dictionary for a library.
The library is created but will not have an extended dictionary.

Out of memory reading LE/LIDATA record from object module Librarian message

The librarian is attempting to read a record of data from the object module, but it cannot get a large
enough block of memory.

If the module being added has a large data segment or segments, try adding this module before other
modules.

Out of space allocating per module debug struct Librarian message

The librarian ran out of memory while allocating space for the debug information associated with a
particular object module.

Try removing debugging information from the modules being added to the library to resolve the
problem.

Output device is full Librarian message

The output device is full. This error usually means that there is no space left on the disk.

'path’ - path is too long Librarian message

This error occurs when the length of any of the library file or module file's 'path’ is greater then 64.

Public 'symbol’' in module 'module1’ clashes with prior module 'module2’
Librarian message

A public symbol can only appear once in a library file. A module, which is being added to the library,
contains a public 'symbol' that is already in a module of the library and cannot be added.

The command-line message reports the module2 name.

Record kind 'num’ found, expected theadr or Iheadr in module ‘filename'
Librarian message

The librarian could not understand the header record of the object module being added to the library
and has assumed that it is an invalid module.

Record length 'len' exceeds available buffer in module 'module’ Librarian
message

This error occurs when the record length 'len' exceeds the available buffer to load the buffer in module
'module’.

This occurs when the librarian runs out of dynamic memory.

The combinations '+*' or "*+' are not allowed Librarian message

It is not legal to add and extract an object module from a library in one action.

User break, library aborted Librarian message

You pressed Cancel while compiling in the IDE. The library was not created.
(This is not an error, just a confirmation.)

Added file ‘filename’ does not begin correctly, ignored Librarian message

The librarian has decided that the file being added is not an object module. It will not try to add it to the
library.

The library is created anyway.

Cannot write GRPDEF list, extended dictionary aborted Librarian message

The librarian cannot write the extended dictionary to the end of the library file. There may not be
enough space on the disk.

‘filename’ couldn’t be created, original won't be changed Librarian message

You tried to extract an object, but the librarian cannot create the object file into which to extract the
module.

Either the object already exists and is read only, or the disk is full.

'reason’ - extended dictionary not created Librarian message

OR Library contains COMDEF records - extended dictionary not created

If the Library contains COMDEF records message is displayed, an object record being added to a
library contains a COMDEF record. This is not compatible with the extended dictionary option.

'filename’ file not found Librarian message

The IDE creates the library by removing the existing library and rebuilding it. If any of the specified
objects do not exist, the library is incomplete and this error is generated.

If the IDE reports that an object does not exist, either the source module has not been compiled or
there were errors during compilation.

Invalid page size value ignored Librarian message

The librarian encountered an invalid page size.
The page size must be an integer that is a power of 2.

Memory full listing truncated! Librarian message

The librarian ran out of memory while creating a library listing file. An incomplete list file will be created.

Results are safe in file 'filename’ Librarian message

The librarian has successfully built the library into a temporary file, but it cannot rename the file to the
desired library name.

The temporary file will not be removed (so that the library can be preserved).

Unknown command line switch 'X' ignored Librarian message

A forward slash character (/) was encountered on the command line or in a response file without being
followed by one of the allowed options.

@ seen, expected a response-files name Librarian message

The response file name is not given immediately after @.

Import 'symbol’ in module 'module’ clashes with prior module Librarian message

An import symbol can appear only once in a library file. A module that is being added to the library
contains an import that is already in a module of the library and it cannot be added again.

'module’ already in LIB, not changed!Librarian message

This warning indicates that you attempted to use the + action on the library, but an object with the same
name already exists in the library. To update the module, the action should be +-. The library was not
modified.

Bad GRPDEF type encountered, extended dictionary aborted Librarian message

The librarian has encountered an invalid entry in a group definition (GRPDEF) record in an object
module while creating an extended dictionary.

The only type of GRPDEF record that the librarian and the linker support is segment index type. If any
other type of GRPDEF is encountered, the librarian can’t create an extended dictionary. It is possible
that an object module created by products other than Borland tools can create GRPDEF records of
other types. A corrupt object module can also generate this warning.

Bad header in input LIB Librarian message

When adding object modules to an existing library, the librarian found a bad library header. Rebuild the
library.

Can't grow LE/LIDATA record buffer Librarian message
Command-line error.

The librarian is attempting to read a record of data from the object module, but it cannot get a large
enough block of memory.

If the module being added has a large data segment or segments, try adding this module before other
modules.

Couldn't get LE/LIDATA record buffer Librarian message
Command-line error.

The librarian is attempting to read a record of data from the object module, but it cannot get a large
enough block of memory.

If the module being added has a large data segment or segments, try adding this module before other
modules.

Duplicate file 'filename’ in list, not added! Librarian message
When building a library module, you specified an object file more than once.
Error changing file buffer size

Error changing file buffer size Librarian message

The librarian is attempting to adjust the size of a buffer used while reading or writing a file, but there is
not enough memory. You'll need to free up a lot of system memory to resolve this error.

'filename’ file not found Librarian message
Command-line error.
The command-line librarian attempted to add a nonexisting object but created the library anyway.

Ignored 'module’, path is too long Librarian message

The path to a specified .OBJ or .LIB file is greater than 64 characters. The maximum path to a file for the
librarian is 64 characters.

'module’ not found in library Librarian message

An attempt to perform either a remove (-) or an extract (*) on a library has occurred and the indicated
object does not exist in the library.

Record type 'type' found, expected theadr or Iheadr in ‘'module’ Librarian

message
The librarian encountered an unexpected type instead of the expected THEADR or LHEADER record in

the specified module.

Unable to open 'filename’ for output Librarian message

The librarian cannot open the specified output file. This is usually due to lack of disk space for the target
library, or a listing file.

Unable to rename 'filename1' to 'filename2' Librarian message

The librarian builds a library into a temporary file (filename1) and then renames the temporary file to the
target library file name (filename2). This message appears if an error occurs during the renaming
process, such as insufficient disk space.

Unexpected char X in command line Librarian message

The librarian encountered a syntactical error while parsing the command line.

Use /e with TLINK to obtain debug information from library Librarian message

The library was built with an extended dictionary and also includes debugging information. TLINK cannot

extract debugging information if it links using an extended dictionary.

To obtain debugging information in an executable from this library, use the /e switch to cause the linker

to ignore the extended dictionary.

Note: The IDE linker does not support extended dictionaries; therefore, no settings need to be altered in
the IDE.

Resource Linker Error Messages and Warnings
32-bit format in resource file 'filename'
Bad EXE header format in file

Bad EXE segment table in file

Error creating file

Error creating temporary file in directory
Error deleting file

Error getting size of file
Error in CURSDIR. Cannot find CURSOR

Error in EXE's resource table format

Error in FONTDIR. Cannot find FONT

Error in ICONDIR. Cannot find ICON

Error in packing preload area. Turn off preload packing
Error in RES format

Error in RES format. Cannot find NAMEDIR resource
Error in resource binary length (bad format?

Error opening file

Error positioning file

Error reading file

Error renaming file

Error sizing file

Error writing file

Error. EXE alignment too small for packing resources too
Error. Expecting RES file, not EXE. File: <filename>
Error. Missing Name resource. RES not for Windows 3
Executable format not recognized in file

FONTDIR resource too big to link

FONTDIR too large to handle

Internal software error!

NAMEDIR resource too big to link

No resources

Not a Windows format EXE file

Out of memory!

Reporting error.

Resource format not recognized in file

Too many files to open

Too many resources to handle

Unsupported EXE RC version

Warning. Duplicate resources

Windows version is set to Win32, but target type is Win16.

Internal software error! Resource Linker message

The resource linker encountered unexpected data. Restart the resource link. If the error persists, contact
Borland Technical Support.

Out of memory! Resource Linker message

Not enough memory is available for compiling a particular file. In this case, shut down any other
concurrent applications. You may also try to re-configure your machine for more available memory, or
break up the source file being compiled into smaller separate components. You can also compile the file
on a system with more available RAM.

Bad EXE header format in file. Resource Linker message

Also: Executable format not recognized in file.

The executable file contained invalid information in its header. The file might not be a valid executable or
might contain corrupted data.

Bad EXE segment table in file. Resource Linker message

The executable file contained invalid information in its segment table. The file might not be a valid
executable or might contain corrupted data.

Error in packing preload area. Turn off preload packing. Resource Linker message
An error occurred while the resource linker was trying to optimize how resources and segments are
arranged in the executable file. (This error only occurs for 16-bit resources.)

Solution
To correct this error, turn off the Pack Fastload Area option in the Resources Options.

Error creating file. Resource Linker message

An error occurred when the resource linker tried to create a file. This error occurs if the work disk is full
or write-protected. It can also occur if the output directory does not exist.

Solutions
If the disk is full, try deleting unneeded files and restarting the resource link.
If the disk is write-protected, direct the output to a writeable disk and restart the resource link.

Error creating temporary file in directory. Resource Linker message

An error occurred when the resource linker tried to create a temporary file. This error occurs if the work
disk is full or write-protected. It can also occur if the output directory does not exist.

Solutions
If the disk is full, try deleting unneeded files and restarting the resource link.
If the disk is write-protected, direct the output to a writeable disk and restart the resource link.

Error deleting file. Resource Linker message

An error occurred when the resource linker tried to delete a file. This error occurs if the file is marked as
read-only or does not exist.

Solutions
If the disk is read-only, change its attributes so that it can be deleted.

Error in CURSDIR. Cannot find CURS. Resource Linker message

An entry was found in the cursor directory that had no corresponding cursor resource. The resource file
is probably corrupted.

Error in EXE's resource table format. Resource Linker message

There is invalid information in the executable files resource table. The executable file might contain
invalid resource information or be corrupt.

Error in FONTDIR. Cannot find FONT. Resource Linker message

An entry was found in the font directory that had no corresponding font resource. The resource file is
probably corrupted.

Error in ICONDIR. Cannot find ICON. Resource Linker message

An entry was found in the icon directory that had no corresponding icon resource. The resource file is
probably corrupted.

Error in RES format. Resource Linker message

There is invalid information in the binary resource file. The resource file might contain invalid resource
information or be corrupt. Try recompiling the resources and restart the resource link.

Error in RES format. Cannot find NAMEDIR resource. Resource Linker message

An entry was found in the name-table that had no corresponding resource. Verify that you have included
the appropriate resource in your resource script. Name-tables are not used for Windows version 3.1 or

greater.

Error in resource binary length (bad format?). Resource Linker message

There is an error in the size of a binary resource. The format of the resource might be invalid or the
resource has been corrupted.

Error in STRINGTABLE format. Resource Linker message

The resource linker (RLINK) should not generate this message.

Error making absolute file name. Resource Linker message

The resource linker (RLINK) should not generate this message.

Error opening file. Resource Linker message

An error occurred when the resource linker tried to open a file. This error occurs if the file does not exist,
another process has denied access to the file, the path or filename is incorrect, or there are no more

available file handles.

Error positioning file. Resource Linker message

An error occurred trying to seek to a location in a file. This file could be truncated or corrupted. Try
verifying the disk integrity using CHKDSK or recompile the resource files and restart the resource link.

Error positioning file. Resource Linker message

The resource linker (RLINK) should not generate this message.

Error reading file. Resource Linker message

An error occurred when the resource linker tried to read a file. This error typically occurs when there is a
disk error while the file is being read.

Error renaming file. Resource Linker message

An error occurred when the resource linker tried to rename a file. This error occurs if the file is marked
as read-only or does not exist or a file already exists having the name that the resource linker is trying to
use.

Solutions
If the disk is read-only, change its attributes so that it can be deleted.
If a file having the name already exists you can either delete that file or choose another name.

Error sizing file. Resource Linker message
Also: Error getting size of file.
A disk error occurred when trying to determine the file size.

Error writing file. Resource Linker message

An error occurred when the resource linker tried to write to a file. This error occurs if the work disk is full
or write-protected.

Solutions
If the disk is full, try deleting unneeded files and restarting the resource link.
If the disk is write-protected, direct the output to a writeable disk and restart the resource link.

Error. EXE alignment too small for packing resources tooResource Linker message

You have pre-packing turned on and the resources will not fit with the current image alignment. Try
increasing the alignment, re-link, and restart the resource link.

Error. Missing NAME resource. RES not for Windows 3. Resource Linker message

The binary resource file is missing the NAME resource. The resource file is probably not a Windows 3
resource file.

FONTDIR resource too big to link. Resource Linker message
Also FONTDIR too large to handle.
The directory of fonts table size has been exceeded. Try splitting your fonts into multiple FON files.

NAMEDIR resource too big to link. Resource Linker message

The name-table maximum size has been exceeded. Name-table entries are not used in Windows 3.1 or
later.

Not a Windows format EXE file. Resource Linker message

The executable file you tried to bind resources to is not a valid Windows or Win32 executable file.

Program execution arrived at yet-to-be-written code. Resource Linker message

The resource linker (RLINK) should not generate this message.

Resultant EXE size too big. Resource Linker message

The resource linker (RLINK) should not generate this message.

Too many files to open. Resource Linker message

You have exceeded the resource linkers limit on files. Try combining some of your individual resource
files into a single resource.

Too many resources to handle.Resource Linker message

You have too many resources for the resource linker to handle. Try reducing the total number of
resources you are trying to link.

Too many STRINGTABLEs to link. Resource Linker message
The resource linker (RLINK) should not generate this message.

You have too many string tables for the resource linker to handle. Try reducing the total number of string
tables in your resource.

Unsupported EXE RC version. Resource Linker message

The executable you are attempting to link the resources to already has resources attached. The version
number of these resources is not recognized by this resource linker. Try removing the resources or
relinking.

32-bit format in resource file. Please recompile. Resource Linker message

The compiled resource (.RES) file you are trying to use with your application contains 32-bit resources,
but the target type of your application is for 16-bit Windows. Recompile the resource file for Windows 3.1
or change the target type for your application to Win32.

Reporting error. Resource Linker message

The resource linker encountered a problem while trying to report an error.

Error. Expecting RES file, not EXE. File: <filename> Resource Linker message

The resource linker was.expecting a compiled resource (.RES) file, but found an executable (.EXE)
instead. Verify that you have the correct node and file types specified.

Windows version is set to Win32, but target type is Win16 Resource Linker
message

The version for your resources is set to Win32, but the target type for your project is for a 16-bit
Windows application. 16-bit Windows applications cannot use 32-bit resources.

Either change the version for your resources to Windows 3.1 or change the target type for your
application to Win32.

Warning. Duplicate resources. Resource Linker message

If multiple resource files are linked in to the image, the user could have duplicate resources in the

resource files. For example, you might have the same ICON in two different RES files. The resource
linker flags this and the second resource is removed.

Note: The resources must have the same type and identifier to be declared duplicates.

No resources. Resource Linker message

This warning message occurs if the resource linker is given a resource file that contains not resources.

Error seeking point in file. Resource Linker message

An error occurred trying to seek to a location in a file. This file could be truncated or corrupted. Try
compiling the resource files and restart the resource link.

Resource format not recognized in file. Resource Linker message

The format of a .RES file that you are attempting to use contains a resource with an unknown format.
This is normally due to a corrupt resource file. Make sure that you are binding a legitimate resource file,

and rebuild the .RES file, if necessary.

'filename’' does not exist: don't know how to make it MAKE message

The build sequence includes a nonexistent file name, and no rule exists that would allow the file name to
be built.

Unable to execute command: ‘command’ MAKE message

A command failed to execute. This might be because the command file could not be found or was
misspelled, there was no disk space left in the specified swap directory, the swap directory does not
exist, or (less likely) the command itself exists but has been corrupted.

Incorrect command line argument: ‘argument’ MAKE message

You've used incorrect command-line arguments. Reenter the command and arguments.

Unable to open makefile MAKE message

The current directory does not contain a file named MAKEFILE or MAKEFILE.MAK, or it does not
contain the file you specified with —f.

Not enough memory MAKE message

All of your working storage has been exhausted.

Error directive: 'message’ MAKE message

MAKE has processed an #error directive in the source file, and the text of the directive is displayed in
the message.

Unable to redirect input or output MAKE message

MAKE was unable to open the temporary files necessary to redirect input or output. If you are on a
network, make sure you have access rights to the current directory.

No terminator specified for in-line file operator =~ MAKE message

The makefile contains either the && or << command-line operators to start an inline file, but the file is
not terminated.

Circular dependency exists in makefile MAKE message

The makefile indicates that a file needs to be up-to-date before it can be built. Take, for example, the
explicit rules

filea: fileb
fileb: filec

filec: filea

This implies that filea depends on fileb, which depends on filec, and filec depends on filea. This is illegal
because a file cannot depend on itself, indirectly or directly.

Macro substitute text 'string’ is too long MAKE message

The macro substitution text string overflowed MAKE's internal buffer of 512 bytes.

Macro replace text 'string' is too long MAKE message

The macro replacement text string overflowed MAKE's internal buffer of 512 bytes.

'macroname’ - ')’ missing in macro invocation MAKE message

The macro you entered is missing a right parenthesis.

Cycle in include files: ‘filename’ MAKE message

This error message is issued if a makefile includes itself in the make script.

FATAL ERROR: GP FAULT MAKE message

Your program caused a general protection fault and exited fatally. This type of error is caused by
various reasons such as attempting to access or write to out of bound memory. For best results, use

CodeGuard to locate the error.

Cannot write a string option = MAKE message

The —W MAKE option writes a character option to MAKE.EXE. If there's any string option, this error
message is generated. For example, the following string option generates this message:
—-Dxxxx="My foo" or -UxxxxxX

Cannot find MAKE.EXE MAKE message

The MAKE command-line tool cannot be found. Be sure that MAKE.EXE is in either the current directory
or in a directory contained in your directory path.

Unable to open file ‘filename’ MAKE message

This error occurs if the named file does not exist or is misspelled.

filename’' not a MAKE MAKE message

The file you specified with the —f option is not a makefile.

Write error on file 'filename' MAKE message

MAKE couldn't open or write to the file specified in the makefile. Check to ensure that there's enough
space left on your disk, and that you have write access to the disk.

Command arguments too long MAKE message

The arguments to a command exceeded the 511-character limit imposed by DOS.

Unexpected end of file in conditional started at line ‘line number’ MAKE
message

The source file ended before MAKE encountered an !endif. The !endif was either missing or misspelled.

Unknown preprocessor statement MAKE message

A'! character was encountered at the beginning of a line, and the statement name following it was not
error, undef, if, elif, include, else, or endif.

Bad filename format in include statement MAKE message

Include file names must be surrounded by quotes or angle brackets. The file name was missing the
opening quote or angle bracket.

Filename too long MAKE message

The path name in an linclude directive overflowed MAKE's internal buffer (512 bytes).

No filename ending MAKE message

The file name in an linclude statement is missing the correct closing quote or angle bracket.

Unable to open include file 'filename' MAKE message

The compiler could not find the named file. This error can also be caused if an linclude file included
itself, or if you do not have FILES set in CONFIG.SYS on your root directory (try FILES=20). Check

whether the named file exists.

Macro expansion too long MAKE message

A macro cannot expand to more than 4,096 characters. This error often occurs if a macro recursively
expands itself. A macro cannot legally expand to itself.

If statement too long MAKE message

An If statement has exceeded 4,096 characters.

Rule line too long MAKE message

An implicit or explicit rule was longer than 4,096 characters.

Bad undef statement syntax = MAKE message

An lundef statement must contain a single identifier and nothing else as the body of the statement.

Misplaced else statement MAKE message

An lelse directive is missing a matching !if directive.

Command syntax error MAKE message

This message occurs if

. The first rule line of the makefile contains any leading whitespace.
. An implicit rule does not consist of .ext.ext:.
- An explicit rule does not contain a name before the : character.

- A macro definition does not contain a name before the = character.

Misplaced elif statement MAKE message

An lelif directive is missing a matching !if directive.

Misplaced endif statement MAKE message

An lendif directive is missing a matching lif directive.

lllegal character in constant expression ‘expression’ MAKE message

MAKE encountered a character not allowed in a constant expression. If the character is a letter, this
probably indicates a misspelled identifier.

Expression syntax error in !if statement MAKE message

The expression in an lif statement is badly formed—it contains a mismatched parenthesis, an extra or
missing operator, or a missing or extra constant.

lllegal octal digit MAKE message

An octal constant containing a digit of 8 or 9 was found.

Character constant too long MAKE message

A char constant in an expression is too long.

Division by zero MAKE message

A division or remainder operator in an !if statement has a zero divisor.

Redefinition of target ‘filename’ MAKE message

The named file occurs on the left side of more than one explicit rule.

Bad macro output translator MAKE message

Invalid syntax for substitution within macros.

Too many suffixes in .SUFFIXES list MAKE message

The suffixes list can include up to 255 suffixes.

Use of : and :: dependents for target 'target’ MAKE message

You tried to use the target in both single and multiple description blocks (using both the : and ::
operators). Examples:

filea: fileb

filea:: filec

Ifdef statement too long MAKE message

An Ifdef statement has exceeded 4,096 characters.

Ifndef statement too long MAKE message

An Ifndef statement has exceeded 4,096 characters.

No match found for wildcard 'expression' MAKE message

No files match the wildcard expression that you want MAKE to expand. For example, the following
causes MAKE to send this error message if there are no files with the extension .OBJ in the current
directory:

prog.exe: *.obj

No closing quote MAKE message

A string expression is missing a closing quote in an !if or lelif expression.

String type not allowed with this operand MAKE message

You tried to use an operand that is not allowed for comparing string types. Valid operands are ==, I=, <,
> <= and >=.

Int and string types compared MAKE message

You tried to compare an integer operand with a string operand in an !if or lelif expression.

Colon expected MAKE message

Your implicit rule is missing a colon at the end.
.c.obj: # Correct

.Cc.0bj # Incorrect

Only <<KEEP or <<NOKEEP MAKE message
You specified something besides KEEP or NOKEEP when closing a temporary inline file.

Unexpected end of file MAKE message

The end of the makefile was reached before closing a temporary inline file.

Cannot have path list for target MAKE message

You can only specify a path list for dependents of an explicit rule. For example, an invalid and a valid
path list are shown here:
{pathl;path2}prog.exe: prog.obj # Invalid

prog.exe: {pathl;path2}prog.ob] # Valid

Cannot have multiple paths for implicit rule MAKE message

You can have only one path for each of the extensions in an implicit rule; for example, {path}.c.obj.
Multiple path lists are allowed only for dependents in an explicit rule.

No macro before = MAKE message

You must name a macro before you can assign it a value.

Too many rules for target 'target’ MAKE message

MAKE can't determine which rules to follow when building a target because you've created too many
rules for the target. For example, the following makefile generates this error message:
abc.exe : a.obj

bcc -c a.c

abc.exe : b.obj

abc.exe : c.obj
bcc -c¢ b.c c.c

lllegal/invalid option in CMDSWITCHES directive ‘option’ MAKE message

The ICMDSWITCHES preprocessing directive turns on or off one or more command-line options.
Specify an operator, either a plus sign (+) to turn options on, or a minus sign (-) to turn options off,
followed by one or more letters specifying options. An invalid or illegal option is specified in the !
CMDSWITCHES directive.

Unknown CMDSWITCHES operator 'operator’ MAKE message

The ICMDSWITCHES directive is supposed to turn on command-line options using a plus sign (+)
followed by the option and turn them off using a minus sign (-) followed by the option. An operator
other than + or - is specified in the \CMDSWITCHES directive.

MAKE errors

Following are the error messages that can occur while using MAKE to compile a program:
Bad filename format in include statement
Bad macro output translator

Bad undef statement syntax

Cannot find MAKE.EXE

Cannot have multiple paths for implicit rule
Cannot have path list for target

Cannot write a string option

Character constant too long

Circular dependency exists in makefile
Colon expected

Command arguments too long

Command syntax error

Cycle in include files: 'filename'

Division by zero

Error directive: 'message’

Expression syntax error in lif statement
FATAL ERROR: GP FAULT

filename' does not existdon't know how to make it
'filename' not a MAKE

Filename too long

If statement too long

Ifdef statement too long

Ifndef statement too long

lilegal character in constant expression 'expression’
lllegal octal digit

lilegal/invalid option in CMDSWITCHES directive 'option’
Incorrect command line argument:

Int and string types compared

Macro expansion too long

Macro replace text 'string' is too long

Macro substitute text 'string' is too long
'macroname'—"')' missing in macro invocation
Misplaced elif statement

Misplaced else statement

Misplaced endif statement

No closing quote

No filename ending

No macro before =

No match found for wildcard 'expression’

No terminator specified for in-line file operator
Not enough memory

Only <<KEEP or <<NOKEEP

Redefinition of target 'filename'

Rule line too long

String type not allowed with this operand

Too many rules for target 'target’

Too many suffixes in .SUFFIXES list

Unable to execute command: 'command'

Unable to open file filename'

Unable to open include file 'filename'

Unable to open makefile

Unable to redirect input or output

Unexpected end of file in conditional started at line 'line number’
Unexpected end of file

Unknown CMDSWITCHES operator 'operator’

Unknown preprocessor statement

Use of : and :: dependents for target 'target’
Write error on file 'filename'

Resource Workshop error messages and warnings

Click here for an alphabetical listing of Resource Workshop errors: Errors

Memory lock failed

Resource Workshop could not lock memory. Exit Resource Workshop immediately, without saving
files. Start Windows again.

Could not allocate memory

Resource Workshop could not obtain memory for an operation. Exit Resource Workshop immediately,
without saving files. To free memory for use by Resource Workshop, exit other applications.

Memory unlock failed

Resource Workshop could not unlock global memory. Exit Resource Workshop immediately, without
saving files. Start Windows again.

File creation failed

Resource Workshop could not create a file.
Verify that the specified file does not already exist and that there is sufficient directory or disk space for
the file. Retry the operation that caused the error.

Could not open file

Resource Workshop could not open the specified file. This error can happen when you create
resources, then attempt to save them to an executable file (an .EXE or .DLL) when the executable file
does not exist to which to bind the resources.

To correct the problem, verify that the file exists, then retry the operation that caused the error.

File seek failed

Resource Workshop failed in seeking to a location in a file.
The file may be corrupted. Retry the operation that caused the error. Try running CHKDSK on the disk.

File read failed

Resource Workshop could not read the specified file.
Verify that the file exists and is readable. Retry the operation that caused the error.

File write failed

Resource Workshop could not write to the specified file.

Verify that the file exists and can be written to. Check that there is enough free disk space then retry
the operation that caused the error.

Virtual table allocation failed

Resource Workshop could not obtain memory for an operation. Exit Resource Workshop immediately,
without saving files.

To free up more memory for use by Resource Workshop, try exiting other applications, or running
Windows in Enhanced mode.

Virtual table put failed

Resource Workshop's internal database is probably corrupt. Exit Resource Workshop immediately,
without saving files. You should also exit Windows.

Virtual table read failed

Resource Workshop could not read the specified file.
Verify that the file exists and is readable. Retry the operation that caused the error.

Virtual table get failed

Resource Workshop's internal database is probably corrupt. Exit Resource Workshop immediately,
without saving files. You should also exit Windows.

Virtual table create failed

Resource Workshop's internal database is probably corrupt. Exit Resource Workshop immediately,
without saving files. You should also exit Windows.

Virtual table write failed

Resource Workshop could not write to the specified file.
Verify that the file exists and can be written to. Retry the operation that caused the error.

Virtual table lock failed

Resource Workshop's internal database is probably corrupt. Exit Resource Workshop immediately,
without saving files. You should also exit Windows.

Virtual buffer allocation failed

Resource Workshop could not obtain memory for an operation.

Exit Resource Workshop immediately, without saving files. To free memory for Resource Workshop,
exit other applications.

Virtual buffer lock failed

Resource Workshop's internal database is probably corrupt. Exit Resource Workshop immediately,
without saving files. You should also exit Windows.

Binary too large

A binary data item (resource or field) that is too large for Resource Workshop could not be compiled.

Unexpected NULL pointer encountered

Resource Workshop encountered an unexpected NULL pointer.

Input source stack overflow

Resource Workshop could not open an include or rcinclude file or expand a #define. Too many files
are open or too many #defines are nested.

Cannot find resource

Resource Workshop could not find the selected resource. Exit Resource Workshop immediately,
without saving files.

Unexpected file format

This error can occur when Resource Workshop:

decompiles a binary resource. In this case, the error means that Resource Workshop could not
match the binary data with the resource type definition. Resource Workshop skips the resource.
. saves a program or dynamic link library. The error means that the file is non-standard. This error

most often occurs when you try to save Microsoft applications, such as Word for Windows, that use a
non-standard executable file format.

Unreleased version format

The version of the file you are opening is greater than Resource Workshop supports.

Software error!

Resource Workshop encountered unexpected data. Exit Resource Workshop immediately, without
saving files. You should also exit Windows.

Not implemented

The selected function is not implemented in this release of Resource Workshop.

You cannot use this identifier. It is a keyword, resource type name or resource
name

You are trying to create an identifier whose name conflicts with a keyword, resource type name, or
resource name. Choose a unique name.

Bad character in source input

The specified source file contains an unrecognizable character.

#define text too long

The definition for the specified #define is too long for Resource Workshop to store. A #define
definition must be less than 2000 characters.

Invalid preprocessor directive

Resource Workshop has encountered a # (pound sign) character that is not followed by a valid
preprocessor directive name.

Symbol already defined. Redefinition is not the same
Resource Workshop encountered a #define whose name is a keyword, or whose definition is not the
same as a previous definition.

Although duplicate definitions of the same #define are ignored, two different definitions for the same
#define are not allowed.

Expecting #define identifier

Resource Workshop encountered a #define followed by an illegal name. #define names must begin
with a letter and contain only letters, digits, and underscores.

'‘ftelse' before '#if"

Resource Workshop encountered an #else or an #elif directive without a corresponding #if directive.
Use a text editor to correct this syntax error.

‘#endif' before #if'

Resource Workshop encountered an #endif directive without a corresponding #if directive. Use a text
editor to correct this syntax error.

Unexpected end of file

An end of file was encountered when processing a compiler directive (#if, #ifdef, etc.).

Expecting resource name or resource type name

Resource Workshop encountered an undefined identifier or integer expression, which it classified as a
resource name or ID. It expects the next token to be a resource type name or ID, but encountered

something else.

Expecting ')’

A numeric expression contains unbalanced parentheses.

Expecting identifier

Resource Workshop encountered an illegal token in an #ifdef or #if preprocessor directive.

Expecting constant expression

Resource Workshop could not evaluate an integer expression.

Expecting filename

A quoted or unquoted filename is expected.

Expecting filename in quotes

An #include statement was not followed by a filename surrounded by quotes or angle brackets.

Expecting a number or ‘('

Resource Workshop encountered an unexpected token when attempting to parse an integer
expression. This error is frequently caused by an error in an identifier name.

Expecting BEGIN

Resource Workshop encountered an unexpected token when searching for the BEGIN keyword. This
error is frequently caused by a typo in an identifier name.

Expecting END

Resource Workshop encountered an unexpected token when searching for the END keyword. This
error is frequently caused by a typo in an identifier name.

Not a positive short integer

Resource and resource type IDs must be positive short integers.

HEXSTRING over 255 bytes long

A hexstring data item was over 255 bytes long. This syntax extension in Resource Workshop is not
supported by the Microsoft Resource Compiler.

Invalid value in HEXSTRING

A hexstring data type (a Resource Workshop syntax extension not supported by the Microsoft
Resource Compiler) is a series of hex digits and white space surrounded by single quotes.

Resource Workshop encountered a character within the single quotes that cannot be interpreted as a
hex digit.

Field too large

Resource Workshop encountered a data field larger than 32K.

PASCAL string over 255 bytes

A Pascal format string must be less than 256 bytes in length.

Cannot open file:<filename>

Resource Workshop could not open the specified file. You may have insufficient rights to the file.

Conflicting memory options

A resource definition with conflicting memory options has been encountered.

String ID is already used

ID values in stringtable resources must be unique within a single project.

Note: If you're in Win32 mode, duplicate strings are allowed in stringtables that use different
languages.

Resource of that name/ID, and type already exists

Resource names or IDs must be unique within type.

Incomplete expression

Resource Workshop could not completely evaluate an expression. There may be a typo or missing
information.

A MENU or POPUP must have at least one item

A MENU and POPUP definition must contain at least one menu item or menu separator. Either add
more menu items under the popup or change the popup to a menu item.

An ACCELERATORS table must have at least one item

You cannot define an empty accelerator table.

Invalid icon format

Resource Workshop could not compile an icon resource due to an invalid file format.

Invalid cursor format

Resource Workshop could not compile a cursor resource due to an invalid format.

Invalid bitmap format

Resource Workshop could not compile a bitmap resource due to an invalid format.

Expecting filename or BEGIN

Resource Workshop could not compile a file or resource. It encountered a token that was not a file
name, curly brace, or a BEGIN keyword.

#undef is not supported

Resource Workshop does not support #undef. If the #undef define is required in this .H file in order to
satisfy C requirements, surround the statement with the #ifndef directive.

L string prefix is not allowed

Resource Workshop only supports L-quoted strings inside an RCDATA statement. Make sure the L-
quoted string is inside an RCDATA statement.

Expecting signed short integer

Resource Workshop's incremental compiler expects to see a signed short (16-bit) integer or integer
expression in this field. This error is usually caused by an undefined identifier.

Expecting unsigned short integer

Resource Workshop's incremental compiler expects to see an unsigned short (16-bit) integer or
integer expression in this field. This error is usually caused by an undefined identifier.

Expecting signed long integer

Resource Workshop's incremental compiler expects to see a signed long (32-bit) integer or integer
expression in this field. This error is usually caused by an undefined identifier.

Expecting unsigned long integer

Resource Workshop's incremental compiler expects to see an unsigned long (32-bit) integer or integer
expression in this field. This error is usually caused by an undefined identifier.

Expecting quoted string

Resource Workshop's incremental compiler expects to see a quoted string in this field.

Expecting resource ID or name

Resource Workshop expects a positive short integer or an unquoted alphanumeric literal for a
resource name or ID.

Expecting resource type

Resource Workshop expects a positive short integer or an unquoted alphanumeric literal for a
resource type name or ID.

Expecting class name or ID

A dialog control requires a quoted name or unsigned character with a value > 0x7F. The unsigned
character syntax is reserved for use by standard windows controls.

Expecting HEXSTRING (hex digits surrounded by single quotes)
The CTLDATA keyword for dialog controls must be followed by a HEXSTRING data field.

Invalid menu option

The valid options for POPUP or MENUITEM statements are:

CHECKED

MENUBREAK

MENUBARBREAK

INACTIVE

GRAYED

HELP
SEPARATOR (valid for MENUITEMs only)

Invalid accelerator option
The valid accelerator options are: ASCII, VIRTKEY, SHIFT, ALT, CONTROL, and NOINVERT.

Invalid accelerator key value

Accelerator key values must contain:

. unsigned characters
. a quoted string that includes an unsigned character and a * to indicate control keys

Expecting caption: quoted string or unsigned integer

A dialog control caption must be either a quoted string or an unsigned short (16-bit) integer.

String too long

Strings in string tables can be no longer than 255 bytes.

Expecting control window style

The control specification on this line is not an unsigned long (32-bit) integer or expression. This error is
usually caused by an undefined style identifier.

Expecting menu text (quoted string) or SEPARATOR

The MENUITEM keyword must be followed either by a quoted string (the item text) or the keyword
SEPARATOR.

Compile initialization failed

The compiler could not complete initialization. Exit and restart both Windows and Resource Workshop.

Input reset failed

The compiler could not complete initialization. Exit and restart both Windows and Resource Workshop.

Source input stack overflow (too many nested includes?)

The sum of your nested includes or #define exceeds 63.

Parser stack overflow

The nesting level of a recursive resource definition exceeds a Resource Workshop limitation. For
example, this error can occur if the number of nested pop-ups exceeds 63.

Expression stack overflow

An integer expression is too complex for Resource Workshop to evaluate. The maximum nesting depth
is 32. Try simplifying the expression by removing parentheses.

File 10 error

A read error occurred on a file. Check to see if the file is corrupt.

New symbol failed

Resource Workshop could not create a #define. This error is usually caused by a lack of memory.

To find out how much system memory is available, chose Start|Settings|Control Panel and choose
System. Then choose the Performance tab.

New field instance failed

In the process of creating a field record, Resource Workshop could not obtain memory for an
operation. Exit Resource Workshop immediately, without saving files.

To free up more memory for use by Resource Workshop, exit other applications.

Allocate failed

Resource Workshop could not obtain memory for an operation. Exit Resource Workshop immediately,
without saving files.

To free up more memory for use by Resource Workshop, exit other applications.

Memory lock failed

Resource Workshop could not lock memory. Exit Resource Workshop immediately, without saving
files. You should also exit Windows.

VTMgr allocation error

Resource Workshop could not obtain memory for an operation. Exit Resource Workshop immediately,
without saving files.

To free up more memory for use by Resource Workshop, exit other applications.

VTMgr lock error

Resource Workshop could not lock memory. Exit Resource Workshop immediately, without saving
files. You should also exit Windows.

VBuff allocation error

Resource Workshop could not obtain memory for an operation. Exit Resource Workshop immediately,
without saving files.

To free up more memory for use by Resource Workshop, exit other applications.

VBuff lock error

Resource Workshop could not lock memory. Exit Resource Workshop immediately, without saving
files. You should also exit Windows.

Internal software error

Resource Workshop encountered unexpected data. Exit Resource Workshop immediately, without
saving files. You should also exit Windows.

Device dependent bitmap does not match current display. Cannot convert

You tried to open a Windows 2.0 resource file containing a device-dependent bitmap in a format that
does not match the current display device. Use another tool to convert the bitmap.

Preprocessor directives not allowed

Preprocessor directives are not allowed when editing a resource as text. To add preprocessor
directives, edit the file that contains the resource as a text file.

Too much data for 1 field

You entered more data in this field than the incremental compiler allows. This error may also be
caused by an invalid character that was parsed as an extra token. Delete the extra data.

Cannot convert Windows 2 image: file is read-only

You opened a resource file containing a Windows 2.0 format bitmap resource. However, the file is
read-only. Change the file's attributes to examine the file in Resource Workshop.

Too many controls

A dialog resource contains more than 255 controls. Only 255 controls are allowed per dialog template.

Invalid escape sequence

A backslash character in a string was not followed by a valid escape code.

Too many digits in a number

The number contains too many digits to be represented by an unsigned 32-bit integer.

Expecting unit keyword

Resource Workshop encountered an unrecognized token when it was expecting a unit keyword. Make
sure that the include or unit file is syntactically correct by compiling it.

Expecting semicolon

Resource Workshop encountered an unrecognized token when it was expecting a semicolon. Make
sure that the include or unit file is syntactically correct by compiling it.

Expecting interface keyword

Resource Workshop encountered an unrecognized token when it was expecting an interface keyword.
Make sure that the include or unit file is syntactically correct by compiling it.

Must be first token on a line

A preprocessor directive or constant name must be the first token on a source line. Use an external
text editor to correct the source.

Pascal syntax error (unrecognized token)

Resource Workshop encountered an unrecognized token. Make sure that the include or unit file is
syntactically correct by compiling it.

Unexpected const keyword

Resource Workshop encountered an unexpected const keyword. Make sure that the include or unit file
is syntactically correct by compiling it.

Unexpected operator

Resource Workshop encountered an unexpected operator. Make sure that the include or unit file is
syntactically correct by compiling it.

#error directive encountered: <error message>

The Resource Workshop compiler encountered an #error directive. The text of the user-defined
message is displayed.

Not a valid identifier name

The name you selected for a #define or constant is not syntactically correct. Identifier names must
start with a letter and contain only letters, digits, and underscores.

Resource binary too large

The binary resource file you're trying to read into Resource Workshop is too large.

Syntax error

A syntax error has occurred. Check the resource script syntax and recompile.

Token is too large for scanner (unbalanced quotes?)

The scanner tried to create a token for a string or hexstring, but couldn't find the closing single or
double quote. Check the resource script for unmatched quotes.

Unterminated string or hexdecimal constant

A string value or hexadecimal constant in one of your resources is missing either an ending double
quotation mark or a continuation (/) character at the end of a line.

Expecting "]"

The resource compiler found a syntax error in the .RC file.

Expecting field type

The resource compiler found a syntax error in the .RC file.

Expecting RESEND

The resource compiler found a syntax error in the .RC file.

Expecting field name, field type or function keyword

The resource compiler found a syntax error in the .RC file.

Expecting RESPARENT or RESITEMCOUNT

The resource compiler found a syntax error in the .RC file.

Field name already used

The resource compiler found a semantics error in the .RC file.

Object is read only

Resource Workshop could not update a file because it is marked read-only or is in use by another
process.

Only one unnamed item allowed

The resource compiler found a semantics error in the .RC file.

Optional field keyword already used

The resource compiler found a semantics error in the .RC file.

Duplicate EDITDATA keyword

The resource compiler found a semantics error in the .RC file.

Duplicate RESBIN keyword

The resource compiler found a semantics error in the .RC file.

Duplicate RESITEM keyword

The resource compiler found a semantics error in the .RC file.

Positional optional fields must precede keyword optional fields

The semantics of the flagged line is not correct. Check for misspellings or a typing error.

Item keyword already used

The semantics of the flagged line is not correct. Check for misspellings or a typing error.

Field definitions not allowed

The semantics of the flagged line in the .RC file is not correct. Check for misspellings or a typing error.

RESBIN definitions not defined

The semantics of the flagged line is not correct. Check for misspellings or a typing error.

RESBIN definitions not allowed

The semantics of the flagged line is not correct. Check for misspellings or a typing error.

RESITEM definitions not allowed

The resource compiler found a semantics error in the .RC file.

'|=' default value not allowed for an array

The resource compiler found a semantics error in the .RC file.

'|=" default value not supported for this field type

The resource compiler found a semantics error in the .RC file.

Item names cannot be reserved words

The resource compiler found a syntax error in the .RC file.

Nested default values not allowed

The resource compiler found a semantics error in the .RC file.

Expecting a valid file extension (3 letters or less)

The resource compiler found a semantics error in the .RC file.

Fonts must have numerics resource IDs

Font names must have numeric resource ids. Other resources can use either a number or string
resource identifier.

Invalid font format

The file specified in the FONT resource is not a valid font file, or it has been corrupted.

Expecting signed character

The resource compiler found a syntax error in the .RC file.

kExpecting unsigned character

The resource compiler found a syntax error in the .RC file.

Invalid font specification

One of the fonts in the font file is invalid. Try reinstalling the fonts.

Fatal error

The error is too severe for the resource compiler to continue processing the resource scripting.

Identifier is out of scope

An identifier used in a macro has been #undef'ed.

Expecting window rectangle (4 signed long integers)

A dialog control requires 4 unsigned integers to specify its location and size.

The resource compiler did not find enough values in the resource statement. Dialog boxes and the
controls in them require the x and y position of the upper left corner followed by the width and height of

the resource in integers.

User break

The Cancel button was pressed during the resource compile.

Height must be from 1 to 5000

You entered an incorrect height value. Enter a value from 1 to 5000.

Bitmap must contain less than <some number> of pixels

This bitmap is too large to be edited in Resource Workshop.

Width must be from 1 to 5000

You entered an incorrect width value. Enter a value from 1 to 5000.

Unable to load Bitmap editor

Resource Workshop is unable to load the Bitmap editor because the dll is missing, or memory is
extremely low.

Horizontal (x) must be from 1 to 31

When specifying a hotspot for a cursor, the x coordinates must range from 1 to 31. That is, you must
choose a point that is on the cursor bitmap.

Vertical (y) must be from 1 to 31

When specifying a hotspot for a cursor, the y coordinates must range from 1 to 31. That is, you must
choose a point that is on the cursor bitmap.

Unable to load Cursor editor

Resource Workshop is unable to load the Bitmap editor because the dll is missing or memory is
extremely low.

The file <filename> is already in this project. You cannot use the file.

A file with the name you specified for the new resource already exists. It is also already referenced in the
current resource project. If you want to change the existing resource file, find its entry in the project and
edit it. If you want to create a new resource, change the filename to something unique.

Icon dimensions must be from 1 to 255

Icons cannot be larger than 255x255. Bitmaps do not have this restriction.

Unable to load Icon editor

Resource Workshop is unable to load the Bitmap editor because the dll is missing or memory is
extremely low.

This image has too many colors to edit

This image contains more than 256 colors.

This image has too many colors to edit on this display

This image contains more colors than can be edited on this display. Use the Control Panel to change the
number of colors supported. Depending on the display, you may need to change the resolution.

An image of this type exists. Continue?

A version of the icon or cursor already exists that matches the specified width, height, and number of
colors.

This image has an unknown format

This image is not a standard Windows bitmap format.

<filename> does not exist. Do you wish to create it?

The specified file does not exist in the given path. Check the path and the spelling of the file name.

Resource project has changed. Do you wish to save it?
The resource you're working on has changed. If you don't compile the changes, they will be discarded.
Choose Cancel to return to Resource Workshop without losing any changes or saving any files.

Delete resource: <resource name>

The selected resource will be deleted. Click Yes if you're sure you want to delete it. Click No if you don't
want to delete it.

Could not load library
Resource Workshop could not load one of the libraries it needs.

If the error persists, check to see how much memory is available. If memory is low, close another
application.

Could not load one of the Dialog editor libraries

Resource Workshop could not load one of the libraries it needs because it could not find it or the
computer is very low on memory.

<filename> does not exist

The specified program or dynamic link library file does not exist. Resource Workshop will not create
program files, but will only add resources to those files.

A resource of that name already exists

The selected name is already assigned to another resource. Choose another name.

Identifier already exists
The name you selected for this identifier is already in use. Use a unique name.
Note that C/C++ #define statements are case-sensitive, but Pascal constants are not.

Selected file <filename) already exists. Do you wish to overwrite it?

A file of the type and name specified already exists in this project. Resource names and IDs must be
unique by type and in a project. Use a name or ID that is not used for a resource of this type.

Note: In Win32 mode, resource names and IDs only need to be unique for a given type and language.

<filename> exists. Overwrite?

You are saving to an existing file. Choose Yes to replace the contents of that file. Choose Cancel to
abort the process and return to Resource Workshop.

<filename> does not exist. Create?

The specified file does not exist. Click Yes if you want to create it.

Error creating file <filename>

Resource Workshop could not create the new file. If the filename name is valid, try the operation again.
Check to see that there is room on the destination drive, or for drive problems.

If the error persists, check to see how much memory is available. If memory is low, close another
application.

You cannot undo this action! Select cancel to stop

There is no undo for the action you are about to perform. This is your last chance to change your mind.

Remove contents of <filename> from this project?

If you answer Yes, all resources and/or identifiers in the named file and in any file referenced by the file
will be removed from this project.

Because you cannot undo the action, Resource Workshop displays a Warning dialog box when you
answer Yes.

The warning message reads:

You cannot undo this action! Select cancel to stop

Division by zero is not allowed

You specified a constant expression or a remainder function that contains a divide by zero. This is not
allowed - you must change the expression or function.

Please close a window

Resource Workshop allows 10 editor windows to be open at the same time. To open another window,
you need to close a currently open window. To close the current editor window, press Ctrl+F4.

Resource type already exists

You are trying to create a new resource type that already exists. Use a unique name or ID for the
resource type.

Note that user-defined resource type IDs should be greater than 256, since the numbers 1 to 256 are
reserved for use by the operating system vendor.

Invalid addon module (check installation.)

Could not start Resource Workshop. Either the installation is missing files or registry entries or the
computer is extremely low on memory.

Out of memory (increase swap file or RAM size.)

If the error persists, check to see how much memory is available. If memory is low, close another
application.

Invalid range for value, must be between <number> and <number>

The value entered for one of the Environment|Project options is out of range.

Missing Help file <filename>

The Help file could not be found. It may have been deleted or is in a directory other than \HELP.

Unexpected end of file in conditional started on line <line number>
An #ifdef or #ifndef on the specified line number does not have a matching #endif.

User Break

You typed a Ctrl+Break while compiling a program. (This is not an error, just a confirmation.)

Unknown error (# errornum)

Internal compiler error. Contact Borland Technical Support.

Link terminated by user

You canceled the link. (This is not an error, just a confirmation.)

Fatal Error: Cannot Load Linker: linker

You are trying to load a version of the linker which is not compatible with this version of C++Builder. Try
reinstalling C++Builder or contact Borland Technical Support.

Fatal Error: Linker missing CREATE Entry Point

You are trying to load a version of the linker which is not compatible with this version of C++Builder. Try
reinstalling C++Builder or contact Borland Technical Support.

Fatal Error: Linker missing DESTROY Entry Point

You are trying to load a version of the linker which is not compatible with this version of C++Builder. Try
reinstalling C++Builder or contact Borland Technical Support.

Fatal Error: Linker CREATE Failed

You are trying to load a version of the linker which is not compatible with this version of C++Builder. Try
reinstalling C++Builder or contact Borland Technical Support.

Cannot find tasm program: tasm32.exe

You are trying to build code that includes assembly language directives but C++Builder cannot locate
the assembler on your system. Borland's Turbo Assembler (tasm.32) is a separate product, available
separately from C++Builder. If you have the Turbo Assembler, make sure it is in your path.

Unknown fatal error

Internal resource compiler error. C++Builder loaded the compiler, but it was unable to run. The
compilation process was abruptly terminated. Call Borland Technical Support.

Unable to load RW32CORE.DLL

Internal resource compiler error. C++Builder was unable to load the resource compiler DLL
(RW32CORE.DLL) because it is not there, there is not enough memory, or the DLL is damaged in some
way. Contact Borland Technical Support.

Cannot locate file /0 hook functions for resource compiler

C++Builder loaded a version of RW32CORE.DLL, but for some reason, it is not the correct version.
This could happen if you inadvertantly loaded the Borland C++ 5.0 or 5.01 version of RW32CORE.DLL
instead of the one provided with C++Builder. You may need to reinstall C++Builder.

