
Introduction
This help file describes using Borland C++Builder™ to create database client applications. In C+
+Builder, database applications use the Borland Database Engine (BDE) to retrieve data from and send
data to local and remote database servers. This guide

Provides an overview of C++Builder's data-access components, data-aware visual controls, and
the C++Builder database development model.

Explains how to use data modules and the Object Repository to modularize and reuse database
connections and forms within and among applications.

Describes how to connect to databases and manage database transactions.
Details how to work with the field, table, query, and stored procedure components that

encapsulate your application's view of databases.
Describes the data-aware visual controls that provide a user interface to data in an application.
Explains how and when to use cached updates in an application.
Discusses how to upsize an application from using desktop databases to using SQL databases

on remote servers.
The VCL Reference more fully describes the data-access components and data-aware visual controls.
For an overview of the C++Builder documentation set, see the introduction to the C++Builder User's
Guide.
Press the >> button to read through topics in sequence.
What's in the Database Application Developer's Guide help? (primary topic list with jumps)
Software registration and technical support

What's in help?
This guide contains the following information :

Chapter Description
"Using the C++Builder database
development model"

Describes C++Builder's database features and how to use them most
effectively when building a database application.

"Using data modules" Explains data modules and how to use them.
 "Connecting to databases" Explains how to use the data-access components that encapsulate

connections to databases and database sessions.
"Managing transactions" Discusses managing transactions with database component methods or

with passthrough SQL.
"Accessing data in databases" Describes the properties and methods common to all dataset components

such as TTable, TQuery, and TStoredProc.
 "Linking visual controls to datasets" Explains how to use the TDataSource component that acts as a conduit

between dataset components and data-aware visual controls on forms.
"Creating and using fields" Explains how to use the properties and methods of field components that

encapsulate the appearance of individual fields in records displayed in
data-aware visual controls on forms.

"Working with tables" Describes how and when to use table components in a database
application.

"Working with queries" Describes how and when to use query components in a database
application.

"Working with stored procedures" Describes how and when to use stored procedures in a database
application.

 "Displaying and editing data in data-
aware controls"

Describes the properties and methods common to all data-aware visual
controls, and how to use most controls on forms.

 "Navigating datasets" Describes how to use the TDBNavigator visual control to enable users to
move from record to record in a dataset, change dataset states, post and
cancel data changes, and refresh data display.

 "Displaying and editing data in grids" Describes how to the TDBGrid visual control to display and edit data in
tabular format; describes how to use the TDBCtrlGrid visual control to
display other data-aware components as repeating units in a grid format
where each set of controls corresponds to a single record in an underlying
dataset.

"Caching updates" Explains how and when to use cached updates in an application, and how
to use the TUpdateSQL component to update read-only result sets
returned by some queries.

"Handling batch move operations" Explains how to use the TBatchMove component to copy data from one
table to another in an application.

"Upsizing and deploying an application" Discusses the issues involved in modifying an application written to local
desktop database access to use SQL databases on remote servers.

Software registration and technical support
The Borland Assist program offers a range of technical support plans to fit the diverse needs of
individuals, consultants, large corporations, and developers. To receive help with this product, return the
registration card and select the Borland Assist plan that best suits your needs. North American
customers can register by phone 24 hours a day at 1-800-845-0147. For additional details on these and
other Borland services, see the Borland Assist Support and Services Guide included with this product.

Using the C++Builder database development model
This topic introduces the C++Builder tools and features you use to build PC LAN-based and remote
client/server database applications. It also explains a tiered approach to application development using
C++Builder's tools and features and your databases of choice.
Press the >> button to read each topic in sequence.
C++Builder database tools and features
What is a C++Builder database application?
Understanding database components
Building database forms
Understanding the C++Builder development model

C++Builder database tools and features
The following table lists many C++Builder database tools and features, briefly describes them, and
indicates which editions of C++Builder contain them:

Tool/Feature Description Client/
Server

Professional

SQL Explorer
 Database Explorer

Integrated tool for browsing databases, managing BDE aliases, and
creating data dictionaries. Client/Server is SQL-enabled.

      Ö     Ö

SQL Monitor Integrated tool for tracing and examining SQL query performance.       Ö

Visual Query Builder Integrated tool for visual building of SQL queries.       Ö

Data Pump wizard Standalone tool for moving metadata and data between databases.       Ö

Data Dictionary Stores extended field attributes apart from databases and application
code; shares attributes across fields, datasets, and applications.

      Ö       Ö

Object Repository Stores data modules and forms for sharing among applications.       Ö       Ö

Data Modules Nonvisual component containers for centralized data-access across
forms and applications.

      Ö       Ö

Data-access components Nonvisual components for encapsulating database connections.       Ö       Ö

Data-aware controls Visual components for providing a user-interface to data.       Ö       Ö

Database Desktop (DBD) Tool for browsing, creating, and changing desktop databases.       Ö       Ö

Borland Database Engine
 SQL Links
 ODBC Socket
 BDE API

(BDE) Borland's core database engine and connectivity software.
 SQL drivers for Sybase, SQL Server, Oracle, and InterBase.
 BDE support socket for third-party ODBC drivers.
 BDE API and online help files.

      Ö
      Ö
      Ö
      Ö

      Ö
        
      Ö
      Ö

Quick Reports C++Builder components for creating pre-defined reports in an
application.

      Ö       Ö

InterBase NT Borland InterBase Workgroup Server for NT, two-user license.       Ö

Local InterBase Server Ö2-bit Local InterBase Server.       Ö       Ö

The database features and tools in C++Builder form a tightly-integrated suite designed to ease the
design, implementation, deployment, and maintenance of database applications in a variety of
computing environments.
Some C++Builder database features and tools, such as the SQL Explorer, and SQL Monitor, are specific
to the C++Builder Client/Server edition, but provide corollary, non-SQL enabled tools, such as the
Database Explorer for C++Builder Professional. Other tools, such as database components, the Borland
Database Engine (BDE), and the stand-alone Database Desktop (DBD) are provided in all three editions
of C++Builder to enable database applications development.
In general, the C++Builder Client/Server edition provides the tightest integration of tools and the power
necessary for building, testing, and deploying client applications that work with SQL databases on
remote servers, and both local and networked Paradox® and dBASE® databases. With third-party
ODBC drivers you can also access local and remote ODBC-compliant databases.
C++Builder Professional enables you to build and test client applications for local and networked
Paradox and dBASE databases. With third-party ODBC drivers you can also access local and remote
ODBC-compliant databases.
C++Builder Standard enables building and testing of client applications for local and networked Paradox
and dBASE databases.
The following figure illustrates how C++Builder's tools work together in the Client/Server edition.
C++Builder Client/Server development environment

To learn how to make the most effective use of C++Builder's database features and tools, see
Understanding the C++Builder development model.
Even if you have C++Builder Professional or C++Builder Standard, the investment you make in building
database applications is protected when you upgrade to C++Builder Client/Server. C++Builder simplifies
database application development so that you can migrate to a larger, enterprise-wide, client
application/database server implementation as the need arises.

What is a C++Builder database application?
All C++Builder database applications are database clients. A client requests information from and sends
information to a database server. A server processes requests from many clients simultaneously,
coordinating access to and updating of data.
C++Builder clients actually communicate with the BDE, which in turn communicates with the database
server of your choice. The following figure illustrates this relationship.
The relationship of a C++Builder client to a database server
All C++Builder database applications are also user-interfaces to a database. A well-designed C+
+Builder application makes it easy for a user to view and edit data, even if the application works with a
complex data model. As an applications developer, you must understand the complexities of your data
models even as you work to mask them from the eventual end-users of your application.

Understanding database components
C++Builder provides nonvisual data-access components (summarized below) that encapsulate your
client's communication with a database. Data-access components only deal with database connectivity,
which enables you to focus your attention on your application's data needs without worrying about user
interface. Typically these components are placed in a data module container within an application.
C++Builder also provides data-aware visual components, called visual controls, that encapsulate user
interaction with your application's data sources. You design a user interface with these controls by
placing these controls on the forms in your application. Each control is linked to one or more fields or
records, and controls how a user sees a field or record in your application.
You link visual controls to data-access components through a data source component. A data-source
component acts as a conduit between an application's low-level data-access interactions and the high-
level view of data its users are provided.
In the C++Builder IDE, the Component palette provides two database component pages:

Data Access contains nonvisual data-access components.
Data Controls contains data-aware visual controls.

The following table summarizes the components that appear on the Data Access page and where in this
guide you can get more information about them:

Component Purpose
TDataSource Acts as a conduit between other data access components and data-aware visual

controls.
TTable Represents a dataset that retrieves all columns and records from a database table.
TQuery Represents a dataset that retrieves a subset of columns and records from one or more

local or remote database tables based on an SQL query.
TStoredProc Represents a dataset that retrieves one or more records from a database table based

on a stored procedure defined for a database server.
TDatabase Encapsulates a client/server connection to a single database in one session.
TSession Represents a single session in a multi-threaded database application. Each session

can have multiple database connections as long as each thread associated with a
particular database has its own session.

TBatchMove Encapsulates a dataset used to move data from one table to another.
TUpdateSQL Represents SQL INSERT, UPDATE, and DELETE statements that can be used to

update the read-only result sets of some queries.

The following table summarizes the data-aware visual controls that appear on the Data Controls page:

Component Purpose
TDBGrid Display and edit dataset records in tabular format.
TDBNavigator Cursor through dataset records; enable Edit and Insert states; post new or

modified records; cancel edit mode; refresh data display.
TDBText Display a field as a label.
TDBEdit Display and edit a field in an edit box.
TDBMemo Display and edit multi-line or blob text in a scrollable, multi-line edit box.
TDBImage Display and edit a graphics image or binary blob data.
TDBListBox Display a list of choices for entry in a field.
TDBComboBox Display an edit box and drop-down list of choices for edit and entry in a field.
TDBCheckBox Display and set a Boolean field condition in a check box.

TDBRadioGroup Display and set exclusive choices for a field in a radio button group.
TDBLookupListBox Display a list of choices derived from a field in another dataset for entry into a

field.
TDBLookupComboBox Display an edit box and drop-down list of choices derived from a field in

another dataset for edit and entry in a field.
TDBCtrlGrid (Client/Server and Professional only). Display and edit records in a tabular

grid, where each cell in the grid contains a repeating set of data-aware
components and one record.

The following figure illustrates how data-access components and visual controls relate to data, to one
another, and to the user interface in a C++Builder database application:
Relationship of database components in an application

As this figure illustrates, a database client application usually consists of one or more data modules and
forms.
A data module contains the application's data access components. These include TTable, TQuery, and
sometimes TStoredProc dataset components that encapsulate the fields and records in one or more
database tables and communicate with the BDE. They also include several TDataSource components
that act as a conduit between datasets and data-aware controls on the applications' forms.
Optionally, data modules may contain one or more explicitly declared TDatabase components that
encapsulate one or more datasets' connections to a database. (If an application does not explicitly
declare TDatabase components, C++Builder creates and manages temporary ones as needed at run
time.) All applications have a default TSession component that C++Builder creates and manages, too. A
TSession component encapsulates a database thread. Multi-threaded applications must explicitly
declare additional TSession components.
Forms contain an application's data-aware visual controls. Visual controls are the user interface to
databases in C++Builder. Most commonly used visual controls include TDBGrid, TDBNavigator, and
TDBEdit.
The C++Builder IDE, its supporting tools, the object-oriented data-access components that encapsulate
database connections, and the data-aware components that comprise the database user interface make
it easy to develop complex and usable database applications. The following sections describe a C+
+Builder development model designed to help you use C++Builder as effectively as possible.

Building database forms
Most C++Builder database applications require that you use at least three database components. This is
the minimum number of components you need:

One dataset component
Dataset components, such as TTable and TQuery, communicate with the Borland Database Engine.
Data received from a component is sent to the database through the BDE.

One data-aware control
Data-aware controls provide the user interface to the data in the dataset. Users manipulate data-
aware controls to browse, edit, or enter data.

One TDataSource component
A TDataSource component acts as a conduit between a dataset component and a data-aware
control. It links the data-aware control with the dataset component, and therefore, the data in the
database. Without a TDataSource component, data-aware controls cannot access the data in a
database.

Each dataset can be linked through one or more TDataSource components to multiple data-aware
controls. For example, a TDataSource component could link a dataset referenced with a TTable
component to a data-aware check box, a data-aware list box, and a data-aware image control on a form.
Each of these controls would display a single field of the dataset. If the TDataSource linked a data grid
to the dataset, the data grid could display all or several of the fields in the dataset.
To build a database form, you place the data-aware controls you want on the form and arrange them as
you wish. While you can also place data-access components on the form, you should add them to a
data module instead
Making the connections: linking database components

Making the connections: linking database components
This section describes how to connect database components. This allows you to create a single-table
database application without writing a line of code. Follow the steps below to link a TTable component, a
TDataSource component, and a data-aware component together:
1. Begin a new application with a blank form.
2. Choose File|New Data Module to add a data module to the project.
3. Place a TTable component and a TDataSource component in the data module.
4. Set the DatabaseName property of TTable to the name of the database you want to access.

While you are learning the technique of linking database components, try selecting the
BCDEMOS alias that appears in the list of database names available to TTable. BCDEMOS identifies a
set of database tables that were installed as part of C++Builder.
5. Set the TableName property of TTable to the name of the table in the database you want to access.

You will see a list of tables from which you can choose.
6. Set the Dataset property of the TDataSource component to the name of the TTable component by

selecting it from the list of available dataset components.
If you have only one data source component on the form, you will have only one choice.

7. On the form, place any data-aware control except the database navigators.
8. Make the data module available to the form unit by choosing File|Include Unit Hdr and selecting the

unit name of the data module that holds the TTable and TDataSource components.
Unless you've already given the data module a name, the unit name is likely to be Unit2.

9. Set the DataSource property of the data-aware control to the name of the TDataSource component
by selecting it from the list of available data source components.

If you have only one datasource component in the data module, you will have only one choice.
10. If the data-aware control has a DataField property, select the field you want the control to access by

selecting it from the list of available fields.
All data-aware controls except the data grids and the database navigator have a DataField

property.
11. To display the data in the data-aware control, return to the TTable component in the data module and

set its Active property to true.
Setting Active to true opens the table and the data displays in the data-aware control.

You might want to place one more data-aware control on your form. The database navigator provides an
easy way to move through the data in the dataset.
To use a database navigator control,
1. Add the database navigator (TDBNavigator) to the form.
2. Set its DataSource property to the name of the TDataSource component that links to the dataset you

want to access.
To run your application, choose Run|Run. Your database application compiles, links, and runs, and you
can use the database navigator to move through the records in the dataset.

Understanding the C++Builder development model
The development of a client application for local or remote database access involves the following
broadly-defined steps:

Defining your application's tasks and database sources.
Exploring existing database tables and features, and creating additional tables as needed to

support your application's data requirements.
Creating your application's data access model using data modules. When you define the datasets

your application uses, you can use extended field attributes in the Data Dictionary. You can also copy,
inherit, or use existing data modules from the Object Repository, and add your own data modules to the
repository for later reuse.

Creating your application's database user interface using forms. You can copy, inherit, or use
existing forms from the Object Repository, and add your own forms to the repository for later reuse.
These steps are iterative in nature. For example, as you build your application, you may discover new
data needs that require you to modify or add to your existing databases. Changes to the database mean
changes to your application's data access and user interface.
Browsing and designing with the SQL and Database Explorers
Designing with the Database Desktop
Using data modules to centralize development
Using the Data Dictionary
Designing a database interface with data-aware controls
Using the Object Repository

Browsing and designing with the SQL and Database Explorers
In C++Builder Client/Server edition you browse databases and populate tables with data using the SQL
Explorer from the IDE. In C++Builder Professional you use the Database Explorer. Both versions of the
Explorer enable you to:

Examine existing database tables and structures. The SQL Explorer enables you to examine
remote SQL databases, and to query them.

Populate tables with data.
Create extended field attribute sets in a Data Dictionary for later retrieval and reuse. Extended

field attributes describe how values in a field are formatted and displayed.
Associate extended field attributes with fields in your application.
Create and manage BDE aliases, used by your application to connect to databases.

To learn more about the SQL Explorer, and the Database Explorer see their respective online Help files.

Designing with the Database Desktop
In every version of C++Builder you can use the Database Desktop (DBD) to browse and modify existing
tables or create and populate new ones, create indexes, define referential integrity, and create
database-level validation and business rules for them. You can browse and create BDE aliases as well.
The DBD is a stand-alone utility that runs outside the C++Builder IDE. For more information about the
DBD, see its online Help.

Using data modules to centralize development
Data modules radically simplify data-access development in your applications. Data modules offer you a
centralized design-time container for all your data access components that enables you to modularize
your code and separate the database access logic and business rules in your applications from the user
interface logic in the application's forms.
Once you define your datasets and their fields in a data module, all forms that use the module have
consistent access to datasets and fields without requiring you to recreate them on every form each time
you need them. In fact, data modules can and should be stored in the Object Repository for shared use
among developers and applications.

Using the Data Dictionary
The Data Dictionary provides a customizable storage area, independent of your applications, where you
can create extended field attribute sets that describe the content and appearance of data.
For example, if you frequently develop financial applications, you may create a number of specialized
field attribute sets describing different display formats for currency. When you create datasets for your
application at design time, rather than using the Object Inspector to set the currency fields in each
dataset by hand, you can associate those fields with an extended field attribute set in the Data
Dictionary. Using the Data Dictionary also ensures a consistent data appearance within and across the
applications you create.
In a client/server environment the Data Dictionary can reside on a remote server for additional sharing of
information.
To learn more about creating a Data Dictionary and extended field attributes with the SQL and Database
Explorers, see their respective online Help.

Designing a database interface with data-aware controls
By placing data-access components in data modules, you can develop forms in your database
applications that are concerned only with a consistent user interface. With the extended functionality of
TDBGrid controls, flexible TDBLookupListBox and TDBLookupComboBox controls, and a TDBCtrlGrid
control that provides a multi-field, multi-record view of data, your application's user interface can be
more compelling and effective.
By storing links to well-designed forms and data modules in the Object Repository, you and other
developers can build on existing foundations rather than starting over from scratch for each new project.
Sharing forms and modules also makes it possible for you to develop corporate standards for database
access and application interfaces.

Using the Object Repository
The Object Repository stores links to data modules, forms, and projects for reuse and reference. When
you create a new application, you can:

Copy an existing data module, form, or project, ensuring that your copy is completely
independent of the repository.

Inherit an existing data module, form, or project, ensuring that changes to the linked module,
form, or project in the repository are replicated to your application when you recompile.

Use an existing data module, form, or project, ensuring that changes you make to the module,
form, or project are reflected upon the object in the repository and are available for use in other
applications.
The Object Repository supports team development practices. It uses a referencing mechanism to data
modules, forms, and projects where they exist on a network server or shared machine. Every developer
in your organization can save objects to a shared location, and then set C++Builder's Object Repository
reference to point to that location.
The Object Repository is also customizable through the Options|Repository dialog box in the IDE.
For general information about using the Object Repository for all your C++Builder programming, see the
C++Builder User's Guide.

Using data modules
This topic describes data modules, a C++Builder feature that enables you to centralize data access for a
database application.
Press the >> button to read through topics in sequence.
Understanding data modules
Creating a new data module
Reusing data modules in the Object Repository
Accessing a data module from a form
Adding a data module to the Object Repository

Understanding data modules
A data module is a specialized C++Builder class for centralized handling of any nonvisual component in
an application. Typically these are data-access components (TSession, TDatabase, TTable, TQuery,
TStoredProc, and TBatchMove), but they can also be other nonvisual components (TTimer,
TOpenDialog, TSaveDialog, TImageList, and TDdeClientConv, for example). A data module enables
you to:

Place all your data-access components in a single visual container at design time instead of
duplicating them on each application form.

Design tables and queries once for use with many forms instead of recreating them separately for
each form.

Create business rules--using component events, and additional methods you add to the unit code
for a data module--that can be shared across an entire application.

Separate business logic and data access from user interface code for easier maintenance.
Standardize common dialogs, timers, DDE client, DDE client items, DDE server, DDE server

items, and image lists across an application.
Store well-designed data-access modules in the Object Repository to share with other projects

and developers.
To use a component from a data module in a form, choose File|Include Unit Hdr to add the data module
header file to the form unit. Then use the component's methods or properties in the form. For data-
access components, set the DataSource property of each data-aware control in the form to point to the
datasource in the data module.
At runtime a data module is not visible. Your application code can change or read the properties of the
components in the data module, and it can call the methods belonging to those components.

Creating a new data module
To create a new, empty data module for a project, choose File|New Data Module. C++Builder opens a
data module container on the Integrated Development Environment (IDE) desktop and adds the data
module to the project file.
Blank data module

Naming a data module
Placing and naming components
Using component properties and methods in a data module
Creating business rules in a data module
At design time a data module looks like a standard C++Builder form with a white background and no
alignment grid. As with forms, you can place nonvisual components on a module from the Components
palette, and you can resize a data module to accommodate the components you add to it. You can also
right-click a module to display a context menu for it. The following table summarizes the context menu
options for a module:

Menu item Purpose
Align To Grid Aligns data-access components to the data module's invisible grid.
Align Aligns data-access components according to criteria you supply in the Alignment

dialog box.
Revert to Inherited Discards changes made to a data module inherited from another data module in

the Object Repository, and reverts to the originally inherited data module.
Creation Order Enables you to change the order in which data-access components are created at

start-up.
Add to Repository Stores a link to the data module in the Object Repository.
View as Text Displays the text representation of the data module's properties. You can view the

properties as text only when the dataset is not active (Active = false).

Behind the data module container you see in the IDE, there is a corresponding unit file containing
source code for the data module.

Naming a data module
The title bar of a data module displays the module's name. The default name for a data module is
"DataModuleN" where N is a number representing the lowest unused unit number in a project. For
example, if you start a new project, and add a data module to it before doing any other application
building, the name of the data module defaults to "DataModule2". The corresponding unit file for
DataModule2 defaults to "Unit2", with the header file becoming UNIT2.H and the .CPP file becoming
UNIT2.CPP.
You should rename your data modules and their corresponding unit files at design time to make them
more descriptive. You should especially rename data modules you add to the Object Repository to avoid
name conflicts with other data modules in the Repository or in applications that use your data modules.
To rename a data module:
1. Select the data module.
2. Edit the Name property for the data module in the Object Inspector and press Enter.
The new name for the data module appears in the title bar when the Name property in the Object
Inspector is updated.
Changing the name of a data module at design time changes its name in both the header and the .CPP
file. It also changes any use of the data module name in function declarations. You must manually
change any references to the data module in code you write.
To rename a unit for a data module:
1. Select either the .H or .CPP file.
2. Choose File|SaveAs.
3. In the Save As dialog box, enter a file name that clearly identifies the unit with the renamed data

module.

Placing and naming components
You place nonvisual components, such as TTable and TQuery, in a data module just as you place visual
components on a form. Click the desired component on the appropriate page of the Component palette,
then click in the data module to place the component. You cannot place visible controls, such as grids,
on a data module. If you attempt it, you receive an error message.
For ease of use, components are displayed with their names in a data module. When you first place a
component, C++Builder assigns it a generic name that identifies what kind of component it is, such as
DataSource1 and Table1. This makes it easy to select specific components whose properties and
methods you want to work with. To make it even easier, you should give your components more
descriptive names (for example, CustSource and CustTable).
To change the name of a component in a data module:
1. Select the component.
2. Edit the component's Name property in the Object Inspector and press Enter.
The new name for the component appears under its icon in the data module as soon as the Name
property in the Object Inspector is updated.
When you name a component, the name you give it should reflect the type of component and what it is
used for. For example, for database components, the name should reflect the type of component, and
the database it accesses. For example, suppose your application uses the CUSTOMER table. To
access CUSTOMER you need a minimum of two data-access components: a datasource component
and a table component. When you place these components in your data module, C++Builder assigns
them the names DataSource1 and Table1. To reflect that these components use CUSTOMER, and to
relate the components to one another, you could change these names to CustSource and CustTable.

Using component properties and methods in a data module
Placing components in a data module centralizes their behavior for your entire application. For example,
you can use the properties of dataset components, such as TTable and TQuery, to control the data
available to the datasource components that use those datasets. Setting the ReadOnly property to true
for a dataset prevents users from editing the data they see in a data-aware visual control on a form. You
can also invoke the Fields editor for a dataset to restrict the fields within a table or query that are
available to a datasource and therefore to the data-aware controls on forms.
The properties you set for components in a data module apply consistently to all forms in your
application that use the module.
In addition to properties, you can write event handlers for components. For example, a TDataSource
component has three possible events, OnDataChange, OnStateChange, and OnUpdateData. A TTable
component has over twenty potential events. You can use these events to create a consistent set of
business rules that govern data manipulation throughout your application.
For a complete list of the properties and events available for components, see the individual component
entries in the VCL Reference.

Creating business rules in a data module
Besides writing event handlers for the components in a data module, you can code methods directly in
the .H and .CPP files for a data module. These methods can be applied to the forms that use the data
module as business rules. For example, you might write a function to perform month-, quarter-, or year-
end bookkeeping. You might call the function from an event handler for a component in the data module.
The prototypes for the functions you write for a data module should appear in the data module's class
declaration:

class TDataModule2 : public TDataModule
{
__published:
 TTable *Customers;
 TTable *Orders;
 ...
private:
 // private user declarations
public:
 // public user declarations
 virtual __fastcall TDataModule2(TComponent * Owner);
 void LineItemsCalcFields(DataSet *TDataSet); // A function you add
};
extern TDataModule2 *DataModule2;

Write the code for the functions in the .CPP file for the data module.

Reusing data modules in the Object Repository
Instead of creating a data module from scratch, you may be able to reuse an existing data module from
the Object Repository. Data modules in the Object Repository are modules that you or other developers
created that are generic enough to be of use in different projects.
You can reuse an existing data module from the Object Repository at any time. To see the data modules
available in the Object Repository:
1. Choose File|New.
2. Select the Data Module page in the New Items dialog box.

The Data Modules page displays the data modules you can use. Radio buttons at the bottom of the
page enable you to specify the method of reuse.You can borrow an object in one of three ways: Copy,
Inherit, and Use. Sometimes one or more of these options may be unavailable. Unavailable options are
dimmed.

Copying a data module
Copying a data module from the Object Repository puts an exact duplicate of the data module and its
code in your project. Your copy of a data module is like a snapshot of the data module in the repository
at the time of the copy operation. The data module copied into your project exists independently of its
ancestor data module in the repository.
Copy a data module from the repository when

The data module already provides a fundamental level of access to data your application needs,
The demands of your application require substantial changes and additions to the components in

the data module, and
You do not want changes made to the ancestor data module in the repository to affect the data

module in your application.
Note: If you want future changes made to ancestor data modules in the repository to ripple into your

project, you should inherit the data module instead of copying it.

Inheriting a data module
Inheriting a data module from the Object Repository creates a duplicate of the data module in your
project, and creates a link to the ancestor data module in the repository. Your copy of the data module
inherits any subsequent changes made to the components, properties, and methods of the repository's
data module. Changes made to the data module in the repository are applied to the inherited data
module in your project the next time you recompile. These changes apply in addition to any changes or
additions you make to the data module in your project.
If you add components and event handlers to your copy of an inherited data module, you only generate
new code in your application for the added components and event handlers.
Inherit a data module from the Object Repository when

The data module provides a fundamental level of access to data your application needs, and
You want to propagate changes made to the ancestor data module in the repository to the data

module in your application (for example, because you want to maintain a consistent corporate view of
data in all your applications).
Note: Do not inherit data modules that contain TSession or TDatabase components. You should copy

these data modules instead of inheriting them. A second option is to put TSession and TDatabase
components in a separate data module that you can use, and to put all other components in
another data module that you can inherit.

Inheriting event handlers
If you override an event handler for a component inherited from a data module (for example, to provide
functionality specific to your application), you can still invoke the inherited handler from your new
handler by qualifying the name of the event handler with the name of the data module.

Using a data module
You can both copy a data module from the Object Repository into your application and make changes to
it that replace the original data module in the repository by selecting the Use option in the New Items
dialog box. Using a data module is like reverse inheritance. Instead of inheriting changes others make to
a data module, they inherit your changes when they use the data module in the repository.
"Use" a data module in the Object Repository when

The data module already provides a fundamental level of access to data your application needs,
The demands of your application require substantial changes and additions to the components in

the data module, and
The changes you need to make in your application are also fundamentally applicable to other

applications.
Important: Be careful with the Use radio button option. Make sure the changes you make to a data

module are robust and thoroughly tested before letting others copy it into their applications from
the repository.

Accessing a data module from a form
To associate visual controls on a form with a a data module, you must first make the data module
available to the form. To make the data module available to the form, you can

Choose File|Include Unit Hdr and enter the name of the data module or pick it from the list box in
the Use Unit dialog box, or

Drag a selected field from the Fields editor of a TTable or TQuery component in the data module
to a form. In this case C++Builder prompts you to confirm that you want to add the data module to the
form, then creates controls based on data dictionary information for each field you dragged into the form.
Before you drag fields to a form, set the datasource for the fields you intend to drag. C++Builder uses an
existing datasource in the data module if it is already connected to the dataset.
If a datasource is not defined, C++Builder adds a new datasource component to the form and sets the
DataSource properties of the controls it creates to point to this datasource. The datasource itself is
associated with a table or query component in the data module. Should this happen, you can keep this
arrangement, or, to keep your data-access model cleaner, you can change it. Delete the datasource
component on the form, and set the DataSource properties of the control on the form to point directly to
the appropriate datasource in the data module.

Adding a data module to the Object Repository
You can save your data modules and add them to those already available in the Object Repository. This
is helpful when you want to develop standard data-access models throughout an organization.
Before adding a data module to the Object Repository, you should develop and test it as fully as
possible to minimize additional work for future users of the data module.
To store a data module in the Object Repository:
1. Save the data module.
2. Right-click the data module to bring up the context menu.
3. Choose Add to Repository.
4. Enter a title, description, and author for the data module in the Add to Repository dialog box.
5. Select Data Modules from the Page combo box, and choose OK.

Connecting to databases
This topic describes the components that encapsulate database connectivity in a C++Builder application
and it explains how to use them. In C++Builder, database connections are encapsulated by TSession
and TDatabase components. The following figure highlights the relation of these components to all the
data-access components in C++Builder.
C++Builder Data Access components hierarchy

Each time an application runs, C++Builder creates a default TSession component for it. A session
component provides global control over all database connections in an application. If you do not create
multi-threaded database applications, you need only concern yourself with the default session in your
application.
A multi-threaded database application is a single application that attempts to run two or more
simultaneous operations such as SQL queries, against the same database. If you create a multi-
threaded database application, then each additional thread after the first requires its own session
component. Multi-threaded applications need to manage sessions through a TSessionList component. A
default session list component, called Sessions, is created for you whenever you start a database
application. You never need to create your own session list component.
A database component encapsulates the connection to a single database within an application. If you do
not need to control database connections (such as specifying a transaction isolation level), do not create
database components. Temporary database components are created automatically at runtime when an
application attempts to open a table for which there is not already a database component. But if you
want to control the persistence of database connections, logins to a database server, property values of
database aliases, or transactions, then you must create a database component for each desired
connection.
Press the >> button to read through topics in sequence.
Using TSession components
Using the default session
Creating additional sessions
Interactions between TSession and TDatabase
Using TSession and TDatabase in data modules
Using TDatabase components

Using TSession components
The following table lists the properties of TSession, what they are used for, their default values if any,
and whether they are available at design time:

Property Purpose Default Design
time
access

Active true, starts the BDE session. false, disconnects datasets and stops
the session.

false Yes

Databases Specifies an array of all active databases in the session. No
DatabaseCount Provides an integer value specifying the number of currently active

databases in the session.
No

KeepConnections true, maintain database connection(s) even if there are no open
datasets. false, close database connection(s) when there are no
open datasets.

true Yes

Name Names a session component (for example, Session1). Yes
NetFileDir Specifies the directory path of the Paradox network control file, which

enables sharing of Paradox tables on network drives.
Yes

PrivateDir Specifies the path in which to store temporary files (for example, files
used to process local SQL statements).

Yes

SessionName Specifies the name of the session that must be used by database
components to link themselves to a particular session.

Yes

Tag Stores an integer value as part of a component. While the Tag
property has no meaning to C++Builder, your application can use the
property to store a value for its special needs

Yes

Using the Active property
Active is a Boolean property that determines if database and dataset components associated with a
session are open. You can use this property to read the current state of a session's database and
dataset connections, or to change it.
If Active is false (the default), all databases and datasets associated with the session are closed. If true,
databases and datasets are open.
For session components you place in a data module or form, setting Active to false when there are open
databases or datasets closes them. At runtime, closing databases and datasets may invoke events
associated with them.
Note: You cannot set Active to false for the default session at design time. While you can close the

default session at runtime, it is not recommended.
For session components you create, use the Object Inspector to set Active to false at design time to
disable all database access for a session with a single property change. You might want to do this if,
during application design, you do not want to receive exceptions because a remote database is
temporarily unavailable.
You can also use a session's Open and Close methods to activate or deactivate sessions other than the
default session at runtime. For example, the following code closes all open databases and datasets for
the a session with a single line of code:

Session1->Close();
This code sets the Session1's Active property to false. When a session's Active property is false, any
subsequent attempt by the application to open a database or dataset resets Active to true and calls the
session's OnStartup event if it exists. You can also explicitly code session reactivation at runtime. The
following code reactivates Session1:

Session1->Open();

Using the KeepConnections property
KeepConnections provides the default value for the KeepConnection property of temporary database
components created at runtime. KeepConnection specifies what happens to a database connection
established for a database component when all its datasets are closed. If true (the default), a constant,
or persistent, database connection is maintained even if no dataset is active. If false, a database
connection is dropped as soon as all its datasets are closed.
Note: Connection persistence for database components you explicitly place in a data module or form is

controlled by the database component's KeepConnection property. If they differ in setting,
KeepConnection for a database componentoverrides the KeepConnections property of the
session.

KeepConnections should always be set to true for applications that frequently open and close all
datasets associated with a database on a remote server. This setting reduces network traffic and speeds
data access because it means that a connection need only be opened and closed once during the
lifetime of the session. Otherwise, every time the application closes or re-establishes a connection, it
incurs the overhead of attaching and detaching the database.
Even when KeepConnections is true, you can close all inactive database connections at any time with
the DropConnections method. For example, the following code drops inactive connections for the default
session:

Session->DropConnections();

Using the NetFileDir property
NetFileDir specifies the directory that contains the Paradox network control file, PDOXUSRS.NET. This
file governs sharing of Paradox tables on network drives. All applications that need to share Paradox
tables must specify the same directory for the network control file (typically a directory on a network file
server).
C++Builder derives a value for NetFileDir from the Borland Database Engine (BDE) Configuration file for
a given database alias. If you set NetFileDir yourself, the value you supply overrides the BDE
Configuration setting, so be sure to validate the new value.
At design time you can specify a value for NetFileDir in the Object Inspector. You can also set or change
NetFileDir in code at runtime. The following code sets NetFileDir for the default session to the location of
the directory from which your application runs:

Session->NetFileDir = ExtractFilePath(ParamStr(0));
Note: NetFileDir can only be changed when an application is not using any Paradox files. If you change

NetFileDir at runtime, verify that it points to a valid network directory that is shared by your
network users.

Using the PrivateDir property
PrivateDir specifies the directory for storing temporary table processing files, such as those generated
by the BDE to handle local SQL statements.
If no value is specified for the PrivateDir property, the BDE automatically uses the current directory at
the time it is initialized. If your application runs directly from a network file server, you may want to set
PrivateDir to a local drive to prevent temporary files from being created on the server.
You can set or change PrivateDir in the Object Inspector at design time, or in code at runtime. The
following code changes the setting of the default session's PrivateDir property to a user's C: drive:

Session->PrivateDir = "C:\\";

Using the SessionName property
SessionName is used to associate databases and datasets with a session. For the default session,
SessionName is "Default". For each additional session component you create, you must set its
SessionName property to a unique value.
Database and dataset components have SessionName properties that correspond to the SessionName
property of a session component. If you leave the SessionName property blank for a database or
dataset component, it is automatically associated with the default session. You can also assign the
SessionName for a database or dataset component a name that corresponds to the SessionName of a
session component you create. For example, the following code uses the OpenSession method of the
default TSessionList component, Sessions, to open a new session component, sets its SessionName to
"InterBaseSession", activates the session, and associates an existing database component Database1
with that session:

TSession IBSession;
{
 IBSession = Sessions->OpenSession("InterBaseSession");
 Database->SessionName = "InterBaseSession";
}

Note: Do not confuse a session component's SessionName property with the Name property that is
common to all components.

Using the Databases property
Databases is an array of all currently active database components associated with a session. Used with
the DatabaseCount property, Databases can be used to iterate through all active database components
to perform a selective or universal action. For example, the following code closes all active databases
associated with the default session except for the one named "InterBase1":

int MaxDbCount;
{
while (Session1->DatabaseCount > 1)
 {
 MaxDbCount = Session1->DatabaseCount - 1;
 while (Session1->Databases[MaxDbCount]->Name = "InterBase1")
 {
 MaxDbCount--;
 Session1->Databases[MaxDbCount]->Close();
 }
 }
}

Using the DatabaseCount property
DatabaseCount is an integer property that indicates the number of currently active databases
associated with a session. As connections are opened or closed during a session's life-span, this
number can change. For example, if a session's KeepConnections property is false and all database
components are created by C++Builder as needed at runtime, then each time a unique database is
opened, DatabaseCount increases by one. Each time a unique database is closed, DatabaseCount
decreases by one. If DatabaseCount is zero, there are no currently active database components for the
session.
DatabaseCount is typically used with the Databases property to perform actions common to active
database components. For example, the following code sets the KeepConnection property of each
active database in the default session to true:

int MaxDbCount;
{
if (Session1->DatabaseCount > 0)
 {
 MaxDbCount = 1;
 while (MaxDbCount <= DatabaseCount)
 {
 Session1->DatabasesCount[MaxDbCount]->KeepConnection = true;
 MaxDbCount++;
 }
 }
}

Using session events
Two events are associated with a session component: OnStartup and OnPassword. OnStartup is
triggered when a session is activated. A session is activated when it is first created, and subsequently,
whenever its Active property is changed to true from false (for example, when a database or dataset is
associated with a session is opened and there are currently no other open databases or datasets).
OnPassword is only called when an application attempts to open a Paradox table for the first time and
the BDE reports insufficient access rights. If you do not code OnPassword, the session creates a default
dialog box that prompts the user for a password. For more information about writing your own
OnPassword event handler, see the VCL Reference.

Using session methods
A session component has many methods. The following table lists some of the more useful methods
and their purposes:

Method Purpose
Close Closes all active databases and datasets, and sets its Active property to false;
CloseDatabase Closes a specified database component.
Open Sets the Active property of a session to true.
OpenDatabase Opens a database specified by name. If successful, this function returns a

pointer to the database component.
AddPassword Adds a password to a list of known passwords for the session. If you write an

OnPassword event handler to get new passwords at runtime, the handler
should call this function to add new passwords to the list.

RemovePassword Deletes a password from the list of passwords.
RemoveAllPasswords Clears the password list.
DropConnections Closes all currently inactive databases and datasets.

In addition to these methods, the following table lists session methods that enable an application to get
database-related information:

Method Purpose
GetAliasNames Retrieves the list of BDE aliases for a database.
GetAliasParams Retrieves the list of parameters for a specified BDE alias of a database.
GetAliasDriverName Retrieves the BDE driver for a specified alias of a database.
GetDatabaseNames Retrieves the list of BDE aliases and the names of any TDatabase components

currently in use.
GetDriverNames Retrieves the names of all currently installed BDE drivers.
GetDriverParams Retrieves the list of parameters for a specified BDE driver.
GetTableNames Retrieves the names of all tables matching a specified pattern for a specified

database.
GetStoredProcNames Retrieves the names of all stored procedures for a specified database.

For a complete list of all the methods and their arguments available to session components, see the
VCL Reference.

Using the default session
C++Builder creates a default session component named "Session" for a database application each time
it runs (note that its SessionName is "Default"). The default session provides global control over all
database components not associated with another session, whether they are temporary (created by the
session at runtime when a dataset is opened that is not associated with a database component you
create), or persistent (explicitly created by your application). The default session is not visible in your
data module or form at design time, but you can access its properties and methods in your code at
runtime.
When you create a database component, it is automatically associated with the default session. You
need only associate a database component that you create with an explicitly named session if the
component performs a simultaneous query against a database already opened by the default session.
In this case, you are creating a multi-threaded database application, and must create one additional
session to handle each additional thread.

Creating additional sessions
If you create a single application that uses multiple threads that perform database operations, you must
create one additional session for each thread. The Data Access page on the component palette contains
a session component that you can place in a data module or on a form at design time.
Important:
When you place a session component, you must also set its SessionName property to a unique value
so that it does not conflict with the default session's SessionName property.
Placing a session component at design time presupposes that the number of threads (and therefore
sessions) required by the application at runtime is static. More likely, however, is that an application
needs to create sessions dynamically. To create sessions dynamically, call the global function Sessions-
>OpenSession at runtime.
Sessions->OpenSession requires a single parameter, a name for the session that is unique across all
session names for the application. The following code dynamically creates and activates a new session
with a uniquely generated name:

Sessions->OpenSession(String("RunTimeSession" + IntToStr(Sessions->Count + 1)));
This statement generates a unique name for a new session by retrieving the current number of
sessions, and adding one to that value. Note that if you dynamically create and destroy sessions at
runtime, this example code will not work as expected. Nevertheless, this example illustrates how to use
the properties and methods of Sessions to manage multiple sessions.

Managing multiple sessions
Sessions is a component of type TSessionList that is automatically instantiated for database
applications. You use the properties and methods of Sessions to keep track of multiple sessions in a
multi-threaded database application. The following table summarizes the properties and methods of the
TSessionList component:

Property or
method

Purpose

Count Returns the number of sessions, both active and inactive, in the sessions list.
FindSession Searches the session list for a session with a specified name, and returns a pointer

to the session component, or NULL if there is no session with the specified name. If
passed a blank session name, FindSession returns a pointer to the default session,
Session.

GetSessionNames Returns a string list containing the names of all currently instantiated session
components. This procedure always returns at least one string, 'Default' for the
default session (note that the default session's name is actually a blank string).

List Returns the session component for a specified session name. If there is no session
with the specified name, an exception is raised.

OpenSession Creates and activates a new session or reactivates an existing session for a
specified session name.

Sessions Accesses the session list by ordinal value.

As an example of using Sessions properties and methods in a multi-threaded application, consider what
happens when you want to open a database connection. To determine if a connection already exists,
use the Sessions property to walk through each session in the sessions list, starting with the default
session. For each session component, examine its Databases property to see if the database in
question is open. If you discover that another thread is already using the desired database, examine the
next session in the list.
If an existing thread is not using the database, then you can open the connection within that session.
If, on the other hand, all existing threads are using the database, you must open a new session in which
to open another database connection.

Using TDatabase components
A TDatabase component encapsulates the connection to a single database within a session in an
application. If you do not create database components at design time or runtime, a temporary database
component is created automatically at runtime each time an application attempts to open a dataset not
associated with an available database component.
For most client/server applications you should create your own database components instead of relying
on temporary ones. You gain greater control over your databases, including the ability to

Create persistent database connections.
Customize database server logins.
Control transactions and specify transaction isolation levels.
Create BDE aliases local to your application.

Using temporary database components
Creating database components at design time
Creating database components at runtime
Using TDatabase properties
Using database events
Using database methods
Connecting to a remote server

Using temporary database components
To use temporary database components, you need do nothing. C++Builder creates temporary database
components as necessary for any datasets in a data module or form for which you do not create them
yourself. Temporary database components provide broad support for many typical desktop database
applications without requiring you to handle the details of the database connection.
Some key properties of temporary database components are set by the session. For example, the
controlling session's KeepConnections property determines whether a database connection is
maintained even if its associated datasets are closed (the default), or if the connections are dropped
when all its datasets are closed. Similarly, the default OnPassword event for a session guarantees that
when an application attempts to attach to a database on a server that requires a password, it displays a
standard password prompt dialog box. Other properties of temporary database components provide
standard login and transaction handling.
The default properties created for temporary database components provide reasonable, general
behaviors meant to cover a wide variety of situations. For complex, mission-critical client/server
applications with many users and different requirements for database connections, however, you should
create your own database components to tune each database connection to your application's needs.

Creating database components at design time
The Data Access page of the Component palette contains a database component you can place in a
data module or form. The main advantages to creating a database component at design time are that
you can set its initial properties and write OnLogin events for it. OnLogin offers you a chance to
customize the handling of security on a database server when a database component first attaches the
server.

Creating database components at runtime
You can also create database components at runtime. An application might do this when the number of
database components needed at runtime is unknown, and your application needs explicit control over
the database connection. In fact, C++Builder itself creates temporary database components as needed
at runtime. When you create a database component at runtime, you need to give it a unique name and
to associate it with a session. You actually create the component by calling the TDatabase->Create
constructor. Given both a database name and a session name, the following function creates a
database component at runtime, associates it with a specified session (creating a new session if
necessary), and sets a few key database component properties:

TDatabase RunTimeDbCreate(String DatabaseName, String SessionName)
{
 TDatabase *TempDatabase;
 TempDatabase = NULL;
 try
 { //if the session exists, make it active; if not, create a new session
 Sessions->OpenSession(SessionName);
 if ((Sessions->FindSession(SessionName)->FindDatabase(DatabaseName)) == NULL)
 {
 // Create a new database component
 TempDatabase = new TDatabase(this);
 TempDatabase->DatabaseName = DatabaseName;
 TempDatabase->SessionName = SessionName;
 TempDatabase->KeepConnection = true;
 }
 return OpenDatabase(DatabaseName);
 }
 catch(...)
 {
 delete TempDatabase;
 throw;
 }
}

The following code fragment illustrates how you might call this function to create a database component
for the default session at runtime:

{
TDatabase MyDatabase[10];
int MyDbCount;
MyDbCount = 1;
 ...
 //Later, create a database component at runtime
MyDatabase[MyDbCount] = RunTimeDbCreate(String("MyDb" + IntToStr(MyDbCount)));
MyDbCount++;
}

Using TDatabase properties
Whether you create database components at design time or runtime, you can use the properties of
TDatabase to change the behavior of the components. The following table summarizes the most
important database component properties, what they are used for, their default values if any, and
whether they are available at design time:

Property Purpose Default Design time
access

AliasName Identifies the BDE alias associated with this component.
If DriverName is set, this property is cleared.

Yes

Connected true, component is connected to a database at runtime
when the application starts.
false, component is not connected at start-up.

false Yes

DatabaseName Specifies the name of the database that must be used
by dataset and session components to associate
themselves with this component.

Yes

DataSetCount Provides an integer value specifying the number of
currently active datasets for the component.

No

DataSets Specifies an array of all active datasets associated with
the component.

No

Directory Specifies the directory where the database resides. No
DriverName Identifies the BDE driver for the component. If

AliasName is set, this property is cleared.
Yes

IsSQLBased Indicates whether a component is associated with an
SQL-based database. Read-only.

No

KeepConnection true, maintain database connection even if there are no
open datasets. false, close database connection when
there are no open datasets.

true Yes

LoginPrompt true, prompt for a login name and password on first
attaching to a database. false, password must be
supplied in Params property.

true Yes

Params Lists the login parameters for a given connection. Yes
Session Identifies the session component with which this

component is attached. Read only.
No

SessionName Specifies name of the session with which this
component is attached.

Default Yes

TransIsolation Specifies the transaction isolation level for the
component.

tiReadCommitted Yes

For details about all TDatabase properties, see the VCL Reference.

Using the AliasName, DatabaseName, and DriverName properties
AliasName and DriverName are mutually-exclusive BDE-specific properties. AliasName specifies the
name of an existing BDE alias to use for the database component. The alias appears in subsequent
drop-down lists for dataset components so that you can link them to a particular database component. If
you specify AliasName for a database component, any value already assigned to DriverName is cleared
because a driver name is always part of a BDE alias.
Note: You create and edit BDE aliases using the Database Explorer or the BDE Configuration Utility.
DatabaseName enables you to provide an alternative name for a database component. The name you
supply is in addition to AliasName or DriverName, and is local to your application. Like AliasName,
DatabaseName appears in subsequent drop-down lists for dataset components to enable you to link
them to a database component.
DriverName is the name of a BDE driver. A driver name is one parameter in a BDE alias, but you may
specify a driver name instead of an alias when you create a local
BDE alias for a database component using the DatabaseName property. If you specify DriverName, any
value already assigned to AliasName is cleared to avoid potential conflicts between the driver name you
specify and the driver name that is part of the BDE alias identified in AliasName.
At design time, to specify a BDE alias, assign a BDE driver, or create a local BDE alias, double-click a
database component to invoke the Database Properties editor.
Database Properties editor

You can enter a DatabaseName in the Name edit box in the properties editor. You can enter an existing
BDE alias name in the Alias name combo box for the Alias property, or you can choose from existing
aliases in the drop-down list. The Driver name combo box enables you to enter the name of an existing
BDE driver for the DriverName property, or you can choose from existing driver names in the drop-down
list.
Note: The Database Properties editor also enables you to view and set BDE connection parameters,

and set the states of the LoginPrompt and KeepConnection properties.
To set DatabaseName, AliasName, or DriverName at runtime, include the appropriate assignment
statement in your code. For example, the following code uses the text from an edit box to create a local
alias for the database component Database1:

Database1->DatabaseName = Edit1->Text;
You can also set or change these values at runtime in the Params string list.

Using the KeepConnection and Connected properties
KeepConnection determines if your application maintains a connection to a database even when all
datasets associated with that database are closed. If true, a connection is maintained. For connections
to remote database servers, or for applications that frequently open and close datasets, make sure
KeepConnection is true to reduce network traffic and speed up your application. If false (the default) a
connection is dropped when there are no active datasets using the database. If a dataset is later opened
which uses the database, the connection must be reestablished and initialized.
Connected enables you to close all active datasets for a database component and drop all database
connections even if KeepConnection is true. When Connected is true (the default), this property has no
effect on database connections. If you set Connected to false, all active datasets are closed, and all
database connections are dropped. For example, the following code closes all active datasets for a
database component and drops its connections:

Database1->Connected = false;

Using the DataSets and DataSetCount properties
DataSets is an indexed array of all active datasets (TTable, TQuery, and TStoredProc) for a database
component. An active dataset is one that is currently open. DataSetCount is a read-only integer value
specifying the number of currently active datasets.
You can use DataSets with DataSetCount to cycle through all currently active datasets in code. For
example, the following code cycles through all active datasets to set CachedUpdate for datasets of type
TTable to true:

for (int i = 0; i < DataSetCount; i++)
{
 if (DataSets[i] == TTable)
 DataSets[i]->CachedUpdates = true;
}

Using the LoginPrompt and Params properties
LoginPrompt specifies whether your users are prompted to log in to a database server the first time your
application attempts to connect to a database requiring a login. If true (the default), your application
displays a standard Login dialog box. The Login dialog box prompts for a user name and password. A
mask symbol (an asterisk by default) displays for each character entered in the Password edit box.
If you set LoginPrompt to false, the standard Login dialog box is not displayed at runtime when an
application attempts to connect to a database server that requires a login. Instead, your application must
provide the user name and password, either through the Params property or the OnLogin event for the
database component. At design time, the standard Login dialog box appears when you first connect to a
remote database server if LoginPrompt is false and the Params property does not contain user name
and password entries.
Important:
Storing hard-coded user name and password entries in the Params property or in code for an OnLogin
event can compromise server security.
The Params property is a string list containing the database connection parameters for the BDE alias
associated with a database component. Some typical connection parameters include path statement,
server name, schema caching size, language driver, and SQL query mode. For more information about
parameters specific to using SQL Links drivers with the BDE, see your online SQL Links Help.
At design time you can create or edit connection parameters in three ways:
1. Use the Database Explorer or BDE Configuration utility to create or modify BDE aliases, including

parameters. For more information about these utilities, see their online Help files.
2. Double-click the Params property in the Object Inspector to invoke the String List editor. To learn

more about the String List editor, see the C++Builder User's Guide.
3. Double-click a database component in a data module or form to invoke the Database Properties

editor.
When you first invoke the Database Properties editor, the parameters for the BDE alias are not visible.
To see the current settings for a selected alias or driver name, click Defaults. The current parameters
are displayed in the Parameter overrides memo box. You can edit existing entries or add new ones. To
clear existing parameters, click Clear. Changes you make take effect only when you click OK.

Using the SessionName and Session properties
SessionName identifies the alias for the session component with which to associate a database
component. When you first create a database component at design time, SessionName is set to
"Default".
Multi-threaded applications may have more than one session. At design time, you can pick a valid
SessionName from the drop-down list in the Object Inspector. Session names in that list come from the
SessionName properties of each session component.
Session is a runtime, read-only property that references the session component corresponding to the
value of the SessionName property. For example, if SessionName is blank or "Default", then the
Session property references the same TSession instance referenced by the global Session variable.

Using the TransIsolation property
TransIsolation specifies the transaction isolation level for a database component's transactions.
Transaction isolation level determines how a transaction interacts with other simultaneous transactions
when they work with the same tables. In particular, it affects how much a transaction "sees" of other
transaction's changes to a table. Before changing or setting TransIsolation, you should be familiar with
transactions and transactions management in C++Builder.
The default setting for TransIsolation is tiReadCommitted. The following table summarizes possible
values for TransIsolation and describes what they mean:

Isolation level Meaning
tiDirtyRead Permit reading of uncommitted changes made to the database by other

simultaneous transactions. Uncommitted changes are not permanent, and might be
rolled back (undone) at any time. At this level your transaction is least isolated from
the changes made by other transactions.

tiReadCommitted Permit reading only of committed (permanent) changes made to the database by
other simultaneous transactions. This is the default isolation level.

tiRepeatableRead Permit a single, one time reading of the database. Your transaction cannot see any
subsequent changes to data by other simultaneous transactions. This isolation level
guarantees that once your transaction reads a record, its view of that record will not
change. At this level your transaction is most isolated from changes made by other
transactions.

Using database events
A single event, OnLogin is associated with a database component. If you code it, OnLogin is triggered
when a database component establishes a new connection to a database server. This event is usually
used to trap and handle remote server login requests instead of displaying the default Login dialog box
when an application runs.

Using database methods
A database component has several methods. The following table lists them and their purposes:

Method Purpose
ApplyUpdates Applies cached updates to a database.
Close Closes the database connection.
CloseDataSets Closes any active datasets associated with the component.
Commit Commits data changes and ends the current transaction.
Open Opens a connection to the database.
Rollback Discards data changes and ends the current transaction.
StartTransaction Starts a new transaction.
ValidateName Verifies that a specified database name is valid.

See the VCL Reference for more information on these methods.

Connecting to a remote server
When you connect to a remote database server in a C++Builder application, the application uses the
BDE and the Borland SQL Links driver to establish the connection. (The BDE can communicate with an
ODBC driver that you supply.) You need to configure the SQL Links or ODBC driver for your application
prior to making the connection. SQL Links and ODBC parameters are stored in the Params property of a
database component. For information about SQL Links parameters, see the online SQL Links User's
Guide.

Working with network protocols
As part of configuring the appropriate SQL Links or ODBC driver, you need to specify the network
protocol used by the server, such as SPX/IPX or TCP/IP. C++Builder client applications can use TCP/IP,
SPX/IPX, or NetBEUI network protocols if the proper communications software is installed on both the
server and the client machines.
Establishing an initial connection between client and server can be problematic, especially when using
TCP/IP. The following troubleshooting checklist should be helpful if you encounter difficulties:

Is your server's client-side connection properly configured?
If you are using TCP/IP:
Is your TCP/IP communications software installed? Is the proper WINSOCK.DLL installed?
Is either the server's IP address registered in the client's HOSTS file? Or the Domain Name

Services (DNS) properly configured?
Can you ping the server?
Are the DLLs for your connection and database drivers in the search path?

For more troubleshooting information, see the online SQL Links User's Guide and your server
documentation.

Using ODBC
A C++Builder application can use ODBC data sources such as DB2, Btrieve, or Microsoft Access. An
ODBC driver connection requires:

A vendor-supplied ODBC driver.
The Microsoft ODBC Driver Manager.
The BDE Configuration utility.

To set up a BDE alias for an ODBC driver connection, use the BDE Configuration utility. The BDE
Configuration setting AUTO ODBC (on the systems page) enables the BDE to configure itself
automatically for ODBC. When AUTO ODBC is TRUE, data source and driver information are
automatically imported from the ODBC.INI file. When AUTO ODBC is FALSE, you must manually create
an ODBC configuration using the BDE Configuration utility. For more information, see the BDE
Configuration utility's online Help file.

Handling server security
Most remote database servers include security features to prohibit unauthorized access. Generally, the
server requires a user name and password login before permidtting database access.
At design time, if a server requires a login, C++Builder displays a standard Login dialog box that
prompts you for a user name and password when you first attempt to connect to the database.
At runtime, there are three ways you can handle a server's request for a login:

Set the LoginPrompt property of a database component to true (the default). Your application
displays the standard Login dialog box when the server requests a user name and password.

Set the LoginPrompt to false, and include hard-coded USER NAME and PASSWORD parameters
in the Params property for the database component. For example:

USER NAME = SYSDBA
PASSWORD = masterkey

Important: Note that because the Params property is easy to view, this method compromises server
security, so it is not recommended.
Write an OnLogin event for the database component, and use it to set login parameters at

runtime. OnLogin gets a copy of the database component's Params property, which you can modify. The
name of the copy in OnLogin is LoginParams. Use the Values property to set or change login parameters
as follows:

LoginParams->Values["USER NAME"] = UserName;
LoginParams->Values["PASSWORD"] = PasswordSearch(UserName);

On exit, OnLogin passes its LoginParam values back to Params, which is used to establish a
connection.
Important: The parameters are case sensitive regarding username, password, etc. The

LoginParams parameter that is passed to the LoginDialog event has to be changed, not the
Params property in the database object directly because it logs in with the LoginParams
instance, not the Database->Params.

Interactions between TSession and TDatabase
In general, TSession properties, such as KeepConnections, provide global, default behaviors that apply
to all temporary database components created by C++Builder as needed at runtime.
Methods apply somewhat differently. TSession methods affect all database components, regardless of
database component status. For example, the session method DropConnections closes all datasets
belonging to a session's database components, and then drops all database connections, even if the
KeepConnection property for individual database components is true.
TDatabase methods apply only to the datasets associated with a given database component. For
example, suppose the database component Database1 is associated with the default session.
Database1->CloseDataSets() closes only those datasets associated with Database1. Open datasets
belonging to other database components within the default session remain open.

Using TSession and TDatabase in data modules
You can safely place TSession and TDatabase components in data modules. If you put a data module
that contains TSession or TDatabase components into the Object Repository, however, other users can
copy your data module, but they cannot inherit from it. These components share global namespace, and
inheriting from them results in namespace conflicts.
...

Managing transactions
This topic describes how to manage transactions in a C++Builder database application using implicit
and explicit control. It focuses on

Using the methods and properties of the TDatabase component that enable explicit transaction
control.

Using passthrough SQL with TQuery components to control transactions.
This topic also discusses how local transactions are handled. Local transactions are transactions made
against local Paradox and dBASE tables.
When you create a database application using C++Builder, it provides transaction control for all
database access, even against local Paradox and dBase tables. A transaction is a group of actions that
must all be carried out successfully on one or more tables in a database before they are committed
(made permanent). If one of the actions in the group fails, then all the actions fail.
Transactions ensure database consistency even if there are hardware failures. It also maintains the
integrity of data while permitting concurrent multiuser access.
For example, an application might update the ORDERS table to indicate that an order for a certain item
was taken, and then update the INVENTORY table to reflect the reduction in inventory available. If a
hardware failure occurred after the first update but before the second, the database would be in an
inconsistent state because the inventory would not reflect the order entered. Under transaction control,
both statements would be committed at the same time. If one statement failed, then both would be
undone (rolled back).
Press the >> button to read through topics in sequence.
How transactions differ from cached updates
Implicitly controlling transactions
Explicitly controlling transactions
Transactions against a local table

How transactions differ from cached updates
In the BDE, when a transaction is active, updates are immediately sent to the underlying tables. Thus
errors (such as integrity constraint violations, and so on) are instantly reported to the clients. Because
updates are immediately sent to the underlying tables, the updates are visible to other transactions. And
because each modified record is locked, other users cannot interfere.
This behavior differs from that of cached updates, where updates are not sent to the underlying table
until the commit time. Hence no errors are reported until the commit time. No record locks are held until
the user decides to commit the updates. The locks are held only during the commit process. If errors
occur during the commit process, clients are given an option to abort the commit process. If clients abort
a commit process, the original state of the table is restored.
The main advantage of cached updates is that the locks are held only during the commit time, thereby
increasing the access time of SQL servers for other system transactions. Transactions lock out other
users after record is changed, and local transactions limit the user to changing only the maximum
number of records that can be locked. Cached updates avoid these problems, but permit another user to
change data underneath you.

Implicitly controlling transactions
By default, C++Builder provides implicit transaction control for your applications through the Borland
Database Engine (BDE). When an application is under implicit transaction control, C++Builder uses a
separate transaction for each record in a dataset that is written to the underlying database. It commits
each individual write operation, such as Post and AppendRecord.
Using implicit transaction control is easy. It guarantees both a minimum of record update conflicts and a
consistent view of the database. On the other hand, because each row of data written to a database
takes place in its own transaction, implicit transaction control can lead to excessive network traffic and
slower application performance.
If you explicitly control transactions, you can choose the most effective times to start, commit, and roll
back your transactions. When you develop client applications in a multi-user environment, particularly
when your applications run against a remote SQL server, such as Sybase, Oracle, Microsoft SQL,
InterBase,® or remote ODBC-compliant databases such as Access and FoxPro, you should control
transactions explicitly.
Note: You may be able to use cached updates to minimize the number of transactions you use in your

applications.

Explicitly controlling transactions
There are two mutually exclusive ways to control transactions explicitly in a C++Builder database
application:

Use the methods and properties of the TDatabase component .
Use passthrough SQL in a TQuery component. Passthrough SQL is only meaningful in the C+

+Builder Client/Server Suite, where you use SQL Links to pass SQL statements directly to remote SQL or
ODBC servers.
The main advantage to using the methods and properties of a database component to control
transactions is that it provides a clean, portable application that is not dependent on a particular
database or server.
The main advantage of passthrough SQL is that you can use the advanced transaction management
capabilities of a particular database server, such as schema caching. To understand the advantages of
your server's transaction management model, see your database server documentation.

Controlling transactions using a database component
The following table lists the methods and properties of a TDatabase component that are specific to
transaction management, and describes how they are used:

Method or property Purpose
Commit Commits data changes and ends the transaction.
InTransaction Indicates whether a transaction is in progress.
Rollback Undoes data changes and ends the transaction.
StartTransaction Starts a transaction.
TransIsolation Specifies the transaction isolation level for a transaction.

StartTransaction, Commit, and Rollback are methods your application can call at runtime to start
transactions, control the duration of transactions, and save or discard changes made to the database.
InTransaction is a property you can call at runtime to see if a transaction is started, but not committed or
rolled back. If true, a transaction is started, but not completed. If false, a transaction is not currently in
progress.
TransIsolation is a database component property that enables you to control how a transaction interacts
with other simultaneous transactions when they work with the same tables. In particular, it affects how
much a transaction "sees" of other transactions' changes to a table.

Starting a transaction
When you start a transaction, all subsequent statements that read from and write to the database occur
in the context of that transaction. Each statement is considered part of a group. Write changes made by
any statement in the group must be successfully committed to the database, or every change made by
every write statement made in the group are undone.
Grouping statements is useful when statements are dependent upon one another. Consider a bank
transaction at an Automated Teller Machine (ATM). When a customer decides to transfer money from a
savings account to a checking account, two changes must take place in the bank's database records:
1. The savings account must be debited.
2. The checking account must be credited.
If, for any reason, one of these actions cannot be completed, then neither action should take place.
Because these actions are so closely related, they should take place within a single transaction.
To start a transaction in a C++Builder application, call a database component's StartTransaction method.
The StartTransaction method begins a transaction at the isolation level specified by the TransIsolation
property. If a transaction is currently active, an exception is raised. For a database component named
DatabaseInterbase, the syntax for StartTransaction is:

DatabaseInterBase->StartTransaction();
All subsequent database actions take place in the context of the newly started transaction until the
transaction is explicitly terminated by a subsequent call to Commit or Rollback. Modifications are not
stored permanently until the Commit method is called. If the Rollback method is called to cancel
changes that occurred during the session, the modifications are discarded.
How long should you keep a transaction going? Ideally, only as long as necessary. The longer a
transaction is active, the more simultaneous users that access the database, and the more concurrent,
simultaneous transactions that start and end during the lifetime of your transaction, the greater the
likelihood that your transaction will conflict with another when you attempt to commit your changes.

Committing database changes
To make database changes permanent, a transaction must be committed using a database component's
Commit method. Executing a commit statement saves database changes and ends the transaction. For
example, the following statement ends the transaction started in the previous code example:

DatabaseInterBase->Commit();
Calling the Commit method writes all modifications since the last call to StartTransaction to the database
and ends the current transaction. If no transaction is active, an exception is raised.
Note: Commit should always be attempted in a try...catch statement. If a transaction cannot commit

successfully, you can attempt to handle the error, and perhaps retry the operation.

Discarding database changes
To discard database changes, a transaction must roll back its changes using Rollback. Rollback undoes
a transaction's changes and ends the transaction. Rollback undoes any modifications made within the
current transaction, those made since the last call to StartTransaction. If a transaction is not active when
this method is called, an exception is raised. The following statement rolls back a transaction:

DatabaseInterBase->Rollback();
Rollback usually occurs in

Exception handling code when you cannot recover from a database error.
Button or menu event code, such as when a user clicks a Cancel button.

Specifying how a transaction interacts with other simultaneous transactions
TransIsolation specifies the transaction isolation level for a database component's transactions.
Transaction isolation level determines how a transaction interacts with other simultaneous transactions
when they work with the same tables. In particular, it affects how much a transaction "sees" of other
transaction's changes to a table. Before changing or setting TransIsolation, you should be familiar with
transactions and transactions management in C++Builder.
The default setting for TransIsolation is tiReadCommitted. The following table summarizes possible
values for TransIsolation and describes what they mean:

Isolation level Meaning
tiDirtyRead Permit reading of uncommitted changes made to the database by other

simultaneous transactions. Uncommitted changes are not permanent, and might
be rolled back (undone) at any time. At this level your transaction is least isolated
from the changes made by other transactions.

tiReadCommitted Permit reading only of committed (permanent) changes made to the database by
other simultaneous transactions. This is the default isolation level.

tiRepeatableRead Permit a single, one time reading of the database. Your transaction cannot see
any subsequent changes to data by other simultaneous transactions. This
isolation level guarantees that once your transaction reads a record, its view of
that record will not change. At this level your transaction is most isolated from
changes made by other transactions.

Database servers may support these isolation levels differently or not at all. If the requested isolation
level is not supported by the server, then C++Builder will use the next highest isolation level. For a
detailed description of how each isolation level is implemented, see your server documentation.

TransIsolation
setting

Paradox and
dBASE

Oracle Sybase and Microsoft
SQL servers

InterBase

Dirty read Dirty read Read committed Read committed Read committed
Read committed
(Default)

Not supported Read committed Read committed Read committed

Repeatable read Not supported Repeatable read
(READ ONLY)

Not supported Repeatable Read

Note: When using transactions with local Paradox and dBASE tables, set TransIsolation to tiDirtyRead
instead of using the default value of tiReadCommitted. A BDE error is returned if TransIsolation is
set to anything but tiDirtyRead for local tables.

If an application is using ODBC to interface with a server, the ODBC driver must also support the
isolation level. For more information, see your ODBC driver documentation.

Sending an SQL transaction control statement to a remote server
With passthrough SQL, you use a TQuery, TStoredPro c , or TUpdateSQL component to send an SQL
transaction control statement directly to a remote database server. The BDE does not process the SQL
statement. Using passthrough SQL enables you to take direct advantage of the transaction controls
offered by your server, especially when those controls are non-standard.
To be able to use passthrough SQL to control a transaction you must

Use the C++Builder Client/Server Suite.
Install the proper SQL Links drivers. If you chose the Standard installation when installing C+

+Builder, all SQL Links drivers are already properly installed.
Configure your network protocol correctly. See your network administrator for more information.
Have access to a database on a remote server.
Use the BDE Configuration utility to set SQLPASSTHROUGHMODE to NOT SHARED.

Setting SQLPASSTHROUGHMODE
SQLPASSTHROUGHMODE specifies whether the BDE and passthrough
SQL statements can share the same database connections. In most cases, SQLPASSTHROUGHMODE
is set to SHARED AUTOCOMMIT. If however, you
want to pass SQL transaction control statements to your server, you must use the BDE Configuration
utility to set the BDE SQLPASSTHROUGHMODE to NOT SHARED. For more information about
SQLPASSTHROUGH modes, see the online Help for the BDE Configuration utility.
Note: When SQLPASSTHROUGHMODE is NOT SHARED, you must use separate database

components for TQuery components that pass SQL transaction statements to the server and
those other dataset components that do not.

Transactions against a local table
The BDE supports local transactions against Paradox and dBASE tables. From a coding perspective,
there is no difference to you between a local transaction and a transaction against a remote database
server.
When a transaction is started against a local table, updates performed against the table are logged.
Each log record contains the old record buffer for a record. When a transaction is active, records that
are updated are locked until the transaction is committed or rolled back. On rollback, old record buffers
are applied against updated records to restore them to their pre-update states.

Understanding the limitations of local transactions
The following limitations apply to local transactions:

Automatic crash recovery is not provided.
Data definition statements are not supported.
For Paradox, local transactions can only be performed on tables with valid indexes. Data cannot

be rolled back on Paradox tables that do not have indexes.
Transactions cannot be run against temporary tables.
Transactions cannot be run against the BDE ASCII driver.
TransIsolation level must only be set to tiDirtyRead.
Closing a cursor on a table during a transaction rolls back the transaction unless:
Several tables are open.
The cursor is closed on a table to which no changes were made.

Accessing data in databases
This topic describes the C++Builder components that encapsulate the data in a database. These
components are TDataSet and its descendents, TTable, TQuery, and TStoredProc.
Press the >> button to read through topics in sequence.
Providing common dataset functionality
Interacting with the database
Surfacing datasets
Placing datasets in data modules
Opening and closing datasets
Determining and setting dataset states
Navigating within datasets
Filtering datasets
Searching datasets
Modifying data
Accessing text files
Using dataset events

Providing common dataset functionality
Taken collectively, TTable, TQuery, and TStoredProc are called "datasets." The following figure
highlights the relation of dataset components to all the data access components in C++Builder:
C++Builder data access component hierarchy

Surfacing datasets

Interacting with the database
You never use TDataSet directly in your applications. Instead, you read and write data in a database
table by using a TTable, TQuery, or TStoredProc component that is descended from TDataSet through
TDBDataSet. (TDBDataSet adds session and database properties and methods to TDataSet.)
TDataSet, however, provides functionality common to all its descendents. .
Every dataset must have a corresponding TDataSource component in order to display data in data-
aware controls. A data source component links visual database controls on forms to a dataset. Visual
database controls receive data from and send data to data source components. A data source
component channels data from a dataset to visual controls, and from visual controls back to the dataset.

Surfacing datasets
A dataset component encapsulates data in a database, such as a table or the result set returned by a
query. TDataSet defines much basic functionality common to dataset components.
You never use a TDataset component directly. Instead you use one of its descendants: TTable, TQuery,
or TStoredProc. Each of these components has features that make it useful in different situations.
Press the >> button to read through a brief introduction of each descendant.

Accessing all of your data through tables
TTable is the most fundamental and flexible dataset component class in C++Builder. A table component
gives you access to every row and column in an underlying database table, whether it is from Paradox,
dBASE, an ODBC-compliant database such as Microsoft Access, or an SQL database on a remote
server, such as InterBase, Sybase, or SQL Server.
If you are familiar with a desktop database such as Paradox or dBASE, you will be very comfortable
working with table components because they most closely emulate the desktop paradigm. Table
components offer you an easy transition to C++Builder's client/server database applications model.
If you are more familiar with SQL databases and are already comfortable developing multiuser
client/server applications, you may find that the unique features of the TTable component (such as batch
move operations and easy setup of master/detail forms) offers you additional flexibility and power when
building a user interface to databases on your remote servers.

Accessing a subset of data with queries
TQuery is a BDE wrapper around an SQL statement that returns a set of related rows and columns from
one or more database tables. Generally, a query component provides access to a subset of rows and
columns in its underlying tables, whether those tables are from Paradox, dBASE, an OBDC-compliant
database such as Microsoft Access, or an SQL database on a remote server, such as InterBase,
Sybase, Oracle, or SQL Server.
If you are familiar with SQL databases, and are already comfortable developing multiuser client/server
applications, you will be comfortable working with query components because they most closely emulate
the SQL paradigm you already know. You can easily create both static and dynamic queries. TQuery
also provides a powerful feature not commonly found in server-based databases: the ability to create
heterogeneous queries against more than one server or table type.

Accessing data through a remote server's stored procedure
The TStoredProc component encapsulates a stored procedure in a database on a remote server. A
stored procedure is a set of semi-procedural statements, stored as part of a remote server's database
metadata, that performs a frequently repeated database-related task on the server and passes results to
a client application, such as an C++Builder database application. Most stored procedures also accept
input parameters. The TStoredProc component enables C++Builder database applications to take
advantage of stored procedures on remote servers.
If you are familiar with relational databases on remote servers, you already know about stored
procedures, and will be able to use stored procedure components in your C++Builder applications.
If you are new to relational databases on remote servers, you should learn about the stored procedures
your relational database management system provides on your remote server. Powerful and reusable,
stored procedures can help you split database processing between your client application on the
desktop and the remote server. See your server's database documentation for more information about
its support for stored procedures.

Placing datasets in data modules
Before you can use datasets in your application, you must place them from the Data Access tab of the
Component palette into your application.
You can place dataset components in a data module or on a form. Placing datasets in a data module
enables you to standardize all database access in your application from a central location. It also makes
it easier to maintain database access.
Note: Placing datasets (and data sources) directly on forms is recommended only for very simple

database applications. Even for moderately simple database applications that only work with a
few tables or queries on a few forms, using a data module eases development and maintenance.

Opening and closing datasets
To read or write data in a table or through a query, an application must first open a dataset. You can
open a dataset in two ways:

Set the Active property of the dataset to true, either at design time in the Object Inspector, or in
code at runtime:

CustTable->Active = true;
Call the Open method for the dataset at runtime:

CustQuery->Open();
You can also close a dataset in two ways:

Set the Active property of the dataset to false, either at design time in the Object Inspector, or in
code at runtime:

CustQuery->Active = false;
Call the Close method for the dataset at runtime:

CustTable->Close();
You need to close a dataset when you want to change any of its properties that affect the query, such as
the DataSource property. At runtime, you may also want to close a dataset for other reasons specific to
your application.

Determining and setting dataset states
The state--or mode--of a dataset determines what can be done to its data. For example, when a dataset
is closed, its state is dsInactive, meaning that nothing can be done to its data. A dataset is always in one
state or another. At runtime, you can examine a dataset's read-only State property to determine its
current state. The following table summarizes possible values for the State property and what they
mean:

Value State Meaning
dsInactive Inactive Dataset closed. Its data is unavailable.
dsBrowse Browse Dataset open. Its data can be viewed, but not changed. This is the

default state of an open dataset.
dsEdit Edit Dataset open. The current row can be modified.
dsInsert Insert Dataset open. A new row can be inserted.
dsSetKey SetKey TTable only. Dataset open. Enables searching for rows based on

indexed fields, or indicates that a SetRange operation is under way.
A restricted set of data can be viewed, and no data can be
changed.

dsCalcFields CalcFields Dataset open. Indicates that an OnCalcFields event is under way.
Prevents changes to fields that are not calculated.

dsUpdateNew UpdateNew Dataset open. Indicates that the new record buffer should be
modified.

dsUpdateOld UpdateOld Dataset open. Indicates that the old record buffer should be
modified.

dsFilter Filter Dataset open. Indicates that a filter operation is under way. A
restricted set of data can be viewed, and no data can be changed.

When an application opens a dataset, C++Builder automatically puts the dataset into dsBrowse mode.
The state of a dataset changes as an application processes data. An open dataset changes from one
state to another based on either the

Code in your application, or
C++Builder's built-in behavior.

To put a dataset into dsBrowse, dsEdit, dsInsert, or dsSetKey states, call the method corresponding to
the name of the state. For example, the following code puts CustTable into dsInsert state, accepts user
input for a new record, and writes the new record to the database:

CustTable->Insert(); // Your application explicitly sets dataset state to Insert
AddressPromptDialog->ShowModal();
if (AddressPromptDialog->ModalResult == IDOK)
 CustTable->Post(); // C++Builder sets dataset state to Browse on successful completion
else
 CustTable->Cancel(); // C++Builder sets dataset state to Browse on cancel

This example also illustrates how C++Builder automatically sets the state of a dataset to dsBrowse
when

The Post method successfully writes a record to the database. (If Post fails, the dataset state
remains unchanged.)

The Cancel method is called.
Some states cannot be set directly. For example, to put a dataset into the dsInactive state, set its Active
property to false, or call the Close method for the dataset. The following statements are equivalent:

CustTable->Active = false;
CustTable->Close();

The remaining states (dsCalcFields, dsUpdateNew, dsUpdateOld, and dsFilter) cannot be set by your
application. Instead, C++Builder sets them as necessary. For example, dsCalcFields is set when a
dataset's OnCalcFields event is called. When the OnCalcFields event finishes, the dataset is restored to

its previous state.
Note: Whenever a dataset's state changes, the OnStateChange event is called for any data source

components associated with the dataset.
Press the >> button to browse through a description of each state in sequence for an overview of
each state, how and when states are set, how states relate to one another, and where to go for related
information, if applicable.

Understanding the dataset's Inactive state
A dataset is inactive when it is closed. You cannot access records in a closed dataset. At design time a
dataset is closed until you set its Active property to true. At runtime, a dataset is closed until it is opened
either by calling the Open method, or by setting the Active property to true.
When you open an inactive dataset, C++Builder automatically puts it into dsBrowse state. The following
diagram illustrates the relationship between these states and the methods that set them.
Relationship of Inactive and Browse states

To make a dataset inactive, call its Close method. You can write BeforeClose and AfterClose event
handlers that respond to the Close method for a dataset. For example, if a dataset is in dsEdit or dsInsert
mode when an application calls Close, you should prompt the user to post pending changes or cancel
them before closing the dataset. The following code illustrates such a handler:

void __fastcall CustForm::CustTableBeforeClose(TDataSet *DataSet)
{
 bool posted;
 if ((CustTable->State == dsEdit) || (CustTable->State == dsInsert))
 if (::MessageBox(0, "Post changes before closing?", "", MB_YESNO) == IDYES)
 {
 CustTable->Post();
 posted = true;
 }
 else
 {
 CustTable->Cancel();
 posted = false;
 }
}

To associate a procedure with the BeforeClose event for a dataset at design time:
1. Select the table in the data module (or form).
2. Click the Events page in the Object Inspector.
3. Enter the name of the procedure for the BeforeClose event (or choose it from the drop-down list).

Understanding the dataset's Browse state
When an application opens a dataset, C++Builder automatically puts the dataset into dsBrowse state.
Browsing enables you to view records in a dataset, but you cannot edit records or insert new records.
You mainly use dsBrowse to scroll from record to record in a dataset.
From dsBrowse you can set all other dataset states. For example, calling the Insert or Append methods
for a dataset changes its state from dsBrowse to dsInsert (note that other factors and dataset properties
such as CanModify, may prevent this change). Calling SetKey to search for records puts a dataset in
dsSetKey mode. .
You can use two methods associated with all datasets to return a dataset to dsBrowse state. Cancel
ends the current edit, insert, or search task, and always returns a dataset to dsBrowse state. Post
attempts to write changes to the database, and if successful, also returns a dataset to dsBrowse state. If
Post fails, the current state remains unchanged.
The following figure illustrates the relationship of dsBrowse both to the other dataset modes you can set
in your applications, and the methods that set those modes.
Relationship of Browse to other dataset states

Understanding the dataset's Edit state
A dataset must be in dsEdit mode before an application can modify records. In your code, you can use
the Edit method to put a dataset into dsEdit mode if the read-only CanModify property for the dataset is
true. CanModify is true if the database underlying a dataset permits read and write privileges.
On forms in your application, some data-aware controls can automatically put a dataset into dsEdit state
if

The control's ReadOnly property is false (the default),
The AutoEdit property of the data source for the control is true, and
CanModify is true for the dataset.

Important: For TTable components only, if the ReadOnly property is true, CanModify is false,
preventing editing of records.

Note: Even if a dataset is in dsEdit state, editing records may not succeed for SQL-based databases if
your application user does not have proper SQL access privileges.

You can return a dataset from dsEdit state to dsBrowse state in code by calling the Cancel, Post, or
Delete methods. Cancel discards edits to the current field or record. Post attempts to write a modified
record to the dataset, and if it succeeds, returns the dataset to dsBrowse. If Post cannot write changes,
the dataset remains in dsEdit state. Delete attempts to remove the current record from the dataset, and
if it succeeds, returns the dataset to dsBrowse state. If Delete fails, the dataset remains in dsEdit state.
Data-aware controls, for which editing is enabled automatically, call Post when a user executes any
action that changes the current record (such as moving to a different record in a grid) or that causes the
control to lose focus (such as moving to a different control on the form).

Understanding the dataset's Insert state
A dataset must be in dsInsert mode before an application can add new records. In your code you can
use the Insert or Append methods to put a dataset into dsInsert mode if the read-only CanModify
property for the dataset is true. CanModify is true if the database underlying a dataset permits read and
write privileges.
On forms in your application, the data-aware grid and navigator controls can put a dataset into dsInsert
state if

The control's ReadOnly property is false (the default),
The AutoEdit property of the data source for the control is true, and
CanModify is true for the dataset.

Important: For TTable components only, if the ReadOnly property is true, CanModify is false,
preventing editing of records.

Note: Even if a dataset is in dsInsert state, inserting records may not succeed for SQL-based databases
if your application user does not have proper SQL access privileges.

You can return a dataset from dsInsert state to dsBrowse state in code by calling the Cancel, Post, or
Delete methods. Delete and Cancel discard the new record. Post attempts to write the new record to the
dataset, and if it succeeds, returns the dataset to dsBrowse. If Post cannot write the record, the dataset
remains in dsInsert state.
Data-aware controls, for which inserting is enabled automatically, call Post when a user executes any
action that changes the current record (such as moving to a different record in a grid).

Understanding the dataset's SetKey state
dsSetKey mode applies only to TTable components. To search for records in a TTable dataset, the
dataset must be in dsSetKey mode. You put a dataset into dsSetKey mode with the SetKey method at
runtime. The GotoKey method, which carries out the actual search, returns the dataset to dsBrowse
state upon completion of the search.
Note: Other search methods, including FindKey and FindNearest, automatically put a dataset into

dsSetKey state during a search, and return the dataset to dsBrowse state upon completion of the
search.

Understanding the dataset's CalcFields state
C++Builder puts a dataset into dsCalcFields mode whenever an application calls the dataset's
OnCalcFields event handler . This state prevents modifications or additions to the records in a dataset
except for the calculated fields the handler modifies itself. The reason all other modifications are
prevented is because OnCalcFields uses the values in other fields to derive values for calculated fields.
Changes to those other fields might otherwise invalidate the values assigned to calculated fields.
When the OnCalcFields handler finishes, the dataset is returned to dsBrowse state.

Understanding the dataset's Update states
The dsUpdateNew and dsUpdateOld modes are used to determine which record buffer to modify. C+
+Builder has two delayed update buffers, an old and a new, which are maintained by TDataSet objects.
This flag tells other dataset functions which buffer
to use.

Understanding the dataset's Filter state
C++Builder puts a dataset into dsFilter mode whenever an application calls the dataset's OnFilterRecord
event handler or the dataset is being filtered with the Filtered property. This state prevents modifications
or additions to the records in a dataset during the filtering process so that the filter request is not
invalidated.
When the OnFilterRecord handler finishes or the dataset has been filtered with the Filtered property, the
dataset is returned to dsBrowse state.

Navigating within datasets
Each active dataset has a cursor, or pointer, to the current row in the dataset. The current row in a
dataset is the one whose values can be manipulated by edit, insert, and delete methods, and the one
whose field values currently show in single-field, data-aware controls on a form, such as TDBEdit,
TDBLabel, and TDBMemo.
You can change the current row by moving the cursor to point at a different row. The following table lists
methods you can use in application code to move to different records:

Method Description
First Moves the cursor to the first row in a dataset.
Last Moves the cursor to the last row in a dataset.
Next Moves the cursor to the next row in a dataset.
Prior Moves the cursor to the previous row in a dataset.
MoveBy Moves the cursor a specified number of rows forward or back in a dataset.

The data-aware, visual component TDBNavigator encapsulates these methods as buttons that users
can click to move among records at runtime.
In addition to these methods, two Boolean properties of datasets provide useful information when
iterating through the records in a dataset:

Property Description
Bof (Beginning-of-file) true: the cursor is at the first row in the dataset.false: the cursor is not known

to be at the first row in the dataset.
Eof (End-of-file) true: the cursor is at the last row in the dataset.false: the cursor is not known

to be at the last row in the dataset.

Moving to the first or last record (First, Last)
The First method moves the cursor to the first row in a dataset and sets the Bof property to true. If the
cursor is already at the first row in the dataset, First does nothing.
For example, the following code moves to the first record in CustTable:

CustTable->First();
The Last method moves the cursor to the last row in a dataset and sets the Eof property to true. If the
cursor is already at the last row in the dataset, Last does nothing.
The following code moves to the last record in CustTable:

CustTable->Last();
Note: While there may be programmatic reasons to move to the first or last rows in a dataset without

user intervention, you should enable your users to navigate from record to record using the
TDBNavigator component. The navigator component contains buttons that when active and
visible enable a user to move to the first and last rows of an active dataset. The OnClick events
for these buttons call the First and Last methods of the dataset.

Moving to the next or previous record (Next, Prior)
The Next method moves the cursor forward one row in the dataset and sets the Bof property to false if
the dataset is not empty. If the cursor is already at the last row in the dataset when you call Next,
nothing happens.
For example, the following code moves to the next record in CustTable:

CustTable->Next();
The Prior method moves the cursor back one row in the dataset, and sets Eof to false if the dataset is
not empty. If the cursor is already at the first row in the dataset when you call Prior, Prior does nothing.
For example, the following code moves to the previous record in CustTable:

CustTable->Prior();

Moving relative to the current record (MoveBy)
MoveBy enables you to specify how many rows forward or back to move the cursor in a dataset.
Movement is relative to the current record at the time that MoveBy is called. MoveBy also sets the Bof
and Eof properties for the dataset as appropriate.
This function takes an integer parameter, the number of records to move. Positive integers indicate a
forward move and negative integers indicate a backward move.
MoveBy returns the number of rows it moves. If you attempt to move past the beginning or end of the
dataset, the number of rows returned by MoveBy differs from the number of rows you requested to
move. This is because MoveBy stops when it reaches the first or last record in the dataset.
The following code moves two records backward in CustTable:

CustTable->MoveBy(-2);
Note: If you use MoveBy in your application and you work in a multiuser database environment, keep in

mind that datasets are fluid. A record that was five records back a moment ago may now be four,
six, or even an unknown number of records back because several users may be simultaneously
accessing the database and changing its data.

Trapping beginning- and end-of-file conditions (Eof, Bof)
Two read-only, run-time properties, Eof (End-of-file) and Bof (Beginning-of-file), are useful for controlling
dataset navigation, particularly when you want to iterate through all records in a dataset.

Eof
When Eof is true, it indicates that the cursor is unequivocally at the last row in a dataset. Eof is set to
true when an application:

Opens an empty dataset.
Calls a dataset's Last method.
Calls a dataset's Next method, and the method fails (because the cursor is currently at the last

row in the dataset.
Calls SetRange on an empty range or dataset.

Eof is set to false in all other cases; you should assume Eof is false unless one of the conditions above
is met and you test the property directly.
Eof is commonly tested in a loop condition to control iterative processing of all records in a dataset. If
you open a dataset containing records (or you call First), Eof is false. To iterate through the dataset a
record at a time, create a loop that terminates when Eof is true. Inside the loop, call Next for each record
in the dataset. Eof remains false until you call Next when the cursor is already on the last record.
The following code illustrates one way you might code a record-processing loop for a dataset called
CustTable:

try
{
 CustTable->DisableControls();
 while(!CustTable->Eof) //Cycle until Eof is true
 {
 // Process each record here
 // ...
 CustTable->Next(); // Eof false on success; Eof true when Next fails on last record
 }
}
catch(...)
 {
 CustTable->EnableControls();
 }

Tip:
This example also demonstrates how to disable and enable data-aware visual controls tied to a dataset.
Disabling visual controls during dataset iteration speeds processing because C++Builder does not have
to update the contents of the controls as the current record changes. After iteration is complete, controls
should be enabled again to update them with values for the new current row. Note that enabling of the
visual controls takes place in the catch clause of a try...catch statement. This guarantees that even if an
exception terminates loop processing prematurely, controls are not left disabled.

Bof
When Bof is true, it indicates that the cursor is unequivocally at the first row in a dataset. Bof is set to
true when an application:

Opens a dataset.
Calls a dataset's First method.
Calls a dataset's Prior method, and the method fails (because the cursor is currently at the first

row in the dataset).
Calls SetRange on an empty range or dataset.

Bof is set to false in all other cases; you should assume Bof is false unless one of the conditions above
is met and you test the property directly.
Like Eof, Bof can be in a loop condition to control iterative processing of records in a dataset. The
following code illustrates one way you might code a record-processing loop for a dataset called
CustTable:

 try
 {
 CustTable->DisableControls(); // Speed up processing, prevent screen flicker
 while(!CustTable->Bof) // Cycle until Bof is true
 {
 // Process record here
 ...
 CustTable->Prior(); // Bof false on success; Bof true when Prior fails on first
 // record
 }
 }
catch(...)
 {
 CustTable->EnableControls(); // Display new current row in controls
 }

Marking and returning to records (bookmarks)
In addition to moving from record to record in a dataset (or moving from one record to another by a
specific number of records), it is often also useful to mark a particular location in a dataset so that you
can return to it quickly when desired.
C++Builder provides three bookmark methods that let you flag a record in a dataset so that you can
return to it later.

Method Description
GetBookmark Allocates a bookmark for your current position in the dataset.
GotoBookmark Returns to a bookmark previously created by GetBookmark.
FreeBookmark Frees a bookmark previously allocated by GetBookmark.

To create a bookmark:
1. Declare a variable of type TBookmark in your application.
2. Call GetBookmark to allocate storage for the variable.
3. Set the value of GetBookmark to a particular location in a dataset. The TBookmark variable is a

pointer.
When passed a bookmark, GotoBookmark moves the cursor for the dataset to the location specified in
the bookmark.
FreeBookmark frees the memory allocated for a specified bookmark when you no longer need it. You
should also call FreeBookmark before reusing an existing bookmark.
The following code illustrates the use of bookmarking:

void DoSomething (const TTable *Tbl)
{
 TBookmark Bookmark;

 Bookmark = Tbl->GetBookmark(); //Allocate memory and assign a value
 Tbl->DisableControls(); // Turn off display of records in data controls
 try
 {
 Tbl->First(); // Go to first record in table
 while (!Tbl->Eof) // Iterate through each record in table
 {
 // Do your processing here
 ...
 Tbl->Next();
 }
 }
 catch(...)
 {
 Tbl->GotoBookmark(Bookmark);
 Tbl->EnableControls(); // Turn on display of records in data controls, if necessary
 Tbl->FreeBookmark(Bookmark); // Deallocate memory for the bookmark
 }
}

Before entering the record iteration process controls are disabled. Should an error occur during iteration
through records, the catch clause ensures that controls are always enabled and that the bookmark is
always freed even if the loop terminates prematurely.

Filtering datasets
Filtering lets you specify criteria to temporarily restrict the data being viewed. For example, you may be
interested in retrieving or viewing only those records for companies based in California in your customer
database, or you may want to find records that contain orders in excess of $2,000.00. C++Builder
supports filtering of a table or query to handle both of these requirements.
Filters are similar to, though less powerful than, queries, with the benefit that filters work on the dataset
itself, meaning that the result is always "live" (unlike queries which sometimes produce result sets that
can't be modified).
You can filter a dataset in three ways:

Setting the Filter property of the dataset.
Restricting record visibility at the time of record retrieval using an OnFilterRecord event handler .
Finding a record in a dataset that matches search values using the Locate method for the

dataset.
If you use Locate, C++Builder automatically generates a filter for you at runtime if it needs to
Press the >> button to read about properties and methods common to the first two methods of filtering
datasets as well as information specific to each method.
Note: Filters are applied to every record retrieved in a dataset. When you want to filter large volumes of

data, it may be more efficient to use a query to restrict record retrieval, or to set a range on an
indexed table rather than using filters.

Turning filters on and off
The simplest and most common way to use filtering is to turn on filtering for the entire dataset. To turn
on filtering a dataset, set the Filtered property to true. With filtering on, the dataset generates an event
for each record in the dataset. In handling that event, you can determine whether to accept or "filter out"
each record. You could also supply a filter condition as the value of the Filter property instead of writing
an event handler.
Note: When filtering is on, user edits to a record may mean that the record no longer meets

a filter's test conditions which can make the current record disappear if it no longer passes the
filter. When this occurs, the next record that passes the filter condition becomes the current
record.

You can also filter records programmatically by creating a standard control (such as an edit box). The
following code example illustrates this.

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 Table1->Filtered = true;
 Table1->Filter = Edit1->Text;
 Table1->Refresh;
}

Some other filter examples are:
CustTable->Filter = "State = California";
Table1->Filter = "PatientAge >= 18";

Turning filters on and off at runtime
At runtime you can turn filtering off by setting the Filtered property to false, and you can turn it on by
setting the Filtered property to true. If you turn off filtering, all records in a dataset are available to your
application, but for the application to see all records, you must also call the dataset's Refresh method.
For example

{
 CustTable->Filtered = false;
 CustTable->Refresh();
}

If you turn on filtering at runtime, you must also call Refresh again to make the filter take effect. The
current record may no longer pass the filter condition, and may disappear. If that happens, the next
record that passes the filter condition becomes the current record.

Fine-tuning the filter
The FilterOptions property allows you to fine-tune the filtering provided by the Filter property . Setting
foCaseInsensitive to true allows the filter to be processed without regard to case in the dataset's data.
Setting foNoPartialCompare to true requires string matches to be exact over the length of the data in the
dataset, partial matches are not allowed. Both FilterOptions are false by default.
FilterOptions is a set property and would be turned on at runtime with the following code:

CustTable->FilterOptions=CustTable->FilterOptions << foCaseInsensitive << NoPartialCompare;
or

CustTable->FilterOptions=CustTable->FilterOptions << foCaseInsensitive;

Locating records in a filtered dataset
You can use Find methods in conjunction with filters to go to the first, last, next, and previous records
based on filter criteria when the dataset is not currently being filtered. When filtering is not enabled, the
methods temporarily set the Filtered property to true then use the code in either the OnFilterRecord
event handler or the condition in the Filter property to find the record. To locate records that match the
filter, call the FindFirst, FindLast, FindNext, or FindPrior methods. A typical use for these methods is to
add a button to your form with the code:

CustTable->FindNext();
All four methods are Boolean functions that return true if they locate the matching record. For example,
if you call FindFirst, it iterates through the dataset, generating OnFilterRecord events until a record
passes the FindFirst filter. If it finds such a record, it makes that the current record and returns true.
Otherwise, the current record stays the same and FindFirst returns false.

Filtering datasets with the OnFilterRecord event
The OnFilterRecord event occurs when filtering is active, either from setting Filtered to true, or by using
the FindFirst , FindLast , FindNext , or FindPrior methods . OnFilterRecord event handlers have two
parameters: the dataset being filtered and a boolean Accept parameter to specify whether the record
should be included. By default, Accept is true; only when you set Accept to false will a record be
excluded.
When Filtered is true, the dataset generates an OnFilterRecord event for each record it retrieves. The
event handler for the OnFilterRecord tests each record and only those that meet the Filter's conditions
are visible in the application. As performance is directly related to how often the event fires and how long
it takes to process each event, the code in the OnFilterRecord event handler should be kept short.
The TFilterRecordEvent type points to a method that responds to an OnFilterRecord event, for including
or excluding records from being visible in a dataset.
This method of filtering is most valuable when you want to compare a value in the table to something
outside of the table. For example, you could compare a value in the table with a value in an edit box or
other visual component to filter "on the fly."
To restrict visible records in a dataset to a subset of those that match a certain set of criteria:

Write an OnFilterRecord event handler for the dataset.
Set the Filtered property for the dataset to true.

Writing a filter event handler
A filter for a dataset is an event handler that responds to OnFilterRecord events generated by the
dataset for each record it retrieves. At the heart of every filter handler is a test that determines if a record
should be included in those that are visible to the application.
To indicate whether a record passes the filter condition, your filter handler must set an Accept parameter
to true to include a record, or false to exclude it. For example, the following filter displays only those
records with the State field set to CA:

void __fastcall TForm1::CustTableFilterRecord(TDataSet *DataSet, Boolean &Accept)
{
 Accept = (String("CA") == DataSet->FieldByName("State")->AsString);
}

Switching filter event handlers at runtime
You can change how records are filtered at runtime by assigning a different handler
to the OnFilterRecord event for a dataset. To apply the new filter to the dataset after changing it, call the
dataset's Refresh method:

{
 CustTable->OnFilterRecord = Query2FilterRecord;
 Refresh();
}

Specifying a filter
You can filter dataset components to restrict which records you want to see in the dataset by setting
these properties:

Set the value of the Filter property for the dataset.
Set the Filtered property for the dataset to true.
Fine-tune the filter by modifying the FilterOptions property .

This method of filtering datasets is most valuable when the filter will be set at run-time. You cannot
compare the value in the Filter property to a value outside of the table, for example, it cannot be
compared to a value in an edit box.
The Filter property is a string that lets you set conditions on one or more fields of your dataset. You can
compare fields to literal values and constants using the comparison operators in the following table and
the AND, NOT, and OR operators to combine comparisons. You can also compare a field to a field in an
edit control. You must enclose field names that contain spaces within square brackets.

Operator Meaning
< Less than
> Greater than
>= Greater than or equal to
<= Less than or equal to
= Equal to
<> Not equal

The following are some examples that can be used to set filtering conditions:
PatientAge >= 18
State = 'FL'
(PatientAge >= 18) AND (Balance > 0)
(Temperature < 212) AND (NOT Windy)

In the previous example, Windy is a logical field.
(SalePrice < $10,000) OR (Terms > 30)
[Sale Date] > 'January 1, 1996'.

Searching datasets
You can search a dataset for specific records using the generic search methods Locate and Lookup or
the Find methods FindFirst, FindLast, FindNext, or FindPrior. These methods enable you to search on
any type of columns in any dataset.

Locate moves the cursor to the first row matching a specified set of criteria.
Lookup returns the values from the first row that matches specified search criteria, but does not

move the cursor to that row.
Find methods are used with filters and move the cursor to the first row matching the search

criteria when filtering is not enabled

Moving the cursor to the located record (Locate)
Locate moves the cursor to the first row matching a specified set of search criteria. In its simplest form,
you pass Locate the name of a column to search, a field value to match, and an options flag specifying
whether the search is case-insensitive or if it can use partial-key matching. For example, the following
code moves the cursor to the first row in the CustTable where the value in the Company column is
"Professional Divers, Ltd.":

{
 bool LocateSuccess;
 TLocateOptions SearchOptions;

 SearchOptions << loPartialKey;
 LocateSuccess = CustTable->Locate("Company", "Professional Divers, Ltd.",
 SearchOptions);
}

If Locate finds a match, the first record containing the match becomes the current record. Locate returns
true if it finds a matching record, false if it does not. If a search fails, the current record does not change.
The real power of Locate comes into play when you want to search multiple columns and specify
multiple values to search for. Search values are variants; this enables you to specify different data types
in your search criteria. To specify multiple columns in a search string, separate individual items in the
string with semicolons.
Because search values are variants, if you pass multiple values, you must either pass a variant array
type as an argument (for example, the return values from the Lookup method), or you must construct
the variant array on the fly using the VarArrayOf function. The following code illustrates a search on
multiple columns using multiple search values and partial-key matching:

{
 Variant tmp(OPENARRAY(int, (0,1)), vtInteger);
 tmp << (int)("Sight Diver");
 tmp << (int)("P");
 VarArrayOf(&tmp,1);
}

Locate uses the fastest possible method to locate matching records. If the columns to search are
indexed and the index is compatible with the search options you specify, Locate uses the index.
Otherwise, Locate creates a BDE filter for the search.

Returning values from a located record (Lookup)
Lookup searches for the first row that matches specified search criteria. If it finds a matching row, it
forces the recalculation of any calculated fields and lookup fields associated with the dataset, then
returns one or more fields from the matching row. Lookup does not move the cursor to the matching
row; it only returns values from it.
In its simplest form, you pass Lookup the name of the column to search, the field value to match, and
the field or fields to return. For example, the following code looks for the first row in the CustTable where
the value in the Company column is Professional Divers, Ltd., and returns the company name, a contact
person, and a phone number for the company:

{
 Variant LookupResults;
 LookupResults = CustTable->Lookup("Company", "Professional Divers, Ltd.", "Company;
 Contact; Phone");
}

Lookup returns values for the specified fields from the first matching record it finds. Values are returned
as variants. If more than one return value is requested, Lookup returns a variant array. If there are no
matching records, Lookup returns a null variant. For more information about variant arrays, see the C+
+Builder Programmer's Guide.
The real power of Lookup comes into play when you want to search on multiple columns and specify
multiple values to search for. To specify strings containing multiple columns or result fields, separate
individual string items with semi-colons.
Because search values are variants, if you pass multiple values, you must pass a variant array type as
an argument (for example, the return values from the Lookup method. The following code illustrates a
lookup search on multiple columns:

{
 Variant tmp(OPENARRAY(int, (0, 1)), vtInteger);
 tmp << (int)("Sight Diver", 0);
 tmp << ("Christiansted", 1);
 Variant LookupResults;
 LookupResults = CustTable->Lookup("Company;City", tmp, "Company;Addr1;Addr2;State;Zip");
}

Lookup uses the fastest possible method to locate matching records. If the columns to search are
indexed, Lookup uses the index. Otherwise, Lookup creates a BDE filter for the search.

Modifying data
You can use dataset methods to enable an application to insert, update, and delete data:

Method Description
Edit Puts the dataset into dsEdit state if it is not already in dsEdit or dsInsert states.
Append Posts any pending data, moves current record to the end of the dataset, and puts the

dataset in dsInsert state.
Insert Posts any pending data, and puts the dataset in dsInsert state.
Post Attempts to post the new or altered record to the database. If successful, the dataset is

put in dsBrowse state; if unsuccessful, the dataset remains in its current state.
Cancel Cancels the current operation and puts the dataset in dsBrowse state.
Delete Deletes the current record and puts the dataset in dsBrowse state.

Editing records
A dataset must be in dsEdit mode before an application can modify records. In your code, you can use
the Edit method to put a dataset into dsEdit mode if the read-only CanModify property for the dataset is
true. CanModify is true if the table(s) underlying a dataset permits read and write privileges.
On forms in your application, some data-aware controls can automatically put a dataset into dsEdit state
if:

The control's ReadOnly property is false (the default),
The AutoEdit property of the data source for the control is true, and
CanModify is true for the dataset.

Important: For TTable components only, if the ReadOnly property is true, CanModify is false,
preventing editing of records.

Note: Even if a dataset is in dsEdit state, editing records may not succeed for SQL-based databases if
your application user does not have proper SQL access privileges.

Once a dataset is in dsEdit mode, a user can modify the field values for the record that appears in any
data-aware controls on a form. Data-aware controls, for which editing is enabled automatically, call Post
when a user executes any action that changes the current record (such as moving to a different record
in a grid).
If you provide a navigator component on your forms, users can cancel edits by clicking the navigator
Cancel button. Canceling edits returns a dataset to
dsBrowse state.
In code, you must write or cancel edits by calling the appropriate methods. You write changes by calling
Post. You cancel them by calling Cancel. In code, Edit and Post are often used together. For example,

{
 CustTable->Edit();
 CustTable->FieldbyName("CustNo")->AsInteger = 1234;
 CustTable->Post();
}

The first line of the code fragment places the dataset in dsEdit mode. The next line of code assigns the
number 1234 to the CustNo field of the current record. Finally, the last line writes, or posts, the modified
record to the database.
Note: If the CachedUpdates property for a dataset is true, posted modifications are written to a

temporary buffer. To write cached edits to the database, call the ApplyUpdates method for the
dataset.

Editing entire records
On forms, all data-aware controls except for grids and the navigator provide access to a single field in a
record.
In code, however, you can use the following methods that work with entire record structures provided
that the structure of the database tables underlying the dataset is stable and does not change. The
following table summarizes the methods available for working with entire records rather than individual
fields in those records:

Method Description
AppendRecord([array of values]) Appends a record with the specified column values at the end of a

table; analogous to Append. Performs an implicit Post.
InsertRecord([array of values]) Inserts the specified values as a record before the current cursor

position of a table; analogous to Insert. Performs an implicit Post.
SetFields([array of values]) Sets the values of the corresponding fields; analogous to assigning

values to TFields. Application must perform an explicit Post.

These methods take a comma-delimited array of values as an argument, where each value corresponds
to a column in the underlying dataset. The values can be literals, variables, or null. If the number of
values in an argument is less than the number of columns in a dataset, the remaining values are
assumed to be null.
For datasets that are not indexed, AppendRecord adds a record to the end of the dataset and
InsertRecord inserts a record after the current cursor position. For indexed tables, both methods places
the record in the correct position in the table, based on the index. In both cases, the methods move the
cursor to the record's position.
SetFields assigns the values specified in the array of parameters to fields in the dataset. To use
SetFields, an application must first call Edit to put the dataset in dsEdit mode. To apply the changes to
the current record, it must perform a Post.
If you use SetFields to modify some, but not all fields in an existing record, you can pass null values for
fields you do not want to change. If you do not supply enough values for all fields in a record, SetFields
assigns null values to them. Null values overwrite any existing values already in those fields.
For example, suppose a database has a COUNTRY table with columns for Name, Capital, Continent,
Area, and Population. If a TTable component called CountryTable were linked to the COUNTRY table,
the following statement would insert a record into the COUNTRY table:

{
 TVarRec* Item1 = new TVarRec("Japan");
 TVarRec* Item2 = new TVarRec("Tokyo");
 TVarRec* Item3 = new TVarRec("Asia");

CountryTable->InsertRecord((Item1,Item2, Item3), 3);
 delete Item1;
 delete Item2;
 delete Item3;
}

This statement does not specify values for Area and Population, so null values are inserted for them.
The table is indexed on Name, so the statement would insert the record based on the alphabetic
collation of "Japan."
To update the record, an application could use the following code:

{
 TLocateOptions tlo;
 tlo << loCaseInsensitive;
 if (CountryTable->Locate("Name", "Japan", tlo))
 {
 CountryTable->Edit();
 TVarRec *tvr1 = new TVarRec(344567);
 TvarRec *tvr2 = new TVarRec(164700000);

 CountryTable->SetFields((NULL, NULL, NULL, tvr1, tvr2), 5);
 CountryTable->Post();
 delete tvr1;
 delete tvr2;
 }
}

This code assigns values to the Area and Population fields and then posts them to the database. The
three null values act as place holders for the first three columns to preserve their current contents.

Adding new records
A dataset must be in dsInsert mode before an application can add new records to an existing table. In
your code, you can use the Insert or Append methods to put a dataset into dsInsert mode if the read-
only CanModify property for the dataset is true. CanModify is true if the database underlying a dataset
permits read and write privileges.
On forms in your application, the data-aware grid and navigator controls can put a dataset into dsInsert
state if

The control's ReadOnly property is false (the default), and
CanModify is true for the dataset.

Important: For TTable components only, if the ReadOnly property is true, CanModify is false,
preventing editing of records.

Note: Even if a dataset is in dsInsert state, inserting records may not succeed for SQL-based databases
if your application user does not have proper SQL access privileges.

Once a dataset is in dsInsert mode, a user or application can enter values into the fields associated with
the new record. Except for the grid and navigational controls, there is no visible difference to a user
between Insert and Append. On a call to Insert, an empty row appears in a grid above what was the
current record. On a call to Append, the grid is scrolled to the last record in the dataset, an empty row
appears at the bottom of the grid, and the Next and Last buttons are dimmed on any navigator
component associated with the dataset.
Data-aware controls, for which inserting is enabled automatically, call Post when a user executes any
action that changes which record is current (such as moving to a different record in a grid). Otherwise,
you must call Post in your code.
Post writes the new record to the database, or, if cached updates are enabled, Post writes the record to
a buffer. To write cached inserts and appends to the database, call the ApplyUpdates method for the
dataset.

Inserting records
Insert opens a new, empty record before the current record, and makes the empty record the current
record so that field values for the record can be entered either by a user or by your application code.
When an application calls Post (or ApplyUpdates when cached updating is enabled), a newly inserted
record is written to a database in one of three ways:

For indexed Paradox and dBASE tables, the record is inserted into the dataset in a position
based on its index.

For unindexed tables, the record is inserted into the dataset at its current position.
For SQL databases, the physical location of the insertion is implementation-specific. If the table is

indexed, the index is updated with the new record information.

Appending records
Append opens a new, empty record at the end of the dataset, and makes the empty record the current
one. Field values for the record can be entered either by a user or by your application code.
When an application calls Post (or ApplyUpdates when cached updating is enabled), a newly appended
record is written to a database in one of three ways:

For indexed Paradox and dBASE tables, the record is inserted into the dataset in a position
based on its index.

For unindexed tables, the record is added to the end of the dataset.
For SQL databases the physical location of the append is implementation-specific. If the table is

indexed, the index is updated with the new record information.

Deleting records
A dataset must be active before an application can delete records. Delete deletes the current record
from a dataset and puts the dataset in dsBrowse mode. The record that followed the deleted record
becomes the current record. If cached updates are enabled for a dataset, a deleted record is only
removed from the temporary cache buffer until you call ApplyUpdates.
If you provide a navigator component on your forms, users can delete the current record by clicking the
navigator Delete button. In code, you must call Delete explicitly to remove the current record.

Posting data changes
The Post method is central to an C++Builder application's interaction with a database table. Post writes
changes to the current record to the database, but it behaves differently depending on a dataset's state.

In dsEdit state, Post writes a modified record to the database (or buffer if cached updates is
enabled).

In dsInsert state, Post writes a new record to the database (or buffer if cached updates is
enabled).

In dsSetKey state, Post returns the dataset to dsBrowse state.
Posting can be done explicitly, or implicitly as part of another procedure. When an application moves off
the current record, C++Builder calls Post implicitly. Calls to the First , Next , Prior , and Last methods
perform a Post if the table is in dsEdit or dsInsert modes. The Append and Insert methods also implicitly
post any pending data.
Note: Post is not called implicitly by the Close method. Use the BeforeClose event to post any pending

edits explicitly.

Canceling changes
An application can undo changes made to the current record at any time, if it has not yet directly or
indirectly called Post. For example, if a dataset is in dsEdit mode, and a user has changed the data in
one or more fields, the application can return the record to its original values by calling the Cancel
method for the dataset. A call to Cancel always returns a dataset to dsBrowse state.
On forms, you can allow users to cancel edit, insert, or append operations by including a Cancel button
on a navigator component associated with the dataset, or you can code your own Cancel button on the
form.

Accessing text files
The ASCIIDRV text driver allows BDE clients to access text files. The text driver allows BDE clients to
access text data directly without first importing into a table format. By using this driver, the application
developer can build a more efficient import/export utility. Filters can be set on the cursors that are
opened on the text files to import/export only those records that satisfy the filter's criteria.
When you open a text table, you can provide the field descriptor information by calling the BDE function
DbiSetFieldMap to set a field map or you can bind external schema to text tables.
A text file can be created by using the BDE function DbiCreateTable. The developer supplies only the
table name and driver type values in the CRTblDesc descriptor; the rest of the field values are ignored.
DbiCreateTable creates a file with the given name; no field descriptions are necessary.
The BDE function DbiOpenTable can be used to open a text file for import/export. The file can be
opened as a delimited text file or as a fixed length text file.
For more information on accessing text files, see the BDE online help file BDE32.HLP and search for
ASCIIDRV.

Using dataset events
Datasets have a number of events that enable an application to perform validation, compute totals, and
perform other tasks. The events are listed in the following table.

Event Description
BeforeOpen, AfterOpen Called before/after a dataset is opened.
BeforeClose, AfterClose Called before/after a dataset is closed.
BeforeInsert, AfterInsert Called before/after a dataset enters Insert state.
BeforeEdit, AfterEdit Called before/after a dataset enters Edit state.
BeforePost, AfterPost Called before/after changes to a table are posted.
BeforeCancel, AfterCancel Called before/after the previous state is canceled.
BeforeDelete, AfterDelete Called before/after a record is deleted.
OnNewRecord Called when a new record is created; used to set default values.
OnCalcFields Called when calculated fields are calculated.

For more information about events for TDataSet components, see the VCL Reference.

Aborting a method
To abort a method, such as an Open or Insert, call the Abort procedure in any of the Before methods
(BeforeOpen, BeforeInsert, and so on). For example, the following code requests a user to confirm a
delete operation or else it aborts the call to Delete:

void TForm1::TableBeforeDelete (TDataset *Dataset)
{
 if MessageBox(0, "Delete This Record?", "CONFIRM", MB_YESNO) != IDYES)
 Abort();
}

Setting values of calculated fields with OnCalcFields
The OnCalcFields event is used to set the values of calculated fields. The AutoCalcFields property
determines when OnCalcFields is called. If AutoCalcFields is true, then OnCalcFields is called when

A dataset is opened.
Focus moves from one visual component to another, or from one column to another in a data-

aware grid control.
A record is retrieved from the database.

OnCalcFields is always called whenever a value in a non-calculated field changes, regardless of the
setting of AutoCalcFields.
Caution: OnCalcFields is called frequently, so the code you write for it should be kept short. Also, if

AutoCalcFields is true, OnCalcFields should not perform any actions that modify the dataset
(or the linked dataset if it is part of a master-detail relationship), because this can lead to
recursion. For example, if OnCalcFields performs a Post, and AutoCalcFields is true, then
OnCalcFields is called again, leading to another Post, and so on.

If AutoCalcFields is false, OnCalcFields is only called when Post (or any method that implicitly calls
Post, such as Append or Insert) is called.
When OnCalcFields executes, a dataset is in dsCalcFields mode, so you cannot set the values of any
fields other than calculated fields. After OnCalcFields is completed, the dataset returns to dsBrowse
state.

Linking visual controls to datasets
This topic describes the TDataSource component that acts as a conduit between a dataset (TTable,
TQuery, and TStoredProc components) and the data-aware, visual control components (from the Data
Controls tab) in a form.
Every dataset must have a corresponding data source component to make use of any data-aware
controls. If your application is not using data-aware controls, you probably will not need a data source
component. A data source component links visual database controls on forms to a dataset. Visual
database controls receive data from and send data to data source components. A data source
component channels data from a dataset to visual controls, and from visual controls back to the dataset.
"Understanding database components" provides more information about data sources and their
relationship to other database components.
Press the >> button to read through topics in sequence.
Establishing a database-to-data-aware-control link
Responding to data changes
Responding to updates
Responding to dataset state changes
Other places to look:
Grid controls
Data-aware controls
Working with tables
Working with queries

Establishing a database-to-data-aware-control link
A TDataSource component enables the display, navigation, and editing of the data underlying the
dataset. All datasets must be associated with a data source component in order for their data to be
displayed and manipulated in data-aware controls on a form. Similarly, each data-aware control needs
to be associated with a data source component in order to have data to display and manipulate. You
also use data source components to link datasets in master-detail relationships.
You place a data source component in a data module or form just as you place other nonvisual
database components. You should place at least one data source component for each dataset
component in a data module or form.
To establish a database-to-data-aware-control link:
1. Place a dataset component from the Data Access tab of the Component palette in a data module or

on a form. See Surfacing datasets for information on associating a dataset component with a
database. To view data in a data-aware control, make sure the dataset's Active property is true.

2. Place a DataSource component from the Data Access tab of the Component palette in a data module
or on a form. Set the DataSet property of the data source to the name of the dataset established
previously.

3. Place a data-aware control from the Data Controls tab of the Component palette on a form. Set its
DataSource property to the name of the data source established previously.

TDataSource has only a few published properties and events. The following topics discuss these key
properties and events and how to set them at design time and runtime, when applicable.
Associating the data source with a dataset
Naming the data source
Connecting to a dataset
Permitting automatic editing
Setting an integer value for programming needs

Associating the data source with a dataset
The DataSet property specifies the dataset component (TTable, TQuery, and TStoredProc) in a form or
data module that is providing data to the data source. Usually you select a dataset at design time from
the drop down list in the Object Inspector, but you can also set it at runtime. The advantage of this
interface approach to connecting data components is that the dataset, data source, and data-aware
controls can be connected and disconnected from each other through the TDataSource component. In
addition, these components can belong to different forms.
The following code swaps the dataset for the CustSource data source component between Customers
and Orders to show how you can switch the dataset for a data source component as needed at runtime.

if (CustSource->DataSet == "Customers")
 CustSource->DataSet = "Orders";
else
 CustSource->DataSet = "Customers";

You can also set the DataSet property to a dataset on another form to synchronize the data-aware
controls on the two forms. For example,

void __fastcall TForm2::FormCreate (TObject *Sender)
{
 DataSource1->Dataset = Form1->Table1;
}

Naming the data source
Name enables you to specify a meaningful name for a data source component that distinguishes it from
all other data sources in your application. The name you supply for a data source component is
displayed below the component's icon in a data module and in the Object Selector at the top of the
Object Inspector.
Generally, you should provide a name for a data source component that indicates the dataset with which
it is associated. For example, suppose you have a dataset called Customers, and that you link a data
source component to it by setting the data source component's DataSet property to "Customers." To
make the connection between the dataset and data source obvious in a data module, you should set the
Name property for the data source component to something like "CustomersSource".

Connecting to a dataset
The Enabled property specifies if the display in data-aware controls connected to TDataSource is
updated when the current record in the dataset changes. During an UpdateState call, when the Enabled
property is true, the State property of the data source would be set match the state of the dataset. When
the Enabled property is false, the state of the data source would be set to dsInactive. During a SetState
call, if the state of the data source changes, OnStateChange is called, all of the data links are updated
via a call to OnDataChange or OnUpdateData. If State changes from dsInactive, OnDataChange is also
called. For example, when Enabled is true and the Next method of a dataset component is called many
times, each call updates all controls. Setting Enabled to false allows the Next calls to be made without
performing updates to the controls. Once you reach the desired record, set Enabled to true to update
the controls to that record.
Note: Setting Enabled to false clears the display in data-aware controls until you set it to true again. If

you want to leave the controls with their current contents while moving through the table or query,
call the DisableControls and EnableControls methods.

Permitting automatic editing
The AutoEdit property of TDataSource specifies whether datasets connected to the data source
automatically enter Edit state when the user starts typing in data-aware controls linked to the dataset. If
AutoEdit is true (the default), C++Builder automatically puts the dataset in Edit state when a user types
in a linked data-aware control. Set AutoEdit to false to protect the data from being unintentionally
modified. When AutoEdit is false, a dataset enters Edit state only when the application explicitly calls its
Edit method.

Setting an integer value for programming needs
The Tag property is available to store an integer value as part of a component. While the Tag property
has no meaning to C++Builder, your application can use the property to store a value for its special
needs.

Responding to data changes
The OnDataChange event occurs when the State property changes from dsInactive, or when a data-
aware control notifies the TDataSource that something has changed.
Notification occurs when the following items change because of field modification or moving to a new
record: field component, record, dataset component, content, and layout. The Field parameter to the
method may be null if more than one of the fields changed simultaneously (as in a move to a different
record). Otherwise, Field is the field which changed.
The TDataChangeEvent type points to a method that handles the changing of data in a data source
component (TDataSource). The Field parameter is the field in which the data is changing. It is used by
the OnDataChange event of the data source.
This event is useful if an application is keeping components synchronized manually.

Responding to updates
OnUpdateData is activated by the Post or UpdateRecord method of a dataset component when the
current record is about to be updated in the database. For instance, an OnUpdateData event occurs
after Post is called, but before the data is actually posted to the database. It causes all data-aware
controls connected to the data source to be notified of the pending update, allowing them to change
their associated fields to the current values in the controls.
This event is useful if an application uses a standard (non-data aware) control and needs to keep it
synchronized with a dataset.

Responding to dataset state changes
OnStateChange is called whenever the State property for a data source's dataset changes.
OnStateChange is useful for performing actions as a TDataSource's state changes. A dataset's State
property records its current state. The State property is a public, but not published, read-only property
that has no write method. However, the State property of a dataset may be changed indirectly. For
example, you can change the State property to dsEdit programmatically by calling the dataset's Edit
method as in the following code example.

Table1->Edit();
By assigning a method to this property, you can react programmatically to state changes. This event is
useful for enabling or disabling buttons (for example, enabling an edit button only when a table is in edit
mode) or displaying processing messages.
Note: OnStateChange can occur even for null datasets, so it is important to protect any reference to the

DataSet property with a null test:
if (DataSource1->Dataset != NULL)
...

For example, during the course of a normal database session, a dataset's state changes frequently. To
track these changes, you could write an OnStateChange event handler that displays the current dataset
state in a label on a form. The following code illustrates one way you might code such a routine. At
runtime, this code displays the current setting of the dataset's State property and updates it every time it
changes:

void __fastcall TForm1::StateChange(TObject *Sender)
{
 char S[13];

 switch (CustTable->State)
 {
 case dsInactive: strcpy(S,"Inactive"); break;
 case dsBrowse: strcpy(S, "Browse"); break;
 case dsEdit: strcpy(S, "Edit"); break;
 case dsInsert: strcpy(S, "Insert"); break;
 case dsSetKey: strcpy(S, "SetKey"); break;
 }
}

Similarly, you can use OnStateChange to enable or disable buttons or menu items based on the current
state:

void __fastcall TForm1::StateChange(TObject *Sender)
{
 if (CustTable->State == dsBrowse)
 CustTableEditBtn->Enabled;
 if (CustTable->State == dsInsert|| CustTable->State == dsEdit|| CustTable->State ==
dsSetKey)
 CustTableCancelBtn->Enabled;
 ...
}

Creating and using fields
This topic describes the TField object class that represents individual database columns, or fields, in
datasets, and it describes how to use its descendant field components in your database applications.
TField objects control such things as whether or not data from a column is displayed and its format. By
default, one field object is created for every column of its associated table component. The following
figure highlights the relationship of the TField component to the other data access components in C+
+Builder:
C++Builder data access component hierarchy

Fields may be of different data types. Each data type maintains a different type of data internally and
transfers that data to and from an associated database table. You never directly use a TField component
in your applications. Instead you use its descendant field components, each of which represents a
different data type in a column of a table or query underlying a dataset component. The following table
lists each type of field component:

Component name Used for:
TAutoIncField Represented as a binary value with a range from -2,147,483,648 to

2,147,483,647. Used for auto-incrementing fields that hold large, signed,
whole numbers.

TBCDField Real numbers with a fixed number of digits after the decimal point. Accurate
to 18 digits. Range depends on the number of digits after the decimal point.
[Paradox only]

TBooleanField true or false values
TBlobField Arbitrary data field without a size limit
TBytesField Arbitrary data field without a size limit
TCurrencyField Currency values. The range and accuracy is the same as TFloatField
TDateField Date value
TDateTimeField Date and time value
TFloatField Real numbers with absolute magnitudes from 5.0*10-324 to 1.7*10+308

accurate to 15-16 digits
TGraphicField Arbitrary length graphic, such as a bitmap
TIntegerField Whole numbers in the range -2,147,483,648 to 2,147,483,647
TMemoField Arbitrary length text
TNumericField Numeric data types
TSmallintField Whole numbers in the range -32,768 to 32,767
TStringField Fixed length text data up to 255 characters
TTimeField Time value
TVarBytesField Arbitrary data field up to 65,535 characters, with the actual length stored in

the first two bytes
TWordField Whole numbers in the range 0 to 65,535

Even though there are many field components, they share most of their properties, methods, and
events. Press the >> button to read through a discussion of the shared properties, methods, and events
of field components in sequence. For information specific to individual field components, see the VCL
Reference.

Understanding field components
Choosing between dynamic and persistent field generation
Creating persistent fields
Setting field properties and events
Handling field events
Working with field methods at runtime
Displaying, converting, and accessing field values

Understanding field components
Like the other C++Builder data access components, field components are nonvisual. Field components
are also not directly visible at design time. Instead they are associated with a dataset component, and
provide data-aware components such as TDBEdit and TDBGrid access to database fields through that
dataset.
When a dataset is opened, one field component is generated for each column of data in the underlying
table or query. C++Builder uses the Borland Database Engine (BDE) to determine the correct type of
field component to assign to each column. The type of field component determines its properties and
how data associated with that field is displayed in data-aware controls on a form. For example, a
TFloatField component has four properties that directly affect the appearance of data:

Property Description
DisplayWidth Controls the number of digits displayed in a control.
DisplayFormat Specifies the appearance of values in a control (for example, the number of

decimal places to display).
Alignment Centers or left or right aligns the values in a control for display.
EditFormat Controls the appearance of values in a control during editing.

Field components have many properties in common with one another (such as DisplayWidth and
Alignment), and they have properties specific to their data types (such as Precision for TFloatField).
Some properties, such as Precision, can also affect how data entered in a control by a user is written
back to the table underlying a dataset.
The appearance of data can also be affected in other ways. You can use the Data Dictionary to create
extended field attribute sets that describe the content and appearance of data. You can also control the
appearance of columns in data-aware grids.
You cannot change a field component directly. To change the data type of a field, you must define a new
field and replace one data type with another.
Field components also provide events, such as OnChange, which can react to editing of data in a field,
and OnValidate, which can be used to implement field-based validation rules.

Choosing between dynamic and persistent field generation
Field components are dynamically generated at design time when the Active property for a dataset is set
to true. C++Builder creates field components for the dataset based on the underlying physical structure
of columns in one or more database tables each time a dataset it activated. One dynamic field
component is created for each column in the underlying table.
Dynamic field generation means that C++Builder provides a standard set of default properties for each
field component it generates, and that these defaults might change if there are fundamental changes to
the underlying table. Every time the physical structure of the database tables changes (for example,
because columns are dropped, added, or altered), the fields available to your C++Builder database
application also change.
However, while dynamic generation of field components might be appropriate for some applications and
might not be an issue at design time when you can change what your application looks like, it may
become an issue at runtime, when your application's behavior and data appearance are fixed. For
example, if you create a customized database grid based on an expected number of fields in a table,
and a new field is added to the table--or one is removed--your application may not work as expected. In
this case, you need to generate a persistent set of field components for your application.
Creating persistent field components is different from dynamically generating field components because
if the physical structure of the table changes, the fields in the program do not change. The field
descriptions are "hard-coded," making a more stable program. You can use persistent field components
to add, change, remove, and create field components, but you cannot modify the underlying table
structure.

Benefits of dynamic field generation
Dynamic generation of field components is the best way to create field components in the following
situations:

You are designing an application where the underlying structure of the table may change.
You want to allow the user to change the underlying structure of the table.
You are displaying existing data and are not making any assumptions about that data.
You are creating an application for exploring a database.

You can choose which fields to display and the order of display in a grid by double-clicking the grid and
using the DBGrid Columns editor

Benefits of persistent field generation
Creating persistent field components offers the following advantages. You can

Remove field components from the list of persistent components to prevent your application from
accessing particular columns in an underlying database.

Modify field component display and edit properties.
Define lookup fields that compute their values based on fields in other datasets.
Define calculated fields that compute their values based on other fields in the dataset.
Define new fields--usually to replace existing fields--based on columns in the table or query

underlying a dataset.
Add field components to the list of persistent components.
Restrict the fields in your dataset to a subset of the columns available in the underlying database.

At design time, you can use the Fields editor to create persistent lists of the field components used by
the datasets in your application. Persistent field component lists are stored in your application, and do
not change even if the structure of a database underlying a dataset is changed. All fields in a dataset are
either persistent or dynamic.
Note: In customized data grids you can create persistent column objects that duplicate much of this

functionality.

Creating persistent fields
You can create persistent field components with the Fields editor to provide efficient, readable, and type-
safe programmatic access to underlying data. Persistent field generation guarantees that each time your
application runs, it always uses and displays the same columns in the same order, even if the physical
structure of the underlying database has changed. Data-aware components and program code that rely
on specific fields always work as expected. If a column on which a persistent field component is based
is deleted or changed, C++Builder generates an exception rather than running the application against a
nonexistent column or mismatched data.
To create persistent fields, start the Fields editor by double-clicking the dataset (TTable, TQuery)
component.
The title bar of the Fields editor displays both the name of the data module or form containing the
dataset, and the name of the dataset itself. So, if you open the Customers dataset in the CustomerData
data module, the title bar displays 'CustomerData.Customers', or as much of the name as fits.
Below the title bar is a set of navigation buttons that enable you to scroll one-by-one through the records
in an active dataset at design time, and to jump to the first or last record. The navigation buttons are
dimmed if the dataset is not active or if the dataset is empty.
The list box displays the names of persistent field components for the dataset. The first time you invoke
the Fields editor for a new dataset, the list is empty because the field components for the dataset are
dynamic, not persistent. If you invoke the Fields editor for a dataset that already has persistent field
components, you see the field component names in the list box.
Tip: You can drag and drop fields from the Fields editor onto a form.
Press the >> button to read through topics in sequence.
Adding persistent fields
Arranging the order of persistent field components
Defining new persistent fields
Deleting persistent field components

Adding persistent fields
To add a persistent field component for a dataset, right-click the Fields editor list box and choose Add
fields.
The Available fields list box displays all fields in the dataset which do not have persistent field
components. Select the fields for which to create persistent field components, and click OK.
The Add Fields dialog box closes, and the fields you selected appear in the Fields editor list box. Fields
in the Fields editor list box are persistent. If the dataset is active, note, too, that the Next and Last
navigation buttons above the list box are enabled.
From now on, each time you open the dataset, C++Builder no longer creates dynamic field components
for every column in the underlying database. Instead it only creates persistent components for the fields
you specified and only the fields you specified will be displayed in the data-aware control.
Each time you open the dataset, C++Builder verifies that each non-calculated persistent field exists or
can be created from data in the database. If it cannot, C++Builder raises an exception warning you that
the field is not valid, and does not open the dataset.

Arranging the order of persistent field components
The order in which persistent field components are listed in the Fields editor list box is the default order
in which the fields appear in a data-aware grid component. You can change field order by dragging and
dropping fields in the list box.
To change the order of a one or more fields
1. Select one or more fields (use Ctrl-Click to select more than one field).
2. Drag it to a new location.
Alternatively, you can select the field, and use Ctrl-Up and Ctrl-Dn to move the field to a new location in
the list.
If you select a non-contiguous set of fields and drag them to a new location, they are inserted as a
contiguous block. Within the block the order of fields to one another does not change.

Defining new persistent fields
Besides making dynamic field components into persistent field components for a dataset, you can also
create new persistent fields as additions to or replacements of the other persistent fields in a dataset.
You can create the following types of persistent fields:

Field type Description
Data fields Replaces existing fields (for example to change the data type of a field),

based on columns in the table or query on the underlying dataset.
Calculated fields Displays values calculated at runtime by a dataset's OnCalcFields event

handler.
Lookup fields Retrieves values from a specified dataset at runtime based on criteria

you specify.

These types of persistent fields are only for display purposes. The data they contain at runtime are not
retained either because they already exist elsewhere in your database, or because they are temporary.
The physical structure of the table and data underlying the dataset is not changed in any way.
To create a new persistent field component, right-click the Fields editor list box and choose New field.
The Field properties group box lets you enter general field component information. Enter the
component's field name in the Name edit box. The name you enter here corresponds to the field
component's DataField property, excluding spaces. C++Builder uses this name to build a component
name in the Component edit box. The name in the Component edit box corresponds to the field
component's Name property and is provided for informational purposes (Name contains the identifier by
which you refer to the field component in your source code). C++Builder discards anything you enter
directly in the Component edit box.
Specify the field component's data type in the Type combo box. You must supply a data type for any
new field component you create. For example, to display floating-point currency values in a field, select
Currency from the drop-down list. The Size edit box enables you to specify the maximum number of
characters that can be displayed or entered in a string-based field or the size of Bytes and VarBytes
fields. For all other data types, Size is meaningless.
Specify the type of new field component to create in the Field type radio group. The default type is Data.
If you choose Lookup, the Dataset and Key Fields edit boxes in the Lookup definition group box are
enabled.

Defining a data field
A data field replaces an existing field in a dataset. For example, for programmatic reasons you might
want to replace a TSmallintField with a TIntegerField. Because you cannot change a field's data type
directly, you must define a new field to replace it.
Important:
Even though you define a new field to replace an existing field, the field you define must derive its data
values from an existing column in a table underlying a dataset.
To create a data field,
1. Start the Fields editor by double-clicking the dataset (TTable, TQuery) component.
2. Select the field in the list box and delete the field name. The field will not be deleted from the table,

only from the current list of persistent fields.
3. Enter the name of an existing persistent field in the Name edit box. Do not enter a new field name.
4. Choose a new data type for the field from the Type combo box. The data type you choose should be

different from the data type of the field you are replacing, but it should be a logical change.
5. Enter the size of the field in the Size edit box, if appropriate. Size is only relevant for fields of type

TStringField, TBytesField, and TVarBytesField.
6. Select Data in the Field type radio group if it is not already selected.
7. Choose OK. The New Field dialog box closes, the newly defined data field replaces the existing field

you specified in step 1, and the component declaration in the data module or form's class declaration
is updated.

To edit the properties or events associated with the field component, select the component name in the
Field editor list box, then edit its properties or events with the Object Inspector.

Defining a calculated field
A calculated field displays values calculated at runtime by a dataset's OnCalcFields event handler. For
example, you might create a string field that displays concatenated values from other fields.
To create a calculated field
1. Start the Fields editor by double-clicking the dataset (TTable, TQuery) component.
2. Enter a name for the calculated field in the Name edit box. Do not enter the name of an existing field.
3. Choose a data type for the field from the Type combo box.
4. Enter the size of the field in the Size edit box, if appropriate. Size is only relevant for fields of type

TStringField, TBytesField, and TVarBytesField.
5. Select Calculated in the Field type radio group.
6. Choose OK. The newly defined calculated field is automatically added to end of the list of persistent

fields in the Field editor list box, and the component declaration is automatically added to the form's
class declaration in the source code.

7. Place code that calculates values for the field in the OnCalcFields event handler for the dataset. For
more information about writing code to calculate field values, see below.

To edit the properties or events associated with the field component, select the component name in the
Field editor list box, then edit its properties or events with the Object Inspector.
Note: The Calculated and Lookup properties of a field component are mutually exclusive. Setting one to

true automatically sets the other to false.
After you define a calculated field, you must write code to calculate its value. Otherwise, it always has a
null value. Code for a calculated field is placed in the OnCalcFields event for its dataset.
To program a value for a calculated field:
1. Select the dataset component (TTable, TQuery) from the Object Inspector drop-down list.
2. Choose the Object Inspector Events page.
3. Double-click the OnCalcFields property to bring up or create a CalcFields function for the dataset

component.
4. Write the code that sets the values and other properties of the calculated field as desired.
For example, suppose you have created a CityStateZip calculated field for a Customers table on a
CustomerData data module. CityStateZip should display a customer's city, state, and zip code on a
single line in a data-aware control.
To add code to the CalcFields function for the Customers table, select the Customers table from the
Object Inspector drop-down list, switch to the Events page, and double-click the OnCalcFields property.
The TCustForm::CustomersCalcFields function appears in the unit's source code window. Add the
following code to the function to calculate the field:

CustomersCityStateZip->Value = CustomersCity->Value +", " + CustomersState->Value + " " +
CustomersZip->Value;

Defining a lookup field
Lookup fields are much like calculated fields, but their "calculation" is to "lookup" information in another
table. A lookup field displays the values it returns at runtime based on lookup criteria. In its simplest
form, a lookup field is passed the name of a field to search, a field value to search for, and the field in
the lookup dataset whose value it should display. Lookup fields are always read-only.
Note: The Calculated and Lookup properties of a field component are mutually exclusive. Setting one to

true automatically sets the other to false.
For example, consider a mail-order application that enables an operator use a lookup field to determine
automatically the city and state that correspond to a zip code a customer provides. In that case, the
column to search on might be called ZipTable.Zip, the value to search for is the customer's zip code as
entered in Order.CustZip, and the values to return would be those in the ZipTable.City and
ZipTable.State columns for the record where ZipTable.Zip matches the current value in the
Order.CustZip field.
Note: The use of the Table.Field is applicable if the dataset resides in a data module. If the dataset

resides on a form, only the field name is necessary.
To create a lookup field:
1. Start the Fields editor by double-clicking the dataset (TTable, TQuery) component.
2. Enter a name for the lookup field in the Name edit box. Do not enter the name of an existing field.
3. Choose a data type for the field from the Type combo box.
4. Enter the size of the field in the Size edit box, if appropriate. Size is only relevant for fields of type

TStringField, TBytesField, and TVarBytesField.
5. Select Lookup in the Field type radio group. Selecting Lookup enables the Dataset and Key Fields

combo boxes.
6. Choose from the Dataset combo box drop-down list the dataset in which to look up field values. The

lookup dataset must be different from the dataset for the field component itself, or a circular reference
exception is raised at runtime. Specifying a lookup dataset enables the Lookup Keys and Result Field
combo boxes. The lookup dataset must reside on the same form or in the same data module as the
dataset for the field component.

7. Choose from the Key Fields drop-down list a field in the current dataset for which to match values. To
match more than one field, enter field names directly instead of choosing from the drop-down list.
Separate multiple field names with semicolons.

8. In the Lookup Keys drop-down list, choose a field in the lookup dataset to match against the Key
Fields field you specified in step 6. To specify more than one field, enter field names directly instead.
Separate multiple field names with semicolons.

9. Choose from the Result Field drop-down list a field in the lookup dataset to return as the value of the
lookup field you are creating. To return values from more than one field in the lookup dataset, enter
field names directly instead. Separate multiple field names with semicolons.

Another way to define a lookup field is to complete steps 1-4 above and then select the lookup field in
the Fields editor. The boxes in the Fields editor are displayed as properties in the Object Inspector,
therefore, you can set the LookupDataSet, LookupKeyFields, and LookupResultField properties there.
For the lookup field to be activated, the Lookup property must be set to true.
Note: Field lookup happens before field calculations are performed. You can therefore base calculated

fields on lookup fields, but you cannot base lookup fields on calculated fields.

Deleting persistent field components
You delete persistent field components to access a subset of available columns in a table, and to define
your own persistent fields to replace a column in a table. To remove one or more persistent field
components in a dataset:
1. Start the Fields editor by double-clicking the dataset (TTable, TQuery) component.
2. Select one or more fields to remove in the Fields editor list box.
3. Press Del.
Note: You can also delete selected fields by invoking the context menu and choosing Delete.
Fields you remove are no longer available to the dataset and cannot be displayed by data-aware
controls. You can always recreate persistent field components that you delete by accident, but any
changes previously made to its properties or events are lost.
If you remove all persistent field components for a dataset, C++Builder regenerates all dynamic field
components for every column in the database table underlying the dataset.

Setting field properties and events
You can set properties and customize events for persistent field components at design time. Properties
control the way a field is displayed by a data-aware component, for example, whether it can appear in a
TDBGrid, or whether its value can be modified. Events control what happens when data in a field is
fetched, changed, set, or validated.
To set the properties of a field component or write customized event handlers for it, select the
component in the Fields editor, or select it from the component list in the Object Inspector.
Press the >> button to read through topics in sequence.
Setting display and edit properties of fields
Creating attribute sets for field components
Associating attribute sets with field components
Removing attribute set associations
Working with field properties at runtime

Setting display and edit properties of fields
To edit the properties of a selected persistent field component, switch to the Properties page in the
Object Inspector window. The following table summarizes properties that can be edited.

Property Purpose
Alignment Left justifies, right justifies, or centers a field's contents in a data-aware component or

column.
Calculated true: field value is calculated by a CalcFields method at runtime.false (the default): field value

is determined from the current record.
Currency Numeric fields only. true: displays monetary values.false (the default): does not display

monetary values.
DisplayFormat Numeric fields only. Specifies the format of data displayed in a data-aware component.
DisplayLabel Specifies the column name for a field in a data-aware grid component.
DisplayWidth Specifies the width, in characters, of a grid column that displays this field.
EditFormat Numeric fields only. Specifies the edit format of data in a data-aware component.
EditMask Limits data-entry in an editable field to specified types and ranges of characters, and

specifies any special, non-editable characters that appear in the field (hyphens, parentheses,
and so on).

FieldName Specifies the actual name of a column in the table from which the field derives its value and
data type.

Index Specifies the order of the field in a dataset.
KeyFields Specifies which field in the current dataset to match in the lookup dataset when Lookup is

true.
Lookup true: Displays lookup field values in data-aware components.false (the default): Does not

display lookup field values.
LookupDataSet Specifies the table used to look up field values when Lookup is true.
LookupKeyFields Specifies the field or fields in the lookup dataset to match when doing a lookup.
LookupResultField Specifies the field in the lookup dataset whose value you want copied into the lookup field.
MaxValue Numeric fields only. Specifies the maximum value a user can enter for the field.
MinValue Numeric fields only. Specifies the minimum value a user can enter for the field.
Name Specifies the component name of the field in C++Builder.
Precision Numeric fields only. Specifies the number of decimal places of the value to store before

rounding begins.
ReadOnly true: Displays field values in data-aware components, but prevents editing.false (the default):

Permits display and editing of field values.
Required true: Specifies that a non-NULL value for a field is required.false (the default): Specifies that

a non-NULL value for a field is not required.
Size Specifies the maximum number of characters that can be displayed or entered in a string-

based field, or the size, in bytes, of TBytesField and TVarBytesField.
Tag Long integer bucket available for programmer use in every component as needed.
Transliterate true (the default): Specifies translations to and from the respective locales of the Source and

Destination properties of the dataset will be done.false: Specifies these translations will not
be done.

Visible true (the default): Permits display of field in a data-aware grid component.false: Prevents
display of field in a data-aware grid component.User-defined components can make display

decisions based on this property.

Not all properties are available for all field components. For example, a field component of type
TStringField does not have Currency, MaxValue, or DisplayFormat properties, and a component of type
TFloatField does not have a Size property.
While the purpose of most properties is straightforward, some properties, such as Calculated, require
additional programming steps to be useful. Others, such as DisplayFormat, EditFormat, and EditMask,
are interrelated; their settings must be coordinated.
You can also use and manipulate field component properties at runtime.

Using default formats for numeric, date, and time fields
C++Builder provides built-in display and edit format routines and intelligent default formatting for
TFloatField, TCurrencyField, TIntegerField, TSmallIntField, TWordField, TDateField, TDateTimeField,
and TTimeField components. To use these routines, you need do nothing.
Default formatting is performed by the following routines:

Routine Used by
FormatFloat TFloatField, TCurrencyField
FormatDateTime TDateField, TTimeField, TDateTimeField
FormatCurr TCurrencyField

Only format properties appropriate to the data type of a field component are available for a given
component.
Default formatting conventions for date, time, currency, and numeric values are based on the Regional
Settings properties in the Windows 95 or Windows NT Control Panel. For example, using the default
settings for the United States, a TFloatField column with the Currency property set to true sets the
DisplayFormat property for the value 1234.56 to $1234.56, while the EditFormat is 1234.56.
At design time or runtime, you can edit the DisplayFormat and EditFormat properties of a field
component to override the default display settings for that field. You can also write OnGetText and
OnSetText event handlers to do custom formatting for field components at runtime.

Controlling, or masking, user input
The EditMask property provides a way to control the type and range of values a user can enter into a
data-aware component associated with TStringField, TDateField, TTimeField, and TDateTimeField
components. You can use existing masks, or create your own. The easiest way to use and create edit
masks is with the Input Mask editor. You can also enter masks directly into the EditMask field in the
Object Inspector. For a complete discussion of edit masks, their structure, and the symbols they can
contain, see the "EditMask property" in the VCL Reference.
To enter an input mask, invoke the Input Mask editor for a field component:
1. Select the component in the Fields editor or Object Inspector.
2. Click the Properties page in the Object Inspector.
3. Double-click the values column for the EditMask field in the Object Inspector, or click the ellipsis

button. The Input Mask editor opens.

The Input Mask edit box enables you to create and edit a mask format. The Sample Masks grid lets you
select from predefined masks. If you select a sample mask, the mask format appears in the Input Mask
edit box where you can modify it or use it as is. You can test the allowable user input for a mask in the
Test Input edit box.
The Masks button enables you to load a custom set of masks--if you have created one--into the Sample
Masks grid for easy selection.
Note: For TStringField components, the EditMask property is also its display format.

Creating attribute sets for field components
When several persistent fields in the datasets used by your application share common formatting
properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat, MaxValue, MinValue, and so
on), it is more convenient to set the properties for a single field, then store those properties as an
attribute set in the Data Dictionary. Attribute sets in the Data Dictionary can be easily applied to other
fields.
To create an attribute set based on a field component in a dataset:
1. Double-click the dataset to invoke the Fields editor.
2. Select the field for which to set properties.
3. Set the desired properties for the field in the Object Inspector.
4. Right-click the Fields editor list box to invoke the context menu.
5. Choose Save attributes to save the current field's property settings as an attribute set in the Data

Dictionary.
The name for the attribute set defaults to the name of the current field. You can specify a different name
for the attribute set by choosing Save attributes as instead of Save attributes from the context menu.
Note: You can also create attribute sets directly from the Database Explorer. When you create an

attribute set from the Database Explorer, the set is not applied to any fields. You can specify two
additional attributes in the set: a field type (such as TFloatField, TStringField, and so on) and a
data-aware control (such as TDBEdit, TDBCheckBox, and so on) which is automatically placed
on a form when a field based on the attribute set is dragged onto the form. For more information,
see the online help for the Database Explorer.

Associating attribute sets with field components
When several persistent fields in the datasets used by your application share common formatting
properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat, MaxValue, MinValue, and so
on), and you saved those property settings as attribute sets in the Data Dictionary, you can easily apply
the attribute sets to fields without having to recreate the settings manually for each field. In addition, if
you later change the attribute settings in the Data Dictionary, those changes are automatically applied to
every field associated with the set the next time field components are added to the dataset.
To apply an attribute set to a field component:
1. Double-click the dataset to invoke the Fields editor.
2. Select the field for which to apply an attribute set.
3. Right-click the Fields editor list box and choose Associate attributes.
4. Select or enter the attribute set to apply from the Attribute set name dialog box. If an attribute set

exists in the Data Dictionary, that set name appears in the edit box.

Removing attribute set associations
If you change your mind about associating an attribute set with a persistent field component, you can
easily remove the attribute set from the field component:
1. Double-click the dataset to invoke the Fields editor.
2. Select the field for which to remove an attribute set.
3. Right-click the Fields editor list box and choose Unassociate attributes.
After you remove an attribute set from a field component, the attributes remain the same as they were
when they were associated. You can either use the Object Inspector to set its properties, or you can
associate a different attribute set with the component.

Working with field properties at runtime
You can use and manipulate the properties of field components at runtime. For example, the following
code sets the ReadOnly property for the CityStateZip field in the Customers table to true:

CustomersCityStateZip->ReadOnly = true;
And this statement changes field ordering by setting the Index property of the CityStateZip field in the
Customers table to 3:

CustomersCityStateZip->Index = 3;

Handling field events
Like all C++Builder components, field components have event handlers associated with them. By writing
event handlers, you control events that affect data entered in fields using data-aware controls. The
following table lists the events associated with field components:

Event Purpose
OnChange Called when the value for a field changes.
OnGetText Called when the value for a field component is retrieved for display or editing.
OnSetText Called when the value for a field component is set.
OnValidate Called to validate the value for a field component whenever the value is changed

because of an edit or insert operation.

OnGetText and OnSetText events are primarily useful to programmers who want to do custom
formatting that goes beyond C++Builder's built-in formatting functions. OnChange is useful for
performing application-specific tasks associated with data change, such as enabling or disabling menus
or visual controls. OnValidate is useful when you want to validate data-entry in your application before
returning values to a database server.
To write an event handler for a field component:
1. Select the component from the Fields editor or the Object Inspector drop-down list.
2. Select the Events page in the Object Inspector.
3. Double-click the values column for the event handler to display its source code window.
1. Create or edit the handler code.
For more information on these events, see the VCL Reference.

Working with field methods at runtime
Field component methods available at runtime let you convert field values from one data type to another,
and let you set focus on the first data-aware control in a form that is associated with a field component.
Controlling the focus of data-aware components associated with a field is important when your
application performs record-oriented data validation in a dataset event handler (such as BeforePost).
You can validate the fields in a record whether or not its associated data-aware control has focus.
Should validation fail for a particular field in the record, you want the data-aware control containing the
faulty data to have focus so that the user can enter corrections.
You control focus for a field's data-aware components with a field's FocusControl method. FocusControl
sets focus to the first data-aware control in a form that is associated with a field. An event handler
should call a field's FocusControl method before validating the field. The following code illustrates how
to call the FocusControl method for the Company field in the Customers table:

CustomersCompany->FocusControl();
Note: In this example, you need to create a persistent field for the Company field.
The following table lists other field component methods. To access online help for these methods, you
can enter the method in the Code editor and then press F1.

Method name Used for
Assign Copies data from one field to another. Fields must be the same data type and

size.
AssignValue Sets the field to Value using one of the field component conversion functions

(depending on the type of value).
Clear Clears the field, sets Value to NULL.
Create Allocates memory to create a component and initializes its data as needed.
Destroy Destroys the object component or control and releases memory allocated to it

(Free is more commonly used for this purpose).
FocusControl Sets a form's focus to the first data-aware component associated with a field.
Free Destroys the object and frees its associated memory (use after Create).
GetData Used to obtain "raw" data from the field.
IsValidChar Used by data-aware controls to determine if a particular character entered in

the field is valid for the field.
SetData Assigns "raw" data to the field.

Displaying, converting, and accessing field values
Data-aware controls such as TDBEdit and TDBGrid automatically display the values associated with
field components when a dataset's Active property is true. If editing is enabled for the dataset and the
controls, data-aware controls can also send new and changed values to the database. In general, the
built-in properties and methods of data-aware controls enable them to connect to datasets, display
values, and make updates without requiring extra programming on your part. Use them whenever
possible in your database applications.
Standard controls (such as TEdit) can also display and edit database values associated with field
components. Using standard controls, however, may require additional programming on your part.
Press the >> button to read through topics in sequence.
Displaying values in standard controls
Converting values
Accessing values with the default dataset method
Accessing values with a dataset's Fields property
Accessing values with a dataset's FieldByName method

Displaying values in standard controls
An application can access the value of a database column through the Value property
of a field component. For example, the following statement assigns the value of the CustomersCompany
field to the text in a TEdit control:

Edit3->Text = CustomersCompany->Value;
This method works well for string values, but may require additional programming to handle conversions
for other data types. Fortunately, field components have built-in functions for handling conversions.
Note: You can also use variants to access and set field values. Variants are a flexible data type.

Converting values
Conversion functions attempt to convert one data type to another. For example, the AsString function
converts numeric and Boolean values to string representations. The following table lists field component
conversion functions, and which functions are recommended for field components by field-component
type:

Function T
S
t
r
I
n
g
F
I
e
l
d

T
I
n
t
e
g
e
r
F
I
e
l
d

T
S
m
a
l
l
I
n
t
F
I
e
l
d

T
W
o
r
d
F
I
e
l
d

T
F
l
o
a
t
F
I
e
l
d

T
C
u
r
r
e
n
c
y
F
I
e
l
d

T
B
C
D
F
I
e
l
d

T
D
a
t
e
T
I
m
e
F
I
e
l
d

T
D
a
t
e
F
I
e
l
d

T
T
I
m
e
F
I
e
l
d

T
B
o
o
l
e
a
n
F
I
e
l
d

T
B
y
t
e
s
F
I
e
l
d

T
V
a
r
B
y
t
e
s
F
I
e
l
d

T
B
l
o
b
F
I
e
l
d

T
M
e
m
o
F
I
e
l
d

T
G
r
a
p
h
I
c
F
I
e
l
d

AsVariant Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö

AsString Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö

AsInteger Ö Ö Ö Ö

AsFloat Ö Ö Ö Ö

AsCurrency
AsDateTime Ö Ö Ö Ö

AsBoolean Ö Ö

Note that the AsVariant method can be used for translating among all data types. When in doubt, use
AsVariant.
In some cases, conversions are not always possible. For example, AsDateTime can be used to convert
a string to a date, time, or date-time format only if the string value is in a recognizable date-time format.
A failed conversion attempt raises an exception.
In some other cases, conversion is possible, but the results of the conversion are not always intuitive.
For example, what does it mean to convert a TDateTimeField value into a float format? AsFloat converts
the date portion of the field to the number of days since 12/31/1899, and it converts the time portion of
the field to a fraction of 24 hours. This may be useful, for example, when you want to calculate elapsed
time. The following table lists permissible conversions that produce special results:

Conversion Result
String to Boolean Converts "true," "false," "Yes," and "No" to Boolean. Other values raise exceptions.
Float to Integer Rounds float value to nearest integer value.
DateTime to Float Converts date to number of days since December 31, 1899, time to a fraction of 24

hours.
Boolean to String Converts any Boolean value to "true" or "false."

In other cases, conversions are not possible at all. In these cases, attempting a conversion also raises
an exception. Permissible conversions are listed in the Field component conversion functions table.
You use a conversion function as you would use any method belonging to a component: append the

function name to the end of the component name wherever it occurs in an assignment statement.
Conversion always occurs before an actual assignment is made. For example, the following statement
converts the value of CustomersCustNo to a string and assigns the string to the text of an edit control:

Edit1->Text = CustomersCustNo->AsString;
Conversely, the next statement assigns the text of an edit control to the CustomersCustNo field as an
integer:

CustomersCustNo->AsInteger = StrToInt(Edit1->Text);
An exception occurs if an unsupported conversion is performed at runtime.

Accessing values with the default dataset method
The preferred method for accessing a field's value is to use variants with the default dataset method,
FieldValues. For example, the following statement takes the value from an edit box and transfers it into
the CustNo field in the Customers table:

Customers->FieldByName("CustNo")->AsString = Edit2->Text;
Because FieldValues is the default method for a dataset, you do not need to specify its method name
explicitly. The following statement, however, is identical to the previous one:

Customers->FieldValues["CustNo"] = Edit2->Text;
For more information about variants, see the C++Builder Programmer's Guide. For more information
about using the FieldByName method, see "Accessing values with a dataset's FieldByName method".

Accessing values with a dataset's Fields property
You can access the value of a field with the Fields property of the dataset component to which the field
belongs. Accessing field values with a dataset's Fields property is useful when you need to iterate over a
number of columns, or if your application works with tables that are not available to you at design time.
To use the Fields property, you must know the order of and data types of fields in the dataset. You use
an ordinal number to specify the field to access. The first field in a dataset is numbered 0. Field values
must be converted as appropriate using the field component's conversion routine.
For example, the following statement assigns the current value of the seventh column (Country) in the
Customers table to an edit control:

Edit1->Text = CustTable->Fields[6]->AsString;
Conversely, you can assign a value to a field by setting the Fields property of the dataset to the desired
field. For example,

{
 Customers->Edit();
 Customers.Fields[6]->AsString = Edit1->Text;
 Customers->Post();
}

Accessing values with a dataset's FieldByName method
You can also access the value of a field with a dataset's FieldByName method. This method is useful
when you know the name of the field you want to access, but do not have access to the underlying table
at design time.
To use FieldByName, you must know the dataset and name of the field you want to access. You pass
the field's name as an argument to the method. To access or change the field's value, convert the result
with the appropriate field component conversion function, such as AsString or AsInteger. For example,
the following statement assigns the value of the CustNo field in the Customers dataset to an edit control:

Edit2->Text = Customers->FieldByName("CustNo")->AsString;
Conversely, you can assign a value to a field:

{
 Customers->Edit();
 Customers->FieldByName("CustNo")->AsString = Edit2->Text;
 Customers->Post();
};

.

Working with tables
This topic describes how to use the TTable dataset component to support the use of complex tables in
your database applications. A table component inherits many of its fundamental properties and methods
from TDataSet. Therefore, you should be familiar with the general discussion on datasets before reading
about the unique properties and methods of table components.
Press the >> button to read through topics in sequence.
What are table components?
Accessing all data with a table component
Creating a table programmatically
Controlling access to a table
Searching for records
Working with a subset of data (ranges, filters)
Sorting records
Copying a table and its data
Modifying data in a table
Deleting records and tables
Synchronizing tables linked to the same database table
Creating master-detail forms
Other places to look:
Accessing data in databases
Working with queries
Working with stored procedures

What are table components?
A table component is the most fundamental and flexible dataset component class in C++Builder. It gives
you access to every row (record) and column (field) in an underlying database table, whether it is from
Paradox, dBASE, an ODBC-compliant database such as Microsoft Access, or an SQL database on a
remote server, such as InterBase, Sybase, or SQL Server.
A TTable component retrieves data from a physical database table and provides live access to the
database table via the Borland Database Engine (BDE) to one or more data-aware controls (such as
TDBGrid) through a TDataSource component. A TTable component also sends data received from a
data-aware component to a physical database via the BDE.
Table components let you

View and edit data in every column and row of a table
Work with a range of rows in a table
Search for records in a table
Copy or delete a table
Sort records in a table
Create master-detail relationships
Filter records in a table based on criteria you specify

Choosing between table and query components

Choosing between table and query components
Table components are full-featured, flexible, and easily used data access components that are sufficient
for many database applications. They differ from query components in two significant ways:

A query component can access more than one table at a time. A table component can access
only one table at a time.

A query component can access a subset of rows and columns in its underlying table(s). A table
component can restrict row access by setting ranges and/or filters.
If you have worked with databases previously, you are probably familiar with the table model already.
Query components offer different capabilities from table components and are useful when you need to

Query data in multiple tables to produce a single result set (this operation is called a "join").
Restrict data access to a subset of rows and columns across tables.
Write applications that require SQL syntax for compatibility with other SQL databases or

applications.

Accessing all data with a table component
The following steps are the general steps for accessing all or your data through a table component. You
may need to set additional properties due to application requirements. To create and use a table
component at design time,
1. Place a table component from the Data Access tab of the Component palette in a data module or on a

form, and set its Name property to a unique value appropriate to your application.
2. Set the DatabaseName of the component to the location of the database to access. This can be a

defined BDE alias or an explicit directory path to the database.
3. Set the TableName property to the name of the table in the database. You can select tables from the

drop-down list if the DatabaseName property is already specified.
4. Optionally specify the TableType of the underlying database table.
5. Place a data source component from the Data Access tab of the Component palette in the data

module or on the form, and set its DataSet property to the name of the table component. The data
source component is used to pass a result set from the table to data-aware components for display.

6. Place a data-aware control (such as TDBGrid) from the Data Controls tab of the Component palette
on the form, and set its DataSource property to the name of the data source component. The data-
aware component is used to display data from the table on a form.

7. Set the table component's Active property to true to view data in the data-aware control.

Specifying a database table
The DatabaseName property specifies where C++Builder looks for a database table. DatabaseName
can be a defined Borland Database Engine (BDE) alias, or an explicit directory path to the database. For
Paradox and dBASE tables, an explicit specification is just a directory path; for SQL tables, you must
use a BDE alias.
Hint: You can add, delete, and modify aliases by running the BDE Configuration Utility from the C+

+Builder program group and selecting the Aliases tab.
The advantage of setting DatabaseName to a BDE alias is that you can change the data source for an
entire application by simply changing the alias definition in the BDE Configuration Utility. For more
information on using the BDE Configuration Utility, see its online Help. For more information on the
DatabaseName property, see the online VCL Reference.
If your application uses database components to control database transactions, set DatabaseName to a
local alias defined for the database component instead.
Note: You cannot set DatabaseName if the table component's Active property is true. To set or change

DatabaseName, set Active to false or use the Close method to put a dataset in Inactive state
before changing the DatabaseName property.

Specifying a table name
The TableName property specifies the table in a database with which a table component is associated.
Before you set TableName, set the DatabaseName property . When DatabaseName is set at design
time, you can choose a table from the drop-down list for the TableName property.
At runtime, you can set or change the table associated with a table component by
1. Closing the table by calling its Close method or setting its Active property to false.
2. Assigning a valid table name to the TableName property.
For example, the following code changes the table name for the OrderOrCustTable table component
based on its current table name:

OrderOrCustTable->Active = false; //close the table
if (OrderOrCustTable->TableName == "CUSTOMER.DB")
 OrderOrCustTable->TableName = "ORDERS.DB";
else
 {
 OrderOrCustTable->TableName = "CUSTOMER.DB";
 OrderOrCustTable->Active = true; //Reopen with a new table
 }

Specifying a table type
TableType specifies the type of the underlying database table. The TTable component must be closed or
the Active property must be false in order to change the TableType property. If TableType is set to
ttDefault (the default), the table's file extension determines the table type:

Extension Table type
.DB or no extension Paradox table (ttParadox)
.DBF dBASE table (ttDBase)
.TXT ASCII table (ttASCII)

If the value of TableType is not ttDefault, then the table is always the specified TableType, regardless of
file-name extension.
Note: This property is not used for SQL table access.

Opening and closing a table
To view data in a data-aware control, such as TDBGrid, open a table and put it in Browse state by
setting its Active property to true or by using the Open method. To close a dataset and put it in Inactive
state, set its Active property to false or call its Close method.
Note: Post is not called implicitly by setting the Active property to false. Use the BeforeClose event to

post any pending edits explicitly or they will be lost.
Opening and closing datasets

Creating a table programmatically
You can use the CreateTable method to create a table programmatically. The following shows how to
create a table programmatically.

{TTable* Table1;
Table1=new TTable(this);
Table1->Active = false;
Table1->DatabaseName = "DBDemos";
Table1->TableName = "Testtbl.db";
Table1->TableType = ttParadox;
Table1->FieldDefs->Clear();
Table1->FieldDefs->Add("Field1", ftInteger, 0, false);
Table1->FieldDefs->Add("Field2", ftInteger, 0, false);
Table1->IndexDefs->Clear();
TIndexOptions MyIndexOptions;
MyIndexOptions << ixPrimary << ixUnique;
Table1->IndexDefs->Add("Field1Index", "Field1", MyIndexOptions);
Table1->CreateTable();}

Caution: The CreateTable method will overwrite an existing table without warning. Add an exception
handler to determine if the table currently exists.

Controlling access to a table
By default, the ReadOnly property for a table component is set to false. When the table is opened,
therefore, it requests read and write privileges for the underlying database table. Depending on the
characteristics of the underlying table, the requested write privilege may not be granted (for example
when you request write access to an SQL table on a remote server for which you only have read
access).
After you open a table at runtime, your application examines the table's CanModify property to test
whether or not the server has granted write access to the database. If CanModify is false, the
application cannot write to the database and the dataset cannot be put into Edit or Insert state. If
CanModify is true, your application can write to the database unless other factors interfere, such as SQL
access privileges.
Note: Set the Active property to false or call the Close method before changing the ReadOnly property.
Caution: When the ReadOnly property is set to true, the CanModify property is automatically set to

false. Conversely, when the ReadOnly property is set to false, the CanModify property is
automatically set to true if the database allows read and write privileges for the dataset and
the underlying table.

To gain sole read/write access to a Paradox or dBASE table, set a table component's Exclusive property
to true before opening the table. If you succeed in opening a table for exclusive access, other
applications cannot read data from or write data to the table. If other users are accessing the table when
you try to open it, your exception handler will have to wait for those users to release it. If you do not
provide an exception handler and another user already has the table open, your application will be
terminated. Set Exclusive to true only when you must have complete control over the table.
Note: Set the Active property to false before changing the Exclusive property to prevent an exception.

Do not set both Active and Exclusive to true in the Object Inspector. Since the Object Inspector
will have the table open, that will prevent your program from opening it.

The following statements open a table for exclusive access, providing an exception handler if another
user is accessing the table:

CustomersTable->Active = false; //Close the table
CustomersTable->Exclusive = true; //Set request for exclusive lock
try
 {CustomersTable->Active = true;} //Now open the table
catch (EDatabaseErrorix)
 {...}

Note: You can attempt to set Exclusive on SQL tables, but some servers may not support exclusive
table-level locking. Others may grant an exclusive lock, but permit other applications to read data
from the table. For more information about exclusive locking of database tables on your server,
see your server documentation.

Searching for records
You can search a table for specific records using the generic search methods Locate and Lookup or the
Find methods FindFirst, FindLast, FindNext, and FindPrior. These methods enable you to search any
type of columns in any table, whether or not they are indexed or keyed.

Locate moves the cursor to the first row matching a specified set of criteria
Lookup returns the values from the first row that matches specified search criteria, but does not

move the cursor to that row.
Find methods are used with filters and move the cursor to the first row matching the search

criteria when filtering is not enabled.
Goto search methods enable you to search for a record based on indexed fields, referred to as a

key, and make the first record found the new current record.

Moving the cursor to the first row matching search criteria
Locate moves the cursor to the first row matching a specified set of search criteria. In its simplest form,
you pass Locate the name of a column to search, a field value to match, and an options flag specifying
whether the search is case-sensitive or if it can use partial-key matching.

Returning values from rows that match search criteria
Lookup searches for the first row that matches specified search criteria. If it finds a matching row, it
forces the recalculation of any calculated fields and lookup fields associated with the dataset, then
returns one or more fields from the matching row. Lookup does not move the cursor to the matching
row; it only returns values from it. In its simplest form, you pass Lookup the name of column to search,
the field value to match, and the field or fields to return.

Moving among records that match filter criteria
Find methods used with filters provide the ability to go to the first, last, next, and previous records based
on filter criteria when the dataset is not currently being filtered. When filtering is not enabled, the
methods temporarily set the Filtered property to true then use the code in either the OnFilterRecord
event handler or the condition in the Filter property to find the record. To locate records that match the
filter, call the FindFirst, FindLast, FindNext, or FindPrior methods.

Searching for and moving to records based on indexed fields
Although using Locate to search for data meeting certain criteria is the preferred method for conducting
a search due to better performance, table components also support a set of Goto search methods that
enable you to search for a record based on indexed fields, referred to as a key, and make the first
record found the new current record.
For Paradox and dBASE tables, the key must always be an index, which you can specify in a table
component's IndexName property. For SQL tables, the key can also be a list of fields you specify in the
IndexFieldNames property. You can also specify a field list for Paradox or dBASE tables, but the fields
must have indexes defined on them.
Tip:
To search nonindexed fields in a Paradox or dBASE table, use Locate. Alternatively, you can use a
TQuery component and a SELECT statement to search nonindexed fields in Paradox and dBASE fields.
Note: You can create an index "on the fly" in C++Builder by using the AddIndex method.
There are six Goto methods:

Method Description
SetKey Clears the existing elements from the search key buffer and puts a table into

dsSetKey state, so your application can search for values in database tables.
EditKey Modifies the contents of the search key buffer and puts a table into dsSetKey state

while preserving previous search values in the Fields property. This method is useful
only when searching on multiple fields after calling SetKey. For more information,
see "Repeating or extending a search".

GotoKey Searches for the first record in a dataset that exactly matches the values in the Fields
property, moves the cursor to that record if one is found, and returns true. If the
record is not found, the cursor is not moved, and the function returns false.

GotoNearest Searches for the closest match to a record based on the index fields that are greater
than or equal to the IndexFields property, and moves the cursor to that record.
GotoNearest only works with fields of string data type. The search begins at the first
record in the table, not at the current cursor position.

FindKey Combines the SetKey and GotoKey methods in a single function.
FindNearest Combines the SetKey and GotoNearest methods in a single function. FindNearest

only works with string data types.

To execute a search, follow these steps:
1. If you are not using a table's primary index, specify the index to use for the search in IndexName or,

for SQL tables, list the fields to use as a key in IndexFieldNames. If you use a table's primary index,
you do not need to set these properties.

2. Open the table by setting the Active property to true or by calling the dataset's Open method.
3. Put the table in SetKey state with SetKey.
4. Specify the value(s) to search on in Fields. Fields is a string list that you index with ordinal numbers

corresponding to each column. The first column number in a table is 0.
5. Search for and move to the first matching record found with GotoKey or GotoNearest.
For example, the following code, attached to a button's OnClick event, moves to the first record
containing a field value that exactly matches the text in an edit box on a form:

void __fastcall TForm1::CustTableCancelBtnClick(TObject *Sender)
{
 Table1->SetKey();
 Table1->Fields[0]->AsString = Edit1->Text;
 if (!Table1->GotoKey())
 ShowMessage("Record not found");

}
GotoNearest is similar. It searches for the nearest match to a partial field value. It can be used only for
columns of string data type. For example,

Table1->SetKey();
Table1->Fields[0]->AsString = "Sm";
Table1->GotoNearest();

If a record exists with Sm as the first two characters, the cursor is positioned on that record. If such a
record does not exist, the cursor is positioned on the record immediately following where the cursor
would have been positioned if there had been a match.
The FindKey and FindNearest methods each take a single argument: a comma-delimited array of
values, where each value corresponds to an index column in the underlying table. Values can be literals,
variables, or null. If the number of values in the argument is less than the number of columns in the
underlying table, the remaining values are assumed to be null.
For example, if Table1 is indexed on its first column, then the following FindKey statement

Table1->FindKey(new TVarRec(Edit1->Text), vtPChar);
performs the same function as next statements:

Table1->SetKey();
Table1->FieldByName("Company")->AsString = Edit1->Text;
Table1->GotoKey();

Similarly, the following FindNearest statement
Table1->FindNearest(new TVarRec(Edit1->Text), vtPChar);

performs the same function as these statements:
Table1->SetKey();
Table1->FieldByName("Company")->AsString = Edit1->Text;
Table1->GotoNearest();

Both Find functions work by default on the primary index column. To search the table for values in other
indexes, you must specify the field name in the table's IndexFieldNames property or the name of the
index in the IndexName property.

Specifying the current record after a successful search
By default, the KeyExclusive property is false and positions the cursor on the first record that matches
the search criteria after a successful search. If you prefer, you can set the KeyExclusive property for a
table component to true to position the cursor on the next record after the first matching record.

Searching on an index with more than one key column
If a table has more than one key column, and you want to search for values in a sub-set of that key, set
KeyFieldCount to the number of columns on which you are searching. For example, if a table has a
three-column primary key, and you want to search only the first column, set KeyFieldCount to 1.
For tables with multiple-column keys, you can search only for values in contiguous columns, beginning
with the first. For example, for a three-column key you can search for values in the first column, the first
and second, or the first, second, and third, but not just the first and third.

Searching on secondary, or alternate, indexes
If you want to search on an index other than the primary index for a table, you must specify the name of
the index to use in the IndexName property for the table. A table must be closed when you specify a
value for IndexName. For example, if the CUSTOMER table had a secondary index named "CityIndex"
and you want to search for a value using this index and the Goto methods, you need to set the value of
the table's IndexName property to "CityIndex" prior to commencing the search. The following code
provides an example:

Table1->Close();
Table1->IndexName = "CityIndex";
Table1->Open();
Table1->SetKey();
Table1->FieldByName("City")->AsString = Edit1->Text;
Table1->GotoNearest();

Instead of specifying an index name, you can list fields to use as a key in the IndexFieldNames property.

For Paradox and dBASE tables, the fields you list must be indexed, or an exception is raised when you
execute the search. For SQL tables, the fields you list need not be indexed.

Repeating or extending a search
Each time you call SetKey, it clears any previous values in the Fields property. If you want to repeat a
search using previously set fields, or you want to add to the fields used in a search, call EditKey in place
of SetKey. For example, to extend the above search to find a record with a specified city name in a
specified country, use the following code:

Table1->EditKey();
Table1->FieldByName("Country")->AsString = Edit2->Text;
Table1->GotoNearest();

Working with a subset of data
Production tables can be huge, so applications often need to limit the number of rows with which they
work. For table components, there are two ways to limit records retrieved by an application: by using
filters and ranges.
Understanding the differences between ranges and filters
Filtering datasets
Setting range values
Using Range values

Understanding the differences between ranges and filters
A range is a dynamic, runtime mask, set by your application, that temporarily restricts visible records in a
dataset based on range criteria you can set and change as your application runs. If you cancel a range
assignment, your application can immediately access all records in the table underlying the dataset.
A filter is an event handler called by your application in response to an OnFilterRecord event for each
record in the dataset. The filter determines whether to accept a record for application access or filter it
out. You can apply filters to a dataset when it is first opened. C++Builder can also create filters on the fly
when you use Locate and Lookup to conduct nonindexed searches. Filters are applied to every record
retrieved in a dataset. You can filter a dataset in three ways:

Setting the Filter property of the dataset.
Restricting record visibility at the time of record retrieval using an OnFilterRecord event handler .
Finding a record in a dataset that matches search values using the Locate method for the

dataset.
When you want to filter large volumes of data, it may be more efficient to use a query to restrict record
retrieval, or to set a range on an indexed table rather than using filters.
Setting Range values
Using Range values
Filtering datasets

Setting Range values
You can use the range value table component methods to enable an application to work with a subset of
the data in a database table by limiting the number of rows, or records, retrieved. With Paradox or
dBASE tables, these methods work only with indexed fields. With SQL databases, they can work with
any columns specified in the IndexFieldNames property.

Setting start-range values
SetRangeStart indicates that subsequent assignments to field values specifies the start of the range of
rows to include in the dataset. This enables an application to filter the data that is visible to it. Any
column values not specified are not considered. The corresponding method EditRangeStart indicates to
keep existing range values and update with the succeeding assignments. EditRangeStart differs from
SetRangeStart in that the latter clears all the elements of the search key buffer to the default values
(NULL). EditRangeStart leaves the elements of the search key buffer with their current values. Call
ApplyRange to apply the new range and filter the dataset.

Setting end-range values
SetRangeEnd indicates that subsequent assignments to field values will specify the end of the range of
rows to include in the dataset. This enables an application to filter the data that is visible to it. Any
column values not specified are not considered. The corresponding method EditRangeEnd indicates to
keep existing range values and update with the succeeding assignments. SetRangeEnd differs from
EditRangeEnd in that it clears all the elements of the range filter to the default values (or NULL).
EditRangeEnd leaves the elements of the range filter with their current values. Call ApplyRange to apply
the new range and filter the dataset.

Setting start- and end-range values
SetRange([Start Values], [End Values]) combines the functionality of the SetRangeStart, SetRangeEnd,
and ApplyRange methods. SetRange assigns the elements of StartValues to the beginning index key,
the elements of EndValues to the ending index key, and then calls ApplyRange. This enables an
application to filter the data visible to the dataset. If either StartValues or EndValues has fewer elements
than the number of fields in the current index, the remaining entries are set to null.

Applying a range
The ApplyRange method is used to cause a range selection to take effect based on the start and end
ranges established with the SetRangeStart and SetRangeEnd methods or the EditRangeStart and
EditRangeEnd methods. Calling this method will make a subset of records from the database table
accessible to the application. If neither SetRangeStart nor SetRangeEnd is called, the range starts at
the beginning of the table.
Note: When comparing fields for range purposes, a NULL field is always the lesser value.

Canceling a range
The CancelRange method removes the range limitations for the table that were previously established
by calling the ApplyRange or SetRange methods. Calling this method will restore display of all rows of
data for the dataset.
Using Range values

Using Range values
For example, suppose your application uses a table component named Customers linked to the
CUSTOMER table, and that you created persistent field components for each field in the Customers
dataset. CUSTOMER is indexed on its first column (CustNo). A form in the application has two edit
components named StartVal and EndVal, used to specify starting and ending values for a range. If so,
the following code could be used to create and apply a range:

Customers->SetRangeStart();
Customers->FieldByName("CustNo")->AsString = StartVal->Text;
Customers->SetRangeEnd();
if (EndVal->Text != "")
 Customers->FieldByName("CustNo")->AsString = EndVal->Text;
Customers->ApplyRange();

This code checks that the text entered in EndVal is not null before assigning any values to Fields. If the
text entered for StartVal is null, then all records from the beginning of the table will be included, since all
values are greater than null. However, if the text entered for EndVal is null, no records are included,
since none are less than null.
This code could be rewritten using the SetRange function as follows:

if (EndVal != "")
 Customers->SetRange(OPENARRAY(TVarRec, (StartVal->Text)), OPENARRAY(TVarRec, (EndVal-
>Text)));
Customers->ApplyRange();

Setting a range based on a subset of indexed fields
If an index is composed of one or more string fields, the SetRange methods support setting a range
based on a subset of indexed columns, known as partial keys. For example, if an index is based on the
LastName and FirstName columns, the following range specifications are valid:

Table1->SetRangeStart();
Table1->FieldByName("LastName")->AsString = "Smith";
Table1->SetRangeEnd();
Table1->ApplyRange();

This code includes all records in a range where LastName is greater than or equal to "Smith." The value
specification could also be

Table1->FieldByName("LastName")->AsString = "Sm";
This statement includes records that have LastName greater than or equal to Sm. The following
statement includes records with a LastName greater than or equal to "Smith" and a FirstName greater
than or equal to "J":

Table1->FieldByName("LastName")->AsString = "Smith";
Table1->FieldByName("FirstName")->AsString = "J";

Including or excluding records that match range values
By default, KeyExclusive is false and a range includes all records that are greater than or equal to the
specified starting range, and less than or equal to the specified ending range. If you prefer, you can set
the KeyExclusive property for a table component to true to exclude records equal to the specified
starting and ending ranges.

Sorting records
An index determines the display order of records in a table. In general, C++Builder displays records in
ascending order based on a primary index (for dBASE tables without a primary index sort order is based
on physical record order). This default behavior does not require application intervention. If you want a
different sort order, however, you must specify:

A secondary, or alternate, index.
A list of columns on which to sort (SQL only).

Using secondary, or alternate, indexes
To sort on an index other than the primary index for a table, you can specify the name of the index to
use in the IndexName property for a table. To determine which indexes are available for your dataset,
call the GetIndexNames method.
Note: There are special requirements for setting a secondary index for a dBASE table.

Specifying a different sort order with IndexName
To specify that a table should be sorted using a secondary, or alternate, index, specify the index name in
the table component's IndexName property. A table must be closed when you specify a value for
IndexName. At design time you can specify this name in the Object Inspector, and at runtime you can
access the property in your code. For example, the following code sets the index for CustomersTable to
ByCompany:

CustomersTable->IndexName = "ByCompany";
Caution: IndexFieldNames and IndexName are mutually exclusive. Setting one property will clear

values set for the other.

Retrieving a list of available indexes with GetIndexNames
At runtime, your application can call the GetIndexNames method to retrieve a list of available indexes for
a table. GetIndexNames returns a string list containing valid index names. For example, the following
code determines the list of indexes available for the CustomersTable dataset:

TList *IndexList = new TList();
...
CustomersTable->GetIndexNames(IndexList);

Note: For Paradox tables, the primary index is unnamed, and is therefore not returned by
GetIndexNames. If you need to return to using a primary index on a Paradox table after using a
secondary index, set the table's IndexName property to a null string, as follows:

IndexName "";

Specifying a dBASE index file
For dBASE tables that use non-production indexes, you must set the IndexFiles property to the name of
the index file(s) to use before you set IndexName. At design time, you can click the ellipsis button in the
IndexFiles property value in the Object Inspector to invoke the Index Files editor.
To see a list of available index files, choose Add and select one or more index files from the list. A
dBASE index file can contain multiple indexes. To select an index from the index file, select the index
name from the IndexName drop-down list in the Object Inspector. You can also specify multiple indexes
in the file by entering desired index names, separated by semicolons.
You can also set IndexFiles and IndexName at runtime. For example, the following code sets the
IndexFiles for the AnimalsTable table component to ANIMALS.MDX, and then sets IndexName to
NAME:

AnimalsTable->IndexFiles->Strings[0] = "ANIMALS.MDX";
AnimalsTable->IndexName = "NAME";

Specifying sort order for SQL tables
In SQL, sort order of rows is determined by the ORDER BY clause. You can specify the index used by
this clause either with the

IndexName property, to specify an existing index, or
IndexFieldNames property, to create a pseudo-index based on a subset of columns in the table.

Caution: IndexName and IndexFieldNames are mutually exclusive. Setting one property clears values
set for the other.

Specifying fields to be used as an index
IndexFieldNames is a string list property used with an SQL server to identify fields to be used an index
for the table. To specify a sort order, list each column name to use in the order it should be used, and
delimit the names with semicolons. If you have too many column names or the names are too long to fit
within the 255-character limit, use column numbers instead of names. Sorting is by ascending order
only. Case-sensitivity of the sort depends on the capabilities of your server. See your server
documentation for more information.
The following code sets the sort order for PhoneTable based on LastName, then FirstName:

PhoneTable->IndexFieldNames = "LastName;FirstName";
Note: Use the IndexName property for dBASE tables. If you use IndexFieldNames on dBASE tables,

C++Builder attempts to find an index that uses the columns you specify. If it cannot find such an
index, it may raise an exception.

Examining the field list for an index
When your application uses an index at runtime, it can examine the

IndexFieldCount property, to determine the number of columns, or fields, in the current index. If
you are using the primary index, this value will be one.

IndexFields property, to give you access to information about each column, or field, of the current
index.
IndexFields is string list containing the column names for the index. The following code fragment
illustrates how you might use IndexFieldCount and IndexFields to iterate through a list of column names
in an application:

{
 String ListofIndexFields[20];
 for (i = 0; CustomersTable->IndexFieldCount-1; i++)
 ListOfIndexFields[i] = CustomersTable->IndexFields[i]->AsString;
}

Note: IndexFieldCount is not valid for a dBASE table opened on an expression index.
Caution: If the component is not active, the value of IndexFieldCount will be zero and the information

in IndexFields will not be valid.

Copying a table and its data
You can duplicate a table's structure and data with a table component's BatchMove method. For
example, the following statement makes a copy of the database table and data underlying a table
component:

CustomersTable->BatchMove(CustomerTable,batCopy);
Note: A table's BatchMove method encapsulates a part of the functionality of batch move components.

Batch move components can also append, delete, and update records, and are useful for moving
data from one type of table to another.

Modifying data in a table
Modifying data

Deleting records and tables
You can delete all rows (records) of data from the database table specified by the TableName property
by calling a table component's EmptyTable method at runtime. Before calling the EmptyTable method,
the DatabaseName, TableName, and TableType properties must be assigned values. If the table is open
at the time the EmptyTable method is called, it must have been opened with the Exclusive property set
to true. For SQL tables, this method only succeeds if you have DELETE privileges for the table. For
example, the following statement deletes all records in a dataset:

PhoneTable->EmptyTable();
Caution: Data deleted with EmptyTable is gone forever.
You can delete an existing database table by calling a table component's DeleteTable method. Before
calling the DeleteTable method, the DatabaseName, TableName, and TableType properties must be
assigned values and the table must be closed. For example, the following statement removes the table
underlying a dataset:

CustomersTable->Close();
CustomersTable->DeleteTable();

Caution: When you delete a table with DeleteTable, the table and all its data are gone forever.

Synchronizing tables linked to the same database table
If more than one table component is linked to the same database table through their DatabaseName
and TableName properties and the tables do not share a data source component, then each table has
its own view of the data and its own current record. As users access records through each table
component, the components' current records will differ.
You can force the current record for each of these table components to be the same with the
GotoCurrent method. GotoCurrent sets its own table's current record to the current record of another
table component. Both tables must have the same DatabaseName and TableName or a "table
mismatch" exception is raised. For example, the following code sets the current record of
CustomerTableOne to be the same as the current record of CustomerTableTwo:

CustomerTableOne->GotoCurrent(CustomerTableTwo);
Tip:
If your application needs to synchronize table components in this manner, put the components in a data
module and add a #include statement of its header file to each form that accesses the tables.
If you must synchronize table components on separate forms, you must add one form's header file as a
#include statement in the source unit of the other form, and you must qualify at least one of the table
names with its form name. For example

CustomersTable->GotoCurrent(Form2->CustomerTableTwo);

Creating master-detail forms
A table component's MasterSource and MasterFields properties can be used to establish one-to-many
relationships between two tables.
The MasterSource property is used to specify a data source from which the detail table will get
information on which records to select based on the current record in the master table. For instance, if
you link two tables in a master-detail relationship, the detail table can track the events occurring in the
master table through the master table's data source component as specified in the MasterSource
property.
The MasterFields property specifies the column(s) common to both tables used to establish the link.
Each time the current record in the master table changes, the new values in those columns are used to
select corresponding records from the detail table for display. To link tables based on multiple column
names, use a semicolon delimited list. Note that you must index the fields in the detail table first:

Table1->MasterFields = "OrderNo;ItemNo";
At design time, use the Field Link designer to set the MasterFields property.
Example

Linking master and detail tables
Use the Field Link Designer to link master and detail tables. At design time, after specifying the master
table in the MasterSource property, double-click on the MasterFields property value or click the ellipsis
button in the MasterFields property value in the Object Inspector to invoke the Field Link designer.
Field Link designer

Select the field to use to link the detail table in the Detail Fields list, and the field to use to link the master
table in the Master Fields list. Choose Add. The selected fields are be displayed in the Joined Fields list
box. For example,

CustNo-> CustNo
The detail table displays only indexed fields in the Detail Fields list. The Available Indexes combo box
shows the currently selected index used to join the tables. Unless you specify a different index name in
the table's IndexName property, the default index used for the link is the primary index for the table. If
you want to create a link on a field in the detail table that is not in the currently selected index, other
available indexes defined on the table can be selected from the drop-down list.
For tables on a database server, the Available Indexes combo box will not appear, and you must
manually select the detail and master fields to join in the Detail Fields and Master Fields list boxes.
Example

Building an example master-detail form
The following procedure creates a simple form in which a user can scroll through customer records and
display all orders for the current customer. The master table is the CustomersTable table, and the detail
table is OrdersTable.
1. Create a new data module. In the data module, place two TTable and two TDataSource components

from the Data Access tab of the Component palette.
2. Set the properties of the Table1 component as follows:

DatabaseName: BCDEMOS
TableName: CUSTOMER.DB
Name: CustomersTable

3. Set the properties of the Table2 component as follows:
DatabaseName: BCDEMOS
TableName: ORDERS.DB
Name: OrdersTable

4. Set the properties of the DataSource1 component as follows:
DataSet: CustomersTable
Name: CustomersSource

5. Set the properties of the DataSource2 component as follows:
DataSet: OrdersTable
Name: OrdersSource

6. On a form, place two TDBGrid components from the Data Controls tab of the Component palette.
Place focus in the form source unit's editor.

7. Choose File|Include Unit to specify that the form should use the data module.
8. Set the DataSource property of the first grid component to "DataModule2.CustomersSource" and set

the DataSource property of the second grid to "DataModule2.OrdersSource."
9. Select OrdersTable from the data module and set the MasterSource property to "CustomersSource."

This step links the CUSTOMER table (the master, or control, table) to the ORDERS table (the detail
table).

10. Double-click the MasterFields property value box in the Object Inspector to invoke the Field Link
designer to set the following properties:

In the Available Indexes field, choose CustNo to link the two tables by the CustNo field.
Select CustNo in both the Detail Fields and Master Fields field lists.
Click the Add button to add this join condition. In the Joined Fields list,

"CustNo -> CustNo" appears.
Choose OK to commit your selections and exit the Field Link Designer.

11. Set the Active properties of CustomersTable and OrdersTable to true to display data in the grids on
the form.

12. Compile and run the application.
If you run the application now, you will see that the tables are linked together, and when you move to a
new record in the CUSTOMER table, you see only those records in the ORDERS table that belong to
the current customer.

Working with queries
This topic describes the TQuery dataset component which enables you to use SQL statements to
access data. It assumes you are familiar with the general discussion of datasets and data sources.
A query component encapsulates an SQL statement that is used in a client application to retrieve, insert,
update, and delete data from one or more database tables. SQL is an industry-standard relational
database language that is used by most remote, server-based databases, such as Sybase, Oracle,
InterBase, and Microsoft SQL Server. C++Builder query components can be used with remote database
servers (C++Builder Client/Server Suite only), with desktop databases such as Paradox and dBASE,
and with OBDC-compliant databases such as Microsoft Access and FoxPro.
Press the >> button to read through topics in sequence.
Using queries effectively
What databases can you access with a query component?
Using a query component: an overview
Setting the SQL property
Setting parameters
Executing a query
Preparing a query
Unpreparing a query to release resources
Creating heterogenous queries
Improving query performance
Working with result sets
Other places to look:
Working with tables
Working with stored procedures

Using queries effectively
To use the query component effectively, you must be familiar with:

SQL and your server's SQL implementation, including limitations and extensions to the SQL-92
standard.

The Borland Database Engine (BDE).
If you are an experienced desktop database developer moving to server-based applications, see
"Queries for desktop developers" for an introduction to queries . If you are new to SQL, you may want
to purchase one of the many fine third party books that cover SQL in-depth. One of the best is
Understanding the New SQL: A Complete Guide, by Jim Melton and Alan R. Simpson, Morgan
Kaufmann Publishers.
If you are an experienced database server developer, but are new to building C++Builder clients, then
you are already familiar with SQL and your server, but you may be unfamiliar with the BDE. See
"Queries for server developers" for an introduction to queries and the BDE.

Queries for desktop developers
As a desktop developer you are already familiar with the basic table, record, and field paradigm used by
C++Builder and the BDE. You feel very comfortable using a TTable component to gain access to every
field in every data record in a dataset. You know that when you set a table's DataSet property, you
specify the database table to access.
Chances are you have also used a TTable's range and filter properties and methods to limit the number
of records available at any given time in your applications. Applying a range temporarily limits data
access to a block of contiguously indexed records that fall within prescribed boundary conditions, such
as returning all records for employees whose last names are greater than or equal to "Jones" and less
than or equal to "Smith". Setting a filter temporarily restricts data access to a set of records that is
usually noncontiguous and that meets filter criteria, such as returning only those customer records that
have a California mailing address.
A query behaves in many ways very much like a table filter, except that you use the query component's
SQL property (and sometime the Params property, too) to identify the records in a dataset to retrieve,
insert, delete, or update. In some way a query is even more powerful than a filter because it lets you
access:

More than one table at a time (called a "join" in SQL).
A specified subset of rows and columns in its underlying table(s), rather than always returning all

rows and columns. This improves both performance and security. Memory is not wasted on unnecessary
data, and you can prevent access to fields a user should not view or modify.
Queries can be verbatim, or they can contain replaceable parameters. Queries that use parameters are
called parameterized queries. When you use parameterized queries, the actual values currently
assigned to the parameters must be inserted into the query by the BDE before you execute, or run, the
query. Using parameterized queries is very flexible, because you can change a user's view of and
access to data on the fly at run time.
Most often you use queries to select the data that a user should see in your application, just as you do
when you use a table component. Queries, however, can also perform update, insert, and delete
operations instead of retrieving records for display. When you use a query to perform insert, update, and
delete operations, the query ordinarily does not return records for viewing. In this way a query differs
from a table.

Queries for server developers
As a server developer you are already familiar with SQL and with the capabilities of your database
server. To you a query is the SQL statement you use to access data. You know how to use and
manipulate this statement and how to use optional parameters with it.
The SQL statement and its parameters are the most important parts of a query component. The query
component's SQL property is used to provide the SQL statement to use for data access, and the
component's Params property is an optional array of parameters to bind into the query. In C++Builder,
however, a query component is much more than an SQL statement and its parameters. A query
component is also the interface between your client application and the BDE.
A client application uses the properties and method of a query component to manipulate an SQL
statement and its parameters, to specify the database to query, to prepare and unprepare queries with
parameters, and to execute the query. A query component's methods call the BDE, which, in turn
process your query requests, and communicate with the database server through an SQL Links driver.
The server passes a result set, if appropriate, back to the BDE, and the BDE returns its to your
application through the query component.
When you work with a query component, you should be aware that some of the terminology used to
describe BDE features can be confusing at first because it has very different meanings to you as an
SQL database programmer. For example, the BDE commonly uses the term "alias" to refer to a
shorthand name for the path to the database server. The BDE alias is stored in a configuration file, and
is set in the query component's DatabaseName property. (You can still use table aliases in your SQL
statements.)
Similarly, the BDE help documentation, available online in \Borland\Common Files\BDE32.HLP, often
refers to queries that use parameters as "parameterized queries" where you are more likely to think of
SQL statements that use bound variables or parameter bindings.
Note: BDE terminology is used throughout the help system because you will encounter it throughout

Borland's documentation. Whenever confusion may result from using BDE terms, however,
explanations are provided.

What databases can you access with a query component?
A TQuery component can access data in:

Paradox or dBASE tables, using Local SQL, which is part of the BDE. Local SQL supports the
SQL-92 standard with the exception of some DDL syntax.

Local InterBase Server databases, using the InterBase engine. For information on InterBase's
SQL-92 standard SQL syntax support and extended syntax support, see the InterBase Language
Reference.

Databases on remote database servers such as Oracle, Sybase, MS-SQL Server, Informix, DB2,
and InterBase (C++Builder Client/Server only). You must have installed the appropriate SQL Link to
access a remote server. Any standard SQL syntax supported by these server is allowed. For information
on SQL syntax, limitations, and extensions, see your server documentation.
C++Builder also supports heterogeneous queries against more than one server or table type (for
example, data from an Oracle table and a Paradox table). When you create a heterogeneous query, the
BDE uses Local SQL to process the query.

Using a query component: an overview
To use a query component in an application, follow these general steps at design time:
1. Place a query component from the Data Access tab of the Component palette in a data module, and

set its Name property appropriately for your application.
2. Set the DatabaseName property of the component to the name of the database to query.

DatabaseName can be a BDE alias or, for local database access, an explicit directory path and
database name. If your application uses a database component, then you can set DatabaseName to
the name of a local BDE alias defined in that database component's DatabaseName property.

3. Specify an SQL statement in the SQL property of the component, and optionally specify any
parameters for the statement in the Params property .

4. Place a data source component from the Data Access tab of the Component palette in the data
module, and set its DataSet property to the name of the query component. The data source module is
used to return the results of the query (called a result set) from the query to data-aware components
for display.

To execute a query for the first time at runtime, follow these general steps:
1. Close the query component.
2. Provide an SQL statement in the SQL property either because you did not set the SQL property at

design time, or because you want to change the SQL statement already provided. To use the design-
time statement as is, skip this step.

3. Set parameters and parameter values in the Params property either directly, or by using the
ParamByName method. If a query does not contain parameters, or the parameters set at design time
are unchanged, skip this step.

4. Call Prepare to initialize the BDE and bind parameter values into the query. Calling Prepare is
optional, though highly recommended.

5. Call Open for queries that return a result set, or call ExecSQL for queries that do not return a result
set.

After you execute a query for the first time, then as long as you do not modify the SQL statement, an
application can repeatedly close and reopen or reexecute a query without repreparing it.

Setting the SQL property
Use the SQL property to specify the SQL query statement to execute. At design time a query is prepared
and executed automatically when you set the query component's Active property to true. At run time, a
query is prepared with a call to Prepare, and executed when the application calls the component's Open
or ExecSQL methods.
The SQL property is a TString object, which is an array of text strings and a set of properties, events,
and methods that manipulate them. The strings in SQL are automatically concatenated to produce the
SQL statement to execute. You can provide a statement in as few or as many separate strings as you
desire. One advantage to using a series of strings is that you can divide the SQL statement into logical
units (for example, putting the WHERE clause for a SELECT statement into its own string), so that it is
easier to modify and debug a query.
The SQL statement can be a query that contains hard-coded field names and values, or it can be a
parameterized query that contains replaceable parameters that represent field names and values that
must be bound into the statement before it is executed. For example, this statement is hard-coded:

SELECT * FROM CUSTOMER WHERE CUSTNO = 1231
Hard-coded statements are useful when applications execute exact, known queries each time they run.
At design time or runtime you can easily replace one hard-code query with another hard-coded or
parameterized query as needed. Whenever the SQL property is changed the query is automatically
closed and unprepared.
Note: When column names in a query contain spaces or special characters, the column name must be

enclosed in quotes and must be preceded by a table reference and a period. For example,
BIOLIFE."Species Name".

A parameterized query contains one or more placeholder parameters, application variables that stand in
for field names or comparison values such as those found in the WHERE clause of a SELECT
statement. Using parameterized queries enables you to change the value without rewriting the
application. Parameter values must be bound into the SQL statement before it is executed for the first
time. C++Builder does this automatically for you if you do not explicitly call the Prepare method before
executing a query.
This statement is a parameterized query:

SELECT * FROM CUSTOMER WHERE CUSTNO = :Number
The variable Number, indicated by the leading colon, is a parameter that fills in for a comparison value
that must be provided at run time and that may vary each time the statement is executed. The actual
value for Number is provided in the query component's Params property.
Tip:
It is a good programming practice to provide variable names for parameters that correspond to the
actual name of the column with which it is associated. For example, if a column name is "Number," then
its corresponding parameter would be ":Number". Using matching names ensures that if a query uses its
DataSource property to provide values for parameters, it can match the variable name to valid field
names.
Specifying the SQL property at design time
Specifying the SQL property at runtime

Specifying the SQL property at design time
You can specify the SQL property at design time using the String List editor. To invoke the String List
editor for the SQL property,

Double-click on the SQL property value column, or
Click its ellipsis button.

You can enter an SQL statement in as many or as few lines as you want. Entering a statement on
multiple lines, however, makes it easier to read, change, and debug. Choose OK to assign the text you
enter to the SQL property.
Normally, the SQL property can contain only one complete SQL statement at a time, although these
statements can be as complex as necessary (for example, a SELECT statement with a WHERE clause
that uses several nested logical operators such as AND and OR). Some servers also support "batch"
syntax that permits multiple statements; if your server supports such syntax, you can enter multiple
statements in the SQL property.
Note: With C++Builder Client/Server Suite, you can also use the Visual Query Builder to construct a

query based on a visible representation of tables and fields in a database. To use the Visual
Query Builder, select a query component, right-click it to invoke the context menu, and choose
Query Builder. To learn how to use the Query Builder, open it and see to its online Help.

Specifying the SQL property at runtime
There are two ways to set the SQL property at runtime. An application can set the SQL property directly,
or it can call the SQL property's LoadFromFile method to read an SQL statement from a file.

Setting the SQL property directly
To set the SQL property at run time,
1. Call Close to inactive the query. It is always safe to call Close even for queries that are currently

inactive, and you should call Close so that you can reopen or reexecute the query with its new SQL
statement.

2. Call the Clear method for the SQL property to delete its current SQL statement.
3. Call the Add method for the SQL property to insert and append one or more strings to the SQL

property to create a new SQL statement.
4. Call Open or ExecSQL to execute the query.
The following code illustrates these steps:

CustomerQuery->Close(); // Close the query if it's active
CustomerQuery->SQL->Clear(); // Delete the current SQL statement, if there is one
CustomerQuery->SQL->Add("SELECT * FROM ORDERS");
CustomerQuery->SQL->Add("WHERE COMPANY = 'Sight Diver'");
CustomerQuery->Open();

Note: If a query uses parameters, you should also set their initial values and call the Prepare method
before opening or executing a query.

Loading the SQL property from a file
You can also use the LoadFromFile method to assign an SQL statement in a text file to the SQL
property. For example,

CustomerQuery->Close();
CustomerQuery->SQL->Clear();
CustomerQuery->SQL->LoadFromFile("C:\ORDERS.TXT");
CustomerQuery->Open();

Note: If the SQL statement contained in the file is a parameterized query, set the initial values for the
parameters and call Prepare before opening or executing the query.

Setting parameters
A parameterized SQL statement contains parameters, or variables, the values of which can be varied at
design time or runtime. Parameters can replace column names or data values, such as those used in a
WHERE clause for comparisons, that appear in an SQL statement. Ordinarily, parameters stand in for
data values passed to the statement. For example, in the following INSERT statement, values to insert
are passed as parameters:

INSERT INTO COUNTRY (NAME, CAPITAL, POPULATION)
 VALUES (:name, :capital, :population)

In this SQL statement, :name, :capital, and :population are placeholders for actual values supplied to the
statement at run time by your application. Before a parameterized query is executed for the first time,
your application should call the Prepare method to bind the current values for the parameters to the SQL
statement. Binding means that the BDE and the server allocate resources for the statement and its
parameters that improve the execution speed of the query.
Supplying parameters at design time
Supplying parameters at runtime
Using a data source to bind parameters

Supplying parameters at design time
At design time, the easiest and safest way to enter query parameters is to invoke the Query Parameters
editor. The Query Parameters editor lists parameters in the correct order and lets you assign values to
them. When you define parameters at design time, your query is automatically reprepared for you.
To invoke the Query Parameters editor,
1. Select the query component.
2. Right-click the component to invoke the context menu.
3. Choose Define Parameters.

For queries without previously defined parameters, the Parameter name list box is empty. If parameters
are already defined for a query, then the parameter names are displayed in the list box.
The Data type combo box lists the BDE data type for a parameter selected in the list box. You must set
a data type for each parameter. In general, BDE data types conform to server data types. For specific
BDE-to-server data type mappings, see the BDE help in \Borland\Common Files\BDE32.HLP.
The Value edit box enables you to enter a value for a selected parameter, and the Null Value check box
enables you set a null value for the selected parameter if its data type permits null values. You must
enter a value for each parameter, even if that value is null.
To signal the end of parameter definition, choose OK.

Supplying parameters at runtime
To create parameters at run time, you can use the

ParamByName method to assign values to parameters based on the parameters' names.
Params property to assign values to parameters based on the parameters' ordinal location.

For example, the following code uses ParamByName to assign the text of an edit box to the Company
field:

Query1->ParamByName("Company")->AsString = Edit1->Text;
The same code can be rewritten using the Params property (it assumes that Company is the first
parameter in the query):

Query1->Params->Items[0]->AsString = Edit1->Text;

Assigning values to parameters based on parameter name
ParamByName is a function that enables an application to assign values to parameters based on the
parameters' names. This is better and safer than using the Params property directly because you don't
have to know the actual order of the parameters to which you assign values. Instead of providing the
ordinal location of a parameter as you must when indexing directly into the array of strings in the
Params property, you pass the parameter name as an argument to ParamByName.
For example, suppose a query component named CountryQuery has the following statement for its SQL
property:

INSERT INTO COUNTRY (NAME, CAPITAL, POPULATION)
 VALUES (:name, :capital, :population)

The following statements assign parameter values to a set of specified parameters:
CountryQuery->ParamByName("name")->AsString = "Lichtenstein";
CountryQuery->ParamByName("capital")->AsString = "Vaduz";
CountryQuery->ParamByName("population")->AsInteger = 420000;

Assigning values to parameters based on parameter order
When you create a parameterized query, C++Builder creates an array of parameter object for the query
in the Params property. Params is a zero-based array of TParam objects with an element for each
parameter in the query. The first parameter is Params[0], the second Params[1], and so on.
For example, given this query statement:

INSERT INTO COUNTRY (NAME, CAPITAL, POPULATION)
 VALUES (:name, :capital, :population)

then an application could specify values for each of these parameters as follows:
CountryQuery->Params->Items[0]->AsString = "Lichtenstein";
CountryQuery->Params->Items[1]->AsString = "Vaduz";
CountryQuery->Params->Items[2]->AsInteger = 420000;

These statements bind the value "Lichtenstein" to the :name parameter, "Vaduz" to the :capital
parameter, and 420000 to the :population parameter.

Using a data source to bind parameters
If parameter values for a parameterized query are not bound at design time, C++Builder attempts to
supply values for them based on the query component's DataSource property. DataSource specifies a
different table or query component that C++Builder can search for field names that match the names of
unbound parameters. This search dataset must be created and populated before you create the query
component that uses it. If matches are found in the search dataset, C++Builder binds the parameter
values to the values of the fields in the current record pointed to by the data source.
You can create a simple application to understand how to use the DataSource property to link a query in
a master-detail form. Suppose the data module for this application is called, LinkModule, and that it
contains a query component called OrdersQuery that has the following SQL property :

SELECT CustNo, OrderNo, SaleDate
 FROM Orders
 WHERE CustNo = :CustNo

The LinkModule data module also contains
A TTable dataset component named CustomersTable linked to the CUSTOMER.DB table.
A TDataSource component named OrdersSource. The DataSet property of OrdersSource points

to OrdersQuery.
A TDataSource named CustomersSource linked to CustomersTable. The DataSource property of

the OrdersQuery component is also set to CustomersSource. This is the setting that makes OrdersQuery
a linked query.
Suppose, too, that this application has a form, named LinkedQuery. This form contains two data grids, a
Customers Table grid linked to CustomersSource, and an OrdersQuery grid linked to OrdersSource.
The following figure illustrates how this application appears at design time.

Note: If you build this application, create a table component and its data source before creating the
query component.

If you compile this application, at run time the :CustNo parameter in the SQL statement for OrdersQuery
is not assigned a value, so C++Builder tries to match the parameter by name against a column in table
pointed to by CustomersSource. CustomersSource gets its data from CustomersTable, which, in turn,
derives its data from the CUSTOMER.DB table. Because CUSTOMER.DB contains a column called
"CustNo," the value from the CustNo field in the current record of the CustomersTable dataset is
assigned to the :CustNo parameter for the OrdersQuery SQL statement. The grids are linked in a
master-detail relationship. At run time, each time you select a different record in the Customers Table
grid, the OrdersQuery SELECT statement executes to retrieve all orders based on the current customer
number.

Executing a query
After you specify an SQL statement in the SQL property , and after you set any parameters for the query,
you can execute the query. When a query is executed, the BDE receives and processes SQL
statements from your application.
Note: Before you execute a query for the first time, you may want to call the Prepare method to improve

query performance. Prepare initializes the BDE and the database server, each of which
preallocates system resources for the query.

You can execute both static and dynamic SQL statements at design time and at runtime.

Executing a query at design time
To execute a query at design time, set the query component's Active property to true.
The results of the query, if any, are displayed in any data-aware controls associated with the query
component.

Executing a query at runtime
To execute a query at runtime, use one of the following methods:

Open executes a query that returns a result dataset, such as SELECT.
ExecSQL executes a query that returns a result para,eter, such as INSERT, UPDATE, or

DELETE.
Note: If you do not know at design time whether a query will return a result set at run time, code both

types of query execution statements in a try...catch block. Put a call to the Open method in the try
clause, and put the ExecSQL method in the catch clause. To avoid executing a statement twice
(for example, in the case of an empty result set), you should test for an empty result set before
executing the ExecSQL method in the catch clause.

Executing a query that returns a result set
To execute a query that returns a result set, such as a SELECT statement, follow these steps:

Call Close to ensure that the query is not already open. If a query is already open you cannot
open it again without first closing it. Closing a query and reopening it fetches a new version of data from
the server.

Call Open to execute the query.
For example,

CustomerQuery->Close();
CustomerQuery->Open(); // Returns a result set

For information on navigating within a result set, see "Disabling bidirectional cursors". For information on
editing and updating a result set, see "Working with result sets".

Executing a query without a result set
To execute a query that does not return a result set, such as INSERT, UPDATE, or DELETE, follow
these steps:

Call Close to ensure that the query is not already open. If a query is already open you cannot
open it again without first closing it. Closing a query and reopening it fetches a new version of data from
the server.

Call ExecSQL to execute the query.
For example,

CustomerQuery->Close();
CustomerQuery->ExecSQL(); // Does not return a result set

Preparing a query
Preparing a query is an optional step that precedes query execution. Preparing a query submits the SQL
statement and its parameters, if any, to the BDE for parsing, resource allocation, and optimization. The
BDE, in turn, notifies the database server to prepare for the query. The server, too, may allocate
resources for the query. These operations improve query performance, making your application faster.
If you do not prepare a query before executing it, then C++Builder prepares it for you each and every
time you call Open or ExecSQL. For queries that are executed only once this is fine. For parameterized
queries that are executed many times, such as an INSERT statement, query performance can be
significantly improved if an application explicitly prepares the query itself.
You can prevent C++Builder from repreparing a repeatedly executed query by calling the query
component's Prepare method once before first opening or executing the query. For example,

CustomerQuery->Close;
if (!CustomerQuery->Prepared)
 CustomerQuery->Prepare();
CustomerQuery->Open;

This example checks the query component's Prepared property to determine if a query is already
prepared. If not, it calls the Prepare method before calling Open.

Unpreparing a query to release resources
The UnPrepare method sets the Prepared property to false. UnPrepare

Ensures that the SQL property is reprepared prior to executing it again.
Notifies the BDE to release the internal resources allocated for the statement.
Notified the server to release any resources it has allocated for the statement.

To unprepare a query,
CustomerQuery->UnPrepare();

Note: When you change the text of the SQL property for a query, C++Builder automatically closes and
unprepares the query.

Creating heterogenous queries
C++Builder supports heterogeneous queries, queries made against tables in more than one database. A
heterogeneous query may join tables on different servers, and even different types of servers. For
example, a heterogeneous query might involve a table in a Oracle database, a table in a Sybase
database, and a local dBASE table. When you execute a heterogeneous query, the BDE parses and
processes the query using Local SQL, so extended, server-specific SQL syntax is not supported.
To perform a heterogeneous query, follow these steps:
1. Define a BDE standard alias that references a local directory, and set the DatabaseName property of

the query component to that alias. To define BDE aliases use the Database Explorer.
2. Define separate BDE aliases for each database accessed in the query.
3. Specify the SQL statement to execute in the SQL property . Precede each table name in the SQL

statement with the BDE alias for the database where that table can be found.
4. Set any parameters for the query in the Params property .
5. Call Prepare to prepare the query for execution prior to executing it for the first time.
6. Call Open or ExecSQL depending on the type of query to execute.
For example, suppose you define an alias called Oracle1 for an Oracle database that has a
CUSTOMER table, and Sybase1 for a Sybase database that has an ORDERS table. A simple query
against these two tables would be

SELECT CUSTOMER.CUSTNO, ORDERS.ORDERNO
FROM '':Oracle1:CUSTOMER'', '':Sybase1:ORDERS''

Improving query performance
Following are steps you can take to improve query execution speed:

Set a query's UniDirectional property to true if you do not need to navigate backward through a
result set (SQL-92 does not, itself, permit backward navigation through a result set). By default,
UniDirectional is false because the BDE supports bidirectional cursors by default.

Prepare the query before execution. This is especially helpful when you plan to execute a single
query several times. You need only prepare the query once, before its first use.

Disabling bidirectional cursors
The UniDirectional property determines whether or not BDE bidirectional cursors are enabled for a
query in C++Builder. When a query returns a result set, it also receives a cursor, or pointer to the first
record in that result set. The record pointed to by the cursor is the currently active record. The current
record is the one whose field values are displayed in data-aware components associated with the result
set's data source.
UniDirectional is false by default, meaning that the cursor for a result set can navigate both forward and
backward through its records. Bidirectional cursor support requires some additional processing
overhead, and can slow some queries. To improve query performance, you may be able to set
UniDirectional to true, restricting a cursor to forward movement through a result set.
If you do not need to be able to navigate backward through a result set, you can set UniDirectional to
true for a query. Set UniDirectional before preparing and executing a query. The following code
illustrates setting UniDirectional prior to preparing and executing a query:

if (!CustomerQuery->Prepared)
{
 CustomerQuery->UniDirectional = true;
 CustomerQuery->Prepare();
}
CustomerQuery->Open(); // Returns a result set with a one-way cursor

Working with result sets
By default, the result set returned by a query is read-only. Your application can display field values from
the result set in data-aware controls, but users cannot edit those values. To enable editing of a result
set, your application must request a "live" result set.
Enabling editing of a result set
Local SQL syntax requirements for a live result set
Remote server SQL syntax requirements for a live result set

Enabling editing of a result set
To request a result set that users can edit in data-aware controls, set a query component's RequestLive
property to true. Setting RequestLive to true does not guarantee a live result set, but the BDE attempts
to honor the request whenever possible. There are some restrictions on live result set requests,
depending on whether or not a query uses the local SQL parser or a server's SQL parser.
Heterogeneous joins and queries executed against Paradox or dBASE are parsed by the BDE using
local SQL. Queries against a remote database server are parsed by the server.
If an application requests and receives a live result set, C++Builder sets the CanModify property for the
query component to true.
If an application requests a live result set, but the SELECT statement syntax does not allow it, the BDE
returns either

A read-only result set for queries made against Paradox or dBASE.
An error code for pass-through SQL queries made against a remote server.

Local SQL syntax requirements for a live result set
For queries that use the local SQL parser, the BDE offers expanded support for updatable, live result
sets for both single table and multi-table queries. The local SQL parser is used when a query is made
against one or more dBASE or Paradox tables, or one or more remote server tables when those table
names in the query are preceded by a BDE database alias. The following sections describe the
restrictions that must be met to return a live result set for local SQL.

Restrictions on live queries
A live result set for a query against a single table or view is returned if the query does not contain any of
the following:

JOIN, UNION, INTERSECT or MINUS clauses.
A DISTINCT clause in the SELECT statement.
Aggregate functions.
Base tables or views that are not updatable.
GROUP BY or HAVING clauses.
Subqueries.
ORDER BY clauses not based on an index.

Restrictions on live joins
A live result set for a join is returned if:

Only two tables are involved in the join.
All joins are left-to-right outer joins.
All joins on Paradox and dBASE tables can be satisfied by existing indexes.
Output ordering is not defined.
Each table in the join is a base table.
All restrictions that apply to live queries are also met.

Remote server SQL syntax requirements for a live result set
For queries that use passthrough SQL, which includes all queries made solely against remote database
servers, live result sets are restricted to the standards defined by SQL-92 and any additional, server-
imposed restrictions.
SQL-92 restrictions that must be met in order to return a live result set are as follows. A query cannot
contain

A DISTINCT clause in the SELECT statement.
Aggregate functions
References to more than one base table or updatable view.
GROUP BY or HAVING clauses.
Subqueries that reference the table in the FROM clause.
Correlated subqueries.

Restrictions on updating a live result set
If a query returns a live result set, you may not be able to update the result set directly if the result set
contains linked fields or you switch indexes before attempting an update. If these conditions exist, you
may be able to treat the result set as a read-only result set, and update it accordingly.

Working with stored procedures
This topic describes how to use the TStoredProc dataset component in your Borland C++Builder
database applications. A stored procedure component is a descendant of TDataSet, and inherits its
fundamental behaviors from TDataSet.
Stored procedure components encapsulate stored procedures in a database on database servers such
as Sybase, Microsoft SQL Server, Oracle, and InterBase. The stored procedure component enables C+
+Builder applications to execute server stored procedures.
A stored procedure is a set of semi-procedural statements, stored as part of a server's database
metadata (like tables, indexes, and domains). A stored procedure performs a frequently-repeated
database-related task on the server and passes results to a client application, such as a C++Builder
database application. In general a stored procedure is usually passed some parameters for processing,
and returns values both in output parameters and in a dataset. Your application can display records from
the dataset in data-aware controls, and it can also examine and process the output parameters.
Note: InterBase supports two types of stored procedures, one of which is called a select procedure

because it is called within the context of a SELECT statement. To use an InterBase select
procedure in C++Builder, use a TQuery component instead of a TStoredProc component.

If your server defines stored procedures, you should use them if they apply to the needs of your
application. A database server developer creates stored procedures to handle frequently-repeated
database-related tasks. Often, operations that act upon large numbers of rows in database tables--or
that use aggregate or mathematical functions--are candidates for stored procedures. If stored
procedures exist on the remote database server your application uses, you should take advantage of
them in your application. Chances are you need some of the functionality they provide, and you stand to
improve the performance of your database application by:

Taking advantage of the server's usually greater processing power and speed.
Reducing the amount of network traffic since the processing takes place on the server where the

data resides.
For example, consider an application that needs to compute a single value: the standard deviation of
values over a large number of records. To perform this function in your C++Builder application, all the
values used in the computation must be fetched from the server, resulting in increased network traffic.
Then your application must perform the computation. Because all you want in your application is the end
result--a single value representing the standard deviation--it would be far more efficient for a stored
procedure on the server to read the data stored there, perform the calculation, and pass your application
the single value it requires.
See your server's database documentation for more information about its support for stored procedures.
Press the >> button to read through topics in sequence.
Using stored procedures
Accessing a stored procedure on a server
Understanding stored procedure parameters
Understanding input parameters
Preparing and executing a stored procedure
Working with output and result parameters
Working with the result dataset
Working with Oracle overloaded stored procedures

Using stored procedures
To create a stored procedure component for a stored procedure on a database server,

1. Place a stored procedure component from the Data Access page of the Component palette in a
data module.

2. Set the DatabaseName property of the stored procedure component to the name of the database
in which the stored procedure is defined. DatabaseName must be a BDE alias. Access the SQL Explorer
from Database|Explore to view, create, and modify BDE aliases.
3. Set the StoredProcName property to the name of the stored procedure to use, or select its name
from the drop-down list for the property.
4. Double-click the Params property value box to invoke the StoredProc Parameters editor to examine

input and output parameters for the stored procedure.
Not all servers return parameters or parameter informaton to C++Builder. See your server's
documentation to determine what informaton about its stored procedures it returns to client applications.

Accessing a stored procedure on a server
To access a stored procedure on a server, an application must:
1 Instantiate a stored procedure component and optionally associate it with a stored procedure on the

server.
2 Provide input parameter values to the stored procedure component, if necessary. When a stored

procedure component is not associated with stored procedure on a server, you must provide
additional input parameter information, such as parameter names and data types.

3 Execute the stored procedure.
4 View the resulting dataset and optionally process any result and output parameters.

Understanding stored procedure parameters
There are four types of parameters that can be associated with stored procedures:

Input parameters, used to pass values to a stored procedure for processing.
Output parameters, used by a stored procedure to pass return values to an application.
Input/output parameters, used to pass values to a stored procedure for processing, and used by

the stored procedure to pass return values to the application.
A result parameter, used by some stored procedures to return an error or status value to an

application. A stored procedure can only return one result parameter.
Whether a stored procedure uses a particular type of parameter depends both on the general language
implementation of stored procedures on your database server and on a specific instance of a stored
procedure. For example, individual stored procedures on any server may either be implemented using
input parameters, or may not be. On the other hand, some uses of parameters are server-specific. For
example, on MS-SQL Server and Sybase stored procedures always return a result parameter, but the
InterBase implementation of a stored procedure never returns a result parameter.
Note: Most stored procedures return a dataset in addition to output and result parameters. Applications

can display dataset records in data-aware controls, but must separately process output and result
parameters.

Using input parameters
Most stored procedures require you to pass them one or more input parameters to use during
processing. For example, a stored procedure that transfers funds between two bank accounts might
require three input parameters: the account number from which to withdraw funds, the account number
into which to deposit funds, and the amount of money to transfer.
If you connect to a remote database server by setting the DatabaseName and StoredProcName
properties at design time, then you can use the StoredProc Parameters editor to view the names and
data types of each input parameter, and you can set the values for the input parameters to pass to the
server when you execute the stored procedure.
Important: Do not change the names or data types for input parameters reported by the server, or

when you execute the stored procedure an exception is raised.
Some servers--Informix, for example--do not report parameter names or data types. In these cases, use
the SQL Explorer to look at the source code of the stored procedure on the server to determine input
parameters and data types. See the SQL Explorer online help for more information.
If you do not connect to a remote database server at design time, then you must invoke the StoredProc
Parameters editor, list each required input parameter, and assign each a data type and a value.

Using output parameters
Most stored procedures return one or more output parameters. Output parameters may represent the
sole return values for a stored procedure that does not also return a dataset, they may represent one set
of values returned by a procedure that also returns a dataset, or they may represent values that have no
direct correspondence to an individual record in the dataset returned by the stored procedure. Each
server's implementation of stored procedures differs in this regard.
If you connect to a remote database server by setting the DatabaseName and StoredProcName
properties at design time, then you can use the StoredProc Parameters editor to view the names and
data types of each output parameter. Do not change the names or data types of output parameters
reported by the server, or when you execute the stored procedure an exception is raised.
Note: The source code for an Informix stored procedure may indicate that it returns output parameters,

but you will not see output parameter information in the StoredProc Parameters editor. This is
because the BDE automatically translates Informix output parameters into a single record dataset
that you can view in your application's data-aware controls.

If you do not connect to a remote database server at design time, then you must invoke the StoredProc
Parameters editor, list each required output parameter, and assign each a data type.

Using input/output parameters
An input/output parameter is used by your application to pass values to a stored procedure on the
server, and is used by the server to return a different set of values to your application. See your
database server documentation to determine if it supports or uses input/output parameters.
If you connect to a remote database server by setting the DatabaseName and StoredProcName
properties at design time, then you can use the StoredProc Parameters editor to view the names and
data types of each input/output parameter. Do not change the names or data types of the parameters
reported by the server, or when you execute the stored procedure an exception is raised.
If you do not connect to a remote database server at design time, then you must invoke the StoredProc
Parameters editor, list each required input/output parameter, assign each a data type, and assign each
an input value to send to the server.

Using the result parameter
In addition to returning output parameters and a dataset, some stored procedures also return a single
result parameter. The result parameter is usually used to indicate an error status or the number of
records processed base on stored procedure execution. See your database server's documentation to
determine if and how your server supports the result parameter.
If you connect to a remote database server by setting the DatabaseName and StoredProcName
properties at design time, then you can use the StoredProc Parameters editor to view the name and
data type of its result parameter, if any. Do not change the names or data types of the parameter
reported by the server, or when you execute the stored procedure an exception is raised.
If you do not connect to a remote database server at design time, but your server returns a result
parameter, then you must invoke the StoredProc Parameters editor, name a result parameter, and
assign it a data type.

Understanding input parameters
Use input parameters to pass values from an application to a stored procedure.
Many stored procedures require you to pass them a series of input arguments, or parameters, to specify
what and how to process. In C++Builder, the Parameters editor retrieves information about input and
output parameters from the server. For some servers, all of the information required to run the stored
procedure may not be accessible.
While a TStoredProc component encapsulates access to the stored procedure, the implementation of
the stored procedure may differ from server to server. For example, the client, in this case C++Builder,
requires the server to get information about input and output parameters from a system table and return
this information to the client application. If the system table is in a readable format, the application can
access the parameter information. If the application is in a compiled format, some of the parameter
information may need to be entered manually.
In this case, you may need to enter information about the type of parameter (input, output, result) and/or
the data type of the parameter to use the procedure. You will also need to enter the value that you will
be passing to the stored procedure as input parameters.
The order in which the input parameters are displayed is significant, and is determined by the stored
procedure definition on the server. If you are not sure of the ordering of the input and output parameters
for a stored procedure, use the Parameters editor.
Setting input parameters at design time
Setting parameters at runtime

Setting input parameters at design time
If you have access to a database server from C++Builder, then there are usually two ways to view
information about the parameters used by a stored procedure:

Invoke the SQL Explorer to view the source code for a stored procedure on a remote server. The
source code includes parameter declarations that identify the data types and names for each parameter.

Set the DatabaseName property of a stored procedure component to the BDE alias for your
database server, set the StoredProcName property to the name of the stored procedure to view, and
double-click the Params property value to invoke the StoredProc Parameters editor.
You can always use the SQL Explorer to examine stored procedures on your database servers. On the
other hand, the amount of information returned about a stored procedure in the StoredProc Parameters
editor depends on your database server. For example, an Informix server only returns the number of
input parameters for a procedure, but does not return the names of those parameters or their data
types.
To invoke the Parameters editor, click the ellipsis in the Params property value box in the Object
Inspector or
1. Select the stored procedure component.
2. Invoke the context menu.
3. Choose Define Parameters.

The Parameter name list box displays all input, output, and result parameters for the procedure.
Information on input and output parameters is retrieved from the server. For some servers, not all
parameter information is accessible.
The Parameter type combo box describes whether a parameter selected in the list box is an input,
input/output, output, or result parameter.
Note: Sybase, MS-SQL, and Informix servers generally do not return information on parameter types.

Use the SQL Explorer to determine this information.
The Data type combo box lists the data type for a parameter selected in the list box. The data type can
be any standard SQL data type except BLOB and arrays of data types. If the data type has not been
provided from the server, you must set the data type. Some servers will also allow you to override the
default data type here.
Note: Informix servers generally do not return information on data types.
Input parameters are passed by value from your application to a stored procedure. The Value edit box
enables you to enter a value for a selected input parameter, and the NULL Value check box enables you
to set a NULL value for the selected input parameter if its data type supports NULL values. Values
should be assigned based on the declared data type. Each input parameter must be assigned either a
value or a NULL value.

You can use the Add button to add parameters to a stored procedure definition. Use the Delete button to
remove parameters, and the Clear button to remove all parameters from the list. If the stored procedure
named in the StoredProcName property is valid, these buttons will be disabled because you cannot
modify this data. These buttons are enabled when the stored procedure is not named, is invalid, or if C+
+Builder is unable to retrieve this information from the server. If you are sure that the stored procedure is
valid, but no parameter names are displayed, use SQL Explorer to look for the stored procedure and
inspect its text and then add parameters as appropriate.
Important: Do not add, delete, or clear parameters for servers that pass parameter information to

C++Builder except when you are working with Oracle overloaded stored procedures.
To signal the end of parameter definition, choose OK.
Important: Defining parameters at design time also prepares the stored procedure for execution. A

stored procedure must be prepared before it can be executed at runtime.

Setting parameters at runtime
To assign values to parameters at runtime, access the Params property directly. Params is an array of
parameter strings. For example, the following code assigns the text of an edit box to the first string in the
array:

StoredProc1->Params[0]->Items[0]->AsString = Edit1->Text;
You can also access parameters by name using the ParamByName method:

StoredProc1->ParamByName("Company")->AsString = Edit1->Text;
The ParamBindMode property determines how the elements of the Params array will be matched with
stored procedure parameters. If the ParamBindMode property is set to pbByName (the default),
parameters will be bound based on their names in the stored procedure. If ParamBindMode is set to
pbByNumber, parameters will be bound based on the order in which they are defined in the stored
procedure. Use the pbByNumber setting if you are building your parameters list and you don't want to
use the parameter names defined in the stored procedure, or if you could not retrieve a list of parameter
names from the stored procedure but know what arguments it expects.

StoredProc1->ParamBindMode = pbByName;

Preparing and executing a stored procedure
To use a stored procedure, you must prepare and execute it.
You can prepare a stored procedure at

Design time, by choosing OK in the Parameters editor.
Runtime, by calling the Prepare method of the stored procedure component.

For example, the following code prepares a stored procedure for execution:
StoredProc1->Prepare();

Note: You can prepare a stored procedure both at runtime and at design time. Input parameters are
passed by value from C++Builder to the stored procedure, so if your application changes
parameter information at runtime, such as when using Oracle overloaded procedures, you should
prepare the procedure again.

To execute a prepared stored procedure, call the ExecProc method for the stored procedure component.
The following code prepares and executes a stored procedure:

StoredProc1->Params[0]->Items[0]->AsString = Edit1->Text;
StoredProc1->Prepare();
StoredProc1->ExecProc();

When you execute a stored procedure, it can return all or some of these items:
A dataset consisting of one or more records that can be viewed in data-aware controls associated

with the stored procedure through a data source component.
Output parameters that may be all or part of a record from a dataset, or values completely

independent of the dataset.
A result parameter that contains status information about the stored procedure's execution.

To determine the return items to expect from a stored procedure on your server, see your server's
documentation.

Working with output and result parameters
In addition to a dataset, stored procedures on some database servers also return output parameters and
a result parameter. To access a stored procedure's output parameters at run time, you can index into the
Params string list, or you can use the ParamByName method to access the values. The following
statement both set the value of a edit box based on output parameters:

Edit1->Text = StoredProc1->Params[6]->Items[0]->AsString;
Edit1->Text = StoredProc1->ParamByName("Company")->AsString;

Working with the result dataset
To display the results from a stored procedure in data-aware controls:
1 Place a datasource component on the data module.
2 Set the DataSet property of the datasource to the name of the stored procedure component from

which to receive data.
3 Set the DataSource properties of the data-aware controls to the name of the datasource component.
The data-aware controls can now display the results from a stored procedure when the Active property
for the stored procedure component is true.
Note: Informix stored procedures do not return a dataset. Instead they return a singleton result in the

output parameters.

Working with Oracle overloaded stored procedures
Oracle servers allow overloading of stored procedures; overloaded procedures are different procedures
with the same name. The stored procedure component's Overload property enables an application to
specify the procedure to execute.
If Overload is zero (the default), there is assumed to be no overloading. If Overload is one (1), then C+
+Builder will execute the first stored procedure with the overloaded name; if it is two (2), it will execute
the second, and so on.
Note: Overloaded stored procedures may take different input and output parameters. See your Oracle

server documentation for more information.

Displaying and editing data in data-aware controls
This topic describes how to use data-aware visual components, called visual controls, on a form and
how to display and edit data associated with the tables and queries in your database application. A data-
aware control derives display data from a database source outside the application, and can also
optionally post (or return) data changes to a data source.
In particular, this topic describes the following features common to data-aware controls:

Associating a data-aware control with a data set
Editing and updating data
Disabling and enabling data display
Refreshing data display

The following topics describe basic features common to all data-aware controls, then describe how and
when to use individual components.
Most data-aware controls are described in the following topics. Omitted are TDBNavigator, TDBGrid,
and TDBCtrlGrid.
Press the >> button to read topics in sequence.
Common data-aware control features
Displaying and editing data in a data-aware control
Displaying fields as labels
Displaying and editing fields in an edit box
Displaying and editing text fields in a memo control
Displaying and editing graphics fields in an image control
Displaying and editing data in list and combo boxes
Looking up data for displaying and editing in list and combo boxes
Handling Boolean field values with check boxes
Restricting field values with radio controls

Common data-aware control features
Data control components are data-aware components that you connect to a dataset through a
DataSource component. You place data-aware controls from the Data Controls tab of the Component
palette onto the forms in your database application. Data-aware controls generally enable you to display
and edit fields of data associated with the current record in a dataset.
The following figure displays and the following table summarizes the data-aware controls in order from
left to right as they appear on the Data Controls tab of the Component palette.

Data-aware control Description
TDBGrid Displays information from a data source in a tabular format. Columns in the grid

correspond to columns in the underlying table or query's dataset. Rows in the
grid correspond to records.

TDBNavigator Navigating through dataset records, update records, post records, delete
records, cancel edits to records, insert records, edit records, and refresh data
display.

TDBText Display data from a field as a label.
TDBEdit Display and edit data from a field in an edit box.
TDBMemo Display and edit data from a memo, multi-line text, or BLOB text field in a

scrollable, multi-line edit box.
TDBImage Display and edit a graphics image or binary BLOB data in a graphics box.
TDBListBox Display a list of choices from which to update a field in the current data record.
TDBComboBox Display a drop-down list of items from which to update a field, and also permits

direct text entry like a standard data-aware edit box.
TDBCheckBox Display and set a Boolean field condition in a check box.
TDBRadioGroup Display and set a set of mutually exclusive options for a field.
TDBLookupListBox Display a list of items looked up from another dataset based on the value of a

field.
TDBLookupComboBox Display a list of items looked up from another dataset based on the value of a

field, and also permits direct text entry like a standard data-aware combo box.
TDBCtrlGrid Display a configurable, repeating set of data-aware controls within a grid.

Data-aware controls are data-aware at design time. When you set a control's DataSource property to an
active data source while building an application, you can immediately see live data in the controls. You
can use the Fields editor to scroll through a dataset at design time to verify that your application displays
data correctly without having to compile and run the application. To scroll through records using the
Fields editor, the dataset must be open, and you must have used the Add Fields option to create
persistent fields for the dataset. If you've done these things, then you'll notice that the navigator buttons
at the top of the Fields editor are enabled. Use them to scroll from record to record. If you have any
dataset controls attached to the datasource for the dataset, you can see the values in the controls
change as you scroll through the records.
At runtime, data-aware controls also display data and permit editing of data if that is appropriate to the
control, to your application, and to the database to which your application connects.

Displaying and editing data in a data-aware control
To display data in a data-aware control,
1. Place a dataset and a data source in a data module or on a form
2. Place a data-aware control from the Data Controls tab of the Component palette onto a form.
3. Set the DataSource property of the control to the name of a data source component from which to get

data. A data source component acts as a conduit between the control and a dataset containing data.
4. If appropriate, set the DataField property of the control to the name of a field to display, or select a

field name from the drop-down list for the property.
5. For list box and radio group controls, enter the strings to be displayed in the control into the Items

property of the control.
If the Enabled property of the data-aware control's data source is true (the default), and the Active
property of the dataset attached to the data source is also true, data is now displayed in the data-aware
control.
Note: Two data-aware controls, TDBGrid and TDBNavigator, access all available field components

within a dataset, and therefore do not have DataField properties. For these controls, omit step 4.
Enabling mouse, keyboard, and timer events
Enabling editing in controls on user entry
Editing data in a control
Disabling and enabling data display
Refreshing data

Enabling mouse, keyboard, and timer events
The Enabled property of a data-aware control determines whether it responds to mouse, keyboard, or
timer events, and passes information to its data source. The default setting for this property is true.
To prevent mouse, keyboard, or timer events from accessing a data-aware control, set its Enabled
property to false. When Enabled is false, a data source does not receive information from the data-
aware control. The data-aware control continues to display data, but the text displayed in the control
does not get highlighted.

Enabling editing in controls on user entry
A dataset must be in dsEdit state to permit editing to its data. The AutoEdit property of the data source
to which a control is attached determines if the underlying dataset enters dsEdit mode when data in a
control is modified in response to keyboard or mouse events. When AutoEdit is true (the default), dsEdit
mode is set as soon as editing commences. If AutoEdit is false, you must provide a TDBNavigator
control with an Edit button (or some other method) to permit users to set dsEdit state at runtime.

Editing data in a control
The ReadOnly property of a data-aware control determines if a user can edit the data displayed by the
control. If false (the default), users can edit data. To prevent users from editing data in a control, set
ReadOnly to true.
Properties of the data source and dataset underlying a control also determine if the user can
successfully edit data with a control and post changes to the dataset.
The Enabled property of a data source determines if controls attached to a data source are able to
display fields values from the dataset, and therefore also determines if a user can edit and post values.
If Enabled is true (the default), controls can display field values.
The ReadOnly property of the dataset determines if user edits can be posted to the dataset. If false (the
default), changes are posted to the dataset. If true, the dataset is read-only.
Note: Table components have an additional, read-only runtime property CanModify that determines if a

dataset can be modified. CanModify is set to true if a database permits write access. If CanModify
is false, a dataset is read-only. Query components that perform inserts and updates are, by
definition, able to write to an underlying database, provided that your application and user have
sufficient write privileges to the database itself.

The following table summarizes the factors that determine if a user can edit data in a control and post
changes to the database:

Data-aware
control
ReadOnly
property

Data source
Enabled
property

Dataset
ReadOnly
property

Dataset
CanModify
property
(tables only)

Database write
access

Can write to
database?

false true false true Read/Write Yes
false true false false Read-only No
false false -- -- -- No
true -- -- -- -- No

In all data-aware controls except TDBGrid, when you modify a field, the modification is copied to the
underlying field component in a dataset when you move from the control. If you press Esc before you
Tab from a field, C++Builder abandons the modifications, and the value of the field reverts to the value it
held before any modifications were made.
In TDBGrid, modifications are copied only when you move to a different record; you can press Esc in
any field of a record before moving to another record to cancel all changes to the record.
When a record is posted, C++Builder checks all data-aware components associated with the dataset for
a change in status. If there is a problem updating any fields that contain modified data, C++Builder
throws an exception, and no modifications are made to the record.

Disabling and enabling data display
When your application iterates through a dataset or performs a search, you should temporarily prevent
refreshing of the values displayed in data-aware controls each time the current record changes.
Preventing refreshing of values speeds the iteration or search and prevents annoying screen-flicker.
DisableControls is a dataset method that disables display for all data-aware controls linked to a dataset.
As soon as the iteration or search is over, your application should immediately call the dataset's
EnableControls method to re-enable display for the controls.
Usually you disable controls before entering an iterative process. The iterative process itself should take
place inside a try...catch statement so that you can re-enable controls even if an exception occurs during
processing. The catch clause should call EnableControls. The following code illustrates how you might
use DisableControls and EnableControls in this manner:

CustTable->DisableControls();
try
{
 CustTable->First(); // Go to first record, which sets Eof false
 while(!CustTable->Eof) //Cycle until Eof is true
 {
 // Process each record here
 ...
 CustTable->Next(); // Eof false on success; Eof true when Next fails on last record
 }
 CustTable->Refresh();
 CustTable->EnableControls();
}
catch(...)
{
 CustTable->Refresh();
 CustTable->EnableControls();
}

Refreshing data
The Refresh method for a dataset flushes local buffers and refetches data for an open dataset. You can
use this method to update the display in data-aware controls if you think that the underlying data has
changed because other applications have simultaneous access to the data used in your application.
Important:
Refreshing can sometimes lead to unexpected results. For example, if a user is viewing a record deleted
by another application, then the record disappears the moment your application calls Refresh. Data can
also appear to change if another user changes a record after you originally fetched the data and before
you call Refresh. You may with to call Refresh prior to deleting or updating data.

Displaying fields as labels
TDBText is a read-only control similar to the TLabel component on the Standard tab of the Component
palette. TDBText gets the text it displays from a specified field in the current record of a dataset.
Because TDBText gets its text from a dataset, the text it displays is dynamic--the text changes as the
user navigates the database table. Therefore, you cannot specify the display text of TDBText at design
time as you can with TLabel.
A TDBText control cannot be modified by the user. If you want to enable users to modify the contents of
the field, use a TDBEdit control instead.
A TDBText control is useful when you want to provide display-only data on a form that allows user input
in other controls. For example, suppose a form is created around the fields in a customer list table, and
that once the user enters a street address, city, and state or province information in the form, you use a
dynamic lookup to automatically determine the zip code field from a separate table. A TDBText
component tied to the zip code table could be used to display the zip code field that matches the
address entered by the user.
When you place a TDBText component on a form, set its AutoSize property to true (the default) to
ensure that the control resizes itself as necessary to display data of varying widths. If AutoSize is set to
false, and the control is too small, data display is truncated. To wrap text displayed in the label, set
WordWrap to true. Setting WordWrap to true causes text entered after a space to wrap to the next line,
unless there is still room in the current line. To specify whether you want the label text to align left, right,
or centered, use the Alignment property. To prevent the label from obscuring other components, set its
Transparent property to true.

Displaying and editing fields in an edit box
TDBEdit is a data-aware version of an edit box component. TDBEdit displays the current value of a data
field to which it is linked and permits it to be edited using standard edit box techniques. Use the TDBEdit
component to read or write a single line of data from a specific column in the current record of a dataset.
To read and write multiple lines of text, use the TDBMemo component. To display text that the user
cannot modify, use the TDBText component (or set the ReadOnly property of the TDBEdit component to
true).
For example, suppose CustomersSource is a TDataSource component that is active and linked to an
open TTable called CustomersTable. You can then place a TDBEdit component on a form and set its
properties as follows:

DataSource: CustomersSource
DataField: CustNo

The data-aware edit box component immediately displays the value of the current row of the CustNo
column of the CustomersTable dataset, both at design time and at runtime. If the DataField value of the
edit box is an integer or floating point value, only characters that are valid in such a field can be entered
in the edit box. Characters that are not legal are not accepted.
To specify the font of the text, use the Font property. To specify the line length, set the MaxLength
property. To automatically select the text when the edit box receives focus, set AutoSelect to true
(default). To prevent the height of the edit box from changing dynamically to accommodate font
changes, set the AutoSize property to false (true is the default). Only the height, not the length (Width),
of the edit box is affected by the AutoSize property. To specify a case for the text in the edit box (all
upper, all lower, or mixed case), use the CharCase property.

Displaying and editing text fields in a memo control
TDBMemo is a data-aware component--similar to the Standard TMemo component--that can display
and modify a multi-line field in a dataset or formatted text in binary large object (BLOB) format.
TDBMemo displays multi-line text, and permits a user to enter multi-line text as well. You can use
TDBMemo controls to display memo fields from dBASE and Paradox tables and text data contained in
BLOB fields. Use the TDBEdit component to display or edit a single line of text. Use the TDBImage
component to display graphic images in BLOB format.
By default, TDBMemo permits a user to edit memo text. To prohibit editing, set the ReadOnly property of
TDBMemo to true. To permit users to enter tabs in a memo, set the WantTabs property to true. To limit
the number of characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no limit on the number of characters the control
can contain. Any number other than 0 limits the number of characters the control accepts.
Several properties affect how the database memo appears and how text is entered. You can supply
scroll bars in the memo with the ScrollBars property. To prevent word wrap, set the WordWrap property
to false. The Alignment property determines how the text is aligned within the control. Possible choices
are taLeftJustify (the default), taCenter, and taRightJustify. To change the font of the text, use the Font
property.
At runtime, users can cut, copy, and paste text to and from a database memo control. You can
accomplish the same task programmatically by using the CutToClipboard, CopyToClipboard, and
PasteFromClipboard methods.
Because the TDBMemo can display large amounts of data, it can take time to populate the display at
runtime. To reduce the time it takes scroll through data records, TDBMemo has an AutoDisplay property
that controls whether the accessed data should be automatically displayed. If you set AutoDisplay to
false, TDBMemo displays the field name rather than actual data. Double-click inside the control to view
the actual data.

Displaying and editing graphics fields in an image control
TDBImage is a data-aware component that displays bitmapped graphics or BLOB data in image format.
It captures BLOB graphics images from a dataset, and stores them internally in the Windows .DIB
format. TDBImage cannot display formatted text in BLOB format. Use the TDBMemo component for this
purpose.
TDBImage component

By default, TDBImage permits a user to edit a graphics image by cutting and pasting to and from the
Clipboard. You can also supply your own editing methods. For example, you can use the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.
Because the TDBImage can display large amounts of data, it can take time to populate the display at
runtime. To reduce the time it takes scroll through data records, TDBImage has an AutoDisplay property
that controls whether the accessed data should be automatically displayed. If you set AutoDisplay to
false, TDBImage displays the field name rather than actual data. Double-click inside the control to view
the actual data.
Set the Stretch property to true to allow the graphic image to automatically stretch or shrink to fit into the
available space. When Stretch is set to false (the default), as much of the graphic as fits will be
displayed in the control.

Displaying and editing data in list and combo boxes
Four data-aware controls provide data-aware versions of standard list box and combo box controls.
These useful controls provide the user with a set of default data values to choose from at runtime.
Note: Data-aware list and combo box can be linked only to data sources for table components. They do

not work with query components.
The following table describes these controls:

Data-aware control Description
TDBListBox Displays a list of items from which a user can update a field in the current

record. The list of display items is a property of the control.
TDBComboBox Combines an edit box with a list box. A user can update a field in the current

record by choosing a value from the drop-down list or by entering a value.
The list of display items is a property of the control.

TDBLookupListBox Displays a list of items from which a user can update a column in the current
record. The list of display items is looked up in another dataset.

TDBLookupComboBox Combines an edit box with a list box. A user can update a field in the current
record by choosing a value from the drop-down list or by entering a value.
The list of display items is looked up in another dataset.

Displaying and editing data in a list box
TDBListBox displays a scrollable list of items from which a user can update a data field in the current
record of the dataset. A data-aware list box displays the current value for a field in the current record and
highlights its corresponding entry in the list. In the following figure, the current record is OrderNo 1009,
and the corresponding ShipVia field is US Mail. The list box is highlighting the corresponding entry and
will allow the user to change the value in this field by selecting a different value from the list box. If the
current row's field value is not in the list, no value is highlighted in the list box. When a user selects a list
item, the corresponding field value is changed in the underlying dataset.
The TDBListBox component shown with a TDBGrid component

The Items property of the TDBListBox component, which specifies the items contained in the list, is a
string list. You can perform many operations on string lists by using the methods and properties of the list.
Use the String list editor at design time to create the list of items to display.
The Height property determines the vertical size of a control in pixels. The IntegralHeight property
controls the way the list box is displayed. If IntegralHeight is false (the default), the bottom of the list box
is determined by the ItemHeight property, and the bottom item might not be completely displayed. If
IntegralHeight is true the visible bottom item in the list box is fully displayed. To specify the height of each
item, set the ItemHeight property. You must also set the Style to csOwnerDrawFixed.

Displaying and editing data in a combo box
TDBComboBox is a data-aware version of the TComboBox component. The TDBComboBox control
combines the functionality of a data-aware edit control and a drop-down list. At runtime, users can
update a field in the current record of a dataset by typing a value or choosing a value from the drop-
down list.
The Items property of the component, which specifies the items contained in the drop-down list, is a
string list. You can perform many operations on string lists by using the methods and properties of the
list. Use the String list editor to populate the Items list.
When a control is linked to a field through its DataField property, it displays the value for the field in the
current row, regardless of whether it appears in the Items list. The Style property determines user
interaction with the control. By default, Style is csDropDown, meaning a user can enter values from the
keyboard, or choose an item from the drop-down list. The following properties determine how the Items
list is displayed at runtime:

Style determines the display style of the component:
csDropDown (default): Displays a drop-down list with an edit box in which the user can enter text.

All items are strings and have the same height.
csSimple: Does not display the drop-down list.
csDropDownList: Displays a drop-down list and edit box, but the user cannot enter or change

values that are not in the drop-down list at runtime.
csOwnerDrawFixed and csOwnerDrawVariable: Allows the items list to display values other than

strings (for example, bitmaps). For more information, see the VCL Reference manual.
DropDownCount: the maximum number of items displayed in the list. If the number of Items is

greater than DropDownCount, the user can scroll the list. If the number of Items is less than
DropDownCount, the list will be just large enough to display all the Items.

ItemHeight: The height of each item when Style is csOwnerDrawFixed.
Sorted: If true, then the Items list is displayed in alphabetical order.

Looking up data for displaying and editing in list and combo boxes
TDBLookupListBox and TDBLookupComboBox are a data-aware list box and a data-aware combo box.
The TDBLookupListBox component displays a scrollable list of available choices, the
TDBLookupCombo displays a drop-down list. Both controls derive their list of display items dynamically
from a second dataset, known as the lookup dataset, at runtime, from one of two sources:

Lookup field defined for a dataset.
Secondary data source, data field, and key.

In either case, a user is presented with a restricted list of choices from which to set a valid field value.
When a user selects a list item, the corresponding field value is changed in the underlying dataset.
For example, consider an order form whose fields are tied to the OrdersTable. OrdersTable contains a
CustNo field corresponding to a customer ID, but OrdersTable does not have any other customer
information. The CustomersTable, on the other hand, contains a CustNo field corresponding to a
customer ID, and also contains additional information, such as the customer's company and mailing
address. It would be convenient if the order form enabled a clerk to select a customer by company name
instead of customer ID when creating an invoice. A TDBLookupListBox that displays all company names
or a TDBLookupComboBox that displays a drop-down list of available company names in
CustomersTable enables a user to select the company name from the list, and set the CustNo on the
order form appropriately.
Setting lookup list and combo box properties

Specifying a list based on a lookup field
To specify list box or combo box list items using a lookup field, the dataset to which you link the control
must already define a lookup field.
To specify a lookup field for the list box or drop-down list items,
1. Set the DataSource property of the box to the data source for the dataset containing the lookup field

to use (for example, OrdersSource).
2. Choose the lookup field to use from the drop-down list for the DataField property.
When you activate a table associated with a lookup list box control or combo box control, the control
recognizes that its data field is a lookup field, and displays the appropriate values from the lookup.

Specifying a list based on a secondary data source
If you have not defined a lookup field for a dataset, you can establish a similar relationship using a
secondary data source, a field value to search on in the secondary data source, and a field value to
return as a list item.
To specify a secondary data source for list box items or drop-down list items, set these properties:
1. Set the DataSource property of the list box or drop-down box to the data source for the dataset to

lookup values for (for example, OrdersSource).
2. Choose a field into which to insert looked-up values from the drop-down list for the DataField property

(for example, CustNo). The field you choose cannot be a lookup field.
3. Set the ListSource property of the list box or combo box to the data source for the dataset that contain

the field whose values you want to look up (for example, CustomersSource).
4. Choose a field to use as a lookup key from the drop-down list for the KeyField property (for example,

CustNo). The drop-down list displays fields for the dataset associated with data source you specified
in step 3. The field you choose need not be part of an index, but if it is, lookup performance is even
faster.

5. Choose a field whose values to return from the drop-down list for the ListField property . The drop-
down list displays fields for the dataset associated with the data source you specified in step 3. To
display multiple fields, separate the field names with semi-colons (for example, CustNo; Company).

When you activate a table associated with a lookup list box or combo box control, the control recognizes
that its drop-down list items are derived from a secondary source, and displays the appropriate values
from that source.

Setting lookup list and combo box properties
The following table lists important properties specific to lookup list and combo boxes:

Property Purpose
DataField Specifies the field in the master dataset which provides the key value to be looked

up in the lookup dataset. This field is modified when a user selects a list box or
drop-down list item. If DataField is set to a lookup field, the KeyField, ListField, and
ListSource properties are not used (for example, CustNo from OrdersSource).

DataSource Specifies a data source for the control. This should be the data source for the
master dataset. If the selection in the control is changed, this dataset is placed in
dsEdit mode (for example, OrdersSource).

KeyField Specifies the field in the lookup dataset corresponding to DataField. The control
searches for the DataField value in the KeyField of the lookup dataset. The
KeyField property column must contain the same values as the DataField property
column, although the column names can differ. The lookup dataset should have an
index on this field to facilitate lookups (for example, CustNo from
CustomersSource).

ListField Specifies the field of the lookup dataset to display in the control (for example,
CustNo; Company from CustomersSource).

ListSource Specifies a data source for the dataset you want the control to use to look up the
information you want displayed in the control. The sort order of items displayed in
the list box or drop-down list is determined by the index specified by the IndexName
property of the lookup dataset. That index need not be the same one used by the
KeyField property (for example, CustomersSource).

RowCount Specifies the number of lines of text to display in the list box. The height of the list
box is adjusted to fit this row count exactly.

DropDownRows Specifies the number of lines of text to display in the drop-down list.

Note: At runtime, users can use an incremental search to find list box items. When the control has
focus, for example, typing ROB selects the first item in the list box beginning with the letters ROB.
Typing an additional E selects the first item starting with ROBE, such as Robert Johnson. The
search is case-insensitive. Backspace and Esc cancel the current search string (but leave the
selection intact), as does a two-second pause between keystrokes.

Handling Boolean field values with check boxes
TDBCheckBox is a data-aware version of the TCheckBox component. It can be used to display or edit
the values of Boolean fields in a dataset. For example, a customer invoice form might have a check box
control that when checked indicates the customer is tax-exempt, and when unchecked indicates that the
customer is not tax-exempt.
The TDBCheckbox controls its own checked or unchecked state by comparing the contents of the field
to the contents of the ValueChecked and ValueUnchecked properties (both values cannot match at the
same time). If the value of the ValueChecked property matches the value of the field, C++Builder checks
the check box. If the value of the ValueUnchecked property matches the value of the field, C++Builder
unchecks the check box.
Set the ValueChecked property to a value the control should post to the database if the control is
checked when the user moves to another record. By default, this value is set to True, but you can make
it any alphanumeric value appropriate to your needs. You can also enter a semicolon-delimited list of
items as the value of ValueChecked. If any of the items matches the contents of that field in the current
record, the check box is checked. For example, you can specify a ValueChecked string like

DBCheckBox1->ValueChecked = "True;Yes;On";
If the field for the current record contains values of "True," "Yes," or "On," then the check box is checked.
Comparison of the field to ValueChecked strings is case-insensitive. If a user checks a box for which
there are multiple ValueChecked strings, the first string is the value that is posted to the database.
Set the ValueUnchecked property to a value the control should post to the database if the control is not
checked when the user moves to another record. By default, this value is set to False, but you can make
it any alphanumeric value appropriate to your needs. You can also enter a semicolon-delimited list of
items as the value of ValueUnchecked. If any of the items matches the contents of that field in the
current record, the check box is unchecked.
A data-aware check box is gray-checked (not True and not False) whenever the field for the current
record does not contain one of the values listed in the ValueChecked or ValueUnchecked properties.
If the field with which a check box is associated is a logical field, the check box is always checked if the
contents of the field is True, and it is unchecked if the contents of the field is False. In this case, strings
entered in the ValueChecked and ValueUnchecked properties have no effect on logical fields.
To group check boxes in the form, place them all inside a single panel, group box, or scroll box
component. You must first place the container component on the form, then place the check box
components inside it.
Use the Caption property to display a label for the check box on your form. To place the check box to the
right or left of the text in its caption, set its Alignment property.
To make a check box unavailable to the user, set its Enabled property to false. To enable the user to
gray the check box, set its AllowGrayed property to true.

Restricting field values with radio controls
TDBRadioGroup is a data-aware version of the TRadioGroup component. It enables you to set the value
of a data field with a radio button control where there is a limited number of possible values for the field.
The radio group consists of one button for each value a field can accept. Users can set the value for a
data field by selecting the desired radio button.
The Items property determines the number of radio buttons that appear in the group. Items is a string
list. One radio button is displayed for each string in Items, and each string appears to the right of a radio
button as the button's label.
If the current value of a field associated with a radio group matches one of the strings in the Items
property, that radio button is automatically selected. For example, if three strings, Red, Yellow, and Blue,
are listed for Items, and the field for the current record contains the value Blue, then the third button in
the group is selected.
Note: If the field does not match any strings in Items, a radio button may still be selected if the field

matches a string in the Values property. If the field for the current record does not match any
strings in Items or Values, no radio button is selected.

The Values property can contain an optional list of strings that can be returned to the dataset when a
user selects a radio button and posts a record. Strings are associated with buttons in numeric sequence.
The first string is associated with the first button, the second string with the second button, and so on.
For example, suppose Items contains Red, Yellow, and Blue, and Values contains Magenta, Yellow, and
Cyan. If a user selects the button labeled Red, Magenta is posted to the database.
If strings for Values are not provided, the Item string for a selected radio button is returned to the
database when a record is posted.

Displaying and editing data in grids
This topic describes how to use the data-aware TDBGrid control to display and edit dataset records in a
tabular grid format similar to a spreadsheet or the tabular view found in most desktop database
applications. Your application can use the data grid to insert, delete, edit, or simply display data in a
dataset.
The TDBGrid component is an indirect descendant of TWinControl and can be accessed by selecting
the DBGrid control from the Data Controls tab of the Component palette. The TDBGrid component can
be customized to change how a column appears and how the data in the column is displayed. TDBGrid
components can be completely reconfigured at runtime to hide and show columns and change the
order, color, and width of columns.
This topic also discusses the TDBCtrlGrid control that enables you to display other data-aware
components as repeating units within a grid-like structure.
The most convenient way to move through data in a grid and to insert, delete,
and edit data is to use the database navigator with the data grid on a form.
Press the >> button to read through topics in sequence.
Viewing and editing data in grids
Displaying records like forms
Features common to all data-aware controls
Setting up a data-aware control for displaying and editing data

Viewing and editing data in grids
You can use the TDBGrid control to view and edit records in a dataset in a tabular grid format.
The TDBGrid control

Two factors affect the appearance of records displayed in a grid control:
Existence of persistent column objects defined for the grid using the Columns editor. Persistent

column objects provide great flexibility in setting grid and data appearance.
Creation of persistent field components for the dataset displayed in the grid.

The TDBGridColumns object holds a collection of TColumn objects representing all of the columns in a
TDBGrid component. Every TDBGrid owns a TDBGridColumns object and exposes it via the Columns
property. You can use the Columns editor to set up column attributes at design time or the Columns
property to access TDBGridColumns methods and properties, which in turn expose TColumn objects
representing individual columns.
By default, persistent column objects do not exist for the grid. In that case, the display of data in the grid
is determined either by persistent field components for the dataset displayed in the grid, or for datasets
without persistent field components, by C++Builder's default set of criteria for data display.
By default, the appearance of records is determined primarily by the properties of the fields in the grid's
dataset when no persistent column objects are defined. Temporary grid columns are dynamically
generated from the fields of the dataset whose Visible property is true, and the order of columns in the
grid matches the order of fields in the dataset. Every column in the grid is associated with a field
component. Property changes to field components immediately show up in the grid.
Because a grid that does not have persistent column objects defined gets its display information from
the fields of the dataset, all grids without persistent column objects defined that are linked to the same
dataset will display data in the same way. To view different fields of the same dataset in two grids, use
customized columns.
Using a grid control with no persistent column objects defined is useful for viewing and editing the
contents of arbitrary tables selected at runtime. Because the grid's structure is not set, it can change
dynamically to display different datasets. A single grid can display a Paradox table at one moment, then
switch to display the results of an SQL query when the grid's DataSource property changes or when the
DataSet property of the data source itself is changed.
When no persistent column objects are defined, you can still modify a grid's column properties. Column
properties are dynamic. They exist only as long as a column is associated with a particular field in a
single dataset. Column properties based on the properties of underlying field components modify the
underlying field property. For example, changing the Width property of a column changes the
DisplayWidth property of the field associated with that column. Changes made to column properties that
are not based on field properties, such as Font, exist for the lifetime of the column.
Properties of dynamic columns are retained as long as the associated field component exists. If a grid's
dataset consists of dynamic field components, the fields are destroyed each time the dataset is closed.
When the field components are destroyed, the columns associated with them are destroyed as well. If a
grid's dataset consists of persistent field components, the field components exist even when the dataset
is closed, so the columns associated with those fields also retain their properties when the dataset is

closed.
Press the >> button to read through the following topics in sequence.
Changing a grid's default display
Controlling grid behavior and appearance
Editing in the grid
Rearranging column order at runtime
Controlling grid drawing
Handling grid events

Changing a grid's default display
A customized grid control is one for which you define persistent column objects that describe how a
column appears and how the data in the column is displayed. You can use a customized grid to
configure multiple grids to present different views of the same dataset (different column orders, different
field choices, and different column colors and fonts, for example). A customized grid also permits users
to modify the appearance of the grid at runtime without affecting the fields used by the grid or the field
order of the dataset.
Customized grids are best used with datasets whose structure is known at design time. Because they
expect field names established at design time to exist in the dataset, customized grids are not well
suited to browsing arbitrary tables selected at runtime.
When you create persistent column objects for a grid, they are only loosely associated with underlying
fields in a grid's dataset. Default property values for persistent columns are dynamically fetched from a
default source (such as the grid or associated field) until a value is assigned to the column property.
Until you assign a column property a value, its value changes as its default source changes.
For example, the default source for a column title caption is an associated field's DisplayLabel property,
which is usually the name of the field as it is stored in the database. To help the user understand the
nature of the data in the column, it may be beneficial to change the name of the column to better reflect
its contents. If you modify the DisplayLabel property, the column title reflects that change immediately.
However, once you assign a value to a column property, it no longer changes when its default source
changes. For example, if you assign a string to the column title's caption, the title caption is independent
of the associated field's DisplayLabel property. Changes to the field's DisplayLabel property no longer
affect the column's title.
Persistent columns exist independently from field components with which they are associated. In fact,
persistent columns do not have to be associated with field objects at all. If a persistent column's
FieldName property is blank, or if the field name does not match the name of any field in the grid's
current dataset, the column's Field property is NULL and the column is drawn with blank cells. You can
use a blank column to display bitmaps or bar charts that graphically depict some aspect of a record's
data in an otherwise blank cell, for example. To do so, you must override the cells' default drawing
method
Two or more persistent columns can be associated with the same field in a dataset. For example, you
might display a part number field at the left and right extremes of a wide grid to make it easier to find the
part number without having to scroll the grid.
Note: Because persistent columns do not have to be associated with a field in a dataset, and because

multiple columns can reference the same field, a customized grid's FieldCount property can be
less than or equal to the grid's column count. Also note that if the currently selected column in a
customized grid is not associated with a field, the grid's SelectedField property is NULL and the
SelectedIndex property is -1.

Persistent columns can be configured to display grid cells as a combo-box drop-down list of lookup
values from another dataset or from a static pick list, or as an ellipsis button (…) in a cell that can be
clicked upon to launch special data viewers or dialogs related to the current cell.
At runtime you can test a column's AssignedValues property to determine whether a column property
gets its values from an associated field component, or has been assigned a separate value. Use a
column's properties and methods to change column values. For example, to discard changes made to
the title caption of column one and revert to its default value, you can use the statement

DBGrid1->Columns->Items[1]->Title->Caption = DBGrid1->Columns->Items[1]->Title->
DefaultCaption();

You can reset all default properties for a single column at runtime by calling the column's
RestoreDefaults method. You can also reset default properties for all columns in a grid by calling the
column list's RestoreDefaults method:

DBGrid1->Columns->RestoreDefaults();
To add a persistent column at runtime, call the Add method for the column list:

DBGrid1->Columns->Add();

You can delete a persistent column at runtime by simply freeing the column object:
DBGrid1->Columns->Items[1]->Free();

Important:
Use the Grid property to see which TDBGrid component owns the object. Use the Items array property
to access individual TColumn objects.
Press the >> button to read through topics in sequence.
Creating persistent columns
Removing persistent columns
Ordering persistent columns
Defining a lookup list column
Defining a pick list column
Putting an ellipsis button in a column
Setting column properties
Setting column title properties
Restoring default column properties

Creating persistent columns
To customize the appearance of a grid at design time, you invoke the Columns editor to create a set of
persistent column objects for the grid. To create persistent columns for a grid control,
1. Select the grid component in the form.
2. Double-click on the grid component to invoke the Columns editor.

The Columns list box displays the persistent columns that have been defined for the selected grid.
When you first bring up the Columns editor, this list is empty because the grid is in its default state,
containing only dynamic columns.

3. To create columns for all the fields in the grid's dataset, click the Add All Fields button. The Columns
editor will display all persistent fields in the order they were entered and will automatically associate a
field name with a column.

4. If the grid already contained persistent columns, a dialog box asks if you want to delete the existing
columns. If you answer Yes, any existing persistent field information is removed and all fields in the
current dataset are inserted by field name according to their order within the dataset. If you answer
No, any existing persistent fields remain intact and all fields in the database are appended to the list
of existing persistent fields.

5. To create persistent fields individually, click New in the Columns editor. The new column is given a
sequential number and default title (for example, 0 - Untitled), is selected in the list box, and has no
field name associated with it. Focus is in the FieldName box. If you want to associate a field with this
new column, use the FieldName combo box to select a field from the grid's dataset. To change the
new column's title, set the Caption property in the Title properties of the Columns editor.

6. Click OK to copy the dialog settings and close the dialog, or click Apply to copy the settings to the grid
component without closing the dialog.

Removing persistent columns
Deleting a persistent column from a grid is useful for eliminating fields that you do not want to display. To
remove a persistent column from a grid,
1. Select the field to remove in the Columns list box.
2. Click the Delete button.
Note: If you delete all the columns from a grid, the grid reverts to its default state and automatically

builds dynamic columns for each field in the dataset.

Ordering persistent columns
The order in which columns appear in the Columns editor is the same as the order the columns appear
in the grid. You can change the column order by dragging and dropping columns within the Columns list
box.
To change the order of a column,
1. Select the column in the Columns list box.
2. Drag it to a new location in the list box.
You can also change the column order by dragging the column in the actual grid, just as you would at
runtime.

Defining a lookup list column
To make a column display a drop-down list of values drawn from a separate lookup table, you must
define a lookup field object in the dataset
Once the lookup field is defined, set the column's FieldName to the lookup field name and make sure
the column's ButtonStyle is set to cbsAuto. The grid automatically displays a combo-box drop-down
button when a cell of that column is in edit mode. The drop-down list is populated with lookup values
defined by the lookup field.

Defining a pick list column
A pick list column displays a drop-down list of values that is populated with the list of values in the
column's PickList property. The grid automatically displays a combo box-like drop-down button when a
cell of that column is in edit mode.
To define a pick list column
1. Select the column in the Columns list box.
2. Set ButtonStyle to cbsAuto.
3. Click the Picklist button to bring up a string list editor.
4. In the String list editor, enter the list of values you want to appear in the drop-down list for this column.

If the pick list contains data, the column becomes a pick list column.
Note: To force a column not to be a pick list column, delete all the text from the string list editor.

Putting an ellipsis button in a column
A column can display an ellipsis (…) button to the right of the normal cell editor. Mouse clicking or
pressing Ctrl+Enter fires the grid's OnEditButtonClick event. You can use the ellipsis button to bring up
forms containing more detailed views of the data in the column. For example, in a table that displays
summaries of invoices, you could set up an ellipsis button in the invoice total column to bring up a form
that displays the items in that invoice, or the tax calculation method, and so on. For graphic fields, you
could use the ellipsis button to bring up a form which displays a graphic.
To add an ellipsis button to a column,
1. Select the column in the Columns list box.
2. Set ButtonStyle to cbsEllipsis.
3. Write an OnEditButtonClick event handler.

Setting column properties
Column properties determine how data is displayed in the cells of that column. Most column properties
obtain their default values from properties associated with another component, called the default source,
such as the grid or an associated field component.
In the Columns editor, properties are divided into two pages: Column Properties and Title Properties.
The following table summarizes the properties you can set on the Column Properties page.

Property Purpose
Alignment Left justifies, right justifies, or centers the field data in the column. Default source:

TField.Alignment.
ButtonStyle cbsAuto: (default) Displays a drop-down list if the associated field is a lookup field,

or if the column's PickList property contains data.cbsEllipsis: Displays an ellipsis
(...) button to the right of the cell. Clicking on the button fires the grid's
OnEditButtonClick event.cbsNone: The column uses only the normal edit control to
edit data in the column.

Color Specifies the background color of the cells of the column. For text color, set the
Font property. Default source: TDBGrid.Color.

DropDownRows The number of lines of text displayed by the drop-down list. Default: 7 .
FieldName Specifies the field name that is associated with this column. This can be blank.
ReadOnly true: The data in the column cannot be edited by the user.false: (default) The data in

the column can be edited.
Width Specifies the width of the column in screen pixels. Default source: derived from

TField.DisplayWidth.
Font Specifies the font type, size, and color used to draw text in the column. Default

source: TDBGrid.Font.
PickList Contains a list of values to display in a drop-down list in the column.

Setting column title properties
The following table summarizes the properties you can set on the Title Properties page.

Property Purpose
Alignment Left justifies (default), right justifies, or centers the caption text in the column title.
Caption Specifies the text to display in the column title. Default source: TField.DisplayLabel.
Color Specifies the background color used to draw the column title cell. Default source:

TDBGrid.FixedColor.
Font Specifies the font type, size, and color used to draw text in the column title. Default

source: TDBGrid.TitleFont.

Restoring default column properties
As you edit properties in the Columns editor, its text is displayed in boldface. This indicates that the
property has been assigned and will not reflect changes to its default source.
The Restore Defaults button is enabled when the selected column has properties. Click the Restore
Defaults button to discard all property changes in the selected column and revert to the column's
defaults.

Controlling grid behavior and appearance
You can use the grid Options property at design time to control basic grid behavior and appearance at
runtime. When a grid component is first placed on a form at design time, the Options property in the
Object Inspector is displayed with a + (plus) sign to indicate that the Options property can be expanded
to display a series of Boolean properties that you can set individually.
To view and set these properties, double-click the Options property. The list of options that you can set
appears in the Object Inspector below the Options property. The + sign changes to a - (minus) sign,
indicating that you can collapse the list of properties by double-clicking the Options property.
The following table lists the Options properties that can be set, and describes how they affect the grid at
runtime:

Option Purpose
dgEditing true: (default). Enables editing, inserting, and deleting records in the

grid.false: Disables editing, inserting, and deleting records in the grid.
dgAlwaysShowEditor true: When a field is selected, it is in Edit state.false: (default). A field is not

automatically in Edit state when selected. Press Enter to enter edit mode.
dgTitles true: (default). Displays column titles across the top of the grid.false: Column

title display is turned off.
dgIndicator true: (default). The indicator column is displayed at the left of the grid, and

the current record indicator (an arrow at the left of the grid) is activated to
show the current record. On insert, the arrow becomes an asterisk. On edit,
the arrow becomes an I-beam.false: The indicator column is turned off and
columns cannot be resized or reordered.

dgColumnResize true: (default). Columns can be resized by dragging the column rulers in the
title area. Resizing changes the corresponding width of the underlying TField
component.false: Columns cannot be resized in the grid.

dgColLines true: (default). Displays vertical dividing lines between columns.false: Does
not display dividing lines between columns.

dgRowLines true: (default). Displays horizontal dividing lines between records.false: Does
not display dividing lines between records.

dgTabs true: (default). Enables user to Tab and Shift+Tab between fields in
records.false: Tabbing exits the grid control.

dgRowSelect true: The selection bar spans the entire width of the grid.false: (default).
Selecting a field in a record selects only that field.

dgAlwaysShowSelection true: The selection bar in the grid is always visible, even if another control
has focus.false: (default). The selection bar in the grid is only visible when
the grid has focus.

dgConfirmDelete true: (default). Prompt for confirmation to delete records (Ctrl+Del).false:
Delete records without confirmation.

dgCancelOnExit true: (default). Cancels a pending insert if no modifications were made by the
user when focus leaves the grid. This prevents inadvertent posting of partial
or blank records.false: Allows a pending insert to be posted even if no
modifications were made.

dgMultiSelect true: Allows user to select multiple noncontiguous rows using Ctrl+Shift or
Shift+arrow keys. The behavior is similar to a multiselect list box.false:
(default). Does not allow user to select multiple noncontiguous rows.

Editing in the grid
At runtime, you can use a grid to modify existing data and enter new records, if the following default
conditions are met:

The CanModify property of the Dataset is true.
The ReadOnly property of grid is false.

In most data-aware controls, the internal record buffer is updated when focus changes, which is not the
same as posting the record back to the database file or server. In a grid, the behavior is different.
DBGrid updates the internal record buffer as you move from field to field within a row. By default, edits
and insertions within a field are posted to the database only when you move to a different row in the
grid. Even if you use the mouse to change focus to another control on a form, the grid does not post
changes until you move off the current row in the grid. When a record is posted, C++Builder checks all
data-aware components associated with the dataset for a change in status. If there is a problem
updating any fields that contain modified data, C++Builder raises an exception, and does not modify the
record.
You can cancel all edits for a record by pressing Esc in any field before moving to another record.
To ensure that a value is entered in a field, set the field component's Required property to true.

Rearranging column order at design time
In grid controls with persistent columns, and default grids whose datasets contain persistent fields, you
can reorder the grid columns at design time by clicking on the title cell of a column and dragging it to its
new location in the grid.
Note: Reordering persistent fields in the Fields editor reorders columns in a default grid, but not a

custom grid.
Important:
You cannot reorder columns in grids containing both dynamic columns and dynamic fields at design
time, since there is nothing persistent to record the altered field or column order.

Rearranging column order at runtime
At runtime, a user can use the mouse to drag a column to a new location in the grid if its DragMode
property is set to dmManual. The order of fields in the physical table is not affected.
A grid's OnColumnMoved event is fired after a column has been moved.
To prevent a user from rearranging columns at runtime, set the grid's DragMode property to
dmAutomatic.

Controlling grid drawing
Your first level of control over how a grid control draws itself is setting column properties. The grid
automatically uses the font, color, and alignment properties of a column to draw the cells of that column.
The appearance of fields in the grid during display and editing is determined by the DisplayFormat or
EditFormat properties of the field component, respectively, associated with the column.
You can augment the default grid display logic with code in a grid's OnDrawColumnCell event. If the
grid's DefaultDrawing property is true, all the normal drawing is performed before your
OnDrawColumnCell event handler is called. Your code can then draw on top of the default display. This
is primarily useful when you have defined a blank persistent column and want to draw special graphics
in that column's cells.
If you want to replace the drawing logic of the grid entirely, set DefaultDrawing to false and place your
drawing code in the grid's OnDrawColumnCell event. If you want to replace the drawing logic only in
certain columns or for certain field data types, you can call the DefaultDrawColumnCell inside your
OnDrawColumnCell event handler to have the grid use its normal drawing code for selected columns.
This reduces the amount of work you have to do if you only want to change the way Boolean field types
are drawn, for example.

Handling grid events
You can modify grid behavior by writing events handlers to respond to specific actions within the grid at
runtime. Because a grid typically displays many fields and records at once, you may have very specific
needs to respond to changes to individual columns. For example, you might want to activate and
deactivate a button elsewhere on the form every time a user enters and exits a specific column.
The following table lists the grid events available in the Object Inspector:

Event Purpose
OnColEnter Specify action to take when a user moves into a column on the grid.
OnColExit Specify action to take when a user leaves a column on the grid.
OnColumnMoved Called when the user moves a column to a new location.
OnDblClick Specify action to take when a user double clicks in the grid.
OnDragDrop Specify action to take when a user drags and drops in the grid.
OnDragOver Specify action to take when a user drags over the grid.
OnDrawColumnCell Called to draw individual cells.
OnEditButtonClick Called when the user clicks on an ellipsis button in a column.
OnEndDrag Specify action to take when a user stops dragging on the grid.
OnEnter Specify action to take when the grid gets focus.
OnExit Specify action to take when the grid loses focus.
OnKeyDown Specify action to take when a user presses any key or key combination on the

keyboard when in the grid.
OnKeyPress Specify action to take when a user presses a single alphanumeric key on the

keyboard when in the grid.
OnKeyUp Specify action to take when when a user releases a key when in the grid.
OnStartDrag Specify the action to take when a user starts dragging on the grid.

There are many uses for these events. For example, you might write a handler for the OnDblClick event
that pops up a list from which a user can choose a value to enter in a column. Such a handler would use
the SelectedField property to determine the current row and column.

Displaying records like forms
TDBCtrlGrid displays multiple records from a data source. Unlike the TDBGrid component, which
displays each record in a single row, you control the layout and appearance of each record in a
TDBCtrlGrid. Each record is displayed in its own panel; you design one panel at design time and
TDBCtrlGrid replicates that panel for each record displayed.
You cannot place a DBGrid, DBNavigator, DBMemo, DBImage, DBListBox, DBRadioGroup,
DBLookupListBox, or another DBCtrlGrid within a TDBCtrlGrid control. DBCtrlGrid compatible controls
must support replication and work best when the control displays only one field of one row of a dataset.
Like all data-aware controls, TDBCtrlGrid's DataSource property tells it where to get the data it displays.
To use a database control grid,
1. Place a database control grid on a form.
2. Set the grid's DataSource property to the name of a data source.
3. Place individual data-aware controls within the design cell for the grid. The design cell for the grid is

the top or leftmost cell in the grid, and is the only cell into which you can place other controls.
4. Set the DataField property for each data-aware control to the name of a field. The data source for

these data-aware controls is already set to the data source of the database control grid.
5. Arrange the controls within the cell as desired.
When you compile and run an application containing a database control grid, the arrangement of data-
aware controls you set in the design cell at runtime is replicated in each cell of the grid. Each cell
displays a different record in a dataset.
TDBCtrlGrid at design time

The following table summarizes some of the unique properties for database control grids that you can set
at design time:

Property Purpose
AllowDelete true (default): Permits record deletion.false: Prevents record deletion.
AllowInsert true (default): Permits record insertion.false: Prevents record insertion.
ColCount Sets the number of columns in the grid. Default = 1.

Orientation goVertical (default): Display records from top to bottom.goHorizontal: Displays records
from left to right.

PanelHeight Sets the height for an individual panel. Default = 72.
PanelWidth Sets the width for an individual panel. Default = 200.
RowCount Sets the number of panels to display. Default = 3.
ShowFocus true (default): Displays a focus rectangle around the current record's panel at

runtime.false: Does not display a focus rectangle.

For more information about database control grid properties and methods, see the VCL Reference.

Navigating datasets
This topic describes how to use the data-aware TDBNavigator control to provide dataset record
navigation and manipulation on forms in your database applications. It also describes how to customize
the navigator at design time and runtime, and how to use a single navigator to control navigation and
manipulation of multiple datasets.
Data-aware controls

Press the >> button to read through each topic in sequence.
Navigating and manipulating records
Creating a navigator
Using a single navigator for multiple datasets
Choosing navigator buttons to display

Navigating and manipulating records
The TDBNavigator component is a simple control that is used to move through the data in a database
table or query and perform operations on the data, such as inserting a blank record or posting a record.
It is used with the data-aware controls, such as the data grid, which give you access to the data, either
for editing the data, or for simply displaying it.
The following figure shows the navigator component as it appears by default. The component consists
of a series of buttons that enable a user to scroll forward or backward through records one at a time, go
to the first record, go to the last record, insert a new record, update an existing record, post data
changes, cancel data changes, delete a record, and refresh record display.

Buttons on the TDBNavigator control

The following table describes the buttons on the navigator in order from left to right:

Button Purpose
First Calls the dataset's First method to set the current record to the first record in the dataset, disable the First

and Prior buttons, and enable the Next and Last buttons if disabled.
Prior Calls the dataset's Prior method to set the current record to the previous record and enable the Last and

Next buttons if disabled.
Next Calls the dataset's Next method to set the current record to the next record and enable the First and Prior

buttons if disabled.
Last Calls the dataset's Last method to set the current record to the last record, disable the Last and Next

buttons, and enable the First and Prior buttons if disabled.
Insert Calls the dataset's Insert method to insert a new record before the current record, and set the dataset in

Insert and Edit state.
Delete Deletes the current record and makes the next record the current record. If the ConfirmDelete property is

true, it prompts for confirmation before deleting.
Edit Puts the dataset in Edit state so that the current record can be modified.
Post Writes changes in the current record to the database.
Cancel Cancels edits to the current record, restores the record display to its condition prior to editing, and turns off

Insert and Edit states if active.
Refresh Clears data-aware control display buffers, then refreshes its buffers from the physical table or query.

Useful if the underlying data may have been changed by another application.

In some data-aware controls, such as DBGrid, you can also click in the field value to put a dataset into
Edit state and begin making changes or entering data. In some data-aware controls, such as DBGrid,
you can also post a record by hitting the Enter key or by clicking in another field value.

Creating a navigator
You can place a navigator component on a form by selecting a DBNavigator component from the Data
Controls tab of the Component palette.
You link the database navigator with a dataset when you specify a data source component that identifies
the dataset as the value of navigator's DataSource property.
Displaying and editing data in data-aware controls

Using a single navigator for multiple datasets
As with other data-aware controls, a navigator's DataSource property specifies the data source that links
the control to a dataset. By changing a navigator's DataSource property at runtime, a single navigator
can provide record navigation and manipulation for multiple datasets.
Suppose a form contains two DBEdit controls linked to the CustomersTable and OrdersTable datasets
through the CustomersSource and OrdersSource data sources respectively. When a user enters the
DBEdit control connected to CustomersSource (CustomerCompany), the navigator should also use
CustomersSource, and when the user enters the DBEdit control connected to OrdersSource
(OrderNum), the navigator should switch to OrdersSource as well. You can code an OnEnter event
handler for one of the DBEdit controls, and then share that event with the other DBEdit control. For
example,

void __fastcall TForm1::CustomerCompanyEnter(TObject *Sender)
{
 if (Sender == CustomerCompany)
 DBNavigatorAll->DataSource = CustomerCompany->DataSource;
 else
 DBNavigatorAll->DataSource = OrderNum->DataSource;
}

To learn more about sharing event handlers, see the C++Builder User's Guide.

Choosing navigator buttons to display
When you first place a TDBNavigator component on a form, all of its buttons are visible by default. You
can set the VisibleButtons property to turn off buttons you do not want to use on a form. For example, on
a form that is intended for browsing rather than editing, you might want to disable the Edit, Insert,
Delete, Post, and Cancel buttons.
Choosing navigator buttons to display at design time
Hiding and showing navigator buttons at runtime
Displaying fly-over help

Choosing navigator buttons to display at design time
The VisibleButtons property in the Object Inspector is displayed with a plus (+) sign to indicate that it can
be expanded to display a Boolean value for each button on the navigator. To view and set these values,
double-click the VisibleButtons property. The list of buttons that can be turned on or off appears in the
Object Inspector below the VisibleButtons property. The + sign changes to a minus (-) sign, indicating
that you can collapse the list of properties by double-clicking the VisibleButtons property.
Button visibility is indicated by the Boolean state of the button value. If a value is set to true, the button
appears in the TDBNavigator. If false, the button is removed from the navigator at design and runtime.
Note: As button values are set to false, they are removed from the TDBNavigator on the form, and the

remaining buttons are expanded in width to fill the control. You can drag the control's handles to
resize the buttons.

For more information about buttons and the methods they call, see the VCL Reference.

Hiding and showing navigator buttons at runtime
At runtime you can hide or show navigator buttons in response to user actions or application states. For
example, suppose you provide a single navigator for navigating through two different datasets, one of
which permits users to edit records, and the other of which is read-only. When you switch between
datasets, you want to hide the navigator's Insert, Delete, Edit, Post, Cancel, and Refresh buttons for the
read-only dataset, and show them for the other dataset.
For example, the code illustrates how to switch a navigator's data source at runtime. Suppose that in
addition to switching data sources, you want to prevent edits to the OrdersTable by hiding the Insert,
Delete, Edit, Post, Cancel, and Refresh buttons on the navigator, but that you also want to allow editing
for the CustomersTable. The VisibleButtons property controls which buttons are displayed in the
navigator. Here's one way you might add the necessary code to the previously coded OnEnter event
handler:

void __fastcall TForm1::CustomerCompanyEnter(TObject *Sender)
{
 if (Sender == CustomerCompany)
 {
 DBNavigatorAll->DataSource = CustomerCompany->DataSource;
 Set<TNavigateBtn, 0, 9> btnShow;
 btnShow << nbFirst << nbPrior << nbNext << nbLast << nbInsert << nbDelete << nbEdit
<< nbPost << nbCancel << nbRefresh;
 DBNavigatorAll->VisibleButtons = btnShow;
 }
 else
 {
 DBNavigatorAll->DataSource = OrderNum->DataSource;
 Set<TNavigateBtn, 0, 3> btnShow;
 btnShow << nbFirst << nbPrior << nbNext << nbLast;
 DBNavigatorAll->VisibleButtons = btnShow;
 }
}

Displaying fly-over help
To display fly-over help for each navigator button at runtime, set the navigator ShowHints property to
true. When ShowHints is true, the navigator displays fly-by Help Hints whenever you pass the mouse
cursor over the navigator buttons. ShowHints is false by default.
The Hints property controls the fly-over help text for each button. By default, Hints is an empty string list.
When Hints is empty, C++Builder displays default help text for each button. To provide customized fly-
over help for the navigator buttons, use the String list editor to enter a separate line of hint text for each
button in the Hints property. When present, the strings you provide override the default hints provided by
the navigator control.

Caching updates
This topic describes cached updates, and the situations in which they are useful. Cached updates
enable you to write changes to a dataset to a temporary buffer on the client instead of writing the
changes directly to the server. Cached updates are similar to transactions except that they will work with
both local and server data.
Also described in this topic is the TUpdateSQL component that can be used in conjunction with cached
updates to update virtually any dataset, particularly datasets that are not normally updateable.
The cached updates feature in C++Builder sets up calls to the Borland Database Engine (BDE), which
actually performs the work. You can learn more about how this is happening by viewing the source code
that ships with C++Builder or viewing the BDE Configuration Help file.
Cached updates enable you to retrieve data from a database, cache and edit it locally, and then apply
the cached changes to the database as a unit. When cached updates are enabled, updates to a dataset
(such as posting changes or deleting records) are stored in an internal cache instead of being written
directly to the dataset's underlying table. When changes are complete, your application calls a method
that writes the cached changes to the database and clears the cache.
Cached updates are primarily intended to reduce data access contention on remote database servers
by

Minimizing transaction times.
Minimizing network traffic.

When cached updates are enabled for a dataset, a read-only transaction retrieves as much data as
necessary for display purpose and ends. Each new fetch starts a new transaction. To fetch all records in
a dataset, use the FetchAll method. While an application user edits data in the cache, the application
does not keep a transaction open. When the application applies the changes to the database, a second
transaction writes cached data to the database, and then terminates. Network traffic is reduced because
rather than initializing and sending network packets over the wire each time a change to a single record
is written to the database, cached updates write all changes once, when requested.
Press the >> button to read through each topic in sequence.
How cached updates differ from transactions
Deciding to use cached updates
Cached updates: an overview of the process
Enabling and disabling cached updates
Applying cached updates
Canceling cached updates
Checking update status
Handling cached update errors
Using prepared SQL statements to update a dataset
Creating an update event handler
Updating a read-only result set

How cached updates differ from transactions
In the BDE, when a transaction is active, updates are immediately sent to the underlying tables. Thus,
errors (such as integrity constraint violations, and so on) are instantly reported to the clients. Because
updates are immediately sent to the underlying tables, the updates are visible to other transactions. And
because each modified record is locked, other users cannot interfere.
This behavior differs from that of cached updates, where updates are not sent to the underlying table
until the commit time. Hence no errors are reported until the commit time. No record locks are held until
the user decides to commit the updates. The locks are held only during the commit process. If errors
occur during the commit process, clients are given an option to abort the commit process. If clients abort
a commit process, the original state of the table is restored.
The main advantage of cached update is that the locks are held only during the commit time, thereby
increasing the access time of SQL servers for other system transactions. Transactions lock out other
users after record is changed, and local transactions limit the user to changing only the maximum
number of records that can be locked. Cached updates avoid these problems, but permit another user to
change data underneath you.

Deciding to use cached updates
While cached updates can minimize transaction times and drastically reduce network traffic, they may
not be appropriate to for all C++Builder database client applications that work with remote servers.
Before using cached updates, consider that cached data is local to your application. In a busy
client/server environment this has three implications that your application must be able to respond to:

Other applications can access and change the actual data on the server while your users edit
their local copies of the data.

Other applications cannot see any data changes made by your application until it applies all its
changes.

Validity checks applied by the server will not be applied until the client applies its updates.
C++Builder provides cached update methods and transaction control methods you can use in your
application code to handle these situations, but you must make sure that you cover all possible
scenarios your application is likely to encounter in your working environment.

Cached updates: an overview of the process
This topic is essential to understanding the cached updates process. It provides an overview of the
various options that are available when cached updates are enabled.
1. Create a data module and add the datasets and data sources that you will be using in your

application. To view data, place a data-aware control on your form
2. Enable cached updates. Cached updates are enabled and disabled through the CachedUpdates

properties of a dataset (TTable, TQuery, and TStoredProc). To use cached updates, set
CachedUpdates to true, either at design time (through the Object Inspector), or at runtime.

3. Access the old, or original, value of each field in a record, if necessary. C++Builder keeps track of the
new, or current, value of each field in a record as well as the old, or original, value of each field in a
record.

4. Cancel changes made since cached updates were enabled, if necessary. If you don't want to apply
the updates, you can cancel changes made since cached updates were enabled for all pending
updates or for individual records.

5. Apply the cached updates and write the changes to the database. You can also use a TUpdateSQL
component to use prepared SQL statement to update a dataset.

If the dataset has an OnUpdateRecord event handler, it will be called once for each record that has
updates in the cache.
Because there is a delay between the time a record is first cached and the time cached updates are
applied, there is a possibility that another application may change the record in a database before your
application applies its updates. If a record in the cache can't be updated, the dataset's OnUpdateError
event will be triggered

Enabling and disabling cached updates
Cached updates are enabled and disabled through the CachedUpdates property of a dataset (TTable,
TQuery, and TStoredProc). CachedUpdates is false by default, meaning that cached updates are not
enabled for a dataset.
To use cached updates, set CachedUpdates to true, either at design time (through the Object Inspector),
or at runtime. For example, the following code enables cached updates for a dataset

CustomersTable->CachedUpdates = true;
To disable cached updates for a dataset, set CachedUpdates to false.
Caution: If you disable cached updates before you apply any pending changes, those changes are

discarded.
For example, the following code prompts for confirmation before disabling cached updates for a dataset:

if (MessageBox(NULL, "Discard pending updates?", "Confirmation", MB_OK) == MB_OK)
 CustomersTable->CachedUpdates = false;

Applying cached updates
When a dataset is in cached update mode, changes to data are not actually written to the database until
your application explicitly calls methods that apply those changes. Normally an application applies
updates in response to user input, such as through a button or menu item.
ApplyUpdates applies all pending cached updates. If you are applying updates to a dataset, call
CommitUpdates to reflect that cached updates were written. Generally, you should call the database
object's ApplyUpdates method instead of the dataset's. It calls ApplyUpdates and CommitUpdates within
a transaction.
If the dataset has an OnUpdateRecord event handler, it will be called once for each record that has
updates in the cache. If a record in the cache cant be updated, the dataset's OnUpdateError event will
be triggered. If the dataset's UpdateObject property points to a TUpdateSQL component and doesn't
have an OnUpdateRecord event handler, its Apply method will be called automatically for each record
that has updates in the cache.
Applying updates is a two-phase process that must take place under the auspices of a database
component's transaction control to enable your application to recover gracefully from errors.
When applying updates under transaction control, the following events take place:
1. A database transaction starts.
2. Cached updates are written to the database (phase 1).

If the database write is unsuccessful,
Database changes are rolled back, ending the database transaction.
Cached updates are not committed, leaving them intact in the internal cache buffer.

Note: If cached updates are applied to a server database that controls the transaction and all updates
are applied within the context of a single transaction, then any error on a single record means that
all updates are voided.

If the database write is successful,
Database changes are committed, ending the database transaction.
Cached updates are committed, clearing the internal cache buffer (phase 2).

The two-phased approach to applying cached updates allows for effective error recovery, especially
when updating multiple datasets (for example, the datasets associated with a master/detail form).
Updating with a database component
Updating with a dataset component

Updating with a database component
To apply cached updates in the context of a database connection, call the database component's
ApplyUpdates method. ApplyUpdates applies and commits all pending cached updates for the datasets
specified in the DataSets open array parameter (by calling the datasets' ApplyUpdates and
CommitUpdates methods). It uses a transaction (if one is not already started) to ensure that all updated
records in all affected datasets (such as in a master/detail relationship) are updated in their entirety. The
following code applies updates for the CustomersQuery dataset in response to a button click event:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
TDBDataSet* ds[] = {Table1}; // need valid dataset in the array

Table1>Database>TransIsolation = tiDirtyRead; // needed for Pdox and dBASE tables
try {
 Table1>Database>ApplyUpdates (ds, 0); // use (size 1)
}
catch(...) {
 MessageBox(0, "Exception caught", "INFO", MB_OK);
}

}
This method starts a transaction, and writes cached updates to the database. If successful, it also
commits the transaction, and then commits the cached updates. If unsuccessful, this method rolls back
the transaction, and does not change the status of the cached updates. In this latter case, your
application should handle cached update errors through a dataset's OnUpdateError event .
The single argument to the ApplyUpdates method for a database is an array of dataset names. To apply
updates for more than one dataset, separate dataset names with commas. For example, the following
statement applies updates for two tables used in a master/detail form:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
TDBDataSet* ds[] = {Table1, Table2};

Table1>Database>TransIsolation = tiDirtyRead;
try {
 Table1>Database>ApplyUpdates (ds, 1);
}
catch(...) {
 MessageBox(0, "Exception caught", "INFO", MB_OK);
}

}

Updating with a dataset component
To apply cached updates in the context of a dataset, you can also explicitly code both phases for
applying cached updates. Generally, you should call the database object's ApplyUpdates method
instead of the dataset's. It calls ApplyUpdates and CommitUpdates within a transaction. The
CommitUpdates method updates the cache to reflect that pending cached updates were successfully
applied by a call to the ApplyUpdates method.
To apply cached updates in the context of a dataset, your application must call two dataset methods:
1. ApplyUpdates, to write cached changes to a database (phase 1)
2. CommitUpdates, to clear the internal cache when the database write is successful (phase 2)
If you call a dataset's cached update methods directly, you can still apply the updates under the
auspices of a database transaction. For example, the following code illustrates how you must apply
updates for the CustomerQuery dataset previously used to illustrate updates through a database
method:

void __fastcall TForm1::ApplyButtonClick(TObject *Sender)
{
 Database1->StartTransaction();
 try
 {
 CustomerQuery->ApplyUpdates(); //try to write the updates to the database
 Database1->Commit(); //on success, commit the changes
 }
 catch(...)
 {
 Database1->Rollback(); //on failure, undo any changes
 throw ("error"); //raise the exception again to prevent a call to CommitUpdates
 }
 CustomerQuery->CommitUpdates(); //on success, clear the internal cache
}

If an exception is raised during the ApplyUpdates call, the database transaction is rolled back. Rolling
back the transaction ensures that the underlying database table is not changed. The throw statement
inside the catch(...) block re-raises the exception, thereby preventing the call to CommitUpdates.
Because CommitUpdates is not called, the internal cache of updates is not cleared so that you can
handle error conditions and possibly retry the update.
The following example illustrates how you should apply cached updates code to two tables involved in a
master/detail relationship:

Database1->StartTransaction();
try
 {
 Master->ApplyUpdates();
 Detail->ApplyUpdates();
 Database1->Commit();
 }
catch(...)
 {
 Database1->Rollback();
 throw ("error");
 }
Master->CommitUpdates();
Detail->CommitUpdates();

If an error occurs during the application of updates, this code also leaves both the cache and the
underlying data in the database tables in the same state they were in before the calls to ApplyUpdates.
If an exception is raised during the call to Master->ApplyUpdates, it is handled like the single dataset
case previously described. Suppose, however, that the call to Master->ApplyUpdates succeeds, and the
subsequent call to Detail->ApplyUpdates fails. In this case, the changes are already applied to the
master table. Because all data is updated inside a database transaction, however, even the changes to
the master table are rolled back when Database1->Rollback is called in the catch(...) block.
Furthermore, Master->CommitUpdates is not called because the exception which is re-raised causes
that code to be skipped, so the cache is also left in the state it was before the attempt to update.

To appreciate the value of the two-phase update process, assume for a moment that ApplyUpdates is a
single-phase process which updates the data and the cache. If this were the case, and if there were an
error while applying the updates to the Detail table, then there would be no way to restore both the data
and the cache to their original states. Even though the call to Database->Rollback would restore the
database, there would be no way to restore the cache.

Canceling cached updates
There are three methods that cancel changes made while cached updates are enabled.
Canceling all updates: use CancelUpdates to discard all pending updates, clear the cache, and restore
the dataset to the state it was in when the table was opened, cached updates were enabled, or updates
were last successfully applied.
Canceling updates to the current record: use RevertRecord to discard any changes posted to the
current record when cached updates are enabled and restore the current record in the dataset to an
unmodified state. You can also undelete a record: by using the UpdateRecordTypes property to make
the deleted records "visible," and then calling RevertRecord.
Canceling the most recently posted cached update: use CancelCurrentUpdate to discard the most
recently posted cached update.

Canceling all updates
CancelUpdates discards all pending updates, clears the cache, and restores the dataset to the state it
was in when the table was opened, cached updates were enabled, or updates were last successfully
applied. CancelUpdates is always successful so no errors will occur. The dataset returns to the state it
was at before cached updates were enabled. The following statement cancels updates for the
CustomersTable:

CustomersTable->CancelUpdates();
Note: When you close a dataset or disable cached updates, CancelUpdates is called automatically.

Canceling updates to the current record
RevertRecord discards any changes you posted to the current record when cached updates are enabled
and restores the current record in the dataset to an unmodified state. Use this method to discard
changes from a record before you call ApplyUpdates. Use the UpdateRecordTypes property to be able
to revert the deletion of a record. If the record is not modified, this call has no effect. For example,

CustomersTable->RevertRecord();

Canceling the most recently posted cached update
CancelCurrentUpdate discards the most recently posted cached update. It returns true if successful, and
false if not. For example,

CustomersTable->CancelCurrentUpdate();

Undeleting a record
To undelete a record requires some coding because once a record is deleted, it is no longer the current
record. The process involves using the UpdateRecordTypes property to make the deleted records
"visible," and then calling RevertRecord. Here is a code example which will undelete all deleted records
in the customer table:

void __fastcall UndeleteAll(TDataSet DataSet)
{
 DataSet->UpdateRecordTypes=DataSet->UpdateRecordTypes<<rtDeleted;//recognize only deleted
//records
 try{
 DataSet->First(); //Go to the first previously deleted record
 while (!DataSet->Eof)
 DataSet->RevertRecord(); //Undelete until we reach the last record
 catch(...)
 {DataSet->UpdateRecordTypes=DataSet->UpdateRecordTypes << rtDeleted;}

//Restore updates types to recognize only modified, inserted, and unchanged records
 DataSet->UpdateRecordTypes=DataSet->UpdateRecordTypes<<rtModified,rtInserted,
rtUnmodified;
}

Controlling which types of records are included in the dataset
The UpdateRecordTypes property controls what type of records are included in the dataset (it works in
much the same way as ranges and filters work) when cached updates are enabled. The
UpdateRecordTypes property is primarily useful for accessing deleted records so they can be undeleted
through a call to RevertRecord. This property would also be useful if you wanted to provide a way in
your application for users to view only new (rtInserted) records, for instance. UpdateRecordTypes is a
set, so it can contain any combination of the following values:

Value Meaning
rtModified Modified records
rtInserted Inserted records
rtDeleted Deleted records
rtUnmodified Unmodified records.

The default value for UpdateRecordTypes is [rtModified, rtInserted, rtUnmodified].

Checking update status
You can keep track of the status of each record when cached updates are enabled. You can also query
each record to see if it's been updated, and if so, you have access to the current value of the fields in
the updated record as well as to the previous, or old, value of the fields
When cached updates are enabled for your application, you may want to be able to indicate to the user
which records in a dataset have been modified, but not yet applied to the dataset. The UpdateStatus
property provides this capability. It returns one of the following values for the current record:

Value Meaning
usUnmodified Record is unchanged.
usModified Record is changed.
usInserted Record is a new record.
usDeleted Record is deleted.

When a dataset is first opened, all records will have an update status of usUnmodified. As records are
inserted, deleted, and so on, the status values will reflect the change. Here is an example of
UpdateStatus property used in an OnCalcFields event handler to display an asterisk in a calculated field
if its associated record is modified:

void __fastcall TForm1::CalcFields(TDataSet DataSet)
{
 TStringField *Table1ModifiedRow = new TStringField(this);
 if (DataSet->UpdateStatus() != usUnmodified)
 Table1ModifiedRow->Value = "*";
 else
 Table1ModifiedRow->Value = NULL;
}

Note: If a record's UpdateStatus is usModified, you can examine the OldValue property for each field in
the dataset to determine its previous value. OldValue is meaningless for records with
UpdateStatus values other than usModified.

Handling cached update errors
Because there is a delay between the time a record is first cached and the time cached updates are
applied, there is a possibility that another application may change the record in a database before your
application applies its updates. Fortunately, the Borland Database Engine (BDE) specifically checks for
this situation when attempting to apply updates, and reports it as an error.
A dataset component's OnUpdateError event enables you to catch and respond to this error (and any
other update error as well). You should code this event handler if you use cached updates. If you do not,
and an error occurs, the entire update operation fails.
Caution: Do not call any dataset methods that change the current record (such as Next and Prior) in

an OnUpdateError event handler. Doing so will cause your event handler to get stuck in an
endless loop.

Here is the skeleton code for an OnUpdateError event handler .
void __fastcall TForm1::Query1UpdateError(TDataSet *DataSet, EDatabaseError *E, TUpdateKind
UpdateKind, TUpdateAction &UpdateAction)
{
 // Perform updates here...
}

The TUpdateError event type defines the type of method that handles errors during the application of
cached updates. The OnUpdateError event occurs when cached updates are enabled, CachedUpdates
is true, applied (ApplyUpdates), and there are errors applying the updates. Such errors include integrity
violations and cached records being modified or deleted by another user. OnUpdateError event handlers
are supplied with the dataset that was involved, an EDatabaseError exception object to get more details
about the error, the status code indicating the problem, and a reference variable parameter that lets you
specify how the error should be dealt with. If you don't change UpdateAction, the processing of cached
updates will fail with an exception.
The following sections describe each of the parameters passed to the update error handler, and how
those parameters are used.
Referencing the dataset to which updates are applied
Extracting an error message
Specifying the type of update that generated the error
Error handling
Accessing the old and new values for a field

Referencing the dataset to which updates are applied
DataSet is a parameter of type TDataSet that references the dataset to which updates are applied. To
process new and old record values during error handling you must supply this reference.

Extracting an error message
The E parameter is usually of type EDBEngineError. From this exception type you can extract an error
message that you can display to users in your error handler. For example, the following code could be
used to display the error message in the caption of a dialog box:

ErrorLabel->Caption = E->Message;
This parameter is also useful for determining the actual cause of the update error. You can extract
specific error codes from EDBEngineError, and take appropriate action based on it. For example, the
following code checks to see if the update error is related to a key violation, and if it is, it sets the
UpdateAction parameter to uaSkip:

Word MyErrorCode;
EDBEngineError *E = new EDBEngineError(MyErrorCode);
PChar MyMessage;
TDBError *MyError = new TDBError(E, MyErrorCode, DBIERR_KEYVIOL, MyMessage);
// Add BDE to your #include statement for this example
if (E)
 {
 if (E->Errors[E->ErrorCount-1] == MyError)
 UpdateAction = uaSkip //Key violation, just skip this record
 else
 UpdateAction = uaAbort //Don't know what's wrong, abort the update
 }

Specifying the type of update that generated the error
UpdateKind is a parameter of type TUpdateKind. It describes the type of update that generated the
error. Unless your error handler takes special actions based on the type of update being carried out,
your code probably will not make use of this parameter.
The following table lists possible values for UpdateKind:

Value Meaning
ukModify Editing an existing record caused an error.
ukInsert Inserting a new record caused an error.
ukDelete Deleting an existing record caused an error.

Error handling
UpdateAction is a parameter of type TUpdateAction. When your update error handler is first called, the
value for this parameter is always set to uaFail. Based on the error condition for the record that caused
the error and what you do to correct it, you typically set UpdateAction to a different value before exiting
the handler. UpdateAction can be set to one of the following values:

Value Meaning
uaAbort Aborts the update operation without displaying an error message.
uaFail Aborts the update operation, and displays an error message. This is the default value for

UpdateAction when you enter an update error handler.
uaSkip Skips updating the row, but leaves the update for the record in the cache
uaRetry Repeats the update operation. Correct the error condition before setting UpdateAction to

this value.
uaApplied Not used in error handling routines.

If your error handler can correct the error condition that caused the handler to be invoked, set
UpdateAction to the appropriate action to take on exit. For error conditions you correct, set
UpdateAction to uaRetry to apply the update for the record again.
When set to uaSkip, the update for the row that caused the error is skipped, and it remains in the cache
after all other updates are completed.
uaFail and uaAbort are alike. Both cause the entire update operation to end. uaFail raises an exception,
and displays an error message. uaAbort raises a silent exception (does not display an error message).
None of the changes will have taken place and you will return to edit mode as if you had never
attempted to commit the data.
Note: When an error occurs during application of updates, unless ApplyUpdates methods are called

from within try...catch statement, an error message is displayed after the call to ApplyUpdates is
made. If you also display an error message to the user from inside your error event handler, your
application may display the same error message twice. To prevent error message duplication set
UpdateAction to uaAbort to turn off error message display.

The uaApplied value should only be used inside an OnUpdateRecord event . Do not set this value in an
update error handler.

Accessing the old and new values for a field
When cached updates are enabled for records, the original values for fields in each record before any
pending cached updates changed it are stored in a read-only TField property called OldValue. Once
cached updates are applied successfully, it's not possible to retrieve the old field value. Cached updates
must be enabled to access the OldValue property.
Changed values are stored in the analogous TField property NewValue. The NewValue property
represents the current value of the field including any changes made in pending cached updates. If the
current field value is causing a problem in an OnUpdateEvent handler applying the cached update (such
as in a key violation), you can change NewValue to correct the problem. Cached updates must be
enabled to access the NewValue property.
OldValue and NewValue provide the only way to inspect and change update values in OnUpdateError
and OnUpdateRecord event handlers.
In some cases, you may be able to use these properties to determine the cause of an error and correct
it. For example, the following code handles corrections to a salary field which can only be increased by
25 percent at a time (enforced by a constraint on the server):

TIntegerField *EmpTabSalary = new TIntegerField(this);
int SalaryDif, OldSalary;
OldSalary = EmpTabSalary->OldValue;
SalaryDif = EmpTabSalary->NewValue - OldSalary;
 if (SalaryDif / OldSalary > 0.25)
 { // Increase was too large, drop it back to 25%
 EmpTabSalary->NewValue = OldSalary * 1.25;
 UpdateAction = uaRetry;
 }
 else
 UpdateAction = uaSkip;

NewValue is decreased to 25 percent in the case where the salary increased by a larger percentage,
and then the update operation is retried. To improve the efficiency of this routine, the OldValue
parameter is stored in a local variable.

Using prepared SQL statements to update a dataset
TUpdateSQL is an update component that uses prepared SQL statements to update a dataset. An
update component actually encapsulates three TQuery components. Each query component performs a
single update task. One query component provides an SQL UPDATE statement for modifying records; a
second query component provides an INSERT statement to add new records to a table; and a third
component provides a DELETE statement to remove records from a table.
You associate a TUpdateSQL component with a dataset by setting the dataset's UpdateObject property.
The dataset automatically uses the TUpdateSQL component when cached updates are applied.
When you place an update component in a data module or on a form, you do not see the query
components it encapsulates. They are created by the update component at runtime based on three
update properties you supply at design time:

ModifySQL specifies the UPDATE statement.
InsertSQL specifies the INSERT statement.
DeleteSQL specifies the DELETE statement.

The ModifySQL property is an SQL statement that is executed when the cached update is a modification
of an existing record. The InsertSQL property is an SQL statement that is executed when the cached
update is the insertion of a new record. DeleteSQL is an SQL statement that is executed when the
cached update is the deletion of a record. All three properties support an extension to normal parameter
binding for cached updates: You can prefix any field name with 'OLD_' to retrieve the value of the field
as it was before cached updates were enabled. This extension lets you access the old field values,
generally for use in creating the WHERE clause of the SQL statement.
The ModifySQL property returns the string list containing the SQL statement to be used when applying
the cached modification of a record. Generally, such an SQL statement would be an UPDATE
statement. You can use the UpdateSQL editor (by double-clicking the TUpdateSQL component) to
generate an appropriate SQL statement. UpdateMode specifies which columns C++Builder uses to find
the record. In SQL terms, UpdateMode specifies which columns are included in the WHERE clause of
an UPDATE statement.
Note: You cannot use a TUpdateSQL component when updating BLOB fields. Use the ApplyUpdates

method and let the BDE do the updating if you need to update a BLOB field when using cached
updates.

The InsertSQL property returns the string list containing the SQL statement to be used when applying
the cached insertion of a record. Generally, such an SQL statement would be an INSERT INTO
statement. You can use the UpdateSQL editor (by double-clicking the TUpdateSQL component) to
generate an appropriate SQL statement.
The DeleteSQL property returns the string list containing the SQL statement to be used when applying
the cached deletion of a record. Generally, such an SQL statement would be an DELETE FROM
statement. You can use the UpdateSQL editor (by double-clicking the TUpdateSQL component) to
generate an appropriate SQL statement.
At runtime, when the update component is invoked by a dataset, the update component
1. Selects an SQL statement to execute based on the UpdateKind property for the dataset to which the

update component belongs. UpdateKind specifies whether the current record is modified, inserted, or
deleted..

2. Provides parameter values to the SQL statement.
3. Executes the SQL statement to perform the specified update.
The Apply method is useful for manually executing the SQL statements (such as from an
OnUpdateRecord event handler). It combines a call to SetParams to perform the special parameter
binding discussed in the previous paragraph and a call to ExecSQL to execute the SQL statement.
The Query array property returns a TQuery object for the SQL statement corresponding to the
TUpdateKind index. Likewise, the SQL array property returns the string list representing the SQL
statement corresponding to the index. Note that SQL returns the same string lists used in the

ModifySQL, InsertSQL, and DeleteSQL properties. For example, SQL[ukInsert] is the same as
InsertSQL.
The TUpdateSQL component also provides a way to use C++Builder's cached updates support with
read-only datasets. For example, you could use a TUpdateSQL component with a "canned" query to
provide a way of updating the underlying datasets, essentially giving you the ability to post updates to a
read-only dataset.
Creating update SQL statements
Executing update SQL statements

Creating update SQL statements
To create the SQL statements for an update component,
1. Add a TUpdateSQL component from the Data Access tab of the Component palette to the data

module or form in your application if you haven't done so already.
2. Assign the TUpdateSQL component to a dataset in the dataset's UpdateObject property. This step

ensures that the UpdateSQL editor you invoke in the next step can determine suitable default values
to use for SQL generation options. The TUpdateSQL component can only be referenced from one
dataset at a time.

3. Double-click the UpdateSQL component to invoke the UpdateSQL editor. The editor generates SQL
statements for the update component's ModifySQL, InsertSQL, and DeleteSQL properties based on
the underlying dataset and on the values you supply to it.

The UpdateSQL editor has two pages. The Options page is visible when you first invoke the editor. Use
the Table Name combo box to select the table to update. When you specify a table name, the Key Fields
and Update Fields list boxes are populated with available columns.
The Update Fields list box indicates which columns should be updated. When you first specify a table,
all columns in the Update Fields list box are selected for inclusion. You can multi-select fields as desired
with Shift+Click and Ctrl+Click.
The Key Fields list box is used to specify the columns to use as keys during the update. Generally the
columns you specify here should correspond to an existing index, especially for local Paradox and
dBASE tables, but having an index is not a requirement.
Click Get Table Fields to display or refresh the list of fields displayed in the Key Fields and Update
Fields list boxes.
Click Dataset Defaults to reset the Key Fields and Update Fields list boxes to the dataset defaults.
Click Select Primary Keys to select key fields based on the primary index for a table.
Select the Quote Field Names check box to generate field names with quotation marks. This may be
necessary for compatibility with the server.
After you specify a table, select key columns, and select update columns, click Generate SQL to
generate the preliminary SQL statements to associate with the update component's ModifySQL,
InsertSQL, and DeleteSQL properties and move to the SQL page (the statement for the ModifySQL
property will be displayed be default).

To view and modify the generated SQL statements, select the SQL page. If you have generated SQL
statements, then when you select this page, the statement for the ModifySQL property is already
displayed in the SQL Text memo box. You can edit the statement in the box as desired.
Important:
Keep in mind that generated SQL statements are intended to be starting points for creating update
statements. You may need to modify these statements to make them execute correctly. Test each of the
statements directly before accepting them.
Use the Statement Type radio buttons to switch among generated SQL statements and edit them as
desired.
To accept the statements and associate them with the update component's SQL properties, click OK.

Determining how records will be updated
The UpdateMode property determines how C++Builder will find records being updated in a SQL
database. This property is important in a multi-user environment when users may retrieve the same
records and make conflicting changes to them.
When a user posts an update, C++Builder uses the original values in the record to find the record in the
database. This approach is similar to an optimistic locking scheme. UpdateMode specifies which
columns C++Builder uses to find the record. In SQL terms, UpdateMode specifies which columns are
included in the WHERE clause of an UPDATE statement. If C++Builder cannot find a record with the
original values in the columns specified (if another user has changed the values in the database), C+
+Builder will not make the update and will generate an exception.
The UpdateMode property may have the following values:

upWhereAll (the default): C++Builder uses every column to find the record being updated. This is
the most restrictive mode.

upWhereKeyOnly: C++Builder uses only the key columns to find the record being updated. This
is the least restrictive mode and should be used only if other users will not be changing the records being
updated.

upWhereChanged: C++Builder uses key columns and columns that have changed to find the
record being updated.

Understanding parameter substitution in generated SQL statements
Generated update SQL statements use a special form of parameter substitution that enables you to
determine whether old or new field values are substituted on record update. When the UpdateSQL
editor generates its statements, it determines which field values to use.
When the parameter name matches a column name in the table, the new value will be used. When the
parameter name matches a column name prefixed by the string "OLD_", then the old value will be used.
New field values are typically used in the InsertSQL and ModifySQL statements. In the case of a deleted
record, there are no new values, so the DeleteSQL property uses the ":OLD_FieldName" syntax. Old
field values are also normally used in the WHERE clause of the SQL statement to determine which
record to update.

Executing update SQL statements
When the ApplyUpdates method for a database or dataset component is called, update statements
associated with an update component execute automatically if the update component is associated with
a dataset through the dataset's UpdateObject property.
Update statements are not executed automatically if you use more than one update component to
perform updates on a dataset. In this case (or when you want to carry out additional processing in
ApplyUpdates), you must write an OnUpdateRecord event handler to execute the update statements
associated with each update component used.

Creating an update event handler
The OnUpdateRecord event occurs when cached updates are enabled (CachedUpdates is true) and
applied (ApplyUpdates). It doesn't indicate an error (if there is an error, the OnUpdateError event
occurs). One OnUpdateRecord event occurs for each record being updated. OnUpdateRecord lets you
manually perform the updates for a read-only dataset. You can use a TUpdateSQL component
(assigned to the dataset's UpdateObject property) to handle the updates; call TUpdateSQL's Apply
method, for example, to apply an update based on the SQL statements you provide.
OnUpdateRecord event handlers are supplied with the dataset being updated, a status code indicating
the kind of update being performed, and a reference variable parameter that lets you specify how (or
whether) the cached update was applied.
The TUpdateRecord event type defines the type of method that handles OnUpdateRecord events. The
OnUpdateRecord event handler can be used where a single update component cannot be used to
perform the required updates, or when your application needs more control over special parameter
substitution.

DataSet->UpdateObject->Apply(UpdateKind);
To create an OnUpdateRecord event handler for a dataset
1. Select the dataset component.
2. Choose the Events page in the Object Inspector.
3. Double-click the OnUpdateRecord event value to invoke the code editor.
Here is the skeleton code for an OnUpdateRecord event handler:

void __fastcall TForm1::Query1UpdateRecord(TDataSet *DataSet, TUpdateKind UpdateKind,
TUpdateAction &UpdateAction)
{
 // Perform updates here...
}

The DataSet parameter specifies the dataset to update. Normally this property is set through a dataset's
UpdateObject property. When you use more than one update component to update a dataset you must
supply this value at runtime.
The UpdateKind parameter indicates the type of update to perform. When using an update component,
you need to pass this parameter to its methods and properties that you access. You may also need to
inspect this parameter if your handler performs any special processing based on the kind of update to
perform.
The UpdateAction parameter indicates if you applied an update or not. The default value is uaFail.
Unless you encounter a problem during updating, your event handler should set this value to uaApplied
before exiting. If you decide not to update a particular record, set the value to uaSkip to preserve
unapplied changes in the cache.
If you do not change the value for UpdateAction, the entire update operation for the dataset is aborted.
In addition to these parameters, you will typically want to make use of the OldValue and NewValue
properties for the field component associated with the current record.
Important:
The OnUpdateRecord event, like the OnUpdateError and OnCalcFields event handlers, should never
call any methods that changes which record in a dataset is the current record.
OnUpdateRecord generally uses one or more update components to update a dataset. Using update
components is the easiest way to update a dataset, but it is not a requirement. For example, the
following code uses a table component to perform updates:

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet, TUpdateKind UpdateKind,
TUpdateAction &UpdateAction)
{
 TUpdateSQL *MyUpdateSQL = new TUpdateSQL(this);
 TStringField *EmpAuditSalary = new TStringField(this);
 TStringField *EmpAuditEmpNo = new TStringField(this);
 TVarRec *Field0 = new TVarRec(DataSet->Fields[0]->OldValue);

 TVarRec *Field1 = new TVarRec(DataSet->Fields[1]->NewValue);
 TLocateOptions MyLocateOptions;
 MyLocateOptions << loPartialKey;
if (UpdateKind == ukInsert)
 {
 UpdateTable->AppendRecord((Field0,Fields1),2);
 }
 else
 if (UpdateTable->Locate("KeyField", DataSet->Fields[0]->OldValue,MyLocateOptions))
 {
 switch (UpdateKind)
 {
 case ukModify:
 UpdateTable->Edit();
 UpdateTable->Fields[1]->Value = DataSet->Fields[1]->Value;
 UpdateTable->Post();
 }
 case ukModify:
 UpdateTable->Delete();
 }
 UpdateAction = uaApplied;
}

More typically, however, an OnUpdateRecord event handler uses two or more update components:
void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet, TUpdateKind UpdateKind,
TUpdateAction &UpdateAction)
{
 TUpdateSQL *EmployeeUpdateSQL = new TUpdateSQL(this);
 EmployeeUpdateSQL->Apply(UpdateKind);
 JobUpdateSQL->Apply(UpdateKind);
 UpdateAction = uaApplied;
}

In this example the DataSet parameter is not used. This is because the update components called in the
handler belong to a data module, and are not referenced through the UpdateObject property.
Important:
If you specify both an update component in the UpdateObject property for a dataset, and define an
OnUpdateRecord event handler for it, the update component pointed to in the UpdateObject property is
not invoked unless you explicitly call its Apply method in your handler.
The following sections describe update component properties and methods that you can call from an
OnUpdateRecord event handler.
Identifying the dataset to update
Specifying how the current record was changed
Accessing a query component
Using an update component's SQL property
Applying updates for the current record
Using parameter substitution
Executing a prepared update SQL statement

Identifying the dataset to update
An update component's DataSet property identifies the dataset to update. Normally this property is set
through a dataset's UpdateObject property. When you use more than one update component to update
a dataset, however, you must supply this value at runtime.

Specifying how the current record was changed
UpdateKind is a parameter of type TUpdateKind. It describes the type of update that generated the
error. Unless your error handler takes special actions based on the type of update being carried out,
your code probably will not make use of this parameter.

Accessing a query component
The Query property of an update component provides access to the TQuery components called by the
update component to perform updates. In most cases you do not need to access this property, but if you
do, you can use UpdateKind parameter values as an index into the array of query components.
Note: Query is not a property of the UpdateObject. When you reference the property from a dataset,

you must typecast the UpdateObject property. For example,
((TUpdateSQL*)DataSet->UpdateObject)->Query(UpdateKind);

Using an update component's SQL property
At runtime, an update component's SQL property provides an indexed method of accessing its
ModifySQL, InsertSQL, and DeleteSQL properties. Use the values of UpdateKind as an index. For
example,

TUpdateSQL *MyUpdateSQL = new TUpdateSQL(this);
MyUpdateSQL->SQL(ukModify) = ukModify;

Normally, the properties indexed by the SQL property are set at design time using the UpdateSQL editor.
You might, however, need to access these values at runtime if you are generating a unique UpdateSQL
statement for each record and not using parameter binding. The following example generates a unique
SQL property value for each row updated:

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet, TUpdateKind UpdateKind,
TUpdateAction &UpdateAction)
{
 TUpdateSQL *MyUpdateSQL = new TUpdateSQL(this);
 TStringField *EmpAuditSalary = new TStringField(this);
 TStringField *EmpAuditEmpNo = new TStringField(this);

switch(UpdateKind)
 {
 case ukModify:
 MyUpdateSQL->SQL[UpdateKind]->Text = printf("update emptab set Salary %d where EmpNo
= %d",EmpAuditSalary->NewValue, EmpAuditEmpNo->OldValue);
 MyUpdateSQL->ExecSQL(UpdateKind);

 case ukInsert:
 ;

 case ukDelete:
 ;
 }
 UpdateAction = uaApplied;
}

Note: Rely on the parameter substitutions supplied by update components before building your own
SQL statements on the fly.

Applying updates for the current record
The Apply method for an update component applies updates for the current record. There are two steps
involved in this process:
1. Values for the record are bound to the parameters in the appropriate SQL statement.
2. The SQL statement is executed.
This method is either automatically invoked by the associated dataset, or explicitly called from the
OnUpdateRecord event. The UpdateKind parameter is used to determine which update SQL statement
to use. If invoked by the associated dataset the UpdateKind is set automatically. If you invoke the
method in an OnUpdateRecord event, pass the UpdateKind parameter of the event to Apply.
If an exception is raised during the execution of the update program, execution continues in the
OnUpdateError event, if it is defined.
Note: The operations performed by Apply correspond to the SetParams and ExecSQL methods

described in the following sections.

Using parameter substitution
The SetParams method replaces parameters (indicated by leading colons) in the SQL statement
associated with the UpdateKind parameter with the value of the field with the same name as the
parameter. For example, a parameter named :Sequence would be replaced by the value of the field
named Sequence. If the parameter name has OLD_ in front, it is replaced the "old" value of the
corresponding field, before any updates were made. For example, :OLD_Name would be replaced by
the previous value of the Name field.
SetParams is called automatically when you use the Apply method. If you call Apply directly in an
OnUpdateRecord event, do not call SetParams yourself.
You need only call SetParams directly if you need special control of parameter binding. The following
example illustrates one such use:

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet, TUpdateKind UpdateKind,
TUpdateAction &UpdateAction)
{
 TStringField *EmpAuditSalary = new TStringField(this);
 TStringField *EmpAuditEmpNo = new TStringField(this);

 if (UpdateKind == ukModify)
 {
 ((TUpdateSQL*)DataSet->UpdateObject)->Query[UpdateKind]->
 ParamByName("DateChanged")->Value = Now();
 ((TUpdateSQL*)DataSet->UpdateObject)->ExecSQL(UpdateKind);
 }
 UpdateAction = uaApplied;
}

Note: This example assumes that the ModifySQL property for the update component is as follows:
UPDATE EMPAUDIT
SET EmpNo = :EmpNo, Salary = :Salary, Changed = :DateChanged
WHERE EmpNo = :OLD_EmpNo

In this example, the call to SetParams supplies values to the EmpNo and Salary parameters. The
DateChanged parameter is not set because the name does not match the name of a field in the dataset,
so the next line of code sets this value explicitly.

Executing a prepared update SQL statement
An update component's ExecSQL method executes the SQL statement associated with the UpdateKind
parameter (for example, calling ExecSQL and passing ukModify would execute the SQL statement held
in the ModifySQL property). Note that ExecSQL does not perform parameter binding; you can do so by
calling SetParams before calling ExecSQL, or by calling Apply, which calls SetParams then ExecSQL. If
you call Apply directly in an OnUpdateRecord event, do not call ExecSQL yourself.
If an exception is raised during the execution of the update SQL statement, the OnUpdateError event is
triggered.

Updating a read-only result set
Although the BDE attempts to provide an updateable, or "live" query result when the RequestLive
property for a dataset component is true, there are some situations where it cannot do so. In these
situations, you can manually update a dataset as follows:
1. Add a TUpdateSQL component to the data module in your application to essentially give you the

ability to post updates to a read-only dataset.
2. Set the dataset component's UpdateObject property to the name of the TUpdateSQL component in

the data module.
3. Enter the SQL update statement for the result set to the update component's ModifySQL, InsertSQL,

or DeleteSQL properties, or use the UpdateSQL editor.
4. Close the dataset by calling the dataset's Close method or by setting its Active property to false.
5. Set the dataset component's CachedUpdates property to true.
6. Reopen the dataset by calling its Open method or by setting its Active property to true.
Note: In many circumstances, you may also want to write an OnUpdateRecord event handler for the

dataset.

Setting the UpdateObject property for a dataset
A dataset component's UpdateObject property is an optional reference to a component of type
TUpdateObject. When ApplyUpdates is called on a read-only dataset, and UpdateObject is set, the
update object component is invoked for each record that requires updating.
Although there is only one UpdateObject property for a dataset component, there is no restriction on the
number of update object components that can be used to perform the updates. In cases where more
than one update object component is needed, use the OnUpdateRecord event handler for the dataset
component to invoke the additional update object components.

Handling batch move operations
This topic describes how to use the TBatchMove dataset component in your database applications. The
TBatchMove component provides a high performance tool for manipulating sets of records. TBatchMove
is fast because C++Builder simply passes the Mode and other parameters to the BDE and the entire
operation is handled by the engine. This component enables you to copy a dataset to a table, append
the records from a dataset to a table, delete records that match those in a dataset from a table, and
update existing records with records from a dataset. It is most often used to

Download data from a server to a local data source for analysis or other operations.
Move a desktop database into tables on a remote server as part of an upsizing operation.

A batch move component can create tables on the destination that correspond to the source tables,
automatically mapping the column names and data types as appropriate.
A batch move component inherits many of its fundamental properties and methods from .
You can also duplicate a table's structure and data with a table component's BatchMove method.
TDataSet
You can copy a table on a one-shot basis outside of the application with the Data Migration wizard, or
Data Pump
Press the >> button to read through each topic in sequence.
Using the batch move component
Specifying a batch move mode
Transliterating character data
Mapping column data types
Executing a batch move
Handling batch move errors

Using the batch move component
To use a batch move component,
1. Place the table or query component for the dataset that you want to be the Source of the batch move

operation and the table that you wish to be the Destination of the batch move operation on a form or
in a data module.

2. Place a TBatchMove component from the Data Access tab of the Component palette in a data
module or on a form, and set its Name property to a unique value appropriate to your application.

3. Set the Source property of the component to the name of the table or query to copy, append, delete,
or update from. If you placed a table or query component on your form or in a data module, you can
select it from the drop-down list of available components.

4. Set the Destination property to the name of the table to create, append to, delete from, or update. If
you are appending, updating, or deleting, Destination must be the name of an existing table. If you
are copying and Destination is the name of an existing table, executing the batch move operation
deletes the existing table. If you are creating a new table with a copy, the resulting table has the name
specified in the Name property of the table component and is that server's database type (default data
type for a local server is a Paradox data type). You can select tables from the drop-down list of
available table components if you placed them on the form or in the data module.

5. Set the Mode property to indicate the type of operation to perform. Valid operations are batAppend
(the default), batUpdate, batAppendUpdate, batCopy, and batDelete.

6. Optionally set the Transliterate property. If true (the default), character data is transliterated from the
dataset's character set to the destination's character set, if they are different.

7. Optionally set column mappings using the Mappings property. You need not set this property if you
want batch move to match all columns based on their position in the source and destination tables.

8. Optionally specify the ChangedTableName, KeyViolTableName, and ProblemTableName properties.
Batch move stores problem records it encounters during the batch move operation in the table
specified by ProblemTableName. If you are updating a Paradox table through a batch move, key
violations can be reported in the table you specify in KeyViolTableName. ChangedTableName lists an
original copy of all records that changed in the destination table as a result of the batch move
operation. If you do not specify these properties, these error tables are not created or used.

9. Execute the batch move to perform the specified operation.

Specifying a batch move mode
The Mode property specifies what the TBatchMove object will do. The following table describes the
options for the Mode property:

Property Purpose
batAppend Append records from the source dataset to the destination table. C++Builder

converts the data as necessary to adjust for differences in field type and size
between the tables. If a field type conversion is not possible, C++Builder
generates an exception and no data is appended. The destination table must
already exist. This is the default mode.

batUpdate Update records in the destination table with matching records from the source
dataset. The destination table must exist and must have an index defined to match
records. If the primary fields in the index match, the dataset replaces the existing
record in the destination table. Records in the dataset that do not match existing
records in the destination table are ignored. To allow records that do match to be
added to the destination table, use the batAppendUpdate mode. If possible, C+
+Builder converts the data in the dataset to match the field types and sizes in the
destination table.

batAppendUpdate If the primary index fields in the source dataset match existing fields in the
destination table, update it. Otherwise, it appends records to the destination table.
The destination table must exist and must have an index defined to match records.

batCopy Copy a dataset to a destination table. A batCopy operation copies only the tables's
data and structure, and creates the destination table based on the structure of the
source table. If the destination table already exists, the operation deletes it. If the
dataset and destination table are on different platforms, say a server dataset and a
local Paradox table, C++Builder creates the destination table with a structure as
close to that of the source dataset as possible, and automatically performs any
data conversion that is required. Other metadata that are part of the table, such as
indexes, are not copied.

batDelete Delete records in the destination table that match records in the source table.
When you delete a dataset from a table, you remove each record from the
destination table whose primary key matches the corresponding fields of a record
in the dataset. The destination table must already exist and must have an index
defined.

Transliterating character data
The Transliterate property specifies whether the data in the Source records should be converted from
the locale of the Source to the locale of the Destination when the Execute method is called. Transliterate
is true by default.
Set Transliterate to true when the Source dataset and the Destination table use different language
drivers and the data may contain extended ASCII characters. Set Transliterate to false to avoid the
overhead of the character set conversion when both the Source and the Destination use the same
language driver or the data does not contain extended ASCII characters.

Mapping column data types
In a batch move operation, by default, columns and types are matched based on their position in the
source and destination tables. That is, the first column in the source is matched with the first column in
the destination, and so on. In batCopy mode, a batch move component creates the destination table
based on the column data types of the source table.
You may want to override the default column mappings if

You are doing a copy operation and only want to copy a subset of columns to the destination
table, you want to copy them in a different order, or you want to copy them to a different column name.

You are doing a batch move update, append, or delete and the source dataset has different
column names than the destination table.

You are doing a batch move update, append, or delete and the source dataset and the
destination table do not contain the same number and/or order of fields.
To override the default column mappings, use the Mappings property. You can enter the column data at
design time using the String list editor. To invoke the String list editor for the Mappings property, double-
click the Mappings property value column or click its ellipsis button.
You can create a list of column mappings (one per line) in one of two forms. To map a column in the
source table to a column of the same name in the destination table, you can use a simple listing that
specifies the column name to match. For example, the following mapping specifies that a column named
ColName in the source table should be mapped to a column of the same name in the destination table:

ColName
To map a column named SourceColName in the source table to a column named DestColName in the
destination table, the syntax is as follows:

DestColName = SourceColName
If source and destination column data types are not the same, a batch move operation attempts a "best
fit." It trims character data types, if necessary, and attempts to perform a limited amount of conversion, if
possible. For example, mapping a CHAR(10) column to a CHAR(5) column results in trimming the last
five characters from the source column.
As an example of conversion, if a source column of character data type is mapped to a destination of
integer type, the batch move operation converts a character value of '5' to the corresponding integer
value. Values that cannot be converted generate errors.
When moving data between different table types, a batch move component translates data types as
appropriate. Fields in the destination table which have no entry in Mappings are set to null. The
mappings from dBASE, Paradox, Oracle, Sybase, Informix, and InterBase data types are shown in the
following tables.
Note: To batch move data to an SQL server database, you must have that database server and C+

+Builder Client/Server Suite with the appropriate SQL Link installed. For more information, see
the SQL Links online Help.

From Paradox To dBASE To Oracle To Sybase To InterBase To Informix
Alpha Character Character VarChar Varying Character
Number Float {20.4} Number Float Double Float
Money Number {20.4} Number Money Double Money {16.2}
Date Date Date DateTime Date Date
Short Number {6.0} Number SmallInt Short SmallInt
Memo Memo Long Text Blob/1 Text
Binary Memo LongRaw Image Blob Byte
Formatted memoMemo LongRaw Image Blob Byte
OLE OLE LongRaw Image Blob Byte
Graphic Binary LongRaw Image Blob Byte

Long Number {11.0} Number Int Long Integer
Time Character {>8} Character {>8} Character {>8} Character {>8} Character {>8}
DateTime Character {>8} Date DateTime Date DateTime
Bool Bool Character {1} Bit Character {1} Character
AutoInc Number{11.0} Number Int Long Integer
Bytes Memo LongRaw Image Varying Byte
 BCD N/A N/A N/A N/A N/A

From dBASE To Paradox To Oracle To Sybase To InterBase To Informix
Character Alpha Character VarChar Varying Character
Number Short Number SmallInt Short SmallInt
others Number Number Float Double Float
Float Number Number Float Double Float
Date Date Date DateTime Date Date
Memo Memo Long Text Blob/1 Text
Bool Bool Character {1} Bit Character {1} Character
Lock Alpha {24} Character {24} Character {24} Character {24} Character
OLE OLE LongRaw Image Blob Byte
Binary Binary LongRaw Image Blob Byte
Bytes Bytes LongRaw Image Blob Byte

From Oracle To Paradox To dBASE To Sybase To InterBase To Informix
Character Alpha Character VarChar Varying Character
Raw Number Float {20.4} Float Double Float
Date DateTime Date DateTime Date DateTime
Number Number Float {20.4} Float Double Float
Long Memo Memo Text Blob/1 Text
LongRaw Binary Memo Image Varying Byte

From Sybase To Paradox To dBASE To Oracle To InterBase To Informix
Character Alpha Character Character Varying Character
Var Character Alpha Character Character Varying Character
Int Number Number {11.0} Number Long Integer
Small Int Short Number {6.0} Number Short SmallInt
Tiny Int Short Number {6.0} Number Short SmallInt
Float Number Float {20.4} Number Double Float
Money Money Number {20.4} Number Double Money {16.2}
Text Memo Memo Long Blob/1 Text
Binary Binary Memo Raw Varying VarChar
Var Binary Binary Memo Raw Varying VarChar

Image Binary Memo LongRaw Blob Byte
Bit Alpha Bool Character Varying Character
DateTime DateTime Date Date Date DateTime
TimeStamp Binary Memo Raw Varying VarChar
Float4 Number Number Number Double Float
Money4 Money Number {20.4} Number Double Money {16.2}
DateTime4 DateTime Date Date Date DateTime

From
InterBase

To Paradox To dBASE To Oracle To Sybase To Informix

Short Short Number {6.0} Number Small Int SmallInt
Long Number Number {11.0} Number Int Integer
Float Number Float {20.4} Number Float Float
Double Number Float {20.4} Number Float Float
Char Alpha Character Character VarChar Character
Varying Alpha Character Character VarChar Character
Date DateTime Date Date DateTime DateTime
Blob Binary Memo LongRaw Image Byte
Blob/1 Memo Memo Long Text Text

From Informix To Paradox To dBASE To Oracle To Sybase To InterBase
Char Alpha Character Character VarChar Varying
Smallint Short Number {6.0} Number Small Int Short
Integer Number Number {11.0} Number Int Long
Smallfloat Number Float {20.4} Number Float Double
Float Number Float {20.4} Number Float Double
Money Money Number {20.4} Number Float Double
Decimal Number Float Number Float Double
Date Date Date Date DateTime Date
Datetime DateTime Date Date DateTime Date
Interval Alpha Character Character VarChar Varying
Serial Number Number {11.0} Number Int Long
Byte Binary Memo LongRaw Image Blob
Text Memo Memo Long Text Blob/1
VarChar Alpha Character Character VarChar Varying

Executing a batch move
The Execute method performs the batch operation specified by Mode from the Source dataset to the
Destination table at runtime. The Active property of the Destination table must first be set to false. For
example, if BatchMoveAdd is the name of a batch move component, the following statement executes it:

BatchMoveAdd->Execute();
You can also execute a batch move operation at design time by right clicking on a batch move
component and choosing Execute from the context menu.
The MovedCount property keeps track of the number of records that are moved when a batch move
executes.
The RecordCount property is used to control the maximum number of records that will be moved. If
zero, all records are moved, beginning with the first record in Source. If RecordCount is not zero, a
maximum of RecordCount records will be moved, beginning with the current record. If RecordCount
exceeds the number of records remaining in Source, no wraparound occurs; the operation is terminated.

Handling batch move errors
There are two types of errors that can occur in a batch move operation: data type conversion errors and
integrity violations. TBatchMove has a number of properties that specify how it handles errors.
The AbortOnProblem property specifies whether to abort an operation when a data type conversion
error occurs, such as when data has to be trimmed to fit into the destination field. ProblemCount is the
number of records which could not be added to Destination without loss of data due to field width
constraints. If AbortOnProblem is true, this number is one, since the operation is aborted when the
problem occurs.
The AbortOnKeyViol property indicates whether to abort the operation when a Paradox key violation
occurs.
The following properties enable a batch move component to create additional tables that document the
batch move operation:

ChangedTableName, if specified, creates a local Paradox table containing an original copy of all
records in the destination table that changed as a result of the update or delete batch operations. The
ChangedCount property records the number of records changed, whether or not ChangedTableName is
specified.

KeyViolTableName, if specified, creates a local Paradox table containing all records from the
source table that caused a referential integrity or key violation error when writing to the destination table.
If AbortOnKeyViol is true, this table will contain at most one record since the operation will be aborted with
that first record.

ProblemTableName, if specified, creates a local Paradox table containing all records that could
not be posted in the destination table due to data type conversion errors. For example, the table could
contain records from the source table whose data had to be trimmed to fit in the destination table. If
AbortOnProblem is true, there is at most one record in the table since the operation is aborted on that first
problem record. If ProblemTableName is not specified, the data in the record is trimmed and placed in the
destination table.

Upsizing and deploying an application
This topic addresses some of the key issues for upsizing a C++Builder database application. Upsizing
means two things for C++Builder:

Moving database sources from a local server, desktop database, or an SQL database to a
database on a remote server.

Modifying your application to address client/server considerations.
Detailed treatment of upsizing issues is beyond the scope of this section. For example, upsizing requires
you to evaluate connectivity and network usage issues which are always unique to your organization
and its needs. This topic, however, addresses some of the most important aspects of upsizing as they
relate to a C++Builder database application, and points to some of the tools available in C++Builder that
make upsizing easier.
Press the >> button to read through this topic in sequence.
Upsizing, or migrating, a database
Upsizing an application
Moving data between databases on a one-time basis
Deploying support for remote server access

Upsizing, or migrating, a database
Upsizing a database involves the following steps and considerations:

Defining metadata on the server, based on the existing desktop database structure.
Moving the data from the desktop to the server.
Addressing issues such as:
Data type differences
Data security and integrity
Transaction control
Data access rights
Data validation
Locking differences

C++Builder provides three ways to upsize a database:
Use the Database Desktop (DBD) to copy a table from the desktop to SQL format on a remote

server. For more information about the DBD, see the DBD online Help.
Use a TBatchMove component
Use the Data Migration wizard, or Data Pump, to copy information from one database location to

another on a one-time basis.
All of these options copy table structures and data from the desktop source to the server destination.
Depending on the database, it may be necessary to change the tables created by these methods. For
example, the data type mappings may not be exactly as desired.
Additionally, you must add to the database any of the following features that your application can use or
that it requires

Integrity constraints (primary and foreign keys)
Indexes
Check constraints
Stored procedures and triggers
Other server-specific features

Depending on the database, it may be most efficient to define the database structure (metadata) on the
server first by using an SQL script and the server's data definition tools and then moving the data using
one of the two methods previously mentioned. If you define the table structure manually, then Database
Desktop and TBatchMove will copy only the data.
When upsizing a database, it is important to know the characteristics of your database server to ensure
optimal performance. The characteristics of servers, such as their indexing schemes, locking
mechanisms, and query optimizer can have a powerful impact on performance.

Upsizing an application
In principle, a C++Builder application designed to access local data can access data on a remote server
with few changes to the application itself. This is especially true if you designed your C++Builder
application and local data sources with an eye to upsizing at a later date.
If your server database mirrors your local database, upsizing your application can be as easy as
changing the DatabaseName property of TTable or TQuery components in the application to point to
server data.
In practice, however, there are a number of important differences between accessing local and remote
data sources. Client applications accessing a remote database server must address some issues that
are not relevant to desktop applications.
Any C++Builder application can use either TTable or TQuery for data access. Desktop applications
frequently use TTable components. When upsizing to a SQL server, it may be more efficient to use
TQuery components in some instances. For example, TQuery may be preferable for applications that
retrieve large numbers of records from database tables.
If an application uses mathematical or aggregate functions, it may be more efficient to perform these
functions on the server with stored procedures. The use of stored procedures may be faster because
servers are typically more powerful. This also reduces the amount of network traffic required, particularly
for functions that process a large number of rows.
For example, an application might need to compute the standard deviation of values of a large number
of records. If this function were performed on the client, all the values would have to be retrieved from
the server to the client, resulting in a lot of network traffic. If the function were performed by a stored
procedure, all the computation would be performed on the server, so the application would only retrieve
the answer from the server.

Moving data between databases on a one-time basis
Use the Data Migration wizard, or Data Pump, to move data (both database schema and content)
between databases. Both source and target can be either a PC database or a SQL database server.
To use the data pump,
1. Create an alias for both the source and target databases by using the Borland Database Engine

(BDE) Configuration Utility or SQL/Database Explorer. If using the BDE Configuration Utility, follow the
directions for creating an alias. Select the driver for the source or target database and set all the
parameters. For information about creating aliases, refer to the BDE Configuration Utility online Help
files. If using the Database Explorer, refer to its online Help for information.

2. Select the Data Migration wizard, or Data Pump, from the C++Builder program group. In the Data
Pump, select both the source and target alias. The source can be either an alias or a directory;
however, SQL server databases always require an alias and may require a login.

3. Select the tables that you want to move from the source database.
4. View a preliminary report to determine how the data will appear when you move it to the target

database.
5. Modify any data types, indexes, or referential integrity that are not supported on the target database.
6. Upsize the data.
7. View the final status report to determine the sequence in which data objects have been upsized, what

data objects were upsized, and how they appear on the target. You can now update or modify the
data directly on the target.

Before you move any data, you must understand how the data was created on the source database and
how it will appear on the target database. Depending upon the structure of your data on the source
database and the database objects that are supported on the target database, some modifications may
be required.
Note: When moving data to a Microsoft SQL Server, be sure to set the configuration parameters MAX

QUERY TIME and TIMEOUT to 20. This ensures data movement.
When moving data to a Paradox table, any indexes from the source relation will not be transferred. This
is due to the design of Paradox tables, requiring a primary index prior to creating secondary indexes.

Deploying support for remote server access
Whenever you make an application available to end users, you must deploy the application. Deployment
involves preparing a package for your users that enables them to run your application and access data
with it. Typically, your application's installation utility handles deployment.
When you upsize your application to use a remote server, there are additional files and DLLs you need
to deploy. For example, to access remote database servers, your application must use the appropriate
Borland SQL Links drivers and support files or ODBC drivers. These are not part of the Borland
Database Engine (BDE), and require separate installation and licensing.
For the latest information about the files you need for deploying on a remote server, see the online file
DEPLOY.TXT.

