
Welcome to Borland C++Builder Help
This topic automatically appears temporarily when you get Help (press F1) on a component from the
Object Inspector or a term in the Code Editor.

Sorry, topic not found
This topic appears if the topic you are looking for is not found when you press F1 on a component from
the Object Inspector, a term in the Code Editor, or a message in the message view. If one of these
situations occur, please report it as a documentation bug.

To search for a topic,
Click the Content or Index button and to display the Help Topics dialog box, and then

Click the Contents tab to browse through topics by category.
Click the Index tab to see a list of index entries. Then, either type the word you're looking for or

scroll through the list.
Click the Find tab to search for words or phrases

Default linker state files
By default, C++Builder automatically creates an initial set of linker-state files the first time you load it,
and stores the files in your C++Builder bin directory. ILINK, the incremental linker, uses these files to
reduce the time it takes to link your executables.
The default linker-state files have file names of DEFLINK.IL?, where the character in place of the
question mark (?) identifies each of the four individual linker-state files.

Jumping in
See also
The best way to introduce yourself to the property-method-event (PME) model of programming is to
write a quick application. This section guides you through the creation of a C++Builder program that
looks up fields in a database. After you set up access to a database table, you'll write an event handler
that brings up the standard File Save dialog box. This allows you to write information from the database
table to a file.
To read these topics in sequence, press the >> button.

Tutorial: Starting a new application -- Step 1 of 8
See also
Before beginning any new application, you should create a folder to hold the application's source files.
This way, you don't mix your application source files with other types of files and a unique folder lets you
easily track and maintain all the files contained in your application.
1. Create the folder MySource off the root directory of your working drive to hold the project files you will

create with this sample application.
2. Open a new project.

Each application is represented in C++Builder by a project. When you start C++Builder, it opens a
blank project by default. If another project is already open, choose File|New Application to create a
fresh project.
Whenever you open a new project, C++Builder automatically creates the following two C++ files:

Unit1.CPP: a source file associated with the main project form.
Project1.CPP: a source file that keeps track of the forms in your project.

3. Choose File|Save All to save your project files to disk. When the Save dialog appears, navigate to
your MySource folder, and save the two C++ files under their default file names. (Note that you can
also use the C++Builder Save As dialog box to create the new MySource directory.)
In addition to the two C++ files, C++Builder also creates other files associated with your project, as
you can see by looking at your MySource directory. For more details on the files automatically created
by C++Builder, see "Creating and managing projects."

When you open a new project, C++Builder displays a graphical representation of the project form,
named Form1 by default.
The default project form

In C++Builder, you design the user interface for your applications using forms. Forms can contain menus
and context menus, they can be put together to make application dialog boxes, and they can be parent or
child windows. Essentially, forms are the canvases on which you create applications.
You place objects on forms to create user interfaces. Objects, for example, can be standard interface
controls (such as check boxes and drop-down lists), or they can be fully contained components (such as
data grids, bar charts, and editors).
In addition to the form, C++Builder also displays the Object Inspector. While not an actual part of your
application's interface, the Object Inspector shows you the design-time settings of the all objects you've
placed in your project.
When the project form has focus, the Object Inspector shows the properties of the form, as shown in the

following figure. The drop-down list at the top of the Object Inspector shows the currently displayed
object; in this case, the object is Form1:TForm1.
The Objector Inspector

To read these topics in sequence, press the >> button.

Tutorial: Setting a property value at design time
See also
To design the look and feel of your application interface, you set the values of object properties using the
Objector Inspector. Setting property values in the Object Inspector while putting together your
application interface is known as making design time settings.

Set the Color property of Form1 to clAqua.
To set the Color property, find the form's Color property in the Object Inspector and click the drop-
down list displayed to the right of the property. To change the background color of the form to aqua,
choose clAqua from the list of predefined colors.

Note: Using your programming environment to initialize the values of program objects is a notion that's
new to many C++ programmers. When programming with C++Builder, you should make every
effort to initialize object property values using the Object Inspector and its many property editors;
resist the urge to set initial property values directly in the source code of the application. This way,
you let C++Builder set up and maintain the overall structure of your program objects and source
code.

To read these topics in sequence, press the >> button.

Tutorial: Adding objects to the form
See also
The C++Builder Component palette (see the following figure) lists all the available components that you
can use to create your application. Components are grouped onto different palette pages for easy
access. You can scroll through the different pages of the palette by clicking the corresponding
Component palette tabs.
Data Controls page of the Component palette

Using the components on the Component palette, you can quickly create an interface for your application.
1. Add a Panel component to your form by double-clicking the Panel component on the Standard page

of the Component palette.
To find the Panel component, point at a component in the Component palette for a moment; C+
+Builder displays a Help Hint showing the name of the respective component, as shown in the
following figure. When you find the Panel component, double-click it; C++Builder adds that
component to the middle of the current form.

Finding the Panel component

Placing a component on a form creates an object instance of that component. Although it might seem
like a technicality, it helps to understand the difference between a C++Builder component and an
object that you are using in your application. Once you place a component on a form, C++Builder
generates all the C++ code necessary to create that object in your application. Here lies the real
beauty of C++Builder; you don't have to worry about the code that creates or maintains the objects
you use in your application, C++Builder does all that work for you.

2. Set the Panel object's Align property to alBottom.
Giving the Panel object focus on the form gives it focus in the Object Inspector. Setting the Align
property to alBottom in the Object Inspector makes the panel lie flat across the bottom of the form.

3. Enlarge the size of you application's window by dragging the lower right corner of the form.
4. Enlarge the size of the panel until the it fills the bottom third of the form (click the panel to select it,

then drag its top border up). Your form should now resemble the one shown in the following figure.
Form with a Panel object

5. Drop a Table object on the form.
Click the Data Access tab on the Component palette to access the components on that palette page.
You can find the Table component on the left side of the page. When you find the Table component,
click it once to select it, then click on the form to drop the component onto the form.
When you drop the table on the form, C++Builder names the object Table1 by default.

6. Set the DatabaseName property of Table1 to BCDEMOS.
Setting this property value sets up access to a database table.

To read these topics in sequence, press the >> button.

Tutorial: Accessing a database
See also
You're now ready to set up the data source for your database controls.
1. From the Data Access page of the Component palette, drop a DataSource component on the form.

Set its DataSet property to Table1.
On the Component palette, the Data Controls page holds the components that let you control how
you view database data in your applications. To display all the fields in a database table, use a
DataGrid component.

2. From the Data Controls page, choose the DBGrid component and drop it into Panel1 (click the
DBGrid component to select it, then click inside Panel1 to drop the component there). Your form
should now resemble the following figure.

Form with a DBGrid object

Set the following DataGrid properties to align the grid and to access the database you've set up with
the Table and DataSource objects:

Set the Align property to alLeft, then drag the right edge of the grid so it fills three-quarters of the
panel.

Set the DataSource property to DataSource1.
Now you can finish setting up the Table1 object you previously dropped on the form.

3. Give the Table1 object focus by clicking on it in the form, then set its properties as follows:
Set TableName to BIOLIFE.DB.
Set the ReadOnly property to true.
Set Active to true.

When you set the Active property to true, the grid fills with the data contained in the BIOLIFE.DB
database table. (If the grid doesn't fill as shown in the following figure, make sure you've correctly set
the properties for all of the application objects as explained in the previous instructions.)

Form with an Active Table1

Since the DBGrid control is data aware, it displays the data in the table while you are designing your
application. The data display gives you a visual check, showing that you're correctly hooked up to the
database. However, note that being data aware doesn't mean you can scroll through or edit the data
at design time. To view all the data in the table, you'll have to run your application.

4. Press F9 to compile and run the project.
To read these topics in sequence, press the >> button.

Tutorial: Adding some spice
See also
When you run the application, C++Builder opens the program in a window just like the one you designed
on the form. Your program is a full-fledged Windows program, complete with Minimize and Maximize
buttons, and a Control menu that you can access from the upper left corner of the window. You'll see the
data grid fill with the values from the table and you can scroll the data grid to see all the values in the
BIOLIFE.DB table. Since you set the ReadOnly property of the grid to true, you cannot change the
values of the items in the database table.
Even though your program contains all this, it's still lacking a few details. Double-click the Control menu
to close the application and return to the design-time view of the form.
1. From the Data Controls page of the Component palette, drop a DBNavigator object onto the form (as

shown in the following figure) and set its DataSource property to DataSource1.
Form1 with a DBNavigator object

By default, the DBNavigator contains more controls than you'll need for this small application; for now,
you only need the First, Prior, Next, and Last navigator buttons. The VisibleButtons property of the
DBNavigator controls which navigator buttons display.

2. With the DBNavigator in focus, double-click its VisibleButtons property label in the Objector Inspector.
The enumerated list of VisibleButtons expands in the Objector Inspector. Each of the expanded
VisibleButtons properties corresponds to a button on the DBNavigator. These properties contain
Boolean values that can be set to either true of false, where a false value turns off the display of the
button.

3. Set to false the following VisibleButtons properties:
nbInsert nbDelete nbEdit
nbPost nbCancel nbRefresh

Double-clicking the button property toggles the value from true to false.
4. From the Standard page of the Component palette, drop another Panel component onto the top of the

form. C++Builder names this Panel2 by default. To remove this caption from your running application,

clear the Panel2 string from the panel's Caption property. After clearing the Panel2 value, make sure
you press Enter so the new property value takes effect.

5. Align Panel2 to the top of the form by setting its Align property to alTop. Next drag the bottom of the
panel down so it fills the top portion of the form.

6. Set the color in both panels to clBlue.
C++Builder lets you set property values in several components at the same time. First click on
Panel1, then Shift+Click Panel2. The Object Inspector now shows all the properties that are common
to both components. From here, you can set the Color property of both panels to clBlue.

7. From the Data Controls palette page, drop a DBImage component on top of Panel2 and size it so
your form resembles the one shown in the following figure by setting its Align property to alRight and
dragging out the left side of the image.

Form1 with a DBImage object

8. Set the following DBImage properties:
Set DataSource to DataSource1
Set the DataField property to Graphic

Again, because the DBImage component is data aware, the component displays the image of the fish
in the first record of the table. This shows that you are indeed correctly hooked up to the database.

9. Click the green arrow speedbutton on the toolbar to compile and run your application (the Hint for this
speedbutton says Run).
With the aid of the incremental linker in C++Builder, the compile/link time of your project should be
drastically reduced from when you first ran your application.

To read these topics in sequence, press the >> button.

Tutorial: Final touches
See also
Now when you run the application, you can easily move through your database table using the buttons
on the DBNavigator. However, you can add a couple of other touches to make the application a bit more
useful. Close the running application to return to the design-mode of C++Builder.
1. From the Data Controls page of the Component palette, drop a DBMemo component onto Panel2 and

position it so it occupies the top left corner of the panel. Next, set the following property values:
Set DataSource to DataSource1.
Set DataField to Notes.
Set ScrollBars to ssVertical.

2. Drop a DBText object on Panel2 under the DBMemo object. Enlarge the DBText object so it fills the
area under the DBMemo, then set its properties as follows:

Set DataSource to DataSource1.
Set DataField to Common_Name.

3. Customize the Font property of the DBText object using the Font editor.
You can access several different types of property editors through the Object Inspector. For example,
you can use the Menu editor, the Font editor, and the Picture editor to edit form menus, label fonts,
and bitmap pictures and glyphs.
When you click the Font property of the DBText object, C++Builder displays an ellipse button on the
right side of the property setting, indicating that you can use a property editor to set this property.
Clicking the ellipse displays the Font editor, a dialog that lets you edit character sizes and fonts.
Modify the following DBText settings using the Font editor, then click OK when you're done:

Set the Font Style to Bold.
Set the Color to Silver.
Set the Size to 12.

To read these topics in sequence, press the >> button.

Tutorial: Adding an Exit button to your application
See also
Your application is now beginning to look like something you can use. To make it more user-friendly, add
an Exit button so you can easily close the program.
1. Drop a BitButton (BitBtn) component onto Panel1 from the Additional page of the Component palette,

then set its Kind property to bkClose.
This sets default values of the button so that when you click in the running application, the application
closes.

2. Change the Caption property of the BitButton so that it reads E&xit.
The ampersand before the x turns this character into a shortcut key, which lets you exit the program
by pressing Alt+X.
Your program should now look like the one shown in the following figure.

Form1 with the Exit button

3. Again, compile and run your application by pressing F9.
To read these topics in sequence, press the >> button.

Tutorial: Hooking up an event handler
See also
You now have a fully functioning Windows application that accesses a database table and displays
images, memos, and individual data fields from the database. There's even an Exit button so you can
gracefully shut down the application.
Up until now, however, you have not typed a single line of program code. And this is how it should be if
you want to take complete advantage of the C++Builder environment. By using the Object Inspector to
set the design-time values of your object properties, you let C++Builder maintain the code that it
generates by itself. In other words, let C++Builder do the grunt work and save your coding efforts for the
event handlers, the code that makes your program perform the tasks in your application.
Your next programming feat will be to hook up an event handler to a button, a task you'll encounter often
when designing user interfaces with C++Builder. You will program the button so that when clicked, an
event handler will call the standard Windows File Save dialog box, which lets you save information from
the database into a file.
1. From the Dialogs page of the Component palette, drop a SaveDialog object onto the form next to the

DataSource1 object.
2. From the Additional Component palette page, drop a BitButton (BitBtn) object above the Exit button,

and set its following properties:
Set Caption to &Save.
Set Glyph to the predefined FileSave.BMP bitmap using the Picture editor.

When you click the Glyph property, C++Builder displays an ellipse button on the right side of the
property setting, indicating that you can use a property editor to set this property. Click the ellipse to
access the Picture editor. In the Picture editor, click the Load button, and navigate to the following
folder in the C++Builder directory hierarchy:
<C++Builder main directory>\Images\Buttons
In this directory, find and load the FileSave.BMP glyph. When you choose OK, you should see this
glyph appear on the left side of your Save button.
The user interface of your application is now complete. If you followed all the steps in this section,
your final creation should resemble the form shown in the following figure.

Final user interface

Now comes the meat and potatoes part of your C++Builder programming, creating and writing an
event handler. The easy part is creating the event handler; the technical programming comes to play
as you write the actual C++ code for the event.

3. Double-click the Save button to create the default event handler for the button.
Whenever you double-click an object on a C++Builder form, C++Builder generates the code for that
object's default event handler. C++Builder also opens the Edit window and places the cursor after the
opening brace of the event handler. In this case, C++Builder generates the following event handler
code:

void __fastcall TForm1::BitBtn2Click(Tobject *Sender)
{

}
Up until now, you've used the Object Inspector to set object properties. However, you can also use
the Object Inspector to access and create object event handlers. By clicking the Events tab on the
Object Inspector, you can see the available events for the object currently in focus on the C++Builder
form.
Most components on the Component palette have a default event. When you double click an object
on a form, C++Builder creates the handler for the default event. For most components, the OnClick
event is default; this is the event that gets called whenever you click an object in a running
application.

4. Complete the event handler by adding the code that is shown between the opening and closing
braces of the event handler:
void __fastcall TForm1::BitBtn2Click(Tobject *Sender)
{
 FILE *outfile;
 char buff[100];
 sprintf(buff, "Save Info For: %s", DBText1->Field->AsString.c_str());
 SaveDialog1->Title = buff;
 if (SaveDialog1->Execute())
 {
 outfile = fopen(SaveDialog1->FileName.c_str(), "wt");
 if (outfile)
 {
 fprintf(outfile, "Facts on the %s\n\n",

 DBTextl1->Field->AsString.c_str());
 for (int i=0; i < DBGrid1->FieldCount; i++)
 fprintf(outfile, "%s: %s\n",
 DBGrid1->Fields[i]->FieldName.c_str(),
 DBGrid1->Fields[i]->AsString.c_str());
 fprintf(outfile, "\n%s\n", DBMemo1->Text.c_str());
 }
 fclose(outfile);
 }
}

Detailing the workings of this code is beyond the scope of this introduction. However, it should suffice
to say that this code calls the File Save dialog box (the SaveDialog1 object) when you click the Save
button. When you specify a file name, your application writes data on the currently selected fish to
that file.

5. To run the finished application, press F9.
Congratulations! You have now completed your first C++Builder application.
Undoubtedly, you'll want to save your new program to disk so you can show it to your friends and
colleagues, and you can do so by choosing File|Save Project As. To learn more about C++Builder
projects and the naming conventions that C++Builder uses for its project files, refer to "Creating and
managing projects."
To read these topics in sequence, press the << button.

First look
See also
Borland C++Builder is an object-oriented, visual programming environment for Rapid Application
Development of general-purpose and client/server applications for Microsoft Windows 95 and Windows
NT. Using C++Builder, you can create highly efficient Windows applications with a minimum of manual
coding.
C++Builder provides a comprehensive library of reusable components and a suite of RAD design tools,
including application and form templates, and programming wizards.
When you start C++Builder, you are immediately placed within the visual programming environment. It is
within this environment that C++Builder provides all the tools you need to design, develop, test, and
debug applications. This section briefly describes the development environment and touches on many of
the tools that are available to you through the C++Builder environment. The rest of this section and the
other Help files in the C++Builder documentation set provide details on how to use the tools.
To read these topics in sequence, press the >> button.

Starting C++Builder
See also
The best way to get familiar with C++Builder is to start it up. You start C++Builder the same way you
start any Windows-based application. Here are some of the common ways:

Double-click on the C++Builder icon.
Use the Explorer or the File Manager to navigate the file system. Locate and double-click the

BCB.EXE file (if you performed a default installation, this file is located in \Program Files\Borland\
CBuilder\Bin).

Choose Run from the Windows Start menu, and specify the path to BCB.EXE.
The following figure shows what C++Builder looks like when you first start it up.
C++Builder development environment

The C++Builder development environment (also called the IDE) has several flexible parts that you can
locate anywhere on the screen. The Main window contains the main menu, toolbar, and Component
palette. The Object Inspector, Code editor, and a form are automatically displayed. As you are working,
you can resize each part and display additional tools as needed.
The environment is customizable so you can set it up to meet your needs. For example, you can make
any tools you frequently use accessible through buttons on the toolbar.
To read these topics in sequence, press the >> button.

Accessing commands fast
See also
The main menu at the top of the Main window provides access to many commands and tools in the C+
+Builder development environment. You can also see a toolbar in the upper left corner under the main
menu. The toolbar has buttons that can save you time while you're working. Each button performs a
common operation or command (Open File, Save Project, Run, and so on). The following figure
illustrates the toolbar and shows the function of each of its speed buttons.
C++Builder toolbar

Right-click the toolbar and choose Properties to customize it for your needs.
To read these topics in sequence, press the >> button.

Displaying commands in context
See also
You can display commands that relate to the context in which you are working: point at the area and
right-click. A menu containing commands relevant to your work is displayed. This menu is sometimes
referred to as a context menu or SpeedMenu. You can customize context menus so they provide the
specific functions you need.
Context menu on a C++Builder form

Context menus are available when you right-click on many elements in the C++Builder development
environment, including

Forms
Component palette
Object Inspector
Toolbar
Project Manager
Debugger
Code editor

To read these topics in sequence, press the >> button.

Designing applications
See also
C++Builder immediately presents you with the tools necessary to start designing applications:

Blank window, known as a form, on which you design the UI for your application
Extensive library of UI elements, called components, which reside on the Component palette
An easy way to change object traits by using the Object Inspector
Direct access to the underlying program logic through the Code editor
Many other tools such as an image editor on the toolbar and an integrated debugger on menus to

support application development
You can use C++Builder to design any kind of 32-bit application--from general-purpose utilities to
sophisticated data access programs. C++Builder's database tools and data-aware components let you
quickly develop powerful desktop database and client/server applications. Using C++Builder's data-
aware controls, you can view live data while you design your application, letting you immediately see the
results of database queries and changes to the application's interface.
To read these topics in sequence, press the >> button.

Creating the application interface
See also
All visual design work in C++Builder takes place on forms. When you open C++Builder or create a new
project, a blank form is displayed on the screen. You can use it to start building your application
interfaces and dialog boxes. You design the look and feel of the graphical user interface for the
application by placing and arranging visual components such as buttons and list boxes on the form. You
can also place invisible components on forms to capture information from databases, perform
calculations, and manage other interactions.
Form1 example

Designing a UI this way allows you to prototype your application very quickly and see how it will look right
away. Read "Creating forms" for more information.
To read these topics in sequence, press the >> button.

Adding components
See also
Components are the elements you use to build your C++Builder applications. They include all the visible
parts of an application interface, such as dialog boxes and buttons, as well as those that aren't visible
while the application is running, such as system timers or Dynamic Data Exchange (DDE) servers.
Many visual components are provided in the development environment itself on the Component palette.
You select components from the Component palette and drop them onto the form to design the
application user interface. Once a visual component is on the form, you can adjust its position and size.
Component palette

C++Builder components are grouped functionally on the different pages of the Component palette. For
example, commonly used components such as those to create menus, edit boxes, or buttons are located
on the Standard page of the Component palette. Handy controls such as a timer, paintbox, media player,
and OLE container are on the System page.
Forms and components have many features in common; you can think of a form as an object that can
contain other components.
C++Builder includes many components that you can use in the Visual Component Library (VCL). Refer
to the VCL Reference in print or online for details on all of the available components.You can customize
the component library by adding or deleting components or you can write new components. Refer to the
Component Writer's Guide for details on writing components.
To read these topics in sequence, press the >> button.

Changing component behavior
See also
You can easily customize the way a component appears and behaves in your application by using the
Object Inspector. When a component has focus on the form, its properties and events are displayed in
the Object Inspector.
The following figure shows what the Object Inspector looks like when the form itself is selected.
Object Inspector

You use the Properties page of the Object Inspector to set the initial program start-up values for the
components you've placed on the form. You use the Events page of the Object Inspector to quickly
navigate among events that each component can handle. By clicking on a particular event, C++Builder
generates the event handler code for that specific component event. In C++Builder, you will spend most
of your programming time writing in the event handlers for the objects that you place in your application
forms.
To keep the Object Inspector visible at all times, right-click it and choose Stay On Top from the context
menu. For more information about the Object Inspector see "Creating forms" .
To read these topics in sequence, press the >> button.

Designing menus
See also
After you add a menu component to a form, you can use the Menu Designer to create and edit menu
bars and pop-up menus. You need to add a menu component to your form for every menu you want to
include in your application. C++Builder provides predesigned menu templates that you can use to
design menus, or you can build the menu structure of your program from scratch.
The menus you design are immediately visible in the form without having to run the application to see
the results. You can also change menus at runtime to provide additional options for the application user.
Read "Designing menus" to learn about the Menu Designer.
To read these topics in sequence, press the >> button.

Developing applications
See also
As you visually design the user interface for your application, C++Builder generates the underlying C++
code to support the application. As you select and modify the properties of components and forms, the
results of those changes appear automatically in the source code, and vice versa. You can modify the
source files directly with any text editor, including the built-in Code editor. The changes you make are
immediately reflected in the visual environment as well.
To read these topics in sequence, press the >> button.

Editing code
See also
The C++Builder Code editor is a full-featured ASCII editor. With the Code editor, you can view and edit
all the code contained in your project source files. The following figure displays a file called UNIT1.CPP;
the default unit file created with each new C++Builder project. This file is one of several files that make
up a C++Builder project. For more on project files, see "Creating and managing projects."
Sample code

See "Working with the Code editor" for information on the Code editor.
To read these topics in sequence, press the >> button.

Managing project files
See also
Using the Project Manager, you can easily keep track of and access the files that make up a C++Builder
application. When you access the Project Manager from the View menu, you can see a list of each form
file in your application and easily navigate between them.
C++Builder Project Manager

Refer to "Creating and managing projects." for details on the files that make up a project, navigation
techniques, and C++Builder project management.
To read these topics in sequence, press the >> button.

Storing application objects
See also
C++Builder uses the Object Repository to store application objects such as forms, data modules,
wizards, and DLLs. The Object Repository lets you easily reuse the objects that you build. Reusing
objects lets you build families of applications with common user interfaces and functionality. It also
provides a central location for application development tools that all members of a development team
can access over a network. Therefore, you can develop forms that you can use in more than one
application and save them in the Object Repository. Or, in a larger environment, you can develop a
standard set of forms for other developers to use within their applications.
C++Builder Object Repository

See "Creating and managing projects."for information on the Object Repository.
To read these topics in sequence, press the >> button.

Using the online Help system
See also
The Help system provides online access to detailed information about C++Builder. Using Help is a
convenient way to learn about the extensive language features, programming tasks, libraries, compiler
options, and the C++Builder programming environment.
C++Builder provides Help on numerous libraries of reusable components such as the Visual Component
Library, the Standard C++ Library, the Runtime Library, and Win32 APIs. You will also find Help on
additional products (such as PVCS version control software and InstallShield Express) that are supplied
with some versions of C++Builder.
To read these topics in sequence, press the >> button.

Getting Help
See also
If you have questions while using C++Builder, try using the online Help system to find the information
you need. You can display online Help while using C++Builder in any of the following ways:

Choose Help|Contents from the main menu
Press F1
In a dialog box, click Help

You can also press F1 while the Code editor has focus to get help on the currently highlighted program
token. C++Builder will find the closest match in the Help system.
The Help Contents displays a Help Topics dialog box showing the contents of the User's Guide. You can
also go straight to the VCL Reference, runtime Library Reference, or Programmer's Guide contents by
choosing Help (from the main menu) then picking the appropriate menu item. The following figure shows
a sample Help topic and Contents screen.
C++Builder Help Topics Contents and Help file

To read these topics in sequence, press the >> button.

Displaying online information
See also
From the contents, you can view a topic by clicking on it. You can also click the Index or Find tabs on the
Help Topics dialog box to access information in a different way. The index provides entries that either
display an associated topic or, if there are several topics, displays a list of relevant topics to choose
from. Find provides a full text search so you can search for specific terms throughout the Help system.
To read these topics in sequence, press the >> button.

Displaying context-sensitive information
See also
Pressing F1 within the C++Builder programming environment displays context-sensitive Help. If a dialog
box is displayed, F1 provides information on using the dialog box and its options. If you're using the
Code editor, you can place the insertion point next to or select an item for which you want to get Help
and press F1. You can select any term (for example, a property or event in the Object Inspector) and
press F1 to see a description of it. You can also use F1 to display information about selected menu
items or error messages.
To read these topics in sequence, press the >> button.

Customizing Help
See also
With so much online information available, you may want to consider customizing the Help system to
suit your needs. OpenHelp is a C++Builder tool that lets you specify the exact scope of the material you
routinely access when using Help. OpenHelp.exe is provided with C++Builder.
To use OpenHelp, click on the OpenHelp icon.
OpenHelp lets you customize which Help files are searched when using Help. You can set up several
search ranges so you can view the kind of information that is relevant to your work at a particular time.
Whichever search range is best suited to your work is set as the default.
The Help files that are in a search range control what you will see in the Contents screen, and you can
customize the order of topics in the Contents. The search range also determines which Help files have
entries included in the Index and which Help files are searched in a full text search.
If you use other tools with C++Builder, you can add their Help files to the search range so you can
integrate their Help information as well.
For more information on customizing Help, refer to OPENHELP.HLP in online Help.

Writing database applications
See also
One of C++Builder's strengths is its support for creating advanced database applications. C++Builder
includes built-in tools that allow you to connect to Oracle, Sybase, Informix, dBASE, Paradox, or other
servers while providing transparent data sharing between applications. The Borland Database Engine
(BDE) supports scaling from desktop to client/server applications.
Tools, such as the Database Explorer, simplify the task of writing database applications. The Database
Explorer is a hierarchical browser for inspecting and modifying database server-specific schema objects
including tables, fields, stored procedure definitions, triggers, references, and index descriptions. The
following figure shows the Database Explorer.
C++Builder Database Explorer

Through a persistent connection to a database, Database Explorer lets you
Create and maintain database aliases
View schema data in a database, such as tables, stored procedures, and triggers
View table objects, such as fields and indexes
Create, view, and modify data in tables
Enter SQL statements to directly query any database
Create and maintain data dictionaries to store attribute sets

See the Database Application Developer's Guide for details on how to use C++Builder to create
database client applications that use the Borland Database Engine to retrieve data from and send data
to local and remote database servers.
To read these topics in sequence, press the >> button.

Compiling and running applications
See also
All C++Builder projects target a single executable file, either an EXE or a DLL file. You can view or test
your application at various stages of development by compiling, building, or running it. See "Setting
project options and compiling" for a discussion on compiling C++Builder applications.
You can customize the project through Project Options dialog boxes or through the command line. C+
+Builder comes with a full set of command-line tools. Command-line tools include compilers, linkers, a
project builder (MAKE), and other utilities. Refer to the BCBTOOLS online Help file for information on
the command-line tools.
To read these topics in sequence, press the >> button.

Debugging applications
See also
C++Builder provides an integrated debugger that helps you find and fix errors in your applications. The
integrated debugger lets you control program execution, monitor variable values and items in data
structures, and modify data values while debugging. See About the Integrated Debugger for details.
You prepare for debugging by compiling and linking your application with debug information. Then, you
can begin debugging by running your program under the control of the debugger. You can use the
features of the debugger to examine the current state of the program. You can debug a specific area of
the program, execute it one line or instruction at a time, set breakpoints, or pause execution. By viewing
the values of variables, the functions on the call stack, and the program output, you can check that the
area of code you are examining is performing as designed.
To read these topics in sequence, press the >> button.

Deploying applications
See also
Some versions of C++Builder include add-on tools to help with application deployment. For example,
InstallShield Express helps you to create an installation package for your application that includes all of
the files needed for running a distributed application. PVCS Version Manager software is also available
for tracking application updates.
To read these topics in sequence, press the << button.

Creating forms
See also
Forms are the foundation for all your C++Builder applications. You design the user interface for your
applications using forms. Forms can contain menus, buttons, edit boxes, dialog boxes, or any other
objects you need to make your application work the way you want. When you finish designing your form,
you can add it to the Object Repository so you or others can reuse it in their projects.
This section discusses the following topics:

What are forms?
What are components?
Setting component properties
Building dialog boxes
Managing forms at runtime
Using predesigned forms
Creating form templates

To read these topics in sequence, press the >> button.

Creating a C++Builder application
See also
In brief, to create a C++Builder application, you do the following:
1. Start with a form.
2. Put components on the form.
3. Set the properties of the components.
4. Create a default event handler.
5. Write event handler code to make the component do something.
6. Save the project.
A C++Builder application usually contains multiple forms: a main form, which is the primary user
interface, and other forms such as dialog boxes, secondary windows, and so on.
You develop your application by customizing the main form and adding and customizing other forms.
You customize forms by adding components, setting their properties, and creating menus to provide
user control over the application at runtime. You can also add components such as the menu
component or pop-up menu component to create a main menu and context (right-click) menus for your
application.
To read these topics in sequence, press the >> button.

What are forms?
See also
Forms are specialized objects on which you place VCL components. Forms generally appear as
windows and dialog boxes in a running application.
Even though you design the application user interface using forms, it's important to understand that a
form is just another component. So as with other components, you interact with forms by reading and
setting their properties, calling their methods, and responding to their events.
Associated with each form is a .CPP and .H file pair, referred to collectively as the form unit.
To read these topics in sequence, press the >> button.

What are components?
See also
Components in C++Builder are the building blocks of an application. Each component represents some
single application element, such as a user interface object, a database, or a system function. By
choosing and connecting these elements, you build the interface of your application. Components may
also have an event handler that allows it to receive and respond to specific types of input. For example,
a button has an OnButtonClick event handler that instructs the button how to respond to a click, right-
click, or double-click.
To read these topics in sequence, press the >> button.

Creating a form
See also
C++Builder provides several ways to create a new form, reuse existing forms, and customize existing
forms.

You can create a new form in many ways. For example:
Start C++Builder.

C++Builder generates a blank form, its associated unit, and a project file.
Note: If you chose a different form or project as the default from the Object Repository dialog box, the

default form opens instead of a blank form.
Create a new application by choosing File|New Application.

C++Builder generates a new form and unit file whenever it generates a new application.
Add a new form to an existing project by choosing File|New Form.

After the form is created, you can add components to the form.
To reuse existing forms, see "Using predesigned forms".
To read these topics in sequence, press the >> button.

Placing components on a form
See also

The easiest way to place a component on a form is to
1. Double-click a component on the Component palette.
2. Click the form to place the component. The upper left corner of the component is placed where you

click on the form.
3. Click the resizing handles on the component and drag to size the component, if you need to.
You've just started creating your first form. Before you place other components on the form, see
"Understanding components"to learn how to select appropriate components for your application.
To learn more about using components, see "Manipulating components in forms".
To read these topics in sequence, press the >> button.

Understanding components
See also
Components are the building blocks of C++Builder applications. Each component encapsulate some
single application element in a standardized, reusable way. Understanding this component model is the
most important step to understanding C++Builder.
This section examines two views of C++Builder's components: a hierarchical view and a functional view.
The hierarchical view describes components according to what they are, whereas the functional view
describes components according to what they do.
To read these topics in sequence, press the >> button.

Component hierarchy
See also
One way to understand components is to look at the inheritance relationships that different components
share. By noting the common properties, methods, and events that various groups of components
inherit, you can understand some of their similarities and differences. For details on the Visual
Component Library (VCL) hierarchy, see the Component Writer's Guide and the VCL Reference.
The following figure shows a simplified view of the major kinds of components.
A simple component hierarchy

In general, components fall into two broad categories: nonvisual components and controls.
Nonvisual components are components which represent program elements that the user cannot

interact with directly, such as system timers and database connections. Nonvisual components appear at
design time as small icons on a form or data module, which enables you to select them for setting
properties and attaching event handlers.

Some nonvisual components actually represent visual elements when the application runs, such as a
main menu bar or a Windows common dialog box. They store a description of items the application
will create at the appropriate time when running.

Controls are visible elements the user can interact with at runtime. In general, they look the same
at design time as they will at runtime, which facilitates form layout. Whenever possible, C++Builder
controls look and act "live" at design time: a list box displays its list of items, a data grid connected to an
active data set displays actual data.

There are two subcategories of controls: windowed and graphics controls.
Windowed controls are controls that can get input focus. Most of the standard Windows controls

are windowed controls. The term "windowed" comes from the fact that such controls have a window
handle (which you can access through a Handle property).

Graphics controls (sometimes called "non-windowed controls") are controls that cannot receive
focus, and do not have window handles. Graphic controls consume fewer system resources, so they are
useful for complex forms that need to display numerous controls.

The distinction between windowed and graphic controls is important when you design your user
interfaces. For example, if you create a toolbar that contains a large number of buttons, you could use
standard Windows button components, but each one would consume a window handle. You could
instead choose a non-windowed speedbutton component that would greatly reduce the drain on
system resources.

To read these topics in sequence, press the >> button.

What components do
See also
Another way to understand components is to look at what they do. In many cases, several components
can all perform the desired action, but you might choose one because it has greater capacity, better
performance, or lesser impact on system resources.
The following table lists categories of common user interface tasks and suggests the components you
would consider for those tasks. To learn more about a specific component, select it and press F1.

Task category Components
Text input and manipulation edit box, memo, mask edit, rich edit, DBText, DBEdit, DBMemo
Specialized input scroll bar, track bar, up-down, hot key
Button input, choosing
options

button, check box, radio button, bitmap button, speedbutton, DB check
box, DB radio button, tab set

List display and
manipulation

list box, combo box, tree view, list view, DB list box, DB check box, DB
lookup list box, DB lookup combo box

Grouping components group box, radio group, panel, scroll box, tab control, page control, header
control, tabbed notebook, notebook

Visual feedback label, progress bar, status bar, panel
Tabular display string grid, draw grid, DB grid, DB control grid
Graphic display image, shape, bevel, image list, paint box
Windows common dialog
boxes

open dialog, save dialog, font dialog, color dialog, print dialog, printer setup
dialog, search dialog, replace dialog

To read these topics in sequence, press the >> button.

C++Builder component groupings
See also
The components on the palette are grouped into pages according to similar functions. You can add,
remove, and rearrange components as you choose. The following table lists the default Component
palette pages and the kinds of components each contains.

Page name Contents
Standard Standard Windows controls and menus
Additional Customized controls
Win95 Windows 95 common controls
Data Access Non-visual components that access databases, tables, queries, and reports
Data Controls Visual, data-aware controls
Win 3.1 Windows 3.1 style controls
Dialogs Windows common dialog boxes
System Components and controls for system-level access, including timers, file system,

multimedia, and DDE
QReport Quick Reports components for easily creating embedded reports
ActiveX Sample OLE controls
Internet ActiveX controls for Internet programming

To learn more about any component, select the component and press F1.
To read these topics in sequence, press the >> button.

Common component elements
See also
All components have properties, methods, and events built into them. Some of these they inherit from
their ancestor component types, which means they share these elements with other components. Such
elements are called common elements. For example, all controls inherit a property called Height that
represents the vertical size of the control. Height is therefore a property common to all controls.
To read these topics in sequence, press the >> button.

Naming components used in your application
See also
Several properties are common to all components, but the most important is the Name property. Name
is different from other properties in several ways. Every component in an application must have a unique
name, so assigning meaningful names at the outset makes your code more readable, and prevents
possible name conflicts later. This differs from the Caption property which is used to display information
to the user and has no other meaning to the underlying program.
Component names must follow the standard rules for naming C++ identifiers. If you enter a value that is
not consistent with C++ naming requirements, the name reverts to its previous value, and C++Builder
displays an error message.
C++Builder assigns default names to forms and components which may not make your code easy to
read. It is good practice to change the Name property so that it is descriptive of the component's
function.
Note: As long as you use the Object Inspector to change a component's Name property, C++Builder

maintains your changes in the underlying code that it generates. This is not the case, however, if
you edit the component name yourself by making the change directly in the Code editor. If you
manually edit a component name, C++Builder will be unable to load your form; unless you
change all occurrences of the object's name.

To read these topics in sequence, press the >> button.

Changing the name of a component
See also
To change the name of a component,
1. Select the component.
2. In the Object Inspector, select the Name property and enter a new name, following the standard rules

for naming C++ identifiers.
Note: Changing the Name property also changes the Caption property unless you already changed the

Caption property. The value of the Caption property has precedence over the Name property.
To read these topics in sequence, press the >> button.

Manipulating components in forms
See also
You can select, cut, copy, paste, move, delete, and restore components the same way you do in other
Windows applications. Some skills may be specific to C++Builder including

Adding components to a form
Organizing components
Aligning components

To read these topics in sequence, press the >> button.

Adding components to a form
See also
To add a component to the center of a form, double-click the component in the Component palette.
If components already reside in the center of the form, new ones are placed on top. You can move them
to the desired position.
To read these topics in sequence, press the >> button.

Adding components in a specific location
See also
To add a component to a specific location in the form,
1. Click the component on the Component palette.
2. Move the cursor to where you want the upper left corner of the component to appear in the form, then

click the form.
The component appears in its default size at the position you clicked on the form.

When you add a component to a form, C++Builder generates an instance variable, for the component
and adds it to the form's type declaration. C++Builder is a two-way tool, so adding a component
changes the form's type declaration:

class TAboutBox : public TForm
{
__published:
 TButton *Button1:
 TButton *Button2;
 void __fastcall Button1Click(TObject *Sender);
private: //private user declarations
public: //public user declarations
 virtual __fastcall TAboutBox(TComponent* Owner);
};

Similarly, when you delete a component, C++Builder deletes the corresponding type declaration.
To read these topics in sequence, press the >> button.

Adding multiple copies of a component
See also
To add multiple copies of the same component,
1. Press and hold down the Shift key.
2. Click the component on the palette, then click the form once for each copy you want of the

component. (You don't need to hold down the Shift key after the component is selected.)
Clicking on the form continues to add the component to the form, as long as the component remains
selected in the palette.

3. Click the pointer icon to clear the selected component.
To read these topics in sequence, press the >> button.

Organizing components
See also
C++Builder provides several components--the group box, panel, notebook, page control, and scroll
box--that can contain other components. These are called container components. You can use these
container components to group other components so that they behave as a unit at design time. You
often use container components such as the panel component to create customized toolbars,
backdrops, status bars, and so on.
When you place components within container components, you create a new parent-child relationship
between the container and the components it contains. Design-time operations you perform on these
"container" (or parent) components, such as moving, copying, or deleting, also affect any components
grouped within them.
Note: The form remains the owner for all components, regardless of whether they are parented within

another component.
Once a component is on the form, you must add it to a container component by cutting and then pasting
it. Simply moving it will not add it to the container.
To read these topics in sequence, press the >> button.

Grouping components
See also
To group components,
1. Add a group box or panel component to a form.
2. Making sure that the container component is selected, add components as you normally would.

As you add components, they appear inside the container component.
To read these topics in sequence, press the >> button.

Adding multiple copies of a component to a container
See also
To add multiple copies of a component to a container,
1. Press Shift and then select a component from the palette.
2. Click anywhere in the container component.

Each subsequent click continues to place the component in whatever eligible receiving component
(including the form) is clicked.

3. Select the pointer icon when you finish adding components.
To read these topics in sequence, press the >> button.

Aligning components
See also
Once you select the components you want to align, you can use the Alignment palette or the Alignment
dialog box to set the alignment. When aligning a group of components, the first component you select is
used as a guide to which the other components are aligned.

Aligning using the Alignment palette
See also
To align components using the Alignment palette,
1. Select the components.
2. Choose View|Alignment palette.

The Alignment palette appears.
3. Select an alignment icon from the palette.

To read these topics in sequence, press the >> button.

Aligning using the Alignment dialog box
See also
To align components using the Alignment dialog box,
1. Select the components.
2. Choose Edit|Align.

The Alignment dialog box appears.

3. Select the alignment options you want in the dialog box.
4. Choose OK to put your alignment options into effect.

You can continue to choose or modify alignment options as long as the components remain selected.
To read these topics in sequence, press the >> button.

Aligning components using the grid
See also
The evenly spaced dots that appear in the form at design time are the form grid. The grid makes it
easier to align components visually.
Form grid

By default, both the grid and its Snap To Grid option, which causes the left and top sides of each
component to always align with the nearest grid markings, are enabled at design time. You can, however,
choose to disable the Snap To Grid option or disable the grid altogether.
You can also modify the granularity of the grid--that is, how far apart the grid dots appear.
To read these topics in sequence, press the >> button.

Setting grid options
See also
To set form grid options,
1. Choose Options|Environment to display the Environment Options dialog box.
2. Click the Preferences tab to display the Preferences page if it is not already visible.
3. In the Form designer options, check Display Grid to view the grid, or uncheck it to hide it.
To read these topics in sequence, press the >> button.

Snapping to grid
See also
To enable the Snap To Grid option,
1. Choose Options|Environment to display the Environment Options dialog box.
2. In the Form Designer options, check the Snap To Grid to enable the option, or uncheck it to disable it.
To read these topics in sequence, press the >> button.

Changing grid size
See also
To modify the granularity of the grid,
1. Choose Options|Environment to display the Environment Options dialog box.
2. In the Form designer options, enter new values in the Grid Size boxes.

Grid size X controls the horizontal spacing, and grid size Y controls the vertical spacing. The default
values are 8 and 8. To space the dots further apart, choose larger numbers. To create a finer grid,
choose smaller numbers.

To read these topics in sequence, press the >> button.

Locking the position of components
See also
Once you have aligned the components on a form, you can prevent components from being moved
accidentally.
To lock the position of the components on a form,

Choose Edit|Lock Controls from the menu bar.
To read these topics in sequence, press the >> button.

Viewing forms
See also
To switch among forms in a project,
1. Choose View|Forms.

The View Form dialog box appears.

2. Select the form you want to view, then choose OK.
You can also use the Project Manager to navigate to different forms in your project. Choose View|Project
Manager.
To read these topics in sequence, press the >> button.

Viewing units
See also
To switch among units in a project,
1. Choose View|Units.

The View Unit dialog box appears.

2. Select the unit you want to view, then choose OK.
You can also use the Project Manager to navigate to different units in your project. Choose View|Project
Manager.
To read these topics in sequence, press the >> button.

Setting component properties
See also
You can set component properties at design time or change values while an application is running. For
more information about the properties of each component, search online Help for the keyword
components, or see the topic Visual Component Library components, and select the component whose
properties you want to view. You can also press F1 with the component selected in the form.
Note: The components on the ActiveX page of the Component palette are provided as examples only,

because they are not formally part of the C++Builder VCL, and therefore are not documented as
part of C++Builder.

To read these topics in sequence, press the >> button.

About the Object Inspector
See also
The Object Inspector enables you to

Set design-time properties for components you placed on a form (or for the form itself)
Create and help you navigate through event handlers

The Object selector at the top of the Object Inspector is a drop-down list containing all the components
on the active form and it also displays the object type of the selected component. This lets you quickly
select different components on the current form.
You can resize the columns of the Object Inspector by dragging the separator line to a new position.
The Object Inspector has two pages:

Properties page
Events page

To read these topics in sequence, press the >> button.

Properties page
See also
The Properties page of the Object Inspector enables you to set design-time properties for components
on your form, and for the form itself. You can set runtime properties by writing source code inside event
handlers.
The Properties page displays only the published properties of the component that is selected on the
form.
To read these topics in sequence, press the >> button.

Events page
See also
The Events page of the Object Inspector enables you to connect forms and components to program
events. When you double-click an event from the Events page, C++Builder creates an event handler
and switches focus to the Code editor. In the Code editor, you write the code inside event handlers that
specifies how a component or form responds to a particular event.
The Events page displays only the events of the component that is selected in the form.
To read these topics in sequence, press the >> button.

How the Object Inspector displays properties
See also
The Object Inspector dynamically changes the set of properties it displays, based on the component
selected. Only the shared properties are displayed. For example, if you select a Label and a GroupBox,
you'll see the property Color along with other properties. If you select a Label and then a Button, the
choice for Color goes away because Color is not a property for buttons. The Object Inspector has
several other behaviors that make it easier to set component properties at design time.

When you use the Object Inspector to select a property, the property remains selected in the
Object Inspector while you add or switch focus to other components in the form, provided that those
components also share the same property. This enables you to type a new value for the property without
always having to reselect the property.

If a component does not share the selected property, C++Builder selects its Caption property. If the
component does not have a Caption property, C++Builder selects its Name property.

When more than one component is selected in the form, the Object Inspector displays all
properties that are shared among the selected components. This is true even when the value for the
shared property differs among the selected components. In this case, the property values displayed are
either the default, or the value of the first component selected. When you change any of the shared
properties in the Object Inspector, the property value changes those values in all the selected
components.

There is one exception to this: when you select multiple components in a form, the Name property no
longer appears in the Object Inspector, even though they all have a Name property. This is because
you cannot assign the same name to more than one component in a form.

To read these topics in sequence, press the >> button.

Tabbing to specific properties
See also
You can jump directly to a property in the Object Inspector by pressing the Tab key followed by any
alphabetic character. The cursor jumps to the Property column of the first property beginning with the
typed letter. (The Object Inspector lists property names alphabetically.)
To tab to a specific property (in this case, Width),
1. Select the form.
2. In the Object Inspector, select the form's AutoScroll property.
3. Press Tab, W to jump directly to the Width property.
4. Press Tab again to place the cursor in the Value column, where you can begin entering your edits.
Pressing Tab acts as a toggle between the Value column and the Property column. Whenever you are in
the Property column, pressing an alphabetic character jumps you to the first property starting with that
character.
To read these topics in sequence, press the >> button.

Changing component properties
See also
You can change component properties at design time or dynamically when the application runs. You can
also view a form as a text file and make changes that will be reflected in the Object Inspector.
To change a component property at design time,
1. Select the component in the form or with the Object selector.
2. Select the property that you want to change by selecting it from the Properties page.
3. Type a new value for that property.
To change a component property at runtime,
1. Select the component in your source code using the Code editor. (For example, Form1)
2. Select the property that you want to change (Color) and type a new value (clAqua).

See the following example:
Form1->Color = clAqua;

To read these topics in sequence, press the >> button.

Displaying and setting shared properties
See also
You can set shared properties to the same value without having to individually set them for each
component.
To display and edit shared properties,
1. In the form, Shift+click to select the components whose shared property you want to set.

The Properties page of the Object Inspector displays only those properties that the selected
components have in common. (Notice, however, that the Name property is no longer visible because
each component must have a unique name.)

2. With the components still selected, use the Object Inspector to set the property.
To read these topics in sequence, press the >> button.

Building dialog boxes
See also
C++Builder provides a number of predesigned dialog boxes as components for your user interface.
They appear on the Dialogs page of the Component palette. You can specify different options for these
dialog boxes, such as whether a Help button appears in the dialog box, and then add any changes your
dialog requires. You can also develop customized dialog boxes.
To read these topics in sequence, press the >> button.

Developing customized dialog boxes
See also
This section discusses the most common considerations when designing customized dialog boxes,
including

Making a dialog box modal or modeless
Setting form properties for a dialog box
Specifying a caption for a dialog box
Creating standard command buttons
Setting the tab order
Testing the tab order
Removing a component from the tab order
Disabling components

To read these topics in sequence, press the >> button.

Making a dialog box modal or modeless
See also
At design time, dialog boxes are simply customized forms. At runtime, they can be either modal or
modeless. When a form runs modally, the user must explicitly close it before working in another running
form. Most dialog boxes are modal.
When a running form is modeless, it can remain onscreen while the user works in another form (for
example, the application main form). You might create a modeless form to display status information,
such as the number of records searched during a query, or information the user might want to refer to
while working.
Note: If you want a modeless dialog box to remain on top of other open windows at runtime, set its

FormStyle property to fsStayOnTop.
Forms have two methods that govern their runtime modality. To display a form in a modeless state, you
call its Show method; to display a form modally, you call its ShowModal method.
To read these topics in sequence, press the >> button.

Setting form properties for a dialog box
See also
By default, C++Builder forms have Maximize and Minimize buttons, a resizable border, and a Control
menu that provides additional commands to resize the form. While these features are useful at runtime
for modeless forms, modal dialog boxes seldom need them.
C++Builder provides a BorderStyle property for the form that includes several useful values. Setting the
form's BorderStyle to bsDialog implements the most common settings for a modal dialog box:

Removing the Minimize and Maximize buttons
Providing a Control menu with only the Move and Close options
Making the form border non-resizable, and giving it a "beveled" appearance

The following table shows other form property settings that can be used, individually or in concert, to
create different form styles.

Property Setting Effect
BorderIcons
 biSystemMenu False Removes Control (System) menu
 biMinimize False Removes Minimize button
 biMaximize False Removes Maximize button
BorderStyle

bsSizeable Lets the user resize the form border
bsSingle Provides a single, non-resizable border
bsNone No distinguishable border; not resizable
bsDialog Window has a border, but not resizable
bsToolWindow Makes the title bar small; window is not resizable
bsSizeToolWindow Makes the title bar small; window is resizable

Note: Changing these settings doesn't change the design-time appearance of the form; these property
settings become visible at runtime.

To read these topics in sequence, press the >> button.

Specifying a caption for a dialog box
See also
By default, C++Builder displays the Name property value for each form in the form's title bar. If you
change the Name property of the form prior to changing the Caption property, the title bar caption
changes to the new name. Once you change the Caption property, the form's title bar always reflects the
current value of Caption.
To read these topics in sequence, press the >> button.

Creating standard command buttons
See also
You can quickly create buttons for many standard commands by adding BitBtn components to the form
and setting the Kind property for each button. The possible Kind property settings and their effect are
shown in the following table. (In addition to the property settings shown, the bitmap button displays
graphics, such as a green check mark for the OK button, or a red X for the Cancel button.)

Kind value Effect Appearance Equivalent property setting(s) Comments
bkAbort Makes a Cancel

button with Abort
as caption

Caption := 'Abort'ModalResult :=
mrAbort

Red X appears next to
caption.

bkAll Creates an OK
button (with All
caption)

Caption := '&All'ModalResult := 8 Green double check mark
appears next to caption.

bkCancel Makes a Cancel
button

Caption := 'Cancel'Cancel :=
trueModalResult := mrCancel

Red X appears next to
caption.

bkClose Creates a Close
button; closes the
window

Caption := '&Close' A lavender "exit" door
appears as the glyph for this
button.

bkCustom None N/A N/A Use this setting to create a
custom command button,
including specifying a
custom Glyph bitmap.

bkHelp Creates a button
with Help as the
caption

Caption := '&Help' A blue ? appears next to the
caption. Use the event
handler of this button to call
your program Help file. (If
the dialog box has a Help
context, C++Builder does
this automatically.)

bkIgnore Creates a button
to ignore changes
and proceed with
specified action

Caption := '&Ignore'ModalResult :=
mrIgnore

Use to continue an operation
after an error condition has
occurred.

bkNo Makes a Cancel
button (with No as
the caption)

Caption := '&No'Cancel :=
trueModalResult := mrNo

Red circle with slash
appears next to caption.

bkOK Creates an OK
button

Caption := 'OK'Default :=
trueModalResult := mrOK

Green check mark appears
next to caption.

bkRetry Creates a button
to retry specified
action

Caption := '&Retry'ModalResult :=
mrRetry

Green circular arrow
appears next to the caption.

bkYes Creates an OK
button (with Yes
caption)

Caption := '&Yes'Default :=
trueModalResult := mrYes

Green check mark appears
next to caption.

Note that setting the Kind property, discussed previously, also sets the ModalResult property in every
case except bkCustom, bkHelp, and bkClose. In these cases, ModalResult remains mrNone, and
choosing the button doesn't automatically close the dialog box.
To read these topics in sequence, press the >> button.

Executing button code on Esc
See also
C++Builder provides a Cancel property for button components. When your form contains a button
whose Cancel property is set to true, pressing the Esc key at runtime executes any code contained in
the button's OnClick event handler.
To designate a button as the Cancel button, set its Cancel property to true.

To close the modal dialog box when the user chooses a Cancel button, set the button's
ModalResult property to mrCancel.
Setting a button's ModalResult property to a nonzero value causes the modal dialog box to close
automatically when the user chooses the button.
You can also use the BitBtn component to create a Cancel button.
To use the bitmap button to create a Cancel button,

Add a BitBtn component to your form, and set its Kind property to bkCancel. This sets the
button's Cancel property to true, and the ModalResult property to mrCancel.
To read these topics in sequence, press the >> button.

Executing button code on Enter
See also
When your form contains a button whose Default property is set to true, pressing Enter at runtime
executes any code contained in the button's OnClick event handler--unless another button has focus
when the Enter key is pressed.
Even if your form contains a default button, another button can take focus away at runtime. Pressing the
Enter key calls the OnClick event handler code of the button with focus, overriding any other button's
Default property setting. (The button with focus is indicated by a darker, thicker border than other
buttons in the dialog box.)
For example, in the File|Open dialog box, the Open button is the default button. If you select a file name
and press Enter, the code attached to the Open button will execute. If you tab to the Cancel button and
press Enter, the code attached to that button will execute.
Note: Although other components in a form can have focus, usually button components respond when

the user presses Enter. The default button takes the OnClick event when another non-button
component in the form has focus.

To specify a button as the default button, set its Default property to true.
To change focus at runtime, call the button's SetFocus method.
To specify that the modal dialog box close when the user chooses a default button, set the button's
ModalResult property to mrOK.
Setting a button's ModalResult property to a nonzero value means the modal dialog box closes
automatically when the user chooses the button.
You can also use the BitBtn component to create a Default button.
To use the bitmap button to create a default button,

Add a BitBtn component to your form, and set its Kind property to bkOK. This automatically sets
the button's Default property to true and the ModalResult property to mrOK.
To read these topics in sequence, press the >> button.

Closing a dialog box when the user chooses a button
See also
You can specify that a modal dialog box closes automatically when the user chooses any button whose
ModalResult property has a nonzero value. By setting ModalResult to match a button's caption, you can
also determine which button the user chose.
For example, if you have a Cancel button, set its ModalResult property to mrCancel; if your form
contains an OK button, set its ModalResult to mrOK. Both buttons will close the form when chosen,
because ModalResult returns a nonzero value to the ShowModal function. However, because
ModalResult returns mrCancel in one case, and mrOK in the other, your code can determine which
button was pressed and branch accordingly.
To automatically close the dialog box when the user chooses a Cancel button or presses Esc, set the
Cancel button's ModalResult property to mrCancel.
To automatically close the dialog box when the user presses Enter when an OK button has focus, set
the button's ModalResult property to mrOK.
To read these topics in sequence, press the >> button.

Setting the tab order
See also
Tab order is the order in which focus moves from component to component on a form that is displayed in
a running application when the user presses the Tab key. To let the Tab key shift focus to a component
on a form, the TabStop property of the component must be set to true.
The tab order is initially set by C++Builder, corresponding to the order in which you add components to
the form. You can change this by using the Edit Tab Order dialog box, or by changing the TabOrder
property of each component.
To read these topics in sequence, press the >> button.

Setting tabs with the Edit Tab Order dialog box
See also
To change the tab order using the Edit Tab Order dialog box,
1. Select the form or a container component in the form, that contains the components whose tab order

you want to set.
2. Choose Edit|Tab Order, or right-click and choose Tab Order.

The Edit Tab Order dialog box appears, displaying a list of components ordered (first to last) in their
current Tab order.

3. In the Controls list, select a component, and press the appropriate arrow button (Up or Down), or
move the component to its new location in the tab order list.

4. When the components are ordered the way you want, choose OK.
Using the Edit Tab Order dialog box changes the value of the component's TabOrder property. You can
also do this manually, if you want.
Keep in mind the following points when manually setting your tab order (you needn't be concerned with
these points if using the Edit Tab Order dialog box):

Each TabOrder property value must be unique. If you assign two components the same TabOrder
value, C++Builder renumbers the TabOrder value for all other components accordingly.

If you attempt to give a component a TabOrder value equal to or greater than the number of
components on the form (because numbering starts with 0), C++Builder changes the value, so it is last in
the tab order.

Invisible or disabled components are not recognized in the tab order, even if they have a valid
TabOrder value. When the user presses Tab, the focus skips over such components and goes to the next
one in the tab order.
To read these topics in sequence, press the >> button.

Setting tabs with the Tab Order property
See also
To change tab order using the component's TabOrder property,
1. Select the component whose position in the tab order you want to change.
2. In the Object Inspector, select the TabOrder property.
3. Change the TabOrder property's integer value to the value you want the component to have in the tab

order, starting with the number zero.
To read these topics in sequence, press the >> button.

Testing the tab order
See also
You can test the tab order you've set by running the application. At design time, focus always moves
from component to component in the order that the components were placed on the form. Changes you
make to the tab order are reflected only at runtime.
To test the tab order,
1. Compile and run the application.
2. Display the form whose tab order you want to test.
3. Use the Tab key to view the order in which focus moves from component to component.

Removing a component from the tab order
See also
In some cases, you might want to prevent users from being able to tab to a component on a form, and
have them skip to the next one instead.
To remove a component from the tab order,
1. Select the component.
2. Use the Object Inspector to set the value of the TabStop property to False.
Note: Removing a component from the tab order doesn't disable the component.
To read these topics in sequence, press the >> button.

Disabling components
See also
When a component is disabled, it appears dimmed in the running application, and the user cannot tab to
it, even if its TabStop property is set to true.
By disabling a component at design time, that component will be initially unavailable to the user when
the dialog box first opens. You can also dynamically change whether a component is enabled at runtime.
To disable a component at design time, use the Object Inspector to set the component's Enabled
property to False.
To disable a component at runtime, type the following code in an event handler for the component:

<component>->Enabled = false;
For example, the following event handler specifies that when Button1 receives an OnClick event,
Button2 is disabled.

void __fastcall TAboutBox::Button1Click(TObject* Sender)
{
 Button2->Enabled = false;
}

To read these topics in sequence, press the >> button.

Managing forms at runtime
See also
You can specify two runtime behaviors of forms at design time.

Designating a form as the project main form
Controlling the creation order of forms at runtime

To read these topics in sequence, press the >> button.
To read these topics in sequence, press the >> button.

Setting properties at runtime
See also
Any property you can set at design time can also be set at runtime by using code. Other properties
called runtime-only properties can be accessed only at runtime.
When you use the Object Inspector to set a component property at design time, you follow these steps:
1. Select the component.
2. Specify the property (by selecting it from the Properties page).
3. Enter a new value for that property.
Setting properties at runtime involves the same steps: in your source code, you specify the component,
the property, and the new value, in that order. Runtime property settings override any settings made at
design time.
To read these topics in sequence, press the >> button.

Specifying the project main form
See also
The first form you create and save in a project becomes, by default, the project's main form, which is the
first form created at runtime. As you add forms to your projects, you might decide to designate a
different form as your application's main form.
To change the project main form,
1. Choose Options|Project to display the Project Options dialog box.
2. Select the Forms page of the dialog box.
3. In the Main Form combo box, select the form you want as the project's main form and choose the OK

button.
Now if you run the application, your new main form choice is displayed.
To read these topics in sequence, press the >> button.

Specifying forms to auto-create
See also
The form you specify as the project main form is always "created" (loaded in memory) when the
application runs. As you create additional forms for the project, these are also auto-created at runtime.
However, there might be times when you decide you don't want all the forms in an application created in
memory when the application first starts running; you might prefer to control when the forms are created.
For example, if there are several different forms that automatically connect to databases, you might
prefer to create those forms only as necessary.
You can use the Project Options dialog box to specify which of your application's forms will auto-create
at runtime.
To specify whether forms are auto-created at runtime,
1. Choose Options|Project, and select the Forms page of the dialog box.

The names of all forms in the project are displayed in the Auto-Create Forms list.
2. In the Auto-Create Forms list, select any form(s) that you do not want created in memory at runtime,

and choose the > button. To move all form names from one list to the other, choose the << or the >>
button.
The selected forms move to the Available Forms list. Forms displayed in this list are not automatically
created at runtime.

3. Choose the OK button to save the information and close the dialog box.
Note: It's usually best to have C++Builder create your application forms. If you decide not to auto-create

a form, you must specifically create the forms at runtime by writing code. If you try to reference a
form that hasn't first been created, for example by calling its Show method, C++Builder raises an
exception.

To read these topics in sequence, press the >> button.

Controlling the form auto-create order
See also
To change a form's creation order, in the auto-create list, select the form name and drag it to the position
you want.
Note: The main form and auto-create specifications on the Forms page of the Project Options dialog

box are reflected in the Application->CreateForm statements in the project file.
To read these topics in sequence, press the >> button.

Instantiating forms at runtime
See also
If you move a form into the Available Forms List Box in the Forms page of the Project Options dialog
box, you must instantiate that form at runtime.
Instantiate a form at runtime when you cannot determine at design time how many instances of the form
will be required when the application is running. Instantiating forms at runtime can also reduce the
memory requirements of the application and reduce the amount of startup time when the application is
run.
Note: When creating an application that instantiates forms at runtime, make sure that the code of the

application does not try to access the instance of the form before it has been created.
To instantiate a form at runtime,
1. Add the name of the header file unit where the form is declared as a #include statement in the unit

that will instantiate the form. This is necessary only if the form type is declared in a different unit.
2. Declare a pointer of the type of the form.
3. Assign the return value of the "new" TFormName(Owner) of the form type to the memory variable.
The memory variable specifies the instance of the form type. For example:

TAboutBox *Box = new TAboutBox(this);
Box->ShowModal();
delete Box;

Note: The name of the pointer identifier that the instance of the form is assigned to should not be the
name of an existing object or component. While unique instance names are not required at
runtime, they are recommended so that the instance of the form is not confused with the Name of
another object.

To read these topics in sequence, press the >> button.

Using predesigned forms
See also
When you start C++Builder for the first time, it opens with an empty project consisting of a single, blank
form that contains no controls or other components. You can then place components on the form. You
can also choose to add a predesigned form to the project and use it or modify it.
You can easily use any of the predesigned forms in the Object Repository in your applications. You can
also save any form you've designed in the Object Repository. To add a predesigned form to your project,
choose File|New.
When you choose File|New, C++Builder displays the New Items dialog box.
New Items dialog box

The New Items dialog box shows what is in the Object Repository. The Object Repository contains forms,
projects, data modules, and wizards you can either use directly, copy into your projects, or derive new
items from.
To read these topics in sequence, press the >> button.

Adding an existing form
See also
You can use any of the forms from the Object Repository in your application.
To add a form from the Object Repository to your project,
1. With a project open, choose File|New.

The New Items dialog box appears.
2. Choose the Forms page.

The Forms page opens with the default new form highlighted.
Note: Depending on which templates have been installed, modified, or deleted in your C++Builder

installation, your Object Repository window for forms might look different from the one shown.
Standard C++Builder forms in the Object Repository

3. Select the form you want to add.
4. Choose one of the sharing options: Copy, Inherit, or Use.

Copy creates an exact copy of the form and places it in your project. Changes made to the
template form in the Object Repository will not affect the form in your project. Note that Copy is the only
option available for Form wizards (such as the Database form wizard), because running the wizard
generates a new form for you.

Inherit derives a new form object from the one in the Object Repository and adds it to your
project. Changes to the template form in the Object Repository will show up in your form, unless you have
already modified that part of the new form.

Use means you want to use and modify the template form. Any changes you make to the form in
your project are reflected back into the template in the Object Repository.
5. Choose OK.

C++Builder adds the form and its associated unit to the project you have open. You can now use this
form the way you would any form in a project.
Modifications you make might affect the original item in the Object Repository, depending on the
sharing option you chose.

Note: With no project open, it is still possible to choose File|New and select a form from the Object
Repository. The form's unit file then opens as a reference file. If you subsequently open a project
or create a new project, the open template form is not part of that project. To save it as part of the

project, you must explicitly add it to the project.
To read these topics in sequence, press the >> button.

Creating form templates
See also
You can create form templates for others to use by saving a form or an object in the Object Repository.
To add your current form to the Object Repository,
1. Right-click the form and choose the Add To Repository command.

The Add To Repository dialog box appears.

2. In the Title edit box, specify a name for the form.
3. In the Description edit box, type a brief description of this form.
4. Choose the Page on which the form should appear in the New Items dialog box.
5. You can specify an Author of the form, which shows only in the detailed view of the Object Repository.
6. To specify an icon for the object, choose the Browse button.

The Select Icon dialog box appears.
7. Locate and select the icon (if any) you want to use, and choose OK to exit the Select Icon dialog box.
8. Choose OK to accept your specifications, and exit the Add To Repository dialog box.
The next time you choose File|New and click the page tab you selected above, your form appears in the
templates list, with the icon and title you chose.
To read these topics in sequence, press the >> button.

Inheriting from forms in the Object Repository
See also
If you create an application with several similar forms, you can create one version of the form, then
create the others by inheriting. This allows you to change the standard form and have those changes
reflected in all the inherited forms.
When browsing items in the Object Repository, you have the option to copy, inherit, or use at the bottom
of the dialog box.

When you inherit from the template form, you create a reference to the ancestor form, and only
have additional code for added components and event handlers. If you inherit several forms in the same
project, they share the inherited code. All the ancestors of the chosen form are also added to the project.
Inheriting forms is a good way to reduce the size of projects that use a number of similar forms. It also
provides a way to create and maintain a set of standard form templates that work in a number of
projects, even when each project requires customization.

Inherit is not enabled when a Form wizard is selected, since these cannot be ancestor forms.
Choosing Copy on a non-inherited form works the same as before: creating a new form that is a copy of
the form chosen.
To read these topics in sequence, press the >> button.

Sharing forms
See also
Before you begin designing and building the forms for your applications, think about whether you want
these forms to be available for other developers to use. C++Builder is designed with the principle of
reusable components in mind, and this encompasses larger elements such as forms or even entire
projects.
The easiest way to share a form is to add an existing form to a project. Place forms that you want to
reuse into the Object Repository.
To read these topics in sequence, press the >> button.

Linking forms
See also
Adding a form or component to a project adds a reference to it in the project file, but not to other parts of
the project. You need to add a reference to it in the other files that need access to it. This is called form
linking.
The most common kind of component that uses such links are data-access components. For example,
you can have a table component on one form in an application and allow several different forms to
provide different views into the same data set, such as a grid view and a form view.
C++Builder links forms by linking their associated units. Given two forms, Form1 and Form2, and their
associated units, Unit1 and Unit2, respectively, components on Form1 can refer to components on
Form2 if Unit1 contains Unit2 in one of its #include directives.
To link one form to another,
1. Select the form that needs to refer to the other.
2. Choose File|Include Unit Hdr.
3. Select the name of the form unit for the form to be referenced.
4. Choose OK.
Linking a form to another just means that the #include directives of one form unit contains a reference
to the other's form unit, meaning that the linked form and its components are now in scope for the linking
form.
To read these topics in sequence, press the << button.

Creating and managing projects
See also
Before you begin programming with C++Builder, it helps to understand the files and projects that you will
use to create your C++Builder applications.
This section introduces you to the files that make up a C++Builder project and how to manage the
projects you create with C++Builder. In addition, the section talks about navigating in the C++Builder
environment, and how to save and use objects stored in the Object Repository. The main topics in this
section are

What is a C++Builder project?
Saving and naming C++Builder files
Viewing project files
Navigating among project components
Using the Object Repository

To read these topics in sequence, press the >> button.

What is a C++Builder project?
See also
A C++Builder project is a collection of all the files that together make up the executable application
or .DLL you are creating. In C++Builder, project files are organized in the project .MAK file.
As your application grows, you'll find it becomes more and more dependent on different intermediate
files as its complexity increases. A Windows program can be composed of resource scripts, import
libraries, object libraries, and source code, with each file type requiring a special setup to be compiled
and linked into the final executable image. Although C++Builder takes care of the complexities of
creating Windows applications, having a firm grasp of the files that make up your C++Builder projects
will help you better understand the applications you create.
As the number of files in your project increases, the greater will be the need to manage the different
project components. By studying the files that make up a project, you can see how a project combines
one or more source files to produce a target file. Target files, for example, can be .OBJ, .DLL, or .EXE
files. Each target file is dependent on all the sources files that are used to create it. Source files consist
of files like .C, .CPP, and .h files. Project management is the organization and management of the
sources and targets that make up your project.
To read these topics in sequence, press the >> button.

C++Builder project files
See also
To manage projects effectively, you need to understand the different file types that can constitute a C+
+Builder project. By default, C++Builder generates several sets of files with each new project you create.
Project files can be broken down into the file groups shown in the following table.

File group Files types in group
Project files .mak, .cpp, and .res files
Form files .cpp, .h, and .dfm files
Unit files .cpp and .h files
Desktop file .dsk file

In C++Builder, you don't need to directly deal with most of the files in your project; C++Builder generates
and maintains many of the files for you. Although you can edit most files directly in the C++Builder Code
editor, it's usually easier and more reliable to edit these files using the visual editors and tools integrated
with C++Builder.
To read these topics in sequence, press the >> button.

Project files
See also
When you create a new project, C++Builder automatically creates the following three files:

Project1.CPP
Project1.MAK
Project1.RES

These files are termed project files because their names are derived from the name you give your
project. When you name the project .MAK file, C++Builder updates the three files, giving them all the
same file name.
To read these topics in sequence, press the >> button.

Project1.CPP
See also
The central point for each project's source code is the project .CPP file, which C++Builder names
Project1.CPP by default. This file contains the entry point for your executable image (the WinMain()
function for applications), which is where your executable begins program execution. In addition to the
program entry point, the project .CPP file coordinates the other forms and units contained in your
application. It is the place where you should declare your global variables and constants.
Although a very simple project could contain nothing besides the project1 .CPP file, a useful C++Builder
project will contain references to the forms and units that it uses. When you load, save, or compile a
project, C++Builder knows which other files to act on by looking at the project .CPP file.
To read these topics in sequence, press the >> button.

Project1.MAK
See also
Project1.MAK is the project makefile, a text file that contains the project option settings and the build
rules for the project. C++Builder uses this file to determine how the different source and target files are
combined to make your final executable images.
For most projects, you can let C++Builder generate and maintain this file. To view the project makefile,
choose View|Project Makefile. For more information on setting advanced project options and the MAKE
utility, refer to the C++Builder online Help system.
To read these topics in sequence, press the >> button.

Project1.RES
See also
C++Builder uses standard Windows-format resource files to include items such as the application icon in
a project. You can edit the project resource file to add other resources, such as bitmaps, cursors, icons,
or strings to the application.
By default, each C++Builder application you create will have a resource file with the same name as the
project file, but with the extension .RES. This file contains a binary image of the program icon.
To read these topics in sequence, press the >> button.

Form files
See also
C++Builder represents each form in your application with three different files, given the following names
by default:

Unit1.DFM
Unit1.CPP and Unit1.h

When you first save a new form, C++Builder prompts you to enter a name for the form .CPP file. C+
+Builder uses the file name you supply to name all three form files.
To read these topics in sequence, press the >> button.

Unit1.DFM
See also
Forms are the most visible part of most C++Builder applications. Normally, you design forms using the
form image and the C++Builder environment. When you create a form at design-time, C++Builder stores
the image of the form in a binary file that describes the form. C++Builder gives binary form files the file
extension of .DFM.
If needed, you can open a .DFM file in the Code editor to modify a text version of the data in the binary
file. To switch back and forth between the form and text views of a form, use the View As Text and View
As Form commands on the context menus of the Form image and the Code editor, respectively. Outside
of C++Builder, you can use CONVERT.EXE to do similar conversions.
You can also translate your form files to text versions for maintenance and version control.
To read these topics in sequence, press the >> button.

Unit1.CPP and Unit1.h
See also
C++Builder generates a C++ source file and header file pair for each form you create. Together, the
three .DFM, .CPP, and .h files make up a C++Builder form. A form .CPP file contains the event handlers
that you write to handle the events of the components you place on the associated form--it is within the
form .CPP files that you do most of your C++Builder programming. A .CPP file that is associated with a
form is sometimes called the form unit.
To read these topics in sequence, press the >> button.

Unit files
See also
There is a small distinction between form files and unit files as they are talked about here. Unit files are
not associated with a form; they are simply a pair of .CPP and .h files. Unit files can are flexible in that
they can be used to house global functions and functions that you plan to share across projects. See
"About form and unit files" for more information on these file types.
To read these topics in sequence, press the >> button.

Desktop file
See also
C++Builder also generates an optional desktop file that it maintains in accordance with your project. The
desktop settings file stores information about the state of your project, such as which windows are open
and in what positions. This allows you to restore your workspace on a project-by-project basis.
The desktop-settings file has the same name as the project file, but with the extension .DSK. To
generate and automatically save a desktop file,
1. Choose Options|Environment.
2. On the Preferences page, check the Desktop box in the Autosave options section.

C++Builder generates and saves a project .DSK file whenever you close the project. The file is stored
in your main project directory.

When you create a desktop file for your projects, C++Builder will open with the same project and
window setup that you had when you last closed C++Builder.
To read these topics in sequence, press the >> button.

About form and unit files
See also
C++Builder supports separately compiled modules of code called units. Using units promotes structured,
reusable code across projects. The most common units in C++Builder projects are form units, which
contain the event handlers and other code for the forms you create in your C++Builder projects.
Unit files are the building blocks of your C++Builder applications--they contain the C++ source code to
all your application forms and all the functions that are called through your program event handlers. For
every unit you create, C++Builder generates a unit pair, consisting of a .CPP source code file and .h
header file. (In addition to the unit pair, forms also contain the binary representation of the form in
a .DFM file.)
Unit files may initially be created as part of a project, but this is not required. You can also create and
save units and form units as standalone files that any project can use. Standalone unit files can contain
any kind of C or C++ code you want to write, such as global functions and functions that you want to
share across forms. For example, you can write your own functions, .DLLs, and components, and put
their source code in a separate unit file that has no associated form. Or you can create form as
standalone units and share them across projects.
When you compile a unit, the C++Builder compiler produces a binary object file with the same file name
as the unit source file, but with an .OBJ file extension. You should never need to open these binary files,
and you do not need to distribute them with your completed application.
To read these topics in sequence, press the >> button.

Unit files for forms
See also
Whenever you create a new form, C++Builder creates the following default form unit code:

//---
#include <vcl.h>
#pragma hdrstop
#include "Unit1.h"
//---
#pragma resource "*.dfm"
TForm1 *Form1;
//---
__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)
{
}
//---

The statement TForm1 *Form1; creates the Form1 object from the TForm1 class, meaning From1
contains all the behaviors and characteristics of a TForm object. To this form unit file, you add event
handlers and support code for each component event that you need to handle for this particular
application form.
To read these topics in sequence, press the >> button.

Standalone unit files
See also
You can write custom functions within any unit, including those associated with a form. You might,
however, want to reuse the routines that you write. In this case, it's better to create a separate unit to
contain those routines. By creating standalone units that have no associated forms, you can easily make
your functions available to other units in your project, and to other projects that can use the functions.
To create a unit file not associated with a form,
1. Choose File|New Unit.
You can also use the New Items dialog box:
1. Choose File|New to access the New Items dialog box.
2. Choose Unit on the New page of the dialog box, then click OK.
Using either method, C++Builder opens a new unit .CPP file without appending the default unit form
code.
It is not necessary to have a project open unless you want the new unit to be part of a project.
If you have a project open, you can also choose New Unit from the Project Manager context menu.
When you create a unit in an open project with the New Unit command, the new unit is registered in the
project file.
Note: Whenever you want a unit to reference the code contained in a second unit, you must access to

the second unit by including its header file in the first unit. To do so, open the first unit in the Code
editor and use the File|Include Unit Hdr command to include the second unit. Using C++Builder to
include unit header files ensures that all your project files are correctly updated.

To read these topics in sequence, press the >> button.

Saving and naming C++Builder files
See also
When you first create a new project in C++Builder, it automatically creates several files and gives them
all default names: Project1.MAK, Unit1.CPP, and so on. To keep track of the individual files in your
project, you should give each file a meaningful name as you first create it in your project. Whenever you
begin a new project, or any time you create a new form or unit file for your project, your first task should
be to name the new files.
Along with custom file names, you should store each project in its own directory. Projects can share
forms, files, and resources located in almost any directory, but it's best to keep the central project file
and any other files specific to the project in a dedicated directory.
To read these topics in sequence, press the >> button.

Saving all open project files
See also
As you create new units and forms in a project, C++Builder supplies all associated files with the name
Unit1, Unit2, Unit3, and so on. C++Builder also supplies a default name for all the files associated with
the project: Project1.MAK, Project1.CPP, and Project1.RES.
To read these topics in sequence, press the >> button.

Saving a new project
See also
When saving a new project, you must give unique names to the project files and the unit files, the two
most visible file sets in a C++Builder project.
To save all open project files, use one of the following methods:

Choose File|Save All.
Choose the Save All button on the C++Builder toolbar.
Choose the Save Project command on the Project Manager context menu.

When you are saving a new project, C++Builder displays the Save As dialog box, which first prompts
you to save any new unit files, then it prompts you for the name of your new project files.
To read these topics in sequence, press the >> button.

Naming unit files
See also
Before naming your first unit file in a project, be sure to supply a unique directory name for your project,
otherwise, C++Builder by default saves the project to the current working directory. You can give a new
directory name here, C++Builder will create the directory you specify.
When you name a unit, C++Builder prompts you to name the unit .CPP file. When you name .CPP file,
C++Builder actually names the three files associated with the unit: Unit.CPP, Unit.h, and Unit.DFM
(the .DFM file exists only in form units).
Note: If you created the project from an existing project template, you will name the new project

directory during the project wizard process.
To read these topics in sequence, press the >> button.

Naming project files
See also
After you name your application unit file(s), C++Builder prompts you to name the project files. This
processing order ensures that all unit and form file names are correctly registered in the project file, and
that the unit and project file names do not match.
When naming the project, C++Builder prompts for the project .MAK makefile name. When you name the
project makefile, C++Builder names the three associated files: Project.MAK, Project.CPP, and
Project.RES.
The executable file you are creating depends on the name you give to the project makefile; when you
build your project, C++Builder produces an executable file on disk with the same name as the project
makefile, but with the extension .EXE or .DLL appended as appropriate.
All unit and project file names must be legal C++ identifiers. When the compiler looks for a unit or project
file, it first searches for a file with the full name of the unit or project identifier. If it does not find that file, it
will then search for a version of the identifier name, truncated to eight characters. This is for backward
compatibility and for compatibility with file servers that only store short file names. You should not
manually truncate your file names.
To read these topics in sequence, press the >> button.

Saving an existing project
See also
If you have previously saved a project, the Save All command saves to disk all open project files that
you have modified since the last save.
If you have opened any new forms or units in the project since the last save, the Save <Filename> As
dialog box appears and prompts you to give unique names those unit files before saving them. The
project file is then updated to reflect the new unit names and any newly shared files that you have
specified for the project to use.
To read these topics in sequence, press the >> button.

Saving individual project files
See also
You are not limited to saving a project as a whole. C++Builder lets you save individual constituent files of
a project, including saving a copy of a file in a different directory or with a different file name.
You can also save your project as a project template which adds it to the Object Repository so that you
or others can reuse it. For more information, see "Adding projects to the Object Repository".
To save individual project files (or non-project files such as text files) that you have open in the Code
editor:
1. Bring the file to the front of the Code editor by selecting its tab.
2. Press Ctrl+S, or choose File|Save, then choose OK.

If this is the first time you've saved the file, you're prompted to name it before saving it.
To read these topics in sequence, press the >> button.

Changing a file name
See also
To save a file using a different file name or to a different location,
1. Bring the file to the topmost level of the Code editor by selecting its tab.
2. Choose File|Save As.

The Save <Filename> As dialog box appears.
3. Specify the new file name, or location, or both, and choose OK.

C++Builder saves a copy of the file under the name and location you specify.
Note: When you modify the name of an existing project file, C++Builder uses the new name to include

the file in your project. The older file still exists, but it will no longer be included in the project.
To read these topics in sequence, press the >> button.

Removing files from a project
See also
You can remove forms and units from a project at any point during project development, but you should
only do so using the C++Builder environment--the removal process deletes the reference to the file from
the project file and any references to associated form files.
To remove a unit from a project, open the project and choose any of these methods:

In the Project Manager window, select the unit or units you want to remove then choose the
Remove button on the toolbar or choose Remove File from the context menu.

Choose the Remove File From Project button on the C++Builder toolbar.
Choose Project|Remove From Project from the C++Builder main menu.

Note: C++Builder will not let you remove the project (.CPP) file for a project.
Although removing a file from the project ends its relationship with the project, C++Builder does not
delete the file from disk.
Caution: Do not use Windows file management programs to delete C++Builder project files from disk

until you have performed the preceding removal process in every C++Builder project that
uses the files. Otherwise, the project file of each project using the deleted files retains
references to them. When you open the project again, C++Builder will attempt to find the
deleted files and display error messages for each file it cannot find.

To read these topics in sequence, press the >> button.

Copying a project
See also
C++Builder lets you save a separate version of the currently open project in a different disk directory.
The File|Save Project As command initiates the process. However, because the open project might use
shared files in addition to its own files, the Save Project As command saves only a copy of the project
source file, the project makefile, and the project resource file in the new location.
Caution: No unit files are saved to the new location. When you open a copy of a project, the Project

Manager displays all units in the copied project as shared files; that is, none of the unit files
reside in the project directory of the currently open project.

To copy an open project,
1. Choose File|Save Project As from the C++Builder main menu to display the Save <projectname> As

dialog box.
2. C++Builder prompts you for the new name and location for your project .MAK file. Select the directory

in which you want to copy the project files.
3. To save the project file with a different name, enter the new name in the File Name edit box.

If a project file with the same name exists in the directory you specify, you're prompted as to whether
you want to overwrite each existing project file. (This allows you to rename the individual .MAK, .CPP,
and .DFM files in the project.)

4. Choose OK to complete the task.
The project open in C++Builder is now the new copied project you just saved.

When you use the Save Project As command, C++Builder saves the project file, the project options file,
and the project resource file under the name and/or new location you specify. C++Builder also saves
any modified unit files (in their current location), so you won't be prompted to save these changes again
when you close the project.
If you check the file list in the Project Manager, you will see that all the unit files in the currently open
version of the project reside in a directory other than the current project directory (the files are shared). If
you want separate copies of any of those files in the new project directory, you need to save them
individually to the new location using File|Save As. (Also, see "Backing up a project.")
Make sure you understand the relationship of your files when you copy projects. If you don't understand
how the new project is using its files, you might run into problems later.
Caution: Do not use file management tools other than those in C++Builder to copy a project to a new

location because C++Builder maintains relationships between files.
To read these topics in sequence, press the >> button.

Backing up a project
See also
Backing up a project can be a simple matter of copying directories, or it can involve some additional
steps. This depends upon how your project directories are structured and whether the project shares
files from outside its own directory tree.
C++Builder does not encode the actual project directory into the project file. Instead, it records the
relative location of all the files in the project. If these files reside in subdirectories within the main project
directory, all path information is relative, which makes backup easy. You could back up such a project by
copying the entire directory tree to another location. If you open the project at the backup location, all
the project files that reside within that structure are present, and the project will compile.
However, if your project uses files that reside outside the project directory tree (such as shared files), the
project might or might not compile at the backup location. Check the Project Manager's file list to ensure
the shared files are accessible from the backup location. If they are, the project will compile. If other
backup processes already preserve these outside files, then there is probably no need to make separate
copies of these files in the backup project directory.
To read these topics in sequence, press the >> button.

Viewing project files
See also
The C++Builder Project Manager gives you a high-level view of the form, unit files, resource, object, and
library files listed in the project file. You can use the Project Manager to open, add, save, and remove
project files. You can also use the Project Manager to access the Project Options dialog box, which lets
you configure your default project settings.
The Project Manager is an invaluable tool if you share files among different projects because it lets you
quickly find each file in the project. It is also useful when backing up all the files in your project.
To open the Project Manager window, choose View|Project Manager (you must have a project open to
display the Project Manager).
To read these topics in sequence, press the >> button.

Using the Project Manager
See also
The Project Manager window displays information about the status and file content of the currently open
project. It also provides quick access to project management functions, lets you easily navigate among
the project files, and gives you access to the project options through the toolbar and context menu.
It is highly recommended that you use the Project Manager to perform project-related tasks because it
properly tracks and updates the affected files in your project.
Project Manager window

The main elements of the Project Manager window are the
Project Manager file list
Project Manager toolbar
Project Manager status bar
Project Manager context menu

To read these topics in sequence, press the >> button.

Project Manager file list
See also
The main area of the Project Manager details the file composition of the currently open project. The file
list displays all the source files (which end with a .C, .CPP, .PAS, or .RC file extension) and binary object
files (which can have a .RES, .LIB, or .OBJ file extension) in your project. You can also add other file
types to your C++Builder project, however, C++Builder will not handle these files in any special way. C+
+Builder gets the file information from the project .CPP file.
The Project Manager lists in bold the files that you have modified in the Code editor, but have not yet
saved.
If you have manually modified the project .CPP source file, the information in the file list might be
inaccurate. When you open the Project Manager, C++Builder compares the information in the project file
to the last saved information for the Project Manager. If these are not synchronized, the contents of the
Project Manager file list becomes dimmed, and the Update button on the toolbar becomes enabled so
that you can synchronize the information.
Caution: C++Builder has mechanisms for automatically tracking the files that make up a project and

for keeping the project file updated. Avoid editing project files manually unless you have a
thorough understanding of this process and its ramifications. By editing a project file, you
circumvent C++Builder's automated project management and risk maintaining inaccurate
information about project components. Compilation failures and other problems can result.

To read these topics in sequence, press the >> button.

Project Manager toolbar
See also
The toolbar has six buttons that provide quick access to common project tasks. The following table
describes each button and its use.

Button Context
menu
command

C++Builder
menu
command

Function Comment

Add Add File File|Add To Project Adds a shared or non-shared file
to the project. The Path column of
the Project Manager's file list
reflects the location of any shared
file.

Non-shared files reside in the
project directory. Shared files still
reside outside the project
directory; they are not copied to
the current project directory. Any
changes to the shared file, in any
project, are reflected in all projects
using the file.

Remove Remove File File|Remove From
Project

Removes the selected file(s) from
the current project.

Only the relationship of the
selected file(s) with the current
project is removed. The file still
exists in its current location. The
project file is updated to reflect the
change.

View Unit View Unit View|Units
(Ctrl + F12)

Opens and displays the selected
file in the Code editor. If multiple
files are selected in the Project
Manager window, displays the
most recently selected file.

Using the C++Builder menu
command opens the View Unit
dialog box, where you can select
which unit to open.

View Form View Form View|Forms
(Shift + F12)

Displays the visual image of the
currently selected form unit. If the
selected file is not a form unit, this
button and the context menu
command are disabled.

Using the C++Builder menu
command opens the View Form
dialog box, where you can select
which form to display.

Options Options Project|Options Displays the Project Options
dialog box.

Update Update Synchronizes the Project Manager
window display with listings in the
project .CPP source code file.

This button normally remains
disabled, and its parallel context
menu command dimmed, unless
you have manually modified the
project file (which is not
recommended).

To read these topics in sequence, press the >> button.

Project Manager status bar
See also
The area at the bottom of the Project Manager window displays the full path name of the project .MAK
file, and indicates the number of forms and units in the project.
The project file path name can be a useful reference if you are bringing many forms and units that reside
in locations other than the main project directory into the current project. The form and unit summary
information can be helpful in evaluating the scope of proposed project modifications.
To read these topics in sequence, press the >> button.

Project Manager context menu
See also
The Project Manager has a context menu that you access by right-clicking anywhere inside the Project
Manager window. In addition to menu commands for all the toolbar commands, the context menu has
commands for adding objects to the Object Repository, navigating through the project, and saving the
project.
Project Manager context menu

To read these topics in sequence, press the >> button.

Integrating forms and units into a project
See also
You can use the Project Manager (or commands on the File menu) to add new forms or unit files to a
project. You can also add existing files from locations outside the project directory, a process known as
sharing files.
Before you can add units to a project, you must have opened the project. This way, C++Builder can
update the project file with the new or shared files you add.
To read these topics in sequence, press the >> button.

Adding form and unit files
See also
Whether you're adding a form unit or a standalone unit file, the process is roughly the same. Use one of
the following methods:

From the Project Manager context menu, choose New Form or New Unit, depending on the type
of files you want to add to your project.

Choose File|New Form or File|New Unit.
Choose File|New, then choose Form or Unit from the New page of the New Items dialog box.

Whichever method you use, C++Builder adds the new .CPP and .h unit files to the currently open
project. For form units, C++Builder also add the .DFM binary form file.

To read these topics in sequence, press the >> button.

Sharing files from other projects or directories
See also
A project can share any existing form and unit file that resides outside the project directory tree.
If you add a shared file to a project, bear in mind that the file is not copied to the current project
directory; it remains in its current disk location. When you add the shared file to your project, C++Builder
registers the file name and the path in the project file.
In addition, if you add to your project a source-code file (such as a .CPP, .PAS, .C or .RC file) that is
located in another directory, C++Builder adds the new directory location to your project's include and
library path information. You can view these project settings on the Directories/Conditionals page of the
Project Options dialog box.
Note: The path that C++Builder uses for the shared file is either absolute or relative, depending on

where the file is located. If the shared file is located on the same disk drive as your project, the
C++Builder uses a relative path for the file; otherwise, it uses an absolute path.

When you compile your project, it does not matter whether the files that make up the project reside in
the project directory, a subdirectory of that, or any other directory on disk; the compiler treats shared
files the same as those created by the project itself.
To add a shared file to the current project, do one of the following:

Choose the Add File button on the C++Builder toolbar.
Choose the Add button on the Project Manager toolbar.
Choose Add File from the Project Manager context menu.

Any of these actions displays the Add To Project dialog box, in which you can select the file you want the
current project to use. The Path column of the Project Manager's file list displays the path to the shared
file.
To read these topics in sequence, press the >> button.

Using Borland C++, C, or Pascal source code units
See also
If you have existing source code units for custom procedures or functions written in Borland C++, C, or
Pascal, you can use these units in a C++Builder project. You add these files in the same way as files
created in C++Builder.
Note: Because C++Builder cannot set file-specific options (the project options you set affect all the

source files in your project), you might need to take an extra step to include routines that require
specific compiler or linker settings. To do so, you must compile the desired module into a binary
format (as an .OBJ file, a .DLL file, or an .LIB file) outside the project, then link or call the routines
from there.

To read these topics in sequence, press the >> button.

Using the Project Manager to view forms and units
See also
Perhaps the most useful features of the Project Manager are the commands that let you quickly
navigate to the source code and form images contained in your projects.
To view a specific form, double-click on the form listing in the Project Manager; C++Builder gives focus
to that form image. Double-clicking a unit listing in the Project Manager opens the Code editor and
displays the selected unit source file. If the file is not currently open, C++Builder opens it for you.
In addition, you can also use the Project Manager to navigate in the following ways:

In the Project Manager, select the unit or form you want to view or edit, then,
Press the Enter key (press Shift+Enter to view a form image)
On the toolbar, choose the View Unit or View Form button.
Choose View Unit or View Form from the Project Manager context menu.

To read these topics in sequence, press the >> button.

Navigating among project components
See also
As you work on a project, you will find that you frequently need to navigate back and forth among forms,
units, and the various open windows such as the Project Manager, Alignment palette, and so on.
You can easily toggle between viewing the currently displayed form and its associated unit source code
using commands from the View menu, a toolbar button, a keyboard shortcut, or the Project Manager.
To switch between viewing the current form and its unit source code, use any of the following methods:

Press F12.
Choose View|Toggle Form/Unit.
Click the Toggle Form/Unit speed button on the C++Builder toolbar.
In the Project Manager, double-click either the File column to display a unit's source code, or the

Form column to display the form image.
You can also open or edit any open unit or form by choosing commands from the View menu, buttons on
the Project Manager toolbar, or commands from the Project Manager context menu.
To read these topics in sequence, press the >> button.

Bringing a window to the front
See also
If you have a number of windows open, such as the C++Builder Project Manager or Object Browser, you
can easily get to the window you want by selecting it from the Window List dialog box. This dialog box
displays a list of all open windows, and lets you bring any one to the front.
To bring a window to the front,
1. Press Alt+0 (zero) or choose View|Window List to access the Window List dialog box.
2. Double-click the name of the window you want to bring to the front.
Window List dialog box

To read these topics in sequence, press the >> button.

Using the Object Repository
See also
C++Builder's Object Repository lets you share forms, units, dialog boxes, and data modules across
projects. It can also help with reusing similar forms in a single project, and provides project templates as
starting points for new projects.
This section focuses on how to use the Object Repository as a general project management tool and
discusses the mechanics of using project templates. The main topics in this section are

About the Object Repository
Using Object Repository items
Using project templates
Customizing the Object Repository
Using the Object Repository in a shared environment

To read these topics in sequence, press the >> button.

About the Object Repository
See also
C++Builder provides the Object Repository as a means for sharing and reusing objects within and
across your projects. You access the items stored in the Object Repository through the New Items
dialog box. Choose File|New to access the New Items dialog box:
New Items dialog box

The New Items dialog box contains five tabs by default. It also contains a sixth tab if you have a project
open.

Tab Default page contents
New Offers wizards and built-in objects from which you create new applications,

components, forms, and so on. These objects are generated by C++Builder, and
are not contained within the Object Repository--use the objects on this page to
create a completely new object.

<Project> Contains the unit and form objects contained in the currently open project.
Forms Contains a set of general-purpose forms.
Dialogs Contains a set of general-purpose dialog boxes.
Data modules Contains a set of general-purpose data modules based on BCDEMOS, the sample

database shipped with C++Builder.
Projects Contains a set of general-use project templates that you can use to create new

applications.

To read these topics in sequence, press the >> button.

Sharing objects across projects
See also
Not only can you use the New Items dialog to add forms, dialog boxes, and data modules to your
project, you can also use it to access objects that you add to the repository itself. By adding customized
objects to the Object Repository, you make those objects available to other projects through the New
Items dialog box.
For a simple case, you could have all your projects use the same About box, which is copied from the
Object Repository. A more advanced use of the Object Repository would be to provide a standard empty
dialog box with the company or product logo and standard button placement in the repository. All
projects in the company could use the standard dialog box so dialog boxes in all projects would look
alike and save on design time.
To read these topics in sequence, press the >> button.

Sharing forms within projects
See also
The Object Repository can also help you share forms within a project because it allows you to inherit
from existing forms in the project. When you open the New Items dialog box (by choosing File|New),
you'll see a page tab with the name of your currently open project. If you click that tab, you'll see all the
forms, dialog boxes, and data modules in the open project. You can then derive a new item from any of
the existing items, and customize it as needed.
For example, in a database application, you might need several forms that display the same data, but
which provide different command buttons. Instead of creating and maintaining several nearly identical
forms, you could lay out a generic form that contains all the data-display controls, then create separate
forms that inherit the data-display layout, but with different command buttons.
By carefully planning your project forms, you can save tremendous amounts of design time and
programming effort by sharing forms within projects.
To read these topics in sequence, press the >> button.

Sharing entire projects
See also
You can also add an entire project to the Object Repository as a template for future projects. If you have
a number of similar applications, you can base them all on a single, standard model.
To read these topics in sequence, press the >> button.

Using wizards
See also
The Object Repository contains references to wizards. Wizards are small applications that lead the user
through a series of dialog boxes to create a form, project, or other object in your application. C++Builder
provides a number of wizards (such as a new component wizard, automation wizard, and thread wizard)
and you can create and add wizards of your own.
To read these topics in sequence, press the >> button.

Using Object Repository items
See also
You can share items in the Object Repository as follows:

Copying items from the Object Repository
Inheriting items from the Object Repository
Using items directly from the Object Repository

The sharing methods available to you are determined by the type of object you are sharing. Keep in
mind that items in the Object Repository are there to be shared, and that you want to use them in ways
that help rather than hinder their reuse.
To read these topics in sequence, press the >> button.

Copying items from the Object Repository
See also
The simplest sharing option is to copy an item from the Object Repository. Copying makes an exact
duplicate of the item from the repository and places it in the project directory. In addition, C++Builder
adds the object to your project by updating the project files. Future changes to the item in the Object
Repository will not be reflected in your copy, and alterations made to your copy will not affect the original
item in the Object Repository.
Copying is the only option available for using project templates. In addition, the Copy option is the only
share option available for wizards, whether form wizards or project wizards. With this, wizards don't add
shared code, but rather they run a process that generates a separate standalone copy of the code.
To read these topics in sequence, press the >> button.

Inheriting items from the Object Repository
See also
Inheriting is the most flexible and powerful Object Repository sharing option. Inheriting derives a new
class from the repository item, and adds the new class to your project. When you recompile your project,
any changes made to the item in the Object Repository are reflected in your derived class, unless you
have overridden a particular aspect of the object. In addition, changes made to your derived class are
not reflected in the parent item in the Object Repository.
Inheriting is available for forms, dialog boxes, and data modules, but not for project templates. Inheriting
is the only sharing option available for reusing items from within the same project.
To read these topics in sequence, press the >> button.

Using items directly from the Object Repository
See also
The least flexible sharing option is directly using an item from the Object Repository. When you add an
item directly to a project, all design-time changes made to that object appear in all objects of that type,
including all similar objects in other projects.
While sharing items directly is available for forms, dialog boxes, and data modules, you should use this
type of sharing option sparingly. Items shared directly should generally be modified only at runtime. This
will avoid making changes that affect other projects.
To read these topics in sequence, press the >> button.

Using project templates
See also
C++Builder provides several project templates, which are predesigned projects that you can use as
starting points for your own projects. Project templates are part of the Object Repository, and can be
found on the Projects page of the New Items dialog box.
When you start a project from a project template, C++Builder prompts you for a project directory, a
directory in which to store the new project's files. If you specify a directory that doesn't currently exist,
C++Builder creates the directory for you. C++Builder copies the template files to the project directory,
from where you modify them to create a custom application. You can modify the project by adding new
forms and units, or can use it unmodified by adding only your own event-handler code. In any case, the
changes you made affect only the open project; the original project template remains unchanged and
can be used again to start another new project.
To start a new project from a project template,
1. Choose File|New to display the New Items dialog box.
2. Choose the Projects tab.
3. Select the project template you want and choose OK.
4. In the Select Directory dialog box, specify a directory for the new project's files.

A copy of the selected project opens in the specified directory.
To read these topics in sequence, press the >> button.

Adding projects to the Object Repository
See also
You can add your own projects and forms to those already available in the Object Repository. This is
helpful in situations where you want to enforce a standard framework for programming projects
throughout an organization.
For example, suppose you develop custom billing applications. You might have a generic billing
application project that contains the forms and features common to all billing systems. Your business
centers around adding and modifying features in this application to meet specific client requirements. In
such a case, you might want to save the project containing your Generic Billing application as a project
template and perhaps specify it as the default new project on your C++Builder development system.
Likewise, you'll probably have a particular form within this project that you want to appear as the default
main or new form.
To add a project to the Object Repository,
1. Open the project you want added to the Object Repository.
2. Choose Project| Add To Repository to invoke the Add to Repository dialog.
3. In the Title edit box, enter a project title.

The title for the template appears in the Object Repository window.
4. In the Description field, enter text that describes the template.

This text appears in the Object Repository window's status bar.
5. In the Page field, choose the name of the page in the New Items dialog box (probably Projects) you

want the template to appear on.
6. In the Author field, identify the author of the application.

Author information appears only when the user views the repository items with full details.
7. Choose Browse to select an icon to represent this template in the Object Repository.
8. Choose OK to save the current project as a project template.
Note: If you later make changes to a project template, those changes automatically appear in new

projects created from that template. They will not, however, affect projects already created from
that template.

To read these topics in sequence, press the >> button.

Saving form templates
See also
You can also save your own forms as form templates and add them to those already available in the
Object Repository. This is helpful in situations where you want to develop standard forms for an
organization's software, or if you create a form that you will use across several projects.
To add a form to the Object Repository as a template, right-click on the form and choose Add to
Repository, then follow the preceding steps for adding projects as templates, using the Forms page of
the New Items dialog box instead of the Projects page.
To read these topics in sequence, press the >> button.

Customizing the Object Repository
See also
The settings in the Object Repository dialog box affect the behavior of C++Builder when you begin a
new project or create a new form in an open project. You can also use the Object Repository to specify
the following system defaults:

Specifying a default new project
Specifying a default new form
Specifying the default main form

For example, by default, opening a new project displays a blank form. You can change this default
behavior by changing Object Repository options.
Even though you can set the defaults for your projects and forms, you can always override these
defaults by choosing File|New and selecting any project or form from the New Items dialog box.
The Object Repository dialog box

To read these topics in sequence, press the >> button.

Specifying a default new project
See also
The default new project opens whenever you choose File|New Application. If you haven't specified a
default project, C++Builder creates a blank project with an empty form.
You can specify a project template (including a project you have created and saved as a template) as
the default new project. You can also designate a project wizard to run by default when you start a new
project, which enables you to build a project based on your responses to a series of dialog boxes.
To specify a default new project,
1. Choose Options|Repository to display the Object Repository dialog box.

The repository itself is really just a text file that contains references to forms, projects, and wizards.
You can find details on the repository file format in online Help.

2. Choose Projects in the Pages list to view the currently stored project templates.
3. Select the project object you want as the default new project from the Objects list.
4. With the object you want selected, check New Project.
5. Choose OK to register the new default setting.
To read these topics in sequence, press the >> button.

Specifying a default new form
See also
A default new form opens whenever you choose File|New Form or use the Project Manager to add a
new form to an open project. If you haven't specified a default form, C++Builder uses a blank form. You
can specify any form template, including a form you have created and saved as a template, as the
default new form. Or you can designate a form wizard to run by default when a new form is added to a
project.
To specify the default new form,
1. Choose Options|Repository to display the Object Repository dialog box.
2. Choose Forms in the Pages list to view the currently stored forms.
3. Select the form object you want as the default new form.
4. With the object you want selected, check New Form.
5. Choose OK to register the new default setting.
To read these topics in sequence, press the >> button.

Specifying the default main form
See also
Just as you can specify a form template or wizard to be used whenever a new form is added to a
project, you can also specify a form template or wizard that should be used as the default main form
whenever you begin a new project.
To specify the default main form for new projects,
1. Choose Options|Repository to display the Object Repository dialog box.
2. Choose Forms in the Pages list.
3. Select the form object you want as the default main form.
4. With the object you want selected, check Main Form.
5. Choose OK to register the new default setting.
To read these topics in sequence, press the >> button.

Using the Object Repository in a shared environment
See also
The Object Repository, by default, is stored in a file titled TEMPLATE.DRO. To change the location
where C++Builder looks for the Object Repository file (when you want to share a repository between
users), create a new String Value called "Base dir" in the "HKEY_CURRENT_USER|Software\Borland\
C++Builder\1.0\Repository" key in the Windows Registry Editor and set its data value to the directory
where this file is to be located. We recommend that you use a UNC name for the location where the
TEMPLATE.DRO file is to be shared. In addition, it is also suggested that forms and projects be saved
using UNC names whenever they are added to a shared repository.
To read these topics in sequence, press the << button.

About the Menu designer
See Also

The Menu designer enables you to easily add menus to your form. You can simply add menu items
directly into the Menu designer window. You can add, delete, and rearrange menu items at design time
and you do not have to run the program to see the results. Your applications menus are always visible
on the Form, as they will appear during runtime.
You can build each menu structure entirely from scratch, or you can start from one of the Menu
templates (predesigned menus). You can also dynamically change menus, to provide more information
or options to the user.
For more information about the Menu designer, click See Also at the top of this topic.

Opening the Menu designer
See Also
To open the Menu designer,
1. Place a MainMenu or a PopupMenu component on the form.
2. Leaving the component selected, choose from one of the following methods:

Double-click the MainMenu or PopupMenu component.
Click the ellipses button in the Values column for the Items property.
Select Menu designer from the component's context menu.

Naming menus
See Also
When you add a menu component to the form, it has a default name, for example, MainMenu1. You can
give the menu a more meaningful name that follows C++ naming conventions.
The menu name is added to the form’s type declaration, and then it appears in the Component list.

Naming menu items
See Also
In contrast to the menu component itself, you need to explicitly name menu items while adding them to
the form. You can do this in one of two ways:

Directly type the value for the Name property.
Type the value for the Caption property first, and let C++Builder derive the Name property from

the caption.
For example, if you give a menu item a Caption property value of File, C++Builder assigns the menu
item a Name property of File1. If you specify the Name property before the Caption property, C++Builder
leaves the Caption property blank until you type a value.

If you enter characters in the Caption property that are not valid for C++ identifiers, C++Builder
modifies the Name property accordingly. For example, to start the caption with a number, C++Builder
precedes the number with a character to derive the Name property.
The following table demonstrates some examples of this, assuming all menu items shown appear in the
same menu bar.

Component name Derived caption Explanation
&File File1 Removes ampersand
&File (second
occurrence)

File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numeric order
1234 (second
occurrence)

N12342

$@@@# N1 Removes all non-standard characters, adding preceding letter
and numeric order

- (hyphen) N2 Numerical ordering of second occurrence of caption with no
standard characters

As with the menu component, C++Builder adds any menu item names to the form's type declaration,
and those names then appear in the Component list.

Adding menu items
See Also
To add menu items,
1. Open the Menu designer.
2. Select the position where you want to create the menu item.
3. Type the Name and press Enter. C++Builder automatically changes the caption of the menu item to

reflect the name.
4. Press Enter.

The next placeholder for a menu item is selected.
5. Enter values for the Name properties for each new item you want to create, or press Esc to return to

the menu bar.
Use the arrow keys to move from the menu bar into the menu, and to then move between items in the
list; press Enter to complete an action.

To add a separator bar to a menu, enter a hyphen as the caption of the menu item.

Inserting a menu item
See Also
To insert a menu item into a menu, place the cursor on a menu item, then press the Insert key.
Menu items are inserted to the left of the selected item on the menu bar, and above the selected item in
the menu list.

Deleting a menu item
See Also
1. Place the cursor on the menu item you want to delete.
2. Press the Delete key.

You cannot delete the default placeholder that appears below the item last entered in a menu list,
or next to the last item on the menu bar. This placeholder does not appear in the menu at runtime.

Specifying accelerator keys
See Also
Add an ampersand (&) in front of the appropriate letter in the caption. The letter after the ampersand
appears underlined in the menu.
Accelerator keys let the user access a menu command from the keyboard by pressing Alt+ the
appropriate letter, indicated in your code by the preceding ampersand. The letter after the ampersand
appears underlined in the menu.
Caution: C++Builder does not check for duplicate accelerators. You must track values you have

entered in your application menus.

Specifying keyboard shortcuts
See Also
Enter a value for the ShortCut property, or select a key combination from the drop-down list. However,
this list contains a subset of the valid combinations you can use.
Keyboard shortcuts enable the user to perform the action without accessing the menu directly by typing
the shortcut key combination.
Caution: C++Builder does not check for duplicate shortcut keys, you must track values you have

entered in your application menus.

Creating nested menus
See Also
1. Select the menu item under which you want to create a nested menu.
2. Press Ctrl+Right arrow to create the first placeholder, or choose Create Submenu from the context

menu.
3. Enter a name for the nested menu item.
4. Press Enter to create the next placeholder.
5. Repeat steps 3 and 4 for each item you want to add to the nested menu.
6. Press Esc to return to the previous menu level.
Organizing your menu structure using nested menus can save vertical screen space. However, for
optimal design purposes you probably want to use no more than two or three menu levels in your
interface design. (For pop-up menus, you might want to use only one such nested level, if any.)
Shortcut: You can also create a nested menu by inserting a menu item from the menu bar (or a menu

template) between menu items in a list. When you move a menu into an existing menu
structure, all its associated items move with it, creating a fully intact nested menu. This
pertains to nested menus as well; moving a menu item into an existing nested menu just
creates one more level of nesting.

Moving menu items
See Also
During design time, you can move menu items simply by dragging and dropping. You can move menu
items along the menu bar, or to a different place in the menu list, or onto a different menu entirely.
You cannot demote a menu item from the menu bar onto its own menu; nor can you move a menu item
into its own nested menu. However, you can move any item onto a different menu.
While you are dragging, the cursor changes shape to indicate whether you can release the menu item at
the new location. When you move a menu item, any items beneath it move as well.

To move a menu item along the menu bar,
1. Drag the menu item along the menu bar until the arrow tip of the drag cursor points to the new

location.
2. Release the mouse button to drop the menu item at the new location.

When you move a menu item to a different place on the menu bar, all the sub-items beneath it
move as well.

To move a menu item into a menu list,
1. Drag the menu item along the menu bar until the arrow tip of the drag cursor points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.
You cannot move a menu item down a level into its own menu.

2. Drag the menu item into the list, releasing the mouse button to drop the menu item at the new
location.

Moving menu items into submenus
When you move a menu item off the menu bar, its sub-items become a submenu. Similarly, if you move
a menu item into an existing submenu, its sub-items then form another nested menu under the
submenu.
You can move a menu item into an existing submenu, or you can create a placeholder at a nested level
next to an existing item, and then drop the menu item into the placeholder to nest it.

Viewing the menu
See Also
You can view your menu at design time without running the application. (Pop-up menu components are
visible in the form at design time, but the pop-up menus themselves are not. Use the Menu designer to
view a pop-up menu at design time.)

To view the menu,
1. If the form is visible, click the form, or from the View menu, choose the form whose menu you want to

view.
2. If the form has more than one menu, select the menu you want to view from the form’s Menu property

drop-down list.
The menu appears in the form exactly as it will when you run the program.

Editing menu items without opening the Menu designer
See Also
When you edit a menu item using the Menu designer, its properties are still displayed in the Object
Inspector. You can switch focus to the Object Inspector and continue editing the menu item properties
there. Or you can select the menu item from the Component list and edit its properties without ever
opening the Menu designer.
To edit a menu item without opening the Menu designer, select the item from the Component list.

To close the Menu designer window and continue editing menu items,
1. Switch focus from the Menu designer window to the Object Inspector by clicking the properties page

of the Object Inspector.
2. Close the Menu designer.

The focus remains in the Object Inspector, where you can continue editing properties for the selected
menu item.
To edit another menu item, select it from the Component list.

Switching among menus at design time
See Also
If you are designing several menus for your application, you can use the Menu designer context menu
or the Object Inspector to easily select and move among them.

To use the context menu to switch among menus in a form,
1. Right-click the Menu designer to display the context menu.
2. From the context menu, choose Select Menu.

The Select Menu dialog box appears. This dialog box lists all the menus associated with the form
whose menu is currently open in the Menu designer.

3. From the list in the Select Menu dialog box, choose the menu you want to view or edit.

To use the Object Inspector to switch among menus in a form,
1. Select the form whose menus you want to choose from.
2. From the Component list, select the menu you want to edit.
3. On the Properties page of the Object Inspector, select the Items property for this menu, and then

either click the ellipsis button (...), or double-click [Menu].

Using menu templates
See Also
C++Builder provides several predesigned menus, or menu templates, that contain frequently used
commands. You can use these menus in your applications without modifying them (except to write
code), or you can use them as a starting point, customizing them as you would a menu you originally
designed yourself. Menu templates do not contain any event handler code.
Menu templates are stored in the file BCB.DMT. The menu templates shipped with C++Builder also
reside in this file.
You can also save as a template any menu that you design using the Menu designer. After saving a
menu as a template, you can use it as you would any predesigned menu. If you decide you no longer
want a particular menu template, you can delete it from the list.

To add a menu template to your application,
1. Right-click the Menu designer window.

The Menu designer context menu appears.
2. From the context menu, choose Insert From Template.

(If there are no templates, the Insert From Template option is dimmed.)
The Insert Template dialog box opens, displaying a list of available menu templates.

3. Select the menu template you want to insert, then press Enter or choose OK.
This inserts the menu into your form at the cursor's location. For example, if your cursor is on a menu
item in a list, the menu template is inserted above the selected item. If your cursor is on the menu bar,
the menu template is inserted to the left of the cursor.

To delete a menu template,
1. Right-click the Menu designer window.

The Menu designer context menu appears.
2. From the context menu, choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the context menu.)
The Delete Templates dialog box opens, displaying a list of available templates.

3. Select the menu template you want to delete, and press Del.
C++Builder deletes the template from the templates list and from your hard disk.

Saving a menu as a template
See Also
Any menu you design can be saved as a template so you and others can use it again. You can use
menu templates to provide a consistent look to your applications, or use them as a starting point which
you then further customize.
Menu templates you save are stored in your BIN directory as .DMT files.
You edit the template file by using the template commands from the Menu designer context menu.

To save a menu as a template,
1. Choose Save As Template from the Menu designer context menu to open the Save Template dialog

box.
2. In the Template Description edit box, enter a brief description of this menu.
3. Click OK.

The Save Template dialog box closes, saving your menu design and returning you to the Menu
designer window.

The description you enter is displayed only in the Save Template, Insert Template, and Delete
Templates dialog boxes. It is not related to the Name or Caption property for the menu.
When you save a menu as a template, C++Builder does not save its Name, since every menu must
have a unique name within the scope of its owner (the form). However, when you insert the menu as a
template into a new form by using the Menu designer, C++Builder then generates new names for it and
all its items.
C++Builder also does not save any event handlers associated with a menu saved as a template, since
C++Builder cannot test whether the code would be applicable in a new form. You can associate menu
items in the template with existing event handlers in the form.

Naming conventions for template menu items and event handlers
See Also
When you save a menu as a template, C++Builder does not save its Name property, since every menu
must have a unique name within the scope of its owner (the form). However, when you insert the menu
as a template into a new form by using the Menu designer, C++Builder then generates new names for it
and all its items.
For example, suppose you save a File menu as a template. In the original menu, you name it MyFile. If
you insert it as a template into a new menu, C++Builder names it File1. If you insert it into a menu with
an existing menu item named File1, C++Builder names it File2.
C++Builder also does not save any OnClick event handlers associated with a menu saved as a
template, since there is no way to test whether the code would be applicable in the new form. When you
generate a new event handler for the menu template item, C++Builder still generates the event handler
name.
You can easily associate items in the menu template with existing OnClick event handlers in the form.

Adding menu items dynamically
See Also
You can add menu items to an existing menu structure while the application is running to provide more
information or options to the user.

Insert a menu item by using the menu item's Add or Insert method.
Alternately hide and show the items in a menu by changing their Visible property. The Visible

property determines whether the menu item is displayed in the menu.
Dim a menu item without hiding it by using the Enabled property.

In Multiple Document Interface (MDI) and Object Linking and Embedding (OLE) applications, you can
also merge menu items into an existing menu bar. See Merging Menus.

To insert a menu item into an existing menu,
1. Create an event handler for the event you want to respond to.
2. Declare the menu item as a variable of type TMenuItem.
3. Write a procedure that adds the menu item to an existing menu.

Example
The following example adds a new menu item to the Window menu (WindowMenu) when Button1 is
clicked.
void __fastcall TForm1::::Button1Click(TObject *Sender)
{
 TMenuItem *NewItem
 NewItem= new TMenuItem(WindowMenu); //Creates the new menu item
 NewItem ->Caption = "My Menu Command"; //Caption for the new menu item
 WindowMenu->Insert(1, NewItem); //Inserts the new menu item
}

Merging menus
See Also
For Multiple Document Interface (MDI) and Single Document Interface (SDI) applications, the
application's main menu needs to be able to receive menu items either from another form or from the
OLE server object. This is called merging menus.
You prepare menus for merging by specifying values for two properties:

Menu, a property of the form
GroupIndex, a property of menu items in the menu

Specifying the active menu: Menu property
The Menu property specifies the active menu for the form. Merge operations apply only to the active
menu. If the form contains more than one menu component, you can change the active menu at runtime
by setting the Menu property in code. For example,

Form1->Menu = SecondMenu;
Determining the order of merged menu items: GroupIndex property
The GroupIndex property determines the order in which the merging menu items appear in the shared
menu bar. Merged menu items can replace those on the main menu bar or can be inserted.
The default value for GroupIndex is 0. Several rules apply when specifying a value for GroupIndex:

Lower numbers appear first (farther left) in the menu.
For instance, set the GroupIndex property to 0 (zero) for a menu that you always want to appear

leftmost, such as a File menu. Similarly, specify a high number (it needn't be in sequence) for a menu that
you always want to appear rightmost, such as a Help menu.

To replace items in the main menu, give items on the child menu the same GroupIndex value.
This can apply to groups or to single items. For example, if your main form has an Edit menu item

with a GroupIndex value of 1, you can replace it with one or more items from the child form's menu by
giving them a GroupIndex value of 1 as well.

Giving multiple items in the child menu the same GroupIndex value retains their order intact when
they merge into the main menu.

To insert items without replacing items in the main menu, leave room in the numeric range of the
main menu's items and "plug in" numbers from the child form.

For example, number the items in the main menu 0 and 5, and insert items from the child menu
by numbering them 1, 2, 3, and 4.
Additional rules apply for OLE client applications.

Importing menus from resource files
See Also
The Menu designer supports menus built with other applications, so long as they are in the standard
Windows resource (.RC) file format. You can import such menus directly into your project, saving you
the time and effort of rebuilding menus that were created elsewhere.

To load an existing .RC menu file,
1. In the Menu designer, place the cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in itself.
2. Right click and choose Insert From Resource.

The Insert Menu From Resource dialog box displays.
3. Select the resource file you want to load, and choose OK.

If your resource file contains more than one menu, you first need to save each menu as a
separate resource file before importing it.

Working with the Code editor
See also
The Code editor lets you view and write the source code for your C++Builder applications. The Code
editor is a full-featured, customizable editor that offers many powerful features, such as:

Syntax highlighting
Multiple and Group Undo
Four predefined editor settings: Default, IDE Classic, Brief, and Epsilon
Context-sensitive Help for language elements

This section introduces the major features of the Code editor. It describes how to navigate among
multiple Code editor files and how to switch between your source code and the form editor. In addition,
the following topics are discussed:

Viewing files in the Code editor
Code editor context menu
Searching in the Code editor
Viewing components as code in the editor
Customizing the editor

To read these topics in sequence, press the >> button.

Viewing files in the Code editor
See also
The Code editor is a full-featured ASCII file editor. With it, you can edit any of your C++Builder source
files and ASCII files, and you can open several files simultaneously. The Code editor represents each
open file with a tab at the top of the editor window--you can easily switch between open files in the editor
by clicking the appropriate file tab. When you click a tab, the editor displays the file in an editor page.
When you open a new project, C++Builder automatically generates a page in the Code editor for the
initial form unit file. When you open a new form, unit, or other source file in your project, C++Builder
adds a new page to the editor that contains the associated source code.
You can use any of the following methods to view a specific file in the Code editor:

Choose File|Open to open an existing file.
For already open files, click the tab for the file you want to view.
Press Ctrl+Tab to move forward through the currently open files in the editor, press Shift+Ctrl+Tab

to move backward through the editor pages.
Choose View|Units to open the View Unit dialog box, and choose the unit you want to view.
Use toolbar buttons to toggle between the current form and its associated unit, or to open the

View Unit dialog box.
Place the cursor on a file name within the editor, right-click and choose Open file at Cursor.
Choose View|Project Manager and double click on a unit in the project window.

Note: Closing the Code editor by double-clicking the Control menu box of the edit window closes all
open files in the project. To close a single page, choose Close Page from the Code editor context
menu.

To read these topics in sequence, press the >> button.

Code editor context menu
See also
Right-clicking in the Code editor gives you access to its context menu, which contains many commonly
used edit commands, debugging commands, and commands that let you navigate throughout the C+
+Builder development environment. For information on the commands contained on the context menu,
select a menu item, and press F1 for context-sensitive Help.
Code editor context menu.

To read these topics in sequence, press the >> button.

Searching in the Code editor
See also
You can use the Search menu (located on the Main menu) to locate specific text in the Code editor. Use
the Search menu commands to locate text, objects, units, variables, and symbols in the Code editor.
The commands in the Search menu are as follows:

Find searches for specific text.
Replace searches for specific text and replaces it with new text.
Search Again repeats a search.
Incremental Search searches for text as you type.
Go to Line Number moves the cursor to a specific line number.
Go to Address becomes available when the CPU window is active; this command moves the

Disassembly pane display to the address you specify.
To learn more about any of the commands on the Search menu, select the command and press F1.
To read these topics in sequence, press the >> button.

Viewing components as code in the editor
See also
When you add a component to a form, C++Builder generates an instance variable for the component
and adds it to the form's type declaration. Similarly, when you delete a component, C++Builder removes
the corresponding type declaration from the source code. You can view similar code being added or
removed from the Code editor.
To view code as C++Builder generates it,
1 Move the form so you can view both the form and the Edit window (click the form's Title bar and drag

it to a location that lets you see the entire Code editor).
2 Right-click and choose Swap Cpp/Hdr files to switch to the .h file of the unit, and scroll in the Code

editor until the form's type declaration section is visible.
3 Add a component to the form while watching what happens in the Code editor.
4 Delete the component, again while viewing the Code editor.
Note: C++Builder does not remove event handlers (or methods) associated with components you delete

because those event handlers might be called by other components in the form. You can still run
your program so long as the method declaration and the method itself both remain in the unit file.
If you delete the method without deleting its declaration, C++Builder generates an error message.

To read these topics in sequence, press the >> button.

Viewing the associated form
See also
When viewing and editing source code, you can easily switch between the code and the associated
form to see how your design changes effect your code, and vice versa. Because C++Builder is a two-
way tool, object declarations and definitions that you add to your source code are immediately reflected
on the form that you add them to.
Use any of the following methods to view a project form:

Click any part of the form that is visible under the Code editor to view the form associated with the
currently displayed source file.

Choose View|Form to open the View Form dialog box, then choose any form in the project that
you want to view.

Use toolbar buttons to toggle between the unit and form, or to open the View Form dialog box.
Note: If you view a form that is different from the one associated with the currently displayed code in the

editor, the editor changes code pages to keep in sync with the selected form. Because of this,
when you return to the Code editor, it might not display the code you were previously viewing.

To read these topics in sequence, press the >> button.

Customizing the editor
See also
You can choose one of the four predefined editor settings. If you want, you can then customize the
behaviors and appearance of that editor by

Selecting a default editor and customizing its keymapping
Choosing color settings for the editor
Specifying display and file options

To read these topics in sequence, press the >> button.

Selecting a default editor
See also
Use the Editor SpeedSetting on the Editor page of the Options|Environment Options dialog box to select
the default keymappings of your editor. These options are described in the following table.

Option Automatically sets
Default Keymapping Auto Indent Mode, Insert Mode, Smart Tab, Backspace Unindents, Group

Undo, Overwrite Blocks, Use Syntax Highlight
IDE Classic Auto Indent Mode, Insert Mode, Smart Tab, Backspace Unindents, Cursor

Through Tabs, Group Undo, Persistent Blocks, Use Syntax Highlight
BRIEF Emulation Auto Indent Mode, Insert Mode, Smart Tab, Backspace Unindents, Cursor

Through Tabs, Cursor Beyond EOF, Keep Trailing Blanks, BRIEF Regular
Expressions, Force Cut And Copy Enabled, Use Syntax Highlight

Epsilon Emulation Auto Indent Mode, Insert Mode, Smart Tab, Backspace Unindents, Cursor
Through Tabs, Group Undo, Overwrite Blocks, Use Syntax Highlight

Once you choose a default keymapping, you can customize the behavior of the C++Builder editor using
the other options on the Editor page. To learn more about the options on this page, press F1 or click
Help while in the dialog box.
To read these topics in sequence, press the >> button.

Choosing color settings for the editor
See also
Use the Colors page of the Options|Environment Options dialog box to specify how you want the
different elements of your code to appear in the Code editor. The sample Code editor in this dialog box
shows how your settings will appear in the C++Builder Code editor.
The Color SpeedSetting configures the Code editor display according to predefined color combinations.
After picking a predefined set of colors, you can further customize the display of your code; you can
specify foreground and background colors and text attributes for anything listed in the Element list box.
To read these topics in sequence, press the >> button.

Specifying display and file options
See also
Use the Display page of the Options|Environment Options dialog box to customize the display and font
options for your Code editor. The sample window displays the selected font. The new settings take effect
when you click OK.
Display and File check boxes allow you to configure the editor display and choose whether to create
backup files. Click the Help button in the dialog box to learn more about the available options.
To read these topics in sequence, press the << button.

Working with event handlers
See also
In C++Builder, almost all the code you write is executed, indirectly or directly, in response to events.
Such code is called an event handler. Event handlers are actually specialized procedures, a form
method attached to an event. The event handler executes when the particular event occurs.
In C++Builder, you usually use the Object Inspector to generate event handlers. The Object Inspector
not only generates the event handler name for you, but if you change that name later using the Object
Inspector, C++Builder changes it everywhere that it occurs in your source code. This is not the case for
event handlers you write without using the Object Inspector. You can write source code in the Code
editor without using the Object Inspector. For example, you might write a general-purpose routine that's
not associated directly with a component event, but that is called by an event handler.
This section discusses ways to use the Object Inspector and the Code editor to generate event handlers
in your source code. The following topics are explained:

Generating the default event handler
Writing an event handler
Locating an existing event handler
Associating an event with an existing event handler
Coding menu events

To read these topics in sequence, press the >> button.

Generating the default event handler
See also
The default event is the one a component most commonly needs to handle at runtime. For example, a
button's default event is the OnClick event.
To generate a default event handler, double-click the component in the form.
Note: Certain components, don't need to handle user events. For these components, double-clicking

them in the form doesn't generate an event handler. Double-clicking certain other components,
such as the Image component or either of the menu components, opens a dialog box where you
perform design time property edits.

To read these topics in sequence, press the >> button.

Writing an event handler
See also
Once you've placed a component on the form, you can easily write an event handler for it.
To write an event handler for a component,
1. Select the component on the form.
2. Click the Events tab of the Object Inspector.
3. Choose from the list of available events for that component and double click the event you want to

program.
The Code editor displays the generated code for the event handler with the cursor positioned so you
can start typing an event handler.

4. Type the source code for the event handler.
The example that follows demonstrates an event handler for a button's OnClick event. When the button
is clicked, the contents of a Memo component (Memo1) on the form (TViewerForm) is printed on the
default printer.

#include <vcl/printer.hpp>
void __fastcall TViewerForm::PrintButtonClick(TObject *Sender)
{
 if (MessageBox (NULL, "Are you sure you want to print?", "Print",

MB_YESNO) == IDYES)
 {

int FontHeight, LinesOnPage;
TCanvas *pcanvas;
 Printer()->BeginDoc();
 pcanvas = Printer()->Canvas;
 FontHeight = pcanvas->Font->Height;
 LinesOnPage = Printer()->PageHeight / -FontHeight;
 for (int i = 0, j = 0; i < Memo1->Lines->Count; i++, j++)
 {

 if ((i > 1) && (i % LinesOnPage == 0))
 {

 j = 0;
 Printer()->NewPage();
 }

 pcanvas->TextOut (10, ((j * -FontHeight) + 10),
Memo1->Lines->Strings[i]);

 Printer()->EndDoc();

 }
}

To learn more about programming event handlers, search for event handlers in the Help index.
To read these topics in sequence, press the >> button.

Locating an existing event handler
See also
If you want to view the code for an event handler that you have previously written, you can quickly locate
it in the Code editor.
To locate an existing event handler in the Code editor,
1. In the form, select the component whose event handler you want to locate.
2. In the Object Inspector, display the Events page.
3. In the Events column, double-click the event whose code you want to view.

C++Builder displays the Code editor, placing the cursor inside the code block of the event handler.
You can now add source code to this event handler.
If you generated a default event handler for a component by double-clicking it in the form, you can
locate that event handler the same way.

To locate an existing default event handler, double-click the component in the form. The Code editor
opens with the cursor at the start of the first line of code for the component's default event handler.
To read these topics in sequence, press the >> button.

Associating an event with an existing event handler
See also
C++Builder emphasizes reuse at all levels of application development, from the project, to the form, to
components and code. You can reuse code by writing event handlers that handle more than one
component event.
You can do this by creating generic event handlers that, for example, are called by both a menu
command and an equivalent button on a toolbar.
Once you write one such event handler, you can easily associate other compatible events with the
original handler.
To read these topics in sequence, press the >> button.

Writing an event handler for multiple component events
See also
The Sender parameter in an event handler informs C++Builder which component generated the event,
and called the handler. You can write a single event handler that responds to multiple component events
by using the Sender parameter in an if..else statement. However, you don't have to use Sender to share
event code.
To associate a new component event with an existing event handler,
1. In the form, select the component whose event you want to code.
2. Display the Events page of the Object Inspector, and select the event to which you want to attach

handler code.
3. Click the down arrow next to the event to open a list of existing event handlers.

The list shows only the event handlers in this form that can be assigned to the selected event.
4. Select an event handler name.

The code written for this event handler is now associated with the selected component event.
Note: C++Builder doesn't duplicate the event handler code for every component event associated with

a shared handler. The same code is called whenever any of the associated component events
occurs.

To read these topics in sequence, press the >> button.

Displaying and coding shared events
See also
There is another way to share event handlers. When components have events in common, you can
select the components to display their shared events, select a shared event, and then create a new
event handler for it, or select an existing one. All the selected components will now use this event
handler.
To read these topics in sequence, press the >> button.

Displaying shared events
See also
To display shared events,
1. In the form, select all the components whose common events you want to view.
2. Display the Events page of the Object Inspector.

The Object Inspector displays only those events that pertain to all the selected components. (Note
also that only events in the current form are displayed.)

To associate a shared component event with an existing event handler,
1. Select the components with which you want to associate a shared event handler.
2. Display the Events page of the Object Inspector, and select an event.

The Object Inspector displays only those events which the selected components have in common.
3. From the drop-down list next to the event, select an existing event handler, and press Enter.

Whenever any of the components you selected receives the specified event, the event handler you
selected is called.

To read these topics in sequence, press the >> button.

Creating an event handler for a shared event
See also
To create an event handler for a shared event,
1. Select the components for which you want to create a shared event handler.
2. Display the Events page of the Object Inspector, and select an event.
3. Type a name for the new event handler and press Enter, or double-click the Handler column if you

want C++Builder to generate a name.
C++Builder creates an event handler in the Code editor, positioning the cursor on the first line of
code.
If you choose not to name the event handler, C++Builder names it for you based on the order in which
you selected the components. For example, if you create a shared event handler for several buttons,
C++Builder names the event handler Button<n>Click, where Button<n> is the first button you selected
for sharing an event handler.

4. Type the code you want executed when the selected event occurs for any of the components.
To read these topics in sequence, press the >> button.

Modifying a shared event handler
See also
Modifying an event handler that is shared by more than one component is virtually the same as
modifying any existing event handler. Just remember that whenever you modify a shared event handler,
you are modifying it for all the component events that call it.
To modify the shared event handler,
1. Select any of the components whose event calls the handler you want to modify.
2. In the Events page of the Object Inspector, double-click the event handler name.
3. In the Code editor, modify the handler.

Now when any of the components that share this handler receive the shared event, the modified code
is called.

To read these topics in sequence, press the >> button.

Deleting event handlers
See also
When you delete a component, C++Builder removes its reference in the form's type declaration.
However, deleting a component does not delete any associated methods from the unit, because those
methods might be called by other components in the form.
You can still run your application so long as the method declaration and the method itself both remain in
the unit. If you delete the method without deleting its declaration, C++Builder generates an "Undefined
forward" error message, indicating that you need to either replace the method itself (if you intend to use
it), or delete its declaration as well as the method code (if you do not intend to use it).
You can still explicitly delete an event handler, if you choose, or you can have C++Builder do it for you.
To manually delete an event handler, remove all event handler code and the handler's declaration.
You can also have C++Builder delete an event handler, simply remove all the code (including
comments) inside the event handler code block. C++Builder removes all empty event handlers when
you compile or save your projects.
To read these topics in sequence, press the >> button.

Coding menu events
See also
While you use the C++Builder Menu designer to visually design your application menus, the underlying
event code is what makes the menus useful. Each menu command needs to be able to respond to an
OnClick event, and there are many times when you want to change menus dynamically in response to
program conditions.
The following topics describe how to associate code with menu events. For an example of how to write
an event handler that displays a File Save dialog box, see "Tutorial: Hooking up an event handler".
To read these topics in sequence, press the >> button.

Menu component events
See also
The MainMenu component is different from most other components in that it doesn't have any
associated events. You access the events for items in a main menu by means of the Menu designer.
In contrast, the PopupMenu component has one event: the OnPopup event. This is necessary because
pop-up menus have no menu bar, therefore, no OnClick event is available prior to users opening the
menu.
To read these topics in sequence, press the >> button.

Handling menu item events
See also
There is only one event for menu items: the OnClick event. Code that you associate with a menu item's
OnClick event is executed whenever the user chooses the menu item in the running application, either
by clicking the menu command or by using its accelerator or shortcut keys.
To generate an event handler for any menu item,
1. From the Menu designer window, double-click the menu item.
2. Inside the code block, type the code you want to execute when the user clicks this menu command.
You can also easily generate event handlers for menu items displayed in a form. This procedure does
not apply to pop-up menu items, as they are not displayed in the form at design time.
To generate an event handler for a menu item displayed in the form, simply click the menu item (not the
menu component). For example, if your form contains a File menu with an Open menu item, you can
click Open to generate or open the associated event handler.
This procedure applies only to menu items in a list, not those on a menu bar. Clicking a menu item on a
menu bar opens that menu, displaying the subordinate menu items.
To read these topics in sequence, press the >> button.

Associating a menu item with an existing event handler
See also
You can associate a menu item with an existing event handler, so that you don't have to rewrite the
same code in order to reuse it.
To associate a menu item with an existing OnClick event handler,
1. In the Menu designer window, select the menu item.
2. Display the Properties page of the Object Inspector, and ensure that a value is assigned to the menu

item's Name property.
3. Display the Events page of the Object Inspector.
4. Click the down arrow next to OnClick to open a list of previously written event handlers.

Only those event handlers written for OnClick events in this form appear in the list.
5. Select from the list by clicking an event handler name.

The code written for this event handler is now associated with the selected menu item.
To read these topics in sequence, press the >> button.

Writing an event handler for the Help|Memory Info menu
See also
The following example illustrates a menu handler for an item on the Help menu called "Memory Info."
When the user selects this menu item, this handler sets several edit fields on a second form to show
information on the current state of system memory. After setting the edit fields, the handler then calls the
second form's ShowModal function to display the form with the current memory state.

void __fastcall TForm1::Memory1Click(TObject *Sender)
{

char buf[16];
MEMORYSTATUS ms;

 ms.dwLength = sizeof(MEMORYSTATUS);
 GlobalMemoryStatus(&ms);
 wsprintf (buf, "%d", ms.dwTotalPhys);

MemoryForm->TotalPhysicalEdit->Text = buf;
 wsprintf (buf, "%d", ms.dwAvailPhys);

MemoryForm->FreePhysicalEdit->Text = buf;
wsprintf (buf, "%d", ms.dwTotalPageFile);
MemoryForm->TotalPagingEdit->Text = buf;
wsprintf (buf, "%d", ms.dwAvailPageFile);
MemoryForm->FreePagingEdit->Text = buf;
wsprintf (buf, "%d", ms.dwTotalVirtual);
MemoryForm->TotalVirtualEdit->Text = buf;
wsprintf (buf, "%d", ms.dwAvailVirtual);
MemoryForm->FreeVirtualEdit->Text = buf;
MemoryForm->ShowModal();

}
To learn more about programming event handlers, search for event handlers in the Help index.
To read these topics in sequence, press the << button.

Programming with VCL objects
See also
Object-oriented programming (OOP) is a natural extension of structured programming. OOP requires
that you use good programming practices and makes it very easy for you to do so. The result is clean
code that is easy to extend and simple to maintain.
Once you create an object for an application, you and other programmers can then use that same object
in other applications. Reusing objects can greatly cut your development time and increase productivity
for yourself and others.
This section explains what you need to know about objects to use C++Builder effectively. If you want to
create new components and put them on the C++Builder Component palette, see the Component
Writer's Guide.
These are the primary topics discussed in this section:

What is an object?
Inheriting data and code from a class
Object scope
Assigning values to object variables
Creating nonvisual objects

Before reading this section, you should know how to design a user interface for your application using
the C++Builder tools, how a C++Builder project is structured, and how to handle events.
To read these topics in sequence, press the >> button.

What is an object?
See also
An object is an instance of a class that wraps up data and code all into one bundle. Before OOP, code
and data were treated as separate elements.
Think of the work involved to assemble a bicycle if you have all the bicycle parts and a list of instructions
for the assembly process. This is analogous to writing a Windows program from scratch without using
objects. C++Builder gives you a head start on "building your bicycle" because it already gives you many
of the "preassembled bicycle parts"--the C++Builder forms and components.
An object is a specific instance of a class. A class is a collection of related information that includes both
data and functions (the instructions for working with that data). The properties of C++Builder objects
have default values. You can change these values at design time to modify an object to suit the needs of
your project without writing code. If you want a property value to change at runtime, you need to write
only a very small amount of code.
To read these topics in sequence, press the >> button.

Examining a C++Builder object and its class
See also
When you choose to create a new project, C++Builder displays a new form for you to customize. In the
Code editor, C++Builder declares a new class for the form and produces the code in a .cpp and .h unit
file pair that creates the new form object. The section "Inheriting data and code from a class" discusses
why a new class is declared for each new form. For now, examine the following example to see what the
code in the Code editor looks like:

Unit1.h file
#ifndef Unit1H
#define Unit1H
//---
#include <vcl\Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
//---
class TForm1 : public TForm
{
__published: // IDE-managed Components
private:// User declarations
public: // User declarations

virtual __fastcall TForm1(TComponent* Owner);
};
//---
extern TForm1 *Form1;
//---
#endif

Unit1.cpp file
//---
#include <vcl\vcl.h>
#pragma hdrstop
#include "Unit1.h"
//---
#pragma resource "*.dfm"
TForm1 *Form1; //The object is here
//---
__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)
{
}
//---

The new class is TForm1, and it is derived from TForm, which is also a class. The section "Inheriting
data and code from a class" presents more about TForm and objects derived from other objects.
So far, type TForm1 appears to contain no data members or methods, because you haven't added to
the form any components (the data members of the new object), and you haven't created any event
handlers (the methods of the new object). As discussed later, TForm1 does contain data members and
methods, even though you don't see them in the class declaration.
This code declaration creates a variable named Form1 of the new class TForm1.

TForm1 *Form1;
Form1 is called an instance of the type TForm1. The Form1 variable refers to the form itself to which you
add components to design your user interface.
You can declare more than one instance of a class. You might want to do this to manage multiple child
windows in a Multiple Document Interface (MDI) application, for example. Each instance carries its own
data in its own package, and all the instances of a class use the same code.
Although you haven't added any components to the form or written any code, you already have a
complete C++Builder application that you can compile and run. All it does is display a blank form
because the form object doesn't yet contain the data members or methods to do more.
Suppose, though, that you add a button component to this form and an OnClick event handler for the

button, that changes the color of the form when the user clicks the button. You then have an application
that's about as simple as it can be and still actually does something. Here is the form for the application:
A simple form

When the user clicks the button, the form changes color to green. This is the event-handler code for the
button OnClick event:

void__fastcall TForm1::Button1Click(TObject *Sender)
{
 Form1->Color = clGreen;
}

If you create this application and then look at the code in the Code editor, you'll see there is both a
Unit1.cpp and Unit1.h file. You can right-click and choose Open Source/Header Files to display the
header file. You will see files like the following:

Unit1.h file
#ifndef Unit1H
#define Unit1H
//---
#include <vcl\Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
//---
class TForm1 : public TForm
{
__published: // IDE-managed Components

TButton *Button1;
void__fastcall Button1Click(TObject *Sender);

private: // User declarations
public: // User declarations

virtual __fastcall TForm1(TComponent* Owner);
};
//---
extern TForm1 *Form1;
//---
#endif

Unit1.cpp file
//---
#include <vcl\vcl.h>
#pragma hdrstop
#include "Unit1.h"
//---
#pragma resource "*.dfm"

TForm1 *Form1;
//---
__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)
{
}
//---
void__fastcall TForm1::Button1Click(TObject *Sender)
{

Form1->Color = clGreen;
}
//---

The new TForm1 class now has a Button1 data member--that's the button you added to the form.
TButton is a class, so Button1 is also an object. Classes, such as TForm1, can contain other objects,
such as Button1, as data members. Each time you put a new component on a form, a new data member
with the component's name appears in the form's class declaration in the unit header file (Unit1.h).
All the event handlers you write in C++Builder are methods of the form object. Each time you create an
event handler, a method is declared in the form class. The TForm1 type now contains a new method,
the Button1Click procedure, declared within the TForm1 class declaration.
The actual code for the Button1Click method appears in the .cpp part of the unit file pair. The method is
the same as the empty event handler you created with C++Builder and then filled in to respond when
the user clicks the button as the application runs.
To read these topics in sequence, press the >> button.

Changing the name of a component
See also
You should always use the Object Inspector to change the name of a component. The best time to do
this is right after you've created the form or component. For example, when you change the default
name of a form from Form1 to something else by changing the value of the Name property using the
Object Inspector, the name change is reflected throughout the code C++Builder produces. If you wrote
the previous application, but named the form ColorBox, this is how your code would appear:

Unit1.h file
#ifndef Unit1H
#define Unit1H
//---
#include <vcl\Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
//---
class TColorBox : public TForm
{
__published: // IDE-managed Components

TButton *Button1;
void__fastcall Button1Click(TObject *Sender);

private:// User declarations
public: // User declarations

virtual __fastcall TColorBox(TComponent* Owner);
};
//---
extern TColorBox *ColorBox;
//---
#endif

Unit1.cpp file
//---
#include <vcl\vcl.h>
#pragma hdrstop
#include "Unit1.h"
//---
#pragma resource "*.dfm"
TColorBox *ColorBox;
//---
__fastcall TColorBox::TColorBox(TComponent* Owner)

: TForm(Owner)
{
}
//---
void__fastcall TColorBox::Button1Click(TObject *Sender)
{

Form1->Color = clGreen;
}
//---

Notice that the name of the form class changed from TForm1 to TColorBox. Also note that the form
variable is now ColorBox, the name you gave to the form. References to the ColorBox variable and the
TColorBox type also appear in the final block of code, the code that creates the form object and starts
the application running. If C++Builder originally generated the code, it updates it automatically when you
use the Object Inspector to change the name of the form or any other component.
Note that the code you wrote in the OnClick event handler for the button hasn't changed. Because you
wrote the code, you have to update it yourself and correct any references to the form if you change the
form's name. If you don't, your code won't be compiled. In this case, change the code to this:

__fastcall TColorBox::Button1Click(TObject *Sender);
{
 ColorBox->Color = clGreen;
}

You should change the name of a component only with the Object Inspector. While nothing prevents you
from altering the code C++Builder produced and changing the name of component variables, you won't

be able to compile your program until you manually update all instances of the variable name.
To read these topics in sequence, press the >> button.

Inheriting data and code from a class
See also
The TForm1 class might seem quite simple. If you create the application, TForm1 appears to contain
one data member, Button1, one method, Button1Click, and no properties. Yet you can change the size
of the form, add or delete Minimize and Maximize buttons, or set up the form to become part of a
Multiple Document Interface (MDI) application. How is it possible to do all these things with a form that
contains only one data member and one method?
The answer lies in the notion of inheritance. Recalling the bicycle analogy, once you have put together
all the objects that make up a complete "bicycle object," you can ride it because it has all the essentials
to make the bicycle useful--it has pedals you push to make the wheels go around, it has a seat for you
to sit on, it has handlebars so you can steer, and so on. Similarly, when you add a new form to your
project, it has all the capabilities of any form. For example, all forms provide a space to put other
components on them, all forms have the methods to open, show, and hide themselves, and so on.
Suppose, though, that you want to customize that bicycle, just as you would customize a form object in
C++Builder. You might adjust a few gear settings, add a headlight, and provide a horn with a selection of
sounds--just as you might customize a form by adding or rearranging buttons, changing a few property
values, and adding a new method that allows the form to appear with a plaid background.
To change the bicycle to make it exactly as you want it, you start with the basic model and then
customize it. You do the same thing with C++Builder forms. When you add a new form to your project,
you've added the "basic model" form. By adding components to the form, changing property values, and
writing event handlers, you are customizing the new form.
To customize any object, whether it be a blank form, a form with multiple controls that is used as a
dialog box, or a new version of the C++Builder bitmap button, you start by deriving a new class from an
existing class. When you add a new form to your project, C++Builder automatically derives a new form
class for you from the TForm class.
At the moment a new form is added to a project, the new form class is identical to the TForm class.
Once you add components to it, change properties, and write event handlers, the new form object and
the TForm class are no longer the same.
No matter how you customize your bicycle, it can still do all the things you expect a bicycle to do.
Likewise, a customized form class still exhibits all the built-in capabilities of a class, and it can still do all
the things you expect a form to do, such as change color, resize, close, and so on. That's because the
new form object inherits all the data members, properties, methods, and events from the TForm class.
When you add a new form to a C++Builder project, C++Builder creates a new class, TForm1, deriving it
from the more generic class, TForm. The first line of the TForm1 class declaration specifies that TForm1
is derived from TForm:

class TForm1: public TForm;
Because TForm1 is derived from TForm, all the elements that belong to a TForm class automatically
become part of the TForm1 class. If you look up TForm in online Help (you can click the form itself and
press F1), you see lists of all the properties, methods, and events in the TForm class. You can use all
the elements inherited from TForm in your application. Only the elements you specifically add to your
TForm1 class, such as components you place on the form or event handlers (methods) you write to
respond to events, appear in the TForm1 class declaration. These are the things that make TForm1
different from TForm.
The more broad-based or generic class from which another more customized object inherits data and
code is called the ancestor of the customized class. The customized class itself is a descendant of its
ancestor. A VCL-based class can have only one immediate ancestor, but it can have many descendants.
For example, TForm is the ancestor type of TForm1, and TForm1 is a descendant of TForm. All form
classes are descendants of TForm, and you can derive many form classes from TForm.
Inheriting from TForm

To read these topics in sequence, press the >> button.

Objects, components, and controls
See also
When you look up TForm in online Help, you'll notice that TForm is called a component. Don't let this
confuse you. All components and controls are also classes. The terminology used in the documentation
comes from the inheritance hierarchy of the C++Builder Visual Component Library. The following figure
is a greatly simplified diagram of the hierarchy, omitting some intermediary objects. To see a more
complete diagram, refer to the Component Writer's Guide.
A simplified hierarchy diagram

Everything in this hierarchy is a class. Components, which inherit data and code from a TObject, are
classes with additional properties, methods, and events that make them suitable for specialized purposes,
such as the ability to save their state to a file. Controls, which inherit data and code from a TComponent
type (which in turn inherits elements from TObject) have additional specialized capabilities, such as the
ability to display something. So controls are components and classes, and components are classes but
not necessarily controls. And an object is an instance of a class. This section refers to all components and
controls as classes.
Even though TCheckBox isn't an immediate descendant of TObject, it still has all the attributes of
TObject because TCheckBox is ultimately derived from TObject in the VCL hierarchy. TCheckBox is a
very specialized kind of class that inherits all the functionality of TObject, TComponent, and TControl,
and defines some unique capabilities of its own.
To read these topics in sequence, press the >> button.

Object scope
See also
An object's scope determines the availability and accessibility of the data members, properties, and
methods within that object. Using the earlier bicycle analogy, if you were to add a headlight only to your
customized "bicycle object," the headlight would belong to that bicycle and to no other. If, however, the
"basic model bicycle object" included a headlight, then all bicycle objects would inherit the presence of a
headlight. The headlight could lie either within the scope of the ancestor bicycle object--in which case, a
headlight would be a part of all descendant bicycle objects--or within the scope only of the customized
bicycle object, and available only to that bicycle.
Likewise, all data members, properties, and methods declared within a class declaration are within the
scope of the class, and are available to that class and its descendants.
When you write code in an event handler of an object that refers to properties, methods, or data
members of the object itself, you don't need to preface these identifiers with the name of the object
variable. For example, if you put a button and an edit box on a new form, you could write this event
handler for the OnClick event of the button:

__fastcall TForm1::Button1Click(TObject *Sender);
{
 Color = clFuchsia;
 Edit1->Color = clLime;
}

The first statement colors the form. You could have written the statement like this:
Form1->Color = clFuchsia

It's not necessary, however, to put the Form1 qualifier on the Color property because the Button1Click
method is within the scope of the TForm1 object. Any time you are within an object's scope, you can
omit the qualifier on all properties, methods, and data members that are part of the object.
The second statement refers to the Color property of a TEdit object. Because you want to access the
Color property of the TEdit1 object, not of the TForm1 object, you need to specify the scope of the Color
property by including the name of the edit box, so the compiler can determine which Color property you
are referring to. If you omit it, the second statement is like the first; the form ends up lime green, and the
edit box control remains unchanged when the handler runs.
Because it's necessary to specify the name of the edit box whose Color property you are changing, you
might wonder why it's not necessary to specify the name of the form as well. This is unnecessary
because the control Edit1 is within the scope of TForm1; it's declared to be a data member of TForm1.
To read these topics in sequence, press the >> button.

Accessing components on another form
See also
If Edit1 were on some other form, you would need to preface the name of the edit box with the name of
the form class. For example, if Edit1 were on Form2, it would be a data member in the TForm2 class
declaration, and would lie with the scope of Form2. You would write the statement to change the color of
the edit box in Form2 from the TForm1::ButtonClick method like this:

Form2->Edit1->Color = clLime;
In the same way, you can also access methods of a component on another form. For example,

Form2->Edit1->Clear();
To give the code of Form1 access to properties, methods, and events of Form2, you need to add Unit2
with an #include statement to Unit1 (assuming the units associated with Form1 and Form2 are named
Unit1 and Unit2, respectively). Use File|Include Hdr to add the #include statement.
To read these topics in sequence, press the >> button.

Scope and descendants of a class
See also
The scope of a class extends to all the class's descendants. That means all the data members,
properties, methods, and events that are part of TForm are within the scope of TForm1 also, because
TForm1 is a descendant of TForm.
To read these topics in sequence, press the >> button.

Overriding a method
See also
You can, however, use the name of a method within an ancestor class to declare a method within a
descendent class. This is how you override or hide a method. It is important to understand whether you
are overriding, hiding, or overloading a method. You would want to override an existing method if you
want the method in the descendent class to the same thing as the method in the ancestor class, but the
task is accomplished in another way. In other words, the code that implements the two methods differs.

If you declare a data member in a derived class with the same name as a data member in the
base class, the base class member is hidden.

If you declare a function in a derived class with the same name and matching parameters as a
virtual function in a base class, the new function will override the base class function (and take its place in
the vtable).

If you declare a function in a derived class with the same name but different perimeters as a
function in the base class, the function will be overloaded (both are in the scope of the derived class).

If you declare a function in a derived class with the same name and matching parameters as a
(nonvirtual) function in a base class, the base class function is hidden.
It's not often that you would want to override a method unless you are creating new components. You
should be aware that you can do so, though, and that you won't receive any warning or error message
from the compiler. You can read more about overriding methods in the Component Writer's Guide.
To read these topics in sequence, press the >> button.

Public and private declarations
See also
When you build an application using the C++Builder environment, you are adding data members and
methods to a descendant of TForm. You can also add data members and methods to a class without
putting components on a form or filling in event handlers, but by modifying the class declaration directly.
There are private, protected, public, published, and automated declarations in a class. You can add
new data members and methods to either the public or private part of a class. Public and private are
keywords. When you add a new form to the project, C++Builder begins constructing the new form class.
Each new class contains the public and private keywords that mark locations for data members and
methods you want to add to the code directly. For example, note the private and public parts in this
new form class declaration that so far contains no data members or methods:

class TForm1 : public TForm
{
__published: // IDE-managed Components
private:// User declarations
public: // User declarations

virtual __fastcall TForm1(TComponent* Owner);
};

Use the public part to
Declare data members you want methods in other classes to access
Declare methods you want other classes to access

Declarations in the private part are restricted in their access. If you declare data members or methods
to be private, they are unknown and inaccessible outside the class. Use the private part to

Declare data members you want only methods in the same class to access
Declare methods you want only methods in the same class to access

To add data members or methods to a public, private, or protected section, put the data members or
method declarations after the appropriate access specifier (public, private, and so on). Here is an
example:

class TForm1 : public TForm
{
__published: // reserved for IDE-managed Components

TEdit *Edit1;
TButton *Button1;
void __fastcall Button1Click(TObject *Sender);

private:// User declarations
int Number;

 int Calculate (int X, int Y);
public: // User declarations

virtual __fastcall TForm1(TComponent* Owner);
 void ChangeColor();
};

Place the code that implements the Calculate and ChangeColor methods in the .cpp part of the unit file
pair.
The Number data member and Calculate function are declared to be private. Only members within the
class can use Number and Calculate. This restriction means that only the form class can use them.
Because the ChangeColor method is declared to be public, code in other units can use it. Such a
method call from another unit must include the object name in the call:

Form1->ChangeColor;
The unit making this method call must #include Form1's Unit1 file.
The other declarations listed at the beginning of this section are discussed in further detail in the
Programmer's Guide. In brief, the published declaration is reserved for the IDE -managed components
and has the same scope as public. The IDE uses this section to maintain the component and event
handlers for the form. Published properties display in the Object Inspector. Automated declarations
cause automation type information to be generated for the method property and also have the same
scope as public. This automation information makes it possible to create OLE Automation Servers.
Protected declarations can only be seen by the current class or its descendants.

To read these topics in sequence, press the >> button.

Accessing object data members and methods
See also
To change the value of an object's property that is a data member in the form object, or call a method of
an object that is a data member in the form object, you must include the name of that object in the
property name or method call. For example, if your form has an edit box control on it and you want to
change the value of its Text property, you should write the assignment statement something like this,
making sure to specify the name of the edit box (in this example, Edit1):

Edit1->Text = 'Frank Borland was here';
Likewise, if you want to clear the text selected in the edit box control, you would write the call to the
ClearSelection method like this:

Edit1->ClearSelection();
To read these topics in sequence, press the >> button.

Assigning values to object variables
See also
You can assign one object pointer variable to another object pointer variable if the variables are of the
same type or assignment compatible, just as you can assign variables of any type other than objects to
variables of the same type or assignment-compatible types. For example, if the variables Form1 and
Form2 have been declared as pointers to TForm, you could assign Form1 to Form2:

Form2 = Form1;
You can also assign an object pointer variable to another object pointer variable if the type of the
variable you are assigning a value to is an ancestor of the type of the variable being assigned. For
example, here is a TDataForm class declaration:

class TTDataForm : public TForm
{
__published: // IDE-managed Components

TButton *Button1;
TEdit *Edit1;
TDBGrid *DBGrid1;
TDatabase *Database1;

private:// User declarations
public: // User declarations

virtual __fastcall TTDataForm(TComponent* Owner);
};

Here are the declarations of two objects; one of type TForm, and one of type TDataForm:
TDataForm *DataForm;
TForm *AForm;

AForm is of type pointer to TForm, and DataForm is of type pointer to TDataForm. Because TDataForm
is a descendant of TForm, this assignment statement is legal:

AForm = DataForm;
You might wonder why this is important. Taking a look at what happens behind the scenes when your
application calls an event handler shows you why.
Suppose you write an event handler for the OnClick event of a button. When the button is clicked, the
event handler for the OnClick event is called.
Each event handler has a Sender parameter of type pointer to TObject. For example, note the Sender
parameter in this empty Button1Click handler:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
}

If you look back at "A simplified hierarchy diagram", you'll recall that TObject is at the top of the C+
+Builder Visual Component Library. That means that all C++Builder objects are descendants of TObject.
Because Sender is of type TObject, any object can be assigned to Sender. Although you don't see the
code that makes the assignment, the component or control to which the event happened is assigned to
Sender. This means the value of Sender is always the control or component that responds to the event
that occurred.
How is this information useful? You can test Sender to find the type of component or control that called
the event handler. For example:

if (typeid(*Sender) == typeid(TEdit))
 DoSomething;
else
 DoSomethingElse;

To read these topics in sequence, press the >> button.

Creating nonvisual objects
See also
Most of the objects you use in C++Builder are components you can see at both design time and
runtime, such as edit boxes and string grids. A few, such as common dialog boxes, are components you
see only at runtime. Still others, such as timers and data source components, never have any visual
representation in your application at runtime, but are there for your application to use.
Occasionally you might want to create your own nonvisual objects for your application. For example, you
might want to create a TEmployee object that contains Name, Title, and HourlyPayRate data members.
You could then add a CalculatePay method that uses the data in the HourlyPayRate data member to
compute a paycheck amount for a given period.
The TEmployee class declaration could look like this:

class TEmployee : public TObject
{

private:
 char Name[25];
 char Title[25];
 double HourlyRate;
 public:
 double CalculatePayAmount();

TEmployee();
};

In this case, TEmployee is derived from TObject. TEmployee contains three data members and one
method. Because it is derived from TObject, TEmployee also contains all methods of TObject (TObject
has no data members).
Place class declarations you create without the help of C++Builder in the class declaration part of your
unit (.h header file) along with the form class declaration. In the variable declaration part of the unit
(the .cpp file), you usually need to declare a variable of the new type:

 TEmployee *Employee;
To read these topics in sequence, press the >> button.

Creating an instance of an object
See also
TEmployee is just a class. An actual object doesn't exist in memory until the object is instantiated, or
created, by operator new (which calls the class constructor). A constructor is a method that allocates
memory for the new object and points to the new object, which is called an instance of the class.
If you want to declare an instance of the TEmployee object, your code must call TEmployee::TEmployee
before you can access any of the data members of the object:

Employee = new TEmployee;
Now you are ready to access the data members of an Employee object, just as you would any other C+
+Builder object.
To read these topics in sequence, press the >> button.

Destroying your object
See also
When you are through using an object, you should destroy it, which releases the memory the object
used. You destroy an object by calling the delete operator (which calls the class destructor, a method
that releases the memory allocated to the object).
To destroy the Employee object when you have finished using it, you would make this call:

delete Employee;
To follow good programming practices, you should place your destructor call in the catch part of a
try..catch block, while placing the code that uses the object in the try part. This assures that the
memory allocated for your object is released even if an exception occurs while your code is attempting
to use the object.
To read these topics in sequence, press the << button.

Setting project options and compiling
See also
This chapter shows how to set project options using the Project Options dialog box, and it describes
how to compile and run your program.

Setting project options
You can customize the way C++Builder appears and works for a particular project, including customizing
the integrated development environment (IDE) itself. The appearance and behavior of the IDE when you
start C++Builder or begin a new project are governed by the settings of several groups of options:

Environment settings affect all C++Builder projects.
To set these options, choose Options|Environment.

Project settings affect the current project only.
To set these options, choose Options|Project.

Repository settings determine the default new form, new data module, and new project.
To set these options, choose Options|Repository.

If you share your installation of C++Builder with other users, it's possible that another user has
modified the option settings. In this case, displays or behaviors might differ from those described in the
examples and illustrations in this chapter. In a shared-installation situation, it's a good idea to check and
modify environment options as described in the following sections, before creating a new project.
If the Default box on the Project Options dialog is cleared, the current settings affect only the current
open project. C++Builder creates an options file with a file extension .MAK in the project directory each
time you save the project. When you reopen the project in future sessions, the project options saved in
the options file will be in effect.
If you check the Default box and click OK, C++Builder also uses the current settings as the default for
any new projects you create.

The .MAK file can be used with the Borland MAKE utility.

Changing the defaults for new projects
See also
The Project Options dialog box contains a check box labeled Default. This control enables you to modify
some of C++Builder's default project configuration properties. When you check this control, C++Builder
saves your current settings in a file called DEFAULT.MAK (located in the BIN directory). C++Builder then
uses the project options settings stored in this file as the default for any new projects you create. If the
Default checkbox is cleared, your selections affect only the current Project.

Project options you set for an open project override the current C++Builder defaults, whether
those defaults are as originally shipped or as modified by you or another user. If you open an existing
project or create a project from a template in the Object Repository that has its own options file, those
settings will override the default settings in DEFAULT.MAK. DEFAULT.MAK is required for making new
projects.

.MAK file
See also
The .MAK file stores the compiler and linker settings that C++Builder uses to build your project. When
you save a project for the first time, C++Builder prompts you to save a .MAK file that defines the name
of the project.
Because C++Builder maintains the .MAK file, you will not normally need to modify it manually, and it is
generally recommended that you not do so. Most changes you could make to the .MAK file can be made
using the Project|Options in C++Builder, and doing so ensures that C++Builder keeps all the project's
files synchronized. Additional build options, however, are available as command line switches. For more
information, see Advanced Compiler Options in online Help
If you need to manually edit the .MAK file, choose Project|View Project Makefile from the main menu to
open it in the Code editor.
C++Builder treats each section of the .MAK file differently. For example, you can modify some parts only
from the IDE and some parts you can modify only by editing the .MAK file manually. Additionally,
some .MAK file options are intended only for the command line make utility. The following examples
show the sections of the .MAK file generated by C++Builder for a new application and how they are
used by the IDE.
You can modify the options in the following section of the .MAK file manually, but you cannot set them in
the IDE:

VERSION = BCB.01
ifndef BCB
BCB = $(MAKEDIR)\..
!endif

Use the IDE to set the options in the following section of the .MAK file. Do not change them manually
because C++Builder will overwrite them to match the current settings in the IDE:

ROJECT = myproject.exe
OBJFILES = myproject.obj
RESFILES = myproject.res
RESDEPEN = $(RESFILES)
LIBFILES =

You can set the following options either in the IDE or by editing the .MAK file manually. C++Builder uses
the most recent settings in the IDE if you have changed them since they were last saved.

FLAG1 = -w -Od -Hc -k -r- -y -v -vi- -c -a4 -b- -w-par -w-inl -Vx -Ve -x \
 -WE
CFLAG2 = -I$(BCB)\include;$(BCB)\include\vcl -H=$(BCB)\lib\vcld.csm
PFLAGS = -AWinTypes=Windows;WinProcs=Windows;DbiTypes=BDE;DbiProcs=BDE;DbiErrs=BDE \
 -v -$Y -$W -$O- -JPHNV -M -U$(BCB)\lib\obj;$(BCB)\lib \
 -I$(BCB)\include;$(BCB)include\vcl
RFLAGS = -i$(BCB)\include;$(BCB)\include\vcl
LFLAGS = -L$(BCB)\lib\obj;$(BCB)\lib -aa -Tpe -x -v -V4.0 \
 -j$(BCB)\lib\obj;$(BCB)\lib
IFLAGS =
LINKER = ilink32

You can modify the following options by editing the .MAK file manually, but you cannot set them in the
IDE:

ALLOBJ = c0w32.obj $(OBJFILES)
ALLRES = $(RESFILES)
ALLLIB = $(LIBFILES) vcl.lib import32.lib cp32mt.lib

The IDE ignores the options in the following section of the .MAK file. They are available, however, for
use with the command line Make utility. You cannot set them in the IDE, but you can change them by
editing the .MAK file manually:

#autodepend
$(PROJECT): $(OBJFILES) $(RESDEPEN)
 $(BCB)\BIN\$(LINKER) @&&!
 $(LFLAGS) +
 $(ALLOBJ), +
 $(PROJECT),, +
 $(ALLLIB),, +
 $(ALLRES)

!
.pas.hpp:
 $(BCB)\BIN\dcc32 $(PFLAGS) { $** }
.pas.obj:
 $(BCB)\BIN\dcc32 $(PFLAGS) { $** }
.cpp.obj:
 $(BCB)\BIN\bcc32 $(CFLAG1) $(CFLAG2) -o$* $*
.c.obj:
 $(BCB)\BIN\bcc32 $(CFLAG1) $(CFLAG2) -o$* $**
.rc.res:
 $(BCB)\BIN\brcc32 $(RFLAGS) $<

Project source file
See also
The project source file is the main program file C++Builder uses to compile and link all other units and
files. C++Builder updates this file throughout the development of the project. As with unit source code
files, you can open the project file in the Code editor. The main reason to do this is so you can see the
units and forms that make up the project, and which form is specified as the application's main form. As
you add forms and units to the project, you can see C++Builder's updates of the project source code.
To open the project source file, use either of these methods:

Right-click the Project Manager and choose View Project Source.
Choose View|Project Source from the main menu.

The contents of the project source file appears in a Code editor window. To hide the project file again,
close the window in the Code editor.
C++Builder generates the following source code for a default, blank project:
#include <vcl\vcl.h>
#pragma hdrstop
//---
USEFORM("Unit1.cpp", Form1);
USERES("Project1.res");
//---
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{
try
{

Application->Initialize();
Application->CreateForm(__classid(TForm1), &Form1);
Application->Run();

}
catch (Exception &exception)
{

Application->ShowException(&exception);
}
return 0;

}
The default project code performs the following:

The vcl.h header file contains definitions that are needed for the Visual Component Library. This
file is included in each C++Builder project.

The #pragma hrdstop statement instructs the compiler to stop adding header files to the collection
of precompiled headers. By default, vcl.h is included in the precompiled headers.

The USEFORM and USERES statements are two of several macros used to add items such as
files, forms, and resources to your project. These macros are defined in sysdefs.h (located in the
INCLUDE\VCL directory) that also defines USEDATAMODULE, USEDATAMODULENS, USEFORMNS,
USEUNIT, USEOBJ, USERC, USELIB, and USEFILE. C++Builder creates these macros automatically
and you will not normally need to change them.

The WinMain call is the program entry point.
Application->Initialize(); initializes the VCL Application object for this process.
The Application->CreateForm statement creates the form specified in the function parameters.

The statement creates the form object specified in the second parameter using the form class specified in
the first parameter.

C++Builder adds an Application->CreateForm statement to the project file for each form you add to
the project. The statements are listed in the order the forms are added to the project. This is the order
that the forms will be created in memory at runtime. To change this order, edit the project source file.
The Application->Run(); statement causes the process to enter the program's message loop. From
there, the process gets Windows messages and dispatches them to the proper window message

procedure. This is essentially where your program begins running in the Windows environment.

Compiling, building, and running projects
All C++Builder projects have as a target a single distributable executable file, either an .EXE or a .DLL
file. You can view or test your application at various stages of development the folowing ways:

compiling
building
running

Compiling a single file
See also
To compile a single unit in your project,
1. Make the unit you want to compile the current selected form unit (in the editor) or file (in Project

Manager window).
2. Choose the Project|Compile Unit from the main menu.
The hourglass cursor appears or the "progress" dialog is displayed, if that option has been set, to
indicate that a compile is in progress and returns to normal if the compiler finds no errors.
If an error is found when the Code editor is not open, the Message window displays an error message. If
you double-click the message, the Code editor displays the source file showing the line where the error
occurred.
If an error is found when the Code editor is open,

The Code editor window comes to the front.
The unit source file page containing the error comes to the top of the Code editor.
The line containing the error is highlighted in the Code editor.
The Code editor message pane displays an error message.
Context-sensitive help about the error message is available by pressing F1.

Compile error display

Making a project
See also
To compile and link all the source files that changed since you last compiled them, choose Project|Make
from the main menu.
When you choose this command, this is what happens:

The compiler compiles source code for each unit if the source code has changed since the last
time the unit was compiled.

If a unit contains an include (.h) file, and the include file is newer than the unit's .OBJ file, the unit
is recompiled.
Once all the units that make up the project have been compiled, C++Builder links them into an
executable file (or dynamic link library). This file is given an .EXE (or .DLL) file extension and the same
file name as the project source code file. This file now contains all the compiled code and forms found in
the individual units, and the program is ready to run.

Obtaining compile status information
You can get information about the compile status of your project by displaying the Information dialog box
(Choose Information from the Project menu). This dialog box displays information about the number of
lines of source code compiled, the byte size of your code and data, the stack size, and the compile
status of the project.
To get status information from the compiler as a project compiles,
1. Choose Options|Environment.
2. On the Preferences tab, check Show Compiler Progress.
For more information, see Environment Options in online Help.

Building a project
See also
To compile and link all the source files in your project, regardless of when they were last compiled,
choose Project|Build All from the main menu.
The result of this command is similar to that of the Project|Make command, except that all units in the
project are compiled, regardless of whether or not they have changed since the last compile. When you
choose Build All, precompiled headers and files generated by the incremental linker are deleted and
regenerated.
This technique is useful if you are unsure of exactly which files have changed or if you want to ensure
that all files are current and synchronized. It's also important to Build All when you've changed global
compiler directives or compiler options to ensure that all code compiles in the proper state.

Running a project
See also
You can test run a project from within C++Builder, or you can run the compiled .EXE file from the
Windows operating environment without having to run C++Builder.
You can compile and then run your application from within C++Builder the following ways:

Choose Run|Run from the main menu.
Choose the Run button on the C++Builder toolbar.

These actions are the same as choosing the Project|Make command, except that C++Builder runs your
application immediately if the compile operation succeeds.

Executing a project from Windows
Unless you select the In Memory-EXE option on the Linker page of the Project Options dialog box, the
compiler creates a fully compiled standalone executable file (.EXE) that you can run from the Windows
operating environment using the same techniques as you would for any other Windows application.
If you specified an icon for your project, it will appear in the Program Manager if you create a Windows
program item for your application, or if you minimize the application while it is running.

Managing multiple project versions and team development
See also
When you are developing a complex programming project in a team setting, or managing several
development projects, you might soon develop the need for a version control system (VCS). A version
control system can archive files, control access to project files, and track multiple versions of your
projects.
C++Builder has a built-in interface for Intersolv's PVCS Version Manager. It supports PVCS version 5.1
and later. C++Builder Client/Server Suite includes both the PVCS interface and PVCS itself.

Enabling team development support
Before using C++Builder's built-in team development support, you need to have PVCS installed on your
system, and several files must reside in your \WINDOWS\SYSTEM directory.
For information on using the team development support features of C++Builder, refer to the Version
Control online Help (PVCS.HLP).

Setting advanced options in C++Builder
See also
In C++Builder, you set project options through the Project Options dialog box, reached with the Options|
Project menu command. The Project Options dialog box lets you set general-use options for the C+
+Builder compilers and linkers.
If you need to set more advanced compiler and linker options, you can do so by setting options in the
project .MAK file.
When you open the Project makefile (by choosing View|Project Makefile), you will see a section that
contains the following makefile code:
CFLAG1 = ...
CFLAG2 = ...
PFLAGS = ...
RFLAGS = ...
LFLAGS = ...
IFLAGS = ...

These sections contain the option settings for the C++ compiler, the Object Pascal compiler, the
resource compiler, and the linkers.
To set advanced C++ compiler options, add the command-line switch of the desired option to the
CFLAG1 line (if you are adding or modifying a switch that uses a string, add the command-line switch to
the CFLAG2 line). Use the PFLAGS line for Object Pascal compiler options. The RFLAGS line contains
resource compiler options, and the LFLAGS line sets the linker options. You can use the IFLAGS line to
set general options that affect the behavior of C++Builder, for example you can use this line to set which
compiler warning display during a compilation.

Compiler and linker options
The C++Builder compiler and linker options are grouped into the following areas:
Compiler-specific options
C++-specific options
Optimization options
Warning message options
Linker options

Option listings
For a complete listing of the compiler and linker options, refer to the following charts:
Compiler options (alphabetical listing)
Compiler options (functional listing)

Linker options (alphabetical listing)
Linker options (functional listing)

Compiler options (alphabetical listing)
See also
The following table is an alphabetical listing of the C++Builder compiler options:

Option Description
@<filename> Read compiler options from the response file filename

+<filename> Use alternate compiler configuration file filename

-3 Generate 80386 protected-mode compatible instructions (Default)

-4 Generate 80386/80486 protected-mode compatible instructions

-5 Generate Pentium instructions

-6 Generate Pentium Pro instructions

-A Use ANSI keywords and extensions

-AK Use Kernighan and Ritchie keywords and extensions

-AT Use Borland C++ keywords and extensions (also -A-)

-AU Use UNIX V keywords and extensions

-a Align byte (Default: -a- use byte-aligning)

-a n Align data on "n" boundaries, where 1=byte, 2=word (2 bytes), 4=Double word (4
bytes), 8=Quad word (8 bytes), 16=Paragraph (16 bytes)

-B Compile to .ASM (-S), the assemble to .OBJ

-b Make enums always integer-sized (Default: -b- make enums byte-sized when
possible)

-C Turn nested comments on (Default: -C- turn nested comments off)

-CP Enable code paging (for MBCS)

-c Compile to .OBJ, no link

-D<name> Define "name" to the null string

-Dname=string Define "name" to "string"

-d Merge duplicate strings (Default)

-E<filename> Specify assembler

-e<filename> Specify executable file name

-f Emulate floating point

-f- No floating point

-ff Fast floating point

-fp Correct Pentium FDIV flaw

-gn Warnings: stop after n messages (Default = 255)

-H Generate and use precompiled headers (Default)

-H=<filename> Set the name of the file for precompiled headers

-H”xxx” Stop precompiling after header file xxx

-Hc Cache precompiled header

-He Enable precompiled headers with external type files

-Hs Enable smart cached precompiled headers

-Hu Use but do not generate precompiled headers

-I<path> Include file search path

-in Make significant identifier length to be n (Default = 250)

-Jg Generate definitions for all template instances and merge duplicates (Default)

-Jgd Generate public definitions for all template instances; duplicates result in
redefinition errors

-Jgx Generate external references for all template instances

-jn Errors: stop after n messages (Default = 25)

-K Default character type unsigned (Default: -K- default character type signed)

-k Turn on standard stack frame (Default)

-L<path> library file search path

-l x Pass option x to linker

-M Create a Map file

-n<path> Sets output directory

-O Optimize jumps

-O1 Generate smallest possible code

-O2 Generate fastest possible code

-Oc Eliminate duplicate expressions within basic blocks and functions

-Od Disable all optimizations

-Oi Expand common intrinsic functions

-OS Pentium instruction scheduling

-Ov Enable loop induction variable and strength reduction

-o<filename> Compile .OBJ to filename

-P Perform C++ compile regardless of source extension

-P<ext> Perform C++ compile, set output to extension to .ext

-p Use Pascal calling convention

-pc Use C calling convention (Default: -pc, -p-)

-po Use fastthis calling convention for passing this parameter in registers

-pr Use fastcall calling convention for passing parameters in registers

-ps Use stdcall calling convention

-R Include browser information in generated .OBJ files

-RT Enable runtime type information (Default)

-r Use register variables (Default)

-S Compile to assembler

-T- Removes all assembler options

-T x Specify assembler option x

-tWM Generate a 32-bit multi-threaded target

-U<name> Undefine any previous definitions of name

-u Generate underscores (Default)

-V Use smart C++ virtual tables (Default)

-V? Put all functions into VIRDEFs for smart linking

-V0 External C++ virtual tables

-V1 Public C++ virtual tables

-VC Calling convention mangling compatibility

-Vd for loop variable scoping

-Ve Zero-length empty base classes

-VF MFC compatibility

-Vl Use old-style Borland C++ structure layout (for compatibility with older versions of
BCC32.EXE)

-v Turn on source debugging

-vi Control expansion of inline functions

-w Display warnings on

-w! Returns non-zero from compiler on warnings

-wxxx Enable xxx warning message

-w-xxx Disable xxx warning message

-wmsg User-defined warnings

-X Disable compiler autodependency output (Default: -X- use compiler
autodependency output)

-x Enable exception handling (Default)

-xc Enable compatible exception handling

-xd Enable destructor cleanup (Default)

-xdg Use global destructor count (for compatibility with older versions of BCC32.EXE)

-xf Enable fast exception prologs

-xp Enable exception location information

-y Debug line numbers on

Message options (alphabetical listing)
-wamb Ambiguous operators need parentheses

-wamp Superfluous & with function

-wasm Unknown assembler instruction

-w-aus 'identifier' is assigned a value that is never used (Default ON)

-wbbf Bit fields must be signed or unsigned int

-w-bei Initializing 'identifier' with 'identifier' (Default ON)

-w-big Hexadecimal value contains more than three digits (Default ON)

-w-ccc Condition is always true OR Condition is always false (Default ON)

-wcln Constant is long

-w-cpt Nonportable pointer comparison (Default ON)

-wdef Possible use of 'identifier' before definition

-w-dpu Declare type 'type' prior to use in prototype (Default ON)

-w-dup Redefinition of 'macro' is not identical (Default ON)

-w-dsz Array size for 'delete' ignored (Default ON)

-weas Assigning ‘type’ to ‘enum’

-w-eff Code has no effect (Default ON)

-w-ias Array variable 'identifier' is near (Default ON)

-w-ext 'identifier' is declared as both external and static (Default ON)

-whch Handler for '<type1>' Hidden by Previous Handler for '<type2>'

-w-hid 'function1' hides virtual function 'function2' (Default ON)

-w-ibc Base class 'base1' is inaccessible because also in 'base2' (Default ON)

-w-ill Ill-formed pragma (Default ON)

-w-inl Functions containing reserved words are not expanded inline (Default ON)

-w-lin Temporary used to initialize 'identifier' (Default ON)

-w-lvc Temporary used for parameter 'parameter' in call to 'function' (Default ON)

-wmsg User-defined warnings

-w-mpc Conversion to type fails for members of virtual base class base (Default ON)

-w-mpd Maximum precision used for member pointer type <type> (Default ON)

-wnak Non-ANSI Keyword Used: '<keyword>' (Note: Use of this option is a requirement
for ANSI conformance)

-w-nci The constant member 'identifier' is not initialized (Default ON)

-wnfc Non-constant function ‘ident’ called for const object

-wnod No declaration for function 'function'

-w-nst Use qualified name to access nested type 'type' (Default ON)

-w-ntd Use '> >' for nested templates instead of '>>' (Default ON)

-w-nvf Non-volatile function <function> called for volatile object (Default ON)

-w-obi Base initialization without a class name is now obsolete (Default ON)

-wobs 'ident' is obsolete

-w-ofp Style of function definition is now obsolete (Default ON)

-w-ovl Overload is now unnecessary and obsolete (Default ON)

-w-par Parameter 'parameter' is never used (Default ON)

-w-pch Cannot create precompiled header: header (Default ON)

-w-pia Possibly incorrect assignment (Default ON)

-wpin Initialization is only partially bracketed

-wpre Overloaded prefix operator 'operator' used as a postfix operator

-w-pro Call to function with no prototype (Default ON)

-w-rch Unreachable code (Default ON)

-w-ret Both return and return of a value used (Default ON)

-w-rng Constant out of range in comparison (Default ON)

-w-rpt Nonportable pointer conversion (Default ON)

-w-rvl Function should return a value (Default ON)

-wsig Conversion may lose significant digits

-wstu Undefined structure 'structure'

-wstv Structure passed by value

-w-sus Suspicious pointer conversion (Default ON)

-wucp Mixing pointers to different 'char' types

-wuse 'identifier' declared but never used

-w-voi Void functions may not return a value (Default ON)

-w-zdi Division by zero (Default ON)

Compiler options (functional listing)
See also
For the ease of access, the compiler options are grouped into the following functional categories:
Compiler-specific options

Configuration and Response files
Defines
Code generation
Floating point
Compiler output
Source
Debugging
Precompiled headers
Processor
Calling convention

C++-specific options
C++ compatibiltiy
Virtual tables
Templates
Exception handling

Optimization options
Warning message options

Portability
ANSI violations
Obsolete C++
Potential C++ errors
Inefficient C++ coding
Potential errors
Inefficient coding
General

Linker options
Input options
Map file options
Output options
File addressing options
File addressing options
Application target options
Linker messages and warnings

Compiler configuration files
@<filename> Read compiler options from the response file " filename

Compiler response files
+<filename> Use alternate configuration file filename

Compiler options | Defines
-D<name> Define name to the null string

-Dname=string Define "name" to "string"

-U<name> Undefine any previous definitions of name

Compiler options | Code generation
-a n Align data on "n" boundaries, where 1=byte, 2=word (2 bytes), 4=Double word (4

bytes), 8=Quad word (8 bytes), 16=Paragraph (16 bytes)

-b Make enums always integer-sized (Default: -b- make enums byte-sized when
possible)

-K Default character type unsigned (Default: -K- default character type signed)

-d Merge duplicate strings (Default)

-po Use fastthis calling convention for passing this parameter in registers

-r Use register variables (Default)

-CP Enable code paging (for MBCS)

Compiler options | Floating point
-f- No floating point

-f Emulate floating point

-ff Fast floating point

-fp Correct Pentium fdiv flaw

Compiler options | Compiler output
-c Compile to .OBJ, no link

-e<filename> Specify executable file name

-l x Pass option x to linker

-M Create a Map file

-o<filename> Compile .OBJ to filename

-P Perform C++ compile regardless of source extension

-P<ext> Perform C++ compile, set output to extension to .ext

-tWM Generate a 32-bit multi-threaded target

-X Disable compiler autodependency output (Default: -X- use compiler
autodependency output)

-u Generate underscores (Default)

Compiler options | Source
-C Turn nested comments on (Default: -C- turn nested comments off)

-in Make significant identifier length to be "n" (Default = 250)

-AT Use Borland C++ keywords (also -A-)

-A Use only ANSI keywords

-AU Use only UNIX V keywords

-AK Use only Kernighan and Ritchie keywords

-VF MFC compatibility

Compiler options | Debugging
-k Turn on standard stack frame (Default)

-vi Control expansion of inline functions

-y Line numbers on

-v Turn on source debugging

-R Include browser information in generated .OBJ files

Compiler options | Precompiled headers
-H Generate and use precompiled headers (Default)

-Hu Use but do not generate precompiled headers

-Hc Cache precompiled header

-He Enable precompiled headers with external type files

-Hs Enable smart cached precompiled headers

-H=filename Set the name of the file for precompiled headers

-H”xxx” Stop precompiling after header file xxxx

Compiler options | Processor
-3 Generate 80386 instructions. (Default)

-4 Generate 80486 instructions

-5 Generate Pentium instructions

-6 Generate Pentium Pro instructions

Compiler options | Calling convention
-pc Use C calling convention (Default: -pc, -p-)

-p Use Pascal calling convention

-pr Use fastcall calling convention for passing parameters in registers

-ps Use stdcall calling convention

Compiler options | Assembler-code options
-B Compile to .ASM (-S), the assemble to .OBJ

-E<filename> Specify assembler

-S Compile to assembler

-T x Specify assembler option x

C++ options | C++ compatibility
-VC Calling convention mangling compatibility

-Vd for loop variable scoping

-Ve Zero-length empty base classes

-Vl Use old-style Borland C++ structure layout (for compatibility with older versions of
BCC32.EXE)

-xdg Use global destructor count (for compatibility with older versions of BCC32.EXE)

C++ options | Virtual tables
-V Use smart C++ virtual tables (Default)

-V0 External C++ virtual tables

-V1 Public C++ virtual tables

C++ options | Templates
-Jg Generate definitions for all template instances and merge duplicates (Default)

-Jgd Generate public definitions for all template instances; duplicates result in
redefinition errors

-Jgx Generate external references for all template instances

C++ options | Exception handling
-x Enable exception handling (Default)

-xp Enable exception location information

-xd Enable destructor cleanup (Default)

-xf Enable fast exception prologs

-xc Enable compatible exception handling

-RT Enable runtime type information (Default)

Optimization options
-O Optimize jumps

-O1 Generate smallest possible code

-O2 Generate fastest possible code

-Oc Eliminate duplicate expressions within basic blocks and functions

-Od Disable all optimizations

-Oi Expand common intrinsic functions

-OS Pentium instruction scheduling

-Ov Enable loop induction variable and strength reduction

Warning message options
-w Display warnings on

-wxxx Enable xxx warning message

-w-xxx Disable xxx warning message

-gn Warnings: stop after n messages (Default = 100)

-jn Errors: stop after n messages (Default = 25)

Message options | Portability
-w-rpt Nonportable pointer conversion (Default ON)

-w-cpt Nonportable pointer comparison (Default ON)

-w-rng Constant out of range in comparison (Default ON)

-wcln Constant is long

-wsig Conversion may lose significant digits

-wucp Mixing pointers to different 'char' types

Message options | ANSI violations
-w-voi Void functions may not return a value (Default ON)

-w-ret Both return and return of a value used (Default ON)

-w-sus Suspicious pointer conversion (Default ON)

-wstu Undefined structure 'structure'

-w-dup Redefinition of 'macro' is not identical (Default ON)

-w-big Hexadecimal value contains more than three digits (Default ON)

-wbbf Bit fields must be signed or unsigned int

-w-ext 'identifier' is declared as both external and static (Default ON)

-w-dpu Declare type 'type' prior to use in prototype (Default ON)

-w-zdi Division by zero (Default ON)

-w-bei Initializing 'identifier' with 'identifier' (Default ON)

-wpin Initialization is only partially bracketed

-wnak Non-ANSI Keyword Used: '<keyword>' (Note: Use of this option is a requirement
for ANSI conformance)

Message options | Obsolete C++
-w-obi Base initialization without a class name is now obsolete (Default ON)

-w-ofp Style of function definition is now obsolete (Default ON)

-wpre Overloaded prefix operator 'operator' used as a postfix operator

-w-ovl Overload is now unnecessary and obsolete (Default ON)

Message options | Potential C++ errors
-w-nci The constant member 'identifier' is not initialized (Default ON)

-weas Assigning ‘type’ to ‘enum’

-w-hid 'function1' hides virtual function 'function2' (Default ON)

-wnfc Non-constant function ‘ident’ called for const object

-wibc Base class 'base1' is inaccessible because also in 'base2' (Default ON)

-w-dsz Array size for 'delete' ignored (Default ON)

-w-nst Use qualified name to access nested type 'type' (Default ON)

-whch Handler for '<type1>' Hidden by Previous Handler for '<type2>'

-w-mpc Conversion to type fails for members of virtual base class base (Default ON)

-w-mpd Maximum precision used for member pointer type <type> (Default ON)

-w-ntd Use '> >' for nested templates instead of '>>' (Default ON)

-w-nvf Non-volatile function <function> called for volatile object (Default ON)

Message options | Inefficient C++ coding
-w-inl Functions containing reserved words are not expanded inline (Default ON)

-w-lin Temporary used to initialize 'identifier' (Default ON)

-w-lvc Temporary used for parameter 'parameter' in call to 'function' (Default ON)

Message options | Potential errors
-w-pia Possibly incorrect assignment (Default ON)

-wdef Possible use of 'identifier' before definition

-wnod No declaration for function 'function'

-w-pro Call to function with no prototype (Default ON)

-w-rvl Function should return a value (Default ON)

-wamb Ambiguous operators need parentheses

-w-ccc Condition is always true OR Condition is always false (Default ON)

Message options | Inefficient coding

-w-aus 'identifier' is assigned a value that is never used (Default ON)

-w-par Parameter 'parameter' is never used (Default ON)

-wuse 'identifier' declared but never used

-wstv Structure passed by value

-w-rch Unreachable code (Default ON)

-w-eff Code has no effect (Default ON)

Message options | General
-wasm Unknown assembler instruction

-w-ill Ill-formed pragma (Default ON)

-w-ias Array variable 'identifier' is near (Default ON)

-wamp Superfluous & with function

-wobs 'ident' is obsolete

-w-pch Cannot create precompiled header: header (Default ON)

-wmsg User-defined warnings

Linker options (alphabetical listing)
The following list shows the TLINK and ILINK linker options in alphabetical order:

Option Description
@xxxx Uses the response file xxxx

/A:dd Specifies file alignment (Backward compatibility switch, use /Af)

/Af:nnnn Specifies file alignment; set nnnn in hex or decimal (0x200 = 512 byte
boundaries)

/Ao:nnnn Specifies object alignment; set nnnn in hex or decimal (0x1000 = 4096 byte
boundaries)

/aa Builds a 32-bit Windows application

/ap Builds a 32-bit Windows console application

/B:xxxx Specifies image base address

/C Erases all linker-state files before each line (ILINK32 only)

/c Treats case as significant in symbols

/Enn Specifies maximum errors before termination (TLINK32 only)

/Gd Delete resources from existing executable

/H:xxxx Specifies application heap reserve size in hexadecimal

/Hc:nnnn Specifies application heap commit size in hexadecimal

/j Specifies object search paths

/L Specifies library search paths

/M Mangled names in map file

/m Creates map file with public names

/n No default libraries (TLINK32 only)

/o Imports by ordinals (TLINK32 only)

/P- Disables code packing (TLINK32 only)

/r Verbose link (TLINK32 only)

/S:xxxx Specifies application stack reserve size in hexadecimal

/Sc:xxxx Specifies application stack commit size in hexadecimal

/s Detailed map file of segments

/Tpd Targets a Windows .DLL file

/Tpe Targets a Windows .EXE file

/t Displays time spent on link (ILINK32 only)

/Vd.d Specifies expected Windows version

/v Includes full symbolic debug information

/w Warning control

/w- Disables all warnings

/wdef Enables “No .DEF file” warning

/wdpl Enables “Duplicate symbol in library” warning

/wimt Enables “Import does not match previous definition” warning

/wmsk Enables :Multiple stack segment” warning

/w-bdl Disables “Using based linking in .DLL” warning

/w-dll Disables .EXE module built with a .DLL extension” warning

/w-dup Disables “Duplicate symbol” warning

/w-ent Disables “No entry point” warning

/w-inq Disables “Extern not qualified with __import” warning

/w-srf Disables “Self-relative fixup overflow” warning

/w-stk Disables No stack” warning

/x Suppresses creation of map file

Default map file of segments (no linker switch, map file created by default)

Compiler-specific options
See also
Compiler-specific options can be used with all C and C++ programs. They directly affect how the
compiler generates code.
The sub-topics are
Compiler define options
Compiler code generation options
Floating point options
Compiler output options
Source options
Debugging options
Precompiled header options
Assembler-code options

Compiler define options
See also
The macro definition capability of C++Builder lets you define and undefine macros (also called manifest
or symbolic constants). The macros you define override those defined in your source files.

Defining macros
(Command-line switch: -Dname and -Dname=string)
The -Dname option defines the identifier name to the null string. -Dname=string defines name to
string. In this assignment, string cannot contain spaces or tabs. You can also define multiple #define
options on the command line using either of the following methods:

Include multiple definitions after a single -D option by separating each define with a semicolon (;)
and assigning values with an equal sign (=). For example:

BCC.EXE -Dxxx;yyy=1;zzz=NO MYFILE.C
Include multiple -D options, separating each with a space. For example:
BCC.EXE -Dxxx -Dyyy=1 -Dzzz=NO MYFILE.C

Undefining macros
(Command-line switch = -Uname)
This command-line option undefines the previous definition of the identifier name.

Compiler code generation options
See also
Compiler Code Generation options affect how code is generated.
The options are
Instruction set
Calling conventions
Data alignment
Allocate enums as ints
Unsigned characters
Duplicate strings merged
fastthis
Register variables
Code paging

Instruction set options
See also
The Instruction Set options specify for which CPU instruction set the compiler should generate code.

80386
(Command-line switch: -3)
Choose the 80386 option if you want the compiler to generate 80386 protected-mode compatible
instructions running on Windows 95 or Windows NT.

i486
(Command-line switch: -4)
Choose the i486 option if you want the compiler to generate i486 protected-mode compatible
instructions running on Windows 95 or Windows NT.

Pentium
(Command-line switch: -5)
Choose the Pentium option if you want the compiler to generate Pentium instructions on Windows 95 or
Windows NT.
While this option increases the speed at which the application runs on Pentium machines, expect the
program to be a bit larger than when compiled with the 80386 or i486 options. In addition, Pentium-
compiled code will sustain a performance hit on non-Pentium systems.

Pentium Pro
(Command-line switch: -6)
Choose the Pentium Pro option if you want the compiler to generate Pentium Pro instructions running on
Windows 95 or Windows NT.
Default = 80386 (-3)

Calling convention options
See also
Calling Convention options tell the compiler which calling sequences to generate for function calls. The
C, Pascal, and Register calling conventions differ in the way each handles stack cleanup, order of
parameters, case, and prefix of global identifiers.
You can use the _ _cdecl, _ _pascal, _ _fastcall, or _ _stdcall keywords to override the default calling
convention on specific functions.

In C++Builder code, you will normally use the default C calling convention.

C
(Command-line switch: -pc, -p-)
This option tells the compiler to generate a C calling sequence for function calls (generate underbars,
case sensitive, push parameters right to left). This is the same as declaring all subroutines and functions
with the _ _cdecl keyword. Functions declared using the C calling convention can take a variable
parameter list (the number of parameters does not need to be fixed).
You can use the _ _pascal, _ _fastcall, or _ _stdcall keywords to specifically declare a function or
subroutine using another calling convention.

Pascal
(Command-line switch: -p)
This option tells the compiler to generate a Pascal calling sequence for function calls (do not generate
underbars, all uppercase, calling function cleans stack, pushes parameters left to right). This is the
same as declaring all subroutines and functions with the _ _pascal keyword. The resulting function calls
are usually smaller and faster than those made with the C (-pc) calling convention. Functions must
pass the correct number and type of arguments.
You can use the _ _cdecl, _ _fastcall, or _ _stdcall keywords to specifically declare a function or
subroutine using another calling convention.

Register
(Command-line switch: -pr)
This option forces the compiler to generate all subroutines and all functions using the Register
parameter-passing convention, which is equivalent to declaring all subroutine and functions with the
_ _fastcall keyword. With this option enabled, functions or routines expect parameters to be passed in
registers.
You can use the _ _pascal, _ _cdecl, or _ _stdcall keywords to specifically declare a function or
subroutine using another calling convention.

Standard Call
(Command-line switch: -ps)
This option tells the compiler to generate a Stdcall calling sequence for function calls (does not generate
underscores, preserve case, called function pops the stack, and pushes parameters right to left). This is
the same as declaring all subroutines and functions with the _ _stdcall keyword. Functions must pass
the correct number and type of arguments.
You can use the _ _cdecl, _ _pascal, _ _fastcall keywords to specifically declare a function or
subroutine using another calling convention.
Default = C (-pc)

Data alignment options
See also
The Data Alignment options let you choose the compiler aligns data in stored memory. Word, double-
word, and quad-word alignment forces integer-size and larger items to be aligned on memory addresses
that are a multiple of the type chosen. Extra bytes are inserted in structures to ensure that members
align correctly.

Byte alignment
(Command-line switch: -a1 or -a-)
When Byte Alignment is turned on, the compiler does not force alignment of variables or data fields to
any specific memory boundaries; the compiler aligns data at either even or odd addresses, depending
on which is the next available address.
While byte-wise alignment produces more compact programs, the programs tend to run a bit slower.
The other data alignment options increase the speed that 80x86 processors fetch and store data.

Word alignment (2-byte)
(Command-line switch: -a2)
When Word Alignment is on, the compiler aligns non-character data at even addresses. Automatic and
global variables are aligned properly. char and unsigned char variables and fields can be placed at any
address; all others are placed at an even-numbered address.

Double word (4-byte)
(Command-line switch: -a4)
Double Word alignment aligns non-character data at 32-bit word (4-byte) boundaries.

Quad word (8-byte)
(Command-line switch: -a8)
Quad Word alignment aligns non-character data at 64-bit word (8-byte) boundaries.

Paragraph (16-byte)
(Command-line switch: -a16)
Paragraph alignment aligns non-character data at 128-bit word (16-byte) boundaries.
Default = Byte Alignment (-a1)

Allocate enums as ints option
See also
(Command-line switch: -b)
When the Allocate Enums As Ints option is set, the compiler always allocates a whole word (a four-byte
int for 32-bit programs) for enumeration types (variables of type enum).
When this option is off (-b-), the compiler allocates the smallest integer that can hold the enumeration
values: the compiler allocates an unsigned or signed char if the values of the enumeration are within
the range of 0 to 255 (minimum) or -128 to 127 (maximum), or an unsigned or signed short if the
values of the enumeration are within the following ranges:

0 to 4,294,967,295 or -2,147,483,648 to 2,147,483,647
The compiler allocates a four-byte int (32-bit) to represent the enumeration values if any value is out of
range.
Default = ON

Unsigned characters option
See also
(Command-line switch: -K)
When Unsigned Characters is set, the compiler treats all char declarations as if they were unsigned
char type, which provides compatibility with other compilers.
Default = OFF (char declarations default to signed; -K-)

Duplicate strings merged option
See also
(Command-line switch: -d)
When you set this option, the compiler merges two literal strings when one matches another. This
produces smaller programs (at the expense of a slightly longer compile time), but can introduce errors if
you modify one string.
Default = OFF (-d-)

fastthis option
See also
(Command-line switch: -po)
This option causes the compiler to use the _ _fastthis calling convention when passing the this pointer
to member functions. The this pointer is passed in a register. Likewise, calls to member functions load
the register with this. Note that you can use _ _fastthis to compile specific functions in this manner.
The names of member functions compiled with _ _fastthis are mangled differently from non-fastthis
member functions, to prevent mixing the two. It is easiest to compile all classes with _ _fastthis, but you
can compile some classes with _ _fastthis and some without, as in the following example:
// no -po on the command-line
class X;
#pragma option -po
class Y //Y will use fastthis
{
...
};
class X //X will not use fastthis,
{ //since its class declaration
 //appeared before fastthis was turned on
...
};
#pragma option -po-

If you use a makefile to build a version of the class library that has _ _fastthis enabled, you must
define _CLASSLIB_ALLOW_po and use the -po option. The _CLASSLIB_ALLOW_po macro can be
defined in <Your_BCB_dir>\INCLUDE\SERVICES\borlandc.h

If you use a makefile to build a _ _fastthis version of the runtime library, you must define
_RTL_ALLOW_po and use the -po option.

If you rebuild the libraries and use -po without defining the appropriate macro, the linker emits
undefined symbol errors.
Default = OFF

Register variable options
See also
These options suppress or enable the use of register variables.

None
(Command-line switch: -r-)
None tells the compiler not to use register variables, even if you have used the register keyword.

Register keyword
(Command-line switch: -rd)
Register Keyword tells the compiler to use register variables only if you use the register keyword and a
register is available. Use this option or the Automatic option (-r) to optimize the use of registers.

You can use -rd in #pragma options.

Automatic
(Command-line switch: -r)
Automatic tells the compiler to automatically assign register variables if possible, even when you do not
specify a register variable by using the register type specifier.
Generally, you can use Automatic, unless you are interfacing with preexisting assembly code that does
not support register variables.
Default = Automatic (-r)

Code paging (for MBCS)
(Command-line switch: -CP)
This option enables support for user-defined code pages. Its primary use is to let BCC32 know how to
parse and convert multi-byte character strings (MBCS).
There are two distinct areas where code pages come into effect:
1. String constants, comments, #error, and #pragma directives
2. Wide-char string constants (as specified by L'<MBCS string>')
For MBCS strings belonging to the first set, you must specify the correct code page using a call to the
Windows API function IsDBCSLeadByteEx. Using this function, specify the code page to correctly parse
the MBCS strings for a particular locale (this, for example, enables BCC32 to correctly parse
backslashes in MBCS trail bytes).
For MBCS strings belonging to the second set (wide-char string constants), specify the correct code
page to convert the MBCS strings to Unicode strings using the Windows API function
MultiByteToWideChar.

Syntax
Enable code paging with the following command-line switch:
-CPnnnn

In this syntax, nnnn is the decimal value of the code page you need to use for your specific locale.
The following rules apply:

When setting code paging, numeric settings for nnnn must adhere to the Microsoft NLS Code
Page ID values. For example, use 437 for United States MS-DOS applications. Use 932 for Japanese.

The numeric value nnnn must be a valid code page supported by the OS.
The users may need to install the relevant Windows NLS files to make certain Asian locales and

code pages accessible. Please refer to the Microsoft NLS Code Page documentation for specifics.
If you do not specify a code page value, BCC32 will call the Windows API function GetACP to

retrieve the system's default code page, and will use this value when handling strings as indicated above.
Default = OFF

Compiler floating point options
See also
Floating Point options tell the compiler how to handle floating-point code and floating-point optimization.

No floating point
(Command-line switch: -f-)
Use No Floating Point if you are not using floating point. No floating-point libraries are linked when this
option is set (-f-). If you enable this option and use floating-point calculations in your program, you will
get link errors. When unchecked (-f), the compiler emulates 80x87 calls at runtime.

Default = OFF (-f)

Fast floating point
(Command-line switch: -ff)
When Fast Floating Point is on, floating-point operations are optimized without regard to explicit or
implicit type conversions. Calculations can be faster than under ANSI operating mode.
The purpose of the fast floating-point option is to allow certain optimizations that are technically contrary
to correct C semantics. For example,
double x;
x = (float) (3.5*x);

To execute this correctly, x is multiplied by 3.5 to give a double that is truncated to float precision, then
stores as a double in x. Under the fast floating-point operation, the long double product is converted
directly to a double. Since very few programs depend on the loss of precision on passing to a narrower
floating-point type, fast floating point is the default.
When this option is disabled (-ff-), the compiler follows strict ANSI rules regarding floating-point
conversions.
Default = ON

Correct Pentium FDIV flaw
(Command-line switch: -fp)
Some early Pentium chips do not perform specific floating-point division calculations with full precision.
Although your chances of encountering this problem are slim, this switch inserts code that emulates
floating-point division so that you are assured of the correct result. This option decreases your program's
FDIV instruction performance.

Use of this option only corrects FDIV instructions in modules that you compile. The run-time
library also contains FDIV instructions which are not modified by the use of this switch. To correct the run-
time libraries, you must recompile them using this switch.
The following functions use FDIV instructions in assembly language which are not corrected if you use
this option:
acos cosh pow10l
acosl coshl powl
asin cosl sin
asinl exp sinh
atan expl sinhl
atan2 fmod sinl
atan2l fmodl tan
atanl pow tanh
cos pow10 tanhl

tanl
In addition, this switch does not correct functions that convert a floating-point number to or from a string
(such as printf or scanf).
Default = OFF

Compiler output options
See also
The following options control the compiler outputs
General compiler output options
Autodependency information
Generate underscores

General compiler output options
See also

Compile to .OBJ, no link
(Command-line switch = -c)
Compiles and assembles the named .C, .CPP, and .ASM files, but does not execute a link on the
resulting .OBJ files.

Specify executable file name
(Command-line switch = -efilename)
Link file using filename as the name of the executable file. If you do not specify an executable name with
this option, the linker creates an executable file based on the name of the first source file or object file
listed in the command.

Pass option to linker
(Command-line switch = -lx)
Use this command-line option to pass option(s) x to the linker from a compile command. Use the
command-line option -l-x to disable a specific linker option.

Create a MAP file
(Command-line switch = -M)
Use this compiler option to instruct the linker to create a map file.

Compile .OBJ to filename
(Command-line switch = -ofilename)
Use this option to compile the specified source file to filename.OBJ.

C++ compile
(Command-line switch = -P)
The -P command-line option causes the compiler to compile all source files as C++ files, regardless of
their extension. Use -P- to compile all .CPP files as C++ source files and all other files as C source
files.
The command-line option -Pext causes the compiler to compile all source files as C++ files and it
changes the default extension to whatever you specify with ext. This option is provided because some
programmers use different extensions as their default extension for C++ code.
The option -P-ext compiles files based on their extension (.CPP compiles to C++, all other extensions
compile to C) and sets the default extension (other than .CPP).

Generate a multi-threaded target
(Command-line switch = -tWM)
The compiler creates a multi-threaded .EXE or .DLL. (The command-line option -WM is supported for
backward compatibility only; it has the same functionality as -tWM.)

This option is not needed if you include a module definition file in your compile and link
commands which specifies the type of 32-bit application you intend to build.

Autodependency information option
See also
(Command-line switch: -X-)
When the Autodependency option is set (-X-), the compiler generates autodependency information for
all project files with a .C or .CPP extension.
The Borland C++ Project Manager uses autodependency information to speed up compilation times.
The Project Manager opens the .OBJ file and looks for information about files included in the source
code. This information is always placed in the .OBJ file when the source module is compiled. After that,
the time and date of every file that was used to build the .OBJ file is checked against the time and date
information in the .OBJ file. The source file is recompiled if the dates are different. This is called an
autodependency check.
If the project file contains valid dependency information, the Project Manager does the autodependency
check using that information. This is much faster than reading each .OBJ file.
When this option is disables (-X), the compiler does not generate the autodependency information.

Modules compiled with autodependency information can use MAKE's autodependency feature.
Note The C++Builder Project Manager does not use autodependency information.
Default = OFF (-X)

Generate underscores option
See also
(Command-line switch: -u)
When Generate Underscores option is set, the compiler automatically adds an underscore character (_)
in front of every global identifier (functions and global variables) before saving them in the object
module. Pascal identifiers (those modified by the _ _pascal keyword) are converted to uppercase and
are not prefixed with an underscore.
Underscores for C and C++ are optional, but you should turn this option on to avoid errors if you are
linking with the Borland C++ libraries.
Default = ON

Compiler source options
See also
Compiler source options tell the compiler how to interpret source code.
The options are

Source
Nested comments
Identifier Length

Language compliance
Borland extensions
ANSI
UNIX V
Kernighan and Ritchie

Compatibility
MFC compatibility

Nested comments option
See also
(Command-line switch: -C)
When Nested Comments is on, you can nest comments in your C and C++ source files.
Nested comments are not allowed in standard C implementations, and they are not portable.
Default = OFF

Identifier length option
See also
(Command-line switch: -in, where n = significant characters)
Use Identifier Length to specify the number of significant characters (those which will be recognized by
the compiler) in an identifier.
Except in C++, which recognizes identifiers of unlimited length, all identifiers are treated as distinct only
if their significant characters are distinct. This includes variables, preprocessor macro names, and
structure member names.
Valid numbers for n are 0, and 8 to 250, where 0 means use the maximum identifier length of 250.
By default, C++Builder uses 250 characters per identifier. Other systems (including some UNIX
compilers) ignore characters beyond the first eight. If you are porting to other environments, you might
want to compile your code with a smaller number of significant characters, which helps you locate name
conflicts in long identifiers that have been truncated.
Default = 250

Language compliance options
See also
The Language Compliance options tell the compiler how to recognize keywords in your programs.

Borland extensions
(Command-line switches: -A-, -AT)
Borland Extensions tells the compiler to recognize Borland's extensions to the C language keywords,
including near, far, huge, asm, cdecl, pascal, interrupt, _export, _ds, _cs, _ss, _es, and the register
pseudovariables (_AX, _BX, and so on). For a complete list of keywords, see the keyword index.

ANSI
(Command-line switch: -A)
The ANSI option compiles C and C++ ANSI-compatible code, allowing for maximum portability. Non-
ANSI keywords are ignored as keywords.

UNIX V
(Command-line switch: -AU)
The UNIX V option tells the compiler to recognize only UNIX V keywords and treat any of Borland's C++
extension keywords as normal identifiers.

Kernighan and Ritchie
(Command-line switch: -AK)
The Kernighan and Ritchie option tells the compiler to recognize only the K&R extension keywords and
treat any of Borland's C++ extension keywords as normal identifiers.
Hint: If you get declaration syntax errors from your source code, check that this option is set to Borland

Extensions.
Default = Borland Extensions (-A-)

MFC compatibility option
See also
(Command-line switches: -VF)
Turn this option on to compile code that is compatible with the Microsoft foundation classes (MFC).
Among other things, the compiler makes the following adjustments to be compatible with MFC:

Accepts spurious semicolons in a class scope
Allows anonymous structs
Uses the old-style scoping resolution in for loops
Allows methods to be declared with a calling convention, but leaves off the calling convention in

the definition
Tries the operator new if it cannot resolve a call to the operator new[]
Lets you omit the operator & on member functions
Allows a const class that is passed by value to be treated as a trivial conversion, not as a user

conversion
Allows you to use a cast to a member pointer as a selector for overload resolution, even if the

qualifying type of the member pointer is not derived from the class in which the member function is
declared

Accepts declarations with duplicate storage in a class, as in
extern "C" typedef

Accepts and ignores #pragma comment(linker, "...") directives
Default = OFF

Compiler debugging options
See also
Compiler Debugging options affect the generation of debug information during compilation. When linking
larger .OBJ files, you may need to turn these options off to increase the available system resources.
The options are
Standard stack frame
Out-of-line inline functions
Line numbers
Debug information in OBJs

Standard stack frame option
See also
(Command-line switch: -k)
When the Standard Stack Frame option is on, the compiler generates a standard stack frame (standard
function entry and exit code). This is helpful when debugging, since it simplifies the process of stepping
through the stack of called subroutines.
When this option is off, any function that does not use local variables and has no parameters is
compiled with abbreviated entry and return code. This makes the code smaller and faster.
The Standard Stack Frame option should always be on when you compile a source file for debugging.
Default = ON

Out-of-line inline functions option
See also
(Command-line switch: -vi)
When the Out-of-Line Inline Functions option is on, the compiler expands C++ inline functions inline.
To control the expansion of inline functions, the Debug Information In OBJs option (-v) acts slightly
different for C++ code: when inline function expansion is disabled, inline functions are generated and
called like any other function.
Because debugging with inline expansion can be difficult, the following command-line options are
provided:

-v turns debugging on and inline expansion off
-v- turns debugging off and inline expansion on
-vi turns inline function expansion on
-vi- turns inline expansion off (inline functions are expanded out of line)

For example, if you want to turn both debugging and inline expansion on, use the -v and -vi options.

Default = OFF

Line numbers option
See also
(Command-line switch: -y)
When the Line Numbers option is on, the compiler automatically includes line numbers in the object and
object map files. Line numbers are used by both the integrated debugger and Turbo Debugger.
Although the Debug Info in OBJs option (-v) automatically generates line number information, you can
turn that option off (-v-) and turn on Line Numbers (-y) to reduce the size of the debug information
generated. With this setup, you can still step, but you will not be able to watch or inspect data items.
Including line numbers increases the size of the object and map files but does not affect the speed of
the executable program.

When Line Numbers is on, make sure you turn off Pentium scheduling in the Compiler options.
When this option is set, the source code will not exactly match the generated machine instructions, which
can make stepping through code confusing.
Default = OFF

Debug information in OBJs option
See also
(Command-line switch: -v)
When the Debug Info In OBJs option is on, debugging information is included in your .OBJ files. The
compiler passes this option to the linker so it can include the debugging information in the .EXE file. For
debugging, this option treats C++ inline functions as normal functions.
You need debugging information to use either the integrated debugger or the standalone Turbo
Debugger.
When this option is off (-v-), you can link and create larger object files. While this option does not affect
execution speed, it does affect compilation and link time.

When Line Numbers is on, make sure you turn off Pentium scheduling in the Compiler options.
When this option is set, the source code will not exactly match the generated machine instructions, which
can make stepping through code confusing.
Default = ON

Precompiled header options
See also
Precompiled header files can dramatically increase compilation speed by storing an image of the symbol
table on disk in a file, then later reloading that file from disk instead of parsing all the header files again.
Directly loading the symbol table from disk is much faster than parsing the text of header files, especially
if several source files include the same header file.
The options are
General usage
Cache precompiled header
Smart-cached precompiled header
Generate external type files (precompiled headers)
Precompiled header name
Stop precompiling after header file

General precompiled header options
See also
Precompiled headers can dramatically increase compilation speeds, although they require a
considerable amount of disk space.

Generate and use
(Command-line switch: -H)
When you set this option, the IDE generates and uses precompiled headers. The default file name is
<projectname>.CSM for IDE projects, and is BC32DEF.CSM for command-line compiles.

Use but do not generate
(Command-line switch: -Hu)

When the Use But Do Not Generate option is set, the compilers use preexisting precompiled header
files; new precompiled header files are not generated.

Do not generate or use
(Command-line switch: -H-)

When the Do Not Generate Or Use option is on, the compilers do not generate or use precompiled
headers.
Default = Do not generate or use (-H-)

Cache precompiled header option
See also
(Command-line switch: -Hc)
When you enable this option, the compiler caches the precompiled headers it generates. This is useful
when you are precompiling more than one header file.

To use this option, you must also enable the Generate and Use (-H) precompiled header option.
Default = OFF

Smart-cached precompiled header option
See also
(Command-line switch: -Hs)
When you enable this option, the compiler smart-caches the precompiled headers it generates (smart-
caching uses less memory than regular caching option -Hc). Caching your header files in memory is
useful when you are precompiling more than one header file.
Default = ON

Generate external type files (precompiled headers)
See also
(Command-line switch: -He)
When this option is set, the compiler generates a .TYP file (or files) that contains debug type information
for all the symbols contained in the pre-compiled headers.
Using this option dramatically decreases the size of your .OBJ files, since debug type information is
centralized and is not duplicated in each .OBJ file.
Default = ON (in C++Builder); OFF (on the command line)

Precompiled header name option
See also
(Command-line switch: -H=filename)
This option lets you specify the name of your precompiled header file. The compilers set the name of the
precompiled header to filename.
When this option is set, the compilers generate and use the precompiled header file that you specify.

Stop precompiling after header file option
See also
(Command-line switch: -H”xxx”; for example -H”vcl/vclpch.h”)
This option terminates compiling the precompiled header after the compiler compiles the file specified as
xxx. You can use this option to reduce the amount of disk space used by precompiled headers.
When you use this option, the file you specify must be included from a source file for the compiler to
generate a .CSM file.
You can also use #pragma hdrstop within your .CPP files to specify when to stop the generation of pre-
compiled headers.

You cannot specify a header file that is included from another header file. For example, you
cannot list a header included by windows.h because this would cause the precompiled header file to be
closed before the compilation of windows.h was competed.

Assembler-code options
See also

Compile to .ASM, then assemble
(Command-line switch = -B)
This command-line option causes the compiler to first generate an .ASM file from your C++ (or C)
source code (same as the -S command-line option). The compiler then calls TASM32 (or the assembler
specified with the -E option) to create an .OBJ file from the .ASM file. The .ASM file is then deleted. To
use this 32-bit compiler option, you must install a 32-bit assembler, such as TASM32.EXE, and then
specify this assembler with the -E option.

Your program will fail to compile with the -B option if your C or C++ source code declares static
global variables that are keywords in assembly. This is because the compiler does not precede static
global variables with an underscore (as it does other variables), and the assembly keywords will generate
errors when the code is assembled.

Specify assembler
(Command-line switch = -Efilename)
Assemble instructions using filename as the assembler. The 32-bit compiler uses TASM32 as the default
assembler.

Compile to assembler
(Command-line switch = -S)
This option causes the compiler to generate an .ASM file from your C++ (or C) source code. The
generated .ASM file includes the original C or C++ source lines as comments in the file.

Specify assembler option
(Command-line switch = -Tx)
Use this command-line option to pass the option(s) x to the assembler you specify with the -E option. To
disable all previously enabled assembler options, use the -T- command-line option.

Search directories
See also
The search directory options let you specify the directories that contain your standard include files,
library and .OBJ files, and program source files.

Include
(Command-line equivalent: -Ipath, where path = directory path)
Use this option to specify the drive and/or directories that contain program include files. Standard
include files are those you specify in angle brackets (<>) in an #include statement (for example,
#include <myfile>).

The Borland compilers and linkers use specific file search algorithms to locate the files needed to
complete the compilation and link cycles.

Library
(Command-line equivalent: -Lpath, where path = directory path)
Use the Library option to specify the directories that contain the C++Builder startup object files
(C0x.OBJ), run-time library files (.LIB files), and all other .LIB files. By default, the linker looks for them in
the directory containing the project file (or in the current directory if you’re using the command-line
compiler).

You can also use the linker option /Lpath to specify the library search directories when you link
files from the command line.

Specifying multiple directories
You can specify multiple directory names from the command line by using a semicolon (;) to separate
the specified drives and directories:

You can stack multiple entries with a single -L or -I option by separating directories with a
semicolon:

BCC32.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2;inc3 myfile.c
You can place more than one of each option on the command line, like this:

BCC32.EXE -Ldirname1 -Ldirname2 -Iinc1 -Iinc2 -Iinc3 myfile.c
You can mix listings:

BCC32.EXE -Ldir1;dir2 -Iinc1 -Ld:dir3 -Iinc2;inc3 myfile.c
If you list multiple -L or -I options on the command line, the result is cumulative; the compiler searches
all the directories listed in order from left to right.

Guidelines for entering directory names
See Also
Use the following guidelines when entering directories in the Directories options page.

You must separate multiple directory path names (if allowed) with a semicolon (;).
You can use up to a maximum of 127 characters (including whitespace).
Whitespace before and after the semicolon is allowed but not required.
Relative and absolute path names are allowed, including path names relative to the logged

position in drives other than the current one.
For example,
C:\;C:..\CBuilder;D:\myprog\source

File search algorithms
See also

#include-file search algorithms
The Borland C++ compiler searches for files included in your source code with the #include directive in

the following ways:
If you specify a path and/or directory with your include statement, the compiler searches only the

location specified. For example, if you have the following statement in your code:
 #include "c:\CBuilder\include\vcl\vcl.h"
the header file vcl.h must reside in the directory C:\ CBuilder\INCLUDE. In addition, if you use the
statement:
 #include <vcl\vcl.h>
and you set the Include option (-I) to specify the path c:\CBuilder\include, the file vcl.h must
reside in C:\CBuilder\INCLUDE\VCL, and not in C:\CBuilder\INCLUDE or C:\VCL.

If you put an #include <somefile> statement in your source code, the compiler searches for
"somefile" only in the directories specified with the Include (-I) option.

If you put an #include "somefile" statement in your code, the compiler will first search for
"somefile" in the current directory; if it does not find the file there, it then searches in the directories
specified with the Include (-I) option.

Library file search algorithms
The library file search algorithms are similar to those for include files:

Implicit libraries: The Borland C++ compiler searches for implicit libraries only in the specified
library directories; this is similar to the search algorithm for #include <somefile>.

Implicit library files are the ones the compiler automatically links in and the start-up object file
(C0x.OBJ).

Explicit libraries: Where the compiler searches for explicit (user-specified) libraries depends in
part on how you list the library file name. Explicit library files are ones you list on the command line or in a
project file; these are file names with a .LIB extension.

If you list an explicit library file name with no drive or directory (like this: mylib.lib), the
compiler first searches for that library in the current directory. If the first search is unsuccessful, the
compiler looks in the directories specified with the Library (-L) option. This is similar to the search
algorithm for #include "somefile".

If you list a user-specified library with drive and/or directory information (like this: c:\mystuff\
mylib1.lib), C++Builder searches only in the location you explicitly listed as part of the library path
name and not in any specified library directories.

C++-specific options
See also
The C++ options affect compilation of all C and C++ programs. For most of the C++ options, you'll
usually want to use the default settings.
The subtopics are
C++ compatibility options
Virtual table options
Template options
Exception handling/RTTI options

C++ compatibility options
See also
Use the C++ Compatibility options to handle C++ compatibility issues, such as handling char types,
specifying options about hidden pointers, passing class arguments, adding hidden members and code
to a derived class, passing the this pointer to Pascal member functions, changing the layout of classes,
or insuring compatibility when class instances are shared with non-C++ code or code compiled with
previous versions of Borland C++.
Don't restrict scope of 'for' loop expression variables
Calling convention mangling compatibility
Zero-length empty base classes
Old-style structure layout

Don't restrict scope of 'for' loop expression variables option
See also
(Command-line switch: -Vd)
This option lets you specify the scope of variables declared in for loop expressions. The output of the
following code segment changes, depending on the setting of this option.
int main(void)
{

for(int i=0; i<10; i++)
{
 cout << "Inside for loop, i = " << i << endl;
} //end of for-loop block

cout << "Outside for loop, i = " << i << endl; //error without -Vd

} //end of block containing for loop
If this option is disabled (the default), the variable i goes out of scope when processing reaches the end
of the for loop. Because of this, you'll get an Undefined Symbol compilation error if you compile this
code with this option disabled.
If this option is set (-Vd), the variable i goes out of scope when processing reaches the end of the block
containing the for loop. In this case, the code output would be:
Inside for loop, i = 0
...
Outside for loop, i = 10
Default = OFF

Calling convention mangling compatibility option
See also
(Command-line switch: -VC)
When this option is set, the compiler disables the distinction of function names where the only possible
difference is incompatible code generation options. For example, with this option set, the linker will not
detect if a call is made to a _ _fastcall member function with the cdecl calling convention.
This option is provided for backward compatibility only; it lets you link old library files that you cannot
recompile.
Default = OFF

Zero-length empty base classes
See also
(Command-line switch: -Ve)
Usually the size of a class is at least one byte, even if the class does not define any data members.
When you set this option, the compiler ignores this unused byte for the memory layout and the total size
of any derived classes; empty base classes will not consume space in derived classes.
Default = OFF

Old-style structure layout
See also
(Command-line switch: -Vl)
This is a backward compatibility switch that causes the BCC32 C++ compiler to lay out derived classes
the same way it did in older versions of Borland C++. Enable this option if you need to compile source
files that you intend to use with older versions of Borland C++ (for example, if you need to work with
a .DLL that you cannot recompile, or if you have older data files that contain hardwired class layouts).
Default = OFF

Virtual table options
See also
The virtual tables options control C++ virtual tables and the expansion of inline functions when
debugging.

Smart
(Command-line switch: -V)
This option generates common C++ virtual tables and out-of-line inline functions across the modules in
your application. As a result, only one instance of a given virtual table or out-of-line inline function is
included in the program.
The Smart option generates the smallest and most efficient executables, but produces .OBJ and .ASM
files compatible only with Borland linkers and assemblers (TLINK, ILINK, and TASM).
Default = ON

External
(Command-line switch: -V0)
You use the External option to generate external references to virtual tables. If you don’t want to use the
Smart or Local options, use the External and Public options to produce and reference global virtual
tables.

When you use this option, one or more of the modules comprising the program must be compiled
with the Public option to supply the definitions for the virtual tables.
Default = OFF

Public
(Command-line switch: -V1)
Public produces public definitions for virtual tables. When using the External option (-V0), at least one of
the modules in the program must be compiled with the Public option to supply the definitions for the
virtual tables. All other modules should be compiled with the External option to refer to that Public copy
of the virtual tables.
Default = OFF

Template options
See also
The Template options specify how the compiler generates template instances in C++.

Smart
(Command-line switch: -Jg)
When the Smart option is set, the compiler generates public (global) definitions for all template
instances. If more than one module generates the same template instance, the linker automatically
merges duplicates to produce a single copy of the instance.
To generate the instances, the compiler must have available the function body (in the case of a template
function) or the bodies of member functions and definitions for static data members (in the case of a
template class), typically in a header file.
This is a convenient way of generating template instances.
Default = ON

Global
(Command-line switch: -Jgd)
When the Global option is set, the compiler generates public (global) definitions for all template
instances.
The Global option does not merge duplicates. If the same template instance is generated more than
once, the linker reports public symbol re-definition errors.
Default = OFF

External
(Command-line switch: -Jgx)
When the External option is set, the compiler generates external references to all template instances.
When you use this option, all template instances in your code must be publicly defined in another
module with the external option (-Jgd) so that external references are properly resolved.

Default = OFF

Exception handling/RTTI options
See also
Use the Exceptions Handling options to enable or disable exception handling and to tell the compiler
how to handle the generation of run-time type information.
If you use exception handling constructs in your code and compile with exceptions disabled, you'll get an
error.
The options are
Enable exceptions
Exception handling options
Enable run-time type information

Enable exceptions option
See also
(Command-line switch: -x)
When this option is set, C++ exception handling is set. If this option is disabled (-x-) and you attempt to
use exception handling routines in your code, the compiler generates error messages during
compilation.
Disabling this option makes it easier for you to remove exception handling information from programs;
this might be useful if you are porting your code to other platforms or compilers.

Disabling this option turns off only the compilation of exception handling code; your application
can still include exception code if you link .OBJ and library files that were built with exceptions enabled
(such as the Borland runtime libraries).
Default = ON

Exception handling options
See also

Enable exception location information
(Command-line switch: -xp)
When this option is set, run-time identification of exceptions is available because the compiler provides
the file name and source-code line number where the exception occurred. This enables the program to
query file and line number from where a C++ exception was thrown.
Default = OFF

Enable destructor cleanup
(Command-line switch: -xd)
When this option is setand an exception is thrown, destructors are called for all automatically declared
objects between the scope of the catch and throw statements.
In general, when you set this option, you should also set Enable Runtime Type Information (-RT) as
well.

Destructors are not automatically called for dynamic objects allocated with new, and dynamic
objects are not automatically freed.
Default = ON

Enable fast exception prologs
(Command-line switch: -xf)
When this option is set, inline code is expanded for every exception handling function. This option
improves performance at the cost of larger executable file sizes.

If you set both Fast Exception Prologs and Enable Compatible Exceptions (-xc), fast prologs will
be generated but Enable Compatible Exceptions will be disabled (the two options are not compatible).
Default = OFF

Enable run-time type information option
See also
(Command-line switch: -RT)
This option causes the compiler to generate code that allows run-time type identification.
In general, if you set Enable Destructor Cleanup (-xd), you will need to set this option as well.

Default = ON

Linker options
See also
Linker options let you control how the linkers combine intermediate files (.OBJ, .LIB, and .RES) into
executable (.EXE) and dynamic-link library (.DLL) files. You will usually want to keep the default settings
for most options in this section.
The linker options can be broken into the following subtopics
Input options
Map file options
Output options
File addressing options
Application target options
Linker messages and warnings

Linker input options
The following options are available to control the input to your link cycles:
Case-sensitive link
Default libraries
Allow import by ordinal
Object search paths

Case-sensitive link
(Command-line switch = /c)
When the Case-Sensitive Link option is set, the linker differentiates between upper and lower-case
characters in public and external symbols. Normally, this option should be set, since C and C++ are both
case-sensitive languages.
Default = ON

Default libraries
(Command-line switch = /n)
Some compilers, other than C++Builder, place a list of libriaries needed by their modules in their
compiled .OBJ modules.
When this option is set, the linker searches for the default libraries specified by C++Builder and ignores
any default librearies specified in the .OBJ files.
When this option is disabled, the linker tries to find any undefined routines in the linked .OBJ modules in
addition to the default libraries supplied by C++Builder. You might need to disable this option when
linking modules written in another language.
Default = ON

Allow import by ordinal
(Command-line switch = /o)
This option lets you import by ordinal value instead of by the import name. When you specify this option,
the linker emits only the ordinal numbers (and not the import names) to the resident or nonresident
name table for those imports that have an ordinal number specified. If you do not specify this option, the
linker ignores all ordinal numbers contained in import libraries or the .DEF file, and emits the import
names to the resident and nonresident tables.

Object search paths
See also
(Command-line switch = /j)
This option lets you specify the directories the linker will search if there is no explicit path given for
an .OBJ module in the compile/link statement.
The Specify Object Search Path uses the following command-line syntax:
/j<PathSpec>[;<PathSpec>][...]

The linker uses the specified object search path(s) if there is no explicit path given for the .OBJ file and
the linker cannot find the object file in the current directory. For example, the command
TLINK32 /jc:\myobjs;.\objs splash .\common\logo,,,utils logolib

directs the linker to first search the current directory for SPLASH.OBJ. If it is not found in he current
directory, the linker then searches for the file in the C:\MYOBJS directory, and then in the .\OBJs
directory. However, notice that the linker does not use the object search paths to find the file LOGO.OBJ
because an explicit path was given for this file.

Map file options
Linker map file options tell the linker what type of map file to produce. These options control the
information generated on segment ordering, segment sizes, and public symbols.
By default, the linker creates a map file that contains general segment information, which includes a list
of segments, the program start address, and any warning or error messages produced during the link.
For settings other than Off, the map file is placed in the directory where the project makefile is stored.
The map file options are:
Off (default Segments map file not created)
Publics map
Detailed segments map
Mangled names

Off option (map file)
(Command-line switch = /x)
This switch turns off the creation of the default linker map file.
By default, the linker generates a map file with that contains general segment information that includes a
list of segments, the program start address, and any warning or error messages produced during the
link. There is no switch for this setting. Use the /x option to suppress the creation of the default map file.

Default = OFF (Default map file is created)

Publics map option
(Command-line switch = /m)
This option instructs the linker to produce a map file that contains an overview of the application
segments and two listings of the public symbols.
The segments listing has a line for each segment, showing the segment starting address, segment
length, segment name, and the segment class.
The public symbols are broken down into two lists, the first showing the symbols in sorted alphabetically,
the second showing the symbols in increasing address order. Symbols with absolute addresses are
tagged Abs.

A list of public symbols is useful when debugging: many debuggers use public symbols, which lets you
refer to symbolic addresses while debugging.

Detailed segments map option
(Command-line switch = /s)
The Detailed Segments option creates the most comprehensive map file by adding a detailed map of
segments to the map file created with the Publics option (/m). The detailed list of segments contains the
segment class, the segment name, the segment group, the segment module, and the segment ACBP
information. If the same segment appears in more than one module, each module appears as a
separate line.
The ACBP field encodes the A (alignment), C (combination), and B (big) attributes into a set of four bit
fields, as defined by Intel. TLINK uses only three of the fields: A, C, and B. The ACBP value in the map
is printed in hexadecimal. The following field values must be ORed together to arrive at the ACBP value
printed.

Field Value Description
A (alignment) 00 An absolute segment

20 A byte-aligned segment
40 A word-aligned segment
60 A paragraph-aligned segment
80 A page-aligned segment
A0 An unnamed absolute portion of storage

C (combination) 00 Cannot be combined
08 A public combining segment

B (big) 00 Segment less than 64K
02 Segment exactly 64K

With the Segments options set, public symbols with no references are flagged idle. An idle symbol is a
publicly defined symbol in a module that was not referenced by an EXTDEF record or by any other
module included in the link. For example, this fragment from the public symbol section of a map file
indicates that symbols Symbol1 and Symbol3 are not referenced by the image being linked:
0002:00000874 Idle Symbol1
0002:00000CE4 Symbol2
0002:000000E7 Idle Symbol3

Mangled names option (map file)
(Command-line switch = /M)
Prints the mangled C++ identifiers in the map file, not the full name. This can help you identify how
names are mangled (mangled names are needed as input by some utilities).
Default = OFF

Linker output options
The following linker output options are available:
Pack code segments
Include debug information
Subsystem version (major.minor)

Pack code segments
(Command-line switch = /P)
When this option is set., the linker pack all code into one “segment.” The command-line option to turn
this off is /P-.

Default = ON

Include debug information
(Command-line switch = /v)
When the Include Debug Information option is on, the linker includes information in the output file
needed to debug your application with the C++Builder integrated debugger or Turbo Debugger.
On the command line, this option causes the linker to include debugging information in the executable
file for all object modules that contain debugging information. You can use the /v+ and /v- options to
selectively enable or disable debugging information on a module-by-module basis (but not on the same
command-line where you use /v). For example, the following command includes debugging information
for modules mod2 and mod3, but not for mod1 and mod4:
TLINK32 mod1 /v+ mod2 mod3 /v- mod4

Default = ON in IDE; OFF on the command line

Subsystem version (major.minor)
(Command-line switch = /Vd.d)
This option lets you specify the Windows version ID on which you expect your application will be run.
The linker sets the Subsystem version field in the .EXE header to the number you specify in the input
box.
You can also set the Windows version ID in the SUBSYSTEM portion of the module definition file (.DEF
file) However, any version setting you specify in the IDE or on the command line overrides the setting in
the .DEF file.

Command-line usage
When you use the /Vd.d command-line option, the linker sets the Windows version ID to the number
specified by d.d. For example, if you specify /V4.0, the linker sets the Subsystem version field in
the .EXE header to 4.0, which indicates a Windows 95 application.
Default = 4.0

Linker file addressing options
The following linker output file addressing options are available:
Image base address (in hexadecimal)
File alignment (in hexadecimal)
Object alignment (in hexadecimal)
Reserved stack size (in hexadecimal)
Commit stack size (in hexadecimal)
Reserved heap size (in hexadecimal)
Commit heap size (in hexadecimal)

Image base address (in hexadecimal)
(Command-line switch = /B:xxxx)
Use this option to give your executable an image base address. If this setting is turned on, internal fixes
are removed from the image and the requested load address of the first object in the application is set to
the number you specify. All successive objects are aligned on 64K linear address boundaries. This
option makes applications smaller on disk and improves both load-time and run-time performance (the
operating system no longer has to apply internal fixes).
Although this option can greatly reduce the size of your final application module; it is not recommended
for producing a DLL.
Although the command-line switch (/B:xxxx) accepts either decimal or hexadecimal numbers as the
image base address, the recommended setting for true Win32 saystems: 0x400000

Do not use the default setting of 0x400000 if you intend to run your application of Win32s
systems.
Default = OFF

File alignment (in hexadecimal)
(Command-line switch = /Af:xxxx)
The File Alignment option specifies page alignment for code and data within the executable file. The
linker uses the file alignment value when it writes the various objects and sections (such as code and
data) to the file. For example, if you use the default value of 0x200, the linker stores the section of the
image on 512-byte boundaries within the executable file.
When using this option, you must specify a file alignment value that is a power of 2, with the smallest
value being 16.

The old style of this option (/A:dd) is still supported for backward compatibility. With this option,
the decimal number dd is multiplied by the power of 2 to calculate the file alignment value.
The command-line version of this option (/Af:xxxx) accepts either decimal or hexadecimal numbers
as the file alignment value. The value setting is 512 (0x200).
Default = 512 (0x200)

Object alignment (in hexadecimal)
(Command-line switch = /Ao:xxxx)
The linker uses the object alignment value to determine the virtual addresses of the various objects and
sections (such as code and data) in your application. For example, if you specify an object alignment
value of 8192, the linker aligns the virtual addresses of the sections in the image on 8192-byte (0x2000)
boundaries.
When using this option, you must specify an object alignment value that is a power of 2, with the
smallest value being 4096 (the default).
The command-line version of this option (/Ao:xxxx) accepts either decimal or hexadecimal numbers
as the object alignment value.
Default = 4096 (0x1000)

Reserved stack size (in hexadecimal)
(Command-line switch = /S:xxxx)
Use this option to specify the size of the reserved stack in hexadecimal. The minimum allowable value
for this field is 4K (0x1000).

Specifying the reserved stack size here overrides any STACKSIZE setting in a module definition
file.
The command-line version of this option (/S:xxxx) accepts hexadecimal numbers as the stack reserve
value.
Default = 1Mb (0x1000000)

Committed stack size (in hexadecimal)
(Command-line switch = /Sc:xxxx)
Use this option to specify the size of the committed stack in hexadecimal. The minimum allowable value
for this field is 4K (0x1000) and any value specified must be equal to or less than the Reserved Stack
Size setting (/S).

Specifying the committed stack size here overrides any STACKSIZE setting in a module definition
file.
The command-line version of this option (/Sc:xxxx) accepts hexadecimal numbers as the stack
reserve value.
Default = 8K (0x2000)

Reserved heap size (in hexadecimal)
(Command-line switch = /H:xxxx)
Use this option to specify the size of the reserved heap in hexadecimal. The minimum allowable value
for this field is 0.

Specifying the reserved heap size here overrides any HEAPSIZE setting in a module definition
file.
The command-line version of this option (/H:xxxx) accepts hexadecimal numbers as the stack reserve
value.
Default = 1Mb (0x1000000)

Committed heap size (in hexadecimal)
(Command-line switch = /Hc:xxxx)
Use this option to specify the size of the committed heap in hexadecimal. The minimum allowable value
for this field is 0 and any value specified must be equal to or less than the Reserved Heap Size setting
(/H).

Specifying the committed heap size here overrides any HEAPSIZE setting in a module definition
file.
The command-line version of this option (/Hc:xxxx) accepts hexadecimal numbers as the stack
reserve value.
Default = 4K (0x1000)

Application target options
See also
The following options tell the linkers what type of application image to build.

The following options are not needed if you include a module definition file in your compile and
link commands that specifies the type of 32-bit application you intend to build.

Link using 32-bit Windows API
(Command-line switch = /aa)
The linker generates a protected-mode executable that runs using the 32-bit Windows API.

Link for 32-bit console application
(Command-line switch = /ap)
The linker generates a 32-bit protected-mode executable file that runs in console mode.

Link 32-bit .DLL file
(Command-line switch = /Tpd)
The linker generates a 32-bit protected-mode Windows .DLL file.

Link 32-bit .EXE file
(Command-line switch = /Tpe)
The linker generates a 32-bit protected-mode Windows .EXE file.

Linker messages and warnings
The following options control the messages and warnings that the linker generates while it links:
Verbose
Maximum linker errors
Linker warnings

Verbose
(Command-line switch = /r)
This option causes the linker to emit messages that indicate what part of the link cycle is currently being
executed by the linker. With this option turned on, the linker emits some or all of the following messages:
Starting pass 1
Generating map file
Starting pass 2
Reading resource files
Linking resources

Maximum linker errors
(Command-line switch = /Enn)
Specifies maximum errors the linker reports before terminating. /E0 (default) reports an infinite number
of errors (that is, as many as possible).

Linker warnings
Warnings options enable or disable the display of TLINK32 warnings. The warnings are
Warn duplicate symbol in .LIB
"No Stack" warning
No program entry point
Public symbol 'symbol' defined in both module 'module1' and 'module2'
No def file
Import record does not match previous definition
Extern 'symbol' was not qualified with __import in module 'module'
Using based linking for DLLs may cause the DLL to malfunction
Self-relative fixup overflowed
Image linked as .EXE but with .DLL extension
Multiple stack segments found

Warn duplicate symbol in .LIB
See Also
(Command-line switch = /wdpl)
When the Warn Duplicate Symbols option is on, the linker warns you if a symbol appears in more than
one object or library files.
If the symbol must be included in the program, the linker uses the symbol definition from the first file it
encounters with the symbol definition.
Use the command-line option /w-dpl to turn this warning off.

Default = OFF

"No stack" warning
(Command-line switch = /wstk)
This option lets you control whether or not the linker emits the "No stack" warning. The warning is
generated if no stack segment is defined in any of the object files or in any of the libraries included in the
link. Except for .DLLs, this indicates an error. If a C++Builder program produces this error, make sure
you are using the correct C0x startup object file.
Use the command-line option /w-stk to turn this warning off.

Default = OFF

Warning message options
See also
The Warning Message Options let you control the messages generated by the compiler. Messages are
indicators of potential trouble spots in your program. These messages can warn you of many problems
that may be waiting to happen, such as variables and parameters that are declared but never used, type
mismatches, and many others.
Setting a message option causes the compiler to generate the associated message or warning when the
specific condition arises. Note that some of the messages are on by default.
The different compiler messages can be broken in to the following subtopics
Portability
ANSI violations
Obsolete C++
Potential C++ errors
Inefficient C++ coding
Potential errors
Inefficient coding
General
User-defined warnings

Displaing warnings
Selecting warnings
Stop after n warnings
Stop after n errors

Portability message options
See also
Portability options enable or disable individual warning messages about statements that might not
operate correctly in all computer environments.

Option Command-line switch Default
Non-portable pointer conversion -w-rpt ON

Non-portable pointer comparison -w-cpt ON

Constant out of range in comparison -w-rng ON

Constant is long -wcln OFF

Conversion may lose significant digits -wsig OFF

Mixing pointers to signed and unsigned char -wucp OFF

ANSI violation message options
See also
ANSI violations message options enable or disable individual warning messages about statements that
violate the ANSI standard for the C language.

Option Command-line switch Default
Void functions may not return a value -w-voi ON

Both return and return of a value used -w-ret ON

Suspicious pointer conversion -w-sus ON

Undefined structure 'ident' -wstu OFF

Redefinition of 'ident' is not identical -w-dup ON

Hexadecimal value more than three digits -w-big ON

Bit fields must be signed or unsigned int -wbbf OFF

'ident' declared as both external and static -w-ext ON

Declare 'ident' prior to use in prototype -w-dpu ON

Division by zero -w-zdi ON

Initializing 'ident' with 'ident' -w-bei ON

Initialization is only partially bracketed -wpin OFF

Non-ANSI keyword used -wnak OFF

Obsolete C++ message options
See also
Obsolete C++ message options let you choose the obsolete items or incorrect syntax C++ warnings
display.

Option Command-line switch Default
Base initialization without class name is obsolete -w-obi ON

This style of function definition is obsolete -w-ofp ON

Overloaded prefix operator used as a postfix operator -w-pre ON

Potential C++ error message options
See also
Potential C++ errors message options enable or disable individual warning messages about statements
that violate C++ language implementation.

Option Command-line switch

Defaul
t

Constant member 'ident' is not initialized -w-nci ON

Assigning 'type' to 'enumeration' -w-eas ON

'function' hides virtual function 'function2' -w-hid ON

Non-const function <function> called for const object -w-ncf ON

Base class 'ident' inaccessible because also in 'ident' -w-ibc ON

Array size for 'delete' ignored -w-dsz ON

Use qualified name to access nested type 'ident' -w-nst ON

Handler for '<type1>' Hidden by Previous Handler for '<type2>' -w-hch ON

Conversion to 'type' will fail for virtual base members -w-mpc ON

Maximum precision used for member pointer type <type> -w-mpd ON

Use '> >' for nested templates instead of '>>' -w-ntd ON

Non-volatile function <function> called for volatile object -w-nvf ON

Inefficient C++ coding message options
See also
Inefficient C++ coding message options enable or disable individual warning messages about inefficient
C++ coding.

Option Command-line switch Default
Functions containing 'ident' not expanded inline -w-inl ON

Temporary used to initialize 'ident' -w-lin ON

Temporary used for parameter 'ident' -w-lvc ON

Potential error message options
See also
Potential error message options enable or disable individual warning messages about potential coding
errors.

Option Command-line switch Default
Possibly incorrect assignment -w-pia ON

Possible use of 'ident' before definition -wdef OFF

No declaration for function 'ident' -wnod OFF

Call to function with no prototype -w-pro ON

Function should return a value -w-rvl ON

Ambiguous operators need parentheses -wamb OFF

Condition is always (true/false) -w-ccc ON

Continuation character \ found in // -w-com ON

Inefficient coding message options
See also
Inefficient coding message options are used to enable or disable individual warning messages about
inefficient coding.

Option Command-line switch Default
'ident' assigned a value which is never used -w-aus ON

Parameter 'ident' is never used -w-par ON

'ident' declared but never used -wuse OFF

Structure passed by value -wstv OFF

Unreachable code -w-rch ON

Code has no effect -w-eff ON

The warnings Unreachable Code and Code Has No Effect can indicate serious coding
problems. If the compiler generates these warnings, be sure to examine the lines of code that cause
these warnings.

General message options
See also
General message options enable or disable a few general warning messages.

Option Command-line switch Default
Unknown assembler instruction -wasm OFF

Ill-formed pragma -w-ill ON

Array variable 'ident' is near -w-ias ON

Superfluous & with function -wamp OFF

'ident' is obsolete -w-obs ON

Cannot create precompiled header -w-pch ON

User-defined warnings -w-msg ON

User-defined warnings
See also
(Command-line switch: -wmsg)

The User-defined Warnings option allows user-defined messages to appear in the IDE's Message
window. User-defined messages are introduced with the #pragma message compiler syntax.

In addition to messages that you introduce with the #pragma message compiler syntax, User-
defined warnings displays warnings introduced by third-party libraries. If you need Help concerning a
message generated by third-party libraries, please contact the vendor of the header file that issued the
warning.
Default = ON

Display warnings options
See also
Use the Display Warnings options to choose which warnings are displayed by the compiler.

All
(Command-line switch: -w)

Display all warning and error messages.
Default = OFF

Selected
(Command-line switch: -waaa)

Choose which warnings are displayed. Using pragma warn in your source code overrides messages
options set either at the command line or in the IDE.
To disable a message from the command line, use the command-line option -w-aaa, where aaa is the
3-letter message identifier used by the command-line option.
Default = Refer to the individual messages for their default status

Stop after n warnings
See also
(Command-line switch: -gn)

Warnings: Stop After causes compilation to stop after the specified number of warnings has been
detected. You can enter any number from 0 to 255.
Entering 0 causes compilation to continue until either the end of the file or the error limit set in Stop after
n errors has been reached, whichever comes first.
Default = 100

Stop after n errors
See also
(Command-line switch: -jn)

Errors: Stop After causes compilation to stop after the specified number of errors has been detected.
You can enter any number from 0 to 255.
Entering 0 causes compilation to continue until the end of the file or the warning limit set in Stop after n
warnings has been reached, whichever comes first.
Default = 25

Optimization options
See also
Optimization options are the software equivalent of performance tuning. There are two general types of
compiler optimizations:

Those that make your code smaller
Those that make your code faster

Although you can compile with optimizations at any point in your product development cycle, be aware
when debugging at the assembly level that some assembly instructions might be "optimized away" by
certain compiler optimizations.

C++Builder predefined optimization settings
C++Builder offers predefined optimization settings on the C++ page of the Project Options dialog box.
Because of the complexities involved with setting compiler optimizations, it is recommended that you
use one of these predefined optimization settings while compiling C++Builder applications.
If you need to further customize the compiler optimizations, use the following options:
Aggreigate optimizations
Jump optimization
Eliminate duplicate expressions
Inline intrinsic functions
Induction variables
Pentium instruction scheduling

Aggregate optimization options
See also

Disable all optimizations
(Command-line switch: -Od)
Disables all optimization settings, including ones which you may have specifically set and those which
would normally be performed as part of the speed/size tradeoff.
Because this disables code compaction (tail merging) and cross-jump optimizations, using this option
can keep the debugger from jumping around or returning from a function without warning, which makes
stepping through code easier to follow.

Optimize for size
(Command-line switches: -O1)
This option sets an aggregate of optimization options that tells the compiler to optimize your code for
size. For example, the compiler scans the generated code for duplicate sequences. When such
sequences warrant, the optimizer replaces one sequence of code with a jump to the other and
eliminates the first piece of code. This occurs most often with switch statements. The compiler
optimizes for size by choosing the smallest code sequence possible.
This option (-O1) sets the following optimizations:

Jump optimizations (-O)
Duplicate expressions (-Oc)
Instruction scheduling (-OS)
The compiler options -Ot and -G are supported for backward compatibility only, and are

equivalent to the -O1 compiler option.

Optimize for speed
(Command-line switch: -O2)
This radio button sets an aggregate of optimization options that tells the compiler to optimize your code
for speed. This switch (-O2) sets the following optimizations:

Duplicate expression within functions (-Oc)
Intrinsic functions (-Oi)
Instruction scheduling (-OS)
Induction variables (-Ov)

If you are creating Windows applications, you'll probably want to optimize for speed.
The compiler options -Os and -G- are supported for backward compatibility only, and are

equivalent to the -O2 compiler option. The -Ox option is also supported for backward compatibility and
for compatibility with Microsoft make files.

Jump optimization option
See also
(Command-line switch: -O)
When Jump Optimization is set, the compiler reduces the code size by eliminating redundant jumps and
reorganizing loops and switch statements.
When this option is set, the sequences of stepping in the debugger can be confusing because of the
reordering and elimination of instructions. If you are debugging at the assembly level, you might want to
disable this option.
Default = ON

Eliminate duplicate expressions option
See also
(Command-line switch: -Oc)
When this option is set, the compiler eliminates common subexpressions within groups of statements
unbroken by jumps (basic blocks) and functions. This option globally eliminates duplicate expressions
within the target scope and stores the calculated value of those expressions once (instead of
recalculating the expression).
Although this optimization could theoretically reduce code size, it optimizes for speed and rarely results
in size reductions. Use this option if you prefer to reuse expressions rather than create explicit stack
locations for them.

The -Og compiler option is supported for backward compatibility only, and is equivalent to the -
Oc compiler option.

Inline intrinsic functions option
See also
(Command-line switch: -Oi)
When Inline Intrinsic Functions is set, the compiler generates the code for common memory functions
like strcpy() within your function's scope. This eliminates the need for a function call. The resulting code
executes faster, but it is larger.
The following functions are inlined with this option:
alloca fabs memchr memcmp
memcpy memset rotl rotr
stpcpy strcat strchr strcmp
strcpy strlen strncat strncmp
strncpy strnset strrchr
You can control the inlining of these functions with the pragma intrinsic. For example, #pragma
intrinsic strcpy causes the compiler to generate inline code for all subsequent calls to strcpy in
your function, and #pragma intrinsic -strcpy prevents the compiler from inlining strcpy. Using
these pragmas in a file overrides any compiler option settings.
When inlining any intrinsic function, you must include a prototype for that function before you use it; the
compiler creates a macro that renames the inlined function to a function that the compiler recognizes
internally. In the previous example, the compiler would create a macro #define strcpy
__strcpy__.

The compiler recognizes calls to functions with two leading and two trailing underscores and tries to
match the prototype of that function against its own internally stored prototype. If you don't supply a
prototype, or if the prototype you supply doesn't match the compiler's prototype, the compiler rejects the
attempt to inline that function and generates an error.

Induction variables option
See also
(Command-line switch: -Ov)
When this option is set, the compiler creates induction variables and it performs strength reduction,
which optimizes for loops speed.
Use this option when you're compiling for speed and your code contains loops. The optimizer uses
induction to create new variables (induction variables) from expressions used in loops. The optimizer
assures that the operations performed on these new variables are computationally less expensive
(reduced in strength) than those used by the original variables.
Optimizations are common if you use array indexing inside loops, because a multiplication operation is
required to calculate the position in the array that is indicated by the index. For example, the optimizer
creates an induction variable out of the operation v[i] in the following code because the v[i]
operation requires multiplication. This optimization also eliminates the need to preserve the value of i:
int v[10];
void f(int x, int y, int z)
{
 int i;
 for (i = 0; i < 10; i++)
 v[i] = x * y * z;
}
With Induction variables set, the code changes:
int v[10];
void f(int x, int y, int z)
{
 int i, *p;
 for (p = v; p < &v[9]; p++)
 *p = x * y * z;
}

Pentium instruction scheduling option
See also
(Command-line switch: -OS)
When set, this switch rearranges instructions to minimize delays that can be caused by Address
Generation Interlocks (AGI) which occur on the i486 and Pentium processors. This option also optimizes
the code so that it takes advantage of the Pentium parallel pipelines. Best results for Pentium systems
are obtained when you use this switch in conjunction with the Generate Pentium Instructions option (-
5).

Scheduled code is more difficult to debug at the source level because instructions from a
particular source line may be mixed with instructions from other source lines. Stepping through the source
code is still possible, although the execution point might make unexpected jumps between source lines as
you step. Also, setting a breakpoint on a source line may result in several breakpoints being set in the
code. This is especially important to note when inspecting variables, since a variable may be undefined
even though the execution point is positioned after the variable assignment.
Stepping through the following function when this switch is set demonstrates the stepping behavior:
int v[10];
void f(int i, int j)
{
int a,b;

a = v[i+j];
b = v[i-j];
v[i] = a + b;
v[j] = a - b;

}
Execution starts by computing the index i-j in the assignment to b (note that a is still undefined
although the execution point is positioned after the assignment to a). The index i+j is computed, v[i-
j] is assigned to b, and v[i+j] is assigned to a. If a breakpoint is set on the assignment to b,
execution will stop twice: once when computing the index and again when performing the assignment.
Default = OFF (-O-S)

System (Classic)
See also
These system keyboard shortcuts apply to the Classic keystroke mapping scheme.

Shortcut Action or command
F1 Displays context-sensitive Help
F2 File|Save
F3 File|Open
F4 Run to Cursor
F5 Zooms window
F6 Displays the next page
F7 Run|Trace Into
F8 Run|Step Over
F9 Run|Run
F11 View|Object Inspector
F12 View|Toggle Form/Unit

Alt+F2 View|CPU
Alt+F3 File|Close
Alt+F7 Displays previous error in Message view
Alt+F8 Displays next error in Message view
Alt+F10 Displays a context menu
Alt+F11 Displays Include Unit dialog
Alt+F12 Displays the Code editor
Alt+X File|Exit
Alt+0 View|Window List

Ctrl+F1 Topic Search
Ctrl+F2 Run|Program Reset
Ctrl+F3 View|Call Stack
Ctrl+F4 Evaluate/Modify
Ctrl+F6 Displays header file in Code editor
Ctrl+F7 Add Watch at Cursor
Ctrl+F8 Toggle Breakpoint
Ctrl+F9 Project|Compile
Ctrl+F11 Displays Open Project dialog
Ctrl+F12 View|Units

Ctrl+D Descends item (replaces Inspector window)
Ctrl+N Opens a new Inspector window
Ctrl+S Incremental search

Ctrl+T Displays the Type Cast dialog

Shift+F7 Run|Trace to Source
Shift+F11 Displays Add to Project dialog
Shift+F12 View|Forms

Ctrl+Shift+P Plays back a keyboard macro
Ctrl+Shift+R Records a keyboard macro
Ctrl+Shift+S Performs an incremental search

Ctrl+K+D Accesses the menu bar
Ctrl+S File|Save

Clipboard control (Classic)
See also
These Clipboard control keyboard shortcuts apply to the Classic keystroke mapping scheme.

Shortcut Command
Ctrl+Ins Edit|Copy
Shift+Del Edit|Cut
Shift+Ins Edit|Paste

Plus (+) Edit|Copy
Minus (-) Edit|Cut
Start (*) Edit|Paste

Editor (Classic)
See also
These editor keyboard shortcuts apply to the Classic keystroke mapping scheme.

Shortcut Action or command
F1 Topic Search
Ctrl+F1 Topic Search
F6 Displays the next page
Shift+F6 Displays the previous page

Ctrl+A Moves one word left
Ctrl+C Scrolls down one screen
Ctrl+D Moves the cursor right one column, accounting for the autoindent setting
Ctrl+E Moves the cursor up one line
Ctrl+F Moves one word right
Ctrl+G Deletes the character to the right of the cursor
Ctrl+H Deletes the character to the left of the cursor
Ctrl+I Inserts a tab
Ctrl+L Search|Search Again
Ctrl+N Inserts a new line
Ctrl+P Causes next character to be interpreted as an ASCII sequence
Ctrl+R Moves up one screen
Ctrl+S Moves the cursor left one column, accounting for the autoindent setting
Ctrl+T Deletes a word
Ctrl+V Turns insert mode on/off
Ctrl+W Moves down one screen
Ctrl+X Moves the cursor down one line
Ctrl+Y Deletes a line
Ctrl+Z Moves the cursor up one line

Ctrl+Shift+S Performs an incremental search

End Moves to the end of a line
Home Moves to the start of a line
Enter Inserts a carriage return
Ins Turns insert mode on/off
Del Deletes the character to the right of the cursor
Backspace Deletes the character to the left of the cursor
Tab Inserts a tab
Space Inserts a blank space
Left Arrow Moves the cursor left one column, accounting for the autoindent setting

Right Arrow Moves the cursor right one column, accounting for the autoindent setting
Up Arrow Moves up one line
Down Arrow Moves down one line
Page Up Moves up one page
Page Down Moves down one page

Ctrl+Left Arrow Moves one word left
Ctrl+Right Arrow Moves one word right
Ctrl+Home Moves to the top of a screen
Ctrl+End Moves to the end of a screen
Ctrl+PgDn Moves to the bottom of a file
Ctrl+PgUp Moves to the top of a file
Ctrl+Backspace Move one word to the right
Ctrl+Del Deletes a currently selected block
Ctrl+Space Inserts a blank space
Ctrl+Enter Opens file at cursor
Ctrl+Tab Moves to the next code page (or file)

Shift+Tab Deletes the character to the left of the cursor
Shift+Backspace Deletes the character to the left of the cursor
Shift+Left Arrow Selects the character to the left of the cursor
Shift+Right Arrow Selects the character to the right of the cursor
Shift+Up Arrow Moves the cursor up one line and selects from the left of the starting

cursor position
Shift+Down Arrow Moves the cursor down one line and selects from the right of the starting

cursor position
Shift+PgUp Moves the cursor up one screen and selects from the left of the starting

cursor position
Shift+PgDn Moves the cursor down one line and selects from the right of the starting

cursor position
Shift+End Selects from the cursor position to the end of the current line
Shift+Home Selects from the cursor position to the start of the current line
Shift+Space Inserts a blank space
Shift+Enter Inserts a new line with a carriage return
Shift+Ctrl+Tab Moves to the previous code page (or file)

Ctrl+Shift+Left Arrow Selects the word to the left of the cursor
Ctrl+Shift+Right Arrow Selects the word to the right of the cursor
Ctrl+Shift+Home Selects from the cursor position to the start of the current file
Ctrl+Shift+End Selects from the cursor position to the end of the current file
Ctrl+Shift+PgDn Selects from the cursor position to the bottom of the screen

Ctrl+Shift+PgUp Selects from the cursor position to the top of the screen
Ctrl+Shift+Tab Moves to the previous code page (or file)

Alt+Backspace Edit|Undo
Alt+Shift+Backspace Edit|Redo
Alt+Shift+Left Arrow Selects the column to the left of the cursor
Alt+Shift+Right Arrow Selects the column to the right of the cursor
Alt+Shift+Up Arrow Moves the cursor up one line and selects the column from the left of the

starting cursor position
Alt+Shift+Down Arrow Moves the cursor down one line and selects the column from the left of the

starting cursor position
Alt+Shift+Page Up Moves the cursor up one screen and selects the column from the left of

the starting cursor position
Alt+Shift+Page Down Moves the cursor down one line and selects the column from the right of

the starting cursor position
Alt+Shift+End Selects the column from the cursor position to the end of the current line
Alt+Shift+Home Selects the column from the cursor position to the start of the current line

Ctrl+Alt+Shift+Left Arrow Selects the column to the left of the cursor
Ctrl+Alt+Shift+Rght Arrow Selects the column to the right of the cursor
Ctrl+Alt+Shift+Home Selects the column from the cursor position to the start of the current file
Ctrl+Alt+Shift+End Selects the column from the cursor position to the end of the current file
Ctrl+Alt+Shift+Page Up Selects the column from the cursor position to the bottom of the screen
Ctrl+Alt+Shift+Page Down Selects the column from the cursor position to the top of the screen

System (Default)
See also
These system keyboard shortcuts apply to the Default keystroke mapping scheme.

Shortcut Action or command
F1 Displays context-sensitive Help
F4 Run|Go to Cursor
F5 Run|Toggle Breakpoint
F7 Run|Trace Into
F8 Run|Step Over
F9 Run|Run
F11 View|Object Inspector
F12 View|Toggle Form/Unit

Alt+0 View|Window List
Alt+F2 View|CPU
Alt+F7 Displays previous error in Message view
Alt+F8 Displays next error in Message view
Alt+F10 Displays a context menu
Alt+F11 Displays Include Unit dialog
Alt+F12 Displays the Code editor

Ctrl+F1 Help|Topic Search
Ctrl+F2 Run|Program Reset
Ctrl+F3 View|Call Stack
Ctrl+F4 Closes current file
Ctrl+F5 Add Watch at Cursor
Ctrl+F6 Displays header file in Code editor
Ctrl+F7 Evaluate/Modify
Ctrl+F9 Project|Compile
Ctrl+F11 Displays Open Project dialog
Ctrl+F12 View|Units

Ctrl+D Descends item (replaces Inspector window)
Ctrl+N Opens a new Inspector window
Ctrl+S Incremental search
Ctrl+T Displays the Type Cast dialog

Shift+F7 Run|Trace to Next Source Line
Shift+F11 Displays Add to Project dialog
Shift+F12 View|Forms

Ctrl+Shift+P Plays back a key macro
Ctrl+Shift+R Records a key macro

Ctrl+K+D Accesses the menu bar
Ctrl+S File|Save

Clipboard control (Default)
See also
These Clipboard keyboard shortcuts apply to the Default keystroke mapping scheme.

Shortcut Command
Ctrl+Ins Edit|Copy
Shift+Del Edit|Cut
Shift+Ins Edit|Paste

Ctrl+C Edit|Copy
Ctrl+V Edit|Paste
Ctrl+X Edit|Cut

Plus (+) Edit|Copy
Minus (-) Edit|Cut
Star (*) Edit|Paste

Editor (Default)
See also
These editor keyboard shortcuts apply to the Default keystroke mapping scheme.

Shortcut Action or command
F1 Help|Topic Search
Ctrl+F1 Help|Topic Search
F3 Search|Search Again

Ctrl+E Search|Incremental Search
Ctrl+F Search|Find
Ctrl+I Inserts a tab character
Ctrl+N Inserts a new line
Ctrl+P Causes next character to be interpreted as an ASCII sequence
Ctrl+R Search|Replace
Ctrl+S File|Save
Ctrl+T Deletes a word
Ctrl+Y Deletes a line
Ctrl+Z Edit|Undo

Ctrl+Shift+I Indents block
Ctrl+Shift+U Outdents block
Ctrl+Shift+Y Deletes to the end of a line
Ctrl+Shift+Z Edit|Redo

Alt+[Finds the matching delimiter (forward)
Alt+] Finds the matching delimiter (backward)

End Moves to the end of a line
Home Moves to the start of a line
Enter Inserts a carriage return
Ins Turns insert mode on/off
Del Deletes the character to the right of the cursor
Backspace Deletes the character to the left of the cursor
Tab Inserts a tab
Space Inserts a blank space
Left Arrow Moves the cursor left one column, accounting for the autoindent setting
Right Arrow Moves the cursor right one column, accounting for the autoindent setting
Up Arrow Moves up one line
Down Arrow Moves down one line
Page Up Moves up one page

Page Down Moves down one page

Ctrl+Left Arrow Moves one word left
Ctrl+Right Arrow Moves one word right
Ctrl+Tab Moves to the next code page (or file)
Ctrl+Shift+Tab Moves to the previous code page (or file)
Ctrl+Backspace Deletes the word to the right of the cursor
Ctrl+Home Moves to the top of a file
Ctrl+End Moves to the end of a file
Ctrl+Del Deletes a currently selected block
Ctrl+Space Inserts a blank space
Ctrl+PgDn Moves to the bottom of a screen
Ctrl+PgUp Moves to the top of a screen
Ctrl+Up Arrow Scrolls up one line
Ctrl+Down Arrow Scrolls down one line
Ctrl+Enter Opens file at cursor

Shift+Tab Moves the cursor to the left one tab position
Shift+Backspace Deletes the character to the left of the cursor
Shift+Left Arrow Selects the character to the left of the cursor
Shift+Right Arrow Selects the character to the right of the cursor
Shift+Up Arrow Moves the cursor up one line and selects from the left of the starting

cursor position
Shift+Down Arrow Moves the cursor down one line and selects from the right of the starting

cursor position
Shift+PgUp Moves the cursor up one screen and selects from the left of the starting

cursor position
Shift+PgDn Moves the cursor down one line and selects from the right of the starting

cursor position
Shift+End Selects from the cursor position to the end of the current line
Shift+Home Selects from the cursor position to the start of the current line
Shift+Space Inserts a blank space
Shift+Enter Inserts a new line with a carriage return

Ctrl+Shift+Left Arrow Selects the word to the left of the cursor
Ctrl+Shift+Right Arrow Selects the word to the right of the cursor
Ctrl+Shift+Home Selects from the cursor position to the start of the current file
Ctrl+Shift+End Selects from the cursor position to the end of the current file
Ctrl+Shift+PgDn Selects from the cursor position to the bottom of the screen
Ctrl+Shift+PgUp Selects from the cursor position to the top of the screen
Ctrl+Shift+Tab Moves to the previous page

Alt+Backspace Edit|Undo
Alt+Shift+Backspace Edit|Redo
Alt+Shift+Left Arrow Selects the column to the left of the cursor
Alt+Shift+Right Arrow Selects the column to the right of the cursor
Alt+Shift+Up Arrow Moves the cursor up one line and selects the column from the left of the

starting cursor position
Alt+Shift+Down Arrow Moves the cursor down one line and selects the column from the left of

the starting cursor position
Alt+Shift+Page Up Moves the cursor up one screen and selects the column from the left of

the starting cursor position
Alt+Shift+Page Down Moves the cursor down one line and selects the column from the right of

the starting cursor position
Alt+Shift+End Selects the column from the cursor position to the end of the current line
Alt+Shift+Home Selects the column from the cursor position to the start of the current

line

Ctrl+Alt+Shift+Left Arrow Selects the column to the left of the cursor
Ctrl+Alt+Shift+Right Arrow Selects the column to the right of the cursor
Ctrl+Alt+Shift+Home Selects the column from the cursor position to the start of the current file
Ctrl+Alt+Shift+End Selects the column from the cursor position to the end of the current file
Ctrl+Alt+Shift+Page Up Selects the column from the cursor position to the bottom of the screen
Ctrl+Alt+Shift+Page Down Selects the column from the cursor position to the top of the screen

System (Brief)
See also
These system keyboard shortcuts apply to the Brief keystroke mapping scheme.

Shortcut Action or command
F7 Records a keyboard macro
F8 Plays back a keyboard macro
F9 Run|Run
F10 Accesses the menu bar
F11 View|Object Inspector
F12 View|Toggle Form/Unit

Alt+F2 Zooms window
Alt+F7 Displays previous error in Message view
Alt+F8 Displays next error in Message view
Alt+F9 Displays a context menu
Alt+F10 Project|Compile
Alt+F11 Displays Include Unit dialog
Alt+F12 Displays the Code editor

Ctrl+F1 Topic search
Ctrl+F2 Run|Program Reset
Ctrl+F3 View|Call Stack
Ctrl+F4 Displays header file in Code editor
Ctrl+F7 Evaluate/Modify
Ctrl+F8 Toggle Breakpoint
Ctrl+F9 Project|Compile
Ctrl+F10 Displays Open Project dialog
Ctrl+F11 Run|Step Over

Ctrl+D Descends item (replaces Inspector window)
Ctrl+N Opens a new Inspector window
Ctrl+S Incremental search
Ctrl+T Displays the Type Cast dialog

Shift+F3 View|Call Stack
Shift+F7 Run|Trace to Next Source Line
Shift+F8 Run|Trace Into
Shift+F10 Displays Add to Project dialog
Shift+F11 View|CPU

Ctrl+Hyphen File|Close

Ctrl+F12 View|Units
Shift+ F12 View|Forms

Alt+B View|Window List
Alt+E File|Open (Note: displays Open dialog box, even when Code Editor window does

not have focus)
Alt+H Displays context-sensitive Help
Alt+N Displays the next page
Alt+O File|Save As (Note: displays Save As dialog box, even when Code editor window

does not have focus)
Alt+- Displays the previous page
Alt+W File|Save
Alt+X File|Exit
Alt+Z Accesses the File menu

Clipboard control (Brief)
See also
These Clipboard keyboard shortcuts apply to the Brief keystroke mapping scheme.

Shortcut Command
Ins Edit|Paste
Plus (+) Edit|Copy
Minus (-) Edit|Cut

Editor (Brief)
See also
These editor keyboard shortcuts apply to the Brief keystroke mapping scheme.

Shortcut Action or command
F5 Search|Find (forward from cursor position)
F6 Search|Replace (forward from cursor position)

Alt+F5 Search|Find (backward from cursor position)
Alt+F6 Search|Replace (backward from cursor position)
Alt+F9 Displays the context menu

Shift+F5 Search|Search Again
Shift+F6 Repeats the last Search|Replace operation

Esc Cancels a command at a prompt or enters an escape character at the cursor
Del Deletes a character or block at the cursor
Star Edit|Undo
Backspace Deletes the character to the left of the cursor
Shift+Backspace Deletes the character to the left of the cursor
Tab Inserts a tab character
Enter Inserts a new line with a carriage return

Ctrl+B Moves to the bottom of the window
Ctrl+C Centers line in window
Ctrl+D Moves down one screen
Ctrl+E Moves up one screen
Ctrl+K Deletes to the beginning of a line
Ctrl+M Inserts a new line with a carriage return
Ctrl+S Performs an incremental search
Ctrl+T Moves to the top of the window
Ctrl+U Edit|Redo
Ctrl+Backspace Deletes the word to the left of the cursor
Ctrl+Enter Inserts an empty new line
Ctrl+- (dash) Closes the current page

Alt+A Marks a non-inclusive block
Alt+B Displays a list of open files
Alt+C Mark the beginning of a column block
Alt+D Deletes a line
Alt+G Search|Go to Line Number

Alt+I Toggles insert mode
Alt+K Deletes to the end of a line
Alt+L Marks a line
Alt+M Marks an inclusive block
Alt+N Displays the contents of the next page
Alt+P Prints the selected block
Alt+Q Causes next character to be interpreted as an ASCII sequence
Alt+R Reads a block from a file
Alt+S Search|Find
Alt+T Search|Replace
Alt+U Edit|Undo

Alt+Backspace Deletes the word to the right of the cursor
Alt+Hyphen Displays the contents of the previous file buffer

Ctrl+Q+[Finds the matching delimiter (forward)
Ctrl+Q+Ctrl+[Finds the matching delimiter (forward)
Ctrl+Q+] Finds the matching delimiter (backward)
Ctrl+Q+Ctrl+] Finds the matching delimiter (backward)

Ctrl+O+A Open File at Cursor
Ctrl+O+B Browse Symbol at Cursor
Ctrl+O+O Toggles the case of a selection

Ctrl+F1 Help keyword search
Ctrl+F5 Toggles case-sensitive searching
Ctrl+F6 Toggles regular expression searching

Block commands (Brief)
See also
These block command keyboard shortcuts apply to the Brief keystroke mapping scheme.

Shortcut Action
Alt+A Marks a non-inclusive block
Alt+C Marks a column as a block
Alt+L Marks a line as a block
Alt+M Marks an inclusive block
Alt+P Prints the contents of a block
Alt+R Reads a block from a file

Bookmark operations (Brief)
See also
These bookmark operations keyboard shortcuts apply to the Brief keystroke mapping scheme.

Shortcut Action
Alt+0 Sets bookmark 0
Alt+1 Sets bookmark 1
Alt+2 Sets bookmark 2
Alt+3 Sets bookmark 3
Alt+4 Sets bookmark 4
Alt+5 Sets bookmark 5
Alt+6 Sets bookmark 6
Alt+7 Sets bookmark 7
Alt+8 Sets bookmark 8
Alt+9 Sets bookmark 9

Alt+J+0 Goes to bookmark 0
Alt+J+1 Goes to bookmark 1
Alt+J+2 Goes to bookmark 2
Alt+J+3 Goes to bookmark 3
Alt+J+4 Goes to bookmark 4
Alt+J+5 Goes to bookmark 5
Alt+J+6 Goes to bookmark 6
Alt+J+7 Goes to bookmark 7
Alt+J+8 Goes to bookmark 8
Alt+J+9 Goes to bookmark 9

Cursor movement (Brief)
See also
These cursor movement keyboard shortcuts apply to the Brief keystroke mapping scheme.

Shortcut Action
UpArrow Moves up one line in the same column position
DownArrow Moves down one line in the same column position
Home Moves to the start of a line
End Moves to the end of a line
Left Arrow Moves one character to the left
Right Arrow Moves one character to the right
PgDn Moves down one screen in the current window
PgUp Moves up one screen in the current window

Ctrl+Left Arrow Moves one word to the left
Ctrl+Right Arrow Moves one word to the right
Ctrl+PgDn Moves to the end of a file
Ctrl+PgUp Moves to the beginning of a file

Shift+Tab Moves backward one tab stop
Shift+Home Moves to the first column in a window
Shift+End Moves to the last column in a window
Ctrl+Home Moves to the top of a screen in the same column position
Ctrl+End Moves to the bottom of a screen in the same column position

Ctrl+B Moves to the bottom of the window
Ctrl+C Moves to the center of the window
Ctrl+D Scrolls down one screen
Ctrl+E Scrolls down one screen

System (Epsilon)
See also
These system keyboard shortcuts apply to the Epsilon keystroke mapping scheme.

Shortcut Action or command
F1 Displays context-sensitive Help
F5 Toggle Breakpoint
F7 Run|Trace Into
F8 Run|Step Over
F9 Run|Run
F10 Edit|Redo
F11 View|Object Inspector
F12 View|Toggle Form/Unit

Alt+0 View|Window List
Alt+F3 View|CPU
Alt+F7 Displays previous error in Message view
Alt+F8 Displays next error in Message view
Alt+F9 Project|Compile
Alt+F10 Displays a context menu
Alt+F11 Displays Include Unit dialog
Alt+F12 Displays the Code editor
Alt+Shift+O Displays the Options menu

Ctrl+F2 Run|Program Reset
Ctrl+F5 Run|Add Watch
Ctrl+F6 Displays the next page
Ctrl+Shift+F6 Displays the previous page
Ctrl+F7 File|Save As
Ctrl+F9 Project|Compile
Ctrl+F11 Displays Open Project dialog
Ctrl+F12 View|Units

Ctrl+D Descends item (replaces Inspector window)
Ctrl+N Opens a new Inspector window
Ctrl+S Incremental search
Ctrl+T Displays the Type Cast dialog

Shift+F3 View|Call Stack
Shift+F6 Displays header file in Code editor
Shift+F7 Run|Trace to Next Source Line

Shift+F11 Displays Add to Project dialog
Shift+F12 View|Forms

Ctrl+X+(Records a keyboard macro
Ctrl+X+) Ends a keyboard macro recording
Ctrl+X+e Plays back the last keyboard macro recorded
Ctrl+X+E Plays back the last keyboard macro recorded

Ctrl+X+b Displays a list of open files
Ctrl+X+B Displays a list of open files

Ctrl+X+s File|Save As
Ctrl+X+S File|Save As
Ctrl+X+Ctrl+F File|Open
Ctrl+X+Ctrl+S File|Save
Ctrl+X+Ctrl+W File|Save

Clipboard control (Epsilon)
See also
These Clipboard keyboard shortcuts apply to the Epsilon keystroke mapping scheme.

Shortcut Action or command
Ctrl+Y Edit|Paste
Alt+w Edit|Copy
Esc+@w Edit|Copy

Ctrl+Alt+w Edit|Copy (appends to current contents)
Esc+Ctrl+w Edit|Copy (appends to current contents)

Editor (Epsilon)
See also
These editor keyboard shortcuts apply to the Epsilon keystroke mapping scheme.

Shortcut Action or command
Ctrl+H Deletes the character to the left of the current cursor position
Backspace Deletes the character to the left of the current cursor position
Alt+Del Deletes all text in the block between the cursor and the previous matching

delimiter (cursor must be on ')', '}' or ']')
Esc+Del Deletes all text in the block between the cursor and the previous matching

delimiter (cursor must be on ')', '}' or ']')
Ctrl+Alt+H Deletes the word to the left of the current cursor position
Alt+Backspace Deletes the word to the left of the current cursor position
Esc+BackSpace Deletes the word to the left of the current cursor position
Esc+Ctrl+H Deletes the word to the left of the current cursor position
Ctrl+D Deletes the currently selected character or character to the right of the cursor
Del Deletes the currently selected character or character to the right of the cursor
Alt+\ Deletes spaces and tabs around the cursor on the same line
Esc+\ Deletes spaces and tabs around the cursor on the same line

Ctrl+Alt+K Deletes all text in the block between the cursor and the next matching delimiter
(cursor must be on ')', '}' or ']')

Esc+Ctrl+K Deletes all text in the block between the cursor and the next matching delimiter
(cursor must be on ')', '}' or ']')

Ctrl+X+0 Deletes the contents of the current window
Alt+d Deletes to word to the right of the cursor
Esc+@d Deletes to word to the right of the cursor

Ctrl+K Cuts the contents of line and places it in the Clipboard

Ctrl+Alt+B Locates the next matching delimiter (cursor must be on ')', '}' or ']')
Esc+Ctrl+B Locates the next matching delimiter (cursor must be on ')', '}' or ']')
Alt+) Locates the next matching delimiter (cursor must be on ')', '}' or ']')
Esc+) Locates the next matching delimiter (cursor must be on ')', '}' or ']')
Ctrl+Alt+F Locates the previous matching delimiter (cursor must be on ')', '}' or ']')
Esc+Ctrl+F Locates the previous matching delimiter (cursor must be on ')', '}' or ']')

Alt+c Capitalizes the first letter of the current word
Esc+@c Capitalizes the first letter of the current word

Ctrl+L Centers the active window

Ctrl+M Inserts a carriage return
Ctrl+X+i Inserts the contents of a file at the cursor
Ctrl+X+I Inserts the contents of a file at the cursor
Ctrl+O Inserts a new line after the cursor

Alt+x Invokes the specified command or macro
Esc+@x Invokes the specified command or macro
F2 Invokes the specified command or macro

Ctrl+X+Ctrl+X Exchanges the locations of the cursor position and a bookmark

Ctrl+Shift+- Displays context-sensitive Help
Alt+Shift+/ Displays context-sensitive Help
Alt+? Displays context-sensitive Help
Esc+? Displays context-sensitive Help
Ctrl+_ Displays context-sensitive Help

Tab Inserts a tab
Esc+Tab Indents the current line to the text on the previous line

Alt+l Converts the current word to lowercase
Esc+@l Converts the current word to lowercase

Ctrl+X+m Project|Compile
Ctrl+X+M Project|Compile

Esc+End Displays the next window in the buffer list
Ctrl+X+n Displays the next window in the buffer list
Ctrl+X+N Displays the next window in the buffer list
Esc+Home Displays the previous window in the buffer list
Ctrl+X+p Displays the previous window in the buffer list
Ctrl+X+P Displays the previous window in the buffer list
Ctrl+X+Ctrl+E Invoke a command processor
Ctrl+Q Interpret next character as an ASCII code

Ctrl+X+r Edit|Redo
Ctrl+X+R Edit|Redo
F10 Edit|Redo
Ctrl+F10 Edit|Redo
Ctrl+X+Ctrl+R Edit|Redo

Ctrl+X+u Edit|Undo
Ctrl+X+U Edit|Undo
F9 Edit|Undo
Ctrl+F9 Edit|Undo
Ctrl+X+Ctrl+U Edit|Undo

Ctrl+S Incrementally searches for a string entered from the keyboard
Ctrl+R Incrementally searches backward through the current file

Ctrl+Alt+S Search|Find (using regular expressions)
Esc+Ctrl+S Search|Find (using regular expressions)
Ctrl+Alt+R Search|Find (using regular expressions; backward from cursor)
Esc+Ctrl+R Search|Find (using regular expressions; backward from cursor)

Alt+Shift+5 Search|Replace
Alt+Shift+7 Search|Replace
Alt+& Search|Replace
Esc+& Search|Replace
Alt+% Search|Replace
Esc+% Search|Replace
Alt+* Search|Replace (using regular expressions)
Esc+* Search|Replace (using regular expressions)

Ctrl+X+Ctrl+N Search|Find Error

Ctrl+X+g Search|Go To Line Number
Ctrl+X+G Search|Go To Line Number
Crl+T Transposes the two characters on either side of the cursor
Ctrl+X+Ctrl+T Transposes the two lines on either side of the cursor
Alt+t Transposes the two words on either side of the cursor
Esc+t Transposes the two words on either side of the cursor
Esc+T Transposes the two words on either side of the cursor
Alt+U Converts a word to all uppercase
Esc+U Converts a word to all uppercase
Esc+@u Converts a word to all uppercase

Ins Toggles insert mode on/off

Block commands (Epsilon)
See also
These block command keyboard shortcuts apply to the Epsilon keystroke mapping scheme.

Shortcut Action
Ctrl+Alt+\ Indents a block
Esc+Ctrl+\ Indents a block
Ctrl+X+Ctrl+I Indents a block
Ctrl+X+Tab Indents a block

Ctrl+W Cuts a block and places its contents in the Clipboard

Ctrl+X+w Writes a block to a file
Ctrl+X+W Writes a block to a file

Bookmark operations (Epsilon)
See also
These bookmark operations keyboard shortcuts apply to the Epsilon keystroke mapping scheme.

Shortcut Action
Ctrl+@ Sets a bookmark at the current cursor position
Alt+@ Sets a bookmark at the current cursor position
Esc+@@ Sets a bookmark at the current cursor position
Ctrl+2 Sets a bookmark at the current cursor position
Alt+2 Sets a bookmark at the current cursor position
Ctrl+X+. Goes to the specified bookmark

Cursor movement (Epsilon)
See also
These cursor movement keyboard shortcuts apply to the Epsilon keystroke mapping scheme.

Shortcut Action
Ctrl+B Moves to the left one character
Left Arrow Moves to the left one character
Ctrl+F Moves to the right one character
RightArrow Moves to the right one character

Alt+m Moves the cursor to the end of the indentation
Esc+m Moves the cursor to the end of the indentation
Esc+M Moves the cursor to the end of the indentation

Alt+b Moves the cursor to the left one word
Esc+@b Moves the cursor to the left one word
Ctrl+LeftArrow Moves the cursor to the left one word
Alt+f Moves to the cursor to the right one word
Esc+@f Moves to the cursor to the right one word
Ctrl+RgAr Moves to the cursor to the right one word

Ctrl+A Moves to the beginning of the current line
Esc+LeftArrow Moves to the beginning of the current line
Ctrl+E Moves to the end of the current line
Esc+RightArrow Moves to the end of the current line

Alt-, Moves to the top of the current window
Esc+, Moves to the top of the current window
Home Moves to the top of the current window
Alt-. Moves to the bottom of the current window
Esc+. Moves to the bottom of the current window
End Moves to the bottom of the current window

Ctrl+P Moves the cursor up a line
UpAr Moves the cursor up a line
Ctrl+N Moves the cursor down a line
DnAr Moves the cursor down a line

Alt+Shift-, Goes to the start of the file
Alt+< Goes to the start of the file
Esc+< Goes to the start of the file

Ctrl+Home Goes to the start of the file
Alt+Shift-. Goes to the end of the file
Alt+> Goes to the end of the file
Esc+> Goes to the end of the file
Ctrl+End Goes to the end of the file

Ctrl+V Moves down one page in the current file
PgDn Moves down one page in the current file
Ctrl+F6 Moves down one page in the current file
Shift+Ctrl+F6 Moves up one page in the current file
Alt+v Moves up one page in the current file
Esc+@v Moves up one page in the current file
PgUp Moves up one page in the current file

Alt+Z Scrolls the contents of the active window down a line
Esc+Z Scrolls the contents of the active window down a line
Ctrl+Z Scrolls the contents of the active window up a line

Keyboard support in the C++Builder IDE
See also
C++Builder IDE keyboard shortcuts are two- or three-keystroke combinations you can press to perform
a command or access a dialog box directly without having to open any menu. To learn about shortcuts in
the Code editor window see Keyboard shortcuts.
To learn about shortcuts in the other windows, select one of the topics listed below:
Form keyboard shortcuts
Project Manager keyboard shortcuts
Object Inspector keyboard shortcuts

Form keyboard shortcuts
See also
Listed below are keyboard shortcuts for working with forms.
The IDE supports the movement and resizing of components on a form using the keyboard. The
following table shows the keystrokes for selection and move and resize operations. Remember that you
must select a component in order to move or resize it.

Keyboard command Description
Tab Selects components (in z-order)
Shift+Tab Selects the previous component (in z-order)
Arrow Keys Selects the nearest component in the direction pressed
Ctrl+Arrow Keys Moves the selected component one pixel at a time
Shift+Arrow Keys Moves the selected component one pixel at a time
Ctrl+Shift+Arrow Keys Moves the selected component one grid at a time (when Snap to Grid is

enabled)
Del Deletes the selected component
Esc Selects the containing group (usually the form or group box)
F11 Toggles control between the Object Inspector and the last active form or unit
F12 Toggles between the form and its associated unit
Ctrl+F12 Displays the View Unit dialog box
Shift+F12 Displays the View Form dialog box

To add components to a form using the keyboard,
1. Press Alt+V+L to display the Component List dialog box
2. Type the first letter of the name of the component you want to place on the form or press Tab. Then

you can use the arrow keys to scroll through the list and make a selection.
3. Press Alt+A or Enter to add the component to the form. Pressing Enter will close the Component List

dialog box.

Keys to navigate in the component list
Home Displays the first component in the list
End Displays the last component in the list

To change properties of a component using the keyboard,
1. Select the component you want to modify using Tab or the arrow keys.
2. Press Enter to switch to the Object Inspector.
3. Use the arrow keys to select the property you want to change.
4. Type the new value for that property and press Enter.
5. To return to the form, press Alt+V+F and select it from the list.

Project Manager keyboard shortcuts
Listed below are keyboard shortcuts for working with the Project Manager.

Keyboard command Description
Arrow Keys Selects forms and units
Alt+A Adds a form or unit to the project
Alt+R Removes a form or unit from the project
Alt+U Views the selected unit
Alt+F Views the selected form
Alt+O Displays the Project Options dialog box
Alt+D Updates the current project
Enter Views the selected unit
Shift+Enter Views the selected form
Ins Adds a file to the project
Del Removes a file from the project

Object Inspector keyboard shortcuts
Listed below are keyboard shortcuts for working with the Object Inspector.

Keyboard command Description
Ctrl+I Opens the Object Selector
Up and Down Arrow Keys Selects properties or handlers
Left and Right Arrow Keys Edits the value in the value or event column
Tab Toggles between the property and value columns in the Object

Inspector
Tab+<letter> Jumps directly to the first property beginning with the letter
Ctrl+Tab Toggles between the properties and events tabs in the Object

Inspector
Page Up Moves up one screen of properties
Page Down Moves down one screen of properties
Alt+F10 Toggles expand and contract
Alt+Down Opens a drop-down list for a property.
Ctrl+Down Opens the object list drop-down.
Ctrl+Enter Selects the ellipsis button (if available) in a selected property.

To change properties of a component using the keyboard,
1. Select the component you want to modify using Tab or the arrow keys.
2. Press Enter to switch to the Object Inspector.
3. Use the arrow keys to select the property you want to change.
4. Type the new value for that property and press Enter.
5. To return to the form, press Alt+V+F and select it from the list.

About keyboard shortcuts
Keyboard shortcuts are two- or three-keystroke combinations you can press, while in the Code editor, to
perform a command or access a dialog box. The function of specific keyboard shortcuts depends on
which keystroke mapping scheme you select.
Code editor available keyboard mapping schemes are:
Default Key bindings that match the CUA standard
Classic Key bindings that match the C++Builder programming environment
Brief Key bindings that emulate most of the standard Brief keystrokes
Epsilon Key bindings that emulate a a large part of the Epsilon editor

To select a key mapping,
1. Choose the Editor display page of the Environment Options dialog box.
2. Select a keyboard mapping scheme from the list of available schemes.
3. Click OK.

To use SpeedSettings to set your key mappings,
1. Choose the Editor options page of the Environment Options dialog box.
2. Select a keyboard mapping scheme from the Editor SpeedSettings options.
3. Click OK.
Note: Using the Keystroke Mapping list box or the Editor SpeedSettings to change the mapping of your

keystrokes can create conflicts with standard Windows keyboard commands.
For example, the Brief keystroke mapping defines Alt+E as File|Open, while the standard
Windows action for Alt+E is to activate the Edit menu. The mapped key takes precedence so that
Alt+E allows you to open a file.

Default keystroke mapping
The Default keystroke mapping scheme provides key bindings that match the CUA standard. For
detailed information, choose one of the topics below for a list of keyboard shortcuts:
Clipboard control
Debugger
Editor

Block commands
Bookmark operations
Cursor movement
Miscellaneous commands

System

Classic keystroke mapping
The Classic keystroke mapping scheme provides key bindings that match the C++Builder programming
environment. For detailed information, choose one of the topics below for a list of keyboard shortcuts:
Clipboard control
Debugger
Editor

Block commands
Bookmark operations
Cursor movement
Miscellaneous commands

System

Brief keystroke mapping
The Brief keystroke mapping scheme provides key bindings that emulate the Brief editor. For detailed
information, choose one of the topics below for a list of keyboard shortcuts:
Clipboard control
Debugger
Editor

Block commands
Bookmark operations
Cursor movement

System

Epsilon keystroke mapping
The Epsilon keystroke mapping scheme provides key bindings that emulate most of the Epsilon editor.
For detailed information, choose one of the topics below for a list of keyboard shortcuts:
Clipboard control
Debugger
Editor

Block commands
Bookmark operations
Cursor movement

System

Debugger (Default, Classic, Brief and Epsilon)
See also
The Debugger keyboard shortcuts apply to all keystroke mapping schemes:
Default
Classic
Brief
Epsilon

Breakpoint view
Ctrl+V View Source
Ctrl+S Edit Source
Ctrl+E Edit Breakpoint
Enter Edit Breakpoint
Ctrl+D Delete Breakpoint
Del Delete Breakpoint
Ctrl+A Add Breakpoint
Ins Add Breakpoint

Call stack view
Ctrl+V View Source
Space View Source (Epsilon only)
Ctrl+S Edit Source
Ctrl+Enter Edit Source (Epsilon only)

Message view
Ctrl+V View Source
Space View Source
Ctrl+E Edit Source
Ctrl+Enter Edit Source

Watch view
Ctrl+E Edit Watch
Enter Edit Watch
Ctrl+A Add Watch
Ins Add Watch
Ctrl+D Delete Watch
Del Delete Watch

Block commands (Default and Classic)
See also
These block command shortcuts apply to the Default and the Classic keystroke mappings schemes.

Shortcut Action or command
Ctrl+K+B Marks the beginning of a block
Ctrl+K+C Copies a selected block
Ctrl+K+H Hides/shows a selected block
Ctrl+K+I Indents a block by the amount specified in the Block Indent combo box on the

Editor options page of the Environment Options dialog box
Ctrl+K+K Marks the end of a block
Ctrl+K+L Marks the current line as a block
Ctrl+K+N Changes a block to uppercase
Ctrl+K+O Changes a block to lowercase
Ctrl+K+P Prints selected block
Ctrl+K+R Reads a block from a file
Ctrl+K+T Marks a word as a block
Ctrl+K+U Outdents a block by the amount specified in the Block Indent combo box on the

Editor options page of the Environment Options dialog box.
Ctrl+K+V Moves a selected block
Ctrl+K+W Writes a selected block to a file
Ctrl+K+Y Deletes a selected block

Ctrl+O+C Marks a column block
Ctrl+O+I Marks an inclusive block
Ctrl+O+K Marks a non-inclusive block
Ctrl+O+L Marks a line as a block

Ctrl+Q+B Moves to the beginning of a block
Ctrl+Q+K Moves to the end of a block

Bookmark operations (Default and Classic)
See also
The following bookmark operations shortcuts apply to the Default and the Classic keystroke mapping
schemes.

Shortcut Action
Ctrl+K+0 Sets bookmark 0
Ctrl+K+1 Sets bookmark 1
Ctrl+K+2 Sets bookmark 2
Ctrl+K+3 Sets bookmark 3
Ctrl+K+4 Sets bookmark 4
Ctrl+K+5 Sets bookmark 5
Ctrl+K+6 Sets bookmark 6
Ctrl+K+7 Sets bookmark 7
Ctrl+K+8 Sets bookmark 8
Ctrl+K+9 Sets bookmark 9

Ctrl+K+Ctrl+0 Sets bookmark 0
Ctrl+K+Ctrl+1 Sets bookmark 1
Ctrl+K+Ctrl+2 Sets bookmark 2
Ctrl+K+Ctrl+3 Sets bookmark 3
Ctrl+K+Ctrl+4 Sets bookmark 4
Ctrl+K+Ctrl+5 Sets bookmark 5
Ctrl+K+Ctrl+6 Sets bookmark 6
Ctrl+K+Ctrl+7 Sets bookmark 7
Ctrl+K+Ctrl+8 Sets bookmark 8
Ctrl+K+Ctrl+9 Sets bookmark 9

Ctrl+Q+0 Goes to bookmark 0
Ctrl+Q+1 Goes to bookmark 1
Ctrl+Q+2 Goes to bookmark 2
Ctrl+Q+3 Goes to bookmark 3
Ctrl+Q+4 Goes to bookmark 4
Ctrl+Q+5 Goes to bookmark 5
Ctrl+Q+6 Goes to bookmark 6
Ctrl+Q+7 Goes to bookmark 7
Ctrl+Q+8 Goes to bookmark 8
Ctrl+Q+9 Goes to bookmark 9

Ctrl+Q+Ctrl+0 Goes to bookmark 0
Ctrl+Q+Ctrl+1 Goes to bookmark 1
Ctrl+Q+Ctrl+2 Goes to bookmark 2

Ctrl+Q+Ctrl+3 Goes to bookmark 3
Ctrl+Q+Ctrl+4 Goes to bookmark 4
Ctrl+Q+Ctrl+5 Goes to bookmark 5
Ctrl+Q+Ctrl+6 Goes to bookmark 6
Ctrl+Q+Ctrl+7 Goes to bookmark 7
Ctrl+Q+Ctrl+8 Goes to bookmark 8
Ctrl+Q+Ctrl+9 Goes to bookmark 9

These shortcuts apply only to the Default scheme:

Shortcut Action
Shift+Ctrl+0 Sets bookmark 0
Shift+Ctrl+1 Sets bookmark 1
Shift+Ctrl+2 Sets bookmark 2
Shift+Ctrl+3 Sets bookmark 3
Shift+Ctrl+4 Sets bookmark 4
Shift+Ctrl+5 Sets bookmark 5
Shift+Ctrl+6 Sets bookmark 6
Shift+Ctrl+7 Sets bookmark 7
Shift+Ctrl+8 Sets bookmark 8
Shift+Ctrl+9 Sets bookmark 9

Ctrl+0 Goes to bookmark 0
Ctrl+1 Goes to bookmark 1
Ctrl+2 Goes to bookmark 2
Ctrl+3 Goes to bookmark 3
Ctrl+4 Goes to bookmark 4
Ctrl+5 Goes to bookmark 5
Ctrl+6 Goes to bookmark 6
Ctrl+7 Goes to bookmark 7
Ctrl+8 Goes to bookmark 8
Ctrl+9 Goes to bookmark 9

Cursor movement (Default and Classic)
See also
These cursor movement shortcuts apply to the Default and the Classic keystroke mapping schemes.

Shortcut Action
Ctrl+Q+B Moves to the beginning of a block
Ctrl+Q+C Moves to end of a file
Ctrl+Q+D Moves to the end of a line
Ctrl+Q+E Moves to the top of the window
Ctrl+Q+K Moves to the end of a block
Ctrl+Q+P Moves to previous position
Ctrl+Q+R Moves to the beginning of a file
Ctrl+Q+S Moves to the beginning of a line
Ctrl+Q+T Moves the active line to the top of the window
Ctrl+Q+U Moves the active line to the bottom of the window
Ctrl+Q+X Moves to the bottom of the window

Miscellaneous commands (Default and Classic)
See also
These miscellaneous commands shortcuts apply to the Default and the Classic keystroke mapping
schemes.

Shortcut Action or command
Ctrl+K+D Accesses the menu bar
Ctrl+K+E Changes a word to lowercase
Ctrl+K+F Changes a word to uppercase
Ctrl+S File|Save

Ctrl+Q+A Search|Replace
Ctrl+Q+F Search|Find
Ctrl+Q+Y Deletes to the end of a line
Ctrl+Q+[Finds the matching delimiter (forward)
Ctrl+Q+Ctrl+[Finds the matching delimiter (forward)
Ctrl+Q+] Finds the matching delimiter (backward)
Ctrl+Q+Ctrl+] Finds the matching delimiter (backward)

Ctrl+O+A Open file at cursor
Ctrl+O+B Browse symbol at cursor
Ctrl+O+G Search|Go to Line Number
Ctrl+O+O Inserts compiler options and directives
Ctrl+O+U Toggles case

Glossary

A
abstract
accelerator key
actual parameter
actual variable
alias
ancestor
application
array
ASCII

B
base type
batch operation
BDE
BDE Configuration Utility
BLOB
block
bool
Borland Database Engine
breakpoints
byte

C
callback routines
call stack
canvas
case variant
char
child
class
class method
client
client area
closure
column
compile
compiler directive
compile time
compile-time error
complete evaluation
component
conditional symbol

const
constant
constant address expression
container application
container component
control

D
data
data access component
data-aware
data control component
data type
database
database server
dataset
DDE client
DDE conversation
DDE server
default ancestor
default event
default new form
default new project
derive
descend
descendant
design time
detail table
dispatch
drag
dynamic
dynamic data exchange (DDE)
dynamic-link library (DLL)

E
embedding
encapsulate
end user
enumeration data type (enum)
exception
exception handler
execution point
expressions
event
event handler

F

file buffer
file type
filter
filter program
focus
form
formal parameter
function
function header

G
global heap
global variable
glyph
grandchild
grandparent
grid

H
handling exceptions
heap
heap suballocator
help context
hint
host type

IJK
IDAPI
identifier
include file
index
index type
inheritance
instance
int
integrated debugger
key

L
label
language driver
late binding
linking
literal value
local heap
local symbol information
local variable
lock

logic error
long
lookup table
loop

M
main form
master table
method
method identifier
multiple document interface (MDI) application
modal
modeless
module

N
nonvisual component
nonwindowed control
null

O
object files (.OBJ)
object instance variable
object type
OLE
OLE container
OLE object
OLE server
override
owner

P
parameter
parent
passing by reference
passing by value
pixel
pointer
primary index
private
program
project
project directory
project file
property
protected
protected block
public

published

Q
qualified identifier
qualified method identifier
qualifier
query

R
raise
real
record
recursion
relational database
report
root class
routine
row
runtime
runtime error
runtime library
runtime only

S
scope
separator
separator bar
set
short int
sizing handles
source code
splash screen
SpeedMenu or context menu
SQL
SQL tablestack
statement
static
step over
string
string list
symbol
symbol table

T
table
tag propertyTDBDataset
trace into
typecasting

type compatibility
type definition
typedef

U
unit
untyped file
unqualified identifier
use count
user-defined

V
variable
virtual
visual component
VOID pointer

W
warning
watches
window handle
windowed control
word
wrapper

XYZ
z-order

abstract
A method that is declared but not implemented. Descendent types must override the abstract method.

accelerator key
Accelerator keys enable the user to access a menu command or component from the keyboard, by
pressing Alt+ the appropriate letter, indicated in your code by the preceding ampersand. The letter after
the ampersand appears underlined in the menu or component caption.

actual parameter
A variable, expression, or constant that is substituted for a formal parameter in a function call.

actual variable
A variable that a program can use at runtime, as distinguished from the definition of that variable within
the program. A location in memory used for storage purposes, as distinguished from an identifier.

alias
A name that specifies the location of database tables. If the database is on a server, an alias also
specifies connection parameters for the server.

ancestor
An object from which another object is derived. An ancestor class can be a parent or a grandparent. See
default ancestor.

application
An application is the executable file and all related files that a program needs to function which serve a
common purpose or purposes, as distinguished from the design and source code of the project. Often
used synonymously with 'program'. Compare with program and project.

array
A group of data elements identical in type that are arranged in a single data structure and are randomly
accessible through an index.

ASCII
An acronym for "American Standard Code for Information Interchange" and used to describe the byte
values assigned to specific characters. Examples: The capital letter A has an ASCII value of 65. The
ASCII code for a space is 32.

base type
The type referred to in a pointer declaration, an array declaration, or the enumeration type used in a set
declaration. A type declaration builds a new type by combining or referencing one or more other base
types.

batch operation
Operations that you perform with the TBatchMove component on groups of records, or on datasets, to
add, delete, or copy groups of records in a single operation.

BDE
Borland Database Engine; also referred to in some documentation as IDAPI. C++Builder uses this
database engine to access and deliver data. BDE maintains information about your PC's environment in
the BDE configuration file (usually called IDAPI.CFG). Use the BDE Configuration Utility to change the
settings in this configuration file.

BDE Configuration Utility
A program that enables you to change the settings in the BDE configuration file, usually called
IDAPI.CFG. The executable file is named BDECFG.EXE.

BLOB
Binary large object. Many database tables use specific field types to contain BLOB data. C++Builder lets
you access BLOB data that exists as plain text with the TDBMemo component, and BLOB data that
exists as a graphic with the TDBImage component.

block
The associated declaration and statement parts of a program or subprogram. Examples: In the var block
of the routine declare an integer variable. Follow the then of your if..then statement with a { to start a
block of code that will be executed only if the condition is met.

bool
A keyword representing a data type that can take only the value false or true. The keywords false and
true are Boolean literals with predefined values. false is numerically zero and true is numerically one.
These Boolean literals are rvalues; you cannot make an assignment to them.

Borland Database Engine
See BDE.

breakpoints
A place in your code where you want the program to pause or perform an action so that you can
examine the current values of program variables and data structures, or the call stack.
Breakpoint behavior falls into two categories:

Unconditional (or simple). The breakpoint is activated whenever the debugger reaches the line in
your source or the machine instruction where you set the breakpoint.

Conditional. The breakpoint is activated only when it satisfies the conditions that you specify.

byte
An 8-bit wide data type capable of holding a value from 0 to 255.

callback routines
Routines in your application that are called by Windows and not by your application. For example,
EnumFonts is a Windows routine that will call the given callback function for every font installed in the
system.

call stack
The list of calls that were made to reach the present location, and which consequently show the path by
which the program must return. Available during debugging.

canvas
The graphical drawing surface of an object. The canvas has a brush, a pen, a font, and an array of
pixels. The canvas encapsulates the Windows device context.

case variant
1. The element of a case statement that is examined to determine what code will be executed. In a case

statement beginning "Case I of", I is the case variant.
2. In record type definitions, case variants allow instances of that record to treat the same area of

memory as different fields.

char
A type specifier that defines a character data type. A char can be signed, unsigned, or unspecified. By
default, signed char is assumed. This data type is used for very small numbers and ASCII characters.

child
1. A child class is any class that is descended from another. For example, in "type B = class(A)", B is a

child of A. Compare with grandchild.
2. The child of a window appears inside that window and cannot draw outside of its bounds. This is

called a child or child window.

class
A list of features representing data and associated code assembled into single entity. A class includes
not only features listed in its definition but also features inherited from ancestors.

class method
Class methods provide behavior for a class that is global in nature, or otherwise does not require
instance data. A class method is called by using the class name followed by the method
(TClass::SomeMethod) and can be called with an instance or without. As such, a class method cannot
rely on any properties, fields or instance methods in its executions.

client
Generically, any thing that requests the services of something else. In Windows, a client is code that
makes use of the Windows API.
In database systems, a workstation connected to an intelligent "back-end" server from which it can
request data. The client workstation can process the data locally and write it back to the server.

client area
In Windows, the area of a control which a program (that is, a client of Windows' services) is allowed to
draw on. A client area might appear on a window, for example, that would usually exclude the frame and
title bar.

closure
A pointer to a specific method in a specific closure.

column
The vertical component of a table, sometimes called a field. A column contains one value for each row in
a table. See also row.

compile
The act of translating a block of source code into machine instructions. (As opposed to "interpret" which
is the line-by-line translation of source code to machine instructions.)
Also see linking.

compiler directive
An instruction to the compiler that is embedded within the program; for example, {$R+} turns on range
checking.

compile time
The period of time when the compiler is actively compiling source code.

compile-time error
An error detected by the compiler during compilation, such as a syntax error or unknown identifier.

complete evaluation
Every operand in a Boolean expression built from the and and or operators evaluates, even if the
expression result can be determined before the entire expression is evaluated. This is useful when
operands are routines that can alter the meaning of a program. Opposite of short-circuit Boolean
evaluation.

component
1. The elements of a C++Builder application, iconized on the Component palette. Components,

including forms, are objects you can manipulate. Forms are components that can contain other
components (forms are not iconized on the Component palette).

2. In C++Builder, any class descended from TComponent is, itself, a component. In the broader sense,
a component is any class that can be interacted with directly through the C++Builder Form designer. A
component should be self-contained and provide access to its features through properties.

conditional symbol
Used with conditional compiler directives to specify a condition that is either true or false. You define (set
to true) or undefine (set to false) conditional symbols with the $DEFINE and $UNDEF directives.

constant
An identifier with a fixed value in a program. At compile time, all instances of a constant in source code
are replaced by the fixed value.

constant address expression
An expression that takes the address, the offset, or the segment of a global variable or function.
Constant address expressions cannot reference local variables (stack-based) or dynamic (heap-based)
variables, because their addresses cannot be computed at compile time.

const
Use the const modifier to assign an initial value to a variable that cannot be changed by the program.
Any future assignments to a const result in a compiler error.

container application
An application that contains an embedded OLE object. (See OLE.)

container component
Any of several component classes that have the inherent ability to contain other components. Examples
include TForm, TPanel, TNotebook, and TGroupbox. A container component is the parent of the
components it contains.

control
A visual component. Specifically, any descendant of TControl.

data
1. Information stored in a database. Data may be a single item in a field, a record that consists of a

series of fields, or a set of records. C++Builder applications can retrieve, add, modify, or delete data in
a database.

2. Generally, any information that has intrinsic value regardless of the means used to access it.

data access component
A C++Builder component that enables you to connect to a database and access its data. Data access
components are visible on a form only at design time, not at runtime.

data-aware
Able to display and update data stored in an underlying table. All C++Builder data control components
are data-aware.

data control component
A C++Builder component that enables you to create the interface of a database application. Many data
controls are data-aware versions of component classes available on the Standard page of the
Component palette.

data type
A fundamental unit of data definition that defines what kind of data can be stored in memory or in data
tables, and what operations can be performed on that data.

database
A collection of data in tables.

database server
A system that manages relational databases. For example, SQL Server is a type of database server.

dataset
A collection of data determined by a TTable, TQuery, or TStoredProc component. A dataset defined by
TTable includes every row in a table, and a dataset defined by a TQuery contains a selection of rows
and columns from a table.

DDE client
In a DDE conversation, the client is the application that requests data. The DDE client is often called the
destination.

DDE conversation
A link between a DDE client application and a DDE server application that provides a means for both
applications to continuously and automatically send data back and forth.

DDE server
In a DDE conversation, the server is the application that updates the DDE client. The DDE server is
often called the source.

default ancestor
The ancestor of any class that does not specify an ancestor: TObject.

default event
For a given component, the event whose event handler is automatically generated or displayed in the
source code when you double-click the component at design time. For example, the OnClick event is
the default event for a Button component.

default new form
The Form Template that is used to create a new form in the IDE at design time when you choose File|
New Form. In a new installation, the Blank Form template is used. You can change the specified Form
Template in the Environment Options dialog box (Options|Repository).

default new project
The Project Template that is used to open a new C++Builder project in the IDE at design time when you
choose File|New Project. In a new installation, the Blank Project template is used. You can change the
specified Project Template in the Environment Options dialog box (Options|Repository).

derive
To create a new class based on an existing class. The new class inherits all of the features of the
existing class, which is called its parent or, more generically, an ancestor.

descend
To acquire, in the process of being created, all the characteristics of another class. A class that
descends from another is a descendant of the parent class. The process of creating a descendant class
is deriving.
See also ancestor, derive, descendant, inheritance, and parent.

descendant
An object derived from another object. A descendant is type compatible with all of its ancestors.

design time
Phase when you can use C++Builder to design your application, using the form, the Object Inspector,
Component palette, Code editor, and so forth as opposed to runtime, when the application you design is
actually running.

detail table
In multi-table relationships, the table whose records are subordinate to those of the master table. In a
data model, the detail table is the one being pointed to by another table. For example, in the following
data model, all of the tables except CUSTOMER.DB are detail tables.

dispatch
The means of resolving calls to object methods. Dispatching can be either static or virtual.
Do not confuse with TObject::Dispatch which dispatches message calls.

drag
To move an object from one location to another by using your mouse.
To drag an object, click it and continue to hold down the left mouse button while you move the mouse
pointer to a new location on your screen. When you are satisfied with the new location, release the
mouse button.

dynamic
For Object Pascal only: A form of virtual method which is more space efficient (but less speed efficient)
than simple virtual.

dynamic data exchange (DDE)
The process of sending data to and receiving data from other applications through a predefined
message protocol. You can use this to exchange data with other applications, or you can control other
applications through the use of commands and macros.

dynamic-link library (DLL)
An executable module (extension .DLL) that contains code or resources that can be accessed by other
DLLs or applications. In the Windows environment, DLLs permit multiple applications to share code and
resources.

embedding
The act of placing one thing within another. In Windows, specifically the capability of one application to
provide some or all of the services of another application integrated with its own services. For example,
a word processor might allow a spreadsheet to be embedded into a document, allowing the user to write
text around the spreadsheet and perhaps even change the spreadsheet while still working in the word
processor. See OLE Container.

encapsulate
To provide access to one or more features through an interface that protects clients from relying upon or
having to know the inner details of the implementation.

enumeration data type (enum
enum is a keyword used to define a set of constants of type int, called an enumeration data type. An
enumeration data type provides mnemonic identifiers for a set of integer values. An enum is 32 bits
wide and must be in the range -2,147,483,648 to -2,147,483,647 and is used for ordered sets of values.

end user
A member of an application's intended audience and, by extension, everyone in that audience.
Synonymous with user, but emphasizes the fact that the programmer is not the user.
In C++Builder documentation, end user refers to a user of an application you develop using C++Builder
unless otherwise noted.

exception
An event or condition that, if it occurs, breaks the normal flow of execution. Also, an exception is an
object that contains information about what error occurred and where it happened.

exception handler
Code designed to resolve the situation in the runtime environment that raised the exception and/or to
restore the environment to a stable state afterwards.

execution point
The execution point indicates the next executable line in your source code or machine instruction that
will be executed when you run your program through the integrated debugger. The execution point is
indicated by the highlighted line of code in the Code editor or address location in the CPU window
Disassembly Pane.

expressions
Part of a statement that represents a value or can be used to calculate a value.

event
A user action, such as a button click, or a system occurrence such as a preset time interval, recognized
by a component.
Each component has a list of specific events to which it can respond. Code that is executed when a
particular event occurs is called an event handler.

event handler
A form method attached to an event. The event handler executes when that particular event occurs.
When you use the Object Inspector to attach code to a component event, C++Builder generates a code
block for you. For example, this is the code C++Builder generates for a button click event:
__fastcall TForm1::Button1Click(TObject *Sender);
{
}
The code you write inside the code block executes whenever Button1 is clicked.

file buffer
An area of memory set aside to expedite the transfer of data to and from a file.

file type
A file type refers to the specific data type that a file holds.

filter
Anything used to check or alter data. For example, the file filter in the Save dialog box can be set to
show only .CPP files.

filter program
A program that takes output from another program as input and produces an altered, reduced, or
verified version of that output.

focus
The component or window that is active in a running application is said to have "focus." Any keyboard
input the user enters is directed to that component or window.

formal parameter
An identifier in a function declaration heading that represents the arguments that will be passed to the
subprogram when it is called.
See parameter name for information on a given parameter.

form
In C++Builder, a form is a window that receives components (placed by the programmer at design time,
or created dynamically with code at runtime), regardless of the intended runtime functionality of the
window. You design the user interface of your application on one or more forms.

function
A subroutine that computes and returns a value.

function header
Text that gives the name of a routine followed by a list of formal parameters, followed by the function's
return type. In a unit, a routine may have a header entered into the interface part, and then again in the
implementation part. The second appearance of the header may be an exact duplicate of the header in
the interface part, or may be only the name of the routine.

global heap
A pool of memory available to all applications.
Although global memory blocks of any size can be allocated, the global heap is intended only for large
memory blocks (256 bytes or more). Each global memory block carries an overhead of at least 20 bytes,
and under the Windows standard and 386-enhanced modes, there is a system-wide limit of 8192 global
memory blocks, only some of which are available to any given application.

C++Builder suballocates small allocations from large global memory blocks to reduce the
likelihood of hitting the system limit.

global variable
A variable used by a routine (or the main body of a program) that was not declared by that routine (or a
var part of the main body) is considered a global variable by that code. A variable global to one part of a
program may be inaccessible to another part of the same program, and hence considered local in that
context.

glyph
A bitmap that displays on a BitBtn or Button component with the component's Glyph property.

grandchild
A class descended from another through one or more intermediate classes. Example: In the following
type definition "type E = class(D)", E is the child of D. If D is descended from class C, then E is a
grandchild of class C, as well as C's parent, C's parent's parent, and so on, until the root class is
reached. C and its ancestors are E's grandparents.

grandparent
A class from which others are descended through one or more intermediate classes. See grandchild.

grid
1. The evenly spaced dots on the form that aid in placing components during design time (not visible at

runtime). Control through Options | Environment | Preferences.
2. In database terminology, an object on a form that enables you to view and edit all the records in a

dataset in a spreadsheet-like format. You create a grid with a TDBGrid component.

handling exceptions
Making a specific response to an exception, which then clears the error condition and destroys the
exception object.

heap
An area of memory reserved for the dynamic allocation of variables.

heap suballocator
When allocating a memory large block, the heap manager simply allocates a global memory block using
the Windows GlobalAlloc routine.
When allocating a small block, the C++Builder heap manager allocates a larger global memory block
and then divides (suballocates) that block into smaller blocks as required. Allocations of small blocks
reuse all available suballocation space before the heap manager allocates a new global memory block,
which, in turn, is further suballocated.

help context
A number assigned individually to the controls in a program so that when the user activates Help, the
Help system can query the focused control and use the help context as a reference to supply
information appropriate to what the user is doing.

hint
Pop-up text that appears when the mouse pointer passes over an object in the user interface at runtime.
Specified in the Hint property of many visual components.

host type
The particular server being used for a process or series of processes, hence "hosting" the activities.

IDAPI
See BDE.

identifier
A programmer-defined name for a specific item (a constant, type, variable, function, program, or data
member).

include file
An include file (.h) is a source-code file that is included in a compilation using the "#include" compiler
directive. Include files can be any extension but are usually ".h" or ".hpp".

index
1. A position within a list of elements.
2. In database terminology, a sort order for a table associated with a specific field or fields, used to

locate records quickly. An index performs the following tasks:
Determines the location of records.
Keeps records in sorted order.
Speeds up search operations.

index type
Specifies the type of elements in an array.

inheritance
The assumption of the features of one class by another.

instance
A variable of a class. More generally, a variable of any type. Actual memory is allocated.

int
A numeric variable type that is a whole number in the range -2,147,483,648 to +2,147,483,647. Used for
counting, small numbers, and loop control.

integrated debugger
The integrated debugger is contained within the Integrated Development Environment. This debugger
lets you debug your source code without leaving C++Builder. The functionality of this debugger can be
reached through the Run and View menus.

key
A field or group of fields in a table, used to order records. A key has three effects:

The table is prevented from containing duplicate records.
The records are maintained in sorted order based on the key fields.
A primary index is created for the table.

label
An identifier that marks the target for a goto statement.

language driver
Determines a table's sort order and available character set. The BDE Configuration Utility enables you
to specify the default language driver for tables.

late binding
When the address used to call virtual methods is determined at runtime.

linking
The process of turning compiled source code into an executable file. At the linking stage resources are
bound into the executable.

literal value
A value that appears in the actual source code, such as the string "Hello, World" or the numeral 1 (as
opposed to a calculated value or a declared constant).

local heap
Memory available only to your application or library. It exists in the upper part of an application's or
library's data segment.
The total size of local memory blocks that can be allocated on the local heap is 64K minus the size of
the application's stack and static data. For this reason, the local heap is best suited for small memory
blocks (256 bytes or less). The default size of the local heap is 4K, but you can change this in the
application's DEF file.

local symbol information
Information used by the IDE to debug a routine. Local symbol information must be enabled in the Project
Options dialog box (Options | Project). Enabled by default in new C++Builder installations.

local variable
A variable declared within a function.

lock
A device that prevents other users from viewing, changing, or locking a table while one user is working
with it.

logic error
Logic errors occur when your program statements are valid, but the actions they perform are not the
actions you intended. For example, logic errors occur when variables contain incorrect values, when
graphic images don’t look right, or when the output of your program is incorrect.

long
A 4-byte integer able to store integers in the range -2,147,483,648 to +2,147,483,647.

lookup table
A secondary table that enables database systems to use a small code field to enable many records in a
primary table to refer to information stored in the lookup table.
This can be used as a means of ensuring that values entered in a primary table are legitimate values,
thus safeguarding data integrity.

loop
A statement or group of statements that repeat until a specific condition is met.

main form
At design time, the first form created in or added to a project. The form designated as the main form can
be changed in the Project Options dialog box (Options | Project | Forms). The main form is usually the
first displayed at runtime, and usually the principal form displayed throughout the execution of the
program.

master table
In a multi-table relationship, the primary table of your data model. If you have only one table in your data
model, that table is the master table. In a multi-table data model, the master table is the one pointing to
other tables. For example, in the following data model, all of the tables except VENDORS.DB are
master tables.

method
Member function associated with a particular class.

method identifier
The identifying string or dynamic index of a method.

multiple document interface (MDI) application
An application whose interface consists of a main application window, called the frame window, that can
contain multiple child windows, or documents. The child window's document title merges with the parent
window's title bar when the child window is maximized.

modal
The runtime state of a form designed as a dialog box in which the user must close the form before
continuing with the application. A modal dialog box restricts access to all other areas of the application.
See Help for the ShowModal method for more information.

modeless
The runtime state of a form designed as a dialog box in which the user can switch focus away from the
dialog box without first closing it. See Help for the Show method for more information.

module
A self-contained routine or group of routines.

null (nil in Pascal)
A pointer value referencing nothing. A pointer must be assigned a memory address to be meaningfully
and safely used.

Referencing a pointer having a null value causes a General Protection Fault exception.

nonvisual component
A component that appears at design time as a small picture on the form, but either has no appearance
at runtime until it is called (like TSaveDialog) or simply has no appearance at all at runtime (like TTimer).

nonwindowed control
A nonwindowed control is a control that cannot receive the focus, that cannot be the parent of other
controls, and which does not have a window handle.

object files (.OBJ)
An intermediate machine-code file that is produced when you compile (or assembler) your source code.
The linker combines object files and libraries to produce your final executable application.

object instance variable
The identifier created internally for an instance of an object.

object type
A class.

OLE
Object Linking and Embedding is a method for sharing complex data among applications. With OLE,
data from a server application is stored in a container application. The data is stored in an OLE Object.

OLE container
An application that can contain an OLE object. In C++Builder, an OLE container application has a
TOLEContainer component.

OLE object
The data shared by an OLE server and OLE container. An OLE object can be linked or embedded in the
container application. The data for linked objects are stored in an external file; embedded objects are
stored in the container application.
Examples of OLE objects are documents, spreadsheets, pictures, and sounds.

OLE server
An application that can create and edit an OLE object.

override
Redefine an object method in a descendant object type.

owner
A class responsible for freeing the resources used by other (owned) objects.

parameter
A variable or value that is passed to a function.

parent
1. The immediate ancestor of a class, as seen in its declaration. Example: In "type B = class(A)", class A

is the parent of class B.
2. Parent property: the component that provides the context within which a component is displayed.

passing by reference
A subroutine parameter that is passed by reference. Changes made to a parameter passed by reference
remain in effect after the subroutine has ended. See passing by value.

passing by value
A function parameter that is passed by value; that is, the value of a parameter is copied to the local
memory used by the routine and therefore, changes made to that parameter are local. See passing by
reference.

pixel
Any of the individual colored dots that make up an image on the screen. Derived from the words "picture
element."

pointer
A variable that contains the address of a specific memory location.

primary index
An index on the key fields of a table. An index performs the following tasks:

Determines the location of records.
Keeps records in sorted order.
Speeds up search operations.

A primary index typically has a requirement of uniqueness--that is, no duplicate keys can exist.

private
An access specifier. Private members can be used only by member functions and friends of the class in
which it is defined.

program
An executable file. Less formally, a program and all the files it needs to run. Contrast with
cation.

project
The complete catalog of files and resources used in building an application or DLL. More specifically, the
main source code file of the programming effort, which lists the source code that the application or DLL
depends on.

project directory
The directory in which the project files reside.

project file
The file that contains the source code for a C++Builder project. This file has a .MAK extension. It lists all
the header files used by the project and contains the code to launch the application.

property
A feature that provides controlled access to methods or data members of a class. A published property
may also be stored to a file.

protected
The member can be used only by member functions and friends of the class in which it is declared. Also,
the member can be used by member functions and friends of classes derived from the declared class,
but only in objects of the derived type.

protected block
A block of code that is enclosed within an exception handling routine.

public
The member can be used by any function.

published
The __published keyword is used to specify the properties that you want to be displayed in the Object
Inspector.

qualified identifier
An identifier that contains a ::, that is, includes a qualifier. A qualified identifier forces a particular feature
(of an class, struct, or header) to be used regardless of other features of the same name that may also
be visible within the current scope.

qualified method identifier
An object-type identifier, followed by a ::, then followed by a method identifier. Like any other identifier,
you can prefix a qualified method identifier with a header identifier and a ::.

qualifier
An identifier, followed by a ::, that precedes a method or other identifier to specify a particular symbol
reference.

query
A way to retrieve data from your tables. A query can examine the data in a single table or in several
tables.

raise
Also known as "throwing" and exception. Raising an exception means constructing an exception object
to signal an error or other exception condition. The application then must handle the exception.

real
A number represented by floating-point or scientific notation.

record
In database terminology, a horizontal row in a table that contains a group of related fields of data.

recursion
A programming technique in which a subroutine calls itself. Use care to ensure that a recursion
eventually exits. Otherwise, an infinite recursion will cause a stack fault.

relational database
A database management model in which data is stored as rows (records) and columns (fields), and in
which the data in one table can access the data in other tables by means of a common data field. The
database structure can be used to create one-to-many and many-to-one relationships with data
elements.

report
Organized summary or detail information that is presented to the end user either as a printed document
or an online display.

root class
A base class that itself has no ancestors, and from which all other classes are descended. In C+
+Builder, the root class is TObject.

routine
A function.

row
The horizontal component of a table, sometimes called a record. A row contains one value for each
column in a related group of columns in a table. See also column.

runtime
Period when the application you design is running, as opposed to design time.

runtime error
An error that occurs when the application runs, as opposed to a compile-time error.

runtime library
The standard functions available to all C++ programs.

runtime only
Routines, properties, events, or components that can be modified, called, or seen only while your
application is running (as opposed to design time).

scope
The visibility of an identifier to code within a program.

separator
A blank (space) or a comment. Comments are treated as a space.

separator bar
A line inserted between menu items. A dash character (-) entered in the Caption property of a new item
in the menu designer creates a separator bar at the current position.

set
In Object Pascal, a collection of zero or more elements of a certain scalar or subrange base type. In C+
+, a set class mimics this behavior.

short int
A 16-bit data type capable of holding any whole number value from -32,768 to +32,767. Used for
counting, small numbers, and loop control.

sizing handles
The small black rectangles that appear on the perimeter of a component, form or window when
selected. You drag them to resize the object.

source code
The line-by-line statements written by the developer of a computer program using an appropriate editing
tool and following the syntax rules for a particular programming language.

splash screen
A form you design to "introduce" your application, and which appears immediately at runtime while the
application main form and secondary forms are being loaded in memory, or while a database server
connection is being established. See also main form.

SpeedMenu or context menu
A local menu on an object which you can access by right-clicking with a pointing device.

SQL
Structured Query Language, abbreviated SQL and commonly pronounced "sequel." A relational
database language used to define, manipulate, search, and retrieve data in databases.

SQL table
A table on a database server defined by SQL.

stack
An area of memory reserved for storing local variables. Also keeps track of program execution and
subroutine calls.

statement
The simplest unit in a program; statements are separated by semicolons.

static
Resolved at compile time, as are calls to functions and methods.

step over
A debugger command that executes a program one line at a time, stepping over procedures while
executing them as a single unit. Contrast with trace into.

string
A sequence of characters that can be treated as a single unit of data.

string list
A flexible collection of strings and (potentially) the objects associated with them.

symbol
Any identifier. Symbols include keywords.

symbol table
A list of the identifiers used by the debugger to track all variables, constants, types, and function names
used in a program. Each executable program and DLL has its own symbol table.

The IDE automatically generates symbolic debug information. To manually choose to turn on
debug information for your project, choose Options|Project, click the Compiler tab, and check Debug
Information.

table
A structure made up of rows (records) and columns (fields) that contains data.

tag property
A 32-bit value that can be used in every VCL class derived from TComponent or lower.

TDBDataset
A descendant of TDataset that includes the functionality needed to connect to a database, handle
passwords, and perform other tasks associated with database connectivity.
You cannot instantiate an object of TDataset directly; you instantiate TTable, TQuery, or another
TDataset descendant.

trace into
A debugger command that executes a program one line at a time, tracing into procedures which were
compiled with debug information and following the execution of each line. Contrast with step over.

typecasting
The forcing of the compiler to treat an expression of type X as though it were an expression of type Y.
Using AS to typecast object instances causes generation of code to validate the compatibility of the
typecast at runtime. Normal typecasts are evaluated at compile time and are not validated at runtime.

typedef
A description of how data should be stored and accessed. Contrast with variable--the actual storage of
the data.

type compatibility
An instance may be used in place of or assigned to another type it is said to be compatible with.
Integer types are all cross-compatible. A descendant class instance is type-compatible with a variable of
an ancestor type. Sibling classes are not type-compatible, nor are ancestors type-compatible with their
descendants.

type definition
The specification of a non-predefined type. Defines the set of values a variable can have and the
operations that can be performed on it.

unit
A independently compileable code module consisting of a header file and a .CPP file.
Every form in C++Builder has an associated unit file pair.
The source code of a unit is stored in a Unitx.CPP and Unitx.H file pair. A unit is compiled into a binary
object file with a .OBJ extension. The link process combines .OBJ files into a single .EXE or .DLL file.

untyped file
Low-level I/O (input/output) channels that let you directly access any disk file regardless of its internal
format.

unqualified identifier
An identifier that contains no ::, that is, an identifier with no qualifier. The semantics of an unqualified
identifier depend on the current scope. Example: "Read" is an unqualified identifier that will call any
routine called "Read" within the current scope (or cause a compile error if no such routine is visible) but
TForm::Read will call the specific "Read" method which is a feature of TForm. See qualifier.

use count
An internal variable that Windows uses to determine whether or not a DLL should stay in memory. A DLL
stays in memory while its use count is greater than zero.
Windows increments use Count every time an application loads a DLL and decrements whenever an
application frees the DLL.

user-defined
Said of a type that is defined by a programmer and not inherently part of the C++ language. This
includes any type definitions you may code or definitions provided by Borland, or any other source.

variable
An identifier that represents an address in memory, the contents of which can change at runtime.

virtual
Use the virtual keyword to allow derived classes to provide different versions of a base class function.
Once you declare a function as virtual, you can redefine it in any derived class, even if the number and
type of arguments are the same. The redefined function overrides the base class function.

visual component
A component that is visible, or can be made visible on a form at runtime.

VOID pointer
A pointer that does not point to any specific type. A VOID pointer cannot be referenced without a
typecast. (Also see typecast.)

warning
A message that appears in the Message window that does not stop your code from compiling, but
indicates areas you might want to examine for problems. For example, a warning can alert you to code
that

is inefficient
is not portable
violates the proposed ANSI standard

watches
A watch expression lets you track the values of program variables or expressions as you step over or
trace into your code. Use the Watch List window to view the currently set watches.
As you step through your program, the value of the watch expression will change if your program
updates any of the variables contained in the watch expression.

window handle
A number assigned by Windows to a control that must be used to request services for that control from
the Windows API.

windowed control
A control that can receive the focus, that can own other controls, and which does have a window handle.

word
In C++Builder, a location in memory occupying 2 adjacent bytes; the storage required for a variable of
type short or word. Also, a predefined data type named word in the range of 0 to 65535.

wrapper
An object, routine, group of objects, or group of routines designed to encapsulate some functionality for
the programmer usually for some perceived benefit. VCL is an object-oriented wrapper for the Windows
API.

z-order
The conceptual distance of an object from the surface of the screen. Whether or not a control is covered
by other controls depends on its z-order relative to those controls.

Library is already loaded, probably as a result of an incorrect program
termination. Your system may be unstable and you should exit and restart
Windows now.
An error occurred while attempting to initialize C++Builder's component library. One or more DLLs are
already in memory, probably as a result of an incorrect program termination in a previous C++Builder or
BDE session.
You should exit and then restart Windows.

Name is not a valid identifier
The identifier name is invalid. Ensure that the first character is a letter or an underscore (_). The
characters that follow must be letters, digits, or underscores, and there cannot be any spaces in the
identifier.

A field or method named name already exists
The name you have specified is already being used by an existing method or field.
For a complete list of all fields and methods defined, check the form declaration at the top of the unit
source file.

A component class named name already exists
The component library already contains a component with the same class name you have specified.

Breakpoint is set on line that may have been removed by the optimizer or
contains no debug information. Run anyway?
A breakpoint is set on a line that does not generate code or in a module which is not part of the project.
If you choose to run anyway, invalid breakpoints will be disabled (ignored).

Could not stop due to hard mode
The integrated debugger has detected that Windows is in a modal state and will not allow the debugger
to stop your application. Windows enters "hard mode" whenever processing an inter-task
SendMessage, when there is no task queue, or when the menu system is active. You will not generally
encounter hard mode unless you are debugging DDE or OLE processes within C++Builder.
A standalone debugger such as the Turbo Debugger for Windows can be used to debug applications
even when Windows is in hard mode.

Another file named filename is already on the search path
A file with the same name as the one you just specified is already in another directory on the search
path.

Cannot find filename1 or filename2 on the current search path
The file you just specified cannot be found on the search path.
You can modify the search path, copy the file to a directory along the path, or remove the file from the
list of installed units.

Cannot find implementation of method method
The indicated method is declared in the form's class declaration but cannot be located in the
implementation section of the unit. It probably has been deleted, commented out, renamed, or
incorrectly modified.
Use UNDO to reverse your changes, or correct the procedure declaration manually. Be sure the
declaration in the class is identical to the one in the implementation section. (This is done automatically
if you use the Object Inspector to create and rename event handlers.)

Debug session in progress. Terminate?
Your application is running and will be terminated if you proceed. When possible, you should cancel this
dialog and terminate your application normally (for example, by selecting Close on the System menu).

Declaration of class class is missing or incorrect
C++Builder is unable to locate the form's class declaration in the header file of the unit. This is probably
because the type declaration containing the class has been deleted, commented out, or incorrectly
modified. This error occurs if C++Builder cannot locate a class declaration equivalent to the following:
...
class TForm1: public TForm
...

Error address not found
The address you have specified cannot be mapped to a source code position. This error usually occurs
for one of the following reasons:

The address you entered is invalid or is not an address in your application.
The module containing the specified address was not compiled with debug information.
The address specified does not correspond to a program statement.

Note that the runtime and visual component libraries are compiled without debug information.

Unable to create process
C++Builder was unable to start your application for the reason specified.

Field field does not have a corresponding component. Remove the declaration?
The first section of your form's class declaration defines a field for which there is no corresponding
component on the form. Note that this section is reserved for use by the form designer.
To declare your own fields and methods, place them in a separate public, private, or protected section.
This error will also occur if you load the binary form file (.DFM) into the Code Editor and delete or
rename one or more components.

Field field should be of type type1 but is declared as type2. Correct the
declaration?
The type of specified field does not match its corresponding component on the form. This error will occur
if you change the field declaration in the Code Editor or load the binary form file (.DFM) into the Code
Editor and modify the type of a component.
If you select No and run your application, an error will occur when the form is loaded.

IMPLEMENTATION part is missing or incorrect
In order to keep your form and source code synchronized, C++Builder must be able to find the unit's
implementation section. This reserved word has been deleted, commented out, or misspelled.
Use UNDO to reverse your changes or correct the reserved word manually.

Incorrect field declaration in class class
To keep your form and source code synchronized, C++Builder must be able to find and maintain the
declaration of each field in the first section of the form's class definition. Though the compiler allows
more complex syntax, the form designer will report an error unless each field that is declared in this
section is equivalent to the following:
...
Class TForm1: public TForm {
FieldType Field1;
FieldType Field2;
...

This error occurred because one or more declarations in this section have been deleted, commented
out, or incorrectly modified. Use UNDO to reverse your changes or correct the declaration manually.
Note that this first section of the form's class declaration is reserved for use by the form designer. To
declare your own fields and methods, place them in a separate public, private, or protected section.

Incorrect method declaration in class class
To keep your form and source code synchronized, C++Builder must be able to find and maintain the
declaration of each method in the first section of the form's class definition. The form designer will report
an error unless the field and method declarations in this section are equivalent to the following:
...
Class TForm1: public TForm {
FieldType Field1;
FieldType Field2;
...
<Method1 Declaration>;
<Method2 Declaration>;
...

...
This error occurred because one or more method declarations in this section have been deleted,
commented out, or incorrectly modified. Use UNDO to reverse your changes or correct the declaration
manually.
Note that this first section of the form's class declaration is reserved for use by the form designer. To
declare your own fields and methods, place them in a separate public, private, or protected section.

Insufficient memory to run
C++Builder was unable to run your application due to insufficient memory or Windows resources. Close
other Windows applications and try again.
This error sometimes occurs because of insufficient low (conventional) memory.

Invalid event profile name
The VBX control you are installing is invalid.

Module header is missing or incorrect
The module header has been deleted, commented out, or otherwise incorrectly modified. Use UNDO to
reverse your changes, or correct the declaration manually.
In order to keep your form and source code synchronized, C++Builder must be able to find a valid
module header at the beginning of the source file. A valid module header consists of the reserved word
unit, program or library, followed by an identifier (for example, Unit1, Project1), followed by a semicolon.
The file name must match the identifier.
For example, C++Builder will look for a unit named Unit1 in UNIT1.CPP, a project named Project1 in
PROJECT1.CPP, and a library (.DLL) named MyDLL in MYDLL.DLL.
Note that module identifiers cannot exceed eight characters in length.

No code was generated for the current line
You are attempting to run to the cursor position, but you have specified a line that did not generate code,
or is in a module which is not part of the project.
Specify another line and try again.
Note that the smart linker will remove procedures that are declared but not called by the program
(unless they are virtual method of an object that is linked in).

Property and method method are not compatible
You are assigning a method to an event property even though they have incompatible parameter lists.
Parameter lists are incompatible if the number of types of parameters are not identical. For a list of
compatible methods in this form, see the dropdown list on the Object Inspector Events page.

Source has been modified. Rebuild?
You have made changes to one or more source or form modules while your application is running. When
possible, you should terminate your application normally (select No, switch to your running application,
and select Close on the System Menu), and then run or compile again.
If you select Yes, your application will be terminated and then recompiled.

Symbol symbol not found.
The browser cannot find the specified symbol. This error will occur if you enter an invalid symbol name
or if debug information is not available for the module that contains the specified symbol.

The method method referenced by form does not exist. Remove the reference?
The indicated method is no longer present in the class declaration of the form. This error occurs when
you manually delete or rename a method in the form's class declaration that is assigned to an event
property.
If you select No and run this application, an error will occur when the form is loaded.

The method method referenced by form. Event has an incompatible parameter
list. Remove the reference?
A form has been loaded that contains an event property mapped to a method with an incompatible
parameter list. Parameter lists are incompatible if the number or types of parameters are not identical.
For a list of methods declared in this form which are compatible for this event property, use the
dropdown list on the Object Inspector's Events page.
This error occurs when you manually modify a method declaration that is referenced by an event
property.
Note that it is unsafe to run this program without removing the reference or correcting the error.

The project already contains a form or module named name
Every module name (program or library, form and unit) in a project must be unique.

#INCLUDE directive is missing or incorrect
In order to keep your forms and source code synchronized, C++Builder must be able to find and
maintain the #INCLUDE directives.
This error occurs because the #INCLUDE directive was deleted, commented out, or incorrectly
modified. Use UNDO to reverse your changes or correct the declaration manually.

File menu
Use the File menu to open, save, close, and print new or existing projects and files.
The commands on the File menu are:
New Opens the New Items dialog box which contains new objects and objects that

are stored in the Object Repository. C++Builder will generate the new objects for
you, while you can use the preexisting objects that are stored in the Object
Repository.

New Application Creates a new project containing an empty form.
New Form Creates and adds a blank form to the current project.
New Data Module Creates and adds a new, blank data module form to the project.
New Unit Creates and adds a new file to the project.
Open Use the Open dialog box to load an existing project, form, unit, or text file into

the Code editor.
Open Project Use the Open Project dialog box to load an existing project (.MAK file).
Reopen Lists the most recently closed projects and modules for you to select and open.
Save Saves the current file using its current name.
Save As Saves the current file using a new name.
Save Project As Saves the current project using a new name.
Save All Saves all open files, both current project and modules.
Close Closes the current project and all associated units and forms.
Close All Closes all open files.
Include Unit Hdr Adds a file with an #include command to the active module.
Print Sends the active file to the printer.
Exit Closes the open project and exits C++Builder.

New Items dialog box (File|New)
See Also
Use the New Items dialog box to select a form, or project template, or wizard that you can use as a
starting point for your application. The New Items dialog box provides a view into the Object Repository.
The Object Repository contains forms, projects, and wizards. You can use the objects directly, copy
them into your projects, or inherit items from existing objects.

The New Items dialog box pages
When you first install C++Builder, there are default pages in the New Items dialog box. They are
described in the following paragraphs.

The New page
The new page contains pre-built items that you can include in your project. These items are as follows:
Application Creates a new project containing a form and a unit pair that consists of a .cpp

and .h file.
Automation Object Creates a unit file which contains an Automation Object template.
Component Creates a new component unit using the Component Wizard.
Console App Creates a new console application project.
Data Module Creates a new Data Module unit.
DLL Creates a new DLL project.
Form Creates and adds a blank default form to the current project.
Text Creates a new ASCII text file.
Thread Object Creates a new Thread Object unit.
Unit Creates and adds a new unit to the current project.

The Project page
If a project is open, the second page in the New Items dialog box is the current project page. The
current project title is displayed on the tab. The current project page contains all the forms of the project.
You can create an inherited form from any existing project forms.

User-defined pages
The remaining pages, if any, are user-defined pages containing Forms, Projects, Data Modules, or
Wizards from the Object Repository. By default, the New Items dialog box contains the following pages:

Forms
Dialogs
Data Modules
Projects

Usage options
Three options on the New Items dialog box let you specify how to use a Repository Object in your
project:

Copy the item
Inherit from the item
Use the item directly

To learn about these options, see Object Repository usage options.

New Thread Object dialog box
Enter the name of a thread object to create a new unit that contains an object derived from the TThread
class.

File | New Application
Choose File|New Application to create a new C++Builder project. A new blank project is displayed
unless you modified C++Builder to use a custom template as the default.
You can have only one project open at any time. If a project is open when you choose File|New
Application, C++Builder prompts you to save any changes made to the current project.
A new project consists of

a new project makefile (PROJECT1.MAK) and its associated source code (PROJECT1.CPP)
a new form file (UNIT1.DFM), and its associated header (UNIT1.H) and cpp file (UNIT1.CPP)
a project resource file (PROJECT1.RES)

You can change the names of the project, header, and cpp files when you save them.

File | New Form
Choose File|New Form to create a blank form and a new unit cpp file and add them to the project.
In addition to the standard blank form, you can specify a custom form as the default form to be added to
new projects.
When you create a new form, C++Builder automatically adds the new form and an associated unit file to
the list of files included in the open project. If no project is open, a blank form is created.
If you selected a blank form from the New Items dialog box, or you did not specify a default form, the
new form is titled UnitXX.CPP. (XX represents the form/unit number. For example, the first form is Unit1,
the second Unit2, and so on.)
You can change the name of the form by editing the Name property using the Object Inspector.
You can change the unit name by saving the file with File|Save As, or by saving the entire project using
File|Save Project As.
Changes made to any form or unit name are reflected throughout the source code anywhere that name
appears within that unit.

File | New Data Module
Choose File|New Data Module to add a new data module to your project.
At design time, a data module looks like a standard C++Builder form with a white background and no
alignment grid. As with forms, you can place nonvisual components on a module from the Component
palette, and you can resize a data module to accommodate the components you add to it.

File | New Unit
Choose File|New Unit to add a new unit header file to your project.
The new unit file displays in the Code editor with its own tab and it becomes the active page.

Select Directory dialog box
Use the Select Directory dialog box to choose a working directory for your new project.

To open the Select Directory dialog box,
Select a non-blank project template from the New Items dialog box.

Directory Name
Displays the current directory. If you enter a directory that does not exist, C++Builder will create it.

Directories
Lists the current directory.

Files: (*.*)
List all the files in the current directory. You cannot select any of these files. C++Builder displays this file
list so you know the contents of the current directory.

Drives
Lists all the available drives. You can select one of the available drives.

File | Open
Choose File|Open to display the Open dialog box.

Open dialog box
Use the Open dialog box to load an existing project, form, unit, or text file into the Code editor.
Simply opening a file does not automatically add it to your current project. To add a file to a project,
choose Project|Add to Project.
You can open multiple forms, units, or text files but you can have only one project open at any time. If a
project is already open when you try to open a project, C++Builder prompts you to save any changes
made to the current project before opening the new one.

Look In
Lists the current directory. Use the drop down list to select a different drive or directory.

Files
Displays the files in the current directory that match the wildcards in File Name or the file type in Files Of
Type. You can display a list of files (default) or you can show details for each file.

File Name
Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files of Type
Choose the type of file you want to open; the default file type is unit file (.CPP). All files in the current
directory of the selected type appear in the Files list box.

Directories
(Under Windows 95, this looks like a file folder) Select the directory whose contents you want to view. In
the current directory, files that match the wildcards in the File Name edit box or the file type in the List
Files Of Type combo box appear in the Files list box.

Open File dialog box
Use the Open File dialog box to specify the type of file you want to create when you enter a new file
name into the File Name edit box.
There are three types of files you can create:

Form
Unit
Text file

To choose a type of file to create, select the file type and click OK. C++Builder creates a file of the
selected type but does not add it to the project.
If you are creating a file that you want to include in the current project, use one of the following methods:

Choose Project|Add to Project.
Choose View|Project, then right-click on the Project Manager window and choose Add File.

File | Open Project
Choose File|Open Project to open an existing project.
If there is a project currently open, you are prompted to save your changes and the currently open
project is closed.

File | Reopen
Choose File|Reopen to reopen a recently closed project or module.
When you close a project or a module, it is added to the Reopen list.

To reopen a project or module,
1 Choose Reopen from the File menu.
2 Click the project or module that you want to reopen.

Only projects or modules that have been closed with the File|Close command appear in the
Reopen list. Saved Items will not appear in the list.

File | Save
Choose File|Save to store changes made to all files included in the open project using the current name
for each file.
If you try to save a project that has an unsaved project file or unit file, C++Builder opens the Save As
dialog box, where you enter the new file name.

Open files that are not included in the project file will not be saved. To save these files, select
each file in the Code editor and choose File|Save.

If you modify a .C/.CPP file or a .H the other corresponding files are saved automatically.

File | Save As
Choose File|Save As to save the active file with a different name or in a different location.

C++Builder tightly couples unit .CPP and .h files. When you open a unit in a project, C++Builder
also references that unit’s .h file. If you then use Save As to rename either the unit .CPP file or the unit .h
file, C++Builder renames both the .CPP and the .h files.

To make a copy or change the name of a unit .CPP or .h file without affecting the both files, make
sure that the unit is closed, then open the .CPP or .h file directly in the Code editor. From there, you
can make changes without the files being coupled (the unit must be closed in the project for the files
to be uncoupled).

Save project as dialog box
Use the Save As dialog box to change the project file name or to save the project in a new location. If
the file name already exists, C++Builder asks if you want to replace the existing file.

File Name
Enter a name for the file you are saving.

Files
Displays the files in the current directory that match the file type in the Save File as Type combo box.

Save File As Type
Choose a file extension; the default is .CPP. All files in the current directory of the selected type appear
in the Files list box. Note that saving a project file with a different extension does not change the format
of the file.

Directories
Select the directory where you want to store the file. In the current directory, files that match the file type
in the Save Files As Type combo box appear in the Files list box.

Drives
Select the current active drive. The directory structure for the current drive appears in the Directories list
box.

File | Save Project As
Choose File|Save Project As to save the .MAK file to a different name or location. Besides copying
and/or renaming the .MAK file, this command saves the project source file to the same name as
the .MAK with a .CPP extension. If you have modified forms or units that are used by other projects, and
you do not want the current modifications reflected in those other projects, you should first use File|Save
As to copy/rename each unit file before choosing this command to save the project.

Save Project As dialog box
Use the Save Project As dialog box to change the project file name or to save the project in a new
location. If the file name already exists, C++Builder asks if you want to replace the existing file.

File name
Enter a name for the project file you are saving.

Files
Displays the files in the current directory that match the file type in the Save File as Type combo box.

Save File As Type
Choose a file extension; the default is .MAK. All files in the current directory of the selected type appear
in the Files list box. Note that saving a project file with a different extension does not change the format
of the file.

Directories
Select the directory where you want to store the file. In the current directory, files that match the file type
in the Save Files As Type combo box appear in the Files list box.

Drives
Select the current active drive. The directory structure for the current drive appears in the Directories list
box.

File | Save All
Choose File|Save All to save all open files, including the current project and modules.

To save all files,
1 From the File menu, choose Save All.
2 The Save All dialog box appears with a default name for the item to be saved.
3 Type in a new file name if you do not want to use the default name.
4 Click Save.

The Save As dialog appears again with a default name for the next item to be saved.
5 Repeat steps 3-4 until all modules are saved.
Steps 2-5 only happen when files are saved the first time. After that, changed files are saved without
feedback.

File | Close
Choose File|Close to close the active window.
Closing a form also closes the associated unit file. Before closing the file, C++Builder prompts you to
save any changes. If you have not previously saved the project, or any file, C++Builder opens the Save
As dialog box, where you can enter the new file name.
If you close the project file in the Code editor, you will close the entire project. You can also close the
entire project by choosing File|Close when the Project Manager is the active window.

File | Close All
Choose File|Close all to close all open files.

To close all open files,
From the File menu, choose Close All.

The project file and all modules are closed.

File | Include Unit Hdr
Choose File|Include Unit Hdr to add an #include command for the unit file associated with the active
cpp file.
Use this command after adding a form to a project to add the related unit header file for that form.

Include Unit dialog box
Choose File|Include File Header to open this dialog box.
You use this dialog box to insert an #include command for a unit into the current unit.

To add a unit,
1 From the File menu, select Include Unit Hdr.

The Include Unit dialog box appears.
2 In the Include Unit list, click the unit name you want to add.
3 Click OK to include the unit in the current unit.

Include Unit list
This list displays a list of all units in the project that are not being included by the current unit. You can
only include unit headers when they are part of the current project. If all units are already included, a
message box displays instead.

Component wizard
Choose Component|New or File|New and Component from the Object Repository to open the
Component wizard dialog box.

Component wizard dialog box
Use this dialog box to create the basic unit for a new component.

Class Name
Enter the name of the new class you are creating. A general rule is that all visual component classes are
prefaced with a T. For example, the name of your new button component could be TMYBUTTON.

Ancestor Class
Use the drop-down list to select a base class, or enter the name of a base class for your new
component. Unless you override them in the component declaration, your new component will inherit all
the properties, methods, and events from its ancestor class.

Palette page
Use the drop-down list to select a page, or enter the name of the page on which you want your new
component to appear, when you add it to the library.

File | Print
Choose File|Print to print the active page in the Code editor or the active form. When you choose File|
Print, C++Builder displays one of two dialog boxes depending on whether the Code editor or the form is
the active window.

When the Code editor is active, C++Builder displays the Print Selection dialog box.
When the form is active, C++Builder displays the Print Form dialog box.

Print Form dialog box
Use this dialog box to specify any scaling options when printing a form. The scaling options depend on
the size of the printer paper. You can change the size of the paper using the Paper Size option in the
Printer Setup dialog box.
To display this dialog box, select File|Print when a form is active.
There are three available scaling options:

Proportional - Scales the form using value of the PixelsPerInch property. Depending on the value
of PixelsPerInch, your form may print on more than one page.

Print To Fit Page - Scales the form so that it will fit onto one page.
No Scaling - Prints the form using its current onscreen size. If you choose this option, your form

might print on more than one page.

Setup
Click the Setup button to display the Printer Setup dialog box.

Print Selection dialog box
Use this dialog box to print the active file from the Code editor.

File To Print
Lists the file that you are going to print. The file listed is the active page in the Code editor when you
chose File|Print.

Print Selected Block
Sends only the selected block of text to the printer. This option is available only when you have text
selected in the file.
If this option is not checked, the entire file will print.

Header/Page Number
Includes the name of the file, current date, and page number at the top of each page.

Line Numbers
Places line numbers in the left margin.

Syntax Print
Uses bold, italic, and underline characters to indicate elements with syntax highlighting.

Use Color
Prints colors that match colors onscreen (requires a color printer).

Wrap Lines
Uses multiple lines to print characters beyond the page width. If not selected, code lines are truncated
and characters beyond the page width do not print.

Left Margin
Specifies the number of character spaces used as a margin between the left edge of the page and the
beginning of each line.

Setup
Click the Setup to display the Printer Setup dialog box.

Printer Setup
Changes printer options and selects a printer from a list. To display this dialog box, click Setup from the
Print Selection or Print From dialog box.
For more information about setting printer options, see your Windows documentation.

File | Exit
Choose File|Exit to close the open project and then close C++Builder.
If you exit C++Builder before saving your changes, C++Builder asks you if you want to save them.

Edit menu
Use commands from the Edit menu to manipulate text and components at design time.
The commands on the Edit menu are:
Undo/Undelete Undoes your last action or last deletion
Redo Reverses an undo
Cut Removes a selected item and places it on the Clipboard
Copy Places a copy of the selected item on the Clipboard, leaving the original in place
Paste Copies the contents of the Clipboard into the Code editor window or form
Delete Removes the selected item
Select All Selects all the components on the form
Align to Grid Aligns the selected components to the closest grid point
Bring to Front Moves the selected component to the front
Send to Back Moves the selected component to the back
Align Aligns components
Size Resizes components
Scale Resizes all the components on the form
Tab Order Modifies the tab order of the components on the active form
Creation Order Modifies the order in which nonvisual components are created
Lock Controls Secures all components on the form in their current position
Object Edits or converts an OLE object which you have inserted onto the form

Edit | Undo/Undelete
See Also
Choose Edit|Undo in the Code editor to undo your most recent keystrokes or mouse actions. Choose
Edit|Undelete when working with a form to replace an item you just deleted.

Using Undo in the Code editor
Undo can reinsert any characters you delete, delete any characters you insert, replace any characters
you overwrite, or move your cursor back to its prior position.
You can undo multiple successive actions by choosing Undo repeatedly. This undoes your changes by
"stepping back" through your actions and reverting them to their previous state. You can specify an undo
limit on the Editor Options page of the Project|Environment dialog box.
If you undo a block operation, your file appears as it was before you executed the block operation.
The Undo command does not change an option setting that affects more than one window.
Check Group Undo on the Editor Options page of the Options|Environment dialog box to undo a group
of actions.

Edit | Redo
Choose Edit|Redo to reverse the effects of your most recent undo.
Redo has an effect only immediately after an Undo command.

Edit | Cut
Choose Edit|Cut to remove the following items from their current position and place them on the
Clipboard:

Selected text from the Code editor.
Components from the form.
Menus from the Menu designer.

Cut replaces the current Clipboard contents with the selected item.

To insert the contents of the Clipboard elsewhere,
Choose Edit|Paste.

Edit | Copy
Choose Edit|Copy to place an exact copy of the selected text, component, or menu on the Clipboard
and leave the original untouched. Copy replaces the current Clipboard contents with the selected items.

To paste the contents on the Clipboard elsewhere,
Choose Edit|Paste.

Edit | Paste
Choose Edit|Paste to insert the contents of the Clipboard into the active Code editor page, the active
form, or active menu in the Menu designer.
Note: You can paste only text into the Code editor window, components onto the form, and menu items

into the Menu designer.
When pasting into the Code editor window, the text is inserted at the current cursor position.
When pasting onto the form, nonvisual components are pasted into the upper left corner of the form,
and visual components are pasted into the exact position from which they were cut or copied.
When pasting into the Menu designer, menu items are inserted at the cursor position.
You can paste the current contents of the Clipboard as many times as you like until you cut or copy a
new item onto the Clipboard.

Edit | Delete
Choose Edit|Delete to remove the selected text or component without placing a copy on the Clipboard.
Even though you cannot paste the deleted text, you can restore it by immediately choosing Edit|Undo or
Edit|Undelete.
Delete is useful if you want to remove an item but you do not want to overwrite the contents of the
Clipboard.

Edit | Select All
Choose Edit|Select All to select every component on the active form. When you select all the
components, only those properties which the components have in common will appear in the Object
Inspector.

Edit | Align To Grid
Choose Edit|Align To Grid to align the selected components to the closest grid point.
You can specify the grid size on the Preferences page of the Options|Environment dialog box.

Edit | Bring To Front
Choose Edit|Bring To Front to move a selected component in front of all other components on the form.
This is called changing the component's z-order.
Note: The Bring To Front and Send To Back commands do not work if you are combining windowed and

non-windowed components. For example, you cannot change the z-order of a label in relation to
a button.

Edit | Send To Back
Choose Edit|Send To Back to move a selected component behind all other components on the form.
This is called changing the component's z-order.
Note: The Send To Back and Bring To Front commands do not work if you are combining windowed and

non-windowed components. For example, you cannot change the z-order of a label in relation to
a button.

Edit | Align
Choose Edit|Align to open the Alignment dialog box.

Alignment dialog box
Use this dialog box to line up selected components in relation to each other or to the form.

The Horizontal alignment options align components along their right edges, left edges, or midline.
The Vertical alignment options align components along their top edges, bottom edges, or midline.

The options for horizontal or vertical aligment are:

Option Description
No Change Does not change the alignment of the component
Left Sides Lines up the left edges of the selected components (horizontal only)
Centers Lines up the centers of the selected components
Right Sides Lines up the right edges of the selected components (horizontal only)
Tops Lines up the top edges of the selected components (vertical only)
Bottoms Lines up the bottom edges of the selected components (vertical only)
Space Equal Lines up the selected components equidistant from each other
Center In Window Lines up the selected components with the center of the window

Edit | Size
Choose Edit|Size to open the Size dialog box.

Size dialog box
Use this dialog box to resize multiple components to be exactly the same height or width.

The Width options change the horizontal size of the selected components.
The Height options align the vertical size of the selected components.

The options for horizontal or vertical sizing are:

Option Description
No Change Does not change the size of the components.
Shrink To Smallest Resizes the group of components to the height or width of the smallest selected

component.
Grow To Largest Resizes the group of components to the height or width of the largest selected

component.
Width Sets a custom width for the selected components.
Height Sets a custom height for the selected components.

Edit | Scale
Choose Edit|Scale to open the Scale dialog box.

Scale dialog box
Use this dialog box to proportionally resize the form and all the components on that form.

Dialog box options
Scaling Factor, In Percent
Enter a percentage to which you want to resize the form. The scaling factor must be between 25 and
400.
Percentages over 100 grow the form.
Percentages under 100 shrink the form.

Edit | Tab Order
See Also
Choose Edit|Tab Order to open the Edit Tab Order dialog box.

Edit Tab Order dialog box
Use this dialog box to modify the tab order of the components on the form or within the selected
component if that component contains other components.
The list box displays those components on the active form that can be a tab stop and their type in their
current tab order. The default tab order is determined by the order in which you placed the components
on the form.

To change the tab order of a component,
1. Select the component name.
2. Click the up button to move the component up in the tab order, or click the down arrrow to move its

down in the tab order.
You can also drag the selected component to its new position in the tab order.

3. To save your changes, click OK.

Edit | Creation Order
Choose Edit|Creation Order to open the Creation Order dialog box.

Creation Order dialog box
Use this dialog box to specify the order in which your application will create nonvisual components.
when you load the form at design time or run time.
The list box displays only those nonvisual components on the active form, their type, and their current
creation order. The default creation order is determined by the order in which you placed the nonvisual
components on the form.

To change the creation order,
1. Select a component name.
2. Click the up button to move the component creation order up, or click the down arrrow to move its

creation order down.
You can also drag the selected component to its new position in the creation order.

3. To save your changes, click OK.

Edit | Lock Controls
Choose Edit|Lock Controls to secure all components on the active form in their current position. When
this command is checked, you cannot move or resize a component. However, you can use the Object
Inspector to edit the Height, Left, Top, and Width properties for a selected component.
When this command is checked, components are locked. When components are locked, you can
choose Lock Controls to unlock them.
Note: Lock Controls has no effect on the form itself. When you select Lock Controls, you can still resize

or move the form.

Edit | Object
Choose Edit|Object to edit or convert an OLE object which you have inserted onto the form. This menu
item varies depending on the selected OLE object.
If you choose Convert from the submenu, the Convert dialog box opens.

Convert dialog box
Use this dialog box to specify a different source application for an embedded object.

Dialog box options
Current Type
Displays the type of object that you are converting or activating.

Object Type
Select the type of object to which you want to convert the file.

Convert To
Converts the selected embedded object to the type of information selected in the Object Type box.

Activate As
Opens the embedded object in the type selected in the Object Type box, but returns the object to
Current Type after editing.

Display As Icon
Displays the selected embedded object as an icon in a Word document.

Change Icon
Changes the icon that represents an embedded object. This button appears only if you select the
Display As Icon check box.

Result
Describes the result of the selected options.

Search menu
See Also
Use the Search menu to locate text, errors, objects, units, variables and symbols in the Code editor.
The commands on the Search menu are:
Find Searches for specific text
Replace Searches for specific text and replaces it with new text
Search Again Repeats search
Incremental Search Searches for text as you type
Go to Line Number Moves cursor to specific line number
Go to Address Goes to the specified address

Search | Find
See Also
Choose Search|Find to display the Find Text dialog box.

Find Text dialog box
Use this dialog box to specify text you want to locate and to set options that affect the search.

Dialog box options
Text to Find
Enter a search string; or, click the down arrow next to the input box to select from a list of previously
entered search strings.

Options
Specifies attributes for the search string.
Case sensitive Differentiates uppercase from lowercase when performing a search.
Whole words only Searches for words only. (With this option off, the search string might be found

within a longer word.)
Regular expressions Recognizes regular expressions in the search string.

Direction
Specifies which direction you want to search, starting from the current cursor position.
Forward From the current position to the end of the file. Forward is the default.
Backward From the current position to the beginning of the file.

Scope
Determines how much of the file is searched.
Global Searches the entire file in the direction specified by the Direction setting. Global

is the default scope.
Selected text Searches only the selected text in the direction specified by the Direction setting.

You can use the mouse or block commands to select a block of text.

Origin
Specifies where the search should start.
From cursor The search starts at the cursor's current position, and then proceeds either

forward to the end of the scope, or backward to the beginning of the scope
depending on the Direction setting. From cursor is the default.

Entire scope The search covers either the entire block of selected text or the entire file (no
matter where the cursor is in the file), depending upon the Scope options.

Search | Replace
Choose Search|Replace to display the Replace Text dialog box.

Replace Text
Use this dialog box to specify text you want to search for and replace with other text (or with nothing).
Most components of the Replace Text dialog box are identical to those in the Find Text dialog box.

Text to find
Enter a search string; or, click the down arrow next to the input box to select from a list of previously
entered search strings.

Replace with
Enter the replacement string; or, click the down arrow next to the input box to select from a list of
previously entered search strings. To replace the text with nothing, leave this input box blank.

Options
Specifies attributes for the search strings.
Case sensitive Differentiates uppercase from lowercase when performing a search.
Whole words only Searches for words only. (With this option off, the search string might be found

within longer words.)
Regular expressions Recognizes specific regular expressions in the search string.
Prompt on replace Prompts you before replacing each occurrence of the search string. When

Prompt on replace is off, the editor automatically replaces the search string.

Direction
Specifies which direction to search the file, starting from the current cursor position.
Forward From the current position to the end of the file. Forward is the default.
Backward From the current position to the beginning of the file.

Scope
Determines how much of the file is searched.
Global The entire file in the direction specified by the Direction setting. Global is the default

scope.
Selected text Only the selected text in the direction specified by the Direction setting. To select a

block of text, use the mouse or block commands.

Origin
Specifies where the search should start.
From cursor The search starts at the cursor's current position, and then proceeds either forward

to the end of the scope, or backward to the beginning of the scope depending on the
Direction setting. From cursor is the default.

Entire scope The search covers either the entire block of selected text or the entire file (no matter
where the cursor is in the file), depending upon the Scope options.

Replace all
Click Replace all to replace every occurrence of the search string. If you check Prompt on replace, the
Confirm dialog box appears on each occurrence of the search string.

Search | Search Again
See Also
Choose Search|Search Again to repeat the last Find or Replace command.
The settings last made in the Find Text or Replace Text dialog box remain in effect when you choose
Search Again. For instance, if you have not cleared the Replace Text settings, the Search Again
command searches for the string you last specified and replaces it with the text specified in the Replace
Text dialog box.

Search | Incremental Search
See Also
Choose Search|Incremental Search to bypass the Find Text dialog box by moving the cursor directly to
the next occurrence of text that you type.
When you are performing an incremental search, the Code editor status line reads "Searching For:" and
displays each letter you have typed.
For example, if you type "class" the cursor moves to the next occurrence of the word, highlighting each
letter as you type it. This behavior continues until the editor loses focus or you press Enter or Escape.
Here are some Incremental Search keystroke options.

Option Effect
Backspace Remove the last character from the search string and move to the previous match.
F3 Repeat search (Default keybinding)
Ctrl+L Repeat search (Classic keybinding)
Ctrl+S Repeat search (Epsilon keybinding)
Shift+F5 Repeat search (Brief keybinding)

Search | Go to Line Number
Choose Search|Go to Line Number to display the Go To Line Number dialog box.

Go to Line Number dialog box
This dialog box prompts you for the line number you want to find. (The current line number and column
number are displayed in the Line and Column Indicator on the status bar of the Code editor.)
When this dialog box first appears, the current line number is in the input box.

Enter New Line Number
Specify the line number of the code you want to go to; or click the down arrow next to the input box to
select from a list of previously entered line numbers.

Search | Go to Address
Choose Search|Go to Address to display the Goto Address dialog box.
Note that this option is only available while debugging your program.

Goto Address dialog box
Use this dialog box to specify the address of the most recent runtime error during an integrated
debugging session or an address that you want to jump to.

Address
Enter the address you want to jump to and click OK. You can enter the address in decimal or
hexadecimal, or you can enter a function name that will evaluate to an address (for example, WinMain).
When you click OK, C++Builder displays the address location in the source file or it displays the CPU
window with the address highlighted in various panes. You can view low-level information about the
program in the CPU window.

Regular expressions
See Also
Regular expressions are characters that customize a search string.
The regular expressions that C++Builder recognizes are:

Character Description
 ^ A circumflex at the start of the string matches the start of a line.

 $ A dollar sign at the end of the expression matches the end of a line.

 . A period matches any character.

 * An asterisk after a string matches any number of occurrences of that string followed by
any characters, including zero characters. For example, bo* matches bot, bo and boo
but not b.

 + A plus sign after a string matches any number of occurrences of that string followed by
any characters except zero characters. For example, bo+ matches boo, and booo, but
not bo or be.

[] Characters in brackets match any one character that appears in the brackets, but no
others. For example [bot] matches b, o, or t.

[^] A circumflex at the start of the string in brackets means NOT. Hence, [^bot] matches any
characters except b, o, or t.

[-] A hyphen within the brackets signifies a range of characters. For example, [b-o] matches
any character from b through o.

{ } Braces group characters or expressions. Groups can be nested, with a maximum
number of 10 groups in a single pattern.

 \ A backslash before a wildcard character tells the Code editor to treat that character
literally, not as a wildcard. For example, \^ matches ^ and does not look for the start of a
line.

Note: C++Builder also supports Brief regular expressions if you are using Brief keystoke mappings.

Brief regular expressions
See Also
You can use the following symbols in Brief regular expressions:
 < A less than at the start of the string matches the start of a line.
 % A percent sign at the start of the string matches the start of a line.
 $ A dollar sign at the end of the expression matches the end of a line.
 > A greater than at the end of the expression matches the end of a line.
 ? A question mark matches any single character.
 @ An at sign after a string matches any number of occurrences of that string followed by any

characters, including zero characters. For example, bo@ matches bot, boo, and bo.
 + A plus sign after a string matches any number of occurrences of that string followed by any

characters, except zero characters. For example, bo+ matches bot and boo, but not b or bo.
 | A vertical bar matches either expression on either side of the vertical bar. For example, bar|car

will match either bar or car.
 ~ A tilde matches any single character that is not a member of a set.
[] Characters in brackets match any one character that appears in the brackets, but no others. For

example [bot] matches b, o, or t.
[^] A circumflex at the start of the string in brackets means NOT. Hence, [^bot] matches any

characters except b, o, or t.
[-] A hyphen within the brackets signifies a range of characters. For example, [b-o] matches any

character from b through o.
{ } Braces group characters or expressions. Groups can be nested, with the maximum number of 10

groups in a single pattern.
 \ A backslash before a wildcard character tells C++Builder to treat that character literally, not as a

wildcard. For example, \^ matches ^ and does not look for the start of a line.

View menu
Use the commands on the View menu to display or hide different elements of the C++Builder
environment and to open windows that belong to the integrated debugger.
The commands on the View menu are:
Project Manager Displays the Project Manager
Project Source Opens the project source file in the Code editor
Project Makefile Opens the project .MAK file in the Code editor
Object Inspector Displays the Object Inspector
Alignment Palette Displays the Alignment Palette
Component List Displays the Components dialog box
Window List Displays a list of open windows
Call Stack Displays the Call Stack dialog box
Threads Displays the threads status box
CPU Displays the CPU window
Breakpoints Displays the Breakpoints List dialog box
Watches Displays the Watch List dialog box
Toggle Form/Unit Toggles the inactive form or unit window active
Units Displays the View Unit dialog box
Forms Displays the View Form dialog box
New Edit Window Opens a new page in the Code editor
Toolbar Hides or shows the toolbar
Component Palette Hides or shows the Component Palette

View | Project Manager
See also
Choose View|Project Manager to open the Project Manager. If the Project Manager is already open, it
becomes the active window.
Use the Project Manager window to add, delete, save, or copy a file to the current project. The Project
Manager also contains a listing of all the units and their associated forms used in the current project.

Units are listed in the Project Manager even if they are not currently open.
You can position the Project Manager anywhere on your desktop.

View | Project Source
See also
Choose View|Project Source to display the project file for the current project and make it the active page
in the Code editor. If the project source file is not currently open when you choose this command, C+
+Builder opens it for you.
An alternative way to perform this command is
Choose View Project Source from the Project Manager context menu.

View | Project Makefile
See also
Choose View|Project Makefile to open and display the .MAK file for the current project in the Code
editor. If the .MAK file is not currently open when you choose this command, C++Builder opens it for
you.

View | Object Inspector
See Also
Choose View|Object Inspector to toggle between the Object Inspector and the last active form or Code
editor file. If you have closed the Object Inspector, choose this command to reopen it.
Use the Object Inspector to edit property values and event-handler links at design time.

View | Alignment Palette
See Also
Choose View|Alignment Palette to display the Alignment Palette, which you use to align components
that you have placed on the form. Using the Alignment palette, you can arrange a set of radio buttons so
they are all left-aligned, or make sure that a set of components are evenly spaced in your form.

You can also align components by using the Alignment dialog box.

View | Watches
Choose View|Watches to open the Watch List window.
The Watch List window displays all the currently set watch expressions.
If you keep this window open during your debugging sessions, you can monitor how your program
updates the values of important variables as the program runs.

View | Threads
Choose View|Threads to view the Threads status box.
Use this status box to view the status of all the threads currently executing in the application being
debugged.

View | CPU
Choose View|CPU to display the CPU window.

View | Breakpoints
Choose View|Breakpoints to open the Breakpoint List window.
The Breakpoint List window lists all currently set breakpoints.
Each breakpoint listing shows the following:

The file in which the breakpoint is set
The line number of the breakpoint
Any condition or pass count associated with the breakpoint

View | Call Stack
Choose View|Call Stack to open the Call Stack window.
The Call Stack window lists the current sequence of routines called by your program. In this listing, the
most recently called routine is at the top of the window, with each preceding routine call listed beneath.
Each entry in the Call Stack window displays the procedure name and the values of any parameters
passed to it.

View | Component List
See Also
Choose View|Component List to display the Components window.

Components window
Use this window to add components to your forms using the keyboard.

Search By Name
Enter the name of the component you want to add. This list box performs an incremental search so that
the cursor moves to the first component containing the letters you type.

Component
Select the component you want to add. Components are listed in alphabetical order, and their button
representation is on the left.
When you select a component, its name appears in the Search edit box.

Add To Form
Click Add To Form to place an instance of the selected component in the center of the form. You can
select Add To Form by pressing Enter.

To add the component you selected in the Component list box, do one of the following,
Press Enter.
Double-click the component name.
Click the Add to Form button.
When you add a component to a form using the keyboard, C++Builder uses the default

component size and adds the component to the center of the form unless a container component (such
as a group box or panel) is selected.

If a container component is selected, C++Builder places the component you are adding in the center
of that container. To add a component into a container you must select the container before selecting
Add To Form.

View | Toggle Form/Unit
Choose View|Toggle Form/Unit to display either the inactive form or the unit associated with the active
form or unit.
Alternative ways to perform this command are:

Choose the Toggle Form/Unit button from the ToolBar.
Choose View Unit or View Form from the Project Manager context menu.

View | Units
Choose View|Units to display the View Unit dialog box.

View Unit dialog box
Use this dialog box to open the project file or any unitin the current project. When you choose a unit, it
becomes the active page in the Code editor.
If the unit you want to open is not currently open, C++Builder will open it.
Alternative ways to perform this command are:

Choose the Select Unit From List button from the toolbar.
Choose View Unit from the Project Manager context menu.

View | Forms
Choose View|Forms to display the View Form dialog box.

View Form dialog box
Use this dialog box to quickly open any form in the current project. When you select a form, it becomes
the active form, and its associated unit becomes the active module in the Code editor.
If the associated unit is not open when you select a form, C++Builder opens it.
Alternative ways to perform this command are:

Choose the Select Form From List button from the toolbar.
Choose View Form from the Project Manager context menu.

View | Window List
Choose View|Window List to display the Window List dialog box.

Window List dialog box
Use this dialog box to make an inactive C++Builder window active. If you have a lot of windows open,
this is the easiest way to locate a specific window. The Windows List dialog box displays all the open C+
+Builder windows.

To select a window, do one of the following:
Double-click the window name.
Select the window name and click OK.

View | New Edit Window
Choose View|New Edit Window to open a new Code editor that contains a copy of the active page from
the original Code editor.
Any changes you make to either the original or the copy are reflected in both files.
So that you can distinguish between the windows, the caption in the original window is postfixed with a
1, the first copy with a 2, the second copy with a 3, and so on.
An alternate way to perform this command is:
Right click the Code editor and choose New Edit Window.

View | Toolbar
Choose View|Toolbar to show or hide the toolbar.
When this command is checked, the toolbar is visible.
An alternative way to hide the toolbar is,
Choose Hide from the toolbar context menu.

View | Component Palette
See Also
Choose View|Component Palette to show or hide the Component palette.
When this command is checked, the Component palette is visible.
An alternative way to hide the Component palette is,
Choose Hide from the Component palette context menu.

Project menu
Use the Project menu to compile or build your application. You need to have a project open.
The commands on the Project menu are:
Add to Project Enables you to add a file to a project
Remove from Project Enables you to remove a file from a project
Add To Repository Enables you to easily add a project to the Object Repository
Compile Unit Compiles any source code that has changed since the last compile
Make Compiles everything in the project, regardless of whether source has changed
Build All Compiles everything in the project, regardless of whether source has changed
Information Displays all the build information and build status for your project

Project | Add to Project
See also
Choose this command to open the Add To Project dialog box.

Add To Project dialog box
Use the Add To Project dialog box to add an existing unit and its associated form to the C++Builder
project. When you add a unit to a project, C++Builder automatically references that unit by adding an
#include statement to the project .MAK file.

File Name
Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose the type of file you want to open; the default file type is Source file (.CPP). All files in the current
directory of the selected type appear in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the List Files Of Type combo box appear in the
Files list box.

Drives
Select the current active drive. The directory structure for the current drive appears in the Directories list
box.

Project | Remove From Project
See also
Choose this command to open the Remove From Project dialog box.

Remove From Project dialog box
Use this dialog box to select a module to remove from the current project. When you remove a .CPP
unit, C++Builder removes the selected module from the current project file but, does not delete the file
from your disk. If you have manually coded references to the unit in your source code, you must
manually remove those references.
If you have modified the file you are removing during this editing session, C++Builder prompts you to
save your changes, just in case you want to use the form or unit in another project. If you have not
modified the file, C++Builder removes that file from the project without prompting you.

Do not delete unit files by using other file management programs, or directly from the DOS
prompt. Doing so will cause errors.

Project | Add To Repository
See also
Choose this command to open the Save As Template dialog box. Use this command to add a projects,
forms, and units to the Object Repository.
By adding your own projects, forms, and units to those already available in the Object Repository, you
can easily share object across your organization. This is helpful in situations where you want to enforce
a standard framework for programming projects throughout an organization.

Project | Compile Unit
See also
Use this command to compile a single unit in your project. To do so:
1. Make the unit you want to compile the active selection in the Code editor or Project Manager window.
2. Choose the Project|Compile Unit.
The hourglass cursor appears (or the Progress dialog box displays if you checked Show Compiler
Progress on the Preferences page on the Options|Environment dialog box) and indicates that a compile
is in progress. The cursor returns to normal if the compiler finds no errors.

If an error is found when the Code editor is not open, the Message window displays an error
message. If you double-click the message, the Code editor displays the source file positioned at the line
where the error ocurred.

If an error is found when the Code editor is open, then
the Code editor window comes to the front.
the unit source file page containing the error comes to the top of the Code editor.
the line containing the error is highlighted in the Code editor.
the Code editor message pane displays an error message.

Context-sensitive help regarding the error message is available by pressing F1.

Project | Make
See also
Choose this command to compile all files in the current project that have changed since it was last built
into a new executable file (.EXE). This command is simiilar to Project|Build All, except that Project|Make
builds only those files that have changed whereas Project|Build All rebuilds all files whether they have
changed or not.

When you choose this command
The compiler compiles source code for each unit if the source code has changed since the last

time the unit was compiled.
If a unit contains an include (.H) file, and the include file is newer than the unit’s .OBJ file, the unit

is recompiled.
Once all the units that make up the project have been compiled, C++Builder links them into an
executable file (or dynamic link library). This file is given an .EXE (or .DLL) file extension and the same
file name as the project source code file. This file now contains all the compiled code and forms found in
the individual units, and the program is ready to run.
If you checked Show Compiler Progress from the Preferences page on the Options|Environment dialog
box, the Progress dialog box displays information about the compilation progress and results. When
your application successfully compiles, choose OK to close the Progress dialog box.

Project | Build All
See also
Choose this command to rebuild all the components of your application regardless of whether they have
changed.
This command is similar to Project|Make except that Project|Build All rebuilds everything whereas
Project|Make rebuilds only those files that have been changed since the last build. When you choose
Build All, precompiled headers and files generated by the incremental linker are deleted and
regenerated.

This command is useful when you are unsure of exactly which files have or have not been
changed, or when you simply want to ensure that all files are current and synchronized. It’s also important
to Build All when you’ve changed global compiler directives or compiler options, to ensure that all code
compiles in the proper state.

Project | Information
Choose this command to open the Information dialog box.

Information dialog box
Use this dialog box to view the program compilation information and compilation status for your project.

Program Information
The Program Information options provide you with information about your project.

Options What it lists
Source Compiled Total number of lines compiled
Code Size Total size of the executable or DLL without debug information
Data Size Memory needed to store the global variables
Initial Stack Size Memory needed to store the local variables

Status Information
The Status Information line displays whether or not your last compile succeeded or failed.

Run menu
The Run menu contains commands that provide a way for you to debug your program from within C+
+Builder. The following commands form the core functionality of the integrated debugger.
Run Compiles and executes your application
Parameters Specifies startup parameters for your application
Step Over Executes a program one line at a time, stepping over functions while

executing them as a single unit
Trace Into Executes a program one line at a time, tracing into functions and

following the execution of each line
Trace To Next Source Line Executes the program, stopping at the next executable source line in

your code
Run To Cursor Runs the loaded program up to the location of the cursor in the Code

Editor window
Show Execution Point Positions the cursor at the execution point in an edit window
Program Pause Temporarily pauses the execution of a running program
Program Reset Ends the current program run and releases it from memory
Evaluate/Modify Opens the Evaluate/Modify dialog box, where you can evaluate or

change the value of an existing expression
Inspect Opens the Inspect dialog where you can examine the value of a variable

or expression
Add Watch Opens the Watch Properties dialog box, where you can create and

modify watches
Add Breakpoint Opens the Edit Breakpoint dialog box, where you can create and modify

breakpoints
The integrated debugger commands become accessible when you generate symbolic debug

information for the project you are working on.

Run | Run
Choose Run|Run to compile and execute your application, using any startup parameters you specified
in the Parameters dialog box.
If you have modified the source code since the last compilation, the compiler recompiles those changed
modules and relinks your application.
If the compiler encounters an error, it displays an Error dialog box. When you choose OK to dismiss the
dialog box, the Code editor places the cursor on the line of code containing the error.
The compiler builds .EXE files according to the following rules:

The project (.MAK) file is always recompiled.
If the source code of a unit has changed since the last time the unit was compiled, the unit is

recompiled. When a unit is compiled, C++Builder creates a file with a .OBJ extension for that unit.
If C++Builder cannot locate the source code for a unit, that unit is not recompiled.

If a unit contains an include file and the include file has changed, the unit is recompiled.

Run | Parameters
Choose Run|Parameters to open the Parameters dialog box.

Parameters dialog box
Use this dialog box to pass command-line parameters to your application when you run it, just as if you
were running the application from the Program Manager File|Run menu.

Run Parameters
Enter the parameters you want to pass to your application when it starts, or use the drop-down button to
choose from a history of previously specified parameters. Parameters take effect only when your
application is started. Do not enter the application name in this edit box.

Run | Step Over
See also
Choose Run|Step Over to execute a program one line at a time, stepping over functions while executing
them as a single unit.
The Step Over command executes the program statement highlighted by the execution point and
advances the execution point to the next statement.

If you issue the Step Over command when the execution point is located on a function call, the
debugger runs that function at full speed, then positions the execution point on the statement that follows
the function call.

If you issue Step Over when the execution point is positioned on the closing brace of a function,
the function returns from its call, and the execution point is placed on the statement following the function
call.
The debugger considers multiple program statements on one line of text as a single line of code; you
cannot individually debug multiple statements contained on a single line of text. The debugger also
considers a single statement that spans several lines of text as a single line of code.
By default, when you initiate a debugging session with Run|Step Over, C++Builder moves the execution
point to the program entry point (this is normally WinMain or main).
In addition to stepping over procedures, you can trace into them, following the execution of each line.
Use Run|Trace Into to execute each line of a function.
An alternative way to perform this command is:
Choose the Step Over button on the toolbar.

Run | Trace Into
See also
Choose Run|Trace Into to execute a program one line at a time, tracing into functions and following the
execution of each line.
The Trace Into command executes the program statement highlighted by the execution point and
advances the execution point to the next statement.

If you issue the Trace Into command when the execution point is located on a function call, the
debugger traces into the function, positioning the execution point on the function’s first statement.

If you issue Step Over when the execution point is positioned on the closing brace of a function,
the function returns from its call, and the execution point is placed on the statement following the function
call.

If the execution point is located on a function call that does not have debugging information, such
as a library function, the debugger runs that function at full speed, then positions the execution point on
the statement following the function call.
By default, when you initiate a debugging session with Run|Trace Into, C++Builder moves the execution
point to the first instruction in the program’s startup code.
In addition to tracing into procedures, you can step over them, executing each procedure as a single
unit. Use Run|Step Over to execute procedures as a single unit.
An alternative way to perform this command is:
Choose the Trace Into button on the toolbar.

Run | Trace To Next Source Line
Use this command to stop on the next source line in your application that contains debug information,
regardless of the control flow. For example, if you select this command when stopped at a Windows API
call that takes a callback function, control will return to the next source line, which in this case is the
callback function.

Run | Run To Cursor
Choose Run|Run To Cursor to run the loaded program up to the location of the cursor in the Code editor.
When you run to the cursor, your program is executed at full speed, then pauses and places the
execution point on the line of code containing the cursor.
You can use Run To Cursor to run your program and pause before the location of a suspected problem.
You can then use Run|Step Over or Run|Trace Into to control the execution of individual lines of code.
An alternative way to perform this command is:
Right click the Code editor and choose Run To Cursor.

Run | Show Execution Point
Choose Run|Show Execution Point to position the cursor at the execution point in an Code editor. If you
closed the edit window containing the execution point, C++Builder opens an edit window displaying the
source code at the execution point.
If the execution point is at a location where there is no source code, this command will not work.

Run | Program Pause
Choose Run|Program Pause to temporarily pause the execution of a running program.
The debugger pauses program execution and positions the execution point on the next line of code to
execute. You can examine the state of your program in this location, then continue debugging by
running, stepping, or tracing.
In addition to temporarily pausing a program running in the debugger, you can also stop a program and
release it from memory. Use Run|Program Reset to stop a running program and release it from memory.

Run | Program Reset
Choose Run|Program Reset to end the current program run and release it from memory.
Use Program Reset to restart a program from the beginning, such as when you step past the location of
a bug, or if variables or data structures become corrupted with unwanted values.
When you reset a program, C++Builder performs the following actions:

Closes all open program files
Clears all variable settings

Resetting a program does not delete any breakpoints or watches you have set, which makes it easy to
resume a debugging session.

Windows resources
Resetting a program does not necessarily release all Windows resources allocated by your program. In
most cases, all resources allocated by VCL routines are released. Windows resources allocated by code
which you have written, however, might not be properly released.
If your system becomes unstable, through either multiple hardware or language exceptions or through a
loss of system resources as a result of resetting your program, you should exit C++Builder before
restarting your debugging session.

Run | Inspect
See also
Choose Inspect to open an Inspector window for the term highlighted (or at the insertion point) in the
Code editor. If the insertion point is on a blank space when you choose this command, an empty
Inspector window displays where you can enter an item you want to inspect.
This command is only available when the integrated debugger is paused in a program you are
debugging, such as when

you are stepping through code.
your program is stopped at a breakpoint.
you first choose Run|Run and then choose Run|Pause.

An alternate way to perform this command is:
Right click the Code editor and choose Inspect.

Run | Evaluate/Modify
This command opens the Evaluate/Modify dialog box, where you can evaluate or change the value of an
expression.
An alternate way to perform this command is:
Right click the Code editor and choose Evaluate/Modify.

Run | Add Watch
The Add Watch command opens the Watch Properties dialog box, where you can create and modify
watches. After you create a watch, use the Watch List window to display and manage the current list of
watches.
Alternate ways to perform this command are:

Right-click the Code editor and choose Add Watch at Cursor.
Right-click the Watch List and choose Add Watch.
Select a watch in the Watch List, then right-click and choose Edit Watch.

Run | Add Breakpoint
The Add Breakpoint command opens the Edit Breakpoint dialog box, where you can create and modify
breakpoints.
Alternate ways to perform this command are:

Right-click the Breakpoint List and choose Add Breakpoint.
Select a breakpoint in the Breakpoint List, then right-click and choose Edit Breakpoint.

Component menu
Use the Component menu to build a component, install a new component, rebuild the component library
or configure the Component palette.
The options on the Component menu are:
New Opens the Component wizard
Install Installs new components
Open Library Opens component library file
Rebuild Library Recompiles the component library
Configure Palette Opens the Palette dialog box

Component | New
See Also
Choose Component|New to display the Component wizard. You can also display this wizard by
choosing File|New and selecting Component from the Object Repository.

Component Wizard
Use this Wizard to create the basic unit for a new component.

Class Name
Enter the name of the new class you are creating. A general rule is that all visual component classes are
prefaced with a T. For example, the name of your new button component could be TMYBUTTON.

Ancestor type
Use the drop-down list to select a base class or enter the name of a base class for your new
component. Unless you override them in the component declaration, your new component will inherit all
the properties, methods, and events from its ancestor class.

Palette Page
Use the drop-down list to select a page, or enter the name of the page on which you want your new
component to appear when you add it to the library.

Component | Install
See Also
Use Component|Install to display the Install Components dialog box.

Install Components
Use this dialog box to install new components. If a project is open when you choose Component|Install,
C++Builder prompts you to save any changes made to the current project when you choose the OK
button in this dialog box.

Library Filename
Enter the name of the library file you want to build.

Search Path
Enter the path you want the compiler and linker to search when the component library is rebuilt.

Installed Components
Displays the components that are already installed. When you select a component, its classes are
displayed in the Component Classes list box.

Component Classes
Displays the classes that are defined in the unit selected in the Installed Components list box.

Add
Click Add to add a new unit. This button displays the Add Module dialog box, where you enter the new
unit or module name.

ActiveX
Click ActiveX to add an OLE control to the Component palette. This button displays the Import OLE
Control dialog box, where you can select an OCX control to install.

Remove
Click Remove to remove the selected unit and its components from the Component palette.

Revert
Click Revert to discard your changes if you get an error while building the library. The file will revert to its
previous state.

Add Module dialog box
Use the Add Module dialog box to add a new unit to the Component Library Unit list.

To open this dialog box,
Choose Component|Install, and click the Add button in the Install Component dialog box.

Module Name
Enter the unit name in the Module Name edit box. If you don't include a file extension, the following
extensions will be searched: .CPP, .PAS, .OBJ.

Browse
Click Browse to use the Add Module Browse dialog box to search for the name of the unit you want to
install.

Add Module Browse dialog box
Use the Add Module Browse dialog box to search drives and directories to find the file you want to add.

To open this dialog box,
Choose Component|Install, and click the Add button in the Install Component dialog box. Then click
Browse to see the Add Module dialog box, and click the Browse button.

Look in
The drop down list box displays the current directory. Use the list box or the buttons next to it to change
directories or drives.
Displays the files in the current directory that match the file type in the Files of Type combo box.

File Name
Enter the name of the file you want to load, or enter wildcards to use as filters in the Files list box.

Files of Type
Choose the type of file you want to open. The default file type is .CPP. All files in the current directory of
the selected type appear in the Files list box. (You may add .CPP, .PAS, or .OBJ files.)

Import OLE Control dialog box
Use the Import OLE Control dialog box to specify the OCX control you want to install.

To open this dialog box,
Click the ActiveX button on the Install Components dialog box.

Registered controls
Displays the names of the OLE control libraries that are registered on your system. To select an OLE
control library for import, click on the entry in the listbox. When you select a control library, the name of
the corresponding library is shown below the listbox.

Register button
Click on this button to open the Register OLE control dialog box where you can add OLE controls that
aren't currently registered. An OLE control must be registered before you can import it into C++Builder.

Unregister button
Unregisters the currently selected OLE control by removing it from the system registry. Unregistering an
OLE control does not actually delete the control; it merely removes its registration information from the
system registry.

Unit File name
The name of the import unit generated by C++Builder. When you import an OLE control library, C+
+Builder generates an interface unit that contains a class declaration for each OLE control in the library.
By default, the import unit is placed in the first directory listed in the library search path.

Browse button
Allows you to browse for a directory in which to place the import unit.

Palette Page
Specifies on which page of the Component palette C++Builder will install the OLE control. The ActiveX
page of the Component palette is the default page for OLE controls. If you enter the name of a page that
does not exist, C++Builder creates a new page with that name on the Component palette.

Class names
Displays the suggested class names of the OLE controls found in the selected OLE control library.
Unless another OLE control library uses the same class names, you should have no reason to change
these. If you do make changes, it is strongly suggested that you start each class name with a “T” as is
the C++Builder convention.

OK and Cancel buttons
When you press OK, C++Builder generates an import unit by the specified name and returns to the
“Install Components” dialog box, adding the newly generated unit to the list of installed units.

Unit File Name dialog box
Use the Unit File Name dialog box to change the directory where C++Builder stores the import unit
generated for the OLE control.

To open this dialog box,
Click the Browse button in the Import OLE Control dialog box.

File Name
Enter the name for the generated import unit. C++Builder generates a Pascal file, OCXName.PAS,
which contains class definitions of a proxy to that control. The .PAS file is compiled to a .OBJ and .HPP
header file that can be included by the .CPP program file to use and manipulate the OCX. The .OBJ file
is used by the linker when building the program.

Files
Displays the files in the current directory that match the file type in the Save File As Type combo box.

Save As Type
The source file type is .PAS.

Save in
Select the directory where you want the unit stored. Use the buttons to change directories and drives.

Component | Open Library
Choose Component|Open Library to display the Open Library dialog box.

Open Library dialog box
You use this dialog box to install a dynamic component library (.CCL). If a project is open when you
choose Component|Open Library, C++Builder prompts you to save any changes made to the current
project.

Look in
Select the directory whose contents you want to view. Use the buttons to change directories or drives.

File Name
Enter the name of the file you want to load, or enter wildcards to use as filters in the Files list box.

Files Of Type
Choose the type of file you want to open. The default file type is Library file (.CCL). All files in the current
directory of the selected type appear in the Files list box.

Component | Rebuild Library
Choose Component|Rebuild Library to recompile the existing component library without leaving the C+
+Builder environment.
In order to recompile the library, C++Builder must close the open project. Therefore, before C++Builder
recompiles the library, C++Builder prompts you to save any changes you might have made to the open
project.

Component | Configure Palette
Displays the Environment Options dialog box with the Palette tab selected.

Database menu
The Database menu contains commands that enable you to create, modify, track, and view your
databases.
The Database menu provides the following commands:
Explore
SQL Monitor
Database Form wizard

Database | Explore
Choose Database|Explore to open the SQL/Database Explorer. The SQL/Datbase Explorer enables you
to maintain a persistent connection to a remote database server during application development and to
create and edit BDE aliases and metadata objects.

Database | SQL Monitor
Choose Database|SQL Monitor to open the SQL Monitor. The SQL Monitor enables you to see the
actual statement calls made through SQL Links to a remote server or through the ODBC socket to an
ODBC data source.

Database | Database Form wizard
See also
Choose Database|Form wizard to use the Database Form wizard to create a form that displays data
from a local or remote database.

Using the Database Form wizard
The Database Form Designer enables you to easily generate a form that displays data from an external
InterBase, Paradox, dBase, or ORACLE database.
The Database Form wizard helps you create two types of database forms:

Simple database forms
Master/detail forms

The tool automates such form building tasks as:
Connecting the form to Table and Query components
Writing SQL statements for Query components
Placing interactive and non-interactive components on a form
Defining a tab order
Connecting DataSource components to interactive components and Table/Query components

Update SQL editor
Use the Update SQL editor to create SQL statements for updating a dataset.

The Update SQL editor
The Update SQL editor has two pages, the Options page and the SQL page.

The Options page
The Options page is visible when you first invoke the editor.

Table Name combo box
Use the Table Name combo box to select the table to update. When you specify a table name, the Key
Fields and Update Fields list boxes are populated with available columns.

Update Fields list box
The Update Fields list box indicates which columns should be updated. When you first specify a table,
all columns in the Update Fields list box are selected for inclusion. You can multi-select fields as desired.

Key Fields list box
The Key Fields list box is used to specify the columns to use as keys during the update. Generally the
columns you specify here should correspond to an existing index, especially for local Paradox and
dBASE tables, but having an index is not a requirement.

Select Primary Keys button
Click the Primary Key button to select key fields based on the primary index for a table.

Generate SQL button
After you specify a table, select key columns, and select update columns, click the Generate SQL button
to generate the preliminary SQL statements to associate with the update component’s ModifySQL,
InsertSQL, and DeleteSQL properties.

Dataset Defaults button
Use this button to restore the default values of the associated dataset. This will cause all fields in the
Key Fields list and the Update Fields list to be selected and the table name to be restored.

The SQL page
To view and modify the generated SQL statements, select the SQL page. If you have generated SQL
statements, then when you select this page, the statement for the ModifySQL property is already
displayed in the SQL Text memo box. You can edit the statement in the box as desired.

Keep in mind that generated SQL statements are intended to be starting points for creating
update statements. You may need to modify these statements to make them execute correctly. Test
each of the statements directly yourself before accepting them.
Use the Statement Type radio buttons (Modify, Insert, and Delete) to switch among generated SQL
statements and edit them as desired.
To accept the statements and associate them with the update component’s SQL properties, click OK.

Index Files editor
For dBASE tables that use non-production indexes set the IndexFiles property to the name of the index
file(s) to use before you set IndexName. At design time you can click the ellipsis button in the
IndexFiles property value in the Object Inspector to invoke the Index Files editor.
To see a list of available index files, choose Add, and select one or more index files from the list. A
dBASE index file can contain multiple indexes. To select an index from the index file, select the index
name from the IndexName drop-down list in the Object Inspector. You can also specify multiple indexes
in the file by entering desired index names, separated by semicolons.

Query Parameters editor
At design time, the easiest and safest way to enter query parameters is to invoke the Query Parameters
editor. The Query Parameters editor lists parameters in the correct order, and lets you assign values to
them.

To invoke the Query Parameters editor:
1 Select the query component.
2 Right-click the component to invoke the SpeedMenu.
3 Choose Define Parameters.

Using the Query Parameters editor
For queries without previously defined parameters, the Parameter name list box is empty. When you
define parameters, this list box displays them.

Data type combo box
The Data type combo box lists the data type for a parameter selected in the list box. If you add a
parameter to the list, you must set its data type.

Value edit box
The Value edit box enables you to enter a value for a selected parameter, and the Null Value check box
enables you set a Null value for the selected parameter if its data type permits Null values.

Defining parameters at design time also prepares the query for execution. A query with
parameters must be prepared before it can be executed at run time. To signal the end of parameter
definition, choose OK.

StoredProc Parameters editor
Many stored procedures require you to pass them a series of input arguments, or parameters, to specify
what and how to process. You specify input parameters in the Params property. The order in which you
specify input parameters is significant, and is determined by the stored procedure definition on the
server.
At design time, the easiest and safest way to enter input parameters is to invoke the StoredProc
Parameters editor. The StoreProc Parameters editor lists input parameters in the correct order, and lets
you assign values to them.

To invoke the StoredProc Parameters editor:
1 Select the stored procedure component.
2 Right-click the component to invoke the SpeedMenu.
3 Choose Define Parameters.

Parameter name list box
The Parameter name list box displays all input, output, and result parameters for the procedure.
Information on input and output parameters is retrieved from the server. For some servers (such as
Sybase), parameter information may not be accessible. In this case, the Parameter name list box is
empty, and you must add the names and order of input and output parameters in order to use the
procedure.

Parameter type combo box
The Parameter type combo box describes whether a parameter selected in the list box is an input,
output, or results parameter. If a server’s stored procedure allows it, a single parameter may be both an
input and output. If you add a parameter to the list, you must set the parameter type for it.

Data type combo box
The Data type combo box lists the data type for a parameter selected in the list box. If you add a
parameter to the list, you must set its data type.

Value edit box
The Value edit box enables you to enter a value for a selected input parameter, and the Null Value check
box enables you set a Null value for the selected input parameter if its data type supports Null values.

Add button
The Add button enables you to add parameters to a stored procedure definition when your server does
not pass the information to C++Builder. The Delete button enables you to remove parameters you have
added, and the Clear button removes all parameters from the list. Do not add, delete, or clear
parameters for servers that pass parameter information to C++Builder except if you are working with
Oracle overloaded stored procedures.

Defining parameters at design time also prepares the stored procedure for execution. A stored
procedure must be prepared before it can be executed at run time. To signal the end of parameter
definition, choose OK.

Field Link designer
At design time, double-click on the MasterFields property in the Object Inspector to invoke the Field
Link designer.

Using the Field Link designer
The Field Link Designer provides a visual way to link master and detail tables.

Available Indexes combo box
The Available Indexes combo box shows the currently selected index used to join the tables. Unless you
specify a different index name in the table’s IndexName property, the default index used for the link is
the primary index for the table. Other available indexes defined on the table can be selected from the
drop-down list.

To link master and detail tables:
1 Select the field to use to link the detail table in the Detail Fields list
2 Select the field to link the master table in the Master Fields list.
3 Choose Add.

For tables on a database server, the Available Indexes combo box will not appear, and you must
manually select the detail and master fields to join in the Detail Fields and Master Fields list boxes.

Tools menu
See Also
The Tools menu lets you run programs, tools, and utilities without leaving the C++Builder. To run a
program from the Tools Menu, choose the program you want from the list of available tools.
Items listed under the Tools menu can also show preinstalled or user-installed standalone programs
such as GREP. When you choose a program from the menu, control transfers to it. Some programs,
such as GREP, transfer control back to the C++Builder after the program is through running.
Program arguments are specified in the Options|Tools dialog box and are passed when the program is
invoked. If a program requires arguments to be entered at runtime, you can supply them on the Tool
Properties dialog box.
The default Tools menu provides the following commnds:
Configure Tools Opens the Configure Tools dialog box. Use this dialog box to add, delete, or edit

the programs displayed on the Tools menu.
Image Editor Invokes the Image editor where can you create and edit images to use in your

project.
Database Desktop Runs the Database Desktop applicaton, a database maintenance and data

definition tool.

Tools | Configure Tools
See Also
Choose Tools|Configure Tools to display the Configure Tools dialog box that lets you add, delete, or edit
programs displayed on the Tools menu.

Configure Tools dialog box
The Configure Tools dialog box provides the following options:

Tools
Lists the programs currently installed on the Tools menu.

Add
Click Add to display the Tool Properties dialog box, where you can specify a menu name, a path, and
startup parameters for the program.

Delete
Click Delete to remove the currently selected program from the Tools menu.

Edit
Click Edit to display the Tool Properties dialog box, where you can edit the menu name, the path, or the
startup parameters for the currently selected program.

Arrow
Use the arrow buttons to rearrange the programs in the list. The programs appear on the Tools menu in
the same order they are listed in the Tool Options dialog box.

To add a program to the tools menu,
Choose Add. C++Builder displays the Tool Properties dialog box, where you specify information

about the application you are adding.

To delete a program from the tools menu,
Select the program to delete, and choose Delete. C++Builder prompts you to confirm the deletion.

To change a program on the tools menu,
Select the program to change, and choose Edit. C++Builder displays the Tool Properties dialog

box with information for the selected program.

Tool Properties dialog box
See Also
Use the Tool Properties dialog box to enter or edit the properties for a program listed on the Tools menu.

To display the Tool Properties dialog box,
Click Add or Edit in the Tool Options dialog box.

Title
Enter a name for the program you are adding. This name will appear on the Tools menu.
You can add an accelerator to the menu command by preceding that letter with an ampersand (&). If you
specify a duplicate accelerator, C++Builder displays a red asterisk (*) next to the program names in the
Tool Options dialog box.

Program
Enter the location of the program you are adding. You can include the full path to the program. Click the
Browse button to search your drives and directories to locate the path and file name for the program.

Working Dir
Specify the working directory for the program. C++Builder specifies a default working directory when you
select the program name in the Program Edit Box. You can change the directory path if needed.

Parameters
Enter parameters to pass to the program at startup. For example, you might want to pass a file name
when the program launches. You can type the parameters or use the Macros button to supply startup
parameters. You can specify multiple parameters and macros.

Browse
Click Browse to select the program name for the Program edit box. When you click Browse, the Select
Transfer Item dialog box opens.

Macros
Click Macros to expand the Tool Properties dialog box to display a list of available macros. You can use
these macros to supply startup parameters for your application.

To add a macro to the list of parameters,
Select a macro from the list and click Insert.

Transfer macros
See Also
Use transfer macros to supply startup parameters to a program on the Tools menu.

To display the macros,
Click the Macros button on the Tool Properties dialog box.

The transfer macros are:

Macro Description
$COL Expands to the column number of the cursor in the active Code editor window.

For example, if the cursor is in column 50, at startup C++Builder passes "50" to the
program.

$ROW Expands to the row number of the cursor in the active Code editor window.
For example, if the cursor is in row 8, at startup C++Builder passes "8" to the program.

$CURTOKEN Expands to the word at the cursor in the active Code editor window.
For example, if the cursor is on the word Token, at startup C++Builder passes "Token"
to the program.

$PATH Expands to the directory portion of a parameter you specify. When you insert the
$PATH macro, C++Builder inserts $PATH() and you specify a parameter within the
parentheses.
For example, if you specify $PATH($EDNAME), at startup C++Builder passes the path
for the file in the active Code editor window to the program.

$NAME Expands to the file name portion of a parameter you specify. When you insert the
$NAME macro, C++Builder inserts $NAME() and you specify a parameter within the
parentheses.
For example, if you specify $NAME($EDNAME), at startup C++Builder passes the file
name for the file in the active Code editor window to the program.

$EXT Expands to the file extension portion of a parameter you specify. When you insert the
$EXT macro, C++Builder inserts $EXT() and you specify a parameter within the
parentheses.
For example, if you specify $EXT($EDNAME), at startup C++Builder passes the file
extension for the file in the active Code editor window to the program.

$EDNAME Expands to the full file name of the active Code editor window.
For example, if you are editing the file C:\PROJ1\UNIT1.PAS, at startup C++Builder
passes "C:\PROJ1\UNIT1.PAS" to the program.

$EXENAME Expands to the full file name of the current project executable.
For example, if you are working on the project PROJECT1 in C:\PROJ1, at startup C+
+Builder passes "C:\PROJ1\PROJECT1.EXE" to the program.

$PARAMS Expands to the command-line parameters specified in the Run Parameters dialog box.
$PROMPT Prompts you for parameters at startup. When you insert the $PROMPT macro, C+

+Builder inserts $PROMPT() and you specify a default parameter within the
parentheses.

$SAVE Saves the active file in the Code editor.
$SAVEALL Saves the current project.
$TDW Sets up your environment for running Turbo Debugger. For example, this macro saves

your project, ensures that your project is compiled with debug info turned on, and
recompiles your project if it is not compiled with debug info turned on. Be sure to use

this macro if you add Turbo Debugger to the Tools menu.

Select Transfer Item dialog box
See Also
Use the Select Transfer Item dialog box to search drives and directories for a program to add to the
Tools menu.

To locate a transfer item,
Click the Browse button on the Tool Properties dialog box.

File Name
Enter the name of the file you want to load, or enter wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose the type of file you want to open. The default file types are .EXE, .COM, and .PIF files. All files
in the current directory of the selected type appear in the Files list box.

Directories
Select the directory whose contents you want to view. Files in the current directory that match the
wildcards in the File Name edit box or the file type in the List Files Of Type combo box appear in the
Files list box.

Tools | Image Editor
Choose this command to invoke the Image editor that lets you create and edit images you want to use in
your application.

Tools | Database Desktop
See Also
The Database Desktop (DBD) is a database maintenance and data definition tool. It enables you to
query, restructure, index, modify, and copy database tables, including Paradox, dBASE, and SQL tables.
It also enables you to create new Paradox and dBASE tables. You do not have to own Paradox or
dBASE to use the DBD with desktop files in these formats.
The DBD can copy data and data dictionary information from one format to another. For example, you
can copy a Paradox table to an existing database on a remote SQL server. For a complete description of
the DBD, see Database Desktop Contents.

To open the Database Desktop,
Choose Tools|Database Desktop.

Adding programs to the Tools menu
See Also
The commands on the Tools menu transfer execution to an external application. You can add programs
to, delete programs from, or edit programs on the Tools menu.

To add a program to the tools menu,
1. Choose Tools|Tools.

C++Builder displays the Tool Options dialog box, which lists the programs currently on the Tools
menu.

2. Choose Add.
C++Builder displays the Tool Properties dialog box.

3. Specify a title for the program. The title you specify will be listed on the Tools menu.
4. Specify the program file or choose Browse to select it from a list.
5. Specify the working directory for the program, if necessary.
6. Specify startup parameters for the program, if necessary. You can type the parameters or use the

Macros button to supply startup parameters. You can specify multiple parameters and macros.
7. Choose OK.

C++Builder closes the Tool Properties dialog box. The new program is on the Tools list in the Tool
Options dialog box.

8. Choose Close.
C++Builder closes the Tool Options dialog box. The new program is on the Tools menu.

C++Builder version control interface
See also
After you have created more than one application or source code file with C++Builder, you may want a
way to organize and keep track of the programs. You may want to archive old versions of an application
before you start to work on the new version. If you work with a team of programmers, you will need a
way to coordinate which programmers have access to certain files, so that one programmer does not
accidentally lose, change, or overwrite another programmer's code.
A version control system is useful when managing multiple or complex programming projects. Version
control is used to archive files, control access to files by locking, and manage multiple versions of your
projects. C++Builder includes an interface to Intersolv PVCS Version Manager 5.1 or later.

For more information, see the PVCS Version Control online help (PVCS.HLP) located in the
Borland C++Builder Help directory.

Enabling PVCS support
C++Builder's version control system support should be enabled when you run the setup program.
The Workgroups menu group appears in the C++Builder menu bar. Choose commands from the
Workgroups menu to use the PVCS Version Manager. Here is a list of the commands on the
Workgroups menu:

Browse PVCS Project
Manage Archive Directories
Add Project to Version Control
Set Data Directories

Workgroups | Manage Archive Directories
See also
Choose Workgroups|Manage Archive Directories to specify the locations of archive directories.

To use the Manage Archive Directories dialog box,
1. Specify an archive directory in the Directory and Drives lists.
2. To designate the specified directory an archive location, choose Add.
3. To remove an archive location from the Archive directories list, choose Remove.
4. Choose OK to save the archive directory specification.

For more information, see the PVCS Version Control online help (PVCS.HLP) located in the
Borland C++Builder Help directory.

Workgroups | Add Project to Version Control
Choose Workgroups|Add Project to Version Control to create a new PVCS project for the current C+
+Builder Project.

Workgroups | Browse PVCS Project
Choose Workgroups| Browse PVCS project to display an explorer type view of the current project. The
project must fist be created using the Add Project to Version Control menu item.

Set Data Directories
Set Data Directories to specify the location of public and private project root directories. PVCS will use
these directories to store subdirectories and files which contain information specific to the projects under
PVCS version control.

Custom Expert menu item
You have pressed F1 on a menu item for an Expert that was installed externally. For more information
regarding this item, select it to open the Expert. Help is available for externally installed Experts if
provided by the developer of the Expert.

Custom Version Control menu item
You have pressed F1 on a menu item for a version control system that was installed externally. For more
information regarding this item, select it to gain access to the version control system. Help may be
available for your version control system depending on the particular installation.

Options menu
Use the Options menu commands to control the behavior of the C++Builder environment and to set
options used to build the current project. The Options menu also gives you access to the Object
Repository dialog box, from where you can customize the Object Repository.
The commands on the Compile menu are:
Project
Environment
Repository

Options | Project
See also
The Options|Project command displays the Project Options dialog box. Use this dialog box to set your
compiler, linker, and application options. The Project Options dialog box contains the following pages:
Forms
Application
C++
Pascal
Linker
Directories/Conditionals
You can change the page displayed by clicking the tabs at the top of the dialog box.

The options listed in this dialog box are the options that you need to set for most C++Builder
applications. If you need to set more advanced compiler and linker options, refer to the section Setting
Advanced Options.

Default check box
Check Default to save the current project options as the default options. C++Builder will use the default
options for each new project you create.

Forms (Options | Project)

Use the Forms page of the Project Options dialog box to select the main form for your current project,
and to specify which forms will be automatically created when your application begins. You also set the
order in which child windows are created as your application starts.

Main Form
Displays the form users will see when they start your application. Use the drop-down list to select which
form is the main form for the project.
The main form is always the first form listed in the Auto-Create Forms list box.

Auto-Create Forms
Lists forms that are automatically added to the startup code of the project file. These forms are
automatically created and displayed when you first run your application. You can rearrange the create
order of forms by dragging and dropping forms to a new location.
To select multiple forms, hold down the Shift key while selecting the form names.

Available Forms
Lists the forms that are used by your application but are not automatically created. To create an instance
of a form that is listed in this column, you must call the form's CreateForm method.

Arrow buttons
Use the arrow buttons to move one or more files from one list box to the other.

To move all the files from one list box into the other,
Click the double arrow buttons (>> or <<).
Drag and drop the files from one list box into the other.

To move only the selected file or files from one list box into the other,
Click the single arrow buttons (> or <).
Drag and drop the file from one list box into the other.

Default
Check Default to save the current project options as the default options. C++Builder will use the default
options for each new project you create.

Application (Options | Project)

Use the Application page of the Project Options dialog box to specify a title, a Help file, and an icon for
your application.

Title
Specify a title that will appear under the application's icon when the application is minimized. The
character limit is 255 characters.

Help File
Specify the name of the Help (.HLP) file your application automatically calls whenever the user calls
Help (usually by pressing F1). The Help file you specify is passed to the WinHelp function call.
If you are unsure of the Help file name, you can click the Browse button to display the Application Help
File dialog box.

Icon
Displays the icon (.ICO) file that will represent the application in the Program Manager. The icon you
select will also display when the application is minimized.
To select an icon, click Load Icon; C++Builder displays the Application Icon dialog box, from where you
can select an icon.

Default check box
Check Default to save the current project options as the default options. C++Builder will use the default
options for each new project you create.

Application Icon dialog box
Use the Application Icon dialog box to select an icon that will represent your application in the Program
Manager or when your application is minimized.
To display this dialog box, click Load Icon on the Application page of the Project Options dialog box.

File Name
Enter the name of the file you want to use. You can also use wildcards in the Files list box to filter the
files that C++Builder displays.

Files
Displays all files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

Files of Type
Choose the type of file you want to use; the default file type is an icon (.ICO) file. All files in the current
directory of the selected type appear in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the Files of Type combo box appear in the Files list
box.
Note: If you are using Windows 95 or Windows NT, use the toolbar to specify the directory and drive.

You can enter a path relative to your C++Builder root directory using the $(BCB) environment
macro.

Drives
Select the drive that contains the icon you want to use. The directory structure for the current drive
appears in the Directories list box.

Application Help File dialog box
Use the Application Help File dialog box to select the Help (.HLP) file you want to use for your project.
The Help file you specify is entered into the Help File edit box on the Application page of the Project
Options dialog box.
To display this dialog box, click Browse on the Application page of the Project Options dialog box.

File Name
Enter the name of the file you want to use. You can also enter wildcards to filter the files that are
displayed in the Files list box.

Files
Displays all files in the current directory that match the wildcards in the File Name edit box or the file
type in the Files of Type combo box.

Files of Type
Choose the type of file you want to use; the default file type is a Help file (.HLP). All files in the current
directory of the selected type appear in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the Files of Type combo box appear in the Files list
box.

If you are using Windows 95 or Windows NT, use the toolbar to specify the directory and drive.

Drives
Select the current active drive. The directory structure for the current drive appears in the Directories list
box.

C++ (Options | Project)
See also
The C++ page of the Project Options dialog box specifies the option settings for the C++ compiler.
The C++ page has the following option groups:

Option group Option types
Speed settings enable aggregate sets of compiler and linker options for developing or releasing

your application
Code optimizations enable aggregate sets of optimization options
Debugging determine the type of debugging information generated when you compile your

code
Pre-comp. headers set the use of precompiled-headers
Compiling set general C++Builder compiler behavior

Default check box
Check Default to save the current project options as the default options. C++Builder will use the default
options for each new project you create.

Speed settings (C++ options)
See also
The Speed Setting buttons enable an aggregate set of compiler and linker options. If you use these
speed setting options, you shouldn’t need to use the individual option settings on the C++, Pascal, and
Linker pages of the Project Options dialog box.

Full debug lets you set the recommended set of options to use while you are developing your
application. The Full Debug button sets the following options:

C++ compiler options
Enables Code Optimizations | None
Enables Debugging | Debug Information
Enables Debugging | Line Number Information
Disables Debugging | Automatic Register Variables
Enables Debugging | Disable Inline Expansions
Enables Compiling | Stack Frames

Object Pascal compiler options
Disables Code Generation | Optimization
Enables Code Generation | Stack Frames
Enables Debugging | Debug Information

Enables Debugging | Local Symbols
Enables Debugging | Symbol Information
Linker options

Enables Linking | Include Debug Information
Release sets the compiler and linker options that you should use when you have finished

developing and debugging your application. The Release button sets the following options (this button
reverses the settings made by the Full Debug button):

C++ compiler options
Enables Code Optimizations | Speed
Disables Debugging | Debug Information
Disables Debugging | Line Number Information
Enables Debugging | Automatic Register Variables
Disables Debugging | Disable Inline Expansions
Disables Compiling | Stack Frames

Object Pascal compiler options
Enables Code Generation | Optimization
Disables Code Generation | Stack Frames
Disables Debugging | Debug Information

Disables Debugging | Local Symbols
Disables Debugging | Symbol Information
Linker options

Disables Linking | Include Debug Information

Code Optimizations (C++ options)
See also
The Code Optimization settings enable an aggregate set of compiler options.

None turns off all code optimizations. This is normally the best optimization to use when you are
developing and debugging your application-the debugger will not skip around due to code that has been
“optimized away” by the compiler.

Speed sets the following compiler switches designed to optimize your code for speed:
Duplicate expression within functions
Intrinsic functions
Induction variables
Speed with scheduling sets an aggregate of compiler switches designed to optimize your code

for speed, along with code that is optimized for Pentium processors (do not use this setting if you plan to
use your application on systems with processors less than a Pentium).

Debugging (C++ options)
See also
The debugging options let you generate different types of debugging information when you compile your
code. Remember to review these options before your final build of the project.

Debug information adds debug information to your compiled .OBJ files.
Line number information adds line numbers to your .OBJ files.
Automatic register variables tells the compiler to automatically assign register variables if

possible, even when you do not specify a register variable, by using the register type specifier.
You can usually turn this option on, unless you are interfacing with preexisting assembly code that
does not support register variables.

Disable inline expansions causes the compiler to expand C++ inline functions inline. See Out-
of-line Inline Functions for more information.

To have debug information added to your final executable file, you must also check Include
Debug Information on the Linker page of the Project Options dialog.

Pre-compiled headers (C++ options)
See also
This section contains the general-use pre-compiled heading options. Pre-compiled headers can
dramatically increase compilation speeds, although they require a considerable amount of disk space.

None does not generate pre-compiled headers.
Use pre-compiled headers causes the compiler to generate and use pre-compiled headers. The

default file name is VCL.CSM for C++Builder projects.
Cache pre-compiled headers causes the compiler to cache the pre-compiled headers it

generates. This is useful when you are pre-compiling more than one header file.

Compiling (C++ options)
See also
The Compiling options control general C++Builder compiler behavior.

Merge duplicate strings causes the compiler to merge two literal strings when one matches
another. This produces smaller programs (at the expense of a slightly longer compile time), but can
introduce errors if you modify one string.

Stack frames causes the compiler to generate a standard stack frame (standard function entry
and exit code). This is helpful when debugging, since it simplifies the process of stepping through the
stack of called subroutines.

When this option is off, any function that does not use local variables and has no parameters is
compiled with abbreviated entry and return code. This makes the code smaller and faster.
The Standard Stack Frame option should always be on when you compile a source file for debugging.

Show warnings turns on all general compiler warnings.
Show general msgs shows general compiler and linker messages (these messages are not

warnings or error messages).
The options listed in here are the options that you need to set for most C++Builder applications. If

you need to set more advanced compiler and linker options, refer to the section Setting Advanced
Options.

Pascal (Options | Project)
See also
Use the Pascal page of the Project Options dialog box to set Object Pascal compiler options.
These options correspond to switch directives that you can set directly in your Object Pascal program
code. Selecting an Object Pascal option is equivalent to setting the switch directive to its positive (+)
state.

Code generation
The Code Generation options effect the code output by the Object Pascal compiler.

Optimization enables compiler optimizations.
This setting corresponds to the {$O} Object Pascal compiler directive.

Aligned record fields aligns elements in structures to 32-bit boundaries.
Corresponds to {$A}.

Stack frames forces compiler to generate stack frames on all procedures and functions.
Corresponds to {$W}.

Pentium-safe FDIV generates floating-point code that is safe for all Pentium processors.
Corresponds to {$U}.

Runtime errors
These options specify how Object Pascal handles errors generated at run time.

Range checking checks that array and string subscripts are within bounds.
Corresponds to {$R}.

Stack checking checks that space is available for local variables on the stack.
Corresponds to {$S}.

I/O checking checks for I/O errors after every I/O call.
Corresponds to {$I}.

Overflow checking checks overflow for integer operations.
Corresponds to {$Q}.

Syntax options
These options control how the Object Pascal compiler handles language syntax.

Strict var-strings sets up string parameter error checking. (If the Open parameters option is
selected, this option is not applicable.)
Corresponds to {$V}.

Complete boolean eval evaluates every piece of an expression in Boolean terms, regardless of
whether the result of an operand evaluates as false.
Corresponds to {$B}.

Extended syntax enables you to define a function call as a procedure and to ignore the function
result. Also enables Pchar support.
Corresponds to {$X}.

Typed @ operator controls the type of pointer returned by the @ operator.
Corresponds to {$T}.

Open parameters enables open string parameters in procedure and function declarations. Open
parameters are generally safer, and more efficient.
Corresponds to {$P}.

Huge strings enables new garbage collected strings. The string keyword corresponds to the
new AnsiString type when this option is enabled. Otherwise the string keyword corresponds to the
ShortString type.
Corresponds to {$H}.

Assignable typed constants is used for backward compatibility with Delphi 1.0. When enabled,
the compiler allows assignments to typed constants.
Corresponds to {$J}.

Debugging
Set these options to specify what type of debug information you want included in your .OBJ files.

Debug information puts debug information into the unit (.DCU) file.
Corresponds to {$D}.

Local symbols generates local symbol information.
Corresponds to {$L}.

Symbol information generates symbol information.
Corresponds to {$Y}.

Messages
These options specify the level of messages generated by the Object Pascal compiler.

Show hints causes the compiler to generate hint messages.
Show warnings causes the compiler to generate warning messages.

Default check box
Check Default to save the current project options as the default options. C++Builder will use the default
options for each new project you create.

Linker (Options | Project)
See also
Use the Linker page of the Project Options dialog box to specify how your program files are to be linked.

Application target
The Application Target radio buttons specify the type of executable file you want to create from your
project. You can generate either an .EXE or a .DLL executable file through the C++Builder environment.

Map file
Select the type of map file you want produced during your project compilation, if any. C++Builder gives
the map file an .MAP file extension, and places it in the directory where your project .MAK file is stored.

Map option Effect
Off Does not produce map file.
Segments Linker produces a map file that includes a list of segments, the program start

address, and any warning or error messages produced during the link.
Publics Linker produces a map file that includes a list of segments, the program start

address, any warning or error messages produced during the link, and a list of
alphabetically sorted public symbols.

Detailed Linker produces a map file that includes a list of segments, the program start
address, any warning or error messages produced during the link, a list of
alphabetically sorted public symbols, and an additional detailed segment map.
The detailed segment map includes the segment address, length in bytes,
segment name, group, and module information.

For details on the map files produced, see Map File Options.

Linking
The options in the Linking section specify general linker options.

Use incremental linker causes C++Builder to link your projects using the ILINK32, the
incremental linker.

In-memory .EXE causes C++Builder to compile and link an executable image of your .EXE in
RAM; the .EXE is not written to disk. Use this option for faster compile/link cycles on systems with smaller
amounts of RAM. Be sure to disable this option when you want to create an .EXE image on disk. (This
option is disabled if you are running on Windows 95.)

Show warnings controls whether or not C++Builder displays compiler warning messages. You
can control individual warnings through the Advanced Compiler Options.

Include debug information includes debug information in the final executable image. Debug
information is used by both the integrated debugger and by Turbo Debugger 32-bit (TD32.EXE).

Link debug version of VCL causes C++Builder to link the VCLD.LIB version of the VCL. Use
this option only when you want to step into the Object Pascal code of the Visual Component Library; it will
greatly increase the size of your executable files (but it will not effect application performance).

Application type
The Application Types settings specify the type of application you are building with your project.

Windows GUI causes C++Builder to generate a Graphical User Interface (GUI) application that
can be run on 32-bit Windows systems.

Generate Console Application causes linker to set a flag in the application’s .EXE file indicating
a console mode application.

Stack sizes
Use these edit boxes to specify the minimum and maximum stack size and heap image base for the
compiled executable.

Default check box

Check Default to save the current project options as the default options. C++Builder will use the default
options for each new project you create.

Directories/Conditionals (Options | Project)

You use the Directories/Conditionals page of the Project Options dialog box to specify the location of
files needed to compile and link your program. In addition, you can specify compiler defines on this
page. Click the down arrow next to any edit box to choose from a list of previously entered directories or
symbols.

Directories settings
The Directories settings tell C++Builder where to find C++ header and library files. Specify the Include
Path for the header files used by your project and the Library Path for your project object files, resource
files, and the Delphi unit files.
You can specify multiple directories by separating them with a semicolon. See Search Directories for
more information on setting these options in C++Builder.

You can enter a path relative to your C++Builder root directory using the $(BCB) environment
macro.

Conditionals
Specify symbolic defines for the C++, Object Pascal, and Resource compilers using this list box. You
can include multiple definitions by separating each define with a semicolon (;). Assign values with an
equal sign (=). For example:
xxx;yyy=1;zzz=NO MYFILE.C

For more information on C++ compiler defines, see Compiler define options.

Pascal Unit Aliases
Useful for backwards compatibility. Specify alias names for Object Pascal units that may have changed
names or were merged into a single unit. The syntax format is <oldunit>=<newunit>. You can
separate multiple aliases with semicolons. The default value is
WinTypes=Windows;WinProcs=Windows.

Default check box
Check Default to save the current project options as the default options. C++Builder will use the default
options for each new project you create.

Optimizing C++Builder compile times
C++Builder has been engineered to give you the fastest possible edit/run turnaround time. Even though,
there are a number of user-controlled factors that can help make your turnaround times even faster.

Overview of compilation cycle
When you press F9 (or choose Project|Run) C++Builder does the following:
1. C++Builder first does a dependency check on the files in your project to see which target files need

rebuilding.
2. C++Builder then compiles any out-of-date .CPP, .PAS, and .RC files.
3. After compiling, C++Builder links all the objects into an executable image.
4. After linking, C++Builder loads the program for running.

Fast turn-around times
C++Builder employs several technologies to speed up the compilation cycle:

Dependency file caching
Cached pre-compiled headers
Incremental and smart linking
Incremental images

Optimizing your edit/run cycles
Below is a checklist of things you can do to ensure you are getting the fastest possible edit/run
turnaround times with C++Builder:

Use Project Make
Customize VCL.h
Use the default linker-state files
Use in-memory .EXE files
Turn debug information off
Turn off the integrated debugger
Link with the non-debug version of VCL
Add more memory (RAM) to your system

Dependency file caching
After the first build of your project in a session, C++Builder remembers the time-stamp of each file so it
doesn't have to query the OS for it until it has detected a change. This information is rebuilt any time you
move focus to another application and then back to C++Builder.

Cached pre-compiled headers
A program being compiled can specify that a certain set of #include (header) files are to be pre-
compiled and stored in a single file. This "pre-compiled header" file is then loaded by the next compile
that uses it, thereby avoiding the recompilation of the same header files.
In addition, C++Builder caches the pre-compiled header files in memory, so that subsequent compiles
don't have to reload the pre-compiled headers for each compile.

Incremental and smart linking
The new Borland incremental linker stores the current linker-state in a set of files so that the linker can
quickly load all information about the target executable during the next link. By saving the linker state,
C++Builder has to link only the files (and dependencies) that have changed. The smart linking feature
links only those functions and symbols that are actually referenced in your source code. This means that
even though you link in the entire VCL.LIB, only those functions that you use will be linked.

Incremental images
Known as "in memory .EXEs," the incremental linker has the ability to link a target .EXE directly into
memory. This saves the time it takes to save the .EXE to disk, and then reload it when the .EXE is run.
This also has the effect of using a smaller working set which, on machines with limited memory, benefits
other aspects of the turnaround process.

Use Project Make
Use "make" (F9, Project|Run) rather than "build all" whenever possible. Doing a "build all" will take
significantly longer because it:

Deletes your project's linker-state files
Deletes your project's pre-compiled header file
Compiles all source files (.cpp, .pas, .rc)
Links your program from scratch (no incremental linker support)

Customize VCL.H
You should try to customize your VCL.h file for each project you work on. The VCL.h file is what defines
the header files that are put into your pre-compiled header file. The more header files that can you place
in the pre-compiled header file, the less the compiler will have to do at each run cycle.
However, the more pre-compiled header files you use, the bigger your working set will be. Because of
this, it’s important to tune VCL.h for your particular system.
The exact tuning will depend on how much memory you have in your system and which files you choose
to include in your VCL.h. For example, if you have 32 megabytes or more of memory, you will probably
want to include ComCtrls.HPP in your pre-compiled headers:
1. Run C++Builder and choose CTRL+F9-note the build time in the caption of the C++Builder window.
2. Add the following line to your VCL.h file:

 #include <vcl\comctrls.hpp>
3. Rerun C++Builder, press CTRL+F9 a second time-this will rebuild your pre-compiled header file with

the new added file.
4. Rerun C++Builder a 3rd time and again press CTRL+F9. If the build time is not significantly increased

from the first build time, you should probably keep ComCtrls.HPP in VCL.h. The file ComCtrls.HPP is
used by all WIN95 controls in the VCL.

As you build more projects in C++Builder, you may want to add other .HPP files to VCL.h to
improve your turnaround time.
You can also make a project specific pre-compiled header file, with all the includes in it for that project.
To check whether this is worthwhile, set Options | Environment | Show Compiler Progress, then modify
one of the source files that you frequently work on and press CTRL+F9. The "Total lines:" entry in the
compiler progress box should show no more than a couple hundred to a couple thousand lines.
To make a project specific pre-compiled header file, proceed as follows:
1. Create a new file (Project1.pch for instance).
2. Open all the .HPP files that you use in your project, and copy their #include statements to the

Project1.pch file. You can eliminate duplicates, although with Borland supplied headers, it's not
necessary.

3. Open all the .cpp files in your project and replace the following line in each file
 #include <vcl.h>
with
 #include "Project1.pch"

With the next build after this change, C++Builder will need to rebuild the pre-compiled header file, and
therefore the build will take longer. Afterwards, however, you should see a substantial improvement in
turnaround time.

Use the default linker-state files
Ensure you are using the default DEFLINK.* linker-state files for new projects.
The deflink.* files are a set of 5 files stored in your product BIN directory. They are used as a starting set
of incremental linker-state files for new projects can significantly increase their first link time.
The first time C++Builder is run, it will ask you if you want these files to be generated. You can rebuild
them at any time by running "bcb -deflink" (this runs C++Builder, builds a new set of default deflink.*
files, and then exits).

Use in-memory .EXE files
If your are running Windows NT with 32 megabytes or less of memory, try using the In-memory .EXE
linker option (Options|Project|Linker) to build and run .EXE files in memory.
This should always improve the turnaround time, especially in low memory situations or when the .EXE
is fairly large.
Try using this option whenever the link step seems to take long or cause a lot of hard disk activity.

Windows 95 does not support this option.

Turn debug information off
On large projects, compiling and linking with debug information on can slow down the turnaround
process. If you are in a phase of development where you are not using the debugger often, you should
try turning off debug information (use the Release button on the Compiler page of the Project Options
dialog box) and see if your turnaround time improves.

Turn off the integrated debugger
With large projects, running the project under the integrated debugger can take a few seconds for the
debugger to load the project. If you are in a phase of development where you are not using the
debugger often, you should try turning off the integrated debugger (use Options | Environment |
Integrated Debugging) and see if your turnaround time improves.

Link the non-debug version of the VCL library
It takes significantly longer (and also takes a larger working set) to link the debug version of VCL. Avoid
this whenever possible. (Do not check the Link Debug Version of VCL on the Linker page of the Project
Options dialog box.)

Add more memory (RAM) to your system
In general, adding more RAM to your system will benefit a number of the other factors which will speed
up edit/run cycles. If you are working with large projects and want the fastest turnaround times possible,
it is recommended that you have 48-64 megabytes of RAM (memory).

Options | Environment
The Options|Environment command displays the Environment Options dialog box. Use this dialog box to
set your editor and configuration preferences, and to customize the way components and pages are
arranged on the Component palette. The Environment Options dialog box contains the following pages:
Preferences
Library
Editor Options
Display
Colors
Palette
You can change the page displayed by clicking the tabs at the top of the dialog box.

Preferences (Options | Environment)
See Also
Use the Preferences page of the Environment Options dialog box to specify your C++Builder
configuration preferences.

Compiling
Show compiler progress displays a progress report dialog box while your program compiles.
Beep on completion causes C++Builder to beep when your compilation is finished.
Cache hdrs on startup places the compiled header files in memory upon startup. These pre-

compiled header files are then available for all C++Builder compiles you make in that session.

Form designer
Set grid preferences that make it easier to design forms.

Grid options Effect
Display Grid Displays dots on the form to make the grid visible.
Snap To Grid Automatically aligns components on the form with the nearest gridline.

You cannot place a component "in between" gridlines.
Grid Size X Sets grid spacing in pixels along the x-axis. Specify a higher number

(between 2 and 128) to increase grid spacing.
Grid Size Y Sets grid spacing in pixels along the y-axis. Specify a higher number

(between 2 and 128) to increase grid spacing.
Show Component Captions Select this option to display component captions.

Debugging
Use the Debugging check boxes to select the debugger you want to use and to enable stepping.

Integrated debugging uses the C++Builder Integrated Debugger
Hide designers on run hides designer windows, such as the Object Inspector and Form window,

while the application is running. The windows reappear when the application closes.
Break on exception stops the application when it reaches an exception and displays the

following information:
The exception class
The exception message
The location of the exception

When this option is unchecked, exceptions do not stop the running application. If you are stepping
your application, you can step through the exception handlers as if going through the code
sequentially.

Minimize on run Minimizes C++Builder when you run your application by choosing Run|
Run. When you close your application C++Builder is restored.

Path for source Enter the paths where your source files are located. You can specify
multiple paths by separating them with a semicolon (;).

You can enter a path relative to your C++Builder root directory using the $(BCB) environment
macro.

Autosave options
Specify which files and options are saved automatically by the environment or when you run your
program. A check mark means it is enabled.

Editor Files saves all modified files in the Code editor when you choose Run|Run, Run|Trace
Into, Run|Step Over, Run|Run To Cursor, or when you exit C++Builder.

Desktop saves the arrangement of your desktop in a project .DSK file when you close a project
or exit C++Builder. When you later open the same project, all files opened when the project was last
closed are opened again regardless of whether or not they are used by the project.

Library (Options | Environment)

Use the Library page of the Environment Options dialog box to control how the component library is
built. The component library is used by the Component palette.
The options on this page take effect whenever you choose Component|Rebuild Library.

Map file
Select the type of map file produced, if any, when you rebuild the library. The map file is placed in the
same directory as the library, and it has a .MAP extension.

Map option Effect
Off Does not produce map file.
Segments Linker produces a map file that includes a list of segments, the program start

address, and any warning or error messages produced during the link.
Publics Linker produces a map file that includes a list of segments, the program start

address, any warning or error messages produced during the link, and a list of
alphabetically sorted public symbols.

Detailed Linker produces a map file that includes a list of segments, the program start
address, any warning or error messages produced during the link, a list of
alphabetically sorted public symbols, and an additional detailed segment map.
The detailed segment map includes the address, length in bytes, segment name,
group, and module information.

Options
Build with debug info, when enabled, specifies that the C++Builder compiles and links the

component library with debug information. This makes the resulting CMPLIB32.LIB file larger, but it does
not affect performance.

When you compile a library using debug information, you can use the integrated debugger or Turbo
Debugger 32-bit (TD32.EXE) to debug the library file.

Save library source code saves the source code for the library project and C++ files, using the
file names CMPLIB32.MAK and CMPLIB32.CPP, respectively.

Although these files are generated by C++Builder, it does not use these files directly to build a new
version of the component library. Instead, C++Builder uses the files CMPLIB32.CLL and
CMPLIB32.OPT to build the VCL (it also uses these files to create the .MAK and .CPP component
library source files). C++Builder provides this option so you can view the component library source
code, and so you can build the library from the command line.

Use incremental linker causes C++Builder to link your projects using the ILINK32, the
incremental linker.

Link debug version of VCL causes C++Builder to link the VCLD.LIB version of the VCL. Use
this option only when you want to step into the Object Pascal source code of the Visual Component
Library; as it will greatly increase the size of your executable files.

Path
The Path settings tell C++Builder where to find C++ header and library files used to build the component
library. Specify the Include Path for the header files used by the VCL and the Library Path for the VCL
object files, resource files, and the Delphi unit files.
You can specify multiple directories by separating them with a semicolon. See Search Directories for
more information on setting these options in C++Builder.

You can enter a path relative to your C++Builder root directory using the $(BCB) environment
macro.

Messages
Show Hints causes the compiler to generate hint messages.
Show Warnings causes the compiler to generate warning messages.

Editor (Options | Environment)
See Also
Use the Editor page of the Environment Options dialog box to customize the behavior of the C++Builder
editor.

Editor Speed Setting
Use the Editor Speed Settings to configure the editor. They are pre-configured default settings that can
be customized.

Option Automatically sets
Default Keymapping Auto Indent Mode, Insert Mode, Use tab character, Backspace

Unindents, Group Undo, Overwrite Blocks, Use Syntax Highlight
IDE Classic Auto Indent Mode, Insert Mode, Use tab character, Backspace

Unindents, Cursor Through Tabs, Group Undo, Persistent Blocks, Use
Syntax Highlight

BRIEF Emulation Auto Indent Mode, Insert Mode, Use tab character, Backspace
Unindents, Cursor Through Tabs, Cursor Beyond EOF, Keep Trailing
Blanks, BRIEF Regular Expressions, Force Cut And Copy Enabled, Use
Syntax Highlight

Epsilon Emulation Auto Indent Mode, Insert Mode, Use tab character, Backspace
Unindents, Cursor Through Tabs, Group Undo, Overwrite Blocks, Use
Syntax Highlight

Editor Options check boxes
Use the following editor options to control text handling in the Code editor. Check the option to enable it.

Check box When selected
Auto Indent Mode Positions the cursor under the first nonblank character of the preceding

nonblank line when you press Enter.
Insert Mode Inserts text at the cursor without overwriting existing text. If Insert Mode

is disabled, text at the cursor is overwritten. (Use the Ins key to toggle
Insert Mode in the Code editor without changing this default setting.)

Use Tab Character Inserts tab character. If disabled, inserts space characters. If Smart Tab
is enabled, this option is off.

Smart Tab Tabs to the first non-whitespace character in the preceding line. If Use
Tab Character is enabled, this option is off.

Optimal Fill Begins every autoindented line with the minimum number of characters
possible, using tabs and spaces as necessary.

Backspace Unindents Aligns the insertion point to the previous indentation level (outdents it)
when you press Backspace, if the cursor is on the first nonblank
character of a line.

Cursor Through Tabs Enables the arrow keys to move the cursor to the beginning of each tab.
Group Undo Undoes your last editing command as well as any subsequent editing

commands of the same type, if you press Alt+Backspace or choose Edit|
Undo.

Cursor Beyond EOF Positions the cursor beyond the end-of-file character.
Undo After Save Allows you to retrieve changes after a save.
Keep Trailing Blanks Keeps any blanks you might have at the end of a line.
BRIEF Regular Expressions Uses BRIEF regular expressions.

Persistent Blocks Keeps marked blocks selected, even when the cursor is moved, until a
new block is selected.

Overwrite Blocks Replaces a marked block of text with whatever is typed next. If
Persistent Blocks is also selected, text you enter is added to the
currently selected block.

Double Click Line Highlights the line when you double-click any character in the line. If
disabled, only the selected word is highlighted.

Find Text At Cursor Places the text at the cursor into the Text To Find list box in the Find Text
dialog box when you choose Search|Find. When this option is disabled
you must type in the search text, unless the Text To Find list box is
blank, in which case the editor still inserts the text at the cursor.

Force Cut And Copy Enabled Enables Edit|Cut and Edit|Copy, even when there is no text selected.
Use Syntax Highlighting Enables syntax highlighting. To set syntax highlighting preferences, use

the options from the Editor Display page.

Block Indent
Specify the number of spaces to indent a marked block. The default is 1; the upper limit is 16. If you
enter a value greater than 16, you will receive an error.

Undo Limit
Specify the number of keystrokes that can be undone. The default value is 32,767 (32K).
Note: The undo buffer is cleared each time C++Builder generates code.

Tab Stops
Set the character columns that the cursor will move to each time you press Tab. If each successive tab
stop is not larger than its predecessor, you will receive an error. The default tab stop is 8.

Syntax Extensions
Specify, by extension, which files will display syntax highlighting information. The default extensions
are .CPP, .C, .H, and .HPP.

Display (Options | Environment)

Use the Display page of the Environment Options dialog box to select display and font options for the
Code editor. The sample window displays the selected font.
The new settings take effect when you click OK.

Display and File check boxes
Configure the editor's display and choose how it saves files.

Check box Effect
BRIEF Cursor Shapes Uses BRIEF cursor shapes.
Create Backup File Creates a backup file that replaces the first letter of the extension with a tilde

(~) when you choose File|Save.
Preserve Line Ends Preserves end-of-line position.
Zoom To Full Screen Maximizes the Code editor to fill the entire screen. When this option is off, the

Code editor does not cover the C++Builder main window when maximized.

Keystroke Mapping
Enables you to quickly switch key bindings.

Mapping Effect
Default Uses key bindings that match CUA mappings (default)
Classic Uses key bindings that match Borland Classic editor keystrokes
Brief Uses key bindings that emulate most of the standard BRIEF keystrokes
Epsilon Uses key bindings that emulate a large part of the Epsilon editor

Visible Right Margin
Check to display a line at the right margin of the Code editor.

Right Margin
Set the right margin of the Code editor. The default is 80 characters. The valid range is 0 to 1024. If you
enter a value larger than 1024, you will receive an error.

Editor Font
Select a font type from the available screen fonts installed on your system (shown in the list). The Code
editor displays and uses only monospaced screen fonts, such as Courier. Sample text is displayed
below the combo box.

Size
Select a font size from the predefined font sizes associated with the font you selected in the Font list
box. Sample text is displayed below the combo box.

Sample text
Displays a sample of the select editor font and size.

Colors (Options | Environment)
See Also
Use the Colors page of the Environment Options dialog box to specify how the different elements of
your code appear in the Code editor.
You can specify foreground and background colors for anything listed in the Element list box. The
sample Code editor shows how your settings will appear in the C++Builder Code editor.

Color Speed Settings
Enables you to quickly configure the Code editor display using predefined color combinations. The
sample Code editor shows how your settings will appear in the C++Builder Code editor.

Option Effect
Defaults Displays reserved words in bold. Background is white.
Classic Displays reserved words in light blue and code in yellow. Background is dark blue.
Twilight Displays reserved words and code in light blue. Background is black.
Ocean Displays reserved words in black and code in dark blue. Background is light blue.

Element
Specifies syntax highlighting for a particular code element. You can choose from the Element list or click
the element in the sample Code editor.
The element options are:

Whitespace Marked block
Comment Search match
Reserved Word Execution point (for debugging)
Identifier Enabled break (for debugging)
Symbol Disabled break (for debugging)
String Invalid break (for debugging)
Integer Error line
Float Preprocessor
Ocatal Illegal char
Hex Plain text
Character Right margin

Color Grid
Sets the foreground (FG) and background (BG) colors for the selected code element.

To select a color using the mouse, choose one of the following methods:
Click a color to select it as the foreground color.
Right-click a color to select it as the background color.

If you choose the same color for the foreground and the background, it is marked as FB (this is not
recommended, as you will be unable to read any text).

Text Attributes check boxes
Specify format attributes for the code element. The attribute options C++Builder supports are:

Bold
Italic
Underline

Use defaults for check boxes

Display the code element using default Windows system colors (foreground, background, or both).
Unchecking either option restores the previously selected color or, if no color has been previously
selected, sets the code element to the Windows system color.
Note: To change the Windows system colors, use the Windows Control Panel.

Using syntax highlighting
See Also
Syntax highlighting changes the colors and attributes of your code in the editor, making it easier to
quickly identify parts of your code.

To enable syntax highlighting,
On the Editor Options page of the Options|Environment dialog box, check the Use Syntax

Highlight option.

To change the syntax highlighting colors for elements of your code,
Use the Editor Colors page of the Options|Environment dialog box.

Palette (Options | Environment)

Use the Palette page of the Environment Options dialog box to customize the way the component
palette appears. You can rename, add, remove, or reorder pages and components.

Pages
Lists the pages in the Component palette. Pages are listed in the order they currently appear. You can
rearrange these pages or view their content so that you can rearrange their components.
The Library page contains a listing of all the components installed in the library. You can move any
component onto this page, however, that will not create a second instance of the component within the
library.

Components
Lists the components in their current order for each page of the Component palette. The components
displayed correspond to the currently selected page in the Pages list box. You can rearrange the order
in which components appear on a page, or move them to a different page.

Up arrow and down arrow
Click the up arrow or the down arrow to change the position of the selected page or component. You can
also drag pages or components to a new position.

Add
Click Add to display the Add Page dialog box, where you can create new pages on the Component
palette.
Once you have created a new Component palette page, you can then move components from other
pages onto it. Or you can add new components by choosing Component|Install.

Delete
Click Delete to remove the selected page or component from the palette. Before you can delete a page,
it must be empty of components.
If you accidentally delete a component, you restore that component by selecting Reset Defaults. If you
removed the Unit, you can use the Component|Install dialog to re-add it.

Rename
Click Rename to display the Rename Page dialog box, where you can rename the pages on the
Component palette.

Reset Defaults
Click Reset Defaults to reset the Component palette to the layout that is specified in the component
library.

Rename Page dialog box
See Also
Use this dialog box to specify a new name for a page on the Component palette.
(You first need to select the page you want to rename from Pages list box on the Palette page of the
Options|Environment dialog box.)

To open this dialog box,
Click the Rename button on the Palette page of the Options|Environment dialog box.

Page Name
Enter the new name for the page in the Page Name edit box.
When you click OK, the new name is reflected in the Pages list box, but the new name is not reflected in
the Component palette until you click OK in the Environment Options dialog box.
To exit this dialog box without changing the page name, choose Cancel.

Add Page dialog box
See Also
Use this dialog box to add a new page to the Component palette.
The new page is added to the end of the Pages list. You can change the position of the page using the
Palette page of the Options|Environment Options dialog box.
To open this dialog box, click the Add button on the Palette page of the Options|Environment dialog box.

Page Name
Enter the new name for the page in the Page Name edit box.
When you click OK, the new name is added in the Pages list box, but the new page is not added to the
Component palette until you click OK in the Environment Options dialog box.
To exit this dialog box without changing the page name, choose Cancel.

Options | Repository
See Also
Choose Options|Repository to display the Object Repository dialog box. You use the Object Repository
dialog box to add, delete, and rename the objects contained in the Object Repository, and to specify
template and wizard options for forms and projects. You also can add and delete entire Object
Repository pages, which will be reflected in the New Items dialog box.

Object Repository dialog box
The settings in the Object Repository Options dialog box effect the behavior of C++Builder when you
begin a new project or create a new form in an open project. This is where you specify

Default project
Default new form
Default main form

You always have the option to override these defaults by choosing File|New and selecting from the New
Items dialog box.
By default, opening a new project displays a blank form. You can change this default behavior by
changing Object Repository options.

Pages
This list box displays the pages in the Object Repository. When you select a page, the items on that
page appear in the Objects list box. Select [Object Repository] to view all items in the Object Repository.

Objects
The Objects list box displays the items on the currently selected page of the Object Repository.

Add Page button
Use the Add Page button to add a new blank page to the Object Repository. Click here to add a page.

To add a page,
1. Click the Add Page button.

The Add Page dialog box appears.
2. Type the name of the page you want to add.
3. Click OK.

Delete Page button
Use the Delete Page to remove an item from the Object Repository.

To delete a page,
1. In the Pages list box, select the name of the page you want to delete.
2. Click the Delete Page button.

The selected page is removed from the Object Repository.

Rename Page button
Use the Rename Page button to rename an item in the Object Repository.

To rename a page,
1. In the Pages list box, select the name of the page you want to rename.
1. Click the Rename Page button.

The Rename Page dialog box appears.
1. Type the name of the page you want to rename.
1. Click OK.

The renamed page appears in the Pages list box.

Edit Object
Use the Edit Object button to edit the properties of items in the Object Repository.

To edit an object,
1. From the Objects list box, select the item you want to edit.
1. Click the Edit Object button.

The Edit Object Info dialog box appears.
1. Edit the information as desired.
1. Click OK.

Delete Object
Use the Delete Object button to remove items from the Object Repository.

Object Repository Options
The settings in the Object Repository Options dialog box effect the behavior of C++Builder when you
begin a new project or create a new form in an open project. When you select an item in the Objects list
box, the appropriate options become available at the bottom of the Objects list box. Depending on the
item you select, one or more of the options listed below become available.

Default project
Default new form
Default main form

You always have the option to override these defaults by choosing File|New and selecting from the New
Items dialog box.
By default, opening a new project displays a blank form. You can change this default behavior by
changing Object Repository options. For more information see Customizing the Object Repository.

Up arrow and down arrow
Click the up arrow or the down arrow to change the position of the selected page. You can also move
pages using a drag-and-drop operation.

Help menu
Use the Help menu to access the online Help system, which displays in a special Help window.
The Help system provides information on virtually all aspects of the C++Builder environment, Object
Pascal language, libraries, and so on.

Choose… If you want …
Contents to display the Help Topics dialog box
Keyword Search to use the Help index
Programmer's Guide information on Borland C/C++ language elements
VCL Reference information on the Visual Component Library
RTL Reference information on the Borland C/C++ runtime library
About Displays a copyright and version number for C++Builder

Help | Contents
Choose Help|Contents to display the Help Topics dialog box.

To find a topic in Help,
Click the Contents tab to browse through topics by category.
Click the Index tab to see a list of index entries: either type the word you're looking for or scroll

through the list.
Click the Find tab to search for words or phrases that may be contained in a Help topic.

Help | Keyword Search
In the Code editor, place the insertion point on or next to a term (such as a class, function, member, or
property) or highlight one or more terms and press F1 (or choose Help|Keyword Search) to get

help about the selected term.
a list of available topics when there are multiple topics to choose from.
a dialog displaying the closest match if no related topics are found.

You can get Help this way for most C and C++ language elements such as
reserved words.
global variables.
functions in the Borland run-time, class, and Visual Components libraries.
Windows API.

Help | Programmer's Guide
Choose Help|Programmer's Guide to display Borland C++Builder Programmers' Guide Help
(BCPG.HLP).

Help | VCL Reference
Choose Help|VCL Reference to display the Visual Component Library Help (VCL.HLP).

Help | RTL Reference
Choose Help|RTL Reference to display the Borland C++Builder Runtime Library Help (BCRTL.HLP).

Help | About
Choose Help|About to display the About C++Builder dialog box showing copyright and version
information.

Menu designer context menu
See Also
The Menu designer context menu provides quick access to the most common Menu designer
commands and to the menu template options.

To display the Menu designer context menu,
Choose one of the following methods:

Right-click anywhere on the Menu designer.
Press Alt+F10 when the cursor is in the Menu designer window.

The first three commands on the Menu designer context menu directly perform an action.
Command Action

Insert Inserts a placeholder above or to the left of the cursor
Delete Deletes the selected menu item (and all its sub-items, if any)
Create SubMenu Creates a placeholder at a nested level and adds an arrow to the right of the

selected menu item
Select Menu Displays a list of the menus in the current form so you can select which menu to

edit
Save as Template Displays the Save Template dialog box where you can name and save a menu as

a template
Insert from Template Displays a list of predefined menus that can be inserted into the current menu
Delete Templates Displays a list of predefined menu templates that can be deleted
Insert from Resource Allows you to insert a .mnu file into the Menu designer

The rest of the commands on the Menu designer context menu open dialog boxes. Right click and
choose the command and press F1 for more information.

Insert (Menu designer context menu)

Right click and choose Insert from the Menu designer context menu to add a menu item placeholder
above or to the left of the selected menu item. This option depends on what is selected in the menu
designer.

Delete (Menu designer context menu)

Right click and choose Delete from the Menu designer context menu to remove the selected menu item.
All sub items, if any, are also deleted.

Create Submenu (Menu designer context menu)

Right click and choose Create Submenu from the Menu designer context menu to insert a menu item
placeholder to the right of the selected menu item and add an arrow to the selected item to indicate a
nested level.

Select Menu (Menu designer context menu)

Right click and choose Select Menu from the Menu designer context menu to open the Select Menu
dialog box.

Select Menu dialog box
Use this dialog box to quickly select from among the existing form menus.

Save As Template (Menu designer context menu)

Right click and choose Save As Template from the Menu designer context menu to open the Save
Template dialog box, which enables you to save a menu for later reuse.

Save Template dialog box
Use this dialog box to save a menu for reuse.

Insert From Template (Menu designer context menu)

Right click and choose Insert From Template from the Menu designer context menu to open the Insert
Template dialog box.

Insert Template Dialog Box
Use this dialog box to add a predesigned menu to the active menu component.

Delete Templates (Menu designer context menu)

Right click and choose Delete Templates from the Menu designer context menu to open the Delete
Templates dialog box.

Delete Templates dialog box
Use this dialog box to select and remove a predesigned menu.
Note: After you delete a template, you cannot retrieve it.

Insert from Resource (Menu designer context menu)

Right click and choose Insert From Resource from the Menu designer context menu to open the Insert
Menu From Resource dialog box.

Insert Menu From Resource dialog box
Use this dialog box to import a menu from a Windows resource (.RC) file. You first need to save each
individual menu as a separate resource file.

Look in
Select the directory whose contents you want to view. In the current directory, the file type in the List
Files of Type combo box appear in the Files list box. Use the buttons to change directories, or drives.
Displays the files in the current directory that match the file type in the List Files Of Type combo box.

File Name
Enter the name of the file you want to use, or enter wildcards to use as filters in the Files list box.

Files Of Type
Choose the type of file you want to open; the default file type is a menu file (.MNU). All files in the
current directory of the selected type appear in the Files list box.

Insert from Resource (Menu Designer SpeedMenu)
See Also
Choose Insert From Resource from the Menu Designer SpeedMenu to open the Insert Menu From
Resource dialog box.

Insert Menu From Resource dialog box
Use this dialog box to import a menu from a Windows resource (.RC) file. You first need to save each
individual menu as a separate resource file.

File Name
Enter the name of the file you want to use, or enter wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose the type of file you want to open; the default file type is a menu file (.MNU). All files in the
current directory of the selected type appear in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name input box or the file type in the List Files of Type combo box appear in the
Files list box.

Drives
Select the current drive. The directory structure for the current drive appears in the Directories list box.

Form context menu
Use the Form context menu to manipulate components in the form at design time.

To display the Form context menu,
1. On the form, select the component or components you want to manipulate.

(Select a single component by clicking it. Select more than one by dragging across them or by holding
down Shift while clicking each one.)

2. Right-click anywhere on the form, or press Alt-F10.
The following commands always appear on the Form context menu:
Align to Grid
Bring to Front
Send to Back
Align
Size
Scale
Tab Order
Creation Order
Add to Repository
View as Text
Other commands appear on the Form context menu when you select certain components on the form.
The additional commands are:
Query Builder
Execute
Edit Report
Next Page
Previous Page
Your installation of C++Builder may have additional commands installed by a third party. To get help on
a command not listed above, display the Form context menu and select the command. This activates
the module named in the command. Then, press F1 to get help on that module.

Query Builder (Form context menu)

To open the Visual Query Builder, choose Query Builder from the Form context menu when the Query
component is selected. If a database is not already open, this command opens the Databases dialog
box which enables you to select a database.

Execute (Form context menu)

At design time, to perform the process specified in the Mode property, choose Execute from the Form
context menu when you have the BatchMove component selected.
The Mode property enables you to perform any of the following tasks:

Copy a dataset to a table.
Append a dataset to a table.
Update a table with data from a dataset.
Displaying data using data from a control.

To run this process at run time, you must call the Execute method for BatchMove.

Edit Report (Form context menu)

To load QuickReports and open the report you specified using the ReportName and ReportDir
properties, choose Edit Report from the Form context menu while you have the Report component
selected.
If you have not previously specified a report, C++Builder allows you to select a report.
You can also perform this command by double-clicking the Report component on the form.

Next Page (Form context menu)

To set the ActivePage property to the next page in the notebook, choose Next Page from the Form
context menu when you have either the Notebook component or TabbedNotebook component
selected, .
The next page is determined by the page order which you can specify using the Notebook editor.

Previous Page (Form context menu)

To set the ActivePage property to the previous page of the notebook, choose Previous Page from the
Form context menu when you have either the Notebook component or the TabbedNotebook component
selected.
The previous page is determined by the page order which you can specify using Notebook editor.

Align To Grid (Form context menu)

Choose Align To Grid from the Form context menu to align the selected components to the closest grid
point.
You can specify the size of the grid on the Preferences page of the Options|Environment dialog box.
This context menu command works the same as Edit|Align To Grid.

Bring To Front (Form context menu)

Choose Bring To Front from the Form context menu to move a selected component in front of all other
components on the form.
This is called changing the component's z-order.
This context menu command works the same as Edit|Bring To Front.

Send To Back (Form context menu)

Choose Send To Back from the Form context menu to move a selected component behind all other
components on the form.
This is called changing the component's z-order.
This context menu command works the same as Edit|Send To Back.

Align (Form context menu)

Choose Align from the Form context menu to open the Alignment dialog box.

Alignment dialog box
Use this dialog box to line up selected components in relation to each other or to the form.

The Horizontal alignment options align components along their right edges, left edges, or center.
The Vertical alignment options align components along their top edges, bottom edges, or center.

The options for Horizontal or Vertical alignment are

Option Description
No Change Does not change the alignment of the component
Left Sides Lines up the left edges of the selected components (horizontal only)
Centers Lines up the centers of the selected components
Right Sides Lines up the right edges of the selected components (horizontal only)
Tops Lines up the top edges of the selected components (vertical only)
Bottoms Lines up the bottom edges of the selected components (vertical only)
Space Equally Lines up the selected components equidistant from each other
Center in Window Lines up the selected components with the center of the window.

This context menu command works the same as Edit|Align.

Size (Form context menu)

Choose Size from the Form context menu to open the Size dialog box.

Size dialog box
Use this dialog box to resize multiple components to be exactly the same height or width.

The Horizontal options align the width of the selected components.
The Vertical options align the height of the selected components.

The options for Horizontal or Vertical sizing are

Option Description
No Change Does not change the size of the components.
Shrink To Smallest Resizes the group of components to the height or width of the smallest selected

component.
Grow To Largest Resizes the group of components to the height or width of the largest selected

component.
Width Sets a custom width for the selected components. To use this option, you must

set Horizontal to Enter Value.
Height Sets a custom height for the selected components. To use this option, you must

set Vertical to Enter Value.
This context menu command works the same as Edit|Size.

Scale (Form context menu)

Choose Scale from the Form context menu to open the Scale dialog box.

Scale dialog box
Use this dialog box to proportionally resize the form and all of its components.

Scaling Factor In Percent
Enter a percentage to which you want to resize the form.
Percentages over 100 grow the form.
Percentages under 100 shrink the form.

This context menu command works the same as Edit|Scale.

Tab Order (Form context menu)

Choose Tab Order from the Form context menu to open the Edit Tab Order dialog box.

Edit Tab Order
Use this dialog box to modify the current tab order of the components on the active form or within the
selected component if that component can contain other components.

Controls
Lists the components on the active form in their current tab order. The first component listed is the first
component in the tab order.

Up
Click Up to move the component selected in the Controls list box higher in the tab order.

Down
Click Down to move the component selected in the Controls list box lower in the tab order.

Creation Order (Form context menu)

Choose Creation Order from the Form context menu to open the Creation Order dialog box.

Creation Order dialog box
Use this dialog box to specify the order in which your application will create nonvisual components.
The list box displays only those nonvisual components on the active form, their type, and their current
creation order. The default creation order is determined by the order in which you placed the nonvisual
components on the form.

To change the creation order
1. Select the component name.
2. Click the up button to move the component creation order up, or click the down arrrow to move its

creation order down.
3. To save your changes, click OK.
This context menu command works the same as Edit|Creation Order.

Add To Repository (Form context menu)

Choose Add To Repository from the Form context menu to open the Add To Repository dialog box. Use
this command to easily add any form to the Object Repository.
Once you've designed a custom dialog box, you might want to reuse it in other projects. The best way to
do this is to add the form to the Object Repository.
Saving a form as an object is similar to saving a copy of the form under a different name. When you
save a form as a object, however, it then appears in the Object Repository.

View as Text (Form context menu)

Use this command to view a text description of the form’s attributes.
This command changes to View as Form when you view the form as text.

View as Form (Form context menu)

Use this command to view the form as a visual object.
This commad changes to View as Text when you view the form as a visual object.

Select Icon dialog box
Use the Select Icon dialog box to choose a bitmap to represent your template in the New Items dialog
box.
You can use a icon of any size, but it will be cropped to 60 x 40 pixels.
To open this dialog box, click the Browse button in the Add To Repository dialog box.

Look in
Displays the current directory. Use the icons to change or add directories if needed.

File Name
Enter the name of the file you want to use, or enter wildcards to use as filters in the Files list box.

Files Of Type
Choose the type of file you want to open; the default file type is a bitmap file (.BMP). All files in the
current directory of the selected type appear in the Files list box.

Project Manager context menu
The Project Manager context menu contains commands that enable you to manage your project.
The commands on the Project Manager context menu are:
Save Project
Add To Repository
New Unit
New Form
Add File
Remove File
View Unit
View Form
View Project Source
Options
Update

To open the Project Manager context menu, do one of the following:
Right-click anywhere on the Toolbar.
Press Alt+F10 when this is the active window.

Save Project (Project Manager context menu)

Choose Save Project from the Project Manager context menu to store changes made to all files in the
open project using each file's current name.
If you try to save a project that has an unsaved project file or unit file, C++Builder opens the Save As
dialog box, where you enter the new file name.
This context menu command works the same as File|Save Project.

Add To Repository (Project Manager context menu)

Choose Add To Repository from the Project Manager context menu to open the Save Project Template
dialog box.
Use the Save Project Template dialog box to add a project template to the Object Repository.

Save Project Template dialog box
Use this dialog box to save a project template to the Object Repository.
After saving an application as a template, use the Edit Object Info dialog box to edit the description,
delete the template, or change the bitmap.

Dialog box options
Title
Enter the name of the template. This is the full path of the object you are adding.
The maximum length for a title is 40 characters.

Description
Enter a description of the template. The description appears under the template name on the Select
Template dialog box. The maximum length for a description is 255 characters.

Page
From the drop down list box, choose the name of the page (probably Projects) you want the template to
appear on.

Author
Enter text indentifying the author of the application.
Author information only appears when you select the View Details option from the context menu.

Template bitmap
Click the Browse button to open the Select Bitmap dialog box.
You can use a bitmap of any size, but it will be cropped to 60 x 40 pixels.

New Unit (Project Manager context menu)

Choose New Unit from the Project Manager context menu to create a new unit and add it to the project.
When you add a new unit the Code editor becomes the active window and the new unit is the active
page.
The new unit is titled UnitXX.CPP. XX represents the unit number. For example, the first form is Unit1,
the second Unit2, and so on.
You can change the unit name by saving the file with File|Save As, or by saving the entire project using
Save Project from the Project Manager context menu. Changing a unit name by any other means
might cause an error.
This context menu command works the same as the File|New Unit.

New Form (Project Manager context menu)

Choose New Form from the Project Manager context menu to create a blank form and a new unit and
add them to the project.
The new form is titled FormXX and the new unit is UnitXX.CPP. (XX represents the form/unit number.
For example the first form is Form1, the second Form2, and so on.)
You can change the name of the form by editing the Name property from the Object Inspector.
You can change the unit name by saving the file with File|Save As or by saving the entire project using
Save Project on the Project Manager context menu.
This context menu command works the same as File|New Form.

Add File (Project Manager context menu)
See Also
Choose Add File from the Project Manager context menu to open the Add To Project dialog box.

Add To Project
Use the Add To Project dialog box to add an existing unit and its associated form to the C++Builder
project. When you add a unit to a project, C++Builder automatically adds that unit to the project file.

Dialog box options
File Name
Enter the name of the file you want to load, or enter wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose the type of file you want to open; the default file type is Source file (.PAS). All files in the current
directory of the selected type appear in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the List Files Of Type combo box appear in the
Files list box.

Drives
Select the current active drive. The directory structure for the current drive appears in the Directories list
box.
This context menu command works the same as File|Add File.

Importing a form from a Delphi application
You can use units and forms that you have written with Delphi version 2.0. However, be aware of the
following restrictions:

You cannot use a Delphi form or unit if it uses the Object Pascal Real or Comp intrinsic data
types; you must change the data type in the form before importing it to C++Builder. For Delphi forms that
use the Comp data type, use Currency instead.

The old-style Object Pascal Object type is not supported in C++Builder.
C++Builder does not support Object Pascal virtual class methods.
C++Builder does not support initialized set variables that are greater than 4 bytes in size.
C++Builder does not support the Object Pascal $Z2 compiler directive. Use (in Delphi) the $Z1 or

$Z4 directive instead.
You cannot use a Delphi form that uses the Delphi sample controls, unless you:
Install the Delphi version of the sample control on the Component palette (and overwrite the C+

+Builder version of the control)
Uninstall the C++ version of the sample control

Remove File (Project Manager context menu)

Choose Remove File from the Project Manager context menu to remove the module selected in the
Project Manager from the current project file.
If you have modified the file you are removing during this editing session, C++Builder prompts you to
save your changes, just in case you want to use the form or unit in another project. If you have not
modified the file, C++Builder removes that file from the project without prompting you.
If a file has been modified during the current editing session, it is bold in the Project Manager.
Warning: Do not delete unit files by using other file management programs, or directly from the DOS

prompt. Doing so causes errors.
This context menu command works the same as File|Remove File.

View Unit (Project Manager context menu)

Choose View Unit from the Project Manager context menu to make the selected module in the Project
Manager the active page of the Code Editor. It also makes the Code Editor the active window.
If the module you want to view is not currently open, C++Builder opens it.
This context menu command works the same as View|Unit.

View Form (Project Manager context menu)

Choose View Form from the Project Manager context menu to make the form associated with the
module selected in the Project Manager the active window.
If the form you want to view is not currently open, C++Builder opens it.
This context menu command works the same as View|View Form.

View Project Source (Project Manager context menu)

Choose View Project from the Project Manager context menu to make the project file the active page in
the Code editor.
If the project file is not currently open, C++Builder opens it.

Options (Project Manager context menu)

Choose Options from the Project Manager context menu to open the Options|Project dialog box.
You can use this dialog box to set compiler directives.
This context menu command works the same as the Options|Project.

Update (Project Manager context menu)

Choose Update from the Project Manager context menu to synchronize any changes you have made
directly in the project file itself.
Note: This command remains disabled (dimmed) unless you have manually edited the project file.
Since C++Builder maintains the project file for you automatically, manually modifying this file is not
recommended.

Toolbar context menu
The Toolbar context menu contains commands that enable you to edit or rearrange the buttons on the
Toolbar. You can also use the Toolbar context menu to hide the Toolbar.
The commands on the Toolbar context menu are:
Show Hints
Hide
Help
Properties

To display the Toolbar context menu,
Right-click anywhere on the Toolbar.

Properties (Toolbar context menu)

Right click and choose Properties from the Toolbar context menu to open the Toolbar Editor dialog box.

Toolbar editor
Use this dialog box to add buttons that represent menu commands to the Toolbar, remove buttons from
the Toolbar, or rearrange buttons on the Toolbar.

Dialog box options
Categories
Select a menu whose commands you want to add as buttons to the Toolbar. The commands on the
selected menu appear in the Command list box.

Commands
Drag and drop a command from this list box onto the Toolbar. The Commands list box displays all the
commands available on the menu selected in the Categories list box.
The icon to the left of the menu command shows how the button will appear on the Toolbar.

Reset
Click Reset to reset the Toolbar to the default configuration.
When the Toolbar editor is open, you can delete or rearrange any of the buttons currently on the Toolbar;
however, none of the buttons on the Toolbar are active.

Hide
Right click and choose Hide from the following context menus to close that interface element.
Alignment Palette context menu
Component Palette context menu
Object Inspector context menu
Toolbar context menu
If you close an interface element, you can display it again using the View menu.

Show Hints
Right click and choose Show Hints from the following context menus to toggle the display of Help Hints.
Alignment Palette context menu
Component Palette context menu
Toolbar context menu
When this command is checked, Help Hints are enabled.

Help
Right click and choose Help from any of the following context menus to get Help on using that element.
Alignment Palette context menu
Component Palette context menu
Object Inspector context menu
Toolbar context menu

Component palette context menu
The Component palette context menu enables you to edit or rearrange the components on the
Component palette. You can also use the Component palette context menu to hide the Component
palette.
Properties
Show Hints
Hide
Help

To display the Component palette context menu,
Right-click anywhere on the ToolBar.

Properties (Component palette context menu)

Choose Properties from the Component palette context menu to open the Palette page of the Options|
Environment dialog box.
You can use this dialog box to rearrange the Components on the Component palette.

Alignment palette context menu
The Alignment palette context menu contains the following commands:
Stay On Top
Show Hints
Hide
Help

Stay On Top (Alignment palette context menu)

Choose Stay On Top from the Alignment palette context menu to keep the Alignment palette in front of
all other windows and dialog boxes.

Object Inspector context menu
The Object Inspector context menu provides you with commands for closing the Object Inspector,
displaying Help, and for keeping the Object Inspector the topmost window.
The commands on the Object Inspector context menu are:
Revert to Inherited
Expand
Collapse
Stay On Top
Hide
Help

Revert to Inherited (Object Inspector and Form context menu)

Right click and choose Revert to Inherited from the Object Inspector when you want to change an object
that has had its properties overwritten back to the original inherited behavior. This option is only
available when the object has properties.

Stay On Top (Object Inspector context menu)

Right click and choose Stay On Top from the Object Inspector context menu to keep the Object
Inspector in front of all other C++Builder windows and dialog boxes.

Expand (Object Inspector context menu)

Right click and choose Expand from the Object Inspector context menu to view the nested properties of
the selected property.
Properties with nested properties show a plus (+) sign on their left side in the Object Inspector. You need
to view these nested properties to set them.

Collapse (Object Inspector context menu)

Right click and choose Collapse from the Object Inspector context menu to hide the nested properties of
the selected property.
Properties with nested properties show a plus (+) sign on their left side in the Object Inspector. You need
to view these nested properties to set them.

Code editor context menu
See Also
The Code editor context menu contains commands for navigating, modifying, and debugging your
source code. This menu is unique to the Code editor, and the commands contained in the menu pertain
only to the Code editor.
The context menu commands are listed below. To view detailed information on a Code editor context
menu command, click that command in the list below:
Open Source/Header file
Close Page
Open File At Cursor
New Edit Window
Topic Search
Toggle Breakpoint
Run to Cursor
Inspect
Goto Address
Evaluate/Modify
Add Watch at Cursor
View as Form
Read only
Message View
View CPU
Properties

To open the Code editor context menu, do one of the following:
Right-click anywhere in the Code editor window.
Press Alt+F10 when the Code editor window is active.

Open Source/Header file (Code editor context menu)
See Also
Choose Open Source/Header file from the Code editor context menu to open or display the header or
source file related to the currently viewed file.
For example, if you have Unit1.cpp open and choose Open Source/Header file, Unit1.h will be opened if
it is not already, or will be switched to become the active file in the edit window.

Close Page (Code editor context menu)

Choose Close Page from the Code editor context menu to close the current page in the Code editor
window.
If you have modified code, not saved the changes, and this is the last page open in a file, C++Builder
opens the Save As dialog box, where you can enter a new file name.
If you are closing the last page in the project and have not saved it yet, C++Builder opens the Save As
dialog box, where you can enter a name for the project.

Open File At Cursor (Code editor context menu)
See Also
Choose Open File At Cursor from the Code editor context menu to open the file at the current cursor
position.
C++Builder searches for files with the default extension of .CPP, unless another file extension is
explicitly specified. Similarly, C++Builder uses the directory settings for unit and include files specified in
the Directories/Conditionals page of the Options|Project dialog box.

To change directory settings for unit and include files,
1. Choose Options|Project from the main C++Builder menu.
2. Click the Directories/Conditionals page.
3. Set unit and include directories as you want.
4. Choose OK to put your choices into effect.

New Edit Window (Code editor context menu)

Choose New Edit Window to open a new Code Editor that contains a copy of the active page from the
original Code eitor.
Any changes you make to either the original or the copy are reflected in both files.
So that you can distinguish between the windows, the caption in the original window is postfixed with a
1, the first copy with a 2, the second copy with a 3, and so on.

Topic Search (Code editor context menu)

Choose Topic Search from the Code editor context menu to display a Help window for the word or token
at the cursor in the Code editor.
If no Help topic exists, a dialog box is displayed, with the closest match highlighted.

Toggle Breakpoint (Code editor context menu)

Choose Toggle Breakpoint from the Code editor context menu to toggle a breakpoint on and off at the
current cursor position.
If no breakpoint is set when you choose this command, C++Builder sets one and turns it on. If a
breakpoint is already set, choosing this command toggles the breakpoint off.

To modify breakpoint properties,
Right-click an existing breakpoint in the Breakpoint List window and choose Edit Breakpoint.

Run To Cursor (Code editor context menu)

Choose Run To Cursor to run the loaded program up to the location of the cursor in the Module window.
When you run to the cursor, your program is executed at full speed, then pauses and places the
execution point on the line of code containing the cursor.
You can use Run To Cursor to run your program and pause before the location of a suspected problem.
You can then use Run|Step Over or Run|Trace Into to control the execution of individual lines of code.
An alternative way to perform this command is:

Choose Run|Run To Cursor.

Inspect (Code editor context menu)
See Also
Choose Inspect to to open an Inspector window for the term at the curent insertion point. If the insertion
point is on a blank space when you choose this command, an empty Inspector window displays where
you can enter an item you want to inspect.

This command is available only while you run your program from the IDE.

Goto Address (Code editor context menu)

The Go to Address command prompts you for a new area of memory to display in the Disassembly pane
of the CPU window. Enter any expression that evaluates to a program memory location. Be sure to
precede hexadecimal values with 0x. If the CPU view is already open, it becomes the active view.

This command is available only while you run your program from the IDE.

Evaluate/Modify (Code editor context menu)

The Evaluate/Modify command opens the Evaluate/Modify dialog box, which lets you evaluate or
change the value of an existing expression.
An alternate way to perform this command is:

Choose Run|Evaluate/Modify from the main menu.

Add Watch at Cursor (Code editor context menu)
See also
The Add Watch at Cursor command opens the Watch Properties dialog box, where you can create and
modify watches. After you create a watch, use the Watch List window to display and manage the current
list of watches.
Alternate ways to perform this command are:

Choose Run|Add Watch from the Code editor context menu.
Choose Add Watch from the Watch List context menu.
Right-click an existing watch in the Watch List window and choose Edit Watch from the Watch List

context menu.

View as Form (Code editor context menu)

Choose View as form (or View from Text command) from the Code editor context menu to toggle
viewing a form file as a text file or a form.
Caution If you make changes to the text file that are not supported by C++Builder, you will not be

able to view the file as a form.

Read Only (Code editor context menu)

Choose Read Only from the Code editor context menu to make the current open file read only. When a
file is read only, you cannot make any changes to the file.
When you mark a file as read only this command is checked on the Code editor context menu and
"Read only" is displayed in the Code editor status line.

Message View (Code editor context menu)

Choose Message View to display or hide the message pane at the bottom of the Code editor that shows
messages, warnings, and errors generated as you build your program.

View CPU (Code editor context menu)
See also
Choose this command to display the CPU window with the disassembly pane positioned at the machine
address that corresponds to the line currently selected in the Code editor. If the line currently selected
does not have a corresponding machine instruction, the disassembly pane is positioned at the
instruction at the current execution point.
If the CPU view is already open, it becomes the active view.

Properties (Code editor context menu)

Choose Properties from the Code editor context menu to set editor environment options.

View Source
Positions the Code editor at the source location of the highlighted error, but does not make the Code
editor the active window. If the source file is not already open in the Code editor, it appears in a new
Code editor page.

Edit Source
Positions the Code editor at the source location of the highlighted error and makes the Code editor the
active window. If the source file is not already open in the Code editor, it appears in a new Code editor
page.

New Items context menu
See Also
The context menu provides the following options for items in the New Items dialog box.

View Large Icons
View Small Icons
View List
View Details
Arrange by Name
Arrange by description
Arrange by Date
Arrange by Author
Properties

Note: Selecting Properties from the context menu opens the Object Repository dialog box. You can use
this dialog box to edit, add pages to, and rename items in the Object Repository. You can also
access this dialog from the Tools|Repository menu.

View large icons (Object Repository context menu)

Choose this option to view large icons in the Object Repository.

View small icons (Object Repository context menu)

Choose this option to view small icons in the Object Repository.

View list (Object Repository context menu)

Choose this option to view a list of names and icons in the Object Repository.

View details (Object Repository context menu)

Choose this option to view details about the items in the Object Repository. The details include name,
description, modified, and author.

Arrange by name (Object Repository context menu)

Choose this option to view by name, the items in the Object Repository.

Arrange by description (Object Repository context menu)

Choose this option to view by description, the items in the Object Repository. If descriptions are blank,
the previous sort order is used.

Arrange by date (Object Repository context menu)

Choose this option to view items in the Object Repository ordered by date.

Arrange by author (Object Repository context menu)

Choose this option to view items in the Object Repository ordered by author.

Properties (Object Repository context menu)

Choose this option to display the Object Repository dialog box. You can use this dialog box to edit, add
pages to, and rename items in the Object Repository. You can also access this dialog from the Tools|
Repository menu.

Data Module context menu
Right click the Data Module to access the following commands:
Align To Grid Aligns data-access components to the data module's invisible grid.
Align Aligns data-access components according to criteria you supply in the Alignment

dialog box.
Revert to Inherited Discards changes made to a data module inherited from another data module in

the Object Repository, and reverts to the originally inherited data module.
Creation Order Enables you to change the order in which data-access components are created

at start-up.
Add to Repository Stores a link to the data module in the Object RepositoryReusing data modules in

the Object Repository.
View as Text Displays the text representation of the data module's properties. You can view the

properties as text only when the dataset is not active (Active = false).

Fields editor
The Fields editor lets you add new persistent fields to a dataset and create data fields, calculated fields,
and lookup fields.
Use the Fields editor at design time to create persistent lists of the field components used by the
datasets in your application. Persistent fields component lists are stored in your application, and do not
change even if the structure of a database underlying a dataset is changed. All fields in a dataset are
either persistent or dynamic.

To start the fields editor,
Double-click the dataset component.
The Fields editor contains a title bar, navigator buttons, and a list box.

Title bar
The title bar displays the both the name of the data module or form containing the dataset, and the
name of the dataset itself.

Navigation buttons
Use these buttons to scroll one-by-one through the records in an active dataset at design time. You can
also jump to the first or last record. The buttons are dimmed if the data set is not active or empty.

List box
The List box displays the names of persistent fields components for the dataset. The first time you
invoke the Fields editor for a new dataset, the list is empty because the fields components for the
dataset are dynamic, not persistent. If you invoke the Fields editor for a dataset that already has
persistent fields components, you see the fields component names in the list box.

To add fields to the list of persistent fields for a dataset,
Right-click the list box and choose Add Fields.

Fields editor commands
Right click the Fields editor to access the following commands:
Add fields Displays the Add Fields dialog box which enables you to add persistent field

components for a dataset.
New field Displays the New Field dialog box which enables you to create new

persistent fields as additions to or replacements of the other persistent fields
in a dataset. The types of new persistent fields that may be created are data
fields, calculated fields, and lookup fields.

Cut Removes the selected field component(s) from the list of persistent fields and
places them on the clipboard.

Copy Copies the persistent field component to the clipboard.
Paste Inserts the contents of the clipboard into the list of persistent field

components. You can only paste persistent field components that reside in
the current dataset if the dataset is active.

Delete Removes persistent field components from the dataset. Use this to access a
subset of available columns in a dataset. Fields you remove are no longer
available to the dataset and cannot be displayed by data-aware controls, but
are not removed from the underlying database. Use Add fields to recreate
persistent field components that were accidentally deleted.

Select all Selects all persistent field components in the Fields editor.
Retrieve attributes Updates the attributes currently associated with the field component. To be

prompted for a different attribute set, select Associate attributes. Retrieve

attributes is useful when you want to update multiple types of components
associated with multiple attribute sets simultaneously.

Save attributes Stores the current field’s property settings as defined in the Object Inspector
as an attribute set in the Data Dictionary. The name for the attribute set
defaults to the name of the current field.

Save attributes as Stores the current field’s property settings as defined in the Object Inspector
as an attribute set in the Data Dictionary and allows you to specify a name
other than the field name for the attribute set.

Associate attributes Applies previously defined attribute set to current field. If changes are made
to the attribute set in the Data Dictionary, those changes are automatically
applied to every field associated with the attribute set.

Unassociate attributes Removes the attribute set from a field component. After you remove an
attribute set from a field component, the attributes remain as they were when
they were associated. You can either use the Object Inspector to set its
properties or you can associate the component with a different attribute set.

Save attributes
When several fields in the datasets used by your application share common formatting properties, it is
more convenient to set the properties for a single field, then store those properties as an attribute set in
the Data Dictionary. Attribute sets stored in the data dictionary can be easily applied to other fields.

To create an attribute set based on a field component in a dataset,
1 Double-click the dataset to invoke the Fields editor.
2 Select the field for which to set properties.
3 Set the desired properties for the field in the Object Inspector.
4 Right-click the Fields editor list box and choose Save Attributes to save the current field’s property

settings as an attribute set in the Data Dictionary.
The name for the attribute set defaults to the name of the current field.

You can also create attribute sets directly from the Database Explorer. When you create an
attribute set from the data dictionary, the set is not applied to any fields, but you can specify two additional
attributes in the set: a field type and a data-aware control that is automatically placed on a form when a
field based on the attribute set is dragged onto the form. For more information, see the online help for the
Database Explorer.

Retrieve attributes
To retrieve an attribute set for a field component that is different in name from the field component
name, choose Retrieve attributes to specify the name of the attribute set to retrieve.

Save attributes as
To save an attribute set and assign it a name that differs from the currently selected field component
name, choose Save as attributes, and then enter the new attribute set name.

Associate attributes
You can apply attribute sets to fields without having to recreate the settings manually if:

If several fields in datasets used by your application share common formatting properties
and
You have saved those property settings as attribute sets in the Data Dictionary.

If you change the attributes in the Data Dictionary, those changes are automatically applied to every
field associated with the set the next time field components are added to the dataset.

To apply an attribute set to a field component,
1 Double-click the dataset to invoke the Fields editor.
2 Select the field for which to apply an attribute set.
3 Right-click the Fields editor list box and choose Associate Attributes.
4 Select or enter the attribute set to apply from the Attribute set name dialog box.

If there is an attribute set in the Data Dictionary that has the same name as the current field, that set
name appears in the edit box.

Unassociate attributes
To remove an attribute set assignment for a selected field component, choose Unassociate attributes.

Fields Editor edit options
Right-click the Field editor to access the following commands.

Cut
Use this option to remove selected field from the editor and place them on the Windows clipboard.

Copy
Use this option to copy selected fields to the Windows clipboard.

Paste
Use this option to paste the clipboard contents into an application.

Delete
Use this option to delete selected fields without copying them to the clipboard.

Select All
Use this option to select all the fields in the fields.

Add Fields dialog box
Use the Add Fields dialog box to create a persistent field component for a dataset:

To create a persistent field component for a dataset:
1 Right-click the Fields editor list box and choose Add fields.

The Add Fields dialog box appears. The Available fields list box displays all fields in the dataset which
do not have persistent field components.

2 Select the fields for which you want to create persistent field components and then click OK.
Each time you open the dataset, C++Builder no longer creates dynamic field components for every
column in the underlying database. It only creates persistent components for the fields you specified.
Each time you open the dataset, C++Builder verifies that each non-calculated persistent field exists or
can be created from data in the database. If it cannot, C++Builder raises an exception warning you that
the field is not valid, and does not open the dataset.

To delete a persistent field component.
1 Select the field(s) to remove in the Fields editor list box.
2 Press the Delete key.

Fields you remove are no longer available to the dataset and cannot be displayed by data aware
controls.

New Field dialog box
Use the New Field dialog box to create new persistent fields as additions to or replacements of the other
persistent fields in a dataset. There are three type of persistent fields you can create:
Data fields Usually to replace existing fields (for example to change the data type of a field)

based on columns in the table or query underlying a dataset.
Calculated fields To display values calculated at run time by a dataset’s OnCalcFields event

handler.
Lookup fields To retrieve values from a specified dataset at run time based on search criteria

you specify.
These types of persistent fields are only for display purposes. The data they contain at run time

are not retained either because they already exist elsewhere in your database, or because they are
temporary. The physical structure of the table and data underlying the dataset is not changed in any way.

To create a new persistent field component,
Right-click the Fields editor list box and choose New field to open et New Field dialog box.
The New Field dialog box contains three group boxes: Field properties, Field type, and Lookup
definition.

Field type group
The Field type radio group enables you to specify the type of new field component to create. The default
type is Data. If you choose Lookup, the Dataset and Source Fields edit boxes in the Lookup definition
group box are enabled.

Field properties group
The Field properties group box enables you to enter general field component information. Enter the
component’s field name in the Name edit box. The name you enter here corresponds to the field
component’s FieldName property. C++Builder uses this name to build a component name in the
Component edit box. The name that appears in the Component edit box corresponds to the field
component’s Name property and is only provided for informational purposes (Name contains the
identifier by which you refer to the field component in your source code). C++Builder discards anything
you enter directly in the Component edit box.

Type combo box
The Type combo box in the Field properties group enables you to specify the field component’s data
type. You must supply a data type for any new field component you create. For example, to display
floating point currency values in a field, select Currency from the drop-down list. The Size edit box
enables you to specify the maximum number of characters that can be displayed or entered in a string-
based field or the size of Bytes and VarBytes fields. For all other data types, Size is meaningless.

Lookup definition group
The Lookup definition group box is only used to create lookup fields.

Database editor
Double click the database component to access the Database editor. The Database editor contains the
following options:
Name Enables you to specify the name of the database that must be used by

dataset and session components to associate themselves with this
component. This dialog corresponds to the DatabaseName property in
the Object Inspector.

Alias name Enables you to identify the existing Borland Database Engine (BDE) alias
associated with this database component. If Driver Name is set, this
property is cleared. This dialog corresponds to the AliasName property in
the Object Inspector.

Driver name Enables you to identify the BDE driver for the component. If AliasName
is set, this property is cleared. This dialog corresponds to the
DriverName property in the Object Inspector.

Parameter overrides Enables you to view and set BDE connection parameters. Some typical
connection parameters include path statement, server name, schema
caching size, language driver, and SQL query mode. This dialog
corresponds to the Params property in the Object Inspector.

Defaults Removes existing connection parameters from the Params property and
Parameter overrides dialog and replaces them with default path and driver
parameters.

Clear Removes existing connection parameters from the Params property and
Parameter overrides dialog.

Login prompt Enables you set the state of the LoginPrompt property. If true (checked),
users are prompted to log in to a database server the first time your
application attempts to connect to a database requiring a login. If false
(unchecked), your application must provide the user name and password.

Keep inactive connection Enables you to set the state of the KeepConnection property. If true
(checked), a connection to a database is maintained even when all
datasets associated with that database are closed. If false (unchecked),
a connection is dropped when there are no active datasets using the
database.

OK Saves all current settings and closes the Database editor.
Cancel Closes the Database editor without saving any changes made since the

Database editor was opened.

About the integrated debugger
See Also
No matter how careful you are when writing code, your programs are likely to contain errors, or bugs,
that prevent them from running the way you intended. Debugging is the process of locating and fixing
errors in your programs. C++Builder provides debugging features, collectively referred to as the
integrated debugger, that let you find and fix errors in your programs. The integrated debugger is a full-
featured debugger that enables you to

Control the execution of your program
Monitor the values of variables and items in data structures
Modify the values of data items while debugging

Types of errors
There are three basic types of program errors:

Compile-time
Logical errors
Runtime errors

The integrated debugger can help you track down both runtime errors and logic errors. By running to
specific program locations and viewing the state of your program at those places, you can monitor how
your program behaves and find the areas where it is not behaving as you intended.

Compile-time errors
Errors that violate a rule of language syntax. You cannot compile your program unless it contains valid
statements.
The most common causes of compile-time (syntax) errors are

Typographical mistakes
Missing semicolons
References to undeclared variables
Wrong number or type of arguments passed to a function
Wrong type of values assigned to a variable

Runtime errors
Runtime errors occur when your program contains valid statements, but the statements cause errors
when they are executed. For example, your program might try to open a nonexistent file, or it might try
to divide a number by zero. The operating system detects runtime errors and stops program execution
when they occur.
Using the debugger, you can run to a specific program location. From there, you can execute your
program one statement at a time, watching the behavior of your program with each step. When you
execute the statement that causes your program to fail, you can fix the source code, recompile the
program, and resume testing.

Logic errors
Logic errors occur when your program statements are valid, but the actions they perform are not the
actions you intended. For example, logic errors occur when variables contain incorrect values, when
graphic images do not look right, or when the output of your program is incorrect.
Logic errors are often the difficult to find because they can show up in unexpected places. You need to
thoroughly test your program to ensure that it works as designed. The debugger helps you locate logic
errors by monitoring the values of variables and data objects as your program executes.

Fixing syntax errors
If your code has compile-time (syntax) errors and you try to compile it, the Message View of the Code
editor opens and displays the errors and warnings generated.
To correct syntax errors,
1. In the Message View, double-click the error or warning that you want to fix. (If the Message View is

not open, right-click the Code editor and choose Message View.)
The IDE positions your cursor on the line in your source code that caused the problem.

2. Make your correction.
3. If your code has more than one problem, double-click another error or warning in the Message

window.
4. Choose Project|Build All or Project|Make to recompile your program.
5. Choose Run|Run to verify that your program is operating correctly.

Planning a debugging strategy
After program design, program development consists of a continuous cycle of coding and debugging.
Only after you thoroughly test your program should you distribute it to your end users. To ensure that
you test all aspects of your program, it is best to have a thorough plan for your debugging cycles.
One good debugging method involves dividing your program into different sections that you can debug
systematically. By closely monitoring the statements in each section, you can verify that each area is
performing as designed. If you do find a programming error, you can correct the problem in your source
code, recompile the program, and resume testing.

Using the integrated debugger
Although there are many ways to debug code, you will typically use one or more of the following steps:
1. Preparing your project for debugging by compiling and linking your program with debug information.
2. Control Program Execution by running to a program location you would like to examine.
3. Examine the state of the program data values and view the program output.
4. Modify program data values to test bug fixes.
5. Reset or pause the debugging session.
6. Fix the error.

Preparing your project for debugging
If you find a runtime or logic error in your program, you can begin a debugging session by running your
program under the control of the debugger:
1. Compile and link your program with debug information.
2. Run your program from the IDE.

Generating debug information for your project
The IDE automatically generates debug information. To manually choose to turn on debug information
for your project,
1. Choose Options|Project.
2. Click the C++ tab.
3. Click Full Debug in the Speed Settings section to simultaneously set the following debugger options:

Debug information – to include symbolic debug information.
Line number information – to include line numbers in the debug information in the object files.
Disable Inline Expansions – to ensure that the debugger can trace into inline functions

4. Click the Linker tab and, if it is not already checked, click Include Debug Information. This option is
also turned on automatically when you click Full Debug on the C++ tab.

Enabling the debugger
The debugger is enabled automatically. To manually choose to enable the debugger,
1. Choose Options|Environment and click the Preferences tab.
2. Check Integrated Debugging. This option is on by default.
3. Check Minimize On Run if you want to minimize the C++Builder environment when you run your

program. This option is on by default.
4.Click Hide Designers On Run to close the Object Inspector and Form Designer when you run your

program. This option is on by default.

Debugging VCL source
To reduce the amount of time it takes to debug your program, you generally will not want to examine the
VCL source code included in your project. In cases when you need to examine VCL source (when you
develop your own components, for example), use the following steps
1. Choose Options|Project.
2. Click the Linker tab to access the linker options.
3. Check Link Debug Version of VCL. This option is off by default.

Choosing this option typically increases the file size of your program and decreases performance.

Turning debugging information off
Adding debug information increases the file size of your program. When you have fully debugged your
program, be sure to build the final executable files with debugging information turned off to reduce the
final size of your program files.
To turn off debugging information
1. Choose Options|Project
2. Click the C++ tab then and click Release under Speed Settings.

Running your program in the IDE
After you compile your program with debug information, you can begin a debugging session by running
your program from the IDE. Doing so lets you control when your program runs and when it pauses.
Whenever your program is paused in the IDE, the debugger takes control.
When you run your program under the control of the debugger, it behaves as it normally would; your
program creates windows, accepts user input, calculates values, and displays output. When your
program is not running, the debugger has control, and you can use its features to examine the current
state of the program. By viewing the values of variables, the functions on the call stack, and the program
output, you can ensure that the area of code you are examining is performing as it was designed to.
As you run your program through the debugger, you can watch the behavior of your application in the
windows it creates.

For best results, arrange your screen so you can see both the Code editor and your application
window as you debug.

Debugging with program arguments
To pass runtime arguments to the program you want to debug,
1. Choose Run|Parameters.
2. In the Run Parameters dialog box, type the arguments to pass to your program when you run it under

debugger control and click OK.

Controlling program execution
The most important aspect of a debugger is that it lets you control the execution of your program. You
can control whether your program will execute a single line of code, an entire function, or an entire
program block. By specifying when the program should run and when it should pause, you can quickly
move over the sections that you know work correctly and concentrate on the sections that are causing
problems.
The debugger treats multiple program statements on one line as a single line of code; you cannot
individually debug multiple statements contained on a single line of text. In addition, the debugger treats
a single statement that spans several lines of text as a single line of code.
The debugger lets you control program execution in the following ways:

Running to the cursor
Stepping through code
Running to a breakpoint location
Pausing your program

Execution point
The execution point indicates the next line of source code or machine instruction in your program that
will be executed when you run your program through the integrated debugger. Whenever you pause
program execution, the debugger highlights a line of source code or machine instruction, marking the
location of the execution point.

Running to the cursor
See also

When beginning a debugging session, you often run your program to a spot just before the suspected
location of the problem. At that point, use the debugger to ensure that all data values are as they should
be. If everything appears to be correct, you can run your program to another location, and again check
to ensure things are functioning correctly.
You can tell the debugger you want to execute your program normally (not step-by-step) until a certain
spot in your code is reached:
1. In the Code editor or CPU window, position the cursor on the line where you want to begin (or

resume) debugging.
2. Right-click the Code editor or the Disassembly pane of the CPU window and choose Run To Current.

Stepping overview
Stepping is the simplest way to move through your code one statement or machine instruction at a time.
Stepping lets you run your program one line (or instruction) at a time – the next line of code (or
instruction) will not execute until you tell the debugger to continue. After each step, you can examine the
state of the program, view the program output, and modify program data values. Then, when you are
ready, you can continue executing the next program statement.
You can step through code in two basic ways:
Trace Into The Trace Into command causes the debugger to walk through your code one statement

or instruction at a time. If the execution point is located on a function call, the debugger
moves to the first line of code or instruction that defines that function. From here, you can
execute that function, one statement or instruction at a time. When you step past the return
of the function, the debugger resumes stepping from the point where the function was
called. (Stepping through your program one statement at a time is known as single
stepping.)

Step Over The Step Over command is the same as Trace Into, except that when the execution point
is on a function call, the debugger executes the function at full speed and then pauses on
the line of code or instruction following the function call.

Statement stepping and instruction stepping
The debugger lets you step through either

statements in your source code viewed in the Code editor.
machine instructions viewed in the CPU window.

The debugger automatically steps through your code at the instruction level and displays the CPU
window in the following situations:

If you start a debugging session by choosing the Trace Into command.
If the CPU window has focus when you choose the Trace Into or Step Over command.
When program execution stops at a location for which source code is unavailable. For example,

the debugger cannot open the source file if you link a DLL built with debug information but do not include
its source file in your project, or if you place the source file in a directory not specified in your project.

Statement Stepping granularity
The debugger steps over single lines of lines of code based on the following rules:

If you string several statements together on one line, you cannot debug those statements
individually; the debugger treats all statements as a single line of code.

If you spread a single statement over multiple lines in your source file, the debugger executes all
the lines as a single statement.

Stepping over code
See also Overview of Stepping
To Step Over, choose the Run|Step Over or press F8 (default key mapping).
When you choose the Step Over command, the debugger executes the code highlighted by the
execution point. If the execution point is highlighting a function call, the debugger executes that function
at full speed, including any function calls within the function highlighted by the execution point. The
execution point then moves to the next complete line of code or executable instruction.

Example
The following code fragment shows how Step Over works. Suppose these two functions are in a
program compiled with debug information:
func_1() {
statement_a;
func_2();
statement_b;

}

func_2() {
statement_m;
func_3();

}
If you choose Step Over when the execution point is on statement_a in func_1, the execution point
moves to highlight the call to func_2. Choosing Step Over again runs func_2 at full speed, moving the
execution point to statement_b. Notice that when you step over func_2, func_3 is also run at full
speed.
As you debug, you can choose to Trace Into some functions and Step Over others. Step Over is good to
use when you have fully tested a function, and you do not need to single step through its code.

Tracing into code
See also Overview of stepping
To Trace Into code, choose either of the following commands:

Run|Trace Into or press F7 (default key mapping)
Run|Trace To Next Source Line or press Shift+F7 (default key mapping).

When you choose Run|Trace Into, the debugger executes the code highlighted by the execution point. If
the execution point is highlighting a function call, the debugger moves the execution point to the first line
of code or instruction that defines the function being called. If the executing statement calls a function
that does not contain debug information, the debugger runs the function at full speed (as if you had
chosen the Step over command).
When you choose Run|Trace To Next Source Line, the debugger moves to the next source line in your
application, regardless of the control flow. For example, if you select this command when stopped at a
Windows API call that takes a callback function, control will return to the next source line, which in this
case is the callback function.

Example
The following code fragment shows how Trace Into works. Suppose these two functions are in a
program compiled with debug information:
func_1() {
statement_a;
func_2();
statement_b;

}

func_2() {
int customers;
statement_m;

}
If you choose Trace Into when the execution point is on statement_a in func_1, the execution point
moves to highlight the call to func_2. Choosing Trace Into again positions the execution point at the
first line in the definition of func_2. Another Trace Into command moves the execution point to
statement_m which is the first executable line of code in func_2.

When you step past a function return statement (in this case, the closing function brace), the debugger
positions the execution point on the line following the original function call. Here, the debugger would
highlight statement_b with the execution point.

As you debug, you can choose to Trace Into some functions and Step Over others. Use Trace Into when
you need to fully test the function highlighted by the execution point.

Running to a breakpoint
See also
You set breakpoints on lines of source code or address locations (machine instructions) where you want
program execution to pause during a run. Using a breakpoint is similar to using the Run to Cursor
command in that the program runs at full speed until it reaches a certain point. Unlike Run to Cursor,
however, you can have multiple breakpoints and you can choose to stop at a breakpoint only under
certain conditions. Once your program’s execution is paused, you can use the debugger to examine the
state of your program.

Interrupting program execution
See also
Sometimes while debugging, you will find it best to stop program execution or to start the debugging
session from the beginning of the program.

Choose… To…
Run|Program Pause temporarily pause the execution of a running program.
Run|Program Reset terminate the current debugging session, and start with a fresh slate.

Pausing your program
See also
Instead of stepping through code, you can use a simpler technique to pause your program:
Choose Run|Program Pause and your program will stop executing.
You can then examine the value of variables and inspect data at this state of the program. When you are
done, choose Run|Run to continue the execution of your program.

In most cases, the CPU window will display when you resume debugging after pausing your
program, such as when the current instruction does not have corresponding source code.

Restarting a program
See also
Sometimes while debugging, you might need to start over from the beginning of your program. For
example, it might be best to restart the debugging session if you have executed past the point where
you believe there is a bug, or if variables or data structures become corrupted with unwanted values.
To restart your program, choose Run|Program Reset.
When you terminate the process, the IDE

resets the integrated debugger so that running or stepping, begins at the start of the program.
does not change the location of the source code displayed in the Code editor so that you can

easily position the cursor to run your program to the line you were on when you reset it.

Fixing program errors
See also
Once you have found the location of the error in your program, you can type the correction directly into
the Code editor and the change takes effect immediately. Once you change a line of code in the Code
editor, however, the IDE prompts you to rebuild your program before you resume program execution and
continue debugging.
Instead of fixing an error while debugging, you might want to test your fix by modifying data values using
the debugger. This way, you do not have to recompile your program to see if your fix works.

Using breakpoints
See also
Breakpoints pause program execution during a debugging session at source code or address locations
that you specify. You can set breakpoints before potential problem areas, then run your program at full
speed. Your program pauses when it encounters a breakpoint, and the Code editor or CPU view
Disassembly pane displays the line or address location containing the breakpoint. You can then use the
debugger to view the state of your program, or to step over or trace into your code one line or machine
instruction at a time.
The IDE keeps track of all your breakpoints during a debugging session and associates them with your
current project. You can maintain all your breakpoints from a single Breakpoints List window and not
have to search through your source code files to look for them.

Debugging with breakpoints
When you run your program from the IDE, it will stop whenever the debugger reaches the location in
your program where the breakpoint is set, but before it executes the line or machine instruction.

If you set a breakpoint on a line in your source code, the line that contains the breakpoint appears
in the Code editor highlighted by the execution point.

If you set a breakpoint on an address location, the instruction that contains the breakpoint
appears in the CPU window Disassembly pane (or in the Code editor on the line that most closely
corresponds to the address location) highlighted by the execution point.
At this point, you can perform any other debugging actions.

Setting breakpoints after program execution begins
While your program is running, you can switch to the debugger (just like you switch to any Windows
application) and set a breakpoint. When you return to your application, the new breakpoint is set, and
your application will pause or perform a specified action when it reaches the breakpoint.

You must set a breakpoint on an executable line of code or machine instruction. For example,
breakpoints set on comment lines, blank lines, declarations, or other non-executable lines of code are
displayed as invalid breakpoints in the Code editor, and are disabled when you run your program.

Setting breakpoints
See also
You can set breakpoints before you begin debugging or while your program is running using the Code
editor or the CPU window Disassembly pane. Your application will halt when it reaches a breakpoint.

For a breakpoint to be valid, it must be set on an executable line of code. Breakpoints set on
comment lines, blank lines, declarations, or other non-executable lines of code are invalid and become
disabled when you run your program.
To set a breakpoint on a line of source code,
Select the line in the Code editor where you want to set the breakpoint, then choose one of the following
methods:

Click the left margin of the line.
Right-click anywhere on the line and choose Toggle Breakpoint.
Place the insertion point anywhere in the line and press F5 (default key mapping).
Right-click the Breakpoint List window and choose Add Breakpoint.

If you know the line of code where you want the breakpoint set,
1. Choose Run|Add Breakpoint and type the source-code line number in the Line Number box.
2. Complete the settings in the Edit Breakpoint dialog and choose New to create the breakpoint.
When you set a breakpoint, the line on which the breakpoint is set becomes highlighted, and a stop-sign
appears in the left margin of the breakpoint line.
To set a breakpoint at a specific address location,
1. Open the CPU window and highlight a machine instruction in the Disassembly pane.
2. Right-click the Disassembly pane and choose Toggle Breakpoint or press F5.

You can also set a breakpoint on either a source or address location from the Breakpoint List
window.

Invalid breakpoints
If a breakpoint is not placed on an executable line of code, the debugger considers it invalid. For
example, a breakpoint set on a comment, a blank line, or declaration is invalid. If you set an invalid
breakpoint, the debugger displays the Invalid Breakpoint error box when you attempt to run the program.
To correct this situation, close the error box and delete the invalid breakpoint from the Breakpoint List
window. You can then set the breakpoint in the intended location. You can, however, also ignore invalid
breakpoints; the IDE disables any invalid breakpoints when you run your program.

During the linking phase of compilation, lines of code that do not get called in your program are
marked as dead code by the linker. In turn, the integrated debugger marks any breakpoints set on dead
code as invalid.

The Breakpoint List window
See also
The Breakpoint List window shows all breakpoints currently set in the loaded project. (If no project is
loaded, it shows all breakpoints set in the active Code editor page or in the CPU window.) The
Breakpoint List shows the file name and line number location along with any condition and pass count
associated with each breakpoint. The Breakpoint List window also lets you add, edit, delete, and enable
or disable breakpoints. A breakpoint appears grayed if it is either disabled or invalid.
To display the Breakpoint List window, choose View|Breakpoints.

Breakpoint List window commands
The Breakpoint List window offers two sets of commands depending on whether or not you have
highlighted a listed breakpoint.
Select a breakpoint, then right-click to access the following commands:
Enabled Enables or a disables a breakpoint. Disabling a breakpoint hides it from the

current program run. When you disable a breakpoint, its settings remain defined,
but the breakpoint does not cause your program to stop. When you set a
breakpoint, it is enabled by default. Disabling is useful when you temporarily do
not need a breakpoint, but want to preserve its settings.

Delete Removes a breakpoint. When you no longer need to examine the code at a
breakpoint location, you can delete the breakpoint from the debugging session.
This command is not reversible.

View Source Locates a breakpoint in your source code quickly. Select a breakpoint in the
Breakpoint List window, then use this command to scroll the Code editor to the
line location where the breakpoint is set.

Edit Source Works the same as the View Source command, but also gives the Code editor
focus.

Properties Opens the Edit Breakpoint dialog box, where you can create or modify a
breakpoint.

Right-click the Breakpoint list window on an area other than a listed breakpoint to access the following
commands:
Add Provides two submenu options:

Source Breakpoint. Opens the Edit Breakpoint dialog box where you can set a
breakpoint on a specific line location in your source code. When you run your
program, the execution point in the Code editor indicates the breakpoint location.
Address Breakpoint. Opens the Edit Breakpoint dialog box where you can set a
breakpoint on a specific machine instruction. When you run your program, the
execution point in the CPU window Disassembly pane indicates the breakpoint
location.

Delete All Removes all breakpoints.
Disable All Disables all enabled breakpoints.
Enable All Enables all disabled breakpoints.

Modifying breakpoint properties
See also
You can specify breakpoint properties when you create a breakpoint, or you can edit the properties after
creation. Use the Edit Breakpoint dialog box to modify breakpoint properties.

Edit Breakpoint dialog box
Use the Edit Breakpoint dialog box to add a breakpoint or to modify an existing breakpoint. You can
open the Edit Breakpoint dialog box the following ways:

Choose Run|Add Breakpoint (to add a breakpoint on a source line, but not an address location).
Choose View|Breakpoint, then right-click the Breakpoint List window, choose Add, and then

choose Source or Address.
Right-click an existing breakpoint in the Breakpoint List window and choose Properties.

Use the following options to specify where and when you want a breakpoint to pause your program:

Filename
Sets or changes the program file for the breakpoint. Enter the name of the program file for the
breakpoint. (This option appears only for a breakpoint set on a line of source code in the Code editor.)

Line Number
Sets or changes the line number for the breakpoint. Enter or change the line number for the breakpoint.
(This option appears only for a breakpoint set in the Code editor on a line of source code.)

Address
Sets a breakpoint on a machine instruction. Enter a specific starting address or any symbol, such as a
variable or a class data member or method, that evaluates to an address. (This setting appears only for
a breakpoint set on a machine instruction in the Disassembly pane in the CPU window.)

Condition
Specifies a conditional expression that is evaluated each time the breakpoint is encountered. Program
execution stops when the expression evaluates to true. You can enter any valid language expression. All
symbols in the expression, however, must be accessible (within scope) from the breakpoint's location.

For more information, see Creating Boolean expressions.

Pass Count
Stops program execution at a certain line number or machine instruction after a specified number of
passes. The integrated debugger decrements the pass count number each time the line containing the
breakpoint is encountered. When the pass count equals 1, program execution pauses.
When you use pass counts with conditions, program execution pauses the nth time that the conditional
expression is true. The debugger decrements the pass count only when the conditional expression is
true.

For more information, see Using Pass Counts.

Creating conditional breakpoints
See also
When a breakpoint is first set, by default, program execution pauses each time the breakpoint is
encountered. The Edit Breakpoint dialog box lets you customize your breakpoints so that your program
pauses only when a specified set of conditions is met.
To create a conditional breakpoint,
1. Choose Run|Add Breakpoint.
2. Right-click the Breakpoint List window, choose Add, and then choose Source or Address.
3. Enter the required information in the Edit Breakpoint dialog box.
The integrated debugger provides two types of breakpoint conditions:

Boolean expressions
Pass counts

Creating Boolean expressions
See also
The Condition edit box in the Edit Breakpoint dialog box lets you enter an expression that is evaluated
each time the breakpoint is encountered during the program execution. If the expression evaluates to
true (or not zero), the breakpoint pauses the program run. If the condition evaluates to false (or zero),
the debugger does not stop at the breakpoint location.
Conditional breakpoints are useful when you want to see how your program behaves when a variable
falls into a certain range or what happens when a particular flag is set.
For example, suppose you want a breakpoint to pause on a line of code only when the variable
mediumCount is greater than 10. To do so,
1. Place the insertion point on the line of code you want in the Code editor and press F5 to set the

breakpoint.
2. Choose View|Breakpoints to open the Breakpoint List window.
3. In the Breakpoint List window, highlight the breakpoint you just created, then right-click and choose

Properties.
4. On the Edit Breakpoint dialog box, enter the following expression into the Condition edit box:

mediumCount > 10
5. Click Modify to confirm your settings.

You can input any valid language expression into the Condition edit box, but all symbols in the
expression must be accessible (within scope) from the breakpoint’s location, and the expression cannot
contain any function calls.

Using pass counts
See also
The Pass Count edit box enables you to specify a particular number of times that a breakpoint must be
passed for the breakpoint to be activated. A pass count tells the debugger to pause program execution
the nth time that the breakpoint is encountered during the program run (you supply the number n which
is set to 1 by default).
The pass count number decrements each time the line containing the breakpoint is encountered during
the program execution. If the pass count equals 1 when the breakpoint line is encountered, program
execution pauses on that line of code. For example, if you enter 2, your program does not stop until the
second time the debugger reaches the line where the breakpoint is set.
When you use a pass count in conjunction with a Boolean condition, the breakpoint pauses program
execution the nth time that the condition is true; the condition must be true for the pass count to
decrement. For example, if you enter the expression x>3 in Conditions and the number 2 in Pass
Count, your program does not stop until the second time the debugger reaches the breakpoint when the
value of x is greater than 3.

Locating breakpoints
See also
If a breakpoint is not visible in the Code editor or in the CPU view, you can use the Breakpoint List
window to quickly locate the breakpoint.
To scroll the Code editor to the location of a breakpoint in your source code,

Right-click the breakpoint in the Breakpoint List window and choose View Source.
To scroll the Code editor to the location of a breakpoint in your source code and make the Code editor
active,

Right-click the breakpoint in the Breakpoint List window and choose Edit Source.
If you choose View Source, the Breakpoint List window remains active so you can modify the breakpoint
or go on to view another. If you choose Edit Source, the Code editor gains focus so you can modify the
source code at that location.

Disabling and enabling breakpoints
See also
Disabling a breakpoint hides the breakpoint from the current program run. When you disable a
breakpoint, its settings remain defined, but the breakpoint does not cause your program to stop. When
you set a breakpoint, it is enabled by default.
Disabling is useful when you temporarily do not need a breakpoint but want to preserve its settings.
To disable a single breakpoint,

Right-click the breakpoint in the Breakpoint List window and choose Disable.
To disable all breakpoints in a source code file,

Right-click the Breakpoint List window and choose Disable All.
To enable a single breakpoint,

Right-click the breakpoint in the Breakpoint List window and choose Enabled.
To enable all breakpoints in a source code file,

Right-click the Breakpoint List window and choose Enable All.

Deleting breakpoints
See also
When you no longer need to examine the code at a breakpoint location, you can delete the breakpoint
from the debugging session. You can delete breakpoints using either the Code editor or the Breakpoints
window:
To delete a single breakpoint,

Right-click the breakpoint in the Breakpoint List window and choose Delete.
Right-click the breakpoint in the Code editor or CPU window and choose Toggle breakpoint
Place the insertion point anywhere in the line in the Code editor containing the breakpoint or

highlight the breakpoint in the CPU window and press F5.
Click the stop-sign glyph at the left end of the line containing the breakpoint in the Code editor.

To delete all breakpoints in a source code file,
Right-click the Breakpoint List window and choose Delete all.

Examining program data values
See also
After you have paused your application using the integrated debugger, you can examine the different
symbols and data structures with regard to the location of the current execution point. You frequently
need to examine the values of variables and expressions to uncover bugs in your program. For
example, it is helpful to know the value of the index variable as you step though a for loop, or the values
of the parameters passed to a function call.
Data evaluation operates at the level of expressions. An expression consists of constants, variables, and
values contained in data structures, combined with language operators.

Almost anything you can use as the right side of an assignment operator can be used as a
debugging expression, except for variables not accessible from the current execution point.
You can view the state of your program by

Watching program values
Evaluating and modifying expressions
Inspecting data elements
Viewing the low-level state of your program
Viewing functions in the Call Stack window

Modifying program data values
See also
Sometimes you will find that a programming error is caused by an incorrect data value. Using the
integrated debugger, you can test a "fix" by modifying the data value while your program is running. You
can modify program data in the following ways:

Modifying variables
Changing the value of inspector items
Using the CPU window's Memory Dump pane

Watch expressions
See also
If you want to monitor the value of a variable or expression while you debug your code, add a watch to
the Watch List window. The Watch List window displays the current value of the watch expression based
on the scope of the execution point.
Each time your program’s execution pauses, the debugger evaluates all the items listed in the Watch
List window and updates their displayed values.
You can set a watch expression in the following ways:

The easiest way to set a watch is to place the insertion point on a term in the Code editor, then
right-click and choose Add Watch at Cursor.

You can also set a watch and specify its properties on the Watch Properties dialog box. For more
information, see Setting watch properties.

The Watch List window
After you enter a watch expression, use the Watch List window to display the current value of the
expression. Check the check box beside a watch to enable it, or clear the check box to disable it.
To display the Watch List window, choose View|Watch.
The left side of the Watch List window shows the expressions entered as watches. Corresponding data
types and values appear on the right. Values of compound data objects (such as arrays and structures)
appear between braces ({ }).

The Watch List window will be blank if you have not added any watches.
If the execution point moves to a location where any of the variables in an expression is undefined (out
of scope), the entire watch expression becomes undefined. If the execution point returns to a location
where the watch expression can be evaluated (that is, if the execution point re-enters the scope of the
expression), the Watch List window again displays the current value of the expression.

Watch List commands
Right-click the Watch List to access the following commands that enable you manipulate watch points:
Edit Watch Opens the Watch Properties dialog box that lets you modify the properties of a

watch
Add Watch Opens the Watch Properties dialog box that lets you create a watch
Enable Watch Enables a disabled watch expression
Disable Watch Disables an enabled watch expression
Delete Watch Removes a watch expression
Enable All Watches Enables all disabled watch expressions
Disable All Watches Disables all enabled watch expressions
Delete All Watches Removes all watch expressions

Edit Watch
Right-click the Watch List and choose Edit Watch to open the Watch Properties dialog box, where you
can create and modify a watch. After you create a watch, use the Watch List window to modify the
watches currently set in your program.

Add Watch
Right-click the Watch List and choose Add Watch to open the Watch Properties dialog box, where you
can create a watch. After you create a watch, use the Watch List window to modify the watches currently
set in your program.
Alternate ways to perform this command are

Choose Run|Add Watch.
Right-click the Code editor and choose Add Watch At Cursor.

Enable Watch
Right-click the Watch List and choose Enable Watch to enable a disabled watch expression.

Disable Watch
Right-click the Watch List and choose Disable Watch to disable an enabled watch expression.
Disabling a watch hides the watch from the current program run. When you disable a watch, its settings
remain defined, but the debugger does not evaluate the watch.
Disabling watches improves performance of the debugger because it does not monitor the watch as you
step through or run your program. When you set a watch, it is enabled by default.

Delete Watch
Right-click the Watch List and choose Delete Watch to remove a watch expression.
When you no longer need to examine the value of an expression, you can delete the watch from the
debugging session. This command is not reversible.

Enable All Watches
Right-click the Watch List and choose Enable All Watches to enable all disabled watch expressions.

Disable All Watches
Right-click the Watch List and choose Disable All Watches to disable all enabled watch expressions.
Disabling a watch hides the watch from the current program run. When you disable a watch, its settings
remain defined, but the debugger does not evaluate the watch.
Disabling watches improves performance of the debugger because it does not monitor the watch as you
step through or run your program. When you set a watch, it is enabled by default.

Delete All Watches
Right-click the Watch List and choose Delete All Watches to remove all watch expressions.
When you no longer need to examine the value of an expression, you can delete the watch from the
debugging session.

Setting watch properties
See also
Use the Watch properties dialog box to set the properties of a new watch expression or to change the
properties of an existing one.
You can open the Watch Properties dialog box in the following ways:

Choose Run|Add Watch from the main menu.
Right-click the Watch List window and choose Add Watch.
Select a watch in the Watch List window, then right-click and choose Edit Watch.

Watch Properties dialog box
You can set the following properties for a watch expression:

Expression
Specifies the expression to watch. Enter or edit the expression you want to watch. Use the drop-down
button to choose from a history of previously selected expressions.

Repeat Count
Specifies the repeat count when the watch expression represents a data element, or specifies the
number of elements in an array when the watch expression represents an array.
When you watch an array and specify the number of elements as a repeat count, the Watch List window
displays the value of every element in the array.

Digits
Specifies the number of significant digits in a watch value that is a floating-point expression. Enter the
number of digits.

This option takes affect only when you select Floating Point as the Display format. For more
information, see Formatting watch expressions.

Enabled
Enables or disables the watch. Disabling a watch hides the watch from the current program run. When
you disable a watch, its settings remain defined, but the debugger does not evaluate the watch.

Display format radio buttons
To format the display of a watch expression, select a radio button.

For more information, see Formatting watch expressions.

Formatting watch expressions
See also
By default, the debugger displays the result of a watch in the format that matches the data type of the
expression. For example, by default, integer values are displayed in decimal form. If you select
Hexadecimal in the Watch Properties dialog box for an integer type expression, the debugger changes
the display format from decimal to hexadecimal.
If you are setting up a watch on an element in a data structure (such as an array), you can display the
values of consecutive data elements. For example, suppose you have an array of five integers named
xarray. Type the number 5 in Repeat Count on the Watch Properties dialog box to see all five values of
the array. To use a repeat count, however, the watch expression must represent a single data element.
To format a floating-point expression, select Decimal at Display format and enter a number for Digits on
the Watch Properties dialog to indicate the number of significant digits you want displayed in the Watch
List window.
The following table describes the watch expression format options and their effects.

Option Types affected Description
Hexadecimal integers/characters Shows integer values in hexadecimal with the 0x prefix,

including those in data structures.
Character characters/strings Shows special display characters for ASCII 0 to 31. By

default, such characters are shown using the appropriate
C escape sequences (\n, \t, and so forth).

Decimal integers Shows integer values in decimal form, including those in
data structures.

Floating point floating point Shows the significant digits specified; from 2-18. The
default is 7.

Memory dump all Shows the size in bytes starting at the address of the
indicated expression. By default, each byte displays two
hex digits. Use the memory dump with the character,
decimal, hexadecimal, and string options to change the
byte formatting. Use the Repeat Count setting to specify
the number of bytes you want to display.

Pointer pointers Shows the address of the pointer.
Structure/Union structures /unions Shows field names and unions as well as values such as

X:1;Y:10;Z:5.
String char, strings Shows ASCII 0 to 31 as C escape sequences. Use this

option only to modify memory dumps.
Default all Shows the result in the display format that matches the

data type of the expression.

Enabling and disabling watches
See also
Evaluating many watch expressions can slow down the process of debugging. Disable a watch
expression when you prefer not to view it in the Watch List window, but want to save it for later use.
When you set a watch, it is enabled by default. Disabling a watch hides the watch from the current
program run. When you disable a watch, its settings remain defined, but the debugger does not evaluate
it.
To enable or disable a watch,
1. Choose View|Watch to open the Watch List window.
2. Select a watch, then right-click and choose Enable or Disable watch.
The flag <disabled> appears next to a watch that is disabled.
To disable or enable all watches,
Right-click the Watch List window and choose Enable All Watches or Disable All Watches.

Deleting watches
See also
When you no longer need to examine the value of an expression, you can delete the watch from the
debugging session.

To delete a single watch,
1. Choose View|Watch to open the Watch List window.
2. Select a watch, then right-click and choose Delete Watch.

To delete all watches in a source code file,
Right-click the Watch List window and choose Delete All Watches.

Evaluating and modifying expressions
See also
Use the Evaluate/Modify dialog box to evaluate or change the value of an existing expression or
property. The Evaluate/Modify dialog box has the advantage over watches in that it enables you to
change the values of variables and items in data structures during the course of your debugging
session.
You can test different error hypotheses and see how a section of code behaves under different
circumstances by modifying the value of data items during a debugging session. This technique can be
useful if you think you have found the solution to a bug, and you want to try the correction without having
to exit the debugger, changing the source code, and recompiling the program.

To evaluate an expression or property
1. Open the Evaluate/Modify dialog box one of the following ways.

Choose Run|Evaluate/Modify.
Right-click the Code editor and choose Evaluate/Modify.

2. Type an expression in the Expression box.
By default, the word at the cursor position in the current Code editor is placed in the Expression input
box. You can accept this expression, enter another one, or choose an expression from the history list
of expressions you have previously evaluated. If you want to evaluate a function call, enter the
function name, parentheses, and arguments just as you would type it into your program, but leave out
the statement-ending semicolon (;).

3. Choose Evaluate. The value of the item appears in the Result edit box.

Evaluating expressions
See also
You can evaluate any valid language expression, except those that contain variables that are not
accessible from the current execution point.

Formatting values
To format the result that displays, add a comma and one or more format specifiers to the end of the
expression entered in the Expression box. For example:

To display a result in hexadecimal, type ,H after the expression.
To see a floating point number to 3 decimal places, type ,F3 after the expression.

For a complete list of format options, see Evaluate/modify format specifiers.

Evaluate/Modify dialog box
The Evaluate/Modify dialog box provides the following options:

Expression
Lets you specify the variable, array, or object to evaluate or modify.

Result
Displays the value of the item specified in the Expression text box after you choose Evaluate or Modify.

New value
Lets you assign a new value to the item specified in the Expression edit box.

Evaluate
Evaluates the expression in the Expression edit box and displays its value in the Result edit box.

Modify
Changes the value of the expression in the Expression edit box using the value in the New Value edit
box.

Modifying variables
After you have evaluated a variable or data structure item, you can modify its value. When you modify a
value through the debugger, the modification is effective for that specific program run only. Changes you
make through the Evaluate/Modify dialog box do not affect your source code or the compiled program.
To make your change permanent, you must modify your source code in the Code editor, then recompile
your program.

To change the value of an expression
1. Open the Evaluate/Modify dialog box one of the following ways.

Choose Run|Evaluate/Modify
Right-click the Code editor and choose Evaluate/Modify.

2. Specify the expression in the Expression edit box. To modify a component property, explicitly specify
the property name. For example, enter: Form1->Button1->Height

3. Enter a value in the New Value edit box.
4. Choose Modify. The new value is displayed in the Result box.

You cannot undo a change to a variable after you choose Modify. To restore a value, however,
you can enter the previous value in the Expression box and modify the expression again.
Keep these points in mind when you modify program data values:

You can change individual variables or elements of arrays and data structures, but you cannot
change the contents of an entire array or data structure with a single expression.

The expression in the New Value box must evaluate to a result that is assignment-compatible
with the variable you want to assign it to. A good rule of thumb is that if the assignment would cause a
compile-time or runtime error, it is not a legal modification value.

Use caution when you modify variables while debugging an application – any side effects that
occur will modify the data values of the program you are debugging. For example, if you modify a function
that increments a variable, the new value of that variable will be reflected when you continue to step
through your application. Modifying values (especially pointer values and array indexes) can have
undesirable effects because you might overwrite other variables and data structures. Because these
errors might not be immediately apparent, use caution whenever you modify program values from the
debugger.

Inspecting data elements
See also
Inspector windows are the best way to view data items because the debugger automatically formats
Inspector windows according to the type of data it is displaying. Inspector windows are especially useful
when you want to examine compound data objects, such as arrays and linked lists. Because you can
inspect individual items displayed in an Inspector window, you can “walk” through compound data
objects by opening an Inspector window on a component of the compound object.

To display an Inspector window directly from the Code editor,
1. Place the insertion point in the Code editor on the data element you want to inspect.
2. Right-click and choose Inspect.

To inspect a data element from the menu bar,
1. Choose Run|Inspect from the menu bar to display the Inspect dialog box.
2. Type the expression you want to inspect, then choose OK.

Scope
Unlike watch expressions, the scope of a data element in an Inspector window is fixed at the time you
evaluate it:

If you use the Inspect command from the Code editor, the debugger uses the location of the
insertion point to determine the scope of the expression you are inspecting. This makes it possible to
inspect data elements that are not within the current scope of the execution point.

If you use the Run|Inspect command from the menu bar, the data element is evaluated within the
scope of the execution point.

If the execution point is in the scope of the expression you are inspecting, the value appears in the
Inspector window. If the execution point is outside the scope of the expression, the value is undefined
and the Inspector window becomes blank.

Inspecting local variables
You can inspect all the local variables defined in the current scope by inspecting the expression
$Locals.

1. Choose Run|Inspect from the menu bar to display the Inspect Expression dialog box.
2. Type $Locals and choose OK.

Data types
The number of panes and the appearance of the data in the Inspector window depends on which of the
following types of data you inspect:

scalar variables
functions
constants
arrays
pointers
classes
objects
structures and unions

For example, if you inspect an array, you will see a line for each member of the array with the array
index of the member. The value of the member follows in its display format, followed by the value in
hexadecimal.

The Inspector window
See also
The number of tabs and the appearance of the data in the Inspector window depends on the type of
data you inspect. You can inspect the following types of data: arrays, classes, constants, functions,
pointers, scalar variables (int, float, and so on), and structures and unions. The Inspector window
contains three areas:

The top of the Inspector window shows the name, type, and address or memory location of the
inspected element, if available.

The middle pane contains one or more of the following views depending on the type of data you
inspect. To change the view, click its tab.

Data Shows data names (or class data members) and current values.
Methods This view appears only when you inspect a class, structure, or union and shows

the class methods (member functions) and current address locations.
Properties This view displays only when you inspect an Object class with properties (such

as a VCL Object) and shows the property names and current values.
 The inspector does not automatically report the values of all properties because a

function called to evaluate certain properties may have side effects that can affect
the behavior of the program you are debugging. For example, if you evaluate
certain properties before an object is fully constructed or before the object's
associated window is created, some of the functions called will actually try to
create the window. When your program actually creates the window, the app will
likely throw an exception.

 Therefore, for a property whose getters are member functions, the inspector
window shows the value as <dynamic> on the properties page. To see the value
of the property, click the ? button that appears next to <dynamic>. The debugger
will continue to recalculate the value of the property each time the process stops
(such as after a step or at a breakpoint). If you click the ? button again, the
debugger stops recalculating the value of the property and again will show
<dynamic> as the property's value each time the process stops.

The bottom of the Inspector window shows the data type of the item currently selected in the
middle pane.

Inspector window commands
Right-click the Inspector window to access the following commands:
Range Lets you specify how many data elements you want to view. It is available only

when you inspect pointers and arrays.
Change Lets you assign a new value to a data item. An ellipsis (…) appears next to an

item that can be changed. You can click the ellipsis as alternative to choosing the
change command.

Show Inherited Switches the view in the Data, Methods, and Properties panes between two
modes: one that shows all intrinsic and inherited data members or properties of a
class, or one that shows only those declared in the class.

Inspect Opens a new Inspector window on the data element you have selected. This is
useful for seeing the details of data structures, classes, and arrays.

Descend Same as the Inspect command, except the current Inspector window is replaced
with the details that you are inspecting (a new Inspector window is not opened).
To return to a higher level, use the history list.

Type Cast Lets you specify a different data type for an item you want to inspect. Type
casting is useful if the Inspector window contains a symbol for which there is no
type information, and when you want to explicitly set the type for untyped
pointers.

New Expression Lets you inspect a new expression.

Inspecting scalar variables
See also
When you inspect a scalar variable, such as simple data items including C and C++ char, int, long, and
Object Pascal Integer, Real, and so on, the top of the Inspector window shows the name, type, and
address of the variable. The middle pane shows the name of the scalar on the left and its current value
on the right. Integer values are displayed first in decimal, followed by the hexadecimal value enclosed in
parentheses.
If the variable inspected is of C++ type char, the equivalent character appears to the left of the numeric
values. If the present value does not have a printable character equivalent, the debugger displays a
backslash (\) followed by the hexadecimal value that represents the character value.

Inspecting pointers and arrays
See also
When you inspect a pointer or an array, Inspector windows show the values of variables that point to
other data items. The top of the Inspector window shows the name, type, count, address (or register if
applicable), and pointer location of the variable. The middle pane shows the current values of the data
pointed to. The bottom of the Inspector window shows the data type to which the pointer points.
If the value pointed to is a compound data object (such as a structure or record, or an array), the values
are enclosed in braces ({}) and the Inspector window displays as much of the data as possible.
If the pointer appears to be pointing to a null-terminated character string, the debugger displays the
value of each item in the character array. The left of each line displays the array index ([0], [1], [2], and
so on), and the values appear on the right. When you inspect character strings, the entire string appears
at the top of Inspector window, along with the address of the pointer variable and the address of the
string that it points to.

Range
You can use the Range command to cause the Inspector window to display multiple lines of information.
This is helpful for C++ programmers who use pointers to point to arrays of data structures as well as to
single items. For example, suppose you have the following code:
// In C++
int array[10];
int *arrayp = array;

{ In Object Pascal }
Type
Tarray = array[0..9] of Integer;
arrayp = ^Tarray;
To see what arrayp points to;
1. Select arrayp in the Inspector window.
2. Right-click and choose Range.
3. Specify a start of 0 and a count of 5. Had you not done so, you would have seen only one item in the

array.

Inspecting C++ structures and unions
See also
When you inspect a structure or union, the Inspector window shows the values of members contained in
compound data objects.
The top of the window shows the name of the object. The middle pane lists the names and values of the
data members of contained in the object, and contains as many lines as needed to show the entire data
object.
The bottom of the window shows the data type of the member currently selected.

Inspecting functions
See also
When you inspect a function, the top of the Inspector window shows the function name, prototype, and
its address in memory. The middle pane shows the function's arguments. To inspect a function, enter the
function’s name without parentheses or arguments.
If the function is currently on the call stack, its parameters appear at the bottom of the inspector window.

Isolating the view in an Inspector window
See also
You can more closely inspect certain elements (such as classes, structures, and arrays) in the Inspector
window to isolate the view to the member level:
1. Select an item in the Inspector window.
2. Right-click and choose Inspect to open a new Inspector window, or choose Descend to update the

display of the current Inspector window.
The scope of the data element remains the same as it was when you opened it on the Inspector window.
If you select a data member that is a pointer to a class, the Inspector window displays the class pointed
to.

Changing the value of Inspector items
See also
An ellipsis (…) appears next to a data element that can modified.
To change the value of a inspected element,
1. Select an item in the Inspector window.
2. Click the ellipsis (…), or right-click the element and choose Change.
3. Type a new value, then choose OK.

Selecting a range of data items
See also
If you are inspecting an array, it is possible the number of items displayed might be so great that you will
have to scroll the Inspector window to see data you want. For easier viewing, narrow the display to a
range of data items.
1. Select an item in the Inspector window.
2. Right-click and choose Range.
3. In the Start box, enter a new value for the first element in the array.
4. In the Count box, enter the number of elements in the array you want to view.

The CPU window
See also
The CPU window consists of five separate panes. Each pane gives you a view into a specific low-level
aspect of your running application.

The Disassembly pane displays the assembly instructions that have been disassembled from
your application's machine code. In addition, the Disassembly pane displays the original program source
code above the associated assembly instructions.

The Memory Dump pane displays a memory dump of any memory accessible to the currently
loaded executable module. By default, memory is displayed as hexadecimal bytes.

The Machine Stack pane displays the current contents of the program stack. By default, the stack
is displayed as hexadecimal longs (32-bit values).

The Registers pane displays the current values of the CPU registers.
The Flags pane displays the current values of the CPU flags.

Right-click anywhere on the CPU window to access commands specific to the contents of the current
pane.

Opening the CPU window
To open the CPU window anytime during a debugging session,
Choose View|CPU or right-click the Code editor and choose CPU View to open the Disassembly pane at
the location of the execution point.

The CPU window opens automatically whenever program execution stops at a location for which
source code is unavailable. For example, the debugger cannot open the source file if you link a DLL built
with debug information but do not include its source file in your project, or if you place the source file in a
directory not specified in your project.

Resizing the CPU window panes
You can customize the layout of the CPU window by resizing the panes within the window. Drag the
pane boarders within the window to enlarge or shrink the windows to your liking.

Disassembly pane
The left side of the Disassembly pane lists the address of each disassembled instruction. A green arrow
to the left of the memory address indicates the location of the current execution point. To the right of the
memory addresses, the Disassembly pane displays the assembly instructions that have been
disassembled from the machine code produced by the compiler. If you make the Disassembly pane
wide enough, the debugger displays the instruction opcodes following the listing of the instruction
memory addresses.
When you click an address in the Disassembly pane,

the upper left corner shows the effective address (when available) and the value it stores. For
example, if you select an address containing an expression in brackets such as [eax+edi*4-0x0F],
the top of the Disassembly pane shows the location in memory being referenced and its current value.

the upper right corner shows the current thread ID.
If you are viewing code that has been linked with a symbol table, the debugger displays the source code
that is associated with the disassembled instructions.

Press Ctrl+Left Arrow and Ctrl+Right Arrow to shift the starting point of the display up or down
one byte. Beware that changing the starting point of the display in the Disassembly pane changes where
the debugger begins disassembling the machine code.

Disassembly pane commands
Right-click the Disassembly pane to access the following commands:

Run to Current
Toggle Breakpoint
Go to Address
Go to Current EIP
Follow
Caller
Previous
Search
View Source
Mixed
Change Thread
New EIP

Run to Current
The Run To Current command lets you run your program at full speed to the instruction that you have
selected in the Disassembly pane. After your program is paused, you can use this command to resume
debugging at a specific program instruction.

Toggle Breakpoint
This command adds or removes a breakpoint at the selected instruction in the Disassembly pane. When
you choose Toggle Breakpoint, the debugger sets an unconditional (simple), breakpoint at the
instruction that you have selected in the Disassembly pane. A simple breakpoint has no conditions, and
the only action is that it will pause the program's execution.
If a breakpoint exists on the selected instruction, then Toggle Breakpoint will delete the breakpoint at
that code location.

Go to Address
The Go to Address command prompts you for a new area of memory to display in the Disassembly pane
of the CPU window. Enter any expression that evaluates to a program memory location. Be sure to
precede hexadecimal values with 0x.

The debugger displays dashes if you view a program memory location in which nothing is loaded.
You can also press Ctrl+Left Arrow and Ctrl+Right Arrow to shift the starting point of the display up or
down one byte.

Go to Current EIP
This command positions the Disassembly pane at the location of the current program counter (the
location indicated by the EIP register). This location indicates the next instruction to be executed by your
program.
This command is useful when you have navigated through the Disassembly pane, and you want to
return to the next instruction to be executed.

Follow
This command positions the Disassembly pane at the destination address of the instruction currently
highlighted.
Use the Follow command in conjunction with instructions that cause a transfer of control (such as CALL,
JMP, and INT) and with conditional jump instructions (such as JZ, JNE, LOOP, and so forth). For
conditional jumps, the address is shown as if the jump condition is TRUE. Use the Previous command to
return to the origin of the jump.

Caller
This command positions the Disassembly pane at the instruction that called the current interrupt or
subroutine.

If the current interrupt routine has pushed data items onto the stack, the debugger might not be
able to determine where the routine was called from.

Previous
This command restores the Disassembly pane to the display it had before you issued the last Follow
command.

Search
This command searches forward in the Disassembly pane for an expression or byte list that you supply.
Supply a byte list to search for two or more values located in a specific order. Be sure to precede
hexadecimal values with 0x.
For example, if you enter
0x5D 0xC3

the debugger goes to the following location:
004013AB 5D
004013AC C3

You can also search for DWords, but you must reverse the order of the bytes.
For example, if you enter
0x1234

the debugger positions the pane at the following location in memory:
34 12

View source
This command activates the Code editor and positions the insertion point at the source code line that
most closely corresponds to the disassembled instruction selected in the Disassembly pane. If there is
no corresponding source code (for example, if you are examining Windows kernel code), this command
has no effect.

Mixed
Switches the display format of the Disassembly pane:
When Mixed is…. The Disassembly pane displays….
checked source code lines before the first disassembled instruction relating to that source

line.
unchecked disassembled instructions without source code.

Change thread
This command opens the Select a Thread dialog box. Select the thread you want to debug from the
threads listed. When you choose a new thread from the Disassembly pane, all panes in the CPU
window reflect the state of the CPU for that thread.

New EIP
This command changes the location of the instruction pointer (the value of EIP register) to the line
currently highlighted in the Disassembly pane. Use this command when you want to skip certain
machine instructions. When you resume program execution, execution starts at this address.

This command is not the same as stepping through instructions; the debugger does not execute
any instructions that you might skip.

Use this command with extreme care; it is easy to place your system in an unstable state when
you skip over program instructions.

Memory Dump pane
The Memory Dump pane displays the raw values contained in addressable areas of your program. The
pane has three sections: the memory addresses, the current values in memory, and an ASCII
representation of the values in memory.
The Memory Dump pane displays the memory values in hexadecimal notation. The leftmost part of each
line shows the starting address of the line. Following the address listing is an 8-byte hexadecimal listing
of the values contained at that location in memory. Each byte in memory is represented by two
hexadecimal digits. Following the hexadecimal display is an ASCII display of the memory. Non-printable
values are represented with a period.
The format of the memory display depends on the format selected with the Display As command. If you
choose one of the floating-point display formats (Floats or Doubles), a single floating-point number is
displayed on each line. The Bytes format (default) displays 8 bytes per line, Words displays 4 words per
line, and DWords displays 2 long words per line.

You can press Ctrl+Left Arrow and Ctrl+Right Arrow to shift the starting point of the display up or
down one byte. Using these keystrokes is often faster than using the Go to Address command to make
small adjustments to the display.

Memory Dump pane commands
Right-click the Memory Dump pane to access the following commands:

Go to Address
Change Thread
Search
Next
Change
Follow
Previous
Display As

Go to Address
The Go to Address command prompts you for a new area of memory to display in the Memory Dump
pane of the CPU window. Enter any expression that evaluates to a program memory location. Be sure to
precede hexadecimal values with 0x.

The debugger displays dashes if you view a program memory location in which nothing is loaded.
You can also press Ctrl+Left Arrow and Ctrl+Right Arrow to shift the starting point of the display up or
down one byte.

Change thread
This command opens the Select a Thread dialog box. Select the thread you want to debug from the
threads listed. When you choose a new thread from the Memory Dump pane, all panes in the CPU
window reflect the state of the CPU for that thread.

Search
This command searches forward in the Memory Dump pane for an expression or byte list that you
supply. Supply a byte list to search for two or more values located in a specific order. Be sure to precede
hexadecimal values with 0x.
For example, if you enter
0x5D 0xC3

the debugger positions the pane at the following location:
004013AB 5D
004013AC C3

You can also search for DWords, but you must reverse the order of the bytes.
For example, if you enter
0x1234

the debugger positions the pane at the following location in memory:
34 12

Next
Finds the next occurrence of the item you last Searched for in the Memory Dump pane.

Change
Lets you modify the bytes located at the current cursor location and prompts you for an item of the
current display type.

You can invoke this command by typing directly in the Dump pane.

Follow
Lets you choose the following commands:
Near Code Positions the Disassembly pane at the address currently selected in the Memory

Dump pane.
Offset to Data Lets you follow DWord-pointer chains (near and offset only) and positions the

Memory Dump pane at the address specified by the DWord currently highlighted.

Previous
This command restores the Memory Dump pane of the CPU window to the location displayed before
you issued the last Follow command.

Display as
Use the Display As command to format the data listed in the Memory Dump pane of the CPU window.
You can choose any of the data formats listed in the following table:
Data type Display format

Bytes Hexadecimal bytes
Words 2-byte hexadecimal numbers
DWords 4-byte hexadecimal numbers
Floats 4-byte floating-point numbers using scientific notation
Doubles 8-byte floating-point numbers using scientific notation
Long Doubles 10-byte floating-point numbers using scientific notation

Machine Stack pane
The Machine Stack pane displays the raw values contained in the your program stack. The pane has
three sections: the memory addresses, the current values on the stack, and an ASCII representation of
the stack values.

A green arrow indicates the value at the top of the call stack.
The Machine Stack pane displays the memory values in hexadecimal notation. The leftmost part of each
line shows the starting address of the line. Following the address listing is a 4-byte listing of the values
contained at that memory location. Each byte is represented by two hexadecimal digits. Following the
hexadecimal display is an ASCII display of the memory. Non-printable values are represented with a
period.
The format of the memory display depends on the format selected with the Display As command. If you
choose one of the floating-point display formats (Floats or Doubles), a single floating-point number is
displayed on each line. The Bytes format displays 4 bytes per line, Words displays 2 words per line, and
DWords (the default) displays 1 long word per line.

You can press Ctrl+Left Arrow and Ctrl+Right Arrow to shift the starting point of the display up or
down one byte. Using these keystrokes is often faster than using the Go to Address command to make
small adjustments to the display.

Machine Stack pane commands
Right-click the Machine Stack pane to access the following commands:

Go to Address
Change Thread
Top of Stack
Follow
Previous
Change
Display As

Go to Address
The Go to Address command prompts you for a new area of memory to display in the Machine Stack
pane of the CPU window. Enter any expression that evaluates to a program memory location. Be sure to
precede hexadecimal values with 0x.

The debugger displays dashes if you view a program memory location in which nothing is loaded.
You can also press Ctrl+Left Arrow and Ctrl+Right Arrow to shift the starting point of the display up or
down one byte.

Change thread
This command opens the Select a Thread dialog box. Select the thread you want to debug from the
threads listed. When you choose a new thread from the Machine Stack pane, all panes in the CPU
window reflect the state of the CPU for that thread.

Top of stack
Positions the Machine Stack pane at the address of the stack pointer (the address held in the ESP
register).

Follow
Lets you choose the following commands:
Offset to stack Lets you follow DWord-pointer chains (near and offset only) on the call stack and

positions the Machine Stack pane at the address location of the value currently
selected in the Machine Stack pane.

Near Code Positions the Disassembly pane at the address location of the value currently
selected in the Machine Stack pane.

Offset to Data Lets you follow DWord-pointer chains (near and offset only) and position the
Memory Dump pane at the address location of the value currently selected in the
Machine Stack pane.

Previous
This command restores the Machine Stack pane in CPU window to the location displayed before you
issued the last Follow command.

Change
Lets you enter a new value for the stack word currently highlighted.

You can invoke this command by typing directly in the Machine Stack pane.

Display as
Use the Display As command to format the data that’s listed in the Machine Stack pane of the CPU
window. You can choose any of the data formats listed in the following table:
Data type Display format

Bytes Displays data in hexadecimal bytes
Words Displays data in 2-byte hexadecimal numbers
DWords Displays data in 4-byte hexadecimal numbers
Floats Displays data in 4-byte floating-point numbers using scientific notation

Registers pane
The Registers pane displays the contents of the CPU registers of the 80386 and greater processors.
These registers consist of eight 32-bit general purpose registers, six 16-bit segment registers, the 32-bit
program counter (EIP), and the 32-bit flags register (EFL).
After you execute an instruction, the Registers pane highlights in red any registers that have changed
value since the program was last paused.

Registers pane commands
Right-click the Registers pane to access the following commands:

Increment Register
Decrement Register
Zero Register
Change Register
Change Thread

Increment register
Increment Register adds 1 to the value in the currently highlighted register. This option lets you test “off-
by-one” bugs by making small adjustments to the register values.

Decrement register
Decrement Register subtracts 1 from the value in the currently highlighted register. This option lets you
test “off-by-one” bugs by making small adjustments to the register values.

Zero register
The Zero Register command sets the value of the currently highlighted register to 0.

Change register
Lets you change the value of the currently highlighted register. This command opens the Change
Register dialog box where you enter a new value. You can make full use of the expression evaluator to
enter new values. Be sure to precede hexadecimal values with 0x.

Change thread
This command opens the Select a Thread dialog box. Select the thread you want to debug from the
threads listed. When you choose a new thread from the Registers pane, all panes in the CPU window
reflect the state of the CPU for that thread.

Flags pane
The Flags pane shows the current state of the flags and information bits contained in the 32-bit register
EFL. After you execute an instruction, the Flags pane highlights in red any flags that have changed
value since the program was last paused.
The processor uses the following 15 bits in this register to control certain operations and indicate the
state of the processor after it executes certain instructions:

Letters in pane Flag/bit name EFL register bit number
CF Carry flag 0
PF Parity flag 2
AF Auxiliary carry flag 4
ZF Zero flag 6
SF Sign flag 7
TF Trap flag 8
IF Interrupt flag 9
DF Direction flag 10
OF Overflow flag 11
IO I/O privilege level 12 and 13
NF Nested task flag 14
RF Resume flag 16
VM Virtual 8086 mode 17
AC Alignment check 18

Flags pane commands
Right-click the Flags pane to access the following commands:

Toggle Flag
Change Thread

Toggle flag
The flag and information bits in the Flags pane can each hold a binary value of 0 or 1. This command
toggles the selected flag or bit between these two binary values.

Change thread
This command opens the Select a Thread dialog box. Select the thread you want to debug from the
threads listed. When you choose a new thread from the Flags pane, all panes in the CPU window reflect
the state of the CPU for that thread.

Locating function calls
See also
While debugging, it is useful to know the order of function calls that brought you to your current location.
The Call Stack window lets you view the current sequence of function calls. It also shows the values of
the arguments passed to each function call (the arguments with which the call was made).
To open the Call Stack window,

Choose View|Call Stack from the menu bar.
To scroll the Code editor to the location of a function call,

Right-click the function call in the Call Stack window and choose View Source.
To scroll the Code editor to the location of a function call and make the Code editor active,

Right-click the function call in the Call Stack window and choose Edit Source.
If you choose View Source, the Call Stack window remains active. If you choose Edit Source, the Code
editor gains focus, enabling you to modify the source code at that location.

Stepping over function calls
The Call Stack window is useful if you accidentally trace into code you wanted to step over. Using the
Call Stack window, you can return to the point from which the current function was called, then resume
debugging.
To use the Call Stack window to step over function calls,
1. In the Call Stack window, right-click the calling function (the second function in the Call Stack window)

and choose Edit Source. The Code editor becomes active with the cursor positioned at the location of
the function call.

2. In the Code editor, move the cursor to the statement following the function call.
3. Choose Run|Run to Cursor.

The Call Stack window
See also
The Call Stack window displays the function calls that brought you to your current program location and
the arguments passed to each function call.
The following illustration shows a typical Call Stack window:

The top of the Call Stack window lists the last function called by your program. Below this is the listing for
the previously called function. The listing continues, with the first function called in your program located
at the bottom of the list. If debug information is available for a function listed in the window, it is followed
by the arguments that were passed when the call was made.
The Call Stack window also shows the names of member functions (or methods). Each member function
is prefixed with the name of the class that defines the function.

Call Stack commands
Right-click the Call Stack to access the following commands:
View Source Locates a function call in your source code quickly.
Edit Source Locates a function call in your source code quickly, and gives focus to the Code editor.

Customizing the colors of the execution point and breakpoints
See also
You can customize the colors used to indicate the execution point and the enabled, disabled, and invalid
breakpoint lines.
To set execution point and breakpoint colors,
1. Choose Options|Environment.
2. On the Environment Options dialog box, select the Colors tab.
3. From the Element list, select the following options that you want to change:

Execution point
Enabled Break
Disabled Break
Invalid Break

4. Select the background (BG) and foreground (FG) colors you want.

Logging debug messages
You can keep track of the significant events that occur during your debugging session using the
Windows API function OutputDebugString. When a program you are debugging executes calls to
OutputDebugString, debug messages are output to a temporary file in the Code editor titled
OutDbg1.txt. If a file called OutDbg1.txt is already open, new debug messages are appended to the end
of the file.

If you want to save the contents of OutDbg1.txt in the Code editor, you must choose File|Save or
File|Save As.

If you close the OutDbg1.txt page before saving it, its contents are lost. The IDE does not
automatically save its contents and does not prompt you to save when you close its window.

Turning debug messages on and off
You can enable or disable messages sent to the Code editor via OutputDebugString as follows:
1. In the Windows registry, locate the key:
HKEY_CURRENT_USER

Software
Borland

C++Builder
1.0

Debugging
ShowDebugStrings

2. Set the value to
1 to display debug messages in the Code editor.
0 to disable debug messages in the Code editor.
The default is 1.

Example
The following example uses OutputDebugString to output the message "in TForm1 Constructor":
#include <vcl\vcl.h>
#pragma hdrstop

#include "Unit1.h"
#pragma resource "*.dfm"
TForm1 *Form1;
//---
__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)
{

OutputDebugString ("in TForm1 Constructor");
}

Debugging start-up code
See also
The integrated debugger behaves differently, depending on the first debugging action you take in a new
debugging session. If the first action you choose is

Run|Trace Into (or right-click the CPU window and choose Trace Into), the CPU window displays
with the execution point positioned at your program's start-up code (typically address 0x401000).

Run|Step Over, the Code editor displays with the execution point positioned at your program's
entry point (such as main or WinMain).

Run|Trace To Next Source Line, the Code editor displays with the execution point positioned at
your first executable line of code. This location may be other than your program's entry point, such as a
constructor for a global object.

If you build your program without debug information, the following actions occur when you begin a
debugging session:

Run|Trace Into causes C++Builder to display the CPU window.
Run|Step Over or Run|Trace To Next Source Line causes C++Builder to run your program in a

normal fashion (it will run to completion without stopping for debugging).

Example
Suppose you choose File|New Application and then choose Run|Trace to Next Source Line. In this
situation, the Code editor displays with the execution point positioned at the first executable line, the
destructor for TObject in sysdefs.h:
virtual __fastcall ~TObject() {}
Suppose you create a console application that contains the following code. If you start the debugger by
choosing Run|Trace to Next Source Line, the Code editor displays the execution point at the line
containing the constructor myclass:myclassfoo() which initializes the global object myglobal.
#include <vcl\condefs.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#pragma hdrstop
//---
USERES("step.res");
//---
class myclass {
 public:
 myclass();
 private:
 int x;
};

myclass::myclass(){
 x = 100;
}

myclass myglobal;

int main(int argc, char **argv)
{
 return 0;
}

Handling exceptions in the Debugger
See also
C++Builder lets you control the way exceptions are handled while you debug your program. In addition,
it eases the debugging session by treating most hardware exceptions as language exceptions. C+
+Builder traps the hardware exceptions generated by your C++Builder application, and you can
gracefully recover rather than having your program execution end with a system crash.
If a hardware or language exception occurs while you are debugging a C++Builder application, your
program halts and the Exception dialog box displays. If you choose OK, you can continue to run your
program if your program handles the exception.
To pause the program run when an exception occurs,
1. Choose Options|Environment, then click the Preferences tab.
2. Check Break On Exceptions.
If Break On Exception is checked, C++Builder displays the Exception dialog box when an exception is
generated. When you choose OK to close the dialog box, C++Builder opens the Code editor with the
execution point positioned on the location of the exception (if no corresponding source is available, the
CPU window displays instead).

Debugging multi-threaded applications
See also
The integrated debugger supports debugging multi-thread programs in both Windows NT and Windows
95. Only a single thread, however, can be “active” at a given time. The active thread is the one that
responds to debugger commands such as stepping and expression evaluation.
Both the Call Stack window and the CPU window are “thread aware,” meaning that they display
information based on a particular thread.
You can specify the active thread in the following ways:

Choose View|Threads from the menu bar, then select a Thread Id listed in the Thread Status
window.

Right-click the CPU window and choose Change Thread, then select a Thread Id listed in the
Select a Thread dialog box

Debugging class member functions
See also
If you use classes in your programs, you can still use the integrated debugger to step through the
member functions in your code. The debugger handles member functions the same way it would step
through functions in a program that is not object-oriented.
If you define a member function inline, to facilitate debugging the inline function, be sure that Disable
Inline Expansion is on (it is off by default):
1. Choose Options|Project.
2. Click the Compiler tab.
3. If the box is cleared, click Disable Inline Expansions. When Disable Inline Expansions is checked, the

debugger accurately represents your C++ source code while stepping and tracing.

Debugging external code
See also
If you link external code into your program, you can Step over or Trace into that code if the .OBJ file you
link in contains debugging information.
You can debug external code written in any language, including C, C++, Object Pascal, and assembly
language. As long as the code meets all the requirements for external linking and contains full Borland
symbolic debugging information, the integrated debugger can step through it and display the source in
an Edit window. If the external code does not contain Borland debug information, you can still step
through the code using the CPU window.

Debugging dynamic-link libraries
See also
The debugger automatically loads the symbol table for all .DLLs. This action occurs when the program
starts or when the program explicitly loads a .DLL (in response to a LoadLibrary call). Because of this
behavior, there is no special procedure you need to follow to set breakpoints or to trace into .DLLs.
You can debug DLLs written in any language, including C, C++, Object Pascal, and assembly language.
As long as the DLL meets all the requirements for external linking and contains full Borland symbolic
debugging information, the integrated debugger can step through it and display the source in an Edit
window. If the DLL does not contain Borland debug information, you can still step through the code using
the CPU window.

Enabled (Breakpoint)
Enables a disabled breakpoint.
Disabling a breakpoint hides the breakpoint from the current program run. When you disable a
breakpoint, its settings remain defined, but the breakpoint does not cause your program to stop. When
you set a breakpoint, it is enabled by default.
Disabling is useful when you temporarily do not need a breakpoint, but want to preserve its settings.

Delete (Breakpoint)
Removes a breakpoint.
When you no longer need to examine the code at a breakpoint location, you can delete the breakpoint
from the debugging session. This command is not reversible.

View Source
Locates a breakpoint in your source code quickly.
The View Source command scrolls the Code editor to the location of the breakpoint that is selected in
the Breakpnoint List window.

Edit Source
Locates a breakpoint in your source code quickly.
The Edit Source command scrolls the Code editor to the location of the breakpoint that is selected in the
window, and makes the Code editor active.

Properties
Opens the Edit Breakpoint dialog box, where you can create or modify a breakpoint.

Add (Breakpoint)
Provides two submenu options:

Source Breakpoint. Opens the Edit Breakpoint dialog box where you can set a breakpoint on a
specific line location in your source code. When you run your program, the execution point in the Code
editor indicates the breakpoint location.

Address Breakpoint. Opens the Edit Breakpoint dialog box where you can set a breakpoint on a
specific machine instruction. When you run your program, the execution point in the CPU window
Disassembly pane indicates the breakpoint location.

Delete All (Breakpoints)
Removes all breakpoints.
When you no longer need to examine the code at a breakpoint location, you can delete the breakpoint
from the debugging session. This command is not reversible.

Disable All (Breakpoints)
Disables all enabled breakpoints.
Disabling a breakpoint hides the breakpoint from the current program run. When you disable a
breakpoint, its settings remain defined, but the breakpoint does not cause your program to stop. When
you set a breakpoint, it is enabled by default.
Disabling is useful when you temporarily do not need a breakpoint but want to preserve its settings.

Enable All (Breakpoints)
Enable all disabled breakpoints.
Disabling a breakpoint hides the breakpoint from the current program run. When you disable a
breakpoint, its settings remain defined, but the breakpoint does not cause your program to stop. When
you set a breakpoint, it is enabled by default.
Disabling is useful when you temporarily do not need a breakpoint but want to preserve its settings.

Evaluate/Modify format specifiers
By default, the debugger displays the result in the format that matches the data type of the expression.
Integer values, for example, are normally displayed in decimal form. To change the display format, type
a comma (,) followed by a format specifier after the expression.

Example
Suppose the Expression box contains the integer value z and you want to display the result in
hexadecimal:
1. In the Expression box, type z,h.
2. Choose Evaluate.

Format specifiers
The following table describes the Evaluate/Modify format specifiers.

Specifier Types affected Description
,C Char, strings Character. Shows characters for ASCII 0 to 31 in the

Pascal #nn notation.
,S Char, strings String. Shows ASCII 0 to 31 in Pascal #nn notation.
,D Integers Decimal. Shows integer values in decimal form, including

those in data structures.
,H or ,X Integers Hexadecimal. Shows integer values in hexadecimal with

the $ prefix, including those in data structures.
,Fn Floating point Floating point. Shows n significant digits where n can be

from 2 to 18. For example, to display the first four digits of
a floating point value, type ,F4. If n is not specified, the
default is 11.

,P Pointers Pointer. Shows pointers as 32-bit addresses with
additional information about the address pointed to. It tells
you the region of memory in which the pointer is located
and, if applicable, the name of the variable at the offset
address.

,R Records, classes, objects Records/Classes/Objects. Shows both field names and
values such as (X:1;Y:10;Z:5) instead of (1,10,5).

,nM All Memory dump. Shows n bytes, starting at the address of
the indicated expression. For example, to display the first
four bytes starting at the memory address, type ,4M. If n is
not specified, it defaults to the size in bytes of the type of
the variable. By default, each byte is displayed as two hex
digits. Use memory dump with the C, D, H, and S format
specifiers to change the byte formatting.

Inspect error
See also
The symbol you are trying to inspect is not recognized by the debugger. For example, it may be an
invalid symbol or out of scope.

Change
Enter a new value for the data element displayed in an Inspector window.

 Type Cast
Lets you specify a different data type for an item displayed in an Inspector window. Type casting is
useful if the Inspector window contains a symbol for which there is no type information, and when you
want to explicitly set the type for untyped pointers.

Range
See also
Lets you change the values of an array displayed in an Inspector window.
If you are inspecting a data structure, it is possible the number of items displayed might be so great that
you will have to scroll in the Inspector window to see the data you are want. For easier viewing, narrow
the display to a range of data items.

Start
Enter a new value for the first element in the array.

Count
Enter the number of elements in the array you want to view.

Threads status box
See also
Choose View|Threads to view the Threads status box.
Use this status box to view the status of all the threads currently executing in the application being
debugged.
When a debug event occurs (breakpoint, exception, paused), the thread status view will indicate the
status of each thread as it executes. Right-click the Threads status box to access commands to locate
the corresponding source location or make a different thread current. When a thread is marked as
current, the next step or run operation is relative to that thread.

State
The thread state is either Running or Stoped.

Status
The thread status displays one of the following:
Breakpoint The thread stopped due to a breakpoint.
Faulted The thread stopped due to a processor exeception.
Unknown The thread is not the current thread so its status is unknown.
Stepped The last step command was successfully completed.

Location
Displays the source position. Displays the address if there is no source location available.

Thread ID
Displays the OS assigned thread ID.

Threads status box commands
Right-click the Threads status box to access the following commands:
View Source Displays the Code editor at the corresponding source location of the selected

thread ID, but does not make the Code editor the active window.
Go to Source Displays the Code editor at the corresponding source location of the selected

thread ID and makes the Code editor the active window.
Make Current Makes the selected thread the active process if it is not so already.

 Select a thread
Select the thread you want to debug from the threads listed.

View Source
Locates a function call in your source code quickly. The Code editor scrolls to the location of the function
call selected in the Call Stack window, but does not make the Code editor the active window.

Edit Source
Locates a function call in your source code quickly. The Code editor scrolls to the location of the function
call selected in the Call Stack window and makes the Code editor the active window.

Enter search bytes
Enter a byte list to search forward in the Disassembly or Memory Dump pane on the CPU window. You
can supply a byte list to search for two or more values located in a specific order. Be sure to precede
hexadecimal values with 0x.
For example, if you enter
0x5D 0xC3

the debugger goes to the following location:
004013AB 5D
004013AC C3

You can also search for DWords, but you must reverse the order of the bytes.
For example, if you enter
0x1234

the debugger positions the pane at the following location in memory:
34 12

Enter a new value
Enter a new value for the memory or register value selected in the CPU window. Be sure to precede
hexadecimal values with 0x.

Enter address to position to
Use this dialog box to specify the address of the most recent runtime error during an integrated
debugging session or an address that you want to jump to.
Enter the address you want to jump to and click OK. You can enter the address in decimal or
hexadecimal, or you can enter a function name that will evaluate to an address (for example, WinMain).

Be sure to precede hexadecimal values with 0x.
When you click OK, C++Builder displays the address location in the CPU window with the address
highlighted in various panes. You can view low-level information about the program in the CPU window.

Disassembly pane

Memory Dump pane

Machine Stack pane

Registers pane

Flags pane

Using the Form editor
The C++Builder Form editor provides a convenient and reliable way to create forms that include visual
and non-visual components. C++Builder generates a form in the Form editor in the following situations:

Whenever you add a form to a project.
Whenever you create a form using the Object Repository.

To add components to the form,
Select the component and drag it onto the form.

To close a Form editor page do one of the following:
Select the Form editor page you wish to close, then choose File|Close.
Click the close button in the upper right corner of the Form editor window.

To close all Form editor pages and the project do one of the following:
Choose File|Close All.
Choose File|New Application.

If you have modified a form and have not saved the changes, C++Builder opens the Save File As dialog
box, where you can enter a file name.
If you have modified the project and have not saved the changes, C++Builder opens the Save As dialog
box, where you can enter a name for the project.
To get context-sensitive Help from the Form editor window, place the cursor on the component for which
you want Help, then press F1.

About the Toolbar
See Also
The C++Builder Toolbar provides shortcuts for menu commands. The graphic below shows the default
Toolbar. However, you can customize the Toolbar by choosing Properties from the Toolbar context
menu.

To find out more about a default Toolbar button, click a button in the graphic above.
You can use the separator line that lies between the Toolbar and Component palette to horizontally
resize the Toolbar.
The Toolbar has Help Hints. To enable Help Hints, select Show Hints from the Toolbar context menu.

Open Project button
Displays the Open Project dialog box so you can open a new project.
The menu equivalent is File|New.

Open File button
Displays the Open File dialog box so you can open a new text file.
The menu equivalent is File|Open.

Save button
Stores changes made to all files in the open project the current name of each file.
If you have not previously saved the project, C++Builder opens the Save As dialog box, where you can
enter a file name.

Save button
Stores changes made to active file in the Code editor.
If you have not previously saved the file C++Builder opens the Save As dialog box where you can enter
a filename.
The menu equivalent is File|Save.

Add File To Project button
Adds the active file in the Code editor to the currently open project.
The menu equivalents are

File|Add to Project
Add File on the Project Manager context menu

Remove File From Project button
Opens the Remove From Project dialog box, where you can select a file that you want to remove from
the open project.
The menu equivalents are

File|Remove from Project
Remove File on the Project Manager context menu

Select Unit From List button
Displays the View Unit dialog box, where you can view any unit in the current project.
When you choose a unit, that unit becomes the active page in the Code editor.
The menu equivalent is View|Units.

Select Form From List button
Displays the View Form dialog box, where you to view any form in the current project.
When you choose a form, it becomes the active form.
The menu equivalent is View|Forms.

Toggle Form/Unit button
Makes the Code editor the active window when the form is selected and makes the form the active
window when the Code editor is selected.
The menu equivalent is View|Toggle Form/Unit.

New Form button
Creates a blank form and a new unit and adds them to the project.
The menu equivalent is File|New.

Run button
Compiles and executes your application.
The menu equivalent is Run|Run.

Pause button
Pauses program execution and positions the execution point on the next line of code to execute.

Trace Into button
Executes the program statement highlighted by the execution point. Trace Into lets you execute
routines, written by the programmer, one statement at a time. When the routine returns from the call the
debugger positions the execution point on the statement following the routine call.
If the execution point highlights a routine whose code was generated by C++Builder, choosing Trace
Into causes the debugger to position the execution point at the statement following the routine call.
Note: The Trace Into button is disabled if symbolic debug information is off.
The menu equivalent is Run|Trace Into.

Step Over button
Executes your program one statement at a time, without branching into subroutines. Stepping through
your program is helpful if your program is about to execute a routine whose code you do not need to
debug at this time.
If the execution point is located on a call to a routine, then issuing Step Over runs that routine at full
speed and places the execution point on the statement following the routine call.
Note: The Step Over button is disabled if symbolic debug information is off.
The menu equivalent is Run|Step Over.

Opening a context menu
Right-click in the window.
Press Alt+F10 when the cursor is in the window.

Maximize button
Grows your window to encompass your entire screen.

Code editor
Enables you to view or modify any part of the source code contained in the active page.

Page tabs
Provides a way to move between the open files in the Code editor.

Title bar
Displays the name of the active file in the Code editor.

Line and column indicator
Displays the line and column position of the cursor in the Code editor. The first and second numbers
show the line number and column number, respectively.

Modified indicator
Indicates whether the text in the active page of the Code editor has been modified since the last time the
file was saved. (Blank if the file has not been modified.)

Mode indicator
Indicates whether the editor is in Insert or Overwrite mode.

In Insert mode (the default mode), text you type is inserted at the cursor.
In Overwrite mode, text you type overwrites previously entered text.

Use the Insert key on your keyboard to toggle between these two modes.

Using the Code editor
The C++Builder Code editor provides a convenient and reliable way to view and modify your source
code. C++Builder generates a page in the Code editor in the following situations:

Whenever you create a new project
Whenever you add a form or unit to a project
Whenever you open a file, even if you do not add it to the project file

You can also use the Code editor to open text files for viewing or modification.

To open a Code editor page,
Add a new form, unit or other file to a project.

To select a Code editor page,
In the Code editor window, click the tab corresponding to the page you want to view or modify.

To modify text in the Code editor,
1. Position the cursor at the position you want new text to begin.
2. Type in the new text, pressing Enter to end each line.

To close a Code editor page do one of the following:
Right-click the Code editor window, then choose Close Page.

To close all Code editor pages and the project, do one of the following:
Select the Code editor page you wish to close, then choose File|Close.
Click the close button in upper right corner of the code editor window.

If you have modified code in a page and have not saved the changes, C++Builder opens the Save File
As dialog box, where you can enter a file name.
If you have modified the project and have not saved the changes, C++Builder opens the Save As dialog
box, where you can enter a name for the project.

Code editor window
The Code editor window contains one or more Code editor pages. The Code editor window cannot be
empty - once you close the last page in the Code editor window, the window is closed.
You can open multiple files in one Code editor window. Each file opens on a new page of the Code
editor, and each page is represented by a tab at the bottom of the window. For example, when you open
a project, it becomes the first tab in the window. Any other files that you open, such as unit files, become
subsequent tabs in the window.
You can open a copy of any editor page, which opens a separate window.

To open a Code editor window, you can do one of the following:
Open a file.
Choose View|New Edit Window.

The New Window command opens a copy of the current page in the Code editor.
If you have modified the code and not saved the changes, C++Builder opens the Save As dialog box,
where you can enter a file name.

Behind the scenes in the Code editor
When you add a component to a form, C++Builder generates an instance variable, or field, for the
component and adds it to the form's type declaration. For example, the following code sample shows
how to add a button component to a blank form.

Unit1.h
Class TForm1 : public TForm
{
__published: // IDE-managed Components

TButton *Button1;
\\ other code follows
}
Adding the button changes the form's declaration (Class Tform1 : public TForm) by adding the
field for the button itself (TButton1 *Button1;). You can view similar code being added to the Code
editor, either in your current project or in a new project.

To view code being added in the Code editor,
1. Drag the form's title bar until you can see the entire Code editor.
2. Select the Unit.h tab and scroll in the Code editor until the __published declaration part is visible.
3. Add a component to the form while watching what happens in the Code editor.
Note: Do not edit any code that C++Builder generates. Edit only code that you create.

Getting Help in the Code editor
Context-sensitive Help is available from nearly every portion of the Code editor. The context is
determined by the current position of the cursor.
To get context-sensitive Help from the Code editor window, place the cursor on the code for which you
want Help, then press F1.

Viewing pages in the Code editor window
When a page of the Code editor is displayed, you can scroll through all the data it contains, not just
particular sections of your code.

To view a page in the Code editor, do one of the following,
If the Code editor is already the active window, click the tab corresponding to the page you want

to view.
Choose View|Units.
Choose View Unit from the Project Manager SpeedMenu.

Write Block To File dialog box
See also
This dialog box enables you to specify the filename and location of an operating system file in which you
want to write a block of text you have selected in the Code Editor Window.
When using default key mapping, access this dialog box with: Ctrl+K+W

Read File As Block dialog box
See also
This dialog box enables you to specify the filename and location of an operating system file containing a
block of Object Pascal source code which you want to insert in the Code Editor Window at the current
cursor position.
When using default key mapping, access this dialog box with: Ctrl+K+R

About the Component palette
See Also
Components are the building blocks of every C++Builder application, and the basis of the C++Builder
visual component library. Each page tab in the Component palette displays a group of icons
representing the components used to design your application interface.

Components can be either visual or non-visual. Each component has specific attributes that enable you to
control your application. These attributes are Properties, Events, and Methods.
You can horizontally resize the Component palette by dragging the separator line which lies between the
Component palette and the Toolbar.
The Component palette provides Help Hints. Help Hints display a small pop-up window containing the
name or brief description of the button when your cursor is over the button for longer than one second.
To enable Help Hints, select Show Hints from the Component palette context menu.
To get Help on a specific component, click the component and press F1.
The default page tabs divide components into the following functional groups:
Standard components Standard Windows components
Additional components Customized components
Win95 components Windows 95 common components
Internet components Internet components
Data Access components Database access components
Data Controls components Data-aware controls
Windows 3.1 components Windows 3.1 components
Dialogs components Dialog box components
System components System components
QReport components Report components
ActiveX components OCX components
Sample components Sample components

Note: The components on the ActiveX and Samples page are provided as samples only. Source code
for the components on the Samples page can be found in the SOURCE\SAMPLES directory of a
default installation.

Customizing the Component palette
See Also
To customize the layout of the Component palette, choose the Palette page from the Environment
Options dialog box.

Saving a customized Component palette
1.Open the Preferences page of the Environment Options dialog box.
2.Check Desktop from the Autosave options.
3.Click OK

Rearranging Component palette pages
1. Open the Palette page of the Environment Options dialog box.
2. Select a page from the Pages list box.
3. Click the up arrow or down arrow, or drag and drop the page to its new location.
4. Click OK for your changes to take effect.

Rearranging components on the Component palette
1. Open the Palette page of the Environment Options dialog box.
2. Select a component from the Components list box.
3. Click the up arrow or down arrow, or drag and drop the component into its new location.
4. Click OK for your changes to take effect.

Moving components to a different Component palette page
1. Open the Palette page of the Environment Options dialog box.
2. Drag and drop the component from the Components list box onto a page in the Pages list box.
3. Click OK for your changes to take effect.
Note: When you move a component to a new page, the component is added as the last item on the

page.

Renaming Component palette pages
1. Open the Palette page of the Environment Options dialog box.
2. Select the page from the Pages list box.
3. Click Rename to open the Rename Page dialog box.
4. Enter a new name.
5. Click OK to close the Rename Page dialog box.
6. Click OK for your changes to take effect.

Renaming a component
1. Open the Palette page of the Environment Options dialog box.
2. Select the component from the Components list box.
3. Click the Rename button.
3. Click Rename to open the Rename Page dialog box.
4. Enter a new name.
5. Click OK to close the Rename Page dialog box.
6. Click OK for your changes to take effect.

Adding pages to the Component palette
1. Open the Palette page of the Environment Options dialog box.
2. Click the Add button to open the Add Page dialog box.
3. Enter a new page name.
4. Click OK to close the Add Page dialog box.
5. Click OK for your changes to take effect.

Removing pages from the Component palette
1. Open the Palette page of the Environment Options dialog box.
2. Select the page from the Pages list box
3. Press Delete.
4. Click OK for your changes to take effect.
Note: Before you can remove a page, it must be empty of components.

Removing components from the Component palette
1. Open the Palette page of the Environment Options dialog box.
2. Select the component you want to remove.
3. Press Delete.
4. Click OK for your changes to take effect.

Find Header File dialog box
See Also
Borland C++Builder was unable to locate the header file associated with a component on a form. This
situation most likely occurred because you added a component (such as one from an outside vendor) to
a component palette, but did not place its header file in a directory specified in your include path.
Enter the name of the header file (including its directory location) or click the Browse button to find it
yourself.

Alignment palette
Use the Alignment palette to align components to the form, or to each other.
To open the Alignment palette, choose View|Alignment Palette.
The Alignment palette has Tool Help for each button.
The icons on the Alignment palette are:

 Icon Effect
Aligns the selected components to the
left edge of the component first
selected. (Not applicable for single
components.)
Moves the selected components
horizontally until their centers are
aligned with the component first
selected. (Not applicable for single
components.)
Aligns the selected component(s) to the
center of the form along a horizontal
line.
Aligns the selected components to the
right edge of the component first
selected. (Not applicable for single
components.)
Aligns the selected components to the
top edge of the component first
selected. (Not applicable for single
components.)
Moves the selected components
vertically until their centers are aligned
with component first selected. (Not
applicable for single components.)
Aligns the selected component(s) to the
center of the form along a vertical line.
Aligns the selected components to the
bottom edge of the component first
selected. (Not applicable for single
components.)

If you are unsure of how a particular button on the Alignment palette will act, you can click the button,
and the icon on the button will change to show you how it will align the selected components.

You can also use the Alignment dialog box to align components.

Introducing the Object Inspector
See Also
The Object Inspector is the gateway between your application's visual appearance and the code that
makes your application run.
The Object Inspector enables you to

Set design-time properties for components you have placed on a form (or for the form itself).
Create and help you navigate through event handlers.

The Object selector at the top of the Object Inspector is a drop-down list containing all the components
on the active form and it also displays their object type. This lets you quickly select different components
on the current form.
You can resize the columns of the Object Inspector by dragging the separator line to a new position.
The Object Inspector has two pages,

Properties page
Events page

Properties page

The Properties page of the Object Inspector enables you to set design-time properties for components on
your form, and for the form itself. You can set run-time properties by writing source code inside event
handlers.
The Properties page displays only the properties of the component that is selected on the form.
By setting properties at design time you are defining the initial state of a component.

Events page

The Events page of the Object Inspector enables you to connect forms and components to program
events. When you double-click an event from the Events page, C++Builder creates an event-handler and
switches focus to the Code editor. In the Code editor, you write the code inside event-handlers that
specifies how a component or form responds to a particular event.
The Events page displays only the events of the component that is selected in the form.

Object selector
Displays the active component whose properties and events you are currently editing. You can use the
drop-down list to select a component.

Property column
Lists the design-time properties for the component you have selected on your form.

Value column
Displays the current value for a property. Each value uses one of the C++Builder property editors to set
values.

Object Inspector tabs
Provide you with a means to switch between the Property page and the Event page of the Object
Inspector. To change pages, click a tab.

Minimize button
Shrinks the window down to an icon.

Scroll bars
Provides you with a means to scroll the current window to view objects that cannot fit into the window.
To scroll a window, click the up scroll arrow or the down scroll arrow, or you can drag the scroll box.

Control menu
Click the Control-menu box to open the Control menu for the current window.

Handler column
Displays the event-handler link for an event. To generate a default event-handler link for an event,
double-click the Handler column.

Event column
Lists the possible events for the component you have selected on your form.

Introducing the Object Repository
See Also
C++Builder provides the Object Repository as a means for sharing and reusing forms and projects. The
repository itself is really just a text file that contains references to forms, projects, and wizards.

Sharing across projects
By adding forms, dialog boxes, and data modules to the Object Repository, you make them available to
other projects. For example, in a simple case, you could have all your projects use the same About box,
copied from the Object Repository. A more advanced use of the Object Repository would be to have a
standard empty dialog box with the company or product logo and standard button placement, from
which all your projects derive standard-looking dialog boxes.
These sharing options are described in detail in Object Repository usage options.

Sharing within projects
The Object Repository can also help you to share items within a project by allowing you to inherit from
forms already in the project. When you open the New Items dialog box (by choosing File|New), you'll
see a page tab with the name of your project. If you click that page tab, you'll see all the forms, dialog
boxes, and data modules in your project. You can then derive a new item from the existing item, and
customize it as needed.
For example, in a database application you might need several forms that display the same data, but
which provide different command buttons. Instead of creating and maintaining several nearly-identical
forms, you could lay out a generic form that contains all the data-display controls, then create separate
forms that inherit the data-display layout, but have different command buttons.
By carefully planning your project forms, you can save tremendous amounts of time and effort by
sharing forms within projects.

Sharing entire projects
You can also add an entire project to the Object Repository as a template for future projects. If you have
a number of similar applications, for example, you can base them all on a single, standardized model.

Using wizards
The Object Repository also contains references to wizards, which are small applications that lead the
user through a series of dialog boxes to create a form or project. C++Builder provides a number of
wizards, and you can also add your own.

Object Repository usage options
See Also
When you use an item from the Object Repository in a project, you have as many as three options on
how to include that item. Keep in mind that items in the Object Repository are there to be shared, and
that you want to use them in ways that help, rather than hinder, reuse.
In general, these are the three options for using Object Repository items,

Copy the item.
Inherit from the item.
Use the item directly.

Copying items from the Object Repository
The simplest sharing option is to copy an item from the Object Repository into your project. Copying
makes an exact duplicate of the item as it stands and adds the copy to your project. Future changes to
the item in the Object Repository will not be reflected in your copy, and alterations made to your copy
will not affect the original Object Repository item.
Note: Copying is the only option available for using project templates.

Inherit from Object Repository items
The most flexible and powerful sharing option is to inherit from an item in the Object Repository.
Inheriting derives a new class from the item and adds the new class to your project. When you
recompile your project, any changes made to the item in the Object Repository will be reflected in your
derived class, unless you have changed a particular aspect. Changes made to your derived class do not
affect the shared item in the Object Repository.
Note: Inheriting is available as an option for forms, dialog boxes, and data modules, but not for project

templates. It is the only option available for reusing items from within the same project.

Using Object Repository items directly
The least flexible sharing option is using an item from the Object Repository directly in your project.
Using the item adds the item itself to your project, just as if you had created it as part of that project.
Design-time changes made to the item therefore appear in all projects that directly use the item, as well
as affecting any projects that inherit from the item.
Note: Using items directly is an available option for forms, dialog boxes, and data modules.

Items shared this way should generally be modified only at run time, to avoid making changes
that affect other projects.
The Use option is the only option available for wizards, whether form wizards or project wizards.
Using a wizard doesn't actually add shared code, but rather runs a process that generates its own
code.

Using project templates from the Object Repository
See Also
C++Builder provides project templates, pre-designed projects you can use as starting points for your
own projects. Project templates are part of the Object Repository (located in the OBJREPOS
subdirectory), which also provides form objects and wizards.
When you start a project from a project template (other than the blank project template), C++Builder
prompts you for a project directory, a subdirectory in which to store the new project's files. If you specify
a directory that doesn't currently exist, C++Builder creates it for you. C++Builder copies the template
files to the project directory. You can then modify it, adding new forms and units, or use it unmodified,
adding only your event-handler code. In any case, your changes affect only the open project. The
original project template is unaffected and can be used again.

To start a new project from a project template,
1 Choose File|New to display the New Items dialog box.
2 Choose the Projects tab.
3 Select the project template you want and choose OK.
4 In the Select Directory dialog box, specify a directory for the new project's files.

A copy of the project template opens in the specified directory.

Adding projects to the Object Repository
You can add your own projects and forms to those already available in the Object Repository. This is
helpful in situations where you want to enforce a standard framework for programming projects
throughout an organization.
For example, suppose you develop custom billing applications. You might have a generic billing
application project that contains the forms and features common to all billing systems. Your business
centers around adding and modifying features in this application to meet specific client requirements. In
such a case, you might want to save the project containing your Generic Billing application as a project
template and perhaps specify it as the default new project on your C++Builder development system.
Likewise, you'll probably have a particular form within this project that you want to appear as the default
main or new form.

To add a project to the Object Repository,
1 If necessary, open the project you want added to the Object Repository.
2 Choose Project|Add to Repository.
3 In the Title edit box, enter a project title.

The title for the template will appear in the Object Repository window.
4 In the Description field, enter text that describes the template.
 This text will appear in the Object Repository window's status bar.
5 In the Page field, choose the name of the page in the New Items dialog box (probably Projects) you

want the template to appear on.
6 In the Author field, enter text identifying the author of the application.

 Author information appears only when the user views the repository items with full details.
7 Choose Browse to select an icon to represent this template in the Object Repository.
9 Choose OK to save the current project as a project template.
Note: If you later make changes to a project template, those changes automatically appear in new

projects created from that template. They will not, however, affect projects already created from
that template.

You can also save your own forms as form templates and add them to those already available in the
Object Repository. This is helpful in situations where you want to develop standard forms for an
organization's software.

To add a form to the Object Repository as a template, right-click the form and choose Add to Repository.

Customizing defaults in the Object Repository
See Also
The settings in the Object Repository Options dialog box affect the behavior of C++Builder when you
begin a new project or create a new form in an open project. This is where you specify,

Default project
Default new form
Default main form

You always have to option to override these defaults by choosing File|New and selecting from the New
Items dialog box.
By default, opening a new project displays a blank form. You can change this default behavior by
changing Object Repository options.

Specifying the default new project
The default new project opens whenever you choose New Application from the File menu on the C+
+Builder menu bar. If you haven't specified a default project, C++Builder creates a blank project with an
empty form. You can specify a project template (including a project you have created and saved as a
template) as the default new project.
You can also designate a project wizard to run by default when you start a new project. A project wizard
is a program that enables you to build a project based on your responses to a series of dialog boxes.

To specify the default new project,
1 Choose Options|Repository to display the Object Repository dialog box.
2 Choose Projects in the Pages list.
3 Select the project object you want as the default new project from the Objects list.
4 With the object you want selected, check New Project.
5 Choose OK to register the new default setting.

Specifying the default new form
The default new form opens whenever you choose File|New Form or use the Project Manager to add a
new form to an open project. If you haven't specified a default form, C++Builder uses a blank form. You
can specify any form template, including a form you have created and saved as a template, as the
default new form. Or you can designate a form wizard to run by default when a new form is added to a
project.

To specify the default new form for new projects,
1 Choose Options|Repository to display the Object Repository dialog box.
2 Choose Forms in the Pages list.
3 Select the form object you want as the default new form.
4 With the object you want selected, check New Form.
5 Choose OK to register the new default setting.

Specifying the default main form
Just as you can specify a form template or wizard to be used whenever a new form is added to a
project, you can also specify a form template or wizard that should be used as the default main form
whenever you begin a new project.

To specify the default main form for open projects,
1 Choose Options|Repository to display the Object Repository dialog box.
2 Choose Forms in the Pages list.
3 Select the form object you want as the default main form.
4 With the object you want selected, check Main Form.
5 Choose OK to register the new default setting.

Dialog wizard
See Also
You can use the Dialog wizard to design a dialog box for your application.
To display this wizard, choose File|New to display the Object Repository. Click the Dialogs tab and
select Dialog wizard.
Follow the instructions in the wizard and click Next. Once you get to the last screen, click Finish. The
wizard will then create the dialog box form. You can modify the form to customize it further if needed.
You will be prompted to select the type of dialog box (single or multipage) and the button placement for
the standard OK, Cancel, and Help buttons.

Edit Object Info dialog box
See Also
Use this dialog box to edit information of Object Repository items. To display this dialog box,
1 Choose File|New to display the Object Repository.
2 Right-click on the Object Repository and select Properties.
3 Select a page from the Pages list and click one of the objects in the Objects list.

The Edit Object button displays.
4 Click Edit Object to display the Edit Object Info dialog box.

Title
This text box displays the title of the selected item.

Description
This text box displays the description of the selected item.

Page
Displays the current page containing the selected item.
To change the page on which the item appears, select a different page from the Page list.

Author
Displays the name of the Author of the selected item.

Browse button
The icon of the selected item is displayed to the left of the Browse button. Use the Browse button to
select a different icon.

Add page dialog box
Specify the name for a new page to add to the Object Repository in the Add page edit box. After you add
a page to the Object Repository, it appears as a separate tab sheet when you choose File|New to invoke
the New Items dialog box for the Object Inspector.

Rename page dialog box
Specify a new name for an existing page in the Object Repository in the Rename page edit box. After
you rename a page to the Object Repository, it appears in place of the old name on the existing page.

Adding an automation object (Automation Object wizard)
See also
Once you have created a DLL (dynamic-link library), you can then add an OLE automation object. The
process is largely automated, but you need to supply some information to the Automation Object wizard.
To add an automation object to your DLL,
1 Choose File|New, and choose Automation Object from the Object Repository.

C++Builder opens the Automation Object wizard.
2 Name the automation object.

Class Name is the name used internally by your server to identify the OLE object. It must be a valid
C++ identifier, and by convention, its name should start with the letter T.

3 Name the OLE class.
This is the name used externally to create these objects. When your server registers the OLE object
with Windows, it places this name in the system registry. Each OLE Automation server has a key
called ProgID in the system registry, which identifies the server to its clients. Client applications use
this name when calling CreateOLEObject (called CreateObject in Visual Basic).

4 Describe the object being exported. This string goes into the registry.
5 Specify the instancing for the object.

For in-process servers (DLLs), this is always Multiple Instance, applications are more typically Single
Instance.

6 Choose OK to generate the automation object.
The Automation Object wizard produces the following:

An empty automation object declaration, descending from TAutoObject.
Registration code that calls C++Builder's OLE Automation manager, which in turn registers the

object with Windows, placing the object and server in the system registry.
Part of the process of generating registration code for your automation object includes generating

a globally-unique ID (GUID) for the server. In general, you should never change this once generated. The
pairing of the OLE class name and GUID is unique, and if you change one or the other, you will cause
errors in applications using those automation objects. You can, however, safely edit the portions of the
registration information containing the description and instancing.

Using the Database Form wizard
See also
The Database Form wizard enables you to easily generate a form that displays data from an external
InterBase, Paradox, dBase, IBM-DB2, Sybase, Informix, or ORACLE database.
The Database Form wizard helps you create two types of database forms,

Simple database forms
Master-detail forms

The tool automates such form building tasks as
Connecting the form to Table and Query components.
Writing SQL statements for Query components.
Placing interactive and non-interactive components on a form.
Defining a tab order.
Connecting DataSource components to interactive components and Table/Query components.

Creating a form using the Database Form wizard
See also
You can use the Database Form wizard to create a simple information form.

To build a form using the Database Form wizard,
1. Open the Database Form wizard by choosing Database|Form wizard.
2. Select a Form Option. A simple form uses one table. A master/detail form creates a link from a detail

table to a master, or summary, table and displays only those records in the detail table that are linked
to the current record in the master table (in C++Builder’s sample files, CUSTOMERS.DB would be a
master table and ORDERS.DB would be an associated detail table).

3. Select a Dataset Option. A table will provide access to all records (rows) and all fields selected later in
the Form wizard. A query will allow you to limit the records (rows) retrieved by specifying retrieval
criteria.

4. Click Next.
5. Select an an alias from the Drive or Alias Name list. Select the BCDEMOS alias to create a sample

form with C++Builder’s sample database files. To create an alias, see the online help for the BDE
Configuration Utility.

If you have not created an alias, select the drive and directory containing the database in the
Form wizard dialog box.
6. Select the fields to use on the generated form:

To use only some of the fields,
1. Press and hold Ctrl.
2. Select each field you want from the Available Fields list.
3. Choose the > button.

To use all of the fields from the Available Fields list, click the button marked >>.
To remove fields from the Selected Fields list, click the buttons marked < or <<.

To reorder the fields in the Selected Fields list,
1. Select a field to move.
2. Choose the Up or Down button to change the field's position in the list.

For the purposes of this exercise, use all the fields from the Available Fields list.
3. Choose Next to proceed.

The next Form wizard screen presents options for displaying the selected fields on the form. The
wizard explains and illustrates each of your choices. For the purposes of this exercise, choose the
Vertical option.
The Form wizard generates text labels for each of the data entry components in the generated form
when you opt for a vertical layout. You can choose the way these labels are displayed in relation to
the data entry fields. The screen explains and illustrates your choices. For this exercise, choose the
Left option, then choose Next to proceed.
Select a method for generating the form. You may choose to generate only a form when your
application will contain only one dataset or choose to generate both a form and a data module if your
application will contain several datasets or data sources and you want to centralize their access or re-
use standard designs.

4. Choose the Finish button to generate the form.
The Form wizard generates a database form based on your choices.

SQL/Database Explorer
The SQL/Database Explorer enables you to maintain a persistent connection to a remote database
server during application development and to work with BDE aliases and metadata objects. With the
SQL/Database Explorer, you can create, view, and modify:

BDE aliases.
Metadata objects such as tables, views, triggers, and stored procedures.
Users and server security information.

The All Database Aliases pane of the SQL/Database Explorer displays all valid, defined aliases. Select
an alias to display the its definition.

To connect to the database specified by an alias,
1. Select the alias in the All Database Aliases pane.
2. Do one of the following,

Choose Object|Open.
From the context menu, choose Open.

When you are connected to a database, the icon in the left pane will turn green.

To expand a database,
In the All Database Aliases pane, click "+” next to the alias you want to view. The native server

object types expand beneath the icon.
Once connected to a database, you can perform SQL operations on the database.

To perform SQL operations,
1. Select the Enter SQL tab.
2. Enter SQL statements in the statement area.
3. Click on the Execute button.
Your SQL statements will execute and the results will be displayed in the table grid.

SQL Monitor
The SQL Monitor enables you to see the actual statement calls made through SQL Links to a remote
server or through the ODBC socket to an ODBC data source.

To open the SQL Monitor,
Choose Database|SQL Monitor.

You can elect to monitor different types of activities. Choose Options|Trace Categories to select different
categories of activities to monitor. You can monitor any number of the following categories:

Category Displays
Prepared Query Statements Prepared statements to be sent to the server.
Executed Query Statements Statements to be executed by the server. Note that a single statement

may be prepared once and executed several times with different
parameter bindings.

Statement Operations Each operation performed such as ALLOCATE, PREPARE,
EXECUTE, and FETCH.

Connect / Disconnect Operations associated with connecting and disconnecting to
databases, including allocation of connection handles, freeing
connection handles, if required by server.

Transactions Transaction operations such as BEGIN, COMMIT, and ROLLBACK
(ABORT).

Blob I/O Operations on Blob datatypes, including GET BLOB HANDLE,
STORE BLOB, and so on.

Miscellaneous Operations not covered by other categories.
Vendor Errors Error messages returned by the server. The error message may

include an error code, depending on the server.
Vendor Calls Actual API function calls to the server. For example, ORLON for

Oracle, ISC_ATTACH for InterBase.

String List editor
See Also
Use the String List editor at design time to add, edit, load, and save strings into any property that has
been declared as TStrings.
To open the String List editor,
1. Place a component that uses a string list on the form.
2. With that component selected, do one of the following:

Click the ellipsis button in the Value column for any of the properties listed below.
Double-click the word (TStrings) in the Value column for any of the properties listed below.

Load
Click Load to display the Load String List dialog box, where you can select an existing file to read into
the String List editor.

Save
Click Save to write the current string list to a file. C++Builder opens the Save String List dialog box,
where you can specify a directory and file name.

Load String List Dialog Box
See Also
Use the Load String List dialog box to select a text file to load into a property.
To open this dialog box, Load in the String List editor.

File Name
Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose a filter to display the different types of files. By default the text files (*.TXT) for the current
directory are displayed in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the List Files Of Type combo box appear in the
Files list box.

Drives
Select the current drive. The directory structure for the current drive appears in the Directories list box.

Save String List dialog box
Use the Save String List dialog box to store the string list from the String List editor into a text file.
To open the Save String List dialog box click Save in the String List editor.

File Name
Enter the name of the file you want to save or wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose a filter to display the different types of files. By default the text files (*.TXT) for the current
directory are displayed in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the List Files Of Type combo box appear in the
Files list box.

Drives
Select the current drive. The directory structure for the current drive appears in the Directories list box.

Picture editor
See Also
Use the Picture editor to select an image to add to any of the graphic-compatible components and to
specify an icon for your form.
To open the Picture editor,
1. Place a graphic-compatible component on the form.
2. With that component selected, do one of the following:

Click the ellipsis button in the Value column for any of the properties listed below.
Double-click the Value column for any of the properties listed below.
To open the Picture editor from an Image component, you can also double-click the component in

the form.

Load
Click Load to display the Load Picture dialog box, where you can select an existing file to read into the
Picture editor. For more information about loading images into the Picture editor, see Loading an image
at design time.

Save
Click Save to display the Save Picture As dialog box, where you can specify a directory and file name in
which to store the image.

Clear
Click Clear to remove the association between the current image and the selected component.

Loading an image at design time
See Also
Use the C++Builder Picture editor to load images onto any of several graphic-compatible components
and to specify an icon to represent a form when it is minimized at run time.
Each graphic-compatible component has a property that uses the C++Builder Picture editor. For a list of
graphic-compatible components and their properties, see the Picture editor.

To load an image at design time,
1. Add a graphic-compatible component to your form.
2. To automatically resize the component so that it fits the graphic, set the component's AutoSize

property to True before you load the graphic.
3. In the Object Inspector, select the property that uses the Picture editor.
4. Either double-click in the Value column, or choose the ellipsis button to open the Picture editor.

(To open the Picture editor from an Image component, you can also double-click the component in the
form.)

5. Choose the Load button to open the Load Picture dialog box.
6. Use the Load Picture dialog box to select the image you want to display, then choose OK.

The image you choose is displayed in the Picture editor.
7. Choose OK to accept the image you have selected and exit the Picture Editor dialog box.

The image appears in the component on the form.
When loading an graphic into an Image component, you can automatically resize the graphic so

that it fits the component by setting the Image component's Stretch property to True. (Stretch has no
effect on the size of icon (.ICO) files.)

Load Picture dialog box
See Also
Use the Load Picture dialog box to select an image to add to any of the graphic-compatible components
and to specify an icon for your form.

To open the Load Picture dialog box,
In the Picture editor, click Load.

File Name
Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose a filter to display the different types of image files. By default the icon files (*.ICO) for the current
directory are displayed in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the List Files Of Type combo box appear in the
Files list box.

Drives
Select the current drive. The directory structure for the current drive appears in the Directories list box.

Save Picture As dialog box
See Also
Use the Save Picture As dialog box to store the image loaded in the Picture editor into a new file or
directory.

To open the Save Picture As dialog box,
In the Picture editor, click Save As.

File Name
Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose filter to display the different types of image files. By default the icon files (*.ICO) for the current
directory are displayed in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the List Files Of Type combo box appear in the
Files list box.

Drives
Select the current drive. The directory structure for the current drive appears in the Directories list box.

Notebook editor
See Also
Use the Notebook editor to add, edit, remove, or rearrange pages in either a TabbedNotebook
component or Notebook component. You can also use the Notebook editor to add or edit Help context
numbers for each notebook page.
The Notebook editor displays the current pages of the notebook in their current order, and it also
displays the Help context associated with that page.
To open the Notebook editor,
1. Place a Notebook component or TabbedNotebook component on the form.
2. With that component selected, do one of the following:

Click the ellipsis button in the Value column for the Pages property.
Double-click the Value column for the Pages property.

Edit
Click Edit to open the Edit Page dialog box, where you can modify the page name and Help context
number for the selected notebook page.

Add
Click Add to open the Add Page dialog box, where you can create a new notebook page.

Delete
Click Delete to remove the selected page from the notebook.

Move Up/Move Down
Click Move Up or Move Down to rearrange the order of the selected page or pages.

Edit Page dialog box
See Also
Use the Edit Page dialog box to edit existing notebook pages from either the Notebook component or
the TabbedNotebook component.
To open this dialog box, click Edit in the Notebook editor.

Page Name
Enter the name of the notebook page. There is a 255-character limit on page names.

Help Context
Enter the context ID number for the notebook page. This number is significant if you want to have
context-sensitive help for the individual pages of the notebook. The Help context is optional.

Add Page dialog box
See Also
Use the Add Page dialog box to add notebook pages to either the Notebook component or the
TabbedNotebook component.
To open this dialog box, click Add in the Notebook editor.

Page Name
Enter the name of the notebook page. There is a 255-character limit on page names.

Help Context
Enter the context ID number for the notebook page. This number is significant if you want to have
context-sensitive Help for the individual pages of the notebook. The Help context is optional.

Input Mask editor
Use the Input Mask editor to define an edit box that limits the user to a specific format and accepts only
valid characters. For example, in a data entry field for telephone numbers you might define an edit box
that accepts only numeric input. If a user then tries to enter a letter in this edit box, your application will
not accept it.
Use the Input Mask editor to edit the EditMask property of the MaskEdit component.

To open the Input Mask editor,
1. Place a MaskEdit component on the form.
2. With that component selected, do one of the following:

Click the ellipsis button in the Value column for the EditMask property.
Double-click the Value column for the EditMask property.

Input Mask
Define your own masks for the edit box. You can use special character to specify the mask; for a listing
of those characters, see the EditMask property.
The mask consists of three fields separated by semicolons. The three fields are

The mask itself; you can use predefined masks or create your own.
The character that determines whether or not the literal characters of the mask are saved as part

of the data.
The character used to represent a blank in the mask.

Save Literal Characters
Check to store the literal characters from the edit mask as part of the data. This option affects only the
Text property of the MaskEdit component. If you save data using the EditText property, literal
characters are always saved.
This check box toggles the second field in your edit mask.

Character For Blanks
Specify a character to use as a blank in the mask. Blanks in a mask are areas that require user input.
This edit box changes the third field of your edit mask.

Test Input
Use Test Input to verify your mask. This edit box displays the edit mask as it will appear on the form.

Sample Masks
Select a predefined mask to use in the MaskEdit component. When you select a mask from this list, C+
+Builder places the predefined mask in the Input Mask edit box and displays a sample in the Test Input
edit box. To display masks appropriate to your country, choose the Masks button.

Masks
Choose Masks to display the Open Mask File dialog box, where you choose a file containing the sample
masks shown in the Sample Masks list box.

Masked Text editor
Use the Mask Test editor to enter Values into the edit mask.
Use the Masked Text editor to edit the Text property of the MaskEdit component.

To open the Masked Text editor,
1. Place an MaskEdit component on the form.
2. With that component selected, do one of the following:

Click the ellipsis button in the Value column for the Text property.
Double-click the Value column for the Text property.

Input Text edit box
Enter initial values for the MaskEdit component. You can overwrite these values at run time.

Edit Mask label
Displays the mask definition for the current component.

Font editor
Use the Font editor to specify, at design time, a font and other font attributes for the selected component
or form. Changes you make using the Font editor are reflected in the Font property for a component.

To open the Font editor,
1. Select any component or the form.
2. Do one of the following:

Click the ellipsis button in the Value column for the Font property or one of the other properties
listed below that use the Font editor.

Double-click the Value column for the Font property or one of the other properties listed below
that use the Font editor.

Font
Select a font from the list of all the available fonts you can use in your application.

Font Style
Select a style for the font. This combo box displays only those styles that are available for the selected
font. For most of the available fonts there are four possible styles:

Regular
Italic
Bold
Bold Italic

Size
Select a size for the font. This combo box displays only those font sizes that are available for the
selected font.

Effects
Check these options to make the text strike-through or underlined.

Color
Select a color for the font. This combo box lists all the available colors for the selected font.

Sample area
Displays a sample of the selected font before you apply it to the components. The font within this area is
updated with every change you make to the font settings.

Color editor
Use the Color editor to specify or define a color for the selected component. Changes you make using
the Color editor are reflected in the Color property for a component.

To open the Color editor,
1. Select any component or the form.
2. Double-click the Value column for the Color property or one of the other properties listed below that

use the Color editor.

Basic Colors grid
Displays selection of standard colors. Click a color to apply it to the selected component.

Custom Colors grid
Displays the colors that you have created. You can create custom colors by clicking Define Custom
Colors.

Define Custom Colors
Click Define Custom Colors to expand the Color editor to show options that enable you to create your
own colors.

Color field
Displays the spectrum of available colors. The cross hairs indicate the current color. For example, the
cross hairs look like this when the color is a shade of yellow:

Click anywhere or drag in the color field to select a color. When you select a color here and then click Add
To Custom Color, the selected color is added to one of the Custom Color boxes so you can use it again.

Color|Solid
Displays the currently selected color and its closest solid color. Double-click the solid color to make it the
current color.

Hue
Enter a value for the hue. Hue is the "actual" color, for example, red, yellow-green, or purple. Hue refers
to the color without regard to saturation or brightness (luminosity).

Sat(uration)
Enter a value for the saturation. Saturation refers to how much gray is in the color. The Sat(uration) field
shows the saturation from 0 (medium gray) to 240 (pure color).

Saturation affects how clear the color is. Luminosity affects how bright the color is.

Lum(inosity) and the Luminosity Slider Control
Enter a value for the luminosity, or drag the pointer on the slide to set the luminosity. Luminosity is the
brightness of a color. The Lum(inosity) field shows the luminosity from 0 (black) to 240 (white). The
column to the right of the color field shows the range of luminosity for the current color. Slide the arrow
to the right of the column up or down to adjust the luminosity. When you change the luminosity, the
Red/Green/Blue color values also change.

Red/Green/Blue
Enter values for the proportion of red, green, and blue you want in your color. The values in these fields
show the balance of red, green, and blue in the current color. This is sometimes called the RGB color.
The range of available values for an RGB color is 0 to 255.

Add To Custom Colors
Click to add the color you have defined to the Custom Color grid on the Color editor.

Insert Object dialog box
Use the Insert Object dialog box at design time to insert an OLE object into an OLEContainer
component. The OLEContainer component enables you to create applications that can share data with
an OLE server application. After you insert an OLE server object in your application, you can double-
click the OLEContainer component to start the server application.

Create New/Create From File Radio
Select whether or not you want to create a new file for the chosen OLE server or use an existing file. If
you use an existing file, it must be associated with an application that can be used as an OLE server.

Object Type
Select an application that you want to use as the OLE server. This list box displays all available
applications that can be used as an OLE server. After you select an application, C++Builder launches
that application.

This list box is available only when you have selected the Create New radio button.

File
Enter the fully qualified path for the file you want to insert into your application. The file you choose must
be associated with an application that can be used as an OLE server.

This option is available only when you have selected the Create From File radio button.

Browse
Click Browse to display the Browse dialog box, where you can select a file to use as the OLE server.

This option is available only when you have selected the Create From File radio button.

Link
Check Link to link the object on the form to a file. When an object is linked, it is automatically updated
whenever the source file is modified. When Link is unchecked, you are embedding the object, and
changes made to the original are not reflected in your container.

Display As Icon
Check to display the inserted object as an icon on the form. When this option is checked, the Change
Icon button is displayed.

Change Icon
Click Change Icon to open the Change Icon dialog box, where you can specify an icon and label for the
object you inserted onto the form.

This option is available only when you have selected the Create From File radio button.

Browse dialog box
The Browse dialog box has multiple uses depending on where you open it. You can use the Browse
dialog box for either of the following:

To load an existing file into the OLE container. The file you select must be associated with an
application that can be used as an OLE server.

To select an icon to represent an OLE object on the form.
To open the Browse dialog box, do one of the following:

Click Browse in the Insert Object dialog box when you have Create From File selected.
Click Browse in the Change Icon dialog box.

Source
Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the Source edit box or the file type
in the List Files Of Type combo box.

List Files Of Type
Choose the type of file you want to use as the OLE server. By default all files in the current directory are
displayed in the Files list box.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the Source edit box or the file type in the List Files Of Type combo box appear in the Files
list box.

Drives
Select the current drive. The directory structure for the current drive appears in the Directories list box.

Change Icon dialog box
Use the Change Icon dialog box to specify an icon and a label for the object you are placing on the form.

To open the Change Icon dialog box,
1. On the Insert Object dialog box, check Display As Icon.
2. Click Change Icon.

Icon Radio
Select which icon you want to use. There are three options:

Option When selected
Current Uses the current icon.
Default Uses the default icon.
From File Enables you to specify an icon using a fully qualified path name. If you do not

know the icon name or the path, click Browse to open the Browse dialog box. The
display box below the edit box shows all the available icons in the specified file.
To choose an icon, select it.

Label
Enter a label that will appear below the icon on the form.

Browse
Click Browse to open the Browse dialog box, where you can select an icon to represent the inserted
object on the form.

Sample Icon display
Displays how the icon and label will appear on the form.

Paste Special dialog box
Use the Paste Special dialog box to insert an object from the Windows Clipboard into your OLE
container.

Source label
Displays the path of the file you are going to paste.

Paste/Paste Link Radio
Select Paste to embed the object on the form. When you embed an object on a form, your container
application stores all the information for the object. It is not necessary to have an external file.
Select Paste Link to link the object to the form. When you link an object to a form, the main source is
stored in a file so that when you update the object, the source file is also updated.

As
Lists the type of application object you are pasting. The application listed is the source application from
which you received the object that you are pasting.

DDE Info dialog box
Use the DDE Info dialog box to specify, at design time, a DDE server application and a topic for a DDE
conversation.

To open the DDE Info dialog box,
1. Place a DDEClientConv component on the form.
2. With the component selected, do one of the following:

Click the ellipsis button in the Value column for the DdeService property or DdeTopic property.
Double-click the Value column for the DdeService property or DdeTopic property.

Dde Service
Specify the server application for the DDE conversation. The application you specify is entered into the
Value column for the DdeService property.
You do not need to specify an extension for the server application.
If the directory containing the application is not on your path, you need to specify a fully qualified path.

Dde Topic
Enter the topic for a DDE conversation. The topic is a unit of data, identifiable to the server, containing
the linked text. For example, the topic could be the file name of a Quattro Pro spreadsheet.
When the server is a C++Builder application, the topic is the name of the form containing the data you
want to link.
If the directory containing the topic is not on your path, you need to specify a fully qualified path.

Paste Link
Click Paste Link to paste the application name and file name from the contents of the Clipboard into the
App and File edit boxes.
This button is active only when the Clipboard contains data from an application that can be a DDE
server.

Filter editor
Use the Filter editor to define filters for the OpenDialog component and the SaveDialog component.
These common dialog boxes use the value of Filters in the List Files Of Type combo box to display
certain files in the Files list box.

To open the Filter editor,
1. Place an OpenDialog component or SaveDialog component on the form.
2. With that component selected, do one of the following:

Click the ellipsis button in the Value column for the Filters property.
Double-click the Value column for the Filters property.

Filter Name column
Enter the name of the filter you want to appear in the Files Of Type combo box.

Filter column
Enter wildcards and extensions that will define your filter. For example, *.TXT would display only files
with the .TXT extension.
To apply multiple file extensions to your filter, separate them using a semicolon (;).

Select Directory dialog box (Report)
Use the Select Directory dialog box to choose a directory from which you can load or store a report.

To open the Select Directory dialog box,
1. Place a Report component on the form.
2. With that component selected, do one of the following:

Click the ellipsis button in the Value column for the ReportDir property.
Double-click the Value column for the ReportDir property.

Directory Name label
Displays the fully qualified path name of the current directory.

Directories
Select a directory where you want to store or load a report. In the current directory, all the files are
displayed in the Files list box.

Files
Displays all the files in the current directory selected in the Directories list box. These files are dimmed.

Drives
Select an active drive. The directory structure for the selected drive appears in the Directories list box.

Network
If you are running under Windows for Workgroups or Windows NT, you can click the Network button to
open the Connect Network Drive dialog box.

Open dialog box
Use the Open dialog box at design time to load a report into the Report component or a multimedia file
into the MediaPlayer component.
To open the Open dialog box,
1. Place a Report component or a MediaPlayer component on the form.
2. With that component selected, do one of the following:

Click the ellipsis button in the Value column for any of the properties listed below.
Double-click the Value column for either of the properties listed below.

File Name
Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files
Displays the files in the current directory that match the wildcards in the File Name edit box or the file
type in the List Files Of Type combo box.

List Files Of Type
Choose the type of file you want to load. When you are loading a report, the default file extension
is .RPT. When you are loading a multimedia file, all files in the current directory are displayed. However,
you can limit the display to wave files, midi files, or Windows video files.

Directories
Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the File Name edit box or the file type in the List Files Of Type combo box appear in the
Files list box.

Drives
Select the current drive. The directory structure for the current drive appears in the Directories list box.

HeaderControl Sections Editor
Use the HeaderControl Sections editor at design time to divide a header control into sections and to
assign properties to those sections. A section is a resizeable, moveable header within a header control.

To display the HeaderControl Sections editor,
Double-click the Sections property value in the Object Inspector.

Using the HeaderControl Sections editor
The HeaderControl Sections editor contains a Sections group box, and a Section properties group box.
When you first add a header control to a form, the Sections list box is empty, and Delete button is
disabled. When you enter or change item properties for a selected item the Apply button is enabled so
that you can activate changes immediately.
The Sections group box contains a Sections list box that displays the names of individual sections within
a header control, a New button for creating a new section, and a Delete button for deleting sections.
The Section properties group box contains a Text edit box, a Width edit box, Min and Max edit boxes, a
Style combo box, an Alignment combo box, and an Allow click check box.

Sections group box
Create and delete sections for a header control in the Sections group box. To create a section, click
New. A numbered section header, named "Untitled," appears in the Sections list box, and the Delete
button is enabled. Default properties for Width, Min, Max, Style, Alignment, and Allow click appear in the
Section properties group box.
To delete a section, select it in the Sections list box and click Delete.

Section properties group box
Set the properties for a selected header control section in the Section properties group box. In the Text
edit box enter the text to display in the section within the header control. In the Width box, specify a
default width (in pixels) for the section. The proposed default value for Width is 50. To specify a
minimum size allowed for the section, specify the minimum width in the Min edit box. The proposed
default value for Min is 0. To specify a maximum size for the section, specify the maximum width in the
Max edit box. The default value for Max is 10000.
To specify the drawing style for the section, choose a style in the Style combo box. By default, Style is
set to Text, meaning that text only is displayed in the section. To display an image in the header, set
Style to OwnerDraw and write the code to draw an object in the header at run time.
To specify the alignment for the text or image displayed in the section at run time, choose an alignment
in the Alignment combo box. By default, Alignment is set to Left Justify.
To prevent users from clicking a section, clear the Allow click check box. Allow click is checked by
default, enabling users to click a section.

StatusBar Panels Editor
Use the StatusBar Panels editor at design time to divide a status bar control into panels and to assign
properties to those panels. A panel is a fixed width section within a status bar.

To display the StatusBar Panels editor,
Double-click the Panels property value in the Object Inspector.

Using the StatusBar Panels editor
The StatusBar Panels editor contains a Panels group box, and a Panel properties group box. When you
first add a status bar control to a form, the Panels list box is empty, and Delete button is disabled. When
you enter or change item properties for a selected item the Apply button is enabled so that you can
activate changes immediately.
The Panels group box contains a Panels list box that displays the names of individual panels within a
status bar control, a New button for creating a new panel, and a Delete button for deleting panels.
The Panel properties group box contains a Text edit box, a Width edit box, a Style combo box, a Bevel
combo box, and an Alignment combo box.

Panels group box
Create and delete panels for a status bar control in the Panels group box. To create a panel, click New.
A numbered panel , named "Untitled," appears in the Panels list box, and the Delete button is enabled.
Default properties for Width, Style, Bevel, and Alignment appear in the Panel properties group box.
To delete a panel, select it in the Panel list box and click Delete.

Panel properties group box
Set the properties for a selected panel in the Panel properties group box. In the Text edit box enter the
text to display in the panel within the status bar control. In the Width box, specify a default width (in
pixels) for the panel. The proposed default value for Width is 50. To specify the drawing style for the
panel, choose a style in the Style combo box. By default, Style is set to Text, meaning that text only is
displayed in the panel. To display an image in the panel, set Style to OwnerDraw and write the code to
draw an object in the panel at run time.
To specify the bevel type for the panel, choose a bevel type in the Bevel combo box. By default, Bevel is
set to Lowered.
To specify the alignment for the text or image displayed in the panel at run time, choose an alignment in
the Alignment combo box. By default, Alignment is set to Left Justify.

Update SQL editor
Use the Update SQL editor to create SQL statements for updating a dataset. The Update SQL editor
has two pages, the Options page and the SQL page.

The Options page
The Options page is visible when you first invoke the editor.

Table Name combo box
Use the Table Name combo box to select the table to update. When you specify a table name, the
Key Fields and Update Fields list boxes are populated with available columns.

Update Fields list box
The Update Fields list box indicates which columns should be updated. When you first specify a table,
all columns in the Update Fields list box are selected for inclusion. You can multi-select fields as
desired.

Key Fields list box
The is used to specify the columns to use as keys during the update. Generally the columns you
specify here should correspond to an existing index, especially for local Paradox and dBASE tables,
but having an index is not a requirement.

Select Primary Keys button
Click the Primary Key button to select key fields based on the primary index for a table.

Generate SQL button
After you specify a table, select key columns, and select update columns, click the Generate SQL
button to generate the preliminary SQL statements to associate with the update component’s
ModifySQL, InsertSQL, and DeleteSQL properties.

Dataset Defaults button
Use this button to restore the default values of the associated dataset. This will cause all fields in the
Key Fields list and the Update Fields list to be selected and the table name to be restored.

The SQL page
To view and modify the generated SQL statements, select the SQL page. If you have generated SQL
statements, then when you select this page, the statement for the ModifySQL property is already
displayed in the SQL Text memo box. You can edit the statement in the box as desired.

Keep in mind that generated SQL statements are intended to be starting points for creating
update statements. You may need to modify these statements to make them execute correctly. Test each
of the statements directly yourself before accepting them.
Use the Statement Type radio buttons (Modify, Insert, and Delete) to switch among generated SQL
statements and edit them as desired.
To accept the statements and associate them with the update component’s SQL properties, click OK.

ListView Columns Editor
Use the ListView Columns editor at design time to control the number of columns and their headings in
a listview component. When the ViewStyle property of a listview component is set to vsReport, and
ShowColumnHeaders is set to True, the headings specified with the ListView Columns editor are
visible at run time.

To display the ListView Columns editor:
Double-click the Columns property value in the Object Inspector.

Using the ListView Columns editor
The ListView Columns editor contains a Columns list box, New and Delete buttons, and a Column
Properties group box containing a Caption edit box, an Alignment combo box, and a Width group box
containing three radio buttons and an edit box. When you enter or change column properties, the Apply
button is enabled so that you can activate changes immediately.

Columns list box
The Columns list box displays the names of existing column headings for a listview component. For new
components this list is always empty. To add a column, click New, and then specify the column's
properties. To delete a column, click Delete.

Caption edit box
Specify the heading for a new or existing column in this box. As you enter the name, it appears in the
Columns list box.

Alignment combo box
Choose the alignment for a column heading in this box. Choices are Left Justify, Center, and Right
Justify. Note that the first column heading is always left justified; you cannot change the alignment for
this column.

Width group box
The controls in the Width group box specify the display width of a column. Select the method for
calculating width using the radio buttons. Width Value enables you to enter a specific width in the Width
edit box. Header Width specifies that the column's width is as wide as the text that appears in the
column heading. Item Width specifies that column's width should be as wide as the widest item that
appears in the column.

ListView Items Editor
Use the ListView Items editor at design time to add or delete the items displayed in a listview
component. You can add or delete new items and sub-items, and you can set the caption, image index,
and state index for each item in the ListView Items editor.

To display the ListView Items editor:
Double-click the Items property value in the Object Inspector.

Using the ListView Items editor
The ListView Items editor contains an Items group box with an Items list box, a New Item button, a New
SubItem button, and a Delete button. When you first add a listview control to a form, the Items list box is
empty and the New SubItem and Delete buttons are disabled. When you enter or change item
properties for a selected item, the Apply button is enabled so that you can activate changes immediately.
The ListView Items editor also contains an Item Properties group box for setting the properties of the
listview item currently selected in the Items list box. The Item Properties group box contains a Caption
edit box, an Image Index edit box, and a State Index edit box.

Items group box
Create and delete listview items and subitems in the Items group box. To create a new item, click New
Item. A default item caption appears in the Items list box. Specify an item's properties, including its
caption, in the Items Properties group box. When you create a new item, or select an existing item, the
New SubItem button is enabled so that you can nest items within other items in the listview. If the Items
list box contains items, the Delete button is also enabled. To delete an item, select it in the Items list box
and click Delete.

Item Properties group box
Set the properties for a selected item in the Item Properties group box. Enter a name for the item in the
Caption edit box. As you enter the name, it changes in the Items list box.
To display an image to the left of an item that is not currently selected, specify the index number of the
image in the Image Index edit box. To suppress image display, set Image Index to -1 (the default).
To display an image to the left of an item that is currently selected, specify the index number of the
image in the State Index edit box. The index number represents an index into the StateImages property
of the listview component. To suppress image display, set State Index to -1 (the default).

TreeView Items Editor
Use the TreeView Items editor at design time to add items to a treeview component, delete items from a
treeview component, or load images from disk into a treeview component. You can specify the text
associated with individual treeview items, and set the image index, selected index, and state index for
items.

To display the TreeView Items editor:
Double-click the Items property value in the Object Inspector.

Using the TreeView Items editor
The TreeView Items editor contains an Items group box with an Items list box, a New Item button, a New
SubItem button, a Delete button, and a Load button. When you first add a treeview control to a form, the
Items list box is empty, and the New SubItem and Delete buttons are disabled. When you enter or
change item properties for a selected item the Apply button is enabled so that you can activate changes
immediately.
The TreeView Items editor also contains an Item Properties group box for setting the properties of the
treeview item currently selected in the Items list box. The Item Properties group box contains a Text edit
box, and Image Index edit box, a Selected Index edit box, and a State Index edit box.

Items group box
Create, load, and delete treeview items and subitems in the Items group box. To load a set of existing
treeview items from disk, click Load. To create a new item, click New Item. Default text for the item
appears in the Items list box. Specify an item's properties, including its text, in the Items Properties
group box.
When you create a new item, or select an existing item, the New SubItem button is enabled so that you
can nest items within other items in the treeview. If the Items list box contains items, the Delete button is
also enabled. To delete an item, select it in the Items list box and click Delete.

Item Properties group box
Set the properties for a selected item in the Item Properties group box. Enter text for the item in the
Caption edit box. As you enter the name, it changes in the Items list box.
To display an image to the left of an item that is not currently selected, specify the index number of the
image in the Image Index edit box. To suppress image display, set Image Index to -1 (the default).
To display an image to left of a selected item, specify the index number of the image in the Selected
Index edit box. The index is zero-based. To suppress image display, set Selected Index to -1 (the
default).
To display an additional image to the left of an item , specify the index number of the image in the State
Index edit box. The index number represents an index into the StateImages property of the listview
component. The index is zero-based. To suppress image display, set State Index to -1 (the default).

DBGrid Columns editor
At design time, use the DBGrid Columns editor to create a set of personal column objects for the grid. At
run time, the State property for a grid with persistent column objects is automatically set to
csCustomized.
Column properties determine how data is displayed in the cells of that column. Most column properties
obtain their default values from properties associated with another component, called the default
source, such as a grid or an associated field component.

To create persistent columns for a grid control:
1 Select the grid component in the form.
2 Right-click and choose Columns editor.

Columns editor options
The Columns editor contains a list box of defined columns, insertion and deletion buttons, and two tab
pages of column properties: one for properties of the column object and one for properties of the column
title object.

Columns List box
The Columns list box displays the persistent columns that have been defined for the selected grid.
When you first bring up the Columns editor, this list is empty because the grid is in its default state,
containing only dynamic columns.

New button
To create a persistent column for a grid, click on the New button in the Columns editor. The new column
will be selected in the list box. If you want to associate a field with this new column, use the FieldName
combo box to select a field from the grid’s dataset.

Delete button
Use this button to delete a selected column.

Add All Fields button
To create columns for all the fields in the grid’s dataset, click the Add All Fields button. If the grid already
contained persistent columns, a dialog box asks if you want to delete the existing columns, or append to
the column set.

Delete All Columns button
Use this button to delete a persistent column from a grid.

If you delete all the columns from a grid, the grid reverts to its csDefault state and automatically
builds dynamic columns for each field in the dataset.

The Column properties page
In the Columns editor, properties are divided into two pages: Column Properties and Title Properties.
The following table summarizes the properties you can set on the Column Properties page.

Property Purpose
Alignment Left justifies, right justifies, or centers the field data in the column. Default source:

TField.Alignment
ButtonStyle cbsAuto: (default). Displays a drop-down list if the associated field is a lookup

field, or if the column’s PickList property contains data.
cbsEllipsis: Displays an ellipsis (...) button to the right of the cell. Clicking on the
button fires the grid’s OnEditButtonClick event.
cbsNone: The column uses only the normal edit control to edit data in the
column

Color Specifies the background color of the cells of the column. For text foreground

color, see the font property. Default Source: TDBGrid.Color
DropDownRows The number of lines of text displayed by the drop-down list. Default: 7
FieldName Specifies the field name that is associated with this column. This can be blank.
ReadOnly True: The data in the column cannot be edited by the user.

False: (default) The data in the column can be edited.
Width Specifies the width of the column in screen pixels. Default Source: derived from

TField.DisplayWidth

Font button
Use this button to select the font attributes of the column text. Default Source: TDBGrid.Font

PickList button
Use this button to specify a list of strings to display in a drop-down list in the column. When the user
chooses from the list, the corresponding field's value is set to what the user chose. PickList is similar to
using a lookup field, but is more useful for lists of items that rarely change or are fixed in the application.

The table grid in your form must be linked to a data source in order for the PickList feature to
work.

To define a pick list column:
1 Select the column in the Columns list box.
2 Set ButtonStyle to cbsAuto,
3 Click the PickList button.

The String List editor appears.
4 Enter a list of string values that you want to appear in the PickList.
5 Click OK.

The DBGrid Column Editor appears.
6 Click OK.

Restore Defaults button
You can discard all property changes in the selected column by clicking the Restore Defaults button.
The column's properties will return to their default values.

The Title properties page
The following table summarizes the properties on the Title Property page.

Property Purpose
Alignment Left justifies (default), right justifies, or centers the caption text in the column title.
Caption Specifies the text to display in the column title. Default Source:

Tfield.DisplayLabel
Color Specifies the background color used to draw the column title cell. Default Source:

TDBGrid.FixedColor

Font button
Use this button to select the font attributes of the text in the column title. Default Source:
TDBGrid.Title.Font

Menu title area
Menu titles display in this area. Click the highlighted block to add new items to the menu.

Menu command area
Menu commands display in this area. Click the highlighted block to add new menu commands.

