
The
Introductory
Version



2

This document is protected by copyright. All rights reserved. No part of this

brochure may be translated or reprinted or reproduced in any form or by any

means, electronic or mechanical, which includes photocopying and any similar

mechanism, or stored in any data processing system, nor may any of the included

figures be extracted, without the express written approval of microTOOL GmbH.

© microTOOL GmbH. Berlin 1995.

Microsoft, MS, MS-DOS are registered trademarks of Microsoft Corporation.

Windows, Windows NT, Windows 95, Word, Visual Basic, Visual C++ are

trademarks of Microsoft Corporation.

objectiF is a registered trademark of microTOOL GmbH.

Adobe and Acrobat are registered trademarks of Adobe Systems Inc.

The reproduction of tradenames, product names, trademarks, etc., in this bro-

chure does not entitle their free use, in the sense of trade mark acts, even then

when they are not specially marked as such.

Quotes have be taken from the following:

Christopher Alexander, The Timeless Way of Building, Oxford University Press,

New York, 1979.

Edward Yourdon, Decline & Fall of the American Programmer, Yourdon Press,

New Jersey, 1993.

n Copyrights



3

Fill the width of the

screen

Zoom function

Show bookmarks

n Reading the Documentation

This part of the objectiF description should be read first to
ensure a good start with the Introductory Version of objectiF.
Here, we'd like to illustrate how you use this online document.
This document was created with Adobe Acrobat 2.0 and is con-
tained in a PDF file (Portable Document Format). You will need
the Acrobat Reader to be able to read the PDF file. The Reader is
supplied together with Introductory Version of objectiF. We will
explain here the essential Reader functions. Detailed instructions
can be obtained with the F1 function key or over the Help
menu. The corresponding online handbook (help_r.pdf) is opened
in either case.

n Default Settings That Make
Reading Easier:

The increased use of 256 color displays induced us to setup our
documentation in accordance with to this standard. Of course
our documentation can still be read well with a 16 color display.
If it is possible, however, we recommend a configuration with
256 colors.
The following settings should be made after opening a docu-
ment to achieve optimal reading results:
The magnification level of the document should be adapted to
the size of your screen: Click this button to zoom the document
to fill the width of the screen.
With the Zoom function you can change the magnification level
of the document's screen representation. Comfortable reading
results can be achieved with the Fit Visible command.
Have an outline of the document displayed; click this button in
the Acrobat toolbar. The display window will be divided vertically,
and the bookmarks defined for the document are displayed with
a page icon in an overview area on the left.  To move to one of
the displayed topics, just click it or the corresponding page icon.

Reading the Documentation



4 Reading the Documentation

This icon to the left of a bookmark means that subordinate
bookmarks have be defined. Click the icon to show the subordi-
nate bookmarks.
Click this icon to hide the subordinate bookmarks again.

n Hypertext Links

You can jump to any topic of interest from any item in the table
of contents with a click of the mouse.
We have also defined hypertext links for individual terms, which
we set off in color and italic style. Just move the mouse pointer
to such a term; the mouse pointer becomes a pointing hand.
With a mouse click you "open" that page in the document
linked to the colored term, where the term could appear again –
possibly in another context – or where it is illustrated in detail.

n Text Search

If you are looking for a specific term, you can look it up in the
alphabetically ordered index of the corresponding document. You
can move quickly to the given page by moving the scroll bar to
the indicated page with the mouse: The beginning of the docu-
ment is at the top and the end is at the bottom. Stop when the
number of the desired page is displayed.
Or select the "Find" function from the Acrobat Reader toolbar.
That is another way to find any term quickly. To find the next
instance of the term, press the F3 function key.

n Printing Documents

To print a document, select first the Print Setup command from
the File menu, and specify the appropriate settings in the dialog
box that appears. Afterwards, select the Print command in the
File menu.

Search

Hide subordinate

bookmarks

Show subordinate

bookmarks



5

A very warm welcome to objectiF. Have you started down the
object-oriented path to software development? Then why don’t
you take a look at objectiF, our object-oriented development
environment? Because we conceived objectiF for professional
object-oriented application development.

Discover objectiF ...

... and convince yourself how easy and effective this tool really
is. You will find the demo version of objectiF on the enclosed CD
ROM. You can explore each “corner” – from system analysis to
the generation of source code.

If you would like more information on objectiF before-
hand, ...

... then in the following pages you will find a product description
as well as abundant information that we hope will inspire you to
start on your own tour of objectiF.

What is objectiF? Is It Right

for You?

Page 6

What You Need for objectiF.

And What objectiF Can Do

for You

Page 7

OOA and OOD –

Methods in Practice

Page 9

REUSE – a Capital Concern

for objectiF
Page 12

objectiF – the OOP Specialist

for C++

Page 14

With objectiF Software

Quality Is Measurable from

Project Beginning

Page 18

The Introductory Version



6
What Is objectiF?

Is objectiF Right for You? Yes, ...

What Is objectiF?

objectiF is an integrated software development environment
that offers complete support through all phases, from object-
oriented analysis to implementation in C++.
objectiF was conceived for teamwork in LANs. It has its own
integrated ODBMS – we speak of an object base – which guar-
antees safe multi-user operation in networks.
Moreover, with its import/export functions for the exchange of
data between different object bases objectiF supports the logi-
cally consistent integration of decentrally developed results.
Teamwork in LANs, decentralized project teams, divisional work
loads distributed over stand-alone PCs – objectiF is easily adap-
ted to the different forms of project organization.

Is objectiF Right for You? Yes, ...

... if you develop systems with a design span that is no longer
manageable by 2-3 man teams,
... if you work on projects at the beginning of which the pre-
dominant tasks have little to do with object-oriented pro-
gramming, but all the more with the precise specification of user
requirements,
... if you depend on smooth communication between several
development teams, perhaps even geographically removed,
... if you are serious about reusing frameworks, purchased or
developed in-house, class libraries, or component software.
In project situations of this type, model-based procedures –
supported by graphic modelling tools – have proven their worth.
And this is just what objectiF offers.

On the side: There is a direct correlation between

precise designs and the use of diagrams. In his

often quoted book The Timeless Way of Building,

the architect Christopher Alexander states: “My

experience has shown that many people find it

hard to make their design ideas precise. They are

willing to express their ideas in loose, general,

terms, but are unwilling to express them with the

precision needed to make them into patterns. ...

If you can’t draw a diagram of it, it isn’t a pattern.

If you think you have a pattern, you must be able

to draw a diagram of it. This is a crude, but vital

rule.”



7
What You Need for objectiF

And What objectiF Can Do for You

If you come along with us – here in the margins –

we will show you some of objectiF’s striking func-

tions. For our example we have taken a system for

last minute travel reservations, implemented with

objectiF in C++ utilizing the Microsoft Foundation

Class Library (MFC).

Is objectiF installed? Then please start it by double-

clicking the program icon in the objectiF program

group. A window will open containing two rectan-

gles, both of which represent model units that we

refer to as subjects.

The gray rectangle represents the Microsoft

 Foundation Class Library, which we imported to

enable its use for specifying and programming our

example system with objectiF. The green subject

icon refers to the classes of the example system

developed with objectiF.

What You Need for objectiF

A platform usually present anyway. Because the lower the invest-
ment needs for hardware and system software, the more likely a
tool will achieve widespread acceptance.
For objectiF you will only need
■ Windows PCs, stand-alone or in a network, 80486, or better,

with at least 66 MHz and 16 MB RAM.
With respect to software, objectiF requires
■ Microsoft Windows 3.1x or Windows 95,
■ Microsoft Word 6.0a or later or any other word processor that

supports OLE 2.0.
To apply objectiF in a multi-user environment, we recommend
■ Novell Netware 3.11, or later, or
■ Microsoft Windows NT Advanced Server.
To be able to offer optimal object-oriented programming sup-
port, objectiF is specialized in C++.

And What objectiF Can Do for You

You will be actively supported in your project work with
■ graphic tools for specifying classes with their structural rela-

tionships and message connections in class models,
■ graphic tools for modelling object life cycles,
■ code-generating components that generate, in C++, header

files and large portions of the implementation files and that
maintain, at all times, consistent code and graphic models,

■ a method editor of a very special type that actively supports
you, wherever the tool cannot perform the programming
completely on its own, by utilizing its knowledge of syntax and
the given context to supply you with the appropriate pro-
gramming suggestions,

■ a publishing component for developing project and product
documentation that satisfies the elevated layout and presenta-
tion demands placed on requirement documents, handbooks,
etc., and



8

For now, let’s not worry about the Main Menu or

the toolbar, but instead, let’s explore together

what’s behind the subject icons. If you click one

with the right mouse button, a context menu

appears with a list of all of the commands it knows.

Try it out on the Take Off – Last Minute Travel

subject.

In the lower part of the menu you will find a list of

the class models contained in the subject. One of

them has the same name as the subject: Take Off –

Last Minute Travel. Please select it with the mouse.

Incidentally, the elements within the windows, the

windows’ background, and even highlighted code,

all react to a click of the right mouse button in the

same way, by opening a context menu.

What objectiF Can Do for You

■ a reverse-engineering component enabling objectiF to incor-
porate classes, class libraries, and components that were not
created with objectiF .

As add-ins, objectiF additionally offers you
■ a graphic editor for modelling interaction diagrams, with

which the flow of messages between instances of selected
classes can be specified,

■ numerous evaluation and test functions for documentation
purposes, and

■ object-oriented software metrics to support quality control
throughout the life of a project.

If however, for your specific project situation, you should find
something missing from this complex store of functions, ...

... then the solution is called “Customizing”

Customizing denotes the process of extending objectiF function-
ality with user-specified tool functions. In the sense of OLE Auto-
mation, objectiF is component software. That means a number
of its internal classes are defined as exposed classes and are
accessible from “outside“ – from foreign applications. This repre-
sents the base technology allowing you to extend objectiF‘s
functionality with add-ins. The add-ins can be developed with
objectiF in C++, or when minimal specification efforts are re-
quired, in Visual Basic, without the assistance of this tool.
The group of objectiF ‘s exposed classes, and thus its extend-
ability, covers at present the following application areas:
■ publishing,
■ evaluating and testing for quality control, and
■ generating classes for persistent storage in object-oriented or

relational data bases.

A Whole Tool Kit in One,...

... the objectiF Add-In Manager (incidentally, an add-in itself)
makes sure of that. With its help, you will be able to integrate
your new tool functions into the objectiF menus.



9

This is how class models appear: The rectangles

represent classes. The Open option in a class’s

context menu opens the list of its attributes and

methods. Try it out on the Hotel class. Double-

clicking one of the attributes or methods presents

a definition box. Take a closer look at one.

Would you like to insert a

class of your own? Let us

suggest the class Room.

Proceed by clicking the

button in the toolbar for

adding classes:

Afterwards, you can click any free place next to

Hotel and enter the class name.

How You Work with objectiF

Object-oriented application development starts with analysis.
Only if the selected analysis methods actively apply the concepts
of the target language – abstraction, encapsulation, inheritance
– we can speak of a process that consistently applies object-
oriented methods.
Such processes enable the productive and automated utilization
of analysis knowledge during implementation. And that’s just
what objectiF does for you.
We would like to illustrate the effectiveness of the object-
oriented methods with objectiF . Follow us on an excursion from
analysis, over software design, all the way to implementation in
C++.

OOA and OOD – Methods in Practice

objectiF is based on the object-oriented analysis and design
methods, OOA and OOD, from Coad/Yourdon.
OOA and OOD are simple and well-founded in practice. They
encompass a very compact, easily understood graphic notation
for classes and their interrelations, which has equally proven its
worth during both analysis and design.
The clear notation of OOA/OOD and its simple application with
objectiF enable you in short time to develop, discuss, and eval-
uate alternative models for problem-domain and technical solu-
tions. Documentation suitable for reviews is a prerequisite for
effective quality control during analysis and design – as well as a
good reason for applying OOA and OOD with objectiF.
Coad and Yourdon conceived OOA/OOD for a wide range of
applications. Regardless of whether you are developing technical
or commercial applications, are realizing large projects or small
tasks, with this method base, objectiF is just the right tool for
you.

How You Work with objectiF
OOA and OOD – Methods in Practice



10

Let’s take a closer look at the class model now: The

green lines in the class model represent structure

relations at the instance level, the semantics of

which can differ from case to case. The red lines

with a triangle have the fixed meaning of “consists

of” or “contains”. We call them aggregation

structures.

A hotel contains rooms, doesn’t it? Then select the

button with the red triangle in the toolbar. Now,

click first Hotel and afterwards Room – you just

modelled an aggregation structure. At the same

time, objectiF added a Room attribute to Hotel,

which instances of Hotel will use to manage their

rooms.

The new class, Room, still needs appropriate

methods. You can add them with the help of the

class context menu or ...

OOA and OOD – Methods in Practice

From OOA to OOD with the Class Model

Characteristic of object-oriented processes is the seamless transi-
tion from analysis to design. The two procedures differ primarily
in the objects being modelled – not the way in which the results
are represented.
OOA with objectiF means modelling the problem-domain classes
of a system.
OOD means working out a technical solution for the require-
ments of the problem domain. This step can often be reduced to
developing the base-technology classes from which – expressed
simply – the problem-domain classes modelled during OOA inher-
it their technical behavior.
The class model is the common modelling tool of OOA and
OOD. It displays at a glance all of the central aspects of an
object-oriented design:
■ the classes,
■ their static properties, the attributes,
■ their behavior, the methods,
■ inheritance structures,
■ message connections, and
■ structural relationships at the instance level.
With objectiF the elements of a class model are precisely speci-
fied through the definition of their properties. In this manner,
you decide in the class model, among other things, whether a
class is to be abstract, a method virtual, methods and attributes
protected, public, or private – specifications that objectiF uses
automatically during implementation. The details of relationships
can be extended as well. For example, structural relationships
can be described by formulating their semantics and specifying
cardinality and conditionality.
While you are still modelling a class model from the problem-
domain perspective, objectiF is already “thinking“ about system
realization. For every structural relationship that you enter into
the model, it automatically generates, for example, those attrib-
utes that will be reciprocally assigned references to the
instances linked by the relationship.



11

... specify them with the help of an object life cycle

for the Room class: Select the Create Object Life
Cycle option in Room’s context menu. An empty

diagram is presented. Here’s how to add states:

Select the button with the oval icon, click a free

place in the window, and enter a name for the

state. Here’s how to add transitions: Select the

button with the horizontal arrow icon, and click

the positions for arrowtail and arrowhead. A

dialogbox opens. You can choose or enter the

name of an event to label the transition. In the

transition’s context menu you´ll find the Actions

option for the entry under the separating line of the

label. Events and actions are expressed by methods.

Room doesn’t have any yet; why don’t you add

some – and then take a look at the class model:

OOA and OOD – Methods in Practice

By the way, if you cancel such a modelling step, objectiF deletes
the added attributes as well, ensuring in this way consistent
solutions.

Object Life Cycles – an Effective Instrument for Modelling
Behavior

What happens when ...? This question is important not only for
real-time systems; today more and more commercial systems
incorporate time-critical, event-dependent components, too.
Let’s formulate the question in an “object-oriented“ manner:
When, under what conditions, do the instances of a class display
their behavior? objectiF offers a special instrument for modelling
this aspect: the Object Life Cycle.
Object life cycles are described with the help of state transition
diagrams. An object life cycle represents the connections be-
tween
■ the states that an instance can go through during its exist-

ence,
■ the events, in the form of messages, that will affect it,
■ the actions, in the form of function calls, invoked by the state

transition and
■ the following states reached.
The creation of an object life cycle is optional with objectiF.
However, for classes whose instances move through complicated
life cycles or are responsible for controlling tasks, you should not
do without this powerful modelling tool.
If during your work on an object life cycle you extend the store
of behavior displayed by a class, the new methods are automa-
tically inserted into the class model. objectiF takes on the re-
sponsibility of safeguarding consistent object state diagrams and
class models. As end-user, you can concentrate entirely on the
essence of the modelling tasks.



12

Have you been waiting for the term “inheritance?”

We would like to make that up to you right now

with the aid of the Journey class.

Select the References... option from the class’s

context menu.

objectiF reacts to this by displaying a list of all the

documents containing the Journey class. In our

case, the list is quite small, but it contains the class

model Offer & Reservation. Please open it.

You’ll find Journey again in Offer & Reservation ...

REUSE – a Capital Concern for objectiF

The term object-oriented is often automatically associated to
reuse. If, however, we understand reuse to be more than the
application of the inheritance concept, it is in no way a natural
consequence of object-oriented methods.
Three things are necessary to achieve a high level of reuse:
■ explicit plans for the reuse of the projected results,
■ comprehensible documentation, because you only will reuse

what you understand, and
■ easily accessible elements, because you only can reuse what

you are capable of finding.
With its subject concept,
objectiF offers very effective support.

With Subjects You Have Class Complexity Under
Control

Class models are grouped together with objectiF to form larger
model units that we refer to as subjects. Experience has shown
that a subject will typically contain some 20-30 classes that per-
tain to the same problem-domain or technical topic and partake
in an extensive exchange of messages. Each class of a subject
can be prepared for reuse in other subjects by declaring it as
public, or its usage outside can be excluded with a private decla-
ration. The public classes represent the subject interface. One
glance is enough to immediately assess the store of available
classes.
objectiF‘s subject concept enables the practical reuse of classes –
especially beyond the bounds of a project.

REUSE – a Capital Concern for objectiF



13

... as a specialization of the CObject class. The

CObject class has a white background because it

has been imported from a foreign subject. It comes

from the Microsoft Foundation Class Library, that is,

from an external class library, which we mapped to

an objectiF subject. Imported classes can be used,

but they may not be modified.

Offer and Reservation are specializations of the

Journey class. You can see what’s “special” about

them when the class icons are opened. Would you

like to view the inherited attributes and methods

as well? Then select the Full Class View... option

from the class’s context menu. A window with two

lists opens. The context menu for the list titled

“Methods” contains the Show Inherited

Methods option.

How to Realize Software Architecture Concepts

Subjects display another positive trait with respect to OOD:
versatility in realizing concepts for software architecture. Here
are three examples of the modelling freedom that objectiF
opens up for you with its subject concept:

Frameworks

A large potential in reuse can be maintained by developing
frameworks; frameworks offer problem solutions at a genera-
lized level. They contain abstract classes, connected to one
another by relationships, which are then offered to the applica-
tion developer for their concrete realization.
A framework is modelled with objectiF in the form of a subject.
The capability of enabling specialization for selected classes with
the public property represents a powerful instrument for
modelling the frameworks as well as for using them during
application development.

External Class Libraries

Here is another example of the efficient way objectiF uses sub-
jects, just part of the standard package: linkage to an external
class library, namely, the Microsoft Foundation Class Library
(MFC). The MFC classes are summarized in their own subject and
can be specialized in user-specific subjects or used as elementary
classes in attribute definitions.

Components in the Sense of OLE Automation

For the development of component software with the help of
OLE Automation, a subject takes on the meaning of a compo-
nent. All of the classes of a component that are accessible to
other components through messages are specially marked with
objectiF as exposed classes of the subject. Exposed classes of
other applications supporting OLE Automation – e.g., Microsoft

How to Realize
Software Architecture Concepts



14 objectiF – the OOP Specialist for C++

Please return now to the Take Off – Last Minute

Travel class model, where you added your own

Room class. Please select this class now because we

would like to use it to illustrate that for objectiF ,

the code and the model are simply different means

of representing the same content.

Select the Create Code option from the Room

class’s context menu. objectiF displays the class

declaration for Room. Arrange the windows such

that you can view both the class declaration and

the open class icon for Room.

Use the Create Attribute... option to extend

Room with a new attribute. Give it the name Bath;

specify it as public and its type as BOOL. The corre-

sponding modifications are automatically

performed in the class declaration.

Excel – can be represented with objectiF as subjects as well and
used exactly as if they were developed with objectiF themselves.

objectiF – the OOP Specialist for C++

Object-oriented programming (OOP) in C++ means coding a
class declaration for every designed class and a function defini-
tion for every specified method. The precise class specification in
the class models pays for itself here – in the form of better quali-
ty and increased productivity; you can leave a large part of the
work up to objectiF now.
Let’s start with the class declaration: objectiF is not only capable
of representing a class model graphically but also from the per-
spective of C++. It can display every specified class, together
with the attributes, methods, and method parameters that were
defined for it, in the syntax of a class declaration with a member
list. You will only need to extend the C++-specific declarations of
the member functions, which during OOA/OOD have not been
of interest yet.

objectiF Stands for Implementations True to Specification

Graphic specification and class declaration are simply two sides
of the same thing being modelled with objectiF. For example, if
you later modify, extend, or delete a method or attribute in the
class model, you will immediately find the corresponding modifi-
cation has been made in the class declaration – and vice versa.

objectiF Becomes Your Personal Assistant, ...

... when you are writing the code for methods, i.e., function
definitions. The C++ declaration at the beginning of function
definitions is generated by objectiF . You will still have to write
the code for the function body – but even here, objectiF is an
active partner, providing you with its knowledge of the correct



15 objectiF – the OOP Specialist for C++

syntax and given specification. In this manner, a new, highly pro-
ductive kind of programming arises.
This is how it works: objectiF knows the basic syntax structures
of a function body. A function body, expressed in simple terms, is
nothing more that a procedural sequence of often no more than
15-20 messages. Principally, a message begins with a variable for
the receiver object. A method name, that has to be compatible
with the variable, follows as well as arguments that the method
expects as regards both type and meaning. When you formulate
a message to an object and need a variable for this, then only
those attri-butes, parameters, and local variables that have al-
ready been assigned an object are of interest. It’s exactly this set
that objectiF offers you to select from in this context. objectiF
combines its syntax and context knowledge for this. After you
complete your selection, objectiF offers you appropriate mes-
sages, but of course, only those that are understood by the re-
ceiver object and can be provided with arguments in the current
context.
You will have just completed your selection of a variable when a
list of appropriate arguments is offered to you on the screen. To
save you some typing, objectiF enters the best alternative – from
its viewpoint – directly into the code. A suggestion list displays all
the alternatives. You can confirm the suggestion or select an
alternative.

Kind of Fuzzy – the Method Editor

objectiF uses stringent criteria – e.g., type checks and tests of
specification knowledge – in combination with Fuzzy Logic to
determine which suggestion is the best. For example, a variable
is always a good choice from objectiF ‘s perspective when an
object was assigned to it shortly before, as the return value of a
message – the closer the better.
Incidentally, objectiF is very forgiving. It offers you very efficient
help even then when you disagree with its suggestions or even
switch them off altogether because ...

Let’s have objectiF code a “piece” of a method –

for example, from getOffers, a method of

TourOperator. First click getOffers with the right

mouse button to open the corresponding context

menu, and then select the Code option. The code

for getOffers is already complete; let’s delete a line

of code, or a part of it – e.g., the one highlighted:

Now, with the bottom toolbar button, ask objectiF
for suggestions to complete this line of code.



16

objectiF offers you two suggestions, each of which

results in a semantically and syntactically correct

statement.  The original statement is, of course,

offered as well. Double-click this entry – the line of

code is right back the way it was.

objectiF – the OOP Specialist for C++

... Code Is More Than Just a Text String for objectiF

Even as you are inputting, objectiF decomposes, with the help of
an incremental parser, every statement into its syntactic elements
and checks if they are correct with respect to the syntax of C++.
All of the syntactically correct elements are stored as objects in
the object base and are put into relationship with the results
already found there. This aspect of the objectiF architecture has
one very beneficial effect on your work: Any violation of C++
syntax or disagreement with the connections specified in the
class model is immediately visible on the screen, as you type,
from the color and type used to represent the input characters.
All of the input that objectiF cannot make sense of, either syn-
tactically or semantically, is represented in black. If the input code
turns green, then you can rest assured that it is syntactically cor-
rect and logically consistent with the OOA/OOD results found in
the object base.
Objects understand messages. For the elements of correctly
input C++ statements, which objectiF manages as objects, there
is no exception to this. A pleasant consequence for you: For
every highlighted, syntactically correct element in the code you
can open a context menu providing  you with helpful functions
for programming. For example, in the context menu for the
name of a method found in a message you will find the Code
option, with which you can directly branch to the code for the
corresponding method. Also offered is the Parameter... option,
which opens a list containing all the parameters defined for the
method. Moreover, the context menu of a method name ena-
bles you to edit the Properties of the method – in the simplest
case its name. Incidentally, the modifications are effective not
only locally. They are performed consistently throughout the
code, as well as in the graphic models, where the method
appears.



17 objectiF – the OOP Specialist for C++

Before you leave the Method Editor you should

test the effectiveness of the context menus for

code. Here’s our tip: Select the Parameter... option

from the context menu of findHotels – a few lines

above the statement just coded.

A Maintenance Plus

Readable, semantically expressive C++ code is the guaranteed
result of programming with objectiF. The technique supported
by objectiF for assigning names makes a substantial contribution
to this: During OOA/OOD, different names can be assigned, from
the problem-domain perspective, to instances of the same class.
Each name reflects a role from the problem domain. During the
naming process, objectiF displays all of the names already used
for instances of the given class. Thus you can always rest assured
that you assign the same name to instances fulfilling the same
role. The semantically meaningful instance names selected during
OOA/OOD are used by objectiF in the function definitions as
variable names, sometimes somewhat modified to satisfy C++
syntax. Using these names for formal parameters, local variables,
and function arguments makes every single statement of the
function definition easily understood, without requiring you to
search through the code to find the intended meaning of varia-
bles. Thus the code becomes a readable representation of the
problem-domain specification.

How the Code Gets to the Compiler

It is but a small step from the classes coded with objectiF to
compilable source code. Your role in the process is simply to as-
sign output files to the classes of the subject. objectiF does the
rest. It generates compilable .h files and .cpp files together with
include and forward declarations.
If you find errors testing and debugging outside objectiF, you
can correct the code directly, that is without returning to
objectiF. objectiF reads the corrected code and relinks it with its
graphic specification.

For a class developed with objectiF, the path to the

compiler starts at its context menu ...

There you will find Assign, a sub menu option of

Files; it has to be invoked first to specify the output

files for the code. Afterwards, the .h and .cpp files

can be generated with Files/Generate.

The C++ code for a class in objectiF should always

reflect the most current stage of development. If

while testing, you modify the code outside of

objectiF , you should make use of the Files/Relink
option to link the modified code back to the class

in objectiF .



18
With objectiF Software Quality Is

Measurable from Project Beginning

With objectiF Software Quality Is Measurable
from Project Beginning

Alternative design solutions, their discussion-ready representati-
on, and the realization of architecture concepts are, as illustra-
ted, easily accomplished with objectiF‘s model-based method
procedures. But which of the developed alternatives is the best?
Is the quality of the classes, frameworks, or components high
enough to really justify their reuse? objectiF can help you answer
these questions, which concern the quality of the design and
product, with its object-oriented metrics and object base evalua-
tions.
Numerous quality characteristics, like class and method size, in-
heritance hierarchy depth, and the degree of class specialization
can be measured already at the design level and evaluated with
comparative values. objectiF offers you a number of such pro-
cedures for measuring and evaluating under the term metrics.
What classes does the subject interface consist of? Where does a
class appear as type in a parameter declaration? For what classes
output files have been generated already? Information of this
type, covering the developmental stage of the results found in
the object base, is produced with the help of evaluations. Under
this term, objectiF offers you content data, proof of usage, tests
of completeness, and code listings.
Metrics and evaluations are implemented in Visual Basic as
objectiF add-ins, and their source code is available to you, too.
That means you can modify, adapt, or extend them to fit your
personal requirements.
If project-specific metrics and evaluations should become neces-
sary as your work proceeds, then we recommend the following:
Develop your own add-ins, and turn objectiF into your own per-
sonal assistant for quality control and documentation.

Measure? What for? In Decline & Fall of the Ameri-

can Programmer, Edward Yourdon answered: “The

baseball player needs to know some things about

his own process; for example, 82 percent of the

time he swings at a curve ball, he misses, while 73

percent of the times he goes after a fast ball, he

gets on base. And software engineers need

information about their process in order to learn

how to change, how to improve.“

Then let’s do some measuring: To output your

results, you will need MS Word 6.0a, or later. If you

have MS Excell 5.0, or later, installed, you will also

be able to produce graphic representations of your

results. You’ll find Evaluations offered in the

Add-Ins menu from the Main Menu.



19
Target-Group Documentation –

a Clear-Cut Case for objectiF

Target-Group Documentation – a Clear-Cut Case
for objectiF

Let’s stay on the topic of documentation: If you want to output
your results on paper, objectiF has the fitting support for you in
every stage of your project.
For example, if during OOA and OOD you need to document
subjects, classes, methods, attributes, etc., you can use the pro-
fessional word processor of your choice, e.g., Microsoft Word
for Windows. The only prerequisite is the capability of the word
processor to function as OLE server.
Or would you like to summarize your results in an extensive text
document, for example, a requirements document? This task is
accomplished by the combined efforts of objectiF and a word
processor supporting OLE 2.0 – but now the roles are switched:
objectiF appears in the role of OLE server, while the word pro-
cessor functions as OLE client.
In this way, even elevated layout standards can be reached, and
the documentation is automatically guaranteed to be consistent
with the development results.

Thank you for following us this far. It has not been

possible for us to show you any where near all of

the objectiF functions, for example, the documen-

tation capabilities, ranging from text descriptions of

individual diagram elements to the complete

documentation of a finished product. Why don’t

you try to create a description now?

Or you could develop an Interaction Diagram...



20
microTOOL –

Your Partner on the Way from OOA to C++

Interaction Diagrams are used to describe the

flow of messages between the instances of diffe-

rent classes. The following is an example of such a

diagram type, offered in the Add-Ins menu:

Have fun testing!

microTOOL –
Your Partner on the Way from OOA to C++

Our short presentation of objectiF ends here. We are sure,
though, working with objectiF – the Introductory Version,
you will find many more interesting and useful functions not
touched upon in this brochure.
Convince yourself – even for your day-to-day project work,
objectiF lives up to all the expectations raised by the demo
version.
Then, let us help you develop your enterprise-specific path
from OOA to OOP with objectiF.

microTOOL GmbH
Voltastrasse 5
D-13355 Berlin
Phone (+49 30) 467 086-0
Fax (+49 30) 464 47 14
CompuServe: 100272,1713

microTOOL Sp. z o.o.
ul. Wolodyjowskiego 64
PL-02-724 Warszawa
Phone (+48 22) 43 52 76
Fax (+48 22) 43 81 01
E-Mail: mtool@ikp.atm.com.pl


	Reading the Documentation
	Default Settings That Make Reading Easier:
	Hypertext Links
	Text Search
	Printing Documents

	objectiF – The Introductory Version
	What Is objectiF?
	Is objectiF Right for You? Yes, ...
	What You Need for objectiF
	And What objectiF Can Do for You
	... then the solution is called “Customizing”
	A Whole Tool Kit in One,...

	How You Work with objectiF
	OOA and OOD – Methods in Practice
	From OOA to OOD with the Class Model
	Object Life Cycles – an Effective Instrument for Modelling Behavior

	REUSE – a Capital Concern for objectiF
	With Subjects You Have Class Complexity Under Control
	How to Realize Software Architecture Concepts
	Frameworks
	External Class Libraries
	Components in the Sense of OLE Automation

	objectiF – the OOP Specialist for C++
	objectiF Stands for Implementations True to Specification
	objectiF Becomes Your Personal Assistant, ...
	Kind of Fuzzy – the Method Editor
	Code Is More Than Just a Text String for objectiF
	A Maintenance Plus
	How the Code Gets to the Compiler

	With objectiF Software Quality Is Measurable from Project Beginning
	Target-Group Documentation – a Clear-Cut Case for objectiF
	microTOOL – Your Partner on the Way from OOA to C++

