
 Upsizing Your dBASE Application
This standalone Help system is designed for dBASE for Windows developers who have already
installed one or more Borland SQL Link drivers and want to build scalability into their applications. To
get information on a topic, click the underlined text.

Working With SQL Link Drivers - describes how the Borland
SQL Link drivers provide access to SQL data through
dBASE for Windows
SQL-enabled dBASE - references dBASE language
extensions for working with SQL data, and other dBASE
language elements that support SQL

 Creating dBASE Applications for SQL Data - discusses
strategies for dBASE for Windows developers who want to
migrate to the SQL environment.

Working With SQL Link Drivers
See Also
Expand list

Topics
Essentials
Table Requirements
SQL Link Locking and Transaction Support

Working With SQL Link Drivers
See Also
Collapse list

Topics
Essentials
Table Requirements

Unique Row Identification
Defined Row Ordering

SQL Link Locking and Transaction Support
Default Transaction Behavior
Table-locking
Record-locking
Client-controlled Transaction Behavior

See Also
SQL-enabled dBASE
Creating dBASE Applications for SQL Data

Essentials
See Also
Borland® SQL Links for Windows is a collection of drivers that let you work with SQL data through
supported Borland applications. The SQL Link driver enables the connection to the SQL server,
translates queries into the appropriate SQL dialect, and passes them to the SQL database. When
processing is complete, the SQL database returns the answer to the client in a format that the desktop
application can display.

Note: Borland database applications also support the use of SQL statements against local (Paradox or
dBASE) data. For information on how to use Local SQL with dBASE for Windows, see the
dBASE for Windows online Help.

Using dBASE with an SQL Link driver actually extends what you can do with your application, lending
it some of the advantages inherent in using SQL databases:

The ability to query the SQL server directly

Support for SQL-style transactions

Improved record caching

Data locking behavior
Accessing an SQL server through an SQL Link driver and dBASE also lends traditional SQL database
users some of the advantages inherent in workstation databases, enabling you to

Move in both directions through a result set or answer table

Order data using an available index

Work dynamically with the SQL data itself through live access to data sources

See Also
Supported Applications
Supported Databases

Table Requirements
To best take advantage of Borland SQL Link driver capabilities, tables should possess both a unique
row identification method and a defined row ordering.

Topics
Unique Row Identification
Defined Row Ordering

Unique Row Identification
Unique row identification is generally recommended for updating data. If the target table contains
some non-unique records dBASE cannot absolutely determine which record you want, and as a result
the update may fail. Unique row identification improves performance of dBASE DELETE and
REPLACE operations, and modifications or deletions made on a form or in BROWSE. (APPEND
queries and insertions made using BROWSE or on a form do not require uniquely identifiable rows.)
Borland SQL Links requires some kind of unique row identification to support full BLOB access for
SQL servers that do not support BLOB handles for random reads and writes. Most SQL servers limit
a single sequential BLOB read to less than the maximum size of a BLOB. In those cases an entire
BLOB may not be available. To see if your SQL server tables support BLOB handles, or identify the
maximum size of a single BLOB read, see your Connecting to... manual.
You can guarantee unique row identification through either a unique index or an implicit row
identification method.
Note: Servers that support implicit row identification do not always support it for all server objects.

For example, even if your server supports an implicit unique row identification method for tables,
it may not support one for SQL server views. Your Connecting to... manual notes whether your
server supports an implicit unique row identification method.

Defined Row Ordering
SQL Links requires a defined row ordering to access a small window of data, centered around the
current row location. The window into the server data moves as the current row location moves, and
can be refreshed from the server through the dBASE REFRESH command.
If no defined row ordering is available, when data is inserted, SQL Links cannot tell where the SQL
server places the inserted row. Therefore, the row may or may not appear in the set of data as it is
read. This behavior can vary from SQL server to SQL server, and even from table to table.
A defined row ordering requires either an index or some other method that identifies individual rows.

SQL Link Locking and Transaction Support
The SQL Link driver enables support for table locking, record locking, and explicit SQL transaction
management. For information on how your SQL server handles locking and transactions, see your
SQL server documentation.

Topics
Default Transaction Behavior
Table-locking
Record-locking
Client-controlled Transaction Behavior

Default Transaction Behavior
SQL operations always take place within the context of a transaction. When no explicit transaction
occurs, SQL Links manages the SQL server transactions transparently for the client. Any successful
modification of SQL server data is immediately committed to ensure its permanence in the database.
For example, a single REPLACE, a single APPEND, and a single form edit operation are each
individually committed by default.

Table-locking Behavior
The SQL Link driver provides the same table locking support as the target SQL server. For
information on locking support for your SQL server, see your server documentation.
In SQL servers that support table locks, locks can be maintained only within the context of a
transaction. A lock is not acquired until after the transaction starts, and can be released only when
the transaction ends. When SQL Links acquires a table lock, it automatically starts a transaction if
necessary. When SQL Links is ready to release a table lock it first commits the transaction,
automatically releasing all other locks at the same time. It then automatically reacquires any
remaining locks.
Note: During the period between the time a lock is released and then reacquired, it is possible for

another user to change your data. For this reason, it is recommended to either release all table
locks together when the last lock is no longer needed, or use explicit SQL transactions instead
of locking entire tables.

Record-locking Behavior
SQL servers lock data as required, depending on the type and granularity of lock supported. SQL
Links offers an additional locking strategy called optimistic locking to provide a generic way to ensuring
data integrity.
Optimistic locking allows a user to modify a local copy of a record, instead of locking a record for the
entire time it is being modified. When the modifications are finished, SQL Links checks the current
"live" data to make sure no other changes have been made in the interim, then modifies the "live" data
based on the changes made to the copy. If the "live" data was changed by someone else, an
optimistic lock failure occurs. The user is notified that someone else has changed the data first.
They can then inspect the new data and decide whether or not to make changes at that time.
The operation is said to be optimistic because it assumes that no other user will change the record.
Optimistic locking enables users to modify data without the performance and concurrency penalty that
comes with locking the data.

Client-controlled Transaction Behavior
SQL Links provides dBASE functions to explicitly begin, commit, and roll back a transaction. This gives
the programmer the same protection afforded to pass-through SQL users. When a transaction is
explicitly started, a COMMIT operation is never performed automatically, so the client has the full
protection of the SQL server transaction mechanism. That is, modifications are performed but not
automatically committed, and table lock releases do not cause a commit within an explicit client
transaction.

How transactions are started
When starting a transaction, SQL Links uses the same default isolation level in use at the SQL server.
For information on the default isolation level of your server, see your server documentation.
An SQL Link transaction is always started and ended through a database alias. Once a transaction is
started, all modification and table- and record-locking operations executed in that database are
performed in the context of that transaction.

How SQL Link operations change under an explicit transaction
When operating within an explicit client transaction, some SQL Link operations cannot be made
atomic. Both table append operations and locally-executed queries execute in their own transaction by
default. When executed within an explicit client transaction, they execute within the client transaction
context. If such an operation fails during processing, the operation may be only partially complete.
Although transactions can be started in multiple database aliases simultaneously, SQL Links manages
the transactions independently, so the user must be careful to minimize the window of vulnerability
after the first commit of a multiple database transaction.
Note: Data Definition Language (DDL) operations can be done within an explicit transaction if the SQL

server allows it. Most SQL servers do not allow this, or would implicitly commit the explicit
transaction. For such servers, SQL Links disallows DDL operations when an explicit client
transaction is in effect.

SQL-enabled dBASE
See Also
dBASE provides new commands that support SQL and transaction processing. If you are familiar with
SQL, you can also include SQL statements in dBASE code using SQLEXEC().
This section provides information on dBASE commands compatible for use in an SQL environment.
For detailed information on dBASE commands, see the dBASE for Windows Programmer's Guide or
dBASE for Windows online Help.

Topics
dBASE Language Extensions for SQL
SQL Error Codes
Composite Keys
Other dBASE Language Elements That Support SQL

See Also
Working With SQL Link Drivers
Creating dBASE Applications for SQL Data

dBASE Language Extensions for SQL
SeeAlso
This section briefly summarizes dBASE commands that support SQL and transaction processing. For
detailed information on dBASE commands (including complete syntax and further examples), see the
dBASE for Windows Programmer's Guide or dBASE for Windows online Help.

Topics
BEGINTRANS()
COMMIT()
OPEN DATABASE
ROLLBACK()
SQLEXEC()

See Also
Using Transactions in dBASE Applications

BEGINTRANS()
Example
Starts a transaction. Returns .T. if the transaction started successfully.
Use BEGINTRANS() to initiate a transaction during which the user might make changes to an SQL
database that supports transaction processing.
For more detailed information, see the dBASE for Windows Programmer's Guide or online Help.

Syntax
BEGINTRANS ([<database name expC>])

<database name expC>
The name of the SQL database in which to begin the transaction. If <database name expC> is
omitted but a SET DATABASE statement has been issued, BeginTrans() refers to the database in
the SET DATABASE statement. If <database name expC> is omitted and no SET DATABASE
statement has been issued, BeginTrans() refers to the database opened after issuing BeginTrans().

Limitations
Nested transactions are not permitted.

Transaction Example
The following example shows how you might define a transaction for data stored on an SQL server:
ON ERROR DO errorProc && Specify error processing routine
OPEN DATABASE AcctgSybase && Open a database
USE :AcctgSybase:mytable && Open a table in the database
IF BEGINTRANS() && Start a server transaction

REPLACE ALL Salary WITH Salary * Inflation && Try to update all records
IF .NOT. COMMIT() && Commit changes if no error occurred
*Commit failed
: && Provide user options in case the
. && transaction fails
ENDIF

ENDIF
:
.

PROCEDURE errorProc && Define procedure for handling errors
IF .NOT. ROLLBACK() && Try to roll back if error occurred
* Rollback failed
IF DBERROR() <>0 && Check for server error
* Process IDAPI Error
:
.
IF SQLERROR() <>0 && Check for SQL server error
* Process SQL Error

ENDIF
ENDIF

ENDIF
RETURN

COMMIT()
Example
Ends a transaction initiated by BEGINTRANS() and writes to the open files any changes made during
the transaction. Returns .T. if the data was committed successfully.
To end an open transaction without writing changes to the file, use ROLLBACK().
For more detailed information, see the dBASE for Windows Programmer's Guide or online Help.

Syntax
COMMIT ([<database name expC>])

<database name expC>
The name of the SQL database in which to complete the transaction. If you began the transaction
with BEGINTRANS <database name expC>, you must specify <database name expC> when you
COMMIT. If you began the transaction with BEGINTRANS(), you can omit <database name
expC>.

OPEN DATABASE
Example
Opens a STANDARD or SQL server alias defined through the IDAPI Configuration Utility. Required to
establish a connection with an SQL database before you can access its tables. If you eliminate the
LOGIN clause, dBASE displays a login dialog.
Note: You can also use a database qualifier to open or create tables in databases, overriding the

default SET DATABASE TO and SET DBTYPE TO settings. For example,
USE :SYBASE1:mayors, where SYBASE1 is the database name and mayors is the table name.

Syntax
OPEN DATABASE <database name>

[LOGIN <username>/<password>]
[WITH <option expC>]

<database name>
The name of the database you want to open. Database aliases are created using the IDAPI
Configuration Utility (see Getting Started for more information).

<user name>/<password>
Character string specifying the user name and password combination required to access the
database.

WITH <option string>
Character string specifying server-specific information required to establish a connection with an
SQL server. For information about establishing SQL server connections, see your Borland SQL Link
Getting Started manual.

OPEN DATABASE Example
The following example uses OPEN DATABASE to establish a connection with an SQL server, opens a
database previously created using the IDAPI Configuration Utility with SET DATABASE TO, and opens
a server dBASE table and appends it to the client/server database:

OPEN DATABASE CAClients && Establish connection with database server
USE :CAClients:Company && Opens server table named Company
APPEND FROM CLIENTS.DBF && Appends data from local dBASE table
CLOSE DATABASE CAClients && Closes Company and disconnects

&& from database server

ROLLBACK()
Example
Ends a transaction initiated by BEGINTRANS() without saving any changes to the open files. Returns
.T. if the data was committed successfully.
For more detailed information, see the dBASE for Windows Programmer's Guide or online Help.

Syntax
ROLLBACK ([<database name expC>])

<database name expC>
The name of the SQL database in which to cancel the transaction. If you began the transaction
with BEGINTRANS <database name expC>, you must specify <database name expC> when you
roll back the transaction. If you began the transaction with BEGINTRANS(), you can omit
<database name expC>.

SQLEXEC()
Examples
Allows SQL language to be used on local and server tables. This statement returns an error code
referencing the same error numbers that the dBASE for Windows ERROR() and MESSAGE() error
codes use. (0 means no error occurred.)
For more detailed information, see the dBASE for Windows Programmer's Guide or online Help.

Syntax
SQLEXEC(<SQL statement expC1> [, <Answer table expC2>])

<SQL statement expC1>
A character string that contains an SQL statement. The statement must follow server-specific
dialect rules and must be enclosed in quotes. If the SQL statement includes character strings or
SQL or IDAPI reserved words, these must also be enclosed in either single or double quotation
marks.
The database against which the SQL statement is executed is based on the setting of SET
DATABASE TO. If SET DATABASE is not set, then the SQL statement is operating on a local table
(dBASE or Paradox only).

<Answer table expC2>
An optional dBASE or Paradox answer table that stores the data returned by an SQL SELECT
statement. The type of table returned is based on the setting of SET DBTYPE TO. Display of SQL
server answer tables is not supported. If you do not specify a table name, dBASE creates a table
named Answer with the appropriate extension.

SQLEXEC() Examples
The following example shows table creation with SQLEXEC() and native SYBASE SQL data types.
 :SYBASE: is a Sybase alias in the IDAPI Configuration Utility.:

OPEN DATABASE SYBASE && login to Sybase
SET DATABASE TO SYBASE && focus on Sybase alias

** Create CUSTOMER table on Sybase

SQLString = "create table CUSTOMER (Client_ID int not null, ";
+ "AcctNum char(8) not null,Client_Name varchar(20),Balance money)"

SQLIndex = "create unique clustered index;
CLIENT_IDX_ID_NAME_U on ";
+ " CUSTOMER(CLIENT_ID,CLIENT_NAME)"

Ret = SQLEXEC(SQLString) && create the table from SQL statement
&& Sybase will automatically commit the DDL

IF Ret = 0
Ret = SQLEXEC(SQLIndex) && create unique clustered Sybase index

ENDIF

** Create ORDERS table on Sybase

SQLString = "create table ORDERS(Order_ID int not null, ";
+ "Order_Date datetime not null,Part_ID char(10),
Order_Status char(1))"

Ret = SQLEXEC(SQLString) && create the table from SQL statement
&& Sybase will automatically commit the DDL

SQLIndex1 = "create unique clustered index;
ORDER_IDX_ID_DATE_U on ";
+ " ORDERS(Order_ID,Order_Date)"

IF Ret = 0
Ret = SQLEXEC(SQLIndex1) && create unique clustered Sybase index

ENDIF

SQLIndex2 = "create index ORDER_IDX_STATUS;
on ORDERS(Order_Status)

IF Ret = 0
Ret = SQLEXEC(SQLIndex2) && create Sybase index

ENDIF

 SET DATABASE TO && remove focus
 CLOSE DATABASE SYBASE && close Sybase alias

The following example shows table creation with SQLEXEC() and native ORACLE SQL data types.
 :ORACLE: is an Oracle alias in the IDAPI Configuration Utility.

OPEN DATABASE ORACLE && login to ORACLE
SET DATABASE TO ORACLE && focus on ORACLE alias

** Create CUSTOMER table on ORACLE

SQLString = "create table CUSTOMER (Client_ID NUMBER(15) not null, ";
+ "AcctNum VARCHAR2(8) not null,Client_Name VARCHAR2(20),Balance NUMBER(16,2)"

SQLIndex = "create unique index CLIENT_IDX_ID_NAME_U on ";
+ " CUSTOMER(CLIENT_ID,CLIENT_NAME)"

Ret = SQLEXEC(SQLString) && create the table from SQL statement
&& ORACLE will automatically commit the DDL

IF Ret = 0
Ret = SQLEXEC(SQLIndex) && create unique clustered ORACLE index

ENDIF

** Create ORDERS table on ORACLE

SQLString = "create table ORDERS(Order_ID NUMBER(15) not null, ";
+ "Order_Date DATE not null,Part_ID VARCHAR2(10),Order_Status VARCHAR2(1))"

Ret = SQLEXEC(SQLString) && create the table from SQL statement
&& ORACLE will automatically commit the DDL

SQLIndex1 = "create unique index ORDER_IDX_ID_DATE_U on ";
+ " ORDERS(Order_ID,Order_Date)"

IF Ret = 0
Ret = SQLEXEC(SQLIndex1) && create unique ORACLE index

ENDIF

SQLIndex2 = "create index ORDER_IDX_STATUS on ORDERS(Order_Status)

IF Ret = 0
Ret = SQLEXEC(SQLIndex2 && create ORACLE index

ENDIF

SET DATABASE TO && remove focus
CLOSE DATABASE ORACLE && close ORACLE alias

SQL Error-handling in dBASE
Example
dBASE for Windows dedicates two error codes to retrieving the number and text of SQL server
messages.
For a complete list of all dBASE for Windows error codes, see the dBASE for Windows Programmer's
Guide or online Help.

SQLERROR()
Returns the number of the last server error.

Syntax
SQLERROR()

SQLMESSAGE()
Returns the text of the last server error.

Syntax
SQLMESSAGE()

Other error codes that are especially useful for detecting and handling broken record and file locks are
DBERROR() - returns IDAPI error number
DBMESSAGE() - returns IDAPI error message
ERROR() - returns dBASE error number
MESSAGE() - returns dBASE error message

SQL Error-handling Example
The following example uses SQLERROR() and SQLMESSAGE() to return an SQL error number and
SQL error message to an ON ERROR routine that displays a MDI form with an error report:

ON ERROR DO ErrHndlr WITH ERROR(), MESSAGE(), ;
 SQLERROR(), SQLMESSAGE(), PROGRAM(), LINENO()
SET DBTYPE TO DBASE
OPEN DATABASE CAClients
errorCode = SQLEXEC("SELECT Company, City FROM ;
 Company WHERE State_Prov='CA'", "StateCA.DBF")
IF errorCode = 0
 SET DATABASE TO
 USE StateCa
 LIST
ENDIF
RETURN

PROCEDURE ErrHndlr
PARAMETERS nErrorNo, cErrMess, nSQLErrorNo, ;
 cSQLErrMess, cProgram, nLineNo
DEFINE FORM HeadsUp FROM 10,20 TO 20,55;
 PROPERTY Text "Heads Up"
DEFINE TEXT Line1 OF HeadsUp AT 2,10 ;
 PROPERTY Text "An Error has occurred",;
 Width 24, ColorNormal "R+/W"
DEFINE TEXT Line2 OF HeadsUp AT 4,2;
 PROPERTY Text ;
 IIF(ERROR()=240,cSqlErrMess,cErrMess),;
 Width 33
DEFINE TEXT Line3 OF HeadsUp AT 5,2;
 PROPERTY Text "Number: " + ;
 IIF(ERROR()=240,STR(nSQLErrorNo),STR(nErrorno)),;
 Width 24
DEFINE TEXT Line4 OF HeadsUp AT 6,2;
 PROPERTY Text "Program: "+ cProgram,;
 Width 22
DEFINE TEXT Line5 OF HeadsUp AT 7,2;
 PROPERTY Text "Line #: " + STR(nLineno),;
 Width 22
OPEN FORM HeadsUp

Composite Keys
This release of dBASE for Windows only allows expressions in index keys. Only single or composite
keys are allowed for other drivers, including the SQL drivers. The commands that support composite
keys are:

INDEX ON
SEEK
SET KEY TO
SET RELATION TO

Other dBASE Language Elements That Support SQL
All dBASE for Windows data access comands and functions support SQL data. Some of the most
useful are:
APPEND DELETE TAG
APPEND FROM DELETE TABLE
BOOKMARK() GO TO <bookmark>
BROWSE INDEX
CLOSE DATABASE REPLACE
COPY TABLE SEEK
COPY TO SET DATABASE TO
CREATE SET RELATION
DELETE
For further information on these commands, see the dBASE for Windows Programmer's Guide or
online Help.

Creating dBASE Applications for SQL Data
Collapse List
See Also

Topics
Moving a Local Application to an SQL Environment

Tips For Converting dBASE Applications
Things to Know About the Target Server
Multiuser Considerations
Blank and Duplicate Record Handling

Using Transactions in dBASE Applications

Creating dBASE Applications for SQL Data
Expand list
See Also

Topics
Moving a Local Application to an SQL Environment
Using Transactions in dBASE Applications

See Also
Working with SQL Link drivers
SQL-enabled dBASE

Moving a Local Application to the SQL Environment

Topics
Tips For Converting dBASE Applications
Things to Know About the Target Server
Multiuser Considerations
Blank and Duplicate Record Handling

Tips For Converting dBASE Applications

Use COPY TO to export existing tables.

Add OPEN DATABASE and SET DATABASE TO to the application program.

Add error handling for REPLACE errors (broken locks) with ON ERROR and/or DBERROR().

If desired, add BEGINTRANS(), COMMIT() and ROLLBACK() to each transaction sequence.

Replace any use of RecNo() with Bookmark().

Use SQLEXEC() to create any new tables with native SQL data types.
Note: New and existing dBASE for Windows applications that use the RLOCK function will need

additional error-checking when used with SQL databases.

Things to Know About the Target SQL Server
See Also

Item InterBase Oracle Sybase

SQL Link driver Dynamic Link
Library (DLL) name

SQLD_IB.DLL SQLD_ORA.DLL SQLD_SS.DL
L

Case-sensitive for data? Yes (including
pattern matching)

Yes As installed

Case-sensitive for objects such
as tables, columns, indexes?

No No As installed

Does the server require that you
explicitly start a transaction for
multistatement transaction
processing?

Yes Yes Yes

Does the server require that you
explicitly start a transaction for
multistatement transaction
processing in pass-through
SQL?

No No Yes

Implicit row IDs? No Yes No

BLOB handles? InterBase BLOBs
have handles.
However,
InterBase CHAR
and VARCHAR
columns that are
more than 255
characters long
are treated as non-
handle BLOBs.

No No

Maximum size of single BLOBs
read (if BLOB handles are not
supported)

32K 64K 32K

See Also
InterBase Data Type Translations
Oracle Data Type Translations
Sybase Data Type translations

InterBase Data Type Translations

FROM: InterBase TO: Paradox dBASE Oracle Sybase
Short Short Number{6.0} Number SmallInt

Long Number Number{11.0} Number Int

Float Number Float{20.4} Number Float

Double Number Float{20.4} Number Float

Char Alpha Character Character VarChar

Varying Alpha Character Character VarChar

Date DateTime Date Date DateTime

Blob Binary Memo LongRaw Image

Blob/1 Memo Memo Long Text

Oracle Data Type Translations

FROM: Oracle TO: Paradox dBASE Sybase InterBase
Character Alpha Character VarChar Varying

Raw Binary Memo VarBinary Varying

Date DateTime Date DateTime Date

Number Number Float{20.4} Float Double

Long Memo Memo Text Blob/1

LongRaw Binary Memo Image Blob

Sybase Data Type Translations

FROM: Sybase TO: Paradox dBASE Oracle InterBase
Character Alpha Character Character Varying

VarCharacter Alpha Character Character Varying

Int Number Number{11.0} Number Long

SmallInt Short Number{6.0} Number Short

TinyInt Short Number{6.0} Number Short

Float Number Float{20.4} Number Double

Money Money Float{20.4} Number Double

Text Memo Memo Long Blob/1

Binary Binary Memo Raw Varying

VarBinary Binary Memo Raw Varying

Image Binary Memo LongRaw Blob

Bit Alpha Bool Character Varying

DateTime DateTime Date Date Date

TimeStamp Binary Memo Raw Varying

Float4 Number Number Number Double

Money4 Money Float{20.4} Number Double

DateTime4 DateTime Date Date Date

Multiuser Considerations
dBASE uses record locking (RLOCK) to help ensure data integrity in a multiuser environment; Paradox
uses both record and file locking (FLOCK). As noted in SQL Link Locking and Transaction Support,
however, SQL does not implement locking. This means that every record update must be checked
with ON ERROR or DBERROR() to determine if a lock was broken prior to completion of the
transaction. If the user attempts an APPEND, BROWSE, or EDIT and the record lock breaks, dBASE
for Windows displays a dialog box warning the user of the problem. The user can then retry the
update.

Blank and Duplicate Record Handling
In general, SQL databases that use a primary or uniquely-keyed index do not allow blank and
duplicate records. If the user attempts to create such a record with APPEND, BROWSE or EDIT,
dBASE for Windows displays a dialog box warning the user of the problem. The user can then retry the
update. If the user attempts to create a blank or duplicate record outside APPEND, BROWSE or EDIT,
dBASE for Windows issues an error.

Using Transactions
See Also
dBASE for Windows' file-based method of database management differs significantly from SQLs
transaction-oriented method.
In dBASE changes, additions, and deletions of records are made to the actual tables in which the data
are stored. Record and table (file) locks are applied to insure data integrity by keeping more than one
user from modifying the same record at the same time.
In SQL, the user requests a record or set of records, which are then transparently copied and made
available to the user. Changes, additions, and deletions are made to the copy of the data, and only
made permanent (committed) when the transaction is complete. The transaction model includes the
ability to apply record and table locks, depending on what the SQL server will support; however, it is
the isolation of the transaction itself that ensures data integrity.
dBASE for Windows implements the dBASE model of direct data manipulation for local data, but also
provides functions that can work in the transaction-oriented format required by SQL when a supported
Borland SQL Link driver is installed. dBASE for Windows supports transactions against both local
(dBASE, Paradox) and SQL server data. It processes local transaction operations itself and passes
server transactions to the SQL server to be processed there.
dBASE for Windows replaces the traditional dBASE transaction model with new event-oriented
transaction functions. The new transaction model supports SQL transactions by:

Adding new language elements and transaction functions such as BEGINTRANS(), COMMIT(),
and ROLLBACK()

Using a ROLLBACK() that does not change program flow

Not supporting the USE NOSAVE option

Modifying CANCEL so that it does not rollback transactions

Not tracking APPEND FROM
Note: You cannot mix local transactions and SQL server transactions. Once you start a local

transaction with BEGINTRANS() you cannot start an SQL server transaction until you either
COMMIT() or ROLLBACK(). Any such attempt will display an error message.

To create forms that use transactions

Include BEGIN TRANS() in the startup code for a form or as pushbutton for "Starting Changes".

Include COMMIT() in the OnClick event handler for "Finished Changes".

Attach ROLLBACK() to a pushbutton for "Cancel Changes".

Use COMMIT() or ROLLBACK() in the ON CLOSE() event handler to clean up when the form is
closed. If a transaction is not ended properly (by either a COMMIT() or a ROLLBACK()), dBASE displays
the Transaction Active dialog

Note: The dBASE IV BEGIN TRANSACTION, END TRANSACTION, and ROLLBACK commands are
non-operational and return a warning.

See Also
Table-locking
Record-locking
Client-controlled transaction behavior

Pass-through SQL
The pass-through SQL feature enables users to "pass" SQL statements directly to the SQL server
using the dBASE SQLEXEC() function. Unlike queries made through your dBASE for Windows
desktop, pass-through SQL queries are not filtered through the IDAPI database engine and translated
into the appropriate SQL dialect. Pass-through statements must use the same semantics as
statements entered directly as the SQL server.
Pass-through SQL is considered to be a separate kind of connection from the conventional desktop
application connection. However, your alias SQLPASSTHRU MODE can be set to allow desktop
commands and pass-through SQL statements in the same alias connection. For further information,
see the IDAPI Configuration Utility online Help or your SQL Links Getting Started manual.

Transaction
A group of related operations that must all be performed successfully before the RDBMS will finalize
any changes to the database.
In SQL, all transactions can be explicitly ended with a command to either accept or discard the
changes. Once you are satisfied that no errors occurred during the transaction, you can end that
transaction with a COMMIT command. The database then changes to reflect the operations you have
just performed. If an error occurs, you can abandon the changes with the ROLLBACK command.

Atomicity
Atomicity is the "all-or-nothing" characteristic of transactions.
All operations contained in a transaction are said to occur within the context of that transaction. The
transaction succeeds only if every operation, no matter how insignificant it may seem, succeeds. If
any operation within the context of a transaction fails, the entire transaction fails.

Supported Borland applications
Borland SQL Links works with any application that supports IDAPI, the Borland Integrated Database
Application Programming Interface). This includes Paradox for Windows, dBASE for Windows, and
custom IDAPI applications.

Supported databases
Drivers in the SQL Links product package support InterBase, Informix, ORACLE, and SYBASE and
Microsoft SQL Server databases. dBASE for Windows works with the SQL Link InterBase, ORACLE,
and SYBASE drivers.

Heterogeneous queries
Queries that involve more than one table type; for example, a Paradox table, a dBASE table, and an
InterBase table.

