
Interrupt Process command: A TNVTPlus 
command that terminates a running program on 
the network host.



break command: A Telnet command that 
emulates a break key or attention signal on the 
network host. Not all servers support this feature.



lock state: A setting that specifies which, if any, lock key will
affect the key's modified shift state.

Valid lock states are Caps Lock, Num Lock, and None.



shift state: A setting that specifies a key's modified behavior
when Caps Lock or Num Lock is on. Valid shift states are
· VT52
· Shift
· Ctrl
· Ctrl+Shift
· Alt
· Alt+Shift
· Alt+Ctrl
· Alt+Ctrl+Shift



dead key: A key that, when pressed, does not display a 
character, but is combined with the keystroke that follows it to
create a composite character. Dead keys are usually used to 
create letters with accent marks. Sometimes also called non-
escaping key.



compose key: The key on the PC keyboard that is mapped 
to the VT compose key function. On a VT terminal, a 
compose key lets you combine two or three keystrokes to 
create a character that is not available on the keyboard. For 
example, use the compose key to create a letter with an 
accent mark or a symbol (such as a currency sign), or a 
ligature. The default compose key for TNVTPlus is Alt+F7.



auto print: A VT220/VT320/VT420 feature that takes the 
output from a program on the host, displays it to the screen, 
and stores it in a spool file. With auto print on, everything 
displayed on the screen is captured in a spool file. Then, 
when turn auto print is turned off, the data in the spool file is 
sent to your printer.



spool file: A temporary file used to store the output of an 
auto print or print controller escape sequence until the output 
is sent to the printer.





connection: The path between two hosts on the network. 
When two network hosts are connected, they can exchange 
information. Compare with session.



session: All the interactions between your PC and a host 
beginning with the initial connection and ending when you or 
the host explicitly disconnect. The program configuration 
settings for that host connection are a part of the session.



session definition: The configuration settings for a particular
session or host connection. A session definition might include
such settings as the hostname of a computer on the network 
and your login name for that computer, as well as other 
values that you specify. The set of session parameters you 
can specify differs with each program.



hostname: The name of a host. The hostname is one form of
the computer's TCP/IP network address; the other is its 
complete numeric network address (IP address). You can 
access a host by its hostname or its numeric network 
address.



IP address: A number that uniquely identifies a host that 
uses the TCP/IP communication protocol. The form of an IP 
address is four groups of numbers separated by periods, for 
example, 128.127.55.55. The Internet Protocol is defined in 
RFC 791.



Telnet: The standard TCP/IP remote login protocol. With 
Telnet, you can work from your PC as if it were a terminal 
physically attached to another machine. Some programs that 
provide Telnet services are TNVTPlus and TN3270/TN5250. 



server: A host that makes a service available to other 
computers on a network (its clients). Typical services include 
transferring files, printing files, and managing logins from 
network users.



username: The name, assigned by a network system 
administrator or an Internet service provider, that you use to 
log in to a computer on a network. 



password: A word or string of characters that you supply to 
log in to another system, workgroup, or domain on a network.
Systems that accept the username anonymous often require
you to provide either your e-mail address or guest as the 
password.



filename conventions: The rules that users of an operating 
system must follow to name files. A TCP/IP network usually 
contains computers that run different operating systems. 
Each operating system has different conventions for naming 
files. For example, both the number and kinds of characters 
that can be used in a name are often subject to limits. When 
you use some TCP/IP supported services such as Telnet and 
FTP, use the filenaming conventions of the host system to 
work with files that are on the host.



case sensitivity: The ability of a program to evaluate the 
difference between the capitalized and non-capitalized 
versions of a character. Case-sensitive programs treat cat, 
CAT, and Cat, for example, as distinct items. On a case-
sensitive operating system, such as the UNIX system, you 
must spell commands and filenames with the appropriate 
capitalization. Case sensitivity also affects the way that files 
are listed when sorted in alphabetical order.



wildcard: A character such as * or ? that represents one or 
more characters in a filename. Each operating system 
supports its own wildcard characters and syntax.



port: A connecting point to a service offered by a host. There 
are some default ports. For example, hosts that offer FTP 
services use port 21; hosts that offer Telnet services use port 
23; SMTP uses port 25; and Web servers use port 80. 



ASCII: An acronym for American Standard Code for 
Information Interchange. A standard computer character set 
used in text files. ASCII files do not contain program or 
formatting instructions.



OLE (Object Linking and Embedding) Automation: A 
standard interface through which programs make their 
features available to scripting tools and other programs. You 
can automate repetitive tasks by writing scripts that use OLE 
Automation objects.



OLE Automation object: A combination of information and 
ways of processing that information in OLE Automation. An 
OLE Automation object has functions that make some of its 
information and processes available to other programs. 
These functions are the objects properties and methods.



OLE method: An OLE Automation object function that 
specifies an action the object can perform.



OLE property: An OLE Automation object function that gets 
or sets information about the state of the object. For example,
the Visible property determines whether the object is visible 
on the computer screen.



system administrator (or network administrator): The 
person at your workplace who is responsible for configuring 
and maintaining your network. 



' Abs Function Example
'This example finds the difference between two variables, oldacct and newacct.

Sub main
Dim oldacct, newacct, count
      oldacct=InputBox("Enter the oldacct number")
      newacct=InputBox("Enter the newacct number")
      count=Abs(oldacct-newacct)
      MsgBox "The absolute value is: " &count
End Sub



See Also
Exp
Fix
Int
Log
Rnd
Sgn
Sqr



' AppActivate Statement Example
'This example opens the Windows bitmap file ARCADE.BMP in Paintbrush. (Paintbrush must 
already be open before running this example. It must also not be minimized.)

Sub main
      MsgBox "Opening C:\WINDOWS\ARCADE.BMP in Paintbrush."
      AppActivate "Paintbrush - (Untitled)"
      SendKeys "%FOC:\WINDOWS\ARCADE.BMP{Enter}",1
      MsgBox "File opened."
End Sub



See Also
SendKeys
Shell



' Asc Function Example
'This example asks the user for a letter and returns its ASCII value.

Sub main
      Dim userchar
      userchar=InputBox("Type a letter:")
      MsgBox "The ASC value for " & userchar & " is: " & Asc(userchar)
End Sub



See Also
Chr



' Assert Function Example
 (None)



See Also
(None)



' Atn Function Example
'This example finds the roof angle necessary for a house with an attic ceiling of 8 feet (at the roof 
peak) and a 16 foot span from the outside wall to the center of the house. The Atn function 
returns the angle in radians; it is multiplied by 180/PI to convert it to degrees.

Sub main
      Dim height, span, angle, PI
      PI=3.14159
      height=8
      span=16
      angle=Atn(height/span)*(180/PI)
      MsgBox "The angle is " & Format(angle, "##.##") & " degrees"
End Sub



See Also
Cos
Sin
Tan
Derived Trigonometric Functions



' Beep Statement Example
'This example beeps and displays a message in a box if the variable balance is less than 0. (If you 
have a set of speakers hooked up to your computer, you might need to turn them on to hear the 
beep.)

Sub main
      Dim expenses, balance, msgtext
      balance=InputBox("Enter your account balance")
      expenses=1000
      balance=balance-expenses
      If balance<0 then
            Beep
            Msgbox "I'm sorry, your account is overdrawn."
      Else
            Msgbox "Your balance minus expenses is: " &balance
      End If
End Sub



See Also
InputBox
MsgBox Statement
Print



' Begin Dialog... End Dialog Statement Example

'This example defines and displays a dialog box with each type of item in it: list box, combo box, 
buttons, etc.

Sub main
      Dim ComboBox1() as String
      Dim ListBox1() as String
      Dim DropListBox1() as String
      ReDim ListBox1(0)
      ReDim ComboBox1(0)
      ReDim DropListBox1(3)
      ListBox1(0)="C:\"
      ComboBox1(0)=Dir("C:\*.*")
      For x=0 to 2
        DropListBox1(x)=Chr(65+x) & ":"
      Next x
      Begin Dialog UserDialog 274, 171, "OPEN Script Dialog Box"
            ButtonGroup .ButtonGroup1
            Text    9, 3, 69, 13, "Filename:", .Text1
            DropComboBox    9, 14, 81, 119, ComboBox1(), .ComboBox1
            Text    106, 2, 34, 9, "Directory:", .Text2
            ListBox    106, 12, 83, 39, ListBox1(), .ListBox2
            Text    106, 52, 42, 8, "Drive:", .Text3
            DropListBox    106, 64, 95, 44, DropListBox1(), .DropListBox1
            CheckBox    9, 142, 62, 14, "List .TXT files", .CheckBox1
            GroupBox    106, 111, 97, 57, "File Range"
            OptionGroup .OptionGroup2
                  OptionButton    117, 119, 46, 12, "All pages", .OptionButton3
                  OptionButton    117, 135, 67, 8, "Range of pages", .OptionButton4
            Text    123, 146, 20, 10, "From:", .Text6
            Text    161, 146, 14, 9, "To:", .Text7
            TextBox    177, 146, 13, 12, .TextBox4
            TextBox    145, 146, 12, 11, .TextBox5
            OKButton    213, 6, 54, 14
            CancelButton    214, 26, 54, 14
            PushButton 213, 52, 54, 14, "Help", .Push1
      End Dialog 
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Button Statement Example
'This example defines a dialog box with a combination list box and three buttons.

Sub main
      Dim fchoices as String
      fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
      Begin Dialog UserDialog 185, 94, "OPEN Script Dialog Box"
            Text    9, 5, 69, 10, "Filename:", .Text1
            DropComboBox    9, 17, 88, 71, fchoices, .ComboBox1
            ButtonGroup .ButtonGroup1
            OKButton    113, 14, 54, 13
            CancelButton    113, 33, 54, 13
            Button 113, 57, 54, 13, "Help", .Push1
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog Statement
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
DropComboBox
DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' ButtonGroup Statement Example
'This example defines a dialog box with a group of three buttons.

Sub main
      Begin Dialog UserDialog 34,0,231,140, "OPEN Script Dialog Box"
            ButtonGroup .bg
            PushButton 71,17,88,17, "&Button 0"
            PushButton 71,50,88,17, "&Button 1"
            PushButton 71,83,88,17, "&Button 2"
      End Dialog
      Dim mydialog as UserDialog
      Dialog mydialog
      Msgbox "Button " & mydialog.bg & " was pressed."
End Sub



See Also
Begin Dialog...End Dialog Statement
Button
CancelButton
Caption
CheckBox
ComboBox
DropComboBox
DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Call Statement Example
'This example calls a subprogram named CREATEFILE to open a file, write the numbers 1 to 10 in 
it and leave it open. The calling procedure then checks the file's mode. If the mode is 1 (open for 
Input) or 2 (open for Output), the procedure closes the file.

Declare Sub createfile()
Sub main
      Dim filemode as Integer
      Dim attrib as Integer
      Call createfile
      attrib=1
      filemode=FileAttr(1,attrib)
      If filemode=1 or 2 then
            MsgBox "File was left open. Closing now."
            Close #1
      End If
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 1-10 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, x
      Next x
End Sub



See Also
Declare



' CancelButton Statement Example
'This example defines a dialog box with a combination list box and three buttons.

Sub main
      Dim fchoices as String
      fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
      Begin Dialog UserDialog 185, 94, "OPEN Script Dialog Box"
            Text    9, 5, 69, 10, "Filename:", .Text1
            DropComboBox    9, 17, 88, 71, fchoices, .ComboBox1
            ButtonGroup .ButtonGroup1
            OKButton    113, 14, 54, 13
            CancelButton    113, 33, 54, 13
            PushButton 113, 57, 54, 13, "Help", .Push1
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog Statement
Button
ButtonGroup
Caption
CheckBox
ComboBox
DropComboBox
DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Caption Statement Example
'This example defines a dialog box with a combination list box and three buttons. The Caption 
statement changes the dialog box title to "Example -Caption Statement".

Sub main
      Dim fchoices as String
      fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
      Begin Dialog UserDialog 185, 94
            Caption "Example-Caption Statement"
            Text    9, 5, 69, 10, "Filename:", .Text1
            DropComboBox    9, 17, 88, 71, fchoices, .ComboBox1
            ButtonGroup .ButtonGroup1
            OKButton    113, 14, 54, 13
            CancelButton    113, 33, 54, 13
            PushButton 113, 57, 54, 13, "Help", .Push1
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog Statement
Button
CancelButton
ButtonGroup
CheckBox
ComboBox
DropComboBox
DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' CCur Function Example
'This example converts a yearly payment on a loan to a currency value with four decimal places. A
subsequent Format statement formats the value to two decimal places before displaying it in a 
message box.

Sub main
Dim aprate, totalpay,loanpv
      Dim loanfv, due, monthlypay
      Dim yearlypay, msgtext
      loanpv=InputBox("Enter the loan amount: ")
      aprate=InputBox("Enter the annual percentage rate: ")
      If aprate >1 then
            aprate=aprate/100
      End If
      aprate=aprate/12
      totalpay=InputBox("Enter the total number of pay periods: ")
      loanfv=0
Rem Assume payments are made at end of month
      due=0
      monthlypay=Pmt(aprate,totalpay,-loanpv,loanfv,due)
      yearlypay=CCur(monthlypay*12)
      msgtext= "The yearly payment is: " & Format(yearlypay, "Currency")
      MsgBox msgtext
End Sub



See Also
CDbl
CInt
CLng
CSng
CStr
CVar
CVDate



' CDbl Function Example
'This example calculates the square root of 2 as a double-precision floating point value and 
displays it in scientific notation.

Sub main
Dim value
      Dim msgtext
      value=CDbl(Sqr(2))
      msgtext= "The square root of 2 is: " & Value
      MsgBox msgtext
End Sub



See Also
CCur
CInt
CLng
CSng
CStr
CVar
CVDate



' ChDir Statement Example
'This example changes the current directory to C:\WINDOWS, if it is not already the default.

Sub main
      Dim newdir as String
      newdir="c:\windows"
      If CurDir <> newdir then
            ChDir newdir
      End If
      MsgBox "The default directory is now: " & newdir
End Sub



See Also
ChDrive
CurDir
Dir
MkDir
RmDir



' ChDrive Statement Example
'This example changes the default drive to A:.

Sub main
      Dim newdrive as String
      newdrive="A:"
      If Left(CurDir,2) <> newdrive then
            ChDrive newdrive
      End If
      MsgBox "The default drive is now " & newdrive
End Sub



See Also
ChDir
CurDir
Dir
MkDir
RmDir



' CheckBox Statement Example
'This example defines a dialog box with a combination list box, a check box, and three buttons.

Sub main
      Dim ComboBox1() as String
      ReDim ComboBox1(0)
      ComboBox1(0)=Dir("C:\*.*")
      Begin Dialog UserDialog 166, 76, "OPEN Script Dialog Box"
            Text    9, 3, 69, 13, "Filename:", .Text1
            DropComboBox    9, 14, 81, 119, ComboBox1(), .ComboBox1
            CheckBox    10, 39, 62, 14, "List .TXT files", .CheckBox1
            OKButton    101, 6, 54, 14
            CancelButton    101, 26, 54, 14
            PushButton 101, 52, 54, 14, "Help", .Push1
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog Statement
Button
ButtonGroup
CancelButton
Caption
ComboBox
DropComboBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Chr Function Example
'This example displays the character equivalent for an ASCII code between 65 and 122 typed by 
the user.

Sub main
      Dim numb as Integer
      Dim msgtext
      Dim out
      out=0
      Do Until out
            numb=InputBox("Type a number between 65 and 122:")
            If Chr$(numb)>="A" AND Chr$(numb)<="Z" OR Chr$(numb)>="a" AND _
                  Chr$(numb)<="z" then
                  msgtext="The letter for the number " & numb    &" is: " & Chr$(numb)
                  out=1
            ElseIf numb=0 then
                  Exit Sub        
            Else
                  Beep
                  msgtext="Does not convert to a character; try again."
            End If
            MsgBox msgtext
      Loop
End Sub



See Also
Asc
CCur
CDbl
CInt
CLng
CSng
CStr
CVar
CVDate
Format
Val



' CInt Function Example
'This example calculates the average of ten golf scores.

Sub main
      Dim score As Integer
      Dim x, sum
      Dim msgtext
      Let sum=0
      For x=1 to 10
            score=InputBox("Enter golf score #"&x &":")
            sum=sum+score
      Next x
      msgtext="Your average is: " & Format(CInt(sum/(x-1)),"General Number")
      MsgBox msgtext
End Sub



See Also
CCur
CDbl
CLng
CSng
CStr
CVar
CVDate



' Clipboard Example
'This example places the text string "Hello, world." on the Clipboard.

Sub main
      Dim mytext as String
      mytext="Hello, world."
      Clipboard.Settext mytext
      MsgBox "The text: '" & mytext & "' added to the Clipboard."
End Sub



See Also
(None)



' CLng Function Example
'This example divides the US national debt by the number of people in the country to find the 
amount of money each person would have to pay to wipe it out. This figure is converted to a Long 
integer and formatted as Currency.

Sub main
      Dim debt As Single
      Dim msgtext
      Const Populace = 250000000
      debt=InputBox("Enter the current US national debt:")
      msgtext="The $/citizen is: " & Format(CLng(Debt/Populace), "Currency")
      MsgBox msgtext
End Sub



See Also
CCur
CDbl
CInt
CSng
CStr
CVar
CVDate



' Close Statement Example
'This example opens a file for Random access, gets the contents of one variable, and closes the 
file again. The subprogram, CREATEFILE, creates the file C:\TEMP001 used by the main 
subprogram.

Declare Sub createfile()
Sub main
      Dim acctno as String*3
      Dim recno as Long
      Dim msgtext as String
      Call createfile
      recno=1
      newline=Chr(10)
      Open "C:\TEMP001" For Random As #1 Len=3
      msgtext="The account numbers are:" & newline & newline
      Do Until recno=11
                  Get #1,recno,acctno
                  msgtext=msgtext & acctno
                  recno=recno+1
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 1-10 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, x
      Next x
      Close #1
End Sub



See Also
Open
Reset
Stop



' ComboBox Statement Example
'This example defines a dialog box with a combination list and text box and three buttons.

Sub main
      Dim ComboBox1() as String
      ReDim ComboBox1(0)
      ComboBox1(0)=Dir("C:\*.*")
      Begin Dialog UserDialog 166, 142, "OPEN Script Dialog Box"
            Text    9, 3, 69, 13, "Filename:", .Text1
            ComboBox    9, 14, 81, 119, ComboBox1(), .ComboBox1
            OKButton    101, 6, 54, 14
            CancelButton    101, 26, 54, 14
            PushButton 101, 52, 54, 14, "Help", .Push1
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog Statement
Button
ButtonGroup
CancelButton
Caption
CheckBox
DropComboBox
DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Command Function Example
'This example opens the file entered by the user on the command line.

Sub main
      Dim filename as String
      Dim cmdline as String
      Dim cmdlength as Integer
      Dim position as Integer
      cmdline=Command
      If cmdline="" then
            MsgBox "No command line information."
            Exit Sub
      End If      
      cmdlength=Len(cmdline)
      position=InStr(cmdline,Chr(32))
      filename=Mid(cmdline,position+1,cmdlength-position)
      On Error Resume Next
      Open filename for Input as #1
      If Err<>0 then
            MsgBox "Error loading file."
            Exit Sub
      End If
      MsgBox "File " & filename & " opened."
      Close #1
      MsgBox "File " & filename & " closed."
End Sub



See Also
AppActivate
DoEvents
Environ
SendKeys
Shell



' Const Statement Example
'This example divides the US national debt by the number of people in the country to find the 
amount of money each person would have to pay to wipe it out. This figure is converted to a Long 
integer and formatted as Currency.

Sub main
Dim debt As Single
Dim msgtext
Const Populace=250000000
debt=InputBox("Enter the current US national debt:")
msgtext="The $/citizen is: " & Format(CLng(Debt/Populace), "Currency")
MsgBox msgtext

End Sub



See Also
Declare
Def  type  
Dim
Let
Type



' Cos Function Example
'This example finds the length of a roof, given its pitch and the distance of the house from its 
center to the outside wall.

Sub main
      Dim bwidth, roof,pitch
      Dim msgtext
      Const PI=3.14159
      Const conversion=PI/180
      pitch=InputBox("Enter roof pitch in degrees")
      pitch=Cos(pitch*conversion)
      bwidth=InputBox("Enter 1/2 of house width in feet")
      roof=bwidth/pitch
      msgtext="The length of the roof is " & Format(roof, "##.##") & " feet."
      MsgBox msgtext
End Sub



See Also
Atn
Sin
Tan
Derived Trigonometric Functions



' CreateObject Function Example
'This example uses the CreateObject function to open the software product VISIO (if it is not 
already open).

Sub main
      Dim visio as Object
      Dim doc as Object
      Dim i as Integer, doccount as Integer

'Initialize Visio
      on error resume next
      Set visio = GetObject(,"visio.application") ' find Visio
      If (visio Is Nothing) then
            Set visio = CreateObject("visio.application") ' find Visio
            If (visio Is Nothing) then
                  Msgbox "Couldn't find Visio!"
                  Exit Sub
            End If
      End If
      MsgBox "Visio is open."
End Sub



See Also
GetObject
Is
Me
New
Nothing
Object Class
Typeof



' CSng Function Example
'This example calculates the factorial of a number. A factorial (notated with an exclamation 
mark, !) is the product of a number and each integer between it and the number 1. For example, 5
factorial, or 5!, is the product of 5*4*3*2*1, or the value 120.

Sub main
      Dim number as Integer
      Dim factorial as Double
      Dim msgtext
      number=InputBox("Enter an integer between 1 and 170:")
      If number<=0 then
            Exit Sub
      End If
      factorial=1
      For x=number to 2 step -1
            factorial=factorial*x
      Next x
Rem If number =<35, then its factorial is small enough to be stored
Rem as a single-precision number
      If number<35 then
            factorial=CSng(factorial)
      End If
      msgtext="The factorial of " & number & " is: " & factorial
      MsgBox msgtext
End Sub



See Also
CCur
CDbl
CInt
CLng
CStr
CVar
CVDate



' CStr Function Example
'This example converts a variable from a value to a string and displays the result. Variant type 5 is
Double and type 8 is String.

Sub main
      Dim var1
      Dim msgtext as String
      var1=InputBox("Enter a number:")
      var1=var1+10
      msgtext="Your number + 10 is: " & var1 & Chr(10)
      msgtext=msgtext & "which makes its Variant type: " & Vartype(var1)
      MsgBox    msgtext
      var1=CStr(var1)
      msgtext="After conversion to a string," & Chr(10)
      msgtext=msgtext & "the Variant type is: " & Vartype(var1)
      MsgBox msgtext
End Sub



See Also
Asc
CCur
CDbl
Chr
CInt
CLng
CSng
CVar
CVDate
Format



' $CStrings Metacommand Example
'This example displays two lines, the first time using the C-language characters "\n" for a carriage 
return and line feed.

Sub main
      '$CStrings
      MsgBox "This is line 1\n This is line 2 (using C Strings)"
      '$NoCStrings
      MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is line 2 (using Chr)"
End Sub



See Also
$Include
$NoCStrings
Rem



' CurDir Statement Example
'This example changes the current directory to C:\WINDOWS, if it is not already the default.

Sub main
      Dim newdir as String
      newdir="c:\windows"
      If CurDir <> newdir then
            ChDir newdir
      End If
      MsgBox "The default directory is now: " & newdir
End Sub



See Also
ChDir
ChDrive
Dir
MkDir
RmDir



' CVar Function Example
'This example converts a string variable to a variant variable.

Sub main
Dim answer as Single
answer=100.5
MsgBox "'Answer' is DIM'ed as Single with the value: " & answer
answer=CVar(answer)
answer=Fix(answer)
MsgBox "'Answer' is now a variant with a type of: " & VarType(answer)

End Sub



See Also
CCur
CDbl
CInt
CLng
CSng
CStr
CVDate



' CVDate Function Example
'This example displays the date for one week from the date entered by the user.

Sub main
Dim str1 as String
      Dim nextweek
      Dim msgtext
i: str1=InputBox$("Enter a date:")
      answer=IsDate(str1)
      If answer=-1 then
            str1=CVDate(str1)
            nextweek=DateValue(str1)+7
            msgtext="One week from the date entered is:
            msgtext=msgtext & "Format(nextweek,"dddddd")
            MsgBox msgtext
      Else
            MsgBox "Invalid date or format. Try again."
            Goto i
      End If
End Sub



See Also
Asc
CCur
CDbl
Chr
CInt
CLng
CSng
CStr
CVar
Format
Val



' Date Function Example
'This example displays the date for one week from the today's date (the current date on the 
computer).

Sub main
Dim nextweek
nextweek=CVar(Date)+7
MsgBox "One week from today is: " & Format(nextweek,"ddddd")

End Sub



See Also
CVDate
Date Statement
Format
Now
Time Function
Time Statement
Timer
TimeSerial



' Date Statement Example
'This example changes the system date to a date entered by the user.

Sub main
      Dim userdate
      Dim answer
i: userdate=InputBox("Enter a date for the system clock:")
      If userdate="" then
            Exit Sub
      End If
      answer=IsDate(userdate)
      If answer=-1 then
            Date=userdate
      Else
            MsgBox "Invalid date or format. Try again."
            Goto i
      End If
End Sub



See Also
Date Function
Time Function
Time Statement



' DateSerial Function Example
'This example finds the day of the week New Year's day will be for the year 2000.

Sub main
      Dim newyearsday
      Dim daynumber
      Dim msgtext
      Dim newday as Variant
      Const newyear=2000
      Const newmonth=1
      Let newday=1
      newyearsday=DateSerial(newyear,newmonth,newday)
      daynumber=Weekday(newyearsday)
      msgtext="New Year's day 2000 falls on a " & Format(daynumber, "dddd")
      MsgBox msgtext
End Sub



See Also
DateValue
Day
Month
Now
TimeSerial
TimeValue
Weekday
Year



' DateValue Function Example
'This example displays the date for one week from the date entered by the user
      
Sub main
      Dim str1 as String
      Dim nextweek
      Dim msgtext
i: str1=InputBox$("Enter a date:")
      answer=IsDate(str1)
      If answer=-1 then
            str1=CVDate(str1)
            nextweek=DateValue(str1)+7
            msgtext="One week from your date is: " & Format(nextweek,"dddddd")
            MsgBox msgtext
      Else
            MsgBox "Invalid date or format. Try again."
            Goto i
      End If
End Sub



See Also
DateSerial
Day
Month
Now
TimeSerial
TimeValue
Weekday
Year



' Day Function Example
'This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today, msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5

x=x+1
Loop
msgtext="This Thursday is: " & Month(Today+x) & "/" & Day(Today+x)
MsgBox msgtext

End Sub



See Also
Date Function
Date Statement
Hour
Minute
Month
Now
Second
Weekday
Year



' DDEAppReturnCode Function Example
 (None)



See Also
DDEExecute
DDEInitiate
DDEPoke
DDERequest()
DDETerminate



' DDEExecute Statement Example
'This example opens Microsoft Write, uses DDEPoke to write the text "Hello, world" to the open 
document (Untitled) and uses DDEExecute to save the text to the file TEMP001.

Sub main
      Dim channel as Integer
      Dim appname as String
      Dim topic as String
      Dim testtext as String
      Dim item as String
      Dim pcommand as String
      Dim msgtext as String
      Dim x as Integer
      appname="Write"
      topic="Untitled"
      item="Page1"
      testtext="Hello, world."
      On Error Goto Errhandler
      x=Shell(appname & ".EXE")
      channel = DDEInitiate(appname, topic)
      If channel=0 then
            MsgBox "Unable to open Write."
            Exit Sub
      End If
      DDEPoke channel, item, testtext
      pcommand="[%FS(" + Chr$(34) + "C:\TEMP001" + Chr$(34) + ")]"
      DDEExecute channel, pcommand
      msgtext="The text: " & testtext & " saved to C:\TEMP001." & Chr$(13)
      msgtext=msgtext & Chr$(13) & "Delete? (Y/N)"
      answer=InputBox(msgtext)
      If answer="Y" or answer="y" then
            Kill "C:\TEMP001"
      End If
      DDETerminate channel
      Exit Sub      
Errhandler:
      If Err<>0 then
          MsgBox "DDE Access failed."
      End If
End Sub



See Also
DDEAppReturnCode()
DDEInitiate()
DDEPoke
DDERequest()
DDETerminate



' DDEInitiate Function Example
'This example uses DDEInitiate to open a channel to the Paintbrush application. It uses 
DDERequest to obtain the list of available topics (using the System topic).

Sub main
      Dim channel as Integer
      Dim appname as String
      Dim topic as String
      Dim item as String
      Dim pcommand as String
      Dim msgtext as String
      appname="Pbrush"
      topic="System"
      item="Topics"
      x=Shell(appname & ".EXE")
      channel = DDEInitiate(appname, topic)
      If channel=0 then
            msgtext="Unable to open Paintbrush."
      Else
            On Error Resume Next
            msgtext="The Paintbrush topics available are:" & Chr$(13)
            msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
            DDETerminate channel
            If Err<>0 then
                  msgtext="DDE Access failed."
            End If
      End If
      MsgBox msgtext
End Sub



See Also
DDEAppReturnCode()
DDEExecute
DDEPoke
DDERequest()
DDETerminate



' DDEPoke Statement Example
'This example opens Microsoft Write, uses DDEPoke to write the text "Hello, world" to the open 
document (Untitled) and uses DDEExecute to save the text to the file TEMP001.

Sub main
      Dim channel as Integer
      Dim appname as String
      Dim topic as String
      Dim testtext as String
      Dim item as String
      Dim pcommand as String
      Dim msgtext as String
      Dim x as Integer
      appname="Write"
      topic="Untitled"
      item="Page1"
      testtext="Hello, world."
      On Error Goto Errhandler
      x=Shell(appname & ".EXE")
      channel = DDEInitiate(appname, topic)
      If channel=0 then
            MsgBox "Unable to open Write."
            Exit Sub
      End If
      DDEPoke channel, item, testtext
      pcommand="[%FS(" + Chr$(34) + "C:\TEMP001" + Chr$(34) + ")]"
      DDEExecute channel, pcommand
      msgtext="The text: " & testtext & " saved to C:\TEMP001." & Chr$(13)
      msgtext=msgtext & Chr$(13) & "Delete? (Y/N)"
      answer=InputBox(msgtext)
      If answer="Y" or answer="y" then
            Kill "C:\TEMP001"
      End If
      DDETerminate channel
      Exit Sub      
Errhandler:
      If Err<>0 then
          MsgBox "DDE Access failed."
      End If
End Sub



See Also
DDEAppReturnCode()
DDEExecute
DDEInitiate()
DDERequest()
DDETerminate



' DDERequest Function Example
'This example opens a channel to the Paintbrush application and uses DDERequest to display the 
list of topics available (using the System topic).

Sub main
      Dim channel as Integer
      Dim appname as String
      Dim topic as String
      Dim item as String
      Dim pcommand as String
      Dim msgtext as String
      appname="Pbrush"
      topic="System"
      item="Topics"
      x=Shell(appname & ".EXE")
      channel = DDEInitiate(appname, topic)
      If channel=0 then
            msgtext="Unable to open Paintbrush."
      Else
            On Error Resume Next
            msgtext="The Paintbrush topics available are:" & Chr$(13)
            msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
            DDETerminate channel
            If Err<>0 then
                  msgtext="DDE Access failed."
            End If
      End If
      MsgBox msgtext
End Sub



See Also
DDEAppReturnCode()
DDEExecute
DDEInitiate()
DDEPoke
DDETerminate



' DDETerminate Statement Example
'This example opens a channel to the Paintbrush application, displays the list of topics available 
(using the System topic) and then terminates the channel using DDETerminate.

Sub main
      Dim channel as Integer
      Dim appname as String
      Dim topic as String
      Dim item as String
      Dim pcommand as String
      Dim msgtext as String
      appname="Pbrush"
      topic="System"
      item="Topics"
      x=Shell(appname & ".EXE")
      channel = DDEInitiate(appname, topic)
      If channel=0 then
            msgtext="Unable to open Paintbrush."
      Else
            On Error Resume Next
            msgtext="The Paintbrush topics available are:" & Chr$(13)
            msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
            DDETerminate channel
            If Err<>0 then
                  msgtext="DDE Access failed."
            End If
      End If
      MsgBox msgtext
End Sub



See Also
DDEAppReturnCode()
DDEExecute
DDEInitiate()
DDEPoke
DDERequest()



' Declare Statement Example
'This example returns the square of a number.

Declare Sub MessageBoxA Lib "user32.dll" _
                          (ByVal h%, ByVal t$, ByVal c$, ByVal u%)

Declare Function ForwardRefFunc(y%)

Sub main
      Dim x As Integer, z As Integer

      z = InputBox("Type a number to be squared.")

      x = ForwardRefFunc(z)
      MessageBoxA 0, "The answer is: " & x, "Square", 64
End Sub

Function ForwardRefFunc(y As Integer)
      ForwardRefFunc = y^2
End Function



See Also
Call
Const
Def  type  
Dim
$Include
Static
Type



' Deftype Statement Example
'This example finds the average of bowling scores entered by the user. Since the variable average 
begins with A, it is automatically defined as a single-precision floating point number. The other 
variables will be defined as Integers.

DefInt c,s,t
DefSng a
Sub main
      Dim count
      Dim total
      Dim score
      Dim average
      Dim msgtext
      For count=0 to 4
            score=InputBox("Enter bowling score #" & count+1 &":")
            total=total+score
      Next count
      average=total/count
      msgtext="Your average is: " &average
      MsgBox msgtext
End Sub



See Also
Declare
Dim
Let
Type



' Dialog Function Example
'This example creates a dialog box with a drop down combo box in it and three buttons: OK, 
Cancel, and Help. The Dialog function used here enables the subroutine to trap when the user 
clicks on any of these buttons.

Sub main
      Dim cchoices as String
      cchoices="All"+Chr$(9)+"Nothing"
        Begin Dialog UserDialog 180, 95, "OPEN Script Dialog Box"
              ButtonGroup .ButtonGroup1
              Text    9, 3, 69, 13, "Filename:", .Text1
              ComboBox    9, 17, 111, 41, cchoices, .ComboBox1
              OKButton    131, 8, 42, 13
              CancelButton    131, 27, 42, 13
              PushButton 132, 48, 42, 13, "Help", .Push1
        End Dialog
      Dim mydialogbox As UserDialog
      answer= Dialog(mydialogbox)
      Select Case answer
            Case -1
                  MsgBox "You pressed OK"
            Case 0
                  MsgBox "You pressed Cancel"
            Case 1
                  MsgBox "You pressed Help"
      End Select
End Sub



See Also
Begin Dialog...End Dialog
Dialog Statement



' Dialog Statement Example
'This example defines and displays a dialog box defined as UserDialog and named mydialogbox. If 
the user presses the Cancel button, an error code of 102 is returned and is trapped by the If...Then
statement listed after the Dialog statement.

Sub main
      Dim cchoices as String
      On Error Resume Next
      cchoices="All"+Chr$(9)+"Nothing"
        Begin Dialog UserDialog 180, 95, "OPEN Script Dialog Box"
              ButtonGroup .ButtonGroup1
              Text    9, 3, 69, 13, "Filename:", .Text1
              ComboBox    9, 17, 111, 41, cchoices, .ComboBox1
              OKButton    131, 8, 42, 13
              CancelButton    131, 27, 42, 13
End Dialog
      Dim mydialogbox As UserDialog
      Dialog mydialogbox
      If Err=102 then
            MsgBox "You pressed Cancel."
      Else
            MsgBox "You pressed OK."
      End If
End Sub



See Also
Begin Dialog...End Dialog
Dialog Function



' Dim Statement Example
'This example shows a Dim statement for each of the possible data types.

Rem Must define a record type before you can declare a record variable
Type Testrecord

Custno As Integer
Custname As String

End Type

Sub main
Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String
Dim myrecord As Testrecord
Dim ole2var As Object
Dim F(1 to 10), A()

' ...(code here)...
End Sub



See Also
Global
Option Base
ReDim
Set
Static
Type



' Dir Function Example
'This example lists the contents of the diskette in drive A.

Sub main
      Dim msgret
      Dim directory, count
      Dim x, msgtext
      Dim A()
      msgret=MsgBox("Insert a disk in drive A.")
      count=1
      ReDim A(100)
      directory=Dir ("A:\*.*")
      Do While directory<>""
            A(count)=directory
            count=count+1
            directory=Dir
      Loop
      msgtext="Contents of drive A:\ is:" & Chr(10) & Chr(10)
      For x=1 to count
            msgtext=msgtext & A(x) & Chr(10)
      Next x
      MsgBox msgtext
End Sub



See Also
ChDir
ChDrive
CurDir
MkDir
RmDir



' DlgControlID Function Example
'This example displays a dialog box similar to File Open.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Dim filetypes as String
      Dim exestr$()
      Dim button as Integer
      Dim x as Integer
      Dim directory as String
      filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
      Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
            '$CStrings Save
            Text    8, 6, 60, 11, "&Filename:"
            TextBox    8, 17, 76, 13, .TextBox1
            ListBox    9, 36, 75, 61, exestr$(), .ListBox1
            Text    8, 108, 61, 9, "List Files of &Type:"
            DropListBox    7, 120, 78, 30, filetypes, .DropListBox1
            Text    98, 7, 43, 10, "&Directories:"
            Text    98, 20, 46, 8, "c:\\windows"
            ListBox    99, 34, 66, 66, "", .ListBox2
            Text    98, 108, 44, 8, "Dri&ves:"
            DropListBox    98, 120, 68, 12, "", .DropListBox2
            OKButton    177, 6, 50, 14
            CancelButton    177, 24, 50, 14
            PushButton 177, 42, 50, 14, "&Help"
            '$CStrings Restore
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub      
      
Sub ListFiles(str1$)
      DlgText 1,str1$
      x=0
      Redim exestr$(x)
      directory=Dir$("c:\windows\" & str1$,16)
      If directory<>"" then
          Do
              exestr$(x)=LCase$(directory)
              x=x+1
              Redim Preserve exestr$(x)
              directory=Dir
              Loop Until directory=""
      End If
      DlgListBoxArray 2,exestr$()
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
          Case 1
              str1$="*.exe"                                                'dialog box initialized
              ListFiles str1$
          Case 2                                                'button or control value changed
              If DlgControlId(identifier$) = 4 Then
                      If DlgText(4)="All Files (*.*)" then
                            str1$="*.*"
                      Else
                            str1$="*.exe"



                      End If
              ListFiles str1$
              End If
          Case 3                                                'text or combo box changed
              str1$=DlgText$(1)
              ListFiles str1$
          Case 4                                                'control focus changed

          Case 5                                                'idle
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgEnable Statement Example
'This example displays a dialog box with two check boxes, one labeled Either, the other labeled Or.
If the user clicks on Either, the Or option is grayed. Likewise, if Or is selected, Either is grayed. 
'This example uses the DlgEnable statement to toggle the state of the buttons.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92,"DlgEnable example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            CheckBox    34, 25, 75, 19, "Either", .CheckBox1
            CheckBox    34, 43, 73, 25, "Or", .CheckBox2
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 2                                                'button or control value changed
              If DlgControlId(identifier$) = 2 Then
                  DlgEnable 3
              Else
                  DlgEnable 2
                  End If
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgEnable Function Example
'This example displays a dialog box with one check box, labeled Show More, and a group box, 
labeled More, with two option buttons, Option 1 and Option 2. It uses the DlgEnable function to 
enable the More group box and its options if the Show More check box is selected.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgEnable example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            CheckBox    13, 6, 75, 19, "Show more", .CheckBox1
            GroupBox    16, 28, 94, 50, "More"
            OptionGroup .OptionGroup1
                  OptionButton    23, 40, 56, 12, "Option 1", .OptionButton1
                  OptionButton    24, 58, 61, 13, "Option 2", .OptionButton2
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 1
                  DlgEnable 3,0
                  DlgEnable 4,0
                  DlgEnable 5,0
            Case 2                                                'button or control value changed
              If DlgControlID(identifier$) = 2 Then
                    If DlgEnable (3)=0 then
                              DlgEnable 3,1
                              DlgEnable 4,1
                              DlgEnable 5,1
                    Else
                          DlgEnable 3,0
                          DlgEnable 4,0
                          DlgEnable 5,0
                    End If
              End If
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgEnd Statement Example
'This example displays a dialog box with the message "You have 30 seconds to cancel." The dialog
box counts down from 30 seconds to 0. If the user clicks OK or Cancel during the countdown, the 
dialog box closes. If the countdown reaches 0, however, the DlgEnd statement closes the dialog 
box.

Function timeout(id$,action%,suppvalue&)
    Static timeoutStart as Long
    Static currentSecs as Long
    Dim thisSecs as Long
    Select Case action%
        Case 1
            ' initialize the dialog box. Set the ticker value to 30
            ' and remember when we put up the dialog box
            DlgText "ticker", "30"
            timeoutStart = timer
            currentSecs = 30
        Case 5
            ' this is an idle message - set thisSecs to the number of
            ' seconds left until timeout
            thisSecs = timer
            If thisSecs < timeoutStart Then thisSecs = thisSecs + 24*60*60
            thisSecs = 30 - (thisSecs - timeoutStart)
            ' if there are negative seconds left, timeout!
            If thisSecs < 0 Then DlgEnd -1
            ' If the seconds left has changed since last time,
            ' update the dialog box
            If thisSecs <> currentSecs Then
                  DlgText "ticker", trim$(str$(thisSecs))
                  currentSecs = thisSecs
            End If
            ' make sure to return non-zero so we keep getting idle messages
            timeout = 1
      End Select
End Function

Sub main
    Begin Dialog newdlg 167, 78, "Do You Want to Continue?", .timeout
        '$CStrings Save
        OKButton    27, 49, 50, 14
        CancelButton    91, 49, 50, 14
        Text    24, 14, 119, 8, "This is your last chance to bail out."
        Text    27, 30, 35, 8, "You have"
        Text    62, 30, 13, 8, "30", .ticker
        Text    74, 30, 66, 8, "seconds to cancel."
        '$CStrings Restore
    End Dialog
    Dim dlgVar As newdlg
    If dialog(dlgvar) = 0 Then
          Exit Sub    ' abort
    End If
    ' do whatever it is we want to do
End Sub



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgFocus Function Example
'This example displays a dialog box with a check box, labeled Check1, and a text box, labeled Text
Box 1, in it. When the box is initialized, the focus is set to the text box. As soon as the user clicks 
the check box, the focus goes to the OK button.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgFocus Example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            TextBox    15, 37, 82, 12, .TextBox1
            Text    15, 23, 57, 10, "Text Box 1"
            CheckBox    15, 6, 75, 11, "Check1", .CheckBox1
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 1
                    DlgFocus 2
            Case 2                                          'user changed control or clicked a button
                    If DlgFocus() <> "OKButton" then
                                  DlgFocus 0
                    End If
            End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgFocus Statement Example
'This example displays a dialog box with a check box, labeled Check1, and a text box, labeled Text
Box 1, in it. When the box is initialized, the focus is set to the text box. As soon as the user clicks 
the check box, the focus goes to the OK button.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgFocus Example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            TextBox    15, 37, 82, 12, .TextBox1
            Text    15, 23, 57, 10, "Text Box 1"
            CheckBox    15, 6, 75, 11, "Check1", .CheckBox1
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 1
                    DlgFocus 2
            Case 2                                          'user changed control or clicked a button
                    If DlgFocus() <> "OKButton" then
                          DlgFocus 0
                    End If
            End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgListBoxArray Function Example
'This example displays a dialog box with a check box, labeled "Display List", and an empty list box.
If the user clicks the check box, the list box is filled with the contents of the array called 
"myarray". The DlgListBox Array function makes sure the list box is empty.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgListBoxArray Example", .FileDlgFunction
            '$CStrings Save
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            ListBox    19, 26, 74, 59, "", .ListBox1
            CheckBox    12, 4, 86, 13, "Display List", .CheckBox1
            '$CStrings Restore
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
Dim myarray$(3)
Dim msgtext as Variant
Dim x as Integer
For x= 0 to 2
      myarray$(x)=Chr$(x+65)
Next x
      Select Case action
            Case 1
            Case 2                                          'user changed control or clicked a button
                  If DlgControlID(identifier$)=3 then
                          If DlgListBoxArray(2)=0 then
                                          DlgListBoxArray 2, myarray$()
                          End If
                  End If        
            End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgListBoxArray Statement Example
'This example displays a dialog box similar to File Open.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Dim filetypes as String
      Dim exestr$()
      Dim button as Integer
      Dim x as Integer
      Dim directory as String
      filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
      Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
            '$CStrings Save
            Text    8, 6, 60, 11, "&Filename:"
            TextBox    8, 17, 76, 13, .TextBox1
            ListBox    9, 36, 75, 61, exestr$(), .ListBox1
            Text    8, 108, 61, 9, "List Files of &Type:"
            DropListBox    7, 120, 78, 30, filetypes, .DropListBox1
            Text    98, 7, 43, 10, "&Directories:"
            Text    98, 20, 46, 8, "c:\\windows"
            ListBox    99, 34, 66, 66, "", .ListBox2
            Text    98, 108, 44, 8, "Dri&ves:"
            DropListBox    98, 120, 68, 12, "", .DropListBox2
            OKButton    177, 6, 50, 14
            CancelButton    177, 24, 50, 14
            PushButton 177, 42, 50, 14, "&Help"
            '$CStrings Restore
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub      
      
Sub ListFiles(str1$)
      DlgText 1,str1$
      x=0
      Redim exestr$(x)
      directory=Dir$("c:\windows\" & str1$,16)
      If directory<>"" then
          Do
          exestr$(x)=LCase$(directory)
          x=x+1
          Redim Preserve exestr$(x)
          directory=Dir
          Loop Until directory=""
      End If
      DlgListBoxArray 2,exestr$()
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
          Case 1
              str1$="*.exe"                                                'dialog box initialized
              ListFiles str1$
          Case 2                                                'button or control value changed
              If DlgControlId(identifier$) = 4 Then
                      If DlgText(4)="All Files (*.*)" then
                            str1$="*.*"
                      Else
                            str1$="*.exe"



                      End If
              ListFiles str1$
              End If
          Case 3                                                'text or combo box changed
              str1$=DlgText$(1)
              ListFiles str1$
          Case 4                                                'control focus changed
      
          Case 5                                                'idle
    End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgEnable
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgSetPicture Statement Example
'This example displays a picture in a dialog box and changes the picture if the user clicks the 
check box labeled "Change Picture".

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgSetPicture Example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            Picture    43, 28, 49, 31, "C:\WINDOWS\THATCH.BMP", 0
            CheckBox    30, 8, 62, 15, "Change Picture", .CheckBox1
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 1
            Case 2                                        'user changed control or clicked a button
                  If DlgControlID(identifier$)=3 then
                        If suppvalue=1 then
                              DlgSetPicture 2, "C:\WINDOWS\WINLOGO.BMP",0
                        Else
                              DlgSetPicture 2, "C:\WINDOWS\THATCH.BMP",0
                        End If
                  End If
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgText Function Example
'This example displays a dialog box similar to File Open. It uses DlgText to determine what group 
of files to display.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Dim filetypes as String
      Dim exestr$()
      Dim button as Integer
      Dim x as Integer
      Dim directory as String
      filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
      Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
            '$CStrings Save
            Text    8, 6, 60, 11, "&Filename:"
            TextBox    8, 17, 76, 13, .TextBox1
            ListBox    9, 36, 75, 61, exestr$(), .ListBox1
            Text    8, 108, 61, 9, "List Files of &Type:"
            DropListBox    7, 120, 78, 30, filetypes, .DropListBox1
            Text    98, 7, 43, 10, "&Directories:"
            Text    98, 20, 46, 8, "c:\\windows"
            ListBox    99, 34, 66, 66, "", .ListBox2
            Text    98, 108, 44, 8, "Dri&ves:"
            DropListBox    98, 120, 68, 12, "", .DropListBox2
            OKButton    177, 6, 50, 14
            CancelButton    177, 24, 50, 14
            PushButton 177, 42, 50, 14, "&Help"
            '$CStrings Restore
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Sub ListFiles(str1$)
      DlgText 1,str1$
      x=0
      Redim exestr$(x)
      directory=Dir$("c:\windows\" & str1$,16)
      If directory<>"" then
          Do
          exestr$(x)=LCase$(directory)
          x=x+1
          Redim Preserve exestr$(x)
          directory=Dir
          Loop Until directory=""
      End If
      DlgListBoxArray 2,exestr$()
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
          Case 1
              str1$="*.exe"                                                'dialog box initialized
              ListFiles str1$
          Case 2                                                'button or control value changed
              If DlgControlId(identifier$) = 4 Then
                      If DlgText(4)="All Files (*.*)" then
                            str1$="*.*"
                      Else



                            str1$="*.exe"
                      End If
              ListFiles str1$
              End If
          Case 3                                                'text or combo box changed
              str1$=DlgText$(1)
              ListFiles str1$
          Case 4                                                'control focus changed
      
          Case 5                                                'idle
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgText Statement Example
'This example displays a dialog box similar to File Open. It uses the DlgText statement to display 
the list of files in the Filename list box.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Dim filetypes as String
      Dim exestr$()
      Dim button as Integer
      Dim x as Integer
      Dim directory as String
      filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
      Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
            '$CStrings Save
            Text    8, 6, 60, 11, "&Filename:"
            TextBox    8, 17, 76, 13, .TextBox1
            ListBox    9, 36, 75, 61, exestr$(), .ListBox1
            Text    8, 108, 61, 9, "List Files of &Type:"
            DropListBox    7, 120, 78, 30, filetypes, .DropListBox1
            Text    98, 7, 43, 10, "&Directories:"
            Text    98, 20, 46, 8, "c:\\windows"
            ListBox    99, 34, 66, 66, "", .ListBox2
            Text    98, 108, 44, 8, "Dri&ves:"
            DropListBox    98, 120, 68, 12, "", .DropListBox2
            OKButton    177, 6, 50, 14
            CancelButton    177, 24, 50, 14
            PushButton 177, 42, 50, 14, "&Help"
            '$CStrings Restore
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub      
      
Sub ListFiles(str1$)
      DlgText 1,str1$
      x=0
      Redim exestr$(x)
      directory=Dir$("c:\windows\" & str1$,16)
      If directory<>"" then
          Do
          exestr$(x)=LCase$(directory)
          x=x+1
          Redim Preserve exestr$(x)
          directory=Dir
          Loop Until directory=""
      End If
      DlgListBoxArray 2,exestr$()
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
          Case 1
              str1$="*.exe"                                                'dialog box initialized
              ListFiles str1$
          Case 2                                                'button or control value changed
              If DlgControlId(identifier$) = 4 Then
                      If DlgText(4)="All Files (*.*)" then
                            str1$="*.*"
                      Else



                            str1$="*.exe"
                      End If
              ListFiles str1$
              End If
          Case 3                                                'text or combo box changed
              str1$=DlgText$(1)
              ListFiles str1$
          Case 4                                                'control focus changed
      
          Case 5                                                'idle
    End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgValue Function Example
'This example changes the picture in the dialog box if the check box is selected and changes the 
picture to its original bitmap if the checkbox is turned off.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgSetPicture Example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            Picture    43, 28, 49, 31, "C:\WINDOWS\THATCH.BMP", 0
            CheckBox    30, 8, 62, 15, "Change Picture", .CheckBox1
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 1
            Case 2                                        'user changed control or clicked a button
                  If DlgControlID(identifier$)=3 then
                        If DlgValue(3)=1 then
                              DlgSetPicture 2, "C:\WINDOWS\WINLOGO.BMP",0
                        Else
                              DlgSetPicture 2, "C:\WINDOWS\THATCH.BMP",0
                        End If
                  End If
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Statement
DlgVisible Function
DlgVisible Statement



' DlgValue Statement Example
'This example displays a dialog box with a checkbox, labeled Change Option, and a group box with
two option buttons, labeled Option 1 and Option 2. When the user clicks the Change Option 
button, Option 2 is selected.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgValue Example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            CheckBox    30, 8, 62, 15, "Change Option", .CheckBox1
            GroupBox    28, 34, 79, 47, "Group"
            OptionGroup .OptionGroup1
                  OptionButton    41, 47, 52, 10, "Option 1", .OptionButton1
                  OptionButton    41, 62, 58, 11, "Option 2", .OptionButton2
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 1
            Case 2                                          'user changed control or clicked a button
                If DlgControlID(identifier$)=2 then
                        If DlgValue(2)=1 then
                                DlgValue 4,1
                        Else
                                DlgValue 4,0
                        End If        
                End If
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgVisible Function
DlgVisible Statement



' DlgVisible Function Example
'This example displays Option 2 in the Group box if the user clicks the check box labeled "Show 
Option 2". If the user clicks the box again, Option 2 is hidden.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgVisible Example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            CheckBox    30, 8, 62, 15, "Show Option 2", .CheckBox1
            GroupBox    28, 34, 79, 47, "Group"
            OptionGroup .OptionGroup1
                  OptionButton    41, 47, 52, 10, "Option 1", .OptionButton1
                  OptionButton    41, 62, 58, 11, "Option 2", .OptionButton2
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 1
                  DlgVisible 6,0
            Case 2                                        'user changed control or clicked a button
                If DlgControlID(identifier$)=2 then
                        If DlgVisible(6)<>1 then
                                DlgVisible 6
                        End If
                End If
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Statement



' DlgVisible Statement Example
'This example displays Option 2 in the Group box if the user clicks the check box. labeled "Show 
Option 2". If the user clicks the box again, Option 2 is hidden.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
      Dim button as integer
      Dim identifier$
      Dim action as Integer
      Dim suppvalue as Integer
      Begin Dialog newdlg 186, 92, "DlgVisible Example", .FileDlgFunction
            OKButton    130, 6, 50, 14
            CancelButton    130, 23, 50, 14
            CheckBox    30, 8, 62, 15, "Show Option 2", .CheckBox1
            GroupBox    28, 34, 79, 47, "Group"
            OptionGroup .OptionGroup1
                  OptionButton    41, 47, 52, 10, "Option 1", .OptionButton1
                  OptionButton    41, 62, 58, 11, "Option 2", .OptionButton2
      End Dialog
      Dim dlg As newdlg
      button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
      Select Case action
            Case 1
                  DlgVisible 6,0
            Case 2                                        'user changed control or clicked a button
                If DlgControlID(identifier$)=2 then
                        If DlgVisible(6)<>1 then
                                DlgVisible 6
                        End If
                End If
      End Select
End Function



See Also
BeginDialog...End Dialog
DlgControlID Function
DlgEnable Function
DlgEnable Statement
DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgVisible Function



' Do...Loop Statement Example
'This example lists the contents of the diskette in drive A.

Sub main
Dim msgret
      Dim directory, count
      Dim x, msgtext
      Dim A()
      msgret=MsgBox("Insert a disk in drive A.")
      count=1
      ReDim A(100)
      directory=Dir ("A:\*.*")
      Do While directory<>""
            A(count)=directory
            count=count+1
            directory=Dir
      Loop
      msgtext="Directory of drive A:\ is:" & Chr(10)
      For x=1 to count
            msgtext=msgtext & A(x) & Chr(10)
      Next x
      MsgBox msgtext
End Sub



See Also
Exit
For...Next
Stop
While...Wend



' DoEvents Statement Example
'This example activates the Windows Terminal application, dials the number and then allows the 
operating system to process events.

Sub main
      Dim phonenumber, msgtext
      Dim x
      phonenumber=InputBox("Type telephone number to call:")
      x=Shell("Terminal.exe",1)
      SendKeys "%PD" & phonenumber & "{Enter}",1
      msgtext="Dialing..."
      MsgBox msgtext
      DoEvents
End Sub



See Also
AppActivate
SendKeys
Shell



' DropComboBox Statement Example
'This example defines a dialog box with a drop combo box and the OK and Cancel buttons.

Sub main
      Dim cchoices as String
      On Error Resume Next
      cchoices="All"+Chr$(9)+"Nothing"
      Begin Dialog UserDialog 180, 95, "OPEN Script Dialog Box"
              ButtonGroup .ButtonGroup1
              Text    9, 3, 69, 13, "Filename:", .Text1
              DropComboBox    9, 17, 111, 41, cchoices, .ComboBox1
              OKButton    131, 8, 42, 13
              CancelButton    131, 27, 42, 13
      End Dialog
      Dim mydialogbox As UserDialog
      Dialog mydialogbox
      If Err=102 then
            MsgBox "You pressed Cancel."
      Else
            MsgBox "You pressed OK."
      End If
End Sub



See Also
Begin Dialog...End Dialog Statement
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' DropListBox Statement Example
'This example defines a dialog box with a drop list box and the OK and Cancel buttons.

Sub main
      Dim DropListBox1() as String
      ReDim DropListBox1(3)
      For x=0 to 2
          DropListBox1(x)=Chr(65+x) & ":"
      Next x
      Begin Dialog UserDialog 186, 62, "OPEN Script Dialog Box"
            Text    8, 4, 42, 8, "Drive:", .Text3
            DropListBox    8, 16, 95, 44, DropListBox1(), .DropListBox1
            OKButton    124, 6, 54, 14
            CancelButton    124, 26, 54, 14
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog Statement
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
DropComboBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Environ Statement Example
'This example lists all the strings from the operating system environment table.

Sub main
      Dim str1(100)
      Dim msgtext
      Dim count, x
      Dim newline
      newline=Chr(10)
      x=1
      str1(x)= Environ(x)
      Do While Environ(x)<>""
            str1(x)= Environ(x)
            x=x+1
            str1(x)=Environ(x)
      Loop
      msgtext="The Environment Strings are:" & newline & newline
      count=x
      For x=1 to count
            msgtext=msgtext & str1(x) & newline
      Next x
      MsgBox msgtext
End Sub



See Also
(None)



' Eof Function Example
'This example uses the Eof function to read records from a Random file, using a Get statement. 
The Eof function keeps the Get statement from attempting to read beyond the end of the file. The 
subprogram, CREATEFILE, creates the file C:\TEMP001 used by the main subprogram.

Declare Sub createfile()
Sub main
      Dim acctno
      Dim msgtext as String
      newline=Chr(10)
      Call createfile
      Open "C:\temp001" For Input As #1
      msgtext="The account numbers are:" & newline
      Do While Not Eof(1)
                  Input #1,acctno
                  msgtext=msgtext & newline & acctno & newline
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 1-10 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, x
      Next x
      Close #1
End Sub



See Also
Get
Input Function
Input Statement
Line Input
Loc
Lof
Open



' Erase Statement Example
'This example prompts for a list of item numbers to put into an array and clears array if the user 
wants to start over.

Sub main
      Dim msgtext
      Dim inum(100) as Integer
      Dim x, count
      Dim newline
      newline=Chr(10)
      x=1
      count=x
      inum(x)=0
      Do
          inum(x)=InputBox("Enter item #" & x & " (99=start over;0=end):")
          If inum(x)=99 then
                Erase inum()
                x=0
          ElseIf inum(x)=0 then
                Exit Do      
          End If
          x=x+1
    Loop
    count=x-1
    msgtext="You entered the following numbers:" & newline
    For x=1 to count
          msgtext=msgtext & inum(x) & newline
    Next x
    MsgBox msgtext
End Sub



See Also
Dim
ReDim
LBound
UBound



' Erl Function Example
'This example prints the error number using the Err function and the line number using the Erl 
statement if an error occurs during an attempt to open a file. Line numbers are automatically 
assigned, starting with 1, which is the Sub main statement.

Sub main
      Dim msgtext, userfile
      On Error GoTo Debugger
      msgtext="Enter the filename to use:"
      userfile=InputBox$(msgtext)
      Open userfile For Input As #1
      MsgBox "File opened for input."
'    ....etc....
      Close #1
done:
      Exit Sub
Debugger:
      msgtext="Error number " & Err & " occurred at line: " & Erl
      MsgBox msgtext
      Resume done
End Sub



See Also
Err Function
Err Statement
Error Function
Error Statement
On Error
Resume
Trappable Errors



' Err Function Example
'This example prints the error number using the Err function and the line number using the Erl 
statement if an error occurs during an attempt to open a file. Line numbers are automatically 
assigned, starting with 1, which is the Sub main statement.

Sub main
      Dim msgtext, userfile
      On Error GoTo Debugger
      msgtext="Enter the filename to use:"
      userfile=InputBox$(msgtext)
      Open userfile For Input As #1
      MsgBox "File opened for input."
'      ....etc....
      Close #1
done:
      Exit Sub
Debugger:
      msgtext="Error number " & Err & " occurred at line: " & Erl
      MsgBox msgtext
      Resume done
End Sub



See Also
Erl
Err Statement
Error Function
Error Statement
On Error
Resume
Trappable Errors



' Err Statement Example
'This example generates an error code of 10000 and displays an error message if a user does not 
enter a customer name when prompted for it. It uses the Err statement to clear any previous error
codes before running the loop the first time and it also clears the error to allow the user to try 
again.

Sub main
      Dim custname as String
      On Error Resume Next
      Do
            Err=0
            custname=InputBox$("Enter customer name:")
            If custname="" then
                  Error 10000
            Else
                  Exit Do
            End If
            Select Case Err
                  Case 10000
                        MsgBox "You must enter a customer name."
                  Case Else
                        MsgBox "Undetermined error. Try again."
            End Select
      Loop Until custname<>""
      MsgBox "The name is: " & custname
End Sub



See Also
Erl
Err Function
Error Function
Error Statement
On Error
Resume
Trappable Errors



' Error Function Example
'This example prints the error number, using the Err function, and the text of the error, using the 
Error$ function, if an error occurs during an attempt to open a file.

Sub main
      Dim msgtext, userfile
      On Error GoTo Debugger
      msgtext="Enter the filename to use:"
      userfile=InputBox$(msgtext)
      Open userfile For Input As #1
      MsgBox "File opened for input."
'    ....etc....
      Close #1
done:
      Exit Sub
Debugger:
      msgtext="Error " & Err & ": " & Error$
      MsgBox msgtext
      Resume done
End Sub



See Also
Erl
Err Function
Err Statement
Error Statement
On Error
Resume
Trappable Errors



' Error Statement Example
'This example generates an error code of 10000 and displays an error message if a user does not 
enter a customer name when prompted for it.

Sub main
      Dim custname as String
      On Error Resume Next
      Do
            Err=0
            custname=InputBox$("Enter customer name:")
            If custname="" then
                  Error 10000
            Else
                  Exit Do
            End If
            Select Case Err
                  Case 10000
                        MsgBox "You must enter a customer name."
                  Case Else
                        MsgBox "Undetermined error. Try again."
            End Select
      Loop Until custname<>""
      MsgBox "The name is: " & custname
End Sub



See Also
Erl
Err Function
Err Statement
Error Function
On Error
Resume
Trappable Errors



' Exit Statement Example
'This example uses the On Error statement to trap run-time errors. If there is an error, the program
execution continues at the label "Debugger". The example uses the Exit statement to skip over 
the debugging code when there is no error.

Sub main
      Dim msgtext, userfile
      On Error GoTo Debugger
      msgtext="Enter the filename to use:"
      userfile=InputBox$(msgtext)
      Open userfile For Input As #1
      MsgBox "File opened for input."
'    ....etc....
      Close #1
done:
      Exit Sub
Debugger:
      msgtext="Error " & Err & ": " & Error$
      MsgBox msgtext
      Resume done
End Sub



See Also
Do...Loop
For...Next
Function...End Function
Stop
Sub...End Sub



' Exp Function Example
'This example estimates the value of a factorial of a number entered by the user. A factorial 
(notated with an exclamation mark, !) is the product of a number and each integer between it and
the number 1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or the value 120.

Sub main
      Dim x as Single
      Dim msgtext, PI
      Dim factorial as Double
      PI=3.14159
i: x=InputBox("Enter an integer between 1 and 88: ")
      If x<=0 then
            Exit Sub
      ElseIf x>88 then
            MsgBox "The number you entered is too large.    Try again."
            Goto i
      End If
      factorial=Sqr(2*PI*x)*(x^x/Exp(x))
      msgtext="The estimated factorial is: " & Format(factorial, "Scientific")
      MsgBox msgtext
End Sub



See Also
Abs
Fix
Int
Log
Rnd
Sgn
Sqr



' FileAttr Function Example
'This example closes an open file if it is open for Input or Output. If open for Append, it writes a 
range of numbers to the file. The second subprogram, CREATEFILE, creates the file and leaves it 
open.

Declare Sub createfile()
Sub main
      Dim filemode as Integer
      Dim attrib as Integer
      Call createfile
      attrib=1
      filemode=FileAttr(1,attrib)
      If filemode=1 or 2 then
            MsgBox "File was left open. Closing now."
            Close #1
      Else
            For x=11 to 15
                  Write #1, x
            Next x
            Close #1
      End If
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 1-10 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, x
      Next x
End Sub



See Also
GetAttr
Open
SetAttr



' FileCopy Statement Example
'This example copies one file to another. Both filenames are specified by the user.

Sub main
      Dim oldfile, newfile
      On Error Resume Next
      oldfile= InputBox("Copy which file?")
      newfile= InputBox("Copy to?")
      FileCopy oldfile,newfile
      If Err<>0 then
            msgtext="Error during copy. Rerun program."
      Else
            msgtext="Copy successful."
      End If
      MsgBox msgtext
End Sub



See Also
FileAttr
FileDateTime
GetAttr
Kill
Name



' FileDateTime Function Example
'This example writes data to a file if it hasn't been saved within the last 2 minutes.

Sub main
      Dim tempfile
      Dim filetime, curtime
      Dim msgtext
      Dim acctno(100) as Single
      Dim x, I
      tempfile="C:\TEMP001"
      Open tempfile For Output As #1
      filetime=FileDateTime(tempfile)
      x=1
      I=1
      acctno(x)=0
      Do
            curtime=Time
            acctno(x)=InputBox("Enter an account number (99 to end):")
            If acctno(x)=99 then
                  For I=1 to x-1
                        Write #1, acctno(I)
                  Next I
                  Exit Do
            ElseIf (Minute(filetime)+2)<=Minute(curtime) then
                  For I=I to x
                        Write #1, acctno(I)
                  Next I
            End If
            x=x+1
      Loop
      Close #1
      x=1
      msgtext="Contents of C:\TEMP001 is:" & Chr(10)
      Open tempfile for Input as #1
      Do While Eof(1)<>-1
            Input #1, acctno(x)
            msgtext=msgtext & Chr(10) & acctno(x)
            x=x+1
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub



See Also
FileLen
GetAttr



' FileLen Function Example
'This example returns the length of a file.

Sub main
      Dim length as Long
      Dim userfile as String
      Dim msgtext
      On Error Resume Next
      msgtext="Enter a filename:"
      userfile=InputBox(msgtext)
      length=FileLen(userfile)
      If Err<>0 then
            msgtext="Error occurred.    Rerun program."
      Else
            msgtext="The length of " & userfile & " is: " & length
      End If
      MsgBox msgtext
End Sub



See Also
FileDateTime
FileLen
GetAttr
Lof



' Fix Function Example
'This example returns the integer portion of a number provided by the user.

Sub main
      Dim usernum
      Dim intvalue
      usernum=InputBox("Enter a number with decimal places:")
      intvalue=Fix(usernum)
      MsgBox "The integer portion of " & usernum & " is: " & intvalue
End Sub



See Also
Abs
CInt
Exp
Int
Log
Rnd
Sgn
Sqr



' For...Next Statement Example
'This example calculates the factorial of a number. A factorial (notated with an exclamation 
mark, !) is the product of a number and each integer between it and the number 1. For example, 5
factorial, or 5!, is the product of 5*4*3*2*1, or the value 120.

Sub main
      Dim number as Integer
      Dim factorial as Double
      Dim msgtext
      number=InputBox("Enter an integer between 1 and 170:")
      If number<=0 then
            Exit Sub
      End If
      factorial=1
      For x=number to 2 step -1
            factorial=factorial*x
      Next x
Rem If number<= 35, then its factorial is small enough
Rem to be stored as a single-precision number
      If number<35 then
            factorial=CSng(factorial)
      End If
      msgtext="The factorial of " & number & " is: " & factorial
      MsgBox msgtext
End Sub



See Also
Do...Loop
Exit
While...Wend



' Format Function Example
'This example calculates the square root of 2 as a double-precision floating point value and 
displays it in scientific notation.

Sub main
Dim value
Dim msgtext
value=CDbl(Sqr(2))
msgtext= "The square root of 2 is: " & Format(Value,"Scientific")
MsgBox msgtext

End Sub



See Also
Asc
CCur
CDbl
Chr
CInt
CLng
CSng
CStr
CVar
CVDate
Str



' FreeFile Function Example
'This example opens a file and assigns to it the next file number available.

Sub main
      Dim filenumber
      Dim filename as String
      filenumber=FreeFile
      filename=InputBox("Enter a file to open: ")
      On Error Resume Next
      Open filename For Input As filenumber
      If Err<>0 then
            MsgBox "Error loading file.    Re-run program."
            Exit Sub
      End If
      MsgBox "File " & filename & " opened as number: " & filenumber
      Close #filenumber
      MsgBox "File now closed."
End Sub



See Also
Open



' Function...End Function Example
'This example declares a function that is later called by the main subprogram. The function does 
nothing but set its return value to 1.

Declare Function OPEN_Script_exfunction()
Sub main
      Dim y as Integer
      Call OPEN_Script_exfunction
      y=OPEN_Script_exfunction
      MsgBox "The value returned by the function is: " & y
End Sub

Function OPEN_Script_exfunction()
      OPEN_Script_exfunction=1
End Function



See Also
Call
Declare
Dim
Global
IsMissing
Option Explicit
Static
Sub...End Sub



' FV Function Example
'This example finds the future value of an annuity, based on terms specified by the user.

Sub main
      Dim aprate, periods
      Dim payment, annuitypv
      Dim due, futurevalue
      Dim msgtext
      annuitypv=InputBox("Enter present value of the annuity: ")
      aprate=InputBox("Enter the annual percentage rate: ")
      If aprate >1 then
            aprate=aprate/100
      End If
      periods=InputBox("Enter the total number of pay periods: ")
      payment=InputBox("Enter the initial amount paid to you: ")
Rem Assume payments are made at end of month
      due=0
      futurevalue=FV(aprate/12,periods,-payment,-annuitypv,due)
      msgtext= "The future value is: " & Format(futurevalue, "Currency")
      MsgBox msgtext
End Sub



See Also
IPmt
IRR
NPV
Pmt
PPmt
PV
Rate



' Get Statement Example
'This example opens a file for Random access, gets its contents, and closes the file again. The 
second subprogram, CREATEFILE, creates the C:\TEMP001 file used by the main subprogram.

Declare Sub createfile()
Sub main
      Dim acctno as String*3
      Dim recno as Long
      Dim msgtext as String
      Call createfile
      recno=1
      newline=Chr(10)
      Open "C:\TEMP001" For Random As #1 Len=3
      msgtext="The account numbers are:" & newline
      Do Until recno=11
                  Get #1,recno,acctno
                  msgtext=msgtext & acctno
                  recno=recno+1
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 1-10 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, x
      Next x
      Close #1
End Sub



See Also
Open
Put
Type



' GetAttr Function Example
'This example tests the attributes for a file and if it is hidden, changes it to a non-hidden file. 

Sub main
      Dim filename as String
      Dim attribs, saveattribs as Integer
      Dim answer as Integer
      Dim archno as Integer
      Dim msgtext as String
      archno=32
      On Error Resume Next
      msgtext="Enter name of a file:"
      filename=InputBox(msgtext)
      attribs=GetAttr(filename)
      If Err<>0 then
            MsgBox "Error in filename. Re-run Program."
            Exit Sub
      End If
      saveattribs=attribs
      If attribs>= archno then
            attribs=attribs-archno
      End If
      Select Case attribs
            Case 2,3,6,7
                  msgtext="    File: " &filename & " is hidden." & Chr(10)
                  msgtext=msgtext & Chr(10) & "      Change it?"
                  answer=Msgbox(msgtext,308)
                  If answer=6 then
                        SetAttr filename, saveattribs-2
                        Msgbox "File is no longer hidden."
                        Exit Sub
                  End If
                  MsgBox "Hidden file not changed."
            Case Else
                  MsgBox "File was not hidden."
      End Select
End Sub



See Also
FileAttr
SetAttr



' GetField Function Example
'This example finds the third value in a string, delimited by plus signs (+).

Sub main
Dim teststring,retvalue
Dim msgtext
teststring="9+8+7+6+5"
retvalue=GetField(teststring,3,"+")
MsgBox "The third field in: " & teststring & " is: " & retvalue

End Sub



See Also
Left
LTrim
Mid Function
Mid Statement
Right
RTrim
SetField
StrComp
Trim



' GetObject Function Example
'This example displays a list of open files in the software application, VISIO. It uses the GetObject 
function to access VISIO. To see how this example works, you need to start VISIO and open one or 
more documents.

Sub main
      Dim visio as Object
      Dim doc as Object
      Dim msgtext as String
      Dim i as Integer, doccount as Integer

'Initialize Visio
      Set visio = GetObject(,"visio.application") ' find Visio
      If (visio Is Nothing) then
            Msgbox "Couldn't find Visio!"
            Exit Sub
      End If
'Get # of open Visio files
      doccount = visio.documents.count 'OLE Automation call to Visio
      If doccount=0 then
            msgtext="No open Visio documents."
      Else
            msgtext="The open files are: " & Chr$(13)
            For i = 1 to doccount
                  Set doc = visio.documents(i) ' access Visio's document method
                  msgtext=msgtext & Chr$(13)& doc.name
            Next i
      End If
      MsgBox msgtext
End Sub



See Also
CreateObject
Is
Me
New
Nothing
Object Class
Typeof



' Global Statement Example
'This example contains two subroutines that share the variables TOTAL and ACCTNO, and the 
record GRECORD.

Type acctrecord
      acctno As Integer
End Type

Global acctno as Integer
Global total as Integer
Global grecord as acctrecord
Declare Sub createfile

Sub main
      Dim msgtext
      Dim newline as String
      newline=Chr$(10)
      Call createfile
      Open "C:\TEMP001" For Input as #1
      msgtext="The new account numbers are: " & newline
      For x=1 to total
            Input #1, grecord.acctno
            msgtext=msgtext    & newline & grecord.acctno
      Next x
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub

Sub createfile
      Dim x
      x=1
      grecord.acctno=1
      Open "C:\TEMP001" For Output as #1
      Do While grecord.acctno<>0
            grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")
            If grecord.acctno<>0 then
                  Print #1, grecord.acctno
                  x=x+1
            End If
      Loop
      total=x-1
      Close #1
End Sub



See Also
Const
Dim
Option Base
ReDim
Static
Type



' GoTo Statement Example
'This example displays the date for one week from the date entered by the user. If the date is 
invalid, the Goto statement sends program execution back to the beginning.

Sub main
      Dim str1 as String
      Dim nextweek
      Dim msgtext
i: str1=InputBox$("Enter a date:")
      answer=IsDate(str1)
      If answer=-1 then
            str1=CVDate(str1)
            nextweek=DateValue(str1)+7
            msgtext="One week from the date entered is:"
            msgtext=msgtext & Format(nextweek,"dddddd")
            MsgBox msgtext
      Else
            MsgBox "Invalid date or format. Try again."
            Goto i
      End If
End Sub



See Also
Do...Loop
For...Next
If...Then...Else
Select Case
While...Wend



' GroupBox Statement Example
'This example creates a dialog box with two group boxes.

Sub main
      Begin Dialog UserDialog 242, 146, "Print Dialog Box"
            '$CStrings Save
            GroupBox    115, 14, 85, 57, "Page Range"
            OptionGroup .OptionGroup2
                  OptionButton    123, 30, 46, 12, "All Pages", .OptionButton1
                  OptionButton    123, 50, 67, 8, "Current Page", .OptionButton2
            GroupBox    14, 12, 85, 76, "Include"
            CheckBox    26, 17, 54, 25, "Pictures", .CheckBox1
            CheckBox    26, 36, 54, 25, "Links", .CheckBox2
            CheckBox    26, 58, 63, 25, "Header/Footer", .CheckBox3
            PushButton    34, 115, 54, 14, "Print"
            PushButton    136, 115, 54, 14, "Cancel"
            '$CStrings Restore
      End Dialog
      Dim mydialog as UserDialog
      Dialog mydialog
End Sub



See Also
Begin Dialog...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Hex Function Example
'This example returns the hex value for a number entered by the user.

Sub main
      Dim usernum as Integer
      Dim hexvalue
      usernum=InputBox("Enter a number to convert to hexidecimal:")
      hexvalue=Hex(usernum)
      Msgbox "The HEX value is: " & hexvalue
End Sub



See Also
Oct
Format



' Hour Function Example
'This example extracts just the time (hour, minute, and second) from a file's last modification date
and time.

Sub main
      Dim filename as String
      Dim ftime
      Dim hr, min
      Dim sec
      Dim msgtext as String
i: msgtext="Enter a filename:"
      filename=InputBox(msgtext)
      If filename="" then
            Exit Sub
      End If
      On Error Resume Next
      ftime=FileDateTime(filename)
      If Err<>0 then
            MsgBox "Error in filename. Try again."
            Goto i:
      End If
      hr=Hour(ftime)
      min=Minute(ftime)
      sec=Second(ftime)
      Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub



See Also
DateSerial
DateValue
Day
Minute
Month
Now
Second
Time Function
Time Statement
TimeSerial
TimeValue
Weekday
Year



' If...Then...Else Function Example
'This example checks the time and the day of the week, and returns an appropriate message. 

Sub main
      Dim h, m, m2, w
      h = hour(now)
      If h > 18 then
            m= "Good evening, "
      Elseif h >12 then
            m= "Good afternoon, "
      Else
            m= "Good morning, "
      End If
            w = weekday(now)
      If w = 1 or w = 7 then m2 = "the office is closed." else m2 = "please hold for company operator."
      Msgbox m & m2
End Sub



See Also
Do...Loop
For...Next
Goto
On...Goto
Select Case
While...Wend



' $Include Metacommand Example
'This example includes a file containing the list of global variables, called GLOBALS.OSS. For this 
example to work correctly, you must create the GLOBALS.OSS file with at least the following 
statement: Dim gtext as String. The Option Explicit statement is included in this example to 
prevent OPEN Script from automatically dimensioning the variable as a Variant.

Option Explicit
Sub main
      Dim msgtext as String
      '$Include: "c:\globals.oss"
      gtext=InputBox("Enter a string for the global variable:")
      msgtext="The variable for the string '"
      msgtext=msgtext & gtext & "' was DIM'ed in GLOBALS.OSS."
      MsgBox msgtext
End Sub



See Also
$CStrings
Global
$NoCStrings



' Input Function Example
'This example opens a file and prints its contents to the screen.

Sub main
      Dim fname
      Dim fchar()
      Dim x as Integer
      Dim msgtext
      Dim newline
      newline=Chr(10)
      On Error Resume Next
      fname=InputBox("Enter a filename to print:")
      If fname="" then
            Exit Sub
      End If
      Open fname for Input as #1
      If Err<>0 then
            MsgBox "Error loading file.    Re-run program."
            Exit Sub
      End If
      msgtext="The contents of " & fname & " is: " & newline &newline
      Redim fchar(Lof(1))
        For x=1 to Lof(1)
                fchar(x)=Input(1,#1)
                msgtext=msgtext & fchar(x)
      Next x
      MsgBox msgtext
      Close #1
End Sub



See Also
Get
Input Statement
Line Input
Open
Write



' Input Statement Example
'This example prompts a user for an account number, opens a file, searches for the account 
number and displays the matching letter for that number. It uses the Input statement to increase 
the value of x and at the same time get the letter associated with each value. The second 
subprogram, CREATEFILE, creates the file C:\TEMP001 used by the main subprogram.

Declare Sub createfile()
Global x as Integer
Global y(100) as String

Sub main
      Dim acctno as Integer
      Dim msgtext
      Call createfile
i: acctno=InputBox("Enter an account number from 1-10:")
      If acctno<1 Or acctno>10 then
            MsgBox "Invalid account number. Try again."
            Goto i:
      End if
      x=1
      Open "C:\TEMP001" for Input as #1
      Do Until x=acctno
            Input #1, x,y(x)
      Loop
            msgtext="The letter for account number " & x & " is: " & y(x)
      Close #1
      MsgBox msgtext
      Kill "C:\TEMP001"
End Sub

Sub createfile()
' Put the numbers 1-10 and letters A-J into a file
      Dim startletter
      Open "C:\TEMP001" for Output as #1
      startletter=65
      For x=1 to 10
            y(x)=Chr(startletter)
            startletter=startletter+1
      Next x
      For x=1 to 10
            Write #1, x,y(x)
      Next x
      Close #1
End Sub



See Also
Get
Input Function
Line Input
Open
Write



' InputBox Function Example
'This example uses InputBox to prompt for a filename and then prints the filename using MsgBox.

Sub main
      Dim filename
      Dim msgtext
      msgtext="Enter a filename:"
      filename=InputBox$(msgtext)
      MsgBox "The filename you entered is: " & filename
End Sub



See Also
Dialog Boxes
Input Function
Input Statement
MsgBox Function
MsgBox Statement
PasswordBox



' InStr Function Example
'This example generates a random string of characters then uses InStr to find the position of a 
single character within that string.

Sub main
      Dim x as Integer
      Dim y
      Dim str1 as String
      Dim str2 as String
      Dim letter as String
      Dim randomvalue
      Dim upper, lower
      Dim position as Integer
      Dim msgtext, newline
      upper=Asc("z")
      lower=Asc("a")
      newline=Chr(10)
      For x=1 to 26
            Randomize
            randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
            letter=Chr(randomvalue)
            str1=str1 & letter
'Need to waste time here for fast processors
            For y=1 to 1000
            Next y
      Next x
      str2=InputBox("Enter a letter to find")
      position=InStr(str1,str2)
      If position then
            msgtext="The position of " & str2 & " is: " & position & newline
            msgtext=msgtext & "in string: " & str1
      Else
            msgtext="The letter: " & str2 & " was not found in: " & newline
            msgtext=msgtext & str1
      End If
      MsgBox msgtext
End Sub



See Also
GetField
Left
Mid Function
Mid Statement
Option Compare
Right
Str
StrComp



' Int Function Example
'This example uses Int to generate random numbers in the range between the ASCII values for 
lowercase a and z (97 and 122). The values are converted to letters and displayed as a string.

Sub main
Dim x as Integer
Dim y
Dim str1 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim msgtext, newline
upper=Asc("z")
lower=Asc("a")
newline=Chr(10)
For x=1 to 26

Randomize
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
str1=str1 & letter

'Need to waste time here for fast processors
For y=1 to 1500
Next y

Next x
msgtext="The string is:" & newline
msgtext=msgtext & str1
MsgBox msgtext

End Sub



See Also
Exp
Fix
Log
Rnd
Sgn
Sqr



' IPmt Function Example
'This example finds the interest portion of a loan payment amount for payments made in last 
month of the first year. The loan is for $25,000 to be paid back over 5 years at 9.5% interest.

Sub main
      Dim aprate, periods
      Dim payperiod
      Dim loanpv, due
      Dim loanfv, intpaid
      Dim msgtext
      aprate=.095
      payperiod=12
      periods=120
      loanpv=25000
      loanfv=0
Rem Assume payments are made at end of month
      due=0
      intpaid=IPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
      msgtext="For a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
      msgtext=msgtext+ "the interest paid in month 12 is: "
      msgtext=msgtext + Format(intpaid, "Currency")
      MsgBox msgtext
End Sub



See Also
FV
IRR
NPV
Pmt
PPmt
PV
Rate



' IRR Function Example
'This example calculates an internal rate of return (expressed as an interest rate percentage) for a
series of business transactions (income and costs). The first value entered must be a negative 
amount, or IRR generates an "Illegal Function Call" error.

Sub main
      Dim cashflows() as Double
      Dim guess, count as Integer
      Dim i as Integer
      Dim intnl as Single
      Dim msgtext as String
      guess=.15
      count=InputBox("How many cash flow amounts do you have?")
      ReDim cashflows(count+1)
      For i=0 to count-1
            cashflows(i)=InputBox("Enter income value for month " & i+1 & ":")
      Next i
      intnl=IRR(cashflows(),guess)
      msgtext="The IRR for your cash flow amounts is: " 
      msgtext=msgtext & Format(intnl, "Percent")
      MsgBox msgtext
End Sub



See Also
FV
IPmt
NPV
Pmt
PPmt
PV
Rate



' Is Operator Example
'This example displays a list of open files in the software application, VISIO. It uses the Is operator 
to determine whether VISIO is available. To see how this example works, you need to start VISIO 
and open one or more documents.

Sub main
      Dim visio as Object
      Dim doc as Object
      Dim msgtext as String
      Dim i as Integer, doccount as Integer

'Initialize Visio
      Set visio = GetObject(,"visio.application") ' find Visio
      If (visio Is Nothing) then
            Msgbox "Couldn't find Visio!"
            Exit Sub
      End If
'Get # of open Visio files
      doccount = visio.documents.count 'OLE Automation call to Visio
      If doccount=0 then
            msgtext="No open Visio documents."
      Else
            msgtext="The open files are: " & Chr$(13)
            For i = 1 to doccount
                  Set doc = visio.documents(i) ' access Visio's document method
                  msgtext=msgtext & Chr$(13)& doc.name
            Next i
      End If
      MsgBox msgtext
End Sub



See Also
Create Object
Get Object
Me
Nothing
Object
Typeof



' IsDate Function Example
'This example adds a number to today's date value and checks to see if it is still a valid date 
(within the range January 1, 100AD through December 31, 9999AD).

Sub main
      Dim curdatevalue
      Dim yrs
      Dim msgtext
      curdatevalue=DateValue(Date$)
      yrs=InputBox("Enter a number of years to add to today's date")
      yrs=yrs*365
      curdatevalue=curdatevalue+yrs
      If IsDate(curdatevalue)=-1 then
            MsgBox "The new date is: " & Format(CVDate(curdatevalue), "dddddd")
      Else
            MsgBox "The date is not valid."
      End If
End Sub



See Also
CVDate
IsEmpty
IsNull
IsNumeric
VarType



' IsEmpty Function Example
'This example prompts for a series of test scores and uses IsEmpty to determine whether the 
maximum allowable limit has been hit. (IsEmpty determines when to exit the Do...Loop.)

Sub main
      Dim arrayvar(10)
      Dim x as Integer
      Dim tscore as Single
      Dim total as Integer
      x=1
      Do
            tscore=InputBox("Enter test score #" & x & ":")
            arrayvar(x)=tscore
            x=x+1
      Loop Until IsEmpty(arrayvar(10))<>-1
      total=x-1
      msgtext="You entered: " & Chr(10)
      For x=1 to total
              msgtext=msgtext & Chr(10) & arrayvar(x)
      Next x
      MsgBox msgtext
End Sub



See Also
IsDate
IsNull
IsNumeric
VarType



' IsMissing Function Example
'This example prints a list of letters. The number printed is determined by the user. If the user 
wants to print all letters, the Function myfunc is called without any argument. The function uses 
IsMissing to determine whether to print all the letters or just the number specified by the user.

Function myfunc(Optional arg1)
      If IsMissing(arg1)=-1 then
            arg1=26
      End If
      msgtext="The letters are: " & Chr$(10)
      For x= 1 to arg1
            msgtext=msgtext & Chr$(x+64) & Chr$(10)
      Next x
      MsgBox msgtext
End Function

Sub main
      Dim arg1
      arg1=InputBox("How many letters do you want to print? (0 for all)")
      If arg1=0 then
            myfunc()
      Else
            myfunc(arg1)
      End If
End Sub



See Also
Function...End Function



' IsNull Function Example
'This example asks for ten test score values and calculates the average. If any score is negative, 
the value is set to Null. Then IsNull is used to reduce the total count of scores (originally 10) to just
those with positive values before calculating the average.

Sub main
      Dim arrayvar(10)
      Dim count as Integer
      Dim total as Integer
      Dim x as Integer
      Dim tscore as Single
      count=10
      total=0
      For x=1 to count
            tscore=InputBox("Enter test score #" & x & ":")
            If tscore<0 then
                  arrayvar(x)=Null
            Else
                  arrayvar(x)=tscore
                  total=total+arrayvar(x)
            End If
      Next x
      Do While x<>0
            x=x-1
            If IsNull(arrayvar(x))=-1 then
                  count=count-1
            End If
      Loop
      msgtext="The average (excluding negative values) is: " & Chr(10)
      msgtext=msgtext & Format (total/count, "##.##")
      MsgBox msgtext
End Sub



See Also
IsDate
IsEmpty
IsNumeric
VarType



' IsNumeric Function Example
'This example uses IsNumeric to determine whether a user selected an option (1-3) or typed "Q" 
to quit.

Sub main
Dim answer
answer=InputBox("Enter a choice (1-3) or type Q to quit")
If IsNumeric(answer)=-1 then

Select Case answer
Case 1

MsgBox "You chose #1."
Case 2

MsgBox "You chose #2."
Case 3

MsgBox "You chose #3."
End Select

Else
MsgBox "You typed Q."

End If
End Sub



See Also
IsDate
IsEmpty
IsNull
VarType



' Kill Function Example
'This example prompts a user for an account number, opens a file, searches for the account 
number and displays the matching letter for that number. The second subprogram, CREATEFILE, 
creates the file C:\TEMP001 used by the main subprogram. After processing is complete, the first 
subroutine uses Kill to delete the file.

Declare Sub createfile()
Global x as Integer
Global y(100) as String

Sub main
      Dim acctno as Integer
      Dim msgtext
      Call createfile
i: acctno=InputBox("Enter an account number from 1-10:")
      If acctno<1 Or acctno>10 then
            MsgBox "Invalid account number. Try again."
            Goto i:
      End if
      x=1
      Open "C:\TEMP001" for Input as #1
      Do Until x=acctno
            Input #1, x,y(x)
      Loop
            msgtext="The letter for account number " & x & " is: " & y(x)
      Close #1
      MsgBox msgtext
      Kill "C:\TEMP001"
End Sub

Sub createfile()
' Put the numbers 1-10 and letters A-J into a file
      Dim startletter
      Open "C:\TEMP001" for Output as #1
      startletter=65
      For x=1 to 10
            y(x)=Chr(startletter)
            startletter=startletter+1
      Next x
      For x=1 to 10
            Write #1, x,y(x)
      Next x
      Close #1
End Sub



See Also
FileAttr
FileDateTime
GetAttr
RmDir



' LBound Function Example
'This example resizes an array if the user enters more data than can fit in the array. It uses 
LBound and UBound to determine the existing size of the array and ReDim to resize it. Option 
Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
      Dim arrayvar() as Integer
      Dim count as Integer
      Dim answer as String
      Dim x, y as Integer
      Dim total
      total=0
      x=1
      count=InputBox("How many test scores do you have?")
      ReDim arrayvar(count)
start:
      Do until x=count+1
          arrayvar(x)=InputBox("Enter test score #" &x & ":")
          x=x+1
      Loop
      answer=InputBox$("Do you have more scores? (Y/N)")
      If answer="Y" or answer="y" then
          count=InputBox("How many more do you have?")
          If count<>0 then
              count=count+(x-1)
              ReDim Preserve arrayvar(count)
              Goto start
          End If
      End If
      x=LBound(arrayvar,1)
      count=UBound(arrayvar,1)
      For y=x to count
                total=total+arrayvar(y)
      Next y
      MsgBox "The average of " & count & " scores is: " & Int(total/count)
End Sub



See Also
Dim
Global
Option Base
ReDim
Static
UBound



' LCase Function Example
'This example converts a string entered by the user to lowercase.

Sub main
Dim userstr as String
      userstr=InputBox$("Enter a string in upper and lowercase letters")
      userstr=LCase$(userstr)
      Msgbox "The string now is: " & userstr
End Sub



See Also
UCase



' Left Function Example
'This example extracts a user's first name from the entire name entered.

Sub main
Dim username as String
Dim count as Integer
Dim firstname as String
Dim charspace
charspace=Chr(32)
username=InputBox("Enter your first and last name")
count=InStr(username,charspace)
firstname=Left(username,count)
Msgbox "Your first name is: " &firstname

End Sub



See Also
GetField
Len
LTrim
Mid Function
Mid Statement
Right
RTrim
Str
StrComp
Trim



' Len Function Example
'This example returns the length of a name entered by the user (including spaces).

Sub main
Dim username as String
username=InputBox("Enter your name")
count=Len(username)
Msgbox "The length of your name is: " &count

End Sub



See Also
Instr



' Let (Assignment Statement) Example
'This example uses the Let statement for the variable sum. The subroutine finds an average of 10 
golf scores.

Sub main
Dim score As Integer
Dim x, sum
Dim msgtext
Let sum=0
For x=1 to 10

score=InputBox("Enter your last ten golf scores #" & x & ":")
sum=sum+score

Next x
msgtext="Your average is: " & CInt(sum/(x-1))
MsgBox msgtext

End Sub



See Also
Const
Lset
Set



' Like Operator Example
'This example tests whether a letter is lowercase.

Sub main
      Dim userstr as String
      Dim revalue as Integer
      Dim msgtext as String
      Dim pattern
      pattern="[a-z]"
      userstr=InputBox$("Enter a letter:")
      retvalue=userstr LIKE pattern
      If retvalue=-1 then
            msgtext="The letter " & userstr & " is lowercase."
      Else
            msgtext="Not a lowercase letter."
      End If
      Msgbox msgtext
End Sub



See Also
Expressions
Instr
Option Compare
StrComp



' Line Input Statement Example
'This example reads the contents of a sequential file line by line (to a carriage return) and displays
the results. The second subprogram, CREATEFILE, creates the file C:\TEMP001 used by the main 
subprogram.

Declare Sub createfile()
Sub main
      Dim testscore as String
      Dim x
      Dim y
      Dim newline
      Call createfile
      Open "c:\temp001" for Input as #1
      x=1
      newline=Chr(10)
      msgtext= "The contents of c:\temp001 is: " & newline
      Do Until x=Lof(1)
            Line Input #1, testscore
            x=x+1
            y=Seek(1)
            If y>Lof(1) then
                  x=Lof(1)
            Else
                  Seek 1,y
            End If
            msgtext=msgtext & testscore & newline
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 1-10 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, x
      Next x
      Close #1
End Sub



See Also
DialogBoxes
Get
Input Function
Input Statement
InputBox
Open



' ListBox Statement Example
'This example defines a dialog box with list box and two buttons.

Sub main
      Dim ListBox1() as String
      ReDim ListBox1(0)
      ListBox1(0)="C:\"
      Begin Dialog UserDialog 133, 66, 171, 65, "OPEN Script Dialog Box"
            Text    3, 3, 34, 9, "Directory:", .Text2
            ListBox    3, 14, 83, 39, ListBox1(), .ListBox2
            OKButton    105, 6, 54, 14
            CancelButton    105, 26, 54, 14
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DialogBoxes
DropComboBox
GroupBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Loc Function Example
'This example creates a file of account numbers as entered by the user. When the user finishes, 
the example displays the offset in the file of the last entry made.

Sub main
      Dim filepos as Integer
      Dim acctno() as Integer
      Dim x as Integer
      x=0    
      Open "c:\TEMP001" for Random as #1
      Do
          x=x+1
          Redim Preserve acctno(x)
          acctno(x)=InputBox("Enter account #" & x & " or 0 to end:")
          If acctno(x)=0 then
                Exit Do
          End If
          Put #1,, acctno(x)
      Loop
      filepos=Loc(1)
      Close #1
      MsgBox "The offset is: " & filepos
      Kill "C:\TEMP001"
End Sub



See Also
Eof
Lof
Open



' Lock Function Example
'This example locks a file that is shared by others on a network, if the file is already in use. The 
second subprogram, CREATEFILE, creates the file used by the main subprogram.
               
Declare Sub createfile
Sub main
      Dim btngrp, icongrp
      Dim defgrp
      Dim answer
      Dim noaccess as Integer
      Dim msgabort
      Dim msgstop as Integer
      Dim acctname as String
      noaccess=70
      msgstop=16
      Call createfile
      On Error Resume Next
      btngrp=1
      icongrp=64
      defgrp=0
      answer=MsgBox("Open the account file?" & Chr(10), btngrp+icongrp+defgrp)
      If answer=1 then
            Open "C:\TEMP001" for Input as #1
            If Err=noaccess then
                  msgabort=MsgBox("File Locked",msgstop,"Aborted")
            Else
                  Lock #1
                  Line Input #1, acctname
                  MsgBox "The first account name is: " & acctname
                  Unlock #1
            End If
            Close #1
      End If
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the letters A-J into the file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, Chr(x+64)
      Next x
      Close #1
End Sub



See Also
Open
Unlock



' Lof Function Example
'This example opens a file and prints its contents to the screen.

Sub main
      Dim fname
      Dim fchar()
      Dim x as Integer
      Dim msgtext
      Dim newline
      newline=Chr(10)
      fname=InputBox("Enter a filename to print:")
      On Error Resume Next
      Open fname for Input as #1
      If Err<>0 then
            MsgBox "Error loading file. Re-run program."
            Exit Sub
      End If
      msgtext="The contents of " & fname & " is: " & newline &newline
      Redim fchar(Lof(1))
        For x=1 to Lof(1)
                fchar(x)=Input(1,#1)
                msgtext=msgtext & fchar(x)
      Next x
      MsgBox msgtext
      Close #1
End Sub



See Also
Eof
FileLen
Loc
Open



' Log Function Example
'This example uses the Log function to determine which number is larger: 999^1000 (999 to the 
1000 power) or 1000^999 (1000 to the 999 power). Note that you cannot use the exponent (^) 
operator for numbers this large.

Sub main
Dim x
Dim y
x=999
y=1000
a=y*(Log(x))
b=x*(Log(y))
If a>b then

MsgBox "999^1000 is greater than 1000^999"
Else

MsgBox "1000^999 is greater than 999^1000"
End If

End Sub



See Also
Exp
Fix
Int
Rnd
Sgn
Sqr



' Lset Statement Example
'This example puts a user's last name into the variable LASTNAME. If the name is longer than the 
size of LASTNAME, then the user's name is truncated. If you have a long last name and you get 
lots of junk mail, you've probably seen how this works already.

Sub main
Dim lastname as String
Dim strlast as String*8
lastname=InputBox("Enter your last name")
Lset strlast=lastname
msgtext="Your last name is: " &strlast
MsgBox msgtext

End Sub



See Also
Rset



' LTrim Function Example
'This example trims the leading spaces from a string padded with spaces on the left.

Sub main
      Dim userinput as String
      Dim numsize
      Dim str1 as String*50
      Dim strsize
      strsize=50
      userinput=InputBox("Enter a string of characters:")
      numsize=Len(userinput)
      str1=Space(strsize-numsize) & userinput
' Str1 has a variable number of leading spaces.
      MsgBox "The string is: " &str1
      str1=LTrim$(str1)
' Str1 now has no leading spaces.
      MsgBox "The string now has no leading spaces: " & str1
End Sub



See Also
GetField
Left
Mid Function
Mid Statement
Right
RTrim
Trim



' Me Example
 (None)



See Also
Create Object
Get Object
New
Nothing
Object
Typeof



' Mid Statement Example
'This example uses the Mid statement to replace the last name in a user-entered string to 
asterisks(*).

Sub main
      Dim username as String
      Dim position as Integer
      Dim count as Integer
      Dim uname as String
      Dim replacement as String
      username=InputBox("Enter your full name:")
      uname=username
      replacement="*"
      Do
            position=InStr(username," ")
            If position=0 then
                  Exit Do
            End If
            username=Mid(username,position+1)
            count=count+position
      Loop
      For x=1 to Len(username)
            count=count+1
            Mid(uname,count)=replacement
      Next x
      MsgBox "Your name now is: " & uname
End Sub



See Also
GetField
Left
Len
LTrim
Mid Function
Right
RTrim
Trim



' Mid Function Example
'This example uses the Mid function to find the last name in a string. entered by the user.

Sub main
      Dim username as String
      Dim position as Integer
      username=InputBox("Enter your full name:")
      Do
          position=InStr(username," ")
          If position=0 then
              Exit Do
          End If
          position=position+1
          username=Mid(username,position)
      Loop
      MsgBox "Your last name is: " & username
End Sub



See Also
GetField
LCase
Left
Len
LTrim
Mid Statement
Right
RTrim
Trim



' Minute Function Example
'This example extracts just the time (hour, minute, and second) from a file's last modification date
and time.

Sub main
      Dim filename as String
      Dim ftime
      Dim hr, min
      Dim sec
      Dim msgtext as String
i: msgtext="Enter a filename:"
      filename=InputBox(msgtext)
      If filename="" then
            Exit Sub
      End If
      On Error Resume Next
      ftime=FileDateTime(filename)
      If Err<>0 then
            MsgBox "Error in filename. Try again."
            Goto i:
      End If
      hr=Hour(ftime)
      min=Minute(ftime)
      sec=Second(ftime)
      Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub



See Also
DateSerial
DateValue
Day
Hour
Month
Now
Second
Time Function
Time Statement
TimeSerial
TimeValue
Weekday
Year



' MkDir Statement Example
'This example makes a new temporary directory in C:\ and then deletes it.

Sub main
Dim path as String
On Error Resume Next
path=CurDir(C)
If path<>"C:\" then

ChDir "C:\"
End If
MkDir "C:\TEMP01"
If Err=75 then

MsgBox "Directory already exists"
Else

MsgBox "Directory C:\TEMP01 created"
MsgBox "Now removing directory"
RmDir "C:\TEMP01"

End If
End Sub



See Also
ChDir
ChDrive
CurDir
Dir
RmDir



' Month Function Example
'This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today
Dim msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5

x=x+1
Loop
msgtext="This Thursday is: " & Month(Today+x)&"/"&Day(Today+x)
MsgBox msgtext

End Sub



See Also
Date Function
Date Statement
DateSerial
DateValue
Day
Hour
Minute
Now
Second
TimeSerial
TimeValue
Weekday
Year



' Msgbox Function Example
'This example displays one of each type of message box.

Sub main
      Dim btngrp as Integer
      Dim icongrp as Integer
      Dim defgrp as Integer
      Dim msgtext as String
      icongrp=16
      defgrp=0
      btngrp=0
      Do Until btngrp=6
          Select Case btngrp
                Case 1, 4, 5
                      defgrp=0
                Case 2
                      defgrp=256
                Case 3
                      defgrp=512
            End Select
            msgtext="    Icon group = " & icongrp & Chr(10)
            msgtext=msgtext + "      Button group = " & btngrp & Chr(10)
            msgtext=msgtext + "      Default group = " & defgrp & Chr(10)
            msgtext=msgtext + Chr(10) + "      Continue?"
            answer=MsgBox(msgtext, btngrp+icongrp+defgrp)
            Select Case answer
                Case 2,3,7
                    Exit Do
            End Select
            If icongrp<>64 then
                  icongrp=icongrp+16
            End If
            btngrp=btngrp+1
      Loop
End Sub



See Also
Dialog Boxes
InputBox
MsgBox Statement
PasswordBox



' Msgbox Statement Example
'This example finds the future value of an annuity, whose terms are defined by the user. It uses 
the MsgBox statement to display the result.

Sub main
      Dim aprate, periods
      Dim payment, annuitypv
      Dim due, futurevalue
      Dim msgtext
      annuitypv=InputBox("Enter present value of the annuity: ")
      aprate=InputBox("Enter the annual percentage rate: ")
      If aprate >1 then
            aprate=aprate/100
      End If
      periods=InputBox("Enter the total number of pay periods: ")
      payment=InputBox("Enter the initial amount paid to you: ")
Rem Assume payments are made at end of month
      due=0
      futurevalue=FV(aprate/12,periods,-payment,-annuitypv,due)
      msgtext="The future value is: " & Format(futurevalue, "Currency")
      MsgBox msgtext
End Sub



See Also
InputBox
MsgBox Function
PasswordBox



' Name Statement Example
'This example creates a temporary file, C:\TEMP001, renames the file to C:\TEMP002, then deletes 
them both. It calls the subprogram, CREATEFILE, to create the C:\TEMP001 file.

Declare Sub createfile()
Sub main

Call createfile
On Error Resume Next
Name "C:\TEMP001" As "C:\TEMP002"
MsgBox "The file has been renamed"
MsgBox "Now deleting both files"
Kill "TEMP001"
Kill "TEMP002"

End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Dim y()
Dim startletter
Open "C:\TEMP001" for Output as #1
For x=1 to 10

Write #1, x
Next x
Close #1

End Sub



See Also
FileAttr
FileCopy
GetAttr
Kill



' New Operator Example
 (None)



See Also
Dim
Global
Set
Static



' $NoCStrings Metacommand Example
'This example displays two lines, the first time using the C-language characters "\n" for a carriage 
return and line feed.

Sub main
      '$CStrings
      MsgBox "This is line 1\n This is line 2 (using C Strings)"
      '$NoCStrings
      MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is line 2 (using Chr)"
End Sub



See Also
$CStrings
$Include
Rem



' Nothing Function Example
'This example displays a list of open files in the software application VISIO. It uses the Nothing 
function to determine whether VISIO is available. To see how this example works, you need to 
start VISIO and open one or more documents.

Sub main
      Dim visio as Object
      Dim doc as Object
      Dim msgtext as String
      Dim i as Integer, doccount as Integer

'Initialize Visio
      Set visio = GetObject(,"visio.application") ' find Visio
      If (visio Is Nothing) then
            Msgbox "Couldn't find Visio!"
            Exit Sub
      End If
'Get # of open Visio files
      doccount = visio.documents.count 'OLE Automation call to Visio
      If doccount=0 then
            msgtext="No open Visio documents."
      Else
            msgtext="The open files are: " & Chr$(13)
            For i = 1 to doccount
                  Set doc = visio.documents(i) ' access Visio's document method
                  msgtext=msgtext & Chr$(13)& doc.name
            Next i
      End If
      MsgBox msgtext
End Sub



See Also
Is
New



' Now Function Example
'This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today
Dim msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5

x=x+1
Loop
msgtext="This Thursday is: " &Month(Today+x)&"/"&Day(Today+x)
MsgBox msgtext

End Sub



See Also
Date Function
Date Statement
Day
Hour
Minute
Month
Second
Time Function
Time Statement
Weekday
Year



' NPV Function Example
'This example finds the net present value of an investment, given a range of cash flows by the 
user.

Sub main
      Dim aprate as Single
      Dim varray() as Double
      Dim cflowper as Integer
      Dim x as Integer
      Dim netpv as Double
      cflowper=InputBox("Enter number of cash flow periods")
      ReDim varray(cflowper)
      For x= 1 to cflowper
            varray(x)=InputBox("Enter cash flow amount for period #" & x & ":")
      Next x
      aprate=InputBox("Enter discount rate: ")
      If aprate>1 then
            aprate=aprate/100
      End If
      netpv=NPV(aprate,varray())
      MsgBox "The net present value is: " & Format(netpv, "Currency")
End Sub



See Also
FV
IPmt
IRR
Pmt
PPmt
PV
Rate



' Null Function Example
'This example asks for ten test score values and calculates the average. If any score is negative, 
the value is set to Null. Then IsNull is used to reduce the total count of scores (originally 10) to just
those with positive values before calculating the average.

Sub main
      Dim arrayvar(10)
      Dim count as Integer
      Dim total as Integer
      Dim x as Integer
      Dim tscore as Single
      count=10
      total=0
      For x=1 to count
            tscore=InputBox("Enter test score #" & x & ":")
            If tscore<0 then
                  arrayvar(x)=Null
            Else
                  arrayvar(x)=tscore
                  total=total+arrayvar(x)
            End If
      Next x
      Do While x<>0
            x=x-1
            If IsNull(arrayvar(x))=-1 then
                  count=count-1
            End If
      Loop
      msgtext="The average (excluding negative values) is: " & Chr(10)
      msgtext=msgtext & Format (total/count, "##.##")
      MsgBox msgtext
End Sub



See Also
IsEmpty
IsNull
VarType



' Object Class Example
'This example displays a list of open files in the software application VISIO. It uses the Object class
to declare the variables used for accessing VISIO and its document files and methods.

Sub main
      Dim visio as Object
      Dim doc as Object
      Dim msgtext as String
      Dim i as Integer, doccount as Integer

'Initialize Visio
      Set visio = GetObject(,"visio.application") ' find Visio
      If (visio Is Nothing) then
            Msgbox "Couldn't find Visio!"
            Exit Sub
      End If
'Get # of open Visio files
      doccount = visio.documents.count 'OLE Automation call to Visio
      If doccount=0 then
            msgtext="No open Visio documents."
      Else
            msgtext="The open files are: " & Chr$(13)
            For i = 1 to doccount
                  Set doc = visio.documents(i) ' access Visio's document method
                  msgtext=msgtext & Chr$(13)& doc.name
            Next i
      End If
      MsgBox msgtext
End Sub



See Also
Create Object
Get Object
New
Nothing
Typeof



' Oct Function Example
'This example prints the octal values for the numbers from 1 to 15.

Sub main
      Dim x,y
      Dim msgtext
      Dim nofspaces
      msgtext="Octal numbers from 1 to 15:" & Chr(10)
      For x=1 to 15
          nofspaces=10
          y=Oct(x)
          If Len(x)=2 then
                nofspaces=nofspaces-2
          End If
          msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y 
      Next x
      MsgBox msgtext
End Sub



See Also
Hex



' OKButton Statement Example
'This example defines a dialog box with a dropcombo box and the OK and Cancel buttons.

Sub main
      Dim cchoices as String
      On Error Resume Next
      cchoices="All"+Chr$(9)+"Nothing"
        Begin Dialog UserDialog 180, 95, "OPEN Script Dialog Box"
              ButtonGroup .ButtonGroup1
              Text    9, 3, 69, 13, "Filename:", .Text1
              DropComboBox    9, 17, 111, 41, cchoices, .ComboBox1
              OKButton    131, 8, 42, 13
              CancelButton    131, 27, 42, 13
        End Dialog
              Dim mydialogbox As UserDialog
              Dialog mydialogbox
              If Err=102 then
                    MsgBox "You pressed Cancel."
              Else
                    MsgBox "You pressed OK."
              End If
End Sub



See Also
Begin...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
GroupBox
ListBox
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' On ..Goto Statement Example
'This example sets the current system time to the user's entry. If the entry cannot be converted to 
a valid time value, this subroutine sets the variable to Null. It then checks the variable and if it is 
Null, uses the On...Goto statement to ask again.

Sub main
Dim answer as Integer
answer=InputBox("Enter a choice (1-3) or 0 to quit")
On answer Goto c1, c2, c3
MsgBox("You typed 0.")
Exit Sub

c1: MsgBox("You picked choice 1.")
Exit Sub

c2: MsgBox("You picked choice 2.")
Exit Sub

c3: MsgBox("You picked choice 3.")
Exit Sub

End Sub



See Also
Goto
Select Case



' On Error Statement Example
'This example prompts the user for a drive and directory name and uses On Error to trap invalid 
entries.

Sub main
            Dim userdrive, userdir, msgtext
in1:    userdrive=InputBox("Enter drive:",,"C:")
            On Error Resume Next
            ChDrive userdrive
            If Err=68 then
                  MsgBox "Invalid Drive. Try again."
                  Goto in1
            End If
in2:    On Error Goto Errhdlr1
            userdir=InputBox("Enter directory path:")
            ChDir userdrive & userdir
            Msgbox "New default directory is: " & userdrive & userdir
            Exit Sub
Errhdlr1:
            Select Case Err
                  Case 75
                        msgtext="Path is invalid."
                  Case 76
                        msgtext="Path not found."
                  Case 70
                        msgtext="Permission denied."
                  Case Else
                        msgtext="Error " & Err & ": " & Error$ & "occurred."
            End Select            
            MsgBox msgtext & " Try again."
            Resume in2
End Sub



See Also
Erl
Err Function
Err Statement
Error Function
Error Statement
Resume



' Open Statement Example
'This example opens a file for Random access, gets the contents of the file, and closes the file 
again. The second subprogram, CREATEFILE, creates the file C:\TEMP001 used by the main 
subprogram.

Declare Sub createfile()
Sub main
      Dim acctno as String*3
      Dim recno as Long
      Dim msgtext as String
      Call createfile
      recno=1
      newline=Chr(10)
      Open "C:\TEMP001" For Random As #1 Len=3
      msgtext="The account numbers are:" & newline
      Do Until recno=11
                  Get #1,recno,acctno
                  msgtext=msgtext & acctno
                  recno=recno+1
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 1-10 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, x
      Next x
      Close #1
End Sub



See Also
Close
FreeFile



' OptionButton Statement Example
'This example creates a dialog box with a group box with two option buttons: "All pages" and 
"Range of pages".

Sub main
      Begin Dialog UserDialog 183, 70, "OPEN Script Dialog Box"
            GroupBox    5, 4, 97, 57, "File Range"
            OptionGroup .OptionGroup2
                  OptionButton    16, 12, 46, 12, "All pages", .OptionButton3
                  OptionButton    16, 28, 67, 8, "Range of pages", .OptionButton4
            Text    22, 39, 20, 10, "From:", .Text6
            Text    60, 39, 14, 9, "To:", .Text7
            TextBox    76, 39, 13, 12, .TextBox4
            TextBox    44, 39, 12, 11, .TextBox5
            OKButton    125, 6, 54, 14
            CancelButton    125, 26, 54, 14
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
GroupBox
ListBox
OKButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' OptionGroup Statement Example
'This example creates a dialog box with a group box with two option buttons: "All pages" and 
"Range of Pages".

Sub main
      Begin Dialog UserDialog 192, 71, "OPEN Script Dialog Box"
            GroupBox    7, 6, 97, 57, "File Range"
            OptionGroup .OptionGroup2
                  OptionButton    18, 14, 46, 12, "All pages", .OptionButton3
                  OptionButton    18, 30, 67, 8, "Range of pages", .OptionButton4
            Text    24, 41, 20, 10, "From:", .Text6
            Text    62, 41, 14, 9, "To:", .Text7
            TextBox    78, 41, 13, 12, .TextBox4
            TextBox    46, 41, 12, 11, .TextBox5
            OKButton    126, 6, 54, 14
            CancelButton    126, 26, 54, 14
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
GroupBox
ListBox
OKButton
OptionButton
Picture
StaticComboBox
Text
TextBox



' Option Base Statement Example
'This example resizes an array if the user enters more data than can fit in the array. It uses 
LBound and UBound to determine the existing size of the array and ReDim to resize it. Option 
Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
      Dim arrayvar() as Integer
      Dim count as Integer
      Dim answer as String
      Dim x, y as Integer
      Dim total
      total=0
      x=1
      count=InputBox("How many test scores do you have?")
      ReDim arrayvar(count)
start:
      Do until x=count+1
          arrayvar(x)=InputBox("Enter test score #" &x & ":")
          x=x+1
      Loop
      answer=InputBox$("Do you have more scores? (Y/N)")
      If answer="Y" or answer="y" then
          count=InputBox("How many more do you have?")
          If count<>0 then
              count=count+(x-1)
              ReDim Preserve arrayvar(count)
              Goto start
          End If
      End If
      x=LBound(arrayvar,1)
      count=UBound(arrayvar,1)
      For y=x to count
                total=total+arrayvar(y)
      Next y
      MsgBox "The average of " & count & " scores is: " & Int(total/count)
End Sub



See Also
Dim
Global
LBound
ReDim
Static



' Option Compare Statement    Example
'This example compares two strings: "Jane Smith" and "jane smith". When Option Compare is Text,
the strings are considered the same. If Option Compare is Binary, they will not be the same. 
Binary is the default. To see the difference, run the example once, then run it again, commenting 
out the Option Compare statement.

Option Compare Text
Sub main
      Dim strg1 as String
      Dim strg2 as String
      Dim retvalue as Integer
      strg1="JANE SMITH"
      strg2="jane smith"
i:
      retvalue=StrComp(strg1,strg2)
      If retvalue=0 then
            MsgBox "The strings are identical"
      Else
            MsgBox "The strings are not identical"
            Exit Sub
      End If
End Sub



See Also
Instr
StrComp



' Option Explicit Statement Example
'This example specifies that all variables must be explicitly declared, thus preventing any 
mistyped variable names.

Option Explicit
Sub main

Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String

'...(code here)...
End Sub



See Also
Const
Def  type  
Dim
Function...End Function
Global
ReDim
Static
Sub...End Sub



' PasswordBox Function Example
'This example asks the user for a password.

Sub main
      Dim retvalue
      Dim a
      retvalue=PasswordBox("Enter your login password",Password)
      If retvalue<>"" then
            MsgBox "Verifying password"
'          (continue code here)
      Else
            MsgBox "Login cancelled"
      End If
End Sub



See Also
InputBox
MsgBox Function
MsgBox Statement



' Picture Statement Example
'This example defines a dialog box with a picture, and the OK and Cancel buttons.

Sub main
      Begin Dialog UserDialog 148, 73, "OPEN Script Dialog Box"
            Picture    8, 7, 46, 46, "C:\WINDOWS\ARCADE.BMP", 0
            OKButton    80, 10, 54, 14
            CancelButton    80, 30, 54, 14
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
StaticComboBox
Text
TextBox



' Pmt Function Example
'This example finds the monthly payment on a given loan.

Sub main
      Dim aprate, totalpay
      Dim loanpv, loanfv
      Dim due, monthlypay
      Dim yearlypay, msgtext
      loanpv=InputBox("Enter the loan amount: ")
      aprate=InputBox("Enter the loan rate percent: ")
      If aprate >1 then
            aprate=aprate/100
      End If
      totalpay=InputBox("Enter the total number of monthly payments: ")
      loanfv=0
'Assume payments are made at end of month
      due=0
      monthlypay=Pmt(aprate/12,totalpay,-loanpv,loanfv,due)
      msgtext="The monthly payment is: " & Format(monthlypay, "Currency")
      MsgBox msgtext
End Sub



See Also
FV
IPmt
IRR
NPV
PV
PPmt
Rate



' PPmt Function Example
'This example finds the principal portion of a loan payment amount for payments made in last 
month of the first year. The loan is for $25,000 to be paid back over 5 years at 9.5% interest.

Sub main
      Dim aprate, periods
      Dim payperiod
      Dim loanpv, due
      Dim loanfv, principal
      Dim msgtext
      aprate=9.5/100
      payperiod=12
      periods=120
      loanpv=25000
      loanfv=0
Rem Assume payments are made at end of month
      due=0
      principal=PPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
      msgtext="Given a loan of $25,000 @ 9.5% for 10 years," & Chr(10)    
      msgtext=msgtext & " the principal paid in month 12 is: "
      MsgBox msgtext & Format(principal, "Currency")
End Sub



See Also
FV
IPmt
IRR
NPV
Pmt
PV
Rate



' Print Statement Example
'This example prints the octal values for the numbers from 1 to 25.

Sub main
Dim x as Integer
Dim y
For x=1 to 25

y=Oct$(x)
Print x Tab(10) y

Next x
End Sub



See Also
Open
Spc
Tab
Write



' PushButton Statement Example
'This example defines a dialog box with a combination list box and three buttons.

Sub main
      Dim fchoices as String
      fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
      Begin Dialog UserDialog 185, 94, "OPEN Script Dialog Box"
            Text    9, 5, 69, 10, "Filename:", .Text1
            DropComboBox    9, 17, 88, 71, fchoices, .ComboBox1
            ButtonGroup .ButtonGroup1
            OKButton    113, 14, 54, 13
            CancelButton    113, 33, 54, 13
            PushButton 113, 57, 54, 13, "Help", .Push1
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog Statement
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
DropComboBox
DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Put Statement Example
'This example opens a file for Random access, puts the values 1-10 in it, prints the contents, and 
closes the file again.

Sub main
' Put the numbers 1-10 into a file
      Dim x, y
      Open "C:\TEMP001" as #1
      For x=1 to 10
            Put #1,x, x
      Next x
      msgtext="The contents of the file is:" & Chr(10)
      For x=1 to 10
            Get #1,x, y
            msgtext=msgtext & y & Chr(10)
      Next x
      Close #1
      MsgBox msgtext
      Kill "C:\TEMP001"
End Sub



See Also
Close
Get
Open
Write



' PV Function Example
'This example finds the present value of a 10-year $25,000 annuity that will pay $1,000 a year at 
9.5%.

Sub main
      Dim aprate, periods
      Dim payment, annuityfv
      Dim due, presentvalue
      Dim msgtext
      aprate=9.5
      periods=120
      payment=1000
      annuityfv=25000
Rem Assume payments are made at end of month
      due=0
      presentvalue=PV(aprate/12,periods,-payment, annuityfv,due)
      msgtext= "The present value for a 10-year $25,000 annuity @ 9.5%"
      msgtext=msgtext & " with a periodic payment of $1,000 is: "
      msgtext=msgtext & Format(presentvalue, "Currency")
      MsgBox msgtext
End Sub



See Also
FV
IPmt
IRR
NPV
Pmt
PPmt
Rate



' Randomize Statement Example
'This example generates a random string of characters using the Randomize statement and Rnd 
function. The second For...Next loop is to slow down processing in the first For...Next loop so that 
Randomize can be seeded with a new value each time from the Timer function.

Sub main
      Dim x as Integer
      Dim y
      Dim str1 as String
      Dim str2 as String
      Dim letter as String
      Dim randomvalue
      Dim upper, lower
      Dim msgtext
      upper=Asc("z")
      lower=Asc("a")
      newline=Chr(10)
      For x=1 to 26
            Randomize
            randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
            letter=Chr(randomvalue)
            str1=str1 & letter
            For y = 1 to 1500
            Next y
      Next x
      msgtext=str1
      MsgBox msgtext
End Sub



See Also
Rnd
Timer



' Rate Function Example
'This example finds the interest rate on a 10-year $25,000 annuity, that pays $100 per month.

Sub main
      Dim aprate
      Dim periods
      Dim payment, annuitypv
      Dim annuityfv, due
      Dim guess
      Dim msgtext as String
      periods=120
      payment=100
      annuitypv=0
      annuityfv=25000
      guess=.1
Rem Assume payments are made at end of month
      due=0
      aprate=Rate(periods,-payment,annuitypv,annuityfv, due, guess)
      aprate=(aprate*12)
      msgtext= "The percentage rate for a 10-year $25,000 annuity "
      msgtext=msgtext & "that pays $100/month has "
      msgtext=msgtext & "a rate of: " & Format(aprate, "Percent")
      MsgBox msgtext
End Sub



See Also
FV
IPmt
IRR
NPV
Pmt
PPmt
PV



' ReDim Statement Example
'This example finds the net present value for a series of cash flows. The array variable that holds 
the cash flow amounts is initially a dynamic array that is redimensioned after the user enters the 
number of cash flow periods they have.

Sub main
      Dim aprate as Single
      Dim varray() as Double
      Dim cflowper as Integer
      Dim x as Integer
      Dim netpv as Double
      cflowper=InputBox("Enter number of cash flow periods:")
      ReDim varray(cflowper)
      For x= 1 to cflowper
            varray(x)=InputBox("Enter cash flow amount for period #" &x &":")
      Next x
      aprate=InputBox ("Enter discount rate:")
      If aprate>1 then
            aprate=aprate/100
      End If
      netpv=NPV(aprate,varray())
      MsgBox "The Net Present Value is: " & Format(netpv,"Currency")
End Sub



See Also
Dim
Global
Option Base
Static



' Rem Statement Example
'This example defines a dialog box with a combination list box and two buttons. The Rem 
statements describe each block of definition code.

Sub main
      Dim fchoices as String
      fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
      Begin Dialog UserDialog 185, 94, "OPEN Script Dialog Box"
Rem The next two lines create the combo box
            Text    9, 5, 69, 10, "Filename:", .Text1
            DropComboBox    9, 17, 88, 71, fchoices, .ComboBox1
Rem The next two lines create the command buttons
            OKButton    113, 14, 54, 13
            CancelButton    113, 33, 54, 13
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
(None)



' Reset Statement Example
'This example creates a file, puts the numbers 1-10 in it, then attempts to Get past the end of the 
file. The On Error statement traps the error and execution goes to the Debugger code which uses 
Reset to close the file before exiting.

Sub main
' Put the numbers 1-10 into a file
      Dim x as Integer
      Dim y as Integer
      On Error Goto Debugger
      Open "C:\TEMP001" as #1 Len=2
      For x=1 to 10
            Put #1,x, x
      Next x
      Close #1
      msgtext="The contents of the file is:" & Chr(10)
      Open "C:\TEMP001" as #1 Len=2
      For x=1 to 10
            Get #1,x, y
            msgtext=msgtext & Chr(10) & y
      Next x
      MsgBox msgtext    
done:
      Close #1
      Kill "C:\TEMP001"
      Exit Sub
Debugger:
      MsgBox "Error " & Err & " occurred. Closing open file."
      Reset
      Resume done
End Sub



See Also
Close



' Resume Statement Example
'This example prints an error message if an error occurs during an attempt to open a file. The 
Resume statement jumps back into the program code at the label, done. From here, the program 
exits.

Sub main
      Dim msgtext, userfile
      On Error GoTo Debugger
      msgtext="Enter the filename to use:"
      userfile=InputBox$(msgtext)
      Open userfile For Input As #1
      MsgBox "File opened for input."
'    ....etc....
      Close #1
done:
      Exit Sub
Debugger:
      msgtext="Error number " & Err & " occurred at line: " & Erl
      MsgBox msgtext
      Resume done
End Sub



See Also
Erl
Err Function
Err Statement
Error
Error Function
On Error
Trappable Errors



' Right Function Example
'This example checks for the extension .BMP in a filename entered by a user and activates the 
Paintbrush application if the file is found. Note this uses the Option Compare statement to accept 
either uppercase or lowercase letters for the filename extension.

Option Compare Text
Sub main
      Dim filename as String
      Dim x
      filename=InputBox("Enter a .BMP file and path: ")
      extension=Right(filename,3)
      If extension="BMP" then
            x=Shell("PBRUSH.EXE",1)
            Sendkeys "%FO" & filename & "{Enter}", 1
      Else
            MsgBox "File not found or extension not .BMP."
      End If
End Sub



See Also
GetField
Instr
Left
Len
LTrim
Mid Function
Mid Statement
RTrim
Trim



' RmDir Statement Example
'This example makes a new temporary directory in C:\ and then deletes it.

Sub main
      Dim path as String
      On Error Resume Next
      path=CurDir(C)
      If path<>"C:\" then
            ChDir "C:\"
      End If
      MkDir "C:\TEMP01"
      If Err=75 then
            MsgBox "Directory already exists"
      Else
            MsgBox "Directory C:\TEMP01 created"
            MsgBox "Now removing directory"
            RmDir "C:\TEMP01"
      End If
End Sub



See Also
ChDir
ChDrive
CurDir
Dir
MkDir



' Rnd Function Example
'This example generates a random string of characters within a range. The Rnd function is used to
set the range between lowercase "a" and "z". The second For...Next loop is to slow down 
processing in the first For...Next loop so that Randomize can be seeded with a new value each 
time from the Timer function.

Sub main
      Dim x as Integer
      Dim y
      Dim str1 as String
      Dim str2 as String
      Dim letter as String
      Dim randomvalue
      Dim upper, lower
      Dim msgtext
      upper=Asc("z")
      lower=Asc("a")
      newline=Chr(10)
      For x=1 to 26
            Randomize
            randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
            letter=Chr(randomvalue)
            str1=str1 & letter
            For y = 1 to 1500
            Next y
      Next x
      msgtext=str1
      MsgBox msgtext
End Sub



See Also
Exp
Fix
Int
Log
Randomize
Sgn
Sqr



' Rset Statement Example
'This example uses Rset to right-align an amount entered by the user in a field that is 15 
characters long. It then pads the extra spaces with asterisks (*) and adds a dollar sign ($) and 
decimal places (if necessary).

Sub main
      Dim amount as String*15
      Dim x
      Dim msgtext
      Dim replacement
      replacement="*"
      amount=InputBox("Enter an amount:")
      position=InStr(amount,".")
      If Right(amount,3)<>".00" then
            amount=Rtrim(amount) & ".00"
      End If
      Rset amount="$" & Rtrim(amount)
      length=15-Len(Ltrim(amount))
      For x=1 to length
            Mid(amount,x)=replacement
      Next x
      Msgbox "Formatted amount: " & amount
End Sub



See Also
Lset



' RTrim Function Example
'This example asks for an amount and then right-aligns it in a field that is 15 characters long. It 
uses Rtrim to trim any trailing spaces in the amount string, if the number entered by the user is 
less than 15 digits.

Sub main
      Dim amount as String*15
      Dim x
      Dim msgtext
      Dim replacement
      replacement="X"
      amount=InputBox("Enter an amount:")
      position=InStr(amount,".")
      If position=0 then
            amount=Rtrim(amount) & ".00"
      End If
      Rset amount="$" & Rtrim(amount)
      length=15-Len(Ltrim(amount))
      For x=1 to length
            Mid(amount,x)=replacement
      Next x
      Msgbox "Formatted amount: " & amount
End Sub



See Also
GetField
Left
Len
LTrim
Mid Function
Mid Statement
Right
Trim



' Second Function Example
'This example displays the last saved date and time for a file whose name is entered by the user.

Sub main
      Dim filename as String
      Dim ftime
      Dim hr, min
      Dim sec
      Dim msgtext as String
i: msgtext="Enter a filename:"
      filename=InputBox(msgtext)
      If filename="" then
            Exit Sub
      End If
      On Error Resume Next
      ftime=FileDateTime(filename)
      If Err<>0 then
            MsgBox "Error in filename. Try again."
            Goto i:
      End If
      hr=Hour(ftime)
      min=Minute(ftime)
      sec=Second(ftime)
      Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub



See Also
Day
Hour
Minute
Month
Now
Time Function
Time Statement
Weekday
Year



' Seek Function Example
'This example reads the contents of a sequential file line by line (to a carriage return) and displays
the results. The second subprogram, CREATEFILE, creates the file "C:\TEMP001" used by the main 
subprogram.

Declare Sub createfile
Sub main
      Dim testscore as String
      Dim x
      Dim y
      Dim newline
      Call createfile
      Open "C:\TEMP001" for Input as #1
      x=1
      newline=Chr(10)
      msgtext= "The test scores are: " & newline
      Do Until x=Lof(1)
            Line Input #1, testscore
            x=x+1
            y=Seek(1)
            If y>Lof(1) then
                  x=Lof(1)
            Else
                  Seek 1,y
            End If
            msgtext=msgtext & newline & testscore 
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 10-100 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=10 to 100 step 10
            Write #1, x
      Next x
      Close #1
End Sub



See Also
Get
Open
Put
Seek Statement



' Seek Statement Example
'This example reads the contents of a sequential file line by line (to a carriage return) and displays
the results. The second subprogram, CREATEFILE, creates the file "C:\TEMP001" used by the main 
subprogram.

Declare Sub createfile
Sub main
      Dim testscore as String
      Dim x
      Dim y
      Dim newline
      Call createfile
      Open "C:\TEMP001" for Input as #1
      x=1
      newline=Chr(10)
      msgtext= "The test scores are: " & newline
      Do Until x=Lof(1)
            Line Input #1, testscore
            x=x+1
            y=Seek(1)
            If y>Lof(1) then
                  x=Lof(1)
            Else
                  Seek 1,y
            End If
            msgtext=msgtext & newline & testscore 
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the numbers 10-100 into a file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=10 to 100 step 10
            Write #1, x
      Next x
      Close #1
End Sub



See Also
Get
Open
Put
Seek Function



' Select Case Statement Example
'This example tests the attributes for a file and if it is hidden, changes it to a non-hidden file. 

Sub main
      Dim filename as String
      Dim attribs, saveattribs as Integer
      Dim answer as Integer
      Dim archno as Integer
      Dim msgtext as String
      archno=32
      On Error Resume Next
      msgtext="Enter name of a file:"
      filename=InputBox(msgtext)
      attribs=GetAttr(filename)
      If Err<>0 then
            MsgBox "Error in filename. Re-run Program."
            Exit Sub
      End If
      saveattribs=attribs
      If attribs>= archno then
            attribs=attribs-archno
      End If
      Select Case attribs
            Case 2,3,6,7
                  msgtext="    File: " &filename & " is hidden." & Chr(10)
                  msgtext=msgtext & Chr(10) & "      Change it?"
                  answer=Msgbox(msgtext,308)
                  If answer=6 then
                        SetAttr filename, saveattribs-2
                        Msgbox "File is no longer hidden."
                        Exit Sub
                  End If
                  MsgBox "Hidden file not changed."
            Case Else
                  MsgBox "File was not hidden."
      End Select
End Sub



See Also
If...Then...Else
On...Goto
Option Compare



' SendKeys Statement Example
'This example starts the Windows Terminal application and dials a phone number entered by the 
user.

Sub main
      Dim phonenumber, msgtext
      Dim x
      phonenumber=InputBox("Type telephone number to call:")
      x=Shell("Terminal.exe",1)
      SendKeys "%PD" & phonenumber & "{Enter}",1
      msgtext="Dialing..."
      MsgBox msgtext
End Sub



See Also
AppActivate
DoEvents
Shell



' Set Statement Example
'This example displays a list of open files in the software application, VISIO. It uses the Set 
statement to assign VISIO and its document files to object variables. To see how this example 
works, you need to start VISIO and open one or more documents.

Sub main
      Dim visio as Object
      Dim doc as Object
      Dim msgtext as String
      Dim i as Integer, doccount as Integer

'Initialize Visio
      Set visio = GetObject(,"visio.application") ' find Visio
      If (visio Is Nothing) then
            Msgbox "Couldn't find Visio!"
            Exit Sub
      End If
'Get # of open Visio files
      doccount = visio.documents.count 'OLE Automation call to Visio
      If doccount=0 then
            msgtext="No open Visio documents."
      Else
            msgtext="The open files are: " & Chr$(13)
            For i = 1 to doccount
                  Set doc = visio.documents(i) ' access Visio's document method
                  msgtext=msgtext & Chr$(13)& doc.name
            Next i
      End If
      MsgBox msgtext
End Sub



See Also
CreateObject
Is
Me
New
Nothing
Object Class
Typeof



' SetAttr Statement Example
'This example tests the attributes for a file and if it is hidden, changes it to a normal (not hidden) 
file. 

Sub main
      Dim filename as String
      Dim attribs, saveattribs as Integer
      Dim answer as Integer
      Dim archno as Integer
      Dim msgtext as String
      archno=32
      On Error Resume Next
      msgtext="Enter name of a file:"
      filename=InputBox(msgtext)
      attribs=GetAttr(filename)
      If Err<>0 then
            MsgBox "Error in filename. Re-run Program."
            Exit Sub
      End If
      saveattribs=attribs
      If attribs>= archno then
            attribs=attribs-archno
      End If
      Select Case attribs
            Case 2,3,6,7
                  msgtext="    File: " &filename & " is hidden." & Chr(10)
                  msgtext=msgtext & Chr(10) & "      Change it?"
                  answer=Msgbox(msgtext,308)
                  If answer=6 then
                        SetAttr filename, saveattribs-2
                        Msgbox "File is no longer hidden."
                        Exit Sub
                  End If
                  MsgBox "Hidden file not changed."
            Case Else
                  MsgBox "File was not hidden."
      End Select
End Sub



See Also
FileAttr
GetAttr



' SetField Function Example
'This example extracts the last name from a full name entered by the user.

Sub main
      Dim username as String
      Dim position as Integer
      username=InputBox("Enter your full name:")
      Do
          position=InStr(username," ")
          If position=0 then
              Exit Do
          End If
          username=SetField(username,1," "," ")
          username=Ltrim(username)
      Loop
      MsgBox "Your last name is: " & username
End Sub



See Also
GetField



' Sgn Function Example
'This example tests the value of the variable profit and displays 0 for profit if it is a negative 
number. The subroutine uses Sgn to determine whether profit is positive, negative or zero.

Sub main
Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then

MsgBox "Yeah! We turned a profit!"
ElseIf Sgn(profit)=0 then

MsgBox "Okay. We broke even."
Else

MsgBox "Uh, oh. We lost money."
End If

End Sub



See Also
Exp
Fix
Int
Log
Rnd
Sqr



' Shell Function Example
'This example activates the Terminal application and dials a number entered by the user.

Sub main
      Dim phonenumber, msgtext
      Dim x
      phonenumber=InputBox("Type telephone number to call:")
      x=Shell("Terminal.exe",1)
      SendKeys "%PD" & phonenumber & "{Enter}",1
      msgtext="Dialing..."
      MsgBox msgtext
End Sub



See Also
AppActivate
Command
SendKeys



' Sin Function Example
'This example finds the height of the building, given the length of a roof and the roof pitch.

Sub main
      Dim height, rooflength
      Dim pitch
      Dim msgtext
      Const PI=3.14159
      Const conversion= PI/180
      pitch=InputBox("Enter the roof pitch in degrees:")
      pitch=pitch*conversion
      rooflength=InputBox("Enter the length of the roof in feet:")
      height=Sin(pitch)*rooflength
      msgtext="The height of the building is " 
      msgtext=msgtext & Format(height, "##.##") & " feet."
      MsgBox msgtext
End Sub



See Also
Atn
Cos
Tan
Derived Trigonometric Functions



' Space Function Example
'This example prints the octal numbers from 1 to 15 as a two-column list and uses Space to 
separate the columns.

Sub main
      Dim x,y
      Dim msgtext
      Dim nofspaces
      msgtext="Octal numbers from 1 to 15:" & Chr(10)
      For x=1 to 15
          nofspaces=10
          y=Oct(x)
          If Len(x)=2 then
                nofspaces=nofspaces-2
          End If
          msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y 
      Next x
      MsgBox msgtext
End Sub



See Also
Spc
String



' Spc Function Example
'This example puts five spaces and the string "ABCD" to a file. The five spaces are derived by 
taking 15 MOD 10, or the remainder of dividing 15 by 10.

Sub main
      Dim str1 as String
      Dim x as String*10
      str1="ABCD"
      Open "C:\TEMP001" For Output As #1
      Width #1, 10
      Print #1, Spc(15); str1
      Close #1
      Open "C:\TEMP001" as #1 Len=12
      Get #1, 1,x
      Msgbox "The contents of the file is: " & x
      Close #1
      Kill "C:\TEMP001"
End Sub



See Also
Print
Space
Tab
Width



' SQLClose Function Example
'This example opens the data source named SqlTest, gets the names in the ODBC data sources, 
and closes the connection.

Sub main
'      Declarations 
'
        Dim outputStr As String
        Dim connection As Long
        Dim prompt As Integer
        Dim datasources(1 To 50) As Variant
        Dim retcode As Variant
                    
        prompt = 5
'      Open the datasource "SqlTest"
        connection = SQLOpen("DSN=SqlTest", outputStr, prompt:=5)
    
        action1 = 1    ' Get the names of the ODBC datasources
        retcode = SQLGetSchema(connection:=connection,action:=1, qualifier:=qualifier, 
ref:=datasources())

'      Close the datasource connection
        retcode = SQLClose(connection)
      
End Sub



See Also
SQLError
SQLExecQuery
SQLGetSchema
SQLOpen
SQLRequest
SQLRetrieve
SQLRetrieveToFile



' SQLError Function Example
'This example forces an error to test SQLError function.

sub main
'    Declarations 
      Dim connection As long
      Dim prompt as integer
      Dim retcode as long
      Dim errors(1 To 3, 1 To 10) as Variant

'    Open the datasource
      connection = SQLOpen("DSN=SQLTESTW;UID=DBA;PWD=SQL",outputStr,prompt:=3)

'    force an error to test SQLError select a nonexistent table
      retcode = SQLExecQuery(connection:=connection,query:="select * from notable ")

'    Retrieve the detailed error message information into the errors array
      SQLError destination:=errors
      retcode = SQLClose(connection)
end sub



See Also
SQLClose
SQLExecQuery
SQLGetSchema
SQLOpen
SQLRequest
SQLRetrieve
SQLRetrieveToFile



' SQLExecQuery Function Example
'This example performs a query on the data source.

Sub main
'      Declarations
'
        Dim connection As Long
        Dim destination(1 To 50, 1 To 125)    As Variant
        Dim retcode As long

'      open the connection
        connection = SQLOpen("DSN=SqlTest",outputStr,prompt:=3)
'
'      Execute the query
        query = "select * from customer"    
        retcode = SQLExecQuery(connection,query)
'
'      retrieve the first 50 rows with the first 6 columns of each row into 
'      the array destination, omit row numbers and put column names in the 
'      first row of the array      
'
        retcode = SQLRetrieve(connection:=connection,destination:=destination, 
columnNames:=1,rowNumbers:=0,maxRows:=50, maxColumns:=6,fetchFirst:=0)
 
'      Get the next 50 rows of from the result set
        retcode = SQLRetrieve(connection:=connection,destination:=destination, 
columnNames:=1,rowNumbers:=0,maxRows:=50, maxColumns:=6)

'      Close the connection
        retcode = SQLClose(connection)

End Sub



See Also
SQLClose
SQLError
SQLGetSchema
SQLOpen
SQLRequest
SQLRetrieve
SQLRetrieveToFile



' SQLGetSchema Function Example
'This example opens the data source named SqlTest, gets the names in the ODBC data sources, 
and closes the connection.

Sub main
'      Declarations 
'
        Dim outputStr As String
        Dim connection As Long
        Dim prompt As Integer
        Dim datasources(1 To 50) As Variant
        Dim retcode As Variant
                    
        prompt = 5
'      Open the datasource "SqlTest"
        connection = SQLOpen("DSN=SqlTest", outputStr, prompt:=5)
    
        action1 = 1    ' Get the names of the ODBC datasources
        retcode = SQLGetSchema(connection:=connection,action:=1, qualifier:=qualifier, 
ref:=datasources())

'      Close the datasource connection
        retcode = SQLClose(connection)
      
End Sub



See Also
SQLClose
SQLError
SQLExecQuery
SQLOpen
SQLRequest
SQLRetrieve
SQLRetrieveToFile



' SQLOpen Function Example
'This example opens the data source named SqlTest, gets the names in the ODBC data sources, 
and closes the connection.

Sub main
'      Declarations 
'
        Dim outputStr As String
        Dim connection As Long
        Dim prompt As Integer
        Dim datasources(1 To 50) As Variant
        Dim retcode As Variant
                    
        prompt = 5
'      Open the datasource "SqlTest"
        connection = SQLOpen("DSN=SqlTest", outputStr, prompt:=5)
    
        action1 = 1    ' Get the names of the ODBC datasources
        retcode = SQLGetSchema(connection:=connection,action:=1, qualifier:=qualifier, 
ref:=datasources())

'      Close the datasource connection
        retcode = SQLClose(connection)
      
End Sub



See Also
SQLClose
SQLError
SQLExecQuery
SQLGetSchema
SQLRequest
SQLRetrieve
SQLRetrieveToFile



' SQLRequest Function Example
'This example will open the datasource SQLTESTW and execute the query specified by query and 
return the results in destination

Sub main
'    Declarations
'
      Dim destination(1 To 50, 1 To 125)    As Variant
      Dim prompt As integer
    
'    The following will open the datasource SQLTESTW and execute the query
'    specified by query and return the results in destination
'        
      query = "select * from class"          
      retcode = 
SQLRequest("DSN=SQLTESTW;UID=DBA;PWD=SQL",query,outputStr,prompt,0,destination())

End Sub



See Also
SQLClose
SQLError
SQLExecQuery
SQLGetSchema
SQLOpen
SQLRetrieve
SQLRetrieveToFile



' SQLRetrieve Function Example
'This example retrieves information from a data source.

Sub main
'      Declarations
'
        Dim connection As Long
        Dim destination(1 To 50, 1 To 125)    As Variant
        Dim retcode As long

'      open the connection
        connection = SQLOpen("DSN=SqlTest",outputStr,prompt:=3)
 '
 '    Execute the query
        query = "select * from customer"    
        retcode = SQLExecQuery(connection,query)
      
 '    retrieve the first 50 rows with the first 6 columns of each row into 
 '    the array destination, omit row numbers and put column names in the
 '    first row of the array        
        
        retcode = SQLRetrieve(connection:=connection,destination:=destination, 
columnNames:=1,rowNumbers:=0,maxRows:=50, maxColumns:=6,fetchFirst:=0)
 
'      Get the next 50 rows of from the result set
        retcode = SQLRetrieve(connection:=connection,destination:=destination, 
columnNames:=1,rowNumbers:=0,maxRows:=50, maxColumns:=6)

'      Close the connection
        retcode = SQLClose(connection)
End Sub



See Also
SQLClose
SQLError
SQLExecQuery
SQLGetSchema
SQLOpen
SQLRequest
SQLRetrieveToFile



' SQLRetrieveToFile Function Example
'This example opens a connection to a data source and retrieves information to a file.

Sub main
'      Declarations
'
        Dim connection As Long
        Dim destination(1 To 50, 1 To 125)    As Variant
        Dim retcode As long

'      open the connection
            
        connection = SQLOpen("DSN=SqlTest",outputStr,prompt:=3)
 '
 '    Execute the query
 '
        query = "select * from customer"    
        retcode = SQLExecQuery(connection,query)

 '    Place the results of the previous query in the file named by 
 '    filename and put the column names in the file as the first row.
 '    The field delimiter is %
 '      
        filename = "c:\myfile.txt"
        columnDelimiter = "%"
        retcode = SQLRetrieveToFile(connection:=connection,destination:=filename, 
columnNames:=1,columnDelimiter:=columnDelimiter)
          
        retcode = SQLClose(connection)

End Sub



See Also
SQLClose
SQLError
SQLExecQuery
SQLGetSchema
SQLOpen
SQLRequest
SQLRetrieve



' Sqr Function Example
'This example calculates the square root of 2 as a double-precision floating point value and 
displays it in scientific notation.

Sub main
Dim value as Double
Dim msgtext
value=CDbl(Sqr(2))
msgtext= "The square root of 2 is: " & Format(Value,"Scientific")
MsgBox msgtext

End Sub



See Also
Exp
Fix
Int
Log
Rnd
Sgn



' Static Statement Example
'This example puts account numbers to a file using the record variable GRECORD and then prints 
them again.

Type acctrecord
      acctno as Integer
End Type

Sub main
      Static grecord as acctrecord
      Dim x
      Dim total
      x=1
      grecord.acctno=1
      On Error Resume Next
      Open "C:\TEMP001" For Output as #1
      Do While grecord.acctno<>0
i:        grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")
            If Err<>0 then
                  MsgBox "Error occurred.    Try again."
                  Err=0
                  Goto i
            End If
            If grecord.acctno<>0 then
                  Print #1, grecord.acctno
                  x=x+1
            End If
      Loop
      Close #1
      total=x-1
      msgtext="The account numbers are: " & Chr(10)
      Open "C:\TEMP001" For Input as #1
      For x=1 to total
            Input #1, grecord.acctno
            msgtext=msgtext & Chr(10) & grecord.acctno
      Next x
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub



See Also
Dim
Function...End Function
Global
Option Base
ReDim
Sub...End Sub



' StaticComboBox Statement Example
'This example defines a dialog box with a static combo box labeled "Installed Drivers" and the OK 
and Cancel buttons.

Sub main
      Dim cchoices as String
      cchoices="MIDI Mapper"+Chr$(9)+"Timer"
      Begin Dialog UserDialog 182, 116, "OPEN Script Dialog Box"
            StaticComboBox    7, 20, 87, 49, cchoices, .StaticComboBox1
            Text    6, 3, 83, 10, "Installed Drivers", .Text1
            OKButton    118, 12, 54, 14
            CancelButton    118, 34, 54, 14
      End Dialog
      Dim mydialogbox As UserDialog
      Dialog mydialogbox
      If Err=102 then
            MsgBox "You pressed Cancel."
      Else
            MsgBox "You pressed OK."
      End If
End Sub



See Also
Begin Dialog...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text
TextBox



' Stop Statement Example
'This example stops program execution at the user's request.

Sub main
      Dim str1
      str1=InputBox("Stop program execution? (Y/N):")
      If str1="Y" or str1="y" then
            Stop
      End If
      MsgBox "Program complete."
End Sub



See Also
(None)



' Str Function Example
'This example prompts for two numbers, adds them, then shows them as a concatenated string.

Sub main
      Dim x as Integer
      Dim y as Integer
      Dim str1 as String
      Dim value1 as Integer
      x=InputBox("Enter a value for x: ")
      y=InputBox("Enter a value for y: ")
      MsgBox "The sum of these numbers is: " & x+y
      str1=Str(x) & Str(y)
      MsgBox "The concatenated string for these numbers is: " & str1
End Sub



See Also
Format
Val



' StrComp Function Example
'This example compares a user-entered string to the string "Smith".

Option Compare Text
Sub main
      Dim lastname as String
      Dim smith as String
      Dim x as Integer
      smith="Smith"
      lastname=InputBox("Type your last name")
      x=StrComp(lastname,smith,1)
      If x=0 then
            MsgBox "You typed 'Smith' or 'smith'."
      Else
            MsgBox "You typed: " & lastname & " not 'Smith'."
      End If
End Sub



See Also
Instr
Option Compare



' String Function Example
'This example places asterisks (*) in front of a string that is printed as a payment amount..

Sub main
      Dim str1 as String
      Dim size as Integer
i: str1=InputBox("Enter an amount up to 999,999.99: ")
      If Instr(str1,".")=0 then
            str1=str1+".00"
      End If      
      If Len(str1)>10 then
            MsgBox "Amount too large.    Try again."
            Goto i
      End If
      size=10-Len(str1)
'Print amount in a space on a check allotted for 10 characters
      str1=String(size,Asc("*")) & str1
      Msgbox "The amount is: $" & str1 
End Sub



See Also
Space
Str



' Sub...End Sub Function Example
'This example is a subroutine that uses the Sub...End Sub function.

Sub main
MsgBox "Hello, World."

End Sub



See Also
Call
Declare
Dim
Function...End Function
Global
Option Explicit
Static



' Tab Function Statement Example
'This example prints the octal values for the numbers from 1 to 25. It uses Tab to put five 
character spaces between the values.

Sub main
Dim x as Integer
Dim y
For x=1 to 25

y=Oct$(x)
Print x Tab(10) y

Next x
End Sub



See Also
Print
Space
Spc
Width



' Tan Function Example
'This example finds the height of the exterior wall of a building, given its roof pitch and the length 
of the building.

Sub main
      Dim bldglen, wallht
      Dim pitch
      Dim msgtext
      Const PI=3.14159
      Const conversion= PI/180
      On Error Resume Next
      pitch=InputBox("Enter the roof pitch in degrees:")
      pitch=pitch*conversion
      bldglen=InputBox("Enter the length of the building in feet:")
      wallht=Tan(pitch)*(bldglen/2)
      msgtext="The height of the building is: " & Format(wallht, "##.00")
      MsgBox msgtext
End Sub



See Also
Atn
Cos
Sin
Derived Trigonometric Functions



' Text Statement Example
'This example defines a dialog box with a combination list and text box and three buttons.

Sub main
      Dim ComboBox1() as String
      ReDim ComboBox1(0)
      ComboBox1(0)=Dir("C:\*.*")
      Begin Dialog UserDialog 166, 142, "OPEN Script Dialog Box"
            Text    9, 3, 69, 13, "Filename:", .Text1
            DropComboBox    9, 14, 81, 119, ComboBox1(), .ComboBox1
            OKButton    101, 6, 54, 14
            CancelButton    101, 26, 54, 14
            PushButton 101, 52, 54, 14, "Help", .Push1
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
TextBox



' TextBox Statement Example
'This example creates a dialog box with a group box, and two buttons.

Sub main
      Begin Dialog UserDialog 194, 76, "OPEN Script Dialog Box"
            GroupBox    9, 8, 97, 57, "File Range"
            OptionGroup .OptionGroup2
                  OptionButton    19, 16, 46, 12, "All pages", .OptionButton3
                  OptionButton    19, 32, 67, 8, "Range of pages", .OptionButton4
            Text    25, 43, 20, 10, "From:", .Text6
            Text    63, 43, 14, 9, "To:", .Text7
            TextBox    79, 43, 13, 12, .TextBox4
            TextBox    47, 43, 12, 11, .TextBox5
            OKButton    135, 6, 54, 14
            CancelButton    135, 26, 54, 14
      End Dialog
      Dim mydialog as UserDialog
      On Error Resume Next
      Dialog mydialog
      If Err=102 then
            MsgBox "Dialog box canceled."
      End If
End Sub



See Also
Begin Dialog...End Dialog
Button
ButtonGroup
CancelButton
Caption
CheckBox
ComboBox
Dialog
DropComboBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup
Picture
StaticComboBox
Text



' Time Function Example
'This example writes data to a file if it hasn't been saved within the last 2 minutes.

Sub main
      Dim tempfile
      Dim filetime, curtime
      Dim msgtext
      Dim acctno(100) as Single
      Dim x, I
      tempfile="C:\TEMP001"
      Open tempfile For Output As #1
      filetime=FileDateTime(tempfile)
      x=1
      I=1
      acctno(x)=0
      Do
            curtime=Time
            acctno(x)=InputBox("Enter an account number (99 to end):")
            If acctno(x)=99 then
                  For I=1 to x-1
                        Write #1, acctno(I)
                  Next I
                  Exit Do
            ElseIf (Minute(filetime)+2)<=Minute(curtime) then
                  For I=I to x
                        Write #1, acctno(I)
                  Next I
            End If
            x=x+1
      Loop
      Close #1
      x=1
      msgtext="Contents of C:\TEMP001 is:" & Chr(10)
      Open tempfile for Input as #1
      Do While Eof(1)<>-1
            Input #1, acctno(x)
            msgtext=msgtext & Chr(10) & acctno(x)
            x=x+1
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub



See Also
Date Function
Date Statement
Time Statement
Timer
TimeSerial
TimeValue



' Time Statement Example
'This example changes the time on the system clock.

Sub main
      Dim newtime as String
      Dim answer as String
      On Error Resume Next
i: newtime=InputBox("What time is it?")
      answer=InputBox("Is this AM or PM?")
      If answer="PM" or answer="pm" then
            newtime=newtime &"PM"
      End If
      Time=newtime
      If Err<>0 then
            MsgBox "Invalid time.    Try again."
            Err=0
            Goto i
      End If
End Sub



See Also
Date Function
Date Statement
Time Function
TimeSerial
TimeValue



' Timer Function Example
'This example uses Timer Function to find a Megabucks number.

Sub main
      Dim msgtext
      Dim value(9)
      Dim nextvalue
      Dim x
      Dim y
      msgtext="Your Megabucks numbers are: "
      For x=1 to 8
            Do
                  value(x)=Timer
                  value(x)=value(x)*100
                  value(x)=Str(value(x))
                  value(x)=Val(Right(value(x),2))
            Loop Until value(x)>1 and value(x)<36
            For y=1 to 1500
            Next y
      Next x
      For y=1 to 8
          For x= 1 to 8
              If y<>x then
                      If value(y)=value(x) then
                            value(x)=value(x)+1
                      End If
              End If
          Next x
      Next y
      For x=1 to 8
            msgtext=msgtext & value(x) & " "
      Next x
      MsgBox msgtext
End Sub



See Also
Randomize



' TimeSerial Function Example
'This example displays the current time using Time Serial.

Sub main
      Dim y
      Dim msgtext
      Dim nowhr
      Dim nowmin
      Dim nowsec
      nowhr=Hour(Now)
      nowmin=Minute(Now)
      nowsec=Second(Now)
      y=TimeSerial(nowhr,nowmin,nowsec)
      msgtext="The time is: " & y
      MsgBox msgtext
End Sub



See Also
DateSerial
Date Value
Hour
Minute
Now
Second
TimeValue



' TimeValue Function Example
'This example writes a variable to a disk file based on a comparison of its last saved time and the 
current time. Note that all the variables used for the TimeValue function are dimensioned as 
Double, so that calculations based on their values will work properly.

Sub main
      Dim tempfile
      Dim ftime
      Dim filetime as Double
      Dim curtime as Double
      Dim minutes as Double
      Dim acctno(100) as Integer
      Dim x, I
      tempfile="C:\TEMP001"
      Open tempfile For Output As 1
      ftime=FileDateTime(tempfile)
      filetime=TimeValue(ftime)
      minutes= TimeValue("00:02:00")
      x=1
      I=1
      acctno(x)=0
      Do
            curtime= TimeValue(Time)
            acctno(x)=InputBox("Enter an account number (99 to end):")
            If acctno(x)=99 then
                  For I=I to x-1
                        Write #1, acctno(I)
                  Next I
                  Exit Do
            ElseIf filetime+minutes<=curtime then
                  For I=I to x
                        Write #1, acctno(I)
                  Next I
            End If
            x=x+1
      Loop
      Close #1
      x=1
      msgtext="You entered:" & Chr(10)
      Open tempfile for Input as #1
      Do While Eof(1)<>-1
            Input #1, acctno(x)
            msgtext=msgtext & Chr(10) & acctno(x)
            x=x+1
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub



See Also
DateSerial
Date Value
Hour
Minute
Now
Second
TimeSerial



' Trim Function Example
'This example removes leading and trailing spaces from a string entered by the user.

Sub main
      Dim userstr as String
      userstr=InputBox("Enter a string with leading/trailing spaces")
      MsgBox "The string is: " & Trim(userstr) & " with nothing after it."
End Sub



See Also
GetField
Left
Len
LTrim
Mid Function
Mid Statement
Right
RTrim



' Type Statement Example
'This example shows a Type and Dim statement for a record. You must define a record type before 
you can declare a record variable. The subroutine then references a field within the record.

Type Testrecord
      Custno As Integer
      Custname As String
End Type
Sub main
      Dim myrecord As Testrecord
i: myrecord.custname=InputBox("Enter a customer name:")
      If myrecord.custname="" then
            Exit Sub
      End If
      answer=InputBox("Is the name: " & myrecord.custname &" correct? (Y/N)")
      If answer="Y" or answer="y" then
            MsgBox "Thank you."
      Else
            MsgBox "Try again."
            Goto i      
      End If
End Sub



See Also
Def  type  
Dim



' Typeof Statement Example
 (None)



See Also
CreateObject
GetObject
Is
Me
New
Nothing
Object Class



' UBound Function Example
'This example resizes an array if the user enters more data than can fit in the array. It uses 
LBound and UBound to determine the existing size of the array and ReDim to resize it. Option 
Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
      Dim arrayvar() as Integer
      Dim count as Integer
      Dim answer as String
      Dim x, y as Integer
      Dim total
      total=0
      x=1
      count=InputBox("How many test scores do you have?")
      ReDim arrayvar(count)
start:
      Do until x=count+1
          arrayvar(x)=InputBox("Enter test score #" &x & ":")
          x=x+1
      Loop
      answer=InputBox$("Do you have more scores? (Y/N)")
      If answer="Y" or answer="y" then
          count=InputBox("How many more do you have?")
          If count<>0 then
              count=count+(x-1)
              ReDim Preserve arrayvar(count)
              Goto start
          End If
      End If
      x=LBound(arrayvar,1)
      count=UBound(arrayvar,1)
      For y=x to count
                total=total+arrayvar(y)
      Next y
      MsgBox "The average of the " & count & " scores is: " & Int(total/count)
End Sub



See Also
Dim
Global
LBound
Option Base
ReDim
Static



' UCase Function Example
'This example converts a filename entered by a user to all uppercase letters.

Option Base 1
Sub main
      Dim filename as String
      filename=InputBox("Enter a filename: ")
      filename=UCase(filename)
      MsgBox "The filename in uppercase is: " & filename
End Sub



See Also
Asc
LCase



' Unlock Function Example
'This example locks a file that is shared by others on a network, if the file is already in use. The 
second subprogram, CREATEFILE, creates the file used by the main subprogram.
                   
Declare Sub createfile
Sub main
      Dim btngrp, icongrp
      Dim defgrp
      Dim answer
      Dim noaccess as Integer
      Dim msgabort
      Dim msgstop as Integer
      Dim acctname as String
      noaccess=70
      msgstop=16
      Call createfile
      On Error Resume Next
      btngrp=1
      icongrp=64
      defgrp=0
      answer=MsgBox("Open the account file?" & Chr(10), btngrp+icongrp+defgrp)
      If answer=1 then
            Open "C:\TEMP001" for Input as #1
            If Err=noaccess then
                  msgabort=MsgBox("File Locked",msgstop,"Aborted")
            Else
                  Lock #1
                  Line Input #1, acctname
                  MsgBox "The first account name is: " & acctname
                  Unlock #1
            End If
            Close #1
      End If
      Kill "C:\TEMP001"
End Sub

Sub createfile()
      Rem Put the letters A-J into the file
      Dim x as Integer
      Open "C:\TEMP001" for Output as #1
      For x=1 to 10
            Write #1, Chr(x+64)
      Next x
      Close #1
End Sub



See Also
Lock
Open



' Val Function Example
'This example tests the value of the variable profit and displays 0 for profit if it is a negative 
number. The subroutine uses Sgn to determine whether profit is positive, negative or zero.

Sub main
Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then

MsgBox "Yeah! We turned a profit!"
ElseIf Sgn(profit)=0 then

MsgBox "Okay. We broke even."
Else

MsgBox "Uh, oh. We lost money."
End If

End Sub



See Also
CCur
CDbl
CInt
CLng
CSng
CStr
CVar
CVDate
Format
Str



' VarType Function Example
'This example returns the type of a variant.

Sub main
      Dim x
      Dim myarray(8)
      Dim retval
      Dim retstr
      myarray(1)=Null
      myarray(2)=0
      myarray(3)=39000
      myarray(4)=CSng(10^20)
      myarray(5)=10^300
      myarray(6)=CCur(10.25)
      myarray(7)=Now
      myarray(8)="Five"
      For x=0 to 8
            retval=Vartype(myarray(x))
            Select Case retval
                  Case 0
                        retstr=" (Empty)"
                  Case 1
                        retstr=" (Null)"
                  Case 2
                        retstr=" (Integer)"
                  Case 3
                        retstr=" (Long)"
                  Case 4
                        retstr=" (Single)"
                  Case 5
                        retstr=" (Double)"
                  Case 6
                        retstr=" (Currency)"
                  Case 7
                        retstr=" (Date)"
                  Case 8
                        retstr=" (String)"
            End Select
            If retval=1 then
                  myarray(x)="[null]"
            ElseIf retval=0 then
                  myarray(x)="[empty]"
            End If
            MsgBox "The variant type for " &myarray(x) & " is: " &retval &retstr
      Next x
End Sub



See Also
IsDate
IsEmpty
IsNull
IsNumeric



' Weekday Function Example
'This example finds the day of the week on which New Year's Day will fall in the year 2000.

Sub main
      Dim newyearsday
      Dim daynumber
      Dim msgtext
      Dim newday as Variant
      Const newyear=2000
      Const newmonth=1
      Let newday=1
      newyearsday=DateSerial(newyear,newmonth,newday)
      daynumber=Weekday(newyearsday)
      msgtext="New Year's day 2000 falls on a " & Format(daynumber, "dddd")
      MsgBox msgtext
End Sub



See Also
Date Function
Date Statement
Day
Hour
Minute
Month
Now
Second
Year



' While...Wend Structure Example
'This example opens a series of customer files and checks for the string "*Overdue*" in each file. It
uses While...Wend to loop through the C:\TEMP00? files. These files are created by the subroutine 
CREATEFILES.

Declare Sub createfiles
Sub main
      Dim custfile as String
      Dim aline as String
      Dim pattern as String
      Dim count as Integer
      Call createfiles
      Chdir "C:\"
      custfile=Dir$("TEMP00?") 
      pattern="*" + "Overdue" + "*"
      While custfile <> ""
            Open custfile for input as #1
            On Error goto atEOF
            Do
                    Line Input #1, aline
                    If aline Like pattern Then
                          count=count+1
                    End If
            Loop
nxtfile:
            On Error GoTo 0
            Close #1
            custfile = Dir$
      Wend
      If count<>0 then
            Msgbox "Number of overdue accounts: " & count
      Else
            Msgbox "No accounts overdue"
      End If
      Kill "C:\TEMP001"
      Kill "C:\TEMP002"
      Exit Sub
atEOF:
      Resume nxtfile
End Sub

Sub createfiles()
    Dim odue as String
    Dim ontime as String
    Dim x
    Open "C:\TEMP001" for OUTPUT as #1
    odue="*" + "Overdue" + "*"
    ontime="*" + "On-Time" + "*"
    For x=1 to 3
          Write #1, odue
    Next x
    For x=4 to 6
          Write #1, ontime
    Next x
    Close #1
    Open "C:\TEMP002" for Output as #1
    Write #1, odue
    Close #1
End Sub



See Also
Do...Loop



' Width Statement Example
'This example puts five spaces and the string "ABCD" to a file. The five spaces are derived by 
taking 15 MOD 10, or the remainder of dividing 15 by 10.

Sub main
      Dim str1 as String
      Dim x as String*10
      str1="ABCD"
      Open "C:\TEMP001" For Output As #1
      Width #1, 10
      Print #1, Spc(15); str1
      Close #1
      Open "C:\TEMP001" as #1 Len=12
      Get #1, 1,x
      Msgbox "The contents of the file is: " & x
      Close #1
      Kill "C:\TEMP001"
End Sub



See Also
Open
Print



' With Statement Example
'This example creates a user-defined record type, custrecord and uses the With statement to fill in 
values for the record fields, for the record called "John".

Type custrecord
      name as String
      ss as String
      salary as Single
      dob as Variant
      street as String
      apt as Variant
      city as String
      state as String
End Type
Sub main
      Dim John as custrecord
      Dim msgtext
      John.name="John"
      With John
            .ss="037-67-2947"
            .salary=60000                      
            .dob=#10-09-65#                
            .street="15 Chester St." 
            .apt=28                                  
            .city="Cambridge"              
            .state="MA"              
      End With
      msgtext=Chr(10) & "Name:" & Space(5) & John.name & Chr(10)
      msgtext=msgtext & "SS#: " & Space(6) & john.ss & chr(10)
      msgtext=msgtext & "D.O.B:" & Space(4) & john.dob
      Msgbox "Done with: " & Chr(10) & msgtext
End Sub



See Also
Type...End Type



' Write Statement Example
'This example writes a variable to a disk file based on a comparison of its last saved time and the 
current time.

Sub main
      Dim tempfile
      Dim filetime, curtime
      Dim msgtext
      Dim acctno(100) as Single
      Dim x, I
      tempfile="C:\TEMP001"
      Open tempfile For Output As #1
      filetime=FileDateTime(tempfile)
      x=1
      I=1
      acctno(x)=0
      Do
            curtime=Time
            acctno(x)=InputBox("Enter an account number (99 to end):")
            If acctno(x)=99 then
                  If x=1 then Exit Sub
                  For I=1 to x-1
                        Write #1, acctno(I)
                  Next I
                  Exit Do
            ElseIf (Minute(filetime)+2)<=Minute(curtime) then
                  For I=I to x-1
                        Write #1, acctno(I)
                  Next I
            End If
            x=x+1
      Loop
      Close #1
      x=1
      msgtext="Contents of C:\TEMP001 is:" & Chr(10)
      Open tempfile for Input as #1
      Do While Eof(1)<>-1
            Input #1, acctno(x)
            msgtext=msgtext & Chr(10) & acctno(x)
            x=x+1
      Loop
      MsgBox msgtext
      Close #1
      Kill "C:\TEMP001"
End Sub



See Also
Close
Open
Print
Put



' Year Function Example
'This example returns the year for today.

Sub main
Dim nowyear
nowyear=Year(Now)
MsgBox "The current year is: " &nowyear

End Sub



See Also
Date Function
Date Statement
Day
Hour
Minute
Month
Now
Time Function
Second
Weekday





Bitmap Viewer
Displays a series of bitmaps in a dialog box

Declare Sub GetWindowsDirectory Lib "kernel32" Alias _
                              "GetWindowsDirectoryA" (ByVal buf$, ByVal buflen%)
Dim fname$, WinDir$
Const IdleLoop = 5

'Dialog Box Function.    Find and display next bitmap.
Function DlgFunc% (id$, action%, svalue&)
        If action = IdleLoop And (svalue Mod 800 = 799) Then
                fname = dir$
                If fname = ""    Then 
                        SendKeys "{enter}"
                        Exit Function
                End If
                ' load next picture
                DlgSetPicture "p1", WinDir & fname, 0
                DlgText DlgControlID("FileName"), fname
        End If
        If action = IdleLoop Then DlgFunc = 1
End Function

Sub Main
        Dim WinDirBuf as String * 150
'Find Windows bitmap files
        Call GetWindowsDirectory    (WinDirBuf, Len(WinDirBuf) )
        WinDir = Left(WinDirBuf, InStr(WinDirBuf, Chr$(0))-1) & "\"
        fname    = Dir$(WinDir & "*.bmp")
        If (fname = "") Then Exit Sub

        Begin Dialog PictureBoxType 25, 25, 210, 240, "Picture" , .DlgFunc
                Picture                5,      5, 200, 200, WinDir & fname, 0, .p1
                Text                    15, 225,    70,    15, fname, .FileName 
                PushButton 145, 220,    45,    15, "Stop"
        End Dialog
        Dim PictureBox as PictureBoxType
        Dialog PictureBox 
End Sub



Find Files
Finds a test file containing a specified string, based on pattern matching

Option compare binary
Dim count                                        '    Number of files searched.
Const DialogInit      = 1              '    Used to determine why the
Const ButtonPush      = 2              '    dialog box function was called.
Const TextBoxEnter = 3
Const IdleLoop          = 5
'
' Function searchFiles finds the files and does the comparison.
' According to user defined flags, it will either use string
' comparison (the InStr function) or regular expressions
' comparison (the Like operator).    The user also chooses
' whether the comparison will be case sensitive or insensitive.
'
Function searchFiles$(fileSpec$, subPattern$, caseSensitive%, regexp%)
        Dim aLine$
        retVal      = ""
        thisFile = dir$(fileSpec)
        pattern    = subPattern
        While thisFile <> ""
                count = count+1
                Open thisFile for input as #1
                Do While Not Eof(1)
                        Line Input #1, aLine
                        If regexp Then
                                On Error Goto badRegexp
                                If Left$(pattern,1) <> "*" Then pattern = "*"+pattern+"*"
                                If Not caseSensitive Then          ' convert to upper case
                                        pattern = UCase(pattern)
                                        aLine = UCase$(aLine)
                                End If
                                If aLine Like pattern Then
                                        retVal = retVal + thisFile + chr$(13)
                                        Exit Do
                                End If
                        ElseIf InStr(1, aLine, pattern, 1 - caseSensitive) Then
                                retVal = retVal + thisFile + chr$(13)
                                Exit Do
                        End If
                Loop
                Close #1
                thisFile = dir$
        Wend
        searchFiles = retVal
        Exit Function
badRegexp:
        MsgBox "Error: Bad regular expression"
End Function
'
' Dialog Box Procedure
'
Function DlgProc%(Control$, action%, values&)
      CR = Chr(13) : TabC = Chr(9)
      HelpText = "Regular expression pattern matching rules:" & CR & CR & _
                "?"    & TabC & _
                "match any single character" & CR & _
                "*"    & TabC & _
                "match any set of zero or more characters" & CR & _
                "#"    & TabC & _
                "match any single digit character (0-9)" & CR & _
                "[chars]" & TabC & _
                "match any single character in chars" & CR & _



                "[!chars]" & TabC & _ 
                "match any single character not in chars" & CR & CR & _
                "Note: rules are per Visual Basic"
      DlgProc = 0
      Select Case action
            ' disable find button until a search string is entered.
            Case DialogInit : DlgEnable 7, 0
            Case ButtonPush And (values=18)
                  ' display help message
                  MsgBox HelpText, 0, "Help"
                  DlgProc = 1
            Case TextBoxEnter And (Contol="searchPattern")
                  ' search string entered, enable find button.
                  DlgEnable 7, 1
            Case IdleLoop 
                  ' whenever the searchpattern is empty, disable the find button
                  ' whenever it becomes nonempty, enable the find button
                  patternID = DlgControlID("searchPattern")
                  If DlgText(patternID) <> "" Then DlgEnable 7,1 Else DlgEnable 7,0
                  DlgProc = 1
      End Select
End Function
'
' Prompt user for keyword and filespec.
'
Sub main
        Begin dialog listboxd 30, 50, 165, 110, "Document Search", .DlgProc
                text                    10, 10, 60, 15, "&Files to Search:"
                textbox              70,    7, 75, 15, .files
                text                    10, 27, 60, 15, "&Search Pattern:"
                textbox              70, 24, 75, 15, .searchPattern
                checkbox            25, 75, 85, 15, "Match Case", .xcase
                checkbox            25, 90, 85, 15, "Use Pattern Matching", .regexp
                buttongroup .but
                button                25, 55, 60, 15, "Find"
                button              110, 90, 40, 15, "Help"
                cancelbutton    90, 55, 60, 15                
        End dialog
        On Error Goto Cancelled
        Dim SearchBox as listboxd
        SearchBox.files = "*.oss"
        SearchBox.xcase = 0
        Dialog SearchBox
        fileList = searchFiles(SearchBox.files, SearchBox.searchPattern, _
                          SearchBox.xcase, SearchBox.regexp)
        If fileList = "" Then
                MsgBox "Pattern " & """" & SearchBox.searchPattern & """" _
                & " not found in " & count & " file(s)"
        Else
                MsgBox fileList
        End If
Cancelled:
        Exit Sub
        Resume
End Sub



Greatest Common Factor
Updates a dialog box dynamically, based on user input

Dim msg$                      ' Module-level variable, visible to all functions below
Const ButtonPush      = 2          ' Dialog box actions
Const TextBoxEnter = 3

'
' In this function, the greatest common factor is computed. 
'
Function gcf% ( u%, v% )
        dim t%
        
        If ( u < v ) Then t=u    Else t=v
        While ( (u mod t) <> 0) OR ( (v mod t) <> 0)
              t=t-1
        Wend
        gcf = t
End Function

'
' CheckNumbers verifies both numbers are positive.
'
Function CheckNumbers% (Control$, action%, values&)

      If action = TextBoxEnter Then              
            If Val(DlgText$(Control)) < 1 Then    
                  RetVal = 1 
                  DlgText "errmsg", "Bad number, please reenter"
                  DlgFocus Control 
            End If
      ElseIf action = ButtonPush and values = 16 Then
            a = Val(DlgText$("num1"))
            b = Val(DlgText$("num2"))
            If a < 1 Or a <> Int(a) Then    
                  RetVal = 1
                  MsgBox "Bad number, please reenter"
                  DlgFocus "num1" 
            ElseIf (b < 1 Or b <> Int (b)) And RetVal = 0 Then 
                  RetVal = 1
                  MsgBox "Bad number, please reenter"
                  DlgFocus "num2"
            Else                                              ' no error found, ok to print out answer
                  DlgText "errmsg", "The answer is " & gcf(a,b)
                  RetVal = 1 
            End If
      End If
      CheckNumbers = RetVal                ' if RetVal = 0, dialog box will be exited
End Function

'
' Showdlg creates and displays the dialog box, prompting the
' user to input the two numbers.
'
Sub Showdlg
    
      Begin dialog enter2num 60,60,150,50, " ** G C F **",.CheckNumbers
            text          3,    4,    40, 10,      "first number"
            textbox 60,    2,    25, 12,                                        .num1$
            text          3, 18,    70, 10,      "second number"
            textbox 60, 18,    25, 12,                                        .num2$
            text          5, 35, 130, 10,        msg$,                      .errmsg
                
            OptionGroup    .but



            PushButton 100,    1,    40, 15,      "OK",                        .okBut
            PushButton 100, 18,    40, 15,      "Cancel",                .cancelBut
      End dialog
        
      Dim InputDlg as enter2num
      InputDlg.num1$="0"
      InputDlg.num2$="0"
      Dialog InputDlg
End Sub

Sub Main
      Call Showdlg
End Sub



Hello World
Demonstrates calls to subroutines and functions

'    MessageBox and GetTickCount are calls to functions defined in
'    user32.dll and kernel32.dll.

Declare Sub MessageBox LIB "user32.dll" Alias "MessageBoxA" (BYVAL h%, _
                              BYVAL t$, BYVAL c$, BYVAL u%)
Declare Function GetTickCount& LIB "kernel32.dll" ()

' 
' Function CAT$ concatenates two strings with a space between them
'
Function Cat$(a$, b$)
        Cat = a & " " & b
End Function

' 
' Subprogram Say computes the time and displays a message box.
'
Sub Say(what$)
        Dim min, sec, hrs 

        sec = GetTickCount() /1000
        min = sec / 60 : sec = sec mod 60
        hrs = min / 60 : min = min mod 60
 
        Dim eTime as variant                                            ' DIM can now be anywhere
        eTime = Format$(hrs,"00") & ":" & Format$(min,"00") & ":" & Format$(sec,"00")
        MessageBox 0, what, "Elapsed Time is " & eTime, 64
End Sub

Sub Main
        Dim msg$
        If (Command$ = "") Then msg$ = "world" Else msg$ = Command$
        Say Cat("Hello", msg$)
End Sub



Quicksort
Performs a recursive quicksort

Const max% = 5000                    ' Maximum length of data to be sorted.
Const ButtonPush      = 2          ' Used to determine why a 
Const TextBoxEnter = 3          ' dialog box function was called.
Const IdleLoop          = 5
Dim a(MAX) as Double
Dim count%, StarField%, Flag%, R%, Graphics%
'
' Display stars indicating recursion depth.
'
Sub Display
        For i%=1 To 1000 : Next i                          ' Delay loop
        DlgText StarField, String$(R,"*")
End Sub

'    Sort the array of numbers.    Note that OPEN Script allows recursion.
'
Sub QuickSort(LeftSide%, RightSide%)
        Dim v#, t as Double
        Dim i as integer, j%

        If Graphics Then 
                R = R+1 : Call Display        ' display recursion level
        End If
        If (RightSide>LeftSide) Then
                v=a(RightSide) : i=LeftSide-1 : j=RightSide : a(0) = v
                Do
                        Do : i=i+1 :      Loop Until a(i)>=v
                        Do : j=j-1 :      Loop Until a(j)<=v
                        t=a(i) : a(i)=a(j) : a(j)=t
                Loop Until (j<=i)
                a(j)=a(i) : a(i)= a(RightSide) : a(RightSide)=t
                Call QuickSort(LeftSide,i-1)
                Call QuickSort(i+1,RightSide)
        End If
        If Graphics Then 
                R = R-1 : Call Display 
        End If
End Sub
        
'    Dialog Box Function for star display dialog box.
'    Every dialog box can have its own dialog box function.
'
Function DlgFunc%(Control$, action%, values&)
        ' a sneaky way to make a dialog box with no button:
        ' create a button but make it invisible.
        If action = 1 Then DlgVisible DlgControlID("Stop"), 0
        If action = IdleLoop Then
                DlgFunc = 1
                If Flag = 0 Then
                        Flag = 1
                        ' get the ID of the field which will contain stars
                        StarField = DlgControlID("Stars")
                        Call QuickSort(1, count)
                        ' when sorting is done, close the dialog box.
                        SendKeys "{enter}"
                        Exit Function
                End If
        End If
End Function

'    Verify array size.



'
Function InputFunc%(Control$, action%, values&)
        If (action = ButtonPush) And (Control = "OkBut") Then
              If (Val(DlgText("Data")) <= 0) Or (Val(DlgText("Data")) > 1000) Then 
                    MsgBox "Invalid list size"
                    DlgFocus DlgControlID("Data")
                    InputFunc = 1
                End If
        End If
End Function

Sub Main
        Begin Dialog StarBoxType    106, 20, "Recursion Level", .DlgFunc
            Text        5, 8, 101, 10, "Text", .Stars
            PushButton 1, 3,      1,    1, "Stop", .Stop
        End Dialog
        Begin Dialog DataBoxType 20, 30, 186, 47, "Quicksort Parameters", .InputFunc
            TextBox                83,    9, 25, 11, .Data
            OKButton            130,    6, 50, 14, .OkBut
            CancelButton    130, 23, 50, 14
            Text                        4, 10, 75, 10, "Size of list (0 - 1000)"
            CheckBox                6, 25, 98,    8, "Animation", .Graphics
        End Dialog
    
        On Error Goto Done
        Randomize
        Dim DataBox as DataBoxType
        DataBox.Data = "500"                        ' Default array size
        Dialog DataBox
        count = Val(DataBox.Data)              ' Actual array size
        t0        = timer
        For i=1 To count : a(i) = Rnd(0.5) : Next i ' make random data
        Dim StarBox as StarBoxType
        Graphics = DataBox.Graphics
        If Graphics Then
                Dialog StarBox
        Else
                Call QuickSort(1, count)
        End If
        t1 = timer 
        Msgbox "elapsed time = "+str(t1-t0), ,"Quicksort Finished"
Done:
        Exit Sub
        Resume Next
End Sub



Abs Function
See Also Example
Returns the absolute value of a number.
Syntax Abs( number )

where: is:
number Any valid numeric expression.

Comments The data type of the return value matches the type of the number. If number 
is a Variant string (vartype 8), the return value will be converted to vartype 5 
(Double). If the absolute value evaluates to vartype 0 (Empty), the return 
value will be vartype 3 (Long).



AppActivate Statement 
See Also Example
Activates an application window.
Syntax AppActivate title

where: is:
title A string expression for the title-bar name of the application 

window to activate.
Comments Title must match the name of the window character for character, but 

comparison is not case-sensitive, e.g., "File Manager" is the same as "file 
manager" or "FILE MANAGER". If there is more than one window with a name 
matching title, a window is chosen at random.
AppActivate changes the focus to the specified window but does not change 
whether the window is minimized or maximized. Use AppActivate with the 
SendKeys statement to send keys to another application.



Asc Function 
See Also Example
Returns an integer corresponding to the ANSI code of the first character in the specified 
string.
Syntax Asc( string$ )

where: is:
string$ A string expression of one or more characters.

Comments To change an ANSI code to string characters, use Chr.



Atn Function 
See Also Example
Returns the angle (in radians) for the arc tangent of the specified number.
Syntax Atn( number )

where: is:
number Any valid numeric expression.

Comments The Atn function assumes number is the ratio of two sides of a right triangle: 
the side opposite the angle to find and the side adjacent to the angle. The 
function returns a single-precision value for a ratio expressed as an integer, a 
currency, or a single-precision numeric expression. The return value is a 
double-precision value for a long, Variant or double-precision numeric 
expression.
To convert radians to degrees, multiply by (180/PI). The value of PI is 
approximately 3.14159.



Beep Statement 
See Also Example
Produces a tone through the computer speaker.
Syntax Beep
Comments The frequency and duration of the tone depends on the hardware.



Begin Dialog ... End Dialog Statement 
See Also Example Overview
Begins and ends a dialog-box declaration.
Syntax Begin Dialog dialogName [x , y ,] dx , dy [, caption$ ]    [, .dialogfunction ]

' dialog box definition statements
End Dialog
where: is:
dialogName The record name for the dialog box definition.
x , y The coordinates for the upper left corner of the dialog box.
dx , dy The width and height of the dialog box (relative to x and y).
caption$ The title for the dialog box.
.dialogfunction A Basic function to process user actions in the dialog 

box.
Comments To display the dialog box, you create a dialog record variable with the Dim 

statement, and then display the dialog box using the Dialog     function   or 
Dialog statement with the variable name as its argument. In the Dim 
statement, this variable is defined As dialogName.
The x and y coordinates are relative to the upper left corner of the client area 
of the parent window. The x argument is measured in units that are 1/4 the 
average width of the system font. The y argument is measured in units 1/8 the
height of the system font. For example, to position a dialog box 20 characters 
in, and 15 characters down from the upper left hand corner, enter 80, 120 as 
the x , y coordinates. If these arguments are omitted, the dialog box is 
centered in the client area of the parent window.
The dx argument is measured in 1/4 system-font character-width units. The dy
argument is measured in 1/8 system-font character-width units. For example, 
to create a dialog box 80 characters wide, and 15 characters in height, enter 
320, 120 for the dx , dy coordinates.
If the caption$ argument is omitted, a standard default caption is used.
The optional .dialogfunction function must be defined (using the Function 
statement) or declared (using Dim) before being used in the Begin Dialog 
statement. Define the dialogfunction with the following three arguments:
Function dialogfunction% ( id$ , action% , suppvalue& ) 
' function body
End Function
id$ The text string that identifies the dialog control that 

triggered the call to the dialog function (usually because the
user changed this control).

action% An integer from 1 to 5 identifying the reason why the dialog 
function was called.

suppvalue& Gives more specific information about why the dialog 
function was called.

As with any Basic function, these arguments can have different names. The 
arguments of the dialog function can also be Variants. (Click the underlined 
argument above to see more about it.)
In most cases, the return value of dialogfunction is ignored. The exceptions 
are a return value of 2 or 5 for action%. If the user clicks the OK button, 
Cancel button, or a command button (as indicated by an action% return value 
of 2 and the corresponding id$ for the button clicked), and the dialog function 
returns a non-zero value, the dialog box will not be closed.



Unless the Begin Dialog statement is followed by at least one other dialog-
box definition statement and the End Dialog statement, an error will result. 
The definition statements must include an OKButton, CancelButton or 
Button statement. If this statement is left out, there will be no way to close 
the dialog box, and the procedure will be unable to continue executing.



Id$ is the same value for the dialog control that you use in the definition of that control. For 
example, the id$ value for a text box is Text1 if it is defined this way:

Textbox 271 , 78, 33, 18, .Text1



The following table summarizes the possible action% values and their meanings:
action% Meaning
1 Dialog box initialization. This value is passed before the dialog 

box becomes visible.
2 Command button selected or dialog box control changed 

(except typing in a text box or combo box).
3 Change in a text box or combo box. This value is passed when 

the control loses the input focus: the user presses the TAB key 
or clicks another control.

4 Change of control focus. Id$ is the id of the dialog control 
gaining focus. Suppvalue& contains the numeric id of the 
control losing focus. A dialog function cannot display a 
message box or dialog box in response to an action value 4.

    5 An idle state. As soon as the dialog box is initialized (action%    
= 1), the dialog function will be continuously called with action
% = 5 if no other action occurs. If dialog function wants to 
receive this message continuously while the dialog box is idle, 
return a non-zero value. If 0 (zero) is returned, action% = 5 will 
be passed only while the user is moving the mouse. For this 
action, Id$ is equal to empty string ("") and suppvalue& is 
equal to the number of times action 5 was passed before.



If the user clicks a command button or changes a dialog box control, action% returns 2 or 3 
and suppvalue& identifies the control affected. The value returned depends on the type of 
control or button the user changed or clicked. The following table summarizes the possible 
values for suppvalue&:

Control suppvalue&
List box Number of the item selected, 0-based.
Check box 1 if selected, 0 if cleared, -1 if filled with gray.
Option button Number of the option button in the option group, 0-

based.
Text box Number of characters in the text box.
Combo box The number of the item selected (0-based) for action 2, 

the number of characters in its text box for action 3.
OK button 1
Cancel button 2



Button Statement 
See Also Example
Defines a custom push button.
Syntax A Button x , y , dx , dy , text$ [, .id]
Syntax B PushButton x , y , dx , dy , text$ [, .id]

where: is:
x , y The position of the button relative to the upper left corner of the

dialog box.
dx , dy The width and height of the button.
text$ The name for the push button. If the width of this string is 

greater than dx, trailing characters are truncated.
.id An optional identifier used by the dialog statements that act on 

this control.
Comments A dy value of 14 typically accommodates text in the system font.

Use this statement to create buttons other than OK and Cancel. Use this 
statement in conjunction with the ButtonGroup statement. The two forms of 
the statement (Button and PushButton) are equivalent.
Use the Button statement only between a Begin Dialog and an End Dialog 
statement.



ButtonGroup Statement 
See Also Example
Begins the definition of a group of custom buttons for a dialog box.
Syntax ButtonGroup .field

where: is:
.field The field to contain the user's custom button selection.

Comments If ButtonGroup is used, it must appear before any PushButton (or Button) 
statement that creates a custom button (one other than OK or Cancel). Only 
one ButtonGroup statement is allowed within a dialog box definition.
Use the ButtonGroup statement only between a Begin     Dialog   and an End 
Dialog statement.



Call Statement 
See Also Example
Transfers control to a subprogram or function.
Syntax A Call subprogram-name [ ( argumentlist ) ]
Syntax B subprogram-name    argumentlist

where: is:
subprogram-name The name of the subroutine or function to call.
argumentlist The arguments for the subroutine or function (if any).

Comments Use the Call statement to call a subprogram or function written in Basic or to 
call C procedures in a DLL. These C procedures must be described in a 
Declare statement or be implicit in the application.
If a procedure accepts named arguments, you can use the names to specify 
the argument and its value. Order is not important. For example, if a 
procedure is defined as follows:

Sub mysub(aa, bb, optional cc, optional dd)
the following calls to this procedure are all equivalent:

call mysub(1, 2, , 4)
mysub aa := 1, bb := 2, dd :=4
call mysub(aa := 1, dd:=4, bb := 2)
mysub 1, 2, dd:=4

Note that the syntax for named arguments is as follows:
argname    := argvalue

where argname is the name for the argument as supplied in the Sub or 
Function statement and argvalue is the value to assign to the argument 
when you call it. The advantage to using named arguments is that you do not 
have to remember the order specified in the procedure's original definition, 
and if the procedure takes optional arguments, you do not need to include 
commas (,) for arguments that you leave out.
The procedures that use named arguments include:

1. All functions defined with the Function statement.
2. All subprograms defined with the Sub statement.

3. All procedures declared with Declare statement.
4. Many built-in functions and statements (such as InputBox).
5. Some externally registered DLL functions and methods.

Arguments are passed by reference to procedures written in Basic. If you pass 
a variable to a procedure that modifies its corresponding formal parameter, 
and you do not want to have your variable modified, enclose the variable in 
parentheses in the Call statement. This will tell OPEN Script to pass a copy of 
the variable. Note that this will be less efficient, and should not be done 
unless necessary.
When a variable is passed to a procedure that expects its argument by 
reference, the variable must match the exact type of the formal parameter of 
the function. (This restriction does not apply to expressions or Variants.)
When calling an external DLL procedure, arguments can be passed by value 
rather than by reference. This is specified either in the Declare statement, 
the Call itself, or both, using the ByVal keyword. If ByVal is specified in the 
declaration, then the ByVal keyword is optional in the call. If present, it must 
precede the value. If ByVal was not specified in the declaration, it is illegal in 



the call unless the data type specified in the declaration was Any.



CancelButton Statement 
See Also Example
Sets the position and size of a Cancel button in a dialog box.
Syntax CancelButton x , y , dx , dy [ , .id ]

where: is:
x , y The position of the Cancel button relative to the upper left 

corner of the dialog box.
dx , dy The width and height of the button.
.id An optional identifier for the button.

Comments A dy value of 14 can usually accommodate text in the system font.
.Id is used by the dialog statements that act on this control.
If you use the Dialog statement to display the dialog box and the user clicks 
Cancel, the box is removed from the screen and an Error 102 is triggered. If 
you use the Dialog function to display the dialog box, the function will return 
0 and no error occurs.
Use the CancelButton statement only between a Begin Dialog and an End 
Dialog statement.



Caption Statement
See Also Example
Defines the title of a dialog box.
Syntax Caption text$

where: is:
text$ A string expression containing the title of the dialog box.

Comments Use the Caption statement only between a Begin Dialog and an End Dialog
statement. The default caption for this statement is OPEN Script.
If no Caption statement is specified for the dialog box, a default caption is 
used.



CCur Function 
See Also Example
Converts an expression to the data type Currency.
Syntax CCur( expression )

where: is:
expression Any expression that evaluates to a number.

Comments CCur accepts any type of expression. Numbers that do not fit in the Currency 
data type result in an "Overflow" error. Strings that cannot be converted result
in a "Type Mismatch" error. Variants containing null result in an "Illegal Use of 
Null" error.



CDbl Function 
See Also Example
Converts an expression to the data type Double.
Syntax CDbl( expression )

where: is:
expression Any expression that evaluates to a number.

Comments CDbl accepts any type of expression. Strings that cannot be converted to a 
double-precision floating point result in a "Type Mismatch" error. Variants 
containing null result in an "Illegal Use of Null" error.



ChDir Statement 
See Also Example
Changes the default directory for the specified drive.
Syntax ChDir path$

where: is:
path$ A string expression identifying the new default directory.

Comments The syntax for path$ is:
[drive:] [\] directory [\directory]

If the drive argument is omitted, ChDir changes the default directory on the 
current drive. The ChDir statement does not change the default drive. To 
change the default drive, use ChDrive.



ChDrive Statement 
See Also Example
Changes the default drive.
Syntax ChDrive drive$

where: is:
drive$ A string expression designating the new default drive.

Comments This drive must exist and must be within the range specified by the 
LASTDRIVE statement in the CONFIG.SYS file. If a null argument (" ") is 
supplied, the default drive remains the same. If the drive$ argument is a 
string, ChDrive uses the first letter only. If the argument is omitted, an error 
message is produced. To change the current directory on a drive, use ChDir.



CheckBox Statement 
See Also Example
Creates a check box in a dialog box.
Syntax CheckBox x , y , dx , dy , text$ , .field

where: is:
x , y The upper left corner coordinates of the check box, relative to 

the upper left corner of the dialog box.
dx The sum of the widths of the check box and text$.
dy The height of text$.
text$ The title shown to the right of the check box.
.field The name of the dialog-record field that will hold the current 

check box setting (0=unchecked, -1=grey, 1=checked).
Comments The x argument is measured in 1/4 system-font character-width units. The y 

argument is measured in 1/8 system-font character-height units. (See Begin 
Dialog for more information.)
Because proportional spacing is used, the dx argument width will vary with 
the characters used. To approximate the width, multiply the number of 
characters in the text$ field (including blanks and punctuation) by 4 and add 
12 for the checkbox.
A dy value of 12 is standard, and should cover typical default fonts. If larger 
fonts are used, the value should be increased. As the dy number grows, the 
checkbox and the accompanying text will move down within the dialog box.
If the width of the text$ field is greater than dx, trailing characters will be 
truncated. If you want to include underlined characters so that the check box 
selection can be made from the keyboard, precede the character to be 
underlined with an ampersand (&).
OPEN Script treats any other value of .field the same as a 1. The .field 
argument is also used by the dialog statements that act on this control.
Use the CheckBox statement only between a Begin Dialog and an End 
Dialog statement.



Chr Function 
See Also Example
Returns the one-character string corresponding to an ANSI code.
Syntax Chr[$]( charcode )

where: is:
charcode An integer between 0 and 255.

Comments The dollar sign, "$", in the function name is optional. If specified, the return 
type is String. If omitted, the function will return a Variant of vartype 8 
(string).



CInt Function 
See Also Example
Converts an expression to the data type Integer by rounding.
Syntax CInt( expression )

where: is:
expression Any expression that can evaluate to a number.

Comments After rounding, the resulting number must be within the range of -32767 to 
32767, or an error occurs.
Strings that cannot be converted to an integer result in a "Type Mismatch" 
error. Variants containing null result in an "Illegal Use of Null" error.



Clipboard
Example
The Windows Clipboard can be accessed directly in your program to enable you to get text 
from and put text into other applications that support the Clipboard.
Syntax Clipboard.Clear

Clipboard.GetText()
Clipboard.SetText string$
Clipboard.GetFormat()
where: is:
string$ A string or string expression containing the text to send to the 

Clipboard.
The Clipboard methods supported are as follows:

Method: What it does:
Clear Clears the contents of the Clipboard.
GetText Returns a text string from the Clipboard.
SetText Puts a text string to the Clipboard.
GetForma
t

Returns TRUE (non-0) if the format of the
item on the Clipboard is text. Otherwise, 
returns FALSE (0).

Note: Data on the Clipboard is lost when another set of data of the same format is placed 
on the Clipboard (either through code or a menu command).



CLng Function 
See Also Example
Converts an expression to the data type Long by rounding.
Syntax CLng( expression )

where: is:
expression Any expression that can evaluate to a number.

Comments After rounding, the resulting number must be within the range of -
2,147,483,648 to 2,147,483,647, or an error occurs.
Strings that cannot be converted to a long result in a "Type Mismatch" error. 
Variants containing null result in an "Illegal Use of Null" error.



Close Statement 
See Also Example
Closes a file, concluding input/output to that file.
Syntax Close [ [#] filenumber%  [ , [ # ] filenumber% ... ]]

where: is:
filenumber% An integer expression identifying the file to close.

Comments Filenumber% is the number assigned to the file in the Open statement and 
can be preceded by a pound sign (#). If this argument is omitted, all open files
are closed. Once a Close statement is executed, the association of a file with 
filenumber% is ended, and the file can be reopened with the same or a 
different file number.
When the Close statement is used, the final output buffer is written to the 
operating system buffer for that file. Close frees all buffer space associated 
with the closed file. Use the Reset statement so that the operating system 
will flush its buffers to disk.



ComboBox Statement 
See Also Example
Creates a combination text box and list box in a dialog box.
Syntax A ComboBox x , y , dx , dy , text$ , .field
Syntax B ComboBox x , y , dx , dy , stringarray$ , .field

where: is:
x , y The upper left corner coordinates of the list box, relative to the 

upper left corner of the dialog box.
dx , dy The width and height of the combo box in which the user enters

or selects text.
text$ A string containing the selections for the combo box.
stringarray$ An array of dynamic strings for the selections in the combo box.
.field The name of the dialog-record field that will hold the text string 

entered in the text box or chosen from the list box.
Comments The x argument is measured in 1/4 system-font character-width units. The y 

argument is measured in 1/8 system-font character-width units. (See Begin 
Dialog for more information.)
The text$ argument must be defined, using a Dim Statement, before the 
Begin Dialog statement is executed. The arguments in the text$ string are 
entered as shown in the following example:
dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
The string in the text box will be recorded in the field designated by the .field 
argument when the OK button (or any pushbutton other than Cancel) is 
pushed. The field argument is also used by the dialog statements that act on 
this control.
Use the ComboBox statement only between a Begin Dialog and an End 
Dialog statement.



Command Function 
See Also Example
Returns the command line specified when the MAIN subprogram was invoked.
Syntax Command[$]
Comments After the MAIN subprogram returns, further calls to the Command function 

will yield an empty string.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is String. If omitted, the function returns a Variant of vartype 8 (string).



Const Statement 
See Also Example
Declares symbolic constants for use in a Basic program.
Syntax [Global] Const constantName    [As type ]= expression [,constantName    [As

type ]= expression ] ...
where: is:
constantName The variable name to contain a constant value.
type The data type of the constant (Number or String).
expression Any expression that evaluates to a constant number.

Comments Instead of using the As clause, the type of the constant can be specified by 
using a type character as a suffix (# for numbers, $ for strings) to the 
constantName. If no type character is specified, the type of the constantName
is derived from the type of the expression.
If Global is specified, the constant is validated at module load time. If the 
constant has already been added to the run-time global area, the constant's 
type and value are compared to the previous definition, and the load fails if a 
mismatch is found. This is useful as a mechanism for detecting version 
mismatches between modules.



Cos Function 
See Also Example
Returns the cosine of an angle.
Syntax Cos( number )

where: is:
number An angle in radians.

Comments The return value will be between -1 and 1. The return value is a single-
precision number if the angle has a data type Integer, Currency, or is a 
single-precision value. The return value will be a double precision value if the 
angle has a data type Long, Variant or is a double-precision value.
The angle can be either positive or negative. To convert degrees to radians, 
multiply by (PI/180). The value of PI is approximately 3.14159.



CreateObject Function 
See Also Example Overview
Creates a new OLE Automation object.
Syntax CreateObject( class )

where: is:
class The name of the application, a period, and the name of the 

object to be used.
Comments To create an object, you first must declare an object variable, using Dim, and 

then Set the variable equal to the new object, as follows:
Dim OLEobj As Object 
Set OLEobj = CreateObject("spoly.cpoly")

To refer to a method or property of the newly created object, use the syntax 
objectvar.property or objectvar.method, as follows:

OLEobj.reset

Refer to the documentation provided with your OLE Automation server 
application for correct application and object names.



CSng Function 
See Also Example
Converts an expression to the data type Single.
Syntax CSng( expression )

where: is:
expression Any expression that can evaluate to a number.

Comments The expression must have a value within the range allowed for the Single 
data type, or an error occurs. 
Strings that cannot be converted to an integer result in a "Type Mismatch" 
error. Variants containing null result in an "Illegal Use of Null" error.



CStr Function 
See Also Example
Converts an expression to the data type String.
Syntax CStr( expression )

where: is:
expression Any expression that can evaluate to a number.

Comments The CStr statement accepts any type of expression:
expression is: CStr returns:
Boolean A String containing "True" or "False".
Date A String containing a date.
Empty A zero-length String ("").
Error A String containing "Error", followed by the error number.
Null A run-time error.
Other Numeric A String containing the number.



$CStrings Metacommand [OPEN Script Extension]
See Also Example
Tells the compiler to treat a backslash character inside a string (\) as an escape character.
Syntax '$CStrings [ Save | Restore ]

where: means:
Save Saves the current $Cstrings setting.
Restore Restores a previously saved $CStrings setting.

Comments This treatment of a backslash in a string is based on the 'C' language.
Save and Restore operate as a stack and allow the user to change the 
setting for a range of the program without impacting the rest of the program.
The supported special characters are:
        Newline (Linefeed) \n
        Horizontal Tab \t
        Vertical Tab \v
        Backspace \b
        Carriage Return \r
        Formfeed \f
        Backslash \\
        Single Quote \'
        Double Quote \"
        Null Character \0
The instruction "Hello\r World" is the equivalent of "Hello" + 
Chr$(13)+"World".
In addition, any character can be represented as a 3-digit octal code or a 3-
digit hexadecimal code:
        Octal Code \ddd
        Hexadecimal Code \xddd
For both hexadecimal and octal, fewer than 3 characters can be used to 
specify the code as long as the subsequent character is not a valid (hex or 
octal) character.
To tell the compiler to return to the default string processing mode, where the 
backslash character has no special meaning, use the '$NoCStrings 
Metacommand.



CurDir Function 
See Also Example
Returns the default directory (and drive) for the specified drive.
Syntax CurDir[$] [ ( drive$ ) ]

where: is:
drive$ A string expression containing the drive to search.

Comments The drive must exist, and must be within the range specified in the LASTDRIVE
statement of the CONFIG.SYS file. If a null argument (" ") is supplied, or if no 
drive$ is indicated, the path for the default drive is returned.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is string. If omitted, the function will return a Variant of vartype 8 
(string).
To change the current drive, use ChDrive. To change the current directory, 
use ChDir.



CVar Function 
See Also Example
Converts an expression to the data type Variant.
Syntax CVar( expression )

where: is:
expression Any expression that can evaluate to a number.

Comments CVar accepts any type of expression.
CVar generates the same result as you would get by assigning the expression
to a Variant variable.



CVDate Function 
See Also Example
Converts an expression to the data type Variant Date.
Syntax CVDate( expression )

where: is:
expression Any expression that can evaluate to a number.

Comments CVDate accepts both string and numeric values.
The CVDate function returns a Variant of vartype 7 (date) that represents a 
date from January 1, 100 through December 31, 9999. A value of 2 represents 
January 1, 1900. Times are represented as fractional days.



Date Function 
See Also Example
Returns a string representing the current date.
Syntax Date[$]
Comments The Date function returns a ten character string.

The dollar sign, "$", in the function name is optional. If specified, the return 
type is string. If omitted, the function will return a Variant of vartype 8 
(string).



Date Statement 
See Also Example
Sets the system date.
Syntax Date[$] = expression

where: is:
expression A string in one of the following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy
where mm denotes a month (01-12), dd denotes a day (01-31), 
and yy or yyyy denotes a year (1980-2099).

Comments If the dollar sign, "$", is omitted, expression can be a string containing a valid 
date, a Variant of vartype 7 (date), or a Variant of vartype 8 (string). 
If expression is not already a Variant of vartype 7 (date), Date attempts to 
convert it to a valid date from January 1, 1980 through December 31, 2099. 
Date uses the Short Date format in the International section of Windows 
Control Panel to recognize day, month, and year if a string contains three 
numbers delimited by valid date separators. In addition, Date recognizes 
month names in either full or abbreviated form.



DateSerial Function 
See Also Example
Returns a date value for year, month, and day specified.
Syntax DateSerial( year% , month% , day% )

where: is:
year% A year between 100 and 9999, or a numeric expression.
month% A month between 1 and 12, or a numeric expression.
day% A day between 1 and 31, or a numeric expression.

Comments The DateSerial function returns a Variant of vartype 7 (date) that represents
a date from January 1, 100 through December 31, 9999, where January 1, 
1900 is 2.
A numeric expression can be used for any of the arguments to specify a 
relative date: a number of days, months, or years before or after a certain 
date.



DateValue Function 
See Also Example
Returns a date value for the string specified.
Syntax DateValue( date$ )

where: is:
date$ A string representing a valid date.

Comments The DateValue function returns a Variant of vartype 7 (date) that represents
a date from January 1, 100 through December 31, 9999, where January 1, 
1900 is 2.
DateValue accepts several different string representations for a date. It 
makes use of the operating system's international settings for resolving purely
numeric dates.



Day Function 
See Also Example
Returns the day of the month (1-31) of a date-time value.
Syntax Day( date )

where: is:
date Any expression that can evaluate to a date.

Comments Day attempts to convert the input value of date to a date value. The return 
value is a Variant of vartype 2 (integer). If the value of date is null, a Variant 
of vartype 1 (null) is returned.



DDEAppReturnCode Function 
See Also
Returns a code received from an application on an open dynamic data exchange (DDE) 
channel.
Syntax DDEAppReturnCode()
Comments To open a DDE channel, use DDEInitiate. Use DDEAppReturnCode to check

for error return codes from the server application after using DDEExecute, 
DDEPoke or DDERequest.



DDEExecute Statement
See Also Example
Sends one or more commands to an application via a dynamic-data exchange (DDE) 
channel. 
Syntax DDEExecute channel% , cmd$

where: is:
channel% An integer or expression for the channel number of the DDE 

conversation as returned by DDEInitiate.
cmd$ One or more commands recognized by the application.

Comments If channel doesn't correspond to an open channel, an error occurs.
You can also use the format described under SendKeys to send specific key 
sequences. If the server application cannot perform the specified command, 
an error occurs.
In many applications that support DDE, cmd$ can be one or more statements 
or functions in the application's macro language. Note that some applications 
require that each command received through a DDE channel be enclosed in 
brackets and quotation marks.
You can use a single DDEExecute instruction to send more than one 
command to an application.
Many commands require arguments in the form of strings enclosed in 
quotation marks. Because quotation marks indicate the beginning and end of 
a string in OPEN Script, you must use Chr$(34) to include a quotation mark in 
a command string. For example, the following instruction tells Microsoft Excel 
to open MYFILE.XLS:
DDEExecute channelno, "[OPEN(" + Chr$(34) + "MYFILE.XLS" + Chr$(34) + 
")]"



DDEInitiate Function 
See Also Example
Opens a dynamic-data exchange (DDE) channel and returns the DDE channel number (1,2, 
etc.).
Syntax DDEInitiate( appname$ , topic$ )

where: is:
appname$ A string or expression for the name of the DDE application to 

talk to.
topic$ A string or expression for the name of a topic recognized by 

appname$.
Comments If DDEInitiate is unable to open a channel, it returns zero (0).

Appname$ is usually the name of the application's .EXE file without the .EXE 
filename extension. If the application is not running, DDEInitiate cannot open
a channel and returns an error. Use Shell to start an application.
Topic$ is usually an open filename. If appname$ doesn't recognize topic$, 
DDEInitiate generates an error. Many applications that support DDE 
recognize a topic named System, which is always available and can be used 
to find out which other topics are available. For more information on the 
System topic, see DDERequest.
The maximum number of channels that can be open simultaneously is 
determined by the operating system and your system's memory and 
resources. If you aren't using an open channel, you should conserve resources
by closing it using DDETerminate.



DDEPoke Statement
See Also Example
Sends data to an application on an open dynamic-data exchange (DDE) channel.
Syntax DDEPoke channel%, item$, data$

where: is:
channel% An integer or expression for the open DDE channel number.
item$ A string or expression for the name of an item in the currently 

opened topic.
data$ A string or expression for the information to send to the topic.

Comments If channel% doesn't correspond to an open channel, an error occurs.
When you open a channel to an application using DDEInitiate, you also 
specify a topic, such as a filename, to communicate with. The item$ is the 
part of the topic you want to send data to. DDEPoke sends data as a text 
string; you cannot send text in any other format, nor can you send graphics.
If the server application doesn't recognize item$, an error occurs.



DDERequest Function 
See Also Example
Returns data from an application through an open dynamic data exchange (DDE) channel.
Syntax DDERequest[$] ( channel%, item$ )

where: is:
channel% An integer or expression for the open DDE channel number.
item$ A string or expression for the name of an item in the currently 

opened topic to get information about.
Comments If channel% doesn't correspond to an open channel, an error occurs.

If the server application doesn't recognize item$, an error occurs.
If DDERequest is unsuccessful, it returns an empty string ("").
When you open a channel to an application using DDEInitiate, you also 
specify a topic, such as a filename, to communicate with. The item$ is the 
part of the topic whose contents you are requesting.
DDERequest returns data as a text string. Data in any other format cannot 
be transferred, nor can graphics.
Many applications that support DDE recognize a topic named System. Three 
standard items in the System topic are described in the following table:
Item: Returns:
SysItems A list of all items in the System topic
Topics A list of available topics
Formats A list of all the Clipboard formats supported



DDETerminate Statement
See Also Example
Closes the specified dynamic data exchange (DDE) channel.
Syntax DDETerminate channel%

where: is:
channel% An integer or expression for the open DDE channel number.

Comments To free system resources, you should close channels you aren't using. If 
channel% doesn't correspond to an open channel, an error occurs.



Declare Statement 
See Also Example
Declares a procedure in a module or dynamic link library (DLL).
Syntax A Declare Sub name [ libSpecification ]    [ ( parameter [ As type ] ) ]
Syntax B Declare Function name [ libSpecification ]    [ ( parameter [ As type ] ) ] [

As functype ]
where: is:
name The subprogram or function procedure to declare.
libSpecification The location of the procedure (module or DLL).
parameter The arguments to pass to the procedure, separated by 

commas.
type The type for the arguments.
functype The type of the return value for a function procedure.

Comments A Sub procedure does not return a value. A Function procedure returns a 
value, and can be used in an expression. To specify the data type for the 
return value of a function, end the Function name with a type character or use
the As functype clause shown above. If no type is provided, the function 
defaults to data type Variant.
If the libSpecification is of the format:

BasicLib libName  [ Alias "aliasname" ]
the procedure is in another Basic module named libName. The Alias keyword 
specifies that the procedure in libName is called aliasname. The other module 
will be loaded on demand whenever the procedure is called. OPEN Script will 
not automatically unload modules that are loaded in this fashion. OPEN Script 
will detect errors of mis-declaration.
If the libSpecification is of the format:

Lib libName [ Alias ["]ordinal["] ]    or
Lib libName    [ Alias "aliasname" ]

the procedure is in a Dynamic Link Library (DLL) named libName. The ordinal 
argument specifies the ordinal number of the procedure within the external 
DLL. Alternatively, aliasname specifies the name of the procedure within the 
external DLL. If neither ordinal nor aliasname is specified, the DLL function is 
accessed by name. It is recommended that the ordinal be used whenever 
possible, since accessing functions by name might cause the module to load 
more slowly.
A forward declaration is needed only when a procedure in the current module 
is referenced before it is defined. In this case, the BasicLib, Lib and Alias 
clauses are not used.
The data type of a parameter can be specified by using a type character or by 
using the As clause. Record parameters are declared by using an As clause 
and a type that has previously been defined using the Type statement. Array 
parameters are indicated by using empty parentheses after the parameter: 
array dimensions are not specified in the Declare statement.
External DLL procedures are called with the PASCAL calling convention (the 
actual arguments are pushed on the stack from left to right). By default, the 
actual arguments are passed by Far reference. For external DLL procedures, 
there are two additional keywords, ByVal and Any, that can be used in the 
parameter list.
When ByVal is used, it must be specified before the parameter it modifies. 



When applied to numeric data types, ByVal indicates that the parameter is 
passed by value, not by reference. When applied to string parameters, ByVal 
indicates that the string is passed by Far pointer to the string data. By default,
strings are passed by Far pointer to a string descriptor.
Any can be used as a type specification, and permits a call to the procedure 
to pass a value of any datatype. When Any is used, type checking on the 
actual argument used in calls to the procedure is disabled (although other 
arguments not declared as type Any are fully type-safe). The actual argument
is passed by Far reference, unless ByVal is specified, in which case the actual 
value is placed on the stack (or a pointer to the string in the case of string 
data). ByVal can also be used in the call. It is the external DLL procedure's 
responsibility to determine the type and size of the passed-in value.
When an empty string ("") is passed ByVal to an external procedure, the 
external procedure will receive a valid (non-NULL) pointer to a character of 0. 
To send a NULL pointer, Declare the procedure argument as ByVal As Any, 
and call the procedure with an argument of 0.
You can also declare a function in one module and then call it from another 
module. To call such an external function, you declare the function in one 
module and then $Include that module in the module from which you call the 
function. 



Deftype Statement 
See Also Example
Specifies the default data type for one or more variables.
Syntax DefCur varTypeLetters

DefInt varTypeLetters
DefLng varTypeLetters
DefSng varTypeLetters
DefDbl varTypeLetters
DefStr varTypeLetters
DefVar varTypeLetters
where: is:
varTypeLetters A first letter of the variable name to use.

Comments VarTypeLetters can be a single letter, a comma-separated list of letters, or a 
range of letters. For example, a-d indicates the letters a, b, c and d.
The case of the letters is not important, even in a letter range. The letter 
range a-z is treated as a special case: it denotes all alpha characters, 
including the international characters.
The Deftype statement affects only the module in which it is specified. It 
must precede any variable definition within the module.
Variables defined using the Global or Dim can override the Deftype statement
by using an As clause or a type character.



Dialog Function 
See Also Example Overview
Displays a dialog box and returns a number for the button selected (-1= OK, 0=Cancel).
Syntax Dialog ( recordName )

where: is:
recordName A variable name declared as a dialog box record.

Comments If the dialog box contains additional command buttons (for example, Help), 
the Dialog function returns a number greater than 0. 1 corresponds to the 
first command button, 2 to the second, and so on.
The dialog box recordName must have been declared using the Dim 
statement with the As parameter followed by a dialog box definition name. 
This name comes from the name argument used in the Begin Dialog 
statement.
To trap a user's selections within a dialog box, you must create a function and 
specify it as the last argument to the Begin Dialog statement. See Begin 
Dialog for more information.
The Dialog function does not return until the dialog box is closed.



Dialog Statement 
See Also Example Overview
Displays a dialog box.
Syntax Dialog recordName

where: is:
recordName A variable name declared as a dialog box record.

Comments The dialog box recordName must have been declared using the Dim 
statement with the As parameter followed by a dialog box definition name. 
This name comes from the name argument used in the Begin Dialog 
statement.
If the user exits the dialog box by pushing the Cancel button, the run-time 
error 102 is triggered, which can be trapped using On Error.
To trap a user's selections within a dialog box, you must create a function and 
specify it as the last argument to the Begin Dialog statement. See Begin 
Dialog for more information.
The Dialog statement does not return until the dialog box is closed.



Dim Statement 
See Also Example Overview
Declares variables for use in a Basic program.
Syntax Dim [ Shared ] variableName [As [ New ] type] [,variableName [As [ New ] 

type]]    ...
where: is:
variableName The name of the variable to declare.
type The data type of the variable.

Comments VariableName must begin with a letter and contain only letters, numbers and 
underscores. A name can also be delimited by brackets, and any character 
can be used inside the brackets, except for other brackets.

Dim my_1st_variable As String
Dim [one long and strange! variable name] As String

If the As clause is not used, the type of the variable can be specified by using 
a type character as a suffix to variableName. The two different type-
specification methods can be intermixed in a single Dim statement (although 
not on the same variable).
Basic is a strongly typed language: all variables must be given a data type or 
they will be automatically assigned the data type Variant. The available data 
types are:
Arrays
Numbers
Objects
Records
Strings
Variants
Variables can be shared across modules. A variable declared inside a 
procedure has scope Local to that procedure. A variable declared outside a 
procedure has scope Local to the module. If you declare a variable with the 
same name as a module variable, the module variable is not accessible. See 
the Global statement for details.
The Shared keyword is included for backward compatibility with older 
versions of Basic. It is not allowed in Dim statements inside a procedure. It 
has no effect.
It is considered good programming practice to declare all variables. To force all
variables to be explicitly declared use the Option Explicit statement. It is 
also recommended that you place all procedure-level Dim statements at the 
beginning of the procedure.
Regardless of which mechanism you use to declare a variable, you can choose
to use or omit the type character when referring to the variable in the rest of 
your program. The type suffix is not considered part of the variable name.



Arrays
The available data types for arrays are: numbers, strings, variants, objects 
and records. Arrays of arrays, dialog box records, and objects are not 
supported.
Array variables are declared by including a subscript list as part of the 
variableName. The syntax to use for variableName is:

Dim variable(    [ subscriptRange, ... ]    ) As typeName    or
Dim variable_with_suffix( [ subscriptRange, ... ] )

where subscriptRange is of the format:
[ startSubscript To ] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base 
statement can be used to change the default.
Both the startSubscript and the endSubscript are valid subscripts for the array.
The maximum number of subscripts that can be specified in an array 
definition is 60. The maximum total size for an array is only limited by the 
amount of memory available.
If no subscriptRange is specified for an array, the array is declared as a 
dynamic array. In this case, the ReDim statement must be used to specify the
dimensions of the array before the array can be used.



Numbers
Numeric variables can be declared using the As clause and one of the 
following numeric types: Currency, Integer, Long, Single, Double. Numeric
variables can also be declared by including a type character as a suffix to the 
name. Numeric variables are initialized to 0.



Objects
Object variables are declared using an As clause and a typeName of Object. 
Object variables can be Set to refer to an object, and then used to access 
members and methods of the object using dot notation.

Dim OLEobj    As Object 
Set OLEobj = CreateObject("spoly.cpoly")
OLEobj.reset

An object can be declared as New for some classes. In such instances, the 
object variable does not need to be Set; a new object will be allocated when 
the variable is used. Note: The class Object does not support the New 
operator.

Dim variableName As New className
variableName.methodName



Records
Record variables are declared by using an As clause and a typeName that has
been defined previously using the Type statement. The syntax to use is:

Dim variableName As typeName

Records are made up of a collection of data elements called fields. These 
fields can be of any numeric, string, Variant, or previously-defined record type.
See Type for details on accessing fields within a record.
You can also use the Dim statement to declare a dialog box record. In this 
case, type is specified as dialogName, where dialogName matches a dialog 
box name previously defined using Begin Dialog. The dialog record variable 
can then be used in a Dialog statement.
Dialog box records have the same behavior as regular records; they differ only
in the way they are defined. Some applications might provide a number of 
predefined dialog boxes.



Strings
OPEN Script supports two types of strings: fixed-length and dynamic. Fixed-
length strings are declared with a specific length (between 1 and 32767) and 
cannot be changed later. Use the following syntax to declare a fixed-length 
string:

Dim variableName As String*length

Dynamic strings have no declared length, and can vary in length from 0 to 
32,767. The initial length for a dynamic string is 0. Use the following syntax to 
declare a dynamic string:

Dim variableName$    or
Dim variableName As String

When initialized, fixed-length strings are filled with zeros. Dynamic strings are 
initialized as zero-length strings.



Variants
Declare variables as Variants when the type of the variable is not known at the
start of, or might change during, the procedure. For example, a Variant is 
useful for holding input from a user when valid input can be either text or 
numbers. Use the following syntax to declare a Variant:

Dim variableName    or
Dim variableName As Variant

Variant variables are initialized to vartype Empty.



Dir Function 
See Also Example
Returns a filename that matches the specified pattern.
Syntax Dir[$] [( pathname$ [,attributes% )]

where: is:
pathname$ A string expression identifying a path or filename.
attributes% An integer expression specifying the file attributes to select.

Comments Pathname$ can include a drive specification and wildcard characters ('?' and 
'*'). Dir returns the first filename that matches the pathname$ argument. To 
retrieve additional matching filenames, call the Dir function again, omitting 
the pathname$ and attributes% arguments. If no file is found, an empty string
("") is returned.
The default value for attributes% is 0. In this case, Dir returns only files 
without directory, hidden, system, or volume label attributes set.
Here are the possible values for attributes%:
Value Meaning
        0 return normal files
        2 add hidden files
        4 add system files
        8 return volume label
      16 add directories
The values in the table can be added together to select multiple attributes. 
For example, to list hidden and system files in addition to normal files set 
attributes% to 6 (6=2+4).
If attributes% is set to 8, the Dir function returns the volume label of the drive
specified in the pathname$, or of the current drive if drive is not explicitly 
specified. If volume label attribute is set, all other attributes are ignored.
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted the function will return a Variant of vartype 8 
(string).



DlgControlID Function 
See Also Example Overview
Returns the numeric ID of a dialog box control with the specified Id$ in the active dialog box.
Syntax DlgControlID ( Id$ )

where: is:
Id$ The string ID for a dialog control.

Comments The DlgControlID function translates a string Id$ into a numeric ID. This 
function can only be used from within a dialog box function. The value of the 
numeric identifier is based on the position of the dialog box control with the 
dialog; it will be 0 (zero) for the first control, 1 (one) for the second control, 
and so on. 
Given the following example, the statement DlgControlID( doGo) will return 
the value 1.

Begin Dialog newdlg 200, 200
        PushButton 40, 50, 80, 20, "&Stop", .doStop
        PushButton 40, 80, 80, 20, "&Go", .doGo
End Dialog

The advantage of using a dialog box controls numeric ID is that it is more 
efficient, and numeric values can sometimes be more easily manipulated.
Rearranging the order of a control within a dialog box will change its numeric 
ID. For example, if a PushButton control originally had a numeric value of 1, 
and a textbox control is added before it, the PushButton controls new numeric 
value will be 2. This is shown in the following example:

CheckBox    40, 110, 80, 20, "CheckBox", .CheckBox1
TextBox      40, 20, 80, 20, .TextBox1            this is the new added control
PushButton 40, 80, 80, 20, "&Go", .doGo

The string IDs come from the last argument in the dialog definition statement 
that created the dialog control, such as the TextBox or ComboBox 
statements. The string ID does not include the period (.) and is case-sensitive. 
Use DlgControlID only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgEnable Function 
See Also Example Overview
Returns the enable state for the specified dialog control (-1=enabled, 0=disabled).
Syntax DlgEnable ( Id )

where: is:
Id The control ID for the dialog control.

Comments If a dialog box control is enabled, it is accessible to the user. You might want to
disable a control if its use depends on the selection of other controls.
Use the DlgControlID function to find the numeric ID for a dialog control, 
based on its string identifier.
Use DlgEnable only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgEnable Statement 
See Also Example Overview
Enables, disables, or toggles the state of the specified dialog control.
Syntax DlgEnable Id [ , mode ]

where: is:
Id The control ID for the dialog control to change.
mode An integer representing the enable state (1=enable, 0=disable)

Comments If mode is omitted, the DlgEnable toggles the state of the dialog control 
specified by Id. If a dialog box control is enabled, it is accessible to the user. 
You might want to disable a control if its use depends on the selection of other
controls.
Use the DlgControlID function to find the numeric ID for a dialog control, 
based on its string identifier. The string IDs come from the last argument in 
the dialog definition statement that created the dialog control, such as the 
TextBox or ComboBox statements.
Use DlgEnable only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgEnd Statement 
See Also Example Overview
Closes the active dialog box.
Syntax DlgEnd exitCode

where: is:
exitCode The return value after closing the dialog box (-1=OK, 

0=Cancel).
Comments ExitCode contains a return value only if the dialog box was displayed using the

Dialog function. That is, if you used the Dialog statement, exitCode is 
ignored.
If the dialog box contains additional command buttons (for example, Help), 
the Dialog function returns a number greater than 0. 1 corresponds to the 
first command button, 2 to the second, and so on.
Use DlgEnd only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgFocus Function 
See Also Example Overview
Returns the control ID of the dialog control having the input focus.
Syntax DlgFocus[$]( )
Comments A control has focus when it is active and responds to keyboard input.

Use DlgFocus only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgFocus Statement 
See Also Example Overview
Sets the focus for the specified dialog control.
Syntax DlgFocus Id 

where: is:
Id The control ID for the dialog control to make active.

Comments Use the DlgControlID function to find the numeric ID for a dialog control, 
based on its string identifier. The string IDs come from the last argument in 
the dialog definition statement that created the dialog control, such as the 
TextBox or ComboBox statements.
Use DlgFocus only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgListBoxArray Function 
See Also Example Overview
Returns the number of elements in a list or combo box.
Syntax DlgListBoxArray ( Id[, Array$] )

where: is:
Id The control ID for the list or combo box.
Array$ The entries in the list box or combo box returned.

Comments Array$ is a one-dimensional array of dynamic strings. If array$ is dynamic, its 
size is changed to match the number of strings in the list or combo box. If 
array$ is not dynamic and it is too small, an error occurs. If array$ is omitted, 
the function returns the number of entries in the specified dialog control.
Use the DlgControlID function to find the numeric ID for a dialog control, 
based on its string identifier. The string IDs come from the last argument in 
the dialog definition statement that created the dialog control, such as the 
TextBox or ComboBox statements.
Use DlgListBoxArray only while a dialog box is running. See the Begin 
Dialog statement for more information.



DlgListBoxArray Statement 
See Also Example Overview
Fills a list or combo box with an array of strings.
Syntax DlgListBoxArray Id,    Array$

where: is:
Id The control ID for the list or combo box.
Array$ The entries for the list box or combo box.

Comments Array$ has to be a one-dimensional array of dynamic strings. One entry 
appears in the list box for each element of the array. If the number of strings 
changes depending on other selections made in the dialog box, you should 
use a dynamic array and ReDim the size of the array whenever it changes.
Use DlgListBoxArray only while a dialog box is running. See the Begin 
Dialog statement for more information.



DlgSetPicture Statement 
See Also Example Overview
Changes the picture in a picture dialog control for the current dialog box.
Syntax DlgSetPicture Id, filename$ , type 

where: is:
Id The control ID for the picture dialog control.
filename$ The name of the bitmap file (.BMP) to use.
type An integer representing the location of the file (0=filename$, 

3=Clipboard)
Comments Use the DlgControlID function to find the numeric ID for a dialog control, 

based on its string identifier. The string IDs come from the last argument in 
the dialog definition statement that created the dialog control, such as the 
TextBox or ComboBox statements.
Use DlgListBoxArray only while a dialog box is running. See the Begin 
Dialog statement for more information.
See the Picture statement for more information about displaying pictures in 
dialog boxes.



DlgText Function 
See Also Example Overview
Returns the text associated with a dialog control for the current dialog box.
Syntax DlgText[$] ( Id )

where: is:
Id The control ID for a dialog control.

Comments If the control is a text box or a combo box, DlgText function returns the text 
that appears in the text box. If it is a list box, the function returns its current 
selection. If it is a text box, DlgText returns the text. If the control is a 
command button, option button, option group, or a check box, the function 
returns its label.
Use DlgText only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgText Statement 
See Also Example Overview
Changes the text associated with a dialog control for the current dialog box.
Syntax DlgText Id, text$ 

where: is:
Id The control ID for a dialog control.
text$ The text to use for the dialog control.

Comments If the dialog control is a text box or a combo box, DlgText sets the text that 
appears in the text box. If it is a list box, a string equal to text$ or beginning 
with text$ is selected. If the dialog control is a text control, DlgText sets it to 
text$. If the dialog control is a command button, option button, option group, 
or a check box, the statement sets its label.
The DlgText statement does not change the identifier associated with the 
control.
Use DlgText only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgValue Function 
See Also Example Overview
Returns a numeric value for the state of a dialog control for the current dialog box.
Syntax DlgValue ( Id )

where: is:
Id The control ID for a dialog control.

Comments The values returned depend on the type of dialog control:
Control Value Returned
Checkbox 1 = Selected, 0=Cleared, -1=Grayed
Option Group 0 = 1st button selected, 1 = 2nd button selected, etc.
Listbox 0 = 1st item, 1= 2nd item, etc.
Combobox 0 = 1st item, 1 = 2nd item, etc.
Text, Textbox, Button Error occurs
Use DlgValue only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgValue Statement 
See Also Example Overview
Changes the value associated with the dialog control for the current dialog box.
Syntax DlgValue Id,    value%

where: is:
Id The control ID for a dialog control.
value% The new value for the dialog control.

Comments The values you use to set the control depend on the type of the control:
Control Value Returned
Checkbox 1 = Select, 0=Clear, -1=Gray.
Option Group 0 = Select 1st button, 1 = Select 2nd button.
Listbox 0 = Select 1st item, 1= Select 2nd item, etc.
Combobox 0 = Select 1st item, 1 = Select 2nd item, etc.
Text, Textbox, Button Error occurs
Use DlgValue only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgVisible Function 
See Also Example Overview
Returns -1 if a dialog control is visible, 0 if it is hidden.
Syntax DlgVisible ( Id )

where: is:
Id The control ID for a dialog control.
Use DlgVisible only while a dialog box is running. See the Begin Dialog 
statement for more information.



DlgVisible Statement 
See Also Example Overview
Hides or displays a dialog control for the current dialog box.
Syntax DlgVisible Id [ , mode ]

where: is:
Id The control ID for a dialog control.
mode Value to use to set the dialog control state:

1 = Display a previously hidden control.
0 = Hide the control.

Comments If you omit the mode, the dialog box state is toggled between visible and 
hidden.
Use DlgVisible only while a dialog box is running. See the Begin Dialog 
statement for more information.



Do...Loop Statement 
See Also Example
Repeats a series of program lines as long as (or until) an expression is TRUE.
Syntax A Do [ { While | Until } condition]

[ statementblock ]
[ Exit Do ]
[ statementblock ]
Loop 

Syntax B Do 
[ statementblock ]
[ Exit Do ]
[ statementblock ]
Loop [ { While | Until } condition]
where: is:
Condition    Any expression that evaluates to TRUE (nonzero) or 

FALSE (0).
statementblock(s) Program lines to repeat while (or until) condition is TRUE.

Comments When an Exit Do statement is executed, control goes to the statement after 
the Loop statement. When used within a nested loop, an Exit Do statement 
moves control out of the immediately enclosing loop.



DoEvents Statement 
See Also Example
Yields execution to Windows for processing operating system events.
Syntax DoEvents
Comments DoEvents does not return until Windows has finished processing all events in 

the queue and all keys sent by SendKeys statement..
DoEvents should not be used if other tasks can interact with the running 
program in unforeseen ways. Since OPEN Script yields control to the operating
system at regular intervals, DoEvents should only be used to force OPEN 
Script to allow other applications to run at a known point in the program.



DropComboBox Statement 
See Also Example
Creates a combination of a drop-down list box and a text box.
Syntax A DropComboBox x , y , dx , dy , text$ , .field
Syntax B DropComboBox x , y , dx , dy , stringarray$() , .field

where: is:
x , y The upper left corner coordinates of the list box, relative to the 

upper left corner of the dialog box.
dx , dy The width and height of the combo box in which the user enters

or selects text.
text$ A string containing the selections for the combo box.
stringarray$ An array of dynamic strings for the selections in the combo box.
.field The name of the dialog-record field that will hold the text string 

entered in the text box or chosen from the list box.
Comments The x argument is measured in 1/4 system-font character-width units. The y 

argument is measured in 1/8 system-font character-width units. (See Begin 
Dialog for more information.)
The text$ argument must be defined, using a Dim Statement, before the 
Begin Dialog statement is executed. The arguments in the text$ string are 
entered as shown in the following example:
dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
The string in the text box will be recorded in the field designated by the .field 
argument when the OK button (or any pushbutton other than Cancel) is 
pushed. The field argument is also used by the dialog statements that act on 
this control.
You use a drop combo box when you want the user to be able to edit the 
contents of the list box (such as filenames or their paths). You use a drop list 
box when the items in the list should remain unchanged.
Use the DropComboBox statement only between a Begin Dialog and an 
End Dialog statement.



DropListBox Statement 
See Also Example
Creates a drop-down list of choices.
Syntax A DropListBox x , y , dx , dy , text$ , .field
Syntax B DropListBox x , y , dx , dy , stringarray$() , .field

where: is:
x , y The upper left corner coordinates of the list box, relative to the 

upper left corner of the dialog box.
dx , dy The width and height of the combo box in which the user enters

or selects text.
text$ A string containing the selections for the combo box.
stringarray$ An array of dynamic strings for the selections in the combo box.
.field The name of the dialog-record field that will hold the text string 

entered in the text box or chosen from the list box.
Comments The x argument is measured in 1/4 system-font character-width units. The y 

argument is measured in 1/8 system-font character-width units. (See Begin 
Dialog for more information.)
The text$ argument must be defined, using a Dim Statement, before the 
Begin Dialog statement is executed. The arguments in the text$ string are 
entered as shown in the following example:
dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
The string in the text box will be recorded in the field designated by the .field 
argument when the OK button (or any pushbutton other than Cancel) is 
pushed. The field argument is also used by the dialog statements that act on 
this control.
A drop list box is different from a list box. The drop list box only displays its list
when the user selects it; the list box also displays its entire list in the dialog 
box.
Use the DropListBox statement only between a Begin Dialog and an End 
Dialog statement.



Environ Function 
Example
Returns the string setting for a keyword in the operating system's environment table.
Syntax A Environ[$]( environment-string$ )
Syntax B Environ[$]( numeric expression% )

where: is:
Environment-string$ The name of a keyword in the operating system 

environment.
Numeric expression% A number for the position of the string in the 

environment table. (1st, 2nd, 3rd, etc.)
Comments If you use the environment-string$ parameter, enter it in uppercase, or 

Environ returns a null string (""). The return value for Syntax A is the string 
associated with the keyword requested.
If you use the numeric expression% parameter, the numeric expression is 
automatically rounded to a whole number, if necessary. The return value for 
Syntax B is a string in the form "keyword=value."
Environ returns a null string if the specified argument cannot be found.
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted the function will return a Variant of vartype 8 
(string).



Eof Function 
See Also Example
Returns the value -1 if the end of the specified open file has been reached, 0 otherwise.
Syntax Eof( filenumber% )

where: is:
filenumber% An integer expression identifying the open file to use.

Comments See the Open statement for more information about assigning numbers to 
files when they are opened.



Erase Statement 
See Also Example
Reinitializes the contents of a fixed array or frees the storage associated with a dynamic 
array.
Syntax Erase Array [, Array ]

where: is:
Array The name of the array variable to re-initialize.

Comments The effect of using Erase on the elements of a fixed array varies with the type
of the element:
Element Type Erase Effect
numeric Each element set to zero.
variable length stringEach element set to zero length string.
fixed length string Each element's string is filled with zeros.
Variant Each element set to Empty.
user-defined type Members of each element are cleared as if the members 

were array elements, i.e. numeric members have their 
value set to zero, etc.

object Each element is set to the special value Nothing.



Erl Function 
See Also Example Overview
Returns the line number where an error was trapped.
Syntax Erl 
Comments If you use a Resume or On Error statement after Erl, the return value for Erl 

is reset to 0. To maintain the value of the line number returned by Erl, assign 
it to a variable.
The value of the Erl function can be set indirectly through the Error 
statement.



Err Function 
See Also Example Overview
Returns the run-time error code for the last error trapped.
Syntax Err
Comments If you use a Resume or On Error statement after Erl, the return value for Err

is reset to 0. To maintain the value of the line number returned by Erl, assign 
it to a variable.
The value of the Err function can be set directly through the Err statement, 
and indirectly through the Error statement. 
For a list of trappable errors, see Trappable Errors.



Err Statement 
See Also Example Overview
Sets a run-time error code.
Syntax Err =     n%

where: is:
n% An integer expression for the error code (between 1 and 

32,767) or 0 for no run-time error.
Comments The Err statement is used to send error information between procedures.



Error Function 
See Also Example Overview
Returns the error message that corresponds to the specified error code.
Syntax Error[$] [( errornumber% )]

where: is:
errornumber% An integer between 1 and 32,767 for the error code.

Comments If this argument is omitted, OPEN Script returns the error message for the run-
time error that has occurred most recently.
If no error message is found to match the errorcode, "" (a null string) is 
returned. 
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted the function will return a Variant of vartype 8 
(string).
For a list of trappable errors, see Trappable Errors.



Error Statement 
See Also Example Overview
Simulates the occurrence of an OPEN Script or user-defined error.
Syntax Error errornumber%

where: is:
errornumber% An integer between 1 and 32,767 for the error code.

Comments If an errornumber% is one that OPEN Script already uses, the Error statement
will simulate an occurrence of that error.
User-defined error codes should employ values greater than those used for 
standard OPEN Script error codes. To help ensure that non-OPEN Script error 
codes are chosen, user-defined codes should work down from 32,767.
If an Error statement is executed, and there is no error-handling routine 
enabled, OPEN Script produces an error message and halts program 
execution. If an Error statement specifies an error code not used by OPEN 
Script, the message "User-defined error" is displayed.



Exit Statement 
See Also Example
Terminates Loop statements or transfers control to a calling procedure.
Syntax Exit {Do | For| Function | Sub}
Comments Use Exit Do inside a Do...Loop statement. Use Exit For inside a For...Next 

statement. When the Exit statement is executed, control transfers to the 
statement after the Loop or Next statement. When used within a nested loop, 
an Exit statement moves control out of the immediately enclosing loop.
Use Exit Function inside a Function...End Function procedure. Use Exit 
Sub inside a Sub...End Sub procedure.



Exp Function 
See Also Example
Returns the value e (the base of natural logarithms) raised to a power.
Syntax Exp( number )

where: is:
number The exponent value for e.

Comments If the variable to contain the return value has a data type Integer, Currency, 
or Single, the return value is a single-precision value. If the variable has a 
date type of Long, Variant, or Double, the value returned is a double-
precision number.
The constant e is approximately 2.718282.



FileAttr Function 
See Also Example
Returns the file mode or the operating system handle for the open file.
Syntax FileAttr( filenumber% , returntype )

where: is:
filenumber% An integer expression identifying the open file to use.
returntype 1=Return file mode, 2=Return operating system handle

Comments The argument filenumber% is the number used in the Open statement to 
open the file.
The following table lists the return values and corresponding file modes if 
returntype is 1:
Value Mode
        1 Input
        2 Output
        8 Append



FileCopy Statement 
See Also Example
Copies a file.
Syntax FileCopy source$ , destination$

where: is:
source$ A string expression for the name (and path) of the file to copy.
destination$ A string expression for the name (and path) for the copied file.

Comments Wildcards (* or ?) are not allowed for either the source$ or destination$. The 
source$ file cannot be copied if it is opened by OPEN Script for anything other 
than Read access.



FileDateTime Function 
See Also Example
Returns the last modification date and time for the specified file.
Syntax FileDateTime( pathname$ )

where: is:
pathname$ A string expression for the name of the file to query.

Comments Pathname$ can contain path and disk information, but cannot include 
wildcards (* and ?).



FileLen Function 
See Also Example
Returns the length of the specified file.
Syntax FileLen( pathname$ )

where: is:
pathname$ A string expression that contains the name of the file to query.

Comments Pathname$ can contain path and disk information, but cannot include 
wildcards (* and ?).
If the specified file is open, FileLen returns the length of the file before it was 
opened.



Fix Function 
See Also Example
Returns the integer part of a number.
Syntax Fix ( number )

where: is:
number Any valid numeric expression.

Comments The return value's data type matches the type of the numeric expression. This
includes Variant expressions, unless the numeric expression is a string 
(vartype 8) that evaluates to a number, in which case the data type for its 
return value is vartype 5 (double). If the numeric expression is vartype 0 
(empty), the data type for the return value is vartype 3 (long).
For both positive and negative numbers, Fix removes the fractional part of the
expression and returns the integer part only. For example, Fix (6.2) returns 6; 
Fix (-6.2) returns -6.



For...Next Statement 
See Also Example
Repeats a series of program lines a fixed number of times.
Syntax For counter = start TO end [STEP increment]

[ statementblock ]
[ Exit For ]
[ statementblock ]
Next [ counter ]
where: is:
counter A numeric variable for the loop counter.
start The beginning value of the counter.
end The ending value of the counter.
increment The amount by which the counter is changed each time 

the loop is run. (The default is one.)
statementblock Basic functions, statements, or methods to be executed.

Comments The start and end values must be consistent with increment: If end is greater 
than start, increment must be positive. If end is less than start, increment 
must be negative. OPEN Script compares the sign of (start-end) with the sign 
of increment. If the signs are the same, and end does not equal start, the 
For...Next loop is started. If not, the loop is omitted in its entirety.
With a For...Next loop, the program lines following the For statement are 
executed until the Next statement is encountered. At this point, the Step 
amount is added to the counter and compared with the final value, end. If the 
beginning and ending values are the same, the loop executes once, regardless
of the Step value. Otherwise, the Step value controls the loop as follows:
Step Value Loop Execution
Positive If counter is less than or equal to end, the Step value is 

added to counter. Control returns to the statement after 
the For statement and the process repeats. If counter is 
greater than end, the loop is exited; execution resumes 
with the statement following the Next statement.

Negative The loop repeats until counter is less than end.
Zero The loop repeats indefinitely.
Within the loop, the value of the counter should not be changed, as changing 
the counter will make programs more difficult to maintain and debug.
For...Next loops can be nested within one another. Each nested loop should 
be given a unique variable name as its counter. The Next statement for the 
inside loop must appear before the Next statement for the outside loop. The 
Exit For statement can be used as an alternative exit from For...Next loops.
If the variable is left out of a Next statement, the Next statement will match 
the most recent For statement. If a Next statement occurs prior to its 
corresponding For statement, OPEN Script will return an error message.
Multiple consecutive Next statements can be merged together. If this is done, 
the counters must appear with the innermost counter first and the outermost 
counter last. For example:
For i = 1 To 10
[ statementblock ]
For j = 1 To 5



[ statementblock ]
Next j, i



Format Function 
See Also Example
Returns a formatted string of an expression based on a given format.
Syntax Format[$]( expression [ , format ] )

where: is:
expression The value to be formatted. It can be a number, Variant, or 

string.
format A string expression representing the format to use. Select one 

of the topics below for a detailed description of format strings.
Comments Format formats the expression as a number, date, time, or string depending 

upon the format argument. The dollar sign, "$", in the function name is 
optional. If specified the return type is string. If omitted the function will return
a Variant of vartype 8 (string). As with any string, you must enclose the 
format argument in quotation marks ("").
Numeric values are formatted as either numbers or date/times. If a numeric 
expression is supplied and the format argument is omitted or null, the number
will be converted to a string without any special formatting.
Both numeric values and Variants can be formatted as dates. When formatting
numeric values as dates, the value is interpreted according the standard Basic
date encoding scheme. The base date, December 30, 1899, is represented as 
zero, and other dates are represented as the number of days from the base 
date.
Strings are formatted by transferring one character at a time from the input 
expression to the output string.
For more information, see these topics:
Formatting Numbers
Formatting Dates and Times
Formatting Strings



Formatting Numbers
The predefined numeric formats with their meanings are as follows:

Format Description
General Number Display the number without thousand separator.
Fixed Display the number with at least one digit to the left and 

at least two digits to the right of the decimal separator.
Standard Display the number with thousand separator and two 

digits to the right of decimal separator.
Scientific Display the number using standard scientific notation.
Currency Display the number using a currency symbol as defined 

in the International section of the Control Panel. Use 
thousand separator and display two digits to the right of 
decimal separator. Enclose negative value in 
parentheses.

Percent Multiply the number by 100 and display with a percent 
sign appended to the right; display two digits to the right
of decimal separator.

True/False Display FALSE for 0, TRUE for any other number.
Yes/No Display No for 0, Yes for any other number.
On/Off Display Off for 0, On for any other number.

To create a user-defined numeric format, follow these guidelines:
For a simple numeric format, use one or more digit characters and (optionally)
a decimal separator. The two format digit characters provided are zero, "0", 
and number sign, "#". A zero forces a corresponding digit to appear in the 
output; while a number sign causes a digit to appear in the output if it is 
significant (in the middle of the number or non-zero).

Number Fmt Result
1234.56 # 1235
1234.56 #.## 1234.56
1234.56 #.# 1234.6
1234.56 ######.

##
1234.56

1234.56 00000.000 01234.560
0.12345 #.## .12
0.12345 0.## 0.12

A comma placed between digit characters in a format causes a comma to be 
placed between every three digits to the left of the decimal separator.

Number Fmt Result
1234567.8901 #,#.## 1,234,567.89
1234567.8901 #,#.###

#
1,234,567.8901

Note: Although a comma and period are used in the format to denote 
separators for thousands and decimals, the output string will contain the 
appropriate character, based upon the current international settings for your 
machine.
Numbers can be scaled either by inserting one or more commas before the 
decimal separator or by including a percent sign in the format specification. 
Each comma preceding the decimal separator (or after all digits if no decimal 
separator is supplied) will scale (divide) the number by 1000. The commas will
not appear in the output string. The percent sign will cause the number to be 



multiplied by 100. The percent sign will appear in the output string in the 
same position as it appears in format.

Number Fmt Result
1234567.890
1

#,.## 1234.57

1234567.890
1

#,,.#### 1.2346

1234567.890
1

#,#,.## 1,234.57

0.1234 #0.00% 12.34%
Characters can be inserted into the output string by being included in the 
format specification. The following characters will be automatically inserted in 
the output string in a location matching their position in the format 
specification:

-      +      $      (      )      space      :      /
Any set of characters can be inserted by enclosing them in double quotes. Any
single character can be inserted by preceding it with a backslash, "\".

Number Fmt Result
1234567.89 $#,0.00 $1,234,567.8

9
1234567.89 "TOTAL:" 

$#,#.00
TOTAL: 
$1,234,567.8
9

1234 \=\>#,#\
<\=

=>1,234<=

You can use the OPEN Script '$CSTRINGS metacommand or the Chr function 
if you need to embed quotation marks in a format specification. The character 
code for a quotation mark is 34.
Numbers can be formatted in scientific notation by including one of the 
following exponent strings in the format specification:

E-      E+      e-      e+
The exponent string should be preceded by one or more digit characters. The 
number of digit characters following the exponent string determines the 
number of exponent digits in the output. Format specifications containing an 
upper case E will result in an upper case E in the output. Those containing a 
lower case e will result in a lower case e in the output. A minus sign following 
the E will cause negative exponents in the output to be preceded by a minus 
sign. A plus sign in the format will cause a sign to always precede the 
exponent in the output.

Number Fmt Result
1234567.89 ###.##E-

00
123.46E04

1234567.89 ###.##e
+#

123.46e+4

0.12345 0.00E-00 1.23E-01
A numeric format can have up to four sections, separated by semicolons. If 
you use only one section, it applies to all values. If you use two sections, the 
first section applies to positive values and zeros, the second to negative 
values. If you use three sections, the first applies to positive values, the 



second to negative values, and the third to zeros. If you include semicolons 
with nothing between them, the undefined section is printed using the format 
of the first section. The fourth section applies to Null values. If it is omitted 
and the input expression results in a NULL value, Format will return an empty
string.

Number Fmt Result
1234567.89 #,0.00;

(#,0.00);"Zero";"NA"
1,234,567.89

-1234567.89 #,0.00;
(#,0.00);"Zero";"NA"

(1,234,567.8
9)

0.0 #,0.00;
(#,0.00);"Zero";"NA#"

Zero

0.0 #,0.00;(#,0.00);;"NA" 0.00
Null #,0.00;

(#,0.00);"Zero";"NA"
NA

Null "The value is: " 0.00



Formatting Dates and Times
As with numeric formats, there are several predefined formats for formatting 
dates and times:

Format Description
General Date If the number has both integer and real parts, display 

both date and time. (e.g., 11/8/93 1:23:45 PM); if the 
number has only integer part, display it as a date; if the 
number has only fractional part, display it as time.

Long Date Display a Long Date. Long Date is defined in the 
International section of the Control Panel.

Medium Date Display the date using the month abbreviation and 
without the day of the week. (e.g, 08-Nov-93).

Short Date Display a Short Date. Short Date is defined in the 
International section of the Control Panel.

Long Time Display Long Time. Long Time is defined in the 
International section of the Control Panel and includes 
hours, minutes, and seconds.

Medium Time Do not display seconds; display hours in 12-hour format 
and use the AM/PM designator.

Short Time Do not display seconds; use 24-hour format and no 
AM/PM designator.

When using a user-defined format for a date, the format specification contains
a series of tokens. Each token is replaced in the output string by its 
appropriate value.
A complete date can be output using the following tokens:

Token Output
c The date time as if the format was: "ddddd ttttt". See the

definitions below.
ddddd The date including the day, month, and year according 

to the machine's current Short Date setting. The default 
Short Date setting for the United States is m/d/yy.

dddddd The date including the day, month, and year according 
to the machine's current Long Date setting. The default 
Long Date setting for the United States is mmmm dd, 
yyyy.

ttttt The time including the hour, minute, and second using 
the machine's current time settings The default time 
format is h:mm:ss AM/PM.

Finer control over the output is available by including format tokens that deal 
with the individual components of the date time. These tokens are:

Token Output
d The day of the month as a one or two digit number (1-

31).
dd The day of the month as a two digit number (01-31).
ddd The day of the week as a three letter abbreviation (Sun-

Sat).
dddd The day of the week without abbreviation (Sunday-

Saturday).
w The day of the week as a number (Sunday as 1, Saturday

as 7).
ww The week of the year as a number (1-53).
m The month of the year or the minute of the hour as a one

or two digit number. The minute will be output if the 



preceding token was an hour; otherwise, the month will 
be output.

mm The month or the year or the minute of the hour as a two
digit number. The minute will be output if the preceding 
token was an hour; otherwise, the month will be output.

mmm The month of the year as a three letter abbreviation (Jan-
Dec).

mmmm The month of the year without abbreviation(January-
December).

q The quarter of the year as a number (1-4).
y The day of the year as a number (1-366).
yy The year as a two-digit number (00-99).
yyyy The year as a four-digit number (100-9999).
h The hour as a one or two digit number (0-23).
hh The hour as a two digit number (00-23).
n The minute as a one or two digit number (0-59).
nn The minute as a two digit number (00-59).
s The second as a one or two digit number (0-59).
ss The second as a two digit number (00-59).

By default, times will be displayed using a military (24-hour) clock. Several 
tokens are provided in date time format specifications to change this default. 
They all cause a 12 hour clock to be used. These are:

Token Output
AM/PM An uppercase AM with any hour before noon; an 

uppercase PM with any hour between noon and 11:59 
PM.

am/pm A lowercase am with any hour before noon; a lowercase 
pm with any hour between noon and 11:59 PM.

A/P An uppercase A with any hour before noon; an uppercase
P with any hour between noon and 11:59 PM.

a/p A lowercase a with any hour before noon; a lowercase p 
with any hour between noon and 11:59 PM.

AMPM The contents of the 1159 string (s1159) in the WIN.INI 
file with any hour before noon; the contents of the 2359 
string (s2359) with any hour between noon and 11:59 
PM. Note, ampm is equivalent to AMPM.

Any set of characters can be inserted into the output by enclosing them in 
double quotes. Any single character can be inserted by preceding it with a 
backslash, "\". See number formatting above for more details.



Formatting Strings
By default, string formatting transfers characters from left to right. The 
exclamation point, "!", when added to the format specification causes 
characters to be transferred from right to left.
By default, characters being transferred will not be modified. The less than, 
"<", and the greater than, ">", characters can be used to force case 
conversion on the transferred characters. Less than forces output characters 
to be in lowercase. Greater than forces output characters to be in uppercase.
Character transfer is controlled by the at sign, "@", and ampersand, "&", 
characters in the format specification. These operate as follows:

Character Interpretation
@ Output a character or a space. If there is a character in 

the string being formatted in the position where the @ 
appears in the format string, display it; otherwise, 
display a space in that position.

& Output a character or nothing. If there is a character in 
the string being formatted in the position where the & 
appears, display it; otherwise, display nothing.

A format specification for strings can have one or two sections separated by a 
semicolon. If you use one section, the format applies to all string data. If you 
use two sections, the first section applies to string data, the second to Null 
values and zero-length strings.



FreeFile Function 
See Also Example
Returns the lowest unused file number.
Syntax FreeFile
Comments The FreeFile function is used when you need to supply a file number and 

want to make sure that you are not choosing a file number that is already in 
use.
The value returned can be used in a subsequent Open statement.



Function ... End Function Statement 
See Also Example
Defines a function procedure.
Syntax [ Static ] [ Private ] Function name [ ( [ Optional ]parameter [ As 

type ] ... ) ]    [ As functype ]
name= expression
End Function
where: is:
name A function name.
parameter The argument(s) to pass to the function when it is called.
type The data type for the function arguments.
functype The data type for the return value.
name=expression The expression that sets the return value for the 

function.
Comments The purpose of a function is to produce and return a single value of a specified

type. Recursion is supported.
The data type of name determines the type of the return value. Use a type 
character as part of the name, or use the As functype clause to specify the 
data type. If omitted, the default data type is Variant. When calling the 
function, you need not specify the type character.
The parameters are specified as a comma-separated list of variable names. 
The data type of a parameter can be specified by using a type character or by 
using the As clause. Record parameters are declared using an As clause and a
type that has previously been defined using the Type statement. Array 
parameters are indicated by using empty parentheses after the parameter. 
The array dimensions are not specified in the Function statement. All 
references to an array parameter within the body of the function must have a 
consistent number of dimensions.
You specify the return value for the function name using the name=expression
assignment, where name is the name of the function and expression 
evaluates to a return value. If omitted, the value returned is 0 for numeric 
functions and an empty string ("") for string functions and vartype 0 (Empty) 
is returned for a return type of Variant. The function returns to the caller when 
the End Function statement is reached or when an Exit Function statement
is executed.
If you declare a parameter as Optional, a procedure can omit its value when 
calling the function. Only parameters with Variant data types can be declared
as optional, and all optional arguments must appear after all required 
arguments in the Function statement. The function IsMissing must be used 
to check whether an optional parameter was omitted by the user or not. 
Named parameters are described under the Call statement heading, but they 
can be used when the function is used in an expression as well.
The Static keyword specifies that all the variables declared within the 
function will retain their values as long as the program is running, regardless 
of the way the variables are declared.
The Private keyword specifies that the function will not be accessible to 
functions and subprograms from other modules. Only procedures defined in 
the same module will have access to a Private function.
Basic procedures use the call by reference convention. This means that if a 
procedure assigns a value to a parameter, it will modify the variable passed 



by the caller. This feature should be used with great care.
Use Sub to define a procedure with no return value.



FV Function 
See Also Example
Returns the future value for a constant periodic stream of cash flows as in an annuity or a 
loan.
Syntax FV ( rate , nper , pmt , pv , due )

where: is:
rate Interest rate per period.
nper Total number of payment periods.
pmt Constant periodic payment per period.
pv Present value or the initial lump sum amount paid (as in the 

case of an annuity) or received (as in the case of a loan).
due An integer value for when the payments are due (0=end of 

each period, 1= beginning of the period).
Comments The given interest rate is assumed constant over the life of the annuity.

If payments are on a monthly schedule and the annual percentage rate on the
annuity or loan is 9%, the rate is 0.0075 (.0075=.09/12).



Get Statement 
See Also Example
Reads data from a file opened in Random or Binary mode and puts it in a variable.
Syntax Get [#] filenumber%, [ recnumber& ], varname

where: is:
filenumber% An integer expression identifying the open file to use.
recnumber& A Long expression containing the number of the record (for 

Random mode) or the offset of the byte (for Binary mode) at 
which to start reading.

varname The name of the variable into which Get reads file data. 
Varname can be any variable except Object or Array variables 
(single array elements can be used).

Comments For more information about how files are numbered when they're opened, see 
the Open statement.
Recnumber& is in the range 1 to 2,147,483,647. If omitted, the next record or 
byte is read.
Note: The commas before and after the recnumber& are required, even if you
do not supply a recnumber&.
For Random mode, the following rules apply:

Blocks of data are read from the file in chunks whose size is equal to the 
size specified in the Len clause of the Open statement. If the size of 
varname is smaller than the record length, the additional data is 
discarded. If the size of varname is larger than the record length, an error 
occurs.
For variable length String variables, Get reads two bytes of data that 
indicate the length of the string, then reads the data into varname.
For Variant variables, Get reads two bytes of data that indicate the type 
of the Variant, then it reads the body of the Variant into varname. Note 
that Variants containing strings contain two bytes of data type information 
followed by two bytes of length followed by the body of the string.
User defined types are read as if each member were read separately, 
except no padding occurs between elements.

Files opened in Binary mode behave similarly to those opened in Random 
mode, except:

Get reads variables from the disk without record padding.
Variable length Strings that are not part of user defined types are not 
preceded by the two-byte string length. Instead, the number of bytes read 
is equal to the length of varname.



GetAttr Function 
See Also Example
Returns the attributes of a file, directory or volume label.
Syntax GetAttr( pathname$ )

where: is:
pathname$ A String expression for the name of the file, directory, or label 

to query.
Comments Pathname$ cannot contain wildcards (* and ?).

The file attributes returned by GetAttr are as follows:
Value Meaning
        0 Normal file
        1 Read-only file
        2 Hidden file
        4 System file
        8 Volume label
    16 Directory
    32 Archive - file has changed since last backup



GetField Function [OPEN Script Extension]
See Also Example
Returns a substring from a source string. 
Syntax GetField[$]( string$ , field_number% , separator_chars$ )

where: is:
string$ A list of fields, divided by separator characters.
field_number% The number of the field to return, starting with 1.
separator_chars$ The characters separating each field.

Comments Multiple separator characters can be specified. If field_number is greater than 
the number of fields in the string, an empty string ("") is returned.



GetObject Function 
See Also Example Overview
Returns an OLE Automation object associated with the filename or the application name. 
Syntax A GetObject( pathname)
Syntax B GetObject( pathname , class )
Syntax C GetObject(  , class )

where: is:
pathname The path and filename for the object to retrieve.
class A string containing the class of the object.

Comments Use GetObject with the Set statement to assign a variable to the object for 
use in a Basic procedure. The variable used must first be dimensioned as an 
Object.
Syntax A of GetObject accesses an OLE Automation object stored in a file. For
example, the following two lines dimension the variable, FILEOBJECT as an 
Object and assign the object file "PAYABLES" to it. PAYABLES is located in the 
subdirectory SPREDSHT:

Dim FileObject As Object 
Set FileObject = GetObject("\spredsht\payables")

If the application supports accessing component OLE Automation objects 
within the file, you can append an exclamation point and a component object 
name to the filename, as follows:

Dim ComponentObject As Object 
Set ComponentObject = GetObject("\spredsht\payables!R1C1:R13C9")

Syntax B of GetObject accesses an OLE Automation object of a particular 
class that is stored in a file. Class uses the syntax: "appname.objtype", where 
appname is the name of the application that provides the object, and objtype 
is the type or class of the object. For example:

Dim ClassObject As Object
Set ClassObject = GetObject("\spredsht\payables", 
turbosht.spreadsheet)

The third form of GetObject accesses the active OLE Automation object of a 
particular class. For example:

Dim ActiveSheet As Object 
SetActiveSheet = GetObject( , turbosht.spreadsheet)



Global Statement 
See Also Example
Declare Global variables for use in a Basic program.
Syntax Global variableName [As type] [,variableName [As type]]  ...

where: is:
variableName A variable name
type The data type for a variable.

Comments Global data is shared across all loaded modules. If an attempt is made to load 
a module that has a global variable declared that has a different data type 
than an existing global variable of the same name, the module load will fail.
Basic is a strongly typed language: all variables must be given a data type or 
they will be automatically assigned a type of Variant.
If the As clause is not used, the type of the global variable can be specified by
using a type character as a suffix to variableName. The two different type-
specification methods can be intermixed in a single Global statement 
(although not on the same variable).
Regardless of which mechanism you use to declare a global variable, you can 
choose to use or omit the type character when referring to the variable in the 
rest of your program. The type suffix is not considered part of the variable 
name.
The available data types are:
Arrays
Numbers
Records
Strings
Variants



Arrays
The available data types for arrays are: numbers, strings, Variants and 
records. Arrays of arrays, dialog box records, and objects are not supported.
Array variables are declared by including a subscript list as part of the 
variableName. The syntax to use for variableName is:

Global variable( [ subscriptRange, ... ] ) [As typeName]
where subscriptRange is of the format:

[ startSubscript To ] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base 
statement can be used to change the default.
Both the startSubscript and the endSubscript are valid subscripts for the array.
The maximum number of subscripts that can be specified in an array 
definition is 60.
If no subscriptRange is specified for an array, the array is declared as a 
dynamic array. In this case, the ReDim statement must be used to specify the
dimensions of the array before the array can be used.



Numbers
Numeric variables can be declared using the As clause and one of the 
following numeric types: Currency, Integer, Long, Single, Double. Numeric
variables can also be declared by including a type character as a suffix to the 
name. 



Records
Record variables are declared by using an As clause and a type that has 
previously been defined using the Type statement. The syntax to use is:

Global variableName As typeName

Records are made up of a collection of data elements called fields. These 
fields can be of any numeric, string, Variant or previously-defined record type. 
See Type for details on accessing fields within a record.
You cannot use the Global statement to declare a dialog record.



Strings
OPEN Script supports two types of strings, fixed-length and dynamic. Fixed-
length strings are declared with a specific length (between 1 and 32767) and 
cannot be changed later. Use the following syntax to declare a fixed-length 
string:

Global variableName As String*length

Dynamic strings have no declared length, and can vary in length from 0 to 
32767. The initial length for a dynamic string is 0. Use the following syntax to 
declare a dynamic string:

Global variableName$      or
Global variableName As String



Variants
Declare variables as Variants when the type of the variable is not known at the
start of, or might change during, the procedure. For example, a Variant is 
useful for holding input from a user when valid input can be either text or 
numbers. Use the following syntax to declare a Variant:

Global variableName      or
GlobalvariableName As Variant

Variant variables are initialized to vartype Empty.



GoTo Statement 
See Also Example
Transfers program control to the label specified.
Syntax GoTo { label }

where: is:
label A name beginning in the first column of a line of code and 

ending with a colon (:).
Comments A label has the same format as any other Basic name. Reserved words are not

valid labels.
GoTo cannot be used to transfer control out of the current Function or 
Subprogram.



GroupBox Statement [OPEN Script Extension]
See Also Example
Defines and draws a box that encloses sets of dialog box items, such as option boxes and 
check boxes.
Syntax GroupBox x , y , dx , dy , text$ [, .id]

where: is:
x , y The upper left corner coordinates of the list box, relative to the 

upper left corner of the dialog box.
dx , dy The width and height of the combo box in which the user enters

or selects text.
text$ A string containing the title for the top border of the group box.
.id The optional string ID for the groupbox, used by the dialog 

statements that act on this control.
Comments The x argument is measured in 1/4 system-font character-width units. The y 

argument is measured in 1/8 system-font character-width units. (See Begin 
Dialog for more information.)
If text$ is wider than dx, the additional characters are truncated. If text$ is an 
empty string (""), the top border of the group box will be a solid line.
Use the GroupBox statement only between a Begin Dialog and an End 
Dialog statement.



Hex Function 
See Also Example
Returns the hexadecimal representation of a number, as a string.
Syntax Hex[$]( number )

where: is:
number Any numeric expression that evaluates to a number.

Comments If number is an integer, the return string contains up to four hexadecimal 
digits; otherwise, the value will be converted to a Long Integer, and the string
can contain up to 8 hexadecimal digits.
To represent a hexadecimal number directly, precede the hexadecimal value 
with &H. For example, &H10 equals decimal 16 in hexadecimal notation.
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted the function will return a Variant of vartype 8 
(string).



Hour Function 
See Also Example
Returns the hour of day component (0-23) of a date-time value.
Syntax Hour( time )

where: is:
time Any numeric or string expression that can evaluate to a date 

and time.
Comments Hour accepts any type of time including strings and will attempt to convert 

the input value to a date value.
The return value is a Variant of vartype 2 (integer). If the value of time is 
Null, a Variant of vartype 1 (null) is returned.
Time is a double-precision value. The numbers to the left of the decimal point 
denote the date and the decimal value denotes the time (from 0 to .99999). 
Use the TimeValue function to obtain the correct value for a specific time.



If ... Then ... Else 
See Also Example
Executes alternative blocks of program code based on one or more expressions.
Syntax A If condition Then then_statement [ Else else_statement ]
Syntax B If condition Then

statement_block
[ ElseIf expression Then
statement_block]...
[ Else
statement_block ]
End If
where: is:
condition Any expression that evaluates to TRUE (non-zero) or 

FALSE (zero).
then_statement Any valid single expression.
else_statement Any valid single expression.
expression Any expression that evaluates to TRUE (non-zero) or 

FALSE (zero).
statement_block 0 or more valid expressions, separated by colons (:), or 

on different lines.
Comments When multiple statements are required in either the Then or Else clauses, 

use the block version (Syntax B) of the If statement.



'$Include Metacommand [OPEN Script Extension]
See Also Example
Includes statements from the specified file.
Syntax '$Include: "filename" 

where: is:
filename The name and location of the file to include.

Comments We recommend (although it is not required) that you use the file 
extension .OSS for your script files, as in filename.oss.
All metacommands must begin with an apostrophe (') and are recognized by 
the compiler only if the command starts at the beginning of a line. For 
compatibility with other versions of Basic, you can enclose the filename in 
single quotation marks (').
If no directory or drive is specified, the compiler will search for filename on the
source file search path.



Input Function 
See Also Example
Returns a string containing the characters read.
Syntax Input[$]( number% , [#]filenumber%)

where: is:
number% The number of characters (bytes) to read from the file.
filenumber% An integer expression identifying the open file to use.

Comments The file pointer is advanced the number of characters read. Unlike the Input 
statement, Input returns all characters it reads, including carriage returns, 
line feeds, and leading spaces.
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted the function will return a Variant of vartype 8 
(string).



Input Statement 
See Also Example
Reads data from a sequential file and assigns the data to variables.
Syntax A Input [#] filenumber% , variable [, variable]...
Syntax B Input [prompt$,] variable [, variable]...

where: is:
filenumber% An integer expression identifying the open file to read from
variable The variable(s) to contain the value(s) read from the file.
prompt$ An optional string that prompts for keyboard input.

Comments The filenumber% is the number used in the Open statement to open the file. 
The list of variables is separated by commas.
If filenumberr% is not specified, the user is prompted for keyboard input, 
either with prompt$ or with a "?", if prompt$ is omitted.



InputBox Function 
See Also Example
Displays a dialog box containing a prompt and returns a string entered by the user.
Syntax InputBox[$]( prompt$ , [title$] , [default$] ,[xpos% , ypos%] )

The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted the function will return a Variant of vartype 8 
(string).
where: is:
prompt$ A string expression containing the text to show in the 

dialog box.
title$ The caption to display in the dialog box's title bar.
default$ The string expression to display in the edit box as the 

default response.
xpos%, ypos% Numeric expressions, specified in dialog box units, that 

determine the position of the dialog box.
 Comments The length of prompt$ is restricted to 255 characters. This figure is 

approximate and depends on the width of the characters used. Note that a 
carriage return and a line-feed character must be included in prompt$ if a 
multiple-line prompt is used.
If either prompt$ or default$ is omitted, nothing is displayed.
Xpos% determines the horizontal distance between the left edge of the screen
and the left border of the dialog box. Ypos% determines the horizontal 
distance from the top of the screen to the dialog box's upper edge. If these 
arguments are not entered, the dialog box is centered roughly one third of the
way down the screen. A horizontal dialog box unit is 1/4 of the average 
character width in the system font; a vertical dialog box unit is 1/8 of the 
height of a character in the system font.
Note: If you want to specify the dialog box's position, you must enter both of 
these arguments. If you enter one without the other, the default positioning is 
set.
If the user presses Enter, or selects the OK button, InputBox returns the text 
contained in the input box. If the user selects Cancel, the InputBox function 
returns a null string ("").



InStr Function 
See Also Example
Returns the position of the first occurrence of one string within another string.
Syntax A InStr( [start%,] string1$, string2$ )
Syntax B InStr( start , string1$, string2$[, compare])

where: is:
start% The position in string1$ to begin the search. (1=first character 

in string.)
string1$ The string to search.
string2$ The string to find.
compare An integer expression for the method to use to compare the 

strings. (0=case-sensitive, 1=case-insensitive.)
Comments If not specified, the search starts at the beginning of the string (equivalent to 

a start% of 1). These arguments can be of any type. They will be converted to 
strings.
InStr returns a zero under the following conditions:

1.    start% is greater than the length of string2$.
2.    string1$ is a null string.
3.    string2$ is not found.

If either string1$ or string2$ is a null Variant , Instr returns a null Variant.
If string2$    is a null string (""), Instr returns the value of start%.
If compare is 0, a case-sensitive comparison based on the ANSI character set 
sequence is performed. If compare is 1, a case-insensitive comparison is done 
based upon the relative order of characters as determined by the country 
code setting for your system. If compare is omitted, the module level default, 
as specified with Option Compare, is used. 



Int Function 
See Also Example
Returns the integer part of a number.
Syntax Int( number )

where: is:
number Any numeric expression.

Comments For positive numbers, Int removes the fractional part of the expression and 
returns the integer part only. For negative numbers, Int returns the largest 
integer less than or equal to the expression. For example, Int (6.2) returns 6; 
Int(-6.2) returns -7.
The return type matches the type of the numeric expression. This includes 
Variant expressions that will return a result of the same vartype as input 
except vartype 8 (string) will be returned as vartype 5 (double) and vartype 0 
(empty) will be returned as vartype 3 (long).



IPmt Function 
See Also Example
Returns the interest portion of a payment for a given period of an annuity.
Syntax IPmt( rate , per , nper , pv , fv , due )

where: is:
rate Interest rate per period.
per Particular payment period in the range 1 through nper. 
nper Total number of payment periods.
pv Present value of the initial lump sum amount paid (as in the 

case of an annuity) or received (as in the case of a loan).
fv Future value of the final lump sum amount required (as in the 

case of a savings plan) or paid (0 as in the case of a loan).
due 0 if payments are due at the end of each payment period, and 1

if they are due at the beginning of the period.
Comments The given interest rate is assumed constant over the life of the annuity. If 

payments are on a monthly schedule, then rate will be 0.0075 if the annual 
percentage rate on the annuity or loan is 9%.



IRR Function 
See Also Example
Returns the internal rate of return for a stream of periodic cash flows.
Syntax IRR( valuearray( ) , guess )

where: is:
valuearray( ) An array containing cash flow values.
guess A ballpark estimate of the value returned by IRR.

Comments valuearray() must have at least one positive value (representing a receipt) 
and one negative value (representing a payment). All payments and receipts 
must be represented in the exact sequence. The value returned by IRR will 
vary with the change in the sequence of cash flows.
In general, a guess value of between 0.1 (10 percent) and 0.15 (15 percent) 
would be a reasonable estimate.
IRR is an iterative function. It improves a given guess over several iterations 
until the result is within 0.00001 percent. If it does not converge to a result 
within 20 iterations, it signals failure.



Is Operator 
See Also Example Overview
Compares two object expressions and returns -1 if they refer to the same object, 0 
otherwise.
Syntax objectExpression Is objectExpression

where: is:
objectexpression Any valid object expression.

Comments Is can also be used to test if an object variable has been Set to Nothing.



IsDate Function 
See Also Example
Returns -1 (TRUE) if an expression is a legal date, 0 (FALSE) if it is not.
Syntax IsDate( expression )

where: is:
expression Any valid expression.

Comments IsDate returns -1 (TRUE) if the expression is of vartype 7 (date) or a string 
that can be interpreted as a date.



IsEmpty Function 
See Also Example
Returns -1 (TRUE) if a Variant has been initialized. 0 (FALSE) otherwise.
Syntax IsEmpty( expression )

where: is:
expression Any expression with a data type of Variant.

Comments IsEmpty returns -1 (TRUE) if the Variant is of vartype 0 (empty). Any newly-
defined Variant defaults to being of Empty type, to signify that it contains no 
initialized data. An Empty Variant converts to zero when used in a numeric 
expression, or an empty string ("") in a string expression.



IsMissing Function 
See Also Example
Returns -1 (TRUE) if an optional parameter was not supplied by the user, 0 (FALSE) 
otherwise.
Syntax IsMissing( argname )

where: is:
argname An optional argument for a subprogram, function, OPEN Script 

statement, or OPEN Script function.
Comments IsMissing is used in procedures that have optional arguments to find out 

whether the arguments value was supplied or not.



IsNull Function 
See Also Example
Returns -1 (TRUE) if a Variant expression contains the Null value, 0 (FALSE) otherwise.
Syntax IsNull( expression)

where: is:
expression Any expression with a data type of Variant.

Comments Null Variants have no associated data and serve only to represent invalid or 
ambiguous results. Null is not the same as Empty, which indicates that a 
Variant has not yet been initialized.



IsNumeric Function 
See Also Example
Returns -1 (TRUE) if an expression has a data type of Numeric, 0 (FALSE) otherwise.
Syntax IsNumeric( expression )

where: is:
expression Any valid expression.

Comments IsNumeric returns -1 (TRUE) if the expression is of vartypes 2-6 (numeric) or 
a string that can be interpreted as a number.



Kill Statement 
See Also Example
Deletes files from a hard disk or floppy drive.
Syntax Kill pathname$

where: is:
pathname$ A String expression that specifies a valid DOS file specification.

Comments The pathname$ specification can contain paths and wildcards. Kill deletes 
files only, not directories. Use the RmDir function to delete directories.



LBound Function 
See Also Example
Returns the lower bound of the subscript range for the specified array.
Syntax LBound( arrayname [, dimension ] )

where: is:
arrayname The name of the array to use.
dimension The dimension to use.

Comments The dimensions of an array are numbered starting with 1. If the dimension is 
not specified, 1 is used as a default.
LBound can be used with UBound to determine the length of an array.



LCase Function 
See Also Example
Returns a copy of a string, with all uppercase letters converted to lowercase.
Syntax LCase[$]( string$ )

where: is:
string$ A string, or an expression containing the string to use.

Comments The translation is based on the country specified in the Windows Control 
Panel. LCase accepts expressions of type String. LCase accepts any type of 
argument and will convert the input value to a string.
The dollar sign, "$", in the function name is optional. If specified the return 
type is String. If omitted the function will typically return a Variant of vartype 
8 (string). If the value of string$ is NULL, a Variant of vartype 1 (Null) is 
returned.



Left Function 
See Also Example
Returns a string of a specified length copied from the beginning of another string.
Syntax Left[$]( string$, length% )

where: is:
string$ A string or an expression containing the string to copy.
length% The number of characters to copy.

Comments If length% is greater than the length of string$, Left returns the whole string.
Left accepts expressions of type String. Left accepts any type of string$, 
including numeric values, and will convert the input value to a string.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is string. If omitted, the function will typically return a Variant of vartype
8 (string). If the value of string$ is NULL, a Variant of vartype 1 (Null) is 
returned.



Len Function 
See Also Example
Returns the length of a string or variable.
Syntax A Len( string$ )
Syntax B Len( varname )

where: is:
string$ A string or an expression that evaluates to a string.
varname A variable that contains a string.

Comments If the argument is a string, the number of characters in the string is returned. 
If the argument is a Variant variable, Len returns the number of bytes 
required to represent its value as a string; otherwise, the length of the built-in 
data type or user-defined type is returned.
If syntax B is used, and varname is a Variant containing a NULL, Len will 
return a Null Variant.



Let (Assignment Statement)    
See Also Example
Assigns an expression to a Basic variable.
Syntax [ Let ] variable = expression

where: is:
variable The name of a variable to assign to the expression.
expression The expression to assign to the variable.

Comments The keyword Let is optional.
The Let statement can be used to assign a value or expression to a variable 
with a data type of Numeric, String, Variant or Record variable. You can 
also use the Let statement to assign to a record field or to an element of an 
array.
When assigning a value to a numeric or string variable, standard conversion 
rules apply.
Let differs from Set in that Set assigns a variable to an OLE Automation 
object. For example,
Set o1 = o2 will set the object reference.
Let o1 = o2 will set the value of the default member.



Like Operator 
See Also Example
Returns the value -1 (TRUE) if a string matches a pattern, 0 (FALSE) otherwise.
Syntax string$ LIKE pattern$

where: is:
string$ Any string expression.
pattern$ Any string expression to match to string$.

Comments pattern$ can include the following special characters:
Character: Matches:
? A single character
* A set of zero or more characters
# A single digit character (0-9)
[chars] A single character in chars
[!chars] A single character not in chars
[schar-echar] A single character in range schar to echar
[!schar-echar]A single character not in range schar to echar
Both ranges and lists can appear within a single set of square brackets. 
Ranges are matched according to their ANSI values. In a range, schar must be 
less than echar.
If either string$ or pattern$ is NULL then the result value is NULL.
The Like operator respects the current setting of Option Compare. 
For more information about operators, see Expressions.



Line Input Statement 
See Also Example
Reads a line from a sequential file into a string variable.
Syntax A Line Input [#] filenumber% , varname$
Syntax B Line Input [prompt$,] varname$

where: is:
filenumber% An integer expression identifying the open file to use.
prompt$ An optional string that can be used to prompt for keyboard 

input; it must be a literal string.
varname$ A string variable to contain the line read.

Comments If specified, the filenumber% is the number used in the Open statement to 
open the file. If filenumber% is not provided, the line is read from the 
keyboard.
If prompt$ is not provided, a prompt of "?" is used.



ListBox Statement 
See Also Example
Defines a list box of choices for a dialog box.
Syntax A ListBox x , y , dx , dy , text$ , .field
Syntax B ListBox x , y , dx , dy , stringarray$() , .field

where: is:
x , y The upper left corner coordinates of the list box, relative to the 

upper left corner of the dialog box.
dx , dy The width and height of the list box.
text$ A string containing the selections for the list box.
stringarray$ An array of dynamic strings for the selections in the list box.
.field The name of the dialog-record field that will hold a number for 

the choice made in the list box.
Comments The x argument is measured in 1/4 system-font character-width units. The y 

argument is measured in 1/8 system-font character-width units. (See Begin 
Dialog for more information.)
The text$ argument must be defined, using a Dim Statement, before the 
Begin Dialog statement is executed. The arguments in the text$ string are 
entered as shown in the following example:
dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
A number representing the selection's position in the text$ string is recorded 
in the field designated by the .field argument when the OK button (or any 
pushbutton other than Cancel) is pushed. The numbers begin at 0. If no item 
is selected, it is -1. The field argument is also used by the dialog statements 
that act on this control.
Use the ListBox statement only between a Begin Dialog and an End Dialog
statement.



Loc Function 
See Also Example
Returns the current offset within an open file.
Syntax Loc( filenumber% )

where: is:
filenumber% An integer expression identifying the open file to query.

Comments The filenumber% is the number used in the Open statement of the file.
For files opened in Random mode, Loc returns the number of the last record 
read or written. For files opened in Append, Input, or Output mode, Loc 
returns the current byte offset divided by 128. For files opened in Binary 
mode, Loc returns the offset of the last byte read or written.



Lock Statement 
See Also Example
Controls access to an open file.
Syntax Lock [#]filenumber% [, [ start& ] [ To end& ] ]

where: is:
filenumber% An integer expression identifying the open file.
start& Number of the first record or byte offset to lock/unlock.
end& Number of the last record or byte offset to lock/unlock.

Comments The filenumber% is the number used in the Open statement of the file.
For Binary mode, start&, and end& are byte offsets. For Random mode, 
start&, and end& are record numbers. If start& is specified without end&, then
only the record or byte at start& is locked. If To end& is specified without 
start&, then all records or bytes from record number or offset 1 to end& are 
locked.
For Input, Output and Append modes, start&, and end& are ignored and the
whole file is locked.
Lock and Unlock always occur in pairs with identical parameters. All locks on 
open files must be removed before closing the file, or unpredictable results 
will occur.



Lof Function 
See Also Example
Returns the length in bytes of an open file.
Syntax Lof( filenumber% )

where: is:
filenumber% An integer expression identifying the open file.

Comments The filenumber% is the number used in the Open statement of the file.



Log Function 
See Also Example
Returns the natural logarithm of a number.
Syntax Log( number )

where: is:
number Any valid numeric expression.

Comments The return value is single-precision for an integer, currency or single-precision 
numeric expression, double precision for a long, Variant or double-precision 
numeric expression.



Lset Statement 
See Also Example
Copies one string to another, or assigns a user-defined type variable to another.
Syntax A Lset string$ = string-expression
Syntax B Lset variable1 = variable2

where: is:
string$ A string or string expression to contain the copied 

characters.
string-expression An expression containing the string to copy.
variable1 A variable with a user-defined type to contain the copied 

variable.
variable2 A variable with a user-defined type to copy.

Comments If string$ is shorter than string-expression, Lset copies the leftmost character 
of string-expression into string$. The number of characters copied is equal to 
the length of string$. 
If string is longer than string-expression, all characters of string-expression 
are copied into string$, filling it from left to right. All leftover characters of 
string$ are replaced with spaces.
In Syntax B, the number of characters copied is equal to the length of the 
shorter of variable1 and variable2.
Lset cannot be used to assign variables of different user-defined types if 
either contains a Variant or a variable-length string.



LTrim Function 
See Also Example
Returns a copy of a string with all leading space characters removed.
Syntax LTrim[$]( string$ )

where: is:
string$ A string or expression containing a string to copy.

Comments LTrim accepts any type of string$, including numeric values, and will convert 
the input value to a string.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is string. If omitted, the function typically returns a Variant of vartype 8 
(string). If the value of string$ is NULL, a Variant of vartype 1 (Null) is 
returned.



Me 
See Also
Refers to the currently used OLE Automation object.
Syntax Me
Comments Some Basic modules are attached to application objects and Basic subroutines

are invoked when that application object encounters events. A good example 
is a user visible button that triggers a Basic routine when the user clicks the 
mouse on the button.
Subroutines in such contexts can use the variable Me to refer to the object 
that triggered the event (i.e., which button was clicked). The programmer can 
use Me in all the same ways as any other object variable except that Me 
cannot be Set.



Mid Function 
See Also Example
Returns a portion of a string, starting at a specified location within the string.
Syntax Mid[$]( string$, start%[, length%] )

where: is:
string$ A string or expression that contains the string to change.
start% The starting position in string$ to begin replacing characters.
length% The number of characters to replace.

Comments Mid accepts any type of string$, including numeric values, and will convert 
the input value to a string. If the length% argument is omitted, or if string$ is 
smaller than length%, then Mid returns all characters in string$. If start% is 
larger than string$, then Mid returns a null string ("").
The index of the first character in a string is 1.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is string. If omitted, the function typically returns a Variant of vartype 8 
(string). If the value of string$ is Null, a Variant of vartype 1 (Null) is returned. 
Mid$ requires the string argument to be of type string or variant. Mid allows 
the string argument to be of any datatype.
To modify a portion of a string value, see Mid Statement.



Mid Statement 
See Also Example
Replaces part (or all) of one string with another, starting at a specified location.
Syntax Mid ( stringvar$, start%[, length%] ) = string$

where: is:
stringvar$ The string to change.
start% An expression for the position to begin replacing characters.
length% An expression for the number of characters to replace.
string$ The string to place into another string.

Comments If the length% argument is omitted, or if there are fewer characters in    string$
than specified in length%, then Mid replaces all the characters from the start
% to the end of the string$. If start% is larger than the number of characters 
in the indicated stringvar$, then Mid appends string% to stringvar$.
If length% is greater than the length of string$, then length% is set to the 
length of string$. If start% is greater than the number of characters in 
stringvar$, an illegal function call error will occur at runtime. If length% plus 
start% is greater than the length of stringvar$, then only the characters up to 
the end of stringvar$ are replaced.
Mid never changes the number of characters in stringvar$.
The index of the first character in a string is 1.



Minute Function 
See Also Example
Returns an integer for the minute component (0-59) of a date-time value.
Syntax Minute( time )

where: is:
time Any expression that can evaluate to a date-time value.

Comments Minute accepts any type of time, including strings, and will attempt to 
convert the input value to a date value.
The return value is a Variant of vartype 2 (Integer). If the value of time is null,
a Variant of vartype 1 (null) is returned.



MkDir Statement 
See Also Example
Creates a new directory.
Syntax MkDir path$ 

where: is:
path$ A string expression identifying the new default directory to 

create.
Comments The syntax for path$ is:

[drive:] [\] directory [\directory]
The drive argument is optional. If drive is omitted, MkDir makes a new 
directory on the current drive. The directory argument is any directory name.



Month Function 
See Also Example
Returns an integer for the month component (1-12) of a date-time value.
Syntax Month( date )

where: is:
date Any expression that evaluates to a date-time value.

Comments It accepts any type of date, including strings, and will attempt to convert the 
input value to a date value.
The return value is a Variant of vartype 2 (integer). If the value of date is null,
a Variant of vartype 1 (null) is returned.



Msgbox Function 
See Also Example
Displays a message dialog box and returns a value (1-7) indicating which button the user 
selected.
Syntax Msgbox( prompt$ ,[buttons%][, title$] )

where: is:
prompt$ The text to display in a dialog box.
buttons% An integer value for the buttons, the icon, and the default 

button choice to display in a dialog box.
title$ A string expression containing the title for the message box.

Comments prompt$ must be no more than 1,024 characters long. A message string 
greater than 255 characters without intervening spaces will be truncated after
the 255th character.
buttons% is the sum of three values, one from each of the following groups:

Value Description
Group 1:         0 OK only
Buttons         1 OK, Cancel 

        2 Abort, Retry, Ignore
        3 Yes, No, Cancel
        4 Yes, No 
        5 Retry, Cancel 

Group 2:       16 Critical Message ( STOP
)

Icons       32 Warning Query ( ? )
      48 Warning Message ( ! )
      64 Information Message ( i

)
Group 3:         0 First button
Defaults     256 Second button

    512 Third button
If buttons% is omitted, Msgbox displays a single OK button.
After the user clicks a button, Msgbox returns a value indicating the user's 
choice. The return values for the Msgbox function are:

Value Button 
Pressed

        1 OK 
        2 Cancel
        3 Abort
        4 Retry
        5 Ignore
        6 Yes
        7 No



Msgbox Statement 
See Also Example
Displays a prompt in a message dialog box.
 Syntax MsgBox prompt$ , [buttons%][ , title$] 

where: is:
prompt$ The text to display in a dialog box.
buttons% An integer value for the buttons, the icon, and the default 

button choice to display in a dialog box.
title$ A string expression containing the title for the message box.

Comments Prompt$ must be no more than 1,024 characters long. A message string 
greater than 255 characters without intervening spaces will be truncated after
the 255th character.
buttons% is the sum of three values, one from each of the following groups:

Value Description
Group 1:         0 OK only
Buttons         1 OK, Cancel 

        2 Abort, Retry, Ignore
        3 Yes, No, Cancel
        4 Yes, No 
        5 Retry, Cancel 

Group 2:       16 Critical Message ( STOP
)

Icons       32 Warning Query ( ? )
      48 Warning Message ( ! )
      64 Information Message ( i

)
Group 3:         0 First button
Defaults     256 Second button

    512 Third button
If buttons% is omitted, Msgbox displays a single OK button.



Name Statement 
See Also Example
Renames a file or moves a file from one directory to another.
Syntax Name oldfilename$ As newfilename$

where: is:
oldfilename$ A string expression containing the file to rename.
newfilename$A string expression containing the name for the file.

Comments A path can be part of either filename argument. If the paths are different, the 
file is moved to the new directory.
A file must be closed in order to be renamed. If the file oldfilename$ is open or
if the file newfilename$ already exists, Basic generates an error message.



New Operator 
See Also
Allocates and initializes a new OLE Automation object of the named class.
Syntax Set objectVar = New className

Dim objectVar As New className
where: is:
objectVar The OLE Automation object to allocate and initialize.
className The class to assign to the object.

Comments In the Dim statement, New marks objectVar so that a new object will be 
allocated and initialized when objectVar is first used. If objectVar is not 
referenced, then no new object will be allocated.
Note: An object variable that was declared with New will allocate a second 
object if objectVar is Set to Nothing and referenced again.



$NoCStrings Metacommand [OPEN Script Extension]
See Also Example
Tells the compiler to treat a backslash (\) inside a string as a normal character.
Syntax '$NoCStrings [ Save ]

where: means:
Save Saves the current '$CStrings setting before restoring the 

treatment of the backslash (\) to a normal character.
Comments Use the '$CStings Restore command to restore a previously saved setting. 

Save and Restore operate as a stack and allow the user to change the 
'$CStrings setting for a range of the program without impacting the rest of 
the program.
Use the '$CStrings metacommand to tell the compiler to treat a backslash (\)
inside of a string as an Escape character.



Nothing Function 
See Also Example Overview
Returns an object value that doesn't refer to an object.
Syntax Set variableName = Nothing

where: is:
variableName The name of the object variable to set to nothing.

Comments Nothing is the value object variables have when they do not refer to an 
object, either because the have not been initialized yet or because they were 
explicitly Set to Nothing. For example:

If Not objectVar Is Nothing then
objectVar.Close
Set objectVar = Nothing

End If



Now Function 
See Also Example
Returns the current date and time.
Syntax Now( )
Comments The Now function returns a Variant of vartype 7 (date) that represents the 

current date and time according to the setting of the computer's system date 
and time.



NPV Function 
See Also Example
Returns the net present value of a investment based on a stream of periodic cash flows and 
a constant interest rate.
Syntax NPV ( rate , valuearray( ) )

where: is:
rate Discount rate per period.
valuearray( ) An array containing cash flow values.

Comments Valuearray( ) must have at least one positive value (representing a receipt) 
and one negative value (representing a payment). All payments and receipts 
must be represented in the exact sequence. The value returned by NPV will 
vary with the change in the sequence of cash flows.
If the discount rate is 12% per period, rate is the decimal equivalent, i.e. 0.12.
NPV uses future cash flows as the basis for the net present value calculation. 
If the first cash flow occurs at the beginning of the first period, its value should
be added to the result returned by NPV and must not be included in 
valuearray().



Null Function 
See Also Example
Returns a Variant value set to NULL.
Syntax Null
Comments Null is used to set a Variant to the Null value explicitly, as follows:

variableName = Null
Note that Variants are initialized by Basic to the empty value, which is 
different from the null value.



Object Class 
See Also Example
A class that provides access to OLE Automation objects.
Syntax Dim variableName As Object

where: is:
variableName The name of the object variable to declare.

Comments To create a new object, first dimension a variable, using the Dim statement, 
then Set the variable to the return value of CreateObject or GetObject, as 
follows:

Dim OLEobj As Object
Set OLEobj = CreateObject("spoly.cpoly")

To refer to a method or property of the newly created object, use the syntax: 
objectvar.property or objectvar.method, as follows:

OLEobj.reset



Oct Function 
See Also Example
Returns the octal representation of a number, as a string.
Syntax Oct[$]( number )

where: is:
number A numeric expression for the number to convert to octal.

Comments If the numeric expression has a data type of Integer, the string contains up to
six octal digits; otherwise, the expression will be converted to a data type of 
Long, and the string can contain up to 11 octal digits.
To represent an octal number directly, precede the octal value with &O. For 
example, &O10 equals decimal 8 in octal notation.
The dollar sign, "$", in the function name is optional. If specified the return 
data type is String. If omitted the function will return a Variant of vartype 8 
(string).



OKButton Statement 
See Also Example
Determines the position and size of an OK button in a dialog box.
Syntax OKButton x , y , dx , dy [, .id]

where: is:
x , y The position of the Cancel button relative to the upper left 

corner of the dialog box.
dx , dy The width and height of the button.
.id An optional identifier for the button.

Comments A dy value of 14 typically accommodates text in the system font.
.id is an optional identifier used by the dialog statements that act on this 
control.
Use the OKButton statement only between a Begin Dialog and an End 
Dialog statement.



On...Goto Statement 
See Also Example
Branch to a label in the current procedure based on the value of a numeric expression.
Syntax ON numeric-expression GoTo label1 [,label2 , ... ] 

where: is:
numeric-expression Any numeric expression that evaluates to a positive 

number.
label1 , label2 A label in the current procedure to branch to if numeric-

expression evaluates to 1, 2, etc.
Comments If numeric expression evaluates to 0 or to a number greater than the number 

of labels following GoTo, the program continues at the next statement. If 
numeric-expression evaluates to a number less than 0 or greater than 255, an
"Illegal function call" error is issued.



On Error Statement 
See Also Example Overview
Specifies the location of an error-handling routine within the current procedure.
Syntax ON [Local] Error {GoTo label [ Resume Next ] GoTo 0}

where: is:
label A string used as a label in the current procedure to identify the 

lines of code that process errors.
Comments On Error can also be used to disable an error-handling routine. Unless an On 

Error statement is used, any run-time error will be fatal, that is, OPEN Script 
will terminate the execution of the program.
An On Error statement is composed of the following parts:

Part Definition
Local Keyword allowed in error-handling routines at the 

procedure level. Used to ensure compatibility with other 
Variants of Basic.

GoTo label Enables the error-handling routine that starts at label. If 
the designated label is not in the same procedure as the 
On Error statement, OPEN Script generates an error 
message.

Resume Next Designates that error-handling code is handled by the 
statement that immediately follows the statement that 
caused an error. At this point, use the Err function to 
retrieve the error-code of the run-time error.

GoTo 0 Disables any error handler that has been enabled.
When it is referenced by an On Error GoTo label statement, an error-handler 
is enabled. Once this enabling occurs, a run-time error will result in program 
control switching to the error-handling routine and "activating" the error 
handler. The error handler remains active from the time the run-time error has
been trapped until a Resume statement is executed in the error handler.
If another error occurs while the error handler is active, OPEN Script will 
search for an error handler in the procedure that called the current procedure 
(if this fails, OPEN Script will look for a handler belonging to the caller's caller, 
and so on). If a handler is found, the current procedure will terminate, and the 
error handler in the calling procedure will be activated.
It is an error (No Resume) to execute an End Sub or End Function statement
while an error handler is active. The Exit Sub or Exit Function statement can
be used to end the error condition and exit the current procedure.



Open Statement 
See Also Example
Opens a file or device for input or output.
Syntax Open filename$ [For mode] [Access access] [lock] As [#] filenumber% [Len

= reclen]
where: is:
filename$ A string or string expression for the name of the file to open.
mode One of the following keywords:

Input Put data into the file sequentially.
Output Read data from the file sequentially.
Append Add data to the file sequentially.
Random Get data from the file by random access.
Binary Get binary data from the file.

access One of the following keywords:
Read Read data from the file only.
Write Write data the file only.
Read Write Read or write data to the file.

lock One of the following keywords to designate access by other 
processes:
Shared Read or write available on the file.
Lock Read Read data only.
Lock Write Write data only.
Lock Read Write No read or write available.

filenumber% An integer or expression containing the integer to assign to the 
open file (between 1 and 255).

reclen The length of the records (for Random or Binary files only).
Comments A file must be opened before any input/output operation can be performed on 

it.
If filename$ does not exist, it is created when opened in Append, Binary, 
Output or Random modes.
If mode is not specified, it defaults to Random.
If access is not specified for Random or Binary modes, access is attempted 
in the following order: Read Write, Write, Read.
If lock is not specified, filename$ can be opened by other processes that do 
not specify a lock, although that process cannot perform any file operations on
the file while the original process still has the file open.
Use the FreeFile function to find the next available value for filenumber%.
Reclen is ignored for Input, Output, and Append modes.



OptionButton Statement 
See Also Example
Defines the position and text associated with an option button in a dialog box.
Syntax OptionButton x , y , dx , dy , text$ [, .id]

where: is:
x , y The position of the button relative to the upper left corner of the

dialog box.
dx , dy The width and height of the button.
text$ A string to display next to the option button. If the width of this 

string is greater than dx, trailing characters are truncated.
.id An optional identifier used by the dialog statements that act on 

this control.
Comments You must have at least two OptionButton statements in a dialog box. You use

these statements in conjunction with the OptionGroup statement.
A dy value of 12 typically accommodates text in the system font. 
To enable the user to select an option button by typing a character from the 
keyboard, precede the character in text$ with an ampersand (&).
Use the OptionButton statement only between a Begin Dialog and an End 
Dialog statement.



OptionGroup Statement    
See Also Example
Groups a series of option buttons under one heading in a dialog box.
Syntax OptionGroup .field

where: is:
.field A value for the option button selected by the user: 0 for the first

option button, 1 for the second button, and so on.
Comments The OptionGroup statement is used in conjunction with OptionButton 

statements to set up a series of related options. The OptionGroup Statement
begins the definition of the option buttons and establishes the dialog-record 
field that will contain the option selection.
Use the OptionGroup statement only between a Begin Dialog and an End 
Dialog statement.



Option Base Statement 
See Also Example Overview
Specifies the default lower bound to use for array subscripts.
Syntax Option Base lowerBound%

where: is:
lowerBound A number or expression containing a number for the default 

lower bound: either 0 or 1.
Comments If no Option Base statement is specified, the default lower bound for array 

subscripts will be 0. 
The Option Base statement is not allowed inside a procedure, and must 
precede any use of arrays in the module. Only one Option Base statement is 
allowed per module.



Option Compare Statement 
See Also Example
Specifies the default method for string comparisons: either case-sensitive or case-
insensitive.
Syntax Option Compare { Binary | Text }

where: means:
Binary Comparisons are case-sensitive (i.e., lowercase and uppercase 

letters are different).
Text Comparisons are not case-sensitive.

Comments Binary comparisons compare strings based upon the ANSI character set. Text
comparisons are based upon the relative order of characters as determined by
the country code setting for your system.



Option Explicit Statement    
See Also Example
Specifies that all variables in a module must be explicitly declared.
Syntax Option Explicit
Comments By default, Basic automatically declares any variables that do not appear in a 

Dim, Global, Redim, or Static statement. Option Explicit causes such 
variables to produce a "Variable Not Declared" error.



PasswordBox Function 
See Also Example
Returns a string entered by the user without echoing it to the screen.
Syntax PasswordBox[$]( prompt$ ,[title$] ,[default$] [ ,xpos% , ypos%] ) 

where: is:
prompt$ A string expression containing the text to show in the 

dialog box
title$ The caption for the dialog box's title bar
default$ The string expression shown in the edit box as the 

default response.
xpos% , ypos% The position of the dialog box, relative to the upper left 

corner of the screen.
Comments The PasswordBox function displays a dialog box containing a prompt. Once 

the user has entered text, or made the button choice being prompted for, the 
contents of the box are returned.
The length of prompt$ is restricted to 255 characters. This figure is 
approximate and depends on the width of the characters used. Note that a 
carriage return and a line-feed character must be included in prompt$ if a 
multiple-line prompt is used.
If either prompt$ or default$ is omitted, nothing is displayed.
Xpos% determines the horizontal distance between the left edge of the screen
and the left border of the dialog box, measured in dialog box units. Ypos% 
determines the horizontal distance from the top of the screen to the dialog 
box's upper edge, also in dialog box units. If these arguments are not entered,
the dialog box is centered roughly one third of the way down the screen. A 
horizontal dialog box unit is 1/4 of the average character width in the system 
font; a vertical dialog box unit is 1/8 of the height of a character in the system 
font.
Note: To specify the dialog box's position, you must enter both of these 
arguments. If you enter one without the other, the default positioning is used.
Once the user presses Enter, or selects the OK button, PasswordBox returns 
the text contained in the password box. If the user selects Cancel, the 
PasswordBox function returns a null string ("").
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted, the function will return a Variant of vartype 8 
(string).



Picture Statement 
See Also Example
Defines a picture control in a dialog box
Syntax Picture x , y , dx , dy , filename$ , type [, .id]

where: is:
x , y The position of the picture relative to the upper left corner of 

the dialog box.
dx , dy The width and height of the picture.
filename$ The name of the bitmap file (a file with .BMP extension) where 

the picture is located.
type An integer for the location of the bitmap (0=filename$, 

3=Windows Clipboard).
.id An optional identifier used by the dialog statements that act on 

this control.
Comments The Picture statement can only be used between a Begin Dialog and an 

End Dialog statement.
Note: The picture will be scaled equally in both directions and centered if the 
dimensions of the picture are not proportional to dx and dy.
If type% is 3, filename$ is ignored.
If the picture is not available (the file filename$ doesn't exist, doesn't contain 
a bitmap, or there is no bitmap on the Clipboard), the picture control will 
display the picture frame and the text "(missing picture)". This behavior can 
be changed by adding 16 to the value of type%. If type% is 16 or 19 and the 
picture is not available, a runtime error occurs. 



Pmt Function 
See Also Example
Returns a constant periodic payment amount for an annuity or a loan.
Syntax Pmt ( rate , nper , pv , fv , due )

where: is:
rate Interest rate per period.
nper Total number of payment periods. 
pv Present value of the initial lump sum amount paid (as in the 

case of an annuity) or received (as in the case of a loan).
fv Future value of the final lump sum amount required (as in the 

case of a savings plan) or paid (0 as in the case of a loan).
due An integer value for when the payments are due (0=end of 

each period, 1= beginning of the period).
Comments Rate is assumed to be constant over the life of the loan or annuity. If 

payments are on a monthly schedule, then rate will be 0.0075 if the annual 
percentage rate on the annuity or loan is 9%.



PPmt Function 
See Also Example
Returns the principal portion of the payment for a given period of an annuity.
Syntax PPmt ( rate , per , nper , pv , fv , due )

where: is:
rate Interest rate per period.
per Particular payment period in the range 1 through nper. 
nper Total number of payment periods. 
pv Present value of the initial lump sum amount paid (as in the 

case of an annuity) or received (as in the case of a loan).
fv Future value of the final lump sum amount required (as in the 

case of a savings plan) or paid (0 as in the case of a loan).
due An integer value for when the payments are due (0=end of 

each period, 1= beginning of the period).
Comments Rate is assumed to be constant over the life of the loan or annuity. If 

payments are on a monthly schedule, then rate will be 0.0075 if the annual 
percentage rate on the annuity or loan is 9%.



Print Statement 
See Also Example
Prints data to an open file or to the screen.
Syntax Print [filenumber% , ] expressionlist [ { ; | , } ] 

where: is:
filenumber% An integer expression identifying the open file to use.
expressionlist A numeric, string, and Variant expression containing the 

list of values to print.
Comments The Print statement outputs data to the specified filenumber%. filenumber% 

is the number assigned to the file when it was opened. See the Open 
statement for more information. If this argument is omitted, the Print 
statement outputs data to the screen. 
If the expressionlist is omitted, a blank line is written to the file.
The values in expressionlist are separated by either a semi-colon (";") or a 
comma (",") . A semi-colon indicates that the next value should appear 
immediately after the preceding one without intervening white space. A 
comma indicates that the next value should be positioned at the next print 
zone. Print zones begin every 14 spaces.
The optional [{;|,}] argument at the end of the Print statement determines 
where output for the next Print statement to the same output file should 
begin. A semi-colon will place output immediately after the output from this 
Print statement on the current line; a comma will start output at the next 
print zone on the current line. If neither separator is specified, a CR-LF pair will
be generated and the next Print statement will print to the next line.
Special functions Spc and Tab can be used inside Print statement to insert a 
given number of spaces and to move the print position to a desired column.
The Print statement supports only elementary Basic data types. See Input 
for more information on parsing this statement.



PushButton Statement 
See Also Example
Defines a custom push button.
Syntax A PushButton x , y , dx , dy , text$ [, .id]
Syntax B Button x, y, dx, dy, text$ [, .id]

where: is:
x , y The position of the button relative to the upper left corner of the

dialog box.
dx , dy The width and height of the button.
text$ The name for the push button. If the width of this string is 

greater than dx, trailing characters are truncated.
.id An optional identifier used by the dialog statements that act on 

this control.
Comments A dy value of 14 typically accommodates text in the system font.

Use this statement to create buttons other than OK and Cancel. Use this 
statement in conjunction with the ButtonGroup statement. The two forms of 
the statement (Button and PushButton) are equivalent.
Use the Button statement only between a Begin Dialog and an End Dialog 
statement.



Put Statement 
See Also Example
Writes a variable to a file opened in Random or Binary mode.
Syntax Put [#] filenumber%, [ recnumber& ], varname

where: is:
filenumber% An integer expression identifying the open file to use.
recnumber& A Long expression containing the record number or the 

byte offset at which to start writing.
varname The name of the variable containing the data to write.

Comments Filenumber% is the number assigned to the file when it was opened. See the 
Open statement for more information.
Recnumber& is in the range 1 to 2,147,483,647. If recnumber& is omitted, the
next record or byte is written.
Note: The commas before and after recnumber% are required, even if no 
recnumber& is specified.
Varname can be any variable except Object, Application Data Type or 
Array variables (single array elements can be used).
For Random mode, the following apply:

Blocks of data are written to the file in chunks whose size is equal to the 
size specified in the Len clause of the Open statement. If the size of 
varname is smaller than the record length, the record is padded to the 
correct record size. If the size of variable is larger than the record length, 
an error occurs.
For variable length String variables, Put writes two bytes of data that 
indicate the length of the string, then writes the string data.
For Variant variables, Put writes two bytes of data that indicate the type of
the Variant, then it writes the body of the Variant into the variable. Note 
that Variants containing strings contain two bytes of type information, 
followed by two bytes of length, followed by the body of the string.
User defined types are written as if each member were written separately, 
except no padding occurs between elements.

Files opened in Binary mode behave similarly to those opened in Random 
mode except:

Put writes variables to the disk without record padding.
Variable length Strings that are not part of user defined types are not 
preceded by the two byte string length.



PV Function 
See Also Example
Returns the present value of a constant periodic stream of cash flows as in an annuity or a 
loan.
Syntax PV ( rate , nper , pmt , fv , due )

where: is:
rate Interest rate per period.
nper Total number of payment periods.
pmt Constant periodic payment per period.
fv Future value of the final lump sum amount required (in the case

of a savings plan) or paid (0 in the case of a loan).
due An integer value for when the payments are due (0=end of 

each period, 1= beginning of the period).
Comments Rate is assumed constant over the life of the annuity. If payments are on a 

monthly schedule, then rate will be 0.0075 if the annual percentage rate on 
the annuity or loan is 9%.



Randomize Statement 
See Also Example
Seeds the random number generator.
Syntax Randomize    [number% ]

where: is:
number% An integer value between -32768 and 32767.

Comments If no number% argument is given, Basic uses the Timer function to initialize 
the random number generator.



Rate Function 
See Also Example
Returns the interest rate per period for an annuity or a loan.
Syntax Rate ( nper , pmt , pv , fv , due , guess )

where: is:
nper Total number of payment periods.
pmt Constant periodic payment per period.
pv Present value of the initial lump sum amount paid (as in the 

case of an annuity) or received (as in the case of a loan).
fv Future value of the final lump sum amount required (in the case

of a savings plan) or paid (0 in the case of a loan).
due An integer value for when the payments are due (0=end of 

each period, 1= beginning of the period)
guess A ballpark estimate for the rate returned.

Comments In general, a guess of between 0.1 (10 percent) and 0.15 (15 percent) would 
be a reasonable value for guess.
Rate is an iterative function: it improves the given value of guess over several
iterations until the result is within 0.00001 percent. If it does not converge to a
result within 20 iterations, it signals failure.



ReDim Statement 
See Also Example Overview
Changes the upper and lower bounds of a dynamic array's dimensions.
Syntax ReDim [ Preserve ]    variableName ( subscriptRange , ... ) [As [ New ] 

type] , ...
where: is:
variableName The variable array name to redimension.
subscriptRange The new upper and lower bounds for the array.
type The type for the data elements in the array.

Comments ReDim re-allocates memory for the dynamic array to support the specified 
dimensions, and can optionally re-initialize the array elements. ReDim cannot
be used at the module level; it must be used inside of a procedure.
The Preserve option is used to change the last dimension in the array while 
maintaining its contents. If Preserve is not specified, the contents of the 
array are re-initialized. Numbers will be set to zero (0). Strings and Variants 
will be set to empty ("").
The subscriptRange is of the format:

[ startSubscript To ] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base 
statement can be used to change the default.
A dynamic array is normally created by using Dim to declare an array without 
a specified subscriptRange. The maximum number of dimensions for a 
dynamic array created in this fashion is 8. If you need more than 8 
dimensions, you can use the ReDim statement inside of a procedure to 
declare an array that has not previously been declared using Dim or Global. 
In this case, the maximum number of dimensions allowed is 60.
The available data types for arrays are: numbers, strings, Variants, records 
and objects. Arrays of arrays, dialog box records, and objects are not 
supported.
If the As clause is not used, the type of the variable can be specified by using 
a type character as a suffix to the name. The two different type-specification 
methods can be intermixed in a single ReDim statement (although not on the 
same variable).
The ReDim statement cannot be used to change the number of dimensions of
a dynamic array once the array has been given dimensions. It can only 
change the upper and lower bounds of the dimensions of the array. The 
LBound and UBound functions can be used to query the current bounds of 
an array variable's dimensions.
Care should be taken to avoid ReDim'ing an array in a procedure that has 
received a reference to an element in the array in an argument; the result is 
unpredictable.



Rem Statement 
Example
Identifies a line of code as a comment in a Basic program.
Syntax Rem comment

where: is:
comment The text of the comment.

Comments Everything from Rem to the end of the line is ignored.
The single quote (') can also be used to initiate a comment. Metacommands 
(e.g., $CSTRINGS) must be preceded by the single quote comment form.



Reset Statement 
See Also Example
Closes all open disk files and writes any data in the operating system buffers to disk.
Syntax Reset



Resume Statement 
See Also Example Overview
Halts an error-handling routine.
Syntax A Resume Next
Syntax B Resume label
Syntax C Resume [ 0 ]

where: is:
label The label that identifies the statement to go to after handling an

error.
Comments When the Resume Next statement is used, control is passed to the 

statement that immediately follows the statement in which the error occurred.
When the Resume [ 0 ] statement is used, control is passed to the statement
in which the error occurred.
The location of the error handler that has caught the error determines where 
execution will resume. If an error is trapped in the same procedure as the 
error handler, program execution will resume with the statement that caused 
the error. If an error is located in a different procedure from the error handler, 
program control reverts to the statement that last called out the procedure 
containing the error handler.



Right Function 
See Also Example
Returns a string of a specified length copied from the end of another string.
Syntax Right[$]( string$, length% )

where: is:
string$ A string or expression containing the string to copy.
length% The number of characters to copy.

Comments If length% is greater than the length of string$, Right returns the whole 
string.
Right accepts any type of string$, including numeric values, and will convert 
the input value to a string.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is string. If omitted, the function will typically return a Variant of vartype
8 (string). If the value of string$ is NULL, a Variant of vartype 1 (Null) is 
returned.



RmDir Statement 
See Also Example
Removes a directory.
Syntax RmDir path$ 

where: is:
path$ A string expression identifying the directory to remove.

Comments The syntax for path$ is:
[drive:] [\] directory [\directory]
The drive argument is optional. The directory argument is a directory name.
The directory to be removed must be empty, except for the working ( . ) and 
parent ( .. ) directories.



Rnd Function 
See Also Example
Returns a single precision random number between 0 and 1.
Syntax Rnd [ ( number! ) ]

where: is:
number! A numeric expression to specify how to generate the random 

numbers. (<0=use the number specified, >0=use the next 
number in the sequence, 0=use the number most recently 
generated.)

Comments If number! is omitted, Rnd uses the next number in the sequence to generate 
a random number. The same sequence of random numbers is generated 
whenever Rnd is run, unless the random number generator is re-initialized by 
the Randomize statement.



Rset Statement 
See Also Example
Right aligns one string inside another string.
Syntax Rset string$ = string-expression

where: is:
string$ The string to contain the right-aligned characters.
string-expression The string containing the characters to put into string$.

Comments If string$ is longer than string-expression, the leftmost characters of string$ 
are replaced with spaces.
If string$ is shorter than string-expression, only the leftmost characters of 
string-expression are copied.
Rset cannot be used to assign variables of different user-defined types.



RTrim Function 
See Also Example
Copies a string and removes any trailing spaces.
Syntax RTrim[$]( string$ )

where: is:
string$ An expression that evaluates to a string.

Comments RTrim accepts any type of string including numeric values and will convert 
the input value to a string.
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted the function will typically return a Variant of vartype 
8 (string). If the value of string is NULL, a Variant of vartype 1 (Null) is 
returned.



Second Function 
See Also Example
Returns the second component (0-59) of a date-time value.
Syntax Second( time )

where: is:
time An expression containing a date time value.

Comments Second accepts any type of time including strings and will attempt to convert
the input value to a date value.
The return value is a Variant of vartype 2 (integer). If the value of time is 
NULL, a Variant of vartype 1 (Null) is returned.



Seek Function 
See Also Example
Returns the current file position for an open file.
Syntax Seek( filenumber% )

where: is:
filenumber% An integer expression identifying an open file to query.

Comments Filenumber% is the number assigned to the file when it was opened. See the 
Open statement for more information.
For files opened in Random mode, Seek returns the number of the next 
record to be read or written. For all other modes, Seek returns the file offset 
for the next operation. The first byte in the file is at offset 1, the second byte 
is at offset 2, etc. The return value is a Long.



Seek Statement 
See Also Example
Sets the position within an open file for the next read or write operation.
Syntax Seek [#] filenumber% , position&

where: is:
filenumber% An integer expression identifying an open file to query.
position& A numeric expression for the starting position of the next read 

or write operation (record number or byte offset).
Comments The Seek statement. If you write to a file after seeking beyond the end of the 

file, the file's length is extended. Basic will return an error message if a Seek 
operation is attempted that specifies a negative or zero position.
Filenumber% is an integer expression identifying the open file to Seek in. See 
the Open statement for more details.
For files opened in Random mode, position& is a record number; for all other 
modes, position& is a byte offset. Position& is in the range 1 to 2,147,483,647.
The first byte or record in the file is at position 1, the second is at position 2, 
etc.



Select Case Statement 
See Also Example
Executes a series of statements, depending on the value of an expression.
Syntax Select Case testexpression

[Case expressionlist
[statement_block] ]
[Case expressionlist
[statement_block] ]
.
.
[Case Else
[statement_block] ]
End Select
where: is:
testexpression Any expression containing a variable to test.
expressionlist One or more expressions that contain a possible value 

for testexpression .
statement_block The statements to execute if testexpression equals 

expressionlist.
Comments When there is a match between testexpression and one of the values in 

expressionlist, the statement_block following the Case clause is executed. 
When the next Case clause is reached, execution control goes to the 
statement following the End Select statement.
The expressionlist(s) can be a comma-separated list of expressions of the 
following forms:

expression
expression To expression
Is comparison_operator expression 

The type of each expression must be compatible with the type of 
testexpression. 
Note that when the To keyword is used to specify a range of values, the 
smaller value must appear first. The comparison_operator used with the Is 
keyword is one of: <, >, =, <=, >=, <>. 
Each statement_block can contain any number of statements on any number 
of lines.



SendKeys Statement 
See Also Example
Send keystrokes to an active Windows application.
Syntax SendKeys string$ [, wait%]

where: is:
string$ An expression containing the characters to send.
wait% A numeric expression to determine whether to wait until all keys

are processed before continuing program execution (-1=wait, 
0=don't wait).

Comments The keystrokes are represented by characters of string.
The default value for wait is 0 (FALSE).
To specify an ordinary character, enter this character in the string. For 
example, to send character 'a' use "a" as string. Several characters can be 
combined in one string: string "abc" means send 'a', 'b', and 'c'. 
To specify that Shift, Alt, or Control keys should be pressed simultaneously 
with a character, prefix the character with

+ to specify Shift
% to specify Alt
^ to specify Control.

Parentheses can be used to specify that the Shift, Alt, or Control key should be
pressed with a group of characters. For example, "%(abc)" is equivalent to 
"%a%b%c". 
Since '+', '%', '^' ,'(' and ')' characters have special meaning to SendKeys, 
they must be enclosed in braces if they need to be sent with SendKeys. For 
example string "{%}" specifies a percent character '%'.
The other characters that need to be enclosed in braces are '~' which stands 
for a newline or "Enter" if used by itself and braces themselves: use {{} to 
send '{' and {}} to send '}'. Brackets '[' and ']' do not have special meaning 
to SendKeys but might have special meaning in other applications, therefore,
they need to be enclosed inside braces as well.
To specify that a key needs to be sent several times, enclose the character in 
braces and specify the number of keys sent after a space: for example, use {X
20} to send 20 'X' characters.
To send one of the non-printable keys use a special keyword inside braces:

Key Keyword
Backspace {BACKSPACE} or {BKSP} or {BS} 
Break {BREAK}
Caps Lock {CAPSLOCK}
Clear {CLEAR}
Delete {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER}
Esc {ESCAPE} or {ESC}
Help {HELP}
Home {HOME}
Insert {INSERT}
Left Arrow {LEFT}
Num Lock {NUMLOCK}



Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}
Scroll Lock {SCROLLLOCK}
Tab {TAB}
Up Arrow {UP}

To send one of function keys F1-F15, simply enclose the name of the key 
inside braces. For example, to send F5 use "{F5}"
Note that special keywords can be used in combination with +, %, and ^. For 
example: %{TAB} means Alt-Tab. Also, you can send several special keys in 
the same way as you would send several normal keys: {UP 25} sends 25 Up 
arrows.
SendKeys can send keystrokes only to the currently active application. 
Therefore, you have to use the AppActivate statement to activate an 
application before sending keys (unless it is already active).
SendKeys cannot be used to send keys to an application that was not 
designed to run under Windows.



Set Statement 
See Also Example Overview
Assigns a variable to an OLE Automation object.
Syntax Set variableName = expression

where: is:
variableName An object variable or a Variant variable.
expression An expression that evaluates to an object--typically a 

function, an object member, or Nothing.
Comments The following example shows the syntax for the Set statement:

Dim OLEobj As Object 
Set OLEobj = CreateObject("spoly.cpoly")
OLEobj.reset

Note: If you omit the keyword Set when assigning an object variable, Basic 
will try to copy the default member of one object to the default member of 
another. This usually results in a runtime error:

' Incorrect code - tries to copy default member!
OLEobj = GetObject( ,"spoly.cpoly")

Set differs from Let in that Let assigns an expression to a Basic variable. For 
example,
Set o1 = o2 will set the object reference.
Let o1 = o2 will set the value of the default member.



SetAttr Statement 
See Also Example
Sets the attributes for a file.
Syntax SetAttr pathname$ , attributes%

where: is:
pathname$ A string expression containing the filename to modify.
attributes % An integer containing the new attributes for the file.

Comments Wildcards are not allowed in pathname$. If the file is open, you can modify its 
attributes, but only if it is opened for Read access. Here is a description of 
attributes that can be modified:
Value Meaning
        0 Normal file
        1 Read-only file
        2 Hidden file
        4 System file
    32 Archive - file has changed since last backup



SetField Function [OPEN Script Extension]
See Also Example
Replaces a field within a string and returns the modified string.
Syntax SetField[$]( string$, field_number%, field$, separator_chars$ )

where: is:
string$ A string consisting of a series of fields, separated by 

separator_char$.
field_number% An integer for the field to replace within string$.
field$ An expression containing the new value for the field.
separator_char$ A string containing the character(s) used to separate the

fields in string$.
Comments separator_char$ can contain multiple separator characters, although the first 

one will be used as the separator character.
The field_number% starts with 1. If field_number% is greater than the number 
of fields in the string, the returned string will be extended with separator 
characters to produce a string with the proper number of fields.
It is legal for the new field$ value to be a different size than the old value.



Sgn Function 
See Also Example
Returns a value indicating the sign of a number.
Syntax Sgn( number )

where: is:
number An expression for the number to use.

Comments The value that the Sgn function returns depends on the sign of number.
For numbers > 0, Sgn (number) returns 1.
For numbers = 0, Sgn (number) returns 0.
For numbers < 0, Sgn (number) returns -1.



Shell Function 
See Also Example
Starts a Windows application and returns its task ID.
Syntax Shell( pathname$ , [windowstyle%] )

where: is:
pathname$ The name of the program to execute
windowstyle% An integer value for the style of the program's window 

(1-7).
Comments Shell runs an executable program. Pathname$ can be the name of any 

valid .COM, .EXE., .BAT, or .PIF file. Arguments or command line switches can 
be included. If pathname$ is not a valid executable filename, or if Shell 
cannot start the program, an error message occurs.
Windowstyle% is one of the following values:
Value Window Style
        1 Normal window with focus
        2 Minimized with focus
        3 Maximized with focus
        4 Normal window without focus
        7 Minimized without focus
If windowstyle% is not specified, the default of windowstyle% = 1 is assumed 
(normal window with focus).
Shell returns the task ID for the program, a unique number that identifies the 
running program.



Sin Function 
See Also Example
Returns the sine of an angle specified in radians.
Syntax Sin( number )

where: is:
number An expression containing the angle in radians.

Comments The return value will be between -1 and 1. The return value is single-precision 
if the angle is an integer, currency or single-precision value, double precision 
for a long, Variant or double-precision value. The angle is specified in radians, 
and can be either positive or negative.
To convert degrees to radians, multiply by (PI/180). The value of PI is 3.14159.



Space Function 
See Also Example
Returns a string of spaces.
Syntax Space[$]( number )

where: is:
number A numeric expression for the number of spaces to return.

Comments number can be any numeric data type, but will be rounded to an integer. 
number must be between 0 and 32,767.
The dollar sign, "$", in the function name is optional. If specified the return 
type is String. If omitted, the function will return a Variant of vartype 8 
(String).



Spc Function 
See Also Example
Prints a number of spaces.
Syntax Spc ( n )

where: is:
n An integer for the number of spaces to output.

Comments The Spc function can be used only inside Print statement.
When the Print statement is used, the Spc function will use the following 
rules for determining the number of spaces to output:

1.    If n is less than the total line width, Spc outputs n spaces.
2.    If n is greater than the total line width, Spc outputs n Mod width 
spaces.
3.    If the difference between the current print position and the output line 
width (call this difference x) is less than n or n Mod width, then Spc skips 
to the next line and outputs n - x spaces.

To set the width of a print line, use the Width statement.



SQLClose Function 
See Also Example
Disconnects from an ODBC data source connection that was established by SQLOpen.
Syntax SQLClose ( connection& )

where: is:
connection& A named argument that must be a long integer, returned by 

SQLOpen.
Comments The return is a variant. Success returns 0 and the connection is subsequently 

invalid. If the connection is not valid, -1 is returned.



SQLError Function 
See Also Example
Can be used to retrieve more detailed information about errors that might have occurred 
when making an ODBC function call. Returns errors for the last ODBC function and the last 
connection.
Syntax SQLError ( destination() )

where: is:
destination A two dimensional array in which each row contains one error. A

named argument that is required, must be an array of variants.
Comments There is no return value. The fields are: 1) character string indicating the 

ODBC error class/subclass, 2) numeric value indicating the data source native 
error code, 3) text message describing the error. 
If there are no errors from a previous ODBC function call, then a 0 is returned 
in the callers array at (1,1). If the array is not two dimensional or does not 
provide for the return of the three fields above, then an error message is 
returned in the callers array at (1,1).



SQLExecQuery Function 
See Also Example
Executes an SQL statement on a connection established by SQLOpen.
Syntax SQLExecQuery ( connection& , query$ )

where: is:
connection& A named argument, required. A long integer, returned by 

SQLOpen.
query$ A string containing a valid SQL statement. The return is a 

variant.
Comments It returns the number of columns in the result set for SQL SELECT statements; 

for UPDATE, INSERT, or DELETE it returns the number of rows affected by the 
statement. Any other SQL statement returns 0. If the function is unable to 
execute the query on the specified data source, or if the connection is invalid, 
a negative error code is returned.
If SQLExecQuery is called and there are any pending results on that 
connection, the pending results are replaced by the new results. 



SQLGetSchema Function 
See Also Example
Returns a variety of information, including information on the data sources available, current
user ID, names of tables, names and types of table columns, and other data source/database
related information.
Syntax SQLGetSchema (connection , action% , qualifier$ , ref() )

where: is:
connection A long integer returned by SQLOpen.
action% Required.
qualifier$ Required.
ref() A variant array for the results appropriate to the action 

requested, must be an array even if only one dimension with 
one element. The return is a variant.

Comments A negative return value indicates an error. A -1 is returned if the requested 
information cannot be found or if the connection is not valid. The destination 
array must be properly dimensioned to support the action or an error will be 
returned. Actions 2 and 3 are not currently supported. Action 4 returns all 
tables and does not support the use of the qualifier. Not all database products 
and ODBC drivers support all actions.
Action Meaning
        1 List of available datasources (dimension of ref() is one)
        2 List of databases on the current connection (not supported)
        3 List of owners in a database on the current connection (not 

supported)
        4 List of tables on the specified connection
        5 List of columns in a the table specified by qualifier. (ref() must 

be two dimensions). Returns column name and SQL data type.
        6 The user ID of the current connection user.
        7 The name of the current database. 
        8 The name of the data source for the current connection.
        9 The name of the DBMS the data source users (e.g., Oracle).
      10 The server name for the data source.
      11 The terminology used by the data source to refer to owners.
      12 The terminology used by the data source to refer to a table.
      13 The terminology used by the data source to refer to a qualifier.
      14 The terminology used by the data source to refer to a 

procedure.



SQLOpen Function 
See Also Example
Establishes a connection to an ODBC data source specified in connectStr and returns a 
connection ID in the return, and the completed connection string in outputStr. If the 
connection cannot be established, then a negative number ODBC error is returned.
Syntax SQLOpen ( connectStr$ , outputStr$ , prompt% )

where: is:
connectStr A named argument, a required parameter.
outputStr Optional
prompt Optional. 

Comments The content of connectStr is described in the Microsoft Programmers 
Reference Guide for ODBC. An example string might be 
DSN=datasourcename; UID=myid;    PWD=mypassword. The return must be a 
long. 
prompt specifies when the driver dialog box is displayed. When prompt is 
omitted, SQLOpen uses 2 as the default.
Prompt Value Meaning
                    1 Driver dialog is always displayed.
                    2 Driver dialog is displayed only when the specification is not 

sufficient to make the connection.
                    3 The same as 2, except that dialogs that are not required are 

grayed and cannot be modified.
                    4 Driver dialog is not displayed. If the connection is not 

successful, an error is returned.



SQLRequest Function 
See Also Example
Establishes a connection to the data source specified in connectionStr, executes the SQL 
statement contained in query, returns the results of the request in the ref() array, and closes
the connection.
Syntax SQLRequest( connectionStr$ , query$ , outputStr$ , prompt% , 

columnNames% , ref() )
where: is:
connectionStr$ A required argument.
query$ A required argument.
outputStr$ Contains the completed connection string.
prompt% An integer that specifies when driver dialog boxes are 

displayed (see SQLOpen).
columnNames% An integer with a value of 0 or nonzero. When 

columnNames is nonzero, column names are returned as
the first row of the ref() array. If columnNames is 
omitted, the default is 0.

ref() A required argument that is a two dimensional variant 
array.

Comments In the event that the connection cannot be made, the query is invalid, or other
error condition, a negative number error is returned. In the event the request 
is successful, the positive number of results returned or rows affected is 
returned. Other SQL statements return 0.
The arguments are named arguments. The return is a variant.



SQLRetrieve Function 
See Also Example
Fetches the results of a pending query on the connection specified by connection    and 
returns the results in the destination() array.
Syntax SQLRetrieve( connection& , destination() , maxColumns% , maxRows% , 

columnNames% , rowNumbers% , fetchFirst% )
where: is:
connection& A long.
destination() A two dimensional variant array.
maxColumns% An integer and an optional parameter, used to specify 

the number of columns to be retrieved in the request.
maxRows% An integer and an optional parameter, used to specify 

the number of rows to be retrieved in the request.
columnNames% An integer and an optional parameter, defaults to 0.
rowNumbers% An integer and an optional parameter, defaults to 0.
fetchFirst% An integer and an optional parameter, defaults to 0.

Comments The return value is the number of rows in the result set or the maxRows 
requested. If the function is unable to retrieve the results on the specified 
connection, or if there are not results pending, 1 is returned. If no data is 
found, the function returns 0.
The arguments are named arguments. The return is a variant. 
If maxColumns or maxRows are omitted, the array size is used to determine 
the maximum number of columns and rows retrieved, and an attempt is made
to return the entire result set. Extra rows can be retrieved by using 
SQLRetrieve again and by setting fetchFirst to 0. If maxColumns specifies 
fewer columns than are available in the result, SQLRetrieve discards the 
rightmost result columns until the results fit the specified size. 
When columnNames is nonzero, the first row of the array will be set to the 
column names as specified by the database schema. When rowNumbers is 
nonzero, row numbers are returned in the first column of destination(). 
SQLRetrieve will clear the users array prior to fetching the results.
When fetchFirst is nonzero, it causes the result set to be repositioned to the 
first row if the database supports the function. If the database does not 
support repositioning, the result set 1 error will be returned.
If there are more rows in the result set than can be contained in the 
destination() array or than have been requested using maxRows, the user can 
make repeated calls to SQLRetrieve until the return value is 0.



SQLRetrieveToFile Function 
See Also Example
Fetches the results of a pending query on the connection specified by connection and stores 
them in the file specified by destination.  
Syntax SQLRetrieveToFile( connection& , destination$ , columnNames% , 

columnDelimiter$ )
where: is:
connection& A required argument. A long integer
destination$ A required argument. A string containing the file and 

path to be used for storing the results.
columnNames% An integer; when nonzero, the first row of the file will be 

set to the column names as specified by the database 
schema. If columnNames is omitted, the default is 0.

columnDelimiter$ Specifies the string to be used to delimit the fields within
each row. If columnDelimiter is omitted, a horizontal tab 
is used to delimit fields.

Comments Upon successful completion of the operation, the return value is the number 
of rows in the result set. If the function is unable to retrieve the results on the 
specified connection, or if there are not results pending, -1 is returned. 
The arguments are named arguments. The return is a variant.



Sqr Function 
See Also Example
Returns the square root of a number.
Syntax Sqr( number )

where: is:
number An expression containing the number to use.

Comments The return value is single-precision for an integer, currency or single-precision 
numeric expression, double precision for a long, Variant or double-precision 
numeric expression.



Static Statement 
See Also Example
Declares variables and allocate storage space.
Syntax Static variableName [As type] [,variableName [As type]]  ...

where: is:
variableName The name of the variable to declare.
type The data type of the variable.

Comments Variables declared with the Static statement retain their value as long as the 
program is running. The syntax of Static is exactly the same as the syntax of 
the Dim statement.
All variables of a procedure can be made static by using the Static keyword in
a definition of that procedure See Function or Sub for more information.



StaticComboBox Statement 
See Also Example
Creates a combination of a list of choices and a text box.
Syntax A StaticComboBox x , y , dx , dy , text$ , .field
Syntax B StaticComboBox x , y , dx , dy , stringarray$() , .field

where: is:
x , y The upper left corner coordinates of the list box, relative to the 

upper left corner of the dialog box.
dx , dy The width and height of the combo box in which the user enters

or selects text.
text$ A string containing the selections for the combo box.
stringarray$ An array of dynamic strings for the selections in the combo box.
.field The name of the dialog-record field that will hold the text string 

entered in the text box or chosen from the list box.
Comments The StaticComboBox statement is equivalent to the ComboBox or 

DropComboBox statement, but the list box of StaticComboBox always 
stays visible. All dialog functions and statements that apply to the ComboBox
apply to the StaticComboBox as well.
The x argument is measured in 1/4 system-font character-width units. The y 
argument is measured in 1/8 system-font character-width units. (See Begin 
Dialog for more information.)
The text$ argument must be defined, using a Dim Statement, before the 
Begin Dialog statement is executed. The arguments in the text$ string are 
entered as shown in the following example:
dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
The string in the text box will be recorded in the field designated by the .field 
argument when the OK button (or any pushbutton other than Cancel) is 
pushed. The field argument is also used by the dialog statements that act on 
this control.
Use the StaticComboBox statement only between a Begin Dialog and an 
End Dialog statement.



Stop Statement 
Example
Halts program execution.
Syntax Stop
Comments Stop statements can be placed anywhere in a program to suspend its 

execution. Although the Stop statement halts program execution, it does not 
close files or clear variables.



Str Function 
See Also Example
Returns a string representation of a number.
Syntax Str[$]( number )

where: is:
number The number to represent as a string.

Comments The precision in the returned string is single-precision for an integer or single-
precision numeric expression, double precision for a long or double-precision 
numeric expression, and currency precision for currency. Variants return the 
precision of their underlying vartype.
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted, the function will return a Variant of vartype 8 
(String).



StrComp Function 
See Also Example
Compares two strings and returns an integer specifying the result of the comparison.
Syntax StrComp( string1$ , string2$ [ , compare% ] )

where: is:
string1$ Any expression containing the first string to compare.
string2$ The second string to compare.
compare% An integer for the method of comparison (0=case-sensitive, 

1=case-insensitive).
Comments StrComp returns one of the following values:

Value Meaning
      -1 string1$    < string2$
        0 string1$  = string2$
    >1 string1$    > string2$ 
    Null string1$    = Null or string2$  = Null
If compare% is 0, a case sensitive comparison based on the ANSI character 
set sequence is performed. If compare% is 1, a case insensitive comparison is 
done based upon the relative order of characters as determined by the 
country code setting for your system. If omitted, the module level default, as 
specified with Option Compare is used.
The string1 and string2 arguments are both passed as Variants. Therefore, any
type of expression is supported. Numbers will be automatically converted to 
strings.



String Function 
See Also Example
Returns a string consisting of a repeated character.
Syntax A String[$]( number , Character% )
Syntax B String[$] ( number , string-expression$ )

where: is:
number The length of the string to be returned.
Character% A numeric expression that contains an integer for the 

decimal ANSI code of the character to use.
string-expression$ A string argument, the first character of which becomes 

the repeated character.
Comments number must be between 0 and 32,767.

Character% must evaluate to an integer between 0 and 255.
The dollar sign, "$", in the function name is optional. If specified the return 
type is string. If omitted, the function returns a Variant of vartype 8 (String).



Sub ... End Sub Statement 
See Also Example
Defines a subprogram procedure.
Syntax [ Static ] [ Private ] Sub name [ ( [Optional ] parameter [  As type] , ...) ]

End Sub
where: is:
name The name of the subprogram.
parameter A comma-separated list of parameter names.
type A data type for parameter

Comments A call to a subprogram stands alone as a separate statement. (See the Call 
statement). Recursion is supported. 
The data type of a parameter can be specified by using a type character or by 
using the As clause. Record parameters are declared by using an As clause 
and a type that has previously been defined using the Type statement. Array 
parameters are indicated by using empty parentheses after the parameter. 
The array dimensions are not specified in the Sub statement. All references to
an array within the body of the subprogram must have a consistent number of
dimensions.
If a parameter is declared as Optional, its value can be omitted when the 
function is called. Only Variant parameters can be declared as optional, and all
optional parameters must appear after all required parameters in the Sub 
statement. The function IsMissing must be used to check whether an 
optional parameter was omitted by the user or not. See the Call statement for
more information on using named parameters. 
The procedure returns to the caller when the End Sub statement is reached 
or when an Exit Sub statement is executed.
The Static keyword specifies that all the variables declared within the 
subprogram will retain their values as long as the program is running, 
regardless of the way the variables are declared. 
The Private keyword specifies that the procedures will not be accessible to 
functions and subprograms from other modules. Only procedures defined in 
the same module will have access to a Private subprogram.
Basic procedures use the call by reference convention. This means that if a 
procedure assigns a value to a parameter, it will modify the variable passed 
by the caller.
The MAIN subprogram has a special meaning. In many implementations of 
Basic, MAIN will be called when the module is "run". The MAIN subprogram is 
not allowed to take arguments.
Use Function to define a procedure that has a return value.



Tab Function 
See Also Example
Moves the current print position to the column specified.
Syntax Tab ( n )

where: is:
n The new print position to use.

Comments The Tab function can be used only inside Print statement. The leftmost print 
position is position number 1.
When the Print statement is used, the Tab function will use the following 
rules for determining the next print position:

1.    If n is less than the total line width, the new print position is n.
2.    If n is greater than the total line width, the new print position is n Mod 
width .
3.    If the current print position is greater than n or n Mod width, Tab skips
to the next line and sets the print position to n or n Mod width.

To set the width of a print line, use the Width statement.



Tan Function 
See Also Example
Returns the tangent of an angle in radians.
Syntax Tan( number )

where: is:
number An expression containing the angle in radians.

Comments number is specified in radians, and can be either positive or negative.
The return value is single-precision if the angle is an integer, currency or 
single-precision value, double precision for a long, Variant or double-precision 
value.
To convert degrees to radians, multiply by PI/180. The value of PI is 3.14159.



Text Statement 
See Also Example
Places line(s) of text in a dialog box.
Syntax Text x , y , dx , dy , text$ [, .id]

where: is:
x , y The upper left corner coordinates of the text area, relative to 

the upper left corner of the dialog box.
dx , dy The width and height of the text area.
text$ A string containing the text to appear in the text area defined 

by x , y.
.id An optional identifier used by the dialog statements that act on 

this control.
Comments If the width of text$ is greater than dx, the spillover characters wrap to the 

next line. This will continue as long as the height of the text area established 
by dy is not exceeded. Excess characters are truncated.
By preceding an underlined character in text$ with an ampersand (&), you 
enable a user to press the underlined character on the keyboard and position 
the cursor in the combo or text box defined in the statement immediately 
following the Text statement.
Use the Text statement only between a Begin Dialog and an End Dialog 
statement.



TextBox Statement 
See Also Example
Creates a text box in a dialog box.
Syntax TextBox [NoEcho] x , y , dx , dy , .field

where: is:
x , y The upper left corner coordinates of the text box, relative to the 

upper left corner of the dialog box.
dx , dy The width and height of the text box area.
.field The name of the dialog record field to hold the text string.

Comments A dy value of 12 will usually accommodate text in the system font.
When the user selects the OK button, or any pushbutton other than cancel, 
the text string entered in the text box will be recorded in .field.
The NoEcho keyword is often used for passwords; it displays all characters 
entered as asterisks (*).
Use the TextBox statement only between a Begin Dialog and an End 
Dialog statement.



Time Function 
See Also Example
Returns a string representing the current time.
Syntax Time[$]
Comments The Time function returns an eight character string. The format of the string 

is "hh:mm:ss" where hh is the hour, mm is the minutes and ss is the seconds. 
The hour is specified in military style, and ranges from 0 to 23.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is String. If omitted, the function will return a Variant of vartype 8 
(String).



Time Statement 
See Also Example
Sets the system time.
Syntax Time[$] = expression

where: is:
expression An expression that evaluates to a valid time.

Comments When Time (with the dollar sign $) is used, the expression must evaluate to a 
string of one of the following forms:
hh Set the time to hh hours 0 minutes and 0 seconds
hh:mm Set the time to hh hours mm minutes and 0 seconds.
hh:mm:ss Set the time to hh hours mm minutes and ss seconds
Time uses a 24-hour clock. Thus, 6:00 P.M. must be entered as 18:00:00.
If the dollar sign '$' is omitted, expression can be a string containing a valid 
date, a Variant of vartype 7 (date) or 8 (string).
If expression is not already a Variant of vartype 7 (date), Time attempts to 
convert it to a valid time. It recognizes time separator characters defined in 
the International section of the Windows Control Panel. Time (without the $) 
accepts both 12 and 24 hour clocks.



Timer Function 
See Also Example
Returns the number of seconds that have elapsed since midnight.
Syntax Timer
Comments The Timer function can be used in conjunction with the Randomize statement

to seed the random number generator.



TimeSerial Function 
See Also Example
Returns a time as a Variant of type 7 (date/time) for a specific hour, minute, and second.
Syntax TimeSerial( hour%, minute%, second% )

where: is:
hour% A numeric expression for an hour (0-23).
minute% A numeric expression for a minute (0-59).
second% A numeric expression for a second (0-59).

Comments You also can specify relative times for each argument by using a numeric 
expression representing the number of hours, minutes, or seconds before or 
after a certain time.



TimeValue Function 
See Also Example
Returns a time value for a specified string.
Syntax TimeValue( time$ )

where: is:
time$ A string representing a valid date time value.

Comments The TimeValue function returns a Variant of vartype 7 (date/time) that 
represents a time between 0:00:00 and 23:59:59, or 12:00:00 A.M. and 
11:59:59 P.M., inclusive.



Trim Function 
See Also Example
Returns a copy of a string after removing all leading and trailing spaces.
Syntax Trim[$]( string )

where: is:
string An expression containing the string to trim.

Comments Trim accepts expressions of type String. Trim accepts any type of string 
including numeric values and will convert the input value to a string.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is String. If omitted, the function typically returns a Variant of vartype 8 
(String). If the value of string is NULL, a Variant of vartype 1 (Null) is returned.



Type Statement 
See Also Example
Declares a user-defined type.
Syntax Type userType

field1 As type1
field2 As type2
 ...
End Type
where: is:
userType A string expression for the name of the user-defined type.
field1 , field2 The name of a field in the user-defined type.
type1 , type2 A data type: Integer, Long, Single, Double, Currency, String, 

String*length, Variant, or another user-defined type.
Comments The user-defined type declared by Type can then be used in the Dim 

statement to declare a record variable. A user-defined type is sometimes 
referred to as a record type or a structure type.
field cannot be an array. However, arrays of records are allowed.
The Type statement is not valid inside of a procedure definition. To access the 
fields of a record, use notation of the form:

recordName.fieldName
To access the fields of an array of records, use notation of the form:

arrayName( index ).fieldName



Typeof Function 
See Also
Returns a value indicating whether an object is of a given class (-1=TRUE, 0=FALSE).
Syntax If Typeof objectVariable Is className then. . .

where: is:
objectVariable The object to test.
className The class to compare the object to.

Comments Typeof can only be used in an If statement and cannot be combined with 
other Boolean operators. That is, Typeof can only be used exactly as shown in
the syntax above.
To test if an object does not belong to a class, use the following code 
structure:
If Typeof objectVariable Is className Then
Else

Rem Perform some action.
End If



UBound Function 
See Also Example
Returns the upper bound of the subscript range for the specified array.
Syntax UBound( arrayname [, dimension ] )

where: is:
arrayname The name of the array to use.
dimension The dimension to use.

Comments The dimensions of an array are numbered starting with 1. If the dimension is 
not specified, 1 is used as a default. 
LBound can be used with UBound to determine the length of an array.



UCase Function 
See Also Example
Returns a copy of a string after converting all lower case letters to upper case.
Syntax UCase[$]( string )

where: is:
string An expression that evaluates to a string.

Comments The translation is based on the country specified in the Windows Control 
Panel.
UCase accepts expressions of type string. UCase accepts any type of 
argument and will convert the input value to a string.
The dollar sign, "$", in the function name is optional. If specified, the return 
type is string. If omitted, the function typically returns a Variant of vartype 8 
(String). If the value of string is Null, a Variant of vartype 1 (Null) is returned.



Unlock Statement 
See Also Example
Controls access to an open file.
Syntax Unlock [#]filenumber% [, { record& | [ start& ] To end& } ]

where: is:
filenumber% An integer expression identifying the open file.
record& Number of the starting record to unlock.
start& Number of the first record or byte offset to lock/unlock.
end& Number of the last record or byte offset to lock/unlock.

Comments The filenumber% is the number used in the Open statement of the file.
For Binary mode, start&, and end& are byte offsets. For Random mode, 
start&, and end& are record numbers. If start& is specified without end&, then
only the record or byte at start& is locked. If To end& is specified without 
start&, then all records or bytes from record number or offset 1 to end& are 
locked.
For Input, Output and Append modes, start&, and end& are ignored and the
whole file is locked.
Lock and Unlock always occur in pairs with identical parameters. All locks on 
open files must be removed before closing the file, or unpredictable results 
will occur.



Val Function 
See Also Example
Returns the numeric value of the first number found in the specified string.
Syntax Val( string$ )

where: is:
string$ A string expression containing a number.

Comments Spaces in the source string are ignored. If no number is found, Val returns 0.



VarType Function 
See Also Example Overview
Returns the Variant type of the specified Variant variable (0-9).
Syntax VarType( varname )

where: is:
varname The Variant variable to use.

Comments The value returned by VarType is one of the following:
Ordinal Representation
          0 (Empty)
          1 Null
          2 Integer
          3 Long
          4 Single
          5 Double
          6 Currency
          7 Date
          8 String
          9 Object



Weekday Function 
See Also Example
Returns the day of the week for the specified date-time value.
Syntax Weekday( date )

where: is:
date An expression containing a date time value.

Comments The Weekday function returns an integer between 1 and 7, inclusive 
(1=Sunday, 7=Saturday).
Weekday accepts any expression, including strings, and attempts to convert 
the input value to a date value.
The return value is a Variant of vartype 2 (Integer). If the value of date is 
NULL, a Variant of vartype 1 (Null) is returned.



While ... Wend 
See Also Example
Controls a repetitive action.
Syntax While condition

statementblock
Wend
where: is:
condition An expression that evaluates to TRUE (non-zero) or 

FALSE (zero).
statementblock A series of statements to execute if condition is TRUE.

Comments The statementblock statements are until condition becomes 0 (FALSE).
The While statement is included in OPEN Script for compatibility with older 
versions of Basic. The Do statement is a more general and powerful flow 
control statement.



Width Statement 
See Also Example
Sets the output line width for an open file.
Syntax Width [#]filenumber% , width%

where: is:
filenumber% An integer expression for the open file to use.
width% An integer expression for the width of the line (0 to 255).

 Comments Filenumber% is the number assigned to the file when it is opened. See the 
Open statement for more information.
A value of zero (0) for width% indicates there is no line length limit. The 
default width% for a file is zero (0).



With Statement
See Also Example
Executes a series of statements on a specified variable.
Syntax With variable

statement_block
End With
where: is:
variable The variable to be changed by the statements in 

statement_block.
statement_block The statements to execute.

Comments Variable can be an object or a user-defined type. The With statements can be 
nested.



Write Statement 
See Also Example
Writes data to an open sequential file.
Syntax Write [#] filenumber%  [,expressionlist] 

where: is:
filenumber% An integer expression for the open file to use.
expressionlist One or more values to write to the file.

Comments The file must be opened in Output or Append mode. Filenumber% is the 
number assigned to the file when it is opened. See the Open statement for 
more information.
If expressionlist is omitted, the Write statement writes a blank line to the file. 
(See Input for more information.)



Year Function 
See Also Example
Returns the year component (1-12) of a date-time value.
Syntax Year( date )

where: is:
date An expression that can evaluate to a date time value.

Comments The Year function returns an integer between 100 and 9999, inclusive.
Year accepts any type of date, including strings, and will attempt to convert 
the input value to a date value. 
The return value is a Variant of vartype 2 (Integer). If the value of date is 
NULL, a Variant of vartype 1 (Null) is returned.



OPEN Script Language Reference

Overview Topics
A list of topics that describe how to use features in 
OPEN Script; also includes a comparison of OPEN 
Script to other Basic languages

Alphabetical List 
All statements and functions in OPEN Script in an 
alphabetical list

Functional List
All statements and functions in OPEN Script 
organized by functional group, such as Dialog Boxes,
Arrays, or Math Functions

Program Examples
A list of program examples that illustrate OPEN 
Script language statements and functions

For information on how to use Help, press F1.



    Alphabetical List
 

Functional List

A
Abs Return the absolute value of a number
AppActivate Activate another application
Asc Return an integer corresponding to a character code
Atn Return the arc tangent of a number

B
Beep Produce a short beeping tone through the speaker
Begin Dialog Begin a dialog box definition
Button Define a button dialog box control
ButtonGroup Begin definition of a group of button dialog box controls

C
Call Transfer control to a subprogram
    CancelButton Define a cancel-button dialog box control
Caption Define the title of a dialog box
CCur Convert a value to currency
CDbl Convert a value to double-precision floating point
ChDir Change the default directory for a drive
ChDrive Change the default drive
CheckBox Define a checkbox dialog box control
Chr Convert a character code to a string
CInt Convert a value to an integer by rounding
Clipboard Access the Windows Clipboard
CLng Convert a value to a long by rounding
Close Close a file
ComboBox Define a combobox dialog box control
Command Return the command line specified when the MAIN sub was run
Const Declare a symbolic constant
Cos Return the cosine of an angle
CreateObject Create an OLE Automation object
CSng Convert a value to single-precision floating point
CStr Convert a value to a string
$CStrings Treat backslash in string as an escape character as in 'C'
CurDir Return the current directory for a drive
CVar Convert an number or string to a variant
CVDate Convert a value to a variant date

D
Date Function Return the current date
 Date Statement Set the current date



DateSerial Return the date value for year, month, and day specified
DateValue Return the date value for string specified
Day Return the day of month component of a date-time value
DDEAppReturnCode Return a code from an application on a DDE channel
DDEExecute Send one or more commands to an application on a DDE channel
DDEInitiate Open a dynamic data exchange (DDE) channel
DDEPoke Send data to an application on a DDE channel
DDERequest Return data from an application on a DDE channel
DDETerminate Close a DDE channel
Declare Forward declare a procedure in the same module or in a dynamic 

link library
Def  type  Declare the default data type for variables
Derived Functions List of computed trigonometric and logarithmic functions
Dialog Function Display a dialog box and return the command button pressed
Dialog Statement Display a dialog box
Dim Declare variables
Dir Return a filename that matches a pattern
DlgControlId Return numeric ID of a dialog control
DlgEnable Function Determine whether a dialog control is enabled or disabled
DlgEnable Statement Enable or disable a dialog control
DlgEnd Closes the active dialog box
DlgFocus Function Return ID of the dialog control having input focus
DlgFocus Statement Set focus to a dialog control
DlgListBoxArray Function Return contents of a list box or combo box
DlgListBoxArray Statement Set contents of a list box or combo box
DlgSetPicture Change the picture in the Picture control
DlgText Function Return the text associated with a dialog control
DlgText Statement Set the text associated with a dialog control
DlgValue Function Return the value associated with a dialog control
DlgValue Statement Set the value associated with a dialog control
DlgVisible Function Determine whether a control is visible or hidden
DlgVisible Statement Show or hide a dialog control
Do...Loop Control repetitive actions
DoEvents Let operating system process messages
DropComboBox Define a drop combobox dialog box control
DropListBox Define a drop list box dialog box control

E
Environ Return a string from the operating system's environment
Eof Check for end of file
Erase Reinitialize contents of an array
Erl Return the line number where a run-time error occurred
Err Function Return a run-time error code



Err Statement Set the run-time error code
Error Function Return a string representing an error
Error Statement Generate an error condition
Exit Cause the current procedure or loop structure to return
Exp Return the value of e raised to a power

F
FileAttr Return information about an open file
FileCopy Copy a file
FileDateTime Return modification date and time of a specified file
FileLen Return the length of specified file in bytes
Fix Return the integer part of a number
For...Next Loop a fixed number of times
Format Convert a value to a string using a picture format
FreeFile Return the next unused file number
Function Define a function
FV Return the future value for a stream of periodic cash flows

G
Get Read bytes from a file
GetAttr Return attributes of specified file, directory of volume label
GetField Return a substring from a delimited source string
GetObject Return the name of an OLE Automation object
Global Declare a global variable
Goto Send control to a line label
GroupBox Define a groupbox in a dialog box

H
Hex Return the hexadecimal representation of a number, as a string
Hour Return the hour of day component of a date-time value

I
If ... Then ... Else Branch on a conditional value
$Include Tell the compiler to include statements from another file
Input Function Return a string of characters from a file
Input Statement Read data from a file or from the keyboard
InputBox Display a dialog box that prompts for input
InStr Return the position of one string within another
Int Return the integer part of a number
IPmt Return the interest portion of a loan or annuity payment
IRR Return the internal rate of return
Is Determine whether two object variables refer to the same object
IsDate Determine whether a value is a legal date
IsEmpty Determine whether a variant has been initialized
IsMissing Determine whether an optional parameter was supplied to a 



procedure
IsNull Determine whether a variant contains a NULL value
IsNumeric Determine whether a value is a legal number

K
Kill Delete files from a disk

L
LBound Return the lower bound of an array's dimension
LCase Convert a string to lower case
Left Return the left portion of a string
Len Return the length of a string or size of a variable
Let Assign a value to a variable
Like Operator Compare a string against a pattern
Line Input Read a line from a sequential file
ListBox Define a list box dialog box control
Loc Return current position of an open file
Lock Control access to some or all of an open file by other processes
Lof Return the length of an open file
Log Return the natural logarithm of a value
Lset Left-align one string or user-defined variable within another
LTrim Remove leading spaces from a string

M
Me Get the current object
Mid Function Return a portion of a string
Mid Statement Replace a portion of a string with another string
Minute Return the minute component of a date-time value
MkDir Make a directory on a disk
Month Return the month component of a date-time value
MsgBox Function Display a Windows message box
MsgBox Statement Display a Windows message box

N
Name Rename a disk file
New Allocate and initialize a new OLE Automation object
$NoCStrings Tell the compiler to treat a backslash as a normal character
Nothing Set an object variable not to refer to an object
Now Return the current date and time
NPV Return the net present value of an investment
Null Return a null variant

O
Object Declare an OLE Automation object
Oct Return the octal representation of a number, as a string



OKButton Define an OK button dialog box control
On...Goto Branch to one of several labels depending upon value
On Error Control run-time error handling
Open Open a disk file or device for I/O
OptionButton Define an OptionButton dialog box control
OptionGroup Begin definition of a group of OptionButton dialog box controls
Option Base Declare the default lower bound for array dimensions
Option Compare Declare the default case sensitivity for string comparisons
Option Explicit Force all variables to be explicitly declared

P
PasswordBox Display a dialog box that prompts for input.    Don't echo input.
Picture Include a bitmap picture (.BMP file) in a dialog box
Pmt Return the periodic payment for a loan or annuity
PPmt Return the principal paid on a loan or annuity
Print Print data to a file or to the screen
PushButton Define a push button dialog box control
Put Write data to an open file
PV Return the present value for a stream of cash flows

R
Randomize Initialize the random-number generator
Rate Return the interest rate for a loan or annuity
ReDim Declare dynamic arrays and reallocate memory
Rem Treat the remainder of the line as a comment
Reset Close all open disk files
Resume End an error-handling routine
Right Return the right portion of a string
RmDir Remove a directory from a disk
Rnd Return a random number
Rset Right-align one string within another
RTrim Remove trailing spaces from a string

S
Second Return the second component of a date-time value
Seek Function Return the current position for a file
Seek Statement Set the current position for a file
Select Case Execute one of a series of statement blocks
SendKeys Send keystrokes to another application
Set Set an object variable to a value
SetAttr Set attribute information for a file
SetField Replace a substring within a delimited target string
Sgn Return a value indicating the sign of a number
Shell Run an executable program
Sin Return the sine of an angle



Space Return a string of spaces
Spc Output given number of spaces
SQLClose Close a data source connection
SQLError Return a detailed error message ODBC functions
SQLExecQuery Execute an SQL statement
SQLGetSchema Obtain information about data sources, databases, 

terminology, users, owners, tables, and columns
SQLOpen Establish a connection to a data source for use by other 

functions
SQLRequest Make a connection to a data source, execute an SQL 

statement, return the results
SQLRetrieve Return the results of a select that was executed by 

SQLExecQuery into a user-provided array
SQLRetrieveToFile Return the results of a select that was executed by 

SQLExecQuery into a user-specified file
Sqr Return the square root of a number
Static Define a static variable or subprogram
StaticComboBox Define a combination of a list box and text box in a dialog 

box
Stop Stop program execution
Str Return the string representation of a number
StrComp Compare two strings
String Return a string consisting of a repeated character
Sub Define a subprogram

T
Tab Move print position to the given column
Tan Return the tangent of an angle
Text Define a line of text in a dialog box
TextBox Define a text box in a dialog box
Time Function Return the current time
Time Statement Return the current time
Timer Return the number of seconds since midnight
TimeSerial Return the time value for hour, minute, and second specified
TimeValue Return the time value for string specified
Trappable Errors A list of errors trapped by OPEN Script code
Trim Remove leading and trailing spaces from a string
Type Declare a user-defined data type
Typeof Check the class of an object

U
UBound Return the upper bound of an array's dimension
UCase Convert a string to upper case
Unlock Control access to some or all of an open file by other processes



V
Val Convert a string to a number
VarType Return the type of data stored in a variant

W
Weekday Return the day of the week for the specified date-time value
While ... Wend Control repetitive actions
Width Set output-line width for an open file
With Execute statements on an object or a user-defined type
Write Write data to a sequential file

Y
Year Return the year component of a date-time value



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
Erase Reinitialize contents of an array
LBound Return the lower bound of an array's dimension
ReDim Declare dynamic arrays and reallocate memory
UBound Return the upper bound of an array's dimension

 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives

$CStrings Treat backslash in string as an escape character as in 'C'
$Include Tell the compiler to include statements from another file
$NoCStrings Tell the compiler to treat a backslash as a normal character
Line Continuation Continuing a long statement across multiple lines
Rem Treat the remainder of the line as a comment

 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow

Call Transfer control to a subprogram
Do...Loop Control repetitive actions
Exit Cause the current procedure or loop structure to return
For...Next Loop a fixed number of times
Goto Send control to a line label
If ... Then ... Else Branch on a conditional value
Let Assign a value to a variable
Lset Left-align one string or a user-defined variable within another
On...Goto Branch to one of several labels depending upon value
Rset Right-align one string within another
Select Case Execute one of a series of statement blocks
Set Set an object variable to a value
Stop Stop program execution
While ... Wend Control repetitive actions
With Execute a series of statements on a specified variable

 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times

Date Function Return the current date
Date Statement Set the system date
DateSerial Return the date value for year, month, and day specified
DateValue Return the date value for string specified
Day Return the day of month component of a date-time value
Hour Return the hour of day component of a date-time value
IsDate Determine whether a value is a legal date.
Minute Return the minute component of a date-time value
Month Return the month component of a date-time value
Now Return the current date and time
Second Return the second component of a date-time value
Time Function Return the current time
Time Statement Set the current time
Timer Return the number of seconds since midnight
TimeSerial Return the time value for hour, minute, and second specified
TimeValue Return the time value for string specified
Weekday Return the day of the week for the specified date-time value
Year Return the year component of a date-time value

 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants





    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations

Const Declare a symbolic constant
Declare Forward declare a procedure in the same module or in a 

dynamic link library
Def  type  Declare the default data type for variables
Dim Declare variables
Function ... End Function Define a function
Global Declare a global variable
Option Base Declare the default lower bound for array dimensions
Option Compare Declare the default case sensitivity for string comparisons
Option Explicit Force all variables to be explicitly declared
ReDim Declare dynamic arrays and reallocate memory
Static Define a static variable or subprogram
Sub ... End Sub Define a subprogram
Type Declare a user-defined data type

 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Defining Dialog Boxes
 Running Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Defining Dialog Boxes

Begin Dialog Begin a dialog box definition
Button Define a button dialog box control
ButtonGroup Begin definition of a group of button dialog box controls
CancelButton Define a Cancel button dialog box control
Caption Define the title of a dialog box
CheckBox Define a checkbox dialog box control
ComboBox Define a ComboBox dialog box control
DropComboBox Define a drop-down combo box dialog box control
DropListBox Define a drop-down list box dialog box control
GroupBox Define a group box in a dialog box
ListBox Define a list box dialog box control
OKButton Define an OK button dialog box control
OptionButton Define an OptionButton dialog box control
OptionGroup Begin definition of a group of OptionButton dialog box controls
Picture Define a Picture control
PushButton Define a pushbutton dialog box control
StaticComboBox Define a static combo box dialog box control
Text Define a line of text in a dialog box
TextBox Define a text box in a dialog box

 Running Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC



 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Defining Dialog Boxes
 Running Dialog Boxes

Dialog Function Display a dialog box and return the button pressed
Dialog Statement Display a dialog box
DlgControlId Return numeric ID of a dialog control
DlgEnable Function Tell whether a dialog control is enabled or disabled
DlgEnable Statement Enable or disable a dialog control
DlgEnd Close the active dialog box
DlgFocus Function Return ID of the dialog control having input focus
DlgFocus Statement Set focus to a dialog control
DlgListBoxArray FunctionReturn contents of a list box or combo box
DlgListBoxArray Statement Set contents of a list box or combo box
DlgSetPicture Change the picture in the Picture control
DlgText Function Return the text associated with a dialog control
DlgText Statement Set the text associated with a dialog control
DlgValue Function Return the value associated with a dialog control
DlgValue Statement Set the value associated with a dialog control
DlgVisible Function Tell whether a control is visible or hidden
DlgVisible Statement Show or hide a dialog control

 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output



 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)

DDEAppReturnCode Return a code from an application on a DDE channel
DDEExecute Send commands to an application on a DDE channel
DDEInitiate Open a dynamic data exchange (DDE) channel
DDEPoke Send data to an application on a DDE channel
DDERequest Return data from an application on a DDE channel
DDETerminate Close a DDE channel

 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control

AppActivate Activate another application
Command Return the command line specified when the MAIN sub was run
Date Statement Set the current date
DoEvents Let operating system process messages
Environ Return a string from the operating system's environment
Randomize Initialize the random-number generator
SendKeys Send keystrokes to another application
Shell Run an executable program

 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors

Erl Return the line number where a run-time error occurred
Err Function Return a run-time error code
Err Statement Set the run-time error code
Error Generate an error condition
Error Function Return a string representing an error
On Error Control run-time error handling
Resume End an error-handling routine
Trappable Errors Errors that can be trapped by OPEN Script code

 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Disk and Directory Control
 File Control
 File Input/Output
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Disk and Directory Control

ChDir Change the default directory for a drive
ChDrive Change the default drive
CurDir Return the current directory for a drive
Dir Return a filename that matches a pattern
MkDir Make a directory on a disk
RmDir Remove a directory from a disk

 File Control
 File Input/Output
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Disk and Directory Control
 File Control

FileAttr Return information about an open file
FileCopy Copy a file
FileDateTime Return modification date and time of a specified file
FileLen Return the length of specified file in bytes
GetAttr Return attributes of specified file, directory of volume label
Kill Delete files from a disk
Name Rename a disk file
SetAttr Set attribute information for a file

 File Input/Output
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Disk and Directory Control
 File Control
 File Input/Output

Close Close a file
Eof Check for end of file
FreeFile Return the next unused file number
Get Read bytes from a file
Input Function Return a string of characters from a file
Input Statement Read data from a file or from the keyboard
Line Input Read a line from a sequential file
Loc Return current position of an open file
Lock Control access to some or all of an open file by other processes
Lof Return the length of an open file
Open Open a disk file or device for I/O
Print Print data to a file or to the screen
Put Write data to an open file
Reset Close all open disk files
Seek Function Return the current position for a file
Seek Statement Set the current position for a file
Spc Output given number of spaces
Tab Move print position to the given column
Unlock Control access to some or all of an open file by other processes
Width Set output-line width for an open file
Write Write data to a sequential file



 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Financial Functions
 Numeric Functions
 Trigonometric Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Financial Functions

FV Return future value of a cash flow stream
IPmt Return interest payment for a given period
IRR Return internal rate of return for a cash flow stream
NPV Return net present value of a cash flow stream
Pmt Return a constant payment per period for an annuity
PPmt Return principal payment for a given period
PV Return present value of a future stream of cash flows
Rate Return interest rate per period

 Numeric Functions
 Trigonometric Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Financial Functions
 Numeric Functions

Abs Return the absolute value of a number
Exp Return the value of e raised to a power
Fix Return the integer part of a number
Int Return the integer part of a number
IsNumeric Determine whether a value is a legal number
Log Return the natural logarithm of a value
Rnd Return a random number
Sgn Return a value indicating the sign of a number
Sqr Return the square root of a number
Derived Functions How to compute other numeric functions

 Trigonometric Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Financial Functions
 Numeric Functions
 Trigonometric Functions

Atn Return the arc tangent of a number
Cos Return the cosine of an angle.
Sin Return the sine of an angle
Tan Return the tangent of an angle
Derived Functions How to compute other trigonometric functions

 Objects
 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects

Clipboard Access the Windows Clipboard
CreateObject Create an OLE Automation object
GetObject Retrieve an OLE Automation object from a file or get the active 

OLE object for an OLE class
Is Determine whether two object variables refer to the same 

object
Me Get the current object
New Allocate and initialize a new OLE Automation object
Nothing Set an object variable to not refer to an object
Object Declare an OLE Automation object
Typeof Check the class of an object
With Execute statements on an object or a user-defined type

 ODBC
 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC

SQLClose Close a data source connection
SQLError Return a detailed error message ODBC functions
SQLExecQuery Execute an SQL statement
SQLGetSchema Obtain information about data sources, databases, terminology,

users, owners, tables, and columns
SQLOpen Establish a connection to a data source for use by other 

functions
SQLRequest Make a connection to a data source, execute an SQL statement, 

return the results
SQLRetrieve Return the results of a select that was executed by 

SQLExecQuery into a user-provided array
SQLRetrieveToFile Return the results of a select that was executed by 

SQLExecQuery into a user-specified file

 Screen Input/Output
 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output

Beep Produce a short beeping tone through the speaker
Input Function Return a string of characters from a file
Input Statement Read data from a file or from the keyboard
InputBox Display a dialog box that prompts for input
MsgBox Function Display a Windows message box
MsgBox Statement Display a Windows message box
PasswordBox Display a dialog box that prompts for input.    Don't echo input.
Print Print data to a file or to the screen

 Strings
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 String Functions
 String Conversions
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 String Functions

GetField Return a substring from a delimited source string
Hex Return the hexadecimal representation of a number, as a string
InStr Return the position of one string within another
LCase Convert a string to lower case
Left Return the left portion of a string
Len Return the length of a string or size of a variable
Like Operator Compare a string against a pattern
LTrim Remove leading spaces from a string
Mid Function Return a portion of a string
Mid Statement Replace a portion of a string with another string
Oct Return the octal representation of a number, as a string
Right Return the right portion of a string
RTrim Remove trailing spaces from a string
SetField Replace a substring within a delimited target string
Space Return a string of spaces
Str Return the string representation of a number
StrComp Compare two strings.
String Return a string consisting of a repeated character



Trim Remove leading and trailing spaces from a string
UCase Convert a string to upper case

 String Conversions
 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Screen Input/Output
 Strings
 String Functions
 String Conversions

Asc Return an integer corresponding to a character code
CCur Convert a value to currency
CDbl Convert a value to double-precision floating point
Chr Convert a character code to a string
CInt Convert a value to an integer by rounding
CLng Convert a value to a long by rounding
CSng Convert a value to single-precision floating point
CStr Convert a value to a string
CVar Convert an number or string to a variant
CVDate Convert a value to a variant date
Format Convert a value to a string using a picture format
Val Convert a string to a number

 Variants



    
Functional List

 Alphabetical 
List

Below is an expandable list of OPEN Script statements and functions.    To see a list of the 
functions and statements in each group, click the button on the left.

 Arrays
 Compiler Directives
 Control Flow
 Dates & Times
 Declarations
 Dialog Boxes
 Dynamic Data Exchange (DDE)
 Environment Control
 Errors
 Files
 Math Functions
 Objects
 ODBC
 Strings
 Screen Input/Output
 Variants

IsEmpty Determine whether a variant has been initialized
IsNull Determine whether a variant contains a NULL value
Null Return a null variant
VarType Return the type of data stored in a variant



    Program Examples
The list below indicates several small programs that demonstrate the use of OPEN Script 
functions and statements. To view the example program, click the button to the left of the 
title.

Hello World
Simple Basic program that demonstrates calls to subroutines and functions

Bitmap Viewer
Displays a series of bitmap files (.bmp) in a dialog box

Find Files
Finds a test file containing a specified string

Greatest Common Factor 
Updates a dialog box dynamically, based on user input

Quicksort
Basic implementation of recursive version of quicksort





OPEN Script Glossary
call by reference
call by value
comment
control ID
dialog control
function
label
metacommands
name
precedence order
procedure
subprogram
type character
vartype



call by reference
Arguments passed by reference to a procedure can be modified by the procedure. 
Procedures written in Basic are defined to receive their arguments by reference. If you call 
such a procedure and pass it a variable, and if the procedure modifies its corresponding 
formal parameter, it will modify the variable. Passing an expression by reference is legal in 
Basic; if the called procedure modifies its corresponding parameter, a temporary value will 
be modified, with no apparent effect on the caller.



call by value
When an argument is passed by value to a procedure, the called procedure receives a copy 
of the argument. If the called procedure modifies its corresponding formal parameter, it will 
have no effect on the caller. Procedures written in other languages such as C can receive 
their arguments by value.



comment
A comment is text that documents a program. Comments have no effect on the program 
(except for metacommands). In Basic, a comment begins with a single quote, and continues 
to the end of the line. If the first character in a comment is a dollar sign ($), the comment is 
interpreted as a metacommand. Lines beginning with the keyword Rem are also interpreted 
as comments.



control ID
This can be either a text string, in which case it is the name of the control, or it can be a 
numeric ID. Note that control IDs are case-sensitive and do not include the dot that appears 
before the ID. Numeric IDs depend on the order in which dialog controls are defined. You can
find the numeric ID using the DlgControlID function.



dialog control
An item in a dialog box, such as a list box, combo box, or command button.



function
A procedure that returns a value. In Basic, the return value is specified by assigning a value 
to the name of the function, as if the function were a variable.



label
A label identifies a position in the program at which to continue execution, usually as a result
of executing a GoTo statement. To be recognized as a label, a name must begin in the first 
column, and must be immediately followed by a colon (":"). Reserved words are not valid 
labels.



metacommand
A metacommand is a command that gives the compiler instructions on how to build the 
program. In Basic, metacommands are specified in comments that begin with a dollar sign 
($).



name
A Basic name must start with a letter (A through Z). The remaining part of a name can also 
contain numeric digits (0 through 9) or an underscore character (_). A name cannot be more 
than 40 characters in length. Type characters are not considered part of a name.



precedence order
The system OPEN Script uses to determine which operators in an expression to evaluate 
first, second, and so on. Operators with a higher precedence are evaluated before those with
lower precedence. Operators with equal precedence are evaluated from left to right. The 
default precedence order (from high to low) is: numeric, string, comparison, logical.



procedure
A series of OPEN Script statements and functions executed as a unit. Both subprograms 
(Sub) and functions (Function) are called procedures.



subprogram
A procedure that does not return a value.



type character
A special character used as a suffix to a name of a function, variable, or constant. The 
character defines the data type of the variable or function. The characters are:
Dynamic String $
Integer %
Long integer &
Single precision floating point !
Double precision floating point #
Currency exact fixed point @



vartype
The internal tag used to identify the type of value currently assigned to a variant. One of the
following:
Empty 0
Null 1
Integer 2
Long 3
Single 4
Double 5
Currency 6
Date 7
String 8
Object 9



    Overview Topics
Using This Help System

Conventions
Describes program and typographic conventions

Using the Examples
How to use the example provided with each function and statement

How OPEN Script Compares to Other Versions of Basic
Describes differences between OPEN Script and earlier versions of Basic, Visual Basic,
and Word Basic

Using OPEN Script
Data Types

Defines data types and their use
Dialog Boxes

How to create and run a custom dialog box
Dynamic Data Exchange

How to use DDE to talk with other applications
Error Handling

How to trap errors
Expressions

How to use operators to form string and numeric expressions
Object Handling

How to create and use objects



Conventions
See Also Typographic Conventions
OPEN Script uses the following programming conventions:

Arguments
Arguments to subroutines and functions you write are listed after the subroutine or function 
and might or might not be enclosed in parentheses. Whether you use parentheses depends 
on how you want to pass the argument to the subroutine or function: either by value or by 
reference.
If an argument is passed by value, it means that the variable used for that argument retains 
its value when the subroutine or function returns to the caller. If an argument is passed by 
reference, it means that the variable's value might be (and probably will be) changed for the
calling procedure. For example, suppose you set the value of a variable, x, to 5 and pass x 
as an argument to a subroutine, named mysub. If you pass x by value to mysub, the value of
x will always be 5 after mysub returns. If you pass x by reference to mysub, however, x 
could be 5 or any other value resulting from the actions of mysub.
To pass an argument by value, use one of the following syntax options:

Call mysub((x))
mysub(x) 
y=myfunction((x))
Call myfunction((x))

To pass an argument by reference, use one of the following options:
Call mysub(x)
mysub x
y=myfunction(x)
Call myfunction(x)

Externally declared subroutines and functions (such as DLL functions) can be declared to 
take byVal arguments in their declaration. In that case, those arguments are always passed 
byVal.

Named Arguments
When you call a subroutine or function that takes arguments, you usually supply values for 
those arguments by listing them in the order shown in the syntax for the statement or 
function. For example, suppose you define a function this way:

myfunction(id, action, value)
From the above syntax, you know that the function called myfunction requires three 
arguments: id, action, and value. When you call this function, you supply those arguments in
the order shown. If the function contains just a few arguments, it is fairly easy to remember 
the order of each of the arguments. However, if a function has several arguments, and you 
want to be sure the values you supply are assigned to the correct arguments, use named 
arguments.
Named arguments are arguments identified by name rather than by position in the syntax.
To use a named argument, use the following syntax:

namedarg := value
Using this syntax for myfunction, you get:

myfunction id:=1, action:="get", value:=0
The advantage of named arguments, though, is that you do not need to remember the 
original order as they were listed in the syntax, so the following function call is also correct:

myfunction action:="get", value:=0, id:=1



With named arguments, order is not important.
The other significant advantage to named arguments is when you call functions or 
subroutines that have a mix of required and optional arguments. Ordinarily, you need to use 
commas as placeholders in the syntax for the optional arguments that you do not use. With 
named arguments, however, you can specify just the arguments you want to use and their 
values and forget about their order in the syntax. For example, if myfunction is defined as:

myfunction(id, action, value, Optional counter)
you can use named arguments as follows:

myfunction id:="1", action:="get", value:="0"
or,

myfunction value:="0", counter:="10", action:="get", id:="1"
Note: Although you can shift the order of named arguments, you cannot omit required 
arguments.
All OPEN Script functions and statements accept named arguments. The argument names 
are listed in their syntax for the statement and function.

Arrays
Array dimensions are enclosed in parentheses after the array name:

arrayname(a,b,c)

Comments
Comments are preceded by an apostrophe and can appear on their own line in a procedure 
or directly after a statement or function on the same line:

'this comment is on its own line
Dim i as Integer 'this comment is on the code line

Line Continuation
Long statements can be continued across more than one line by typing a space-underscore 
at the end of a line and continuing the statement on the next line. (You can add a comment 
after the underscore.)

Dim trMonth As Integer _ 'month of transaction
                trYear As Integer ' year of transaction

Records
Elements in a record are identified using the following syntax:

record.element
where record is the previously defined record name and element is a member of that record.



Typographic Conventions
OPEN Script Help uses the following typographic conventions:

To represent: Help syntax is:
Statements and functions Boldface; initial letter uppercase:

      Abs
      Len(variable)

Arguments to statements 
or functions

All lowercase, italicized letters:
      variable, rate, prompt$

Optional arguments 
and/or characters

Italicized arguments and/or 
characters in brackets:
      [,caption$], [type$], [$]

Required choice for an 
argument from a list of 
choices

A list inside braces, with OR operator
( | ) separating choices:
      {Goto label | Resume Next | Goto 
0}



Using the Examples
In addition to the definition of each statement or function, the Help System also offers a 
small working example of each. You will notice the word Example next to the words See 
Also in the upper region of the window (under the topic title). 
Clicking Example opens a separate window. The Example window contains a small working 
example of an OPEN Script program that uses the given statement or function. You can 
simply look at the contents of this window, or you can run the example in OPEN Script to see
how it works.
To run the example, follow these steps:

      Start the OPEN Script Editor.
      From the statement or function Example window, use one of the command buttons to 

copy the example to the clipboard (you can copy either part of the example or all of it).
      Paste the contents into the OPEN Script Editor window.

(If you copy the whole example, the lines of description will appear as well; however, since 
each of these lines is preceded by an apostrophe, they function as comments.)

      Run the program.
To run the examples that show ODBC functions (those beginning with SQL):

      You need to have Microsoft Access installed on your 
machine.
To run the examples that show Object functions:

      You need to have VISIO installed on your machine.
A few of the Object functions do not have examples associated with them.



See Also
Data Type Conversion
Dynamic Arrays
Variants



Data Types
See Also
Basic is a strongly-typed language. Variables can be declared implicitly on first reference by 
using a type character; if no type character is present, the default type of Variant is 
assumed. Alternatively, the type of a variable can be declared explicitly with the Dim 
statement. In either case, the variable can only contain data of the declared type. Variables 
of user-defined type must be explicitly declared. OPEN Script supports standard Basic 
numeric, string, record and array data. OPEN Script also supports Dialog Box Records and 
Objects (which are defined by the application).

Arrays
Arrays are created by specifying one or more subscripts at declaration or Redim time. 
Subscripts specify the beginning and ending index for each dimension. If only an ending 
index is specified, the beginning index depends on the Option Base setting. Array elements
are referenced by enclosing the proper number of index values in parentheses after the 
array name, e.g., arrayname(i,j,k). See the Dim statement for more information.

Numbers
The five numeric types are:

Type From To
Integer -32,768 32,767
Long -2,147,483,648 2,147,483,647
Single -3.402823e+38 -1.401298e-45,

 0.0,
1.401298e-45 3.402823466e+38

Double -
1.797693134862315d+3
08

-4.94065645841247d-
308,

0.0,
2.2250738585072014d-
308 

1.797693134862315d+
308

Currency -
922,337,203,685,477.58
08

922,337,203,685,477.5
807

Numeric values are always signed.
Basic has no true Boolean variables. Basic considers 0 to be FALSE and any other numeric 
value to be TRUE. Only numeric values can be used as Booleans. Comparison operator 
expressions always return 0 for FALSE and -1 for TRUE.
Integer constants can be expressed in decimal, octal, or hexadecimal notation. Decimal 
constants are expressed by simply using the decimal representation. To represent an octal 
value, precede the constant with "&O" or "&o" (e.g., &o177). To represent a hexadecimal 
value, precede the constant with "&H" or "&h" (e.g., &H8001).

Records
A record, or record variable, is a data structure containing one or more elements, each of 
which has a value. Before declaring a record variable, a Type must be defined. Once the 
Type is defined, the variable can be declared to be of that type. The variable name should 
not have a type character suffix. Record elements are referenced using dot notation, e.g., 



varname.elementname. Records can contain elements that are themselves records.
Dialog box records look like any other user-defined data type. Elements are referenced using
the same recname.elementname syntax. The difference is that each element is tied to an 
element of a dialog box. Some dialog boxes are defined by the application, others by the 
user. See the Begin Dialog statement for more information.

Strings
Basic strings can be either fixed or dynamic. Fixed strings have a length specified when they
are defined, and the length cannot be changed. Fixed strings cannot be of 0 length. Dynamic
strings have no specified length. Any string can vary in length from 0 to 32,767 characters. 
There are no restrictions on the characters that can be included in a string. For example, the 
character whose ANSI value is 0 can be embedded in strings.



Data Type Conversions
Basic will automatically convert data between any two numeric types. When converting from
a larger type to a smaller type (for example Long to Integer), a runtime numeric overflow 
might occur. This indicates that the number of the larger type is too large for the target data 
type. Loss of precision is not a runtime error (e.g., when converting from Double to Single, 
or from either float type to either integer type).
Basic will also automatically convert between fixed strings and dynamic strings. When 
converting a fixed string to dynamic, a dynamic string that has the same length and 
contents as the fixed string will be created. When converting from a dynamic string to a 
fixed string, some adjustment might be required. If the dynamic string is shorter than the 
fixed string, the resulting fixed string will be extended with spaces. If the dynamic string is 
longer than the fixed string, the resulting fixed string will be a truncated version of the 
dynamic string. No runtime errors are caused by string conversions.
Basic will automatically convert between any data type and variants. Basic will convert 
variant strings to numbers when required. A type mismatch error will occur if the variant 
string does not contain a valid representation of the required number.
No other implicit conversions are supported. In particular, Basic will not automatically 
convert between numeric and string data. Use the functions Val and Str$ for such 
conversions.



Dynamic Arrays
Dynamic arrays differ from fixed arrays in that you do not specify a subscript range for the 
array elements when you dimension the array. Instead, the subscript range is set using the 
Redim statement. With dynamic arrays, you can set the size of the array elements based on
other conditions in your procedure. For example, you might want to use an array to store a 
set of values entered by the user, but you do not know in advance how many values the 
user has. In this case, you dimension the array without specifying a subscript range and then
execute a ReDim statement each time the user enters a new value. Or, you might want to 
prompt for the number of values a user has and execute one ReDim statement to set the 
size of the array before prompting for the values.
If you use ReDim to change the size of an array and want to preserve the contents of the 
array at the same time, be sure to include the Preserve argument to the ReDim statement.
If you Dim a dynamic array before using it, the maximum number of dimensions it can have 
is 8. To create dynamic arrays with more dimensions (up to 60), do not Dim the array at all; 
instead use just the ReDim statement inside your procedure.
The following procedure uses a dynamic array, varray, to hold cash flow values entered by 
the user:

Sub main
      Dim aprate as Single
      Dim varray() as Double
      Dim cflowper as Integer
      Dim msgtext
      Dim x as Integer
      Dim netpv as Double
      cflowper=InputBox("Enter number of cash flow periods")
      ReDim varray(cflowper)
      For x= 1 to cflowper
            varray(x)=InputBox("Enter cash flow amount for period #" & x & ":")
      Next x
      aprate=InputBox("Enter discount rate: ")
      If aprate>1 then
            aprate=aprate/100
      End If
      netpv=NPV(aprate,varray())
      msgtext="The net present value is: "
      msgtext=msgtext & Format(netpv, "Currency")
      MsgBox msgtext
End Sub



Variant Data Type
The variant data type can be used to define variables that contain any type of data. A tag is 
stored with the variant data to identify the type of data that it currently contains. You can 
examine the tag by using the VarType function.
A variant can contain a value of any of the following types:

Type/
Name

Size of Data Range

0    (Empty) 0 N/A
1    Null 0 N/A
2    Integer 2 bytes (short) -32768 to 32767
3    Long 4 bytes (long) -2.147E9 to 2.147E9
4    Single 4 bytes (float) -3.402E38 to -1.401E-45 

(negative)
1.401E-45 to 3.402E38 
(positive)

5    Double 8 bytes (double) -1.797E308 to -4.94E-324 
(negative)
4.94E-324 to 1.797E308 
(positive)

6    Currency 8 bytes (fixed) -9.223E14 to 9.223E14
7    Date 8 bytes (double) Jan 1st, 100 to Dec 31st, 

9999
8    String 0 to ~64kbytes 0 to ~64k characters
9    Object N/A N/A

Any newly-defined Variant defaults to being of Empty type, to signify that it contains no 
initialized data. An Empty Variant converts to zero when used in a numeric expression, or an 
empty string in a string expression. You can test whether a variant is uninitialized (empty) 
with the IsEmpty function.
Null variants have no associated data and serve only to represent invalid or ambiguous 
results. You can test whether a variant contains a null value with the IsNull function. Null is 
not the same as Empty, which indicates that a variant has not yet been initialized.



See Also
Begin Dialog...End Dialog
Dialog Function
Dialog Statement
Dialog Functions and Statements



Dialog Boxes
See Also
To create and run a dialog box, follow these three steps:

1.    Define a dialog box record using the Begin Dialog...End Dialog statements and
the dialog box definition statements such as TextBox, OKButton.
2.    Create a function to handle dialog box interactions using the Dialog Functions 
and Statements. (Optional)
3.    Display the dialog box using either the Dialog Function or Dialog Statement.

The example code skeleton below illustrates these steps.



Step 1: Define a dialog box
The Begin Dialog... End Dialog statements define a dialog box. The last parameter to the 
Begin Dialog statement is the name of a function, prefixed by a period (.).This function 
handles interactions between the dialog box and the user.
The Begin Dialog statement supplies three parameters to your function: an identifier (a 
dialog control ID), the action taken on the control, and a value with additional action 
information. Your function should have these three arguments as input parameters. See the 
Begin Dialog...End Dialog statement for more information.



Step 2: Write a dialog box function
This function defines dialog box behavior. For example, your function could disable a check 
box, based on a user's action. The body of the function uses the "Dlg"-prefixed OPEN Script 
statements and functions to define dialog box actions.
Define the function itself using the Function...End Function statement or declare it using 
the Declare statement before using the Begin Dialog statement. Enter the name of the 
function as the last argument to Begin Dialog. The function receives three parameters from 
Begin Dialog and returns a value. Return a non-zero value to leave the dialog box open after 
the user clicks a command button (such as Help).



Step 3: Display the dialog box
You use the Dialog function (or statement) to display a dialog box. The argument to Dialog 
is a variable name that you previously dimensioned as a dialog box record. The name of the 
dialog box record comes from the Begin Dialog... End Dialog statement. The return values
for the Dialog function determine which key was pressed: -1 for OK, 0 for Cancel, >0 for a 
command button. If you use the Dialog statement, it returns an error if the user presses 
Cancel, which you can then trap with the On Error statement.



Dialog Functions and Statements
The function you create uses the "Dlg" dialog functions and statements to manipulate the 
active dialog box. This is the only function that can use these functions and statements. The 
list of the "Dlg" functions and statements is as follows:

DlgControlId Return numeric ID of a dialog control
DlgEnable Function Tell whether a control is enabled or disabled
DlgEnable Statement Enable or disable a dialog control
DlgFocus Function Return ID of the dialog control having input focus.
DlgFocus Statement Set focus to a dialog control
DlgListBoxArray Function Return contents of a list box or combo box
DlgListBoxArray Statement Set contents of a list box or combo box
DlgText Function Return the text associated with a dialog control
DlgText Statement Set the text associated with a dialog control
DlgValue Function Return the value associated with a dialog control
DlgValue Statement Set the value associated with a dialog control
DlgVisible Function Tell whether a control is visible or disabled
DlgVisible Statement Show or hide a dialog control

Most of these functions and statements take control ID as their first argument. For example, 
if a checkbox was defined with the following statement:

CheckBox 20, 30, 50, 15, "My check box", .Check1
then DlgEnable "Check1", 1 enables the checkbox, and DlgValue("Check1") returns 1 if 
the checkbox is currently checked, 0 if not. Note that the IDs are case-sensitive and do not 
include the dot that appears before the ID. Dialog functions and statements can also work 
with numeric IDs. Numeric IDs depend on the order in which dialog controls are defined. 
For example, if the checkbox that we considered was the first control defined in the dialog 
record, then DlgValue(0) would be equivalent to DlgValue("Check1"). (The control 
numbering begins from 0, and the Caption control does not count.)    Find the numeric ID 
using the DlgControlID function.
Note that for some controls (such as buttons and texts) the last argument in the control 
definition, ID, is optional. If it is not specified, the text of the control becomes its ID. For 
example, the Cancel button can be referred as "Cancel" if its ID was not specified in the 
CancelButton statement.



See Also
DDEAppReturnCode
DDEInitiate
DDEExecute
DDEPoke
DDERequest
DDETerminate



Dynamic Data Exchange (DDE)
See Also
Dynamic data exchange (DDE) is a process by which two applications communicate and 
exchange data. One application can be your Basic program. To "talk" to another application 
and send it data, you need to open a connection, called a DDE channel, using the statement,
DDEInitiate. The application must already be running before you can open a DDE channel. 
To start an application, use the Shell command.
DDEInitiate requires two arguments: the DDE application name and a topic name. The DDE
application name is usually the name of the .EXE file used to start the application, without 
the .EXE extension. For example, the DDE name for Microsoft Word is "WINWORD". The topic
name is usually a filename to get or send data to, although there are some reserved DDE 
topic names, such as System. Refer to the documentation for the application, to get a list of
the available topic names.
After you have opened a channel to an application, you can get text and numbers 
(DDERequest), send text and numbers (DDEPoke) or send commands (DDEExecute). 
When you have finished communicating with the application, you should close the DDE 
channel using DDETerminate. Because you have a limited number of channels available at 
once (depending on the operating system in use and the amount of memory you have 
available), it is a good idea to close a channel as soon as you finish using it.
The other DDE command available in OPEN Script is DDEAppReturnCode, which you use 
for error checking purposes. After getting or sending text, or executing a command, you 
might want to use DDEAppReturnCode to make sure the application performed the task as
expected. If an error did occur, your program can notify the user of the error.



Expressions
An expression is a collection of two or more terms that perform a mathematical or logical 
operation. The terms are usually either variables or functions that are combined with an 
operator to evaluate to a string or numeric result. You use expressions to perform 
calculations, manipulate variables, or concatenate strings.
Expressions are evaluated according to precedence order. Use parentheses to override the 
default precedence order.
The precedence order (from high to low) for the operators is:
Numeric Operators
String Operators
Comparison Operators
Logical Operators



Numeric Operators
^ Exponentiation
-,+ Unary minus and plus 
*, / Numeric multiplication or division. For division, the result is a Double.
\ Integer division. The operands can be Integer or Long.
Mod Modulus or Remainder. The operands can be Integer or Long.
-, + Numeric addition and subtraction. The + operator can also be used for string 

concatenation.



String Operators
& String concatenation
+ String concatenation



Comparison Operators (Numeric and String)
> Greater than
< Less than
= Equal to
<= Less than or equal to
>= Greater than or equal to
<> Not equal to

For numbers, the operands are widened to the least common type (Integer is preferred over
Long, which is preferred over Single, which is preferred over Double). For Strings, the 
comparison is case-sensitive, and based on the collating sequence used by the language 
specified by the user using the Windows Control Panel. The result is 0 for FALSE and -1 for 
TRUE.



Logical Operators
Not Unary Not - operand can be Integer or Long. The operation is performed 

bitwise (one's complement).
And And - operands can be Integer or Long. The operation is performed bitwise.
Or Inclusive Or - operands can be Integer or Long. The operation is performed 

bitwise.
Xor Exclusive Or - operands can be Integer or Long. The operation is performed 

bitwise.
Eqv Equivalence - operands can be Integer or Long. The operation is performed 

bitwise. (A Eqv B) is the same as (Not (A Xor B)).
Imp Implication - operands can be Integer or Long. The operation is performed 

bitwise. (A Imp B) is the same as ((Not A) OR B ).



See Also
CreateObject
GetObject
Is
Nothing
Set



Object Handling 
See Also
Objects can be the end products of a software application, such as a spreadsheet, graph, or
document. An OLE Automation object provides access to the functions of an application 
through the methods and properties of the object. Each software application that 
implements OLE Automation has its own set of properties and methods that change the 
characteristics of an object or use the features of the application.
For some applications, you can link and embed objects from some applications into others. 
Also, some applications allow use of OLE Automation objects in scripts that automate the 
tasks of the application.
Properties affect the characteristics of an object. For example, width is a property of a 
range of cells in a spreadsheet, colors are a property of graphs, margins are a property of 
word processing documents, and usernames are a property of network applications.
Methods cause the application to do something to an object. Examples are Calculate for a 
spreadsheet, Snap to Grid for a graph, AutoSave for a document, and SendFile and 
ReceiveFile for some network applications.
In OPEN Script, you have the ability to access an object and use the originating software 
application to change properties and methods of that object. Before you can use an object in
a procedure, however, you must access the software application associated with the object 
by assigning it to an object variable. Then you attach an object name (with or without 
properties and methods) to the variable to manipulate the object. The syntax for doing this 
is shown in the following example code.

Note: The examples shown here are specific to the VISIO software application. Object, 
property, and method names vary from one application to another. For the applicable names



to use, see the software documentation for the application you want to access.



Step 1: Create an object variable to access the application
The Dim statement creates an object variable called "visio" and assigns the application, 
VISIO, to it. The Set statement assigns the VISIO application to the variable visio using 
either GetObject or CreateObject. You use GetObject if the application is already open on 
the Windows desktop. Use CreateObject if the application is not open.



Step 2: Use methods and properties to act on objects.
To access an object, property or method, you use this syntax:

appvariable.object.property
appvariable.object.method

For example, visio.document.count is a value returned by the Count method of the 
Document object for the VISIO application, which is assigned to the Integer variable 
doccount.
Alternatively, you can create a second object variable and assign the Document object to it 
using VISIO's Document method, as the Set statement shows.



See Also
Err Function
Err Statement
Error$ Function
Error Statement
Resume
On Error
Trappable Errors



Error Handling
See Also
OPEN Script contains three error handling statements and functions for trapping errors in 
your program: Err, Error, and On Error. OPEN Script returns a code for many of the 
possible runtime errors you might encounter. See Trappable Errors for a complete list of 
codes.
In addition to the errors trapped by OPEN Script, you might want to create your own set of 
codes for trapping errors specific to your program. You would do this if, for example, your 
program establishes rules for file input and the user does not follow the rules. You can 
trigger an error and respond appropriately using the same statements and functions you 
would use for OPEN Script-returned error codes.
Regardless of the error trapped, you have one of two methods to handle errors; one is to put
error-handling code directly before a line of code where an error might occur (such as after a
File Open statement), and the other is to label a separate section of the procedure just for 
error handling, and force a jump to that label if any error occurs. The On Error statement 
handles both options. 
For more information, refer to one of the topics below:
Trapping Errors Returned by OPEN Script
Trapping User-defined (Non-OPEN Script) Errors



Trapping Errors Returned by OPEN Script
This code example shows the two ways to trap errors. Option 1 places error-handling code 
directly before the line of code that could cause an error. Option 2 contains a labeled section
of code that handles any error.



Option 1: Trap error within body of code
The On Error statement identifies the line of code to go to in case of an error. In this case, 
the Resume Next parameter means execution continues with the next line of code after the 
error. In this example, the line of code to handle errors is the If statement. It uses the Err 
statement to determine which error code is returned.



Option 2: Trap error using error handler
The On Error statement used here specifies a label to jump to in case of errors. The code 
segment is part of the main procedure and uses the Err statement to determine which error 
code is returned. To make sure your code doesn't accidentally fall through to the error 
handler, precede it with an Exit statement.



Trapping User-Defined (Non-OPEN Script) Errors
These code examples show the two ways to set and trap user-defined errors. Both options 
use the Error statement to set the user-defined error to the value 30000. To trap the error, 
option 1 places error-handling code directly before the line of code that could cause an error.
Option 2 contains a labeled section of code that handles any user-defined errors.



How OPEN Script Compares to Other Versions of Basic
See also: How OPEN Script Compares to Visual Basic and Word Basic

Differences Between OPEN Script and Earlier Versions of Basic
If you are familiar with older versions of Basic (those that predate Windows), you will notice 
that OPEN Script includes many new features and changes from the language you have 
learned. OPEN Script more closely resembles other higher level languages popular today, 
such as C and Pascal. 
The topics below describe some of the differences you will notice between the older Basics 
and OPEN Script.
Line Numbers and Labels
Older versions of Basic require numbers at the beginning of every line. More recent versions 
do not support these line numbers; in fact, they will generate error messages.
If you want to reference a line of code, you can use a label. A label can be any combination 
of text and numbers. Usually, it is a single word followed by a colon, which is placed at the 
beginning of a line of code. These labels are used by the Goto statement.
Subroutines and Modularity of the Language
OPEN Script is a modular language; code is divided into subroutines and functions. The 
subroutines and functions you write use the OPEN Script statements and functions to 
perform actions. The first subroutine in a script must be called main.
Global Variables
The placement of variable declarations determines their scope:
Scope Definition
Local Dimensioned inside a subroutine or function. The variable is accessible only to

the subroutine or function that dimensioned it.
Module Dimensioned outside any subroutine or function. The variable is accessible to 

any subroutine or function in the same file.
Global Dimensioned outside any subroutine or function using the Global statement. 

The variable is accessible to any subroutine or function in any module (file).
Data Types
Modern Basic is now a typed language. In addition to the standard data types -- numeric, 
string, array, and record -- OPEN Script includes variants and objects. 
Variables that are defined as variants can store any type of data. For example, the same 
variable can hold integers one time, and then, later in a procedure, it can hold strings. 
OLE Automation objects give you the ability to manipulate complex data supplied by an 
application, such as windows or forms, or to use the functions of the application, such as, for
a networking application, sending or receiving data over a network.
Dialog Box Handling
OPEN Script contains extensive dialog box support to give you great flexibility in creating 
and running your own custom dialog boxes. You define a dialog box with dialog control 
statements between the Begin Dialog...End Dialog statements, and then display it using 
the Dialog statement (or function). 
OPEN Script stores information about the selections the user makes in the dialog box. When 
the dialog box is closed, your program can access this information. 
OPEN Script also includes statements and functions to display other types of boxes:

message boxes notify the user of an event; 
password boxes do not echo the user's keystrokes on the screen; and 



input boxes prompt for a single line of input.
Financial Functions
OPEN Script includes a list of financial functions, for calculating such things as loan 
payments, internal rates of return, or future values based on a company's cash flows.
Date and Time Functions
The date and time functions have been expanded to make it easier to compare a file's date 
to today's date, set the current date and time, time events, and perform scheduling-type 
functions (such as finding the date for next Tuesday).
Object Handling
Windows includes OLE Automation object handling. An OLE Automation object can be the 
end product of a software application, such as a document from a word processing 
application.You can use such OLE Automation objects to link and embed objects from one 
application into another.
An OLE Automation object can also provide access to the functions of an application through
the methods and properties of the object. You can use OLE Automation objects in scripts to 
automate the tasks of the application.
The Object data type permits your OPEN Script code to access another software application 
through its objects and use the features of the application or change its properties.
Environment Control
OPEN Script includes the ability to call another software application (AppActivate), and 
send the application keystrokes (SendKeys). Other environment control features include the
ability to run an executable program (Shell), temporarily suspend processing to allow the 
operating system to process messages (DoEvents), and return values in the operating 
system environment table (Environ$).



How OPEN Script Compares to Visual Basic and Word Basic
There are several versions of Basic with which you might be familiar, the most common 
being Visual Basic and Word Basic. OPEN Script shares a substantial common core of 
functions and statements with these versions; however, each one has unique capabilities.

Differences Between OPEN Script and Visual Basic
OPEN Script is very similar to Microsoft Visual Basic; however, there are some differences. 
Functions and Statements Unique to OPEN Script
OPEN Script offers a few statements and functions not found in Visual Basic:

$CStrings
$Include
$NoCStrings
GetField$
SetField$

Control-Based Objects
OPEN Script does not predefine or include any Visual Basic object, such as a Button Control. 
As a result, a VB property such as BorderStyle is not an intrinsic part of OPEN Script. This 
does not mean that as an integrator, you cannot define an OPEN Script object that has 
BorderStyle as a property. You will probably define many objects that are intrinsic to your 
application in the process of integration.
Dialog Box Capabilities and VBA
VB does not have a syntax to create or run dialog boxes. In contrast, OPEN Script has a set 
of functions and statements to enable the use of dialog boxes (they are similar to those in 
Word).
Microsoft offers a modified version of VB in some of its products, such as Excel. Called Visual 
Basic for Applications (VBA), this version does provide dialog box handling statements and 
functions.

Differences Between OPEN Script and Word Basic
Word Basic is a precursor to Visual Basic that is included in Microsoft Word. Word Basic 
supports dialog boxes, but it does not support objects.
Dialog Box Capabilities
The dialog box capabilities in OPEN Script and Word are very similar. Word does offer some 
statements and functions that OPEN Script does not, such as DlgFilePreview. As well, OPEN 
Script offers some features that Word does not.
In response to the need for certain types of dialog box support, OPEN Script offered some 
dialog box options before Word Basic did. Later, Word Basic came out with their own syntax 
for these options. As a result, there are minor differences in the way the two languages 
handle dialog boxes. 
Button vs. PushButton
Button is the original OPEN Script syntax; PushButton is the Word Basic syntax. The two are 
interchangeable, and OPEN Script supports both. 
PushButton is preferred, and is used throughout the Examples.
Dialog Box Units
The measurement units used in the two dialog box syntaxes are different. OPEN Script 
supports both, and you can choose to use either. 
The Examples use OPEN Script units. As a result, if you use Word units, some of the dialog 



boxes created in the Examples might look odd.
User Input Mechanisms
There are slight differences in some of the mechanisms for user input:

OPEN Script Word Basic
StaticComboBox or ComboBox 
(in OPEN Script, these are 
interchangeable)

ComboBox (Word 
Basic supports only 
this syntax)

DropComboBox N/A



Trappable Errors
The following table lists the runtime errors that OPEN Script returns. These errors can be 
trapped by On     Error  . The Err function can be used to query the error code, and the Error 
function can be used to query the error text.

Error code Error Text
                5 Illegal function call
                6 Overflow
                7 Out of memory
                9 Subscript out of range
              10 Duplicate definition
              11 Division by zero
              13 Type Mismatch
              14 Out of string space
              19 No Resume
              20 Resume without error
              28 Out of stack space
              35 Sub or Function not defined
              48 Error in loading DLL
              52 Bad filename or number
              53 File not found
              54 Bad file mode
              55 File already open
              58 File already exists
              61 Disk full
              62 Input past end of file
              63 Bad record number
              64 Bad filename
              68 Device unavailable
              70 Permission denied
              71 Disk not ready
              74 Can't rename with different drive
              75 Path/File access error
              76 Path not found
              91 Object variable set to Nothing
              93 Invalid pattern
              94 Illegal use of NULL
            102 Command failed
            429 Object creation failed
            438 No such property or method
            439 Argument type mismatch
            440 Object error
            901 Input buffer would be larger than 64K



            902 Operating system error
            903 External procedure not found
            904 Global variable type mismatch
            905 User-defined type mismatch
            906 External procedure interface mismatch
            907 Pushbutton required
            908 Module has no MAIN
            910 Dialog box not declared



Derived Trigonometric Functions 
A number of trigonometric functions can be written in Basic using the built-in functions. The 
following table lists several of these functions:

Function Computed By:
Secant Sec(x) = 1/Cos(x)
CoSecant CoSec(x) = 1/Sin(x)
CoTangent CoTan(x) = 1/Tan(x)
ArcSine ArcSin(x) = Atn(x/Sqr(-x*x+1))
ArcCosine ArcCos(x) = Atn(-x/Sqr(-x*x+1))+1.5708
ArcSecant ArcSec(x) = Atn(x/Sqr(x*x-1))+Sgn(x-1)*1.5708
ArcCoSecant ArcCoSec(x) = Atn(x/Sqr(x*x-1))+(Sgn(x)-1)*1.5708
ArcCoTangent ArcTan(x) = Atn(x)+1.5708
Hyperbolic Sine HSin(x) = (Exp(x)-Exp(-x))/2
Hyperbolic Cosine HCos(x) = (Exp(x)+Exp(-x))/2
Hyperbolic Tangent HTan(x) = (Exp(x)-Exp(-x))/(Exp(x)+Exp(-x))
Hyperbolic Secant HSec(x) = 2/(Exp(x)+Exp(-x))
Hyperbolic CoSecant HCoSec(x) = 2/(Exp(x)-Exp(-x))
Hyperbolic Cotangent HCotan(x) = (Exp(x)+Exp(-x))/(Exp(x)-Exp(-x))
Hyperbolic ArcSine HArcSin(x) = Log(x+Sqr(x*x+1))
Hyperbolic ArcCosine HArcCos(x) = Log(x+Sqr(x*x-1))
Hyperbolic ArcTangent HArcTan(x) = Log((1+x)/(1-x))/2
Hyperbolic ArcSecant HArcSec(x) = Log((Sqr(-x*x+1)+1)/x)
Hyperbolic ArcCoSecant HArcCoSec(x) = Log((Sgn(x)*Sqr(x*x+1)+1)/x)
Hyperbolic ArcCoTangent HArcCoTan(x) = Log((x+1)/(x-1))/2




