
Database Sample

Sample Description: Database Sample

Points of Interest
Connecting the DataControl to the Data Source
Binding the Form's TextBoxes to the DataControl
Binding the Form's OptionGroup to the DataControl
Populating the Indented List with Department Numbers
Creating a new Record
Deleting the Current Record
Updating the Current RecordSet
Using an IndentedList for Selecting Records

Controls
Option Button
DataControl
IndentedList

For Help on Help, Press F1

Database Sample
The purpose of this sample is to present several common development techniques that are used when creating a
database application.    This includes adding, deleting, updating and navigating database records.

Our sample consists of a form which is used to maintain information about employees in a company.    The
sample consists of a DataControl which is connected to a standard ASCII text file located in the sample's
directory.    There are four TextBoxes and an OptionButton group which present information about each employee.
These textboxes and option buttons are bound to the DataControl.

An IndentedList is presented at the top of the form and is used to navigate the employees by the department
they belong to.    The IndentedList displays a list of Department numbers.    Clicking on a specific Department
number will expand that entry and present a list of employees from that department.

Connecting the DataControl to the Data Source
The DataControl is displayed at the bottom of the form.    This control is a type of "HyperControl" made up of
several individual controls linked to a RecordSet object.    See information on DataControl to understand the
functionality of the various navigation buttons on the control.

The DataControl is connected to a standard ASCII text file located in the sample's directory.    The contents of the
file are shown below.    The length of each data field are as follows: Dept(5), EID(5), Name(20), Salary(10),
Status(7).

Dept EID Name Salary Status
10 100 Jim Black 900.00 A
15 105 Henry Brown 1264.00 A
10 110 Gloria White 755.00 A
15 200 Sally Hunter 815.00 O
10 120 Jack Henderson 1450.00 T
10 125 Susan Jackson 860.00 A
10 130 Robert Stewert 1000.00 A
20 300 John McHenry 1050.00 O

 To connect the DataControl to this ASCII file, you place "edit focus" on the form and double-click on the
DataControl.    This executes its DetailedEdit method which displays a Database Wizard.    The Database Wizard
is used to connect to the file "employee.txt" in the samples directory.

The data in the employee.txt file is Fixed ASCII and contains a total of (5) fields.    Since the first row of the data
file contains field names, the size of the field must be at least as long as the field name, otherwise the name of
the field would be cropped when the RecordSet is updated.

Binding the Form's TextBoxes to the DataControl
Binding the form's controls to the DataControl is accomplished by the Database Wizard.    The (4) TextBoxes on
the form are bound to the DataControl on the last step of the Database Wizard.    As this is done, the DataField
and DataSource properties are set for each TextBox.

Creating a new Record
The New Button on the EmployeeForm is used to add a new record to the underlying RecordSet.    The primary
code to do this is:

' Add a new entry to the recordset
 DataControl1.RecordSet.AddNew

The AddNew method automatically clears the contents of the (4) bound TextBoxes.    When a new record is
created, the (3) OptionButtons are set to their default values as follows:

OptionGroup.OptButton1.Value = True
OptionGroup.OptButton2.Value = False
OptionGroup.OptButton3.Value = False

Finally the focus of the first TextBox is set so the user may begin entering data about the new employee.

' Place the type-in point in the Employee ID textbox
TxtEmployeeID.SetFocus

Deleting the Current Record
The Delete Button on the EmployeeForm is used to remove the current record from the underlying RecordSet.   
A YesNoBox is used to prompt the user is first prompted if they really want to remove the record.

The following code example actually is used to remove the current record.

With DataControl1.RecordSet
 If Not .EOF Or Not .BOF Then
 .Delete
 .MoveNext
 If .EOF Then .MovePrev
 End If
End With

 In addition, this code also causes a move to the next available record.    If we are removing the last record, the
EOF would return True, so we would move to the previous record with the MovePrev method.    Otherwise we
would move the next record with the MoveNext method.

After a record is deleted, the data source is updated through the following code:

DataControl1.RecordSet.UpdateAll()
Finally, the IndentedList is updated.    If the employee record being removed is currently selected in the
IntendedList, the entry is removed from the IndentedList.

Updating the Current RecordSet
The Update button on the EmployeeForm is used to save the current information stored in the DataControl's
RecordSet object to the employee.txt ASCII file.    This is accomplished by the BtnUpdate_Click method.    The first
step is to check to make sure that we have sufficient data to update.    This is done through the following two
checks.

 ' Need to validate vital employee information
 If TxtEmployeeID.Text = "" Then
 InfoBox.Message("Warning", "No Employee ID has been entered.")
 Exit Sub
 End If

 If TxtDepartment.Text = "" Then
 InfoBox.Message("Warning", "No Department number has been entered.")
 Exit Sub
 End If

If all's well, then the following UpdateAll method is executed.

 ' Save the contents of the recordset to disk file
 DataControl1.RecordSet.UpdateAll()

Once the data has been updated, the IndentedList is cleared and then repopulated with updated information.

 ' Need to update the indented list
 PopulateList

Using an IndentedList for Selecting Records
The main purpose of the IndentedList in this sample is to allow the user to click on a department number, see
the names of employees in that department and then click on a particular employee to navigate to that
employee's record.

When the IntendedList is first populated with Department numbers, each line in the IndentedList is able to
expand because each line had the SetItemCanExpand method set to True.    At the time, since only department
numbers were being populated, we know that each line is capable of being expanded.    The IntendedList has an
Expand event handler defined as follows:

Sub IndentedList1_Expand(ByVal itemIndex as Integer, ByVal itemData as Long, itemObj as
Object)

 Dim i as Integer
 Dim sdept, fdept, eid As String

 sdept = IndentedList1.ItemString(itemIndex)
 ' Search the recordset to find all employees in sdept department
 For i = 0 To DataControl1.RecordSet.RowsRead - 1
 fdept = DataControl1.RecordSet.Row(i).Column(0).Value
 If sdept = fdept Then
 eid = DataControl1.RecordSet.Row(i).Columns(1, 2).Value
 IndentedList1.InsertItem(eid, 2, 1, itemIndex + 1)
 End If
 Next i
 IndentedList1.Reset
End Sub

When the user clicks on the blue icon on a department line, this event handler is executed.    It basically scans
the underlying DataControl's RecordSet to find all employees who are in the expanded department (sdept).   
When an entry is found, it is added to the IndentedList.

When a department number is expanded, it may later be collapsed by clicking on the blue icon next to the
department number.    When this is done, the Collapse event is triggered and the following event handler is
executed.

Sub IndentedList1_Collapsed(ByVal itemIndex as Integer, ByVal itemData as Long, itemObj
as Object)

 IndentedList1.SetItemIcon(itemIndex, 1)
End Sub

When a department is expanded and displays the employees who are assigned to that department, the user may
click on the employee and that employee's record will be made current.    This is done through the following Click
method:

Sub IndentedList1_Click()
 Dim icon_type As Integer
 ' Determine the type of icon the item has
 icon_type = IndentedList1.ItemIcon(IndentedList1.ListIndex)

 ' If the item is an icon_type = 2, it is an employee
 ' so we need to move the datacontrol to the right employee
 If icon_type = 2 Then
 Dim eid As String
 Dim i, row As Integer
 ' Get the indented list line entry
 eid = Trim(Left(IndentedList1.ItemString(IndentedList1.ListIndex), 5))
 ' Find the first blank space
 DataControl1.RecordSet.Column(1).FindFirst(eid)
 DataControl1.RecordSet.CurrentRecordNumber =

DataControl1.RecordSet.CurrentRecordNumber
 End If
End Sub

First the icon type is determined.    If the icon type is 2, we determine the employee ID (EID) from the selected
entry.    The employee ID is used since you could have two employees with the same name.    The RecordSet's
FindFirst method is used to locate the employee's record.    When it is found, the CurrentRecordNumber is set
to the found number.    In effect, this updates all the controls on the form to display the selected employee's
record.

Binding the Form's OptionGroup to the DataControl
The OptionGroup is a data-aware control named OptionGroupMaster which contains a form object named
"Buttons" and an OptionButton control named "OptButton".    Several methods are defined on the Buttons Form
which are responsible for adding and removing OptionButton's to and from the form.    The OptionGroupMaster
object is known as a "self editing container".

The AddValue method dynamically embeds an OptionButton on the "Buttons" form.    It takes (2) arguments -
codex and Caption.    The codex String on each OptionButton is responsible for setting the Value property    on
the "Buttons" form.    In our example, we have (3) OptionButtons that are grouped together on the "Buttons"
form.    The corresponding codex and Caption values for these OptionButtons are:

Name Caption codex
OptButton1 Active A
OptButton2 On Leave O
OptButton3 Terminated T

The Caption property is displayed on the form while the codex property is used to set the Value of the
OptionGroup.    The "Buttons" form has a Procedural Property named Value which is set by the Update event.   
When the DataControl move to a specific record, the OptionGroup receives an Update event and is passed the
value of the employees "status".    This value is used to set the Value procedural property.    The setValue method
is then automatically executed which basically scans all the OptionButton controls to identify the one that has a
matching codex property.    When the appropriate OptionButton is found, its Value is set to True.

The RemoveValue method is responsible for removing an OptionButton from the OptionGroup.    It takes a single
argument for a codex value and uses the FindValue method to located the matching OptionButton.    If it is
found, it is removed via. the DestroyObject method.

A Resize method is defined on the "Buttons" form which is used to automatically keep the individual
OptionButton's equally sized and spaced apart.

When one of the OptionButtons is clicked, the DataChanged property on the parent "Buttons" form is set to
True.    This property automatically triggers an UpdateDataSource method that is executed when the RecordSet
is updated.    When this method executes, it basically sends the value of the "Buttons" form Value property which
indicates which OptionButton is True.

Populating the IndentedList with Department Numbers
The EmployeeForm contains a method named PopulateList that is responsible for reading the rows of data
contained in the DataControl's RecordSet.    This method basically scans the Department field of the RecordSet
and for each department number it finds, it checks to see if the department number has already been added to
the IndentedList.    If it does not current exist, it is added to the list.

