
Sound Browser Sample Help

Sample Description: Sound Browser

Points of Interest
Selecting a System Drive
Selecting a System Directory
Searching a Directory for Files
Handling Exceptions
Timing Lengthy Operations
Resizing Controls
Disabling Controls during Lengthy Operations

Tips and Techniques
Stripping Brackets from Directory Strings
Declaring a Sound Player API
Playing a Sound File

Controls
FileComboBox
FileListBox
ListBox
StopClock

For Help on Help, Press F1



Sound Browser
The Sound Browser is a finished application that can be used to quickly browse through sound files on your 
system. In this sample, Sound (WAV) files are located and automatically added to a browser listbox.

The Sound Browser provides controls for selecting various Drives and Directories. This may include floppy 
drives and CD-ROM drives as well as hard drives. Once a Drive and Directory are selected, you may click the 
Search button. Program code will search recursively through all subdirectories finding all sound (WAV) files. 
Once a file is located, it is added to a selection list on the Sound Browser form. When all directories have been 
searched, a message box will be displayed indicating the amount of time that was taken to perform the search.

To play a particular sound file, click on the corresponding filename in the list. If your system has a sound card 
and is connected to speakers, you should hear the sound file being played.



Selecting a System Drive
This sample uses a FileComboBox named cboSelDrive to change drives. This control specializes in selecting
Drives because the SelType property is set to "1 - Drives." When a specific Drive is clicked, the SelPath 
property is automatically updated. Clicking on this control invokes the following Click method:

Sub cboSelDrive_Click()
    ' Set the current directory for the Select Directory list
    lstSelDirectory.CurrentDir = cboSelDrive.SelPath
    ' Update the Search Directory label
    lblCurDirectory.Caption = lstSelDirectory.CurrentDir

End Sub

This method sets the CurrentDir property of the lstSelDirectory (FileListBox) to be the selected Drive. This 
automatically updates the contents of the FileListBox to include all main directories on that drive. In addition, a
label on the form is updated to display the current drive and directory information.



Selecting a System Directory
This sample uses a FileListBox named lstSelDirectory to change directories. This control specializes in 
selecting Directories because the ShowDirs property is set to True. To prevent Drives and Files from being 
included, the ShowDrives and ShowFiles properties are set to False. The property CurrentDir displays the 
current working directory. The following Double-Click event is assigned to the lstSelDirectory control:

Sub lstSelDirectory_DblClick()
    ' Set the Select Directory current directory to the one chosen
    lstSelDirectory.CurrentDir = lstSelDirectory.SelPath

    ' Update the Search Directory label
    lblCurDirectory.Caption = lstSelDirectory.CurrentDir

    ' Update current directory of hidden file and directory listboxes
    lstHiddenFiles.CurrentDir = lstSelDirectory.CurrentDir
    lstHiddenDirs.CurrentDir = lstSelDirectory.CurrentDir

End Sub

As shown in the code above, when a directory is double-clicked in the lstSelDirectory control, two additional 
FileListBox controls are updated with the CurrentDir information. These two controls are named: 
lstHiddenFiles and lstHiddenDirs. Each of these controls were embedded directly in the Property Editor. 
When this is done, they are not displayed on the form. The lstHiddenFiles FileListBox has its ShowFiles 
property set to True, while the lstHiddenDirs FileListBox has its ShowDirs property set to True.

This application is basically organizing the files and directories in two FileListBoxes each time a directory is 
clicked by the user. These two "hidden" FileListBoxes will play a key role as we recursively search through sub-
directories. It is important to note that the lstHiddenFiles control has its Filter property set to ".wav". This 
means that only Sound files (.WAV) will be displayed in this list. All files shown in this list will end up in the 
lstWaveFiles ListBox for user selection.



Searching a Directory for Files
The actual file search is triggered by the Search Button through the btnSearch_Click method. In this 
method, a Sub procedure called GenerateWaveList is called and given the name of this current directory.

The way this routine works is that the contents of the "hidden" list, lstHiddenDirs, is looked at line by line. For 
each sub-directory that is found, additional sub-directories are searched for. This recursive search continues 
down the directory structure until no additional sub-directories are found. At this point, since the lstHiddenFiles
FileListBox is updated at the same time as lstHiddenDirs, all Sound (WAV) files would appear in this list. Each 
time sound files are present, they are extracted and added to the lstWaveFiles ListBox.



Handling Exceptions
When the Search Button is clicked, a recursive search operation through a Directory structure is started. 
Depending on the directory and the size of your disk drive, this search may take a matter of seconds. In order 
to be able to interrupt this search operation, the Caption on the Clear button is changed to "Cancel" during 
the search. If the "Cancel" button is clicked during the search operation, an AbortFlag property is set to True.

The GenerateWaveList Sub procedure contains the following Try/Catch code:

    ' Initiate the recursive search for matching files
    Try

        GenerateWaveList lstSelDirectory.CurrentDir
    Catch AbortFlag()

        InfoBox.Msg("Search operation canceled.")
    End Try

If the Cancel button is clicked during the search operation, the following program code inside the 
GenerateWaveList Sub procedure detects the True status of the AbortFlag and "Throws" an exception.

 AbortFlag = 0
' Free up CPU to update display
    Application.DoEvents()

    ' Check the AbortFlag status
    If (AbortFlag) Then Throw AbortFlag()

In order to allow an interruption, an Application.DoEvents statement was added to this program code. This 
frees up the CPU and processes any outstanding events, such as a Click event, from the Cancel button. If the 
user clicks the Cancel button before the search operation has completed, the AbortFlag property is set to True 
and is detected by the above check, then the Throw event is caught by the Catch located in the original 
routine. At this point, a message can be posted and the application restored to a non-search condition.



Timing Lengthy Operations
Some application functions may take a little time to complete. In this sample, depending on the directory you 
are searching and the size of your drive, the search may take several seconds. To show you how to time a 
lengthy operation, a StopClock object has been embedded in this sample form named "tmrStopWatch."

When the Search Button is clicked, the State property of the tmrStopWatch is set to 3, which starts the timer 
running. The following options exist in the State property:

State Action

0 Reset
1 Stopped
2 Paused
3 Running

When the search operation is complete, the State property is set to 0, which stops the timer. The total time is 
recorded in the ElapsedTime property. After the search has finished, a Message Dialog is posted indicating 
the total time that had elapsed during the search operation. In addition, the total number of files that were 
located is also determined in the following code example:

    total_time = tmrStopWatch.ElapsedTime

    file_count = lstWaveFiles.ListCount

    InfoBox.Msg(file_count & " sound files located in " & total_time & " time.")

This is one way that lengthy operations can be timed. It is up to you to decide what action you want your 
application to carry out based on the elapsed time. In this sample, the time is merely posted in a message 
dialog.



Resizing Controls
The sample form contains a Resize method that is trigged each time the form is resized. The purpose of the 
Resize method is to allow the lstWaveFiles ListBox to grow wider and higher as the form is made wider and 
higher. In addition, the Directory FileListBox, the Directory Label, and the two Buttons at the bottom right of 
the form must also be automatically moved and resized when the form size is changed.

The Resize method contains program code that automatically sizes each of the necessary controls on the 
form. Minimum gaps between controls are defined to keep controls from overlapping each other. After all the 
controls are moved and resized, the Resize method invokes a Refresh method to redraw the form and its 
controls.



Disabling Controls during Lengthy Operations
When an application operation may take a few seconds to complete, it is a good idea to disable controls on the
form to prevent unwanted clicks while the operation, such as the search operation in this sample, is running. 
This can be done by disabling various controls on the form by setting their Enabled property to False during 
the search operation, and setting the property back to True once the search is completed. Below is an example
of how to disable controls on the form:

lstWaveFiles.Enabled = 0
lstSelDirectory.Enabled = 0
cboSelDrive.Enabled = 0
btnClear.Caption = "Cancel"
btnSearch.Enabled = "False"

Notice that setting the Enabled property to False will disable the control. Likewise, setting the Enabled property
to True will enable or activate the control. Another way to let the user know that a lengthy operation is in 
progress is to change the Mouse cursor to an "Hour glass" during the operation, then reset it to the standard 
"Arrow pointer" when the task is finished.



Stripping Brackets from Directory Strings
As this program code browses through the directory structure searching for files, the names of directories 
presented in the lstHiddenDirs contain brackets [] around each of the directory names. Since this program 
code only wants to use the names of the directories, the following function is used to strip the brackets from 
directory names:

Function StripBrackets(dir_name As String) As String
    Dim left_char As String
    Dim right_char As String
    Dim string_size As Integer

    ' Save the first character
    left_char = Left(dir_name, 1)
    ' Save the last character
    right_char = Right(dir_name, 1)

    ' If brackets enclose the string, remove them
    If left_char == "[" And right_char == "]" Then 
            string_size = Len(dir_name) - 2
            StripBrackets = Mid(dir_name, 2, string_size)
    Else 
            ' Pass back the original string since it has no brackets
            StripBrackets = dir_name
    End If

End Function

This is just a simple technique that uses the Mid and Len language commands to remove unwanted 
characters from a text string.



Declaring a Sound Player API
The capability for playing sound files is assisted by a Windows API (Application Program Interface). In this 
Sound Brower application, an object named AudioPlayer has been declared to assist in the playing of sound 
files. The following statement was used to declare the sound player function:

Declare Function sndPlaySoundA Lib "Winmm" (ByVal file As String, ByVal opt As Long) As Long



Playing a Sound File
You can play a sound file by clicking on a specific sound file in the lstWaveFiles ListBox. The following click 
method is executed when a sound file is clicked:

Sub lstWaveFiles_Click()
    Dim option As long
    Dim result As long
    Dim sound_file As String

    ' Set a variable to be the name of sound file including absolute path
    sound_file = lstWaveFiles.ItemString(lstWaveFiles.ListIndex)

    ' Play the selected sound file
    result = AudioPlayer.sndPlaySoundA(sound_file, option)

End Sub

The function sndPlaySoundA is passed to the sound file, which contains the name of the file as well as the 
directory path. This function executes a corresponding API function to play the selected sound file.




