
Bitmap Browser    Sample Help

Sample Description: Bitmap Browser

Points of Interest
Selecting a System Drive
Selecting a System Directory
Searching a Directory for Files
Handling Exceptions
Timing Lengthy Operations
Filtering File Types
Resizing Controls
Disabling Controls during Lengthy Operations
Viewing a Bitmap at Full Scale
Fitting an Bitmap to an Image Control
Interchanging Information between Forms
Supported Graphic File Formats

Tips and Techniques
Stripping Brackets from Directory Strings

Controls
Image
FileComboBox
FileListBox
ListBox
StopClock

For Help on Help, Press F1



Bitmap Browser
The Bitmap Browser is a finished application that can be used to quickly browse through graphic files on your 
system. In the sample, only Windows Bitmap (BMP) files are included, however with a few minor 
enhancements, this could be expanded to cover all the graphic file formats that Envelop can read. These 
formats are listed later in this help file.

The Bitmap Browser provides controls for selecting various Drives and Directories. This can include floppy 
drives and CD-ROM drives as well as hard drives. Once a Drive and Directory is selected, you can click the 
Search button. Program code will search recursively through all subdirectories finding all bitmap (BMP) files. 
Once a file is located, it is added to a selection list on the Bitmap Browser form. When all directories have been
searched, a message box will be displayed indicating the amount of time that was taken to perform the search.

To view a particular bitmap file:
n Click on the corresponding filename in the list. A Bitmap Viewer form will appear and display the selected 

bitmap file. 
You can change the viewing mode between full size and fit size by using the popup menu options.



Selecting a System Drive
This sample uses a FileComboBox named cboSelDrive to change drives. This control specializes in selecting
Drives because the SelType property is set to "1 - Drives." When a specific drive is clicked, the SelPath 
property is automatically updated. Clicking on this control invokes the following Click method:

Sub cboSelDrive_Click()
    ' Set the current directory for the Select Directory list
    lstSelDirectory.CurrentDir = cboSelDrive.SelPath
    ' Update the Search Directory label
    lblCurDirectory.Caption = lstSelDirectory.CurrentDir

End Sub

This method basically sets the CurrentDir property of the lstSelDirectory (FileListBox) to the chosen drive. 
This automatically updates the contents of the FileListBox to include all main directories on that drive. In 
addition, a label on the form is updated to display the current drive and directory information.



Selecting a System Directory
This sample uses a FileListBox named lstSelDirectory to change directories. This control specializes in 
selecting Directories because the ShowDirs property is set to True. To prevent drives and files from being 
included, the ShowDrives and ShowFiles properties are set to False. The property CurrentDir displays the 
current working directory. The following Double-Click event is assigned to the lstSelDirectory control:

Sub lstSelDirectory_DblClick()
    ' Set the Select Directory current directory to the one chosen
    lstSelDirectory.CurrentDir = lstSelDirectory.SelPath

    ' Update the Search Directory label
    lblCurDirectory.Caption = lstSelDirectory.CurrentDir

    ' Update current directory of hidden file and directory listboxes
    lstHiddenFiles.CurrentDir = lstSelDirectory.CurrentDir
    lstHiddenDirs.CurrentDir = lstSelDirectory.CurrentDir

End Sub

As you can see by the code above, when a directory is double-clicked in the lstSelDirectory control, two 
additional FileListBox controls are updated with the CurrentDir information. These two controls are named: 
lstHiddenFiles and lstHiddenDirs. Each of these controls were embedded directly in the Property Editor. 
When this is done, they are not displayed on the form. The lstHiddenFiles FileListBox has its ShowFiles 
property set to True, and the lstHiddenDirs FileListBox has its ShowDirs property set to True as well.

This application is basically organizing the files and directories in two FileListBoxes each time a directory is 
clicked by the user. These two "hidden" FileListBoxes play a key role as the sub-directories are recursively 
searched through. It is important to note that the lstHiddenFiles control has its Filter property set to ".bmp." 
This means that only Bitmap files (.BMP) will be displayed in this list. To enhance the application to accept 
other graphic file formats, simply add additional formats to this Filter property. All files shown in this list will 
end up in the lstBmpFiles ListBox for user selection.



Searching a Directory for Files
The actual file search is triggered by the Search Button through the btnSearch_Click method. In this 
method, a Sub procedure called GenerateBmpList is called and given the name of the current directory.

The way this routine works is that the contents of the "hidden" list, lstHiddenDirs, is looked at line-by-line. For 
each sub-directory that is found, additional sub-directories are searched for. This recursive search continues 
down the directory structure until no additional sub-directories are found. At this point, since the lstHiddenFiles
FileListBox is updated at the same time as lstHiddenDirs, all Bitmap (BMP) files would appear in this list. Each 
time bitmap files are present, they are extracted and added to the lstBmpFiles ListBox.



Handling Exceptions
When the Search Button is clicked, a recursive search operation through a Directory structure is started. 
Depending on the directory and the size of the disk drive, this search may take a matter of seconds. To be able
to interrupt this search operation, the Caption on the Clear button is changed to "Cancel" during the search. 
If the "Cancel" button is clicked during the search operation, an AbortFlag property is set to True.

The GenerateBmpList Sub procedure contains the following Try/Catch code.

    ' Initiate the recursive search for matching files
    Try

        GenerateBmpList lstSelDirectory.CurrentDir
    Catch AbortFlag()

        InfoBox.Msg("Search operation canceled.")
    End Try

If the Cancel button is clicked at any time during the search operation, the following program code inside the 
GenerateBmpList Sub procedure detects the True status of the AbortFlag and "Throws" an exception.

 AbortFlag = 0
' Free up CPU to update display
    Application.DoEvents()

    ' Check the AbortFlag status
    If (AbortFlag) Then Throw AbortFlag()

To allow for an interruption, an Application.DoEvents statement was added to the program code. This frees up 
the CPU and processes any outstanding events, such as a Click event from the Cancel button. If the user clicks 
the Cancel button before the search operation has completed, the AbortFlag property is set to True, the click is 
detected by the above check, and the Throw event is caught by the Catch located in the original routine. At 
this point, a message can be posted and the application restored to a non-search condition.



Timing Lengthy Operations
Some application functions may take a little time to complete. In the sample, depending on the directory you 
are searching and the size of your drive, the search may take several seconds. To show you how to time a 
lengthy operation, a StopClock object was embedded in the sample form named "tmrStopWatch."

When the Search Button is clicked, the State property of the tmrStopWatch is set to 3, which starts the timer 
running. The following options exist in the State property:

State Action
0 Reset
1 Stopped
2 Paused
3 Running
When the search operation is complete, the State property is set to 0, which stops the timer. The total time is 
recorded in the ElapsedTime property. After the search has finished, a Message Dialog is posted indicating 
the total time that had elapsed during the search operation. 

In addition, the total number of files that were located is determined in the following code example:

    total_time = tmrStopWatch.ElapsedTime

    file_count = lstBmpFiles.ListCount

    InfoBox.Msg(file_count & " bitmap files located in " & total_time & " time.")

This is one way that lengthy operations may be timed. It is up to your application to determine what action you
wish to carry out based on the elapsed time. In this sample, the time is merely posted in a message dialog.



Filtering File Types
In this sample, only Windows Bitmap (.BMP) files will appear in the search result list box lstBmpFiles. This is 
determined by the lstHiddenFiles control's Filter property which is set to ".bmp." This means that only Bitmap 
files (.BMP) will be displayed in this list.

To enhance the application to accept other graphic file formats simply add additional formats to this Filter 
property. All files shown in this list will end up in the lstBmpFiles ListBox for user selection.



Resizing Controls
The sample form contains a Resize method that is trigged each time the form is resized. The purpose of the 
Resize method is to allow the lstBmpFiles ListBox to grow wider and higher as the form is made wider and 
higher. In addition, the Directory FileListBox, the Directory Label and the two Buttons at the bottom right side 
of the form must also be automatically moved and resized when the form size is changed.

The Resize method contains program code that automatically sizes each of the necessary controls on the 
form. Minimum gaps between controls are defined to keep controls from overlapping each other. After all the 
controls are moved and resized, the Resize method invokes a Refresh method to redraw the form and its 
controls.

In the Bitmap Viewer Form, there is also a Resize method defined to keep the Image control the same size as 
the form. If the form is dragged to a larger size, the Image control is automatically resized in the following 
Resize method:

Sub Resize()
    ' Keep the size of the image control the same as the form
    imgViewer.Left = 0
    imgViewer.Top = 0
    imgViewer.Width = BrowserDisplayForm.ScaleWidth
    imgViewer.Height = BrowserDisplayForm.ScaleHeight

    ' Let's update the display
    imgViewer.Refresh
End Sub

These are just a few examples of how a Resize method can be used to automatically resize and locate controls 
on the form.



Disabling Controls during Lengthy Operations
When an application operation takes a few seconds to complete, it is a good idea to disable controls on the 
form to prevent unwanted clicks while an operation, in this case the search operation, is running. Various 
controls on the form can be disabled by setting their Enabled property to False during the search operation, 
and then setting the property back to True once the search is completed. Below is an example of how to 
disable controls on the form:

lstBmpFiles.Enabled = False
lstSelDirectory.Enabled = False
cboSelDrive.Enabled = False
btnClear.Caption = "Cancel"
btnSearch.Enabled = "False"

Notice that setting the Enabled property to False will disable the control. Likewise, setting the Enabled property
to "True" will enable or activate the control. Another way to let the user know that a lengthy operation is 
underway is to change the Mouse cursor to an "Hour glass" during the operation, then reset it to the standard 
"Arrow pointer" when the task is finished.



Viewing a Bitmap at Full Scale
In this Bitmap Browser sample, if you click on one of the files displayed in the search result ListBox, a 
secondary form will be displayed on the screen. This form can be used to view the Bitmap file. The Bitmap 
Viewer form has a menu option called "Full" that sets the scale factor to 1:1. This function is done in the 
following method:

Sub ScaleFull_Click()
    ' View the bitmap at a 1:1 scale
    imgViewer.ScaleX = 1
    imgViewer.ScaleY = 1
    imgViewer.Refresh

    ' Set the resize mode to clip
    imgViewer.ResizeMode = 1

    ' Clear exiting checkmarks
    ClearMenuCheckMarks
    ' Add a checkmark to the Fit entry
    BrowserDisplayViewMenu.CheckItem("ScaleFull", 1)
End Sub

As you examine this program code, that is attached to the Menu/Full Click event, notice that the ScaleX and 
ScaleY properties of the Image control imgViewer are set to 1. In addition, be sure to notice the Resize mode 
setting, which is 1. This allows the size of the Bitmap Viewer form to be changed while leaving the image at a 
full 1:1 scale.

This code also automatically "checks" the Full menu entry to indicate the current view scale.



Fitting a Bitmap to an Image Control
In this Bitmap Browser sample, if you click on one of the files displayed in the search result ListBox, a 
secondary form will be displayed on the screen and can be used to view the Bitmap file. The Bitmap Viewer 
form has a menu option "Fit," which fits the bitmap to the Image. Since the Image control is the same size as 
the Form, the bitmap is automatically fit to the boundaries of the form. This function is performed in the 
following method:

Sub ScaleFit_Click()
    ' View the bitmap at a fit mode
    imgViewer.CropXOffset = 0
    imgViewer.CropYOffset = 0
    imgViewer.CropXSize = BitmapFile.Width
    imgViewer.CropYSize = BitmapFile.Height
    imgViewer.Refresh

    ' Set the resize mode to fit
    imgViewer.ResizeMode = 0

    ' Clear exiting checkmarks
    ClearMenuCheckMarks
    ' Add a checkmark to the Fit entry
    BrowserDisplayViewMenu.CheckItem("ScaleFit", 1)
End Sub

As you examine this program code that is attached to the Menu/Fit Click event, notice that the CropXOffset 
and CropYOffset properties of the Image control imgViewer are set to 0. In addition, notice that the Resize 
mode is set to 0. This allows changes to the size of the Bitmap Viewer form and automatically resized the 
image to fit the form.

This code also automatically "checks" Fit menu entry to indicate the current view scale.



Stripping Brackets from Directory Strings
As the program code browses through the directory structure searching for files, it presents the names of all 
the directories presented in the lstHiddenDirs with brackets [] around them. Since the program code only 
wants to use the names of the directories, the following function is used to strip the brackets from directory 
name:

Function StripBrackets(dir_name As String) As String
    Dim left_char As String
    Dim right_char As String
    Dim string_size As Integer

    ' Save the first character
    left_char = Left(dir_name, 1)
    ' Save the last character
    right_char = Right(dir_name, 1)

    ' If brackets enclose the string, remove them
    If left_char == "[" And right_char == "]" Then 
            string_size = Len(dir_name) - 2
            StripBrackets = Mid(dir_name, 2, string_size)
    Else 
            ' Pass back the original string since it has no brackets
            StripBrackets = dir_name
    End If

End Function

This is just a simple technique that uses the Mid and Len language commands to remove unwanted 
characters from a text string.



Interchanging Information between Forms
One of the strongest features of Envelop is the ease in which Forms may interact with each other. For example,
from one form, you may directly set another Form's property, execute one of its Methods or invoke one of its 
Events. The following program code is the Click event that is associated with the ListBox containing the list of 
bitmap files that were found in the search operation.

Sub lstBmpFiles_Click()
    Dim option As long
    Dim result As long
    Dim bmp_file As String

    ' Set a variable to be the name of sound file including absolute path
    bmp_file = lstBmpFiles.ItemString(lstBmpFiles.ListIndex)

    ' Display the selected bmp file
    BrowserDisplayForm.BitmapFile.FileName = bmp_file
    BrowserDisplayForm.imgViewer.Refresh

    If BrowserDisplayForm.Visible == 0 Then 
        BrowserDisplayForm.Show
    End If

    ' Update the correct display mode
    BrowserDisplayForm.UpdateDisplay

End Sub

In this Click method, the FileName property of the Bitmap object is being set, the Refresh method is being 
executed, the Show method is being executed, and finally the UpdateDisplay method is executed. The 
UpdateDisplay method is a custom method on the Bitmap Viewer Form that determines which scale factors to 
apply to the image.



Supported Graphic File Formats
Envelop's Bitmap object supports the following file formats:

Number Bitmap Format
0 TIF_UNCOMPRESSED
1 BMP_UNCOMPRESSED
2 PCX
3 TARGA
4 GIF
5 WPG
6 WMF
7 TIFF_HUFFMAN
8 TIFF_G3_FAX
9 TIFF_LZW
10 TIFF_G4_FAX
11 DCX
12 BMP_COMPRESSED
13 JPEG
14 EPS
15 PICT
16 TIFF_PACK
17 TIFF_2D
18 CALS
19 LASER_DATA
20 XBM
21 MACPAINT
22 GX2
23 KOFAX
24 IOCA
25 ICON
26 IFF_ILBM
27 CLIP
28 IMG
29 BROOK_TROUT
30 MSP
31 CUT
32 TARGA16
33 CCITT_G3
34 CCITT_G4
35 XPM
36 XWD
37 RAST
38 ASCII
39 PHOTOCD
40 TIFF JPEG
41 PHOTOSHOP




