
 Introduction
Properties Methods Events Constants Trial Version Info

First things first. Thank you for evaluating the Message Blaster. We are sure
you will like it. If you need any help our Tech Support is easily reachable.

When most people look at an application they think of that application as a
single window. This is rarely the case. Most applications are made up of a
variety of windows in the form of main windows and any of a variety of
controls or child windows such as buttons, edit boxes, etc.

At the heart of Windows 95 and Windows NT is a messaging system that is
the basis for most of what goes on in their respective systems. Messages are
the "atomic" events that programmers can respond to. For example,
whenever you press a key there can be up to 3 messages generated:
WM_KEYDOWN, WM_KEYUP and WM_CHAR. Other releated messages are
generated for systems keys (the alt key).

These messages are passed to the appropriate window for handling. There
are several ways to generate messages. Windows can create them in
response to hardware events such as    keystrokes or mouse clicks or
software events such as when a screen needs repainting. Programmers can
create them to send information or notifications to themselves or others.

In general, the way in which programmers respond to these message events
determines how a program runs. If you want to change the behavior of a
particular window, you need to respond to the appropriate message and act
accordingly.

The behavior of windows are controlled by a thing called a Window Procedure
or WindProc. Essentially, a WindProc is a function that acts as a filter. As
messages are generated and passed to a window for possible handling, the
WindProc is where a programmer looks at this stream of messages and picks
the ones he is interested in processing. If the message is of no interest it is
passed back to Windows for default processing.

In many programming environments access to this message stream is
limited or impossible. Using the Message Blaster , you can respond to just
about any message in any window.

Trial Version Information
This version of the Message Blaster is designed to work for 30 days once
installed. After that time it will no longer function. If you create an executable
using the trial version, the executable will fail after 30 days. If you plan to
use the Message Blaster in your project please contact WareWithAll, Inc. to
license a registered copy. The cost is $80 per license.

To purchase licenses for the Message Blaster call 1-800-689-0747 or send a
check or money order made out to WareWithAll, Inc. for $80 U.S. and mail it
to:

WareWithAll, Inc.
758 N. Williams Drive
Palatine, IL 60067

How to
Using the Message Blaster is easy. Just drop a Message Blaster on a form and
bring up the property sheet. From there choose the custom properties and
the Property Page will be displayed.

From there you can choose the messages you are interesting in trapping. As
you choose messages, you can select whether you want the message passed
to the original window procedure after, before or not at all. Once you have
finished selecting messages, all that remains to be done is to write one line
of code that tells the Message Blaster what window you want to trap
message for. This is done by setting the hWndTarget property.

That's it! Now all you have to do is write code in response to the Message
event from the Message Blaster and your done.

You can also set up and use the Message Blaster completly in code. See the
smallcap example for details.

If you have an object browser (like the one that comes with VB), you can
browse the many constants an functions that are automatically declared for
you. Almost every conceivable Windows message is listed along with a little
help on what they do. Along with all the messages are constants used by
Message Blaster as well as constants commonly used in wParam and
lParams.

There are several examples that come with the product that demonstrate the
capabilities of the product.

Technical Support
You can reach WareWithAll any number of ways. For technical support email
us on the internet at edstaff@mcs.com or opearce@vdospk.com or on
Compuserve at 72240,2171or 76106,1541.

You can also call us at 708-358-0484 or 901-763-4868.

Of the properties, all but two of them are standard properties. Unfortunately,
standard properties are not really standard. There is no guarantee that your
particular control container implements any or all of the standard properties.

Properties
About
Property Page
Enabled*
hWndTarget
Index*
Left*
Name*
Tag*
Top*

*Standard Property

Property Page
The property page is a convenient way of selecting messages to trap at
design time without having to write any code. Simply select the messages
you are interested in from the tree on the left, set the processing by choosing
the appropriate radio button (Post process, Pre process or Eat) and hit ok.
Then all you have to do is set the hWndTarget at run-time.

See also
AddMessage

hWndTarget
Description

Sets or gets the window handle of the target window.
The target window is the window that the Message Blaster will trap
messages on.

Usage
[form .]ctlname. hWndTarget = setting

Data Type
Long

Remarks
Set this property to the window handle (hWnd) of the window that you

want to Message Blaster to trap messages on. One of the interesting things
you can do with this property is to change it at run-time with the focus. For
example, if you wanted to trap a particular message for all the controls on a
form, all you would have to do is reset the hWndTarget to the hWnd of
whatever control/window receives the focus. Although this property is
available at design time, it typically is set at run-time.

Example
Private Sub Form_Load()

MsgBlaster1.hWndTarget = Form1.hWnd
End Sub

Enabled
Description
Turn message trapping on or off.

Syntax
object.Enabled [= boolean]

Remarks
By default, the enabled property is set to True.

Name
Description
Returns the name used in code to identify an object.

Syntax
object.Name

Remarks

The default name for new objects is the kind of object plus a unique integer.   
For example, the first new Message Blaster control is MsgBlaster. An object's
Name property must start with a letter and can be a maximum of 40
characters.    It can include numbers and underlined (_) characters but can't
include punctuation or spaces.

The most important property!

Index
Description
Returns or sets the number that uniquely identifies a control in a control
array.    Available only if the control is part of a control array.

Syntax
object[(number)].Index

The Index property syntax has these parts:

Remarks
See the Visual Basic reference for more information

Tag
Description
Returns or sets any extra data needed for your program.    Unlike other
properties, the value of the Tag property isn't used by Visual Basic; you can
use this property to identify objects.

Syntax
object.Tag [= expression]

Remarks
See the Visual Basic reference for more information.

Left
Description

Returns or sets the distance between the internal left edge of an object
and the left edge of its container.

Syntax
object.Left [= number]

Remarks
See the Visual Basic reference for more information.

Top
Description

Returns or sets the distance between the internal top edge of an object
and the top edge of its container.

Syntax
object.top [= number]

Remarks
See the Visual Basic reference for more information.

Methods
AddMessage
ClearMessageList

AddMessage
Syntax
object.AddMessage Message, Processing

The AddMessage method syntax has these parts:
Part Data Type Description
Message Long Value of message to trap
Processin
g

Integer How to process message

Remarks
Adds a message to the list of messages that the Message Blaster will look
for. You can add as many messages as you want, including user defined
messages.

Example
Private Sub Form_Load()

MsgBlaster1.AddMessage _
WM_LBUTTONDOWN, POSTPROCESS

MsgBlaster1.AddMessage _
WM_USER + 1, EATMESSAGE

End Sub

See Also
Property Page,    hWndTarget

ClearMessageList
Syntax
object.ClearMessageList

Remarks
Use the ClearMessageList to reset the list of messages to be trapped by
Message Blaster. Normally, when the hWndTarget is changed at run-time the
message list is not reset.

Example
Private Sub Command1_GotFocus()

' This example resets the hWndTarget
' and message list when this object gets the focus
MsgBlaster1.hWndTarget = Command1.hWnd
MsgBlaster1.ClearMessageList
MsgBlaster1.AddMessage _

BN_CLICK,    POSTPROCESS
End Sub

There is only one event associated with the Message Blaster.

Events
Message

Message
Occurs whenever the Message Blaster see a message destined for the
hWndTarget that is in the message list.   

Syntax

Private Sub MsgBlaster1_Message (_
ByVal hWnd as Long, _
ByVal Msg As Long, _
wParam as Long, _
lParam As Long, _
nPassage As Integer, _
lReturnValue As Long)

The Message Event has these parameters:
Parameter Data

Type
Description

hWnd Long Handle of window
receiving a message

Msg Long Value of message received
wParam Long wParam of Message
lParam Long lParam of Message
nPassage Integer How Message Blaster will

process the message
lReturnValue Long Value Message Blaster

should return to Windows

Remarks
The Message event is where to respond to any messages that Message
Blaster traps for you.

Example
Private Sub MsgBlaster1_Message(ByVal hWnd As Long, _

ByVal Msg As Long,_
wParam As Long, _
Param As Long,_
nPassage As Integer,_
lReturnValue As Long)

       
' This example shows how you might handle
' adding text to a status bar based on a menu
' selection
Select Case Msg

Case WM_MENUSELECT
Select Case wParam

Case 2
' Set status bar

Case 3
' Set status bar

Case Else
' Set status bar

End Select
End Select

End Sub

Constant Value Description
POSTPROCESS 1 Message is passed to target

window after Message
Blaster message event

EATMESSAGE 0 Message event will be fired,
but target window will not
receive message

PREPROCESS -1 Rare. Message is sent to
target window first, then
message event is fired

