
Liberty BASIC Tutorial
It may sound incredible, but anyone can program for Microsoft Windows nowadays.   
Creating software for Microsoft's popular Windows software was once the domain of the
elite C and assembly language programmer.    But    finally, after years of waiting, tools
have arrived for the computer non-guru.    This tutorial is written about one of these tools,
Liberty BASIC, and about how to make it work for you.

What is Liberty BASIC?
Overview of this Tutorial
Programming: What is it?
An Introduction to BASIC
Goto - Doing something more than once
IF . . . THEN - Adding Smarts to Our Tax Program
String Variables
Some things to do with Strings
Functions
Documenting BASIC Code
Let's Write a Program    -    HILO.BAS
Complete listing for HILO.BAS

What is Liberty BASIC?
Liberty BASIC is a shareware programming tool that brings BASIC's ease of use to Microsoft
Windows.

Liberty BASIC includes:

A powerful BASIC language for Windows ;
An editor for writing BASIC programs ;
An easy to use tracing debugger ;
A programmable spreadsheet ;
Color graphics capability

An OS/2 version is also available!!!

Overview of this tutorial
This tutorial    covers:

Programming: What is it? ;
An Introduction to BASIC ;
GOTO - Doing something more than once ;
IF . . . THEN - Adding smarts to our tax program ;
String Variables ;
Some things to do with Strings ;
Functions ;
Documenting BASIC Code ;
Let's write a program    -    HILO.BAS

Programming: What is it?
There's nothing mystical about programming computers.    Although the newest software
on the market today begins to look like magic, all software is built from the ground up out
of combinations of the simplest software parts.    Once you learn what these software parts
are and how they're used, hard work and imagination can take you almost anywhere.

Programming is (simply put) the laying out of simple steps to solve a problem, and in a
way that a computer can understand.    This is a little bit like teaching a person.    These
steps must be arranged in the correct order.

For example:

How to drive a car with automatic transmission:

Get into drivers seat ;
Fasten safety belt ;
Insert ignition key and turn it to start engine ;
Press brake with foot ;
Move transmission selection to D ;
Look around to see if you're safe ;
Remove foot from brake ;
Press accelerator pedal with foot ;
Manuever into traffic ;
Don't crash

Obviously if the above steps are scrambled up (and maybe even if they aren't) you're in
for a pretty big insurance claim.    Not only that, but if the instructions are given to
someone who speaks only, say, Chinese, we will have a similarly spectacular crash!    In
the same way, computers are particular about both the order and content of the
instructions we give them.

A program in its simplest form usually contains three kinds of activity:

      INPUT The program asks the user for some kind of information ;
      CALCULATION The program transforms or manipulates the information ;
      OUTPUT The program displays the final result of CALCULATION

It is the programmer's job to determine exactly how to accomplish these steps.

An Introduction to BASIC
BASIC (Beginners All purpose Symbolic    Instruction Code) was created in the 1960's as an
easy to learn programming language for computers.    Because of BASIC's simple form and
because it was an interpreted language and gave the programmer instant    feedback, it
became the most popular programming language when microcomputers made their debut,
and it has a large following even today.

This tutorial introduces the first principles of Liberty BASIC, but doesn't provide a thorough
description of all language features.    For more on the full language and command set,
refer to the documentation included with your copy of Liberty BASIC.

Salestax.bas, a simple BASIC program.
Now let's create a very simple program to introduce you to the simplest of BASIC's
features.    We want a BASIC program that:

1 - Asks for a dollar and cent amount for goods ;
2 - Calculates a 5% sales tax amount for the dollar and cent figure ;
3 - Displays the tax amount the the total amount

INPUT - First we need an instruction for the computer that gets information from the user.   
In BASIC there are several ways to do this but we will choose the input command for our
program.    In this case input would be used like so:

input "Type a dollar and cent amount "; amount
  ^---------

this is a variable

This line of BASIC code would display the words Type a dollar and cent amount ?    and the
computer would then stop and wait for the user to type something in.    When the [Enter]
key is pressed, the typed information would then be stored in the variable* amount.

*variable    -    In programming, you can give each bit of data (or information) a unique
name.    This combination of a name and its data is called    a variable because the data
part can vary each time the program is used.    When you type in a program, you choose a
name for each variable.    You pick the name for each variable to best fit what kind of data
it represents.    BASIC doesn't care what kind of name you give to your variables, but you
should pick names that make it easy for you to understand what the BASIC program code
means and does, especially if you expect to be reading the code some time later or
sharing it with others.    When running a program, BASIC uses the data part of the variable
in its calculations and only uses the name part to fetch the data part or to store new data
in that variable if it the value of the data changes. It isn't unusual for a variable to hold
many different data values in the single execution of    a program.

CALCULATION - Now we need to calculate the tax for the data in our amount variable:

let tax = amount * 0.05

This line of code creates a new variable tax to hold our computed tax data.    The BASIC
command let tells BASIC to calculate the arithmetic on the right side of the = and set the

data of the variable tax to be the result.    The let word is optional (and most programmers
leave it out) but I use it here to make it easier to see that    the line of code shown is not an
exercise in Algebra 101, rather that the expression on the right of the equal sign becomes
the data for the variable on the left of it.    It could have just as easily been coded:

tax = amount * 0.05

Now you may be wondering just what that funny little * (called asterisk) is.    Since there
are no formal arithmetic symbols on a typewriter keyboard, most programming languages
use * to denote multiplication, / for division, and the addition and subtraction symbols get
lucky and are + and - (what else?).

OUTPUT - Now that we have calculated our tax amount, we will display it with:

print "Tax is: "; tax; ". Total is: "; tax + amount

The print command displays information on the screen for the user to examine it.    The line
of code above shows how print is used to display several items of data, each seperated by
a ; (semicolon).

The items are:

      "Tax is: "     - This displays on screen as is, but without the quotation marks ;
      tax     - This displays the value of the variable tax ;
      ". Total is: "     - This also displays on screen as is, but without quotation marks ;
      tax + amount    - This displays the sum of the two variables, tax and amount

These will all be displayed one after another on the same line.    The semicolons are not
displayed.    After the print command is done, the next print command will print below it.
The result might look like this:

Tax is: 0.05. Total is: 1.05

Now let's run the program.    Type the following program into the Liberty BASIC editor so
that it looks as shown.

    input "Type a dollar and cent amount "; amount
    let tax = amount * 0.05
    print "Tax is: "; tax; ". Total is: "; tax+amount

Now run the program ...

And here is a sample run:

Now let's save our program.    Select the File menu and choose Save As.    Now type the

name salestax.bas and click on OK.

GOTO - Doing something more than once
Assuming that salestax.bas does what we want (see previous section), it still only does it
once.    Each time you want to use this handy little program you have to run it again.    This
can get to be tedious and even error prone (say rubber baby buggy bumpers    ten times
fast).    What we need is a way for our program to go to the beginning and do it over.    In
BASIC (and in some other languages) the command for doing this is called goto (surprise!).

Knowing that we have to goto some place is not enough.    We also need to know where to
go. When you hop into your car in a foreign country looking for a food market, you at least
know what you are looking for.    Liberty BASIC can't ask for directions, so you need to be
very precise.

The mechanism that Liberty BASIC uses to mark places that we can goto is called a branch
label.    This is a lot like a mailing address.    When you send a letter or package, you mark it
with a known mailing address (hopefully).    There is a house or building somewhere
marked with that address, and that is where your parcel goes to.    So in the same way, you
mark the place in your BASIC program where you want it to continue running with a
branch label (a mailing address of sorts).

There are two ways to define a branch label in Liberty BASIC.    You can use any valid
integer number as a branch label, or you can use an easier to remember type which uses
letters.

Examples of integer branch labels:

10 150 75 900 5400 etc...

Examples of alphanumeric (using letters and numbers) branch labels:

[start]    [loopBack]    [getResponse]    [point1]    etc...

Examples of unacceptable branch labels:

[loop back] no spaces allowed
start must use brackets
(point1) only use square brackets

Since no spaces are allowed in the alphanumeric branch labels, it works well to capitalize
the first letter in each word when multiple words are used in a branch label.    For example
[gettimedresponse] is valid, but [getTimedResponse] is much more readable.

So let's pick a branch label for our tax.bas program.    Since we are going to do it over
again from the start, we could pick from several reasonable branch label names like
perhaps [start], [begin], or [go].    We will use [start] for our program.

Let's add the branch label as shown:

[start]
        input "Type a dollar and cent amount "; amount
        let tax = amount * 0.05
        print "Tax is: "; tax; ". Total is: "; tax + amount

Now we need our goto line.    Now that we have our branch label, the correct format for
goto is goto [start]. And here's what our program looks like when both a branch label and a
goto:

[start]
        input "Type a dollar and cent amount "; amount
        let tax = amount * 0.05
        print "Tax is: "; tax; ". Total is: "; tax + amount
        goto [start]

Now let's try running this program.    It runs over and over and over, right?    This
programming format is called an unconditional loop because it always loops back to repeat
the same code no matter what.    When we are finished with it, we can close it like any
other Windows program by double-clicking on the system menu box.

IF...THEN - Adding Smarts to Our Tax
Program
The program we designed above will only do one thing for us, no frills.    Let's learn how to
add some smarts to our program.    One way that this can be done is with the if . . . then
statement.

The if . . . then statement is a direct descendant of those do-it-yourself style instruction
manual texts.    For example:

        Problem: Your car's engine won't turn over

            1) Check your battery for correct voltage.
            2) If voltage is less then 11 volts then goto to step 13
            3) Clean and tighten ground connection.
            4) If this doesn't solve the trouble, continue to step 5.
            5) Remove the starter.
            6) Connect starter directly to battery
            7) If starter does not spin then goto step 18
            8) Check starter relay.
            . . .
        13) Charge battery
            . . .
        18) See chapter 4 on rebuilding the starter unit

Notice how in the above example how you are led smartly through the troubleshooting
procedure.    The steps containing the words if and then make it possible to intelligently
work through a complex procedure.    In the same way, the if . . . then statement in BASIC
makes it possible to add a kind of    intelligence to your programs.

Let's see how we can apply this.    Suppose we want the computer to give us the option to
display instructions about how to use our tax program.    An easy way to add this ability
would be to display instructions whenever a zero value is entered as our dollar amount.

Now whenever input is used to get a number from the user of a Liberty BASIC program,
and if the user doesn't type a number but only presses the [Enter] key, then Liberty BASIC
gives the variable for that input statement the value of zero.    We can exploit this feature
in our tax.bas program.    By looking to see if the variable amount is zero after the input
statement, we can decide whether or not to display instructions.

Here's what our new program would look like:

[start]
        print "Type a dollar and cent amount."
        input "(Press 'Enter' alone for help) "; amount
        if amount = 0 then goto [help]
        let tax = amount * 0.05
        print "Tax is: "; tax; ". Total is: "; tax + amount
        goto [start]

[help]
        print "This tax program determines how much tax is"
        print "due on an amount entered and also computes"

        print "the total amount.    The tax rate is 5%"
        goto [start]

Notice the line      if amount = 0 then goto [help]      in the program above.    When Liberty
BASIC comes to this line to execute it, it checks to see if the value of the variable amount
is equal to 0.    If it is, then the goto [help] statement in the line is executed, and so Liberty
BASIC begins following the instructions after the [help] branch label.    See how the if . . .
then statement performs exactly what it means when read aloud?

Actually, the goto part of the if . . . then statement is optional.    Either of these two forms
is acceptable:

if amount = 0 then goto [help]
        - or -

if amount = 0 then [help]

Comparing numbers    -    The = (equality) operator is only one of several that can be used
to make decisions in an if . . . then statement.    We can use the if . . . then statement and
the (=, <>, <, >, <=, >=) operators to determine whether:

        a = b          a is equal to b
        a <> b          a is unequal to b
        a < b      a is less than b
        a > b          a is greater than b
        a <= b          a is less than or equal to b
        a >= b          a is greater than or equal to b

For example, instead of checking to see if amount was equal to 0 in the above program,
we could have just as easily checked to see whether it was less than 0.01 (or one cent).   
For example:

        if amount < 0.01 then goto [help]

When you run the program above you will probably notice that the things displayed sort of
run together. There are things that we can do to neaten up the appearance of a BASIC
program.    We can add extra blank lines between our printed output to break things up.   
This is done by using an empty print statement, one for each blank line.    We can also
clear the window at an appropriate time with the cls statement.    Both of these techniques
are applied to our tax program in the listing below:

[start]
        cls
        print "Type a dollar and cent amount."
        input "(Press 'Enter' alone for help) "; amount
        if amount = 0 then [help]
        let tax = amount * 0.05
        print "Tax is: "; tax; ". Total is: "; tax + amount
        goto [start]

[help]
        cls
        print "TAX.BAS Help"
        print

        print "This tax program determines how much tax is"
        print "due on an amount entered and also computes"
        print "the total amount.    The tax rate is 5%."
        print
        input "Press [Enter] to continue."; dummyVariable
        print
        goto [start]

Notice the line            input "Press [Enter] to continue."; dummyVariable      in the listing.    In
this example, we are simply using an input statement to put a halt on the program so that
the instructions can be read.    When [Enter] is pressed as instructed, dummyVariable
receives the value of what is typed.    In this case nothing is probably typed before pressing
[Enter], so dummyVariable gets a value of zero for its data.    It really doesn't matter what
dummyVariable's data is since we don't use the variable in any calculations elsewhere
(hence the name dummyVariable).

String Variables
So far, the only kind of variables we have used are for holding number values.    There are
special variables for holding words and other non-numeric character combinations.    These
variables are called string variables (they hold strings of characters*).

        *Characters are:
            Letters of the alphabet ;
            Digits 0123456789 ;
            Any other special symbols like: , . < > / ? ; : ' " [] { } ` ~ ! @ # $ % ^ & * () + - \ |     
etc . . .

Let's look at a very simple program using strings:

        input "Please type your name "; name$
        print "It's nice to meet you, "; name$

This two-line program asks you for your name.    Once you've typed it and pressed [Enter],
it responds with:

        It's nice to meet you, your-name-here

Notice one special thing about our string variable name.    It ends with a $ (dollar sign).    In
BASIC, when you want to store characters in a variable, you end the variable name with a
$.    This makes it a string variable.    As you can see from our program example, you can
both input and print with string variables, just as we did earlier with our non-string or
numeric variables.

We've actually been using strings all along, even before this section about string variables. 
Whenever you saw a BASIC program line with words in quotes (for example:    print "It's
nice to meet you, ") you were looking at what is called a string literal.    This is a way to
directly express a string in a BASIC program, exactly the way we type numbers directly in,
only with characters instead.    A string literal always starts with a quotation mark and
always ends with a quotation mark.    No quotation marks are allowed in between the
starting and ending quotation marks (point: string literals cannot contain quotation
marks).

NOTE    -    A string can have zero characters.    Such a string is often called an empty string. 
In BASIC, an empty string can be expressed in a string literal as two quotation marks
without any characters between them.    For example (noCharactersHere$ is the name of
our string variable):

        let noCharactersHere$ = ""

Some things to do with Strings
Just as you can manipulate numbers in a computer programming language by adding,
subtracting, multiplying, and dividing, (and more!), we can also manipulate strings

Adding strings    -    We can add (or concatenate) two or more strings together in BASIC like
so:

        input "What is your first name "; firstName$
        input "What is your last name "; lastName$
        let fullName$ = firstName$ + " " + lastName$
        print "Your full name is: "; fullName$

In this short program, we input two strings, your first and last name.    Then we
concatenate the string in firstName$ with the string literal    " "    (a single space between
two quotes) and with lastName$.    The result is made the data for the string variable
fullName$, which we then print out.

Comparing strings    -    We can compare strings with each other just as we can compare
numbers.    This means that we can use the if . . . then statement and the (=, <>, <, >,
<=, >=) operators to determine whether:

        a$ = b$ a$ is equal to b$
        a$ <> b$ a$ is unequal to b$
        a$ < b$      a$ is less than b$
        a$ > b$ a$ is greater than b$
        a$ <= b$ a$ is less than or equal to b$
        a$ >= b$ a$ is greater than or equal to b$

When comparing strings, a string is considered to be equal to another string when all the
characters in one string are exactly    the same in both strings.    This means that even if
they both print the same onto the screen, they can still be unequal if one has an invisible
space on the end, and the other doesn't.    For example:

        a$ = "Hello"
        b$ = "Hello "
        print "a$ is "; a$
        print "b$ is "; b$
        if a$ = b$ then goto [areTheSame]
        print "a$ and b$ are not the same"
        goto [end]
[areTheSame]
        print "a$ and b$ are the same"
[end]

When the line    if a$ = b$ then goto [same]    is performed, the result is not to goto [same],
because even though if a$ and b$ were printed they would look    the same, they are not
actually the same.

Functions
Now that we've covered bringing data into your programs with input, displaying data with
print, keeping data in string and numeric variables, and controlling program flow with if . . .
then, we will bring one more way to light to flesh out your programs.    Functions provide a
means for manipulating program data in meaningful ways.

        Look this short program:

        input "Please type your name "; name$
        print "Your name is "; len(name$); " characters long."

The second line demonstrates the use of the len() function.    The len() function returns
the number of characters in a string.    The expression inside of the parenthesis must either
be a string literal, a string variable, or an expression that evaluates to be a string.    This
identifies len() as a string function.    There are other string functions (for example: val(),
trim$()).    The result returns is a number and can be used in any mathematical
expression.

There are numeric functions as well.    For example:

[start]
        let count = count + 1
        print "The sine of    "; count; " is "; sin(count)
        if count < 45 then goto [start]

This simple program lists the sines for the values from 1 to 45.    The sin() function takes
the value of count enclosed in parenthesis and returns the sine (a function in trigonometry,
a branch of mathematics) for that value.    Just like the len() function above, cos() and
other numeric functions can be used as parts of bigger expressions.    We will see how this
works just a little further along.

Notice also the way the program counts from 1 to 45.    On the first pass, count is equal to
zero until it gets to the line    let count = count + 1    which makes sets the data for variable
count to be one more than its value at that point.    Then the program prints the sine of
count (the sine of one, in other words).    After this, the line    if count < 45 goto [start]   
checks to see if the data for count is less than 45.    If it is, then BASIC goes back to the
branch label [start] to do it again.    This happens over and over until count reaches a value
of 45, and then it doesn't go back to [start] again, but instead having no more lines of
code to run, the program stops.

Going back to execute code over again is called looping.    We saw this earlier when we first
used the goto statement.    In our first use of goto, the program always looped back.    In
this newest example program we see going back to execute code over again, but based on
a condition (in this case whether count is less than 45).    This is called conditional looping
(you guessed it, the looping that always happens is called unconditional looping, or infinite
looping).

Documenting BASIC Code
When writing very short and simple BASIC programs, it isn't usually difficult to grasp how
they work when reading them days or even weeks later.    When a program starts to get
large then it can be much harder.    There are things that the programmer (yes, you) can do
to make BASIC programs more understandable.

VARIABLES    -    Liberty BASIC makes it easy to give your variables very meaningful names. 
Since a variable name can be as long as you like and because Liberty BASIC lets you use
upper and lower case letters, variable names can be very meaningful.

        For example:

                let c = (a^2 + b^2) ^ 0.5

        could better be expressed:

                let lengthOfCable = (distanceFromPole ^ 2 + heightOfPole ^ 2) ^ 0.5

Both are valid Liberty BASIC code, but the second is easier to read and maintain.

BRANCH LABELS    -    Make sure that when you use goto that your branch labels describe
the kind of activity your BASIC program performs after the label.    For example if you are
branching to a routine that displays help then use [help] as your branch label.    Or if you
are branching to the end of your program you might use [endProgram] or [quit] as branch
labels.

COMMENTING CODE    -    BASIC also has a built in documentation feature that lets you add
as much commentary as you like in the language of your choice.    The rem (short for
remark) statement lets you type whatever you like after it (you can even misspell or type
gobbledy-gook, it doesn't care!).    For example:

[askForName]

        rem    Ask for the user's name
        input "What is your name" ; yourName$

        rem    If the user didn't type anything, then ask again
        if yourName$ = "" then goto [askForName]

Notice how a rem statement was added before the input statement and before the if . . .
then statement to describe what they should do.    Liberty BASIC just skips over these lines,
but a human reader finds this kind of documentation very helpful.

Also see the way that blank lines were added between the different parts of the program?   
These help to group things together, making the program easier to read.

A more elegant form of the rem statement uses the ' (apostrophe, the key just to the left
of the Enter key). Instead of typing rem, substitute the ' like so:

[askForName]

        '    Ask for the user's name
        input "What is your name" ; yourName$

        '    If the user didn't type anything, then ask again�
        if yourName$ = "" then goto [askForName]

Most people consider this to be more readable than using rem, and it works the same.   
One extra thing that you can do only with the apostrophe version of rem is to hang it off
the end of whatever line you are commenting.    For example:

[askForName]

        input "What is your name" ; yourName$                          '    Ask for the user's name�

        if yourName$ = "" then goto [askForName]            '    If the user didn't type anything,
then ask again

This optional, but it saves screen space and many prefer it.

Learning to document the programs you write takes practice.    Try to develop a consistent
style.    Everyone does it differently and there isn't a right or wrong way to do it.    Smaller
programs may not need any documentation at all.    Programs that you intend to share with
others should probably be thoroughly documented.

Let's write a BASIC program
Now we will write a simple game using all of the concepts described in this tutorial.    These
include:

        input statement
        print statement
        let statement
        variables
        goto statement
        conditional branching with if . . . then
        functions
        documenting

THE GAME    -    HILO.BAS

Hi-Lo is a simple guessing game.    The computer will pick a number between 1 and 100.   
Our job is to guess the number in as few guesses as we can.    When we guess, the
computer will tell us to guess higher or to guess lower depending on whether we guessed
too high or too low.    When we finally get it, the computer will tell us how many guesses it
took.

Let's outline how our program will work before we begin to write code:

(1) Pick a number between 1 and 100
(2) Print program title and give some instructions
(3) Ask for the user to guess number
(4) Tally the guess
(5) If the guess is right go to step (9)
(6) If the guess is too low tell the user to guess higher
(7) If the guess is too high tell the user to guess lower
(8) Go back to step (3)
(9) Beep and tell the user how many guess it took to win
(10) Ask the user whether to play again
(11) If the user answers yes then clear the guess tally and goto step (1)
(12) Give the user instructions on how to close the game window
(13) End the program

When we write an outline for a computer program like we did here, the resulting outline is
often called pseudocode, which is a fancy name for false code.    This can be a useful tool
for planning out software before it is written, and it can be very helpful in developing ideas
before code is actually written.

Now we are going to take each of the steps above and write BASIC code for each step.   
We will document the code to explain its purpose:

(1) Pick a number between 1 and 100

        ' Here is an interactive HI-LO
        ' Program

[start]
        guessMe = int(rnd(1)*100) + 1

The first couple of lines are just ' remark statements to give a brief desciption for the
program.    The [start] branch label is equivalent to calling this part of the program step
(1).

Now we have the code that picks the number.    We use two functions here to accomplish
this task:

        The rnd() function is the key to this line of code.    It picks a random (or nearly random)
number greater than 0 and less than 1 (for example 0.3256).    Then we multiply this by
100 with the * operator to get a number between greater than 0 but less then 100 (0.3256
times 100 would be 32.56) ;

        The int() function removes the fractional part to leave only the integer part of the
number (the 0.56 part of 32.56 would be removed to leave only 32).

Then we add 1 to this.    This is necessary because we want to pick a number as small as 1
and as large as 100.    The rnd() function only gives us a number as large as 0.9999999
and not as large as 1.    If you multiply 0.9999999 by 100, the biggest number you can get
is 99.99999, and this is not big enough so we add one.

When we have picked the number, we assign its value to the variable guessMe.

2) Print program title and give some instructions

        ' Clear the screen and print the title and instructions
        cls
        print "HI-LO"

        print

        print "I have decided on a number between one"
        print "and a hundred, and I want you to guess"
        print "what it is.    I will tell you to guess"
        print "higher or lower, and we'll count up"
        print "the number of guesses you use."

        print

This very simple part of the program wipes the window clean and prints the title HI-LO and
some instructions.    Notice the use of blank print statements to add space between the
title and the instructions and after the instructions also.

3) Ask for the user to guess number

[ask]
        ' Ask the user to guess the number and tally the guess
        input "OK.    What is your guess"; guess

Here the branch label [ask] will let us go back here later if the user needs to be asked to
guess again.    Then we use the input statement to ask the user for a guess.    The user's
guess is then placed in the guess (what else?) variable.

        ' check to see if the guess is right
        if guess = guessMe then goto [win]

4) Tally the guess

        ' Now add one to the count variable to count the guesses
        let count = count + 1

Now we take the value of count and add one to it.    Each time this code is performed,
count's value will increase by one.

5) If the guess is right go to step (9)

This line compares the variable guess with the variable guessMe.    If they are equal, then
we goto [win], which is equivalent to . . . go to step (9) in our outline.

6) If the guess is too low tell the user to guess higher

        ' check to see if the guess is too low
        if guess < guessMe then print "Guess higher."

This line compares the variable guess with the variable guessMe.    If guess is less than
guessMe, then display the text "Guess higher."

7) If the guess is too high tell the user to guess lower

        ' check to see if the guess is too high
        if guess > guessMe then print "Guess lower."

This line compares the variable guess with the variable guessMe.    If guess is greater than
guessMe, then display the text "Guess lower."

8) Go back to step 3

        ' go back and ask again
        goto [ask]

9) Beep and tell the user how many guess it took to win

[win]
        ' beep once and tell how many guesses it took to win
        beep
        print "You win!    It took"; count; "guesses."

        ' reset the count variable to zero for the next game
        let count = 0

This is the code our game executes when the player wins.    The beep statement rings the
terminal bell once. Then the print statement says that the game is won and how many

guesses it took.    Finally, the let statement resets the count variable to zero for the next
game.

10) Ask the user whether to play again

        ' ask to play again
        input "Play again (Y/N)"; play$

This input statement asks whether or not to play again.    The resulting string is stored in
the string variable called play$.

11) If the user answers yes then goto step 1

        if instr("YESyes", play$) > 0 then goto [start]

This if . . . then statement uses the instr() function to determine whether the player
answered "Y", "y", "YES",    or "yes".    The instr() function checks to see if the string in
play$ is found anywhere in the string literal "YESyes".    If it is, then instr() returns the
position, which is then compared with 0 using the > operator.    If the contents of play$ are
found in "YESyes", then the value returned from instr() will be greater than zero, so that
goto [start] will be executed, and the game will be restarted.

12) Give the user instructions on how to close the game window

        print "Press ALT-F4 to close this window."

Since the player did not wish to play again, we will display instructions on how to close the
game window.

13) End the program

        end

It is good practice place the end statement as the end of your BASIC programs.    It can
also be used at any place where you want the program to stop running.

Complete listing for HILO.BAS
Here is the complete listing for HILO.BAS so that you can just copy and paste it into Liberty
BASIC to run it.

        ' Here is an interactive HI-LO
        ' Program

[start]
        guessMe = int(rnd(1)*100) + 1

        ' Clear the screen and print the title and instructions
        cls
        print "HI-LO"

        print

        print "I have decided on a number between one"
        print "and a hundred, and I want you to guess"
        print "what it is.    I will tell you to guess"
        print "higher or lower, and we'll count up"
        print "the number of guesses you use."

        print

[ask]
        ' Ask the user to guess the number and tally the guess
        input "OK.    What is your guess"; guess

        ' Now add one to the count variable to count the guesses
        let count = count + 1

        ' check to see if the guess is right
        if guess = guessMe then goto [win]
        ' check to see if the guess is too low
        if guess < guessMe then print "Guess higher."
        ' check to see if the guess is too high
        if guess > guessMe then print "Guess lower."

        ' go back and ask again
        goto [ask]

[win]
        ' beep once and tell how many guesses it took to win
        beep
        print "You win!    It took"; count; "guesses."

        ' reset the count variable to zero for the next game
        let count = 0

        ' ask to play again
        input "Play again (Y/N)"; play$
        if instr("YESyes", play$) > 0 then goto [start]

        print "Press ALT-F4 to close this window."

        end

