
2.3. CARRYING ON 25

grestore();

set(LINECOLOUR,BLACK);

stroke();

}

The following example again illustrates the use of gsave/grestore to repeatedly draw the same path

each time with a small translation to draw a stack of pages. It also illustrates the use of electronic white

out (�lling with colour white) to remove unwanted lines.

#include <splot.h>

int i;

double x,y,d,l;

main()

{

/* draw 3d stack of pages */

x = 5;

y = 15;

l = 4;

for (i = 0;i <= 10;i++;)

{

d = i * 0.2;

box(x - d ,y - d, x - d + l, y - d + l);

gsave();

set(LINECOLOUR,WHITE);

fill();

grestore();

stroke();

}

/* draw sample */

arc(5.02,14.96,1.2,0,360);

fill();

white_box(3.95,13.51,6.134,13.904);

white_box(3.862,13.689,3.752,15.443);

/* draw axes */

moveto(3.00,10.19);

rarrowto(0.0,2);

moveto(3.00,10.19);

rarrowto(2,0);

moveto(3.00,10.19);

rarrowto(1.6,1.6);

stroke();

/* add labels */

text(5.20,9.71,"X");

text(2.31,11.82,"Y");

text(5.01,11.64,"!l");

}

int white_box(double x1,double y1,double x2,double y2)

26 CHAPTER 2. USING SPLOT

{

gsave();

newpath();

box(x1,y1,x2,y2);

set(LINECOLOUR,WHITE);

fill();

grestore();

}

Using the above technique to repeatedly draw the same element will not work with functions such

as text(); which are implicitly stroked since there is no chance to do a gsave(); before the stroke.

However, implicit stroking can be temporarily turned o� with the newpath(); command. Without

the newpath(); in the following example only the �rst "SPLOT" would have been printed. The �rst

stroke(); after a newpath(); turns on implicit stroking again with these functions.

#include <splot.h>

main()

{

int i;

newpath();

translate(10,10);

text(0,0," SPLOT");

for (i=0;i < 360;i += 30)

{

gsave();

rotate(i);

stroke();

grestore();

}

}

2.3.4 Insets

Inset �gures can easily be made from existing �gures by moving the origin to the desired insertion

point using translate(xpos,ypos);, changing the scale with scale(xfact,yfact);, and copying the

existing code de�ning the inset �gure into the current �le using the editor block move functions. It is also

useful to bracket the inset �gure with a gsave(); / grestore(); pair in order to restore the original

coordinates after the inset.

/* This figure demonstrates how to use axes other */

/* than the standard linear axes. Also it illustrates */

/* how insets can be made. Insets alternatively can */

/* be made by encapsulating an entire drawing in a */

/* subroutine. */

#include <splot.h>

double *lifetime, *rawtime;

2.3. CARRYING ON 27

main()

{

int i;

double majortic,minortic;

/* define a tic length */

/* major and minor tics */

majortic=0.3;

minortic=0.25;

/* set up some default values */

set(FONTASPECT,1.2);

set(FONTWIDTH,0.8);

set(PLOTTYPE,SYM_LINES);

set(CURSYMBOL,CIRCLE);

set(AXESCLIP,ON);

set(LINEWIDTH,0.1);

set(AXESTYPE,LOGY);

/* get the data and set the box */

readdata("demo\lifetime.dat",lifetime);

/* draw axes box but not centered on the page */

axes_box(13,17,-30,0.9,330,60,5.51,7.5);

/* x-axis */

/* major tics*/

set(TICKLENGTH,majortic);

tickmarks(XAXES,0,100,200,300);

/* minor ticks */

set(TICKLENGTH,minortic);

set(LINEWIDTH,0.05);

tickmarks(XAXES,25,50,75,125,150,175,225,250,275);

ticklabel(BOTTOM,0,"0",100,"100",200,"200",300,"300");

/* y-axis */

/* major tics*/

set(TICKLENGTH,majortic);

set(LINEWIDTH,0.1);

tickmarks(YAXES,1,10,50);

/* minor ticks */

set(TICKLENGTH,minortic);

28 CHAPTER 2. USING SPLOT

set(LINEWIDTH,0.05);

tickmarks(YAXES,2,3,4,5,6,7,8,9,20,30,40);

ticklabel(LEFT,1,10,50);

/* axis labels */

label(LOWER,"Temperature (K)");

label(LEFT,"Lifetime (ms)");

drawdata(lifetime,0,1);

/* now build the inset figure */

/* insert setup stuff */

set(PLOTTYPE,LINES);

set(LINEWIDTH,0.065);

set(AXESTYPE,LOGY);

readdata("demo\rawtime.dat",rawtime);

axes_box(6,7.85,0.00,20,0.400,250000,8.02,10.19);

set(LINEWIDTH,0.05);

tickmarks(XAXES,0.1);

tickmarks(YAXES,1);

set(FONTASPECT,1.0);

set(FONTWIDTH,0.67);

ticklabel(BOTTOM,0,0.4);

drawdata(rawtime,0,1);

text(11.30,16.64,"T=20K");

label(LEFT,"Log Counts (Decades)");

set(LABELMARG,-0.8);

label(BOTTOM,"time (ms)");

}

2.3. CARRYING ON 29

30 CHAPTER 2. USING SPLOT

2.3.5 Tick Marks and Tick Labels

Tick marks are added to an existing axes box using the tickmarks(); command. At its simplest no

parameters are required and Splot tries to select a set of reasonable tick marks for both the x and y

axes. Alternatively, a list of tick positions can be provided for each axis. Tick marks are lines and so

the width of a tick mark is set using set (LINEWIDTH, width);. The length of a tick mark is set using

set(TICKLENGTH, length);. Grid lines may be produced by choosing the length the same as the length

of the axes box. If tickmarks on the outside of the axes box are desired they may be generated by setting

a negative tick length.

Tick labels are produced with the ticklabel(); command. At its simplest no parameters are required

and Splot labels a subset of the existing tick marks on the bottom and left side. Alternatively, an axis

may be speci�ed along with a list of tick label positions. At its most powerful each tick position may be

paired with a text string allowing any arbitrary string to appear at the desired location. In this way tick

labels need not be in the same units as those used to draw the graph. Tick labels are just text and tick

label appearance is a�ected by the text attributes discussed in 2.3.1.

#include <splot.h>

main()

{

/* tick marks and tick label example */

abox(12,12,5,6);

ascale(XAXES,0,100);

ascale(YAXES,0,30);

/* default tick marks and labels */

tickmarks(BOTTOM);

ticklabel(BOTTOM);

gsave();

/* grid lines */

set(TICKLENGTH,12);

tickmarks(LEFT);

ticklabel(LEFT);

/* thick -ve ticks at specified positions */

set(LINEWIDTH,0.2);

set(TICKLENGTH,-0.3);

tickmarks(RIGHT,0,5,10,15,20,25,30);

set(LINEWIDTH,0.05);

set(TICKLMARG,0.5);

ticklabel(RIGHT,0,30);

grestore();

/* ticks by spacing and custom labels */

tickmarks(TOP,5);

ticklabel(TOP,0,"0",50,"5x10^1^",100,"10^2^");

}

2.3. CARRYING ON 31

2.3.6 clipping

A drawing can be clipped to an arbitrary path by �rst building a path with the path building functions

such as moveto(); and lineto(); and then setting it up as the clip path with the clip(); function.

The clip path must be set before the drawing to be clipped is made. In the following example a triangular

path is made and then saved using gsave();. This path is then set up as the current clip path using the

clip(); function. The path is then restored and stroked in order to show the clip path. The clip path

is not ordinarily visible on the page. Finally the path is restored once more the y axis mirrored and the

triangle �lled. The result is the inverted triangle clipped against the original triangle.

#include <splot.h>

main()

{

translate(10,13);

moveto(-4,-4);

rlineto(10,0);

alineto(10,120);

closepath();

gsave();

clip();

grestore();

gsave();

stroke();

grestore();

/* mirror about y axis */

scale(1,-1);

fill();

}

Data drawn using drawdata(); or plotdata(); may be clipped to the most recently drawn axes

box by setting set(AXESCLIP,ON); before calling plotdata(); or drawdata();. This makes use of the

clipping mechanism internally by temporarily adding the axes box to the clip path and then restoring

the previous clip path after the data is drawn.

2.3.7 units

The default units for the drawing page are centimeters. The physical page available for drawing in is 20

cm wide by 26 cm high (approximately 8 x 11 inches). It is not possible to change the physical size of

the drawing area but the units can easily be changed using the scale(xfact, yfact);scale command.

Thus in order to change the units to inches for example put scale(0.3937,0.3937); right after main()

in the �le. The default orientation of the page is portrait with the x axes along the short side. The origin

may be shifted using translate(); and x and y interchanged using rotate(90);. It is thus possible to

change to landscape mode using a combination of translate(); and rotate(); but it is much easier to

just specify set(PAGE ROT, ON); at the top of the �le after main().

It is sometimes convenient to change the coordinates of the page to match those used to draw data

within the axes box. This can be useful for adding labels to features in the data. This could be done

using translate(); and scale(); but is much more easily achieved with the function cmatch(ON);

in the code or the coordinate match menu choice in the misc menu. The menu button is a toggle and

alternately turns on and o� the coordinate matching. If there are multiple axes boxes in a �gure the last

drawn one is used to match to. This may be changed by high lighting a di�erent axes box using the right

mouse button.

32 CHAPTER 2. USING SPLOT

Chapter 3

Hardware Requirements and

Installation

Splot will run as a PM application on any computer running OS/2. An extended DOS version with

slightly less functionality is also available. Disk space requirements are modest. The executable, help,

demo and font �les take up less than one Mb of disk space. The documentation in L

a

T

E

Xform and the

resultant postscript document containing all the �gures in the demo directory take up another 2 Mb.

To install Splot make a directory for it copy the distribution �le to it and then use an un-zipping

utility to un-zip the zipped distribution �le. Be sure to use the appropriate ag so that the necessary

sub directories are created if your un-zipping utility requires it. This should create three sub directories

one containing the fonts, another containing the example programs and a third for the documentation.

The executable and help �les should be in the current directory. There are two included con�guration

�les splot.cfg and spexpert.cfg. The default is splot.cfg and contains function macros which will �ll in

prompts for the necessary parameters. For an expert Splot user this is annoying since these prompts

must always be erased. Experts should copy spexpert.cfg to splot.cfg to remove the parameter prompts

or customize the parameter prompts in splot.cfg.

It is recommended that the actual drawing �les be put in a sub directory of the main Splot directory.

To run the program type splot (or spltdemo for the demo version) on a command line followed by an

optional �le name(s). Alternatively after setting up an association between *.spt �les and splot.exe �les

can be dragged to the splot icon to start Splot.

33

34 Chapter 3 Hardware and Installation

Chapter 4

Splot Library Functions

What follows is a list of the built in library functions. This document does not include information on C

in general or details of the editor usage. Editor documentation is found in chapter 8 and C information

can be found in any number of readily available texts.

4.1 Drawing Library Reference

4.1.1 Drawing Functions

void abox(double xsi, double ysi, double xorig, double yorig);

Adds an axes box to the current path. The box is drawn with a size of xsi by ysi and centered

on the page. No internal coordinate system is set up. Use ascale() for this or use axes box()

to combine both functions. The last two parameters are optional and if present, specify

the position of the axes origin relative to the page origin. For the last two parameters the

special constants XCENTER and YCENTER can be used for the x or y position coordinate

respectively and will cause the axes box to be centered on the page along that axis. Using

both XCENTER and YCENTER is equivalent to the default behaviour with the last two

parameters absent. abox() is implicitly stroked.

void alineto (double len, double ang);

Adds a line of length len at an angle of ang with respect to the previous line to the current

path. Generates an error if there is no previous line in the current path.

void arc(double xcen, double ycen, double rad, double alpha, double beta);

Adds a circular arc of radius rad centered at (xcen, ycen) to the current path. The starting

angle is alpha and the stopping angle is beta. The arc is drawn in the counter clockwise

direction. A straight line section will be added from the previous current point if any to the

starting point of the arc.

void arcn(double xcen, double ycen, double rad, double alpha, double beta);

Adds a circular arc of radius rad centered at (xcen, ycen) to the current path. The starting

angle is alpha and the stopping angle is beta. The arc is drawn in the clockwise direction. A

straight line section will be added from the previous current point if any to the starting point

of the arc. Exactly as arc() but draws the arc in the opposite direction.

35

36 CHAPTER 4. SPLOT LIBRARY FUNCTIONS

void arcto(double x1, double y1, double x2, double y2, double rad);

Adds a circular arc of radius rad to the current path. The center and angles are chosen so

that the arc is tangent to the line formed by (x1,y1) and the current point at its start and

tangent to the line (x1,y1) - (x2,y2) at its end point. A straight line segment is added from

the current point to the start of the arc. An error is generated is there is no current point.

void arrowto(double x,double y,...);

Adds a line segment to the current path from the current point to (x,y). The line is terminated

by drawing an arrow head oriented in the direction of the line. More than one coordinate

point can be speci�ed in the command in which case a series of line segments terminated

by arrows connecting the points will be added to the current path. If there is no current

point then an error will be generated. The size of the arrow head may be changed with the

set(FONTWIDTH,...); command.

void ascale(int axes, double xstart, double ystart, double xend, double yend);

or

void ascale(int axes, double *data, int col,...);

An internal coordinate system is set up for subsequent plotting of data within the existing

axes box. The x axis start and stop values are xstart and xend respectively and ystart, yend

for the y axis. for the y axis. If the axis choice is XAXES or YAXES rather than XYAXES

then only two numbers follow the axes speci�er rather than four. This allows the x and y axes

scales to be set independently of each other. The alternate format allows for auto scaling to

the speci�ed data. There can be more than one data array in the list in which case the scales

are chosen so that they will all �t. Each data array can optionally be followed by one or two

integers specifying which columns to use for the x and y values. If axes is not XYAXES only

one integer is allowed.

void axes box(double xsi, double ysi, double xstart, double ystart double xend, double yend, double

xorig, double yorig);

Adds an axes box to the current path. The box is drawn with a size of xsi by ysi and centered

on the page. An internal coordinate system is set up for subsequent plotting of data within

the box. The x axis start and stop values are xstart and xend respectively and ystart, yend

for the y axis. for the y axis. The last two parameters are optional and if present specify

the position of the axes origin relative to the page origin. For the last two parameters the

special constants XCENTER and YCENTER can be used for the x or y position coordinate

respectively and will cause the axes box to be centered on the page along that axis. Using

both XCENTER and YCENTER is equivalent to the default behaviour with the last two

parameters absent. More exibility is provided by the pair of functions abox() and ascale()

which provide the functionality of axes box() in several steps. axes box() is implicitly stroked.

void box(double x1, double y1, double x2, double y2);

Adds a box to the current path. The two end points of the box are (x1,y1) and (x2,y2);

void clear();

Clears the screen when the program is executed. This function should not be needed for

ordinary plots.

4.1. DRAWING LIBRARY REFERENCE 37

void clip()

Converts the currently de�ned path into a clipping path. All subsequent drawing operations

are then clipped against this path and only portions of the drawing on the inside of the clip

path are displayed. What is inside and what is outside depends on whether even-odd or

non-zero wind has been selected as the �ll rule using a set(); If the current path is not closed

then the current path is �rst closed. If there is no current path an error is generated. clip()

is implicitly stroked and takes e�ect immediately.

void closepath();

Closes the current path. A straight line segment is added from the current point to the start

of the current path as set by the moveto() of rmoveto() command at the beginning of the

path de�nition. Generates an error if there is no current point.

void cmatch(int on);

If the passed parameter is TRUE then it does the necessary translations and scaling so that the

coordinate system for the page matches that used within the axes box. An error is generated

if there is no current axes box. The font scale is compensated automatically for the change

in coordinate system so that characters will still be the same size as before. If the parameter

is FALSE then the previous unmatched coordinates will be restored. If there is no parameter

TRUE is assumed.

void curveto(double x1, double y1, double x2, double y2, double x3, double y3);

Adds a Bezier curve section to the current path starting at the current point. The curve starts

tangent to (xcur,ycur) - (x1,x2) and ends tangential to (x2,y2) - (x3,y3) at (x3,y3); An error

is generated if there is no current point.

void drawdata(double *data, int xcol, int ycol);

Draws the data contained in the array data in the current axes box. The two numbers xcol

and ycol are optional and are the columns of the array data that are to be used for the x-axis

and y-axis data respectively. If these values are omitted 0 , 1 are assumed. Each row of the

array data represents one coordinate point to be plotted. The values will be plotted using the

internal coordinate system established by the the call to axes box. If there is no current axes

box an error will be generated. drawdata() is implicitly stroked.

void errorbars(int axes,double *data, int xcol, int ycol, int errcol);

Draws error bars for the data points in the array "data". The �rst parameter is either XVALS

or YVALS indicating along which axes the error bars are to be drawn. The numbers xcol

and ycol are the columns of the array data that are to be used for the x-axis and y-axis

data respectively. Each row of the array data represents one coordinate point to be plotted.

The values will be plotted using the internal coordinate system established by the the call to

axes box. The last parameter "errcol" is the column of the array "data" which holds the size

of the error for the corresponding data point in the same row. If there is no current axes box

an error will be generated. errorbars() is implicitly stroked.

void �ll();

38 CHAPTER 4. SPLOT LIBRARY FUNCTIONS

Closes the current path if not already closed and �lls the interior region with the current

colour as speci�ed by the last set() call. What is inside and what is outside the path depends

on the currently chosen �ll rule. The �ll rule is either even-odd or non-zero wind (the default)

and is speci�ed using a set() call. An error is generated if there is no current path.

void �tline(double *data, int xcol, int ycol,double *yint,double *slope);

Fits the best straight line to the data in the array "data" using the column xcol of the array

as the x values and the column ycol as the corresponding y values. The best line is drawn

constrained to the current axes box. If there is no current axes box an error is generated. The

last two parameters are the returned values giving the y intercept and slope of the �tted line.

Note that they are pointers to doubles which must be declared at the top of the program.

Given a declaration of the form: double slope,yint;

Call �tline using:

fitline(data,0,1,&yint,&slope);

Assuming that the �rst and second column of data are the x and y values respectively. Data

points can be excluded from the �t by using the set(XRANGE, xmin, xmax); or set(YRANGE,

ymin, ymax); commands. Only data points within the limits will be used for the �t. �tline()

is implicitly stroked.

int or double get(int option,char *str);

Returns the value of the speci�ed option in the current graphics state. The numerical value

for single valued elements is returned by the function otherwise the return value is 0. A text

representation of the value is optionally returned in str. If used, be sure to allocate a character

array with su�cient space for str before calling this function as in char str[80]; at the top

of the program. The valid option values are de�ned in splot.h. See also set() for a description

of the various options. The returned string can be printed using the command puts(str); in

the program where "str" is the name of the array in the call to get(). Returned numerical

values can be printed using print(value);. The second array parameter is optional and is only

really needed for getting options that are more than just a single value such as line patterns.

void grestore();

Pops a graphics state o� the state stack thereby restoring the graphics state that was in e�ect

at the time the matching gsave() was executed. In particular, the path, the clip path, the line

styles, line colours etc. are restored to their previous values.

void gsave();

Pushes the current graphics state onto the state stack. The current path, clip path, line style,

colour etc. are saved so that they can be restored later using a grestore() command.

void label(int axis, char *label);

Add labels to the axes box previously de�ned. The �rst parameter is which axis to label

either BOTTOM, TOP, LEFT or RIGHT. The following parameter is the label to be printed.

The label will be printed centered between the appropriate edges of the current axes box. An

error is generated if there is no current axes box. All labels should be after plotdata() if used

otherwise spacing from the axes may not be correct. The spacing can also be changed using

set(LABELMARG,...);. label(); is implicitly stroked.

4.1. DRAWING LIBRARY REFERENCE 39

void lineto(double x,double y,...);

Adds a line segment to the current path from the current point to (x,y). More than one

coordinate point can be speci�ed in the command in which case a series of line segments

connecting the points will be added to the current path. If there is no current point then an

error will be generated.

void moveto(double x, double y);

Sets the current point to (x,y). Also sets the path close point to (x,y) for subsequent use

with closepath(). Many path building commands such as curveto() and lineto() require that

a current point exist before calling them.

void newpath();

Resets the current path to NULL and also causes the current point to be unde�ned. Further-

more, it turns o� the implicit stroking of elements that are normally implicitly stroked such

as text();. Thus using newpath() these elements can be added to a path which must then be

explicitly stroked. stroke() turns on implicit stroking again.

void plotdata(double *data,int xcol, int ycol);

Plots the data found in array data in a box. This command chooses the scale sizes tick

marks etc. to display the data which is assumed to be in order of monotonically increasing

or decreasing x value order. The optional parameters xcol and ycol correspond to the column

numbers (starts at zero) of the tabular array which are to be used for the x and y axis values

respectively. If these parameters are omitted then the values 0 and 1 are assumed. If the

default choices of plotdata are not acceptable a plot can be generated using the step by step

method using axes box(), tickmarks(), ticklabel() and drawdata(). The data must �rst be

read in to array data using readdata(). The valid option values are de�ned in splot.h. See

also set() for a description of the various options. plotdata() is implicitly stroked.

void readdata(char * �lename, double * data);

Reads a �le of name �lename and puts the data into the array "data". The �le should

be in ASCII format with the x data in one column and the y data values next column(s).

Any line containing non numeric characters or is blank will be considered a comment and

ignored. WARNING! As an optimization data is only read from disk once if the con�guration

parameter always load is o�. Subsequent executions use the stored data already in memory

(except after a reset(). This means that if you modify the array "data" after reading in values

the next time the �le is executed you will get strange results. Similarly, if you reuse the same

array for di�erent plots in the same drawing you will have trouble. The motto is never change

the values in the array "data". If you want to change the values declare another array and

copy the values. Also remember that readdata() implicitly allocates memory for the data

array so it is correct to declare the data array as double *data; at the top. If however, you

are going to �ll in a new array with calculated values you need to declare the array as double

newdata[ysize][xsize]; so that space will be allocated.

void rarrowto(double x, double y,...);

Adds a line segment to the current path from the current point to the current point plus

x, y. The line is terminated by drawing an arrow head oriented in the direction of the line.

This command is identical to arrowto except that the displacement is speci�ed relative to the

40 CHAPTER 4. SPLOT LIBRARY FUNCTIONS

current point. More than one coordinate point can be speci�ed in the command in which

case a series of line segments terminated by arrows connecting the points will be added to

the current path. If there is no current point then an error will be generated. The size of the

arrow head may be changed with the set(FONTWIDTH,...); command.

void reset();

Restores all set able parameters to their default values. Clears the current path and clip path.

void rlineto(double x,double y,...);

Adds a line segment to the current path from the current point to the current point plus x,

y. This command is identical to lineto except that the displacement is speci�ed relative to

the current point. More than one coordinate point can be speci�ed in the command in which

case a series of line segments connecting the points will be added to the current path. If there

is no current point then an error will be generated.

void rmoveto(double x, double y);

Sets the current point to the current point plus x,y. This command is the same as moveto

except that a relative move is speci�ed. It also sets the path close point for subsequent use

with closepath(). Many path building commands such as curveto and lineto require that a

current point exist before calling them.

void rotate(double ang);

Rotates the �gure about the current origin by the the angle speci�ed. The angle units are

degrees and the +ve direction is counterclockwise. Changes in rotation are cumulative.

void scale(double xs, double ys);

Changes the scale of the �gure by the factors speci�ed for the x and y axes respectively.

Changes in scale are cumulative.

void set(int option, ...);

All set able parameters can be set using the set command. The �rst parameter speci�es which

option to set. The de�ned constants corresponding to valid options are de�ned in the header

�le splot.h. (See Section 4.1.2, `set' Functions.)

void showpage();

Transfers the marked page created in memory by the stroke and �ll commands to the physical

page. This is automatically done at the end of the �le and thus this command is only needed

if it is desirable to draw parts of the �gure before the end of execution.

void stroke();

Marks the page in memory with the current path. The path coordinates are transformed using

the current coordinate transformation matrix and the path is eshed out using the current

line width, style and colour in e�ect at the time of the stroke() command.

4.1. DRAWING LIBRARY REFERENCE 41

void symbol(double x, double y, int symbolconst);

or

void symbol(int symbolconst);

Plots the symbol chosen by symbolconst at the point x,y. symbolconst must be one of OCIR-

CLE, OSQUARE, OTRIANGLE, ODIAMOND OSTAR, OARROW, PLUS, CROSS, MULT,

CIRCLE, SQUARE, TRIANGLE, DIAMOND, STAR,or ARROW. If the point x,y is omit-

ted the symbol is drawn at the current point as set by a previous moveto();. symbol() is

not implicitly stroked so follow with a stroke();. The size of a symbol can be changed using

set(FONTWIDTH, val in cm); since symbols are just a special font. The size relative to the

current FONTWIDTH can be set using set(SYMMULT,mult);

void text(double x, double y, char * str,int just);

Adds the text string str to the current path starting at location (x,y). The current font, size

and orientation as set using the set() command are used. Super/sub scripts can be entered

as ^2^ and 2 respectively. Letters surrounded by ' !' or '#' are printed in Greek or italics

respectively. For example !m! generates the Greek lower case mu. The special characters

\^ !#$" can be printed by preceding them with n as in n!. The combination nb back spaces

by one character. Symbols may be included in the text string by enclosing them with $. If

the starting x,y coordinates are omitted then the current string is positioned one line below

the previous string added to the path using text(). The last parameter is the justi�cation and

must be one of LEFT, RIGHT or CENTER. This last parameter can be omitted in which

case the default value of LEFT will be used. text() is implicitly stroked.

void ticklabel(int axis, double v, char *label,...);

Add tick labels to the axes box previously de�ned. The �rst parameter is which axis to

label either BOTTOM, TOP, LEFT or RIGHT. The following parameters are paired values

giving the tick position in data coordinates as established by a prior call to axes box() or

ascale() and the text string to be placed at that location. An error is generated if there is

no current axes box. There are several default possibilities. If 'ticklabel();' is called without

any parameters then if tick marks have been generated previously using 'tickmarks();' then

they will be selectively labelled along the left and bottom axes. If only an axis parameter is

given then the corresponding axis tick marks if any will be labelled. If the axis parameter is

followed by a list of numbers only they will be assumed to be both the tick position and the

desired label. If the numbers are paired with strings in the parameter list then the number

will be used as the tick label position and the string will be used as the literal label. The

spacing between the tick labels and the axes box can be changed using set(TICKLMARG,...);

ticklabel() is implicitly stroked.

void tickmarks(int axis, double v,...);

Add tick marks to the axes box previously de�ned. The �rst parameter is which axis ei-

ther BOTTOM , TOP, LEFT, RIGHT ,XAXES or YAXES. The following numbers are

the positions were tickmarks are to to be placed. The length of the ticks is set using a

set(TICKLENGTH,val) command. The location of the ticks is speci�ed in data coordinates

as established by the prior call to axes box() or ascale(). An error is generated if there is no

current axes box. All the above parameters are optional. The default behaviour is as follows.

If all parameters are omitted tick marks will be automatically generated for all axes. If only

an axis speci�er is given then tick marks will be generated for the corresponding axis or axes.

In these cases 'tickmarks();' will try to �nd reasonable positions for a set of tick marks. If

this default behaviour is unacceptable then the actual tick positions can be speci�ed as a list

42 CHAPTER 4. SPLOT LIBRARY FUNCTIONS

of values following the axis speci�er. If there is only one numeric value it is interpreted as a

tick spacing. tickmarks() is implicitly stroked.

void translate(double tx, double ty);

Translates the origin of the �gure by the x and y distances speci�ed. Translations are cumu-

lative.

void whereis(double *x,double *y);

Returns the coordinates of the current point as set by the last moveto(), lineto() etc.

4.1.2 `set' Functions

What follows is a very brief description of all the values set able using set().

set(AXESCLIP,val);

If val is ON then the data values are clipped to the limits of the axes box. This is temporarily

added to the user set clip limits if any. If val is OFF (the default) then the user speci�ed clip

limits from the last clip() call are used. Alternatively the range of data values plotted can be

set using set(XRANGE,...); set(YRANGE,...); .

set(AXESTYPE,val);

AXESTYPE may be one of the following. LINEAR (the default), LOGX, LOGY, LOGLOG,

INVX, INVY, INVINV, INVXLOGY or LOGXINVY. The position of data points and tick-

marks are automatically adjusted to account for the axes type.

set(CURSYMBOL,sym);

Sets the symbol to use when plotting data with symbols. sym must be one of OCIRCLE,

OSQUARE, OTRIANGLE , ODIAMOND OSTAR, OARROW, PLUS, CROSS, MULT, CIR-

CLE, SQUARE, TRIANGLE, DIAMOND, STAR, or ARROW. The default symbol is CIR-

CLE. The size of a symbol can be changed using set(FONTWIDTH,val in cm); since symbols

are just a special font. The size relative to the current FONTWIDTH can be set using

set(SYMMULT,mult);.

set(FILLRULE,type);

Determines the rule to be used when �lling a path. Type must be one of NONZWIND

(default) or EVENODD.

set(FLATNESS,num);

Sets the maximum allowable error in pixels when converting a curve to a set of straight line

segments. Smaller values of num give smother curves but take longer to process. The default

value of num is 1.

set(FONT,fonttype);

Sets the font type to use for subsequent text written using the text(); routine. font name type

must be either SIMPLEX (default) or COMPLEX.

4.1. DRAWING LIBRARY REFERENCE 43

set(FONTASPECT,asp);

Sets the ratio of the glyph height to width used for text written using text();. The default

value is 2.5.

set(FONTDIR ,angle);

Sets the rotation angle with respect to the x axis to use when writing text using text(); The

default is 0.

set(FONTMULT,factor);

Multiplies the current font size by the given factor.

set(FONTWIDTH,wid);

Sets the average width of the characters written using text(). The default value is 0.7 cm.

FONTWIDTH applies also to symbols.

set(LABELMARG,val);

Adds an additional amount to the margin between the plot and the plot labels generated

using the "label();" command. val = 0 is the default.

set(LINECAP,type);

Determines how thick lines are to be terminated. The allowed types are BUTTCAP (default),

ROUNDCAP and PROJCAP.

set(LINECOLOUR,col);

Where col is one of BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN orWHITE.

This set the colour to use when the current path is stroked or �lled. The default colour is

BLACK with the background WHITE.

set(LINEJOIN,type);

Determines how thick lines are joined together. The allowed join types are MITERJOIN

(default), BEVELJOIN and ROUNDJOIN.

set(LINESTYLE,pattern,...);

Sets the line style to use for the path when it is stroked. The constant LINESTYLE is followed

by a list of oating point values that de�ne the pattern. The values are interpreted as the

length along the path that the line is visible followed by the length that it is invisible as an

alternating sequence wrapping back to the beginning when the pattern reaches the end. For

example a pattern of 1.0,1.0 implies on for 1 cm followed by o� for 1 cm. A pattern of 1.0,0.5

is on for 1 cm followed by o� for 0.5 cm. The prede�ned patterns are: SOLID 0 (default)

DASHED 1.0,0.5 DOTTED 0.2,0.2 and DOTDASH 1.0,0.5,0.2,0.5. There must always be an

even number of comma separated values in a pattern de�nition.

set(LINEWIDTH,width);

44 CHAPTER 4. SPLOT LIBRARY FUNCTIONS

Sets the LINEWIDTH to width cm (default 0.05 cm). This line width is used when the

current path is stroked.

set(MITERLIMIT,maxratio);

Sets the maximum length of spikes formed by miter joining two lines at an acute angle. If the

ratio of the length of the spike to the width exceeds the value of maxratio then a BEVELJOIN

is done instead. The default value is 10.0.

set(PAGEROT,ag);

Selects landscape orientation if ag is ON. Default is portrait.

set(PATTOFF,o�set);

Sets the o�set into the current LINESTYLE pattern. Can be used to adjust the starting point

of a pattern for aesthetic reasons.

set(PLOTTYPE,type);

Sets the current plot type. type must be one of LINES (default), SYMBOLS or SYM LINES.

LINES connects data points with line segments while SYMBOLS causes the current symbol

to be drawn at each data point. SYM LINES does both. The size of a symbol can be changed

using set(FONTWIDTH, val in cm); since symbols are just a special font. The size relative

to the current FONTWIDTH can be set using set(SYMMULT,mult);.

set(SCALEALL,val);

If val is ON then the XSHIFT, YSHIFT, XMULT, YMULT values are applied to all coordi-

nates (i.e. in lineto, moveto etc.). The default is OFF in which case only data plotted using

plotdata or drawdata is a�ected by these values.

set(SCRIPTSCALE,val);

Sets the relative height of a super/sub script as compared to ordinary text. The default value

is 0.5.

set(SCRIPTSHIFT,val);

Sets the distance that a super/sub script is shifted above/below ordinary text. The value is

speci�ed as a fraction of the ordinary text height. The default value is 0.7.

set(SYMMULT,val)

Sets the symbol size multiplier used when drawing symbols. The default value is 1.0. The ac-

tual symbol size is determined the current FONTWIDTH multiplied by the curent SYMMULt

value.

set(TICKLENGTH,len);

Sets the length of axis tick marks to be used. The default value is 0.3 cm.

set(TICKLMARG,val);

4.2. STANDARD C FUNCTION LIBRARY REFERENCE 45

This value corresponds to the margin used between the axes box and any tick labels generated

using the "ticklabel();" command. val = 0 is the default.

set(XMULT,xmul);

Causes each x value to be multiplied by xmul before being plotted.

set(XRANGE,xmin,ymin);

data plotted using drawdata is constrained to have x values between xmin and xmax. There

is also a corresponding YRANGE set option. The default is no constraints. The values should

be speci�ed in user coordinates i.e. those established by the current axes box() or ascale().

set(XSHIFT,xshft);

Causes the value xshft to be added to all x values before plotting.

set(YSHIFT,yshft);

Causes the value yshft to be added to all y values before plotting.

set(YMULT,ymul);

Causes each y value to be multiplied by ymul before being plotted.

4.2 Standard C Function Library Reference

int abs(int i);

Returns the absolute value of i;

double acos(double x);

Returns the arc cosine of the value x. x must be between -1 and 1. Returns a value between

0 and �.

double asin(double x);

Returns the arc sine of the value x. x must be between -1 and 1. Returns a value between

-�/2 and �/2.

double atan(double x);

Returns the arc tangent of the value x. Returns a value between -�/2 and �/2.

double atan2(double y,double x);

Returns the arc tangent of the value y/x. Returns a value between -� and �.

double atof(char *str);

46 CHAPTER 4. SPLOT LIBRARY FUNCTIONS

Converts a string to a double. The string must contain only digits and 'e', 'E', '.', '-' and '+'

.

int atoi(char *str);

Converts a string to an integer. The string must contain only digits.

double ceil(double x);

Rounds up x to nearest integer value.

double cos(double x);

Returns the cosine of x. x is speci�ed in degrees.

void exit(int status);

Terminates the execution of the program. If the status is 0 then it will be considered a normal

exit otherwise an error induced exit.

double exp(double x);

Calculates the exponential function exp(x).

double fabs(double x);

Returns the absolute value of x. It is like abs() but works with oating point numbers rather

than integers.

double oor(double x);

Rounds down x to the nearest integer.

double fmod(double x,double y);

Returns the remainder of x/y.

void free(char *ptr);

Frees the block of memory pointed to by ptr. The memorymust have been previously allocated

using malloc().

double log(double x);

Returns the natural log of x.

double log10(double x);

Returns the log base 10 of x.

char *malloc(int size);

4.2. STANDARD C FUNCTION LIBRARY REFERENCE 47

Allocates a block of memory of size bytes and returns a pointer to the block. malloc returns

NULL if there is insu�cient free memory.

double pow(double x,double y);

Calculates x to the power y.

int puts(char *str);

This routine writes the string str to the output �le and starts a new line.

int printf(char *format,...);

Prints the formatted data to the output �le. The format string speci�es the type and number

of values to print. Some common examples include:

printf(\i = %d",i); prints the integer value i.

printf(\x = %g",x); prints the oating point value x.

printf(\text = %s",str); prints the string str.

Multiple values can be printed as in printf(\%d %d %g %s",i,j,x,str);

The format speci�ers can also include �eld width information and justi�cation etc. Consult

a standard C text for more details.

void print(v,...);

Prints the value v which can be of any scalar type. i.e int, char, oat, double or a pointer.

This is not a function found in the standard C library.

double sin(double x);

Returns the sine of x. x must be speci�ed in degrees.

int sizeof(t);

Returns the number of bytes required to store the value of type t.

double sqrt(double x);

Calculates the square root of x. x must be a positive number.

int sprintf(char str,char *format,...);

Prints the formatted data to the string str. The format string speci�es the type and number

of values to print. Some common examples include:

printf(\i = %d",i); prints the integer value i.

printf(\x = %g",x); prints the oating point value x.

printf(\text = %s",str); prints the string str.

Multiple values can be printed as in

printf(\%d %d %g %s",i,j,x,str);

The format speci�ers can also include �eld width information and justi�cation etc. Consult

a standard C text for more details.

48 CHAPTER 4. SPLOT LIBRARY FUNCTIONS

void strcat(char *dest, char *source);

Concatenates the string source to the string dest.

void strcpy(char *dest, char *source);

Copies the string source to the string dest.

int strlen(char *str);

Returns the length of the string str.

double tan(double x);

Calculates the value of the tangent of x. x should be speci�ed in degrees.

