
SQL*Plus User's Guide and Reference

SQL*Plus â User's Guide and Reference
Preface
PART    I . Understanding SQL*Plus
CHAPTER 1. Introduction
CHAPTER 2. Learning SQL*Plus Basics
CHAPTER 3. Manipulating Commands
CHAPTER 4. Formatting Query Results
CHAPTER 5. Accessing SQL Databases
PART    II . Reference
CHAPTER 6. Command Reference
APPENDIX A. COPY Command Messages and Codes
APPENDIX B. Version 3.0 Enhancements
APPENDIX C. SQL*Plus Limits
APPENDIX D. SQL Command List
APPENDIX E. Security
APPENDIX F. SQL*Plus Commands from Earlier Versions
GLOSSARY
A
B
C
D
E
F
H
L
N
O
P
Q
R
S
T
U
V
W

This help file created via:
Oracle Book to Microsoft Help Version 1.0w
ã 1994 Oracle Corporation Inc.
Authored by KM .

SQL*Plusâ User's Guide and Reference
Version 3.1
Part No. A16931-1

 SQL*Plus User's Guide and Reference ,    Version 3.1

Part No. A16931-1   

Copyright ã Oracle Corporation 1986, 1992

Contributing Authors:    Frank Rovitto   

Contributors: Larry Baer, Lisa Colston, Roland Kovacs, Karen    Denchfield-Masterson, Nimish
Mehta, Bud Osterberg, Farokh Shapoorjee,    Larry Stevens, Andre Touma

This software/documentation contains proprietary information of Oracle Corporation; it is
provided under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law.    Reverse engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department
of Defense, then it is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

 Oracle Corporation, 500 Oracle Parkway, Redwood City, CA    94065.

If this software/documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with "Restricted Rights," as defined in FAR
52.227-14, Rights in Data - General, including Alternate III (June 1987).

The information in this document is subject to change without notice.      If you find any
problems in the documentation, please report them to us in writing.      Oracle Corporation
does not warrant that this document is error-free.

CASE*Designer, CASE*Dictionary, ORACLE, SQL* Forms, SQL*Plus, and SQL*ReportWriter are
registered trademarks , and CASE*Generator, Oracle Graphics, Oracle*Mail, and PL/SQL are
trademarks of Oracle Corporation.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation.

Preface
The SQL*Plus User's Guide and Reference introduces the SQL*Plus program and its uses. It
also provides a detailed description of each SQL*Plus command.

 Audience
This manual addresses business and technical professionals who have a basic understanding
of the SQL database language. If you do not have any familiarity with this database tool, you
should refer to the ORACLE7 Server SQL Language Reference Manual.    If you plan to use the
PL/SQL database language in conjunction with SQL*Plus, refer to the PL/SQL User's Guide
and Reference for information on using PL/SQL.   

 How to Use this Manual
Refer to the following tables for a list of topics covered by this manual, a description of each
topic, and the number of the chapter that covers the topic.

 PART IUnderstanding SQL*Plus

 Chapter
Topic Description Number

Introduction Gives an overview of SQL*Plus, instruc- 1
tions on using this Guide, and information
on what you need to run SQL*Plus

Learning Explains how to start SQL*Plus and enter 2
SQL*Plus Basics and execute commands. You learn by fol-

lowing step-by-step examples using sam-
ple tables.

Manipulating Also through examples, helps you learn to 3
Commands edit commands, save them for later use,

and write interactive commands.

Formatting Explains how you can format columns, 4
Query Results clarify your report with spacing and sum-

mary lines, define page dimensions and
titles, and store and print query results.
Also uses step-by-step examples.

Accessing Tells you how to connect to default and 5
Databases remote databases, and how to copy data

between databases and between tables on
the same database. Includes one example.

 PART II    Reference

 Chapter
Topic Description Number

Command Gives you a SQL*Plus command sum- 6
Reference mary and detailed descriptions of each

SQL*Plus command in alphabetical
order.

COPY Command Lists copy command error messages, Appendix
Error Messages their causes, and appropriate actions A

for error recovery.

Version 3 Describes enhancements to SQL*Plus Appendix
Enhancements in Version 3.0 and 3.1. B

SQL*Plus Limits Lists the maximum values for ele- Appendix
ments of SQL*Plus. C

SQL Command Provides a list of major SQL com- Appendix
List mands and clauses. D

Restricting Users' Explains how to restrict users' access Appendix
Privileges in to certain SQL*Plus and SQL com- E
SQL*Plus mands.

SQL*Plus Provides information on SQL*Plus Appendix
Commands from commands from earlier versions. F
Earlier Versions

Definitions of Defines technical terms associated Glossary
Terms with ORACLE and SQL*Plus.

 Related Publications
Related documentation includes:   

· SQL*Plus Quick Reference, Part No. 3703-31

· PL/SQL User's Guide and Reference, Part No. 800-20

· ORACLE7 Server SQL Language Reference Manual, Part No. 778-70

· ORACLE7 Server SQL Language Quick Reference, Part No. 5421-70

· ORACLE7 Server Concepts Manual, Part No. 6693-70

· ORACLE7 Server Administrator's Guide, Part No. 6694-70

· ORACLE7 Server Application Developer's Guide, Part No. 6695-70

· ORACLE7 Server Utilities User's Guide, Part No. 3602-70

· ORACLE7 Server Messages and Codes Manual, Part No. 3605-70

· Trusted ORACLE Administrator's Guide, Part No. 6610-10

· Oracle installation and user's manual(s) provided for your operating system (part
numbers vary)   

 Your Comments Are Welcome
Oracle Corporation values and appreciates your comments as an ORACLE user and reader of
the manuals. As we write, revise, and evaluate, your opinions are the most important input
we receive. At the back of this manual is a Reader's Comment Form that we encourage you
to use to tell us both what you like and what you dislike about this (or other) ORACLE
manuals. If the form is gone, or if you would like to contact us, please use the following
addresses and phone numbers.

For documentation questions/comments, contact:

SQL*Plus Documentation Manager
Oracle Corporation
500 Oracle Parkway
Box 659412
Redwood Shores, California 94065-5028
(415) 506-7000(415) 506-7200 (fax)

For product questions/comments, contact:

SQL*Plus Product Manager
Oracle Corporation
500 Oracle Parkway
Box 659412
Redwood Shores, California 94065-5028
(415) 506-7000(415) 506-7200 (fax)

PART    I . Understanding SQL*Plus

CHAPTER 1. Introduction
This chapter introduces you to SQL*Plus, covering the following topics:   

· overview of the SQL*Plus program

· definition of basic concepts

· explanation of who can use SQL*Plus

· description of other programs you can use with ORACLE

· command syntax conventions used in this Guide

· sample tables you will use

· equipment, software, and information you need to run SQL*Plus   

 __

Overview of SQL*Plus

You can use the SQL*Plus (pronounced "sequel plus") program in conjunction with the SQL
database language and its procedural language extension, PL/SQL. The SQL database
language allows you to store and retrieve data in ORACLE. PL/SQL allows you to link several
SQL commands through procedural logic.

SQL*Plus enables you to manipulate SQL commands and PL/SQL blocks, and to perform
many additional tasks as well. Through SQL*Plus, you can:   

· enter, edit, store, retrieve, and run SQL commands and PL/SQL blocks

· format, perform calculations on, store, and print query results in the form of reports

· list column definitions for any table

· access and copy data between SQL databases

· send messages to and accept responses from an end user

 Basic Concepts
The following definitions explain concepts central to SQL*Plus:   

command An instruction you give SQL*Plus or ORACLE.

block A group of SQL and PL/SQL commands related to one another through
procedural logic.

table The basic unit of storage in ORACLE.

query A SQL command (specifically a SQL SELECT command) that retrieves
information from one or more tables.

query results The data retrieved by a query.

report Query results formatted by you through SQL*Plus commands.   

 Who Can Use SQL*Plus
The SQL*Plus, SQL, and PL/SQL command languages are powerful enough to serve the needs
of users with some database experience, yet straightforward enough for new users who are
just learning to work with ORACLE.

The design of the SQL*Plus command language makes it easy to use. For example, to give a
column labelled ENAME in the database the clearer heading "Employee", you might enter
the following command:   

COLUMN ENAME HEADING EMPLOYEE

Similarly, to list the column definitions for a table called EMP, you might enter this
command:   

DESCRIBE EMP

 Other Ways of Working with ORACLE
ORACLE serves as the foundation for a complete set of CASE, application development and
office automation tools. These tools support every phase of a system's development and life
cycle, from analysis and design through implementation and maintenance.

 CASE

CASE*Designer                a systems analysis and design tool

CASE*Dictionary a repository of data rules

CASE*Generators a suite of appplication generators

 Application Development

SQL*Forms                                a screen builder

SQL*Menu a menu builder

SQL*ReportWriter a report builder

Oracle Graphics a chart builder

Oracle Card a multimedia development environment

SQL*TextRetrieval a text search system

PL/SQL a client-server procedural language

ORACLE    Precompilers programming language interfaces   

 Office Automation

Oracle*Mail               an electronic messaging system       

Oracle Data    Browser a graphical query tool   

 __

Using this Guide

This Guide gives you information on SQL*Plus that applies to all operating systems. Some
aspects of SQL*Plus, however, differ on each operating system. Such operating-system-
specific details are covered in the Oracle installation and user's manual(s) provided for your
system.    Use these operating-system-specific manuals in conjunction with the SQL*Plus
User's Guide and Reference.

Throughout this Guide, examples showing how to enter commands use a common command
syntax and a common set of sample tables. Both are described below. You will find the
conventions for command syntax particularly useful when referring to the reference portion
of this Guide.

 Conventions for Command Syntax
The following two tables describe the notation and conventions for command syntax used in
this manual.

Feature Example Explanation
uppercase BTITLE Enter text exactly as spelled; it

need not be in uppercase.

lowercase, italics column A clause value; substitute an
appropriate value.

words with specific c A single character.
meanings

char A CHAR value--a literal in
single    quotes--or an expres-
sion with a CHAR value.

d or e A date or an expression with a
DATE value.

expr An unspecified expression.

m or n A number or an expression
with    a NUMBER value.

text A CHAR constant with or with-
out single quotes.

variable A user variable (unless the text
specifies another variable type).

Table 1 - 1.    Commands, Terms, and Clauses

Other words are explained where used if their meaning is not explained by context.

Feature Example Explanation
vertical bar | Separates alternative syntax

elements that may be optional
or mandatory.

brackets [OFF|ON] One or more optional items. If
two items appear separated
by |, enter one of the items
separated by |. Do not enter
the brackets or |.

braces {OFF|ON} A choice of mandatory items;
enter one of the items sepa-
rated by |. Do not enter the
braces or |.

underlining {OFF|ON} A default value; if you enter
nothing, SQL*Plus assumes
this value.

three periods n,n,... Preceding item(s) may be re-
peated any number of times.

Table 1 - 2.    Punctuation

Enter other punctuation marks (such as parentheses) where shown in the command syntax.

 Sample Tables
Many of the concepts and operations in this Guide are illustrated by a set of sample tables.
These tables contain personnel records for a fictitious company. As you complete the
exercises in this Guide, imagine that you are personnel director for this company.

The exercises make use of the information in two sample tables:   

EMP Contains information about the employees of the sample company.

DEPT Contains information about the departments in the company.   

Figures 1-1 and 1-2 show the information in these tables.

EMPNO ENAME JOB MGR HIREDATE SAL COMM
DEPTNO

------- ------ -------- ----- ---------- ----- ----- --

7369 SMITH CLERK 7902 17-DEC-80 800 20

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

7566 JONES MANAGER 7839 02-APR-81 2975 20

7652 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30

7698 BLAKE MANAGER 7839 01-MAY-81 2850 30

7782 CLARK MANAGER 7839 09-JUN-81 2450 30

7788 SCOTT ANALYST 7566 09-DEC-82 3000 20

7839 KING PRESIDENT 17-NOV-81 5000 10

7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7900 JAMES CLERK 7698 03-DEC-81 950 30

7902 FORD ANALYST 7566 03-DEC-81 3000 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

Figure 1 - 1. EMP Table

DEPTNO DNAME LOC

-------- ------------- -----------

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Figure 1 - 2. DEPT Table

To run SQL*Plus, you need hardware, software, operating-system-specific information, a
username and password, and access to one or more tables.

 Hardware and Software
ORACLE and SQL*Plus can run on many different kinds of computers. Your computer's
operating system manages the computer's resources and mediates between the computer
hardware and programs such as SQL*Plus. Different computers use different operating
systems. For information about your computer's operating system, see the documentation
provided with the computer.

Before you can begin using SQL*Plus, both ORACLE and SQL*Plus must be installed on your
computer. Note that in order to take advantage of the enhancements in SQL*Plus Version
3.1, you must have ORACLE7. See Appendix B for a list of SQL*Plus Version 3.1
enhancements.

If you have multiple users on your computer, your organization should have a Database
Administrator (called a DBA) who supervises the use of ORACLE.

The DBA is responsible for installing ORACLE and SQL*Plus on your system. If you are acting
as DBA, see the instructions for installing ORACLE and SQL*Plus in the Oracle installation
and user's manual(s) provided for your operating system.

 Information Specific to Your Operating System
A few aspects of ORACLE and SQL*Plus differ from one type of host computer and operating
system to another. These topics are discussed in the Oracle installation and user's
manual(s), published in a separate version for each host computer and operating system
that SQL*Plus supports.

Keep a copy of your Oracle installation and user's manual(s) available for reference as you
work through this Guide. When necessary, this Guide will refer you to your installation and
user's manual(s).

 Username and Password
When you start SQL*Plus, you will need a username that identifies you as an authorized
ORACLE user, and a password that proves you are the legitimate owner of your username.

 Multi-User Systems

If several people share your computer's operating system, your DBA can set up your
SQL*Plus username and password. You will also need a system username and password to
gain admittance to the operating system. These may or may not be the same ones you use

with SQL*Plus.

 Single-User Systems

If only one person at a time uses your computer, you may be expected to perform the DBA's
functions for yourself. In that case, you can use the ORACLE username SCOTT and password
TIGER. Or, if you want to define your own username and password, see the ORACLE7 Server
SQL Language Reference Manual.

 Access to Sample Tables
Each table in the database is "owned" by a particular user. You may wish to have your own
copies of the sample tables to use as you try the examples in this Guide. To get your own
copies of the tables, see your DBA or run the ORACLE-supplied command file named
DEMOBLD (you run this file from your operating system, not from SQL*Plus).   

Note: DEMOBLD creates a new SQL*Plus LOGIN file. See the subsection "Setting Up Your
SQL*Plus Environment" under "Saving Commands for Later Use" in Chapter 3 if you already
have a LOGIN file in your directory and wish to save it. Note that the SQL*Plus LOGIN file is
not the same as the operating system login file.

When you have no more use for the sample tables, remove them by running another
ORACLE-supplied command file named DEMODROP. For instructions on how to run DEMOBLD
and DEMODROP, see the Oracle installation and user's manual(s) provided for your
operating system.

CHAPTER 2. Learning SQL*Plus Basics
This chapter helps you learn the basics of using SQL*Plus, including the following topics:   

· using the keyboard

· starting and leaving SQL*Plus

· running SQL commands, PL/SQL blocks, and SQL*Plus commands

· understanding variables that affect running commands

· saving changes to the database automatically

· stopping a command while it is running

· collecting timing statistics on commands you run

· running host operating system commands and SQL*Forms forms

· listing a table definition

· listing a PL/SQL definition

· controlling the display

· interpreting error messages   

Read this chapter while sitting at your computer, and try out the examples shown. Before
beginning, make sure you have access to the sample tables described in Chapter 1.   

 __

Getting Started

To begin using SQL*Plus, you must first become familiar with the functions of several keys on
your keyboard, and understand how to start and leave SQL*Plus.

 Using the Keyboard
Several keys on your keyboard have special meaning in SQL*Plus.      Table 2-1 lists these
keys.

See your Oracle installation and user's manual(s) for your operating system to learn which
physical key performs each function on the keyboard commonly used with your host
computer.    Note that a SQL*Plus key may perform different functions when pressed in other
products or the operating system.

Fill in each blank in Table 2-1 with the name of the corresponding keyboard key. Then locate
each key on your keyboard.

SQL*Plus Keyboard Key Function
Key Name Name
[Return] ___________ End a line of input.

[Backspace] Move cursor left one character to
___________ correct an error.

[Pause] Suspend program operation and
___________ display of output.

[Resume] Resume program operation and
___________ output [Pause].

[Cancel] Halt program operation; return
to the SQL*Plus command

___________ prompt.

[Interrupt] Exit SQL*Plus and return to the
___________ host operating system.

Table 2 - 1. SQL*Plus Special Keys and their Functions

 Starting SQL*Plus
Now that you have identified important keys on your keyboard, you are ready to start
SQL*Plus.

 Example 2-1 Starting SQL*Plus

This example shows you how to start SQL*Plus. Follow the steps shown.

1. Make sure that ORACLE has been installed on your computer.

2. Turn on your computer (if it is off) and log on to the host operating system (if required). If
you are already using your computer, you need not log off or reset it. Simply exit from
the program you are using (if any).

You should see one or more characters at the left side of the screen--the operating
system's command prompt, which signals that the operating system is ready to accept a
command. In this Guide the operating system's prompt will be represented by a dollar
sign ($). Your computer's operating system prompt may be different.

3. Enter the command SQLPLUS and press [Return]. This is an    operating system command
that starts SQL*Plus.

Note: Some operating systems expect you to enter commands in lowercase letters. If your
system expects lowercase, enter the SQLPLUS command in lowercase.   

$ SQLPLUS

SQL*Plus displays its version number, the date, and copyright information, and prompts
you for your username (the text displayed on your system may differ slightly):   

SQL*Plus: Version 3.1.3 - Production on Fri April 10 09:39:26 1992

Copyright (c) Oracle Corporation 1979, 1992. All rights reserved.

Enter user-name:

4. Enter your username and press [Return]. SQL*Plus displays the prompt "Enter
password:".

5. Enter your password and press [Return] again. For your protection, your password does
not appear on the screen.

The process of entering your username and password is called logging on. SQL*Plus
displays the version of ORACLE to which you connected and the versions of available
tools such as PL/SQL.   

Next, SQL*Plus displays the SQL*Plus command prompt:   

SQL>   

The command prompt indicates that SQL*Plus is ready to accept your commands.

If SQL*Plus does not start, you should see a message meant to help you correct the problem.
For further information, refer to the ORACLE7 Server Messages and Codes manual for
ORACLE messages, or to your operating system manual for system messages.

 Shortcuts to Starting SQL*Plus

When you start SQL*Plus you can enter your username and password, separated by a slash
(/), following the command SQLPLUS. For example, if your username is SCOTT and your
password is TIGER, you can enter   

$ SQLPLUS SCOTT/TIGER

and press [Return]. You can also arrange to log on to SQL*Plus automatically when you log
on to your host operating system. See the Oracle installation and user's manual(s) provided
for your operating system for details.

 Leaving SQL*Plus
When you are done working with SQL*Plus and wish to return to the operating system, enter
the EXIT command at the SQL*Plus command prompt.

 Example 2-2 Exiting SQL*Plus

 To leave SQL*Plus, enter the EXIT command at the SQL*Plus command prompt:   

SQL> EXIT

SQL*Plus displays the version of ORACLE you disconnected from and the versions of tools
available through SQL*Plus. After a moment you see the operating system prompt.

Before continuing with this chapter, follow steps 3, 4, and 5 of Example 2-1 to start SQL*Plus
again. Or, log on using the shortcut shown under "Shortcuts to Starting SQL*Plus," above.   

 __

Entering and Executing Commands

 Entering Commands

Your computer's cursor, or pointer (typically an underline, a rectangular block, or a slash)
appears after the command prompt. The cursor indicates the place where the next character
you type will appear on your screen.

To tell SQL*Plus what to do, simply type the command you wish to enter. Usually, you
separate the words in a command from each other by a space or tab. You can use additional
spaces or tabs between words, if you wish, to make your commands more readable.

Note: You will see examples of spacing and indentation throughout this Guide. When you
enter the commands in the exercises, you do not have to space them as shown, but you
may find them clearer to read if you do.

You can enter commands in capitals or lowercase. For the sake of clarity, all table names,
column names, and commands in this Guide appear in capital letters.

You can enter three kinds of commands at the command prompt:   

· SQL commands, for working with information in the database

· PL/SQL blocks, also for working with information in the database

· SQL*Plus commands, for formatting query results, setting options, and editing and
storing SQL commands and PL/SQL blocks   

The manner in which you continue a command on additional lines, end a command, or
execute a command differs depending on the type of command you wish to enter and run.
Examples of how to run and execute these types of commands are found on the following
pages.

 Getting Help

To get online help for SQL*PLUS commands, type HELP at the command prompt followed by
the name of the command. For example:   

SQL>HELP ACCEPT

If you get a response indicating that help is not available, consult your database
administrator. For more details about the help system, see the HELP command later in this
book.

 Executing Commands

After you enter the command and direct SQL*Plus to execute it, SQL*Plus processes the
command and redisplays the command prompt, indicating that you can enter    another
command.

 Running SQL Commands
The SQL command language enables you to manipulate data in the database. See your

ORACLE7 Server SQL Language Reference Manual for information on individual SQL
commands.

 Example 2-3 Entering a SQL Command

In this example, you will enter and execute a SQL command to display the employee
number, name, job, and salary of each employee in the sample table EMP.

1. At the command prompt, enter the first line of the command:   

SQL> SELECT EMPNO, ENAME, JOB, SAL

If you make a mistake, use [Backspace] to erase it and re-enter. When you are done,
press [Return] to move to the next line.

2. SQL*Plus will display a "2", the prompt for the second line. Enter the second line of the
command:   

2 FROM EMP WHERE SAL < 2500;

The semicolon(;) means that this is the end of the command. Press [Return]. SQL*Plus
processes the command and displays the results on the screen:   

EMPNO ENAME JOB SAL

----- ------- --------- ----

7369 SMITH CLERK 800

7521 WARD SALESMAN 1250

7654 MARTIN SALESMAN 1250

7782 CLARK MANAGER 2450

7844 TURNER SALESMAN 1500

7499 ALLEN SALESMAN 1600

7876 ADAMS CLERK 1100

7900 JAMES CLERK 800

7934 MILLER CLERK 1300

9 rows selected

SQL>

After displaying the results and the number of rows retrieved, SQL*Plus displays the
command prompt again. If you made a mistake and therefore did not get the results
shown above, simply re-enter the command.

The headings may be repeated in your output, depending on the setting of a system
variable called PAGESIZE. Whether you see the message concerning the number of
records retrieved depends on the setting of a system variable called FEEDBACK. You will
learn more about system variables later in this chapter, in the section "Variables that
Affect Running Commands."    To save space, the number of records selected will not be
shown in the rest of the examples in this manual.

 Understanding SQL Command Syntax

Just as spoken language has syntax rules that govern the way we assemble words into
sentences, SQL*Plus has syntax rules that govern how you assemble words into commands. 
You must follow these rules if you want SQL*Plus to accept and execute your commands.

Dividing a SQL Command into Separate Lines     You can divide your SQL command into
separate lines at any points you wish, as long as individual words are not split between lines.
Thus, you can enter the query you entered in Example 2-3 on one line:   

SQL> SELECT EMPNO, ENAME, JOB, SAL FROM EMP WHERE SAL < 2500;

Or, you can enter the query on several lines:   

SQL> SELECT

 2 EMPNO, ENAME, JOB, SAL

 3 FROM EMP

 4 WHERE SAL < 2500;

In this Guide, you will find most SQL commands divided into clauses, one clause on each
line. In Example 2-3, for instance, the SELECT and FROM clauses were placed on separate
lines. Many users find this most convenient. But you may choose whatever line division
makes your command most readable to you.

Ending a SQL Command     You can end a SQL command in one of three ways:   

· with a semicolon (;)

· with a slash (/) on a line by itself

· with a blank line   

A semicolon (;) tells SQL*Plus that you want to run the command. Type the semicolon at the
end of the last line of the command, as shown in Example 2-3, and press [Return]. SQL*Plus
will process the command and store it in the SQL buffer (see "The SQL Buffer" below for
details). If you mistakenly press [Return] before typing the semicolon, SQL*Plus will prompt
you with a line number for the next line of your command. Type the semicolon and press
[Return] again to run the command.   

Note: You cannot enter a comment (/* */) on the same line that you enter a semicolon.

A slash (/) on a line by itself also tells SQL*Plus that you wish to run the command. Press
[Return] at the end of the last line of the command. SQL*Plus prompts you with another line
number. Type a slash and press [Return] again. SQL*Plus will execute the command and
store it in the buffer (see "The SQL Buffer" below for details).   

A blank line tells SQL*Plus that you have finished entering the command, but do not want to
run it yet. Press [Return] at the end of the last line of the command. SQL*Plus prompts you
with another line number.

Press [Return] again; SQL*Plus now prompts you with the SQL*Plus command prompt.
SQL*Plus does not execute the command, but stores it in the SQL buffer (see "The SQL
Buffer" below for details). If you subsequently enter another SQL command and execute it
using a semicolon (;) or a slash (/), SQL*Plus overwrites the unexecuted command in the
buffer.

Creating Stored Procedures     Stored procedures are PL/SQL functions, packages, or
procedures. To create stored procedures, you use SQL CREATE commands. The following SQL
CREATE commands are used to create stored procedures:   

· CREATE FUNCTION

· CREATE PACKAGE

· CREATE PACKAGE BODY

· CREATE PROCEDURE

· CREATE TRIGGER   

Entering any of these commands places you in PL/SQL mode, where you can enter your
PL/SQL subprogram (see also "Running PL/SQL Blocks" in this chapter). When you are done
typing your PL/SQL subprogram, enter a period (.) on a line by itself to terminate PL/SQL
mode. To run the SQL command and create the stored procedure, you must enter RUN or
slash (/). A semicolon (;) will not execute these CREATE commands.

When you use CREATE to create a stored procedure, a message appears if there are
compilation errors. To view these errors, you use SHOW ERRORS. For example:   

SQL> SHOW ERRORS PROCEDURE ASSIGNVL

See Chapter 6 for a description of the SHOW command.

To execute a PL/SQL statement that references a stored procedure, you can use the
EXECUTE command. EXECUTE runs the PL/SQL statement that you enter immediately after
the command. For example:   

SQL> EXECUTE -
:ID := EMP_MANAGEMENT.GET_ID('BLAKE')

See Chapter 6 for a description of the EXECUTE command.

 The SQL Buffer

The area where SQL*Plus stores your most recently entered SQL command is called the SQL
buffer. The command remains there until you enter a new SQL command. Thus, if you want
to edit or re-run the current SQL command, you may do so without re-entering it. See
Chapter 3 for details about editing or re-running a command stored in the buffer.

SQL*Plus does not store the semicolon or the slash you type to execute a command in the
SQL buffer.

The SQL buffer is the default buffer. You can define other buffers, but SQL*Plus does not
require the use of multiple buffers. Throughout this Guide, "buffer" and "SQL buffer" are
synonymous unless the text explicitly states otherwise. See SET BUFFER in Appendix F for
information on defining additional buffers.

 Executing the Current SQL Command from the Command Prompt

You can run (or re-run) the current SQL command by entering the RUN command or the /
(slash) command at the command prompt. The RUN command lists the SQL command in the
buffer before executing the command; the / command simply runs the SQL command.

 Running PL/SQL Blocks
You can also use PL/SQL subprograms (called blocks)    to manipulate data in the database.
See your PL/SQL User's Guide and Reference for information on individual PL/SQL
statements.

To enter a PL/SQL subprogram in SQL*Plus, you need to be in PL/SQL mode. You are placed in
PL/SQL mode when:   

· You type DECLARE or BEGIN at the SQL*Plus command prompt.    After you enter
PL/SQL mode in this way, you type the remainder of your PL/SQL subprogram.

· You type a SQL command (such as CREATE FUNCTION) that creates a stored
procedure. After you enter PL/SQL mode in this way, you type the stored procedure
you want to create.   

SQL*Plus treats PL/SQL subprograms in the same manner as SQL commands, except that a
semicolon (;) or a blank line does not terminate and execute a block. Terminate PL/SQL
subprograms by entering a period (.) by itself on a new line.

SQL*Plus stores the subprograms you enter at the SQL*Plus command prompt in the SQL
buffer. Execute the current subprogram by issuing a RUN or / (slash) command. Likewise, to
execute a SQL CREATE command that creates a stored procedure, you must also enter RUN
or slash (/). A semicolon (;) will not execute these SQL commands as it does other SQL
commands.

SQL*Plus sends the complete PL/SQL subprogram to ORACLE for processing (as it does SQL
commands). See your PL/SQL User's Guide and Reference for more information.

You might enter and execute a PL/SQL subprogram as follows:   

SQL> DECLARE

 2 x NUMBER := 100;

 3 BEGIN

 4 FOR i IN 1..10 LOOP

 5 IF TRUNC(i / 2) = i / 2 THEN --i is even

 6 INSERT INTO temp VALUES (i, x, 'i is even');

 7 ELSE

 8 INSERT INTO temp VALUES (i, x, 'i is odd');

 9 END IF;

 10 x := x + 100;

 11 END LOOP;

 12 END;

 13 .

SQL> /

PL/SQL procedure successfully completed.

When you run a subprogram, the SQL commands within the subprogram may behave
somewhat differently than they would outside of the subprogram. See your PL/SQL User's
Guide and Reference for detailed information on the PL/SQL language.

 Running SQL*Plus Commands
You can use SQL*Plus commands to manipulate SQL commands and PL/SQL blocks, and to
format and print query results. SQL*Plus treats SQL*Plus commands differently than SQL
commands or PL/SQL blocks. For information on individual SQL*Plus commands, refer to the
following chapters of this Guide.

To speed up command entry, you can abbreviate many SQL*Plus commands to one or a few
letters. Abbreviations for some SQL*Plus commands are described along with the commands
in Chapters 3, 4, and 5. For abbreviations of all SQL*Plus commands, refer to the command
descriptions in Chapter 6.

 Example 2-4 Entering a SQL*Plus Command

This example shows how you might enter a SQL*Plus command to change the format used
to display the column SAL of the sample table EMP.

1. On the command line, enter this SQL*Plus command:   

SQL> COLUMN SAL FORMAT $99,999 HEADING SALARY

If you make a mistake, use [Backspace] to erase it and re-enter. When you have entered

the line, press [Return]. SQL*Plus notes the new format and displays the SQL*Plus
command prompt again, ready for a new command.

2. Enter the RUN command to re-run the most recent query (from Example 2-3). SQL*Plus
reprocesses the query and displays the results:   

SQL> RUN

1 SELECT EMPNO, ENAME, JOB, SAL

2* FROM EMP WHERE SAL < 2500

EMPNO ENAME JOB SAL

----- ------------ ----------- ------

7369 SMITH CLERK $800

7521 WARD SALESMAN $1250

7654 MARTIN SALESMAN $1250

7782 CLARK MANAGER $2450

7844 TURNER SALESMAN $1500

7499 ALLEN SALESMAN $1600

7876 ADAMS CLERK $1100

7900 JAMES CLERK $800

7934 MILLER CLERK $1300

The COLUMN command formatted the column SAL with a dollar sign ($) and a comma (,),
and gave it a new heading. The RUN command then re-ran the query of Example 2-3, which
was stored in the buffer. SQL*Plus does not store SQL*Plus commands in the buffer.

 Understanding SQL*Plus Command Syntax

SQL*Plus commands have a different syntax from SQL commands or PL/SQL blocks.

Continuing a Long SQL*Plus Command on Additional Lines       You can continue a long
SQL*Plus command by typing a hyphen at the end of the line and pressing [Return]. If you
wish, you can type a space before typing the hyphen. SQL*Plus displays a right angle-
bracket (>) as a prompt for each additional line.

Ending a SQL*Plus Command       You do not need to end a SQL*Plus command with a
semicolon. When you finish entering the command, you can just press [Return]. However, if
you wish, you can enter a semicolon at the end of a SQL*Plus command.   

 Variables that Affect Running Commands

The SQL*Plus command SET controls many variables--called system variables--the settings
of which affect the way SQL*Plus runs your commands. System variables control a variety of
conditions within SQL*Plus, including default column widths for your output, whether
SQL*Plus displays the number of records selected by a command, and your page size.
System variables are also called SET command variables.

The examples in this Guide are based on running SQL*Plus with the system variables at their
default settings. Depending on the settings of your system variables, your output may
appear slightly different than the output shown in the examples. (Your settings might differ
from the default settings if you have a SQL*Plus LOGIN file on your computer.)

For more information on system variables and their default settings, see the SET command
in Chapter 6. For details on the SQL*Plus LOGIN file, refer to the subsection, "Setting Up Your
SQL*Plus Environment" under "Saving Commands for Later Use" in Chapter 3 and to the
SQLPLUS command in Chapter 6.

To list the current setting of a SET command variable, enter SHOW followed by the variable
name at the command prompt. See the SHOW command in Chapter 6 for information on
other items you can list with SHOW.

 Saving Changes to the Database Automatically
Through the SQL DML commands UPDATE, INSERT, and DELETE--which can be used within
PL/SQL blocks--you specify changes you wish to make to the information stored in the
database.    SQL does not, however, make the changes permanent until you enter a SQL
COMMIT command or a SQL DCL or DDL command such as CREATE TABLE.

You need not defer committing these changes to the database until you enter a SQL
COMMIT, DCL, or DDL command.    The SQL*Plus autocommit feature can cause pending
changes to be committed after each SQL command--including INSERT, UPDATE, and
DELETE--and after each PL/SQL block you execute.

You control the autocommit feature with the SQL*Plus SET command's AUTOCOMMIT
variable. It has these forms:   

SET AUTOCOMMIT ON Turns autocommit on

SET AUTOCOMMIT OFF Turns Autocommit off (the default).

 Example 2-5 Turning Autocommit On

To turn the autocommit feature on, enter:

SQL> SET AUTOCOMMIT ON

Until you change the setting of AUTOCOMMIT, SQL*Plus will automatically commit changes
from each SQL command or PL/SQL block that specifies changes to the database. After each
autocommit, SQL*Plus displays the following message:   

commit complete

When the autocommit feature is turned on, you cannot roll back changes to the database.

To turn the autocommit feature off again, enter the following command:

SQL> SET AUTOCOMMIT OFF

To confirm that AUTOCOMMIT is now set to OFF, enter the following SHOW command:   

SQL> SHOW AUTOCOMMIT
autocommit OFF

 Stopping a Command while It Is Running
Suppose you have displayed the first page of a fifty-page report, and    decide you do not
need to see the rest of it. Press [Cancel]. (Refer to Table 2-1 at the beginning of this chapter
to see how [Cancel] is labelled on your keyboard). SQL*Plus will stop the display and return
to the command prompt.

Note: Pressing [Cancel] will not stop the printing of a file that you have sent to a printer
with the OUT clause of the SQL*Plus SPOOL command. (You will learn about printing query
results in Chapter 4.)    You can stop the printing of a file through your operating system; see
your operating system manuals for information.

 Collecting Timing Statistics on Commands You Run
Use the SQL*Plus command TIMING to collect and display data on the amount of computer
resources used to run one or more commands or blocks. TIMING collects data for an elapsed
period of time, saving the data on commands run during the period in a timing area. See
TIMING in Chapter 6 and the Oracle installation and user's manuals provided for your
operating system for more information.

To delete all timing areas, enter CLEAR TIMING at the command prompt.

 Running Host Operating System Commands
You can execute a host operating system command from the SQL*Plus command prompt.
This is useful when you want to perform a task such as listing existing host operating system
files.   

To run a host operating system command, enter the SQL*Plus command HOST followed by
the host operating system command. For example, this SQL*Plus command runs a host
command, DIRECTORY *.SQL:   

SQL> HOST DIRECTORY *.SQL

When the host command finishes running, the SQL*Plus command prompt appears again.

 Running SQL*Forms Forms
If the RUNFORM option was enabled during SQL*Plus installation, you can also run a
SQL*Forms form from the SQL*Plus command prompt. To run a form, enter the SQL*Plus
command RUNFORM followed by the form name:   

SQL> RUNFORM myform

 __

Getting Help

While you use SQL*Plus, you may find that you need to list column definitions for a table,
describe a PL/SQL package, or start and stop the display that scrolls by. You may also need
to interpret error messages you receive when you enter a command incorrectly or when
there is a problem with ORACLE or SQL*Plus. The following sections describe how to get help
for those situations.

 Listing a Table Definition
To see the definitions of each column in a given table, use the SQL*Plus DESCRIBE
command.

 Example 2-6 Using the DESCRIBE Command

To list the column definitions of the three columns in the sample table DEPT, enter:

SQL> DESCRIBE DEPT

The following output results:   

Name Null? Type

-------- ------------- -----------

DEPTNO NOT NULL NUMBER(2)

DNAME CHAR(14)

LOC CHAR(13)

Note: DESCRIBE accesses information in the ORACLE data dictionary. You can also use SQL
SELECT commands to access this and other information in the database. See your ORACLE7
Server SQL Language Reference Manual for details.

 Listing PL/SQL Definitions
To see the definition of a function, procedure, package, or package contents, use the
SQL*Plus DESCRIBE command.

 Example 2-7 Using the DESCRIBE Command

To list the definition of a function called AFUNC, enter:

SQL> DESCRIBE afunc

The following output results:   

FUNCTION afunc RETURNS NUMBER

Argument Type In/Out Default?
Name

-------- ----------------- ----------- ---------

F1 CHAR IN

F2 NUMBER IN

 Controlling the Display
Suppose that you wish to stop and examine the contents of the screen while displaying a
long report or the definition of a table with many columns. Press [Pause].    (Refer to Table 2-
1 to see how [Pause] is labelled on your keyboard.)    The display will pause while you
examine it. To continue, press [Resume].

If you wish, you can use the PAUSE variable of the SQL*Plus SET command to have SQL*Plus
pause after displaying each screen of a query or report. Refer to SET in Chapter 6 for details.

 Interpreting Error Messages
If SQL*Plus detects an error in a command, it will try to help you out by displaying an error
message.

 Example 2-8 Interpreting an Error Message

For example, if you misspell the name of a table while entering a command, an error
message will tell you that the table or view does not exist:   

SQL> DESCRIBE DPT
ERROR:
ORA-0942: table or view does not exist

You will often be able to figure out how to correct the problem from the message alone. If
you need further explanation, take one of the following steps to determine the cause of the
problem and how to correct it:   

· If the error is a numbered error for the SQL*Plus COPY command, look up the message
in Appendix A of this Guide.   

· If the error is a numbered error beginning with the letters "ORA", look up the message
in the ORACLE7 Server Messages and Codes manual or in the Oracle installation and
user's manual(s) provided for your operating system to determine the cause of the
problem and how to correct it.

· If the error is unnumbered, look up correct syntax for the command that generated
the error in Chapter 6 of this Guide for a SQL*Plus command, in the ORACLE7 Server
SQL Language Reference Manual for a SQL command, or in the PL/SQL User's Guide
and Reference for a PL/SQL block. Or, contact your DBA.

CHAPTER 3. Manipulating Commands
This chapter helps you learn to manipulate SQL*Plus commands, SQL commands, and
PL/SQL blocks, and covers the following topics:   

· editing a SQL*Plus command

· using SQL*Plus commands to list and modify the command currently stored in the
buffer

· editing commands with a system editor

· creating and modifying command files to hold commands for later use

· retrieving and running command files

· saving SQL*Plus environment settings

· writing interactive commands that include user variables and substitution variables

· passing parameters to a command file

· bind variables   

Read this chapter while sitting at your computer, and try out the examples shown. Before
beginning, make sure you have access to the sample tables described in Chapter 1.   

 __

Editing Commands

Because SQL*Plus does not store SQL*Plus commands in the buffer, you edit a SQL*Plus
command entered directly to the command prompt by using [Backspace] or by re-entering
the command.

You can use a number of SQL*Plus commands to edit the SQL command or PL/SQL block
currently stored in the buffer. Or, you can use a host operating system editor to edit the
buffer contents.

Table 3-1 shows several SQL*Plus commands that allow you to examine or change the
command in the buffer without re-entering the command.

Command Abbreviation Purpose
APPEND text A text add text at the end of a line

CHANGE /old/new C /old/new change old to new in a line

CHANGE /text C /text delete text from a line

CLEAR BUFFER CL BUFF delete all lines

DEL (none) delete a line

INPUT I add one or more lines

INPUT text I text add a line consisting of text

LIST L list all lines in the SQL buffer

LIST n L n or n list one line

LIST * L * list the current line

LIST LAST L LAST list the last line

LIST m n L m n list a range of lines (m to n)

Table 3 - 1.    SQL*Plus Editing Commands

You will find these commands useful if you mistype a command or wish to modify a
command you have entered.   

 Listing the Buffer Contents
Any editing command other than LIST affects only a single line in the buffer. This line is
called the current line.    It is marked with an asterisk when you list the current command or

block.

 Example 3-1 Listing the Buffer Contents

 Suppose you want to list the current command. Use the LIST command as shown below. (If
you have EXITed SQL*Plus or entered another SQL command or PL/SQL block since following
the steps in Example 2-3, perform the steps in that example again before continuing.)   

SQL> LIST
 1 SELECT EMPNO, ENAME, JOB, SAL
 2* FROM EMP WHERE SAL < 2500

Notice that the semicolon you entered at the end of the SELECT command is not listed. This
semicolon is necessary to mark the end of the command when you enter it, but SQL*Plus
does not store it in the SQL buffer. This makes editing more convenient, since it means you
can add a new line to the end of the buffer without removing a semicolon from the line that
was previously the last.

 Editing the Current Line
The SQL*Plus CHANGE command allows you to edit the current line.    Various actions
determine which line is the current line:   

· LIST a given line to make it the current line.

· When you LIST or RUN the command in the buffer, the last line of the command
becomes the current line. (Using the slash (/) command to run the command in the
buffer does not affect the current line, however.)

· If you get an error message, the line containing the error automatically becomes the
current line.

 Example 3-2 Making an Error in Command Entry

Suppose you try to select the DEPTNO column but mistakenly enter it as DPTNO. Enter the
following command, purposely misspelling DEPTNO in the first line:

SQL> SELECT DPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO = 10;

You see this message on your screen:   

SELECT DPTNO, ENAME, SAL
 *
ERROR at line 1:
ORA-0904: invalid column name

Examine the error message; it indicates an invalid column name in line 1 of the query. The
asterisk shows the point of error--the mistyped column DPTNO.

Instead of re-entering the entire command, you can correct the mistake by editing the

command in the buffer. The line containing the error is now the current line. Use the
CHANGE command to correct the mistake. This command has three parts, separated by
slashes or any other non-alphanumeric character:   

· the word CHANGE or the letter C

· the sequence of characters you want to change

· the sequence of characters to which you want to change it   

The CHANGE command finds the first occurrence in the current line of the character
sequence to be changed, and changes it to the new sequence. If you wish to re-enter an
entire line, you do not need to use the CHANGE command:    re-enter the line by typing the
line number followed by a space and the new text and pressing [Return].

 Example 3-3 Correcting the Error

To change DPTNO to DEPTNO, change the line with the CHANGE command:   

SQL> CHANGE /DPTNO/DEPTNO

The corrected line appears on your screen:   

1* SELECT DEPTNO, ENAME, SAL

Now that you have corrected the error, you can use the RUN command to run the command
again:   

SQL> RUN

SQL*Plus lists the command, and then runs it:   

1 SELECT DEPTNO, ENAME, SAL

2 FROM EMP

3* WHERE DEPTNO = 10

DEPTNO ENAME SALARY

-------- ------ --------

10 CLARK $2,450

10 KING $5,000

10 MILLER $1,300

Note that the column SAL retains the format you gave it in    Example 2-4. (If you have left
SQL*Plus and started again since performing Example 2-4, the column has reverted to its
original format.)

For information about the significance of case in a CHANGE command and on using
wildcards to specify blocks of text in a CHANGE command, refer to CHANGE in Chapter 6.

 Adding a New Line
To insert a new line after the current line, use the INPUT command.

 Example 3-4    Adding a Line

 Suppose you want to add a fourth line to the SQL command you modified in Example 3-3.
Since line 3 is already the current line, enter INPUT (which may be abbreviated to I) and
press [Return]. SQL*Plus prompts you for the new line:   

SQL> INPUT
4

Enter the new line. Then press [Return]. SQL*Plus prompts you again for a new line:   

4 ORDER BY SAL
5

Press [Return] again to indicate that you will not enter any more lines, and then use RUN to
verify and rerun the query.

 Appending Text to a Line
To add text to the end of a line in the buffer, use the APPEND command:   

1. Use the LIST command (or just the line number) to list the line you want to change.

2. Enter APPEND followed by the text you want to add. If the text you want to add begins
with a blank, separate the word APPEND from the first character of the text by two
blanks:    one to separate APPEND from the text, and one to go into the buffer with the
text.

 Example 3-5 Appending Text to a Line

To append a space and the clause DESC to line 4 of the current query, first list line 4:

SQL> LIST 4
 4* ORDER BY SAL

Next, enter the following command (be sure to type two spaces between APPEND and
DESC):   

SQL> APPEND DESC

 4* ORDER BY SAL DESC

Use RUN to verify and rerun the query.   

 Deleting a Line
To delete a line in the buffer, use the DEL command:

1. Use the LIST command (or just the line number) to list the line you want to delete.

2. Enter DEL.   

DEL makes the following line of the buffer (if any) the current line. Thus, you can delete
several consecutive lines by making the first of them the current line, then entering DEL
several times.

 Editing Commands with a System Editor
Your host computer's operating system has one or more text editors that you can use to
create and edit host system files.    Text editors perform the same general functions as the
SQL*Plus editing commands, but you may find them more familiar.

You can run your host operating system's default text editor without leaving SQL*Plus by
entering the EDIT command:   

SQL> EDIT

EDIT loads the contents of the buffer into your system's default text editor. You can then edit
the text with the text editor's commands. When you tell the text editor to save edited text
and then exit, the text is saved back into the current buffer.

To load the buffer contents into a text editor other than the default, use the SQL*Plus DEFINE
command to define a variable, _EDITOR, to hold the name of the editor. For example, to
define the editor to be used by EDIT as EDT, enter the following command:   

SQL> DEFINE _EDITOR = EDT

 __

Saving Commands for Later Use

Through SQL*Plus, you can store one or more commands in a file, called a command file.   
After you create a command file, you can retrieve, edit, and run it. Use command files to
save commands for use over time, especially complex commands or PL/SQL blocks.

 Storing Commands in Command Files
You can store one or more SQL commands, PL/SQL blocks, and SQL*Plus commands in
command files. You create a command file within SQL*Plus in one of three ways:   

· enter a command and save the contents of the buffer

· use INPUT to enter commands and then save the buffer contents

· use EDIT to create the file from scratch using a host system text editor   

Because SQL*Plus commands are not stored in the buffer, you must use one of the latter two
methods to save SQL*Plus commands.

 Creating a Command File by Saving the Buffer Contents

To save the current SQL command or PL/SQL block for later use, enter the SAVE command.
Follow the command with a file name:

SQL> SAVE file_name

SQL*Plus adds the extension SQL to the file name to identify it as a SQL query file. If you
wish to save the command or block under a name with a different file extension, type a
period at the end of the file name, followed by the extension you wish to use.

Note that within SQL*Plus, you separate the extension from the file name with a period. Your
operating system may use a different character or a space to separate the file name and the
extension.

 Example 3-5 Saving the Current Command

First, LIST the buffer contents to see your current command:

SQL> LIST

 1 SELECT DEPTNO, ENAME, SAL

 2 FROM EMP

 3 WHERE DEPTNO = 10

 4* ORDER BY SAL DESC

If the query shown is not in your buffer, re-enter the query now. Next, enter the SAVE
command followed by the file name DEPTINFO:   

SQL> SAVE DEPTINFO
Created file DEPTINFO

You can verify that the command file DEPTINFO exists by entering the SQL*Plus HOST
command followed by your host operating system's file listing command:   

SQL> HOST your_host's_file_listing_command

You can use the same method to save a PL/SQL block currently stored in the buffer.

 Creating a Command File by Using INPUT and SAVE

If you use INPUT to enter your commands, you can enter SQL*Plus commands (as well as
one or more SQL commands or PL/SQL blocks) into the buffer. You must enter the SQL*Plus
commands first, and the SQL command(s) or PL/SQL block(s) last--just as you would if you
were entering the commands directly to the command prompt.

You can also store a set of SQL*Plus commands you plan to use with many different queries
by themselves in a command file.

 Example 3-6 Saving Commands Using INPUT and SAVE

Suppose you have composed a query to display a list of salespeople and their commissions.
You plan to run it once a month to keep track of how well each employee is doing. To
compose and save the query using INPUT, you must first clear the buffer:   

SQL> CLEAR BUFFER

Next, use INPUT to enter the command (be sure not to type a semicolon at the end of the
command):   

SQL> INPUT

 1 COLUMN ENAME HEADING SALESMAN

 2 COLUMN SAL HEADING SALARY FORMAT $99,999

 3 COLUMN COMM HEADING COMMISSION FORMAT $99,990

 4 SELECT EMPNO, ENAME, SAL, COMM

 5 FROM EMP

 6 WHERE JOB = 'SALESMAN'

 7

The zero at the end of the format model for the column COMM tells SQL*Plus to display a
zero instead of a blank when the value of COMM is zero for a given row. The zero is only
necessary when you use other format models on the given column. Format models and the
COLUMN command are described in more detail in Chapter 4.

Now use the SAVE command to store your query in a file called SALES with the extension
SQL:   

SQL> SAVE SALES
Created file SALES

Note that you do not type a semicolon at the end of the query; if you did include a
semicolon, SQL*Plus would attempt to run the buffer contents. The SQL*Plus commands in
the buffer would produce an error because SQL*Plus expects to find only SQL commands in
the buffer. You will learn how to run a command file later in this chapter.

To input more than one SQL command, leave out the semicolons on all the SQL commands.
Then, use APPEND to add a semicolon to all but the last command (SAVE appends a slash to
the end of the file automatically; this slash tells SQL*Plus to run the last command when you
run the command file.)

To input more than one PL/SQL block, enter the blocks one after another without including a
period or a slash on a line between blocks. Then, for each block except the last, list the last
line of the block to make it current and use INPUT in the following form to insert a slash on a
line by itself:   

INPUT /

 Creating Command Files with a System Editor

You can also create a command file with a host operating system text editor by entering
EDIT followed by the name of the file, for example:

SQL> EDIT SALES

Like the SAVE command, EDIT adds the file name extension SQL to the name unless you
type a period and a different extension at the end of the file name. When you save the
command file with the text editor, it is saved back into the same file.

You must include a semicolon at the end of each SQL command and a period on a line by
itself after each PL/SQL block in the file. (You can include multiple SQL commands and
PL/SQL blocks.)

When you create a command file using EDIT, you can also include SQL*Plus commands at
the end of the file. You cannot do this when you create a command file using the SAVE
command because SAVE appends a slash to the end of the file. This slash would cause
SQL*Plus to run the command file twice, once upon reaching the semicolon at the end of the
last SQL command (or the slash after the last PL/SQL block), and once upon reaching the
slash at the end of the file.   

 Placing Comments in Command Files
You can enter comments in a command file in one of three ways:

· using the SQL*Plus REMARK command

· using the SQL comment delimiters, /*...*/

· using ANSI/ISO (American National Standards Institute/International Standards
Organization) comments, --   

Anything that is identified in one of these ways as a comment is not parsed or executed by
SQL*Plus.

 Using the REMARK Command

Use the REMARK command on a line by itself in the command file, followed by comments on
the same line. To continue the comments on additional lines, enter additional REMARK
commands. Do not place a REMARK command between different lines of a single SQL
command.   

REMARK Commissions report
REMARK to be run monthly.
COLUMN ENAME HEADING SALESMAN
COLUMN SAL HEADING SALARY FORMAT $99,999
COLUMN COMM HEADING COMMISSION FORMAT $99,990
REMARK Includes only salesmen.
SELECT EMPNO, ENAME, SAL, COMM
FROM EMP
WHERE JOB = 'SALESMAN'

 Using /*...*/

Enter the SQL comment delimiters, /*...*/, on separate lines in your command file, on the
same line as a SQL command, or on a line in a PL/SQL block. The comments can span
multiple lines:   

/* Commissions report
to be run monthly. */
COLUMN ENAME HEADING SALESMAN
COLUMN SAL HEADING SALARY FORMAT $99,999
COLUMN COMM HEADING COMMISSION FORMAT $99,990
SELECT EMPNO, ENAME, SAL, COMM
FROM EMP
WHERE JOB = 'SALESMAN' /* Includes only salesmen. */

If you enter a SQL comment directly at the command prompt, SQL*Plus does not store the
comment in the buffer.   

 Using --

You can use ANSI/ISO "--" style comments within SQL statements, PL/SQL blocks, or SQL*Plus
commands. Since there is no ending delimiter, the comment cannot span multiple lines.    For

PL/SQL and SQL, enter the comment after a command on a line or on a line by itself:

-- Commissions report to be run monthly
DECLARE --block for reporting monthly sales

For SQL*Plus commands, you can only include "--" style comments if they are on a line by
themselves. For example, these comments are legal:

--set maximum width for LONG to 777
SET LONG 777
-- set the heading for ENAME to be SALESMAN
COLUMN ENAME HEADING SALESMAN

These comments are illegal:   

SET LONG 777 -- set maximum width for LONG to 777
SET -- set maximum width for LONG to 777 LONG 777

If you entered the following, the SQL*Plus command would be treated as a comment and not
be executed:   

-- SET LONG 777

 Retrieving Command Files
If you want to place the contents of a command file in the buffer, you must retrieve the
command from the file in which it is stored. You can retrieve a command file using the
SQL*Plus command GET.

Just as you can save a query from the buffer to a file with the SAVE command, you can
retrieve a query from a file to the buffer with the GET command:   

SQL> GET file_name

When appropriate to the operating system, SQL*Plus adds a period and the extension SQL to
the file name unless you type a period at the end of the file name followed by a different
extension.   

 Example 3-7 Retrieving a Command File

Suppose you need to retrieve the SALES file in a later session. You can retrieve the file by
entering the GET command. To retrieve the file SALES, enter:   

SQL> GET SALES

 1 COLUMN ENAME HEADING SALESMAN

 2 COLUMN SAL HEADING SALARY FORMAT $99,999

 3 COLUMN COMM HEADING COMMISSION FORMAT $99,990

 4 SELECT EMPNO, ENAME, SAL, COMM

 5 FROM EMP

 6* WHERE JOB = 'SALESMAN'

SQL*Plus retrieves the contents of the file SALES with the extension SQL into the SQL buffer
and lists it on the screen. Then you can edit the command further. If the file did not contain
SQL*Plus commands, you could also execute it with the RUN command.

 Running Command Files
The    START command retrieves a command file and runs the command(s) it contains. Use
START to run a command file containing    SQL commands, PL/SQL blocks, and/or SQL*Plus
commands. Follow the word START with the name of the file:   

START file_name

If the file has an extension SQL, you need not add the period and the extension SQL to the
file name.

 Example 3-8 Running a Command File

To retrieve and run the command stored in SALES.SQL, enter:

SQL> START SALES

SQL*Plus runs the commands in the file SALES and displays the results of the commands on
your screen, formatting the query results according to the SQL*Plus commands in the file:   

EMPNO SALESMAN SALARY COMMISSION

----- ------------- ------ ------------

7499 ALLEN $1,600 $300

7521 WARD $1,250 $1,400

7654 MARTIN $1,250 $1,400

7844 TURNER $1,500 $0

To see the commands as SQL*Plus "enters" them, you can set the ECHO variable of the SET
command to ON. The ECHO variable controls the listing of the commands in command files
run with the START command and the @ command. Setting the ECHO variable to OFF
suppresses the listing.   

You can also use the @ ("at" sign) command to run a command file:   

SQL> @SALES

The @ command lists and runs the commands in the specified command file in the same
manner as START. SET ECHO affects the @ command as it affects the START command.

START and @ leave the last SQL command or PL/SQL block in the command file in the buffer.

 Running a Command File as You Start SQL*Plus

To run a command file as you start SQL*Plus, use one of the following four options:   

· Follow the SQLPLUS command with your username, a slash, your password, a space,
@, and the name of the file:

SQLPLUS SCOTT/TIGER @SALES

SQL*Plus starts and runs the command file.

· Follow the SQLPLUS command and your username with a space,    @, and the name of
the file:

SQLPLUS SCOTT @SALES

SQL*Plus prompts you for your password, starts, and runs the command file.

· Include your username as the first line of the file. Follow the SQLPLUS command with
@ and the file name. SQL*Plus prompts for your password, starts, and runs the file.

· Include your username, a slash (/), and your password as the first line of the file.
Follow the SQLPLUS command with @ and the file name. SQL*Plus starts and runs the
file.

 Nesting Command Files
To run a series of command files in sequence, first create a command file containing several
START commands, each followed by the name of a command file in the sequence. Then run
the command file containing the START commands. For example, you could include the
following START commands in a command file named SALESRPT:   

START Q1SALES
START Q2SALES
START Q3SALES
START Q4SALES
START YRENDSLS

 Modifying Command Files
You can modify an existing command file in two ways:

· using the EDIT command

· using GET, the SQL*Plus editing commands, and SAVE   

To edit an existing command file with the EDIT command, follow the word EDIT with the
name of the file. For example, to edit an existing file named PROFIT that has the extension
SQL, enter the following command:   

SQL> EDIT PROFIT

Remember that EDIT assumes the file extension SQL if you do not specify one.

To edit an existing file using GET, the SQL*Plus editing commands, and SAVE, first retrieve
the file with GET, then edit the file with the SQL*Plus editing commands, and finally save the
file with the SAVE command.

Note that if you want to replace the contents of an existing command file with the command
or block in the buffer, you must use the SAVE command and follow the file name with the
word REPLACE. For example:   

SQL> GET MYREPORT
 1* SELECT * FROM EMP
SQL> C/*/ENAME, JOB
 1* SELECT ENAME, JOB FROM EMP
SQL> SAVE MYREPORT REPLACE
Wrote file MYREPORT

If you want to append the contents of the buffer to the end of an existing command file, use
the SAVE command and follow the file name with the word APPEND:   

SQL> SAVE file_name APPEND

 Exiting from a Command File with a Return Code
If your command file generates a SQL error while running from a batch file on the host
operating system, you may want to abort the command file and exit with a return code. Use
the SQL*Plus command WHENEVER SQLERROR to do this; see WHENEVER SQLERROR in
Chapter 6 for more information.   

 Setting Up Your SQL*Plus Environment
You may wish to set up your SQL*Plus environment in a particular way (such as showing the
current time as part of the SQL*Plus command prompt) and then re-use those settings with
each session. You can do this through a host operating system file called LOGIN with the file
extension SQL (also called your User Profile). The exact name of this file is system-
dependent; see the Oracle installation and user's manual(s) provided for your operating
system for the precise name.

You can add any SQL commands, PL/SQL blocks, or SQL*Plus commands to this file; when
you start SQL*Plus, it automatically searches for your LOGIN file (first in your local directory
and then on a system-dependent path) and runs the commands it finds there. (You may also
have a Site Profile. See the SQLPLUS command in Chapter 6 for more information on the
relationship of Site and User profiles.)

 Modifying Your LOGIN File

You can modify your LOGIN file just as you would any other command file. You may wish to
add some of the following commands to the LOGIN file:   

SET COMPATIBILITY Followed by V5, V6, or V7, sets compatibility to the version of ORACLE
you specify. Setting COMPATIBILITY to V5 allows you to run command
files created with Version 5 of ORACLE.

SET CRT Followed by a SQL*Forms CRT name, enables you to run SQL*Forms
forms with RUNFORM using the specified CRT definition.

SET NUMFORMAT Followed by a number format (such as $99,999), sets the default
format for displaying numbers in query results.

SET PAGESIZE Followed by a number, sets the number of lines per page.

SET PAUSE Followed by ON, causes SQL*Plus to pause at the beginning of each
page of output (SQL*Plus continues scrolling after you enter [Return]).
Followed by text, sets the text to be displayed each time SQL*Plus
pauses (you must also set PAUSE to ON).

SET TIME Followed by ON, displays the current time before each    command
prompt.

See the SET command in Chapter 6 for more information on these and other SET command
variables you may wish to set in your SQL*Plus LOGIN file.

 __

Writing Interactive Commands

The following features of SQL*Plus make it possible for you to set up command files that
allow end-user input:   

· defining user variables

· substituting values in commands

· using the START command to provide values

· prompting for values

 Defining User Variables
You can define variables, called user variables, for repeated use in a single command file by
using the SQL*Plus command DEFINE. Note that you can also define user variables to use in
titles and to save you keystrokes (by defining a long string as the value for a variable with a
short name).

 Example 3-9 Defining a User Variable

To define a user variable EMPLOYEE and give it the value "SMITH", enter the following
command:

SQL> DEFINE EMPLOYEE = SMITH

To confirm the definition of the variable, enter DEFINE followed by the variable name:   

SQL> DEFINE EMPLOYEE

SQL*Plus lists the definition:   

DEFINE EMPLOYEE = "SMITH" (CHAR)

To list all user variable definitions, enter DEFINE by itself at the command prompt. Note that
any user variable you define explicitly through DEFINE takes only CHAR values (i.e., the
value you assign to the variable is always treated as a CHAR datatype). You can define a
user variable of datatype NUMBER implicitly through the ACCEPT command. You will learn
more about the ACCEPT command later in this chapter.

To delete a user variable, use the SQL*Plus command UNDEFINE followed by the variable
name.

 Using Substitution Variables
Suppose you want to write a query like the one in SALES (see Example 3-6) to list the
employees with various jobs, not just those whose job is SALESMAN. You could do that by
editing a different CHAR value into the WHERE clause each time you run the command, but
there is an easier way.

By using a substitution variable in place of the value SALESMAN in the WHERE clause, you
can get the same results you would get if you had written the values into the command
itself.

A substitution variable is a user variable name preceded by one or two ampersands (&).
When SQL*Plus encounters a substitution variable in a command, SQL*Plus executes the
command as though it contained the value of the substitution variable, rather than the
variable itself.

For example, if the variable SORTCOL has the value JOB, and the variable MYTABLE has the
value EMP, SQL*Plus executes the commands   

SQL> BREAK ON &SORTCOL
SQL> SELECT &SORTCOL, SAL
 2 FROM &MYTABLE
 3 ORDER BY &SORTCOL;

as if they were:   

SQL> BREAK ON JOB
SQL> SELECT JOB, SAL
 2 FROM EMP
 3 ORDER BY JOB;

(The BREAK command suppresses duplicate values of the column named in SORTCOL;
BREAK is discussed in Chapter 4.)

 Where and how to Use Substitution Variables

You can use substitution variables anywhere in SQL and SQL*Plus commands, except as the
first word entered at the command prompt. When SQL*Plus encounters an undefined
substitution variable in a command, SQL*Plus prompts you for the value.

You can enter any string at the prompt, even one containing blanks and punctuation. If the
SQL command containing the reference should have quote marks around the variable and
you do not include them there, the user must include the quotes when prompted.

SQL*Plus reads your response from the keyboard, even if you have redirected terminal input
or output to a file. If a terminal is not available (if, for example, you run the command file in
batch mode), SQL*Plus uses the redirected file.

After you enter a value at the prompt, SQL*Plus lists the line containing the substitution
variable twice:    once before substituting the value you enter and once after substitution.
You can suppress this listing by setting the SET command variable VERIFY to OFF.

 Example 3-10 Using Substitution Variables

Create a command file named STATS, to be used to calculate a subgroup statistic (the
maximum value) on a numeric column:

SQL> CLEAR BUFFER

SQL> INPUT

1 SELECT &GROUP_COL,

2 MAX(&NUMBER_COL) MAXIMUM

3 FROM &TABLE

4 GROUP BY &GROUP_COL

5

SQL> SAVE STATS

Created file STATS

Now run the command file STATS and respond as shown below to the prompts for values:   

SQL> @STATS
Enter value for group_col: JOB
old 1: SELECT &GROUP_COL,
new 1: SELECT JOB,
Enter value for number_col: SAL
old 2: MAX(&NUMBER_COL) MAXIMUM
new 2: MAX(SAL) MAXIMUM
Enter value for table: EMP
old 3: FROM &TABLE
new 3: FROM EMP
Enter value for group_col: JOB
old 4: GROUP BY &GROUP_COL
new 4: GROUP BY JOB

SQL*Plus displays the following output:   

JOB MAXIMUM

----------- --------

CLERK 1300

MANAGER 2975

PRESIDENT 5000

SALESMAN 1600

If you wish to append characters immediately after a substitution variable, use a period to

separate the variable from the character. For example,   

SQL> SELECT * FROM EMP WHERE EMPNO='&X.01';
Enter value for X: 123

will be interpreted as:   

SQL> SELECT * FROM EMP WHERE EMPNO='12301';

 Avoiding Unnecessary Prompts for Values

Suppose you wanted to expand the file STATS to include the minimum, sum, and average of
the "number" column. You may have noticed that SQL*Plus prompted you twice for the value
of GROUP_COL and once for the value of NUMBER_COL in Example 3-10, and that each
GROUP_COL or NUMBER_COL had a single ampersand in front of it. If you were to add three
more functions--using a single ampersand before each--to the command file, SQL*Plus would
prompt you a total of four times for the value of the number column.

You can avoid being re-prompted for the group and number columns by adding a second
ampersand in front of each GROUP_COL and NUMBER_COL in STATS. SQL*Plus automatically
DEFINEs any substitution variable preceded by two ampersands, but does not DEFINE those
preceded by only one ampersand. Thus, when SQL*Plus encounters a substitution variable
more than once during a session, SQL*Plus uses the DEFINEd values for substitution
variables preceded by two ampersands, and prompts again for substitution variables
preceded by one ampersand. This feature would also be useful if you wanted to run the file
using the same GROUP_COL and NUMBER_COL in a different table.

 Example 3-11 Using Double Ampersands

To expand the command file STATS using double ampersands and then run the file, first
suppress the display of each line before and after substitution:   

SQL> SET VERIFY OFF

Now retrieve and edit STATS by entering the following commands:   

SQL> GET STATS
 1 SELECT &GROUP_COL,
 2 MAX(&NUMBER_COL) MAXIMUM
 3 FROM &TABLE
 4 GROUP BY &GROUP_COL
SQL> 2
 2* MAX(&NUMBER_COL) MAXIMUM
SQL> APPEND ,
 2* MAX(&NUMBER_COL) MAXIMUM,
SQL> C /&/&&
 2* MAX(&&NUMBER_COL) MAXIMUM,
SQL> I
 3i MIN(&&NUMBER_COL) MINIMUM,
 4i SUM(&&NUMBER_COL) TOTAL,
 5i AVG(&&NUMBER_COL) AVERAGE
 6i

SQL> 1
 1* SELECT &GROUP_COL,
SQL> C /&/&&
 1* SELECT &&GROUP_COL,
SQL> 7
 7* GROUP BY &GROUP_COL SQL> C /&/&&
 7* GROUP BY &&GROUP_COL SQL> SAVE STATS2
created file STATS2

Finally, run the command file STATS2 and respond to the prompts for values as follows:   

SQL> START STATS2
Enter value for group_col: JOB
Enter value for number_col: SAL
Enter value for table: EMP

SQL*Plus displays the following output:   

JOB MAXIMUM MINIMUM TOTAL AVERAGE

----------- -------- -------- -------- -----------

ANALYST 3000 3000 6000 3000

CLERK 1300 800 4150 1037.5

MANAGER 2975 2450 8275 2758.33333

PRESIDENT 5000 5000 5000 5000

SALESMAN 1600 1250 5600 1400

Note that you were prompted for the values of NUMBER_COL and GROUP_COL only once. If
you were to run STATS2 again during the current session, you would be prompted for TABLE
(because its name has a single ampersand and the variable is therefore not DEFINEd) but
not for GROUP_COL or NUMBER_COL (because their names have double ampersands and the
variables are therefore DEFINEd).

Before continuing, set the system variable VERIFY back to ON:   

SQL> SET VERIFY ON

 Restrictions

You cannot use substitution variables in the buffer editing commands, APPEND, CHANGE,
DEL, and INPUT, nor in other commands where substitution would be meaningless, such as
REMARK and TIMING. The buffer editing commands, APPEND, CHANGE, and INPUT, treat text
beginning with "&" or "&&" literally, as any other text string.

 System Variables

The following system variables, specified with the SQL*Plus SET command, affect
substitution variables:   

SET SCAN Turns substitution on and off.

SET DEFINE Defines the substitution character (by default the ampersand "&").

SET ESCAPE Defines an escape character you can use before the substitution
character. The escape character instructs SQL*Plus to treat the
substitution character as an ordinary character rather than as a
request for variable substitution. The default escape character is a
backslash (\).

SET VERIFY ON Lists each line of the command file before and after substitution.

SET CONCAT Defines the character that separates the name of a substitution
variable or parameter from characters that immediately follow the
variable or parameter--by default the period (.).   

Refer to SET in Chapter 6 for more information on these system variables.

 Passing Parameters through the START Command
You can bypass the prompts for values associated with substitution variables by passing
values to parameters in a command file through the START command.

You do this by placing an ampersand (&) followed by a numeral in the command file in place
of a substitution variable. Each time you run this command file, START replaces each &1 in
the file with the first value (called an argument) after START file_name, then replaces each
&2 with the second value, and so forth.

For example, you could include the following commands in a command file called MYFILE:   

SELECT * FROM EMP
WHERE JOB='&1'
AND SAL=&2

In the following START command, SQL*Plus would substitute CLERK for &1 and 7900 for &2
in the command file MYFILE:   

SQL> START MYFILE CLERK 7900

When you use arguments with the START command, SQL*Plus DEFINEs each parameter in
the command file with the value of the appropriate argument.   

 Example 3-12 Passing Parameters through START

To create a new command file based on SALES that takes a parameter specifying the job to
be displayed, enter:

SQL> GET SALES
 1 COLUMN ENAME HEADING SALESMAN

 2 COLUMN SAL HEADING SALARY FORMAT $99,999
 3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
 4 SELECT EMPNO, ENAME, SAL, COMM
 5 FROM EMP
 6* WHERE JOB = 'SALESMAN'
SQL> CHANGE /SALESMAN/&1
 6* WHERE JOB = '&1'
SQL> 1
 1* COLUMN ENAME HEADING SALESMAN
SQL> CHANGE /SALESMAN/&1
 1* COLUMN ENAME HEADING &1
SQL> SAVE ONEJOB
Created file ONEJOB

Now run the command with the parameter CLERK.   

SQL> START ONEJOB CLERK

SQL*Plus lists the line of the SQL command that contains the parameter, before and after
replacing the parameter with its value, and then displays the output:   

old 3: WHERE JOB = '&1'
new 3: WHERE JOB = 'CLERK'

EMPNO CLERK SALARY COMMISSION

----- ------- ------- ------------

7369 SMITH $800

7876 ADAMS $1,100

7900 JAMES $950

7934 MILLER $1,300

You can use any number of parameters in a command file. Within a command file, you can
refer to each parameter any number of times, and can include the parameters in any order.

Note that you cannot use parameters when you run a command with RUN or slash (/). You
must store the command in a command file and run it with START.

Before continuing, return the column ENAME to its original heading by entering the following
command:   

SQL> COLUMN ENAME CLEAR

 Communicating with the User
Three SQL*Plus commands--PROMPT, ACCEPT, and PAUSE--help you communicate with the

end user. These commands enable you to send messages to the screen and receive input
from the user, including a simple [Return]. You can also use PROMPT and ACCEPT to
customize the prompts for values SQL*Plus automatically generates for substitution
variables.

 Prompting for and Accepting User Variable Values

Through PROMPT and ACCEPT, you can send messages to the end user and accept values as
end-user input. PROMPT simply displays a message you specify on-screen; use it to give
directions or information to the user. ACCEPT prompts the user for a value and stores it in
the user variable you specify. Use PROMPT in conjunction with ACCEPT when your prompt for
the value spans more than one line.

 Example 3-13 Prompting for and Accepting Input

 To direct the user to supply a report title and to store the input in the variable MYTITLE for
use in a subsequent query, first clear the buffer:

SQL> CLEAR BUFFER

Next, set up a command file as shown below:   

SQL> INPUT
 1 PROMPT Enter a title up to 30 characters long.
 2 ACCEPT MYTITLE PROMPT 'Title: '
 3 TTITLE CENTER MYTITLE SKIP 2
 4 SELECT * FROM DEPT
 5
SQL> SAVE PROMPT1
Created file PROMPT1

The TTITLE command sets the top title for your report. This command is covered in detail in
Chapter 4.

Finally, run the command file, responding to the prompt for the title as shown:   

SQL> START PROMPT1
Enter a title up to 30 characters long.
Title: Department Report as of 1/1/89

SQL*Plus displays the following output:   

Department Report as of 1/1/89

DEPTNO DNAME LOC

------- ------------ ---------

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Before continuing, turn the TTITLE command you entered in the command file off as shown
below:   

SQL> TTITLE OFF

 Customizing Prompts for Substitution Variable Values

If you want to customize the prompt for a substitution variable value, use PROMPT and
ACCEPT in conjunction with the substitution variable, as shown in the following example.

 Example 3-14 Using PROMPT and ACCEPT in Conjunction with Substitution
Variables

 As you have seen in Example 3-13, SQL*Plus automatically generates a prompt for a value
when you use a substitution variable. You can replace this prompt by including PROMPT and
ACCEPT in the command file with the query that references the substitution variable. To
create such a file, enter the commands shown:

SQL> CLEAR BUFFER
buffer cleared
SQL> INPUT
 1 PROMPT Enter a valid employee number
 2 PROMPT For example: 7123, 7456, 7890
 3 ACCEPT ENUMBER NUMBER PROMPT 'Emp. no.: '
 4 SELECT ENAME, MGR, JOB, SAL
 5 FROM EMP
 6 WHERE EMPNO = &ENUMBER
 7
SQL> SAVE PROMPT2
Created file PROMPT2

Next, run the command file. SQL*Plus prompts for the value of ENUMBER using the text you
specified with PROMPT and ACCEPT:   

SQL> START PROMPT2
Enter a valid employee number
For example: 7123, 7456, 7890
Emp. No.:

Try entering characters instead of numbers to the prompt for "Emp. No.":   

Emp. No.: ONE
"ONE" is not a valid number
Emp. No.:

Because you specified NUMBER after the variable name in the ACCEPT command, SQL*Plus
will not accept a non-number value. Now enter a number:   

Emp. No.: 7521
old 3: WHERE EMPNO = &ENUMBER
new 3: WHERE EMPNO = 7521

SQL*Plus displays the following output:   

ENAME MGR JOB SALARY

----- ---- ---------- -------

WARD 7698 SALESMAN $1,250

 Sending a Message and Accepting [Return] as Input

If you want to display a message on the user's screen and then have the user enter [Return]
after reading the message, use the SQL*Plus command PAUSE. For example, you might
include the following lines in a command file:   

PROMPT Before continuing, make sure you have your account card.
PAUSE Press RETURN to continue.

If the message you wish to display fits on one line, you can omit the PROMPT command.

 Clearing the Screen

If you want to clear the screen before displaying a report (or at any other time), include the
SQL*Plus CLEAR command with its SCREEN clause at the appropriate point in your command
file, in the following form:   

CLEAR SCREEN

Before continuing to the next chapter, reset all columns to their original formats and
headings by entering the following command:   

SQL> CLEAR COLUMNS

 __

Using Bind Variables

Suppose that you want to be able to display the variables you use in your PL/SQL
subprograms in SQL*Plus or use the same variables in multiple subprograms. If you declare
a variable in a PL/SQL subprogram, you cannot display that variable in SQL*Plus. If you use   
a bind variable rather than a variable declared in PL/SQL, however, you can access the
variable in SQL*Plus.

Bind variables are variables you create in SQL*Plus and then reference in PL/SQL. If you
create a bind variable in SQL*Plus, you can use the variable as you would a declared
variable in your PL/SQL subprogram and then access the variable from SQL*Plus. You can
use bind variables for such things as storing return codes or debugging your PL/SQL
subprograms.

Because bind variables are recognized by SQL*Plus, you can display their values in SQL*Plus
or reference them in other PL/SQL subprograms that you run in SQL*Plus.

 Creating Bind Variables
You create bind variables in SQL*Plus with the VARIABLE command.      For example,   

VARIABLE ret_val NUMBER

This command creates a bind variable named ret_val with a datatype of NUMBER. See
VARIABLE in Chapter 6. (To list all of the bind variables created in a session, type VARIABLE
without any arguments.)

 Referencing Bind Variables
You reference bind variables in PL/SQL by typing a colon (:) followed immediately by the
name of the variable. For example,   

:ret_val := 1;

This command assigns a value to the bind variable named ret_val.

It is important to note that if a bind variable's name is the same as that of a declared
variable in a PL/SQL subprogram, the declared variable will take precedence in the PL/SQL
subprogram.

 Displaying Bind Variables
You display the value of a bind variable in SQL*Plus , you use the SQL*Plus PRINT command.
For example,   

PRINT ret_val

This command displays a bind variable named ret_val. See PRINT in Chapter 6.

 Example 3-15 Creating, Referencing, and Displaying Bind Variables

 Declaring a local bind variable:

VARIABLE n NUMBER

Putting a value into the variable:   

BEGIN
:n := 1;
END;

Printing the value of the variable:   

PRINT n

Creating some new departments using the variable:   

EXECUTE :id := dept_management.new('ACCOUNTING','NEW YORK')
EXECUTE :id := dept_management.new('RESEARCH','DALLAS')
EXECUTE :id := dept_management.new('SALES','CHICAGO')
EXECUTE :id := dept_management.new('OPERATIONS','BOSTON')
PRINT id
COMMIT

Note: dept_management.new refers to a PL/SQL function (new) in a package
(dept_management). new adds the department data to a table.   

CHAPTER 4. Formatting Query Results
This chapter explains how to format your query results to produce a finished report. This
chapter covers the following topics:   

· changing column headings

· formatting NUMBER, CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and Trusted ORACLE
columns

· copying, listing, and resetting column display attributes

· suppressing duplicate values and inserting space for clarity

· calculating and printing summary lines (totals, averages, minimums, maximums, and
more)

· listing and removing spacing and summary line definitions

· setting page dimensions

· placing titles at the top and bottom of each page

· displaying column values and the current date or page number in your titles

· listing and suppressing page title definitions

· sending query results to a file or printer   

Read this chapter while sitting at your computer, and try out the examples shown. Before
beginning, make sure you have access to the sample tables described in Chapter 1.   

 __

Formatting Columns

Through the SQL*Plus COLUMN command you can change the column headings and
reformat the column data in your query results.

 Changing Column Headings
When displaying column headings, you can either use the default heading or you can
change it using the COLUMN command. The sections below describe how the default
headings are derived and how you can alter them with the COLUMN command.

 Default Headings

SQL*Plus uses column or expression names as default column headings when displaying
query results. Column names are often short and cryptic, however, and expressions can be
hard to understand.

 Changing Default Headings

You can define a more useful column heading with the HEADING clause of the COLUMN
command, in the format shown below:   

COLUMN column_name HEADING column_heading

See the COLUMN command in Chapter 6 for more details.

 Example 4-1 Changing a Column Heading

To produce a report from EMP with new headings specified for DEPTNO, ENAME, and SAL,
enter the following commands:

SQL> COLUMN DEPTNO HEADING Department
SQL> COLUMN ENAME HEADING Employee
SQL> COLUMN SAL HEADING Salary
SQL> COLUMN COMM HEADING Commission
SQL> SELECT DEPTNO, ENAME, SAL, COMM
 2 FROM EMP
 3 WHERE JOB = 'SALESMAN';

SQL*Plus displays the following output:   

Department Employee Salary Commission

----------- ---------- ------ ----------

30 ALLEN 1600 300

30 WARD 1250 500

30 MARTIN 1250 1400

30 TURNER 1500 0

Note: The new headings will remain in effect until you enter different    headings, reset each
column's format, or exit from SQL*Plus.   

To change a column heading to two or more words, enclose the new heading in single or
double quotation marks when you enter the COLUMN command. To display a column
heading on more than one line, use a vertical bar (|) where you want to begin a new line.
(You can use a character other than a vertical bar by changing the setting of the HEADSEP
variable of the SET command. See SET in Chapter 6 for more information.)

 Example 4-2 Splitting a Column Heading

To give the column ENAME the heading EMPLOYEE NAME and to split the new heading onto
two lines, enter:

SQL> COLUMN ENAME HEADING 'Employee|Name'

Now rerun the query with the slash (/) command:   

SQL> /

SQL*Plus displays the following output:   

Department Employee Salary Commission
Name

---------- --------- ------ -----------

30 ALLEN 1600 300

30 WARD 1250 500

30 MARTIN 1250 1400

30 TURNER 1500 0

To change the character used to underline each column heading, set the UNDERLINE
variable of the SET command to the desired character.

 Example 4-3 Setting the Underline Character

To change the character used to underline headings to an equal sign and rerun the query,
enter the following commands:

SQL> SET UNDERLINE =
SQL> /

SQL*Plus displays the following results:   

Employee
Department Name Salary Commission

============ ============ ====== ========

30 ALLEN 1600 300

30 WARD 1250 500

30 MARTIN 1250 1400

30 TURNER 1500 0

Now change the underline character back to a dash:   

SQL> SET UNDERLINE '-'

Note that you must enclose the dash in quotation marks; otherwise SQL*Plus interprets the
dash as a hyphen indicating you wish to continue the command on another line.

 Formatting NUMBER Columns
When displaying NUMBER columns, you can either accept the SQL*Plus default display width
or you can change it using the COLUMN command. The sections below describe the default
display and how you can alter the default with the COLUMN command.

 Default Display

SQL*Plus normally displays numbers with as many digits as are required for accuracy, up to
a standard display width determined by the value of the NUMWIDTH variable of the SET
command (normally 10). If you specify a width shorter than the column heading, SQL*Plus
truncates the heading.

You can choose a different format for any NUMBER column by using a format model in a
COLUMN command. A format model is a representation of the way you want the numbers in
the column to appear, using 9's to represent digits.

 Changing the Default Display

The COLUMN command identifies the column you want to format and the model you want to
use, as shown below:   

COLUMN column_name FORMAT model

Use format models to add commas, dollar signs, angle brackets (around negative values),
and/or leading zeros to numbers in a given column. You can also round the values to a given
number of decimal places, display minus signs to the right of negative values (instead of to
the left), and display values in exponential notation.

To use more than one format model for a single column, combine the desired models in one
COLUMN command (see Example 4-4). For a complete list of format models and further
details, see the COLUMN command in Chapter 6.

 Example 4-4 Formatting a NUMBER Column

To display SAL with a dollar sign, a comma, and the numeral zero instead of a blank for any
zero values, enter the following command:

SQL> COLUMN SAL FORMAT $99,990

Now rerun the current query:   

SQL> /

SQL*Plus displays the following output:   

Department Employee Salary Commission
Name

---------- ---------- ------ -----------

30 ALLEN $1,600 300

30 WARD $1,250 500

30 MARTIN $1,250 1400

30 TURNER $1,500 0

Use a zero in your format model, as shown above, when you use other formats such as a
dollar sign and wish to display a zero in place of a blank for zero values.

Note: The format model will stay in effect until you enter a new one, reset the column's
format, or exit from SQL*Plus.

 Formatting CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and Trusted
ORACLE Columns
When displaying CHAR, VARCHAR2 (VARCHAR), LONG, and DATE, and Trusted ORACLE
columns, you can either accept the SQL*Plus default display width or you can change it
using the COLUMN command. The sections below describe the defaults and how you can
alter the defaults with the COLUMN command.

 Default Display

The default display width for CHAR and VARCHAR2 (VARCHAR) values is the width defined for
the column in the database or the width of the column heading, whichever is longer.
(VARCHAR2 requires ORACLE7.)

The display width of LONG columns defaults to the value of the LONGCHUNKSIZE variable of
the SET command (which is 80 by default).

With ORACLE7, the default display width of DATE columns not formatted by a SQL TO_CHAR
function is derived from the default date format specified via initialization parameter in a
parameter file. With ORACLE Version 5 and Version 6, the default width for DATE columns is
nine characters. For more information on formatting DATE columns, see the FORMAT clause
of the COLUMN command in Chapter 6.

The default display width for the Trusted ORACLE datatypes MLSLABEL and RAW MLSLABEL
is the width defined for the column in the database or the width of the column heading,
whichever is longer. (Note that the default display width for a Trusted ORACLE column
named ROWLABEL is 15.)

Note: The default justification for CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and Trusted
ORACLE columns is left justification.

 Changing the Default Display

You can change the displayed width of a CHAR,    VARCHAR2 (VARCHAR), LONG,    DATE, or
Trusted ORACLE column by using the COLUMN command with a format model consisting of
the letter A (for alphanumeric) followed by a number representing the width of the column in
characters.

Within the COLUMN command, identify the column you want to format and the model you
want to use:   

COLUMN column_name FORMAT model

If you specify a width shorter than the column heading, SQL*Plus truncates the heading. If
you specify a width for a LONG column larger than LONGCHUNKSIZE, LONGCHUNKSIZE is
automatically increased to the column's width. See the COLUMN command in Chapter 6 for
more details.

 Example 4-5 Formatting a Character Column

To set the width of the column ENAME to four characters and rerun the current query, enter:

SQL> COLUMN ENAME FORMAT A4
SQL> /

SQL*Plus displays the results:   

Empl
Department Name Salary Commission

---------- ----------- ------ -----------

30 ALLE $1,600 300
N

30 WARD $1,250 500

30 MART $1,250 1400
IN

30 TURN $1,250 0
ER

Note: The format model will stay in effect until you enter a new one, reset the column's
format, or exit from SQL*Plus. ENAME could be a CHAR or VARCHAR2 (VARCHAR) column.

If the WRAP    variable of the SET command is set to ON (its default value), the employee
names wrap to the next line after the fourth character, as shown in Example 4-5. If WRAP is
set to OFF, the names are truncated (cut off) after the fourth character.   

The system variable WRAP controls all columns; you can override the setting of WRAP for a
given column through the WRAPPED, WORD_WRAPPED, and TRUNCATED clauses of the
COLUMN command. See COLUMN in Chapter 6 for more information on these clauses. You
will use the WORD_WRAPPED clause of COLUMN later in this chapter.

Note that the column heading is truncated regardless of the setting of WRAP or any COLUMN
command clauses.

Now return the column to its previous format:   

SQL> COLUMN ENAME FORMAT A10

 Copying Column Display Attributes
When you want to give more than one column the same display attributes, you can reduce
the length of the commands you must enter by using the LIKE clause of the COLUMN
command. The LIKE clause tells SQL*Plus to copy the display attributes of a previously
defined column to the new column, except for changes made by other clauses in the same
command.

 Example 4-6 Copying a Column's Display Attributes

To give the column COMM the same display attributes you gave to SAL, but to specify a
different heading, enter the following command:

SQL> COLUMN COMM LIKE SAL HEADING Bonus

Rerun the query:   

SQL> /

SQL*Plus displays the following output:   

Employee
Department Name Salary Bonus

---------- --------- ------ -------

30 ALLEN $1,600 $300

30 WARD $1,250 $500

30 MARTIN $1,250 $1,400

30 TURNER $1,500 $0

 Listing and Resetting Column Display Attributes
To list the current display attributes for a given column, use the COLUMN command followed
by the column name only, as shown below:   

COLUMN column_name

To list the current display attributes for all columns, enter the COLUMN command with no
column names or clauses after it:   

COLUMN

To reset the display attributes for a column to their default values, use the CLEAR clause of
the COLUMN command as shown below:   

COLUMN column_name CLEAR

To reset the attributes for all columns, use the COLUMNS clause of the CLEAR command.

 Example 4-7 Resetting Column Display Attributes to their Defaults

To reset all columns' display attributes to their default values, enter the following command:

SQL> CLEAR COLUMNS
columns cleared

You may wish to place the command CLEAR COLUMNS at the beginning of every command
file to ensure that previously entered COLUMN commands will not affect queries you run in a
given file.

 Suppressing and Restoring Column Display Attributes
You can suppress and restore the display attributes you have given a specific column. To
suppress a column's display attributes, enter a COLUMN command in the following form:   

COLUMN column_name OFF

The OFF clause tells SQL*Plus to use the default display attributes for the column, but does
not remove the attributes you have defined through the COLUMN command. To restore the
attributes you defined through COLUMN, use the ON clause:   

COLUMN column_name ON

 Printing a Line of Characters after Wrapped Column Values
As you have seen, by default SQL*Plus wraps column values to additional lines when the
value does not fit within the column width. If you want to insert a record separator (a line of
characters or a blank line) after each wrapped line of output (or after every row), use the
RECSEP and RECSEPCHAR variables of the SET command.

RECSEP determines when the line of characters is printed:    you set RECSEP to EACH to print
after every line, to WRAPPED to print after wrapped lines, and to OFF to suppress printing.
The default setting of RECSEP is WRAPPED.

RECSEPCHAR sets the character printed in each line. You can set RECSEPCHAR to any
character.   

You may wish to wrap whole words to additional lines when a column value wraps to
additional lines. To do so, use the WORD_WRAPPED clause of the COLUMN command as
shown below:   

COLUMN column_name WORD_WRAPPED

 Example 4-8Printing a Line of Characters after Wrapped Column Values

To print a line of dashes after each wrapped column value, enter the following commands:

SQL> SET RECSEP WRAPPED
SQL> SET RECSEPCHAR '-'

Now restrict the width of the column LOC and tell SQL*Plus to wrap whole words to
additional lines when necessary:   

SQL> COLUMN LOC FORMAT A7 WORD_WRAPPED

Finally, enter and run the following query:   

SQL> SELECT * FROM DEPT;

SQL*Plus displays the results:   

DEPTNO DNAME LOC

------- ------------- --------

10 ACCOUNTING NEW
YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

If you set RECSEP to EACH, SQL*Plus prints a line of characters after every row (after every
department, for the above example).

Before continuing, set RECSEP to OFF to suppress the printing of record separators:   

SQL> SET RECSEP OFF

 __

Clarifying Your Report with Spacing and Summary Lines

When you use an ORDER BY clause in your SQL SELECT command, rows with the same value
in the ordered column (or expression) are displayed together in your output. You can make
this output more useful to the user by using the SQL*Plus BREAK and COMPUTE commands
to create subsets of records and add space and/or summary lines after each subset.   

The column you specify in a BREAK command is called a break column.    By including the
break column in your ORDER BY clause, you create meaningful subsets of records in your
output. You can then add formatting to the subsets within the same BREAK command, and
add a summary line (containing totals, averages, and so on) by specifying the break column
in a COMPUTE command.

For example, the following query, without BREAK or COMPUTE commands,   

SELECT DEPTNO, ENAME, SAL
FROM EMP
WHERE SAL < 2500
ORDER BY DEPTNO;

produces the following unformatted results:   

DEPTNO ENAME SAL

------ ------ -----

10 CLARK 2450

10 MILLER 1300

20 SMITH 800

20 ADAMS 1100

30 ALLEN 1600

30 JAMES 950

30 TURNER 1500

30 WARD 1250

30 MARTIN 1250

To make this report more useful, you would use BREAK to establish    DEPTNO as the break
column. Through BREAK you could suppress duplicate values in DEPTNO and place blank
lines or begin a new page between departments. You could use BREAK in conjunction with
COMPUTE to calculate and print summary lines containing the total (and/or average,

maximum, minimum, standard deviation, variance, or count of rows of) salary for each
department and for all departments.

 Suppressing Duplicate Values in Break Columns
The BREAK command suppresses duplicate values by default in the column or expression
you name. Thus, to suppress the duplicate values in a column specified in an ORDER BY
clause, use the BREAK command in its simplest form:   

BREAK ON break_column

Note: Whenever you specify a column or expression in a BREAK command, use an ORDER
BY clause specifying the same column or expression. If you do not do this, the breaks may
appear to occur randomly.   

 Example 4-9 Suppressing Duplicate Values in a Break Column

To suppress the display of duplicate department numbers in the query results shown above,
enter the following commands:

SQL> BREAK ON DEPTNO
SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE SAL < 2500
 4 ORDER BY DEPTNO;

SQL*Pus displays the following output:   

DEPTNO ENAME SAL

------- ------- ------

10 CLARK 2450

MILLER 1300

20 SMITH 800

ADAMS 1100

30 ALLEN 1600

JAMES 950

TURNER 1500

WARD 1250

MARTIN 1250

 Inserting Space when a Break Column's Value Changes
You can insert blank lines or begin a new page each time the value changes in the break
column. To insert n blank lines, use the BREAK command in the following form:   

BREAK ON break_column SKIP n

To skip the number of lines defined to be a page, use the command in this form:   

BREAK ON break_column SKIP PAGE

 Example 4-10 Inserting Space when a Break Column's Value Changes

To place one blank line between departments, enter the following command:

SQL> BREAK ON DEPTNO SKIP 1

Now rerun the query:   

SQL> /

SQL*Plus displays the results:   

DEPTNO ENAME SAL

------- ------- ------

10 CLARK 2450

MILLER 1300

20 SMITH 800

ADAMS 1100

30 ALLEN 1600

JAMES 950

TURNER 1500

WARD 1250

MARTIN 1250

 Inserting Space after Every Row
You may wish to insert blank lines or a blank page after every row. To skip n lines after every
row, use BREAK in the following form:   

BREAK ON ROW SKIP n

To skip the number of lines defined to be a page after every row, use:   

BREAK ON ROW SKIP PAGE

Note that SKIP PAGE only skips th number of lines defined to be a page. Thus it may not
cause a physical page break.

 Using Multiple Spacing Techniques
Suppose you have more than one column in your ORDER BY clause, and wish to insert space
when each column's value changes. Each BREAK command you enter replaces the previous
one. Thus, if you want to use different spacing techniques in one report or insert space after
the value changes in more than one ordered column, you must specify multiple columns and
actions in a single BREAK command.

 Example 4-11 Combining Spacing Techniques

First, add another column to the current query:

SQL> L
 1 SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE SAL < 2500
 4* ORDER BY DEPTNO
SQL> 1 SELECT DEPTNO, JOB, ENAME, SAL
SQL> 4 ORDER BY DEPTNO, JOB

Now, to skip a page when the value of DEPTNO changes and one line when the value of JOB
changes, enter the following command:   

SQL> BREAK ON DEPTNO SKIP PAGE ON JOB SKIP 1

Run the new query to see the results:   

SQL> /

DEPTNO JOB ENAME SAL

------- -------------- -------- ------

10 CLERK MILLER 300

DEPTNO JOB ENAME SAL

------- -------------- -------- ------

10 MANAGER CLARK 2450

DEPTNO JOB ENAME SAL

------- -------------- -------- ------

20 CLERK SMITH 800

ADAMS 1100

DEPTNO JOB ENAME SAL

------- -------------- -------- ------

30 CLERK JAMES 950

DEPTNO JOB ENAME SAL

------- -------------- -------- ------

SALESMAN ALLEN 1600

TURNER 1500

WARD 1250

MARTIN 1250

 Listing and Removing Break Definitions
You can list your current break definition by entering the BREAK command with no clauses:

BREAK

You can remove the current break definition by entering the CLEAR command with the
BREAKS clause:   

CLEAR BREAKS

You may wish to place the command CLEAR BREAKS at the beginning of every command file
to ensure that previously entered BREAK commands will not affect queries you run in a given
file.   

 Computing Summary Lines when a Break Column's Value Changes
If you organize the rows of a report into subsets with the BREAK command, you can perform
various computations on the rows in each subset. You do this with the functions of the
SQL*Plus COMPUTE command. Use the BREAK and COMPUTE commands together in the
following forms:   

BREAK ON break_column
COMPUTE function OF column column column ... ONbreak_column

You can include multiple break columns and actions such as skipping lines in the BREAK
command, as long as the column you name after ON in the COMPUTE command also
appears after ON in the BREAK command. To include multiple break columns and actions in
BREAK when using it in conjunction with COMPUTE, use these commands in the following
forms:   

BREAK ON break_column_1 SKIP PAGE ON break_column_2 SKIP 1
COMPUTE function OF column column column ... ON break_column_2

The COMPUTE command has no effect without a corresponding BREAK command.

You can COMPUTE on NUMBER columns, and in certain cases, on all types of columns. See
COMPUTE in Chapter 6 for details.

The following table lists compute functions and their effects:

Funtion Effect
SUM Computes the sum of the values in the column.

MIN Computes the minimum value in the column.

MAX Computes the maximum value in the column.

AVG Computes the average of the values in the column.

STD Computes the standard deviation of the values in the
column.

VAR Computes the variance of the values in the column.

COUNT Computes the number of non-null values in the col-
umn.

NUM Computes the number of rows in the column.

Table 4 - 1.    Compute Functions

The function you specify in the COMPUTE command applies to all columns you enter after OF
and before ON. The computed values print on a separate line when the value of the ordered
column changes. Labels for the computed values appear in the first column.

If you use    COMPUTE on the first column, you should create a dummy column for the label
using the COLUMN command. Otherwise, the label will not print.

All of the COMPUTE functions except NUM ignore null values.

 Example 4-12 Computing and Printing Subtotals

To compute the total of SAL by department, first list the current BREAK definition:

SQL> BREAK
break on DEPTNO skip page nodup
 on JOB skip 1 nodup

Now enter the following COMPUTE command, and run the current query:   

SQL> COMPUTE SUM OF SAL ON DEPTNO
SQL> /

SQL*Plus displays the following output:   

DEPTNO JOB ENAME SAL

------- -------- ------ ------

10 CLERK MILLER 1300

MANAGER CLARK 2450

******** ******** ---------

sum 3750

DEPTNO JOB ENAME SAL

------- -------- ------ ------

20 CLERK SMITH 800

ADAMS 1100

******** ******** ---------

sum 1900

DEPTNO JOB ENAME SAL

------- -------- ------ ------

30 CLERK JAMES 950

SALESMAN ALLEN 1600

TURNER 1500

WARD 1250

MARTIN 1250

******** ******** ---------

sum 6550

 Computing Summary Lines at the End of the Report
You can calculate and print summary lines based on all values in a column by using BREAK
and COMPUTE in the following forms:

BREAK ON REPORT
COMPUTE function OF column column column ... ON REPORT

 Example 4-13 Computing and Printing a Grand Total

To calculate and print the grand total of salaries for all salesmen, first enter the following
BREAK and COMPUTE commands:

SQL> BREAK ON REPORT
SQL> COMPUTE SUM OF SAL ON REPORT

Next, enter and run a new query:   

SQL> SELECT ENAME, SAL
 2 FROM EMP
 3 WHERE JOB = 'SALESMAN';

SQL*Plus displays the results:   

ENAME SAL

------- --------

ALLEN 1600

WARD 1250

MARTIN 1250

TURNER 1500

******** --------

sum 5600

BREAK ON break_column ON REPORT
COMPUTE function OF column ON break_column
COMPUTE function OF column ON REPORT

 Computing Multiple Summary Values and Lines
You can compute and print the same type of summary value on different columns. To do so,
enter a separate COMPUTE command for each column.

 Example 4-14 Computing the Same Type of Summary Value on Different Columns

To print the total of salaries and commissions for all salesmen, first enter the following
COMPUTE command:

SQL> COMPUTE SUM OF SAL COMM ON REPORT

You do not have to enter a BREAK command; the BREAK you entered in Example 4-13 is still
in effect. Now, add COMM to the current query:   

SQL> 1 SELECT ENAME, SAL, COMM

Finally, run the revised query to see the results:   

SQL> /

ENAME SAL COMM

------- ------- ---------

ALLEN 1600 300

WARD 1250 500

MARTIN 1250 1400

TURNER 1500 0

********-------- ----------

sum 5600 2200

You can also print multiple summary lines on the same break column. To do so, include the
function for each summary line in the COMPUTE command as follows:   

COMPUTE function function function ... OF column ON break_column

If you include multiple columns after OF and before ON, COMPUTE calculates and prints
values for each column you specify.

 Example 4-15 Computing Multiple Summary Lines on the Same Break Column

To compute the average and sum of salaries for the sales department, first enter the
following BREAK and COMPUTE commands:

SQL> BREAK ON DEPTNO
SQL> COMPUTE AVG SUM OF SAL ON DEPTNO

Now, enter and run the following query:   

SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO = 30
 4 ORDER BY DEPTNO, SAL;

SQL*Plus displays the results:   

DEPTNO ENAME SAL

-------- ------- ----------

JAMES 950

WARD 1250

MARTIN 1250

TURNER 1500

ALLEN 1600

BLAKE 2850

***************** ----------

avg 1566.66667

sum 9400

 Listing and Removing COMPUTE Definitions
You can list your current COMPUTE definitions by entering the COMPUTE command with no
clauses:

COMPUTE

You can remove all the COMPUTE definitions by entering the CLEAR command with the
COMPUTES clause.

 Example 4-16 Removing COMPUTE Definitions

To remove all COMPUTE definitions and the accompanying BREAK definition, enter the
following commands:

SQL> CLEAR BREAKS
breaks cleared
SQL> CLEAR COMPUTES
computes cleared

You may wish to place the commands CLEAR BREAKS and CLEAR COMPUTES at the
beginning of every command file to ensure that previously entered    BREAK and COMPUTE
commands will not affect queries you run in a given file.   

 __

Defining Page Titles and Dimensions

The word page refers to a screenful of information on your display, or a page of a spooled
(printed) report. You can place top and bottom titles on each page, set the number of lines
per page, and determine the width of each line.

 Setting the Top and Bottom Titles
As you have already seen, you can set a title to display at the top of each page of a report.
You can also set a title to display at the bottom of each page. The TTITLE command defines
the top title; the BTITLE command defines the bottom title.

A TTITLE or BTITLE command consists of the command name TTITLE or BTITLE followed by
one or more clauses specifying a position or format and a CHAR value you wish to place in
that position or give that format. You can include multiple sets of clauses and CHAR values:   

TTITLE position_clause(s) char_value position_clause(s) char_value ...

or   

BTITLE position_clause(s) char_value position_clause(s) char_value ...

The most often used clauses of TTITLE and BTITLE are summarized in the following table. For
descriptions of all TTITLE and BTITLE clauses, see the discussion of TTITLE in Chapter 6.

Clause Example Description
COL n COL 72 Makes the next CHAR value

appear in the specified col-
umn of the line.

SKIP n SKIP 2 Skips to a new line n times. If
n is greater than 1, n-1 blank
lines appear before the next
CHAR value.

LEFT LEFT Left-aligns the following
CHAR value.

CENTER CENTER Centers the following CHAR
value.

RIGHT RIGHT Right-aligns the following
CHAR value.

Table 4 - 2.    Often-Used Clauses of TTITLE and BTITLE

 Example 4-17 Placing a Top and Bottom Title

To put titles at the top and bottom of each page of a report, enter:

SQL> TTITLE CENTER 'ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT'
SQL> BTITLE CENTER 'COMPANY CONFIDENTIAL'

Now run the current query:   

SQL> /

SQL*Plus displays the following output:   

 ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT

DEPTNO ENAME SAL

------- ------ -----

30 JAMES 950

30 WARD 1250

30 MARTIN 1250

30 TURNER 1500

30 ALLEN 1600

30 BLAKE 2850

COMPANY CONFIDENTIAL

 Positioning Title Elements

The report in the preceding exercise might look more attractive if you give the company
name more emphasis and place the type of report and the department name on either end
of a separate line. It may also help to reduce the linesize and thus center the titles more
closely around the data.

You can accomplish these changes by adding some clauses to the TTITLE command, and by
resetting the system variable LINESIZE, as the following example shows.

 Example 4-18 Positioning Title Elements

To redisplay the personnel report with a repositioned top title, enter the following

commands:

SQL> TTITLE CENTER 'A C M E W I D G E T' SKIP 1 -
> CENTER ================== SKIP 1 LEFT 'PERSONNEL REPORT' -
> RIGHT 'SALES DEPARTMENT' SKIP 2
SQL> SET LINESIZE 60
SQL> /

SQL*Plus displays the results:   

 A C M E W I D G E T
 ====================
PERSONNEL REPORT SALES DEPARTMENT

DEPTNO ENAME SAL

------- ------ ------

30 JAMES 950

30 WARD 1250

30 MARTIN 1250

30 TURNER 1500

30 ALLEN 1600

30 BLAKE 2850

 COMPANY CONFIDENTIAL

The LEFT, RIGHT, and CENTER clauses place the following values at the beginning, end, and
center of the line. The SKIP clause tells SQL*Plus to move down one or more lines.

Note that there is no longer any space between the last row of the results and the bottom
title. The last line of the bottom title prints on the last line of the page. The amount of space
between the last row of the report and the bottom title depends on the overall page size, the
number of lines occupied by the top title, and the number of rows in a given page. In the
above example the top title occupies three more lines than the top title in the previous
example. You will learn to set the number of lines per page later in this chapter.

To always print n blank lines before the bottom title, use the SKIP n clause at the beginning
of the BTITLE command. For example, to skip one line before the bottom title in the example
above, you could enter the following command:   

BTITLE SKIP 1 CENTER 'COMPANY CONFIDENTIAL'

 Indenting a Title Element

You can use the COL clause in TTITLE or BTITLE to indent the title element a specific number
of spaces. For example, COL 1 places the following values in the first character position, and
so is equivalent to LEFT, or an indent of zero. COL 15 places the title element in the 15th
character position, indenting it 14 spaces.

 Exercise 4-19 Indenting a Title Element

To print the company name left-aligned with the report name indented 5 spaces on the next
line, enter:

SQL> TTITLE LEFT 'ACME WIDGET' SKIP 1 -
> COL 6 'SALES DEPARTMENT PERSONNEL REPORT' SKIP 2

Now rerun the current query to see the results:   

SQL> /
ACME WIDGET

SALES DEPARTMENT PERSONNEL REPORT

DEPTNO ENAME SAL

------- ------ ------

30 JAMES 950

30 WARD 1250

30 MARTIN 1250

30 TURNER 1500

30 ALLEN 1600

30 BLAKE 2850

COMPANY CONFIDENTIAL

 Entering Long Titles

If you need to enter a title greater than 500 characters in length, you can use the SQL*Plus
command DEFINE to place the text of each line of the title in a separate user variable:   

SQL> DEFINE LINE1 = 'This is the first line...'
SQL> DEFINE LINE2 = 'This is the second line...'
SQL> DEFINE LINE3 = 'This is the third line...'

Then, reference the variables in your TTITLE or BTITLE command as follows:   

SQL> TTITLE CENTER LINE1 SKIP 1 CENTER LINE2 SKIP 1 CENTER LINE3

 Displaying the Page Number and other System-Maintained Values in
Titles
You can display the current page number and other system-maintained values in your title
by entering a system value name as a title element, for example:

TTITLE LEFT system-maintained_value_name

There are five system-maintained values you can display in titles, the most commonly used
of which is SQL.PNO (the current page number). Refer to the TTITLE command in Chapter 6
for a list of system-maintained values you can display in titles.

 Example 4-20 Displaying the Current Page Number in a Title

To display the current page number at the top of each page, along with the company name,
enter the following command:

SQL> TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' SQL.PNO SKIP 2

Now rerun the current query:   

SQL> /

SQL*Plus displays the following results:   

ACME WIDGET PAGE 1

DEPTNO ENAME SAL

------- ------ ------

30 JAMES 950

30 WARD 1250

30 MARTIN 1250

30 TURNER 1500

30 ALLEN 1600

30 BLAKE 2850

 COMPANY CONFIDENTIAL

Note that SQL.PNO has a format ten spaces wide. You can change this format with the
FORMAT clause of TTITLE (or BTITLE).

 Example 4-21 Formatting a System-Maintained Value in a Title

To close up the space between the word PAGE: and the page number, re-enter the TTITLE
command as shown:

SQL> TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' FORMAT 999 -
> SQL.PNO SKIP 2

Now rerun the query:   

SQL> /
ACME WIDGET PAGE 1

DEPTNO ENAME SAL

------- ------ ------

30 JAMES 950

30 WARD 1250

30 MARTIN 1250

30 TURNER 1500

30 ALLEN 1600

30 BLAKE 2850

 COMPANY CONFIDENTIAL

SQL*Plus displays the following results:   

 Listing, Suppressing, and Restoring Page Title Definitions
To list a page title definition, enter the appropriate title command with no clauses:

TTITLE
BTITLE

To suppress a title definition, enter:   

TTITLE OFF
BTITLE OFF

These commands cause SQL*Plus to cease displaying titles on reports, but do not clear the
current definitions of the titles.    You may restore the current definitions by entering:   

TTITLE ON
BTITLE ON

 Displaying Column Values in Titles
You may wish to create a master/detail report that displays a changing master column value
at the top of each page with the detail query results for that value below. You can reference
a column value in a top title by storing the desired value in a variable and referencing the
variable in a TTITLE command. Use the following form of the COLUMN command to define
the variable:   

COLUMN column_name NEW_VALUE variable_name

You must include the master column in an ORDER BY clause and in a BREAK command using
the SKIP PAGE clause.

 Example 4-22 Creating a Master/Detail Report

Suppose you want to create a report that displays two different managers' employee
numbers, each at the top of a separate page, and the people reporting to the manager on
the same page as the manager's employee number. First create a variable, MGRVAR, to hold
the value of the current manager's employee number:   

SQL> COLUMN MGR NEW_VALUE MGRVAR NOPRINT

Because you will display the managers' employee numbers in the title, you do not want
them to print as part of the detail. The NOPRINT clause you entered above tells SQL*Plus not
to print the column MGR.

Next, include a label and the value in your page title, enter the proper BREAK command, and
suppress the bottom title from the last example:   

SQL> TTITLE LEFT 'Manager: ' MGRVAR SKIP 2
SQL> BREAK ON MGR SKIP PAGE
SQL> BTITLE OFF

Finally, enter and run the following query:   

SQL> SELECT MGR, ENAME, SAL, DEPTNO
 2 FROM EMP
 3 WHERE MGR IN (7698, 7839)
 3 ORDER BY MGR;

SQL*Plus displays the following output:   

Manager: 7698

ENAME SAL DEPTNO

------- ------ --------

ALLEN 1600 30

WARD 1250 30

TURNER 1500 30

MARTIN 1250 30

JAMES 950 30

Manager: 7839

ENAME SAL DEPTNO

------- ------- --------

JONES 2975 20

BLAKE 2850 30

CLARK 245 10

If you want to print the value of a column at the bottom of the page, you can use the
COLUMN command in the following form:   

COLUMN column_name OLD_VALUE variable_name

SQL*Plus prints the bottom title as part of the process of breaking to a new page--after

finding the new value for the master column. Therefore, if you simply referenced the
NEW_VALUE of the master column, you would get the value for the next set of detail.
OLD_VALUE remembers the value of the master column that was in effect before the page
break began.

 Displaying the Current Date in Titles
You can, of course, date your reports by simply typing a value in the title. This is satisfactory
for ad-hoc reports, but if you want to run the same report repeatedly, you would probably
prefer to have the date automatically appear when the report is run. You can do this by
creating a variable to hold the current date.   

To create the variable (in this example named _DATE), you can add the following commands
to your SQL*Plus LOGIN file:   

SET TERMOUT OFF
BREAK ON TODAY
COLUMN TODAY NEW_VALUE _DATE
SELECT TO_CHAR(SYSDATE, 'fmMonth DD, YYYY') TODAY
FROM DUAL;
CLEAR BREAKS
SET TERMOUT ON

When you start SQL*Plus, these commands place the value of SYSDATE (the current date)
into a variable named _DATE. To display the current date, you can reference _DATE in a title
as you would any other variable.

The date format model you include in the SELECT command in your LOGIN file determines
the format in which SQL*Plus displays the date. See your ORACLE7 Server SQL Language
Reference Manual for more information on date format models.

You can also enter these commands interactively at the command prompt; see COLUMN in
Chapter 6 for an example.

 Setting Page Dimensions
Typically, a page of a report contains a top title, column headings, your query results, and a
bottom title. SQL*Plus displays a report that is too long to fit on one page on several
consecutive pages, each with its own titles and column headings. The amount of data
SQL*Plus displays on each page depends on the current page dimensions.

The default page dimensions used by SQL*Plus are shown below:

· number of lines before the top title:    1

· number of lines per page, from the top title to the    bottom of the page:    14

· number of characters per line:    80   

You can change these settings to match the size of your computer screen or, for printing, the
size of a sheet of paper.

You can change the page length with the system variables NEWPAGE and PAGESIZE. For
example, you may wish to do so when you print a report, since printed pages are

customarily 66 lines long, not 15 (the total number of lines per page is the sum of PAGESIZE
and NEWPAGE).   

To set the number of lines between the beginning of each page and the top title, use the
NEWPAGE variable of the SET command:   

SET NEWPAGE number_of_lines

If you set NEWPAGE to zero, SQL*Plus skips zero lines and displays and prints a formfeed
character to begin a new page. On most types of computer screens, the formfeed character
clears the screen and moves the cursor to the beginning of the first line. When you print a
report, the formfeed character makes the printer move to the top of a new sheet of paper,
even if the overall page length is less than that of the paper.

To set the number of lines on a page from the top title on, use the PAGESIZE variable of the
SET command:   

SET PAGESIZE number_of_lines

You may wish to reduce the linesize to center a title properly over your output. Or, you may
want to increase linesize for printing on wide paper. You can change the line width using the
LINESIZE variable of the SET command:   

SET LINESIZE number_of_characters

 Example 4-23 Setting Page Dimensions

To set the page size to 66 lines, clear the screen (or advance the printer to a new sheet of
paper) at the start of each page, and set the linesize to 32, enter the following commands:   

SQL> SET PAGESIZE 66
SQL> SET NEWPAGE 0
SQL> SET LINESIZE 32

Now enter and run the following commands to see the results:   

SQL> TTITLE CENTER 'ACME WIDGET PERSONNEL REPORT' SKIP 1 -
> CENTER '10-JAN-89' SKIP 2
SQL> COLUMN DEPTNO HEADING DEPARTMENT
SQL> COLUMN ENAME HEADING EMPLOYEE
SQL> COLUMN SAL FORMAT $99,999 HEADING SALARY
SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 ORDER BY DEPTNO;

SQL*Plus displays a formfeed followed by the query results:   

ACME WIDGET PERSONNEL REPORT
10-JAN-89

DEPARTMENT EMPLOYEE SALARY

----------- ----------- ----------

10 CLARK $2,450

10 KING $5,000

10 MILLER $1,300

20 SMITH $800

20 ADAMS $1,100

20 FORD $3,000

20 SCOTT $3,000

20 JONES $2,975

30 ALLEN $1,600

30 BLAKE $2,850

30 MARTIN $1,250

30 JAMES $950

30 TURNER $1,500

30 WARD $1,250

Now reset PAGESIZE, NEWPAGE, and LINESIZE to their default values:   

SQL> SET PAGESIZE 14
SQL> SET NEWPAGE 1
SQL> SET LINESIZE 80

To list the current values of these variables, use the SHOW command:   

SQL> SHOW PAGESIZE
pagesize 14
SQL> SHOW NEWPAGE
newpage 1
SQL> SHOW LINESIZE
linesize 80

Through the SQL*Plus command SPOOL, you can store you query results in a file or print
them on your computer's default printer.

 Sending Results to a File
To store the results of a query in a file--and still display them on the screen--enter the SPOOL
command in the following form:   

SPOOL file_name

SQL*Plus stores all information displayed on the screen after you enter the SPOOL command
in the file you specify.

 __

Storing and Printing Query Results

If you do not follow the file name with a period and an extension, SPOOL adds a default file
extension to the file name to identify it as an output file. The default varies with the host
operating system; on most hosts it is LST or LIS. See the Oracle installation and user's
manual(s) provided for your operating system for more information.

SQL*Plus continues to spool information to the file until you turn spooling off, using the
following form of SPOOL:   

SPOOL OFF

Send your query results to a file when you want to edit them with a word processor before
printing, or include them in a letter, memo, or other document.

 Creating a Flat File

When moving data between different software products, it is sometimes necessary to use a
"flat" file (an operating system file with no escape characters, headings or extra characters
embedded). For example, if you do not have SQL*Net, you need to create a flat file for use
with SQL*Loader when moving data from ORACLE Version 6 to ORACLE Version 5.

To create a flat file with SQL*Plus, you first must enter the following SET commands:   

SET NEWPAGE 0
SET SPACE 0
SET LINESIZE 80
SET PAGESIZE 0
SET ECHO OFF
SET FEEDBACK OFF
SET HEADING OFF

After entering these commands, you use the SPOOL command as shown in the previous
section to actually create the flat file.

 Sending Results to a Printer
To print query results, spool them to a file as described in the previous section. Then, instead
of using SPOOL OFF, enter the command in the following form:   

SPOOL OUT

SQL*Plus stops spooling and copies the contents of the spooled file to your host computer's
standard (default) printer. SPOOL OUT does not delete the spool file after printing.

 Example 4-24 Sending Query Results to a Printer

To generate a final report and spool and print the results, create a command file named
EMPRPT containing the following commands.

First, use EDIT to create the command file with your host operating system text editor. (Do

not use INPUT and SAVE, or    SQL*Plus will add a slash to the end of the file, and will run the
command file twice-- once as a result of the semicolon and once due to the slash.)   

SQL> EDIT EMPRPT

Next, enter the following commands into the file, using your text editor:

SPOOL TEMP
CLEAR COLUMNS
CLEAR BREAKS
CLEAR COMPUTES

COLUMN DEPTNO HEADING DEPARTMENT
COLUMN ENAME HEADING EMPLOYEE
COLUMN SAL HEADING SALARY FORMAT $99,999

BREAK ON DEPTNO SKIP 1 ON REPORT
COMPUTE SUM OF SAL ON DEPTNO
COMPUTE SUM OF SAL ON REPORT

SET PAGESIZE 21
SET NEWPAGE 0
SET LINESIZE 30

TTITLE CENTER 'A C M E W I D G E T' SKIP 2 -
LEFT 'EMPLOYEE REPORT' RIGHT 'PAGE:' -
FORMAT 999 SQL.PNO SKIP 2

BTITLE CENTER 'COMPANY CONFIDENTIAL'

SELECT DEPTNO, ENAME, SAL
FROM EMP
ORDER BY DEPTNO;

SPOOL OUT

If you do not want to see the output on your screen, you can also add SET TERMOUT OFF to
the beginning of the file and SET TERMOUT ON to the end of the file. Save the file (you
automatically return to SQL*Plus). Now, run the command file EMPRPT:   

SQL> @EMPRPT

SQL*Plus displays the output on your screen (unless you set TERMOUT to OFF), spools it to
the file TEMP, and sends the contents of TEMP to your default printer:   

 A C M E W I D G E T

EMPLOYEE REPORT PAGE: 1

DEPARTMENT EMPLOYEE SALARY

------------ ----------- --------

10 CLARK $2,450

KING $5,000

MILLER $1,300

************ --------

sum $8,750

20 SMITH $800

ADAMS $1,100

FORD $3,000

SCOTT $3,000

JONES $2,975

************ --------

sum $10,875

 COMPANY CONFIDENTIAL

 A C M E W I D G E T

EMPLOYEE REPORT PAGE: 2

DEPARTMENT EMPLOYEE SALARY

------------------ ---------- -------

30 ALLEN $1,600

BLAKE $2,850

MARTIN $1,250

JAMES $900

TURNER $1,500

WARD $1.250

****************** -------

sum $9,400

****************** -------

sum $29,025

 COMPANY CONFIDENTIAL

CHAPTER 5. Accessing SQL Databases
This chapter explains how to access databases through SQL*Plus, and discusses the
following topics:   

· connecting to the default database

· connecting to a remote database

· copying data between different databases

· copying data between tables on the same database   

Read this chapter while sitting at your computer, and try out the example shown. Before
beginning, make sure you have access to the sample tables described in Chapter 1.   

 __

Connecting to the Default Database

In order to access data in a given database, you must first connect to the database. When
you start SQL*Plus, you normally connect to your default ORACLE database, under the
username and password you enter while starting. Once you have logged on, you can
connect under a different username with the SQL*Plus CONNECT command. The username
and password must be valid for the database.

For example, to connect the username TODD to the default database using the password
FOX, you could enter:   

SQL> CONNECT TODD/FOX

If you omit the username and password, SQL*Plus prompts you for them. You also have the
option of typing only the username following CONNECT and omitting the password (SQL*Plus
then prompts for the password). Because CONNECT first disconnects you from your current
database, you will be left unconnected to any database if you use an invalid username and
password in your CONNECT command.

You can disconnect the username currently connected to ORACLE without leaving SQL*Plus
by entering the SQL*Plus command DISCONNECT at the SQL*Plus command prompt.

 __

Connecting to a Remote Database

Many large installations run ORACLE on more than one computer. Such computers are often
connected in a network, which permits programs on different computers to exchange data
rapidly and efficiently. Networked computers can be physically near each other, or can be
separated by large distances and connected by telecommunication links.

Databases on other computers or databases on your host computer other than your default
database are called remote databases.    You can access remote databases if the desired
database has SQL*Net and both databases have compatible network drivers.

You can connect to a remote database in one of two ways:   

· from within SQL*Plus, using the CONNECT command

· as you start SQL*Plus, using the SQLPLUS command   

 Connecting to a Remote Database from within SQL*Plus
To connect to a remote database using CONNECT, include a SQL*Net database specification
in the CONNECT command in one of the following forms (the username and password you
enter must be valid for the database to which you wish to connect):   

· CONNECT SCOTT@database_specification

· CONNECT SCOTT/TIGER@database_specification

SQL*Plus prompts you for username and password as needed, and connects you to the
specified database. This database becomes the default database until you CONNECT again
to another database, DISCONNECT, or leave SQL*Plus.

When you connect to a remote database in this manner, you can use the complete range of
SQL and SQL*Plus commands and PL/SQL blocks on the database.

The exact string you enter for the database specification depends upon the SQL*Net
protocol your computer uses. For more information, see CONNECT in Chapter 6 and the
SQL*Net manual appropriate for your protocol, or contact your DBA.

 Connecting to a Remote Database as You Start SQL*Plus
To connect to a remote database when you start SQL*Plus, include the SQL*Net database
specification in your SQLPLUS command in one of the following forms:   

· SQLPLUS SCOTT@database_specification

· SQLPLUS SCOTT/TIGER@database_specification

You must use a username and password valid for the remote database and substitute the
appropriate database specification for the remote database. SQL*Plus prompts you for
username and password as needed, starts SQL*Plus, and connects you to the specified
database. This database becomes the default database until you CONNECT to another
database, DISCONNECT, or leave SQL*Plus.

Once again, you can manipulate tables in the remote database directly after you connect in
this manner.   

 __

Copying Data from One Database to another

Use the SQL*Plus COPY command to copy data between databases and between tables on
the same database. With the COPY command, you can copy data between databases in the
following ways:

· copy data from a remote database to your local database

· copy data from your local (default) database to a remote database (on most systems)

· copy data from one remote database to another remote database (on most systems)   

Note: In general, the COPY command is to be used for copying data between ORACLE and
non-ORACLE databases. You should use SQL commands (CREATE TABLE AS and INSERT) to
copy data between ORACLE databases.

 Understanding COPY Command Syntax
You enter the COPY command in the following form:

COPY FROM database TO database action -
destination_table (column_name, column_name, column_name ...) -
USING query

Here is a sample COPY command:   

COPY FROM SCOTT/TIGER@D:BOSTON-MFG -
TO TODD/FOX@D:CHICAGO-SALES -
CREATE NEWDEPT (DNUMBER, DNAME, CITY)-
USING SELECT * FROM DEPT

To specify a database in the FROM or TO clause, you must have a valid username and
password for the local and remote database(s) and know the appropriate database
specification(s).    COPY obeys ORACLE security, so that the username you specify must have
been granted access to tables for you to have access to tables. For information on what
databases are available to you, contact your DBA.

When you copy to your local database from a remote database, you can omit the TO clause.
When you copy to a remote database from your local database, you can omit the FROM
clause. When you copy between remote databases, you must include both clauses.

The COPY command behaves differently based on whether the destination table already
exists and on the action clause you enter (CREATE in the example above). See "Controlling
Treatment of the Destination Table" later in this chapter.

By default, the copied columns have the same names in the destination table that they have
in the source table. If you want to give new names to the columns in the destination table,
enter the new names in parentheses after the destination table name. If you enter any
column names, you must enter a name for every column you are copying.

Note: To enable the copying of data between ORACLE and non-ORACLE databases, NUMBER
columns are changed to DECIMAL columns in the destination table. Hence, if you are copying

between ORACLE databases, a NUMBER column with no precision will be changed to a
DECIMAL(38) column. When copying between ORACLE databases, you should use SQL
commands (CREATE TABLE AS and INSERT) or you should ensure that your columns have a
precision specified.

The USING clause specifies a query that names the source table and specifies the data that
COPY copies to the destination table. You can use any form of the SQL SELECT command to
select the data that the COPY command copies.

Here is an example of a COPY command that copies only two columns from the source table,
and copies only those rows in which the value of DEPTNO is 30:   

SQL> COPY FROM SCOTT/TIGER@D:BOSTON-MFG -
> REPLACE EMPCOPY2 -
> USING SELECT ENAME, SAL -
> FROM EMPCOPY -
> WHERE DEPTNO = 30

You may find it easier to enter and edit long COPY commands in command files rather than
trying to enter them directly at the command prompt.

 Controlling Treatment of the Destination Table
You control the treatment of the destination table by entering one of four control clauses--
REPLACE, CREATE, INSERT, or APPEND.

The REPLACE clause names the table to be created in the destination database, and
specifies the following actions:   

· If the destination table already exists, COPY drops the existing table and replaces it
with a table containing the copied data.

· If the destination table does not already exist, COPY creates it using the copied data.   

You can use the CREATE clause to avoid accidentally writing over an existing table. CREATE
specifies the following actions:   

· If the destination table already exists, COPY reports an error and stops.

· If the destination table does not already exist, COPY creates the table using the copied
data.   

Use INSERT to insert data into an existing table. INSERT specifies the following actions:   

· If the destination table already exists, COPY inserts the copied data in the destination
table.

· If the destination table does not already exist, COPY reports an error and stops.   

Use APPEND when you want to insert data in an existing table, or create a new table if the
destination table does not exist. APPEND specifies the following actions:   

· If the destination table already exists, COPY inserts the copied data in the destination
table.

· If the table does not already exist, COPY creates the table and then inserts the copied
data in it.   

 Example 5-1 Copying from a Remote Database to Your Local Database Using
CREATE

To copy EMP from a remote database into a table called EMPCOPY on    your own database,
enter the following command.

Note: See your DBA for an appropriate username, password, and database specification for
a remote computer that contains a copy of EMP.

SQL> COPY FROM SCOTT/TIGER@D:BOSTON-MFG -
> CREATE EMPCOPY -
> USING SELECT * FROM EMP

SQL*Plus displays the following messages:   

Array fetch/bind size is 20. (arraysize is 20)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)

SQL*Plus then creates the table EMPCOPY, copies the rows, and displays the following
additional messages:   

Table EMPCOPY created.
 14 rows selected from SCOTT@D:BOSTON-MFG.
 14 rows inserted into EMPCOPY.
 14 rows committed into EMPCOPY at DEFAULT HOST connection.

In this COPY command, the FROM clause directs COPY to connect you    to the database with
the specification D:BOSTON-MFG as SCOTT, with the password TIGER.

Notice that you do not need a semicolon at the end of the command; COPY is a SQL*Plus
command, not a SQL command, even though it contains a query. Because most COPY
commands are longer than one line, you must use a hyphen (-), optionally preceded by a
space, at the end of each line except the last.

 Interpreting the Messages that COPY Displays
The first three messages displayed by COPY show the values of SET command variables that
affect the COPY operation. The most important one is LONG, which limits the length of a
LONG column's value. (LONG is a datatype, similar to CHAR.) If the source table contains a
LONG column, COPY truncates values in that column to the length specified by the system
variable LONG.

The variable ARRAYSIZE limits the number of rows that SQL*Plus fetches from the database
at one time. This number of rows makes up a batch. The variable COPYCOMMIT sets the
number of batches after which COPY commits changes to the database. (If you set
COPYCOMMIT to zero, COPY commits changes only after all batches are copied.)    For more
information on the variables of the SET command, including how to change their settings,

see SET in Chapter 6.

After listing the three system variables and their values, COPY tells you if a table was
dropped, created, or updated during the copy. Then COPY lists the number of rows selected,
inserted, and committed.

 Specifying another User's Table
You can refer to another user's table in a COPY command by qualifying the table name with
the username, just as you would in your local database, or in a query with a database link.

For example, to make a local copy of a table named DEPT, owned by the username ADAMS
on D:BOSTON-MFG, you would enter:   

SQL> COPY FROM SCOTT/TIGER@D:BOSTON-MFG -
> CREATE EMPCOPY2 -
> USING SELECT * FROM ADAMS.DEPT

Of course, you could get the same result by instructing COPY to log on to the remote
database as ADAMS. You cannot do that, however, unless you know the password associated
with the username ADAMS.   

 __

Copying Data between Tables on One Database

You can copy data from one table to another in a single database (local or remote). To copy
between tables in your local database, specify your own username and password and the
database specification for your local database in either a FROM or a TO clause (omit the
other clause):   

SQL> COPY FROM SCOTT/TIGER@D:MYDATABASE -
> INSERT EMPCOPY2 -
> USING SELECT * FROM EMP

To copy between tables on a remote database, include the same username, password, and
database specification in the FROM and TO clauses:   

SQL> COPY FROM SCOTT/TIGER@D:BOSTON-MFG -
> TO SCOTT/TIGER@D:BOSTON-MFG -
> INSERT EMPCOPY2 -
> USING SELECT * FROM EMP

PART    II . Reference

CHAPTER 6. Command Reference
This chapter contains descriptions of SQL*Plus commands, listed    alphabetically. Use this
chapter for reference only. Each description contains the following parts:

Purpose Discusses the basic use(s) of the command.

Syntax Shows how to enter the command. Refer to Chapter 1 for an
explanation of the syntax notation.

Terms and Clauses Describes the function of each term or clause appearing in the syntax.

Usage Notes Provides added information on how the command works and on uses
of the command.

Examples Gives one or more examples of the command.

A summary table that lists and briefly describes SQL*Plus commands precedes the individual
command descriptions.

To access online help for SQL*Plus commands, you can type HELP followed by the command
name at the SQL command prompt. For example:

SQL> HELP ACCEPT

If you get a response that help is unavailable, consult your database administrator. See the
HELP command for more information.   

 __

SQL*Plus Command Summary

Command Description

@ Runs the specified command file. @@

@@ Runs a nested command file.

/ Executes the SQL command or PL/SQL block currently stored in the
SQL buffer.

ACCEPT Reads a line of input and stores it in a given user variable.

APPEND Adds specified text to the end of the current line in the buffer.

BREAK Specifies where and how formatting will change in a report, or lists the
current break definition.

BTITLE Places and formats a specified title at the bottom of each report
page, or lists the current BTITLE definition.

CHANGE Changes text on the current line in the buffer.

CLEAR Resets or erases the current value or setting for the specified option,
such as BREAKS or COLUMNS.

COLUMN Specifies display attributes for a given column. Or, lists the current
display attributes for a single column or for all columns.

COMPUTE Calculates and prints summary lines, using various standard
computations, on subsets of selected rows. Or, lists all COMPUTE
definitions.

CONNECT Connects a given username to ORACLE.

COPY Copies data from a query to a table in a local or remote database.

DEFINE Specifies a user variable and assigns it a CHAR value. Or, lists the
value and variable type of a single variable or all variables.

DEL Deletes the current line of the buffer.

DESCRIBE Lists the column definitions for the specified table, view, or synonym.

Command Description

DISCONNECT Commits pending changes to the database and logs the current

username off ORACLE, but does not exit SQL*Plus.

EDIT Invokes a host operating system text editor on the contents of the
specified file or on the contents of the buffer.

EXECUTE Executes a single PL/SQL statement.

EXIT Commits all pending database changes, terminates SQL*Plus, and
returns control to the operating system.

GET Loads a host operating system file into the buffer.

HELP Accesses the SQL*Plus help system.

HOST Executes a host operating system command    without leaving
SQL*Plus.

INPUT Adds one or more new lines after the current line in the buffer.

LIST Lists one or more lines of the buffer.

PAUSE Displays an empty line followed by a line containing text, then waits
for the user to press [Return]. Or, displays two empty lines and waits
for the user's response.

PRINT Lists the current value of a bind variable.

PROMPT Sends the specified message or a blank line to the user's screen.

REMARK Begins a comment in a command file.

RUN Lists and executes the SQL command or PL/SQL block currently stored
in the SQL buffer.

RUNFORM Invokes a SQL*Forms application from within SQL*Plus.

SAVE Saves the contents of the buffer in a host operating system file (a
command file).

SET Establishes an aspect of the SQL*Plus environment for your current
session.

SHOW Lists the value of a SQL*Plus system variable.

Command Description

SPOOL Stores query results in an operating system file and, optionally, sends
the file to a default printer. Also lists the current spooling status.

SQLPLUS Starts SQL*Plus from the operating system prompt.

START Executes the contents of the specified command file.

TIMING Records timing data for an elapsed period of time, lists the current
timing area's title and timing data, or lists the number of active timing
areas.   

TTITLE Places and formats a specified title at the top of each report page, or
lists the current TTITLE definition.

UNDEFINE Deletes a given user variable that you defined either explicitly (with
the DEFINE command) or implicitly (with an argument to the START
command).

VARIABLE Declares a bind variable which can be referenced in PL/SQL.

WHENEVER OSERROR Exits SQL*Plus if an OS command generates an error.

WHENEVER SQLERROR Exits SQL*Plus if a SQL command or PL/SQL block generates an error.   

 __

@ ("at" sign)

 Purpose

Runs the specified command file.

 Syntax

@ file_name[.ext] [arg1 arg2 ...]

 Terms and Clauses

Refer to the following list for a description of each term or clause

file_name[.ext] Represents the command file you wish to run. If you omit ext,
SQL*Plus assumes the default command-file extension (normally SQL).
For information on changing the default extension, see the SUFFIX
variable of the SET command in this chapter.

When you enter @ file_name.ext, SQL*Plus searches for a file with the
file name and extension you specify in the current default directory. If
SQL*Plus does not find such a file, SQL*Plus will search a system-
dependent path to find the file. Some operating systems may not
support the path-search. Consult the Oracle installation and user's
manual(s) provided for your operating system for specific information
related to your operating system environment.

Note that you can omit the space between the "at" sign (@) and the
command-file name.

arg1 arg2 ... Represent data items you wish to pass to parameters in the command
file.    If you enter one or more arguments, SQL*Plus substitutes the
values into the parameters (&1, &2, and so forth) in the command file.
The first argument replaces each occurrence of &1, the second
replaces each occurrence of &2, and so forth.

The "at" sign@ command DEFINEs the parameters with the values of
the arguments; if you run the command file again in this session, you
can enter new arguments or omit the arguments to use the old
values.

For more information on using parameters, refer to the subsection
"Passing Parameters through the START Command" under "Writing
Interactive Commands" in Chapter 3.   

 Usage Notes

 You can include in a command file any command you would normally enter interactively
(typically, SQL or SQL*Plus commands).

The "at" sign command functions the same as START.

 Example

 To run a command file named PRINTRPT with the extension SQL, enter:

SQL> @PRINTRPT

To run a command file named WKRPT with the extension QRY, enter:

SQL> @WKRPT.QRY

 __

(double "at" sign)

 Purpose

 Runs a nested command file. This command is identical to the @ ("at" sign) command
except that it looks for the specified command file in the same path as the command file
from which it was called.

 Syntax

 @@ file_name[.ext]

 Terms and Clauses

 Refer to the following list for a description of each term or clause:

file_name[.ext] Represents the nested command file you wish to run. If you omit ext,
SQL*Plus assumes the default command-file extension (normally SQL).
For information on changing the default extension, see the SUFFIX
variable of the SET command in this chapter.

When you enter @@file_name.ext within a command file, SQL*Plus
searches for a file with the file name and extension you specify in the
same path as the command file. If SQL*Plus does not find such a file,
SQL*Plus will search a system-dependent path to find the file. Some
operating systems may not support the path-search. Consult the
Oracle installation and user's manual(s) provided for your operating
system for specific information related to your operating system
environment.

Note that you can omit the space between the double "at" sign (@@)
and the command-file name.

 Usage Notes

 You can include in a command file any command you would normally enter interactively
(typically, SQL or SQL*Plus commands).

 Example

 Suppose that you have the following command file named PRINTRPT:

SELECT * FROM EMP
@EMPRPT
@@ WKRPT

When you run PRINTRPT and it reaches the @ command, it looks for the command file
named EMPRPT in the current working directory and runs it. When PRINTRPT reaches the
@@command, it looks for the command file named WKRPT in the same path as PRINTRPT
and runs it.

 __

/ (slash)

 Purpose

 Executes the SQL command or PL/SQL block currently stored in the SQL buffer.

 Syntax

 /

 Usage Notes

 You can enter a slash (/) at the command prompt or at a line number prompt for a
continuing command or block in the SQL buffer.

The slash command functions similarly to RUN, but does not list the command in the buffer
on your screen.

Executing a SQL command or PL/SQL block using the slash command will not cause the
current line number in the SQL buffer to change unless the command in the buffer contains
an error. In that case SQL*Plus changes the current line number to the number of the line
containing the error.

 Example

 To see the SQL command(s) you will execute, you can list the contents of the buffer:

SQL> LIST
 1* SELECT ENAME, JOB FROM EMP WHERE ENAME = 'JAMES'

Enter a slash (/) to the command prompt to execute the command(s) in the buffer:

SQL> /

For the above query, SQL*Plus displays the following output:

ENAME JOB
---------- ---------
JAMES CLERK

 __

ACCEPT

 Purpose

 Reads a line of input and stores it in a given user variable.

 Syntax

ACC[EPT] variable [NUM[BER]|CHAR]

[PROMPT text|NOPR[OMPT]]

[HIDE]

 Terms and Clauses

 Refer to the following list for a description of each term or clause:

variable Represents the name of the variable in which you wish to store a
value. If variable does not exist, SQL*Plus creates it.

NUM[BER] Restricts the datatype of variable to the datatype NUMBER. If the reply
does not match the datatype, ACCEPT gives an error message and
terminates.

CHAR Restricts the datatype of variable to the datatype CHAR. If the reply
does not match the datatype, ACCEPT gives an error message and
terminates.

PROMPT text Displays text on-screen before accepting the value of variable from
the user.

NOPR[OMPT] Skips a line and waits for input without    displaying a prompt.

HIDE Suppresses the display as you type the reply.

 Examples

 To display the prompt, "Salary:    " and place the reply in a NUMBER variable named SALARY,
enter:

SQL> ACCEPT salary NUMBER PROMPT 'Salary: '

To display the prompt, "Password:    ", to place the reply in a CHAR variable named PSWD,
and to suppress the display, enter:

SQL> ACCEPT pswd CHAR PROMPT 'Password: ' HIDE

 Usage Notes

 To display a percent sign (%) in your PROMPT string, you need to specify %%. For example:

SQL> ACCEPT mystr CHAR PROMPT 'mystr (%%):'

 __

APPEND

 Purpose

 Adds specified text to the end of the current line in the buffer.

 Syntax

 A[PPEND] text

 Terms and Clauses

 Refer to the following list for a description of each term or clause:

text Represents the text you wish to append. If you wish to separate text
from the preceding characters with a space, enter two spaces
between APPEND and text.

To APPEND text that ends with a semicolon, end the command with
two semicolons (SQL*Plus interprets a single semicolon as an optional
command terminator).

 Examples

 To append a space and the column name DEPT to the second line of the buffer, make that
line the current line by listing the line as follows:

SQL> 2
 2* FROM EMP,

Now enter APPEND:

SQL> APPEND DEPT
SQL> 2
 2* FROM EMP, DEPT

Notice the double space between APPEND and DEPT. The first space separates APPEND from
the characters to be appended; the second space becomes the first appended character.

To append a semicolon to the line, enter:

SQL> APPEND ;;

SQL*Plus appends the first semicolon to the line and interprets the second as the terminator
for the APPEND command.   

 __

BREAK

 Purpose

 Specifies where and how formatting will change in a report, such as:

· suppressing display of duplicate values for a given column

· skipping a line each time a given column value changes

· printing COMPUTEd figures each time a given column value changes or at the end of
the report (see also the COMPUTE command)

Also lists the current BREAK definition.

 Syntax

 BRE[AK] [ON report_element [action [action]]] ...

where:

report_element Requires the following syntax:

{column|expr|ROW|REPORT}

action Requires the following syntax:

[SKI[P] n|[SKI[P]] PAGE] [NODUP[LICATES]|DUP[LICATES]]

 Terms and Clauses

 Refer to the following list for a description of each term or clause:

ON column [action [action]] When you include action(s), specifies action(s) for
SQL*Plus to take whenever a break occurs in the specified column
(called the break column). (column cannot have a table or view
prepended to it. To achieve this, you can alias the column in the SQL
statement.)    A break is one of three events:

· a change in the value of a column or expression

· the output of a row

· the end of a report

When you omit action(s), BREAK ON column suppresses printing of
duplicate values in column and marks a place in the report where
SQL*Plus will perform the computation you specify in a corresponding
COMPUTE command.

You can specify ON column one or more times. If you specify multiple
ON clauses, as in:

SQL> BREAK ON DEPTNO SKIP PAGE ON JOB SKIP 1 -
> ON SAL SKIP 1

The first ON clause represents the outermost break (in this case, ON
DEPTNO) and the last ON clause represents the innermost break (in
this case, ON SAL). SQL*Plus searches each row of output for the
specified break(s), starting with the outermost break and proceeding--
in the order you enter the clauses--to the innermost. In the example,
SQL*Plus searches for a change in the value of DEPTNO, then JOB,
then SAL.

Next, SQL*Plus executes actions beginning with the action specified
for the innermost break and proceeding in reverse order toward the
outermost break (in this case from SKIP 1 for ON SAL toward SKIP
PAGE for ON DEPTNO). SQL*Plus executes each action up to and
including the action specified for the first occurring break encountered
in the initial search.

If, for example, in a given row the value of JOB changes--but the
values of DEPTNO and SAL remain the same--SQL*Plus skips two lines
before printing the row (one as a result of SKIP 1 in the ON SAL clause
and one as a result of SKIP 1 in the ON JOB clause).

Whenever you use ON column, you should also use an ORDER BY
clause in the SQL SELECT command. Typically, the columns used in
the BREAK command should appear in the same order in the ORDER
BY clause (although all columns specified in the ORDER BY clause
need not appear in the BREAK command).    This prevents breaks from
occurring at meaningless points in the report.

With the above BREAK command, the following SELECT command
produces meaningful results:

SQL> SELECT DEPTNO, JOB, SAL, ENAME
 2 FROM EMP
 3 ORDER BY DEPTNO, JOB, SAL, ENAME;

All rows with the same DEPTNO print together on one page, and within
that page all rows with the same JOB print in groups. Within each
group of jobs, jobs with the same SAL print in groups. Breaks in
ENAME cause no action, because ENAME does not appear in the
BREAK command.

ON expr [action [action]] When you include action(s), specifies action(s) for
SQL*Plus to take when the value of the expression changes.

When you omit action(s), BREAK ON expr suppresses printing of
duplicate values of expr and marks a place in the report where
SQL*Plus will perform the computation you specify in a corresponding
COMPUTE command.

You can use an expression involving one or more table columns or an
alias assigned to a report column in a SQL SELECT or SQL*Plus
COLUMN command. If you use an expression in a BREAK command,

you must enter expr exactly as it appears in the SELECT command. If
the expression in the SELECT command is a+b, for example, you
cannot use b+a or (a+b) in a BREAK command to refer to the
expression in the SELECT command.

The information given above for ON column also applies to ON expr.

ON ROW [action [action]] When you include action(s), specifies action(s) for
SQL*Plus to take when a SQL SELECT command returns a row. The
ROW break becomes the innermost break regardless of where you
specify it in the BREAK command. You should always specify an action
when you BREAK on a row.

ON REPORT Marks a place in the report where SQL*Plus will perform the
computation you specify in a corresponding COMPUTE command. Use
BREAK ON REPORT in conjunction with COMPUTE to print grand totals
or other "grand" computed values.

The REPORT break becomes the outermost break regardless of where
you specify it in the BREAK command.

Refer to the following list for a description of each action:

SKI[P] n Skips n lines before printing the row where the break occurred.   

[SKI[P]] PAGE Skips the number of lines that are defined to be a page before printing
the row where the break occurred. The number of lines per page can
be set via the PAGESIZE clause of the SET command. Note that
PAGESIZE only changes the number of lines that SQL*Plus considers to
be a page. Thus SKIP PAGE may not always cause a physical page
break, unless you have also specified NEWPAGE 0.

NODUP[LICATES] Prints blanks rather than the value of a break column when the value
is a duplicate of the column's value in the preceding row.

DUP[LICATES] Prints the value of a break column in every selected row.

Enter BREAK with no clauses to list the current break definition.

 Usage Notes

 Each new BREAK command you enter replaces the preceding one.

When you use COMPUTE with BREAK, the label for the computed value normally appears in
the first column. However, if the COMPUTE is being performed on the first column, you
should create a dummy first column for the label using the COLUMN command.    Otherwise,
the label will not appear.

 Example

 To produce a report that prints duplicate job values, prints the average of SAL and inserts
one blank line when the value of JOB changes, and additionally prints the sum of SAL and
inserts another blank line when the value of DEPTNO changes, you could enter the following
commands. (The example selects departments 10 and 30 and the jobs of clerk and salesman
only.)

SQL> BREAK ON DEPTNO SKIP 1 ON JOB SKIP 1 DUPLICATES
SQL> COMPUTE SUM OF SAL ON DEPTNO
SQL> COMPUTE AVG OF SAL ON JOB
SQL> SELECT DEPTNO, JOB, ENAME, SAL FROM EMP
 2 WHERE JOB IN ('CLERK', 'SALESMAN')
 3 AND DEPTNO IN (10, 30)
 4 ORDER BY DEPTNO, JOB;

The following output results:

DEPTNO JOB ENAME SAL

----------- --------- --------- ---------

10 CLERK MILLER 1300

********* ---------

avg 1300

********** ----------

sum 1300

30 CLERK JAMES 1045

********* ----------

avg 1045

SALESMAN ALLEN 1760

SALESMAN MARTIN 1375

SALESMAN TURNER 1650

SALESMAN WARD 1375

********* ----------

avg 1540

********** ----------

sum 7205

 __

BTITLE

 Purpose

Places and formats a specified title at the bottom of each report page, or lists the current
BTITLE definition.

Note: For a description of the old form of BTITLE, see BTITLE (old form) in Appendix F.

 Syntax

BTI[TLE] [printspec [text|variable] ...] | [OFF|ON]

 Terms and Clauses

Refer to the TTITLE command for additional information on terms and clauses in the BTITLE
command syntax.

Enter BTITLE with no clauses to list the current BTITLE definition.

 Usage Notes

 SQL*Plus interprets BTITLE in the new form if a valid printspec clause (LEFT, SKIP, COL, etc)
immediately follows the command name.

For information on printing page numbers in the title, see TTITLE.

 Examples

To set a bottom title with CORPORATE PLANNING DEPARTMENT on the left and a date on the
right, enter:

SQL> BTITLE LEFT 'CORPORATE PLANNING DEPARTMENT' -
> RIGHT '11 Mar 1988'

To set a bottom title with CONFIDENTIAL in column 50, followed by 6 spaces and a date,
enter:

SQL> BTITLE COL 50 'CONFIDENTIAL' TAB 6 '11 Mar 88'

 __

CHANGE

 Purpose

Changes text on the current line in the buffer.

 Syntax

C[HANGE] sepchar old [sepchar [new [sepchar]]]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

sepchar Represents any non-alphanumeric character such as "/" or "!". Use a
sepchar that does not appear in old or new. You can omit the space
between CHANGE and the first sepchar.

old Represents the text you wish to change. CHANGE ignores case in
searching for old. For example,

 CHANGE /aq/aw
will find the first occurrence of "aq", "AQ", "aQ", or "Aq" and change it
to "aw". SQL*Plus inserts the new text exactly as you specify it.

If old is prefixed with "...", it matches everything up to and including
the first occurrence of old. If it is suffixed with "...", it matches the first
occurrence of old and everything that follows on that line. If it contains
an embedded "...", it matches everything from the preceding part of
old through the following part of old.

new Represents the text with which you wish to replace old. If you omit
new and, optionally, the second and third sepchars, CHANGE deletes
old from the current line of the buffer.   

 Usage Notes

CHANGE changes the existing text you specify from the current line of the buffer to the new
text you specify. The current line is marked with an asterisk (*) in the LIST output.

You can also use CHANGE to modify a line in the buffer that has generated an ORACLE error.
SQL*Plus sets the buffer's current line to the line containing the error so that you can make
modifications.

To re-enter an entire line, you can type the line number followed by the new contents of the
line. If you specify a line number larger than the number of lines in the buffer, and follow the
number with text, SQL*Plus adds the text in a new line at the end of the buffer. If you specify
zero ("0") for the line number and follow the zero with text, then SQL*Plus inserts the line at
the beginning of the buffer (that line becomes line 1).

 Examples

Assume the current line of the buffer contains the following text:

4* WHERE JOB IS IN ('CLERK','SECRETARY','RECEPTIONIST')

Enter the following command:

SQL> C /RECEPTIONIST/GUARD/

The text in the buffer changes as follows:

4* WHERE JOB IS IN ('CLERK','SECRETARY','GUARD')

Or enter the following command:

SQL> C /'CLERK',.../'CLERK')/

The original line changes to:

4* WHERE JOB IS IN ('CLERK')

Or enter the following command:

SQL> C /(...)/('COOK','BUTLER')/

The original line changes to:

4* WHERE JOB IS IN ('COOK','BUTLER')

You can replace the contents of an entire line using the line number. This entry

SQL> 2 FROM EMP e1

causes the second line of the buffer to be replaced with:

FROM EMP e1

Note: Entering a line number followed by a string will replace the line regardless of what
text follows the line number. Thus,

SQL> 2 c/old/new/

will change the second line of the buffer to be:

SQL> c/old/new

 __

CLEAR

 Purpose

Resets or erases the current value or setting for the specified option.

 Syntax

CL[EAR] option

where option represents one of the following clauses:

BRE[AKS]
BUFF[ER]
COL[UMNS]
COMP[UTES]
SCR[EEN]
SQL
TIMI[NG]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

BRE[AKS] Removes the break definition set by the BREAK command.

BUFF[ER] Clears text from the buffer. CLEAR BUFFER has the same effect as
CLEAR SQL, unless you are using multiple buffers (see SET BUFFER in
Appendix F).

COL[UMNS] Resets column display attributes set by the COLUMN command to
default settings for all columns. To reset display attributes for a single
column, use the CLEAR clause of the COLUMN command.

COMP[UTES] Removes all COMPUTE definitions set by the COMPUTE command.

SCR[EEN] Clears your screen.

SQL Clears the text from SQL buffer. CLEAR SQL has the same effect as
CLEAR BUFFER, unless you are using multiple buffers (see SET BUFFER
in Appendix F).

TIMI[NG] Deletes all timing areas created by the TIMING command.

 Examples

To clear breaks, enter:

SQL> CLEAR BREAKS

To clear column definitions, enter:

SQL> CLEAR COLUMNS

 __

COLUMN

 Purpose

Specifies display attributes for a given column, such as:

· text for the column heading

· alignment of the column heading

· format for NUMBER data

· wrapping of column data

Also lists the current display attributes for a single column or all columns.

 Syntax

COL[UMN] [{column|expr} [option ...]]

where option represents one of the following clauses:

ALI[AS] alias
CLE[AR]
COLOR {color|color_variable}
FOLD_A[FTER]
FOLD_B[EFORE]
FOR[MAT] format
HEA[DING] text
JUS[TIFY] {L[EFT]|C[ENTER]|C[ENTRE]|R[IGHT]}
LIKE {expr|alias}
LINEAPP {LINE|MARK|BOTH}
NEWL[INE]
NEW_V[ALUE] variable
NOPRI[NT]|PRI[NT]
NUL[L] char
OLD_V[ALUE] variable
ON|OFF
PATTERN {pattern_number|pattern_variable} WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED]

 Terms and Clauses

Enter COLUMN followed by column or expr and no other clauses to list the current display
attributes for only the specified column or expression. Enter COLUMN with no clauses to list
all current column display attributes.

Refer to the following list for a description of each term or clause:

{column|expr} Identifies the data item (typically, the name of a column) in a SQL
SELECT command to which the column command refers. If you use an
expression in a COLUMN command, you must enter expr exactly as it
appears in the SELECT command. If the expression in the SELECT
command is a+b, for example, you cannot use b+a or (a+b) in a

COLUMN command to refer to the expression in the SELECT command.

If you select columns with the same name from different tables, a
COLUMN command for that column name will apply to both columns.
That is, a COLUMN command for the column ENAME applies to all
columns named ENAME that you reference in this session. COLUMN
ignores table name prefixes in SELECT commands. Also, spaces are
ignored unless the name is placed in double quotes.

To format the columns differently, assign a unique alias to each
column within the SELECT command itself (do not use the ALIAS
clause of the COLUMN command) and enter a COLUMN command for
each column's alias.

ALI[AS] alias Assigns a specified alias to a column, which can be used to refer to
the column in BREAK, COMPUTE, and other COLUMN commands.

CLE[AR] Resets the display attributes for the column to default values.

COLOR {color|color_variable} Is described in the SQL*Graph User's Guide.

FOLD_A[FTER] Inserts a carriage return after the column heading and after each row
in the column.

FOLD_B[EFORE] Inserts a carriage return before the column heading and before each
row of the column.

FOR[MAT] format Specifies the display format of the column. The format specification
must be a text constant such as A10 or $9,999--not a variable.   

Character Columns A CHAR or VARCHAR2 (VARCHAR) column's
width defaults to the column's width as defined in the database or to
the length of the column's heading, whichever is longer. SQL*Plus
formats CHAR and VARCHAR2 (VARCHAR) data left-justified. If a value
does not fit within the column width, SQL*Plus wraps or truncates the
character string depending on the setting of SET WRAP. The width
cannot exceed 32,767 or the value set with SET MAXDATA. (VARCHAR2
requires ORACLE7.)

A LONG column's width defaults to the value of SET LONGCHUNKSIZE
or SET LONG, whichever one is smaller.

A Trusted ORACLE column of datatype MLSLABEL or RAW MLSLABEL
defaults to the width defined for the column in the database or the
length of the column's heading, whichever is longer. The default
display width for a Trusted ORACLE column of dataype ROWLABEL is
15.

To change the width of a CHAR, VARCHAR2 (VARCHAR), LONG, or
Trusted ORACLE column to n, use FORMAT An. (A stands for
alphanumeric.)    If you specify a width shorter than the column
heading, SQL*Plus truncates the heading.    If you make the width of a
LONG column greater than LONGCHUNKSIZE, LONGCHUNKSIZE is
automatically increased to equal the column's width.

DATE Columns For ORACLE7, the default width for unformatted DATE
columns in SQL*Plus is derived from the default format specified via
initialization parameter in a parameter file. Otherwise, the default
width is A9.

To change the format of a DATE column, use the SQL function
TO_CHAR in your SQL SELECT command. When you use TO_CHAR,
ORACLE automatically allows for a very wide column, so SQL*Plus
automatically sets the column width to 80 characters. To reset the
width of the column, use the COLUMN command with FORMAT An,
where n is the desired display width. If n is shorter than the column
heading, SQL*Plus truncates the heading.    For more information on
TO_CHAR, see your ORACLE7 Server SQL Language Reference Manual.

Note: SQL calculations may cause a column to become very wide; in such cases you should
also use the SQL*Plus COLUMN command to reset the column width.

NUMBER Columns        A NUMBER column's width defaults to the value
of SET NUMWIDTH. To change the width, use FORMAT followed by an
element as specified in Table 6-1.

Element Example(s) Description
--
9 9999 Determines the display

width by the number of
digits entered. Does not
display leading zeroes.

0 0999 Displays leading zeroes.

9990 Displays zero instead of
a blank when a value is
zero.

$ $9999 Prefixes a dollar sign to
a value.

B B9999 Displays a zero value as
blank.

MI 9999MI Displays "-" after a neg-
ative value.

PR 9999PR Displays a negative val-
ue in angle brackets.

comma 9,999 Displays a comma in the
position indicated.

period 99.99 Aligns the decimal point
in the position indicated.

V 999V99 Multiplies value by 10n,
where n is the number of

"9's" after the "V."

EEEE 9.999EEEE Displays in scientific
notation (format must
contain exactly four
"E's").

DATE DATE Displays value as a date
in MM/DD/YY format;
used to format NUM-
BER columns that repre-
sent Julian dates.

Table 6 - 1.   
Number Formats

SQL*Plus formats NUMBER data right-justified. The field width equals
the width of the heading or the format plus one space for the sign,
whichever is greater. If you specify a width shorter than the column
heading, SQL*Plus truncates the heading. If a value does not fit within
the column width, SQL*Plus displays an asterisk (*) in place of each
digit the width allows to indicate overflow.

With all number formats, SQL*Plus rounds a number to the specified
number of significant digits. When no format is given, a number's
width defaults to the value of NUMWIDTH (see the SET command in
this chapter).

HEA[DING] text Defines a column heading. If you do not use a HEADING clause, the
column's heading defaults to column or expr. If text contains blanks or
punctuation characters, you must enclose it with single or double
quotes. Each occurrence of the HEADSEP character (by default, '|')
begins a new line. For example,

 COLUMN ENAME HEADING 'Employee |Name'
would produce a two-line column heading. See the HEADSEP variable
of the SET command in this chapter for information on changing the
HEADSEP character.

JUS[TIFY] {L[EFT]|C[ENTER]|C[ENTRE]|R[IGHT]} Aligns the heading.    If you do not
use a JUSTIFY clause, NUMBER columns default to RIGHT and other
column types default to LEFT.

LIKE {expr|alias} Copies the display attributes of another column or expression (whose
attributes you have already defined with another COLUMN command).
LIKE copies only attributes not defined by another clause in the
current COLUMN command.

LINEAPP {LINE|MARK|BOTH} Is described in the SQL*Graph User's Guide.

NEWL[INE] Starts a new line before displaying the column's value. NEWLINE has
the same effect as FOLD_BEFORE n.

NEW_V[ALUE] variable Specifies a variable to hold a column value. You can reference
the variable in TTITLE commands. Use NEW_VALUE to display column
values or the date in the top title. You must include the column in a
BREAK command with the SKIP PAGE action. The variable name
cannot contain a pound sign (#).

NEW_VALUE is useful for master/detail reports in which there is a new
master record for each page. For master/detail reporting, you must
also include the column in the ORDER BY clause. See the example at
the end of this command description.

For information on displaying a column value in the bottom title, see
COLUMN OLD_VALUE. Refer to TTITLE for more information on
referencing variables in titles. See COLUMN FORMAT for details on
formatting and valid format models.

NOPRI[NT]|PRI[NT] Controls the printing of the column (the column heading and all the
selected values). NOPRINT turns the printing of the column off. PRINT
turns the printing of the column on.

NUL[L] char Controls the text SQL*Plus displays for null values in the given
column. If you do not use a NULL clause in the COLUMN command,
SQL*Plus displays blanks for embedded null values, nothing for trailing
null values, or the text to which you have set NULL using the SET
command for all null values. (SET NULL controls the text displayed for
all null values for all columns, unless overridden for a specific column
by the NULL clause of the COLUMN command.)

OLD_V[ALUE] variable Specifies a variable to hold a column value.      You can
reference the variable in BTITLE commands. Use OLD_VALUE to
display column values or the date in the bottom title. You must include
the column in a BREAK command with the SKIP PAGE action.

OLD_VALUE is useful for master/detail reports in which there is a new
master record for each page. For master/detail reporting, you must
also include the column in the ORDER BY clause.

For information on displaying a column value in the top title, see
COLUMN NEW_VALUE. Refer to TTITLE for more information on
referencing variables in titles. See COLUMN FORMAT for details on
formatting and valid format models.

ON|OFF Controls the status of display attributes for a column. OFF disables the
attributes for a column without affecting the attributes' definition. ON
reinstates the attributes.

PATTERN {pattern_number|pattern_variable} Is described in the SQL*Graph
User's Guide.   

WRA[PPED]| WOR[D_WRAPPED]|TRU[NCATED] Specifies how SQL*Plus will treat a CHAR
string that is too wide for a column. WRAPPED wraps the end of the
string to the next line. WORD_WRAP functions similarly to WRAPPED,
but moves an entire word to the next line rather than splitting the
word between two lines. TRUNCATED truncates the string at the end
of the first line of display.

 Usage Notes

You can enter any number of COLUMN commands for one or more columns. All column
attributes set for each column remain in effect for the remainder of the session, or until you
turn the column OFF. Thus, the COLUMN commands you enter can control a column's display
attributes for multiple SQL SELECT commands.

When you enter multiple COLUMN commands for the same column, SQL*Plus applies their
clauses collectively. If several COLUMN commands apply the same clause to the same
column, the last one entered will control the output.

 Examples

To make the ENAME column 20 characters wide and display EMPLOYEE NAME on two lines at
the top, enter:

SQL> COLUMN ENAME FORMAT A20 HEADING 'EMPLOYEE |NAME'

To format the SAL column so that it shows millions of dollars, rounds to cents, uses commas
to separate thousands, and displays $0.00 when a value is zero, you would enter:

SQL> COLUMN SAL FORMAT $9,999,990.99

To assign the alias NET to a column containing a long expression, to display the result in a
dollar format, and to display <NULL> for null values, you might enter:

SQL> COLUMN SAL+COMM+BONUS-EXPENSES-INS-TAX ALIAS NET SQL> COLUMN NET FORMAT
$9,999,999.99 NULL '<NULL>'

Note that the example divides this column specification into two commands. The first
defines the alias NET, and the second uses NET to define the format.

Also note that in the first command you must enter the expression exactly as you entered it
(or will enter it) in the SELECT command. Otherwise, SQL*Plus cannot match the COLUMN
command to the appropriate column.

To wrap long values in a column named REMARKS, you can enter:

SQL> COLUMN REMARKS FORMAT A20 WRAP

For example:

CUSTOMER DATE QUANTITY REMARKS

---------- ---------- ---------- ----------

123 25-AUG-86 144 This order
must be s
hipped by
air freigh

t to ORD

If you replace WRAP with WORD_WRAP, REMARKS looks like this:

CUSTOMER DATE QUANTITY REMARKS

---------- ---------- ---------- ----------

123 25-AUG-86 144 This order
must be
shipped by
air freight
to ORD

If you specify TRUNCATE, REMARKS looks like this:

CUSTOMER DATE QUANTITY REMARKS

---------- ---------- ---------- ----------

123 25-AUG-86 144 This order must be s

In order to print the current date and the name of each job in the top title, enter the
following. (For details on creating a date variable through your SQL*Plus LOGIN file, see
"Displaying the Current Date in Titles" under "Defining Page Titles and Dimensions" in
Chapter 4.)

SQL> COLUMN JOB NOPRINT NEW_VALUE JOBVAR
SQL> COLUMN TODAY NOPRINT NEW_VALUE DATEVAR
SQL> BREAK ON JOB SKIP PAGE ON TODAY
SQL> TTITLE CENTER 'Job Report' RIGHT DATEVAR SKIP 2 -
> LEFT 'Job: ' JOBVAR SKIP 2
SQL> SELECT TO_CHAR(SYSDATE, 'MM/DD/YY') TODAY,
 2 ENAME, JOB, MGR, HIREDATE, SAL, DEPTNO
 3 FROM EMP WHERE JOB IN ('CLERK', 'SALESMAN')
 4 ORDER BY JOB, ENAME;

Your 2-page report would look similar to the following report, with "Job Report" centered
within your current linesize:

Job Report
05/01/88
Job: CLERK

ENAME MGR HIREDATE SAL DEPTNO

------- ---- -------------- ------ -------

ADAMS 7788 14-JAN-87 1100 20

JAMES 7698 03-DEC-81 950 30

MILLER 7782 23-JAN-82 1300 10

SMITH 7902 17-DEC-80 800 20

Job Report
05/01/88
Job: CLERK

ENAME MGR HIREDATE SAL DEPTNO

------- ---- -------------- ------ -------

ALLEN 7698 20-JAN-81 1600 20

MARTIN 7698 03-DEC-81 950 30

MILLER 7782 23-JAN-82 1300 10

SMITH 7902 17-DEC-80 800 20

 __

COMPUTE

 Purpose

Calculates and prints summary lines, using various standard computations, on subsets of
selected rows. Or, lists all COMPUTE definitions. (For details on how to create summaries,
see "Clarifying Your Report with Spacing and Summary Lines" in Chapter 4.)

 Syntax

COMP[UTE] [function ... OF {expr|column|alias}...ON {expr|column|
alias|REPORT|ROW}]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

function ... Represents one of the functions listed in Table 6-2. If you specify more
than one function, use spaces to separate the functions. (VARCHAR2
requires ORACLE7.)

Function Computes Applies to Datatypes
AVG Average of non-null values NUMBER

COU[NT] Count of non-null values all types

MAX[IMUM] Maximum value NUMBER, CHAR,
VARCHAR2
(VARCHAR)

MIN[IMUM] Minimum value NUMBER, CHAR,
VARCHAR2
(VARCHAR)

NUM(BER) Count of rows all types

STD Standard diviation of non-null val- NUMBER
ues

SUM Sum of non-null values NUMBER

VAR(IANCE) Variance of non-null values NUMBER

OF {expr|column|alias}...

Specifies the column(s) or expression(s) you wish to
use in the computation. (column cannot have a table
or view prepended to it. To achieve this, you can alias
the column in the SQL statement.)    You must also
specify these columns in the SQL SELECT command,
or SQL*Plus will ignore the COMPUTE command.

If you do not want the computed values of a given
column to appear in the output of a SELECT com-
mand, specify that column in a COLUMN command
with a NOPRINT clause. Use spaces to separate mul-
tiple expressions, columns, or aliases within the OF
clause.

In the OF clause, you can refer to an expression or
function reference in the SELECT statement by plac-
ing the expression or function reference in double
quotes. Column names and aliases do not need
quotes.

ON {expr|column|alias|REPORT|ROW}]

Specifies the event SQL*Plus will use as a break. (col-
umn cannot have a table or view prepended to it. To
achieve this, you can alias the column in the SQL
statement.)    COMPUTE prints the computed value
and restarts the computation when the event occurs
(i.e., when the value of the expression changes, a new
ROW is fetched, or the end of the report is reached).
If multiple COMPUTE commands reference the same
column in the ON clause, only the last COMPUTE
command applies. To reference a SQL SELECT ex-
pression or function reference in an ON clause, place
the expression or function reference in quotes. Col-
umn names and aliases do not need quotes.

Table 6 - 2.   
COMPUTE Functions

Enter COMPUTE without clauses to list all COMPUTE definitions.

 Usage Notes

In order for the computations to occur, the following must all be true:

· The expression, column, or column alias you reference in the ON clause must occur in
the SELECT command.

· The expression, column, or column alias you reference in the ON clause must also
occur in the most recent BREAK command.

· If you reference either ROW or REPORT in the ON clause, also reference ROW or
REPORT in the most recent BREAK command.

· One or more of the expressions, columns, or column aliases you reference in the OF
clause must also occur in the SELECT command.

When you use COMPUTE with BREAK, the label for the computed value normally appears in
the first column. However, if the COMPUTE is being done on the first column, you should

create a dummy first column for the label with the COLUMN command. Otherwise, the label
will not print.

 Examples

To subtotal the salary for the "clerk," "analyst," and "salesman" job classifications, enter:

SQL> BREAK ON JOB SKIP 1
SQL> COMPUTE SUM OF SAL ON JOB
SQL> SELECT JOB, ENAME, SAL
 2 FROM EMP
 3 WHERE JOB IN ('CLERK', 'ANALYST', 'SALESMAN')
 4 ORDER BY JOB, SAL;

The following output results:

JOB ENAME SAL

----------- ----------- ----------

ANALYST SCOTT 3000

FORD 3000

*********** ----------

sum 6000

CLERK SMITH 800

JAMES 950

ADAMS 1100

MILLER 1300

*********** ----------

sum 4150

SALESMAN WARD 1250

MARTIN 1250

TURNER 1500

ALLEN 1600

WILSON 3000

*********** ----------

sum 8600

To compute the average and maximum salary for the accounting and sales departments,
enter:

SQL> BREAK ON DNAME SKIP 1
SQL> COMPUTE AVG MAX OF SAL ON DNAME
SQL> SELECT DNAME, ENAME, SAL
 2 FROM DEPT, EMP
 3 WHERE DEPT.DEPTNO=EMP.DEPTNO
 4 AND DNAME IN ('ACCOUNTING', 'SALES')
 5 ORDER BY DNAME;

The following output results:

DNAME ENAME SAL

----------- ----------- ----------

ACCOUNTING CLARK 2450

KING 5000

MILLER 1300

*********** ----------

avg 2916.66667

maximum 5000

SALES ALLEN 1600

WARD 1250

MARTIN 1250

TURNER 1500

JAMES 950

BLAKE 2850

*********** ----------

avg 1566.66667

maximum 2850

 __

CONNECT

 Purpose

Connects a given username to ORACLE.

 Syntax

CONN[ECT] [logon]

where:

logon Requires the following syntax: username[/password]
[@database_specification] | /

 Terms and Clauses

Refer to the following list for a description of each term or clause:

username [/password] Represent the username and password with which you wish to
connect to ORACLE. If you omit username and password, SQL*Plus
prompts you for them. If you enter a slash (/) or simply enter [Return]
to the prompt for username, SQL*Plus logs you on using a default
logon (see "/" below).

If you omit only password, SQL*Plus prompts you for password. When
prompting, SQL*Plus does not display password on your terminal
screen.

/ Represents a default (ops$) logon. You cannot enter a
database_specification if you use a default logon. In a default logon
SQL*Plus attempts to log you on using the username OPS$name,
where name is your operating system username.

database _specification Consists of a SQL*Net connection string. The exact
syntax depends upon the SQL*Net communications protocol your
Oracle installation uses. For more information, refer to the SQL*Net
manual appropriate for your protocol or contact your DBA. SQL*Plus
does not prompt for a database specification, but uses your default
database if you do not include a specification.

 Usage Notes

CONNECT commits the current transaction to the database, disconnects the current
username from ORACLE, and reconnects with the specified username.

 Examples

To connect using username SCOTT and password TIGER to the default    database on the
DECnet node "corp", enter:

SQL> CONNECT SCOTT/TIGER@d:corp

To connect using username SCOTT and let SQL*Plus prompt you for the password, enter:

SQL> CONNECT SCOTT

 __

COPY

 Purpose

Copies the data from a query to a table in a local or remote database.

 Syntax

COPY {FROM username[/password]@database_specification | TO
username[/password]@database_specification | FROM
username[/password]@database_specification TO
username[/password]@database_specification} {APPEND|CREATE|INSERT|REPLACE}
destination_table [(column, column, column ...)] USING query

 Terms and Clauses

Refer to the following list for a description of each term or clause:

username[/password] Represent the ORACLE username/password you wish to COPY
FROM and TO. In the FROM clause, username/password identifies the
source of the data; in the TO clause, username/password    identifies
the destination. If you do not specify password in either the FROM
clause or the TO clause, SQL*Plus will prompt you for it. SQL*Plus
suppresses the display of your response to these prompts.

database_specification Consists of a SQL*Net connection string. In the FROM clause,
database_specification represents the database at the source; in the
TO clause, database_specification    represents the database at the
destination. The exact syntax depends upon the SQL*Net
communications protocol your Oracle installation uses. For more
information, refer to the SQL*Net manual appropriate for your protocol
or contact your DBA.

destination_table Represents the table you wish to create or to which you wish to add
data.

(column, column, column, <+>...) Specifies the names of the columns in   
destination_table. You must enclose a name in double quotes if it
contains lower case letters or blanks.

If you specify columns, the number of columns must equal the number
of columns selected by the query. If you do not specify any columns,
the copied columns will have the same names in the destination table
as they had in the source, if COPY creates destination_table.

USING query Specifies a SQL query (SELECT command) determining which rows and
columns COPY copies.

FROM username[/password]database_specification Specifies the username, password,
and database    that contains the data to be copied. If you omit the
FROM clause, the source defaults to the database SQL*Plus is
connected to (i.e., the database that other commands address). You
must include a FROM clause to specify a source database other than
the default.

TO username[/password]database_specification Specifies the database containing
the destination table. If you omit the TO clause, the destination
defaults to the database SQL*Plus is connected to (i.e., the database
that other commands address). You must include a TO clause to
specify a destination database other than the default.

APPEND Inserts the rows from query into destination_table if the table exists. If
destination_table does not exist, COPY creates it.

CREATE Inserts the rows from query into destination_table after creating the
table first. If destination_table already exists, COPY returns an error.

INSERT Inserts the rows from query into destination_table if the table exists. If
destination_table does not exist, COPY returns an error. When using
INSERT, the USING query must select one column for each column in
the destination_table.

REPLACE Replaces destination_table and its contents with the rows from query. 
If destination_table does not exist, COPY creates it. If
destinationt_table does already exist, COPY drops the existing table
and replaces it with a table containing the copied data.

 Usage Notes

To enable the copying of data between ORACLE and non-ORACLE databases, NUMBER
columns are changed to DECIMAL columns in the destination table. Hence, if you are copying
between ORACLE databases, a NUMBER column with no precision will be changed to a
DECIMAL(38) column. When copying between ORACLE databases, you should use SQL
commands (CREATE TABLE AS and INSERT) or you should ensure that your columns have a
precision specified.

The SQL*Plus SET variable LONG limits the length of LONG columns that you copy. If any
LONG columns contain data longer than the value of LONG, COPY truncates the data.

SQL*Plus performs a commit at the end of each successful COPY. If you set the SQL*Plus SET
variable COPYCOMMIT to a positive value n, SQL*Plus performs a commit after copying every
n batches of records. (The SQL*Plus SET variable ARRAYSIZE determines the size of the
batch.)

Some operating environments require that database specifications be placed in double
quotes.

 Examples

The following command copies the entire EMP table to a table named WESTEMP. Note that
the tables are located in two different databases. If WESTEMP already exists, SQL*Plus
replaces the table and its contents. The columns in WESTEMP have the same names as the
columns in the source table, EMP.

SQL> COPY FROM SCOTT/TIGER@HQ TO JOHN/CHROME@WEST -
> REPLACE WESTEMP -
> USING SELECT * FROM EMP

The following command copies selected records from EMP to the database to which SQL*Plus
is connected. SQL*Plus creates SALESMEN through the copy. SQL*Plus copies only the
columns EMPNO and ENAME and at the destination names them EMPNO and SALESMAN.   

SQL> COPY FROM SCOTT/TIGER@HQ -
> CREATE SALESMEN (EMPNO,SALESMAN) -
> USING SELECT EMPNO, ENAME FROM EMP -
> WHERE JOB='SALESMAN'

 __

DEFINE

 Purpose

Specifies a user variable and assigns it a CHAR value. Or, lists the value and variable type of
a single variable or all variables.

 Syntax

DEF[INE] [variable] | [variable = text]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

variable Represents the user variable whose value you wish to assign or list.

text Represents the CHAR value you wish to assign to variable. Enclose
text in single quotes if it contains punctuation or blanks.

variable = text Defines (names) a user variable and assigns it a CHAR value.

Enter DEFINE followed by variable to list the value and type of variable.    Enter DEFINE with
no clauses to list the values and types of all user variables.

 Usage Notes

DEFINEd variables retain their values until one of the following events occurs:

· you enter a new DEFINE command referencing the variable

· you enter an UNDEFINE command referencing the variable

· you enter an ACCEPT command referencing the variable

· you reference the variable in the NEW_VALUE or OLD_VALUE clause of the COLUMN
command and reference the column in a subsequent SQL SELECT command

· you EXIT SQL*Plus

Whenever you run a stored query or command file, SQL*Plus substitutes the value of
variable for each substitution variable referencing variable (in the form &variable or
&&variable). SQL*Plus will not prompt you for the value of variable in this session until you
UNDEFINE variable.

You can DEFINE a maximum of 1024 variables.

Note that you can use DEFINE to define the variable, _EDITOR, which establishes the host
system editor invoked by the SQL*Plus EDIT command.   

If you continue the value of a DEFINEd variable on multiple lines (using the SQL*Plus
command continuation character), SQL*Plus replaces each continuation character and
carriage return you enter with a space in the resulting variable. For example, SQL*Plus
interprets

SQL> DEFINE TEXT = 'ONE-
> TWO-
> THREE'

as:

SQL> DEFINE TEXT = 'ONE TWO THREE'

 Examples

To assign the value MANAGER to the variable POS, type:

SQL> DEFINE POS = MANAGER

If you execute a command that contains a reference to &POS, SQL*Plus will substitute the
value MANAGER for &POS and will not prompt you for a POS value.

To assign the CHAR value 20 to the variable DEPTNO, type:

SQL> DEFINE DEPTNO = 20

Even though you enter the number 20, SQL*Plus assigns a CHAR value to DEPTNO consisting
of two characters, 2 and 0.

To list the definition of DEPTNO, enter:

SQL> DEFINE DEPTNO
DEFINE DEPTNO = "20" (CHAR)

This result shows that the value of DEPTNO is 20.   

 __

DEL

 Purpose

Deletes the current line of the buffer.

 Syntax

DEL

 Usage Notes

DEL makes the following line of the buffer (if any) the current line. To delete several
consecutive lines, enter DEL several times.

 Examples

Assume the SQL buffer contains the following query:

1 SELECT ENAME, DEPTNO
2 FROM EMP
3 WHERE JOB = 'SALESMAN'
4* ORDER BY DEPTNO

To make the line containing the WHERE clause the current line, you would enter:

SQL> LIST 3
 3* WHERE JOB = 'SALESMAN'

To delete the WHERE clause, enter:

SQL> DEL

The SQL buffer now contains the following lines:

1 SELECT ENAME, DEPTNO
2 FROM EMP
3* ORDER BY DEPTNO

 __

DESCRIBE

 Purpose

Lists the column definitions for the specified table, view, or synonym or the specifications for
the specified function, procedure, package, or package contents.

 Syntax

DESC[RIBE] {[user.]table[@database_link_name] [column] |
[user.]object[.subobject]}

 Terms and Clauses

Refer to the following list for a description of each term or clause:

user Represents the user who owns table or object. If you omit user,
SQL*Plus assumes you own table or object.

table Represents the table, view, or synonym you wish to describe.

database_link_name Consists of the database link name corresponding to the database
where table exists. For more information on which privileges allow
access to another table in a different schema, refer to the ORACLE7
Server SQL Language Reference Manual.

column Represents the column in table that you wish to describe.

object Represents the function, procedure, or package you wish to describe.

subobject Represents the function or procedure in the package that you wish to
describe.

 Usage Notes

The description for tables, views, and synonyms contains the following information:

· each column's name

· whether or not null values are allowed (NULL or NOT NULL) for each column

· datatype of columns--NUMBER, CHAR, VARCHAR2 (VARCHAR), LONG, DATE, MLSLABEL,
or RAW MLSLABEL

· precision of columns (and scale, if any, for a numeric column)

When you do a DESCRIBE, VARCHAR columns are returned with a type of VARCHAR2.

The description for functions, procedures, and packages contains the following:

· the type of PL/SQL (function, procedure, or package)

· the name of the function, procedure, or package

· the type of value returned (for functions)

· the argument names, types, whether they are input or output, and default values, if
any

· the package contents, if describing a package

 Example

To describe the table EMP, enter:

SQL> DESCRIBE EMP

DESCRIBE lists the following information:

Name Null? Type

------------------------------ -------- ------------

EMPNO NOT NULL NUMBER(4)

ENAME CHAR(10)

JOB JOB(9)

MGR NUMBER(4)

HIREDATE DATE

SAL NUMBER(7,2)

COMM NUMBER(7,2)

DEPTNO NUMBER(2)

To describe the package APACK, enter:

SQL> DESCRIBE apack

DESCRIBE lists the following information:

PACKAGE apack AS PROCEDURE aproc (p1 varchar2) ; END apack;

To describe the procedure APROC in the package APACK, enter:

SQL> DESCRIBE apack.aproc

DESCRIBE lists the following information:

PROCEDURE apack.aproc

Argument Name Type In/Out Default?

------------------ -------- -------- ---------

P1 CHAR IN

P2 NUMBER IN

 __

DISCONNECT

 Purpose

Commits pending changes to the database and logs the current username off ORACLE, but
does not exit SQL*Plus.

 Syntax

DISC[ONNECT]

 Usage Notes

Use DISCONNECT within a command file to prevent user access to the database when you
want to log the user off ORACLE but have the user remain in SQL*Plus. Use EXIT or QUIT to
log off ORACLE and return control to your host computer's operating system.

 Example

Your command file might begin with a CONNECT command and end with a DISCONNECT, as
shown below.

SQL> GET MYFILE
 1 CONNECT ...
 .
 .
 .
 .
15* DISCONNECT

 __

EDIT

 Purpose

Invokes a host operating system text editor on the contents of the specified file or on the
contents of the buffer.

 Syntax

EDIT [file_name[.ext]]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext] Represents the file you wish to edit (typically a command file). If you
omit ext, SQL*Plus assumes the default command-file extension
(normally SQL). For information on changing the default extension,
see the SUFFIX variable of the SET command in this chapter.

Enter EDIT with no file name to edit the contents of the SQL buffer with the host operating
system text editor.

 Usage Notes

The user variable, _EDITOR, contains the name of the text editor invoked by EDIT. You can
change the text editor by changing the value of _EDITOR. See DEFINE for information about
changing the value of a user variable. If _EDITOR is undefined, EDIT attempts to invoke the
default host operating system editor.

EDIT alone places the contents of the buffer in a file named AFIEDT with the extension BUF
(located in your current working directory) and invokes the text editor on the contents of the
file. If the AFIEDT.BUF file already exists, it is overwritten with the contents of the buffer. If
you do not specify a file name and the buffer is empty, EDIT returns an error message. When
you save edited text, the text    is saved back into the buffer.

To leave the editing session and return to SQL*Plus, terminate the editing session in the way
customary for the text editor.

 Example

To edit the file REPORT with the extension SQL using your host operating system text editor,
enter:

SQL> EDIT REPORT

 __

EXECUTE

 Purpose

Executes a single PL/SQL statement. The EXECUTE command is often useful when you want
to execute a PL/SQL statement that references a stored procedure. For more information on
PL/SQL, see your PL/SQL User's Guide and Reference.

 Syntax

EXE[CUTE] statement

 Terms and Clauses

Refer to the following list for a description of each term or clause:

statement Represents a PL/SQL statement.

 Usage Notes

If your EXECUTE command cannot fit on one line because of the PL/SQL statement, use the
SQL*Plus continuation character (a hyphen) as shown in the example below.

The length of the command and the PL/SQL statement cannot exceed the length defined by
SET LINESIZE.

 Examples

The following EXECUTE command assigns a value to a variable:

SQL> EXECUTE :n := 1

The following EXECUTE command runs a PL/SQL statement which references a stored
procedure:

SQL> EXECUTE -
:ID := EMP_MANAGEMENT.HIRE('BLAKE','MANAGER','KING',2990,'SALES')

Note that the value returned by the stored procedure is being placed in a bind variable, :ID.
For information on how to create a bind variable, see the VARIABLE command in this chapter.

 __

EXIT

 Purpose

Commits all pending database changes, terminates SQL*Plus, and returns control to the
operating system.

 Syntax

{EXIT|QUIT} [SUCCESS|FAILURE|WARNING|n|variable]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

{EXIT|QUIT} Can be used interchangeably (QUIT is a synonym for EXIT).

n Represents an integer you specify as the return code.

variable Represents a user-defined or system variable, such as SQL.SQLCODE.
EXIT variable exits with the value of variable as the return code.

SUCCESS Exits normally.

FAILURE Exits with a return code indicating failure.

WARNING Exits with a return code indicating warning.

EXIT with no clauses exits with a value of SUCCESS.

 Usage Notes

EXIT allows you to specify an operating system return code. This allows you to run SQL*Plus
command files in batch mode and to detect programmatically the occurrence of an
unexpected event. The manner of detection is operating system specific. See the Oracle
installation and user's manual(s) provided for your operating system for details.

The key words SUCCESS, WARNING, and FAILURE represent operating-system dependent
values. On some systems, WARNING and FAILURE may be indistinguishable.

Note: SUCCESS, FAILURE, and WARNING are not reserved words.

For information on exiting conditionally, see the WHENEVER SQLERROR and WHENEVER
OSERROR commands later in this chapter.

 Example

The following returns the error code of the last executed SQL command or PL/SQL block:

SQL> EXIT SQL.SQLCODE

The location of the return code depends on your system. Consult your DBA for information
concerning how your operating system retrieves data from a program.

 __

GET

 Purpose

Loads a host operating system file into the buffer.

 Syntax

GET file_name[.ext] [LIS[T]|NOL[IST]]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext] Represents the file you wish to load (typically a command file). If you
do not specify a file extension, SQL*Plus assumes the default
command-file extension (normally SQL). For information on changing
the default extension, see the SUFFIX variable of the SET command in
this chapter.

LIS[T] Lists the contents of the file.

NOL[IST] Suppresses the listing.

 Usage Note

If part of the filename you are specifying contains the word list or the word file, you need to
put the name in double quotes because LIST and FILE are reserved words in this instance.

 Example

To load a file called YEARENDRPT with the extension SQL into the buffer, type:

SQL> GET YEARENDRPT

 __

HELP

 Purpose:

Accesses the SQL*Plus help system.

 Syntax

HELP [topic]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

topic Represents a SQL*Plus help topic. This can be a SQL*Plus command
(e.g., COLUMN), a SQL statement (e.g., INSERT), a PL/SQL statement
(e.g., IF), or another topic in the help system (e.g., comparison
operators).

Enter HELP without topic to get help on the help system.

 Usage Notes

You can only enter one topic after HELP. You can abbreviate the topic (e.g., COL for
COLUMN). However, if you enter only an abbreviated topic and the abbreviation is
ambiguous, SQL*Plus will display help for all topics that match the abbreviation. For
example, if you entered:

SQL> HELP COMP

SQL*Plus would display help on COMPUTE followed by help on comparison operators.

If you get a response indicating that help is not available, consult your database
administrator.

 Example

To see a list of SQL*Plus commands and PL/SQL and SQL statements enter:

SQL> HELP COMMANDS

 __

HOST

 Purpose

Executes a host operating system command without leaving SQL*Plus.

 Syntax

HO[ST] [command]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

command Represents a host operating system command.

Enter HOST without command to display an operating system prompt. You can then enter
multiple operating system commands. For information on returning to SQL*Plus, refer to the
Oracle installation and user's manual(s) provided for your operating system.

 Usage Notes

With some operating systems, you can use a "$" or another character instead of HOST. See
the Oracle installation and user's manual(s) provided for your operating system for details.

You may not have access to the HOST command, depending on your operating system. See
the Oracle installation and user's manual(s) provided for your operating system or ask your
DBA for more information.

 Example

To execute an operating system command, ls *.sql, enter:

SQL> HOST ls *.sql

 __

INPUT

 Purpose

Adds one or more new lines of text after the current line in the buffer.

 Syntax

I[NPUT] [text]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

text Represents the text you wish to add. To add a single line, enter the
text of the line after the command INPUT, separating the text from the
command with a space. To begin the line with one or more spaces,
enter two or more spaces between INPUT and the first non-blank
character of text.

To add several lines, enter INPUT with no text. INPUT prompts you for each line. To leave
INPUT, enter a null (empty) line.

 Usage Notes

If you enter at the command prompt a line number larger than the number of lines in the
buffer, and follow the number with text, SQL*Plus adds the text in a new line at the end of
the buffer. If you specify zero (0) for the line number and follow the zero with text, then
SQL*Plus inserts the line at the beginning of the buffer (that line becomes line 1).

 Examples

Assume the SQL buffer contains the following command:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP

To add an ORDER BY clause to the query, enter:

SQL> LIST 2
 2* FROM EMP
SQL> INPUT ORDER BY ENAME

LIST 2 ensures that line 2 is the current line. INPUT adds a new line containing the ORDER BY
clause after the current line. The SQL buffer now contains the following lines:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP
3* ORDER BY ENAME

To add a two-line WHERE clause, enter:

SQL> LIST 2
 2* FROM EMP
SQL> INPUT
 3 WHERE JOB = 'SALESMAN'
 4 AND COMM 500
 5

INPUT prompts you for new lines until you enter an empty line. The SQL buffer now contains
the following lines:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP
3 WHERE JOB = 'SALESMAN'
4 AND COMM 500
5 ORDER BY ENAME

 __

LIST

 Purpose

Lists one or more lines of the buffer.

 Syntax

L[IST] [n|n m|n *|n LAST|*|* n|* LAST|LAST]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

n Lists line n.

n m Lists lines n through m.

n * Lists line n through the current line.

n LAST Lists line n through the last line.

* Lists the current line.

* n Lists the current line through line n.

* LAST Lists the current line through the last line.

LAST Lists the last line.

Enter LIST with no clauses to list all lines.

 Usage Notes

You can omit the space between LIST and n or *, but not between LIST and LAST.

The last line listed becomes the new current line (marked by an asterisk).

 Example

To list the contents of the buffer, enter:

SQL> L

You will see a listing of all lines in the buffer, similar in form to the following:

 1 SELECT ENAME, DEPTNO, JOB
 2 FROM EMP
 3 WHERE JOB = 'CLERK'
 4* ORDER BY DEPTNO

The asterisk indicates that line 4 is the current line.

To list the second line only, enter:

SQL> L 2

You will then see this:

 2* FROM EMP

To list the current line (now line 2) to the last line, enter:

SQL> L * LAST

You will then see this:

 2 FROM EMP
 3 WHERE JOB = 'CLERK'
 4* ORDER BY DEPTNO

 __

PAUSE

 Purpose

Displays an empty line followed by a line containing text, then waits for the user to press
[Return]. Or, displays two empty lines and waits for the user's response.

 Syntax

PAU[SE] [text]

 Terms and Clauses

Refer to the following list for a description of each clause or term:

text Represents the text you wish to display.

Enter PAUSE followed by no text to display two empty lines.

 Usage Notes

Because PAUSE always waits for the user's response, it is best to use a message that tells
the user explicitly to press [Return].

PAUSE reads input from the terminal (if a terminal is available) even when you have
designated the source of the command input as a file.

For information on pausing between pages of a report, see the PAUSE variable of the SET
command later in this chapter.

 Example

To print "Adjust paper and press RETURN to continue.", and to have SQL*Plus wait for the
user to press [Return], you might include the following PAUSE command in a command file:

SQL> GET MYFILE
1 SET PAUSE OFF
2 PAUSE Adjust paper and press RETURN to continue.
3 SELECT ...

 __

PRINT

 Purpose

Displays the current value of a bind variable. For more information on bind variables, see
your PL/SQL User's Guide and Reference.

 Syntax

PRI[NT] variable

 Terms and Clauses

Refer to the following list for a description of each clause or term:

variable Represents the name of the bind variable whose value you wish to
display.

 Usage Notes

Bind variables are created using the VARIABLE command. For more information, see the
VARIABLE command in this chapter.

You can control the formatting of the PRINT output just as you would query output. See the
formatting techniques described in Chapter 4.

 Example

The following is an example of a PRINT command:

SQL> VARIABLE n NUMBER
SQL> BEGIN
 2 :n := 1;
 3 END;
SQL> PRINT n
 N

 1

 __

PROMPT

 Purpose

Sends the specified message or a blank line to the user's screen.

 Syntax

PROMPT [text]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

text Represents the text of the message you wish to display. If you omit
text, PROMPT displays a blank line on the user's screen.

 Usage Notes

You can use this command in command files to give information to the user.

 Example

The following example shows the use of PROMPT in conjunction with ACCEPT in a command
file called ASKFORDEPT. ASKFORDEPT contains the following SQL*Plus and SQL commands:

PROMPT
PROMPT Please enter a valid department
PROMPT For example: 10, 20, 30, 40
ACCEPT NEWDEPT NUMBER PROMPT 'DEPT:> '
SELECT DNAME FROM DEPT
WHERE DEPTNO = &NEWDEPT

Assume you run the file using START or @:

SQL> @ASKFORDEPT

SQL*Plus displays the following prompts:

Please enter a valid department
For example: 10, 20, 30, 40
DEPT:>

The end user enters a department number to the prompt DEPT:>. SQL*Plus lists the line
containing &NEWDEPT before and after substitution, and then displays the department name
corresponding to the number entered at the DEPT:> prompt.   

 __

REMARK

 Purpose

Begins a comment in a command file.    SQL*Plus does not interpret the comment as a
command.

 Syntax

REM[ARK]

 Usage Notes

The REMARK command must appear at the beginning of a line, and the comment ends at
the end of the line. A line cannot contain both a comment and a command.

For details on entering comments in command files using the SQL comment delimiters, /* ...
*/, or the ANSI/ISO comment delimiter, -- ..., refer to "Placing Comments in Command Files"
in Chapter 3.

 Example

The following command file contains some typical comments:

SQL> GET EMPSUM
1 REM COMPUTE uses BREAK ON REPORT to break on end of table.
2 BREAK ON REPORT
3 COMPUTE SUM OF "DEPARTMENT 10" "DEPARTMENT 20" -
4 "DEPARTMENT 30" "TOTAL BY JOB" ON REPORT
5 REM Each column displays the sums of salaries by job for
6 REM one of the departments 10, 20, 30.
7 SELECT JOB,
8 SUM(DECODE(DEPTNO, 10, SAL, 0)) "DEPARTMENT 10",
9 SUM(DECODE(DEPTNO, 20, SAL, 0)) "DEPARTMENT 20",
10 SUM(DECODE(DEPTNO, 30, SAL, 0)) "DEPARTMENT 30",
11 SUM(SAL) "TOTAL BY JOB"
12 FROM EMP
13* GROUP BY JOB

 __

RUN

 Purpose

Lists and executes the SQL command or PL/SQL block currently stored in the SQL buffer.

 Syntax

R[UN]

 Usage Notes

RUN causes the last line of the SQL buffer to become the current line.

The slash command (/) functions similarly to RUN, but does not list the command in the SQL
buffer on your screen.

 Example

Assume the SQL buffer contains the following query:

SELECT DEPTNO FROM DEPT

To RUN the query, enter:

SQL> RUN

The following output results:

1* SELECT DEPTNO FROM DEPT

 DEPTNO

 10
 20
 30
 40

 __

RUNFORM

 Purpose

Invokes a SQL*Forms application from within SQL*Plus.

Note: You have access to this command only if your site chose this option while installing
SQL*Plus.

 Syntax

RUNFORM [options] form_name

 Usage Notes

The RUNFORM syntax is the same in both SQL*Plus and SQL*Forms.    If you are already in
SQL*Plus, you can invoke a form more quickly in this manner than by invoking a form from
the system prompt, because you avoid a separate ORACLE logon. See your SQL*Forms
Operator's Guide for details on the correct syntax.

Note that when you use RUNFORM from within SQL*Plus, you may not specify a
username/password (you retain your current connection to ORACLE). If you wish to use a
different username/password, use the SQL*Plus CONNECT command to connect to the
desired ORACLE username prior to issuing the RUNFORM command.

 Example

To run a form named MYFORM, enter:

SQL> RUNFORM MYFORM

 __

SAVE

 Purpose

Saves the contents of the buffer in a host operating system file (a command file).

 Syntax

SAV[E] file_name[.ext] [CRE[ATE]|REP[LACE]|APP[END]]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext] Specifies the command file in which you wish to save the buffer's
contents. If you do not specify an extension, SQL*Plus assumes the
default command-file extension (normally SQL). For information on
changing this default extension, see the    SUFFIX variable of the SET
command in this chapter.

If you wish to SAVE a file under a name identical to a SAVE command
clause (CREATE, REPLACE, or APPEND), you must specify a file
extension.

CRE[ATE] Creates the file if the file does not exist.

REP[LACE] Replaces the contents of an existing file. If the file does not exist,
REPLACE creates the file.

APP[END] Adds the contents of the buffer to the end of the file you specify.

 Usage Notes

When you SAVE the contents of the SQL buffer, SAVE adds a line containing a slash (/) to the
end of the file.

If part of the filename you are specifying contains the word file, you need to put the name in
double quotes because FILE is a reserved word in this instance.

 Example

To save the contents of the buffer in a file named DEPTSALRPT with the extension SQL,
enter:

SQL> SAVE DEPTSALRPT

To save the contents of the buffer in a file named DEPTSALRPT with the extension OLD,
enter:

SQL> SAVE DEPTSALRPT.OLD

 __

SET

 Purpose

Establishes an aspect of the SQL*Plus environment for your current session, such as:

· setting the display width for NUMBER data

· setting the display width for LONG data

· enabling or disabling the printing of column headings

· setting the number of lines per page

 Syntax

SET system_variable value

where system_variable value represents a system variable followed by a value as shown
below:

ARRAY[SIZE] {20|n}
AUTO[COMMIT] {OFF|ON|IMM[EDIATE]}
BLO[CKTERMINATOR] {.|c}
CMDS[EP] {;|c|OFF|ON}
COM[PATIBILITY] {V5|V6|V7|NATIVE}
CON[CAT] {.|c|OFF|ON}
COPYC[OMMIT] {0|n}
CRT crt
DEF[INE] {'&'|c|OFF|ON}
ECHO {OFF|ON}
EMBEDDED {OFF|ON}
ESC[APE] {\|c|OFF|ON}
FEED[BACK] {6|n|OFF|ON}
FLU[SH] {OFF|ON}
HEA[DING] {OFF|ON}
HEADS[EP] {||c|OFF|ON}
LIN[ESIZE] {80|n}
LONG {80|n}
LONGC[HUNKSIZE] {80|n}
MAXD[ATA] n
NEWP[AGE] {1|n} NULL text
NULL text
NUMF[ORMAT] format
NUM[WIDTH] {10|n}
PAGES[IZE] {14|n}
PAU[SE] {OFF|ON|text}
RECSEP {WR[APPED]|EA[CH]|OFF}
RECSEPCHAR {_|c}
SCAN {OFF|ON}
SERVEROUT[PUT] {OFF|ON} [SIZE n]
SHOW[MODE] {OFF|ON}
SPA[CE] {1|n}
SQLC[ASE] {MIX[ED]|LO[WER]|UP[PER]}

SQLCO[NTINUE] {> |text}
SQLN[UMBER] {OFF|ON}
SQLPRE[FIX] {#|c}
SQLP[ROMPT] {SQL>|text}
SQLT[ERMINATOR] {;|c|OFF|ON}|
SUF[FIX] {SQL|text}
TAB {OFF|ON}
TERM[OUT] {OFF|ON}
TI[ME] {OFF|ON}
TIMI[NG] {OFF|ON}
TRIM[OUT] {OFF|ON}
UND[ERLINE] {-|c|ON|OFF}
VER[IFY] {OFF|ON}
WRA[P] {OFF|ON}

 Terms and Clauses

Refer to the following list for a description of each term, clause, or system variable:

ARRAY[SIZE] {20|n} Sets the number of rows--called a batch--that SQL*Plus will fetch from
the database at one time. Valid values are 1 to 5000. A large value
increases the efficiency of queries and subqueries that fetch many
rows, but requires more main memory in the host computer. Values
over approximately 100 provide little added performance. ARRAYSIZE
has no effect on the results of SQL*Plus operations other than
increasing efficiency.

AUTO[COMMIT] {OFF|ON|IMM[EDIATE]} Controls when ORACLE commits pending
changes to the database. ON commits pending changes to the
database after ORACLE executes each SQL command or PL/SQL block.
OFF suppresses automatic committing, so that you must commit
changes manually (for example, with the SQL command COMMIT).
IMMEDIATE functions in the same manner as the ON option.

BLO[CKTERMINATOR] {.|c} Sets the non-alphanumeric character used to end PL/SQL
blocks to c. To execute the block, you must issue a RUN or / (slash)
command.

CMDS[EP] {;|c|OFF|ON} Sets the non-alphanumeric character used to separate multiple
SQL*Plus commands entered on one line to c. ON or OFF controls
whether you can enter multiple commands on a line; ON automatically
sets the command separator character to a semicolon (;).   

COM[PATIBILITY] {V5|V6|V7|NATIVE} Specifies the version of ORACLE to which you are
currently connected. Set COMPATIBILITY to V5 for ORACLE Version 5;
set it to V6 for ORACLE Version 6; set it to V7 (or V6) for ORACLE7; set
it to NATIVE if you wish the database to determine the setting (e.g., if
connected to ORACLE7, COMPATIBILITY would default to V7).
COMPATIBILITY must be correctly set for the version of ORACLE to
which you are connected, otherwise you will be unable to run any SQL
commands. Note that you can set COMPATIBILITY to V6 or V7 when
connected to ORACLE7. (This enables you to run ORACLE Version 6
SQL against ORACLE7.)

COMPATIBILITY also controls whether SQL*Plus stores the COMMIT and
ROLLBACK commands in the SQL buffer. V5 does not store COMMIT
and ROLLBACK in the SQL buffer; V6 and V7 do. Refer to the ORACLE7
Server SQL Language Reference Manual for information on COMMIT
and ROLLBACK.

Setting COMPATIBILITY to V6 and V7 affects how SQL*Plus handles
character data. Setting COMPATIBILITY to V6 causes SQL*Plus to treat
CHAR column values as variable length character strings. Setting
COMPATIBILITY to V7 causes SQL*Plus to treat CHAR column values as
fixed length character strings and VARCHAR2 (VARCHAR) column
values as variable length character strings.

CON[CAT] {.|c|OFF|ON} Sets the character you can use to terminate a substitution
variable reference if you wish to immediately follow the variable with
a character that SQL*Plus would otherwise interpret as a part of the
substitution variable name. SQL*Plus resets the value of CONCAT to a
period when you switch CONCAT on.

COPYC[OMMIT] {0|n} Controls the number of batches after which the COPY command
commits changes to the database.    COPY commits rows to the
destination database each time it copies n row batches. Valid values
are 0 to 5000. You can set the size of a batch with the ARRAYSIZE
variable. If you set COPYCOMMIT to 0, COPY performs a commit only at
the end of a copy operation.

CRT crt Changes the default CRT file used in the SQL*Plus RUNFORM
command. To return to the original default (before CRT was set), set
CRT to nothing by entering two double quotes ("") for crt.

If you want to use NEW.CRT during a form invocation on a system
where the default CRT is OLD.CRT, you can either invoke the form by:

SQL> RUNFORM -c NEW form_name

or

SQL> SET CRT NEW SQL> RUNFORM form_name

The second method stores the CRT option so that you do not need to
re-specify it for subsequent RUNFORM commands during the same
SQL*Plus session.

DEF[INE] {'&'|c|OFF|ON} Sets the character used to prefix substitution variables
to c. ON or OFF controls whether SQL*Plus will scan commands for
substitution variables and replace them with their values. The setting
of DEFINE to ON or OFF overrides the setting of the SCAN variable.

ECHO {OFF|ON} Controls whether the START command lists each command in a
command file as the command is executed. ON lists the commands;
OFF suppresses the listing.

EMBEDDED {OFF|ON} Controls where on a page each report begins. OFF forces each report
to start at the top of a new page. ON allows a report to begin
anywhere on a page. Set EMBEDDED to ON when you want a report to

begin printing immediately following the end of the previously run
report.

ESC[APE] {\|c|OFF|ON} Defines the character you enter as the escape character. OFF
undefines the escape character. ON enables the escape character.

You can use the escape character before the substitution character
(set through SET DEFINE) to indicate that SQL*Plus should treat the
substitution character as an ordinary character rather than as a
request for variable substitution.   

FEED[BACK] {6|n|OFF|ON} Displays the number of records returned by a query
when a query selects at least n records. ON or OFF turns this display
on or off. Turning feedback ON sets n to 1. Setting feedback to 0 is
equivalent to turning it OFF.

FLU[SH] {OFF|ON} Controls when output is sent to the user's display device. OFF allows
the host operating system to buffer output. ON disables buffering.

Use OFF only when you run a command file non-interactively (i.e.,
when you do not need to see output and/or prompts until the
command file finishes running). The use of FLUSH OFF may improve
performance by reducing the amount of program I/O.

HEA[DING] {OFF|ON} Controls printing of column headings in reports. ON prints column
headings in reports; OFF suppresses column headings.

HEADS[EP] {||c|OFF|ON} Defines the character you enter as the heading separator
character. You can use the heading separator character in the
COLUMN command and in the old forms of BTITLE and TTITLE to divide
a column heading or title onto more than one line. ON or OFF turns
heading separation on or off. When heading separation is OFF,
SQL*Plus prints a heading separator character like any other
character.

LIN[ESIZE] {80|n} Sets the total number of characters that SQL*Plus displays on one
line before beginning a new line. It also controls the position of
centered and right-aligned text in TTITLE and BTITLE. You can define
LINESIZE as a value from 1 to a maximum that is system dependent.
Refer to the Oracle installation and user's manual(s) provided for your
operating system.

LONG {80|n} Sets maximum width (in characters) for displaying and copying LONG
values. For ORACLE7, the maximum value of n is two gigabytes. For
ORACLE Version 6, the maximum is 32,767.   

LONGC[HUNKSIZE] {80|n} Sets the size (in characters) of the increments in which
SQL*Plus retrieves a LONG value. When retrieving a LONG value, you
may want to retrieve it in increments rather than all at once because
of memory size restrictions. Valid values are 1 to whatever has been
set with MAXDATA. LONGCHUNKSIZE applies only to ORACLE7.

MAXD[ATA] n Sets the maximum total row width that SQL*Plus can process. The
default and maximum values of n vary in different operating systems.
Consult the ORACLE installation and user's manual(s) provided for

your operating system or your DBA for details.    Note that MAXDATA
has no effect when using ORACLE7.

NEWP[AGE] {1|n} Sets the number of blank lines to be printed between the beginning of
each page and the top title. A value of 0 sends a formfeed between
pages and clears the screen on most terminals.

NULL text Sets the text that represents a null value in the result of a SQL SELECT
command. NULL without text displays the default for null values--a
blank for embedded null values and nothing for trailing null values.
Use the NULL clause of the COLUMN command to override the setting
of the NULL variable for a given column.

NUMF[ORMAT] format Sets the default format for displaying numbers. Enter a number
format for format. For number format descriptions, see the FORMAT
clause of the COLUMN command in this chapter.

NUM[WIDTH] {10|n} Sets the default width for displaying numbers.

PAGES[IZE] {14|n} Sets the number of lines from the top title to the end of the page. For
reports printed on paper 11 inches long, a value of 54 (plus a
NEWPAGE value of 6) leaves one-inch margins above and below the
output.

You can set PAGESIZE to 0 to suppress all headings, page breaks,
titles, the initial blank line, and other formatting information.   

PAU[SE] {OFF|ON|text} Allows you to control scrolling of your terminal when running
reports. You must press [Return] after seeing each pause. ON causes
SQL*Plus to pause at the beginning of each page of report output.
The text you enter specifies the text to be displayed each time
SQL*Plus pauses. If you enter multiple words, you must enclose text in
single quotes.

You can embed terminal-dependent escape sequences in the PAUSE
command. These sequences allow you to create inverse video
messages or other effects on terminals that support such
characteristics.

RECSEP {WR[APPED]|EA[CH]|OFF} and RECSEPCHAR { |c}     Display or print record
separators. A record separator consists of a single line of the
RECSEPCHAR (record separating character) repeated LINESIZE times.

RECSEPCHAR defines the record separating character. A    blank space
is the default for RECSEPCHAR.

RECSEP tells SQL*Plus where to make the record separation. For
example, if you set RECSEP to WRAPPED, SQL*Plus prints a record
separator only after wrapped lines. If you set RECSEP to EACH,
SQL*Plus prints a record separator following every row. If you set
RECSEP to OFF, SQL*Plus does not print a record separator.

SCAN {OFF|ON} Controls scanning for the presence of substitution variables and
parameters. OFF suppresses processing of substitution variables and
parameters; ON allows normal processing.

SERVEROUT[PUT] {OFF|ON} [SIZE n] Controls whether to display the output (i.e.,
DBMS_OUTPUT.PUT_LINE) of stored procedures in SQL*Plus. OFF
suppresses the output of DBMS_OUTPUT.PUT_LINE;    ON displays the
output.

SIZE sets the number of bytes of the output that can be buffered
within the ORACLE7 Server. The default for n is 2000. n cannot be less
than 2000 or greater than 1,000,000.

For more information on DBMS_OUTPUT.PUT_LINE, see your ORACLE7
Server Application Developer's Guide.

SHOW[MODE] {OFF|ON} Controls whether SQL*Plus lists the old and new settings of a
SQL*Plus system variable when you change the setting with SET. ON
lists the settings; OFF suppresses the listing. BOTH functions in the
same manner as ON.

SPA[CE] {1|n} Sets the number of spaces between columns in output. The maximum
value of n is 10.

SQLC[ASE] {MIX[ED]|LO[WER]|UP[PER]} Converts the case of SQL commands and
PL/SQL blocks just prior to execution. SQL*Plus converts all text within
the command, including quoted literals and identifiers, as follows:

· uppercase if SQLCASE equals UPPER

· lowercase if SQLCASE equals LOWER

· unchanged if SQLCASE equals MIXED

SQLCASE does not change the SQL buffer itself.

SQLCO[NTINUE] {> |text} Sets the character sequence SQL*Plus displays as a
prompt after you continue a SQL*Plus command on an additional line
using a hyphen (-).

SQLN[UMBER] {OFF|ON} Sets the prompt for the second and subsequent lines of a SQL
command or PL/SQL block. ON sets the prompt to be the line number.
OFF sets the prompt to the value of SQLPROMPT.

SQLPRE[FIX] {#|c} Sets the SQL*Plus prefix character. While you are entering a SQL
command or PL/SQL block, you can enter a SQL*Plus command on a
separate line, prefixed by the SQL*Plus prefix character. SQL*Plus will
execute the command immediately without affecting the SQL
command or PL/SQL block that you are entering. The prefix character
must be a non-alphanumeric character.

SQLP[ROMPT] {SQL>|text} Sets the SQL*Plus command prompt.   

SQLT[ERMINATOR] {;|c|OFF|ON} Sets the character used to end and execute SQL
commands to c. OFF means that SQL*Plus recognizes no command
terminator; you    terminate a SQL command by entering an empty
line. ON resets the terminator to the default semicolon (;).

SUF[FIX] {SQL|text} Sets the default file suffix (extension) that SQL*Plus uses in
commands that refer to command files. SUFFIX does not control
extensions for output (spool) files.

TAB {OFF|ON} Determines how SQL*Plus formats white space in terminal output.   
OFF uses spaces to format white space in the output. ON uses    the
TAB character. The default value for TAB is system-dependent. Note
that this option applies only to terminal output. Tabs will not be placed
in output files. Enter SHOW TAB to see the default value.

TERM[OUT] {OFF|ON} Controls the display of output generated by commands executed
from a file. OFF suppresses the display so that you can spool output
from a command file without seeing the output on the screen. ON
displays the output. TERMOUT OFF does not affect output from
commands you enter interactively.

TI[ME] {OFF|ON} Controls the display of the current time. ON displays the current time
before each command prompt. OFF suppresses the time display.

TIMI[NG] {OFF|ON} Controls the display of timing statistics. ON displays timing statistics
on each SQL command or PL/SQL block run. OFF suppresses timing of
each command. For information about the data SET TIMING ON
displays, see the Oracle installation and user's manual(s) provided for
your operating system.    Refer to the TIMING command for information
on timing multiple commands.

TRIM[OUT] {OFF|ON} Determines whether SQL*Plus allows trailing blanks at the end of
each displayed line. ON removes blanks at the end of each line,
improving performance especially when you access SQL*Plus from a
slow communications device. OFF allows SQL*Plus to display trailing
blanks. TRIMOUT ON does not affect spooled output; SQL*Plus ignores
TRIMOUT ON unless you set TAB ON.

UND[ERLINE] {-|c|ON|OFF} Sets the character used to underline column headings in
SQL*Plus reports to c. ON or OFF turns underlining on or off without
affecting the value of c.

VER[IFY] {OFF|ON} Controls whether SQL*Plus lists the text of a command before and
after SQL*Plus replaces substitution variables with values. ON lists the
text; OFF suppresses the listing.

WRA[P] {OFF|ON} Controls whether SQL*Plus truncates the display of a data item if it is
too long for the current line width. OFF truncates the data item; ON
allows the data item to wrap to the next line.

Use the WRAPPED and TRUNCATED clauses of the COLUMN command
to override the setting of WRAP for specific columns.

 Usage Notes

SQL*Plus maintains system variables (also called SET command variables) to allow you to
establish a particular environment for a SQL*Plus session. You can change these system
variables with the SET command and list them with the SHOW command.

SET ROLE and SET TRANSACTION are SQL commands (see the ORACLE7 Server SQL

Language Reference Manual for more information). When not followed by the keywords
TRANSACTION or ROLE, SET is assumed to be a SQL*Plus command.

 Examples

The following examples show sample uses of selected SET command variables.

 COMPATIBILITY

To run a command file, SALARY.SQL, created with Version 5 of ORACLE, enter:

SQL> SET COMPATIBILITY V5
SQL> START SALARY

After running the file, reset compatibility to V7 to run command files created with ORACLE7:

SQL> SET COMPATIBILITY V7

Alternatively, you can add the command SET COMPATIBILITY V5 to the beginning of the
command file, and reset COMPATIBILITY to V7 at the end of the file.

 ESCAPE

If you define the escape character as an exclamation point (!), then

SQL> ACCEPT v1 PROMPT 'Enter !&1:'

displays this prompt:

Enter &1:

 HEADING

To suppress the display of column headings in a report, enter:

SQL> SET HEADING OFF

If you then run a SQL SELECT command,

SQL> SELECT ENAME, SAL FROM EMP 2 WHERE JOB = 'CLERK';

the following output results:

ADAMS 1100
JAMES 950
MILLER 1300

 LONG

To set the maximum width for displaying and copying LONG values to 500, enter:

SQL> SET LONG 500

The LONG data will wrap on your screen; SQL*Plus will not truncate until the 501st character.

 LONGCHUNKSIZE

To set the size of the increments in which SQL*Plus retrieves LONG values to 100 characters,
enter:

SQL> SET LONGCHUNKSIZE 100

The LONG data will be retrieved in increments of 100 characters until the entire value is
retrieved.

 SERVEROUTPUT

To enable the display of DBMS_OUTPUT.PUT_LINE, enter:

SQL> SET SERVEROUTPUT ON

The following shows what happens when you execute an anonymous procedure with SET
SERVEROUTPUT ON:

SQL> BEGIN
2 DBMS_OUTPUT.PUT_LINE('Task is complete');
3 END;
4 /
Task is complete.

PL/SQL procedure successfully completed.

The following shows what happens when you create a trigger with SET SERVEROUTPUT ON:

SQL> CREATE TRIGGER SERVER_TRIG BEFORE INSERT OR UPDATE OR DELETE
2 ON SERVER_TAB
3 BEGIN
4 DBMS_OUTPUT.PUT_LINE('Task is complete.');
5 END;
6 /
Trigger created.
SQL> INSERT INTO SERVER_TAB VALUES ('TEXT');
Task is complete.
1 row created.

 SQLCONTINUE

To set the SQL*Plus command continuation prompt to an exclamation point followed by a
space, enter:

SQL> SET SQLCONTINUE '! '

SQL*Plus will prompt for continuation as follows:

SQL> TTITLE 'YEARLY INCOME' -
! RIGHT SQL.PNO SKIP 2 -
! CENTER 'PC DIVISION'
SQL>

 SUFFIX

To set the default command-file extension to UFI, enter:

SQL> SET SUFFIX UFI

If you then enter

SQL> GET EXAMPLE

SQL*Plus will look for a file named EXAMPLE with an extension of UFI instead of EXAMPLE
with an extension of SQL..

 __

SHOW

 Purpose

Lists the value of a SQL*Plus system variable.

 Syntax

SHO[W] option

where option represents one of the following terms or clauses:

system_variable
ALL
BTI[TLE]
ERR[ORS] [{FUNCTION|PROCEDURE|PACKAGE|PACKAGE BODY|
 TRIGGER|VIEW} name]
LABEL
LNO
PNO
REL[EASE]
SPOO[L]
SQLCODE
TTI[TLE]
USER

 Terms and Clauses

Refer to the following list for a description of each term or clause:

system_variable Represents any system variable set by the SET command.

ALL Lists the settings of all SHOW options.

BTI[TLE] Shows the current BTITLE definition.

ERR[ORS] [{FUNCTION|PROCEDURE|PACKAGE|PACKAGE BODY| TRIGGER|VIEW} name]

Shows the compilation errors of a stored procedure (includes stored functions, procedures,
and packages). After you use the CREATE command to create a stored
procedure, a message is displayed if the stored procedure has any
compilation errors. To see the errors, you use SHOW ERRORS.

When you specify SHOW ERRORS with no arguments, SQL*Plus shows
compilation errors for the most recently created or altered stored
procedure. When you specify the type (function, procedure, package,
package body, trigger, or view) and the name of the PL/SQL stored
procedure, SQL*Plus shows errors for that stored procedure. For more
information on compilation errors, see your PL/SQL User's Guide and
Reference.   

SHOW ERRORS ouput displays the line and column number of the

error (LINE/COL) as well as the error itself (ERROR). LINE/COL and
ERROR have default widths of 8 and 65, respectively. You can alter
these widths using the COLUMN command.

LABEL Shows the security level for the current session. For more information,
see your Trusted ORACLE Administrator's Guide.

LNO Shows the current line number (the position in the current page of the
display and/or spooled output).

PNO Shows the current page number.

REL[EASE] Shows the release number of ORACLE that SQL*Plus is accessing.

SPOO[L] Shows whether output is being spooled.

SQLCODE Shows the value of SQL.SQLCODE (for example, the SQL return code
of the most recent operation).

TTI[TLE] Shows the current TTITLE definition.

USER Shows the username under which you are currently accessing
SQL*Plus.

 Usage Notes

SHOW ERRORS is translated into a SQL command and, as a result, overwrites the contents of
the SQL buffer. This means the previously entered SQL statement is overwritten.

 Example

To list the current LINESIZE, enter:

SQL> SHOW LINESIZE

If the current linesize equals 80 characters, SQL*Plus will give the following response:

linesize 80

Following is an example of how to create a stored procedure and then show its compilation
errors:

SQL> CREATE PROCEDURE ASSIGNVL AS BEGIN zzzzzzz; END;
 2 /
Warning: Procedure created with compilation errors.
SQL> SHOW ERRORS PROCEDURE ASSIGNVL

LINE/COL ERROR

-------- ---

1/26 PL/SQL: Statement ignored

1/26 PLS-00201: identifier 'ZZZZZZZ' must be declared

Note: Since the procedure ASSIGNVL was the    most recently created/altered stored
procedure, you could just type SHOW ERRORS with no arguments to see its compilation
errors.   

 __

SPOOL

 Purpose

Stores query results in an operating system file and, optionally, sends the file to a default
printer.    Also lists the current spooling status.

 Syntax

SPO[OL] [file_name[.ext]|OFF|OUT]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext] Represents the name of the file to which you wish to spool. SPOOL
followed by file_name begins spooling displayed output to the named
file. If you do not specify an extension, SPOOL uses a default
extension (LST or LIS on most systems).

OFF Stops spooling.

OUT Stops spooling and sends the file to your host computer's standard
(default) printer.

Enter SPOOL with no clauses to list the current spooling status.

 Usage Notes

To spool output generated by commands in a command file without displaying the output on
the screen, use SET TERMOUT OFF. SET TERMOUT OFF does not affect output from
commands run interactively.

The filename for SPOOL cannot contain the caret (^) character.

 Examples

To record your displayed output in a file named DIARY using the default file extension, enter:

SQL> SPOOL DIARY

To stop spooling and print the file on your default printer, type:

SQL> SPOOL OUT

 __

SQLPLUS

 Purpose

Starts SQL*Plus from the operating system prompt.

 Syntax

SQLPLUS [[-S[ILENT]] [logon] [start]] | -?

where:

logon Requires the following syntax:

username[/password][@database_specification]| /| /NOLOG

start Allows you to enter the name of a command file and arguments.
SQL*Plus passes the arguments to the command file as though you
executed the file using the SQL*Plus START command. The start
clause requires the following syntax:

file_name[.ext][arg1 arg2 . . .]

See the START command in this chapter for more information.

 Terms and Clauses

You have the option of entering logon. If you do not specify logon, and do specify start,
SQL*Plus assumes that the first line of the command file contains a valid logon. If neither
start nor logon are specified, SQL*Plus prompts for logon information.

Refer to the following list for a description of each term or clause:

username[/password] Represent the username and password with which you wish to
start SQL*Plus and connect to ORACLE. If you omit username and
password, SQL*Plus prompts you for them. If you enter a slash (/) or
simply enter [Return] to the prompt for username, SQL*Plus logs you
on using a default logon (see "/" below).

If you omit only password, SQL*Plus prompts you for password. When
prompting, SQL*Plus does not display password on your terminal
screen.

/ Represents a default (ops$) logon. You cannot enter a
database_specification if you use a default logon. In a default logon
SQL*Plus attempts to log you on using the username OPS$name,
where name is your operating system username.

/NOLOG Establishes no initial connection to ORACLE. Before issuing any SQL
commands, you must issue a CONNECT command to establish a valid
logon. Use /NOLOG when you want to have a SQL*Plus command file
prompt the user for the name of a database.

database_specification Consists of a SQL*Net connection string. The exact syntax

depends upon the SQL*Net communications protocol your Oracle
installation uses. For more information, refer to the SQL*Net manual
appropriate for your protocol or contact your DBA.

-S[ILENT] Suppresses all SQL*Plus information and prompt messages, including
the command prompt, the echoing of commands, and the banner
normally displayed when you start SQL*Plus. Use SILENT to invoke
SQL*Plus within another program so that the use of SQL*Plus is
invisible to the user.

-? Makes SQLPLUS display its current version and level number and then
returns control to the operating system. Do not enter a space between
the hyphen (-) and the question mark (?).

 Usage Notes

SQL*Plus supports a Site Profile, a SQL*Plus command file created by the database
administrator. SQL*Plus executes this command file whenever any user starts SQL*Plus and
SQL*Plus establishes the ORACLE connection. The Site Profile allows the DBA to set up
SQL*Plus environment defaults for all users at a particular site; users cannot directly access
the Site Profile. The default name and location of the Site Profile depend on your system.
Site Profiles are described in more detail in the Oracle installation and user's manual(s)
provided for your operating system.

SQL*Plus also supports a User Profile, executed after the Site Profile. SQL*Plus searches for a
file named LOGIN with the extension SQL in your current directory. If SQL*Plus does not find
the file there, SQL*Plus will search a system-dependent path to find the file. Some operating
systems may not support this path-search. If SQL*Plus does not find the LOGIN file in the
paths, SQL*Plus prints a warning message and continues the logon process.   

 Examples

To start SQL*Plus with username SCOTT and password TIGER, enter:

SQLPLUS SCOTT/TIGER

To start SQL*Plus, as above, and to make POLICY the default database, enter:

SQLPLUS SCOTT/TIGER@POLICY

To start SQL*Plus and run a command file named STARTUP with the extension SQL, enter:

SQLPLUS SCOTT/TIGER @STARTUP

Note the space between TIGER and @STARTUP.   

 __

START

 Purpose

Executes the contents of the specified command file.

 Syntax

STA[RT] file_name[.ext] [arg1 arg2 ...]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext] Represents the command file you wish to execute. The file can contain
any command that you can run interactively.

If you do not specify an extension, SQL*Plus assumes the default
command-file extension (normally SQL). For information on changing
this default extension, see the    SUFFIX variable of the SET command
in this chapter.

When you enter START file_name.ext, SQL*Plus searches for a file with
the file name and extension you specify in the current default
directory. If SQL*Plus does not find such a file, SQL*Plus will search a
system-dependent path to find the file. Some operating systems may
not support the path-search. Consult the Oracle installation and user's
manual(s) provided for your operating system for specific information
related to your operating system environment.

arg1 arg2 ... Represent data items you wish to pass to parameters in the command
file.    If you enter one or more arguments, SQL*Plus substitutes the
values into the parameters (&1, &2, and so forth) in the command file.
The first argument replaces each occurrence of &1, the second
replaces each occurrence of &2, and so forth.

The START command DEFINEs the parameters with the values of the
arguments; if you START the command file again in this session, you
can enter new arguments or omit the arguments to use the old
values.

For more information on using parameters, refer to the subsection
"Passing Parameters through the START Command" under "Writing
Interactive Commands" in Chapter 3.   

 Usage Notes

 The @ ("at" sign) command functions similarly to START.

The (double "at" sign) command functions similarly to START, but does not allow the passing
of values to parameters.

 Example

 A file named PROMOTE with the extension SQL, used to promote employees, might contain
the following command:

SELECT * FROM EMP
WHERE MGR=&1 AND JOB='&2' AND SAL>&3;

To run this command file, enter:

SQL> START PROMOTE 7280 CLERK 950

SQL*Plus then executes the following command:

SELECT * FROM EMP
WHERE MGR=7280 AND JOB='CLERK' AND SAL>950;

 __

TIMING

 Purpose

Records timing data for an elapsed period of time, lists the current timing area's title and
timing data, or lists the number of active timing areas.

 Syntax

TIMI[NG] [START text|SHOW|STOP]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

START text Sets up a timing area and makes text the title of the timing area. You
can have more than one active timing area by STARTing additional
areas before STOPping the first; SQL*Plus nests each new area within
the preceding one. The area most recently STARTed becomes the
current timing area.

SHOW Lists the current timing area's title and timing data.

STOP Lists the current timing area's title and timing data, and then deletes
the timing area. If any other timing areas are active, the next most
recently STARTed area becomes the current timing area. Use the
TIMING clause of the CLEAR command to delete all timing areas.

Enter TIMING with no clauses to list the number of active timing areas.

 Usage Notes

You can use this data to do a performance analysis on any commands or blocks run during
the period.

For information about the data TIMING displays, see the Oracle installation and user's
manual(s) provided for your operating system.    Refer to SET TIMING ON for information on
automatically displaying timing data after each SQL command or PL/SQL block you run.

 Examples

To create a timing area named SQL_AREA, enter:

SQL> TIMING START SQL_AREA

To list the current timing area's title and accumulated time, enter:

SQL> TIMING SHOW

To list the current timing area's title and accumulated time and to remove the timing area,
enter:

SQL> TIMING STOP

 __

TTITLE

 Purpose

Places and formats a specified title at the top of each report page, or lists the current TTITLE
definition.

Note: For a description of the old form of TTITLE, which is compatible with UFI (a
predecessor of SQL*Plus), see TTITLE (old form) in Appendix F.

 Syntax

TTI[TLE] [printspec [text|variable] ...] | [OFF|ON]

where printspec represents one or more of the following clauses used to place and format
the text:

COL n
S[KIP] [n]
TAB n
LE[FT]
CE[NTER]
R[IGHT]
BOLD
FORMAT char

 Terms and Clauses

If you do not enter a printspec clause before the first occurrence of text, TTITLE left justifies
the text. Enter TTITLE with no clauses to list the current TTITLE definition.

Refer to the following list for a description of each term or clause. These terms and clauses
also apply to the BTITLE command.

text Represents the title text. Enter text in single quotes if you wish to
place more than one word on a single line.

variable Represents a user variable or any of the following system-maintained
values:   

· SQL.LNO    (current line number)

· SQL.PNO    (current page number)

· SQL.RELEASE    (current ORACLE release number)

· SQL.SQLCODE    (current error code)

· SQL.USER    (current username)   

To print one of these values, reference the appropriate variable in the
title. You can format variable with the FORMAT clause.

OFF Turns the title off (suppresses its display) without affecting its
definition.

ON Turns the title on (restores its display). When you define a top title,
SQL*Plus automatically sets TTITLE to ON.

COL n Indents to column n of the current line (backward if column n has
been passed). "Column" in this context means print position, not table
column.

S[KIP] [n] Skips to the start of a new line n times; if you omit n, one time; if you
enter zero for n, backward to the start of the current line.

TAB n Skips forward n columns (backward if you enter a negative value for
n). "Column" in this context means print position, not table column.

LE[FT], CE[NTER], and R[IGHT] Left-align, center, and right-align data on the
current line respectively. SQL*Plus aligns following data items as a
group, up to the end of the printspec or the next LEFT, CENTER,
RIGHT, or COL command. CENTER and RIGHT use the SET LINESIZE
value to calculate the position of the data item that follows.

BOLD Prints data in bold print. SQL*Plus represents bold print on your
terminal by repeating the data on three consecutive lines.

FORMAT char Specifies a format model that determines the format of following data
items, up to the next FORMAT clause or the end of the command. The
format model must be a char constant such as A10 or $999--not a
variable. See COLUMN FORMAT for more information on formatting
and valid format models.

If the datatype of the format model does not match the datatype of a
given data item, the FORMAT clause has no effect on that item.

If no appropriate FORMAT model precedes a given data item, SQL*Plus
prints NUMBER values according to the format specified by SET
NUMFORMAT or, if you have not used SET NUMFORMAT, the default
format. SQL*Plus prints DATE values according to the default format.

Refer to the FORMAT clause of the COLUMN command in this chapter
for more information on default formats.   

 Usage Notes

SQL*Plus interprets TTITLE in the new form if a valid printspec clause (LEFT, SKIP, COL, etc)
immediately follows the command name. See COLUMN NEW_VALUE for information on
printing column and DATE values in the top title.

You can use any number of constants and variables in a printspec. SQL*Plus displays the
constants and variables in the order you specify them, positioning and formatting each
constant or variable as specified by the printspec clauses that precede it.

The length of the title you specify with TTITLE cannot exceed 2400 characters.

The continuation character (a hyphen) will not be recognized inside a single-quoted title text

string. To be recognized, the continuation character must appear outside of the quotes, as
follows:

SQL> TTITLE CENTER 'Summary Report for' -
> 'the Month of May'

 Examples

To define "Monthly Analysis" as the top title and to left-align it, to center the date, to right-
align the page number with a    three-digit format, and to display "Date in Thousands" in bold
in the center of the next line, enter:

SQL> TTITLE LEFT 'Monthly Analysis' CENTER '11 Mar 88' -
> RIGHT 'Page:' FORMAT 999 SQL.PNO SKIP CENTER BOLD -
> 'Data in Thousands'

The following title results:

Monthly Analysis 11 Mar 88 Page: 1
Data in Thousands

To suppress the top title display without changing its definition, enter:

SQL> TTITLE OFF

 __

UNDEFINE

 Purpose

Deletes a given user variable that you defined either explicitly (with the DEFINE command)
or implicitly (with an argument to the START command).

 Syntax

UNDEF[INE] variable

 Terms and Clauses

Refer to the following list for a description of each term or clause:

variable Represents the name of the user variable you wish to delete.

 Example

To undefine a user variable named POS, enter:

SQL> UNDEFINE POS

 __

VARIABLE

 Purpose

Declares a bind variable which can then be referenced in PL/SQL. For more information on
bind variables, see "Using Bind Variables" in Chapter 3. For more information about PL/SQL,
see your PL/SQL User's Guide and Reference.

VARIABLE without arguments displays a list of all the variables declared in the session.
VARIABLE followed only by a variable name lists that variable.

 Syntax

VAR[IABLE] [variable {NUMBER|CHAR|CHAR (n)}]

 Terms and Clauses

Refer to the following list for a description of each term or clause:

variable Represents the name of the bind variable you wish to create.

NUMBER Creates a variable of type NUMBER with a fixed length.

CHAR Creates a variable of type CHAR (character) with a length of one.

CHAR (n) Creates a variable of type CHAR with a maximum length of n.

 Usage Notes

To display the value of a bind variable created with VARIABLE, use the PRINT command. For
more information, see the PRINT command in this chapter.

 Examples

Following is an example of creating a bind variable and then setting it to the value returned
by a function:

SQL> VARIABLE id NUMBER
SQL> BEGIN
 1 :id := emp_management.hire
 2 ('BLAKE','MANAGER','KING',2990,'SALES');
 3 END;

The bind variable named id could also be displayed with the PRINT command or used in
subsequent PL/SQL subprograms.   

Following is an example of creating some variables and then listing some or all of them:

SQL> VARIABLE id NUMBER
SQL> VARIABLE txt CHAR (20)
SQL> VARIABLE
variable id

datatype NUMBER

variable txt
datatype CHAR(20)
SQL> VARIABLE txt
variable txt
datatype CHAR(20)

 __

WHENEVER OSERROR

 Purpose

Exits SQL*Plus if an operating system error occurs, (such as a file I/O error).

 Syntax

WHENEVER OSERROR {EXIT [SUCCESS|FAILURE|OSCODE|n] [COMMIT|ROLLBACK] |
CONTINUE [COMMIT|ROLLBACK|NONE]}

 Terms and Clauses

Refer to the following list for a description of each term or clause:

EXIT [SUCCESS|FAILURE|OSCODE|n|variable] Directs SQL*Plus to exit as soon as an
operating system error is detected. You can also specify that SQL*Plus
return a success or failure code, the operating system failure code, or
a number or variable of your choice. See also EXIT in this chapter for
details.

The EXIT clause will not exit if a SQL*Plus command generates an
error.

CONTINUE Turns off the EXIT option.

COMMIT Directs SQL*Plus to execute a COMMIT before exiting or continuing
and save pending changes to the database.

ROLLBACK Directs SQL*Plus to execute a ROLLBACK before exiting or continuing
and abandon pending changes to the database.

NONE Directs SQL*Plus to take no action before exiting or continuing.

 Usage Notes

 If you do not enter the WHENEVER OSERROR command, the default behavior of SQL*Plus is
to continue and take no action when an operating system error occurs.

 Examples

 The commands in the following command file cause SQL*Plus to exit and COMMIT any
pending changes if a failure occurs when writing to the output file:

SQL> GET RAISE
 1 WHENEVER OSERROR EXIT OSCODE COMMIT
 2 UPDATE EMP SET SAL = SAL*1.1
 3 COPY TO SCOTT/TIGER@D:BETHESDA -
 4 REPLACE EMP -
 5 USING SELECT * FROM EMP
 6 SPOOL OUT
 7 SELECT SAL FROM EMP

 __

WHENEVER SQLERROR

 Purpose

Exits SQL*Plus if a SQL command or PL/SQL block generates an error.

 Syntax

WHENEVER SQLERROR {EXIT [SUCCESS|FAILURE|WARNING|n|variable][COMMIT|ROLLBACK]
| CONTINUE [COMMIT|ROLLBACK|NONE]}

 Terms and Clauses

Refer to the following list for a description of each term or clause:

EXIT [SUCCESS|FAILURE|WARNING|n|variable] Directs SQL*Plus exit as soon as it detects
any SQL error (but after printing the SQL error message). The EXIT
clause of WHENEVER SQLERROR follows the same syntax as the EXIT
command. See EXIT in this chapter for details.

The EXIT clause will not exit if a SQL*Plus command generates an
error.

CONTINUE Turns off the EXIT option.

COMMIT Directs SQL*Plus to execute a COMMIT before exiting or continuing
and save pending changes to the database.

ROLLBACK Directs SQL*Plus to execute a ROLLBACK before exiting or continuing
and abandon pending changes to the database.

NONE Directs SQL*Plus to take no action before exiting or continuing.

 Usage Notes

If you do not enter the WHENEVER SQLERROR command, the default behavior of SQL*Plus is
to continue and take no action when a SQL error occurs.

 Examples

The commands in the following command file cause SQL*Plus to exit and display the SQL
error code if a SQL UPDATE command fails and skips the COPY command:

SQL> GET RAISE
 1 WHENEVER SQLERROR EXIT SQL.SQLCODE
 2 UPDATE EMP SET SAL = SAL*1.1
 3 COPY TO SCOTT/TIGER@D:BETHESDA -
 4 REPLACE EMP -
 5 USING SELECT * FROM EMP
 6 WHENEVER SQLERROR CONTINUE

APPENDIX A. COPY Command Messages and Codes
This appendix lists error messages generated by the COPY command. For error messages
generated by ORACLE, refer to the ORACLE7 Server Messages and Codes Manual.

 CPY0002:

 Illegal or missing APPEND, CREATE, INSERT, or REPLACE option

 Cause:

 An internal COPY function has invoked COPY with a create option (flag) value that is out of
range.

 Action:

 Please contact your Oracle Customer Support representative.

 CPY0003:

 Internal Error: logical host number out of range

 Cause:

 An internal COPY function has been invoked with a logical host number value that is out of
range.

 Action:

 Please contact your Oracle Customer Support representative.   

 CPY0004:

Source and destination table and column names don't match

 Cause:

On an APPEND operation or an INSERT (when the table exists), at least one column name in
the destination table does not match the corresponding column name in the optional column
name list or in the SELECT command.

 Action:

Re-specify the COPY command, making sure that the column names and their respective
order in the destination table match the column names and column order in the optional
column list or in the SELECT command.

 CPY0005:

Source and destination column attributes don't match

 Cause:

On an APPEND operation or an INSERT (when the table exists), at least one column in the
destination table does not have the same datatype as the corresponding column in the

SELECT command.

 Action:

Re-specify the COPY command, making sure that the datatypes for items being selected
agree with the destination. You can use TO_DATE, TO_CHAR, and TO_NUMBER to make
conversions.

 CPY0006:

Select list has more columns than destination table

 Cause:

On an APPEND operation or an INSERT (when the table exists), the number of columns in the
SELECT command is greater than the number of columns in the destination table.

 Action:

Re-specify the COPY command, making sure that the number of columns being selected
agrees with the number in the destination table.

 CPY0007:

Select list has fewer columns than destination table

 Cause:

On an APPEND operation or INSERT (when the table exists), the number of columns in the
SELECT command is less than the number of columns in the destination table.

 Action:

Re-specify the COPY command, making sure that the number of columns being selected
agrees with the number in the destination table.

 CPY0008:

More column list names than columns in the destination table

 Cause:

On an APPEND operation or an INSERT (when the table exists), the number of columns in the
column name list is greater than the number of columns in the destination table.

 Action:

Re-specify the COPY command, making sure that the number of columns in the column list
agrees with the number in the destination table.

 CPY0009:

Fewer column list names than columns in the destination table

 Cause:

On an APPEND operation or an INSERT (when the table exists), the number of columns in the
column name list is less than the number of columns in the destination table.

 Action:

Re-specify the COPY command, making sure that the number of columns in the column list
agrees with the number in the destination table.     

APPENDIX B. Version 3.0 Enhancements
SQL*Plus Version 3.0 provides a number of enhancements over previous versions of
SQL*Plus. This appendix describes the enhancements for SQL*Plus Version 3.1 and SQL*Plus
Version 3.0.   

 __

SQL*Plus Version 3.1 Enhancements

SQL*Plus Version 3.1 is a superset of SQL*Plus Version 3.0. To fully exploit SQL*Plus Version
3.1, you need ORACLE7. SQL*Plus Version 3.1 gives you the following capabilities:   

· You can use the following new SQL commands with SQL*Plus Version 3.1. You can also
control access to these commands through the PRODUCT_USER_PROFILE table located
in the SYSTEM account. See Appendix E for a full explanation.

ALTER ALL SNAPSHOTS CREATE ROLE

ALTER FUNCTION CREATE SCHEMA

ALTER PACKAGE CREATE SNAPSHOT

ALTER PACKAGE BODY CREATE SNAPSHOT LOG

ALTER PROCEDURE CREATE TRIGGER

ALTER PROFILE CREATE USER

ALTER RESOURCE COST DROP FUNCTION

ALTER SESSION DROP PROCEDURE

ALTER SNAPSHOT LOG DROP PROFILE

ALTER SYSTEM DROP ROLE

ALTER TRIGGER DROP SNAPSHOT

ANALYZE DROP SNAPSHOT LOG

CREATE FUNCTION DROP TRIGGER

CREATE PACKAGE DROP USER

CREATE PACKAGE BODY SET ROLE

CREATE PROCEDURE SET ROLE

CREATE PROFILE

· You can create and display bind variables using the VARIABLE and PRINT commands.
These variables can be referenced in PL/SQL.    For details, see the section entitled
"Using Bind Variables" in Chapter 3 and the VARIABLE and PRINT commands in
Chapter 6.

· You can execute a stored procedure using the SQL*Plus EXECUTE command. For
details, see the EXECUTE command in Chapter 6.

· You can display the compilation errors for a stored procedure. The SHOW command

has a new keyword (ERRORS) for this purpose. For details, see the SHOW command in
Chapter 6.

· You can display the security level for the session. The SHOW command has a new
keyword (LABEL) for this purpose. For details, see the SHOW command in Chapter 6.

· When you enter any of the following SQL commands from SQL*Plus, it places you in
PL/SQL mode:    BEGIN, CREATE FUNCTION, CREATE PACKAGE, CREATE PACKAGE BODY,
CREATE PROCEDURE, CREATE TRIGGER. For details, see "Running PL/SQL Blocks" in
Chapter 2.

· You can enable or disable DBMS_OUTPUT.PUT_LINE output using SET SERVEROUTPUT.
For details, see the SERVEROUTPUT variable of the SET command in Chapter 6.

· You can set the size of increments in which you want to retrieve LONG values from the
database. The SET command has a new variable (LONGCHUNKSIZE) for this purpose.
For details, see the LONGCHUNKSIZE variable of the SET command in Chapter 6.

· You can specify the default date format via an initialization parameter in a parameter
file. SQL*Plus uses what you have specified to determine the default width for
displaying DATE values.

· You can display the new VARCHAR2 and Trusted ORACLE (MLSLABEL, RAW MLSLABEL,
ROWLABEL) column types in SQL*Plus. For details, see the section entitled "Formatting
CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and Trusted ORACLE Columns" in Chapter
4.

· You can use the SET variable, COMPATIBILITY, to maintain compatibility between
command files written with ORACLE Version 5, Version 6, and ORACLE7. For details,
see the COMPATIBILITY variable of the SET command in Chapter 6.

· You can specify whether to exit SQL*Plus or continue when an operating system error
occurs. The WHENEVER OSERROR command enables you to exit SQL*Plus when an
operating system error occurs. For details, see the WHENEVER OSERROR command in
Chapter 6.   

· When a SQL or PL/SQL error occurs, you can continue and no action is taken by
default. The new default for WHENEVER SQLERROR CONTINUE is NONE. For details,
see the WHENEVER SQLERROR command in Chapter 6.

· You can disable roles using the PRODUCT_USER_PROFILE table located in the SYSTEM
account. For details, see          Appendix E.

· You can execute nested command files using the (double "at" sign) command. For
details, see the command in Chapter 6.   

 __

SQL*Plus Version 3.0 Enhancements

SQL*Plus Version 3.0 is a subset of SQL*Plus Version 3.1 and it gives you the following
capabilities:   

· You can choose whether SQL*Plus stores the ORACLE    Version 6 commands COMMIT
and ROLLBACK in the SQL buffer. A new SET variable, COMPATIBILITY, allows you to
maintain compatibility with command files written with ORACLE Version 5. See the
COMPATIBILITY variable of the SET command in Chapter 6 for more information.

· You can enter, edit, store, and execute PL/SQL blocks through SQL*Plus. Refer to the
subsection "Running PL/SQL Blocks" under "Entering and Executing Commands" in
Chapter 2 for details.

· You will automatically see improved efficiency in a network environment. SQL*Plus
now defines multiple columns in a SELECT command with a single network message.

· You can restrict users' access to given SQL and SQL*Plus commands through a table,
PRODUCT_USER_PROFILE, located in the SYSTEM account. See Appendix E for a full
explanation.

· You can omit the password from the FROM and TO clauses of the COPY command;
SQL*Plus prompts you for each password and suppresses the display of your response.
Refer to the COPY command in Chapter 6 for details.

· You can specify the language and character set in which ORACLE messages are
displayed. SQL*Plus supports multi-lingual ORACLE messages, a feature of National
Language Support (NLS). Messages are displayed in the language and character set
specified via initialization parameter in a parameter file.

· You can enter comments using the "--" comment delimiter in SQL*Plus without putting
a space between the delimiter and the beginning of the comment. For details, see
"Placing Comments in Command Files" in Chapter 3.   

APPENDIX C. SQL*Plus Limits
Table C-1, on the following page, lists the limit, or maximum value, of each of the SQL*Plus
elements shown. The limits shown are valid for most operating systems (all except PDP11
and mc68000).   

Item Limit
--
file name length system-dependent system-depen-

dent

username length 30 bytes

user variable name length 30 bytes

user variable value length 240 characters

number of user variables 1,024

number of variables in a SQL INSERT 50
command INTO list

number of variables per SQL com- 100
mand

command line length 2500 characters

length of a LONG value entered LINESIZE value
through SQL*Plus

LINESIZE system-dependent

LONGCHUNKSIZE value (requires MAXDATA value
ORACLE7)

MAXDATA value system-dependent

output line size system-dependent

line size after variable substitution 1,000 characters (internal only)

number of lines per SQL command 500 (assuming 80 characters per line)

number of lines per page 50,000

total row width 60,000 characters for VMS, otherwise
32,767 characters

number of rows in an array fetch 5000

number of nested command files 20 for VMS, CMS, Unix; otherwise, 5

page number 99,999

PL/SQL error message buffer 2K (ORACLE7) 512 (ORACLE Version

6)

Table C - 1.

APPENDIX D. SQL Command List
Table D-1, on the following page, lists SQL commands.    SQL commands were formerly
documented in this manual. You can now refer to the ORACLE7 Server SQL Language
Reference Manual for full documentation of these commands.   

Major SQL Commands and Clauses
--
ALTER LOCK TABLE

ANALYZE* NOAUDIT

AUDIT RENAME

COMMENT REVOKE

COMMIT ROLLBACK

CREATE SAVEPOINT

DELETE SELECT

DROP SET ROLE*

EXPLAIN SET TRANSACTION

GRANT TRUNCATE*

INSERT UPDATE

* REQUIRES ORACLE7

Table D - 1. SQL Command List

APPENDIX E. Security
This appendix describes the available methods for controlling access to database tables and
SQL*Plus commands. The available methods for security fall into two broad categories:

· SQL*Plus PRODUCT_USER_PROFILE table

· roles   

 __

PRODUCT_USER_PROFILE Table

Various Oracle products use PRODUCT_USER_PROFILE, a table in the SYSTEM account, to
provide product-level security that supplements the user-level security provided by the SQL
GRANT and REVOKE commands, and user roles. (SET ROLE requires ORACLE7.)

 Overview
DBAs can use PRODUCT_USER_PROFILE to disable certain SQL and SQL*Plus commands in
the SQL*Plus environment, on a per-user basis. SQL*Plus--not ORACLE --enforces this
security. DBAs can even restrict access to the GRANT, REVOKE, and SET ROLE commands to
control users' ability to change their database privileges.

You can create PRODUCT_USER_PROFILE by running the command file named V7PUP with
the extension SQL. The exact format of the file extension and the location of the file are
system-dependent. See the ORACLE installation and user's manual(s) provided for your
operating system or your DBA for more information.

SQL*Plus reads restrictions from PRODUCT_USER_PROFILE when a user logs on to SQL*Plus
and maintains those restrictions for the duration of the session. Changes to
PRODUCT_USER_PROFILE will only take effect the next time the affected users log on to
SQL*Plus.

 Table Structure
The PRODUCT_USER_PROFILE table consists of the following columns:

PRODUCT NOT NULL CHAR (30)

USERID CHAR(30)

ATTRIBUTE CHAR(240)

SCOPE CHAR(240)

NUMERIC_VALUE NUMBER(15,2)

CHAR_VALUE CHAR(240)

DATE_VALUE DATE

LONG_VALUE LONG

 Description and Use of Columns
Refer to the following list for the descriptions and use of each column in the
PRODUCT_USER_PROFILE table:

Product Must contain the product name (in this case "SQL*Plus"). You cannot
enter wildcards or NULL in this column. Also notice that the product
name SQL*Plus must be specified in mixed case, as shown, in order to

be recognized.

Userid Must contain the username (in upper case) of the user for whom you
wish to disable the command. To disable the command for more than
one user, use SQL wild cards (%) or make multiple entries. Thus, all of
the following entries are valid:

· SCOTT

· CLASS1

· CLASS%    (all users whose names start with CLASS)

· %    (all users)

Attribute Must contain the name (in upper case) of the SQL, SQL*Plus, or PL/SQL
command you wish to disable (e.g., GET). If you are disabling a role,
must contain the character string "ROLES". You cannot enter a
wildcard. See "Administration," below, for a list of SQL and SQL*Plus
commands you can disable. See "Roles," below, for information on
how to disable a role.

Scope SQL*Plus ignores this column. It is recommended that you enter NULL
in this column. Other products may store specific file restrictions or
other data in this column.

Numeric_Value SQL*Plus ignores this column. It is recommended that you enter NULL
in this column. Other products may store numeric values in this
column.

Char_Value Must contain the character string "DISABLED" to disable a SQL,
SQL*Plus, or PL/SQL command. If you are disabling a role, must
contain the name of the role you wish to disable. You cannot use a
wildcard. See "Roles," below, for information on how to disable a role.

Date_Value SQL*Plus ignores this column. It is recommended that you enter NULL
in this column. Other products may store DATE values in this column.

Long_Value SQL*Plus ignores this column. It is recommended that you enter NULL
in this column. Other products may store LONG values in this column.

 Administration
The DBA username SYSTEM owns and has all privileges on PRODUCT_USER_PROFILE. (When
SYSTEM logs on, SQL*Plus does not read PRODUCT_USER_PROFILE. Therefore, no restrictions
apply to user SYSTEM.)    Other ORACLE usernames should have only SELECT access to this
table. The command file PUPBLD, when run, grants SELECT access on
PRODUCT_USER_PROFILE to PUBLIC.

 Disabling SQL*Plus, SQL, and PL/SQL Commands

To disable a SQL or SQL*Plus command for a given user, insert a row containing the user's
username in the Userid column, the command name in the Attribute column, and DISABLED
in the Char_Value column.

The Scope, Numeric_Value, and Date_Value columns should contain NULL. For example:

PRODUCT USERID ATTRIBUTE SCOPE NUMERIC CHAR DATE
VALUE VALUE

VALUE

------- ------- ------------ ------- ------------ ------- ----

SQL*Plus SCOTT HOST DISABLED

SQL*Plus % INSERT DISABLED

SQL*Plus % UPDATE DISABLED

SQL*Plus % DELETE DISABLED

To re-enable commands, delete the row containing the restriction.

You can disable the following SQL*Plus commands:

· CONNECT

· EDIT

· EXECUTE

· EXIT

· GET

· HOST (or your operating system's alias for HOST, such as $)

· QUIT

· RUN

· SAVE

· SET (see note below)

· SPOOL

· START

Note: Disabling the SQL*Plus SET command will also disable the SQL SET ROLE and SET
TRANSACTION commands.

You can also disable the following SQL commands:

· ALTER

· ANALYZE (requires ORACLE7)

· AUDIT

· CONNECT

· CREATE

· DELETE

· DROP

· GRANT

· INSERT

· LOCK

· NOAUDIT

· RENAME

· REVOKE

· SELECT

· SET ROLE (requires ORACLE7)

· SET TRANSACTION

· TRUNCATE (requires ORACLE7)

· UPDATE

· VALIDATE (only for ORACLE V6)

You can also disable the following PL/SQL commands:

· BEGIN

· DECLARE

Note: Disabling BEGIN and DECLARE does not prevent the use of the SQL*Plus EXECUTE
command. EXECUTE must be disabled separately.

 Disabling SET ROLE

From SQL*Plus, users can submit any SQL command. In certain situations, this can cause
security problems. Unless you take proper precautions, a user could use SET ROLE to access
privileges obtained via an application role. With these privileges, they might issue SQL
statements from SQL*Plus that could wrongly change database tables.   

To prevent application users from accessing application roles in SQL*Plus, you can use
PRODUCT_USER_PROFILE to disable the SET ROLE command. This allows a SQL*Plus user
only those privileges associated with the roles enabled when they started SQL*Plus. For
more information about the creation and usage of user roles, see your ORACLE7 Server SQL

Language Reference and ORACLE7 Server Administrator's Guide.

 Disabling Roles

To disable a role for a given user, insert a row in PRODUCT_USER_PROFILE containing the
user's username in the Userid column, "ROLES" in the Attribute column, and the role name
in the Char_Value column. Note that by entering "PUBLIC" or % for the Userid column, you
disable the role for all users.

The Scope, Numeric_Value, and Date_Value columns should contain NULL. For example:

PRODUCT USERID ATTRIBUTE SCOPE NUMERIC CHAR DATE
VALUE VALUE

VALUE

----- ------ ------------ ----- ----- ----- ----
-

SQL*Plus SCOTT ROLES ROLE 1

SQL*Plus PUBLIC ROLES ROLE 2

During login, these table rows are translated into the command:

SET ROLE ALL EXCEPT ROLE1, ROLE2

To ensure that the user does not use the SET ROLE command to change their roles after
login, you can disable the SET ROLE command. See "Disabling SET ROLE" earlier in this
appendix.

To re-enable roles, delete the row containing the restriction.

 __

Roles

To provide for the security of your database tables in ORACLE7 using SQL commands, you
can create and control access to roles. By creating a role and then controlling who has
access to it, you can ensure that only certain users have access to particular database
privileges.   

 Overview
Roles are created and used with the SQL CREATE, GRANT, and SET commands:

· To create a role, you use the CREATE command. You can create roles with or without
passwords.

· To grant access to roles, you use the GRANT command. In this way, you can control
who has access to the privileges associated with the role.

· To access roles, you use the SET ROLE command. If you created the role with a
password, the user must know the password in order to access the role.

For more information about roles, see your ORACLE7 Server SQL Language Reference, your
ORACLE7 Server Administrator's Guide, and your ORACLE7 Server Concepts Manual.     

APPENDIX F. SQL*Plus Commands from Earlier Versions
This appendix covers earlier versions of some SQL*Plus commands. These older commands
still function within SQL*Plus, but SQL*Plus provides newer commands that have improved
functionality.

 __

BTITLE (old form)

 Purpose

 Displays a title at the bottom of each report page.

 Syntax

 BTI[TLE] text

 Usage Notes

 The old form of BTITLE offers formatting features more limited than those of the new form,
but provides compatibility with UFI (a predecessor of SQL*Plus). The old form defines the
bottom title as an empty line followed by a line with centered text. Refer to TTITLE (old form)
in this appendix for more details.

 __

COLUMN DEFAULT

 Purpose

 Resets the display attributes for a given column to default values.

 Syntax

 COL[UMN] {column|expr} DEF[AULT]

 Usage Notes

 Has the same effect as COLUMN CLEAR.

 __

DOCUMENT

 Purpose

 Begins a block of documentation in a command file.

 Syntax

 DOC[UMENT]

 Usage Notes

 For information on the current method of inserting comments in a command file, refer to the
subsection "Placing Comments in Command Files" under "Saving Commands for Later Use"
in Chapter 3 and to REMARK in Chapter 6.

After you type DOCUMENT and enter [Return], SQL*Plus displays the prompt DOC> in place
of SQL> until you end the documentation. The "pound" character (#) on a line by itself ends
the documentation.

If you have set DOCUMENT to OFF, SQL*Plus suppresses the display of the block of
documentation created by the DOCUMENT command. (See SET DOCUMENT later in this
appendix.)   

 __

NEWPAGE

 Purpose

 Advances spooled output n lines beyond the beginning of the next page.

 Syntax

 NEWPAGE [1|n]

 Usage Notes

 Refer to the NEWPAGE variable of the SET command in Chapter 6 for information on the
current method for advancing spooled output.

 __

SET BUFFER

 Purpose

 Makes the specified buffer the current buffer.

 Syntax

 SET BUF[FER] {buffer|SQL}

 Usage Notes

 Initially, the SQL buffer is the current buffer. SQL*Plus does not require the use of multiple
buffers; the SQL buffer alone should meet your needs.

If the buffer name you enter does not already exist, SET BUFFER defines (creates and
names) the buffer. SQL*Plus deletes the buffer and its contents when you exit SQL*Plus.

Running a query automatically makes the SQL buffer the current buffer. To copy text from
one buffer to another, use the GET and SAVE commands. To clear text from the current
buffer, use CLEAR BUFFER. To clear text from the SQL buffer while using a different buffer,
use CLEAR SQL.

 __

SET DOCUMENT

 Purpose

 Displays or suppresses blocks of documentation created by the DOCUMENT command.

 Syntax

 SET DOC[UMENT] {OFF|ON}

 Usage Notes

 SET DOCUMENT ON causes blocks of documentation to be echoed to the screen. Set
DOCUMENT OFF suppresses the display of blocks of documentation.

See DOCUMENT in this appendix for information on the DOCUMENT command.

 __

SET TRUNCATE

 Purpose

 Controls whether SQL*Plus truncates or wraps a data item that is too long for the current
line width.

 Syntax

 SET TRU[NCATE] {OFF|ON}

 Usage Notes

 ON functions in the same manner as SET WRAP OFF, and vice versa. You may prefer to use
WRAP because the SHOW command recognizes WRAP and does not recognize TRUNCATE.

 __

TTITLE (old form)

 Purpose

 Displays a title at the top of each report page.

 Syntax

 TTI[TLE] text

 Usage Notes

 The old form of TTITLE offers formatting features more limited than those of the new form,
but provides compatibility with UFI (a predecessor of SQL*Plus). The old form defines the top
title as a line with the date left-aligned and the page number right-aligned, followed by a line
with centered text and then a blank line.

The text you enter defines the title TTITLE will display.

SQL*Plus centers text based on the size of a line as determined by SET LINESIZE. A
separator character (|) begins a new line; two line separator characters in a row (||) insert a
blank line. You can change the line separator character with SET HEADSEP.

You can control the formatting of page numbers in the old forms of TTITLE and BTITLE by
defining a variable named "_page". The default value of _page is the formatting string, "page
&P4". To alter the format, you can DEFINE _page with a new formatting string as follows:

SQL> SET ESCAPE / SQL> DEFINE _page = 'Page /&P2'

This formatting string will print the word "page" with an initial capital letter and format the
page number to a width of 2. You can substitute any text for "page" and any number for the
width. You must set escape so that SQL*Plus does not interpret the ampersand (&) as a
substitution variable. See the ESCAPE variable of the SET command in Chapter 6 for more
information on setting the escape character.

SQL*Plus interprets TTITLE in the old form if a valid new-form clause does not immediately
follow the command name.

If you want to use CENTER with TTITLE and put more than one word on a line, you should
use the new form of TTITLE documented in the Reference portion of this manual.

 Example

 To use the old form of TTITLE to set a top title with a left-aligned date and right-aligned page
number on one line followed by SALES DEPARTMENT on the next line and PERSONNEL
REPORT on a third line, enter:

SQL> TTITLE 'SALES DEPARTMENT|PERSONNEL REPORT'

GLOSSARY

A
 argument          A data item following the command-file name in a START command. The

argument supplies a value for a parameter in the command file.

 ASCII          A convention for using digital data to represent printable characters. ASCII is an
acronym for American Standard Code for Information Interchange.

 autocommit          A feature unique to SQL*Plus that enables SQL*Plus to automatically
commit changes to the database after every successful execution of a SQL command or
PL/SQL block. Setting the AUTOCOMMIT variable of the SET command to ON enables this
feature.

B
 block          In PL/SQL, a group of SQL and PL/SQL commands related to one another through

procedural logic.

 break          An event, such as a change in the value of an expression, that occurs while
SQL*Plus processes a query or report. You can direct SQL*Plus to perform some action,
such as printing totals, whenever a break occurs.

 break column          A column in a report that causes a break when its value changes.

 break hierarchy          The order in which SQL*Plus checks for the occurrence of events and
triggers the corresponding breaks.

 buffer          An area where SQL*Plus saves your most recently entered SQL command or
PL/SQL block. The SQL buffer is the default buffer. You can edit or execute commands
from multiple buffers; however, SQL*Plus does not require the use of multiple buffers.

C
 CHAR datatype          An ANSI-standard datatype. Specifically, it is a fixed length, alpha-

numeric string with a maximum length of 255 characters. If data entered for a column
of type CHAR is less than 255, requisite spaces will be padded. If data entered is more
than 255, an error occurs. (Note:    This datatype functions differently than it did in
ORACLE Version 6. The ORACLE Version 6 CHAR datatype is equivalent to the ORACLE7
VARCHAR2 datatype.)

 column          (1) The fields representing one kind of data in a table; for example, the fields
representing salary in the sample table EMP. (2) The fields representing one kind of data
in the output of a query. See also row.

 command          An instruction to SQL*Plus. ACCEPT, CLEAR, and COPY are examples of
commands in SQL*Plus.

 command file          A file containing one or more commands. You can execute the command
file with the START or @ command.

 command prompt          The text, by default SQL>, with which SQL*Plus requests your next
command.

 commit          To make changes to data (inserts, updates, deletes) permanent. Before
changes are stored, both the old and new data exist so that changes can be stored or
the data can be restored to its prior state. When a user enters the SQL command
COMMIT, all changes in that transaction are made permanent.

 connect          To identify yourself to ORACLE by entering your username and password in
order to gain access to the database. In SQL*Plus, the CONNECT command allows you to
log off ORACLE and then log back on with a specified username.

 current line          The line in the buffer that SQL*Plus editing commands will affect at any
given time.

D
 database          A disk storage area where ORACLE stores tables, views, and other data; also,

the set of objects stored in that area.

 Database Administrator (DBA)           A person responsible for the operation and
maintenance of the ORACLE. The DBA is an ORACLE user authorized to grant and revoke
other users' access to the system, modify ORACLE options that affect all users, and
perform other administrative functions. There may be more than one DBA per site.

 database link            An object stored in the local database that identifies a remote
database, a communication path to the remote database, and optionally, a username
and password for it. Once defined, a database link can be used to perform queries on
tables in the remote database. Also called DBlink. In SQL*Plus, you can reference a
database link in a DESCRIBE or COPY command.

 database specification          An alphanumeric code that identifies a database, used to
specify the database in SQL*Net operations and to define a database link. In SQL*Plus,
you can reference a database specification in a COPY, CONNECT, or SQLPLUS command.

 datatype          Any one of the forms of data that ORACLE can store and manipulate. The SQL
language recognizes the following datatypes:    CHAR, DATE, NUMBER, LONG, RAW, and
LONG RAW.

 DATE datatype          One of the standard ORACLE datatypes. A DATE column can contain a
date and time from January 1, 4712 BC to December 31, 4712 AD. Standard date format
is 01-JAN-88 (DD-MM-YY).

 DBA          See Database Administrator.

 DCL commands        A category of SQL commands that control access to the data and to
the database. DCL stands for data control language.

 DDL commands          A category of SQL commands that define or delete database objects
such as tables or views. DDL stands for data definition language.

 default          A clause or option value that SQL*Plus uses if you do not specify an alternative.

 default database          See local database.

 DML commands         A category of SQL commands that query and update the actual data.
DML stands for data manipulation language.

E
 error message          A message from a computer program (e.g., SQL*Plus) informing you of

a potential problem preventing program or command execution.

F
 file          A collection of data treated as a unit, such as a list, document, index, note, set of

procedures, etc.--the basic unit of information maintained by an operating system.
Generally used to refer to data stored on magnetic tapes or disks.

 format model          A clause element that controls the appearance of a value in a report
column. You specify predefined format models in the COLUMN, TTITLE, and BTITLE
commands' FORMAT clauses. You can also use format models for DATE columns in SQL
date conversion functions, such as TO_DATE.

   

 formfeed          A control character that, when executed, causes the printer to skip to the top
of a new sheet of paper (top of form). When SQL*Plus displays a formfeed on most
terminals, the formfeed clears the screen.

H
 heading          Text that appears above a report column to name the column.

 host computer          The computer from which you run SQL*Plus.

 Julian date          An algorithm for expressing dates in integer form, using the JDATE function
and date formatting. Julian dates allow additional arithmetic functions to be performed
on dates.

L
 local database          The database that SQL*Plus connects to when you start SQL*Plus,

ordinarily a database on your host computer. Also called a default database. See also
remote database.

 LONG datatype          One of the standard ORACLE datatypes. A LONG column can contain
any printable characters such as A, 3, &, or a blank, and can have any length from 0 to
65,535 characters.

N
 network          Two or more computers linked together through hardware and software to

allow the sharing of peripherals.

 null            A value that means, "a value is not applicable" or "the value is unknown."    Nulls
are not equal to any specific value, even to each other. Comparisons with nulls are
always false.

 NUMBER datatype          One of the standard ORACLE datatypes. A NUMBER column can
contain a number, with or without a decimal point and a sign, and can have from 1 to
105 decimal digits (only 40 digits are significant).

O
 operating system          The system software that manages the computer's resources,

performing basic tasks such as allocating memory and allowing computer components
to communicate.

P
 page          A screen of displayed data or a sheet of printed data in a report.

 parameter          A substitution variable consisting of an ampersand followed by a numeral
(&1, &2, etc.). You use parameters in a command file and pass values into them through
the arguments of the START command.

 password          A secondary identification word associated with a username. A user logging
on to the system must supply the correct password before the system will permit
access. This security measure helps to prevent unauthorized people from working with
files.

 PL/SQL          A procedural language extension of SQL that provides programming constructs
like blocks, conditionals, and procedures.

 prompt          A message from a computer program that instructs you to enter data or take
some other action.

Q
 query          A frequently used type of SQL command, used to retrieve information from

tables or views. Queries typically begin with the SQL reserved word SELECT.

 query results          The data retrieved by a query.

R
 RAW datatype          One of the standard ORACLE datatypes. A RAW column can contain

data in any form, including binary.

 RDBMS          See relational database management system.

 record          A row in a database.

 relational database management system                  A computer program for general-
purpose data storage and retrieval, also called the RDBMS. Data is stored in tables
consisting of one or more units of information (rows), each containing the same set of
data items (columns). ORACLE is a relational database management system.

 remote computer          A term used to refer to any computer in a network other than one's
own host computer.

 remote database          A database other than your default database, which may reside on
a remote computer; in particular, one that you reference in the CONNECT, COPY, and
SQLPLUS commands.

 reserved word          One of a number of words that have special meaning to ORACLE; you
cannot use a reserved word as the name of a database object. Examples are TABLE,
NUMBER, DATE, SELECT.

 rollback          To discard pending changes made to the data in the current transaction using
the SQL ROLLBACK command. You can roll back a portion of a transaction by identifying
a savepoint.

 row          (1) One set of fields in a table; for example, the fields representing one employee
in the sample table EMP. (2) One set of fields in the output of a query.

S
 session          The events that happen between the time you connect    to SQL*Plus and the

time you disconnect.

 SET command variable          See system variable.

 spooling          The act of writing displayed output to a disk storage area. The SPOOL
command controls spooling.

 SQL          Structured Query Language, the ANSI, industry-standard language used to
manipulate information in a relational database. SQL is the language used in ORACLE
and IBM DB2 relational database management systems. SQL is pronounced sequel. See
also DCL commands, DDL commands, and DML commands.

 SQL buffer          The default buffer containing your most recently entered SQL command or
PL/SQL block.

 SQL*Forms          A non-procedural tool for creating, maintaining, and running forms-based,
interactive applications using ORACLE.

 SQL*Net          An Oracle network product that works with ORACLE and enables two or more
computers that run ORACLE to exchange database data through a network.

 SQL*Plus          A software product that allows users to interactively use SQL commands or
PL/SQL blocks and that produces formatted reports and supports written-command
procedures to access data in ORACLE.

 substitution variable          A variable name or numeral preceded by one or two
ampersands (&). You use a substitution variable in a command file to represent a value
that you will provide when you run the command file.

 subtotal          The total of values in a NUMBER column, taken over a group of rows that have
the same value in a break field.

 summary line          A line in a report containing totals, averages, maximums, or other
computed values. You create summary lines through the BREAK and COMPUTE
commands.

 syntax          A set of rules that determines how to construct a valid command in a computer
language, such as SQL.

 system editor          A program on the host computer used to edit text in host operating
system files.

 system variable          A variable predefined and set to a default value by ORACLE or
SQL*Plus to indicate status or environment. You can list the values of and set many
system variables with the SHOW and SET commands, respectively. An example is
LINESIZE, which determines the number of characters that SQL*Plus displays on a line
before beginning a new line.

T
 table          The basic unit of storage in a relational database management system. A table

consists of one of more rows and one or more columns.

 text editor          A program run under your host computer's operating system that you use
to create and edit host system files and SQL*Plus command files containing SQL
commands, SQL*Plus commands, and/or PL/SQL blocks.

 timing area          An internal storage area created by the TIMING command.

 title          A line that appears at the top or bottom of each report page. You establish and
format titles through the TTITLE and BTITLE commands.

 transaction          The SQL commands that occur between one CONNECT, COMMIT, or
ROLLBACK (without mentioning a savepoint) and another. Note that a COMMIT can occur
explicitly with the use of the    SQL COMMIT command, or implicitly through commands
such as the SQL*Plus EXIT command or SQL DDL commands.

 truncate          An operation where one or more characters are discarded from the end of a
value.

U
 username            (1) The name a user enters to log on to the host system. (2) The name by

which a user is known to ORACLE and to other users, as in the prefix to a table name
(for example SCOTT, in the table SCOTT.EMP). Every username is associated with a
private password, and both must be entered in the data dictionary in order to connect to
ORACLE.

 user variable          A variable defined and set by you explicitly with the DEFINE command
or implicitly with an argument to the START command.

V
 VARCHAR          An Oracle Corporation datatype. Specifically, this datatype functions

identically to the ORACLE7 VARCHAR2 datatype (see definition below). However, Oracle
Corporation recommends that you use VARCHAR2 instead of VARCHAR because Oracle
Corporation may change the functionality of VARCHAR in the future.

 VARCHAR2          An Oracle Corporation datatype. Specifically, it is a variable-length, alpha-
numeric string with a maximum length of 2000 characters. If data entered for a column
of type VARCHAR2 is less than 2000 no spaces will be padded;    the data is stored with a
length as entered. If data entered is more than 2000, an error occurs. (Note: This
datatype is identical to the ORACLE Version 6 CHAR datatype, except that its maximum
length is 2000 instead of 255)

 variable          A named object that holds a single value. SQL*Plus uses substitution, system,
and user variables.

W
 wrapping          The process of moving some words or letters of a heading or data item to a

new line when the heading or data does not fit on one line.

